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Preface

This volume presents a collection of overviews and research articles on recent ad-
vances in adaptive mesh refinement (AMR) methods and their applications pre-
sented at the Chicago Workshop on Adaptive Refinement Methods at the University of
Chicago in September, 2003. Collection contains about 40 original articles grouped
broadly into sections on methods, applications, and software.

The AMR approach was initially employed to solve hyperbolic systems of con-
servation laws. Consequently, mathematical approaches developed for hyperbolic
equations provide a basis for modern AMR algorithms. Several research articles in
this volume focus on improving the AMR capabilities for hyperbolic problems, such
as treatment of complicated geometries or representation of discontinuous data on
adaptive meshes. Others expand the concepts of AMR to applications which do not
feature hyperbolic regimes, requiring methods for elliptic and parabolic equations.
Finally, several papers discuss cross-disciplinary perspectives; some provide alter-
native approaches to structured AMR, while others propose ideas from fields from
which AMR could potentially benefit. Many algorithmic aspects presented in this
volume are common to applications across a wide range of disciplines and form a
foundation AMR practitioners are uniformly familiar with.

For a number of scientific applications AMR techniques have become a method
of choice while in others, a method of necessity. For example, the large disparity of
scales found in astrophysics make AMR a basic component of numerical modeling
of star formation, evolution of galaxy clusters, and growth of large scale structure in
the Universe. A similar trend can be observed in numerical combustion where prob-
lems involving detonations and deflagrations demand resolving thin reaction zones.
In many areas of space physics, atmospheric modeling and engineering, in particu-
lar aerospace engineering, simulations with adaptive mesh refinement have become
routine practice. Uniting such diverse disciplines is the presence of narrow structures
in complex fluid and solid media. They create ideal settings for exploiting the abil-
ity of AMR to accurately describe evolution of systems with multiple spatial scales.
This poses questions concerning optimal discretization, accuracy and convergence
of solutions on hierarchical meshes, and coupling of individual processes in com-
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plex multi-physics applications. Papers presented in this volume review some of the
recent advances made in many of these areas.

Computers and computer codes are behind all simulation results discussed in
this book. Obtaining these spectacular results would not be possible without a major
effort focused on design and development of modern scientific codes. AMR ker-
nels are often central elements of these codes. We choose not to enter a debate on
whether AMR kernels should dictate the way our codes manage data or vice versa.
We will instead stress that in many situations the design of AMR-capable scientific
codes determines their flexibility, portability, and types of applications that a partic-
ular code can be used for. Some of these design issues are of very technical nature;
others present themselves as open and difficult topics for research. Still others are
dependent on technological advances in computer hardware. Scalability and perfor-
mance are the two enduring aspects scientists and engineers are concerned with.
These concerns will inevitably become more serious as systems with tens of thou-
sands processing elements become available. These systems will generate huge data
sets and will stress storage, networking, visualization and analysis facilities, all of
which will present challenges for future software and algorithms. It is certain, then,
that existing numerical methods and implementations will undergo significant evolu-
tion to accommodate changes in a changing computing environment. Several papers
in this volume discuss possible paths for this evolution. In particular, the volume
opens with a discussion of whether the modus operandi in scientific computing is
optimal or even efficient.

Adaptive mesh refinement methods have become an enabling tool in large-scale
computing in engineering and science. It is no secret that many of these simulations
are still difficult to conduct and analyze; some are unique computational experiments.
These experiments are often of relatively little value to new adepts of scientific com-
puting. It is essential that forthcoming developments in computational science lead
to tools that are flexible and powerful and, at the same time, easy to use and maintain.
In addition to themselves being products of research, such tools must enable ground-
breaking scientific achievements by people not intimately familiar with algorithm or
software development - they must become training and work platforms for future
generations of scientists and engineers. With this vision in mind, we hope that this
volume will inspire and motivate further development of adaptive mesh techniques
and software.

Chicago, Tomasz Plewa
October 2004 Timur Linde

V. Gregory Weirs
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Hervé Jourdren � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 283

Parallel Multi-dimensional and Multi-material Eulerian Staggered Mesh
Schemes using Localised Patched Based Adaptive Mesh Refinement
(AMR) for Strong Shock Wave Phenomena.
A.S. Dawes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 295



Contents XIII

A general adaptive multi-resolution approach to ocean modelling:
experiments in a primitive equation model of the north Atlantic
Laurent Debreu, Eric Blayo, Bernard Barnier � � � � � � � � � � � � � � � � � � � � � � � � � � � 303

An Overview of the PARAMESH AMR Software Package and Some of
Its Applications
Kevin M. Olson and Peter MacNeice � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 315

AstroBEAR: AMR for Astrophysical Applications - I: Methods
Poludnenko, A., Varnière, P., Cunningham, A., Frank, A., Mitran. S. � � � � � � � � � � 331

Introducing Enzo, an AMR Cosmology Application
Brian W. O’Shea, Greg Bryan, James Bordner, Michael L. Norman, Tom
Abel, Robert Harkness and Alexei Kritsuk � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 341

Toward Optimizing Enzo, an AMR Cosmology Application
James Bordner � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 351

Construction and Application of an AMR Algorithm for Distributed
Memory Computers
Ralf Deiterding � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 361

Adaptive Mesh Refinement in a Grid Computing Environment
G. C. Murphy, T. Lery, L. O’C. Drury � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 373

Performance of Vector/Parallel Orientated Hydrodynamic Code
Shigeki Miyaji, Ayato Noro, Tomoya Ogawa, Mitue Den, Kazuyuki Yamashita,
Hiroyoshi Amo, and Kazushi Furuta � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 379

On the efficiency of AMR in NIRVANA3
U. Ziegler � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 391

Dynamic Load Balancing of SAMR Applications
Zhiling Lan, Valerie E. Taylor � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 403

Part IV Applications

The Impact of AMR in Numerical Astrophysics and Cosmology
Michael L. Norman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 413

Recent Advances in the Collapse and Fragmentation of Turbulent
Molecular Cloud Cores: The Formation of Low Mass Stars
Richard I. Klein, Robert T. Fisher, Christopher F. McKee,, Mark Krumholz � � � 431

3D AMR Simulations of Point-Symmetric Nebulae
Erik-Jan Rijkhorst, Vincent Icke, Garrelt Mellema � � � � � � � � � � � � � � � � � � � � � � � � 443



XIV Contents

Mesh Refinement Calculations of Gravitational Waves and Black Holes
in 3-Dimensions
Dae-Il (Dale) Choi � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 453

AstroBEAR: AMR for Astrophysical Applications - II: Tests and
Applications
Varnière, P., Poludnenko, A., Cunningham, A., Frank, A., Mitran. S. � � � � � � � � � � 463

Parallel, AMR MHD for Global Space Weather Simulations
Kenneth G. Powell, Darren L. De Zeeuw, Igor V. Sokolov, Gábor Tóth, Tamas
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Computational Science
“Same Old Silence, Same Old Mistakes”
“Something More Is Needed . . . ”

James J. Quirk

Los Alamos National Laboratory, quirk@lanl.gov

Today it is fashionable to portray computation as the third leg of science, the other
legs being the classical disciplines of experiment and theory. But in the rush to pro-
mote computational science’s strengths, a blind eye is often turned to its weaknesses.
This paper aims to increase awareness of a number of key deficiencies in the hope
that the community can galvanize itself and tackle the identified issues head on.
Specifically, the thesis to be developed here is that software automation could be
used to package worked examples — in the form of dynamic electronic documents
— that would allow interested parties, from different backgrounds, to communicate
more effectively than at present. The hope, by making work easily repeatable, is that
practical expertise can be properly archived. Currently, many avoidable mistakes are
repeated time and time again as the mistakes do not lend themselves for journal pub-
lication and so go unrecorded.

1 Mission Impossible

The subtitle — “Same Old Silence, Same Old Mistakes” — is taken from a newspa-
per article[Col97] that highlights the billions, upon billions, of dollars wasted each
year on failed software projects. The article draws insightful analogies between soft-
ware failures and engineering disasters and it argues the case for more openness in
owning up to software mistakes. Although written for a general audience, the article
offers serious food for thought for the computational science community, especially
now that many algorithms rely more on clever programming than on sophisticated
mathematics. A reader of the article, G. N. G. Tingey, sums the situation up best
when he writes, in a follow-up letter: the usual reasons for classical engineering
failures are ignorance, arrogance and pride, including the shooting of the bearer of
bad tidings. In the early part of the 21st Century, computational science appears to
be failing, to some degree, on all these counts.

The challenge for this author is to rise above the anecdotal, with substantive
evidence of community failings. Otherwise, you will be within your rights to serve
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charges of ignorance and arrogance. In many ways this represents a mission impossi-
ble as it is notoriously difficult to get technical experts to agree to anything, en masse.
A case in point at this adaptive mesh refinement (AMR) workshop was the willing-
ness with which delegates criticized smooth particle hydrodynamics[Mon92] while
engaging in circular arguments regarding the merits of patch-based AMR[BC89]
versus cell-based AMR[PRQ92]. The view adopted here is that such arguments are
moot, for algorithmic advantages depend on the actual application and they can be
undermined by implementation details, as well as operator error.

Like mainstream society, computational science does not have a good grasp on
software engineering. If it did, by now the idea of a standalone simulation code
would be quite dead. Instead there would be sufficient standardization of operation
that users could, if they so wished, run multiple algorithms on the same problem,
from within some universal run-time system. This would allow rigorous head-to-
head comparisons to be made for minimal effort and it would soon become clear
which schemes performed well on which problems. Of course, the practicality of
such a system lies in its many details.

Moving swiftly to the substantive elements of this paper. Section 2 revisits a
blast wave simulation from 1991[Qui91] to show how increases in computing power,
over the last decade, warrant a rethinking of how computational business is done.
This theme is developed in Sect. 3 with an examination of the American Institute
of Aeronautics and Astronautics (AIAA) policy on numerical accuracy[AIAA]. The
policy was drafted in response to considerable concern with the quality of published
numerical results and it is a solid attempt to raise computational standards. But in the
spirit of this paper, the most illuminating aspect of the AIAA policy is the absence
of any recognition that software could help power standards.

The aerospace industry is a mature discipline which, over the years, has been
shaped by engineering failures, such as the ill-fated Comet[RAE54] and the Chal-
lenger disaster[RPC86]. Thus the AIAA policy can be thought of as raising the con-
cept of computational technique to complement established practices like wind tun-
nel technique[PH52]. The usual difficulty, however, of defining technique is that it is
a catch-all for all manner of hard-won, tricks-of-the-trade. But in the case of compu-
tations, Sect. 4 shows that software technologies do exist that would allow sound
technique to be demonstrated using automated, worked examples. Again, obsta-
cles to progress include software ignorance, software arrogance and software pride.
Sect. 5 covers these sensitive issues from the perspective of the DOE Advanced Com-
puTational Software Collection[DM03].

Section 6 concludes with a set of recommendations. The way forward, essentially
hinges on recognizing that software tools and management can be used to facilitate
communication. And improved communication is needed for computational science
to fulfill its potential.
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2 A Blast From The Past

The AMR simulation shown in Figure 1 was computed July 1990[Qui91]. It took
just over 12 hours to run on a Sun SPARCstation 1. In 2003 it can be run on an IBM
T30 laptop in a shade over two minutes. The specifications for the two machines
are given in Table 1. Such dramatic increases in desktop computing-power begs the
question:

What should the computational science community be doing over and above
scaling up the sizes of the problems it computes?

116 CHAPTER 6. COMPUTATIONAL TEST PROBLEMS

Figure 6.2: Initial conditions for the open shock tube problem.

120 CHAPTER 6. COMPUTATIONAL TEST PROBLEMS

Figure 6.6: The position of the Mach disk has stabilised, cf. figure 6.8.

(a) (b)

Fig. 1. Two snapshots from a simulation of a blast wave escaping from an open-ended tube:
(a) initial conditions; (b) late-time flowfield.

Table 1. Comparison of the computing power on the author’s desk.

Sun SPARCstation 1, 1990 IBM T30, 2003

8 MBytes Ram 1000 MBytes Ram
100 MBytes Disk 60000 MBytes Disk
33 MHz Fujitsu MB86901A 2400 MHz Intel Pentium 4M
� 12.5 MIPS, 1.4 Mflops � 4500 MIPS, 1200 MFlops
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It is certainly important for computational science to push the envelope with ever
larger and larger simulations, but a measure of introspection is called for to uncover
the dangers of operating in a bigger-is-better fashion. If nothing else, it results in
a throwaway culture where work is here today, gone tomorrow. In 1990, the above
blast wave simulation turned one head sufficiently that its owner stole a poster of
the simulation from the 12th Intl. Conf. on Numerical Methods in Fluid Dynamics,
held in Oxford. But in this workshop proceedings, with today’s computing power,
the simulation will barely attract a second glance. By the same token, the largest
simulation in this proceedings will look paltry come 2016.

The challenge for computational science is to migrate to a scale invariant view
of the world where simulations, large and small, are judged on their strict technical
merits. Such an approach would allow pertinent numerical observations to stand the
passage of time. Thus the technical gems in this proceedings will continue to sparkle
in 2016 even though hardware developments will have reduced the recorded research
projects down to homework exercises for students. If computational science cannot
rise to this challenge, each new generation will ignore much of the work of earlier
generations on the mistaken grounds that it has no relevance to the cutting-edge
problems of the day. As a result, many good ideas will be lost and others will be
rediscovered, often as pale imitations of the original.

If the preceding argument sounds pessimistic, many of the issues discussed at
this AMR workshop were covered in depth by an earlier workshop held in Hampton,
Virgina, 1994[STV95]. This is perhaps not surprising as several individuals from the
1994 workshop attended the present one. Nevertheless the bulk of the participants in
Chicago were not at Hampton. Therefore, as an experiment, readers of this proceed-
ings should dig out the earlier one to see how the AMR community has developed
over the last decade. In particular, the 1994 proceedings has a very articulate discus-
sion on the pro’s and con’s of black-box CFD codes. It also highlights the technical
need for temporal refinement. And the very cover of the proceedings shows a com-
putational grid that captures the challenge of designing refinement criteria. Namely,
it is very important to be able to distinguish between a small local error that has a
large global effect and a large local error that has no global effect.

This author’s contribution to the 1994 workshop ended with the observation that
common ground must be found between theoreticians and the practical exponents of
mesh refinement before any real progress can be made in eliminating the heuristic
elements from AMR algorithms. This observation provided impetus for the devel-
opment of a programming system [AMRITA] that would allow interested parties
to engage in computational conversations using self-substantiating, dynamic docu-
ments. As the programming approach is general purpose, not much more will be said
here on AMR. Instead, the motivation for such a system will be examined from the
perspective of the AIAA policy on numerical accuracy.
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3 AIAA Numerical Accuracy

Any discipline that undergoes the rapid development exhibited by computational
science is likely to suffer growing pains. For example, in response to considerable
concern with the quality of published numerical results the AIAA felt compelled to
issue, January 1998, the editorial policy[AIAA]:

The AIAA journals will not accept for publication any paper reporting (1) numer-
ical solutions of an engineering problem that fails adequately to address accuracy
of computed results or (2) experimental results unless the accuracy of the data is
adequately presented.

The AIAA policy, like this paper, does not deny the existence of the many solid
computational investigations that have been published. But it recognizes that poor
work acts to undermine the credibility of computations as an engineering tool. In
the case of computational fluid dynamics (CFD), critics underwhelmed by the rigour
of many investigations refer to CFD as coloured fluid dynamics. The knee-jerk re-
sponse, adopted by many CFD’ers, is to label such critics ignorant. But the more
measured response is to examine work practices, from the ground up, and take reme-
dial action where it is needed.

In this regard, the effectiveness of the AIAA policy hinges on their chosen defi-
nition of accuracy[AIAA]:

The accuracy of the computed results is concerned with how well the specified gov-
erning equations in the paper have been solved numerically. The appropriateness of
the governing equations for modelling the physical phenomena and comparison with
experimental data is not part of this evaluation. Accuracy of the numerical results
can be judged from grid refinement studies, variation of numerical parameters that
influence the results, comparison with exact solutions, and any other technique the
author selects.

The background to this definition, such as why it is careful to preclude comparisons
with experimental data, are discussed by Roache[Roa98]. Here it is more pertinent
to ponder why the recommended activities are often missing. The usual charges of
ignorance and arrogance apply, as does sloth.

In the case of the above blast-wave simulation, the emphasis was placed solely on
computing the largest simulation possible, given the available computing resources.
Such an approach, although not unusual, tends to undermine the activities the AIAA
is trying to promote. For instance, there was insufficient disk space to store the results
from a credible parameter study of the blast-wave phenomena, and it was not possible
to perform a reliable grid refinement investigation as the computed resolution, which
did not yield converged results, could not be improved upon.

Operating on the limit encourages the conceit that a simulation is good simply
because it exceeds the scale that anyone else can compute. But a concrete example is
needed — taken from the world of shock-capturing — to show that there is a much
more fundamental, community-failing that acts to undermine computational rigour.
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3.1 A Cautionary Tale

Godunov’s theorem[Lan98] — linear monotonicity-preserving methods are first-
order accurate at best — is an important result, in shock-capturing circles, for it
indicates that a step function cannot be propagated numerically, using a fixed coef-
ficient stencil, of second-order or higher, without introducing unwanted oscillations
into the computational solution. The theorem, published in 1959, is incontrovertible
mathematical fact, and no amount of software engineering or parallel computing can
change it.

At first sight Godunov’s theorem seems to preclude the possibility of generating
accurate, well behaved simulations of flows that contain shock waves. Godunov’s
genius, however, was to recognize that the theorem could be circumvented by using
computational stencils that employed variable coefficients. This led him to devise a
method based on solving Riemann problems[Lan98].

Unfortunately for the community, Godunov’s pioneering work was published
in Russian[God59] and lay largely forgotten until in 1979 van Leer proposed a
higher-order extension known as MUSCL[Van79]. But given the then available com-
puting power, the operation-count of solving Riemann problems made the method
unattractive. In 1981, Roe realised that a linearized Riemann solver could be used
in place of an exact solver, reducing the operation count down to more manageable
proportions[Roe81]. Nevertheless, the popularity of the approach did not really take
off until the mid-to-late 1980’s.

The thirty years needed for Godunov’s ideas to reach general acceptance is dis-
appointing, but it is not unusual for revolutionary ideas to spend years in the wilder-
ness. The tragedy, at least in the eyes of this author, came to light in 1990 when
it was reported that Godunov-type methods suffer from low-frequency, post-shock
oscillations[Rob90], see Figure 2. Thereby negating the perceived advantage of the
approach over other methods.

The use of the word tragedy may seem overly melodramatic, but the fact re-
mains that it took the community thirty years to discover that Godunov-type meth-
ods are not Galilean invariant when applied to the Euler equations 1. A collective-
performance of which the CFD community should not be proud, given the literal
hundreds of people who came into contact with the numerical approach. If it were
held, an inquest into the tragedy might ask:

What went wrong?
Where did CFD rigour break down?

It should be stated up front that the theory behind Godunov-type methods is not
wrong. It just happens to paint an incomplete picture when applied to non-linear
systems of equations. Thus the criticism above is not aimed at Godunov, van Leer
and Roe whose pioneering works are beyond reproach and remain required reading.
The criticism is aimed squarely at how the computational community does business.

1An earlier work[WC84] alluded to the failing, in passing, and so it can be argued the
delay was only twenty five years.
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Fig. 2. Godunov’s method is not Galilean invariant. It took the shock-capturing community
thirty years to discover that a simple shift in reference frame was sufficient to break a suppos-
edly robust method. Computational science needs to develop a rigorous approach to testing to
identify where theory is weak.
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3.2 Automated Testing

Given that CFD theory is incomplete, commonsense would suggest that weaknesses
could be identified via a rigorous programme of testing. Then, once found, a weak-
ness could be plugged with a heuristic stop-gap, pending the development of new
theory to provide a more lasting solution. Unfortunately, there are several reasons
why the research community does not operate this way. At the practical level, the
community apparently considers testing to be a labour intensive activity without
much intellectual reward. At least it sticks with the hit-and-miss approach of test-
ing a small sample of a large parameter space by hand, when it could just as well
develop software tools and management to both widen the test-net and reduce the
work involved.

Figure 3, for instance, shows that not all shock-capturing schemes suffer the fail-
ing shown in Figure 2. Taken in isolation these results can be used to argue that
scheme B is superior to scheme A, and the literature is littered with papers that make
claims and counter claims based on isolated numerical evidence. The pragmatic view
adopted by this author is that all numerical schemes have strengths and weaknesses
and it is just a matter of selecting the right test cases to map out their respective flight
envelopes![Qui94].

A Riemann problem has an uncountable infinity of initial conditions and so auto-
mated testing is never going to replace shock-capturing theory. But automated test-
ing could be used to remove operational latitudes so as to allow interested parties
to exchange numerical results, unequivocally, with the aim of developing consensus
of opinion on matters not covered by theory. Today, the failing shown in Figure 2
is widely acknowledged, but it was stumbled across by accident in a nozzle-flow
calculation[Rob90]. Similarly, the blast-wave simulation, shown earlier, unearthed
another numerical failing, purely by accident. This failing is also now widely ac-
knowledged, but at the time of its discovery it was routinely dismissed, by sceptics,
as a coding error.

Figure 4 is a zoom of Figure 1 to show the numerical failing: odd-even decou-
pling occurs along the length of a strong shock aligned with the computational grid.
The failing was exasperated by the AMR algorithm used for the simulation, but the
failing is inherent to Godunov’s method and can be reproduced on a uniform mesh.
Now the write-up of this failing[Qui94] highlights a number of fundamental weak-
nesses of computational science.

Starting with the review of the manuscript: one reviewer refused to provide a
review on the grounds that the reported work was scurrilous; the second reviewer
thought that the work was significant and recommended that it should be published
with no modifications whatsoever. Readers of the paper appear equally polarized:
many loathe it; many praise it. If computational science were a truly rigorous disci-
pline, there would be no room for such polarized views. Party A could show party
B, via an unbroken sequence of logical steps, some viewpoint, and if the logic were
flawed, B could respond with a counter viewpoint. Then, in an ideal world, both
parties would iterate until some consensus was reached.
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Fig. 3. Pullin’s method is Galilean invariant. The two test-sheets shown here, and those shown
in Figure 2, are dynamic PDF documents. Embedded withing the PDF is active code that can
replicate the reported work. Thus interested parties can retread the investigations for no effort,
and if mistakes are found they can be corrected.
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Fig. 4. The blast-wave simulation in Fig. 1 helped unearth the odd-even decoupling, numerical
failing described in [Qui94].

In the real world, computational science is a complex amalgam of numerical
analysis, physics, computer science, and common sense (not to mention personality
clashes). As such, it is often difficult to present a watertight case. The AIAA policy
ends with the diktat:

Finally, the accepted documentation procedures for a technical investigation must
be used. For computational papers, the author must provide an adequate description
of the numerical solution procedure, if not documented elsewhere. In addition, the
complete governing equations must be specified with sufficient detail along with the
input parameters to the code so that a reader could reproduce the results of the paper.

but it is far easier for a sceptical reader to reject a paper, out of hand, than to go to the
trouble of reworking its details as part of a rigorous evaluation. Thus the weakness
of [Qui94] is that it could not provide concrete evidence in a sufficiently digestible
form for all readers to take its message on board.

Now, if no consensus can be reached on Riemann solvers, a class of algorithm
rooted in numerical analysis, traditional reporting methods are doubly inadequate for
reaching consensus on software bound algorithms. The community needs more than
one AMR scheme. But one AMR scheme per researcher, as often seems the case with
Riemann solvers, is not a sustainable route. A more co-operative approach is called
for now that the software element of computational science has grown beyond that
which individual researchers, or even individual groups, can be expected to maintain.

The next section will demonstrate the concept of a self-substantiating, self-
replicating electronic document that would allow the AIAA diktat to be met in the
literal sense of allowing a reader to reproduce a paper, for no effort. The idea of
such automation is to eliminate subjective differences of opinion. Party A and party
B can settle their technical differences, substantively, via the exchange of concrete
examples.
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4 Document Engineering

The AIAA policy arises from a desire to improve computational standards. But the
AIAA vision of accepted documentation procedures has not kept pace with what
software technologies would now allow. Specifically, Adobe’s portable document
format [PDF] makes possible the construction of electronic documents that enable
the AIAA diktat to be met to the letter. Here Figure 2 and Figure 3 appear as static
images, but in reality they are dynamic PDF files that would allow you to repeat the
reported work, for the sake of clicking on the time-stamps that appear in the top-left
corner of each page. They also contain material to help you understand the work
performed.

PDF is a binary format and it is intended to be used as a means of archiving
information rather than as a pure mechanism for placing ink on the page, such as
PostScript. Specifically, a PDF file contains a hierarchy of objects along with a ref-
erence table that gives the positions of the objects within the file. Each object has
a type to indicate its purpose. For example, content stream objects paint ink on the
page, file stream objects embed files, and annotation objects introduce interactive el-
ements. The time-stamps in Figure 2 and Figure 3 are annotations that unpack and
run an embedded file stream. The file stream contains the program source used to
generate the document, which includes the code needed to run the Riemann prob-
lems. Thus the time-stamps provide a means for cloning the reported work.

It is hard in a static document, such as these workshop proceedings, to get across
the details of how these self-replicating, test-sheets are created. But as a first step,
it should be appreciated that a new field is emerging, on the back of formats like
PDF, known as document engineering[DE], that views the creation of electronic
documents as a form of programming. For example, the text you are reading here
is typeset using [TEX]. But this contribution was not created in the usual fashion of
typing TEX instructions into a file. Instead a program was written to output the TEX
instructions to a file. Introducing a level of indirection, in this fashion, allows the
manuscript to be intertwined with active code to generate information on-the-fly.

To understand the motivations for this programming approach, consider Figure 5.
It shows how the PDF version of this manuscript appears within Acroread. The doc-
ument can be viewed as any other PDF. But it can enter a viewing mode, the one
shown here, which is more like a windowing system. This gives access to a range
of auxiliary material. For example, the FAQ outlines the document’s operation, and
it alerts the reader to the fact that the PDF, although it can be read using regular
Acroread, requires custom software to be able to extract and run files on-the-fly.
This system software can be downloaded using the Amrita button. It is needed be-
cause Acroread, unlike Acrobat, does not have the ability to extract embedded files.
It is also needed to safeguard against computer viruses. Once the system software
is installed the ViewSource button gives access to the program used to create the
document, and buttons in the text give access to the embedded examples.

The aim here is not to sell [AMRITA] as a turn-key, document preparation sys-
tem. It is to give a feel for how so-called literate-programs could be harnessed to
drive the AIAA policy on numerical accuracy. For example, the numerical parame-
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ters shown in Figures 2 and 3 are guaranteed to be correct as they are typeset directly
from the values used for the calculations, c.f.[AIAA]:

Accuracy of results from a validated code must still be established to show that
proper input parameters have been used with the code.

Fig. 5. The PDF version of this paper includes the actual source used to create the document.
It also includes a FAQ that covers issues ranging from computer security through the operation
of the document’s Amrita-powered features that will allow you to try out the reported work
first hand.

4.1 Literate Programming

The term literate programming was coined by Knuth[Knu92]:

I believe that the time is ripe for significantly better documentation of programs,
and that we can best achieve this by considering programs to be works of literature.
Hence, my title: “Literate Programming.”

Let us change our traditional attitude to the construction of programs: Instead of
imagining that our main task is to instruct a computer what to do, let us concentrate
rather on explaining to human beings what we want a computer to do.

The practitioner of literate programming can be regarded as an essayist, whose main
concern is with exposition and excellence of style.
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Such an author, with thesaurus in hand, chooses the names of variables carefully and
explains what each variable means.

He or she strives for a program that is comprehensible because its concepts have
been introduced in an order that is best for human understanding, using a mixture of
formal and informal methods that reinforce each other.

The approach was intended to overcome the all too common situation where the doc-
umentation of a program fails to reflect its true workings and so is rendered useless,
or even dangerous. But, while many programmers agree that the one thing worse than
no documentation is wrong documentation, literate programming has not caught on.

The incongruity, for computational science, is that Knuth’s typesetting system
[TEX] is widely used for reporting scientific work, including these proceedings, but
the use of his literate programming system [CWEB], which employs TEX, is almost
non-existent2. It is not, however, difficult to see why CWEB has been slow to catch
on, for it literally turns programming inside out. Whereas a classical program con-
sists primarily of computer code with a sprinkling of comments, a CWEB program is
primarily documentation with a sprinkling of computer code. Nevertheless, the key
point Knuth is making with literate programming is straightforward[CWEB]:

The philosophy behind CWEB is that an experienced system programmer, who
wants to provide the best possible documentation of his or her software products,
needs two things simultaneously: a language like TeX for formatting, and a language
like C for programming.

Neither type of language can provide the best documentation by itself; but when both
are appropriately combined, we obtain a system that is much more useful than either
language separately.

With the development of PDF and the power of today’s desktop computers, the
time is truly ripe for significantly better documentation of software. The technique
employed here[AMRITA] generalizes the co-operative idea that underpins CWEB.
Program folds allow arbitrary languages to be mixed re-entrantly, such that the lin-
guistic whole is greater than the sum of its parts.

4.2 Program Folds

The Occam Programming System introduced program folds as a means of outlining
computer code[BK89]:

Folding is analagous to taking a document with headed paragraphs and then folding
it so that the text is hidden, leaving only headings visible.

They allow a code’s structure to be digested without getting bogged down by its
details. Figure 6 (a), for instance, shows the outlined source for this paper. In a fold-
compliant editor, the lines starting ... act like bookmarks in a PDF document. Thus
click on ... document engineering and the view narrows to the fold shown in
Figure 6 (b). Then click on ... program folds and the view narrows to Figure 6
(c), which shows the source for this page.

2The situation is particularly ironic as Knuth rates CWEB above TEX.
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(a) Latex2eHead �
... parameters

�
fold::latex � jjq@AMR2003

... title

... abstract

... mission impossible

... a blast from the past

... numerical accuracy

... document engineering

... doe acts

... something more

... references
�
LatexTail
Latex clean=no

(b) fold::latex � document engineering
\section�Document Engineering�
\label�sec:document-engineering�
... leadin
... literate programming
... program folds
... domain specific languages

�

(c) fold::latex � program folds
\subsection�Program Folds�
The �\sl Occam Programming System� introduced program folds
as a means of outlining computer code\cite�occam�:
... quote from occam2 programming
They allow a code’s structure to be digested without getting
bogged down by its details. Figure˜\ref�fig:thispaper� (a),
for instance, shows the outlined source for this paper.
In a fold-compliant editor, the lines starting �\tt ...�
act like bookmarks in a �\sl PDF� document.
Thus click on �\tt ... document engineering� and
... etc. etc. etc.

�

Fig. 6. The program that generates this paper: (a) outline of the whole program; (b) the section
on document engineering; (c) the source for this page.

In Occam[BK89] a program fold starts with ��� and ends with ���. The present
program folds are multi-lingual. A program fold starts with:

fold::parser � optional comment

where parser identifies the agent responsible for parsing the fold-body, and the op-
tional comment gives an indication of the fold’s purpose. A program fold is ended
by the first � that column-matches the start of the fold. The present program folds
are also re-entrant. Thus the fold::latex shown in Figure 6 can contain fold::amrcc to
compile a C program, and fold::amrcc can contain fold::latex to typeset a document.

The design idea is that any one programming activity can be folded inside any
other programming activity. Thus, as shown in Figure 7, the approach encompasses
the traditional view of a code as well as Knuth’s concept of a literate program. Nest-
ing folds gives rise to the concept of a fold-tree. Figure 8, for example, shows two
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nodes from a fold-tree that ray traces a photo-realistic image. Storing a program in a
tree structure facilitates manipulating the component code, on-the-fly. Thus the code
fragments in Figure 6 are guaranteed to be correct as they are obtained, automati-
cally, via formal transformations.

(a) fold::lang’A � activity one
fold::lang’B � activity two
�

�

(b) fold::lang’B � activity two
fold::lang’A � activity one
�

�

Fig. 7. Program folds allow different type of work to be nested: (a) could be a traditional
program, predominantly code with a sprinkling of comments; (b) could be a literate program,
predominantly documentation with a sprinkling of code.

1 PovrayHead {
2 ... parameters
8 }
9 ... ray-trace newell teapot
80 PovrayTail
81 Povray

The Persistence of Vision Ray Tracer (POV-Ray) provides an id-
iomatic means of describing three-dimensional scenes, such as the
Newell teapot shown here. Amr_sol ’s approach is similar in spirit,
although its mesh refinement results are not as visually striking.

Amrita :: amrbrowse

LeadIn Index First/Last Next/Prev/Back Zoom/Hand Close

run_povray

✍

Drink Tea!

Amrita can co-operate with any
package that is text driven.
Interestingly, POV-Ray’s licence
precludes it from being turned
into a shared object.

fold::amrita

fold::povray fold::povray fold::povray fold::povray

fold::povray fold::povray fold::povray

fold::povray

fold::amrita

9 fold::povray { ray-trace newell teapot
10 ... prelims
54 union {
55 object { Cyl1_Pot texture { T_Gold_5C } }
56 object { Cyl2_Pot texture { T_Gold_5C } }
57 object { Cyl3_Pot texture { T_Gold_5C } }
58 object { Tri_Pot
59 ... add texture
71 }
72 ... positioning
78 }
79 }

Amrita :: amrbrowse

LeadIn Index First/Last Next/Prev/Back Zoom/Hand Close

run_povray

✍

Complex bodies can be built from
the union of simple shapes.

Textures can be added to objects to
make them look more realistic.

Objects can be positioned
as a group.

Best of all, Pov-Ray can be
folded into Amrita!

fold::amrita

fold::povray fold::povray fold::povray fold::povray

fold::povray fold::povray fold::povray

fold::povray

fold::amrita

Fig. 8. Two nodes from a fold-tree that ray traces a teapot: (a) the root node; (b) the node
that defines the teapot. The code annotations are housed in information nodes that have been
pruned from the depicted tree. They can contain active code to generate material dynamically.
For instance, the ray traced image is obtained by running the program. Thus the documentation
is guaranteed to be correct.
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4.3 Domain Specific Languages

Domain specific languages allow common patterns of work, within some field, to be
programmed efficiently, and precisely, using constructs targeted direcly at the job in
hand. For example, [TEX] provides idioms for typesetting and [POVRAY] provides
idioms for ray tracing. The advantage of an idiomatic approach, over a general pur-
pose language, and its relevance here, is that it greatly reduces the documentation
burden on programmers. Code author and code reader are bound by a common in-
terest which has a specialist vocabulary documented in a central dictionary, and only
the structure of an individual program need be described, for the code author can
assume that the code reader can use the dictionary to look up the underlying details.

Figure 9 shows a mesh refinement example. Fully folded none of its AMR id-
ioms are visible, but the structure of the simulation is perfectly clear. Here the use
of a domain specific language allows a separation between the scheduling of com-
putational work and the computational agents that perform the work. In effect the
fold-tree represents a wish list, and when it is parsed the wish list is translated to a
low-level instruction stream that it is then fed to specialist agents to carry out the
work as they see fit. This instruction stream is analagous to DVI in TEX, or an XML
schema. Therefore although a fold-tree is reminiscent of [XML]’s document object
model (DOM) with its hierarchy of object nodes, it is intended as a higher level entity
to be programmed and read directly by humans.

1 ... plugin amr_sol
4 ... EquationSet

21 ... Solver
120 ... Domain
125 ... BoundaryConditions
131 ... SolutionField
145 ... MeshAdaption
150 ... RefinementCriteria
154 ... now run it!

Amrita grew from a software effort to wrap an adaptive mesh refine-
ment algorithm to provide an interactive teaching aid to allow aero-
nautical students to explore the practical aspects of computational fluid
dynamics. Hence the name:

Adaptive Mesh Refinement
Interactive Teaching Aid

Today, Amrita’s mandate is far broader than its origins and so its
name is now best taken at face value. Nevertheless, the above mesh
refinement example is useful for highlighting the top-level design.

The program folds reflect a sequence of interlocks that are enforced
on all problems both to provide a common look-and-feel and to allow
systematic error checking to take place.

Amrita :: amrbrowse

LeadIn Index First/Last Next/Prev/Back Zoom/Hand Close

run_shifter

✍

Natural languages are highly idiomatic.
Amr-sol provides idioms for scheduling
adaptive mesh refinement work. This
particular example outputs:

“Yifter The Shifter” 1

This script:

1 ... plugin amr_sol
81 ... EquationSet
104 ... Solver
203 ... Domain
208 ... BoundaryConditions
214 ... SolutionField
228 ... MeshAdaption
233 ... RefinementCriteria
237 ... now run it!

produces this table of figures:

along with the rest of the page you are reading.
It may seem like a lot of effort to shift a scalar field across a mesh, but the programming effort to keep

Amr_sol happy is independent of the complexity of the end application. Therefore if you can disect the
above script, there is nothing left to learn to be able to interface your own solver with Amr_sol. Although
you would be advised to get into the habit of breaking scripts down into procedures so as to end up with
reusable components. For example, once the EquationSet and the Solver have been placed in procedures,
the initial conditions are prescribed with just a handful of lines. The remainder of the driver script would
then be given over to the mundane task of typesetting this page.

1Miruts Yifter earned the moniker – “Yifter The Shifter” – by displaying an incredible turn of speed on the last lap of middle-
distance races. This speed earned him the 5,000m and 10,000m golds at the 1980 Moscow Olympics. In contrast, you will get
further with Amrita, if you learn to walk before you attempt to run. You can start this process by breaking the present script down
into a resuable set of procedures.

Fig. 9. The root of a fold-tree that runs through the software design of the mesh refinement
engine used to compute Figure 1.
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5 DOE ACTS Collection

The Department of Energy, Advanced CompuTational Software Collection (DOE
ACTS) is a set of tools for constructing high-performance scientific applications on
parallel computers[DM03]. The collection was set up as part of an effort to raise
awareness in academia and industry of a number of software packages that have
been developed at DOE laboratories, over the years, by various research groups.

Like the AIAA policy on numerical accuracy, the ACTS initiative recognizes the
fundamental importance of documentation[DM03]:

A very important element in promoting the use of a tool is the documentation that
describes the tool functionality, and its interfaces. In addition, the practice of pro-
viding proper documentation is the only vehicle for instructing users on the correct
utilization of a tool, and its limitations. Adequate levels of documentation is [are]
also effective in reducing the amount of time a user will spend prototyping her/his
codes using the tool.

Currently, the tools in the ACTS Collection have various different levels of docu-
mentation. In the ACTS Collection we are working to uniformly provide appropriate
levels of documentation for all tools, as well as develop [a] didactical mechanism to
teach users through examples at different levels of complexity and tool expertise.

Again, however, documentation is viewed in the traditional sense that work is done
in one corner, but written up in another. Consequently the ACTS initiative can be
used as a vehicle with which to present issues that work to undermine computational
science, as a whole.

For instance, to understand the practical problems computational science faces,
you need only visit the ACTS repository and see how many packages you can install
within an hour. As with any web-site there are the usual collection of broken links.
For example, on the day this author visited (12th Nov. 2003) PAWS, SILOON, TAU,
and PETE were all missing. Thus 4 of 18 packages were unavailable. Of the remain-
ing packages, each has its own look and feel, and so the effort to install them is not
inconsequential. Indeed, the installation notes for PETSc, one of the more polished
packages in the collection, contains the software truism:

Installing PETSc can be the hardest part of using the software, since each machine’s
configuration is slightly different.

Another software truism is that software developers are configured differently to
software users. The developers of some of the packages at ACTS have spent close
to twenty years honing their respective products, but many potential users are likely
to ditch a package after an hour, unless they see tangible benefits. Consequently it is
difficult to see how computational science can truly flourish until clear societal stan-
dards are established regarding the obligations that software developers and software
users have towards one another. This raises the spectre of social engineering.

5.1 Social Engineering

It is clearly unrealistic for a user to expect to be driving an AMR package intelligently
within an hour, of a standing start. But it is equally unrealistic for an AMR developer
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to expect users to serve a ten year apprenticeship, before they can drive the software
independently. Where is the middle ground?

The ACTS initiative recognizes the basic tensions between software users and
software developers, but in the spirit of this paper it is worth stepping back and ex-
amining a more fundamental issue. Specifically, researchers are judged by the tech-
nical papers they publish and not by the care and attention they put in to developing
and maintaining software. The reward system of publish-or-perish makes sense for
algorithms, like Riemann solvers, where the intellectual content lies with mathemat-
ical details that can be typeset and followed by a broad audience. But for software
bound algorithms, like AMR, traditional journal articles cover only a small part of
the work performed.

Document engineering, of the kind discussed in the previous section, has the
potential to improve matters, for it would allow practical examples to be packaged
within a traditional-style journal paper, without increasing the printed page length,
and without introducing external links. Thus readers would have access to all the
work performed, at any future date, and not just selective highlights as at present.
This would force authors to address the sorts of details which today are often ne-
glected because they are not open to scrutiny. Then just as literary classics inspire
their readers, computational classics would emerge to set standards for activities not
covered by theory.

Of course, there is no point archiving code if it cannot be understood, or if it can-
not be run because a dependent resource has gone missing. But the idea of literate
programming is to allow an author to lead a reader through a code in a way that max-
imizes the reader’s understanding of the code’s workings. And the idea of idiomatic
programming is to ensure that the archived code is long lived. Solution techniques
come and go, but the prescription of a physical problem is time invariant and so it is
separated out as an idiomatic wish list for an obliging Babel Fish to translate for a
target computational engine.

If the approach sounds fanciful, it should be noted that the Association for Infor-
mation and Image Management (AIIM) is actively developing a standard that defines
the use of PDF for archiving and preserving documents[AIIM]. Their aim is to ensure
that a PDF authored today can be read in 100 years time. Also, Babel Fish transla-
tion services of human languages are now commonplace, for example, see [BFT].
Consequently, if the community-will exists, such broad-base technologies could be
deployed with the aim of improving communication within computational science.

The hope, by making work easily repeatable, would be that it would lead to a
raising of standards by peer review. The idea is no different from the current peer
review system, except it would now be applied to the practical elements of computa-
tional science. A brief examination of two packages from the ACTS collection shows
the need to archive practical knowledge.

5.2 POOMA

POOMA (Parallel Object-Oriented Methods and Applications) is a collection of tem-
plated C++ classes for writing parallel solvers using finite-difference and particle
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methods. It has been retired from the ACTS Collection as the original developers
have disbanded and so the product is no longer considered viable. Here it is instruc-
tive to review POOMA in the spirit of [Col97]. The package is a placeholder for
community-wide failings and no personal criticism of POOMA’s developers is in-
tended. The aim is strictly to increase awareness of age-old mistakes.

The first issue to tackle is software arrogance. POOMA offered no migration
path for pre-existing application codes to exploit the package and so the chances of
it developing a sustainable userbase was small. A software package that preaches an-
out-with-the-old-and-in-with-the-new approach will itself be usurped further down
the track. And as the ACTS initiative notes users demand long term support of a
tool[DM03]. Therefore it is imperative that new software technologies are promoted,
and adopted, in ways that are sympathetic to existing code activities. The design trick
is to allow forward evolution, while maintaining backwards compatibility.

Moving to the issue of software pride, POOMA made extensive use of C++ tem-
plates. But as Stroustrup, the architect of C++, himself noted[Str91]:

. . . as programs get larger, the problems associated with their development and main-
tenance shift from being language problems to more global problems of tools and
management.

Therefore many of the claims POOMA made regarding templates are moot. Specif-
ically, replace programs by simulations and languages by algorithmic and you will
immediately see why there is a need for an ACTS-like initiative:

As simulations get larger, the problems associated with their development and main-
tenance shift from being algorithmic problems to more global problems of tools and
management.

The challenge for computational science is to realise that the required tools and man-
agement involve non-classical activities, like document engineering, which are cur-
rently shunned to the detriment of technical progress.

POOMA’s software ignorance needs little introduction to AMR experts. AMR
was viewed as a bolt-on to data parallelism, rather than the skeleton upon which a
simulation is built. A very similar ignorance is exhibited in CFD. A hydro-code is
added to AMR, AMR is not added to a hydro-code[Qui98]. By the same token, AMR
should be viewed as but a cog in a larger activity. It is not a scientific end in itself.
Hence the low profile given to AMR here.

In the spirit of even handedness, this paper can also be critiqued along the lines
used for POOMA. Its software arrogance lies with the claim that accepted proce-
dures for reporting computational science are poor. Its software pride lies with the
promotion of program folds. Its software ignorance permeates the text, for this author
is just as fallible as the next person.

5.3 PETSc

PETSc (Portable, Extensible Toolkit for Scientific Computation) is a suite of data
structures and routines that provide building blocks for writing application codes on
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parallel computers. Its documentation is much more complete, and more honest, than
many scientific packages. For example[PETSC]:

PETSc is a sophisticated set of software tools; as such, for some users it initially
has a much steeper learning curve than a simple subroutine library. In particular, for
individuals without some computer science background or experience programming
in C or C++, it may require a significant amount of time to take full advantage of the
features that enable efficient software use. However, the power of the PETSc design
and the algorithms it incorporates may make the efficient implementation of many
application codes simpler than “rolling them” yourself.

highlights a key difficulty of developing sustainable scientific software.
Those who could benefit most from a package, like PETSc, have the least pro-

gramming background to call upon. Often so little, they cannot even begin to help
themselves. While those with the requisite programming background, who could
contribute the most, tend to prefer to roll their own software. The problem is com-
pounded by code changes:

PETSc is still undergoing development, we reserve the right to make minor changes
to function names and calling sequences. Although this can make keeping your code
up-to-date annoying, it will pay off in the long run for all PETSc users with a cleaner,
better designed, and easier-to-use interface.

Programmers like to write their own code for the very reason that they can insu-
late themselves against unwanted changes. Thus, seeing the above, some individuals
will outright reject PETSc and decide to build their own toolkit. At the other end of
the spectrum, some reluctant programmers, who do adopt PETSc, will deem it too
much trouble to upgrade when new versions are released. Either way, the stirling
effort of PETSc’s developers is undermined.

A singular failing of computational science, from a software perspective, is that
there is no minimum programming standard needed to become a computational sci-
entist. Therefore developers are left guessing as to the software skills of prospective
users. For instance, PETSc offers some advice on code management[PETSC]:

In this file we list some of the techniques that may be used to increase one’s efficiency
when developing PETSc application codes. We have learned to use these techniques
ourselves . . .

that a professional programmer would think distinctly quaint:

Work in two windows next to each other. Keep the editor running all the time, rather
than continually exiting and entering it. Organize directories so code is not scattered
all over the place.

but which is already beyond that exhibited by many computational scientists. A
mechanism is sorely needed to package software technique.

5.4 Packaging Software

Traditionally, computational science has concentrated exclusively on developing al-
gorithmic capability, ignoring the sorts of issues raised by the DOE Acts initiative.
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The world, however, is changing and the subtleties of building sustainable software
activities are now more widely appreciated. Consequently, over the next few years,
the packaging of scientific software is likely to receive much more attention than
in the past. If you have not considered this issue before, the document-engineering
approach taken in this paper will appear out of place in an AMR proceedings. But
AMR, by virtue of its software complexity over traditional numerical algorithms, has
a pressing need to develop methods that allow training examples to be packaged in
an accessible form.

The system used here, [AMRITA], was spawned by working with AMR, but the
more pertinent part of the acronym, ITA, stands for interactive teaching aid. Here
interactive is not used in the sense of point-and-click but in the sense of reasoned
experiment. An observation leads to a hypothesis whose validity is tested for, and in
the process more observations are made, leading to additional hypotheses, and so on.
A key observation that led to the system’s development is that the accepted, linear-
listing approach to programming results in code that is so hard to read it is generally
ignored. Thus the feeling is that computational science could be heading for an in-
tellectual disaster, for it is building an ever larger, and larger, edifice on software
foundations that are not inspected with the same attention as given to computational
theory.

With this fear in mind, [AMRITA] has evolved into a general purpose program-
ming system geared towards making source code observable, and it has little to do
with AMR per se. Figure 10, for instance, shows an example distributed with PETSc:

$PETSC DIR/src/snes/examples/tutorials/ex18.c

that has been refactored to use program folds. The original author of ex18.c, David
Keyes, might not immediately recognize his code, but it remains intact and could be
recovered by formal manipulations of the fold-tree.

The example is now a fold-based literate program. The PETSc developers already
employ literate-programming techniques to extract procedure call information for
their documentation. Therefore, seeing Figure 10, do they spend the time to dissect
the principles behind program folds, or do they roll their own? Interestingly, the
whole idea of program folds is to eliminate a not-invented-here mentality. So long as
any new approach to program folds are re-entrant, the old approach can leverage off
it, seamlessly. The same is true in reverse, thus removing traditional ownership fears.
Through their co-operative design, program folds can add value to any programming
activity.

There is insufficient space here to remove all suspicions you might have. But as
shown by Figure 11, a documentation autopilot can be added to a fold-tree to lead
readers through a code’s construction and multiple documentation threads can be
added to cater for programmers of different persuasions. Thus if your concerns were
known, they could be addressed directly.
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1 utilize PETSc
2 ... compile PETSc ex18

663 foreach beta (2,3,4)
664 run ex18 -beta $beta
665 end foreach

➥ AUTO PILOTAmrita :: amrbrowse

LeadIn Index First/Last Next/Prev/Back Zoom/Hand Close

run_PETSc

✍ Keyes’ PETSc program has been folded into the tree structure:

Click to run the program:

then follow this document thread to learn more:

unix-shell> amrita run_PETSc

code structure

declarations main

FormInitialGuess

FormFunction

FormJacobian

The security implications of running jobs from
this P DF are covered in the “LeadIn” FAQ.
Now would be a good time to review them.

fold::amrcc fold::amrcc fold::amrcc fold::amrcc fold::amrcc fold::amrcc

fold::amrcc

fold::amrcc fold::amrcc fold::amrcc fold::amrcc fold::amrcc fold::amrcc fold::amrcc

fold::amrcc

fold::amrcc fold::amrcc fold::amrcc fold::amrcc

fold::amrcc

fold::amrcc fold::amrcc fold::amrcc fold::amrcc

fold::amrcc fold::amrcc fold::amrcc fold::amrcc

fold::amrcc
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fold::amrcc fold::amrcc fold::amrcc fold::amrcc
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fold::amrcc
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fold::amrcc

fold::amrcc

fold::amrcc fold::amrcc fold::amrcc

fold::amrcc

fold::amrcc

fold::amrcc

fold::amrcc

fold::amrita

It’s all done with
call-back functions!

Fig. 10. PETSc code can be refactored using program folds, as can any program, in any lan-
guage. Folds offer a straightforward migration path from the traditional linear view of code to
a tree-based approach. Observe that Keyes’ program can be run directly from the listing, as it
can from the PDF version of this document.

2 fold::amrcc { compile PETSc ex18
3 fold>amrbin=ex18,use=PETSc
4 fold>dollar off
5 ... misc topmatter

76 int main(int argc,char **argv)
77 {
78 ... PETSc harness
143 }
144 ... FormInitialGuess
176 ... FormFunction
374 ... FormJacobian
662 }

➥ AUTO PILOTAmrita :: amrbrowse run_PETSc

✍ Now that ex18.c is folded its structure is easily digested. It consists
of a harness and three call-back functions. Any C code can be folded
and compiled using fold::amrcc. You can think as fold> as a prompt
at which you can type directives to fine-tune the compilation process.
Here: amrbin provides the name of the target executable; use=PETSc
says link the code against PETSc; dollar off disables string expansions.

Similarly, Fortran code is compiled using fold::amrf77, and C++
using fold::amrcxx. To compile multi-lingual code, just embedd one
fold-type inside another.

fold::amrcc is built on
top of fold::print

fold::print operates as a
re-entrant here-document

here-documents entail
string expansions

re-entrant here-documents
involve recursive descent

Now ex18 is observable, questions can be asked of it.
Is it too detail laden to stand the test of time?

bead 2 of 5 code structure

There is no unique way to
fold a code. With practice
you will develop a style
that suits your needs.

Fig. 11. A fold-tree can contain a number of document threads. Thus an author can cater to
readers from different backgrounds. Now ex18 is observable, a case can be made for adding
an idiomatic layer to PETSc that would act as buffer between the system’s developers and the
system’s end-users.
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6 Something More Is Needed . . .

Clearly the arguments put forward here are not watertight in the sense of a mathe-
matical proof. Therefore, if you feel inclined, there is plenty of ammunition you can
gather so as to shoot this bearer of bad tidings. But you are not asked to agree with
every last line of thought. All that matters is that you are willing to entertain the idea
that the reporting of computational science might fall short of that which technology
now allows. You should also be willing to question the current out-of-sight-out-of-
mind approach to programming: is it inherently dangerous?

It is easy to dismiss [Col97] — the inspiration for the present work — on the
grounds that it is only a newspaper article. But the journalist in question, Tony
Collins, is no ordinary hack. He is executive editor of Computer Weekly[CW], a
British trade publication aimed specifically at information technology profession-
als. He was writing in The Telegraph to promote his book Crash: Ten Easy Ways to
Avoid a Computer Disaster[CB97]. This 400 page tome has subsequently received
sufficient plaudits that it should be made required reading for all computational sci-
entists.

For his undergraduate degree, this author was required to read the engineering
classic Structures: Or Why Things Don’t Fall Down[Gor78] which contains many
examples of why, contrary to the title, structures fail with regrettable frequency. Thus
Crash can be thought of as continuing a long tradition of engineering introspection
aimed at eliminating disasters. The recommendation here is that computational sci-
ence needs to develop a similar culture of introspection to safeguard against intellec-
tual disasters.

Whether computational science can rise to the challenge is anyone’s guess. But
in 2016 it would be nice to think that a workshop proceeding such as this one would
take the form of an electronic document, that retains the rigour of this typeset book,
but which would allow readers to sample the reported work firsthand, without having
to wade through the humdrum software details which today are viewed as unavoid-
able. The hope is that the time saved programming can be employed on more last-
ing scientific activities. Instead of scientific discovery through advanced computing,
there will be scientific discovery through accessible computing. This simple shift in
emphasis might not appear to be that big a deal, but it will result in a movement away
from general programming languages, like Fortran 90 and C++, to domain specific
languages, like [POVRAY].

Although Povray is a hobbyist activity it contains many elements that put com-
putational science’s software efforts to shame. For example, Povray’s users are not
passive operators of a code. The international ray tracing competition[IRTC] has har-
nessed their competitive spirit to produce wondrous photo-realistic images that act
to inspire that community’s programming skills. Computational science desperately
needs something similar. If nothing else, it will help erode the mentality where many
scientists, today, wear their programming ineptitudes as a badge of honour.

Another weakness is that many individuals entered the field because of a scien-
tific interest, such as aerodynamics, but their time is now almost exclusively spent
on programming activities for which they have no formal training. It is imperative
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that the computational community addresses its software training needs. The current
anything goes approach is unacceptable, but the community should look before it
leaps. For example, a one-size-fits-all approach will fail, as will lurching from one
programming fad to another. A commonsense sense approach is called for. One de-
signed to make simulations more repeatable, more accessible, and more accountable.

For his undergraduate degree, this author had to demonstrate proficiency both
in technical drawing and in the use of workshop tools and machinery, as laid down
by the Institution of Mechanical Engineers[IMECHE]. A software equivalent, for
computational science, would give code developers a prototype person to design for.
At present a developer has to guess the community’s stomach for programming. This
hit-and-miss approach is not working.

The code which produced Figure 1 was constructed in a small corner of an air-
craft hangar. Another corner of the hangar housed an applied psychology unit that
was charged with conducting aircraft evacuation tests. It quickly became evident that
when passengers co-operate with one another a plane can be evacuated much more
quickly and safely than when individuals stampede towards the available exits. Since
research is an innately selfish activity, it is perhaps not surprising that the develop-
ment model for scientific software is more of a stampede than an orderly procession.
Consequently funding agencies must be made to realise that solicitations for scien-
tific software development must address the need for community co-operation. The
roles of software developers and software users needs to be clearly defined.

Human psychology being what it is, this author is conscious that the recommen-
dations made here may be off beam. For an individual’s capacity to critique his, or
her, own work is usually vastly less than the capacity to rubbish the efforts of oth-
ers. Therefore, in the spirit of egoless programming, it must be made clear that the
present manifesto is not a clumsy attempt to promote[AMRITA]. In 1996, Neil Arm-
strong — the first man on the moon — stood fifty yards from where Figure 1 was
constructed to give a commencement speech entitled Something more was needed.
The something more to which Armstrong refers was engineering, without which the
development of man-powered flight would have stalled. In a hundred years time, a
scientific historian may well identify document engineering as the key that allowed
computational science to reach its moonshot. But feel free to substitute your own
dreams for how the discipline can move forward. Something more is needed.
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Summary. The Los Alamos Crestone Project is part of the Department of Energy’s (DOE)
Accelerated Strategic Computing Initiative, or ASCI Program. The main goal of this soft-
ware development project is to investigate the use of continuous adaptive mesh refinement
(CAMR) techniques for application to problems of interest to the Laboratory. There are many
code development efforts in the Crestone Project, both unclassified and classified codes. In
this overview I will discuss the unclassified SAGE and the RAGE codes. The SAGE (SAIC
adaptive grid Eulerian) code is a one-, two-, and three-dimensional, multimaterial, Eulerian,
massively parallel hydrodynamics code for use in solving a variety of high-deformation flow
problems. The RAGE CAMR code is built from the SAGE code by adding various radiation
packages, improved setup utilities, and graphics packages. It is used for problems in which
radiation transport of energy is important. The goal of these massively-parallel versions of the
SAGE and RAGE codes is to run extremely large problems in a reasonable amount of cal-
endar time. Our target is scalable performance to �10,000 processors on a 1 billion CAMR
computational cell problem that requires hundreds of variables per cell, multiple physics pack-
ages (e.g., radiation and hydrodynamics), and implicit matrix solves for each cycle. A general
description of the RAGE code has been published in [1], [2], [3] and [4].

Currently, the largest simulations we do are three-dimensional, using around 500 million
computation cells and running for literally months of calendar time using �2000 processors.
Current ASCI platforms range from several 3-teraOPS supercomputers to one 12-teraOPS
machine at Lawrence Livermore National Laboratory, the White machine, and one 20-teraOPS
machine installed at Los Alamos, the Q machine. Each machine is a system comprised of many
component parts that must perform in unity for the successful run of these simulations. Key
features of any massively parallel system include the processors, the disks, the interconnection
between processors, the operating system, libraries for message passing and parallel I/O, and
other fundamental units of the system.

We will give an overview of the current status of the Crestone Project codes SAGE and
RAGE. These codes are intended for general applications without tuning of algorithms or
parameters. We have run a wide variety of physical applications from millimeter-scale labo-
ratory laser experiments, to the multikilometer-scale asteroid impacts into the Pacific Ocean,
to parsec-scale galaxy formation. Examples of these simulations will be shown. The goal of
our effort is to avoid ad hoc models and attempt to rely on first-principles physics. In addition
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to the large effort on developing parallel code physics packages, a substantial effort in the
project is devoted to improving the computer science and software quality engineering (SQE)
of the Project codes as well as a sizable effort on the verification and validation (V&V) of the
resulting codes. Examples of these efforts for our project will be discussed.

1 Overview of the Department of Energy (DOE) ASCI Program

The ASCI program at the DOE was started in 1996 as part of the Department’s
Stockpile Stewardship Program (SSP). One of the main activities of the DOE Na-
tional Laboratories is to maintain the safety and reliability of the United States nu-
clear stockpile in the absence of nuclear testing. For decades, the testing of our nu-
clear weapons allowed weapons scientists to demonstrably certify to the national
leadership that nuclear weapons would perform as expected should the President
require their use. Additionally, the weapons in the current active stockpile will be re-
tained well beyond their expected lifetimes. Through surveillance of these stockpiled
weapons, we have found further complications caused by the aging of various materi-
als in these systems. Without testing the effects of these changes, the scientists at the
National Laboratories are given the difficult task of continuing to certify the safety
and reliability of these systems. A variety of programs and initiatives were started
to address this task. No individual program under SSP constitutes a “replacement”
for experimental validation of a particular design (i.e., nuclear testing). Rather, the
collection of programs (e.g., Above Ground Experiments [AGEX] such as DAHRT
and NIF and others; the Advanced Simulation and Computing Initiative [ASCI] for
improved computational modeling; Enhanced Surveillance; etc.) constitutes the SSP
program and allows the National Laboratories to make the most informed decisions
about the safety and reliability of the nuclear stockpile in the absence of testing.

One of the components of the SSP is the enhancement of the complex computing
codes used to simulate the operation of a nuclear weapon. Complex codes have been
used for decades in the design and analysis of nuclear weapons tests. Now, without
testing to experimentally verify the proper behavior of these complex designs, it was
decided to accelerate the development of the codes used to simulate weapons. Fur-
thermore, as the systems in the nuclear stockpile age, the resulting material changes
invariably result in significant three-dimensional issues that require verified and val-
idated three-dimensional (3D) codes for evaluation and assessment. The addition of
the third physical dimension to the simulation codes results in a huge increase in the
computer power and speed required in order to answer such 3D questions in reason-
able amounts of time. These requirements led to the ASCI Program at the DOE. The
fundamental ideas involved in the ASCI program were to accelerate the development
of high-end supercomputers and the associated (necessarily parallel) software in or-
der to have approximately 100 TeraOperations per sec (TOps) capability by the year
2004. The ASCI program is a concerted collaboration among the National Labora-
tories, computing hardware vendors, academic institutions and many contractors to
provide the capability to simulate a model that has a billion computational cells and
has an extremely complex geometry with multiple-nonlinear physics. Additionally,
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this capability must be verified calculationally and validated against a wide variety
of experimental results, both Above-Ground Experiments (AGEX) and the previous
nuclear tests that have been done. This effort is a daunting task. Some of what is
presented in this paper (the unclassified parts of the Crestone Project) documents our
progress towards these goals.

1.1 An Evolution of ASCI Supercomputers

The ASCI supercomputers began arriving at the DOE labs (Sandia, Livermore, and
Los Alamos) in�1997, with one 3 TOps machine each at the three DOE labs. One of
the fundamental characteristics of these machines was their massively-parallel struc-
ture. Each machine could be used as a single supercomputer with �6000 processors
available for use. At Sandia there was the ASCI Red machine, a MPP design with
Intel chips. At Livermore and Los Alamos there were ASCI Blue machines (SMP
architecture) with SGI building the Los Alamos Bluemountain supercomputer (6144
cpus) and IBM building the Livermore Blue Pacific machine. The first ASCI Level-

Fig. 1. The Bluemountain 3TOps Los Alamos supercomputer.

Fig. 2. The White 12TOps ASCI supercomputer at Livermore.
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Fig. 3. The Q 20TOps ASCI supercomputer at Los Alamos.

1 milestones were accomplished on these machines, each Laboratory fundamentally
using its own resources to complete the milestones. We will present more on these
results later. The next major step in the ASCI hardware was the delivery in 2001
of a 12 TOps ASCI White machine at Livermore, built by IBM on the SP3 SMP
architecture. Again many thousands of processors were available for use on single
simulations, but this time the chip speed was greater, the interconnect was faster, and
the disk storage and I/O rates were greatly enhanced over the previous generation
machines. The Global Parallel File System (GPFS) on the White machine holds 77
Terabytes (TB) of data! From the 3 TOps machines to the ASCI White 12 TOps ma-
chine, we actually saw a 3-4 fold increase in speed, or more to the point, a 4-fold
decrease in the time-to-completion for a major 3D simulation. These machines were
actually performing simulations that would have taken literally hundreds of years on
any prior supercomputer, all due to the enhanced performance from parallel com-
putations. The ASCI hardware acceleration continued in 2002 with the delivery of
the ASCI Q machine at Los Alamos, a 20+ TOps capability supercomputer built by
HP/Compact using alpha chips. Using about the same number of processors, this
new machine could complete the same run �10 times or 3 times faster than either
the Bluemountain or the White machine, respectively. So, not only were we running
the same simulations faster, but we were also including more complex physics and
running even more complex geometries than before. A complex 2D simulation that
actually took about one month to finish on the Bluemountain machine would run in
about a week on the White machine and about two days on the Q machine. (So nat-
urally we actually ran more complex, detailed runs on the Q machine that finished
in a few weeks time!) The next generation of ASCI supercomputers is still being
developed, but a contract to IBM for a 100 TOps supercomputer at Livermore is
scheduled for delivery in �2006. I have refrained from discussing the details of the
costs for these supercomputers. If interested, the reader can contact the individual
Laboratories for information.
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1.2 An Evolution of ASCI Software – “Think Parallel”

With the advent of massively-parallel hardware available for general production use
at the National Laboratories, there was a concerted effort to transition working codes
and develop new codes that could take advantage of these resources. For the Los
Alamos Crestone Project, this transition was a natural occurrence. The source code
for the SAGE and RAGE codes that were delivered to Los Alamos from SAIC as part
of the collaborative contract were initially written for the supercomputers of the early
1990’s: a single vector processor architecture such as the CRAY machines. Since the
capability to setup and run 3D simulations was available from the start of the contract
(�1994), we soon realized that the supercomputers of the time (CRAY’s) could not
be effectively utilized for large 3D work. These machines were just not fast enough
to complete 3D simulations (even rudimentary ones) in any reasonable amount of
calendar time. From the 2D runs that were done during this period, we estimated that
3D runs would take more than 60 years to complete on CRAY architecture. Thus,
with the advent of the ASCI program in 1996, we were already starting a conver-
sion process from the original CRAY vector Fortran 77 code to a new paradigm:
parallel and modular code with effective SQE. There were several initial starts along
this path, but the one chosen was to employ Fortran 95 with C program interfaces
for I/O and the explicit use of message passing to effect communication among the
processors. Domain decomposition was used to spread the computational cells of the
problem among the processors. More details of this plan are given below and in some
of the references ([3],[5],[6]). We needed to “Think Parallel” in our software design
to begin running 3D simulations in a reasonable amount of time. For the “60 year”
run to complete in just a month we needed an effective increase in computing power
of 720 or almost 3 orders of magnitude! The “Think Parallel” phase is a reminder
that simple conversions of algorithms developed for efficient use of CRAY vector
single-processor architectures is much more that simply duplicating the computa-
tional mesh on each processor or even rearranging loops of the physics algorithms.
In order to “Think Parallel” one must must completely change the framework and
thought process (and hence the entire coding) for developing algorithms. An excel-
lent, albeit brief, description of this thought process is given in a paper we wrote for
the 1999 ISSW22 meeting in London [3].

2 An Overview of the Los Alamos Crestone Project

The Los Alamos Crestone Project developed from an extension of the highly success-
ful collaboration between the scientists in the Thermonuclear Applications groups
(X-2) of Los Alamos and the scientists at a major defense contractor, Science Appli-
cations International Corporation (SAIC). This high-performance collaboration team
with members from both Los Alamos and SAIC continues today as one of the pre-
mier code-development successes at Los Alamos.

A little history helps put some of the important aspects of this collaboration in
perspective. During the early 1990’s one of us (Weaver) took an unusual Change-of-
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Station assignment (COS) for Los Alamos. Instead of the usual assignment of report-
ing to the DOE or DOD headquarters in Washington, DC, Weaver decided to perform
a more technical COS, and thus he moved to San Diego, California, working on an
enhanced collaboration for nuclear weapons effects that had been active for more
than five years at that point. During this COS Weaver observed a code called SAGE,
being developed by one of us (Michael Gittings). This code was originally developed
to study the detailed effects of an underwater shock wave from a nuclear explosion
at distances of many kilometers from the core of the detonation. Accomplishing the
required resolution of centimeters to meters at distances of many kilometers from
the source required a new approach to grid generation and grid development. The so-
lution that Gittings was developing involved acontinuous adaptive mesh refinement
technique that was based upon a modern Eulerian hydrodynamics framework. In this
method, one could refine any grid cell in the problem at any time in order to more
accurately simulate the physics at that location. Conversely, if the physical gradients
in a particular cell of the problem became small, then the method allowed the cells to
become more coarsely resolved at that location. This dynamic controlling of the total
number of cells in the problem results in minimizing the total memory and computer
time required to complete that cycle of the problem, while maximizing the accuracy
of the solution by having high-resolution in only those areas of the geometry that re-
quired them. We now call this technique Continuous Adaptive Mesh Refinement, or
CAMR. Adaptive mesh refinement codes were not universally accepted in the early
1990’s, but today the use of adaptive meshing seems to permeate a wide variety of
computational physics from astrophysics to radiation transport to hydrodynamics,
just to name a few. During this COS assignment in San Diego, Weaver decided to
use Gittings’ SAGE code to run some unclassified samples of problems of interest
to the Laboratory. This simple exercise convinced us that creating a collaboration
between SAIC and the Laboratory would result in a tremendous enhancement to the
X-Division existing code simulation capability. After the end of the COS assignment
in 1993, X-2 initiated a contract with Gittings of SAIC that has continued through
the present time. The results of this collaboration between a world-class code de-
veloper (Michael Gittings) and the direction of an active code user has resulted in a
truly amazing simulation capability for Los Alamos National Laboratory. This col-
laboration led directly to the creation of the ASCI sponsored Crestone Project at Los
Alamos, in which the main goal of the project is to develop, verify, and validate
CAMR Eulerian hydrodynamics based capabilities for use in projects of interest to
the laboratory.

Since the Crestone Project is funded by the DOE ASCI Program, there are
many actual code development efforts managed by the Project. Some of the ef-
forts, such as the SAGE, RAGE, NOBEL, SAGA, and IAGO codes are unclassi-
fied codes that can be discussed in open literature such as this publication. Other
efforts under the Project are classified, and only some general characteristics of the
truly amazing simulations that have been performed over the years can be described
here. We believe it is an understatement to say that the Crestone project has far
exceeded any expectations of the ASCI program. This fact is demonstrated by the
project’s continuous completion of many major Level-1 Milestones for the DOE
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ASCI program year-after-year (see below). More to the point, the examples of the
use of the Crestone Project codes by many end-users has fundamentally changed
the way the Laboratory scientists think about computing: massively-parallel sim-
ulations are answering questions though simulations that we never even dreamed
of asking even as early as a few years ago. Here I will present several exam-
ples of these efforts. Other papers at this conference also highlight aspects of this
statement; see, for example, the work by Galen Gisler using SAGE and RAGE
on complex 3D asteroid impact simulations. Although Verification and Validation
(V&V) is a major activity of the project, the funding lines for V&V work are
distinct from the basic code development work. Some examples of V&V for the
Crestone project codes will be shown here, as well as many references for other
examples([7],[4],[8],[10],[11],[12],[13],[2],[18],[23],[24]).

The code continues to be used for a variety of application work, ranging from
AGEX experiments, to volcanology, to fundamental physics of complex hydrody-
namics ([9], [14], [15], [16], [17], [19], [20], [21], [22], [26], [27]).

The Crestone Project team currently is led by three main individuals: Mike Git-
tings is the chief code architect for the project; Bill Archer is the Co-Project leader
for code development and Bob Weaver is the Co-Project leader for physics design
and initial demonstration applications. The FY2002 budget for the Crestone project
was �$7.2M and the FY2003 budget is �$8.5M. This project is a significant code
development effort at Los Alamos and supports approximately 25 FTEs (full-time-
equivalent staff). There are approximately two-three dozen users of the Project codes,
both inside and outside the Laboratory. Although three-dozen users seems like a
small number, for the kinds of specialized high-performance computing physics used
in the Crestone Project codes, this number is actually larger than any other project
we know.

The Crestone Project Unclassified Codes

The Fortran77 version of the SAGE code that Gittings was developing in the late
1980’s and the early 1990’s had many of the capability elements of the current ver-
sion of SAGE: 1D, 2D or 3D geometry, CAMR Eulerian-based high-order Godonov
hydrodynamics([28],[29]), and adaptive mesh capabilities optimized for hydrody-
namic shock problems. Today’s version of SAGE does all these things as well, but,
it has been completely re-written with a massively-parallel implementation based on
Fortran 95 and the message-passing interface (MPI).

The RAGE code is built from the SAGE code base by adding a variety of physics,
most notably a two-temperature radiation diffusion package (see [1]). Two key in-
dividuals responsible for the development and implementation of the radiation dif-
fusion solver in RAGE are Tom Betlach and R. Nelson Byrne, both of SAIC. They
have not only written the original version of the implicit diffusion solver, but they
have also maintained this part of the code in production mode since its beginning.
They both interact (almost daily) with end-users in order to solve problems as they
arise with this package. Additionally, Tom Betlach is aggressively pursuing modern
options for implementation of multi-grid methods in this section of the code physics
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(see below). The main characteristics of the RAGE code are: multi-material Eulerian
CAMR in 1D, 2D, or 3D; a modern treatment of the Eulerian hydrodynamics based
originally on the Piecewise-Parabolic Method (PPM) used in astrophysics since the
early 1980’s([28],[29]); unit aspect ratio cells (square in 2D and cube in 3D); radia-
tion energy transport by a two-temperature (material and radiation) grey diffusion so-
lution; preliminary interface treatment; and a material strength package. The SAGE
and RAGE codes clearly have joint intellectual property rights between SAIC and
Los Alamos. The CAMR adaption algorithms are the heart of the methodology and
are implemented so that any two adjacent cells can differ by no more than a factor
of two in mesh size. Each level of refinement is accomplished by halving the size of
the mother cell in each direction, so the factor of two requirement between adjacent
cells is equivalent to one level of adaption. The implicit radiation diffusion solve uses
a conjugate gradient iteration with a point Jacobi (diagonal scaling) preconditioner.
There is a variety of efforts underway currently to employ multi-grid techniques to
the CAMR Eulerian mesh for the radiation diffusion solver. A couple of these efforts
show great promise, where the payoff is measured in an actual reduction in the wall
clock time to complete a full cycle of the radiation hydrodynamics. Merely reducing
the iteration count is, in our opinion, not the only measure of success. We believe
that reducing the overall computation time is the desired result, either by algorithm
or by reducing iterations, or both..

The parallelization strategy for these codes is based on the use of Fortran 95
and the message passing interface, or MPI, paradigm. Both allow for portability and
scalability. In fact, both SAGE and RAGE are used on all available supercomputer
platforms and are even used in the evaluation of new machines. The codes are so
portable that they even rundesktop and laptop computers, including the Apple Mac-
intosh with MacOS X unix environment. [In fact, most of the development work
is done on the Mac, and then code versions are immediately uploaded and used on
1000 processor supercomputers.] Load leveling among the many processors used in
a simulation is based upon a simple reordering of the cell pointer list at the end of
each computational cycle. At each cycle of the simulation a determination is made
for each cell in the problem as to whether to subdivide a cell (refine the zoning) or
merge adjacent cells (coarsen zoning). This decision is based upon the magnitude of
the local physical gradients at that location. If the gradients become steep, then the
code creates finer zoned daughter cells from coarser cell meshes; alternatively, when
the gradients become small enough, then daughter cells are recombined into the orig-
inal mother cells to produce a coarser mesh. The load leveling of a massively parallel
run is maintained effectively by inserting the newly created daughter cells immedi-
ately after the mother cell in the global cell list, thereby maximizing the probability
of on-processor memory locations. The global cell list is reorganized at each time
step (M total new cells at the end of a time step on N processors results in M/N cells
per processor), and the result is excellent load-leveling. Empirically we have found
that good performance is obtained with cells-per-processor in the range of 10,000 –
100,000.
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Many finite difference codes use computational grids that are logically rectangu-
lar and structured. In this type of code the finite difference equations are often coded
as follows:

something�i� j� � �a�i�1� j��a�i�1� j���dx�i��
Parallelization of this type of code structure is difficult and typically involves the use
of ghost cells at the domain boundaries. This code structure also limits the problems
to the number of dimensions that are hard-wired (two dimensions in this example).
The philosophy used for the CRAY vector version of the RAGE code was different.
This same expression in RAGE would be:

something�l� � �a�l right�l���a�l le f t�l���dx�l��
where l right(l) and l left(l) are the global addresses of the cells to the right and the
left of cell l. This method uses more memory and is somewhat slower than the orig-
inal example, but it makes the coding for unstructured grids much easier. An added
benefit is that it allows the same code to do 1D, 2D, and 3D problems by looping over
the dimensions. In order to parallelize this concept, our main concern was to have a
code that scaled well. The resulting implementation uses message passing to obtain
a local copy of the neighboring cell’s data. The essence of this method is the creation
of a local scratch array of values corresponding to the data needed from the cells to
the right and left (up and down; near and far) of the current cell. The current version
of RAGE uses the following structure to parallelize this example (where NUMDIM
is the number of dimensions in the problem):

Do DIR � 1�NUMDIM
call get next�DIR�HI SIDE�a�a hi�
call get next�DIR�LO SIDE�a�a lo�
something�l� � �a hi�l���a lo�l���celldimension�l�DIR�

endDo

The subroutine get next obtains a copy of the requested cell-centered data (“a”)
from an array which can be located anywhere (i.e., any processor). All communica-
tions between processors are hidden from the user and the resulting scaling is very
good. This structure allows the code to be very portable, relying only on the ma-
chine having the basic MPI libraries. More details on these techniques are given in
reference [3].

Since gather/scatter MPI routines are used to copy required data from where it
resides (i.e. - which processors memory) to the local processor memory, cache reuse
is actually quite good in the parallel implementation. A very nice report of models
of the scalability of the SAGE code is given by Kerbyson, et.al., at Supercomputing
2001 and Supercomputing 2003 ([5],[6]). The primary goal of the parallel implemen-
tation is maintainability, scalability, and portability to new platforms on problems of
1 billion CAMR cells. Maintainability refers to the suite of software quality practices
in the Crestone Project in order to produce an understandable, modular code that has
a well-documented and reproducible heritage. Since ASCI hardware, and indeed the
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computing industry itself, seems to be changing hardware every 1 or 2 years, the
fundamental goal for the structure of our project codes is portability with scalability
to 1000’s of processors. Ideal scaling in this sense would be to run a problem on
10000 processors (with 10000 times the workload [i.e., cells]) in exactly the same
wall-clock time it takes to run on 1 processor with 1/10000th the work. Although
we have had much greater success with scalability on MPP based machines, such
as the ASCI Red machine or the Cray T3E, the scaling on SMP based machines is
reasonably acceptable. Fig. 4 shows a graph of the scaling results on a wide variety
of supercomputers.

Fig. 4. The scaling performance of the SAGE code on various supercomputers.

2.1 Crestone Project Codes Represent an Improvement Over Previous
Generation Techniques

Most of the computational work performed in X-Division at Los Alamos, as well
as in the design divisions at Livermore, has traditionally relied on pure Lagrangian
hydrodynamic methods. There are two substantial problem areas from past 2D La-
grangian code use that the Crestone Project codes solve. Speaking from the perspec-
tive of an end-user, the first major difficulty for a Lagrangian hydrodynamics-based
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code is that of setup, or generating the logical and physical mesh with the constraint
of having complex geometry following contour interfaces. The second major prob-
lem historically with 2D Lagrangian based codes is that of mesh tangling as the
simulation proceeds. If there is even a slight aspect of complex hydrodynamics in-
volved in the simulation, such as vorticity or sheer flows, then a major portion of time
has been spent in actual hand manipulation of mesh points (manual rezoning) to con-
tinue the simulation. The tools and codes in the Crestone Project solve both of these
problems in a elegant fashion. We should mention that an alternate path to a mod-
ern solution to the 2D Lagrangian problems is accomplished by the use of Arbitrary
Eulerian-Lagrangian, or ALE hydrodynamic algorithms. This hydrodynamic frame-
work is, in fact, used by the other major ASCI code-development efforts at both Los
Alamos and Livermore. As with any complex multi-physics code projects, there are
advantages and disadvantages of any particular formulation.There are strengths and
weaknesses of both the CAMR Eulerian approach and the ALE approach. However,
for current ALE schemes, complex geometry grid generation as well as mesh-motion
both remain difficult and research-oriented aspects of those efforts.

2.2 Problem Setup for Complex 3D Geometries

Although there are mesh generation tools built into the SAGE code, by far the sim-
plest approach to grid generation is by importing 3D solid model representations
of the object being simulated. Mainly through the work of Rob Oakes and his co-
workers in X-Division of Los Alamos([25]), we have the ability to import nearly
any 3D solid model geometry into the code and build a multimaterial mesh based on
this geometry. The beauty of this whole process is that once the solid model exists,
then the code itself parses the geometry and automatically creates the CAMR grid
conforming to the input geometry. The end-user needs only to specify the physical
size of resolution required for capturing the appropriate physics in each material. The
code does the rest! Examples of this setup are shown in Figs. 5, 6, and 7.

2.3 Continuous Adaptive Mesh Refinement (Cell-Based Refinement)

The second traditional problem of Lagrangian-based hydrodynamics from the past
has been the need for hand rezoning of complex simulations in order to prevent time-
step crashes and/or badly formed zoned (e.g., bowties or boomerangs; or worse yet
negative volume cells). This activity traditionally dominates an end-users time in
completing a 2D complex simulation. The continuous adaption logic built into the
Crestone Project codes allows the code to do the work as the problem progresses
with time. Cells in the simulation are placed (created or re-combined) in the 1D,
2D, or 3D geometry where they will provide the most accurate representation of
the physics. This continuous adaption in both space and time is performed every
cycle of the simulation. The overhead associated with this CAMR technique has
been empirically determined to be �20% of the total runtime. Since we gain several
orders of magnitude in efficiency by the use of CAMR (over uniform meshing), this
overhead time is completely acceptable. The true breakthrough for the end-user is
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Fig. 5. An example of the use of CAD/CAM 3D solid geometry modeling to generate a con-
tinuous adaptive mesh refinement mesh for a portion of a piston engine.

Fig. 6. An example of the use of CAD/CAM 3D solid geometry modeling to generate a con-
tinuous adaptive mesh refinement mesh for a portion of a British River-class Frigate.
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Fig. 7. An example of the continuous adaptive mesh refinement mesh for a simulation of a
shock tube experiment involving a cylinder of SF6 gas in air.

the time saved both in complex problem setup and the benefit that no hand-rezoning
is required.

Currently, the adaption algorithms in the Crestone Project codes are based in-
dependently on two criteria: one level of resolution can be set to resolve material
interfaces, while a different level of resolution can be set for the physics within a
material. A simple example as shown in Fig. 7 would be to have the grid resolution
between the SF6 cylinder and the air be followed dynamically, for example, with
0.025 cm cells, while the shocks in the air (high-pressure gradients) can be followed
dynamically with 0.050 cm cells, and those shocks in the SF6 material can be fol-
lowed with 0.0125 cm cells. All of these criteria are used in a dynamic sense, so that
cells are created (daughter cells) and cells are coarsened into original mother cells at
each time step at each cell in the problem.

A dramatic example of the 3D CAMR method is shown in Fig. 8. This Figure
shows a 3D simulation of a shock-generated instability (Richtmyer-Meshkov Insta-
bility [RMI]) from the passage of a mach 1.2 shock over a perturbed surface of SF6 in
air. The initial perturbation is in the form of a cosine-cosine distribution, and this fig-
ure represents a time at which the interface between the air and SF6 has been shocked
from right-to-left and then reshocked from left-to-right in the Figure. Notice the ex-
tremely high resolution in the simulation that defines the complex interface between
the two materials.
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Fig. 8. An example of the 3D CAMR mesh for a simulation of a shock tube experiment
involving a perturbed surface of SF6 gas in air.

3 Examples of Massively-Parallel Simulations by the Crestone
Project

In this section we will show several examples of simulations done with the Crestone
project codes. The results will be shown chronologically in order to emphasis the
success of the portability and scalability of the software framework. We show an
evolution from one of the first generation ASCI machines (the 3 TOps Bluemoun-
tain supercomputer), to the 12 TOps White machine at Livermore, and finally to the
20 TOps Q machine at Los Alamos. Remember our goal is to have a �1000-fold
decrease in wall clock time for 3D runs compared to single processor run-times.

Although some initial 3D runs were performed on the CRAY computers in 1995
and 1996, the real onset of production 3D simulations with the Crestone Project
codes started with the delivery of the Bluemountain supercomputer at Los Alamos
in 1997. Some of the first runs that we did were related to hydrodynamic mixing of
two materials. In 1998, we did a demonstration run on the Bluemountain machine
of the 3D Rayleigh-Taylor instability (RTI). A graphic from this run is shown in Fig
9. With only four levels of refinement and 310 processors we were able to finish a
simulation in 360 hours of cpu-time or about 15 days of continuous computing. The
actual wall-clock time required to complete this run was about one month of calendar
time. A comparison we will make as a standard measure of the parallel performance
of these runs is the cpu-equivalent time required to run the simulation on a single
processor of the same machine. So for this 310 processor run of 360 hours the single
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processor time would have been�13 years! The cell-count of this simulation varied
with time due to the CAMR because the surface area of the interface between the two
mixing fluids grew larger with time. The problem started with about 7 million cells
and ended with about 45 million cells, effectively running on only 310 processors.

            

Fig. 9. The first large scale 3D simulation performed with SAGE on the Bluemountain ma-
chine: a multimode simulation of Rayleigh-Taylor mixing of two fluids of differing densities
in a gravity field.

The next step in the evolution of Crestone Project 3D parallel simulations was the
RMI mixing simulation shown earlier in Fig. 8. This run was modeling the nonlinear
evolution of RMI from a mach 1.2 shock crossing a perturbed interface between air
and SF6 gas. Another view of this simulation is shown in Fig. 10. These runs were
performed in 1999 after the full Bluemountain machine had been delivered to Los
Alamos. This full machine of 6144 processors allowed us to perform a parameter
study for the same initial conditions on mesh resolution (minimum cell size or max-
imum number of levels of refinement). In this study we ran the same 3D problem
with six, seven, and eight levels of refinement successively. The level six run ran to
a problem time of 1.8 ms in 166 cpu-hours or 4.8 days of continuous run

time. A summary of the three runs is shown in Table 1. The Level 6, Level 7,
Level 8 runs were equivalent to 2 year, 52 year, and 239 year single processor runs
(respectively), while they were actually completed in 4.8 days, 34.5 days and 91
days, respectively. So the most refined run, the Level 8 study, was run in 3 months
but would have taken over two centuries to complete on a single processor machine
assuming, of course that there would be enough memory! These kinds of numbers
clearly demonstrate the success of the parallel implementation of the SAGE code
and the power of parallel computing. None of these runs would ever have even been
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Table 1. Parameter Study on Mesh Resolution for a 3D RMI Problem

Level 6 Level 7 Level 8

CPU-hours Processors Max Cells

116 126 15M
828 1260 98M
2187 1890 181M

started prior to the parallel hardware and parallel software. Within just two years
of the start of the ASCI program, the National Laboratory design community was
beginning tobelieve that massively-parallel computing would fundamentally change
the scope of simulations that were done.

            

Fig. 10. The second large scale 3D simulation performed with SAGE on the Bluemountain
machine: a single mode simulation of RMI mixing of SF6 gas in air. This visualization is from
the Ensight commercial graphics software from the run with seven levels of refinement.

3.1 ASCI Milepost Simulations 1999-2001

In this section we will take a short digression from the unclassified work that has
been described in previous sections. As we stated earlier, there are both unclassified
and classified code development efforts within the Crestone Project. Although we
cannot describe any of the physics or algorithms used for the classified codes, we
can summarize the magnitude of the simulations that have been performed. All of the
information contained here is unclassified and has been reported in a wide variety of



Los Alamos Crestone Project 45

unclassified venues, such as Laboratory Press Releases, newspaper articles, and DOE
sponsored reports. A significant aspect of the initial phases of the ASCI program was
the accomplishment of a series of major 3D simulations, known as ASCI milepost
runs, that would demonstrate a progression of capability as the parallel software
matured and as the size of the ASCI parallel platforms increased. From 1999 - 2001
there were very clearly defined, major 3D runs that each Laboratory was expected
to complete on time. A Blue Ribbon panel of experts was formed (the Burn Code
Review committee) to review the work done and determine whether the runs that
had been completed actually satisfied the requirements. In each case, these initial
milepost runs were single large scale 3D simulations which were to be compared to
data from actual nuclear tests. It is an understatement to say that these milepost runs
were extremely taxing on the resources available as well as on the personnel who
developed the software and those who performed the runs. We will get back to the
first of these milepost runs (1999) in a moment.

The 2000 Milepost Simulation: A 3D Secondary Prototype Performance Simulation

The first milepost simulation that the Crestone team was scheduled to perform was
the 2000 3D Prototype Secondary simulation. Although there are unclassified details
of the requirements for this task, we will not describe those here. Instead, we would
like to continue the documentation of the success of massively-parallel simulations
performed by our team by detailing the statistics of these milepost simulations. This
single run was performed on the Bluemountain 3 TOps machine using about 1/3 of
the processors. The typical run would use 2016 processors: 126 of the 128 processors
per SMP box (or node) and 16 SMP boxes. This arrangement would leave two pro-
cessors idle to process system level requirements. The 3D secondary simulation we
performed used �100 million cells and ran over the course of a three-month period.
It consumed 2 million CPU hours, or the equivalent of a 230 year single proces-
sor run! Each processor of the Bluemountain machine has 0.25 gigabytes (Gb) of
memory, and this simulation did not stress the memory usage. The main simulation
done created 15 terabytes of data. The visualization of the run was done with the
Ensight commercial software package. During this timeframe (�2000) the Ensight
code was serial, and it literally required the equivalent of 2 man-years to create a
single 100 frame movie of the run. This process was painful and led to the high pri-
ority task of parallelizing the graphics software. With this simulation, as well as the
one performed at Level 8 for the RMI 3D simulation, we had achieved our goal of a
thousand-fold increase in computing power. This 2000 milepost simulation was com-
pleted in April 2000, just before the horrendous firestorm in Los Alamos. Since the
run was not due to be completed until the end of the calendar year,we successfully
completed the task a full nine months ahead of schedule! In the remaining time be-
fore the year-end, we actually completed another full sequence of a 3D simulation for
another test. These results were all documented and provided to the Burn-Code Re-
view committee in January 2001. The milepost runs we had performed were judged
to completely satisfy the requirements.

Towards the end of the year 2000, the Crestone Project team was called upon
by the Los Alamos management to help with the completion of the original ASCI
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3D performance milestone, the 1999 3D primary prototype simulation. This original
milepost run had been successfully completed by Livermore, but still was not com-
plete at Los Alamos in late 2000. After finishing our scheduled milepost run well
ahead of schedule, we were in a position to help complete the 1999 milestone run.
This was done towards the end of the year 2000 as a joint effort from the Crestone
Project team and the Shavano Project team of Los Alamos.

The 2001 Milepost Simulation: A 3D Full-System Prototype Performance
Simulation

Following directly on the heels of the completion of the 1999 and the 2000 ASCI
Level-1 milepost simulations, the Crestone Project team was again scheduled to per-
form the next ASCI milepost: a prototype full-system simulation, which was due by
the end of the calendar year 2001. Early in 2001, the White 12 TOps machine became
available for use by our team. This White machine was physically located at Liver-
more, California, and was connected to Sandia National Laboratory and Los Alamos
National Laboratory by a high-bandwidth, secure Wide-Area Network (WAN). The
project codes were moved to the White machine, compiled, and tested. Since we had
built in portability by our choice of software, this process of obtaining a production
capability on White took only a few weeks. Much of the credit for handling the de-
tails of this transition goes to Bob Boland, who spent much time living in Livermore,
working with the system staff on the White machine. This milepost simulation, a
3D full-system prototype run, was (and still is) the most challenging task we have
undertaken in our careers. This type of simulation had never been done before, ei-
ther in 2D or in 3D, so we were not confident of a scientifically viable solution to
this task until the run was almost complete! We did many of the preliminary simula-
tions in 2D in order to demonstrate feasibility of the full-system concept with much
shorter runs. This work of 2001 stands out as one of the Crestone Project team’s
most significant tasks. The statistics from this run are truly stunning. The main 3D
simulation was done on the state-of-the-art (for its time) ASCI machine, the White
machine at Livermore, using Los Alamos’s entire allocation of processors – 2048.
The White machine is comprised of SMP nodes with 16 processors per node. The
Los Alamos allocation on this machine was 128 nodes. Thus, this simulation alone
used�3 TOps of computing power. This single run took nine months to complete. It
was started in January of 2001 and finished in October 2001. There were actually a
couple of months during the summer of 2001 that were devoted to additional code-
development, so the the actual calendar time for this run was �7 months. The actual
day-to-day runs were performed in a sequence of runs that produced check-point
restart files to start the next run of the sequence. Each of these individual runs was
submitted for 96 hours, and many of the runs actually completed the full 96 hour
allotment. Many, however, terminated prematurely for literally hundreds of differing
reasons. With each terminated run, we would back up to the previously written restart
file and continue. This one run consumed over 6 million cpu hours and is equivalent
to a single-processor run that would take over 700 years to complete! With the as-
sociated 2D and other 3D simulations that went into this effort, we are calling this



Los Alamos Crestone Project 47

run our “millennium” simulation. The maximum cell count used was �500 million
cells. Restart files ranged in size (depending on the physics) from �100 Gb to 240
Gb each. The wall-clock time to run one cycle ranged from 4 minutes to �15 min-
utes. The parallel I/O on the White machine was impressive: average numbers for
this run are �1 Gb/sec writes and �2 Gb/sec reads, so reading a 240 Gb restart file
took only �2 minutes. The total data written from this run amounted to over 200
terabytes (Tb), with about 20 Tb devoted to Ensight graphics files. The size of the
Library of Congress is about the same.

In addition to these amazing statistics, one should realize that this entire pro-
cess was carried out remotely. The runs were actually done at Livermore, while we
resided in Los Alamos, NM. Although it is fact of life these days to run remotely
on computers around the world, the truly amazing accomplishment was the abil-
ity to manipulate and visualize the extremely large data sets involved. By this time
(2001) we had a parallel version of the Ensight client-server commercial graphics
software (called the server-of-servers [SoS]) that domain decomposed the geometric
mesh into blocks (typically 50 - 64) of �5 million cells each. With this software,
we were able to leave the large data-sets on the White GPFS, use the SoS on several
White nodes devoted to visualization, and display the graphics back at Los Alamos
on a workstation running the Ensight Client software. This process worked well. We
essentially had real-time graphics from our runs a thousand miles away, without the
need to move terabytes of data around the country. In fact, the White GPFS was the
only file system available that had the capacity to hold these large data sets. This
simulation was presented to the Burn-code review panel in January 2002 and was
judged to meet or exceed all of the requirements of the milepost. Our thanks go out
to all who help make this effort successful, from the Project team members, to the
consultants at Los Alamos, to the staff at the Livermore Computing center.

We think it is very clear from this progression of massively-parallel computing
simulations, that the concept of parallel computing has been extremely successful.
In 1996 at the start of the ASCI program, we could not find many in our community
that would have believed this statement.

3.2 Current Massively-Parallel Simulations

Since the completion of the 2001 ASCI milepost simulation, the definition of these
mileposts and the overwhelming dedication required to perform them have been
scaled back. Current ASCI milestones are more directed at programmatic day-to-day
work, as opposed to the performance of a “demonstration” simulation. We learned a
lot from the large scale runs we performed, but they also take a significant toll on the
personnel involved. Although large-scale 3D simulations continue today, the com-
plexity and the computer science required have not changed much since 2001. Of
note, however, is the delivery of the ASCI Q (HP/Compaq alpha processor) machine
at Los Alamos in 2002. During the delivery of this machine, a 10 TOps section was
devoted to unclassified science runs. One of our team members, Galen Gisler, applied
for, and was granted time on this machine for a science run. Gisler’s work is featured
at this conference and we would direct interested readers to his work ([26],[27]). For
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Fig. 11. A montage of 10 separate images from the 3-d run of the impact of a 1-km iron bolide
at an angle of 45 degrees with an ocean of 5-km depth. These are density raster graphics in a
two-dimensional slice in the vertical plane containing the asteroid trajectory. Note the initial
uprange-downrange asymmetry and its disappearance in time. Maximum transient crater di-
ameter of 25 km is achieved at about 35 seconds. The maximum crown height reaches 30 km,
and the jet seen forming in the last frame eventually approaches 60 km.

            

Fig. 12. Perspective plot of three isosurfaces of the density from the 3-d run of a 45-degree
impact of a 1-km iron bolide into an ocean of 5-km depth at a time 30 seconds after the
beginning of the calculation (27.5 seconds after impact). The isosurfaces are chosen so as to
show the basalt underlayment, the bulk of the ocean water, and cells containing water spray
(mixed air and water). The asymmetry of the crown splash is evident, as is its instability to
fragmentation. Cratering in the basalt is seen, to a depth of 1 km. The diameter of the transient
cavity is at this time 25 km.
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Fig. 13. A simulation of the impact crater at the Chicxulub site in the Yucatan Peninsula
of Mexico. Forty-two seconds after impact, the ”rooster tail” has left the simulation volume
and gone far downrange. The image shows the extent of the calculational mesh: 256 km on
a side. The dissipation of the asteroid’s kinetic energy, some 300 teratons TNT equivalent,
produces a stupendous explosion that melts, vaporizes, and ejects a substantial volume of
calcite, granite, and water. The dominant feature in this picture is the ”curtain” of the debris
that has been ejected and is now falling back to Earth. The ejecta follows ballistic trajectories
with its leading edge forming a conical surface that moves outward from the crater as the
debris falls to form the ”ejecta blanket”. The turbulent material interior to the debris curtain is
still being accelerated upward by the explosion produced during the excavation of the crater.

this discussion, Gisler’s 3D simulations started on the White machine and continued
on to the ASCI Q machine at Los Alamos. The scale of these runs is comparable to
those of the milepost runs and the highly-resolved 3D RMI work shown previously.
Here we show some images from Gisler’s Asteroid impact work: Figs. 11, 12 and
13.

4 Verification and Validation for SAGE and RAGE

During the course of the Crestone Project activities, substantial time has been de-
voted, either directly or indirectly, to the verification and validation (V&V) of the
Project codes. Direct V&V results from a Project team member running specific
simulations to compare to analytic results (verification) or to results from experi-
mental data (validation). Indirect validation results from the use of the Project codes
by end-users for their own purposes, either in designing a new AGEX experiment, or
in the analysis of a previous experiment, or merely as a tool for analysis of a physical
problem. There exists a large suite of verification test problems in our community,
including the Sedov blast wave, various geometries for the Noh problem, Marshak
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radiation wave problems, and many more. Details of the specifications and results
from these types of problems is written up elsewhere and will not be discussed at
length here. A detailed report on the suite of verification problems is being prepared
(see e.g., [31],[32]). One example of such a verification problem is the Noh prob-
lem, with uniformly converging flow velocities. The results from the cylindrical Noh
problem are shown in Fig. 14, comparing the SAGE adaptive mesh hydrodynamics
to the analytic result. In general we are very pleased with the success of the SAGE
and RAGE algorithms in comparing to analytic and semi-analytic results (see e.g.,
[2] for an example of comparisons to semi-analytic problems).

            

Fig. 14. An example from our verification suite: the cylindrical Noh problem. The red curve
is the SAGE CAMR result compared to the black analytic solution.

Direct project validation runs are subject to conflict-of-interest discussions, so
in this brief section on validation of the Project codes, we will refer the reader to
several end-user applications that clearly demonstrate a high level of code algorithm
validation (in some cases, e.g., [24], [30] results of code simulations are used for
design and prediction of future experiments). The first validation paper published in a
refereed journal was “The Simulation of Shock Generated Instabilities” [4] in which
detailed code simulations of shock tube experiments were quantitatively compared
to the experimental results. The results from this work are summarized in Fig. 15.

Another example of code validation is given in C. Zoldi’s Ph.D. thesis for SUNY
Stony Brook [33], [7]. In this work, code simulations were done for a similar shock
tube environment, but in this case the mach 1.2 shock interacted with a dense cylinder
of gas, instead of a gas curtain. The reader is referred to her thesis work, with one
example of comparisons between experimental images and SAGE results shown here
in Fig. 16.
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Fig. 15. A graphical comparison of three shock tube experiments to the corresponding RAGE
simulations. The three experiments had different initial conditions for the SF6 gas curtain in
the shock tube that resulted in three drastically different dynamical instabilities. The RAGE
CAMR hydrodynamics solutions for these experiments are shown offset from the data and is
analyzed quantitatively in [4].

            

Fig. 16. A graphical comparison of shock tube experimental images to the corresponding
SAGE simulations. The images show a progression of dynamical shapes as the evolution of
the initial cylinder moves downstream. The top sequence shows experimental images and
the bottom two show corresponding numerical simulations. Also included in Zoldi’s work
is a good comparison of code results for velocity distributions to those obtained from the
experiment.
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The final example here for validation is the work being done as a multi-lab, in-
deed, a multinational collaboration on the simulation of supersonic jets and shock
interactions [24]. I refer to this work as validation of the “complex hydrodynamics”
of the CAMR Eulerian Godunov algorithms in RAGE. Detailed, quantitative inter-
comparisons have been done among several computational tools (including RAGE),
and the actual experimental data obtained from a series of AGEX experiments. All
the code techniques, including CAMR RAGE and ALE codes from both Livermore
and AWE (the UK Atomic Weapons Establishment), show good agreement with the
data.

            

Fig. 17. Multinational modeling of complex hydrodynamics from supersonic jets and shock
interactions compared to experimental results. RAGE code was used in the design of the ex-
periments.

These examples touch on the breadth of validation efforts completed and un-
derway in the on-going effort to understand the range of capability for the CAMR
Eulerian-based hydrodynamics and radiation energy flow as coded in the massively-
parallel, modular version of the RAGE code. More detailed documentation efforts
are underway. Two of the areas of active research in the Crestone Project currently
are the treatment of interfaces between materials and the improvement of the mate-
rial strength package. Both of these areas of physics in the project have been flagged
for improvement, and significant progress in this direction is forthcoming.
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5 Summary

An overview of the Los Alamos Crestone Project has been given. This project is ar-
guably one of the key success stories of the DOE ASCI program. We have shown
a progression of capabilities in massively-parallel simulations, starting from runs of
order 100 processors to state-of-the-art multi-physics simulations using thousands
of processors and consuming months of supercomputer time. We have demonstrated
that the RAGE code is a sophisticated CAMR hydrocode, with a long history of
verification and validation. The Crestone Project user community tends to dominate
the cycles used on all available high-end supercomputers, but the codes SAGE and
RAGE can also be run efficiently on desktop machines, even Macintosh’s under Ma-
cOS X unix environment. The Crestone Project user-community is fully utilizing
each new ASCI supercomputer that is delivered to the complex.

We hope to have demonstrated from the discussion here that massively-parallel
computing is fundamentally changing the way we think about computer simulations:
simulations that even just a few short years ago were unthinkable are not not only
being done, but are becoming routine. The 2D and 3D simulations performed by
the Crestone Project team and its end-user community in the last two years repre-
sent orders of magnitude more computation than was done by all DOE calculations
previously performed.
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Adaptive Mesh Refinement on Overlapping Grids
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In this chapter a short description will be given of the use of block structured adaptive
mesh refinement with overlapping grids. The combination of overlapping grids and
AMR leads to a powerful approach for efficiently solving problems with multiple
space and time scales in complex geometry. Sample calculations will be presented
demonstrating the approach on problems ranging from a simple convection-diffusion
equation to the reactive Euler equations.

1 Background

A composite overlapping grid consists of a collection of structured grids that cover
a domain. In the typical situation, as shown in Fig. (1), curvilinear grids con-
form to the curved boundaries while one or more Cartesian grids fills the interior.
The overlapping grid method, as discussed in more detail in Chesshire and Hen-
shaw [CH90], allows complex domains to be represented with smooth grids that
can be aligned with the boundaries. The use of smooth grids is advantageous in
many problems in order to reduce grid induced numerical artifacts. Also, the ma-
jority of an overlapping grid often consists of Cartesian grid cells so that the speed
and low memory usage inherent with such grids is retained. The first overlapping
grid computations were apparently performed by Starius [Sta77b, Sta77a, Sta80].
Since then overlapping grids have been used successfully for the numerical so-
lution of a variety of problems involving inviscid and viscous fluid flows, see
[CH90, SB87, HC87, HF91, OY93, Mea93, PSM�93, MB94, TF95, Pet99, Mea99],
for example.

Block structured adaptive mesh refinement was originally developed by Berger
and Oliger [BO84] for hyperbolic equations. In this approach a hierarchy of refine-
ment grids is constructed dynamically based on a suitable error estimate of the solu-
tion. Every few time steps a new error estimate is computed and a completely new
hierarchy of grids is determined. Combining the AMR approach with overlapping
grids presents a number of challenges. Some of these issues will be addressed here
in the context of the AMR capabilities in Overture[BHQ99]. Overture is an objected
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Fig. 1. An overlapping grid consisting of two structured curvilinear component grids. Each
component grid is represented by a mapping from the unit square to physical space. Each grid
point is classified as either a discretization point, interpolation point or unused point. Ghost
points are used to apply boundary conditions.

oriented framework that can be used to solve PDE’s on overlapping grids. Over-
ture has a variety of classes that support the AMR functions of error estimation, re-
gridding and interpolation. This AMR infrastructure includes support for curvilinear
grids and the issues involved when refinement patches meet at the interface between
different base grids of an overlapping grid. Overture is freely available for download
from the internet [BCF�03].

The coupling of overlapping grids with AMR has been considered by a number
of researchers. Meakin[Mea99] has used adaptive mesh refinement on the off-body
Cartesian grids of moving overlapping grids. Boden and Toro[BT97] have used AMR
on overlapping grids to solve the Euler equations in two-dimensions. In Brislawn,
Brown, Chesshire and Saltzman[BBCS95] AMR was added to the CMPGRD frame-
work; CMPGRD was the Fortran based precursor to Overture.
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CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1.;
CompositeGridOperators op(cg); // operators
u.setOperators(op);
float t=0, dt=.005, a=1., b=1., nu=.1;
for( int step=0; step<100; step++ )
�
u+=dt*( -a*u.x()-b*u.y()+nu*(u.xx()+u.yy()) ); // forward Euler
t+=dt;
u.interpolate();
u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);
u.finishBoundaryConditions();

�

Fig. 2. Overture supports a high-level interface. This sample C++ program can be use to solve
the convection diffusion equation, ut �aux �buy � ν�uxx�uyy�, with a simple forward-Euler
time-stepping scheme

2 AMR and Overlapping Grids

This section discusses overlapping grids and adaptive mesh refinement and how they
fit together.

Overlapping Grids:

A composite overlapping grid G for a domain Ω in d dimensions consists of a col-
lection of overlapping component grids G g that cover Ω and match the boundary
∂Ω:

G � �Gg�� g � 1�2� � � � �Ng �

Each component grid is a logically rectangular, curvilinear grid defined by a smooth
mapping Cg from parameter space r � �0�1�d (the unit-square or unit-cube) to phys-
ical space x � �d :

x � Cg�r� (mapping defining the component grid)�

The mapping is used to define grid points at any desired resolution as required when
a grid is refined.

In Fig. (1) a simple overlapping grid is shown consisting of two component grids,
an annular grid and a background Cartesian grid. The figure shows the overlapping
grid in physical space in addition to each component grid in its parameter space. In
this example, the annular grid cuts a hole in the Cartesian grid resulting in a number
of unused points marked by open circles. Points on a component grid are classified
as discretization points (where the PDE or boundary conditions are discretized), in-
terpolation points or unused points. This classification of points is determined by the
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overlapping grid generator Ogen [Hen98] and stored in an integer mask array. The bit
representation of each entry of the mask holds additional grid information including,
for example, which points are hidden by refinement grids.

Values of the solution at interpolation points of some given grid are determined
by interpolation from interpolee (donor) points on another grid. Interpolation is per-
formed in the unit-square coordinates using standard tensor-product polynomial in-
terpolation. The appropriate order for interpolation is discussed in Chesshire and
Henshaw [CH90].

The Overture framework supports the generation of overlapping grids and the so-
lution of partial differential equations (PDEs) on these grids. Overture can be used at
a high level to define PDE solvers. An example of this is shown in Fig. (2). This high
level interface is useful for prototyping new algorithms. A more efficient approach
is to use a lower level interface. For efficiency, many of the computational kernels in
Overture are written in Fortran 77.

PDEsolve(G �tfinal)
// Advance a solution in time on a overlapping grid
�

t :� 0;n :� 0;
un

i :� applyInitialCondition�G�;
while t � tfinal

if�n mod M � 0� // regrid?
ei :� estimateError�G �un

i �;
G� :� regrid�G �ei�; // Build a new grid
u�

i :� interpolateToNewGrid�un
i �G �G��;

G :� G�;un
i :� u�

i ;
end

∆t :� computeTimeStep�G �un
i �;

un�1
i :� timeStep�G �un

i �∆t�;

t :� t �∆t; n :� n�1;

interpolate�G �un
i �;

applyBoundaryConditions�G �un
i �t�;

end
�

Fig. 3. A pseudo-code algorithm for solving a time-dependent PDE with adaptive mesh re-
finement

Adaptive Mesh Refinement

An algorithm for advancing a solution on a AMR grid is given in Fig. (3). The basic
components of the AMR algorithm, as presented in the algorithm, are error estima-
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Fig. 4. An example showing three levels, a base grid and two refinement levels, of a block
structured AMR grid. Ghost points on refinement grids are interpolated from sibling grids at
the same level or parent grids on the next coarser level. Coarse grid points are interpolated
where they are covered by refinement grids.

tion, regridding and interpolation. These AMR components are now described along
with the changes required for use with overlapping grids.

Error Estimation:

The purpose of error estimation is to identify and tag cells where additional refine-
ment is required. A good general purpose error estimator can be based on a combi-
nation of first and second differences in the numerical solution:

ei �

m

∑
k�1

1
d

d

∑
α�1

�
c1

sk
�∆0αuk�i��

c2

sk
�∆�α∆�αuk�i�

�
(1)

Here sk is a scale factor for uk�i, c1 and c2 are constants (weights), and ∆0α, ∆�α and
∆
�α are the un-divided central, forward and backward difference operators, respec-

tively, in the α-direction in index space. For smooth solutions, the scaled undivided
differences should be small when the grid is sufficiently fine.

After the error estimate is computed for all grids, it is smoothed with a few
sweeps of an under-relaxed Jacobi iteration. At the end of each sweep, the error
is interpolated to neighboring component grids. This smoothing process will prop-
agate the error to nearby grid cells whether they be on refinement grids from the
same component grid or on neighboring component grids. In the latter case, the er-
ror smoothing ensures that refinement grids are created across the overlap ahead of
any approaching feature. As a result, by the time the feature reaches the overlap,
refinement grids will already be in place on the neighbouring component grid.
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Regridding

The adaptive mesh refinement approach adds new refinement grids in regions where
the error is estimated to be large. The refinement grids are aligned with the underly-
ing base grid and are arranged in a hierarchy with the base grids belonging to level
�� 0, the next finer grids being added to level �� 1 and so on, see Fig. (4). Grids on
level � are refined by a refinement ratio r from the grids on level �� 1. Refinement
ratios of r � 2 and r � 4 are commonly used. The grids are properly nested which
means that a grid on level � is completely contained in the set of grids on the coarser
level ��1 (except at physical boundaries where refinement grids are allowed to align
with the boundary).

The adaptive grid hierarchy is usually rebuilt after every M � r� b time steps,
where r is the refinement ratio and b is the number of buffer zones (discussed below).
Cells are tagged where the error estimate exceeds a chosen tolerance. Following the
algorithm of Berger and Rigoutsos [BR91], a set of boxes is generated in index space
which covers the region of tagged cells, and these boxes form the boundaries of the
new refined grids. This regridding step is repeated independently for each base grid
of the overlapping grid. Since there is a non-negligible computational cost associated
with regridding, it is desirable to increase the number of time steps that can be taken
safely for the current AMR grid. To do this, the boundary of the region of tagged
cells is increased slightly according a chosen integer b, known as the number of
buffer cells.

Determination of the location of the boxes in index space is usually a very fast
process. However, after the new boxes have been created, it is necessary to deter-
mine the location of the new grid points in physical space, their classification (i.e.
discretization, interpolation or unused), and their connectivity to neighboring grids.
For a non-Cartesian grid, the grid point locations are determined by evaluating the
mapping, x � Cg�r�, associated with the grid, a feature of our AMR framework that
is particularly important when refining boundary fitted grids. For interpolation points
on the boundary between discretization and unused points, it is necessary to deter-
mine the donor grid from which grid to interpolate, see Fig. (5). Some care is required
to make this step efficient. An algorithm have been developed that uses information
from coarser refinement levels to determine the required information for finer levels.
There is sometimes more than one choice for donor grid; the order of preference is
to firstly interpolate from a refinement grid at the same level belonging to a different
base grid, or secondly interpolate from a refinement grid at a lower level belonging
to a different base grid. Interpolation points of grids on level � never interpolate from
finer grids on level ��1 to avoid coupling refinement levels.

Interpolation:

Once a new set of grids is generated, the solution is transferred from the old AMR
grid hierarchy to the new one. As a general rule, solution values on the new grid are
interpolated from the finest level grid available on the old grid. Although many points
on the new grids can be determined as a simple copy from the old grids, in general
some care is required during the regridding and interpolation steps to ensure that
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accurate values are obtained and that the manipulation of a potentially large number
of refinement grids is done in an efficient manner.

            

Fig. 5. Overlapping grids and AMR; a view of the overlap region showing the interpolation
between refinement grids from different base grids. The black squares indicate interpolation
points

3 Testing using the Method of Analytic Solutions

The method of analytic solutions, also known as the method of manufactured solu-
tions[Roa98] or the twilight-zone method[CH90], is a extremely useful approach for
testing the accuracy of a numerical implementation of an algorithm. Given a PDE
initial-boundary value problem

L�ut �ux�uy� � � �� � F�x� t�

and given any known (usually analytically defined) function U�x� t�, by choosing the
forcing function to be

F�x� t� � L�Ut �Ux�Uy� � � ��

it will then follow that U will be an exact solution of the forced PDE. The Overture
OGFunction class defines a variety of exact solutions and their derivatives to sup-
port the method of analytic solutions. For example, one may define a polynomial,
trigonometric polynomial, or pulse function
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U�x� t� � �x2 �2xy� y2� z2��1�
1
2

t�
1
3

t2�

U�x� t� � cos�πωx�cos�πωy�cos�πωz�cos�ωπt�

U�x� t� � a0 exp��a1�x�b�t��2p� � b�t� � c0�vt

The polynomial solution is particularly useful since this solution is often an exact
solution to the discrete equations on Cartesian grids. The pulse function is good for
AMR. Figure (6) shows the solution of a convection diffusion equation using the
pulse function as the exact solution. This solution with computed with the amrHype
program that is distributed with Overture. Table (1) compares the errors at time t � 1
for 3 cases of equivalent grid resolution, (1) using a 124� 124 base grid with no
AMR, (2) using a 31� 31 base grid with two levels of refinement ratio 2, and (3)
using a 31�31 base grid and one level of refinement ratio 4. The results in the table
show that nearly the same errors are achieved in all three cases.

            

Fig. 6. AMR solution to a convection diffusion equation on an overlapping grid for square
region with a circular hole. The exact solution is a Gaussian pulse which translates through
the domain.
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Table 1. Computed maximum errors at t � 1� for a pulse crossing the circle in a square domain.
The solution was computed in three ways designed to have an equivalent effective resolution

No AMR 2 levels of AMR 1 Level of AMR
124�124 31�31��r � 2�2 31�31��r � 4�1

error 1�98e�02 2�07e�02 2�07e�02
grid points 20498 7820 6560

Effective resolution 124�124

4 Sample calculations

In this section a few examples will be presented along with some performance statis-
tics. The solutions here were computed with the OverBlown flow solver using a
high-order Godunov method[Hen99].

Figure (7) shows the solution of the Euler equations for a shock hitting two air-
foils. The base grid consisted of two boundary fitted curvilinear grids and a back-
ground Cartesian grid with a total of about 150�000 grid points. The solution was
computed with two additional refinement levels of ratio 4. To compute the same
solution without AMR would thus require about 150�000� 16 2

� 3�84� 107 grid
points. At the later stages in the computation the AMR solution required a maximum
of about 1 million grid points and 325 grids.

Figure (8) shows the computation of an expanding detonation in a quarter plane.
The unsteady Euler equations are solved with a one-step Arrhenius reaction. The
overlapping grid consisted of a backgounded Cartesian grid together with an annular
grid. In [HS03] this solution was compared to that from a single Cartesian base
grid and with a highly resolved one-dimensional computation. Excellent agreement
was found between the three different computations. The detonation passed cleanly
through the interface between the overlapping grids.

Figure (9) shows the later stages of a computation that illustrates a mechanism
of detonation failure/rebirth. An over-driven detonation propogates from left to right
into an expanding channel. The detonation temporarily fails in a portion of the ex-
panding region but later reforms when the leading shock hits the lower wall and
re-strengthens. For this problem the reactive Euler equations were solved with a
three-step chain-branching model. See [HS03] for further details.

Table (2) presents some CPU timings for these two reacting flow simulations.
As shown, the overhead due to the use of overlapping grids and adaptive mesh re-
finement is quite acceptable with a majority of the CPU time spent in the Fortran 77
code that evaluates the Godunov approximation to the reactive Euler equations. The
time spent on computing boundary conditions or updating the overlapping grid inter-
polation points is quite small. The time spent on AMR regridding and interpolation
depends on the number of AMR grids required during the calculation. The largest
value occurred for the expanding-channel calculation, but this value, 11.6%, is still
relatively small. These computations were performed on a Linux desktop with a 2.2
GHz Xeon processor and 2 Gbytes of memory.



68 William D. Henshaw            

Fig. 7. Shock hitting two airfoils. The boundaries of the grids are shown super-imposed on
contours of the density. Two additional refinement levels of refinement ratio 4 were used

            

Fig. 8. Detonation in a quarter plane showing the solution and grids as the front propogates
through the interfaces between the annular component grid and the rectangular grid. The so-
lution and grids are shown at times 1�7 and 1�8



Adaptive Mesh Refinement on Overlapping Grids 69            

Fig. 9. Detonation propogating through an expanding channel. The density is shown along
with the boundaries of the refinement grids. Two additional refinement levels of refinement
ratio 4 were used

Table 2. CPU time (in seconds) per step for various parts of the code and their percentage of
the total CPU time per step

Quarter plane Expanding channel
s/step % s/step %

compute du�dt 13�85 92�7 11�50 82�4
boundary conditions �12 �8 �14 1�0

interpolation (overlapping) �09 �6 �45 3�2
AMR regrid/interpolation �54 3�6 1�62 11�6

other �34 2�3 �25 1�8
total 14�94 100 13�96 100
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1 Introduction

The numerical simulation of compressible flows with shocks and material disconti-
nuities is a computational challenge in many important application areas including
inertial confinement fusion (ICF), astrophysics, and plasma physics. Lagrangian and
ALE techniques have often been favored in the above application areas [3], in part
due to the self-adapting nature of Lagrangian grid motion, e.g., contact disconti-
nuities are tracked automatically, and cells are clustered into high density regions
behind shocks. However, this inherent form of adaption present in Lagrangian and
ALE methods, is less general and robust than a dynamically adaptive method in
which the number of cells may change with time, such as the structured grid local
adaptive mesh refinement (AMR) methods[1, 5, 4, 11]. The development of a hybrid
algorithm combining a Lagrange based ALE with AMR requires the development
of modified methods for integration of the mesh hierarchy, new interlevel solution
transfer operators, and methods for application of mesh relaxation operators to an
AMR mesh hierarchy.

2 Equations of Motion and the Underlying ALE Method

The governing equations of inviscid gasdynamics are discretized from the La-
grangian form:

Dρ
Dt
�ρ�∇ �

�V � 0 (1)

ρ
D�V
Dt
��∇p� 0 (2)

ρ
De
Dt
� p�∇ �

�V � 0� (3)
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where ρ, e, p, and �V are the fluid density, internal energy, pressure, and velocity
respectively, and t is time.

The ALE method employed for integration of the system (1)-(2)-(3) is of the
explicit, time-marching, Lagrange plus remap type. The initial Lagrange step fol-
lows the general approach taken by Tipton [14]. It employs a predictor-corrector
discretization in time, and the HEMP spatial discretization [15, 13]. The scheme em-
ploys a monotonic artificial viscosity due to Christensen [6], and a kinematic hour-
glass filter [10]. The two-dimensional scheme has been described extensively previ-
ously; algorithmic details as well as comparisons with more widely known Eulerian
methods can be found in a recent work by Pember, et al.[12].

At the end of a Lagrange step, it is often desirable to smooth the grid to prevent
excessive mesh distortion which can lead to inaccuracy and often failure of the La-
grangian algorithm. An effective smoothing algorithm can be based upon a Laplace
iteration for the transformed coordinates with respect to the Cartesian coordinates of
each node. This is the essence of the Winslow method which we take as a represen-
tative relaxation operator. For the adaptive method, this must be applied to a mesh
hierarchy, which introduces some additional considerations into the AMR hierarchy
integration algorithm.

Once the relaxed mesh has been defined, it remains to interpolate the solution
from the old Lagrange grid to the relaxed grid. We cast this interpolation in terms
of an apparent advection equation. This advection equation is solved using a variant
of the Corner Transport Upwind (CTU) scheme [2] for use on a staggered grid. The
algorithmic details of the scheme have been discussed in detail in Pember [12], et al.
Our implementation uses the SAMRAI C++ AMR library [9, 16, 8].

3 The Lagrangian (L-AMR) Algorithm

We develop first the adaptive components of the Lagrangian algorithm, and then ex-
tend the ideas to the ALE context. The essence of the adaptive Lagrangian method is
the introduction of new interlevel solution transfer operators. Interlevel transfer oper-
ators are required when new grids are created, for the generation of pseudo-boundary
conditions on finer levels in the hierarchy, for synchronizing coarse and fine data in
the hierarchy, and upon the removal of refined grids. The hierarchy advance for the
Lagrangian algorithm requires no fundamental modification. However, care must be
taken in applying coarse-fine boundary conditions on the moving mesh. On the fine
mesh, the nodes coincident with the coarse mesh are slaved to the coarse node mo-
tion by linearly interpolation in time, and the remaining “hanging nodes” in multi-
dimensions are slaved by linearly interpolating first in time, and then in space. The
remaining ghost data are interpolated using the refinement operators to be described.

3.1 Staggered Mesh Refinement

The operators developed here are designed with the following properties in mind:
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P1) Constant field preservation
P2) 2nd order accuracy (in smooth regions)
P3) Monotonicity
P4) Local conservation
P5) Exact inversion of refinement by coarsening

A simple way to ensure that P4 and P5 are simultaneously achieved is to main-
tain an exclusive r:1 correspondence, r being the refinement ratio, from fine nodes
to coarse nodes, such that the local interpolation stencils on the fine mesh do not
overlap. In this case inverting a locally conservative interpolation is simply a mat-
ter of summing the fine values of the conserved quantity in the stencil. This leads
to a choice of odd refinement ratios to ensure this property for both cell- and node-
centered quantities.

Consider a one-dimensional interpolation of some scalar density function φ with
a known slope φ�

0 and average value φ0 over some interval ∆x0, into N arbitrary
subintervals ∆xk � xk�1� xk.

An interpolation in which values are taken from the centers of the subintervals

φk � φ0 �φ�

0

�
x̄k�

1
2
∆x0

�

where x̄k � �xk � xk�1��2, is locally conservative of φ∆x in the sense that

N

∑
k�1

φk∆xk � φ0∆x0�

since
N

∑
k�1

φk∆xk � φ0∆x0�φ�

0

�
N

∑
k�1

x̄k∆xk�
1
2
∆x2

0

�
� (4)

In a constant field, all slopes φ�

0 are zero, and constant fields are preserved indepen-
dently of the mesh. We now have a general one-dimensional expression for interpo-
lation that satisfies P1, P2, and P5. In order to address P3, we employ the well-known
van Leer limiter for slope determination.

If we desire to prevent oscillations in the primitive variables φ � �ρ�u�v�E�,
where E is the total energy, the required interpolation basis to obtain property P4,
local conservation, is x� �V�m̃�m̃�m�, where V is volume, m̃ is nodal mass, and m is
cell mass. This interpolation generalizes to multi-dimensions by including terms for
the slopes in each logical direction.

Upon closer examination of (4), there is a consistency condition for local conser-
vation that requires that the basis itself be locally conserved, i.e.,

N

∑
k�1

∆xk � ∆x0� (5)

We have identified two potential difficulties in achieving the consistency condi-
tion and hence a conservative operator. The first is calculation of hexahedral volumes
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in three dimensions. Many volume formulas for hexahedra are based on a surface tri-
angulation of faces, which will not be consistent with a multi-linear interpolation
of the mesh in the sense of (5). If instead one employs a bilinear surface model for
the cell volume, then the interpolation is indeed consistent and mass conservation is
retained. An efficient implementation of this exact integration is given by Dukowicz
[7].

However, if we employ a cell mass interpolation, (5) is violated in the case of
a nodal mass basis for velocity interpolation. In this context the neighbor-average
definition of nodal mass is inconsistent with interpolation based on linear slopes
of density. In multi-dimensions on a general grid, the neighbor-average definition is
inconsistent even with constant slopes of density. One way to reconcile this difficulty
is by interpolating an adjusted coarse velocity field

u�

0∑m̃i � u0m̃0�∑u�δm (6)

where, borrowing from remap terminology, u � is an “edge state” and δm is a “trans-
port mass.” If the transport masses are constructed such that

∑m̃i � m̃0�∑δm�

and edge states are constructed such that all u�
� u0 in a constant coarse grid velocity

field, then this adjusted field both conserves momentum and preserves a constant
field upon interpolation to the fine mesh. This adjustment procedure has a natural
interpretation as a nodal flux of momentum due to the implied mass transport across
the median mesh by the imposition of cell density slopes in the mass interpolation
step. We find that an arithmetic average for the edge state is sufficient for a variety
of test cases, although one can apply upwinding based on the sign of the mass flux
as an alternative. A minor concession with this procedure is condition P5, a loss of
precise invertibility.

3.2 Coarsening

There are two natural choices for coarsening operators as weighted sums of the con-
served quantities, i.e.,

ρ0 �
∑ρiVi

∑Vi
or
∑ρiVi

V0

u0 �
∑uim̃i

∑m̃i
or
∑uim̃i

m̃0

E0 �
∑Eimi

∑mi
or
∑Eimi

m0

where i varies over the refinement stencil corresponding to each coarse node. The
coarse mesh is formed by selection of every r’th mesh point. The first choice is a
constant field preserving construction and the second choice is conservative, but not
vice versa, in general. In order to achieve a simultaneously constant field preserving
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Fig. 1. L-AMR solution of Taylor-Sedov blast wave problem. Coarse level grids shown in
black, fine level grids in white. Colormap is density field.

and conservative operator, one must apply a remap operation to (a copy of) the fine
grid data, remapping from the fine Lagrange grid to one which is fully aligned with
the underlying coarse grid. This is an analagous step to (6), and indeed preceeded
and inspired the former.

A demonstration of the three-dimensional L-AMR algorithm for the Taylor-
Sedov blast wave is shown in Figure 1. This solution was computed using two mesh
refinement levels. The coarsest level is shown in black and the fine level in white. The
refined regions capture the outgoing shock as well as the region of strong expansion
near the origin. The speedup for this case over a grid using fine mesh everywhere is
about 11.

4 The Arbitrary Lagrangian-Eulerian (ALE-AMR) Algorithm

The introduction of a Winslow-type relaxation operator introduces some additional
requirements for the ALE-AMR method. The relevant feature of the equipotential
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type methods is that they are derived from elliptic equations which intrinsically ex-
hibit globally coupled solutions. The consequence for an AMR mesh hierarchy is
that coarse meshes may not be relaxed independently of finer meshes; they instead
require a solution method which enforces the required coupling between mesh lev-
els. Thus one cannot simply use a composite Lagrange plus remap operator directly
in the previously described L-AMR method to arrive at a well-behaved ALE-AMR
method.

Instead the hierarchy advance algorithm is modified to include relaxation itera-
tions only when all finer levels have advanced to a given simulation time. We define
a “level grid” gθ as the set of all nodes on Lθ, and a “composite grid” gc

θ as

gc
θ � gθ � I�gθ�1��gc

θ�1� (7)

where I is a restriction operator of nodal injection, and the definition g c
θmax

� gθmax

closes the recursion. An ALE-AMR hierarchy advance algorithm is then

repeat
construct interpolated θ�1 and/or domain boundary conditions
advance Lθ Lagrangian to t = min(t�∆t, tθ�1)
if θ� θmax then

recurse with θ = θ�1
repeat

relax gc
θ

until gc
θ is sufficiently smooth

remap levels θ to θmax

synchronize levels θ through θmax

optionally regrid levels θ�1 to θmax

end if
until t = tθ�1

The logical diagram in Fig. 2 visualizes the process for a 3-level hierarchy.

5 Numerical Example

The utility of the algorithm is demonstrated on a three-dimensional Richtmyer-
Meshkov instability in a converging geometry; this serves as a proof-of-principle
calculation for inertial confinement fusion (ICF) applications. The initial condition
consists of an incoming spherical shock impinging upon a high density spherical
shell with a single mode perturbation on its outer surface. For efficiency, the domain
is constrained by cutting planes to approximately three wavelengths, as shown in
Figure 3. As the shock impinges on the high density fluid, the classical bubbles and
spikes instability occurs. Later times show the growth of complex flow features, as
shown in Figure 4. ALE-AMR enables much greater resolution on the detailed fea-
tures of the instability than a comparable ALE method, and the mapped grid capabil-
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Fig. 2. ALE-AMR hierarchy integration logical diagram, shown for a 3-level hierarchy. Verti-
cal lines are Lagrange steps, horizontal lines are relaxation operations.

            

Fig. 3. AMR grid hierarchy for initial condition of Richtmyer-Meshkov instability calculation.
Four levels of refinement. Colormap of density.

ity greatly reduces the “mesh imprinting” errors that tend to feed spurious anisotropic
instability modes in this type of calculation on Cartesians grids.
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Fig. 4. Later time instability growth. Isosurface of density. Box outlines shown in light to
heavy outlines, from finest to coarsest level.

6 Conclusion

The hybridization of staggered grid ALE and AMR on structured meshes is accom-
plished with the development of new interlevel transfer operators, modifications to
the hierarchy advance algorithm, and methods for applying elliptic relaxation opera-
tors to a time- and space-refined mesh hierarchy. The advantageous features of both
types of methods are retained, and the result is a powerful combination for the class
of applications for which ALE methods are well-suited.
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Summary. We propose a new algorithm which combines the front tracking with an adaptively
refined Cartesian grid for solving systems of nonlinear conservation laws.

1 Introduction

The numerical simulation of time dependent complex flows which contain linear
and nonlinear discontinuities is a challenge. To maintain the quality of the computed
solution and to capture the solution structures of different scales, it is desirable to use
adaptive grid refinement (AMR).

The AMR strategy is to expend the most computation effort in the region where
it is most necessary by using more grid points here. Block-structured Cartesian grids
for the refinement of complicated geometric configurations were proposed [BO84,
BJ85]. The study of block-structured AMR for hydrodynamics has been developed
systematically by M. Berger and P. Collela [Ber87, BC89].

The front tracking method is also an adaptive method. A front represents either a
contact discontinuity, a shock wave or a rarefaction wave edge of the flow. The front
represented by a lower dimensional manifold is embedded in the spatial grid. The ge-
ometry of a front is represented by a curve composed of piecewise linear segments in
2D, and a surface composed of a set of connected triangles in 3D. Driven by the flow
dynamics, the front follows the flow motion and moves freely across the underlying
spatial grids to track the desired flow features. Interfacial numerical diffusion across
the fronts, which is a common phenomenon for the capturing method, is prevented
by the tracking method. The tracking method also reduces post-shock oscillations.
Two sub-processes: the front propagation and the updating of the solution on the spa-
tial grids, complete a single computational time step. The front tracking method has
been used to simulate complex fluid mixing geometries in 2D [GGMM88, CGSZ96],
and in 3D [LG96, GGL98].

This paper describes a combination of these two methods. We have merged the
Front Tracking code FronTier with the AMR code Overture which is based on the
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Berger-Collela cell based refinement algorithm, [Ber87, BC89] and developed and
maintained at LLNL.

2 The 2D AMR Front Tracking Algorithm

We describe the modules of the AMR front tracking algorithm according to the order
of their execution in this section. We use block-structured uniform Cartesian grids.
We use Overture to generate the AMR grid hierarchy. FronTier is responsible for
updating the numerical solutions on each patch.

2.1 Initialization of the AMR grids

For an initial regular, coarse mesh filled with data by the FronTier initializer, the cells
in this mesh where the estimated error is larger than some threshold are determined
to be tagged. The Berger-Collela cell based refinement algorithm then generates re-
finement grids from these tagged cells by organizing them into a set of rectangular
patches. The patches are aligned with the original mesh. The patches are properly
nested, so that successive refinement levels are allowed, with the restriction that ad-
jacent refinement levels will differ by one level only, usually representing refinement
by a factor of 2 or 4 in each dimension. The fine patches are recursively added to the
next coarse level patches until the desired solution accuracy is obtained. The patches
with the same grid spacing belong to the same grid level. The refinement grids are or-
ganized in a hierarchy. The coarsest grid which discretizes the whole domain belongs
to level 0, the next added refinement grids belong to level 1 and so on.

The error estimation provides the basis for the AMR strategy. The Overture im-
plementation of the error estimate is based on the evaluation of a weighted sum of the
first and second derivatives of one or several state variables. The estimator generally
achieves a maximum value at discontinuities. In this way, the grid adaptation thus
tends to refine this region, which is exactly what we desire.

We address the tracking of the contact discontinuity. We assure that the tracked
front is completely embedded inside the finest grid. To ensure there are a sufficient
number of the fine grid cells to cover the contact discontinuity, we use a control-
ling parameter which specifies the minimum distance from the front to the fine grid
boundary. Cells with a distance to the front smaller than this parameter are always
tagged during the refinement. Thus the finest level patches always cover a minimum
neighborhood of the tracked front.

To implement the above described module, we have built a data translation inter-
face to translate the FronTier initial state data to the Overture error estimation class
and to translate the refinement grid hierarchy from Overture to FronTier.

Since the numerical computation step carried by FronTier is organized into front
propagation and interior state update sub-processes, for each AMR patch, we con-
struct a front structure and a wave structure. FronTier then calls the front propagation
solver and interior finite difference solver to update the numerical solutions.
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2.2 The Single Time Step Tracking Algorithm

To support dynamic tracking, a front propagation driver associated with the under-
lying physics and a set of geometric manipulation routines are provided [GIM81,
GGL98, GGL99a]. Basic operations such as the creation and the re-meshing of the
front and the untangling of self-intersecting fronts are managed by geometric manip-
ulation routines.

The front is oriented. Each front point has two states defined, one on each side.
The front propagation is accomplished by propagating each point on the front. To
propagate the front point, we define the normal and tangential direction on the front.
We then solve

Ut �n � ��n �∇�F�U��� τ � ��τ �∇�F�U�� � 0� (1)

where n � �n1�n2� is the normal, τ� ��n2�n1� is the corresponding tangent. Eq. (1)
is solved by dimensional splitting. Given the two side states U n at the time tn, we
first solve

Ut �n � ��n �∇�F�U�� � 0� with U�t � tn� �Un
� (2)

The time evolution defines a generalized Riemann problem as introduced in [CGMP86].
From the solution of this problem, we obtain the new location of the front point and
the two new states on each side of the front. We denote these two states as U cn. Then
we solve

Ut � τ � ��τ �∇�F�U�� � 0� with U�t � tn� �Ucn
� (3)

with any finite difference solver on each side. The point propagation is complete.
Since the front contained in the finest grid level is most accurate, we only main-
tain the front in this level. The geometric operation routines are called after point
propagation to re-mesh or untangle the front if there is the need. The front in a grid
communicates with neighboring grid fronts to maintain its integrity.

The last step of a single tracking step is to update the states on the spatial grids.
See [CGMP86, GGL98, GGL99, GGL99a, GGL00] for a detailed discussion of the
front propagation and the interior sweep.

Except for the physical boundaries, the boundary conditions on the refinement
grids are imposed by use of ghost cells, which extend the patch cells by a number
related to the stencil size of the finite difference scheme in each direction. Using
these ghost cell state values in the usual way, the equations can be integrated in the
given patch with sufficient boundary data to fill all finite difference stencils. After
the updating of spatial grid solutions on the patches, solutions defined on the coarse
grid cells which are covered by a finer grid and the solutions defined on the cells
which are on a coarse-fine grid boundary but are not covered by any fine grid are
subject to modification. At the coarse-fine grid boundaries, the refluxing procedure
must be applied to ensure conservation and to reduce errors. The cell states of a fine
level patch are averaged to the next coarse level patch in which this fine level patch
is nested. With the front present, averaging of states from two sides of the front is
not allowed.
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The adaptation in the temporal dimension is not implemented at the present time.
At the end of the single time step, all patches are synchronized with the same dis-
cretized time step. The discrete time increment ∆t is the one calculated from the
finest level grids.

2.3 Regridding the AMR grids

The dynamic evolution of the solutions requires regeneration of the refinement grid
hierarchy after a specified number of time steps to capture the most significant fea-
tures of the solution. As with the initialization step, FronTier gathers the states on
the spatial grids, sends them to Overture, and Overture performs the regridding step
according to the information from the states obtained.

The solution states defined on the old refinement grid hierarchy are interpolated
to the new refinement grid hierarchy. The fronts in the old fine grid sets are assem-
bled. Then for each of the new refinement grids, a proper portion of the assembled
front is cut if it is present inside the grid. The solution is then advanced on the re-
gridded grid hierarchy.

2.4 Parallel computation

FronTier is a fully parallelized software package running on distributed-memory sys-
tems while the current Overture implementation is not. Based on the parallelization
of FronTier, we also implemented a parallel AMR tracking algorithm. The current
strategy is the following: A global domain is divided into rectangular subdomains
in FronTier. Each subdomain is assigned to a single processor. In each subdomain,
we perform the adaptive refinement. Because the Overture error estimator does not
communicate through subdomain boundaries, there might not be enough refinement
across the subdomain boundaries. To ensure sufficient refinement, for two adjacent
subdomains, assume one has a finer refinement (say level l) patch than the other.
The subdomain with less refinement also creates a level l patch with specified depth
(usually 4 to 6 cells) and length to match the refined level l patch of its neighboring
subdomain. In this way, the refinement is not influenced by the subdomain decom-
position.

Since each subdomain has different refinement grids, the computation load is
unbalanced. To balance the load on different processors, we need to distribute AMR
patches across processors, namely, the processors with excessive load will send some
of the patches to other processors with deficient load.

To distribute the unbalanced workload, we need to send the entire states of a
patch across the processors. If two nested fine and coarse patches of two successive
levels are assigned to different processors, we need to send the entire solution states
of the fine patch to the coarse patch at the averaging step of the single time step.
Besides these parallel communications, there are other communications associated
with front tracking at a fixed grid level. The ghost cell states are filled at the end of
the single time step. Except for the ghost cells on the reflected or periodic bound-
aries, the ghost cell portion of a given patch covers the interior of adjacent patches
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at the same level or the next coarse level in which this patch is nested. If the ghost
cell of a patch overlaps a cell from the interior of another same level patch, the state
of this ghost cell is obtained by copying states from this overlapped cell. Otherwise,
the ghost cell state is interpolated from the next coarse level patch in which the ghost
cell is located. If these patches are scattered to different processors, we send these
copied or interpolated states through the parallel communication. We also commu-
nicate fine-coarse boundary fluxes if the corresponding fine and coarse patches are
computed in different processors. In the case of Front Tracking, it is also necessary
to communicate ghost cell portions of the front. At the end of the normal and tan-
gential front propagation and the re-meshing or the untangling of the front, the ghost
cell portion of the front of a given patch is replaced by the front cut from the in-
terior of the neighboring patches. The cut pieces of the front from the neighboring
patches must be sent to this given patch either by copying, if these patches are in
the same processor or by the parallel communication if these patches are in different
processors.

For parallel communication, we construct a table. Each patch corresponds to an
item in the table. Each item of this table records a patch id, the processor id in which
this patch is computed, ids of all patches neighboring this patch at the same level, the
id of the next coarse level patch embedding this given patch and the ids of the next
fine level patches embedded in this patch. Each processor maintains a copy of this
table. The parallel communication is determined from this table.

We are experimenting with the optimization of load balancing, which must be re-
considered in the context of front tracking, as the computational load is nonuniform,
depending on the number of front points as well as the number of cells in a given
patch. We use the algorithm developed by W. Crutchfield et al [CLB99] to determine
the load distribution. This algorithm assumes the communication cost is ignorable.
In our case, however, we have large and irregular communications which can not be
ignored. To develop a better load balancing strategy is still a research issue.

3 Numerical Examples

We present two numerical examples illustrating our algorithm.

3.1 A spherical Richtmyer-Meshkov instability

We calculate an axisymmetric spherical RM instability. A Mach 10 imploding spher-
ical shock strikes a spherical contact interface perturbed by 6 modes. We used 3 level
refinements, with the refinement ratio of 2 and the level 0 grid of 100�100 cells on
the 1� 1 domain. We compare the result with the uniform grid (which is compara-
ble to the finest level of the AMR grid) simulation. The AMR solution matches the
uniform grid solution as shown by Fig. 1.
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Fig. 1. Density and grid plots for the spherical RM simulation at time = 0.3. The left frame
shows the density plot from AMR front tracking, and the middle frame shows the density plot
from uniform grid front tracking. The right frame shows the AMR grid plots.

3.2 A simulation of spray formation in a diesel jet

The wide disparity of length scales in the diesel jet simulation problem (injection
nozzle width 0.178mm, mean droplet size 10 micron, jet length during simulation
5cm) calls for AMR. In Fig. 2 we illustrate this capability. We used 5 processors, 3
level refinements with the refinement ratio of 2 and a level 0 grid of 62� 250 cells
on the 0�248cm� 1cm domain. The left part of the frame shows the density for the
simulation, and the right part of the frame shows the grid in a color plot at time
0.06, which is 60 percent of the pressure rising time. Each color in the grid plots
represents a processor. The patches in the same subdomain are computed in different
processors determined by the load balancing. The comparison with experiment data
from Argonne National Laboratory and uniform grid simulations is conducted at
Brookhaven National Laboratory.

Fig. 2. Density plot of the jet simulation at t = 0.06
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4 Conclusions and discussion

We have presented an AMR front tracking algorithm for calculation of time-depend
flows. With this AMR front tracking, we have resolved the geometry features of var-
ious sizes and scales and maintained a sharp interface. This 2D methodology is also
applicable to 3 dimensions, which is now under the development. The Berger-Collela
cell based refinement algorithm gives unequal-sized grids. Dynamic load balancing
is an important issue in the parallelization. The optimization of load balancing is still
being investigated.

Acknowledgments. We would like to thank William B. Henshaw and Petri Fast
at LLNL for helpful comments and suggestions during the code development.
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An accuracy study of mesh refinement on mapped
grids
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Summary. We test a high-resolution wave-propagation algorithm for hyperbolic conservation
laws on mapped quadrilateral and hexahedral grids in the context of adaptive mesh refinement.
We discuss some of the issues related to using non-Cartesian grids with AMR and study a test
problem in which a grid refinement interface is fixed in space on a highly skewed portion of a
mapped grid. Smooth and shock-wave solutions to the Euler equations are used to investigate
the possibility that spurious reflections or other numerical errors might be generated at a grid
interface.

Key words: gas dynamics, finite-volume, finite-difference, Cartesian grid, mapped
grids, computational fluid dynamics, adaptive mesh refinement

1 Introduction

We study one approach to solving partial differential equations on a mapped grid in
the context of AMR, using the finite volume wave-propagation algorithm described
in [8] and [9] in two dimensions and in [6] in three dimensions. The application
of this method to quadrilateral grids in two dimensions is discussed in [9] and re-
cently we have implemented an extension to hexahedral grids in three dimensions. A
logically rectangular computational grid is mapped to physical space via a mapping
function that is applied to each corner of a grid cell. In two dimensions these corners
can be connected by straight lines to obtain quadrilateral cells. In three dimensions
the four corners on each face will typically not be co-planar but can be connected by
ruled surfaces to obtain hexahedral physical cells. The wave-propagation algorithm
is based on solving Riemann problems normal to the cell faces to obtain propagating
waves. Limiters are applied to these waves and the limited waves used in “second-
order” correction terms to obtain a high-resolution method.

These algorithms have been implemented with AMR in the style of Berger-
Oligier and Berger-Collela [5, 2, 3] in the AMRCLAW software package as part of
CLAWPACK [7, 4]. When this algorithm is applied to mapped grids, we refine grid



92 D. Calhoun and R. J. LeVeque

Fig. 1. Refined mapped grid shows the potential misalignment between coarse and fine grid
cells. The coarse mesh is represented by thick lines and corresponding fine mesh is shown in
thin lines.

cells by relying on an underlying smooth mapping function that tells us how to sub-
divide a coarse mesh cell. That is, the “midpoint” of two neighboring corners of a
coarse cell is defined as the point along the curve, defined by our smooth mapping,
passing through those two points. This eliminates the need to construct a smooth
mapping through coarse grid points, as is done, for example, in the method devel-
oped in [1, 10]. Our strategy has the advantage of simplicity, particularly when ex-
tending the method to three dimensions. The disadvantage of this strategy, however,
is that underlying refined cells are not necessarily contained in their corresponding
coarse cell. See Figure 1 for an illustration of this. This is a potential source of error
and part of our goal here is to investigate whether this simpler approach is sufficient
or generates unacceptable errors.

Since refined cells are not necessarily contained within their coarse cell, one
might suspect that volumes are not preserved and interpolation between coarse and
fine grids might not be conservative. We address this issue by using the capacity
function formulation of the equations as discussed in [8], [9]. The capacity κ i j of a
grid cell plays the role of a discrete Jacobian and is the ratio of the physical volume
of a mesh cell to the volume in computational space. We use this in our fine to coarse
interpolation. For example, in two-dimensions, a coarse value Q i j is determined from
its four fine grid values Qk

i j� k � 1� ��4 using the formula

Qi j �
∑4

k�1κk
i jQ

k
i j

4κi j
� (1)

This formula will assure that the conserved quantities are properly conserved be-
tween coarse and fine grids in spite of the fact that refined cells are not exactly aligned
with their coarse grid cells. We may lose accuracy, however, unless

κi j �
1
4

4

∑
k�1

κk
i j� (2)
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Fig. 2. Mapped partially refined grid used for two dimensional numerical studies. This plot
shows every fourth grid line on a mesh with 120 coarse grid points in the x-direction. The
circular region encloses the mapped area.

This is satisfied with the refinement strategy of [1, 10], but is not satisfied with our
approach. Consequently, constant states are not exactly preserved between coarse
and fine grids. We show that results look promising even though (2) is not strictly
satisfied.

At coarse-fine boundaries, we use the conservation fix-up described in [5]. In this
fix-up, we must solve Riemann problems between ghost cells of the fine grid, and the
coarse cells that border the fine grid. On a quadrilateral or hexahedral mesh in which
the fine grid cell edges do not line up with coarse cell edges, we use the coarse grid
cell edges to determine the rotation angle necessary to define the Riemann problem
required in the fix-up step.

2 Numerical results

Our main goal is to provide insight into the accuracy that can be expected when
using the wave-propagation algorithm on a mapped Cartesian grid in the presence of
a grid refinement interface. Normally in AMR the fine grids are constantly adapted
to follow strong solution features such as shock waves. However, in complicated
flow problems there are other nontrivial features such as smooth profiles or weaker
shocks that are not always covered by refinement but rather move across the fine-
coarse interface. To study the effect of such an interface on the solution we use a
test problem in which the region of refinement is fixed and a solution feature moves
across the interface. In order to obtain quantitative comparisons we choose a simple
situation in which the true solution is a one-dimensional plane wave.

We show results for test problems on a quadrilateral grid of the type shown in
Figure 2 and the hexahedral generalization shown in Figure 8. In each case the grid
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is Cartesian near the edges of the domain, but a circular region of radius R � 0�8
about the origin is rotated by the smooth grid mapping that in two dimensions takes
the form

X�ξ�η� � cos�α�r�θ�ξ� sin�α�r�θ�η
Y �ξ�η� ��sin�α�r�θ�ξ� cos�α�r�θ�η

(3)

where the parameter θ defines the maximum skewness of the grid, and α�r� allows
us to smoothly connect the uniform region of the grid with the rotated region. For
our problems, we have defined α�r� as

α�r� �
�
�1� cos�πr�R���2 r � R
0 otherwise

(4)

where r is the distance to the grid origin �0�0�. Figure 2 shows grids corresponding
to values θ� π�2, the value used in all tests shown here. The advantages of this grid
are that (1) the boundaries are straight, thereby eliminating any numerical issues that
might arise at curved boundaries, (2) we can adjust the skewness of the grid with
a single parameter and test how numerical errors are influenced by the skewness of
the grid, and finally, (3) the initial values are concentrated in a region in which the
pointwise values of the initial data and the cell averaged values are close, thereby
eliminating the need to compute cell averages in cells which have been distorted by
the grid mapping.

We solve the Euler equations with two sets of initial data, and in all both exam-
ples, report on the computed density. In the first example, we simulate a planar Mach
2 shock wave, and in the second example, we simulate a smooth acoustic wave with
initial data

ρ0�x�y� � 1�0�25exp��5�x�1�5�2�

p0�x�y� � ρ
γ
0�

u0�x�y� �
2

γ�1

��
γργ�1

0 �

�
γ
�
�2�

(5)

This data is chosen so that the wave is a simple wave that remains smooth over
the time interval considered. In each case the solution feature is initially on the Carte-
sian portion of the grid and passes through the rotationally skewed portion. The
true solution is purely one-dimensional. The computed density on the two- or three-
dimensional mapped grid is compared with a fine grid or exact solution, and with
a numerical solution to the one-dimensional equations computed using the wave-
propagation algorithm on a grid with the same number of grid points as are used
in the x-direction on the multidimensional grid. If the multidimensional grid were
purely Cartesian (θ � 0 in (3)) then the multi-dimensional results would match the
one-dimensional results. On the skewed grid we do not expect the results to be as
good and so this gives some basis for examining the effect of the grid mapping.

2.1 Two-dimensional results

In Figure 3 we show the two-dimensional results for the shock-wave test problem
on a single (unrefined) grid with θ � π�2. In spite of the skewed grid the contour
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lines show that the numerical solution is essentially one-dimensional. The left plot
in Figure 5 shows a scatter plot of the density in all grid cells, plotted against the
x-coordinate of the cell center. This is compared with the exact solution based on the
computed shock speed.
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Fig. 3. Contours of the solution to shock-wave problem on a single grid at times t � 0�4 and
t � 0�9. The dashed circle encloses the mapped region. The contour levels are 0�95 : 0�1 : 2�95.
The grid is 120 cells in x-direction (dx� 0�025).
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Fig. 4. Contours of the solution to shock-wave problem on a partially refined grid at times
t � 0�4 and t � 0�9. The dashed circle encloses the mapped region, and the additional dashed
center-line is the right edge of the refined region. The contour levels are 0�95 : 0�1 : 2�95. The
coarse grid resolution for these plots is 120 cells in x-direction (dx� 0�025).

We now turn to testing the behavior of the solution when the feature passes
through a fine-coarse grid interface. We force a static refinement in which the left
portion of the computational domain is refined by a factor of 2 relative to the right
portion, as shown in Figure 2. Note that the refinement boundary is chosen to be
in the region of maximum grid deformation. In this region the fine and coarse grid
cells do not exactly match up, as was shown in Figure 1, and a concern is that the
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Fig. 5. Scatter plot of shock-wave solution computed on (a) a single grid and (b) after is passed
through a coarse-fine interface on a partially refined grid.

interface will lead to the generation of spurious reflections or other numerical noise
at the interface. Of course this can be a problem at a refinement interface even on a
purely Cartesian grid, but the grid deformation and mismatch of cells heightens the
concern.

Our results indicate that the wave-propagation algorithm appears to behave well
in this regard, at least on the test problems used here. The two plots in Figure 4 show
contour lines of the shock wave in the middle of the mapped region, and again once
it has completely left the mapped and refined region. Figure 5 shows scatter plots
of the solution computed on a single coarse grid (left plot) and a partially refined
grid (right plot). For comparison, the exact solution, based on the computed shock
speed is also shown on both plots. What we hope to observe, is that the results on the
partially refined grid are no worse than what was obtained on the unrefined coarse
grid. In fact we do observe this, indicating that the existence of a refined patch does
not introduce substantial errors at the grid interface. We also don’t expect to see
substantially better results on the partially refined grid, since the shock has already
left the refined region by time t � 0�7.

Figure 6 shows similar plots for the smooth test problem with data (5). Figure 7
shows the results of a grid refinement study on this smooth test problem. The upper
curve shows the L1 norm of the error found on a sequence of unrefined grids, indexed
by the number of grid points in the x-direction. The lower curve shows corresponding
results for a sequence of partially-refined grids, indexed by the number of grid points
in x on the coarse grid. These results show that the method remains second order
accurate in spite of the refinement boundary. The error is no larger on the partially-
refined grid than on the single grid, and in fact is slightly smaller since the solution
was initialized on the finer grid. This indicates that excessive errors are not being
introduced at the refinement boundary.
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Fig. 6. Scatter plot and contour plot of simple wave solution. Both plots show the solution
computed on a grid in which the left half was refined. Coarse grid resolution is 120 cells in
the x-direction. (dx� 0�05).
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2.2 Three-dimensional results

Tests have been performed for the three-dimensional hexahedral generalization of
these test problems, with similar results. The grid used for these simulations is
the three-dimensional analog of the two-dimensional grid used above. In three-
dimensions, we rotate a spherical region of radius R � 0�8, centered at the origin,
by an angle α�r�θ about a vector v. For the following simulations, we set θ � π�2
and v � �1�1�1�. The function α�r� is defined as in (4). The three dimensional grid
is shown in Figure 8.

To determine necessary geometric quantities for each mesh cell, we approximate
the hexahedral mesh by a trilinear map

T �ξ�η�ζ� �a000�a100ξ�a010η�a001ζ�a110ξη�
a101ξζ�a011ηζ�a111ξηζ

(6)
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Fig. 8. Hexahedral mesh used for three-dimensional simulations. The center region has been
rotated about the vector v � �1�1�1� by a skewness factor of θ� π�2. This plot shows every
other grid line in a mesh with 60 coarse grid cells in the x-direction (dx � 0�05).

where 0 � ξ�η�ζ � 1. The coefficients almn � R 3 are computed from the locations
of the physical corners of the mesh cell. This approximation is the natural extension
of two dimensional bilinear quadrilateral mesh cells to three dimensions. Using this
approximation, we compute a set of normal and tangential vectors at the midpoint
of each face, a surface area for each face, and the volume of the approximated mesh
cell. These quantities are then used in the Riemann problems and in update formulas
in a manner analogous to the what we do in two-dimensions.

To test our code, we use the same simple wave and Mach 2 shock examples that
we discussed in our two dimensional test problems. In Figure 9, we show a scatter
plot and a contour plot, on a z� 0 slice of data for the smooth-wave computed on the
partially refined grid. In Figure 10 we show the results of the Mach 2 shock-wave, on
a (z� 0) slice, at two different times, and in Figure 11, we show a scatter plot of the
same shock-wave results. In both examples,the results are no worse than results com-
puted on a single grid at the coarse grid resolution, indicating that the introduction
of a refined grid and a coarse/fine boundary does not cause spurious waves or reflec-
tions. The accuracy does not appear to be as good as on the two dimensional grid,
but this is due in part to the fact that we are computing the three dimensional solution
on a grid with half the resolution as was used in the two-dimensional example.
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Fig. 9. Solution to simple wave problem computed on a partially refined hexahedral grid. The
coarse grid resolution is 60 grid cells in the x-direction (dx� 0�05).

3 Conclusions

We have proposed a simple test problem to study the effect of introducing a mesh
refinement boundary when solving conservation laws on a mapped grid. A static
refinement interface is introduced in a highly skewed region of the grid and both
a shock wave and a smooth simple wave are passed through this interface to test
for spurious reflections or loss of accuracy. We have tested the wave-propagation
algorithm in two and three dimensions and have observed results that are better than
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Fig. 10. Solution to shock-wave problem computed on a partially refined hexahedral grid. The
coarse grid resolution is 60 grid cells in the x-direction (dx� 0�05).

what is obtained on an unrefined grid. This is encouraging since a refinement strategy
is used in which the grid cells are not perfectly aligned between coarse and fine cells,
which could potentially generate significant errors at the interface.

Acknowledgment. This work was supported in part by DOE grant DE-FC02-
01ER25474 and NSF grant DMS-0106511.
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Fig. 11. Scatter plot of density in the shock-wave problem computed on a hexahedral mapped
grid. The coarse grid resolution is 60 grids in the x-direction (dx� 0�025).
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Summary. We consider potential efficiency gains for time sub-cycling, or time refinement
(TR), on Berger-Collela and oct-tree AMR meshes for explicit or local physics (such as ex-
plict hydrodynamics), where the work per block is roughly constant with level of refinement.
We note that there are generally many more fine zones than there are coarse zones. We then
quantify the natural result that any overall efficiency gains from reducing the amount of work
on the relatively few coarse zones must necessarily be fairly small. Potential efficiency bene-
fits from TR on these meshes are seen to be quite limited except in the case of refining a small
number of points on a large mesh — in this case, the benefit can be made arbitrarily large,
albeit at the expense of spatial refinement efficiency.

1 Introduction

1.1 Block-Structured AMR

Adaptive mesh refinement on rectangular grids (henceforth AMR) was introduced
in [3], and improved for conservation laws in [2], henceforth BC89. In the patch-
based meshes of the sort described in BC89, the patches increase in resolution by a
fixed even integer factor N. One can place a finer patch anywhere in the domain of a
‘parent’ patch of one fewer level of refinement. A patch is not required to have only
a single parent, but must be completely contained within patches of the next lowest
level of refinement. Note that these meshes are non-conforming; the face of a zone in
a parent patch will abut N faces in the child patch. A final restriction in the nesting of
the meshes is that there must be at least one zone of the next lower level refinement
about the perimeter of a patch.

Another mesh we will consider here is an oct-tree mesh (quad-tree in 2-d, bi-
nary tree in 1d), such as is implemented in the PARAMESH package [6] used in the
FLASH code [5]. This oct-tree mesh is a more restrictive version of an N � 2 patch-
based mesh as described in BC89. If a block needs additional resolution somewhere
in its domain, the entire block is halved in each coordinate direction, creating 2 d

children, where d is the dimensionality. Leaf blocks are defined to be those blocks



104 L. J. Dursi and M. Zingale

with no children, and are thus at the bottom of the tree — they are the finest-resolved
blocks in their region of the domain. Frequently, only leaf blocks are evolved to com-
pute the solution to the equations, since a refined parent block’s domain is completely
spanned by its children.

The only difference between the two meshing approaches of immediate interest
is the resulting different refinement patterns. We will use ‘patch’ and ‘block’ inter-
changeably in this paper.

1.2 Time Refinement

In BC89, the timestep set by the data on the finest mesh is used to evolve that data,
and data on the coarser meshes is evolved at a multiple thereof so that there is a
constant ratio at each level l of ∆tl to ∆xl . The assumption here is that there is one
roughly spatially constant characteristic speed throughout the entire domain, so that
the maximum allowable timestep at any given resolution is directly proportional to
the size of the mesh for any given block or patch. When coupled with the assumption
in structured AMR of some fixed jump in refinement between levels, this makes for
a very natural time evolution algorithm, shown pictured in Figure 1 for a mesh with
three different levels of refinement, with resolution jumps by constant factors of N;
shown is N � 2.

dt

dt/2

dt/4

Fig. 1. A structured AMR mesh containing blocks at three different levels of refinement, show-
ing the order of operations (far right) of an explicit time evolution algorithm. The largest block
is evolved at the system timestep, and smaller blocks are subcycled at smaller timesteps. Be-
tween evolution at different levels of the mesh, time averaging and flux corrections must be
done — these are not shown here.

Here the largest blocks are evolved at some system timestep dt, and smaller
blocks are ‘subcycled’ at proportionally smaller timesteps. This defines a ‘work func-
tion’ for each block; the finest blocks must be evolved every sub-timestep so we take
their work value to be 1 times the number of zones in the block or patch; the blocks
one level of refinement ‘up’ need only be evolved every N sub-timesteps, so that their
work value is 1�N times the number of zones, etc. The work function for an entire
mesh is the sum of the work values of each block or patch in the mesh.

There are costs associated with this time refinement (hereafter TR). Memory is
needed to store information at multiple timesteps. There are overheads from extra
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copies and time-centering of fluxes. The modified time-structure of work leads to
load-balance issues in parallel jobs. Further complicating parallel performance is in-
creased communication complexity (although, it is to be pointed out, not necessarily
increased communication).

Nonetheless, one might hope that these costs are outweighed by the time savings
of not evolving large blocks at unnecessarily small timesteps; in the example of Fig-
ure 1, of evolving the larger blocks at timesteps of dt or dt�2 instead of dt�4. As
a first step to quantify the possible benefits, we estimate the reduction in computa-
tional cost in simple cases §2. We then use the same approach to examine meshes
from simulations performed with a tree-based mesh in §3. In our final section we
summarize our results.

2 Simple Mesh Configurations

Here we calculate both the number of evolved blocks in a simple mesh, and a
weighted sum representing the ideal amount of work done by a TR method, using
the work function described in the previous section. We then calculate a work ratio,
R — the amount of work that would be done by the idealized TR divided by that
done with no time refinement. With no time refinement, each block must be stepped
through each sub-timestep, so that the amount of work done is simply the number
of blocks; thus, the work ratio is simply (TR work function)/(number of blocks). For
R� 1, there is no reduction in work; for R� 1, TR reduces the amount of computa-
tional work.

One can interpret the work ratios as performance metrics for the TR, assuming
that – all physics benifits from the time subcycling in proportion to the reduction in
number of blocks evolved each step; the memory overhead from TR is unimportant;
all larger blocks actually can be evolved at timesteps of larger size in proportion
to their physical size; there is no single-processor overhead from TR from memory
copies or flux averaging; there is no parallel overhead from increased complexity in
communications; and there is no parallel from increased load-balancing issues.

2.1 Point refinement

The best case for efficiency gains for spatial refinement is clearly one isolated point
of refinement. For a patched-based mesh, we imagine refinements as shown on the
left of in Figure 2.

We begin with domains of length one in all directions. The completely unrefined
domain is defined to be at level l � 1 of refinement. Consider placing increasingly
fine patches at the corner, until we resolved the finest scale ∆x we wished. If this
requires L�1 more levels of refinement, each decreasing the zone size by an integer
factor N, then we have ∆x� �1�N�L�1. We will assume ∆x� 1�2.

We consider the mesh in terms of the smallest uniform unit — for the oct-tree
mesh, this is a single block, which will be of size nx�ny�nz zones. For the patch-
based mesh, since the patches can be of arbitrary size (and shape), we consider zones
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Fig. 2. Fully refining a zero-thickness point with an idealized patch-based type mesh (far left)
and an oct-tree mesh (left); Fully refining an interface with a patch-based mesh (right) and
oct-tree mesh (far right). For the patch-based mesh, it is assumed that a patch can be placed
anywhere on existing patches, with some fixed integral increase in resolution (shown here is
N � 4, L� 3). For the oct-tree mesh, N is fixed at 2, and shown is L� 5.

individually. (Because we are not modelling guardcell filling, we can safely ignore
the fact that these zones are actually components of patches). Thus, in the results
given below, an oct-tree mesh with (say) 8�8-zone blocks at a maximum refinement
L� 5 has the same resolution as a patch-based mesh with L� 8.

The amount of work required by a non-TR code with only explicit or local
solves will, by assumption, be the same for each block, so that WnoTR � Nblocks. The
amount of work with time refinement, WTR, will be a weighted sum of blocks. For
the pointwise-refined patch mesh, the number of blocks will simply be N blocks � L,
as there is only one block per level. The amount of TR work is

WTR �

L

∑
l�1

1 �

�
1
N

�L�l

�

N
N�1

� (1)

Thus the work ratio will be

R�
WTR

WnoTR
�

WTR

Nblocks
�

N
L�N�1�

� (2)

For ideal spatial AMR, where one can do all the refinement with only one jump,
L � 2, and so the amount of work done by a TR algorithm is bounded from below
at 1�2 of the non-TR work. At the other limit, for a much less aggressive AMR
with N � 2, then the work can be made an arbitrarily small fraction of the non-TR
algorithm, with R� 2�L — but note that this work ratio is achieved only by operating
on L�2 times as many blocks as in the best case for spatial AMR.

The oct-tree meshes refining on a point is shown on the right of Figure 2. In this
case, there are 2d highest refined blocks in the corner, with the rest of the 2 d

�1 sur-
rounding blocks at the next highest refinement, surrounded by the 2 d

�1 surrounding
blocks at the next highest level of refinement, and so on.

Thus the total number of leaf blocks is

Nblocks � �2d��
1

∑
l�L�1

�
2d
�1

�
� 2d�L�1��L�2 (3)

Weighting them by the amount of work,
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WTR � �2d��
1

∑
l�L�1

�
�2d
�1�

2�L�l�

�
� 2�d�1�

�1 (4)

making the work ratio

R �

��
�

3�L 1d
7��3L�2� 2d
15��7L�6� 3d

(5)

As with the patch-based result, this ratio goes to zero for arbitrarily large L. These
results are similar to the N � 2 patch-based result, but TR performs better here, and
the spatial refinement worse — both of these are due to the fact that the oct-tree mesh
generates more intermediate-level blocks.

2.2 Planar Interface Refinement

The refinement of an interface is shown on the right of Figure 2. In the patch-based
case, we continually place a grid of N-by-1 (in 2d) or N 2-by-1 (in 3d) patches along
the interface, until the required resolution is achieved.

In this case, performing the same calculation as in the previous section, one ob-
tains

R� 1�
N�1
Nd
�1

� (6)

Here, there is a fixed lower bound for the amount of work the TR can achieve. In
the spatially-optimal large-N limit, no work is saved at all: R� 1. At the other limit,
for N � 2, in 2d, R� 2�3; in 3d, R� 6�7.

In the oct-tree mesh we begin with one block at the coarsest level. It must be
divided into 4 in this 2D example, or, in general, 2 d . Half of these blocks will be
further refined. This continues until we reach the maximum level of refinement. The
work ratio one finds is

R �

�
7�9 2d

45�49 3d
(7)

In the point-refinement case of the previous subsection, a point of zero volume
needed to be refined; as a result, there were the same number of blocks at each
level, and thus a significant time savings could be obtained by doing less work at the
coarser blocks. However, as we begin to see here, as soon as a non-trivial volume of
the mesh needs to be refined, there is significantly less savings to be had.

2.3 Circular Region Refinement

The loss of efficiency gains when a non-zero fraction of the mesh must be refined
is even clearer when a region, rather than an interface, is fully refined. In Fig. 3 we
see the results of fully refining the interior of a quarter-circle with the center at one
of the corners of the domain. Clearly, the number of finest blocks greatly outnumber
intermediate or large blocks, so one might guess that there is very little efficiency
gain that can be had from reducing work on the larger blocks.



108 L. J. Dursi and M. Zingale

Fig. 3. Fully refining the interior of a circle, shown here with radius of 0�49 of the box size,
with an idealized patch-based type mesh (left) and an oct-tree mesh (right). The patch-based
mesh shown has L� 3 and N � 4. For the oct-tree mesh, N is fixed at 2, and shown is L� 6.

Table 1. Work ratio for a 2d Oct-tree mesh with a circular region of radius r (in units of the
domain) completely refined.

L=2 3 4 5 6 7 8
r = 0.0 0.786 0.625 0.510 0.426 0.363 0.316 0.279
0.1 0.786 0.625 0.510 0.510 0.638 0.765 0.879
0.2 0.786 0.625 0.625 0.714 0.806 0.895 0.940
0.5 0.962 0.843 0.851 0.888 0.931 0.963 0.981
0.9 1. 0.973 0.962 0.962 0.973 0.982 0.989

Because in this case the refinement pattern is complicated enough that the process
must be iterated to check that each zones neighbors are no further than one level
of refinement appart, we do not provide analytic work ratios. Tables 1 and 2 show
the work ratios for an Oct-Tree mesh and an N � 2 patch-based mesh in refining
a circular region of radius r. Again, the r � 0 results reproduce the expected point
refinement, but as soon as a non-zero radius must be refined, the efficiency gains
drop significantly further than in the case of only refining an interface, as more small
blocks are needed to refine a region than the interface. In Table 2 we also show results
for the patch based mesh with N � 4; we see as in previous sections that for the same
resolution, increasing N (which increases the spatial efficiency of AMR) decreases
the possible gains from time subcycling.

Table 2. Work ratio for a 2d patch-based mesh, N � 2 and N � 4, with a circular region of
radius r (in units of the domain) completely refined.

N=2, L= 2 3 4 5 6 7 8 N=4, L=2 3 4
r = 0.0 0.583 0.468 0.387 0.328 0.283 0.249 0.221 0.438 0.332 0.510
0.1 0.583 0.468 0.444 0.552 0.658 0.754 0.802 0.719 0.891 0.510
0.2 0.583 0.548 0.618 0.694 0.768 0.806 0.833 0.812 0.914 0.625
0.5 0.75 0.737 0.763 0.798 0.825 0.840 0.848 0.896 0.938 0.851
0.9 0.847 0.827 0.826 0.833 0.842 0.848 0.852 0.938 0.947 0.962
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3 Meshes from simulations

The calculations of the previous section are for very simple refinement geometries.
In this section, we apply the same work function used in §2 to the output of previous
actual AMR simulations which use oct-tree based meshes for AMR. We continue to
assume the same idealized performance results of the previous section.

We begin with examining results from a standard test problem, a Sedov explosion
[7], as included with the FLASH code and described in [5]. In this simulation, a
high pressure at a point causes a spherical shock wave to expand outwards; this is
analogous to the circular region analysis of the previous section. The adaptive mesh
for different stages of this simulation in 2d are shown in 4.

Fig. 4. The mesh of a Sedov explosion, from the FLASH setup test described in [5], with a
maximum of 8 levels of refinement. Each block shown contains 8�8 zones.

Results from the meshes shown are tabulated in Table 3. The number of blocks
listed in the table is the number of ‘leaf’ blocks – e.g., the blocks that are actually
evolved. Also given in the table is the work ratio (R) and the work ratio of spatial
AMR to a uniform mesh at the highest resolution (RAMR �WnoTR�Wuniform). We
include RAMR to compare the relative importance of performance gains for the spatial
refinement and the time subcycling.
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TR provides a large performance gain initially, when there is only one point
that is refined. However, consistant with previous results, immediately as the point
becomes a region of non-zero measure, idealized performance gains drop to 30%–
10%. Regardless of the refinement, the TR provides a very small performance en-
hancement compared to that of the spatial refinement.

Table 3. Results from simulations of a Sedov explosion. Listed at different evolution times are
the number of leaf blocks in the mesh, the work ratio, and the work ratio for spatial AMR to
uniform grid.

time Nblocks R RAMR
0.00 256 0.426 0.0156
0.01 892 0.805 0.0544
0.02 1552 0.835 0.0947
0.03 2092 0.874 0.127

The reason for the small predicted efficiency gains, consistent with the discussion
of the previous section, is that there quickly become more fine blocks than coarse
blocks in the simulation. By the last frame shown in Figure 4, there are no blocks
being evolved at the the coarsest level of refinement, and indeed 80% of the blocks
are at the highest level of refinement. Thus, even if all other blocks required zero
work to evolve, we could only achieve a 20% speedup.

Next we consider an interface problem – a 2d detonation that will eventually
undergo a cellular instability. These simulations are from results published in [8]. A
mesh is shown in Figure 5. This corresponds almost exactly to the idealized interface
problem of the previous section, but here the domain is very long in one direction,
increasing the number of low-cost coarsest blocks in the domain. This change in dis-
tribution of blocks means that this problem can benefit more from TR. The numerical
results are shown in Table 4.

Fig. 5. Half of the domain for the initial condition of a detonation, where the long domain is
refined nowhere except at a sharp interface. The domain originally consists of a top-level mesh
of 1�20 blocks. This mesh is then refined at an interface. Shown is the meshes 6, zoomed in
near the interface. Not shown are 10 coarsest blocks to the right.

Here we see TR’s efficiency gains actually decrease with increasing resolution,
and also see a familiar pattern of TRs efficiency gains going in the opposite direction
of spatial AMR efficiency gains. Even at the resolution where TRs efficiency gains
are largest, they are much smaller than the improvement from using spatial AMR.
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Table 4. Results from initial conditions for a 2-d detonation problem, as in Figure 5. R is less
than the 7�9 calculated in the previous section, because of the large number of extra coarsest
blocks added to the domain.

Max refinement Nblocks R RAMR
4 62 0.633 0.0484
5 110 0.688 0.0215
6 206 0.727 0.0101
7 398 0.751 0.00486

Fig. 6. Development of Rayleigh-Taylor instability at 3 epochs, from simulations presented in
[4]. These are fairly high-resolution simulations, with a maximum of 8 levels of refinement on
a top-level mesh with 6�1 coarsest blocks.

We next consider the development of the Rayleigh Taylor instability. (Figure 6).
This is an interface problem, but in this set of simulations, the center region of the
box is resolved to ensure resolution of the velocity perturbations in the region near
the interface. Because this region is fully refined, many ‘full cost’ finest blocks are
added. This decreases the scope of improvement from TR, as seen in Table 5.

Table 5. Numerical results from simulations of a Rayleigh-Taylor instability, shown in Fig-
ure 6.

time Nblocks R RAMR
0.0 33150 0.993 0.337
1.8 33150 0.993 0.337
3.6 60816 0.987 0.619

4 Conclusion

We have considered efficiency gains for time subcycling for explict or local physics.
In these cases the work per block is roughly constant. Further, in most cases there
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are many more fine blocks than coarse blocks — this is due to simple geometry,
as a mesh that refines a significant fraction of its domain will be strongly weighted
in favour of small blocks, which must be evolved at a small timestep. Thus, Any
attempt to improve performance by focusing on the relatively few larger blocks can
only reduce a small fraction of the work that needs to be done to evolve the system
one timestep. On the other hand, in studies where only a small number of points in a
large domain must be fully resolved, there may be significant efficiency gains from
TR methods. Some cosmological hydrodynamical simulations [1] are examples of
this situation.

We have not considered here accuracy; taking fewer timesteps may increase ac-
curacy with some solvers, although this isn’t clear for moderately time-accurate al-
gorithms having errors of O�∆t p�, p� 1; further, the coarsely refined regions which
would benefit from the fewer timesteps are presumably coarsely refined because the
overall solution quality is less sensitive to the error in those regions than it is to that
of the highly refined parts of the domain. We also do not consider global or implicit
solves, where the timestepping algorithm in Fig. 1 must be modified. Global or im-
plicit solves will, depending on the methods used, change the amount of work done
per block at different levels of refinement, which can change the results given here
considerably.

We have modelled only computational cost in this work. Most of the other costs,
cf. §2, work to decrease the efficiency gains of TR. One unmodelled effect that could
increase the gains is the reduction of guardcell fills on large blocks. For the oct-tree
mesh, where the number of zones per block is fixed, the reduction in guardcell filling
work is reduced in the same way as the computational work, so that our conclusions
are unchanged. For the patch-based mesh, the effect on the guardcell filling will be
dependant on the shape of the refined region and the algorithm used for merging
patches of the same refinement level, so that it is difficult to say anything in general.

Thus, block-structured TR significantly enhances performance of local or explicit
physics solvers only under fairly narrow circumstances. In circumstances where TR
is unlikely to produce much performance enhancement, the added code complex-
ity, memory overhead, and parallel load-balancing issues may make the costs of the
technique exceed its benefits.
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Support for this work was provided by the Scientific Discovery through Advanced
Computing (SciDAC) program of the DOE, grant number DE-FC02-01ER41176 to
the Supernova Science Center/UCSC. LJD was supported by the Department of En-
ergy Computational Science Graduate Fellowship Program of the Office of Scientific
Computing and Office of Defense Programs in the Department of Energy under con-
tract DE-FG02-97ER25308.
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Much of the previous work in AMR methods has concentrated on solving hyperbolic
equations with explicit timestepping. However, for many problems, either due to
their physical nature (e.g., incompressible flows) or for performance reasons (semi-
implicit and implicit numerical methods), it becomes necessary to solve global equa-
tions.

This paper focuses on the application and performance of well-established pre-
conditioned Krylov-Schwarz solvers in an AMR context, using a Krylov-Schwarz
method to accelerate convergence while exploiting the hierarchical structure of AMR
grids for multi-level preconditioning using the fast adpative composite (FAC) algo-
rithm. We present an implementation that allows us to leverage the powerful supply
of preconditioners and linear solvers from the PETSc library.

We apply this method to solve the three-dimensional Euler equations in the
search for a finite-time singularity.

1 Introduction

The numerical integration of the three-dimensional Euler equations in order to follow
a developing singularity is a highly demanding task which can be achieved only by
employing a combination of sophisticated numerical methods.

In the following we describe three key ingredients which have been developed for
the Magnetic Reconnection Code (MRC), which, while being designed with plasma
flows in mind, is applicable to fluid problems as well:

� The integration scheme is a semi-implicit second-order in time and space com-
bined Godunov/projection method.

� Adaptive mesh refinement is used to follow small-scale structures with appropri-
ate high resolution while smooth parts of the domain are treated at lower resolu-
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tions. At the same time, parallelization of the algorithms to work in a massively
parallel environment is handled at this level.

� Solving the elliptic equations needed to calculate the pressure and maintain a
divergence free velocity field is achieved though embracing and extending the
PETSc library’s Krylov-Schwarz solvers to a multi–level domain through Mc-
Cormick’s fast adaptive composite (FAC) algorithm. It should be noted that
solving elliptic problems is also a prerequisite for many applications in plasma
physics (divergence cleaning of the magnetic field and implicit treatment of the
electron inertia in Hall-MHD).

2 Numerical procedure

2.1 Integration scheme

Looking at the incompressible Euler equations as the limiting case of compressible
gas dynamics with compressibility κ going to zero reveals some insight into the
challenges of numerical treatment.

Most notably, the pressure is an independent variable (related through an equa-
tion of state to the internal energy) in compressible gas dynamics, whereas it is just
a function of the velocity field in the incompressible Euler equations.

This can easily be seen by taking the curl of the incompressible Euler equations,
which makes the pressure term drop out completely:

∇� �∂tu�u �∇u�∇p� 0� � ∇ �u � 0

�� ∂tω�u �∇ω�ω �∇u� 0 (1)

with the vorticity ω� ∇�u.
On the other hand, taking the divergence of this equation, we find how to compute

the pressure from the velocity field u:

∇ � �∂tu�u �∇u�∇p� 0� � ∇ �u � 0

�� ∇ � �u �∇u� ��∇2 p (2)

The speed of sound in a compressible gas is easily determined by considering
adiabatic compression and expansion and found to be c s � 1�

�ρκ, with density ρ
and adiabatic compressibility κ.

Explicit numerical integration of the compressible gas equations needs to resolve
sound waves and is thus constrained by a CFL time-step limitation, given by (possi-
bly modified by a constant factor)

cs∆t�∆x� 1 (3)

Obviously, it is not possible to simply transfer these explicit methods to the in-
compressible case, as the sound speed tends to infinity and thus requires the time-step
∆t going to zero. In fact, in the incompressible case, a perturbation at one end of the
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domain will instantaneously affect the field at the other end, whereas in an explicit
scheme, the propagation speed is fundamentally limited to the stencil width (possibly
multiplied by a small factor) per time-step.

This is the reason why for the incompressible equations (and equally as well
for the compressible equations as long as one is interested in phenomena on time
scales much slower than the speed of sound) an implicit or semi-implicit numerical
treatment is needed.

In this work, we adopt a scheme based on work by Bell, Collela and Glaz[4],
which is a projection method combined with a second-order accurate Godunov
method. The scheme has already been successfully applied in an AMR context, e.g.
in [7].

Integration is performed in the primitive variables. However, to integrate this
scheme with adaptive mesh refinement (AMR), the fields which are communicated
between different levels of resolution are the vorticity fields, allowing us to use only
first-order interpolation as those represent the highest order derivatives occurring in
the time-stepping calculations. Velocities are then calculated as the curl of a flow
potential, obviously ensuring the divergence-free condition, where the flow potential
is obtained from the vorticity by solving three elliptic equations. At the same time,
a fourth Poisson equation is solved to evaluate the pressure using the relation (2)
above.

This scheme, requiring the solution of four Poisson equations per time-step is
computationally demanding, but at the same time it ensures that no numerical arti-
facts (like violation of the divergence-free condition) are introduced. Also, the time-
step is limited only by the speed of the flow and is thus fairly large. The associated
time scale needs to be resolved for accuracy reasons in any case.

The unsplit second-order Godunov scheme is described in detail in reference [4].
It uses a limiting slopes method in calculating approximations to spatial derivatives to
prevent introducing new maxima or minima into the velocity field. In the actual time-
stepping procedure, it exploits knowledge from treating the 1D Burgers equation,
using an upwind scheme for actively transported quantities (using the solution for
the Riemann problem):

∂t u�u∂xu � 0

�� ui�1�2� j �

��
�

uL if uL � 0� uL�uR � 0
0 otherwise
uR if uR � 0� uL�uR � 0

For the passively transported quantities, the upwind scheme is

∂t v�u∂xv � 0

�� vi�1�2� j �

��
�

vL if ui�1�2� j � 0
1�2�vL� vR� otherwise
vR if ui�1�2� j � 0
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Table 1. Comparison of grid points needed with AMR to an equivalent uniform mesh simula-
tion.

Level # grids # grid points
0 1 70225
1 83 146080
2 103 268666
3 153 545316
4 197 1042132
5 404 1926465
6 600 1967234

Grid points in adaptive simulation: 6976118
Grid points in non-adaptive simulation: 268730449
Ratio: 0.02

2.2 Adaptive mesh refinement

Looking for singularities, the method of adaptive mesh refinement is an ideal tool.
Starting out from a uniform grid, the local truncations errors are monitored and new,
refined grids are introduced to cover those regions where the error exceeds a cer-
tain threshold. In addition, buffer cells are included in the direction of anticipated
movement of the small-scale structures to ensure sufficient resolution until the next
refinement procedure. While not being generally useful for, e.g., turbulence studies,
where small-scale structures form all over, adaptive mesh refinement proves very
efficient for problems where only localized small scales occur, such as in the devel-
opment of a singularity. It enables us to follow the evolving singular structures with
a much higher precision than what a legacy uniform grid code could achieve.

To exemplify the efficency gain obtainable by using AMR, we show an analysis
from previous work (current sheets developing in 2D MHD) in Table 1 [6]. Taking
into account all the ghost cells needed for the adaptive treatment, the adaptive sim-
ulation still uses only 2 percent of the resources needed to solve the problem to the
same precision on a uniform grid.

Within our integration with the PETSc [1, 2, 3] library, most of the operations
applied during the numerical integration can be written in terms of a sparse ma-
trix multiplication. An advantage here is that we can exploit PETSc’s optimized
linear algebra operations, which overlap communication costs for passing of non-
local boundary data with computation of the processor-local data. It is of course still
desirable to keep as much of the work local as possible, which is achieved by us-
ing a Hilbert-Peano curve for load-balancing. Our AMR technology uses a so-called
oct-tree approach, i.e., we do not support patches of arbitrary extensions, but instead
always break up one box which needs refinement into eight (four in 2D) new boxes of
the same shape, which provides a slightly less effective covering but has advantages
when it comes to parallelizing and load-balancing.

For visualization purposes, we show the adaptive covering with different levels
of resolution for a 2D example, current sheets developing in Hall-MHD simulated
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within our framework, in Figure 2b. The basic procedure of subdividing grids can
clearly be seen there.

The basics of the load-balancing algorithm are visualized in Figure 2a. It shows a
sample adaptive domain coverage with adaptive grids at different levels of resolution,
as well as the Hilbert-Peano curve mapping those grids and the resulting distribution
onto processors.

The Hilbert-Peano curve has the mathematical property that grids that are close
in two or three dimensions, respectively, are on average also close on the one-
dimensional curve. The one-dimensional curve is divided into equal intervals, the
grids on each interval are assigned to a particular processor. In the figure, the col-
ors denote different processors, and it can easily be seen that grids which are kept
on a particular processor are generally clustered together, which means the local
set of grids typically has a lot of common boundaries not requiring expensive inter-
processor communication, but only few boundaries to grids on other processors.

2.3 Multi–level elliptic solvers

A major challenge for the numerical integration of the incompressible Euler equa-
tions is the need to solve elliptic equations on the grid hierarchy generated by the
AMR framework. The underlying strategy employed here is a variant of the fast
adaptive composite algorithm (FAC) developed by McCormick [9].

The derivation of FAC algorithm starts with the regular multi–grid algorithm and
is best understood considering just two levels, coarse and fine.

Iterative methods, in the simplest case e.g. Gauss-Jacobi or Gauss-Seidel, are
called smoothers in the multi–level context, since they tend to smooth out the
residual – the difference between current approximation and desired right-hand
side. Error components with small scales/high frequency are eliminated quickly
by these methods, whereas large scales/low frequency modes converge slowly.
Smoothers quickly achieve an intermediate approximation which, after removal of
high-frequency modes, has only lower frequencies left – it looks smooth. The trou-
ble is that from that point on convergence is slow, and one way out of this difficulty
are multi-grid methods: the smooth error is restricted onto a coarser domain, where
it appears as having higher frequency components, which are quickly removed us-
ing the same iterative schemes as on the coarser level. This trick can be applied
recursively and will approach O�N logN�, or in the case of full multigrid even O�N�
scaling.

The idea behind FAC is that the quality of the solution obtained from the coarse
grid will actually be sufficient on the part of the domain where the field is smooth,
whereas on the other part of the domain we have smaller scales that need to be fully
resolved on the fine level. We can meet this goal by only executing the fine level
iteration on a local subset of the domain. While this scheme gives a solution to the
desired accuracy, it is not practical, since it requires us to store the fine level data on
the entire domain, even in the areas where that resolution is not required.

However, it can easily be shown that the fine grid relaxation will only change the
residual transferred to the coarse grid on the iterated domain plus the interface, so it
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is not necessary to store the fine data everywhere but only on the refined region plus
a certain border. This leads to the bordered multi–level scheme which is certainly
practical, in particular in an AMR context where we need to take provisions to store
boundary data for the time evolution in any case [9]:

Residuals are computed on the local fine grid including its boundary and
first border; these residuals are then transferred to the coarse grid points
lying ander the fine grid and at the interface; the correction is the computed
and interpolated to the local fine grid including its boundary and both bor-
ders; relaxation is then performed at fine grid interior points.

However, instead of using just a simple relaxation scheme like Gauss-Jacobi, we
integrate this algorithm within the PETSc toolkit, giving us access to a large variety
of preconditioners and Krylov-accelerators. At the same time, we can also exploit
PETSc’s optimized computational kernels and integrated parallelization support.

Effectively, the elliptic problem distributed over the grid hierarchy is mapped to
a standard linear solve where the sparse matrix is determined by the stencil of the
Poisson operator and the mapping of a three-dimensional AMR domain covering to
a simple one-dimensional vector.

A main objective of the PETSc library is to efficiently solve this kind of dis-
tributed sparse matrix linear problem, using optimal Krylov-Schwarz solvers with
multi–level preconditioning which approach O�N� efficiency. The run-time behavior
of those solvers is basically determined by recurring matrix-vector-products. The im-
plementation of this important operation overcomes communication bottlenecks by
overlapping the communication time needed to obtain non-local data with processor-
local computation work, followed by completion of the job through computation in-
volving the by then-arrived non-local data.

A demonstration of the adaptive elliptic solver can be seen in Figures 5 and
6, where the method described is used to solve a standard two-dimensional test
problem. The problem at hand is an L-shaped domain, solving Laplace’s equation
∇2u � 0 with boundary conditions so chosen that the solution is u � r 2�3 sin�2φ�3�.
This solution has a singular derivative at the origin, making it a good problem to
test a multi–level AMR domain covering, with grids of finer resolution added as one
approaches the singularity at the origin.

Figure 1 shows the convergence of the solver, in spite of the asymmetry/singular
behavior in the problem, we obtain a reasonably fast convergence rate.

3 Tests

To validate the new code, preliminary test runs have been performed on NERSC’s
seaborg IBM SP machine, using up to 1024 processors.

We use Kida’s [8] initial condition for a high-symmetry periodic flow, originally
designed to facilitate turbulence studies in Navier-Stokes.
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Fig. 1. Convergence of the multi-level elliptic solver for the 2-D test problem.

ux�x�y�z� � sinx�cos3ycosz� cosycos3z� (4)

uy�x�y�z� � siny�cos3zcosx� coszcos3x� (5)

uz�x�y�z� � sinz�cos3xcosy� cosxcos3y� (6)

This initial condition is known to form six vortex dipoles at the origin, which
may evolve into a finite-time singularity [5, 10].

Figure 3 shows isosurfaces of the absolute value of the vorticity at times and
magnitudes comparable to those given in [5] in one octant of the domain.

Figure 4 shows the y-component of the vorticity at the y � 0 plane evolving in
time. The formation and beginning collapse of two vortex dipoles near the origin
is clearly observed (the remaining 4 dipoles form in the x and z-component of the
vorticity, not shown here).

For validation purposes, we compared numerical data from the pseudo-spectral
code described in [5] and from the code described in [7], run with Kida’s initial
condition, to preliminary runs of the MRC code described in this paper and find good
agreement in the vorticity isosurfaces as well as in the time evolution of maximum
vorticity.

4 Conclusion

In this paper, we introduced the numerical methods used in the application of the
Magnetic Reconnection Code (MRC) to solve the three-dimensional Euler equations.

We focused on presenting how the integration of Krylov-Schwarz methods with
a hierarchical set of grids, obtained using block-structured adaptive mesh refinement,
can provide a performant method to solve elliptic problems, as they occur in many
problems in computational fluid dynamics / plasma flows.
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Fig. 2. a) sample adaptive domain coverage and Hilbert-Peano curve, b) Adaptive refinement
of current sheets in 2D Hall-MHD.

Fig. 3. Isosurfaces of the absolute vorticity value, at times 0, 0�525, 0�735, shown is one octant
of the domain

Fig. 4. y-component of the vorticity, cut through y� 0, at times 0, 0�5, 1�1
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Fig. 5. 2D test problem solution for adaptive elliptic solver.

Fig. 6. Zoom into central region of Fig. 5.
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Exploiting and extending existing technology, the PETSc library, enabled us to
use a wide variety of well established sophisticated solver technologies and kept the
implementation effort manageable.

At this point of writing, we have been able to perform only preliminary test runs
of our new code. The results show promise for following an evolving singularity
farther in time than has been possible previously with fixed uniform resolution.
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Summary. A simple novel approach to preserve the divergence-free condition with adaptive
mesh refinement is presented. The new approach uses only reconstructions on the coarse faces
and the divergence-free condition to reconstruct the field values on the internal fine faces, and
does not construct a global interpolation polynomial over a whole coarse cell. Therefore it can
be easily applied to any refinement ratio. It is implemented via a directionally split approach
in a directional splitting manner so that it can be applied to any kind of grids in any dimen-
sions. Implementation is presented in the Cartesian, cylindrical and spherical geometries. It
is shown by several 2D magneto-hydrodynamic simulations that such a method can keep the
divergence-free error of magnetic fields at the round-off level.

1 Introduction

Adaptive and hierarchical grids provide some of the most efficient spatial discretiza-
tion for multi-scale computational problems. It is of great interest to extend nu-
merical schemes designed for a simple structured mesh to adaptive and hierarchi-
cal grids. It is critical to conserve the properties of the solutions when the mesh
resolution changes. Berger and Colella [1] proposed an adaptive mesh refinement
(AMR) scheme for hydrodynamics to conserve scalar quantities (e.g., mass, energy)
and numerical fluxes. Additional challenges, however, are presented in physical sys-
tems satisfying the Stokes’s law type of equation with the divergence-free evolution
of vector fields. For example, it is important that the divergence-free condition is
satisfied throughout the simulation for the velocity field in incompressible hydrody-
namics and the magnetic field in magnetohydrodynamics (MHD).

The divergence-free evolution of the magnetic field is an important issue in de-
veloping a new MHD code even for a single non-adaptive grid. Brackbill and Barnes
[3] have shown that the discretization error with respect to the divergence of the
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magnetic field (∇ � B) usually grows exponentially during the computations, caus-
ing an artificial force parallel to the magnetic field and destroying the correctness
of the solutions. Many approaches (see Toth [11] and its references) have been pro-
posed to handle this problem. In this paper, we consider the constrained transport
(CT) method by Evans and Hawley [7]. CT method can keep ∇ � B to the accuracy
of machine round-off error. This approach has been combined with various shock-
capturing schemes by many authors [6, 10, 2, 8]. The original CT method used a
staggered grid which places the magnetic field variables in the face center and the
rest in the cell-center. The divergence-free finite-difference scheme can be easily con-
structed for the staggered grid (see Yee [13]). Toth [11] introduced a finite-volume
interpretation of the CT schemes that place all of the variables at the cell center. How-
ever, this idea is difficult to generalize to an AMR grid. In this paper, we adopted a
CT approach, which is similar to the one of [2], implemented on the staggered grid.

How to preserve the divergence-free condition when the mesh is adapted remains
a challenge. Balsara [4] and Toth and Roe [12] proposed a scheme to preserve this
constraint exactly during the grid adaptation and time evolution. The basic idea is to
construct a divergence free prolongation and restriction interpolation formula in the
coarse cell being refined. This approach worked well for AMR with refinement ratio
of two. However the interpolation polynomial can become quite complicated with the
increase of the refinement ratio. Therefore, as suggested in [4], the procedure should
be applied recursively for refinement ratio of 4 or 8. For other refinement ratios, new
formulas have to be derived to account for the additional degrees of freedom needed
to match the increased number of existing fine-grid faces.

In this paper, we propose a new approach, which can be implemented efficiently
and uniformly for arbitrary refinement ratios and can be easily generalized to other
types of orthogonal and curvilinear grid.

2 Algorithm

Before describing our algorithm, we first review briefly the algorithm of Balsara [4].
For the sake of simplicity, a 2D Cartesian grid is used to illustrate the algorithm. The
generalization to 3D is straightforward. We then extend it to other types of orthogonal
grids, e.g., the cylindrical and spherical coordinates. To simplify our description, we
assume that each edge is split into equal-distance pieces according to the refinement
ratio.

2.1 Fully divergence-free interpolation for AMR

Balsara’s divergence-free prolongation can be viewed as a three-step procedure.
First, the fine face components are obtained by the linear interpolation on zone faces.
The component values on each face are determined by two parameters in 2D: an old
coarse value and a limited slope, and three parameters in 3D: an old coarse value,
and two limited slopes.
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Since all the fine values on the coarse faces satisfy the divergence-free condition
of the coarse cell, there are totally 4� 2-1=7 independent parameters in 2D (or 6�
3-1=17 independent parameters in 3D), which corresponds to seven (or 17 in 3D)
independent constraints for interpolation.

Next the interpolation polynomials for Bx and By are constructed as

Bx�x�y� � a0�axx�ayy�axxx
2 �axyxy�ayyy

2
� (1)

By�x�y� � b0�bxx�byy�bxxx
2 �bxyxy�byyy

2
� (2)

To match the interpolation polynomials to the linear profiles at the coarse faces, we

obtain ayy � bxx � 0. The divergence-free condition ∂Bx
∂x �

∂By
∂y � 0 leads to

ax�by � 0; 2axx�bxy � 0; axy�2byy � 0�

Therefore, there are only seven independent coefficients left in Eqs. (1) and (2). Eval-
uating the polynomials against the seven constraints yields seven independent linear
equations. Inverting these linear equations yields the seven independent coefficients.

Finally the fine face values inside the coarse cell are obtained by evaluating the
polynomials at specific locations.

As pointed out in [4], the linear profile on zone face may not be sufficient in
many cases. When the mesh is readapted, the newly-created fine mesh can overlap
the old fine and coarse meshes. The fine-coarse interface may not be represented by a
linear profile. For the refinement ratio of 2, the linear profile is enough for 2D but not
for 3D. Balsara [4] introduced a mixed derivative to resolve an extra freedom on the
zone face profile in the 3D reconstruction, which results in a much more complicated
interpolation polynomial. We expect that for a refinement ratio of r, we have 4r�1
independent coefficients in the interpolation polynomials in 2D (or 6r� 1 in 3D).
Furthermore, different refinement ratios correspond to different sets of equations,
which leads to much more complexity in code development. Therefore, as pointed
out in [4], Balsara’s approach is intended for refinement ratio of 2. For refinement
ratio of 2n, it is used recursively.

2.2 Dimensional split reconstruction for Cartesian Grid

For the Cartesian grid, the face area is proportional to the local grid spacing in each
direction. This is an important feature that can greatly simplify our algorithm. Later
we will see that other types of orthogonal grids do not have this feature. For the ease
of description, we will use a 2D example. Similar procedure in 3D can be deduced
relatively easily.

Our approach is illustrated in sequence by plots (a), (b), (c), (d), and (e) in Fig. 1
with the following steps:

(1) We use a directional splitting approach to handle multi-dimensional problem
and arbitrary refinement ratio in each dimension. In the first step, We assume the re-
finement happens only in x-direction. Similar to Balsara’s method, we first determine
the new quantities along the edges of the coarse cell according to the refinement ra-
tio. As shown in (b), only v1�v2�v3�v4�v5, and v6 are to be determined. We do this
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by either directly copying from the fine grids that shares the edges with the current
coarse cell, or by interpolation using the coarse quantities along the edges. To achieve
the second order accuracy, we use a piecewise linear profile on each face. This can
be easily constructed for each coarse face if we know the slope in each direction.
To preserve the monotonicity of the coarse face values, we also use a slope with an
appropriate limiter as shown by Balsara [4].

(d) (e)
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Fig. 1. Directional splitting approach for reconstruction of the divergence-free field on a fine
grid. Balsara’s approach is from (a) to (d’) by linear interpolation or copying from the old
fine grid, and then the divergence-free interpolation polynomials that match the boundary
values are constructed over the whole coarse cell, and finally (e) is obtained directly from the
evaluating of the polynomial at different positions.

(2) Given the quantities on the edges in (b), we can now partially construct the
internal fine face values based on the divergence-free condition. For example, in (c)
of Fig. 1, uc2 is uniquely defined by uc0, v1, v2 as

uc2 � uc0��v2� v1�
δx
∆y

�

where δx and ∆y are the spacings for the fine and coarse cells respectively. In the
same manner, uc3 is calculated by uc3 � uc2��v4�v3�

δx
∆y . Then it is straight forward

to show that the divergence-free condition is also preserved in the last cell by noting
that

uc1�uc3

δx
�

v6� v5

∆y
� 0 �

if
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uc1�uc0

∆x
�

1
3 �v2 � v4� v6��

1
3 �v1 � v3� v5�

∆y
� 0 �

(3) We now consider the refinement along the y-direction, which is taken as two
in this example. As shown in (d), quantities u1�u2�u7 and u8 can be obtained similar
to Step (1). In order to obtain quantities u3 and u4, we first obtain the slope along
the y�direction at uc2. This limited slope can be obtained by interpolation from the
known values at the left and right faces of the coarse cell u c0 and uc1, which yields,

duc2

dy
�

1
3

duc1

dy
�

2
3

duc0

dy
� (3)

The quantities u3 and u4 can then be calculated from uc2 and duc2�dy. This step can
be repeated to obtain u5 and u7.

(4) From the divergence-free condition, quantities v 7�v8 and v9 can be calculated.
We remark that the face values calculated in this way may not satisfy a uniform

interpolation polynomial in a coarse cell. However, the reconstruction is of second
order and the divergence-free condition is preserved at the center of each fine cell.
Although the whole algorithm is illustrated with a 2D example, the extension to 3D
is straightforward.

This approach can be easily generalized for higher than second order reconstruc-
tion. As we can see from step 1 to 4, the interpolation occurs only in the coarse faces
(or intermediate coarse faces), where high order interpolation can be used without
any problem. The only issue with the high order interpolation is that it should be
conservative in a finite-volume sense, which involves more computations than the
standard high order interpolations.

We have compared our approach with the reconstruction method of Balsara [4]
for a refinement of two in each direction. If the fine face values on the coarse faces
are constructed in the same way and the limited slope for the intermediate coarse
face is the arithmetic averaging of the slopes on the coarse faces [as described by Eq.
3], we obtained exactly the same values for the internal fine faces for both 2D and 3D
cases, which implies that our reconstruction method has the same TVD preserving
property as Balsara’s approach, which was claimed in [5].

The divergence-free prolongation for 3D is different from the reconstruction in
Balsara [4]. The reason is that the face values of the new fine grid may come from the
old fine grid, and a linear profile is not enough. Balsara [4] introduced complicated
interpolation polynomials to match the known fine face values. Our results are differ-
ent from Balsara’s approach [4]. We may not have a closed-form expressions for the
prolongation operation on a whole coarse cell. However, whenever the interpolation
is needed, monotonicity-preserving linear or high-order interpolation in 1-D is used.
It is efficient and TVD-preserving. We acknowledge that our approach may not be as
smooth as Balsara’s approach within a coarse cell.

For finite-difference and finite-volume method on an AMR grid, a number of
ghost cells are usually required. When the number of ghost cells is not divisible by
the refinement ratio, special treatment should be applied to maintain that the recon-
struction on the coarse face matching the up-to-date values of the old fine grid, since
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the fine cell faces share only a part of the coarse cell face. Otherwise, the ghost cell
values may not preserve the divergence-free condition. We propose to use a virtual
extended grid, where several additional zones are added. For the virtual fine grid,
the number of ghost cells is divisible by the refinement ratio so that if a coarse face
shares with a fine grid, it is covered wholly by the fine faces. This virtual fine grid is
used only to obtain the values of fine grid whenever the grid is re-adapted. It is not
used in integration.

2.3 Cylindrical and Spherical Grids

We now discuss how to implement our method in other orthogonal grids such as
cylindrical and spherical coordinates with AMR. Balsara [5] extended his divergence-
free reconstruction of [4] to the cylindrical and spherical structure meshes. In [5], a
variable substitution and coordinate transformation approach is used to transform the
divergence formula of the cylindrical and spherical geometry to the standard diver-
gence formula of the Cartesian grid. Then the reconstruction for the Cartesian grid
is applied to the new variables on the new coordinates.

In our implementation, we assume the edges of grid in any direction are split into
equal-distance pieces according to the refinement ratio. This may not mean bisection
of the cell (for refinement ratio of 2) in volume sense in each direction. We use
�r�z�φ� to represent three directions for cylindrical coordinates, and use �r�θ�φ� for
spherical coordinates. Then the divergence for a vector field v becomes

∇ � v �
1
r

�
∂�rvr�

∂r
�

r∂vz

∂z
�
∂vφ
∂φ

�
� (4)

for cylindrical grid, and

∇ � v �
∂�r2vr�

r2∂r
�
∂�sinθvθ�

r∂θ
�

∂vφ
r sinθ∂φ

� (5)

for spherical grid.
The main complication in implementing AMR in these geometries is to deter-

mine where the cell centers and face centers are, because they are all weighted by
the additional factors such as 1�r and sinθ. To be concise, we study only the spherical
grid. The cylindrical grid can be deduced similarly.

Take a reduced 2-D problem �r�θ� as an example. (The full 3-D case can be
derived similarly.) The divergence condition becomes

∇ � v �
1
r2

∂�r2vr�

∂r
�

1
r sinθ

∂�sinθvθ�
∂θ

� (6)

Integrating (6) on cell �ri�1�ri�� �θ j�1�θ j�, we obtain

∇ �v �
1
∆V

� �vri r
2
i � vri�1r2

i�1��cosθ j�1� cosθ j��

vθ j ri� 1
2

sinθ jdr� vθ j�1ri� 1
2

sinθ j�1dr� (7)
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where ∆V � � 1
3 r3

i �
1
3 r3

i�1��cosθ j�1�cosθ j� (where we drop dφ in our expressions)
is the cell volume. Note that r2

i �cosθ j�1�cosθ j� is the area of the face at r � ri, and
ri� 1

2
sinθ jdr is the area of the face at θ� θ j, the discretization is in good agreement

with the physical definition of the divergence. At the origin r � 0, we have only three
faces, and hence we do not need to worry about the value of v r at the origin. At θ� 0
or θ � π, we also have only three faces, and the reconstruction of v θ there needs
special treatment.

We start from the reconstruction on each coarse face. Let v r denotes the vector
field component at the cell’s (θ�φ� face, vθ denotes the vector field at the cell’s �r�φ�
face. A piecewise linear profile via a slope limiter for vr and vθ can be constructed in
the same way as for Cartesian grid. Assume the limited slope for vr in θ direction is
vr�θ, and the linear profile is

vr � vrc � vr�θ�θ�θ0�� (8)

where θ0 is the face center for the coarse face. Unlike in Cartesian

θ0 ��
1
2
�θ j �θ j�1�

in spherical coordinates. If we let vrc denote the value of vr on the coarse face, then
the following condition should be satisfied

1
r�cosθ j�1 � cosθ j�

� θ j

θ j�1

vr � r sinθdθ� vrc �

which yields

θ0 �
θ j�1 cosθ j�1 �θ j cosθ j � sinθ j � sinθ j�1

cosθ j�1 � cosθ j
�

Similarly, for vθ�r and linear profile

vθ � vθc � vθ�r�r� r0�� (9)

where r0 is the center of the cell face, we have
� ri

ri�1

�r� r0�r sinθdr � 0�

which yields

r0 �
2�r3

i � r3
i�1�

3�r2
i � r2

i�1�
�

We should mention that the formula for θ0 and r0 are also valid for the face on a fine
grid. Therefore, when the mesh is refined with ratio m, face centers for the fine mesh
can be calculated in the same fashion. Let δr � �ri�ri�1��m and r � ri, then the face
centers for the fine grid will be
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r0l �
2��r� lδr�3

� �r� �l�1�δr�3�

3��r� lδr�2
� �r� �l�1�δr�2�

� l � 0�1� ����m�1�

After all the face centers are calculated, the vector field components can be calculated
by the linear profile (8) and (9). It is easy to verify that the total flux on each coarse
face is conserved after interpolation.

In case of dAr � 0 (e.g., θ � 0 or θ � π), we let dAr � ∆r, which is reduced to
the reconstruction on a uniform 1-D grid. If the new fine grid shares face with the
old fine grid, we do not need to construct the linear profile for the coarse face, and
only copy the values of the old fine grid to the new grid.

For cylindrical grid, the corresponding face centers are

z0 � z j� 1
2
�

1
2
�z j � z j�1� (10)

φ0 � φk� 1
2
�

1
2
�φk �φk�1� (11)

r0 �
2�r3

i � r3
i�1�

3�r2
i � r2

i�1�
� (12)

After the face reconstruction is finished, the algorithm described in section 2.2
can be used to reconstruct the internal faces step by step.

3 Numerical Experiment

We have implemented our algorithm in our MHD AMR solver [9] to preserve the
divergence free condition of the magnetic field. We also implemented Balsara’s elec-
trical force correction method [4] to ensure that the restriction from the fine grid to
the coarse grid preserves the divergence free condition of the magnetic field. Here
we define the magnetic components on the face center while all the other fluid quan-
tities are still defined at cell centers. A second order Roe’s Riemann solver is used to
advance the conservative variables.

3.1 Rotor Problem

The first example is taken from [2]. There is a dense rotating disk of fluid with density
10, angular velocity 20, and radius 0.1. The ambient fluid is at rest with density 1.
The initial magnetic field is uniform with Bx � 5�

�
4π and By � 0.

We first solved this example in a Cartesian grid with domain �0�1�� �0�1�, base
grid 100�100 and three-level refinement with ratios of 3 and 2. The results are shown
in Fig.2. The divergence-free condition is preserved very well.

We also solved this example as a a reduced 2-D problem in �r�φ� with a disk
domain �0�0�6�� �0�2π�, where x is along φ� 0 direction. Converting B x and By into
cylindrical coordinates, we have
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Br � Bx cosφ� (13)

Bφ � �Bx sinφ�

is not divergence-free in our finite-volume discretization. Therefore, we adopted an
approximate initialization for Br, which is

Br � Bx
sinφ j�1� sinφ j

dφ
�

This problem has two challenges for preserving the divergence-free condition on
an AMR grid. The first is the singular point at the origin. For the B r component,
although it is not used in our finite-volume discretization for calculating ∇ �B (it is
canceled due to the zero area at r � 0), it is needed in calculating the cell-centered
values of Br, which is then used in the Riemann solver. To calculate the dBr

dt at the ori-
gin, we use extrapolation based on the cell-centered values of dBr

dt at (φ� 1
2 dr) (which

is calculated by our Riemann solver) and the values at r1 � dr.
For obtaining the Bφ component at r � 0, the Riemann solver produces different

electric-field values for different φ at the origin. To maintain the divergence-free
condition, only one electric-field value at the origin should be used to advance the
Bφ for all of the φs. We set the electric-field at the origin to be the average over the
whole circle.

The next challenge is the periodic boundary condition in φ. Every patch that
shares an edge with φ� 0 or φ� 2π can become potentially an electric-field correc-
tion partner for a coarse patch on the other end. It is important to make sure that the
correction does only once for each cell, and the B φ and the electric-field components
have the same values (up to the round-off error) at φ� 0 and φ� 2π.

We used the same three-level refinement with ratio 3 and 2 as in Cartesian grid.
The base grid is 60�120. As suggested in [2], we output the solution at the final time
t � 0�295. Fig. 2 shows the results.

3.2 Magnetized Jet Problem

The next example is introduced by [10]. This is a simulation of a light cylindri-
cal MHD jet with a top-hat velocity profile. We tested this problem with computa-
tion domain [0,1]�[0,2] in the cylindrical geometry with (r�z) coordinates. The base
grid is 200�200. The jet has a radius 0.125, which is about 25 base grid cells. The
ambient medium has sound speed of 1, and poloidal magnetic field (B φ � Br � 0,
Bz � 0�1). The jet has Mach number of 20, gas density contrast ρ jet�ρambient � 0�1.
The jet carries a helical magnetic field with Br � 0�Bφ � 2Bambient�r�r jet�, and
Bz � Bambient.

The same numbers of refinement levels and ratios as the previous example are
used. We ran our test until t � 0�1. Fig. 3.3-a shows the density contour plot with the
refinement. Fig. 3.3-b shows the results of ∇ �B.



134 Shengtai Li and Hui Li

Fig. 2. The results for rotor problem at t � 0�295. The refinement ratios are 3 and 2 respec-
tively. 30 contour lines between 0.532 and 10.83 are used.

3.3 Spherical Bubble Problem

The last example is a spherical hot light bubble resided in an equilibrium gas.
The bubble will rise up due to the pressure imbalanced at the interface. The de-

Fig. 3.3-a. The “zoomed” version of refine-
ment and density contour plot for the jet
problem on cylindrical �r�z� plane.

Fig. 3.3-b. The ∇ � B for Fig. 3.3-a.
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tail of the problem set up is described in [9]. The computational domain in (r�θ)
is [0.2,3.8]��0�π�3�. The initial gas subject to the external gravity is in equilib-
rium state with density and pressure ρ � p � exp��r�. The spherical bubble lo-
cated at center (1.1,0) with radius 0.5. The density inside the bubble is defined as
ρ � 0�1exp��r�. We had solved the problem with no magnetic field and observed
the Rayleigh-Taylor instability at the contact interface. The MHD test is done with a
uniform magnetic field in z � r cosθ direction with a potential F ��bz. The constant
b controls the magnitude the magnetic field, which is defined by

B ��∇F � �bcosθ��bsinθ��

We tested the bubble problem with b � 0�4. The Rayleigh-Taylor instability at the
contact interface is suppressed by the strong magnetic field.

We used a base grid of 360�120 and refinement ratio of 3. The density contour
plots with refinements are shown in Fig. 3.4-a. The divergence of the magnetic field
at different times is shown in Fig. 3.4-b.

Fig. 3.4-a. The density contour plot with
refinement for bubble problem with strong
magnetic field b� 0�4. Ratio is 3.

Fig. 3.4-b. The ∇ � B at different times.
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Summary. Starting in the early nineties, wavelet and wavelet-like techniques have been suc-
cessfully used to design adaptive schemes for the numerical solution of certain types of PDE.
In this paper we review two representative examples of the development of such techniques
for Hyperbolic Conservation Laws.

1 Introduction

Solutions to systems of Hyperbolic Conservation Laws (HCL henceforth) tend to be
highly nonuniform in their spatial behavior. Large regions of smooth, slowly varying
behavior are separated by highly localized transition regions of non-smooth behav-
ior. In the context of HCLs, singularities and sharp transition regions model such
important physical phenomena as the formation and evolution of shock waves.

There is a general agreement that shock related phenomena need an adequate
numerical treatment that usually involves a considerable increase in computational
resources. Fine grids are necessary in order to resolve adequately regions of strong
variation, but global uniformity in the computational meshes necessarily implies that
the solution is over-resolved in smoothness regions, usually the largest part of the
computational domain.

The need to solve realistic problems has motivated the development of adaptive
techniques, for which the computational effort concentrates near regions where sin-
gularities or sharp transitions occur.

Classical Adaptive Mesh Refinement (AMR) techniques [BO84, BC89] rely on a
sequence of nested grids of increasing resolution and on certain error estimators that
seek to determine locally whether the current resolution of the numerical solution
is sufficient or a finer grid is necessary. These techniques involve a considerable
effort in programming and data management but are now routinely used in realistic
simulations.
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In recent years, the development of the theory of wavelets has provided an ad-
ditional tool to design numerical schemes that seek to adapt the computational re-
sources to the local structure of the solution to be computed.

Working within a Galerkin framework, Liandrat and Tchamitchian [LT] devel-
oped a numerical scheme in which adaptive refinement is implemented by adding
layers of successive “details” that locally increase the resolution of the approxima-
tion. Time adaptivity was incorporated in [BMP92], where the authors present a
wavelet-based numerical method for hyperbolic and parabolic PDEs that adapts the
space and time resolutions to the properties of the PDE and the local structure of the
solution.

Being translates and dilates of a single function, wavelet bases are often too
‘rigid’ for certain applications. Indeed, in [LT, BMP92] only periodic problems for
scalar hyperbolic and parabolic equations in one dimension are handled, mainly be-
cause of various technical difficulties related to the wavelet basis considered. Even
though some of the problems related to the poor representation of boundaries by
wavelet basis have been addressed in recent years (see [Coh03, Dah97] for good
reviews on wavelet methods for PDEs), successful multiresolution-based adaptive
techniques for HCL have followed instead the path laid out by A. Harten in his sem-
inal work [Har95].

In the early 90’s, A. Harten developed a general framework for multiresolution
(MR) that exhibits a larger degree of flexibility, while retaining many of the proper-
ties associated to wavelet-decompositions. A distinctive feature of Harten’s frame-
work is that a discrete data set is always interpreted as the result of the application of
a particular discretization operator on a function belonging to an appropriate func-
tional space. This feature is well suited for computing solutions to PDEs by numer-
ical techniques, since the values obtained are interpreted as discrete realizations of
the solution on a computational mesh.

A MR decomposition of a discrete realization of a given function gives precise in-
formation on the local regularity of that function. Harten’s adaptive strategy is based
on the smoothness information contained on an appropriate MR decomposition of
the numerical data obtained, at each time step, by an underlying numerical scheme.

In its simplest implementation the goal of the MR-based adaptive scheme is,
essentially, to gain computational time while remaining within the same accuracy as
the reference scheme, i.e. the scheme on the finest computational mesh for which the
user is pleased with the computational results. Successful implementations of this
strategy have been carried out for two-dimensional Cartesian meshes [BH95, BH97,
CD01], curvilinear meshes [DGM00] and unstructured meshes [Abg97, CDKP00,
BOLR01].

A more elaborate implementation has been developed in [CKMP03]. Here, the
MR decomposition of the numerical data is used to reduce not only the computational
cost, but also the memory requirements of the computation, while remaining within
the same accuracy as the reference scheme. The implementation in [CKMP03] is
indeed a spatial AMR technique, in which adaptive refinements are based on the
smoothness information obtained from the MR decomposition of the data.
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In this paper we shall review these two main directions in which Harten’s
methodology for the design of adaptive schemes for HCLs has evolved during the
last ten years. The paper is organized as follows: In section 2 we briefly describe
the essential ingredients of Harten’s framework for MR, with particular attention to
the interpolatory and cell-average frameworks. Section 3 describes the basic strategy
of MR-based adaptive schemes. In section 3.1 we briefly review the cost-reduction
implementation and in section 3.2 the fully adaptive one. We close in section 4 with
a summary.

2 Data Representation and Multiscale Analysis

The numerical values obtained by a given numerical scheme are understood as ap-
proximations to a discrete realization of the solution on an underlying computational
mesh. When using a sufficiently robust scheme, these numerical values reflect in one
way or another the behavior of the true solution. In those regions where the solution
is smooth, the discrete data displays a ’smooth discrete behavior’. At shocks and/or
contact discontinuities, the discontinuous behavior of the true solution is represented
by a sharp profile. In fact, the robustness of the scheme is often measured by the
ability to represent a shock transition as a sharp, oscillation-free, discrete profile.

Smoothness regions can be handled with rather unsophisticated (and non-expensive)
numerical techniques, while compression regions and shocks require a very special-
ized numerical treatment. A multiscale decomposition of the numerical solution at
each time step can provide the necessary information about the local smoothness of
the underlying data to allow for an adaptive computation.

In a MR representation of a discrete data set the information is encoded as a
coarse realization of the given data set plus a sequence of detail coefficients of as-
cending resolution. The detail (scale, wavelet) coefficients represent the difference in
information between consecutive resolution levels.

In the following we give a brief overview of the core ingredients of Harten’s MR
concept namely: (i) a sequence of nested discretization operators and (ii) a sequence
of consistent reconstruction operators.

Discretization and Decimation
For the application that we have in mind, the resolution levels are specified by

a sequence of computational meshes G l � �Ωl�k�k�Jl , l � 0� � � � �L on a domain Ω.
The index l represents the resolution level (increasing l means more resolution). The
starting point is a sequence of linear vector spaces of discrete data, Vl, l � �0 , related
to Gl via a particular discretization operator.

The discretization operators are linear operators acting on a function space D l :
F � Vl (F is usually the solution space for the PDE). Given u � F , D lu assigns a
discrete value to each Ωl�k � Gl ,

ūl
k � �Dlu�k �: A�Ωl�k�u �Ωl�k � Gl � (1)

The grid elements, Ωl�k can be either grid-points or mesh-cells (structured or un-
structured). The chosen notation reflects the fact that we think of the discretization
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as an averaging operator. For point-value discretizations, the elements of the grid
are its nodes and the averaging is done with respect to Dirac’s delta function. For
cell-average discretizations, the elements of the mesh are the cells (quadrilateral, tri-
angles, hexahedra) and the averaging is done with respect to the indicator function
of each cell.

To obtain multiscale decompositions associated to a sequence of meshes �G l�
on a domain Ω � �

d , the associated discretization operators Dl have to satisfy two
essential properties

1. Dl is onto.
2. The null spaces satisfy N �Dl��N �Dl�1�.

Property 2 gives the sequence �D l� a nested structure. For our intended application,
this property derives from the structure of the averaging operator and a nested struc-
ture in the sequence �Gl�, i.e. each cellΩl�k on level l can be subdivided into subcells
Ωl�1�r on the finer level l�1 so that

Ωl�k � �r�Ml�k
Ωl�1�r� (2)

As a consequence of properties 1 and 2 we can associate to the sequence �D l� a
sequence of decimation operators, by which coarse data is obtained from fine data
[Har96]: If u � F and ūm � Dmu for each m, then ūl � Dl

l�1ūl�1 for all l. For local
averaging operators we obtain

Dl
l�1 : Vl�1 ��Vl �Dl

l�1ūl�1�k � ∑
r�Ml�k

ml�0
k�rū

l�1
r � k � Jl (3)

where the coefficients ml�0
k�r depend only on the sequence �D l�.

Reconstruction and Prediction To represent the difference between discrete
values on two consecutive resolution levels, a sequence of consistent reconstruction
operators is introduced,l Rl : Vl � F . Consistency means that

DlRl ū
l � ūl �ūl �Vl� (4)

Notice that if ūl � Dlu, u � F , then Rl ūl is interpreted as an approximation to u. In
general u �� Rl ūl , but (4) implies that u and Rlūl have the same discrete information
on Gl .

In our context, Rl ūl is constructed as follows: For each elementΩ l�k � Gl we de-
termine a polynomial RN

l�k :Ω� � of degree N by imposing the recovery conditions

A�Ωl�r�R
N
l�k�	� ū

l� � ūl
r� r � Sl�k� (5)

Here Sl�k, the stencil of RN
l�k, denotes an index set on level l corresponding to cells in

a local neighborhood of Ω l�k with Ωl�k � Sl�k and such that it provides an admissible
configuration, i.e. (5) leads to a uniquely solvable R N

l�k.
The reconstruction operators are then defined by piecing together these polyno-

mial reconstructions. If the elements are mesh-cells, then
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Rl ū
l�x� � RN

l�k�x; ūl�� x �Ωl�k� (6)

Notice that consistency follows from the fact that k belongs to S l�k.
Remark The linearity of Dl and the recovery conditions imply that the recon-

struction process has polynomial exactness of degree N, i.e.

RN
l�k��� p̄l� � p��� �p � PN with p̄l � Dl p� (7)

The sequences �Rl�, �Dl� are used to define prediction operators, Pl
l�1 : Vl�1 �

Vl , that compute fine grid values from coarse grid values. These are defined as P l
l�1 �

Dl�1Rl; taking (2) into account we have

ũl�1
r :� �Pl�1

l ūl�r � A�Ωl�1�r�R
N
l�k��� ū

l�� r �Ml�k� l � �0 � (8)

The prediction errors, computed as el�1
k :� ūl�1

k � ũl�1
k , k � Jl�1� contain the in-

formation in ūl�1 which cannot be predicted from the coarser data ū l � Dl
l�1ūl�1 by

the prediction scheme Pl
l�1. These errors represent, hence, the difference in informa-

tion between consecutive resolution levels.
Clearly, the discrete sets ūl�1 and �ūl � Dl

l�1ūl�1
�el�1 � ūl�1 � Pl�1

l ūl� are
equivalent. However there is an inherent redundancy in the information contained
in el�1. In fact Dl

l�1el�1 � 0, see [Har96], i.e.

�Dl
l�1el�1�k � ∑

r�Ml�k

ml�0
k�re

l�1
r � 0� k � Jl (9)

A non-redundant two scale representation of ū l�1, can be obtained by defining
the scale coefficients, or detail coefficients, as the coordinates of the prediction error
expressed in a basis of N �Dl

l�1�, the null space of Dl
l�1. In [DGM00], following

the guidelines of the standard theory in wavelet-type multiscale decompositions, the
authors resort to the concept of stable completions to provide a working definition of
the scale coefficients.

Notice that for each Ωl�k there are #Ml�k non-independent prediction errors. Be-
cause of (9), these can be adequately represented by #M l�k� 1 independent quanti-
ties: the scale coefficients. When Sl�k is chosen independently of k, one finds that

dl
k � ∑

r�Ml�k

ml�1
k�re

l�1
r � k � Jl�k (10)

where Jl�k is an index set associated to Ωl�k and such that #Jl�k � #Ml�k�1.
A one-to-one two-scale representation of a data set ū l�1 is obtained by consider-

ing ūl � Dl
l�1ūl�1 and dl

k in (10).
Let ūL � DLu for u � F , where L is the index of a sufficiently fine mesh GL.

Repeating the previous process for the grid hierarchy �G l�
L
l�0 we obtain a multi-

scale decomposition of ūL.

uL � �uL�1
�dL�1� � � � � �� � �u0;d0;d1; � � � dL�1�� MuL
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uL � uL�1 � uL�2 � � � �� u0

� dL�1 � dL�2 �
� � �

�d0 (11)

Let us consider u � F and ūL
� DLu. Relations (1) and (8) lead to Ω l�k �

�r�Ml�r
Ωl�1�r,

el�1
r � ūl�1

r � ũl�1
r �

�
Dl�1�u�RN

l�k��� ū
l��
�

r
� r �Ml�k� (12)

Notice that for any p � PN , (12) and (7) imply that for r �M l�k � Jl�1

el�1
r � A�Ωl�1�r��u� p��A�Ωl�1�r�R

N
l�k���Dl�u� p��� (13)

Since smooth functions are well approximated by polynomials, the above relation
shows that prediction errors are expected to be small in regions of smoothness. Be-
cause of (10) the same will hold for the scale coefficients d l

k. It is precisely because
of this relation that MR decompositions can be considered as a tool to adapt compu-
tational refinements to the local regularity of the solution.

In numerical simulations for time dependent HCLs, the starting point at each
time step is a discrete data set uL � �uL

k�
JL
k�1 so that each value uL

k is linked to a
particular element of an underlying mesh GL. The grid elements can be either mesh
cells, as in standard finite volume schemes, but also mesh points as in the ENO
numerical schemes considered in [SO88]. Within Harten’s framework for MR, each
interpretation (cell-averages or point-values) has an associated natural MR setting.
As an example, we briefly review next the point-value MR setting.

2.1 Interpolatory MR

In the point-value framework for MR the grid elements are the mesh nodes. In what
follows, it will be convenient to be a bit more specific in our description. For this,
we consider a sequence of uniform nested grids on �0�1� G l � �xl

k�
Jl
k�0, obtained

by recursive dyadic refinement of G0, which we consider as the coarsest resolution
level associated to our underlying problem. Hence Ω l�1�2k � xl�1

2k � xl
k � Ωl�k (see

Fig. 2.1-left), hl � 2�lh0, Jl � 2lJ0.
Structured Cartesian meshes in 2D or 3D are obtained by a tensor product con-

struction using these 1D meshes (e.g. [BH97]), see Fig. 2.1-right. The extension to
unstructured meshes is conceptually straightforward within Harten’s framework for
MR, although its particular application requires a certain degree of familiarity with
the technical aspects of using unstructured meshes for the solution of PDEs (see
[AH98, Abg97] for specific details).

The transfer of information from fine to coarse is done by retaining those values
attached to points in G l � G l�1 and discarding the rest. In the 1D case of Fig. 2.1-
left, the decimation by restriction process acts as follows, ul

k � �Dl
l�1ul�1�k � ul�1

2k .

For the case 2D of Fig. 2.1-right we have ul
k�m � �Dl

l�1ul�1�k�m � ul�1
2k�2m.

Decimation by restriction has a natural correspondence with the interpretation of
the discrete sets as being the values of an underlying function u�x� at the mesh points
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� � � � � � � �

Fig. 1. �: mesh points in G l�1; �: Mesh points in G l . Left 1D, right 2D uniform meshes.
Detail coefficents correspond to prediction errors at points in Gl�1

�G l .

of each grid, i.e. if Dmu� u�Gm�, �m, then ul � Dl
l�1ul�1 � Dl

l�1Dl�1u � u�Gl� �
Dlu.

Given a grid element xl
k � Gl , let us consider the polynomial LN

l�k characterized
by the recovery conditions

LN
l�k�x

l
r;ul� � ul

r� r � k� p� � � � �k� p�1 (14)

where p� 0 is a fixed integer, chosen independently of l and k. Notice that L N
l�k�x;ul�

is the Lagrange interpolation polynomial of degree N � 2p�1 based on the stencil
Sl�k � �xl

r�
k�p�1
r�k�p and the data attached to it.

Following (6) we have (see also Fig. 2)

Rlu
l�x� :� LN

l�k�x;ul�� x � �xl
k�xl

k�1�� k � 0� � � �Jl�1 (15)

and following (8) we get the prediction operator, which obtains fine data from coarse
data, ũl�1

m � �Pl�1
l ul�m � LN

l��m�2��x
l�1
m �ul�. Hence

ũl�1
2k � LN

l�k�x
l�1
2k �ul� � LN

l�k�x
l
k�ul� � ul

k (16)

ũl�1
2k�1 � LN

l�k�x
l�1
2k�1�ul� �

p

∑
r�1

βl�u
l
k�r �ul

k�r�1� (17)

where the coefficients βm depend on N (see e.g. [Har96]).
Since ul�1

2k � ul
k, (16) implies that el

2k � 0. The prediction error for the odd values
will not be zero in general, hence in this setting the scale coefficients are defined as
dl

k :� ul�1
2k�1� ũl�1

2k�1. The invertible two-scale transformation is ( k � 0� � � �Jl �1 )

�
ul

k � ul�1
2k

dl
k � ul�1

2k�1� ũl�1
2k�1

�
�

�
ul�1

2k � ul
k

ul�1
2k�1 � ũl�1

2k�1 �dl
k

�
� (18)

Notice that the two discrete sets ul�1 and ��ul
�dl��, which have exactly the same

cardinality, are absolutely equivalent.
The interpretation of a multiscale decomposition within the point-value setting is

straightforward: The information contents of the sequence u L, which is understood
as the point-values of u�x� on the (fine) grid GL, is decomposed as u0, those same
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values but on a much coarser mesh plus a sequence of scale coefficients at each
resolution level between G0 and GL. The scale coefficients dl

k represent the difference
in information between discretizations of the function at two consecutive resolution
levels, or in other words, the information on level l that cannot be predicted from
the coarse values one level below. In this framework the scale coefficients are simply
interpolation errors.
Remark The centered-stencil construction for LN

l�k was used in [DD89] within the
context of binary subdivision schemes, which were the basis of Donoho’s construc-
tion of the Interpolatory Wavelet Transform (IWT) [Don92]. The IWT has been used
to design adaptive schemes for scalar HCLs independently by Homlström [Hol99]

The relation between scale coefficients and smooth behavior. Let us assume that
the discrete data uL

� u�GL�, where u�x� is a piecewise smooth function. Figure
2 shows the piecewise polynomial interpolatory reconstruction (15) of a piecewise
smooth function. We clearly observe that the quality of the approximation is de-
graded around the singularity, and that the region affected by the singularity is larger
for higher degree polynomials.
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0.5

1

0 0.5 1

−1

−0.5

0

0.5

1

Fig. 2. A piecewise smooth signal (solid line) and its point-values on a uniform grid (dots on
solid line). Interpolatory reconstructions (Dotted lines). Left: p� 1�N � 3. Right p� 2�N � 5.

The scale coefficients in the point-value setting are simply interpolation errors,
hence the relation between the behavior of the scale coefficients with respect to the
regularity of u can be analyzed using elementary interpolation theory. A precise es-
timate of the size of the scale coefficients, can be given by expressing the error in
Lagrange interpolation in its so-called Newton form

u�x� � LN
l�k�x��u�Sl�k�x�wl�k�x� x � �xk�xk�1� (19)

where u�Sl�k�x� denotes the N � 1st divided difference of u�x� at the points of the
stencil and x and wl�k�x� �Πxl

m�Sl�k
�x� xl

m�.

Since dl
k � u�Sl�k�xl�1

2k�1�w�xl�1
2k�1�, the relation between the smoothness of a func-

tion and the behavior of the scale coefficients can be obtained by considering the
behavior of the divided differences with respect to singularities of the function. Let
us assume that u�s� has a jump discontinuity in the convex hull of S l�k, while u�m� is
smooth 0� m� s. Then it is shown in [Har95] that
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dl
k � 2sdl�1

2k�i� i� 0�1�

Notice that the decay rate of the scale coefficients is intimately related to the smooth-
ness of the underlying function and the uniform coarsening of the hierarchy of
meshes. In particular, coefficients belonging to a region of smooth variation of u�x�
should approximately satisfy

dl
k � 2N�1dl�1

2k�i� i � 0�1 (20)

so that any deviation from this behavior can be interpreted as lack of smoothness.
This observation, which will be revisited later, lies at the heart of Harten’s heuristics
in designing adaptive multiresolution schemes for HCLs.
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Fig. 3. Scale coefficients larger than 10�2 for the piecewise smooth signal of Fig. 2. Left:
p� 1, N � 3. Right: p� 2, N � 5.

2.2 Discretization by cell-averages

In finite volume formulations for HCL, the discrete numerical values are interpreted
as approximations to the averages of the solution over the computational cells defined
by the underlying grid. In this case it is more appropriate to analyze the data within
the cell average framework, in which the grid elements are the mesh-cells.

Given any locally integrable function u�x� : Ω� �, the cell-average discretiza-
tion operator is defined as

�Dlu�k � A�Ωl�k�u :�
1

�Ωl�k�

�
Ωl�k

u�x�dx� k � 1� � � � �Jl � (21)

Notice that because of the additivity of the integral, relation (3) becomes

ūl
k � �Dl

l�1ul�1�k �
1
2

�
ūl�1

2k � ūl�1
2k�1

�

for the 1D meshes considered in the previous section and

�Dl
l�1ūl�1�k� j �

1
4

�
ūl�1

2k�2 j � ūl�1
2k�1�2 j � ūl�1

2k�2 j�1� ūl�1
2k�1�2 j�1

�
(22)
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for the 2D (tensor-product) extension.
The remaining ingredient in the MR transformation is the reconstruction process.

The choice of centered stencils of mesh cells in 1D leads to MR transformations that
are closely related to the biorthogonal wavelet framework (see e.g. [Har95, Coh03]).
We refer the reader to [BH97] and [Got98] for specific descriptions related to our
current application.

Relation between scale coefficients and smoothness. In 1D there is a natural
relation between the cell-average and the interpolatory settings which can be ex-
ploited to give a simple proof that, for a given reconstruction of degree N, the scale
coefficients in the MR representation also satisfy (20).

In Fig. 4 we observe that, as in the interpolatory case, the scale coefficients ‘pile
up’ around the location of a jump discontinuity. The relation between scale coeffi-
cients and local regularity can be extracted by employing (13) (see [BH97, Got98]
and also [Coh03]).
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Fig. 4. (a) A piecewise smooth function (Solid line) and its cell-averages on a uniform grid
(dots on solid line) . Polynomial reconstruction p� 1 (Dotted line); (b)-(c) Detail coefficients
above ε j � 10�2�27� j , j � 1� � � � �6. (b) p� 1, (c) p� 2.

3 Multiresolution schemes within Harten’s framework

We give next a brief 1D description of the basic strategy used in MR schemes for
multidimensional computations. A discretization of a 1D system of conservation
laws

ut �F�u�x � 0 (23)

written as

Un�1
k �Un

k �
δt

δx
B�Un�k� (24)

is said to be in conservation form if the numerical divergence B�U n�k has the form

B�Un�k � F�Un
k�s�1� � � � �Un

k�s��F�Un
k�s�����k�s�1� (25)

where the function F�w1�w2� � � � �w2s�1� is the numerical flux function.



MR-adaptive schemes for HCLs 147

Let M be a linear MR transformation based on a hierarchical set of computational
meshes �Gl�

L
l�0 on the domain of interest. Let us consider (24) on the finest mesh

(the reference mesh) and denote the numerical values at time t n as Un
L�k. Since M is a

linear transformation, we can write

MUn�1
L�k �MUn

L�k �λLMBn
L�k (26)

with λL � δt�hl and Bn
L�k � B�Un

L �k

Harten’s development of multiresolution schemes for HCLs was tightly linked
to previous work on Essentially Non Oscillatory (ENO) schemes, a class of HRSC
schemes for HCLs that obtain very good resolution properties by performing an elab-
orate, but very costly, computation of the numerical flux functions at cell interfaces.
With the aim of reducing the cost inherent to such schemes, in [BH95, BH97] the
authors concentrate on the idea of eliminating heavy flux computations wherever the
multiscale analysis reveals that the solution is smooth. This cost-reduction alterna-
tive was further explored in different contexts, e.g. [Abg97, Bih96, BOLR01] and
the work of the first two authors [CD01, CDM01, RCD03]. In section 3.1 we outline
the implementation in [CD01].

Starting with the work in [GM99], a parallel development seeks to perform the
time evolution of the numerical values only for a locally refined grid determined from
the smoothness information contained in the MR decomposition of the numerical
data at the beginning of the time step [Mül02, CKMP03]. In section 3.2 we describe
the essential features of this development.

These are two options that lead to essentially different MR-based adaptive
schemes for HCL. They both evolved from Harten’s original MR-based adaptive
concept and share several common ingredients:

The multiresolution transform. The choice of M is dictated by the interpre-
tation of the numerical values. Hence, MR transformations within the cell-average
framework are used for the finite-volume schemes considered in [BH95, BH97,
Abg97, Bih96, BOLR01] and also in [GM99, Mül02, CKMP03].

Following the work in [SO88], many state of the art HRSC schemes in conser-
vation form consider the numerical values as approximations to the point-values of
the solution. This simplifies the implementation on Cartesian meshes in 2D and 3D
and was the main motivation in [CD01] for considering the point-value framework
as the appropriate multiresolution framework.

The thresholding algorithm. A key point lies in the analysis of the local reg-
ularity of both U n and U n�1, where the latter is of course unknown at time n, and
how this information is used within the adaptive scheme.

The user introduces a thresholding parameter ε, which controls the difference
between the reference simulation (the numerical values on the finest grid) and the
outcome of the multilevel computation.

Given U n
L and MUn

L � �Un
0 �d

1�Un�� � � �dL�Un��, the set of indices of significant
coefficients is constructed as

Dn
L�ε :�

�
�l�k� ; �dl

k�U
n��� εl � k � Jl � l � �0� � � � �L�1�

�
(27)
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where εl is a level-dependent threshold value related to ε. This set identifies those
locations where the prediction operator produces large errors, hence it is related to
locations where data U n

L display non-regular behavior.
In practice εl � ε �l in the point-value framework and εL�1 � ε, εl � εl�1�2,

l � L� 1 in the cell-average framework. This choice is motivated by the stability
properties of M�1. We refer the interested reader to [Har96].

The prediction step. The corresponding set for U n�1
L , i.e. Dn�1

L�ε , is also needed

for the design of the adaptive strategy, but since U n�1
L is not known at the beginning

of the time step, we can only give an estimation, D̃n�1
L�ε , which is computed so that

Dn
L�ε�Dn�1

L�ε � D̃n�1
L�ε � (28)

To compute the set D̃n�1
L�ε , which marks the non-smooth regions of both U n

L

and U n�1
L , all implementations of MR-based schemes known to us employ Harten’s

heuristic approach: In solving HCLs there are two effects that have to be taken into
account: Finite speed of propagation and compressibility (i.e. convergence of char-
acteristics which is ultimately responsible for the creation of shock waves). If a sin-
gularity is formed, the CFL condition of the underlying scheme will limit its speed
of propagation. If compression mechanisms are steepening up a numerical profile,
this should be detected as a loss of local regularity in the behavior of the scale coef-
ficients.

Based on the results of section 2.1 Harten’s heuristics for the computation of
D̃n�1

L�ε in 1D proceeds as follows:

if �l�k� �Dn
L�ε �� �l�k� i� � D̃n�1

L�ε i ��2� ���2

if �dl
k� � 2N�1εl and l � L �� �l�1�2k� i� � D̃n�1

L�ε i ��1�0�1

The first test takes into account the propagation of information (recall that the prop-
agation of ’real’ information is limited by the CFL condition). The second one aims
at detecting shock formation. In a smooth region the local rate of decay of the detail
coefficients is determined by the accuracy of the interpolation and the local regularity
of the function. The second test measures whether the decay rate is that of a smooth
function, if this is not the case, compression leading to shock formation might be
taking place and the location is also marked.

To the best of our knowledge, Harten’s heuristic strategy has not been rigor-
ously verified to satisfy condition (28). In [CKMP03] the authors are able to give
a theoretical justification of (28) for a slight modification of Harten’s heuristics. For
this modification, the reliability of the adaptive scheme is fully ensured, since (28)
guarantees that no significant future feature of the solution is missed. In practice,
however, Harten’s heuristics seems to be sufficient.

3.1 Cost-Effective Multiresolution schemes for shock computations

State of the art HRSC schemes succeed in computing highly accurate numerical solu-
tions (third order or higher) in regions of smoothness, while maintaining at the same
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time sharp, oscillation free, numerical profiles at discontinuities. These desirable fea-
tures are achieved by performing a specific, and often very expensive, computation
of the numerical flux functions at each cell boundary.

When the underlying grid is uniform, the implementation of these shock cap-
turing schemes is quite straightforward. Fine grid simulations with HRSC schemes
render very precise numerical approximations to the solution of HCLs, but the heavy-
duty flux computations increase the computational cost in such a way that for some
HRSC schemes 2D fine mesh simulations on personal computers are out of reach
simply because they cost too much.

It is common knowledge that the high-powered flux computations involved in
these schemes are only strictly needed at existing singularities or when these are
about to form. Hence, if both U n and U n�1 are smooth around a specific location
on the underlying computational mesh, it means that no singularity is present or
will be created in the course of the computation, hence we could avoid using the
numerical flux functions of the HRSC scheme in the computation of the numerical
divergence at that location. On the other hand, around a discontinuity (or when a
steep gradient makes it imminent), the full power of the HRSC scheme is needed, if
the high-resolution properties of the scheme are to be maintained.

This observation forms the basis of the cost-effective alternative: The goal is to
substitute the direct (HRSC) computation of the numerical divergence on the finest
mesh by a multilevel computation based on the smoothness information obtained
from the MR transformation M. The basic cost-reduction assumption is that inter-
polating numerical divergences is considerably faster than computing the necessary
fluxes.

The cost-reduction alternative involves no memory savings. However, and pre-
cisely because of this feature, there is no need for special data structures and the nec-
essary MR modules can be easily incorporated into any existing CFD code. When
memory requirements are not a major concern (as it is the case in many 2D compu-
tations), this technique often provides the necessary cost-reduction factors to allow
very fine HRSC simulations on personal computers [CD01, RCD03].

The boolean flag. Thresholding and prediction, as described in the previous sec-
tion, are combined so that the set D̃n�1

L is converted into the determination of a
boolean flag whose value, 0 or 1, will determine the choice of procedure to compute
the numerical divergence.

Starting from a zero value for all bl
k and a given tolerance parameter ε, the fol-

lowing two tests are applied:

if �dl
k� � εl �� bl

k�i � 1 i��2� ���2
if �dl

k� � 2N�1εl and l � L �� bl�1
2k�i � 1 i��1�0�1

In the point-value setting, the extension to 2D is straightforward (see [CD01]). For
the cell-average framework see [BH95, DGM00].

The multilevel evaluation of the numerical divergence within the point-value
setting. Instead of computing Bn

L with the HRSC scheme at all points in GL, in
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[CD01] we apply the following procedure involving the boolean flags defined previ-
ously

1) Compute Bn
0 (i.e for all points of the coarsest grid G0) directly with the HRSC

scheme.
2) To obtain Bn

L, repeat for l � 0 to L�1 :
For each xl�1

2k�1 � Gl�1�Gl :
– if bl

k � 1 the location is flagged as non-smooth and a precise computation
of the numerical divergence is required: Compute B n

l�1�2k�1 directly with the
HRSC scheme.

– if bl
k � 0 the location belongs to a smooth region and a direct (expensive)

computation can be avoided: Compute Bn
l�1�2k�1 using the prediction operator

in M, i.e. Bn
l�1�2k�1 � �Pl�1

l Bn
l �2k�1.

The cpu gain of this algorithm lies in the fact that the cost of the prediction oper-
ator is negligible compared to the expensive HRSC evaluation.
As an example, in our implementation for the 2D Euler equations [CD01], the pre-
diction operator is based on a 2D Lagrange polynomial interpolation of degree 3 (see
[BH97]) and we use a (formally) third order HRSC described in [DM96] for which
the effective ratio for the evaluation of one numerical divergence is about 1�100.
Remark: Since the grids �Gl�l are embedded, and the numerical values are attached
to mesh points in the point-value setting, each direct (HRSC) evaluation must be
done with the values of U n on the finest grid GL (they are always available in this
method). This guarantees that the numerical divergence is always computed by the
HRSC with a precision related to the finest spatial discretization.

This multilevel strategy has been detailed, analyzed and tested on several bench-
mark tests involving the 2D Euler equations. Numerical results, which are reported
in a series of papers [CD01, CDM01, RCD03], indicate that the quality of the multi-
level approximation (the difference between the outcome of the multilevel algorithm
and the reference simulation) is directly controlled by the tolerance parameter ε used
in the thresholding algorithm.

The efficiency of the multilevel scheme is, of course, problem dependent. We
refer again to the aforementioned papers for a specific evaluation of the efficiency
of the multilevel scheme in several situations. Here we present a specific simulation
that illustrates its performance.

We have represented on Fig. 8 a numerical simulation of the interaction between
a Taylor vortex and a Mach 4 shock. This interaction is difficult to handle numerically
for Mach numbers larger than 2, and the use of robust HRSC methods is necessary
in order to represent correctly the physics of the problem. In Fig. 8, the finest grid G L

has 512� 256 uniformly spaced points and the coarsest G 0 is 8� 4 points (6 levels
of refinement). The thresholding parameter is ε � 5�10�4. We display a numerical
Schlieren plot of the density at times t � 0 and t � 0�4. Associated to each density
plot we show a display where only the points for which the numerical divergence has
been evaluated by the HRSC scheme are represented.



MR-adaptive schemes for HCLs 151

After the interaction the vortex is highly distorted and a strong acoustic wave de-
velops ahead of it. All these features are correctly identified by the adaptive strategy,
which validates the smoothness analysis done by the wavelet coefficients. In this sim-
ulation, the percentage of points where a direct evaluation is done grows only from
3.4% to 10.6%, leading to an effective cpu time reduction of a factor 6.8 compared
to a reference simulation without the multilevel strategy.

The use of the multilevel method outlined in this section, made it possible to
perform in [RCD03] a detailed study of the phenomenology of these interactions on
a personal computer.

3.2 Fully Adaptive Finite Volume Schemes

With the aim of reducing the computational costs with regard to both computational
time and memory requirements but still maintaining the accuracy of the reference
scheme, a modified approach was developed in [Mül02]. The main idea is to evolve
in time only the cell averages of a locally refined grid, so that the finest (reference)
mesh does not need to be available.

In this approach, the ultimate goal is to provide an algorithm that can be realized
with an optimal complexity, i.e., the number of floating point operations is propor-
tional to the number of cells in the adaptive grid. This requires new data structures
supporting the local structure of the algorithm. Hash tables have lead to efficient
implementations of this approach (see [MV00]). Tree structures have also been con-
sidered (see [RSTB03]).

In the following we summarize the main ingredients specific to this fully adaptive
concept, namely, local grid refinement and evolution of local cell averages. For more
specific details we refer to [Mül02].

Local Grid Refinement

The starting point is a locally refined grid characterized by the index set G n
L�ε �

��l�k� ; k � Jl � l � 0� � � � �L� such that

Ω�
�

�l�k��Gn
L�ε
Ωl�k�

that is provided with cell averages �U n
l�k��l�k��GL�ε corresponding to time step n. It is

required that the set G n
L�ε has the structure of a graded tree.

We will now summarize the six steps of the local grid refinement procedure in
the context of cell averages, namely, (i) local MR transformation, (ii) thresholding,
(iii) prediction, (iv) grading, (v) local grid refinement and (vi) local inverse MR
transformation.

Local MR transformation. As outlined in section 2, we perform a MR analysis
of the cell averages at hand which provides a new data format composed of data on
a coarsest discretization level and arrays of details describing the difference infor-
mation between the data on two consecutive discretization levels. For this purpose
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we proceed level by level from fine to coarse as indicated in (11). Note that the two-
scale transformation is performed locally only for the indices corresponding to the
adaptive grid instead of the full levels. In particular, applying the local two-scale
transformation can be interpreted as a successive coarsening of the grid where fine-
grid cells are agglomerated to a coarse-grid cell and the difference information is
stored by the detail coefficients.

Thresholding. We now apply a hard thresholding to the sequence of detail coef-
ficients, i.e., discard all details dl

k that fall in absolute value below a certain threshold
value. Here we apply the same strategy as in section 3. For this purpose we compute
the index set Dn

L�ε corresponding to the significant details according to (27).
Prediction. To perform the evolution step, we have to determine the adaptive

grid on the new time level. Therefore we predict all significant details on time level
n�1 that may become significant due to the evolution. In practice, we use Harten’s
heuristic strategy summarized in section 3 to compute the prediction set D̃n�1

L�ε .
Grading. In order to perform the grid adaptation procedure level by level we

need that the index set of significant details corresponds to a graded tree, i.e., the
levels of neighboring cells differ at most by one. Since the set D̃n�1

L�ε is in general
not graded, we have to apply in addition a grading procedure. This will slightly
inflate the index set of significant details but has so far been observed not to spoil the
complexity reduction of floating point operations in any significant way. In fact, from
the nature of singularities occurring in flow computations one expects the distribution
of significant details to exhibit at least nearly tree structure (see Figs. 3, 4).

Grid adaptation. Then we exploit the inflated set D̃n�1
L�ε to determine an as-

sociated index set G n�1
L�ε which characterizes the adaptive grid at the new time

level. The index set G n�1
L�ε is initialized by all indices of the coarsest discretization.

Then, traversing through the levels from coarse to fine we proceed as follows: if
�l�k� � D̃n�1

L�ε then the cell Ωl�k is locally refined, i.e., the index �l�k� is removed

from G n�1
L�ε and the indices of the subcells on the finer level are added to G n�1

L�ε . Fi-
nally we obtain the locally adapted grid which naturally corresponds to the leaves of
the graded tree of significant details.

Local inverse MR transformation By the previous step the grid has locally
changed due to local refinement and coarsening. In order to determine the cell av-
erages �Un

�l�k���l�k��Gn�1
L�ε

, we employ a local inverse MR transformation interrelating

the local cell averages �U n
l�k�

n
�l�k��Gn

L�ε
and the significant details �dl

k��l�k��Dn
L�ε

. Again

we proceed level by level from coarse to fine where we locally replace a cell average
on the coarse scale by the cell averages of its subcells whenever there is a significant
detail associated to this coarse cell in D̃n�1

L�ε . Note that the computation of these cell
averages can be simultaneously determined when performing the grid adaptation.

Evolution of Local Cell Averages

The time evolution of the cell averages is now performed on the new adaptive grid
determined by the index set G n�1

L�ε
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Un�1
l�k �Un

l�k�λl�k Bn
l�k� λl�k :�

δ t
�Ωl�k�

�l�k� � Gn�1
L�ε � (29)

where Bn
l�k denotes the numerical divergence of cell Ω l�k.

In principle, the adaptive grid could be interpreted as an unstructured grid and the
numerical divergence could be computed by the local data at hand, see for instance
[RSTB03]. Since the ultimate goal is the design of an adaptive scheme with an error
still corresponding to the discretization of the finest grid, this strategy could result in a
severe accuracy deficiency. Therefore we have to be more careful in the computation
of the local numerical divergence. For this purpose, we assume that a reference FVS
is given on the uniform finest grid GL similar to (29) with the numerical divergence

Bn
L�k :�∑ΓL

k�r�∂ΩL�k
�ΓL

k�r�F
L�n
k�r

determined by the sum of all fluxes over all cell edges of the cell Ω L�k. Here ΓL
k�l

denotes the interface of the cell ΩL�k to the neighbor cell ΩL�r and FL�n
k�r the cor-

responding numerical flux. See Fig. 5 for clarification of notation. The numerical
fluxes are assumed to be conservative, i.e.,

FL�n
k�r ��FL�n

r�k � (30)

�

�

� ����� ����

�

�

� �

�
�
�
�
���

Fig. 5. Finite volume discretization.
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Fig. 6. Local flux balances, (�) boundary flux,
(Æ) internal flux .

Applying (virtually) the linear MR transformation M for cell averages similar to
(26) results in local evolution equations for the cell averages on the coarser scales
l � 0� � � � �L�1, see (29), where the local numerical divergence is recursively defined
by

Bn
l�k :�∑Ωl�1�r�Ωl�k

Bn
l�1�r� (31)

This is sketched in Fig. 6 for a dyadic grid refinement. According to (31) we have to
compute all fluxes marked by � and Æ. However, the internal fluxes corresponding to
Æ cancel each other out due to the conservation property (30) resulting in a significant
reduction of the computational complexity. Finally, we end up with
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Bn
l�k �∑Γl

k�r�∂Ωl�k
�Γl

k�r�Fl�n
k�r (32)

where the local numerical fluxes are defined by

Fl�n
k�r :�∑Γl�1

j�s �Γ
l
k�r

�Γl�1
j�s �

�Γl
k�r�

Fl�1�n
j�s �∑ΓL

j�s�Γ
l
k�r

�ΓL
j�s�

�Γl
k�r�

FL�n
j�s � (33)

Together with (29) this specifies the fully adaptive scheme. Note that we never em-
ploy the complexity of the finest grid.
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Fig. 7. Exact (left), locally structured (middle) and unstructured (right) flux computation, (�)
numerical flux, (Æ) cell average .

Remark. In 1D the local flux computation simplifies because there are no hang-
ing nodes in the adaptive grid. Due to the nestedness of the grids, see Fig. 2.1, the
numerical fluxes on level l coincide with the numerical fluxes on the higher scales,
i.e.,

Fn
l�k � Fn

l�1�2k � � � �� Fn
L�2L�lk � F�Un

L�2L�l k�s�����2L�l k�s�1�� (34)

Since the numerical divergence on the coarser levels is recursively defined we further
conclude

Bn
l�k :� Bn

l�2k �Bn
l�2k�1 �

2L�l
�1

∑
i�0

Bn
L�2L�l k�i � Fn

L�2L�l�k�1��Fn
L�2L�lk�

Remark. According to (33) the numerical fluxes have to be computed by the
data on the finest scale. In order to provide these data we have to perform locally
an inverse two-scale transformation. In 1D this does not degrade the complexity of
the algorithm but it will in higher space dimensions. For HRSC we may perform
the local flux computation by means of the local data at hand instead of the data
on the finest scale, see Fig. 7 (middle and right). In practice, this does not affect the
accuracy but preserves the computational complexity. In this case, the number of flux
computations is proportional to the number of significant detail coefficients #D n

L�ε or
#Gn

L�ε, respectively.
Remark. In Harten’s original approach [Har95, BH97], the complexity is not

reduced. To see this, we consider Fig. 6. Here expensive fluxes based on higher–order
upwind discretizations are computed at � and, in addition, cheap finite difference flux
approximations have to be computed at Æ.
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a)

b)

Fig. 8. Schlieren pictures of the density field of a Mach 4 shock-vortex interaction and associ-
ated multilevel grids. a) time t � 0, b) time t � 0�4.
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Fig. 9. Total view of NACA0012 airfoil, M � 0�95, α� 0�0Æ. Left: Computational grid. Right:
Pressure distribution, Mmin � 0�0, Mmax � 1�45, ∆M � 0�05.

Fig. 10. Detail of Fig. 9.
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Data Structures, Error Control and Real World Applications

In the previous section we outlined an adaptive MR scheme with an optimal com-
plexity in the sense that the number of operations is proportional to the number of
unknowns, i.e., #DL�ε and #GL�ε, respectively. In order to design an optimal code,
i.e., the memory requirements and the CPU time are proportional to the complexity
of the adaptive algorithm, it turns out that the choice of the data structures and the
memory management has a significant influence on the performance of the computa-
tion. In particular, the design of appropriate data structures crucially depends on the
underlying adaptive algorithm, i.e., the data structures have to be adapted to the al-
gorithmic requirements and should not be designed independently. For our purposes
the concept of hashing turns out to be an efficient tool. To this end, we developed the
template library igpm_t_lib, see [MV00], from which we derive the appropriate
data structures for the realization of the adaptive code.

Concerning the quality of the computation we are aiming at the accuracy of the
reference scheme. For this purpose, the local data provided by the adaptive scheme
are projected onto the finest mesh applying the inverse MR transformation where
the non-significant details are put to zero. The ideal strategy would be to deter-
mine the threshold value ε such that the discretization error of the reference scheme,
i.e., difference between exact solution and reference scheme, and the perturbation
error, i.e., the difference between the reference scheme and the adaptive scheme,
are balanced. For scalar conservation laws this concept was rigorously verified, see
[CKMP03].

By now the new adaptive MR concept has been applied by several groups
with great success to different real world applications, e.g., 2D/3D–steady state
computations of compressible fluid flow around air wings modeled by the Euler
and Navier–Stokes equations, respectively, as well as fluid-structure interactions on
block–structured curvilinear grid patches [BLM03], non–stationary shock–bubble
interactions on 2D Cartesian grids for Euler equations [Mül02], backward–facing
step on 2D triangulations [CKP02] and simulation of a flame ball modeled by
reaction–diffusion equations on 3D Cartesian grids [RSTB03].

In Figs. 9 and 10 we show a numerical simulation of the transonic flow over
a NACA0012 airfoil at M∞ � 0�95, α � 0Æ. The flow pattern downstream of the
trailing edge is characterized by a complex shock configuration frequently referred
to as fish-tail. The oblique shocks extend about 10 to 12 chord lengths into the flow
domain. The steady–state computation was carried out using an implicit local–time
stepping using the QUADFLOW solver [BLM03]. The final adaptive grid consists
of 55084 cells which provides a very high resolution over the complete extent of the
shocks. Such a high shock resolution is not feasible using standard structured grids.
Discretization of the shock region only by a uniform structured mesh equals about
29�5 � 106 grid cells. A uniform discretization of the complete flow domain would
result in about 108 cells.
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4 Conclusion

Harten’s early developments on the use of MR techniques for numerical computa-
tions involving HCLs were presented as an attractive alternative to the adaptive grid
methodology. The schemes currently in use show that the MR decomposition of the
numerical data at each time step provides an adequate tool to adapt the computational
resources to the nature of the data.

Cost-effective MR-based schemes provide an easy to use adaptive tool that has
been succesfully used to investigate the behavior of new HRSC schemes. Fully adap-
tive MR-based schemes become a novel AMR technique, where the refinement cri-
teria is based on the smoothness information contained in the MR representation of
the data.
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256. Birkhäuser, 2001.

CKMP03. A. Cohen, S.M. Kaber, S. Müller, and M. Postel. Fully Adaptive Multiresolution
Finite Volume Schemes for Conservation Laws. Math. Comp., 72(241):183–225,
2003.

CKP02. A. Cohen, S.M. Kaber, , and M. Postel. Multiresolution Analysis on Triangles:
Application to Gas Dynamics. In G. Warnecke and H. Freistühler, editors, Hy-
perbolic Problems: Theory, Numerics, Applications, pages 257–266. Birkhäuser,
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Summary. We review part of the methodology for multiresolution adaptive solution of PDEs
introduced by Alpert et al. (2002) in 1D (§2.1), and introduce a 2D generalization and im-
plementation (§2.2). This methodology is similar to the spectral-element method (SEM, e.g.,
Fournier et al. 2004) in that it combines spectral accuracy with finite-element efficiency, but is
not exactly SEM. We present 2D dynamical test cases (§2.3) that exhibit decreasing range of
active scales (Heat Eq.), or else increasing range due to strong nonlinearities (Burgers Eq.). We
conclude by showing that our methodology adapts to such evolving phenomena in these PDEs
(§3), thereby saving computational cost, while preserving a high preselected representation
accuracy per time step.

1 Introduction

By now the effectiveness of adaptive mesh refinement (AMR) is well known, for
numerically solving certain PDEs in which only parts of the domain contain intense
activity on which computational effort must be focused. Standard AMR methods
are relatively low-order in space, an accuracy limitation that could become serious
when modeling phenomena such as geophysical fluid dynamics (GFD), that involve
strongly nonlinearly interacting structures across very many scales. Moreover, GFD
applications such as weather/climate prediction, turbulence etc. call for both adap-
tivity and high-order accuracy. In this paper we address both requirements.

2 Method

2.1 Multiresolution spatial representation in 1D

We briefly describe the 1D spatial-discretization method in this section. For a more
complete discussion and motivation see [ABGV02].
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Basis functions

The representation of all dependent variables u � u�x� in the domain x � �0�1� is
similar to that in a type of structured-AMR codes in one respect, namely that �0�1� is
subdivided into dyadic intervals �k��� �k�2���k�1��2�� for k � �0� � � �2��1

�� � � .
However, instead of the usual single-point-value or cell-averaged approximations of
u within any �k��, greater accuracy is afforded as follows. Expand u in the piecewise-
polynomial, orthonormal interpolating basis

φ j�k���x��
��

2
�φ j�2�x� k�� x � �k���

0� otherwise,

constructed from the normalized Lagrange interpolating polynomial

φ j�ξ�� 1�
wj

∏
j� �� j

ξ �ξ j�

ξ j�ξ j�
� �p� j � �0� � � � p� �ξ � �0�1��

where ξ j denotes the Gauss quadrature nodes, which are the N � p� 1 roots of
the mapped Legendre polynomial L �

N�ξ� � LN�2ξ� 1� and correspond to weights

wj
ξ j�ξ�����NL�p

d
dξL�N�

�1. The basis interpolates on nodes x j�k�� � �ξ j �k��2� � �k��:

φ j�k���x j��k���� �
�

2��wjδ j� j�δk�k� . The basis is also orthonormal with respect to loca-
tion x j�k��: �φ j�k��φ j��k����� δ j� j�δk�k� , where

�u� �
1�

0
u�ξ�dξ

u��2N�1������
p
∑
j�0

u�ξ j�wj �

This approach is similar to that of the SEM, except that the element-boundary
Gauss-Lobatto nodes x � k�2� are omitted. Thus the space �k�� of polynomials on
�k�� has precisely the same dimension N as do its “left” and “right” child spaces
�2k���1 and �2k�1���1, whose union properly contains it:

p
span

j�0
φ j�k�� � �k�� �

1�

b�0
�2k�b���1� (1)

As discussed by [ABGV02], these functions lead to a form of the standard multires-
olution analysis, with the usual ladder structure

�

k���

�k�� � �� ����1

of function spaces. To simplify notation, we embed the local node index j in ma-
trix notation; thus the familiar two-scale refinement relation for scaling functions
becomes

t�φ0�k��� � � �φp�k���� φk�� �
1
∑

b�0
�bφ2k�b���1� (2)

where Hb� j�� j �
�

wj�2φ j��x j�b�1� are the low-pass quadrature mirror filters.
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The transformation between the projection P �u of u onto �� and its 2�N interpo-
lating scaling-function coefficients ū j�k�� �

�
wj�2�P�u�x j�k��� is

P�u � ∑
k���

tφk��ūk���

t�ū0�k��� � � � ūp�k���� ūk�� � �φk��P�u��
1
∑

b�0
�bū2k�b���1� (3)

Unlike in the usual SEM, this transform is orthonormal, i.e., ��P �u�� � ��ū��� in the
respective �2 norms. In practice, if one may assume u � PLu for a “small enough”
sampling scale 2�L, then the finest coefficients are simply ū j�K�L �

�
wj�2Lu�x j�K�L�;

thereafter for � � L, (3) is used iteratively to obtain larger-scale ū k��. (Note that for
brevity, the whole “multiwavelet” side of the construction in [ABGV02] is omitted
here.)

Dynamic adaptivity with prescribed accuracy

As in the usual structured-AMR, here dynamic adaptivity is accomplished by com-
puting index sets � �

� wherever elements only as small as 2�� � 2�L are locally suf-
ficient. To distinguish from finite-difference methods, we may say that this is not
just “mesh refinement” but “space refinement,” i.e., representation in a multiresolu-
tion function space “just large enough” to represent u with local and global relative
accuracy threshold ε, as we now describe.

The multiresolution structure (1) allows an adaptivity criterion that measures the
projection energy in �k�� relative to the projection energy (which is always no less)
in the twice-larger space �1

b�0�2k�b���1. Starting from �
�
�1 � �, define � �

� (of size
� 2�) iteratively by

�
�
� �

�
k � � � ; �

k
2
� �� � �

��1 &
1
∑

b�0
��ū2k�b���1��

2 � �1� ε2���ūk����
2
�
� (4)

By construction, k � � �
� iff 2k�b �� � �

��1 , so that the ���
�

k���
�

�k�� form a disjoint

cover: �L
��0��� �0�1� and ��

�
������ ��. Then the adaptively compressed representa-

tion of u is given by only ∑L
��0#� �

� � 2L terms:

PLu 	 P �
L u �

L
∑
��0

∑
k���

�

tφk��ūk��� (5)

One may easily show that the compression error is bounded by

���PL 
P �
L �u�� � ε��PLu��� (6)

Adaptively evaluating nonlinear terms

Interpolating bases greatly simplify calculating nonlinear terms, compared to spec-
tral methods that use convolutions or inverse transforms. For example,
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uv j�k�� �
�

2��wjū j�k��v̄ j�k��� (7)

In practice, (7) is implemented by oversampling, using

ū2k�b���1 � t
�būk��� (8)

which is an exact reconstruction iff u � P�u. As explained in [ABGV02, §3.3.3],
(8) is first applied to refine both factors of (7) until both use all the same index sets
�

�
� . Then both factors are again oversampled one level, from the scale 2�� sufficient

to represent the individual factors, down to 2���1. This oversampling has a similar
purpose to “de-aliasing” in spectral methods, i.e., to allow for multiplication to create
smaller scales in the product. Finally, the result is compressed if possible, using (4)
again.

Differentiation on the smallest scale

The derivative operation u� d
dxχ is approximated in �L by the convolution

ūK�L �
K�1
∑

K��K�1
�K�K� χ̄K��L � τK�L� (9)

where τ is the truncation error. Each block of the 2 LN�2LN block-tridiagonal matrix
� uses the usual projection form �φ j

d
dξφ j����wj

d
dξφ j��ξ j�, plus integration by parts

to provide communication between neighboring intervals:

�K�K�1 ��2L c�0φ�0�
tφ�1��

�K�K � 2L�c1φ�1� tφ�1�� c0φ�0� tφ�0��� d
dξφ

tφ���
�K�K�1 � 2L c�1φ�1�

tφ�0��

Note that the off-diagonal blocks are only rank-one, as in the SEM (if one accounts
for the SEM � 0 condition).

In [ABGV02, §4.3] it is explained how to use the free parameters c b � 1� c�b �
�0�1� to easily incorporate boundary conditions without losing accuracy, and without
increasing condition number. The truncation error

τK�L �
1

2�N�1�2�L

1
∑

b�0

�
��1��1�b�pcb� ��1�bpc�b

�
ρK�bφ�b��O

�
1

2�N�1�2�L

�

is also derived there, where ρK � N!
�2N�! �

d
dx �

Nu
�
K�2L

�
. Choosing cb � 1

2 has the ef-

fect of enforcing � 0 continuity by averaging approximations of the off-node value
u�K�2L� due to the two neighbors �K�b�L, as in the SEM. Also note that when p is
even and cb �

1
2 , the truncation error is of higher order.
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Operations across scales

In the adaptive case, any general operation u�T χ represented at scale 2�L by �,
is projected up to appropriate scales 2��

�2�L using projection operators Pk�� �
tφk���φk���� from �L to each �k�� ��L . Thus, (9) generalizes to

ūk���� �
L
∑
��0

∑
k���

�

�k�����k��χ̄k��� k� � � �
��

�� (10)

as follows. A large interval �k�� contains a small interval �K�L iff there is a Boolean
vector b � �0�1�L�� such that K � 2L��k�∑L���1

m�0 2mbm. The path from K0 :� K to
KL�� � k through a binary tree is iteratively encoded by b:

Km :� �Km�1�2	� bm :� Km
2Km�1� (11)

By iterating (2), one finds that Pk�� �
tφk��∑b�b�φK�L��, where �b � �b0 � � ��bL���1 .

It follows that �k�����k�� � �b��K��K
t
�b. Note that if � can possibly amplify, attenuate

or translate smaller-scale structures (e.g., �� � or e� to some power), then the � �
�

appropriate by (4) for the operand might not equal the � �
��
� for the result; thus in

practice we may find it necessary to oversample the operand using (8) and compress
the result if possible.

2.2 Formulation in 2D using tensor products

For the purpose of organizing an adaptive 2D representation, it is convenient to index
2D with a single index k as follows. Let the quad-tree subdivision sequence

0 �

1 2
3 4

�

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

� � � �

show how the parent element � 0 � �0�0��0�0 divides into its disjoint cover of four
child elements � 1�b�2b� � �b�1��b��1, 16 grandchild elements, etc. Then iterating
in this way, for any k � 0, the element � k has a parent � ��k�1��4� � �k , and four

children � 4k�1�q

�3
q�0




��k .
At any given level �, there are 4� elements � k of area 4�� for all k � �i�� � � �4i���

� 2
� , where i� �

1
3 �4

�
1� is the initial index. Each k encodes its own level via � �

�log4�1� 3k�	. As in (11) for b, one iterates to find a path q � �0� � � �3� � through a
quad tree from K0 :� k to K� � 0:

Km :� ��Km�1
1��4	� qm :� Km
4Km�1
1� (12)

Given q, the inverse of (12) is k � i��∑��1
m�04mqm. The location of element

�k � �kx����ky�� (13)
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is given by�k�2�, where

�k� �kx�ky� �
��1
∑

m�0
2m�bm�b�

m�� bm :� qm mod 2 and b�
m :� �

qm

2
�� (14)

To any � k there corresponds a 2D piecewise-polynomial function space

�
2
k � �kx ����ky ��� (15)

For I� I � and J�J � matrices � and �, define an IJ�I �J� matrix tensor product

�����i�I j�i��I� j� � Ai�i�B j� j� �

With these notations, the 2D piecewise-polynomial, orthonormal scaling-function
basis of �2

k , and the two-scale relation generalizing (2) may be written

φkx��
�x��φky��

�y�� φk��x� �
3
∑

q�0
�

2
qφ4k�1�q��x��

where �2
b�2b� � �b��b�. Similarly, �∇ is represented by ��� �� ����.

All of the other 1D formulas from §2.1 straightforwardly generalize to 2D, e.g.,

if u � �2
K then ū�j�K �

�
wjx wjy�4Lu��x�j�K�, where the 2D nodes are

�x�j�k � �x jx�kx���x jy�ky��� (16)

and ūk � ∑3
q�0�

2
qū4k�1�q. As in (4), the indexes for compression come from

�
�
� �

�
k � � 2

� ; � k�1
4 � �� � �

��1 &
3
∑

q�0
��ū4k�1�q��

2 � �1� ε2���ūk��
2

�
� (17)

and the 2D analogs of (5) and (6) hold. In practice, we implement and update the
adaptive-length ū as a hash-table data structure.

2.3 Test-case dynamical equations

We present two test cases, both spatially biperiodic initial-value problems that il-
lustrate dynamic adaptation to changing or interacting scales. For the 2D heat or
diffusion equation

∂t u � ∇2u (18)

we introduce a “rotated array of peaks” initial condition

u�0��x� � ∑
�n��2

e�a1�nx��a2�ny��i�n��x�

�
sinha1

cosha1	 cosx�
sinha2

cosha2	 cosy�
� (19)

where a � �0�∞�2 controls the width and height of the peaks, �x � �
� lx ly
�ly lx

�



��x	�xo� is a dilated, rotated, offset coordinate, �l � �2π��2 controls the dilation by

l � ��l� and rotation by arctan ly
lx

, and�xo � �0 is the offset of the peaks.
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The 2D Burgers equation includes diffusion and nonlinear advection:

∂t�u � ν∇2
�u��u ��∇�u

�
�∇�ν�∇ ��u� 1

2 u2�� �ν�∇��u����∇��u�,
(20)

where ν�1 is the Reynolds number. For irrotational solutions �u � �∇χ, (20) implies
(up to an irrelevant, uniform term) the scalar dynamics

∂tχ� ν∇2χ� 1
2 �
�∇χ�2� (21)

Choosing a generalization of the traditional initial condition u x � sinx,

χ�0��x� ��
1
lx

cosx�� (22)

implies a steepening front in ux perpendicular to�l, with�l��u ��0 for all t.

2.4 Time marching algorithm

Problems (18-19) and (21-22) were solved using the following algorithm:
1. Pre-select accuracy ε, degree p and smallest element length 2�L

2. Use (17) to construct an adaptive representation (5) in 2D of (19) or
(22), yielding an initial scale range 2�L � 2��max � 2��min � 1

3. For stability, choose �∆t��1 ∝ the largest-magnitude eigenvalue of
t
�� (�ν for Burgers), reduced by �2�max�L as in [ABGV02, Eq. (4.4)]

4. For (21) but not (18), oversample the current solution using (8) in
2D, replacing ūk at scale 2�� by ū4k�1�q :� t

�
2
qūk at scale 2���1

5. Advance the current oversampled adaptive solution, with dynamics
governed by the projection in 2D of (18) or (21), from t to t�∆t
using either quality-controlled fourth-order Runge-Kutta (which
updates ∆t) [PFTV88] for (21), or else forward Euler for (18)

6. If possible, compress via (17) and update �min and �max and hence, ∆t
7. If not done go to 4

Alpert et al. [ABGV02] used a similar algorithm in 1D, but with fixed ∆t and the
exact linear part (ELP) time-evolution scheme that has superior stability and other
qualities [BKV98]. We intend to implement ELP in 2D and compare with the more
standard schemes used in the present paper.

3 Preliminary results and discussion

We present 3D surface plots of our numerical solutions of (18) and (21) in Figs. 1 and
2, accompanied by Table 1. It is evident that the methods presented by [ABGV02]
in 1D and generalized here to 2D achieve qualitatively correct solutions to both test
cases. In subsequent work we intend to report errors between the adaptive solutions
and analytic or very-high-uniform-resolution solutions. Quantitatively we observe
that this method affords relatively high order, while saving computation cost in pro-
portion to the number (4�max �Ktot in Table 1) of small-scale elements that were
replaced by larger-scale ones, and while preserving relative accuracy ε (6) at each
time step.
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Fig. 1. Surface plots of u�t�x�y� for �x�y� � �0�

1
2 �

2, from solving the Heat Eq. (18-19), on
adaptive piecewise-polynomial spaces �2

k (15) corresponding to elements �k (13) that cover
the biperiodic domain �0�1�2. Each �k contains 72 Gauss quadrature nodes�x�j�k (16). The plots
(a-f) correspond to times t in the rows of Table 1. Each vertical plot axis is labeled u�min:�max�n�
to indicate the smallest and largest element edges 2��max and 2��min at time step n. In (19) were
set e�a1 �e�a2 � 2

5 , �l�2π�1�2� and �xo �� 1
2 �

1
2 �. Observe that in (a) the peaks (red) generate

locally small-scale representations, that evolve with time to locally larger scales.
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Fig. 2. As in Fig. 1 but for ux � ∂xχ from the Burgers Eq. (21-22), zoomed to view �x�y� �
� 1

2 �1�� �0�

1
2 �. Observe the formation over time of steep fronts along the line family�l ��x �

�2�� 1�π, e.g., the line 1� x � 2y� 1
2 is prominent in this view. This behavior is no more

than the rotation of 1D Burgers dynamics into 2D, since if U�t�x� solves the 1D Burgers Eq.,
then �u�t��x� ��lU�l2t��l ��x� solves (20).
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Table 1. Data for solutions of (18) and (21). Each row corresponds to a plot in Figs. 1 and
2 at time step n. The total number of elements is the sum Ktot � ∑�max

���min
#��

�
of numbers of

elements adapted to all scales 2��, and p� 6 always.

Heat Burgers
ε� 10�8, ∆t � 3�7�10�7 ε� 10�10, ν� 10�2

n �min �max Ktot n ∆tn t � ∑n∆tn �min �max Ktot

(10�5) (10�2)

(a) 0 3 5 328 0 3.7 0. 3 3 64
(b) 1 3 4 208 1473 2.2 5.01 3 4 112

(c) 1129 3 3 64 3270 1.9 7.90 3 5 160
(d) 5309 2 3 52 3271 1.9 7.91 3 6 256
(e) 9698 2 2 16 3390 1.4 8.05 3 5 208
(f) 44009 1 1 4 19999 0.7 21.8 3 5 208
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1 Why anisotropy?

The straightforward answer to this question could be: because anisotropy is every-
where! Actually, when numerically solving a problem in Computational Fluid Dy-
namics (CFD), or in some other areas, there are many instances where the solution
shows directional features such as great variations along certain directions with less
significant changes along other ones, e.g. boundary and internal layers, singularities
or shocks. A typical example is provided by the solution of an advection-diffusion
problem, as shown in Fig. 1 [17, 18]. On the computational domain Ω � �0� 1� 2, a

Fig. 1. Isotropy (left) versus Anisotropy (right): meshes and contour lines

standard advective-diffusive problem is solved for the scalar u, in the presence of a
convective field a��2� 1�T and with a diffusivity µ� 10�4, completed with Dirichlet
boundary conditions, i.e. u � 1 on the left and top sides and u � 0 on the remaining
ones. The solution u exhibits an internal and a boundary layer of thickness O�10 �2�
and O�10�4�, respectively. As Fig. 1 shows, the isotropic mesh consists of more
elements than the corresponding anisotropic one (312 versus 64 triangles). In the lat-
ter case a correct orientation and deformation of the mesh elements (longest edges
parallel to the boundary layers) yields a great reduction of the number of triangles.
Moreover, in the anisotropic case the layers are captured more sharply.

This simple but remarkable example highlights the “leitmotiv” of an anisotropic
analysis: for a fixed solution accuracy, reduce the number of degrees of freedom
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involved in the approximation of the problem at hand by better orienting the mesh
elements according to some suitable features of the solution, or vice versa, given a
constraint on the number of elements, find the mesh maximizing the accuracy of the
numerical solution.

Going back to the utility of anisotropy, we observe that things may not be so
straightforward, of course. While anisotropy is proved to be superior in terms of ef-
fectiveness for the most accurate computations in many cases, yet, there are some in-
stances where a structured Adaptive Mesh Refinement (AMR) procedure turns out to
be more simple to carry out, especially in view of an implementation in a parallel en-
vironment. Moreover, in the unstructured case, the main drawback of the anisotropic
approach compared to the isotropic one, is the more complex analysis required to
fully describe the element dimensions and orientation. Though, this heavier burden
is the strength of the method. For other approaches in the anisotropic context, see
e.g. [1, 7, 8, 15, 19].

The outline of the article is the following. In Sect. 2 we introduce the anisotropic
framework by recalling some anisotropic interpolation error estimates, represent-
ing the main tool used in the a posteriori error analysis addressed in Sect. 3. This
analysis is discussed in the case of a general differential operator, moving from the
adjoint theory for goal-oriented error control, and it is then detailed for the advection-
diffusion-reaction and the Stokes problems. Finally, in Sect. 4 the effectiveness of the
anisotropic philosophy is assessed on some numerical test cases.

2 The anisotropic setting for FEM

Let Ω� �
2 be a polygonal domain and, for any 0 � h� 1, let �T h�h be a family of

conforming triangulations ofΩ into triangles K of diameter h K � h.
Following the idea proposed in [10], in order to derive the additional information
for the geometrical description of the mesh triangles, we move from the standard
affine transformation TK : �K � K, with K � MK��K� � bK , MK � �2�2 and bK �
�

2, from the reference triangle �K into K, where �K can be, e.g., the right triangle
�0�0���1�0���0�1� or the equilateral one ��1�2�0���1�2�0���0�

�
3�2� (see Fig. 2).

Let MK � BK ZK be the polar decomposition of the invertible matrix M K , with BK

and ZK a symmetric positive definite and an orthogonal matrix, respectively. Then

1,K

r1,K

r2,K

K

2,K

K

K̂

T

λ

λ

r= 3
3

r

1

Fig. 2. The map TK
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we factorize the matrix BK in terms of its eigenvalues λi�K (with λ1�K � λ2�K) and
eigenvectors ri�K , for i � 1� 2, as BK � RT

KΛKRK , where ΛK � diag�λ1�K � λ2�K� and
RK � �r1�K � r2�K �T . As Fig. 2 shows, the eigenvectors ri�K provide the directions of
the semi-axes of the ellipse circumscribed to the element K, while the eigenvalues
λi�K measure the length of such semi-axes. Thus, the shape and orientation of each
triangle K is completely described by the quantities r i�K and λi�K . The deformation
of K with respect to �K can be measured by the so-called stretching factor sK �
λ1�K�λ2�K�� 1�, being s

�K � 1.

2.1 Functional framework

Throughout, we use a standard notation to denote the Sobolev spaces of functions
with Lebesgue-measurable derivatives, and their norms [16]. In more detail, let
W k�p�Ω� be the Sobolev space of functions for which th p-th power of the absolute
value of their distributional derivatives of order up to k � 0 is Lebesgue-measurable,
with 1� p�∞. For p � 2 we let H k�Ω� �W k�2�Ω�. In particular, L2�Ω� is the space
of square-integrable functions with norm � ��L2�Ω� and scalar product ��� ��, while for

the space Hk�Ω� we denote by � � �Hk�Ω� and � � �Hk�Ω� the corresponding norm and
seminorm, respectively. When the norms or seminorms are referred to some subspace
S of Ω, they are written as � � �L2�S�, � � �Hk�S� and � � �Hk�S�, while the scalar product
is denoted by ��� ��S. We also recall that L∞�Ω� is the space of bounded functions
a.e., while W 1�∞�Ω� � L∞�Ω� is such that also the first derivatives are bounded a.e.
Finally, C0�Ω� denotes the space of continuous functions on Ω.

2.2 Anisotropic interpolation error estimates

The starting point for the a posteriori analysis in Sect. 3 has been the derivation of
suitable anisotropic interpolation error estimates [10, 12, 17].
We have proved estimates for both the Lagrange and the Clément-like interpolants [5,
6] to take into account different regularity of the function to be interpolated. Denoting
by Wh the finite element space of continuous affine functions, let Π h : C0�Ω��Wh

and Ih : L2�Ω��Wh be the Lagrange and Clément linear interpolants, respectively
and let their restrictions to each element K � Th be ΠK and IK . Then we have:

Proposition 1. Let v � H2�K�, for any K � Th. Then there exist two constants C1 �
C1��K� and C2 � C2��K� such that

�v�ΠK�v��L2�K� �C1

� 2

∑
i� j�1

λ2
i�Kλ2

j�KLi� j
K �v�

�1�2

� (1)

�v�ΠK�v��H1�K� �C2 λ�1
2�K

� 2

∑
i� j�1

λ2
i�Kλ

2
j�KLi� j

K �v�

�1�2

� (2)

where
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Li� j
K �v� �

�

K

�
r T

i�K HK�v�r j�K
�2

dx� with i� j � 1� 2� (3)

and HK�v� is the Hessian matrix associated with v.

Proposition 2. Let v � H1�Ω�. Then there exist two constants C3 � C3�M�
�C� and

C4 �C4�M�
�C� such that, for any K � Th,

�v� IK�v��L2�K� �C3

� 2

∑
i�1

λ2
i�K

�
r T

i�KGK�v�ri�K
��1�2

� (4)

�v� IK�v��H1�K� �C4λ�1
2�K

� 2

∑
i�1

λ2
i�K

�
r T

i�KGK�v�ri�K
��1�2

� (5)

where GK�v� � �
2�2 is the symmetric positive semi-definite matrix with entries

�GK�v��i� j �
�
∆K
∂v�∂xi ∂v�∂x j dx with x � �x1� x2�

T � K, ∆K is the patch of all the

elements sharing a vertex with K, and M � � and �C � 0 are the constants defined
through the relations

card�∆K�� M and diam�∆
�K��

�C � (6)

with ∆
�K � T�1

K �∆K�.

Remark 1. Requirements (6) demand the cardinality of any patch ∆ K as well as the
diameter of the reference patch ∆

�K to be uniformly bounded independently of the
geometry of the mesh. In particular, the latter inequality rules out some too distorted
reference patches (see Fig. 1.1 in [17]).

A comparison of the inequalities in Proposition 1 and 2 with the corresponding
isotropic results shows that the anisotropic estimates are more complex. For instance,
let us consider the isotropic estimate corresponding to (1), given by

�v�ΠK�v��L2�K� �C�1 h2
K �v�H2�K� � (7)

with C�1 � C�1��K�. From a dimensional viewpoint, we have both in (1) and in (7)
the square of the spacing parameters (i.e. hK in the isotropic case, λ1�K � λ2�K in the
anisotropic one). On the other hand, the H 2-seminorm of v in (7) is replaced by a
suitable sum of the Li� j

K �v� quantities in (1). We claim that the information provided
by the seminorm �v�H2�K� has been split along the directions r1�K and r2�K via the

quantities Li� j
K �v� representing squared L2-norms of directional second-order deriva-

tives of v. As anticipated in Sect. 1, we are replacing the “lumped” isotropic results
with more “distributed” ones. The pay-off of such a framework is that we are able to
finely tune the adapted meshes in terms of shape and orientation of the elements.
Finally, in view of the a posteriori analysis of Sect. 3, we have also derived anisotropic
estimates for the L2-norm of the interpolation error on the edges e of the triangulation
Th (see [12] for the details).
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3 Anisotropic a posteriori error analysis

Moving from the a posteriori dual-based approach developed in [3], we aim to con-
trol suitable linear continuous functionals J��� of the discretization error e h associ-
ated with the considered finite element approximation. In CFD, examples of J��� are
the lift and drag around bodies in external flows or mean and local values, while
in structural mechanics the torsion moment, the stress value or the surface tension
are typical goal-quantities. The leading idea of our a posteriori analysis has been to
combine the advantages deriving from an error functional control with the richness
of information provided by an anisotropic framework.

Let us sketch the procedure used to derive the anisotropic a posteriori error estimator
for a general differential problem

L�u� � f in Ω � (8)

In the subsections below we particularize such a procedure to standard model prob-
lems in CFD. We refer to [11, 12, 13] for a detailed description of such an approach.
First, let us introduce the weak form associated with (8): find u �V such that

a�u�v� � F�v� for any v �V� (9)

where V is a suitable functional space accounting for the boundary conditions com-
pleting the problem at hand, and a��� �� and F��� are the bilinear and linear forms
corresponding to the differential operator L and the source term f in (8), respec-
tively. The discrete form associated with (9) is obtained by projection onto the space
Vh �V of continuous piecewise linear finite elements which yields: find u h �Vh such
that

a�uh�vh� � F�vh� for any vh �Vh� (10)

As shown in Sects. 3.1 and 3.2, the forms a��� �� and F��� have to be suitably sta-
bilized in the case of strong advective/reactive terms, or of the Stokes problems in
order to guarantee the absence of spurious oscillations or the well-posedness of the
problem, respectively.
By suitably combining the weak form, with v � vh, with the discrete one, we get the
well-known Galerkin orthogonality property

a�eh� vh� � 0 for any vh �Vh� (11)

stating the orthogonality of the discretization error e h � u� uh with respect to the
discrete space Vh.
Let us introduce now the dual problem associated with (9): find z �V such that

a��z� ϕ� � J�ϕ� for any ϕ �V� (12)

where J is a linear continuous functional to be suitably chosen according to the phys-
ical quantity to control and a���� �� is the adjoint form to a��� ��, defined by the relation
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a��z� ϕ� � a�ϕ�z�, for any ϕ �V .

We are now in a position to estimate the discretization error associated with the
goal quantity, i.e. J�eh�. With this aim, let us first choose in (12) ϕ � eh. Then by
exploiting the property of the adjoint form a ���� �� and the Galerkin orthogonality
property (11) with vh � zh, we get

J�eh� � a��z� eh� � a�eh� z� � a�eh� z� zh� � F�z� zh��a�uh� z� zh�� (13)

where the last equality is due to the weak form (9) with v � z� zh. So far no explicit
choice has been made for zh. Usually, zh is identified with a suitable interpolant of
the dual solution z, according to the regularity of the latter. An integration by parts
of the right-hand side of (13) together with a suitable use of anisotropic interpolation
error estimates such as those cited in Sect. 2.2, lead to an a posteriori error estimate
of the general form

�J�eh�� �C ∑
K�Th

ρK�uh�ωK�z�� (14)

where ρK�uh� � f �L�uh� is the residual associated with the the primal problem (8)
and ωK�z�, which gathers the anisotropic information, depends on the dual solution
and weights the residual term. Notice that ρK�uh� measures the error related to the
approximation uh, while the term ωK�z� takes into account the propagation of such
an error driven by the functional J��� to control. The terms ρ K�uh� and ωK�z� in
(14) depend on the particular differential problem (8). In the subsections below we
explicitly provide two examples of the estimator (14) by considering some standard
problems.

3.1 The advection-diffusion-reaction problem

We address the standard scalar advection-diffusion-reaction problem with mixed
boundary conditions

�����
����

L�u� ��µ∆u�a �∇u�αu� f in Ω �

u � 0 on ΓD �

µ
∂u
∂n

� g on ΓN

(15)

where ΓD and ΓN are suitable measurable nonoverlapping partitions of the boundary
∂Ω of Ω with ΓD �� � and such that ∂Ω � ΓD � ΓN ; the source f � L2�Ω�, the
diffusivity µ � ��, the advective field a � �W 1�∞�Ω��2, with ∇�a � 0, the reaction
coefficient α � L∞�Ω� with α � 0 a.e. in Ω, and g � L2�ΓN� are given data, while
∂u�∂n�∇u �n is the normal derivative of u, n being the unit outward normal to ∂Ω.
As we are interested in advection-reaction dominated problems, we have to discretize
(15) by means of a suitable stabilized scheme. The discrete form (10) is thus replaced
by the stabilized one
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aτ�uh�vh� � Fτ�vh� for any vh �Vh� (16)

For instance, by choosing a streamline-diffusion scheme [9], the stabilized forms
aτ : V �V � � and Fτ : V � � for smooth enough functions u and v, are defined as

aτ�u�v� �
�

Ω

µ∇u �∇vdx�
�

Ω

�a �∇u�αu�vdx

� ∑
K�Th

�

K

τK ��µ∆u�a �∇u�αu��a �∇v�dx �

Fτ�v� �

�

Ω

f vdx �

�

ΓN

gvds � ∑
K�Th

�

K

τK f �a �∇v�dx �

where the coefficients τK are elementwise stabilizing parameters for which several
proposals can be found in the literature (see, e.g., [2, 3, 4, 17]).
Following the procedure described above, we can derive an anisotropic a posteriori
error estimator for (15) which can be cast in the form (14) [13]. Let us define the
element interior and boundary residuals given by r K � � f �µ∆uh�a �∇uh�αuh��K
and

je �

�������
������

0 if e � ΓD �

�2

�
µ
∂uh

∂nK
�g

�
if e � ΓN �

�µ
� ∂uh

∂nK

�
e

if e � E int
h �

(17)

respectively. Here ∂uh�∂nK � ∇uh �nK is the normal derivative of uh, nK is the unit
outward normal to ∂K, E int

h denotes the set of the internal edges of the skeleton Eh

of the triangulation Th, and �∂uh�∂nK �e stands for the jump of the normal derivative
of uh over the edge e� ∂K. Then the residual ρK�uh� is given by

ρK�uh� � �rK�uh��L2�K�

�
1�

τK

λ2�K
�a�L∞�K�

�
�

1

2λ1�2
2�K

� je�L2�∂K� � (18)

Concerning the weight ωK�z�, by assuming an H1-regularity for the dual solution z,
we identify zh in (13) with the Clément interpolant of z, thus obtaining

ωK�z� �

�
2

∑
i�1
λ2

i�K

	
rT

i�K GK�z�ri�K

�1�2

� (19)

Notice that all the anisotropic information λ i�K and ri�K is contained in (19). The a
posteriori analysis above has been applied to a more realistic problem in haemody-
namics [11]. Moreover, the analysis above covers also the diffusion-reaction problem
by letting a � 0 in (15).
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3.2 The Stokes problem

Let us consider the standard Stokes problem: seek the velocity u and the pressure p
of an incompressible fluid, subject to mixed boundary conditions:

�������
������

�µ∆u�∇p � f in Ω �

∇�u � 0 in Ω �

µ�∇u��n� p�n � g on ΓN �

u � 0 on ΓD �

(20)

where ΓD, ΓN and�n are defined as in Sect. 3.1; the source term f � �L2�Ω��2, the vis-
cosity µ���, g� �L2�ΓN��

2 are given data. Notice that the differential operator L�u�
in (8) is replaced by the operator L�u� p� given by the left-hand sides of (20) 1-(20)2.
Moreover, the weak space V in (9) is replaced by the tensor product space W �Q.
In order to guarantee the inf-sup condition, the discretization of the Stokes prob-
lem requires a stabilized method. By using, for instance, the Galerkin Least Squares
method, the stabilized discrete form of (20) becomes: find �u h� ph� in Wh�Qh, with
Wh � W and Qh � Q formed by continuous piecewise linear finite elements, such
that

aτ��uh� ph���vh�qh�� � Fτ�vh�qh� for any �vh�qh� �Wh�Qh� (21)

where the stabilized forms aτ : �W �Q�2 � � and Fτ : W �Q� � are given by

aτ��u� p���v�q�� �
�

Ω

µ∇u : ∇vdx�
�

Ω

p∇�vdx�
�

Ω

q∇�udx

� ∑
K�Th

τK

�

K

∇p �∇qdx

Fτ�v�q� �
�

Ω

f �vdx�
�

ΓN

g �vds� ∑
K�Th

τK

�

K

f �∇qdx�

(22)

As we have two unknowns, we can control two continuous linear functionals, the
first one J1��� associated with the discretization error�eu � u�uh of the velocity and
the second one J2��� related to the discretization error e p � p� ph of the pressure.
Likewise, we can define both the element interior and boundary residuals associated
with the momentum equation (20)1, r1

K�uh� ph� � �f�µ∆uh�∇ph��K and

J e �

����
���

0 if e � ΓD �

2�g� �µ�∇uh�nK�� ph�nK�� if e � ΓN �

� ��µ�∇uh�nK�� ph�nK��e if e � E int
h �

(23)

respectively, and the interior residual r2
K�uh� � �∇�uh��K related to the continuity

equation (20)2. Estimate (14) is thus replaced by the new one
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�J1��eu�� J2�ep�� �C ∑
K�Th

�ρ1
K�uh� ph�ω1

K��w��ρ
2
K�uh� ph�ω2

K�r�� � (24)

with C �C�M� �C� �K� and ��w�r� the dual velocity-pressure pair, while

ρ1
K�uh� ph� � ��r1

K�uh� ph���L2�K��
1
2
��J e��L2�∂K�

�λ2
1�K �λ

2
2�K

λ3
2�K

�1�2

�

ρ2
K�uh� ph� � ��r2

K�uh���L2�K��
τK

λ2�K
��r1

K�uh� ph���L2�K��

ω1
K��w� �

� 2

∑
i� j�1

λ2
i�Kλ

2
j�KLi� j

K ��w�
�1�2

�ω2
K�r� �

� 2

∑
i�1

λ2
i�K

�
r T

i�KGK�r�ri�K

��1�2
�

(25)

where Li� j
K ��w� is the straightforward extension to vector-valued functions of the term

(3). We point out that (24) consists of contributions associated with the error propa-
gation due to both the dual velocity and the dual pressure.

4 Numerical results

A typical numerical solution process of a given problem consists of an adaptive itera-
tive procedure based on a metric-based approach. Starting from the a posteriori error
estimate, a second-order tensor field, embedding the information about the mesh
spacing and stretching, is defined on the actual mesh and employed for the genera-
tion of the new mesh, as described in [13]. The software BAMG [14] has been used
for this purpose.
In this section we address the numerical solution of some test cases. In more detail,
we consider the advection-diffusion-reaction problem (15) and we show the effec-
tiveness of the adaptive algorithm for the construction of an “optimal ” mesh, e.g.,
the mesh for which we have maximum accuracy for a given number of degrees of
freedom.
The “glass” test case
Let us define r �

�
�x1�1�2�2��x2�1�2�2 while choosing in (15), Ω � �0�1�2,

µ� 10�4, f � 1 for 1�5� r � 1�4 and zero elsewhere, a��x2�1�2���x1�1�2��T ,
α� 100 for r � 1�5 and zero elsewhere, andΓN ��. The solution u exhibits a strong
internal circular layer in the region 1�5 � r � 1�4 and a large gradient in the radial
direction in the region 1�4 � r � 1. With reference to Fig. 3, the adaptive process
starts from a uniform mesh (top-left) and is stopped after two iterations, yielding the
meshes at the top-center and top-right. The numerical solutions on the initial mesh,
and on the other two meshes are displayed in the bottom line. The functional J���
has been chosen as J�v� � a0�v�u� for any v �V , where the subscript 0 refers to the
nonstabilized bilinear form derived from (16). This choice allows us to control the
energy norm of the discretization error, as J�u�u h� � a0�u�uh�u� � a0�u�uh�u�
uh�, thanks to the Galerkin orthogonality property. All the main directional features
characterizing the solution u are well captured by the anisotropic error estimator
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Fig. 3. Sequence of meshes (top) and corresponding solutions (bottom)

as the mesh elements are stretched along the direction of the layers. Table 1 (left)
collects the information about the number of elements and of nodes for the three
meshes.

Table 1. Degrees of freedom: the “glass” (left) and “channel” (right) test cases

# elements # nodes

1312 697
4203 2123
5838 2939

# elements # nodes

1016 561
3763 1950
3991 2083

The “channel” test case
Let Ω in (15) be the U-shaped domain given by the square ��1�1� 2 from which the
rectangle ��1�0�� ��0�4�0�4� has been cut, and µ � 10�4, f � 0, a � �x2��x1�

T ,
α � 0, and ΓN ��. The nonhomogeneous Dirichlet datum takes the value 1 on the
sides ��x1 ��1���0�4� x2 � 1�����x2 � 0�4����1� x1 ��0�5��. The solution
shows two circular-shaped internal layers, a boundary layer near the top-left corner
at x2 � 1, and an outflow boundary layer at x2 ��0�4. With reference to Fig. 4, the
adaptive process starts from a uniform mesh (top-left) and is iterated two more times,
with corresponding grids shown at top-center and top-right. The numerical solutions
on the initial mesh and on the two adapted meshes are displayed in the bottom line.
The functional J��� has been chosen as in the previous example. Notice how all the
layers are well represented on the last grid, though some oscillation is still polluting
the numerical solution. Table 1 (right) summarizes the information about the number
of elements and of nodes for the sequence of meshes.
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Fig. 4. Sequence of meshes (top) and corresponding solutions (bottom)
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Summary. Error representation formulas and a posteriori error estimates for numerical so-
lutions of hyperbolic conservation laws are considered with specialized variants given for the
Godunov finite volume and discontinuous Galerkin finite element methods. The error repre-
sentation formulas utilize the solution of a dual problem to capture the nonlocal error behavior
present in hyperbolic problems. The error representation formulas also provide a framework
for understanding superconvergence properties of functionals and fundamental differences be-
tween finite element and Godunov finite volume methods. Computable error estimates are then
constructed for practical implementation in computer codes. The error representation formu-
las and computable error estimates also suggest a straightforward strategy for mesh adaptivity
which is demonstrated on numerical hyperbolic problems of interest.

Key words: A posteriori error estimates, error representation, Godunov finite vol-
ume methods, finite element methods, unstructured meshes.

1 Introduction

In the numerical simulation of partial differential equations, a frequently encoun-
tered objective in these simulations is the subsequent calculation of certain derived
quantities of particular interest, e.g., aerodynamic lift and drag coefficients, stress
intensity factors, mean temperatures, etc. The ability to estimate the error in such
derived quantities (mathematically described as functionals) and modify the calcula-
tion procedure via adaptivity to efficiently decrease this error provides a systematic
approach to improved reliability and efficiency of numerical simulations.

For an introduction to a posteriori error analysis of functionals see the ar-
ticles by Becker and Rannacher [BR98], Eriksson et al. [EEHJ95], Giles et al.
[GLLS97, GP99], Johnson et al. [JRB95], Prudhomme and Oden [OP99, PO99],
Süli [S9̈8], the collected NATO lecture notes [BD02] and the multitude of additional
references contained therein. The main goal of this work is to provide a brief in-
troduction to these general theories for nonlinear conservation laws and to relate
specialized theories for the Godunov finite volume method as described in Barth and
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Larson [BL02] and the discontinuous Galerkin method as described in Larson and
Barth [LB99] as well as Hartmann and Houston [HH02]. Comparison of these theo-
ries exposes important differences between finite element and finite volume methods
with respect to the error representation of functionals. This is due to the absence of
full Galerkin orthogonality in Godunov finite volume methods, namely that element
(cell) residuals in the finite element method are orthogonal to a much larger space of
functions than are residuals in the finite volume method. Consequently, finite element
and finite volume methods with identical rates of convergence for global error mea-
sures can have dramatically different rates of convergence for derived functionals.
Another consequence is that the dual (adjoint) problem used in the error representa-
tion formula for functionals can be approximated in Godunov finite volume methods
using the same order method (same space of reconstructed functions) as used in the
primal problem. Attempting this same strategy using the finite element methods con-
sidered herein fails completely since by Galerkin orthogonality the estimated error
is identically zero. For the finite element method, the dual problem must be approxi-
mated in a larger space of functions than used in the primal numerical method.

2 Background

Consider the following system of m first-order conservation laws in a domainΩ�R d

with boundary Γ �
∑d

i�1 f i
�xi
�u� � 0 � for x in Ω

A��g�u��Γ � 0 � for x on Γ (1)

where u�x� : Rd �� Rm denotes the vector of conserved variables, f i�u� : Rm ��
Rm

� i � 1� � � � �d the flux vector components, and A � ∑d
i�1 ni f i

�u the flux jacobian
matrix associated with a direction, n, normal to Γ. In the present discussion, only
spatial derivatives are considered but more generally x could include a time coordi-
nate without introducing any new complication in the abstract error representation
formulas given below.

Let K be a partition of a polygonal domain Ω into non-overlapping shape reg-
ular elements (or control volumes) denoted by K. Furthermore, consider two finite-
dimensional spaces of piecewise polynomials with differing degrees of interelement
continuity. The first space, Vh�p, is the standard finite element space of piecewise
polynomials of complete degree p with C 0 continuity between elements

Vh�p � �v : v �C0�Ω��v�K � Pp�K� � �K �K 	 (2)

with Pp�K� the space of polynomials of degree 
 p defined on an element K. The
second space, V B

h�p, is the mesh dependent broken space of piecewise polynomials of
complete degree p in each K with no continuity between elements

V B
h�p � �v : v�K � Pp�K� � �K �K 	 � (3)

Using this latter broken space, two seemly different methods are considered. The first
method is the the discontinuous Galerkin (DG) finite element method introduced by
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Reed and Hill [RH73] as analyzed by Johnson and Pitkäranta [JP86] and further
refined for nonlinear conservation laws by Cockburn et al. [CLS89, CS97].

Discontinuous Galerkin FEM. Find uh � V B
h�p such that

BDG�uh�v� � F�v�� �v � V B
h�p (4)

where

BDG�uh�v��F�v� � ∑
K�K

�
�

�
K

d

∑
i�1

v
�xi � f i�uh�dx

�

�
∂K�Γ
v� �h�n;�uh����uh���ds�

�
∂K�Γ

v� �h�n;�uh���g�ds
�

(5)

where h�n;u��u�� is a numerical flux function such that ∑d
i�1 ni f i�u� � h�n;u�u�

and h�n;u��u�� ��h��n;u��u��.
The second method considered is the generalization of Godunov’s original method

[God59] to higher order accuracy via various forms of data reconstruction, e.g.
MUSCL in [vL79], TVD in [Har83], UNO in [HOEC87], ENO in [Har89], and fur-
ther generalization to unstructured meshes given in [BJ89, BF90, DOE90, Bar98,
Abg94, Van93]. Recently, in Barth and Larson [BL02] the generalized Godunov fi-
nite volume method was shown equivalent to a particular Petrov-Galerkin variant of
the discontinuous Galerkin method:

Higher Order Godunov FVM. Find u0 � V B
h�0 such that

BDG�R
0
pu0�v� � F�v�� �v � V B

h�0� R0
p : V B

h�0 �� V B
h�p (6)

where BDG is the same semilinear form used in the discontinuous Galerkin method
and R0

p is any patchwise reconstruction operator that maps the broken space of piece-
wise constants to the broken space of piecewise polynomials of complete degree p.

Using either of these methods, the objective is to estimate the error in a user
specified functional M�u� which can be expressed as a weighted integration over the
domainΩ

Mψ�u� �
�
Ω
ψ �N�u�dx

or a weighted integration on the boundary Γ

Mψ�u� �
�
Γ
ψ �N�u�dx

for some user specified weighting function ψ�x� : Rd �� Rm and linear/nonlinear
function N�u� : Rm �� Rm. By an appropriate choice of ψ�x� and N�u�, it is possible
to devise functionals of practical engineering use, e.g. lift and drag forces on a body,
stress intensity factors, average quantities, etc.

In the remainder of this article, the connection between local error and nonlo-
cal cell residuals is given. This is accomplished through the introduction of a dual
(adjoint) problem. Error representation formulas using these dual problems are then
constructed for the following quantities of interest:
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� (Finite Element) MΨ�u��MΨ�uh� where uh � V B
h�p.

� (Godunov Finite Volume) MΨ�u��MΨ�R0
pu0� with u0 � V B

h�0 where R0
pu0 is the

reconstructed data in the Godunov finite volume method.

With error representation formulas in hand, superconvergence properties of certain
functionals is briefly examined. This identifies some distinct differences between fi-
nite element and Godunov finite volume methods. The error representation formulas
suggest simplified error estimates and a strategy for mesh adaptivity which is demon-
strated on numerical problems of interest.

3 Error Representation for Hyperbolic Problems

In this section, the notion of local error representation for hyperbolic problems is
revisited. Consider the primal scalar hyperbolic problem

�
Lu � f for x in Ω
u�Γ � g for x on Γ� � (7)

For illustrative purposes, let L denote the advection operator

Lu � λ �∇u (8)

with λ�x� : Rd �� Rd . In this particular case, the inflow boundary is defined by

Γ� � �x � x � Γ and λ �n� 0	 (9)

with n the exterior normal vector on Γ. Next introduce the Green’s function G�ξ;x�
satisfying adjoint problem

�
L�G�ξ;x� � δ�x�ξ� for x in Ω
G�ξ;x��Γ � 0 for x on Γ� (10)

where L� is the adjoint operator and Γ� the outflow boundary, Γ� � Γ
Γ�. The
Green’s function quantifies the connection between the local solution error and non-
local residuals. Let �u�v�Ω �

�
Ω u � vdx and consider the solution error at a point

ξ �Ω for uh � Vh�p

�uh�u��ξ� � �uh�u�δ�x�ξ��Ω
� �uh�u�L�G�ξ;x��Ω
� �L�uh�u��G�ξ;x��Ω
� �R�uh��G�ξ�x��Ω (11)

where R�uh� � Luh � f is the numerical residual. Absent from the final right-hand
side equation is the exact solution u. This latter formula reveals the dependence of
pointwise error on nonlocal numerical residuals. The error at a point ξ is a Green’s
function weighted combination of numerical residual errors integrated over the do-
main.
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In the PDE system generalization, the associated Green’s function components
can become quite complicated (and counterintuitive) so that heuristic error estima-
tion methods are more likely to fail. For example, Fig. 1 shows Green’s function
components for steady ideal magnetohydrodynamic flow with a velocity V and ve-
locity aligned magnetic induction field B. Figure 1 (left) shows isodensity contours
of the numerically computed Green’s function for a uniform super Alfvén MHD flow
indicating how numerical errors at a point in the center of the domain depend on lo-
cal residual errors occurring in an upstream domain of dependence associated with
the streamline and the fast magnetoacoustic characteristic cone. Decreasing the ve-
locity magnitude while keeping the magnetic field fixed in this problem eventually
gives rise to slow magnetoacoustic “forward inclined” waves (not found in hydro-
dynamics) so that now the same error components at a point in the center of the
domain depend on residual errors occurring both upstream along the streamline and
downstream along a cone associated with slow magnetoacoustic waves.

Fig. 1. Isocontours of the numerically computed Green’s function density component for the
2-D steady ideal magnetohydrodynamic equations for a point ξ located at the center of the unit
square domain. Streamline and fast magnetoacoustic wave front (left figure) corresponding to
super Alfvén flow �V ��c� 2� �B���c�ρ� � 1�2. Streamline and slow magnetoacoustic forward
inclined wave front (right figure), �V ��c � �88� �B���c�ρ� � 1�2.

4 Error Representation Formulas for Functionals

In this section, exact error representation formulas are derived for three abstract for-
mulations with
(1) BDG��� �� a bilinear form with M��� a linear functional.
(2) BDG��� �� a semilinear form (nonlinear in the first argument and linear in the sec-
ond argument) with M ��� a nonlinear functional.
(3) BDG�R0

p�� �� a semilinear form with M ��� a nonlinear functional.

Remark 1. To simplify the derivation of the error representation formulas, all bound-
ary conditions are assumed weakly enforced rather than equipping the trial space
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with strong boundary condition data. This technique avoids the tedious explicit cal-
culation of strong boundary conditions for the dual problem.

4.1 DG FEM Error Representation: The Linear Case

Let BDG��� �� denote a bilinear form and M��� a linear functional. In the following
derivations, πh denotes any suitable projection operator (e.g. interpolation, L 2 pro-
jection) into V B

h�p. Begin by introducing the primal numerical method assuming all
boundary conditions are weakly enforced.

Primal numerical problem: Find uh � V B
h�p such that

BDG�uh�v� � F�v� � v � V B
h�p

with the Galerkin orthogonality condition

BDG�u�uh�v� � 0 � v � V B
h�p �

Next, we introduce the auxiliary dual problem utilizing infinite-dimensional trial and
test spaces.

Dual problem: Find Φ � V B such that

BDG�v�Φ� � M�v� � v � V B
�

An exact error representation formula for a given functional M��� results from the
following steps

M�u��M�uh� � M�u�uh� (linearity of M)

� BDG�u�uh�Φ� (dual problem)

� BDG�u�uh�Φ�πhΦ� (orthogonality)

� BDG�u�Φ�πhΦ��BDG�uh�Φ�πhΦ� (linearity of B)

� F�Φ�πhΦ��BDG�uh�Φ�πhΦ� (primal problem)

so in summary

M�u��M�uh� � F�Φ�πhΦ��BDG�uh�Φ�πhΦ� � (12)

Notably absent from the right-hand side of this equation is any dependence on the
exact solution u.

4.2 DG FEM Error Representation: The Nonlinear Case

Let BDG��� �� denote a semilinear form and M ��� a nonlinear functional. To cope with
nonlinearity, mean-value linearization is employed
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BDG�u�v� � BDG�uh�v��BDG�uh�u;u�uh�v� � v � V B

M �u� � M �uh��M �uh�u;u�uh� �

For example, if B�u�v� � �Lu�v� for some nonlinear differential operator L then for
v � V

B�u�v� � B�uh�v��
�� 1

0
L

�u�ũ�θ��d θ �u�uh��v
�

� B�uh�v���L
�u �u�uh��v�

� B�uh�v��B�uh�u;u�uh�v��

with ũ�θ�� uh��u�uh� θ. For brevity, the dependence of B on the path integration
involving the exact solution u will be notationally suppressed. We then proceed in
the same fashion as in the previous example.

Primal numerical problem: Find uh � V B
h�p such that

BDG�uh�v� � F�v� � v � V B
h�p (13)

with orthogonality condition for the linearized form

BDG�u�uh�v� � 0 � v � V B
h�p �

A mean-value linearized dual problem is then introduced which utilizes infinite-
dimensional trial and test spaces.

Linearized dual problem: Find Φ � V B such that

BDG�v�Φ� �M �v� � v � V B
� (14)

An exact error representation formula for a given nonlinear functional M ��� then
results from the following steps

M �u��M �uh� � M �u�uh� (mean-value M )

� BDG�u�uh�Φ� (dual problem)

� BDG�u�uh�Φ�πhΦ� (orthogonality)

� BDG�u�Φ�πhΦ��BDG�uh�Φ�πhΦ� (mean-value B)

� F�Φ�πhΦ��BDG�uh�Φ�πhΦ�� (primal problem)

so in summary

M �u��M �uh� � F�Φ�πhΦ��BDG�uh�Φ�πhΦ� � (15)

Note that although Eqns. (12) and (15) appear identical, mean-value linearization
introduces a subtle right-hand side dependency on the exact solution in Eqn. (15).
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4.3 Godunov FVM Error Representation

BDG�R0
p�� �� and M ��� are both assumed nonlinear. Mean-value linearizations are

introduced as in the previous case

BDG�u�v� � BDG�R
0
pu0�v��BDG�u�R0

pu0�v� � v � V B

M �u� � M �R0
pu0��M �u�R0

pu0�

for u0 � V B
h�0 where the mean-value linearized forms again depend on a path integra-

tion involving the exact solution.

Primal Godunov FVM problem: Find u0 � V B
h�0 such that

BDG�R
0
pu0�v� � F�v� � v � V B

h�0 (16)

with the orthogonality condition

BDG�u�R0
pu0�v� � 0 � v � V B

h�0 �

Next, introduce the infinite-dimensional linearized dual problem.

Linearized dual problem: Find Φ � V B such that

BDG�v�Φ� �M �v� � v � V B
� (17)

An exact error representation formula for a given nonlinear functional M ��� for the
class of Godunov finite volume methods results from the following steps

M �u��M �R0
pu0� � M �u�R0

pu0� (mean-value M )

� BDG�u�R0
pu0�Φ� (dual problem)

� BDG�u�R0
pu0�Φ�π0Φ� (orthogonality)

� BDG�u�Φ�π0Φ��BDG�R
0
pu0�Φ�π0Φ� (mean-value B)

� F�Φ�π0Φ��BDG�R
0
pu0�Φ�π0Φ�� (primal problem)

with π0 any projection into Vh�0 thus yielding the following exact error representation
formula

M �u��M �R0
pu0� � F�Φ�π0Φ��BDG�R

0
pu0�Φ�π0Φ� � (18)

Again, it should be noted that the right-hand side has a subtle dependence on the
exact solution through the mean-value linearization used in the dual problem.
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4.4 Superconvergence of Functionals

In this section, convergence rates for functionals is examined. Recall the error repre-
sentation formulas for the discontinuous Galerkin and Godunov finite volume meth-
ods.

Discontinuous Galerkin Finite Element

M �u��M �uh� � F�Φ�πhΦ��BDG�uh�Φ�πhΦ� (19)

Godunov Finite Volume Method

M �u��M �R0
pu0� � F�Φ�π0Φ��BDG�R

0
pu0�Φ�π0Φ� � (20)

A notable difference between the discontinuous Galerkin method and the Godunov
finite volume method comes from the orthogonality condition used in the derivation
of the error representation formulas. In the finite element method, the error u� u h

is Galerkin orthogonal to all test functions in Vh�p with respect to the bilinear form
BDG��� ��. In the finite volume method, the error u�R 0

pu0 is only orthogonal to con-
stant test functions with respect to the same bilinear form. So even if the convergence
rates for global error measures using the finite volume and finite element methods are
the same, the convergence rates for functionals can be quite different. In the setting
of linear advection-diffusion problems, the superconvergence theory for function-
als is understood. For example, Süli and Houston in [BD02] give the convergence
theory of functionals for the streamline diffusion discretization of scalar hyperbolic
problems. For problems with sufficiently smooth primal and dual solutions, the basic
theoretical result for streamline diffusion states that if the primal method converges
at the rate O�hp�1�2� then functionals converge at the rate O�h2p�1�. When diffusion
terms are added to the PDE the convergence rate of functionals becomes O�h 2p�.

The analysis of functionals for the discontinuous Galerkin method is a trivial ex-
tension of the streamline diffusion analysis. Consider the scalar advection problem
given in (7-8). The well-known a priori theory [JP86, Joh87] for the discontinuous
Galerkin method (with interior stabilization added only for theoretical analysis pur-
poses) gives the following convergence result

��u�uh��
2 � h2s�1�u�2Hs�1�Ω�

where

��v��� ∑
K�K

�
h�Lv�2

K ��v�2
∂K��Γ��

1
2
�v�2

∂K��Γ��
1
2
��v����

2
∂K��Γ

�

for 0 � s � p. The discontinuous Galerkin method for (7-8) then reduces to the
following problem:

Find uh � V B
h�p such that �v � Vh�p
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∑
K�K

�Luh� f �v�δhLv�K � ��λ �n�� �u����v��∂K�Γ� ��λ �n�� �g�u��v��∂K�Γ � 0

where δh is O�h�. Using the a priori theory for the discontinuous Galerkin method
together with standard approximation theory, terms in the error representation for-
mula are readily estimated

�M�uh��M�u��DG � I� II� III� IV

with

I � � ∑
K�K

�Luh � f �Φ�πhΦ�K � �Chs�u�Hs�1�Ω��hs�1�Φ�Hs�1�Ω�

II � � ∑
K�K

�Luh � f �δhL�Φ�πhΦ��K � �Chs�u�Hs�1�Ω��hs�1�Φ�Hs�1�Ω�

III � � ∑
K�K

��λ �n�� �u����Φ�πhΦ�∂K�Γ �Chs� 1
2 �u�H p�1�Ω��hs� 1

2 �Φ�Hs�1�Ω�

IV � � ∑
K�K

��λ �n���g�u��Φ�πhΦ�∂K�Γ �Chs� 1
2 �u�Hs�1�Ω��hs�1�Φ�Hs�1�Γ��

(21)

for 0 � s � p. In these estimates, each right-hand side term has been written as the
product of two estimates coming from the primal and dual data respectively. If the
infinite-dimensional primal and dual solution data are sufficiently smooth so that
�u�H p�1�Ω� and �Φ�H p�1�Ω� are bounded by a constant then

�M�uh��M�u��DG �C h2p�1
�

Examination of the right-hand side terms in (21) shows the important role of Galerkin
orthogonality in attaining the “order doubling” superconvergence property of func-
tionals in the discontinuous Galerkin method. Unfortunately, similar a priori results
are not available for the Godunov finite volume method. If one only assumes orthogo-
nality with respect to constants in the discontinuous Galerkin method then one would
conclude from the above analysis that no superconvergence of functionals is attained.
Fortunately, the computations given next indicate that this is not the case in the Go-
dunov method and some limited superconvergence is observed but the prospect of
order doubling is lost.

To numerically verify the convergence rate of functionals for smooth primal and
dual data, numerical solutions of the following 2-D advection problem were obtained
using the discontinuous Galerkin finite element method and the Godunov finite vol-
ume method with least-squares reconstruction operator as described in Barth and
Larson [BL02]: ��

�
λ �∇u � 0 for �x�y� � �0�1�2 �

u�1�y� � g1�y� �

u�x�0� � g2�x� �

(22)

with circular advection field λ� ��y�x�T , g1�y� � 0, and
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Table 1. Convergence characteristics of the DG finite element and Godunov finite volume
methods for the circular advection problem (22). Tabulated data for the global L2�Ω� error
and error in the weighted outflow flux functional.

Global Error Functional Error
Method dofs h p �u�uh�L2 (rate) �M�u��M�ũh�� (rate)

DG FEM 1200 .0616 1 .639e-2 .232e-3
DG FEM 4800 .0258 1 .171e-2 (1.51) .168e-4 (3.02)
DG FEM 19200 .0134 1 .390e-3 (2.26) .217e-5 (3.12)
DG FEM 76800 .0071 1 .992e-4 (2.16) .275e-6 (3.25)

Godunov FV 1600 .0258 1 .365e-2 .136e-3
Godunov FV 6400 .0134 1 .836e-3 (2.25) .169e-4 (3.20)
Godunov FV 25600 .0071 1 .167e-3 (2.36) .214e-5 (3.25)
Godunov FV 102400 .0036 1 .416e-4 (2.21) .262e-6 (3.09)

DG FEM 2400 .0616 2 .936e-3 .128e-5
DG FEM 9600 .0258 2 .977e-4 (2.60) .247e-7 (4.54)
DG FEM 38400 .0138 2 .108e-4 (3.51) .110e-8 (4.97)
DG FEM 153600 .0071 2 .132e-5 (3.16) .374e-10 (5.09)

Godunov FV 1600 .0258 2 .278e-2 .882e-4
Godunov FV 6400 .0134 2 .522e-3 (2.55) .874e-5 (3.52)
Godunov FV 25600 .0071 2 .855e-3 (2.84) .884e-6 (3.60)
Godunov FV 102400 .0036 2 .135e-4 (2.72) .980e-7 (3.24)

g2�x� �

� �ψ�9�20; �x�1�2�� � �1� �ψ�9�20; �x�1�20��� if x � 1�2�ψ�9�20; �x�1�2�� � �1��ψ�9�20; �x�19�20��� if x � 1�2

where �ψ��; �� is a C∞ function

�ψ�r0;r� �

�
0 r � r0

e1�r2
0��r

2
�r2

0� r � r0
� (23)

In addition, the weighted outflow flux functional

Mψ�u� �
� 1

0
ψoutflow�y��λ �n��u�0�y�dy (24)

was computed using the weighting function

ψoutflow�y� �

� �ψ�7�20; �y�3�5�� � �1� �ψ�7�20; �y�1�4��� if y � 3�5�ψ�7�20; �y�3�5�� � �1��ψ�7�20; �y�19�20��� if y � 3�5
�

(25)
This particular weighting function was chosen so that the corresponding dual solu-
tion would be smooth although the dual solution was not needed for the calculation of
the functional error. Table 1 tabulates values of the global solution error and the error
in the weighted outflow flux functional using a sequence of four meshes. The results
using p � 1 approximation are very comparable between the finite element and finite
volume methods. Each method shows second order convergence in the global L 2 er-
ror norm and third order convergence in the functional error. The numerical results
using p � 2 approximation for the discontinuous Galerkin method confirm or exceed
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the theoretically estimated rates for both the global L2 error (third order) and the er-
ror in the weighted outflow functional (fifth order). Less favorably, the results for the
Godunov finite volume method with p� 2 approximation show an improvement of
no more than one power of h in the convergence rate of functional error when com-
pared to the convergence rate of the global L 2 error. Although the numerical results
for the Godunov finite volume method are far from conclusive and may depend on
the details of the reconstruction operator, the results do indicate a marked difference
between the finite element and finite volume method when computing functionals.
It is conjectured that this difference can be explained to some extent by the lack of
full Galerkin orthogonality in the finite volume method. Further analysis beyond the
scope of this article is clearly needed to more fully explain the performance of the
Godunov finite volume method.

5 Computable Error Estimates and Adaptivity

Computationally, the error representation formulas (12), (15) and (18) are not suit-
able for obtaining computable a posteriori error estimates and use in mesh adapta-
tion.

� The functions Φ�πhΦ and Φ�π0Φ are unknown where Φ � V B is a solution
of the infinite-dimensional dual problem.

� The mean-value linearization used in the linearized dual problems (14) and (17)
requires knowledge of the exact solution u.

Various strategies which address the numerical approximation ofΦ are discussed
in Barth and Larson [BL02], e.g. postprocessing, higher order solves, etc. Due to
Galerkin orthogonality, the dual problem in the discontinuous Galerkin finite ele-
ment method must be approximated in a larger space of functions than that utilized
in the primal numerical problem. For purposes of the present study, this is achieved
in the discontinuous Galerkin method by solving the dual problem using a polyno-
mial space that is one polynomial degree higher than the primal numerical problem,
viz. if uh � V B

h�p then Φ � Φh � V B
h�p�1. For the Godunov finite volume method,

π0 is the projection to piecewise constants. Consequently, the dual problem can be
approximated using the same reconstruction operator as used in the primal problem
(p �� 0). In practice, there may be some additional improvement in accuracy by using
an even higher order method for numerically approximating the dual problem. This
is experimentally considered in Sect. 6.

In the present study, the mean-value linearization depending on the states u and
uh is replaced by the simpler jacobian linearization evaluated at the numerical state
uh. This is not the only practical choice. In Barth and Larson [BL02], a more sophisti-
cated technique involving the postprocessing of primal data and the approximation of
the mean-value linearization by numerical quadrature is employed in computations.
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5.1 Direct Estimates

For brevity, the error representation formulas for the discontinuous Galerkin and
Godunov finite volume methods can be combined into a single formula

M �u��M �ũh� � F�Φ�πΦ��BDG�ũh�Φ�πΦ� (26)

where ũh � uh, π� πh for the discontinuous Galerkin method and ũ h � R0
pu0, π� π0

for the Godunov finite volume method. When written in this global abstract form, the
error representation formula does not indicate which elements in the mesh should be
refined to reduce the measured error in a functional. By applying a sequence of direct
estimates, error bounds suitable for adaptive meshing are easily obtained. The goal
in constructing these estimates is to estimate the local contribution of each element
in the mesh to the functional error. This local cell contribution will then be used as
an error indicator for choosing which elements to refine or coarsen in the adaptive
mesh procedure.

��M �u�� M �ũh�
��� �BDG�ũh�Φ�πΦ��F�Φ�πΦ�� (error representation)

� � ∑
K�K

�
BDG�K�ũh�Φ�πΦ��FK�Φ�πΦ�

�
� (element assembly)

� ∑
K�K

���BDG�K�ũh�Φ�πΦ��FK�Φ�πΦ�
��� (triangle inequality)

(27)

where BDG�K��� �� and FK��� are restrictions of BDG��� �� and F��� to the partition el-
ement K. The basic definition of the discontinuous Galerkin semilinear form given
in (5) shows one possible element assembly form but this is not a unique represen-
tation. For example strong and weak forms of the semilinear operator B DG��� �� yield
differing assembly representations. For the discontinuous Galerkin and Godunov fi-
nite volume methods, the error representation formula (26) together with (5) for a
single element K yields

BDG�K�ũh�Φ�πΦ��FK�Φ�πΦ� � �

�
K

d

∑
i�1

f i�ũh� � �Φ�πΦ�
�xi dx

�

�
∂K�Γ

�Φ�πΦ�� �h�n;�ũh����ũh���ds

�
�
∂K�Γ

�Φ�πΦ�� �h�n;�ũh���g�ds
�

�

(28)

The present numerical computations utilize the numerical flux formula

h�n;u��u�� �
1
2
� f �n;u��� f �n;u����

1
2
�A�n;u�u��u���� �u�

�

� (29)

with f �n;u� � ∑d
i�1 ni f i�u�� and A�n;u� � ∂ f �n;u��∂u. The state u�u��u�� is cho-

sen so that



196 T. J. Barth

� f �n;u���
�

� A�n;u�u
�

�u��� �u�
�

�

� (30)

Using this particular numerical flux, the following weighted residual (strong) form
can be obtained upon integration by parts

BDG�K�ũh�Φ�πΦ� � FK�Φ�πΦ� �
�

K
�Φ�πΦ� �

d

∑
i�1

f i
�xi
�ũh�dx

�

�
∂K�Γ

�Φ�πΦ�� �A��n;�ũh����ũh��� �ũh�
�

� ds

�

�
∂K�Γ

�Φ�πΦ�� �A��n;�ũh���g��g� �ũh���ds
�

�

(31)

This latter weighted residual form and the implied element assembly form ∑K BK��� ���
FK��� is preferred in the error estimates (27) since the individual terms represent
residual components that vanish individually when the exact solution is inserted into
the variational form and a slightly sharper approximation is obtained after applica-
tion of the triangle inequality in (27).

5.2 Adaptive Meshing

Motivated by the direct estimates (27), we define for each partition element K the
adaptation element indicator �ηK �

ηK � BDG�K�ũh�Φ�πΦ��FK�Φ�πΦ� � (32)

such that ��M �u��M �ũh�
��� ∑

K�K
�ηK � (33)

and an accurate adaptation stopping criteria
��M �u��M �ũh�

��� � ∑
K�K

ηK � � (34)

These quantities suggest a simple mesh adaptation strategy in common use with other
indicator functions:

Mesh Adaptation Algorithm
(1) Construct an initial mesh K .
(2) Compute a numerical approximation of the primal problem on the current mesh
K .
(3) Compute a suitable numerical approximation of the infinite-dimensional dual
problem on the current mesh K .
(4) Compute error indicators, ηK , for all elements K � K .
(5) If( �∑K�K ηK �� TOL) STOP
(6) Otherwise, refine and coarsen a specified fraction of the total number of elements
according to the size of �η�K , generate a new mesh K , and GOTO 2
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6 Numerical Results

In this section, selected numerical examples are given for scalar advection and sys-
tems of nonlinear conservation laws. Further numerical examples can be found in
[LB99] and [BL02].

6.1 Linear Advection

To assess the sharpness of the computable error estimates, the circular advection
problem given in (22) is again considered. Table 2 tabulates values of the functional
error and the estimated error as given in (27) using numerically approximated dual
problems (see Sect. 5). In addition, the effectivity index is included to characterize
sharpness of the estimates

θeff �
�estimated error�
�M�u��M�ũh��

�

Recall that when the exact dual solution Φ is used

�M �u��M �ũh��� � ∑
K�K

ηK � �

Consequently, the seventh column measures the effect of numerically approxi-
mating the dual problem. For this particular test problem, the technique of approxi-
mating the dual problem using a higher order method for the discontinuous Galerkin
method yields extremely accurate estimates of the functional error with θ eff very
close to unity. This comes at a fairly high price given the dramatic increase in arith-
metic complexity of the discontinuous Galerkin method with increasing p. The re-
sults for the Godunov finite volume method show that reasonable estimates can be
obtained by computing the dual problem with the same order method as the primal
problem. For p � 1, some improvement in the Godunov finite volume method is
achieved using a higher order method for the dual problem. For p � 2, the need for
solving the dual problem using a higher order method seems entirely unnecessary
since effectivity indices near unity are achieved.

After application of the triangle inequality, the estimate

�M �u��M �ũh�� � ∑
K�K

�ηK � (35)

is obtained for use in mesh adaptivity. Column eight in Table 2 shows some loss in
sharpness in this error estimate since the possibility of interelement error cancellation
is precluded. Even so, the working assumption is that this estimate is sufficiently
accurate to drive efficient mesh adaptivity. The results for the Godunov method with
p � 1 for the primal numerical problem show no significant differences in the (35)
estimate using either p � 1 or p � 2 solves for the dual problem. These numerical
results again illustrate significant differences between the Godunov finite volume
method and the discontinuous Galerkin methods that are worth further investigation.
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Table 2. Efficiency of the DG finite element and Godunov finite volume methods error esti-
mates for the circular advection problem (22). Tabulated data for the weighted outflow flux
functional error and the estimates given in (27) .

primal dual

Method dofs h p p �M�u��M�ũh�� �∑K ηK � �θeff� ∑K �ηK � �θeff�

DG FEM 1200 .0616 1 2 .232e-3 .233e-3 (1.00) .377e-3 (1.62)
DG FEM 4800 .0258 1 2 .168e-4 .168e-4 (1.00) .380e-4 (2.26)
DG FEM 19200 .0134 1 2 .217e-5 .217e-5 (1.00) .498e-5 (2.29)
DG FEM 76800 .0071 1 2 .275e-6 .276e-6 (1.00) .582e-6 (2.11)

Godunov FV 1600 .0258 1 1 .136e-3 .100e-3 (.735) .727e-3 (5.35)
Godunov FV 6400 .0134 1 1 .169e-4 .152e-4 (.900) .167e-3 (9.88)
Godunov FV 25600 .0071 1 1 .214e-5 .188e-5 (.879) .378e-4 (17.7
Godunov FV 102400 .0036 1 1 .262e-6 .245e-6 (.935) .900e-5 (34.4)
Godunov FV 1600 .0258 1 2 .136e-3 .141e-3 (1.04) .756e-3 (5.56)
Godunov FV 6400 .0134 1 2 .169e-4 .174e-4 (1.03) .167e-3 (9.88)
Godunov FV 25600 .0071 1 2 .214e-5 .216e-5 (1.01) .378e-4 (17.7)
Godunov FV 102400 .0036 1 2 .262e-6 .263e-6 (1.00) .892e-5 (34.0)

DG FEM 2400 .0616 2 3 .128e-5 .959e-6 (.750) .990e-5 (7.73)
DG FEM 9600 .0258 2 3 .247e-7 .237e-7 (.960) .158e-6 (6.40)
DG FEM 38400 .0138 2 3 .110e-8 .109e-8 (.991) .465e-8 (4.22)
DG FEM 153600 .0071 2 3 .374e-10 .373e-10 (.997) .143e-9 (3.83)

Godunov FV 1600 .0258 2 2 .882e-4 .893e-4 (1.01) .294e-3 (3.33)
Godunov FV 6400 .0134 2 2 .874e-5 .875e-5 (1.00) .355e-4 (4.06)
Godunov FV 25600 .0071 2 2 .884e-6 .885e-6 (1.00) .400e-5 (4.52)
Godunov FV 102400 .0036 2 2 .980e-7 .980e-7 (1.00) .494e-6 (5.04)

6.2 Compressible Euler Flow

In this example, Ringleb flow (an exact solution of the 2-D Euler equations obtained
via hodograph transformation, see [Chi85]) is computed in the channel geometry
using the discontinuous Galerkin method with linear elements. To illustrate the use
of the element indicators (32) in adaptive meshing, the mollified pointwise functional

Mδ�u� �
�
Ω

Energy�u� ψ̃�r0; �x� x0�� d x � x0 � ���63�1�70�T � r0 � 1�10

has been implemented for the energy component of the solution. Using this func-
tional, the corresponding dual problem has been computed and the mesh adapted
using the adaptation algorithm of Sect. 5.2. Figure 2 shows the resulting dual solu-
tion and the adapted mesh with three levels of refinement. The adapted mesh shows
the upstream dependence of numerical residual errors on the accuracy of this local
functional. Further details of the mesh adaptation process are given in Table 3. This
table also gives the approximate number of cells needed in a uniformly refined mesh
to achieve the same level of accuracy in the target functional. With just three levels of
refinement, the number of mesh cells in the adapted mesh is reduced by over a factor
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Fig. 2. Ringleb channel geometry. Dual energy isocontours solution corresponding to mollified
delta functional (left) and final adapted mesh (3 levels) (right).

Table 3. Performance of adaptive meshing algorithm for the Ringleb flow problem and the
mollified pointwise energy functional.

(Adaptive) (Uniform)
Level �M�u��M�ũh�� # Mesh Cells # Mesh Cells

0 2.40e-7 1482 1482
1 6.18e-8 2020 3422
2 8.82e-9 4010 14042
3 1.25e-9 10214 56882

of five from uniform refinement. This indicates the significant savings achieved by
the adaptive algorithm.

7 Concluding Remarks

A simple a posteriori error estimation theory for user specified functionals has been
constructed that is tailored to Godunov finite volume and discontinuous Galerkin
methods. Many issues remain unresolved:

� Mean-value linearization for schemes with non-differentiable limiters and/or re-
construction algorithms.

� Existence and solvability of dual problems.
� Numerical approximation of dual problems.

Even though error representations formula have been developed for both linear and
nonlinear functionals, very little is theoretically known about the existence or solv-
ability of dual solutions for general functionals. The analysis is made particularly
difficult since the linearized infinite-dimensional dual problem can have discontinu-
ous coefficients. In practice, one often finds that dual solutions are more complicated
in structure than the sought after primal solution. As an example, consider transonic
Euler flow (M∞� �85�α� 2�0Æ) over the NACA 0012 airfoil geometry. Suppose the
aerodynamic lift functional is chosen for evaluation:
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MLift�u� �
�
Γwall

�n �V���V ��Pressure�u� d x �

Figure 3 shows isodensity contours of the primal solution and isodensity contours of
the dual solution corresponding to the lift functional. The dual solution has a com-

Fig. 3. NACA airfoil geometry, M∞ � �85�α � 2�0Æ. Isodensity contours of primal solution
(left) and corresponding contours of the dual density solution (right) for the lift functional.

plicated structure with a large dipole singularity at the trailing edge of the airfoil and
numerous layers emanating from the airfoil surface near the leading edge stagnation
point, upper and lower sonic points, and the base of the upper and lower shockwaves.
These structures signify the sensitivity of the lift force to these features. These struc-
tures place additional demands on the discretization and suggests that the extension
to 3-D is a truly challenging problem. This will be pursued in future work.
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AMR for low Mach number reacting flow
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Summary. We present a summary of recent progress on the development and application of
adaptive mesh refinement algorithms for low Mach number reacting flows. Our approach uses
a form of the low Mach number equations based on a general equation of state that discretely
conserves both mass and energy. The discretization methodology is based on a robust projec-
tion formulation that accommodates large density contrasts. The algorithm supports modeling
of multicomponent systems and incorporates an operator-split treatment of stiff reaction terms.
The basic computational approach is embedded in an adaptive projection framework that uses
structured hierarchical grids with subcycling in time that preserves the discrete conservation
properties of the underlying single-grid algorithm. We present numerical examples illustrating
the application of the methodology to turbulent premixed combustion and nuclear flames in
type Ia supernovae.

1 Introduction

Detailed modeling of time-dependent reacting flows with realistic reaction mecha-
nisms places severe demands on computational resources. These computational costs
can be dramatically reduced by combining a low Mach number formulation that al-
lows a large increase in time step size with local adaptive mesh refinement to reduce
the total number of computational zones that must be advanced for a specific prob-
lem. Low Mach number models analytically eliminate acoustic waves from the sys-
tem while preserving compressibility effects arising from the reaction process and
associated thermal behavior of the fluid. These types of models for reacting flows
were first introduced by Rehm and Baum [29]. A systematic approach for deriv-
ing these types of models using aympotitics in Mach number was given by Majda
and Sethian [23]. Low Mach number models replace the compressible Navier Stokes
equations with a system evolving subject to a constraint on the velocity field. Since
acoustic waves have been analytically removed from the system, the time step is
determined by the advective time scale of the flow.

Local refinement for steady combustion has been discussed by a number of au-
thors. See for example, Smooke et al. [34], Coelho and Pereira [13], de Lange and de
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Goey [16], Mallens et al. [24] Somers and de Goey [31], Bennett and Smooke [10],
Bennett et al. [9], Becker et al. [3] and the references cited in these works.

For time-dependent flows, Najm et al. [26] couple a local refinement algorithm
for species and temperature with a vortex method for momentum. Pember et al. [28]
present an adaptive projection algorithm for time-dependent low Mach number com-
bustion using simplified kinetics and an assumption of unity Lewis number. The
methodology in Pember et al. [28] uses a hierarchical structured refinement approach
based on the local adaptive projection methodology developed by Almgren et al. [2].
The method discussed here represents a generalization of the Pember et al. method-
ology. In particular, it incorporates complex chemistry and the effects of differential
diffusion as discussed in Day and Bell [15] and the extension of the methodology to
nonideal equations of state as discussed in Bell et al. [5]. The reader is referred to
those papers for additional detail about the methodology.

We note that our basic discretization approach differs from the standard approach
to solving the low Mach number system originally proposed by McMurtry et al. [25].
In the McMurtry et al. approach an auxiliary equation for the density in convective
form is derived by differentiating the equation of state in time and replacing tempo-
ral derivatives of temperature and species by spatial derivatives of these quantities.
This equation is then used to advance the density in time with temperature being
determined from the equation of state. In the projection step, the McMurtry et al.
algorithm solves a constant coefficient Poisson equation to modify the velocity field
so that the conservation of mass equation is satisfied.

In contrast to this approach, we directly solve the conservation form of the equa-
tions for both enthalpy and density. Our projection step solves a variable coefficient
elliptic equation to enforce the velocity constraint given in equations orginally intro-
duced by Bell and Marcus [8]. This approach was first extended to combustion by
Lai [21] and Lai et al. [22]. Related implementations or extensions include Hilditch
and Colella [19] and Pember et al. [27]. Unlike the standard approach, the approach
discussed here conserves both mass and energy; however, the evolution does not re-
main on the constraint imposed by the equation of state. Instead, the evolution is
allowed to drift within a small neighborhood of that constraint.

In section 2, we introduce the low Mach number equations for a general equation
of state. In section 3, we describe a second-order projection algorithm for integrating
the low Mach number equations and give an overview of our adaptive methodology.
In the final two sections we present prototype applications of this methodology to
premixed turbulent combustion and nuclear flames. The results shown here are taken
from studies presented in [7] and [6], respectively.

2 Low Mach number model

The low Mach number model is derived from the compressible flow equations using
asymptotic analysis. These equations describe conservation of mass, momentum and
energy augmented with equations for the species representing the composition of the
fluid.
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∂ρ
∂t

�∇ �ρU � 0

∂ρU
∂t

�∇ � �ρUU� p� � ∇ � τ�ρ�g

∂ρE
∂t

�∇ � �ρUE� pU� � �∇ �q�∇ � τU�ρU ��g

∂ρYk

∂t
�∇ �ρUYk � ∇ �ρDk∇Yk �ρω̇k

Here, ρ, U , T and p are the density, velocity, temperature, and pressure, respectively,
and E � e�U �U�2 is the total energy with e representing the internal energy. Note
that e includes the energy of formation and mixing so that there is no explicit term
in the energy equation due to reaction; those effects are implicitly included in the
definition of e. (See, for example, Bird, Steward and Lightfoot [11].) In addition, Y k

is the mass fraction of species k, with associated production rate ω̇k. Here, both the
ω̇k and the ρDk∇Yk must sum to zero, expressing the notion that reactions conserve
mass and species diffusion cannot transport net mass. For simplicity we assume a
mixture model for species diffusion and ignore thermal diffusion (Soret) and Dufour
effects as well as radiative heat transfer. (Generalizing the formulation to include
these effects is straightforward.) For this case, the heat flux, q, is given by 1

q ��κ∇T �ρξkDk∇Yk

with ξk �
∂h
∂Yk

�
�
�

p�T�Yj� j ��k

, where the enthalpy, h� e� p�ρ. Finally, τ is the stress tensor,

�g is the gravitational force and κ is the thermal conductivity.
As a prelude to developing the low Mach number equations, we first rewrite the

energy equation in terms of the enthalpy,

ρ
Dh
Dt

�

Dp
Dt

� ∇ �κ∇T �∇ �ρξkDk∇Yk

For the low Mach number asymptotic analysis (following Majda and Sethian
[23]), we introduce scaled coordinates in which the time scale is proportional to the
spatial scale divided by the advective velocity scale. In this scaling, we expand pres-
sure and velocity in Mach number, M �U�cs, (cs is the sound speed). Substituting
these expansions in M into the equations of motion given above, retaining highest
order terms in M we find that the O�1� pressure term is independent of the spatial
coordinate and the O�M� pressure term is zero. Thus, in the low Mach number ex-
pansion, presure is of the form

p�x� t� � p0�t��M2π�x� t�

Thus, the pressure is decomposed into a thermodynamic component, p 0, that depends
only on time and a perturbation component, π, that is O�M 2�. For the low Mach

1Unless otherwise noted, we use the summation convention throughout the paper.
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number model, we ignore the O�M 2� effects on the thermodynamics. For simplicity,
in this paper we will assume that the flow occurs in an open environment under
constant pressure so that the thermodynamic pressure is, in fact, a constant which we
denote as p0. This leads to a modified momentum equation

∂ρU
∂t

�∇ �ρUU ��∇π�∇τ�ρ�g� (1)

and reduces the enthalpy equation to

∂ρh
∂t

�∇ � �ρUh� � ∇ �κ∇T �∇ �ρξkDk∇Yk (2)

The enthalpy and momentum equations combined with the species equations
(and conservation of mass) describe the evolution of the low Mach number system.
However, this evolution is also constrained by the equation of state. This constraint
is equivalent to a constraint on the divergence of the velocity field that is obtained by
differentiating the equation of state along particle paths

0 �
Dp
Dt

�
∂p
∂ρ

Dρ
Dt

�
∂p
∂T

DT
Dt

�
∂p
∂Yk

DYk

Dt
�

Combining this equation with the mass conservation equation, we obtain

∇ �U �
1

ρ∂p
∂ρ

�
∂p
∂T

DT
Dt

�∑
k

∂p
∂Yk

DYk

Dt

�

To complete the specification of the low Mach number model, we need to derive
the temperature evolution equation. For this derivation, we express the enthalpy as a
function of p, T , and Yk. and differentiate the enthalpy equation to obtain

Dh
Dt

�
∂h
∂T

����
p�Yk

DT
Dt

�
∂h
∂p

����
T�Yk

Dp
Dt

�
∂h
∂Yk

����
p�T�Yj� j ��k

DYk

Dt

After substituting from the above equations and using the low Mach number condi-
tion on p we have

ρcp
DT
Dt

� ∇ �κ∇T �ρDk∇ξk �∇Yk �ρξkω̇k (3)

where cp �
∂h
∂T

���
p�Yk

is the specific heat at constant pressure.

Substituting into the above equation for∇ �U yields an expression for a constraint
on the advective flow velocities:

∇ �U �
1

ρ∂p
∂ρ

�
1
ρcp

∂p
∂T

�∇ �κ∇T �ρDk∇ξk �∇Yk �ρξkω̇k� (4)

�
1
ρ
∂p
∂Yk

�∇ρDk∇Yk �ρω̇k

�
� S�
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3 Numerical methodology

In this section we discuss the numerical methodology used to integrate the low Mach
number equations. The spatial discretization uses finite volume differencing with ρ,
h, U ,∇π and the Yk’s defined on cell centers. The perturbational pressure is staggered
in both space and time . Advection is discretized using a second-order Godunov-type
procedure while diffusion is approximated with standard finite different methods.
Our temporal discretization strategy is a fractional step approach based on a pro-
jection approximation. In this approach we integrate the equations for momentum,
species and enthalpy using a lagged approximation to the constraint. We then ap-
ply a discrete projection to the intermediate velocity computed in the first step to
enforce the constraint. This basic fractional step algorithm is embedded in a hierar-
chical adaptive mesh refinement (AMR) algorithm. The methodology presented here
is documented in more detail in Day and Bell [15] for gaseous combustion and the
extension to general equation of state is discussed in Bell et al. [5]. In the next sub-
section we describe the single-grid algorithm. We then discuss incorporation of that
algorithm into an adaptive projection framework.

3.1 Single grid algorithm

The single grid algorithm is essentially a three-step process. First, we use an unsplit
second-order Godunov procedure to predict a time-centered (t n�1�2) advection veloc-
ity, UADV��, using the cell-centered data at t n and the lagged pressure gradient at
tn�1�2. The provisional field, U ADV��, represents a normal velocity on cell edges anal-
ogous to a MAC-type staggered grid discretization of the Navier-Stokes equations
(see [18], for example). However, U ADV�� fails to satisfy the time-centered diver-
gence constraint. We apply a discrete projection by solving the elliptic equation

DMAC 1
ρn GMACφMAC

� DMACUADV��
�

�
Sn
�
∆tn

2
Sn
�Sn�1

∆tn�1

�
(5)

for φMAC, where DMAC represents a centered approximation to a cell-based diver-
gence from edge-based velocities, and GMAC represents a centered approximation
to edge-based gradients from cell-centered data. The solution, φMAC, is then used to
define

UADV
�UADV��

�

1
ρn GMACφMAC

�

UADV is a second-order accurate, staggered-grid vector field at t n�1�2 that discretely
satisfies the constraint (4), and is used for computing the advective derivatives for U ,
ρh and ρYk.

In the next step of the algorithm we advance the advection-reaction-diffusion
system for ρh and ρYk. For the types of problems considered here, the reactions
typically occur on a scale faster than the fluid dynamics. For that reason, we treat
the reactions using a symmetric Strang-splitting approach so that the reactions can
be treated with stiff ODE methodology. We first advance the reactions terms ∆t�2
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in time. We then advance the advection-diffusion part of the equation ∆t in time
followed by a second advancement of the reaction terms ∆t�2 in time.

The reaction part of the enthalpy and species equations are of the form

∂Yk

∂t
� ω̇k

and

cp
∂T
∂t
��∑

k

ξkω̇k

Here, we include the evolution of temperature as part of the system of ODE’s in-
tegrated in the reaction step. We note, however, that for the reaction phase of the
computation the enthalpy remains constant. Thus, the evolution of temperature can
also be computed from the evolution of species by solving for the temperature given
the updated composition and the (constant) enthalpy. We have not used this later ap-
proach because of the added computational expense; however, to preserve the con-
servation of energy we do not use the updated temperature from the reaction step to
update the enthalpy. Instead, after the ODE integration, we recompute temperature
from the enthalpy and final species concentrations.

In our implementation, we integrate the chemistry component using time-implicit
backward difference methods, as implemented in VODE [12], a general-purpose stiff
ODE integration software package. VODE utilizes adaptivity in order of accuracy and
subcycled time-step selection so that an absolute error tolerance of 10�16 in mass
fractions is maintained throughout. Typically, the resulting scheme is between third
and fifth order convergent in time.

After completing the first reaction step, we update the advection-diffusion com-
ponent of the system. One numerical issue that must be addressed at this point is
the nonlinearity of the enthalpy diffusion. To facilitate the solution of the enthalpy
equation we rewrite the heat flux in terms of enthalpy diffusion

∂ρh
∂t
�∇ �Uρh� ∇ �

κ
cp
∇h�∇ �

�
∑
k

ξk
κ
cp
∇Yk

�
�∇ �ρDkξk∇Yk (6)

We advance the species equations and this modfied form of the enthalpy equa-
tions using a Crank-Nicolson treatment of diffusion and an explicit treatment of
advection. For the diffusive terms, the coefficients Dk, ξk, κ and cp are nonlinear
functions of ρ, h and the Yk’s. We treat this nonlinearity using lagged coefficients
in a simple iterative scheme. Two steps of this iteration are sufficient to guarantee
second-order convergence of the scheme. Another issue in the treatment of these
equations is that mixture models for species diffusion do not necessarily determine
diffusion fluxes that sum to zero. A standard method for correcting this discrepancy is
to define a “conservation diffusion velocity” as recommended by Coffee and Heimerl
[14], and rigorously justified as a first term in a convergent series expression for full
matrix diffusion by Giovangigli [17]. In the algorithm, we compute species diffusion
implicitly then explictly apply this correction. The corrected diffusion fluxes will be
denoted with an overbar.
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We begin with data obtained by advancing the first half of the chemistry integra-
tion which we denote with a superscript n. We compute edge-centered states for ρYk

and T at tn�1�2 using a second-order Godunov procedure. Time-centered edge values
of ρYk and T are used to compute t n�1�2 edge values for ρ � ∑ρYk and ρh. We now
update ρ using the discrete form of the continuity equation

ρn�1
� ρn

�∆t ∇ �

�
∑
k

UADVρY n�1�2
k

�
�

Given the updated density, we define Y n�1�0
k � Y n

k , hn�1�0
� hn and T n�1�0

� T n to
initialize the nonlinear iteration of the diffusion coefficients.

With the current iterate we now compute the approximations to the terms re-
quired to form the diffusion coefficients, Dk, ξk, κ and cp which we denote with the
superscript n�1�m. We then solve for a provisional update to the mass fractions

ρn�1Ỹ n�1�m
k �ρYk

∆t
�

�
∇ �UADVρYk

�n�1�2
� (7)

1
2
∇ �

�
ρn�1Dn�1�m

k ∇Ỹ n�1�m
k �ρnDn

k∇Y n
k

�
�

After the solution of (7) the initial new-time fluxes, �ρn�1Dn�1�m
k ∇Ỹ n�1�m

k do not
sum to zero. We again modify the fluxes using the correction velocity approach and
use the result to correct the provisional update to the mass fractions

ρn�1Y n�1�m
k �ρnY n

k

∆t
�
�
∇ �UADVρYm

�n�1�2
�

1
2

�
ρn�1Dn�1�m

k ∇Ỹ n�1�m
k �ρnDn

k∇Y n
k

�
�

We now update the enthalpy equation using

ρn�1hn�1�m
�ρnhn

∆t
�

�
∇ �UADVρh

�n�1�2
� (8)

1
2

�
∇ �

κn�1�m

cn�1�m
p

∇hn�1�m
�∇ �

κn

cn
p
∇hn

�

�
1
2
∇ �

�
ξn�1�m

k

�
ρn�1Dn�1�m

k ∇Ỹ n�1�m
k �

κn�1�m

cn�1�m
p

∇Y n�1�m
k

�

�ξn
k

�
ρnDn

k∇Y n
k �

κn

cn
p
∇Y n

k

��
�

Finally, we solve for an updated temperature, T n�1�m, consistent with the new ap-
proximation to species and enthalpy. We note that two passes through this iteration
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is sufficient to guarantee second-order accuracy of the advection-diffusion compo-
nent of the algorithm.

The integration of the enthalpy and species equations is completed by advancing
the reaction part of the system an additonal ∆t�2 in time. This provides a complete
update of the ρ, h, T , and Yk’s at the new time and allows us to evaluate the constraint
on the velocity field, Sn�1, at the new time.

The final step of basic integration step is to advance the velocity to the new time
level. For this step we first obtain a provisional cell-centered velocity at t n�1 using a
time-lagged pressure gradient,

ρn�1�2
Un�1��

�Un

∆t
�ρn�1�2

�
�UADV

�∇�U
�n�1�2

� 1�2�∇ � τ��∇ � τn�

�∇πn�1�2�ρn�1�2�g�

At this point U n�1�� does not satisfy the constraint. We apply an approximate projec-
tion to simultaneously update the pressure and to project U n�1�� onto the constraint
surface. In particular, we solve

Lρφ� D�Un�1���
∆t

ρn�1�2
Gπn�1�2��Sn�1 (9)

for nodal values of φ, where Lρ is the standard bilinear finite element approximation
to ∇ �

1
ρ∇ with ρ evaluated at t n�1�2. In this step, D is a discrete second-order operator

that approximates the divergence at nodes from cell-centered data, and G � �D T

approximates a cell-centered gradient from nodal data. In the formulation, φ satis-
fies Neumann boundary conditions at solid walls and inflow boundaries. At outflow
boundaries, Dirichlet conditions are generated to suppress any tangential accelera-
tions on the fluid leaving the domain. Nodal values for S n�1 for the solution of (9)
are computed using a volume-weighted average of cell-centered values. Finally, we
determine the new-time cell-centered velocity field from

Un�1 �Un�1��
�

∆t

ρn�1�2

�
Gφ�Gπn�1�2

�

and the new time-centered pressure from

πn�1�2 � φ�

This completes the description of the time-advancement algorithm.
Before discussing the incorporation of this methodology in an adaptive mesh re-

finement algorithm, we note some of the properties of the algorithm. As noted earlier,
although the scheme rigorously satisfies conservation of mass and enthalpy, the evo-
lution does not strictly maintain the equation of state at ambient pressure. (It is not
possible to preserve all three conditions in a projection-type fractional step scheme.)
Since the low Mach number asymptotics used to derive the governing equation show
that the thermodynamic pressure only satisfies this constraint to O�M 2�, relaxing the
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imposition of the constraint is a reasonable way of dealing with splitting errors. To
control the deviation from the equation of state we add a correction to the right hand
side of equation (5) that approximates

f

γρ∂p
∂ρ

�
∂p
∂t

�U �∇p

�
�

In this expression γ� cp�cv is the ratio of the two thermodynamic specific heats, and
f is a constant relaxation factor. We approximate ∂p�∂t by �p amb� p0��∆t, where p0

is the thermodynamic pressure defined by ρ, h and the Yk’s and pamb is the specified
ambient pressure, and U �∇p is approximated with upwind differences using p 0.
Thus, we are effectively adding a first-order approximation to the material derivative
of p0 � pamb along streamlines. This forcing term adjusts the advection velocity to
drive the evolution toward the constraint, preventing the solution from deviating an
appreciable amount from the equation of state while maintaining the second-order
accuracy of the overall scheme.

3.2 Adaptive mesh refinement

In this section we present an overview of the adaptive projection algorithm. This
framework, used in both Day and Bell [15] and Bell et al. [5] was initially developed
by Almgren et al. [1], and extended to low Mach number combustion by Pember et
al. [28]. The discussion provides only an overview of the methodology. We refer the
reader to the above papers for more details of the basic algorithm.

Our implementation of adaptive mesh refinement (AMR) is based on a sequence
of nested grids with successively finer spacing in both time and space. In this ap-
proach, fine grids are formed by evenly dividing coarse cells by a refinement ratio, r,
in each direction. Increasingly finer grids are recursively embedded in coarse grids
until features of the solution are adequately resolved. An error estimation proce-
dure based on user-specified criteria evaluates where additional refinement is needed
and grid generation procedures dynamically create or remove rectangular fine grid
patches as resolution requirements change.

The adaptive integration algorithm advances grids at different levels using time
steps appropriate to that level, based on CFL considerations. The multi-level proce-
dure can most easily be thought of as a recursive algorithm in which, to advance level
�, 0 � �� �max, the following steps are taken:

� Advance level � in time one time step, ∆t �, as if it is the only level. If � � 0,
obtain boundary data using time-interpolated data from the grids at ��1, as well
as physical boundary conditions, where appropriate.

� If � � �max

– Advance level (�� 1) for r time steps, ∆t ��1 � 1
r∆t�, using level-� data and

the physical boundary conditions.
– Synchronize the data between levels � and �� 1, and interpolate corrections

to finer levels ���2� � � � � �max�.
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The adaptive algorithm, as outlined above, performs operations to advance the
grids at each level independent of other levels in the hierarchy (except for boundary
conditions) and then computes a correction to synchronize the levels. Loosely speak-
ing, the objective in this synchronization step is to compute the modifications to the
coarse grid that reflect the change in the coarse grid solution due to the presence
of the fine grid. More specifically, when solving on a fine grid, we supply Dirichlet
boundary conditions from the coarse grid. This leads to a mismatch in the associated
fluxes at the coarse-fine interface that is corrected by the synchronization.

For the adaptive projection methodology presented here there are three basic
steps in the synchronization. First, the values obtained for U , ρYk and ρh are averaged
from the fine grid onto the underlying coarse grid. We view the resulting data as
defining a preliminary composite grid solution that is consistent between levels. We
denote this preliminary solution with a p superscript in the remainder of the section.
To complete the synchronization we need to correct inconsistencies arising from
the use of Dirichlet boundary conditions at coarse-fine boundaries. In particular, we
compute increments to ρYk and ρh that correct the flux mismatches at coarse-fine
interfaces. Finally, we correct the velocity field to satisfy a divergence constraint on
the composite grid system.

There are two components that contribute to flux mismatch. First, U ADV, the
edge-based advection velocity satisfies the constraint on the coarse level and the fine
level separately. However, since we only satisfy the Dirichlet matching condition for
φMAC in (5), the value of U ADV computed on the coarse level does not match the
average value on the fine grid. We define the mismatch in advection velocities in d
dimensions by

δUADV��
��UADV���n�1�2�

1
rd

r�1

∑
k�0
∑

edges

UADV���1�n�k�1�2

along the coarse-fine boundary. We then solve the elliptic equation

DMAC 1
ρ

GMACδe�
� DMACδUADV��

and compute

UADV���corr
��

1
ρ

GMACδe�

which is the correction needed for U ADVto satisfy the constraint and matching con-
ditions on the composite (�, �� 1) grid hierarchy. This correction field is used to
compute a modification to the advective fluxes for species and enthalpy that reflects
an advection velocity field that satisfies the constraint on the composite grid.

The second part of the mismatch arises because the advective and diffusive fluxes
on the coarse grid were computed without explicitly accounting for the fine grid,
while on the fine grid the fluxes were computed using coarse-grid Dirichlet boundary
data. We define the flux discrepancies
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δFρh � ∆t�
�
�F��n�1�2

ρh �
1
rd

r�1

∑
k�0
∑
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F��1�n�k�1�2
ρh

�

and

δFρYk � ∆t�
�
�F��n�1�2

ρYk
�

1
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r�1

∑
k�0
∑
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F��1�n�k�1�2
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�

where F is the total (advective+diffusive) flux through a given interface prior to
these synchronization operations. Corrections to density, δρ sync, on the coarse grid
associated with mismatched advection fluxes may be computed explicitly

δρsync ��DMAC

�
∑
k

UADV�corrρYk

�n�1�2

�∑
k

δFρYk �

The post-sync new-time value of density is given by ρ n�1 � ρn�1�p� δρsync. Given
the corrected density, ρn�1, we can decompose the corrections for Yk and h into

δ�ρYk�
sync � Y n�1�p

k δρsync�ρn�1δY sync
k

and
δ�ρh�sync � hn�1�pδρsync�ρn�1δhsync

�

Computing δY sync
k and δhsync requires solution of a linear system, since the flux mis-

match contains implicit diffusion fluxes from the Crank-Nicolson discretization. The
provisional correction δỸ sync

k on the coarse level � grids is obtained by solving�
ρn�1

�

∆t
2
∇ρn�1Dn�1

k ∇
�
δỸ sync

k ��DMAC �UADV�corrρYk
�n�1�2

�δFρYk�

However, as in the single-level algorithm, the species correction fluxes must sum
to zero to preserve mass conservation. We compute the adjusted species diffusion
correction fluxes which sum to zero and then define Y sync

k from

ρn�1δY sync
k �

∆t
2
∇ρn�1Dn�1

k ∇δỸ sync
k �DMAC �UADV�corrρYk

�n�1�2
�δFρYk �

We then compute the enthalpy correction from�
ρn�1

�

∆t
2
∇ρn�1κn�1

cn�1
p

∇
�
δhsync ��DMAC �UADV�corrρh

�n�1�2
�δFρh

�∇ �ξk

�
κn�1

cn�1
p

∇δY sync
k �ρn�1Dn�1

k ∇δỸ sync
k

�
�

The corrections, δY sync
k , and δhsync are added to the coarse field at level �, and in-

terpolated to all finer levels. Finally, a new temperature field is computed using the
corrected h and Yk’s.

A similar process is also used to generate a correction to the velocity field. How-
ever, the velocity flux correction must be projected to obtain the component satis-
fying the constraint that updates U and the component that updates π. At this point
there are two additional corrections needed for the composite velocity field:
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� A correction arising because the projection at level ��1 used Dirichlet data from
level �, leading to a mismatch in normal derivative at coarse-fine boundaries

� The temperature and species adjustment in the first part of the synchronization
leads to an increment in the computed S field.

Since the projection is linear, both of these corrections as well as the projection of
the velocity flux correction can be combined into a single, multi-level node-based
synchronization solve performed at the end of a coarse-grid time step.

We note that with the synchronization procedure outlined above the adaptive
algorithm preserves the second-order accuracy and the conservation properties of
the single-grid algorithm. The methodology has been implemented for distributed
memory parallel processors using the BoxLib class libraries described by Rendleman
et al. [30]. Futher discussion of the parallelization of the low Mach number model
can be found in Bell et al. [4].

4 Combustion

In this section, we present a prototype application of the above methodology to turbu-
lent combustion. The results presented here are taken from a study by Bell et al. [7].
The goal of this study was to assess the resolution requirements needed to capture
the dominant features of an experimental methane flame using detailed chemistry
and transport without explict models for turbulence or turbulence chemistry inter-
action. A photograph of the experiment is present in Figure 1. In the experiment,
a plate with 3.2 mm holes arranged in a 4.8 mm hexagonal lattice is placed in the
inflow stream 9 cm below the exit to the nozzle. A 2 mm rod is placed across the
nozzle exit where it serves to anchor a turbulent V-flame.

The computational strategy for this simulation is to independently characterize
the turbulence generation in the nozzle using experimental data and auxiliary compu-
tations. Turbulent fluctuations with appropriate statistical properties are then super-
imposed on the mean inflow velocity. For the case considered here the inflow velocity
is 3 m/sec with a turbulent intensity of approximately 7% in the axial direction and
5% in the transverse directions. The inflow conditions correspond to methane at an
equivalence ratio of 0.75 at 300K.

With this characterization of the inflow we solve the low Mach number equations
in a cubical domain indicated in Figure 1. For this computation, methane chem-
istry was modeled using the methane mechanism, DRM-19, developed by Frenklach
which contains 19 species and 84 reactions. A mixture model was used for species
diffusion. The computation was performed with a base grid of 96 3 with 2 refinements
of a factor of 2 each. This lead to an effective resolution of approximately 312.5 µm
which corresponds to approximately 2-3 zones across the thermal thickness of the
flame.

A picture of the computed flame surface is presented in Figure 2. Figure 3
presents a quantitative comparison of the computed solution to the experimental data.
Experimentally, the instantaneous flame location is determined from PIV measure-
ments. Due to the large difference in Mie scattering intensities from the reactants
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Fig. 1. Photograph of the experiment and schematic for the V-flame computation

Fig. 2. Simulated instantaneous flame surface

and products, the instantaneous wrinkled flame front is clearly outlined on the PIV
image (Figure 3b). Compared to a centerline slice of the methane concentration ob-
tained from the simulation (Figure 3a) the wrinkling of the flame in the experiment
and the computation is similar in size and structure.

To characterize the flame brush which gives a statistical picture of the flame, the
position of the flame fronts were obtained from 100 PIV images by an edge detection
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(a) (b)

Fig. 3. (a) Computed CH4 mole fraction, (b) Typical PIV image.
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Fig. 4. Comparison of c̄ contours. Left (red) is experiment; right (blue) is simulation

algorithm. Their average produces a map of the mean reaction progress, c̄, where
c̄ � 0 in reactants, and c̄ � 1 in the products. For the simulation data, we define an
instantaneous progress variable c � �ρu�ρ���ρu�ρb� where ρu�b are the densities
of the unburned and burned gas, respectively. Averaging c over a sample of slices
through the computed flame defines an analogous c̄ for the computation.
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A comparison of experimental and computational c̄ contours which show the
growth of the flame brush is given in Figure 4. The simulation shows excellent agree-
ment up to approximately z � 10 cm at which point the computational results begin to
show the effects of the outflow imposed at z� 12 cm. The simulation and the exper-
imental results have slightly different included angles; the c̄� 0�5 contour forms an
angle of approximately 11Æ with the vertical in the experiment compared to 13 Æ for
the computation. Additional comparisons with the experimental data are presented
in Bell et al. [7].

5 Nuclear flames

In the second example, we consider C�O nuclear flames in a carbon-oxygen white
dwarf typical of a Type Ia supernova. The results presented here are taken from a
study of the effect of Rayleigh-Taylor instabilites on flame propagation at conditions
corresponding to the late stages of a type Ia supernova by Bell et al. [6]. For this ex-
ample a generalized equation of state is needed to describe the fluid. In particular, for
the stellar conditions being considered here the pressure contains contributions from
ions, radiation, and electrons. (See Kippenhahn and Weigert [20] for a discussion of
equations of state for stellar matter.) Thus,

p � pion� prad� pele (10)

with

pion �
ρkT

Āmp
� prad � aT 4�3

and pele is the contribution to the thermodynamic pressure due to fermions. In these
expressions, mp is the mass of the proton, a is related to the Stefan-Boltzmann con-
stant σ� ac�4, c is the speed of light, 1�Ā� Xk�Ak, and k is Boltzmann’s constant.
The ionic component has the form associated with an ideal gas but the radiation and
electron pressure components do not. The numerical simulations were performed
using the equation of state described by Timmes and Swesty [33] which computes
the internal energy, pressure and thermodynamic derivatives (including the specific
heats at constant volume and pressure) of these quantities as functions of tempera-
ture, density and the nuclear-species mass fractions.

For the stellar conditions typical of C�O flames we are considering here, the
Lewis number, which is the ratio of energy transport to species diffusion, is O�10 7�
and the Prandtl number, which is the ratio of fluid viscosity to energy transport, is
O�10�5�. For these conditions, we can ignore both fluid viscosity and species diffu-
sion. The values of the thermal conductivity, κ, are calculated using the procedure
described by Timmes [32].

We present computations corresponding to fuel densities of 1�5� 10 7 g/cc and
1�0� 107 g/cc. For each simulation, g � 109cm�sec2 which is appropriate for the
outer region of the white dwarf after some pre-expansion has taken place. We flow
fuel in from the top of the domain at the laminar flame velocity and impose an out-
flow boundary condition at the bottom of the domain. The lateral sides of the domain
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Fig. 5. Time sequence of Rayleigh Taylor unstable nuclear flame at density fuel density 1�5�
107 g/cc. Times are 0.0, 0.7, 1.1 and 1.4 msec. The image shows carbon mass fraction with
red to blue corresponding to high to low values.

Fig. 6. Time sequence of Rayleigh Taylor unstable nuclear flame at density fuel density 1�0�
107 g/cc. Times are 0.0, 1.2, 1.8, and 2.3 msec. The image shows carbon mass fraction with
red to blue corresponding to high to low values.

are periodic. Each computation is performed with one level of refinement with an ef-
fective resolution that is approximately 10% of the thermal flame thickness. The do-
mains are 163�84 cm �327�7 cm and 53�5 cm�107 cm for the low and high density
cases, respectively, which correspond to approximately 90 thermal flame thicknesses
in each case.

Figures 5 and 6 correspond to the high and low density cases, respectively. This
range of densities represents a transition from flamelet combustion at the higher den-
sity in which a clearly defined flame front is apparent to a distributed flame in which
the reactions occur in dispersed pockets at the lower density. Analyses of these types
of simulations are being used to help determine how much the flame is accelerated by
interaction with the Rayleigh-Taylor instability which plays a key role in determining
the mechanisms that lead to type Ia supernova explosions.
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6 Conclusion

We have presented an adaptive algorithm for reacting flows based on a low Mach
number formulation. This formulation, which leads to constrained evolution equa-
tions, analytically removes sound waves from the system and allows time steps to
be chosen based on the advective time scales. The low Mach number system is in-
tegrated using a fractional step projection algorithm that evolves the system with-
out enforcing the constraints and then projects the solution back onto the constraint
manifold. The basic projection discretization has been incorporated into a parallel
adaptive mesh refinement algorithm. We have shown two examples of problems that
would have been infeasible without this type of methodology.
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The multidimensional grid-adaptive magnetofluid dynamics code AMRVAC [1, 2]
has been extended with special relativistic hydrodynamics and magnetohydrodynam-
ics modules to simulate the complex and ultra-relativistic flow dynamics associated
with astrophysical objects like Gamma Ray Bursts and Active Galactic Nuclei. The
shock capturing numerical scheme and mesh refinement algorithm are crucial to re-
solve the strong shocks and wide range of length scales present in these flows.

The first results look promising, we can simulate strongly relativistic blast waves,
fireballs, and jets in 1D, 2D, and 3D.

1 Introduction

Relativistic flows are directly observed, or indirectly inferred, in a variety of astro-
physical objects. Accretion flows and collimated jets around massive black holes in
Active Galactic Nuclei have Lorentz factors of order 10, which means velocities of
99.5% of the speed of light (the Lorentz factor is defined as Γ � �1� v 2�c2��1�2).
Even stronger relativistic flows are presumed to be the origin of Gamma Ray Bursts,
the most energetic events in the observable universe since the Big Bang. Energy and
time scales suggest that the source must be accompanied by an extremely relativistic
explosion or jet flow with Lorentz factors in the order of 10 2 to 103, almost certainly
also in the form of a collimated jet. Strong shocks and magnetic fields are responsible
for the production of high-energy particles and radiation from these systems.

Numerical simulations of the dynamical interplay between relativistic flow,
strong shocks and magnetic fields are valuable to describe and understand the ob-
served properties of relativistic astrophysical objects. The calculation will have to be
capable of resolving the large-scale flows and at the same time accurately capture the
small-scale dynamics and shocks. This wide range of dynamical length scales makes
it necessary to employ adaptive mesh refinement techniques.

Because the flows under consideration are in general on a much larger scale than
the size of the central compact object, it is in first approximation reasonable to de-
scribe the system in flat space-time, i.e. using the special relativistic incarnation of
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ideal (magneto-)hydrodynamics. The governing equations are given in Sec. 2. In
Sec. 3 we describe the numerical code AMRVAC which has been extended with rel-
ativistic HD and MHD physics modules. In Sec. 4 some test problems and results for
both relativistic HD and MHD calculations are shown.

2 Equations for Relativistic Fluids

The fluid equations follow from particle conservation, the conservation of the energy-
momentum tensor, and an induction equation for the magnetic field. The continuity
equation (in units where c � 1, Greek indices denote four-vectors and Latin indices
denote three-vectors) is given by

∂α�ρuα� � 0 � (1)

where ρ is the rest mass density, uα � Γ�1��v� is the four-velocity for which uαuα �
�1, and the Lorentz factor is Γ� �1� v2��1�2.

The second ingredient is the conservation of the stress-energy tensor

∂α�T
αβ

fl �Tαβem � � 0 � (2)

For pure hydrodynamics the electromagnetic part is absent, so for an ideal fluid the
stress-energy tensor is given by (See [3])

Tαβ � Tαβfl � wuαuβ� pηαβ � (3)

The relativistic enthalpy is w � e� p, where the energy per unit volume e includes
the rest mass energy, and p is the kinetic pressure. The Minkowski metric tensor is
ηαβ � diag��1�1�1�1�. All thermodynamic quantities (ρ, p, e, w) are measured in
the rest frame of the fluid. To close the system of equations we need an equation of
state relating the kinetic pressure with density and internal energy, in this work we
take a polytropic gas law with adiabatic index γ, for which the enthalpy is given by

w � ρ�
γ

γ�1
p � (4)

For real-world applications we separate the temporal from the spatial components
and the equations of special relativistic hydrodynamics (from here onwards abbrevi-
ated as RHD) read

∂t�Γρ��∂i�Γρvi� � 0 � (5)

∂t�Γ2wvj��∂i�Γ2wviv j � pδi j� � 0 � (6)

∂t�Γ2w� p��∂i�Γ2wvi� � 0 � (7)

To arrive at a set of equations describing a relativistic magnetofluid (special rela-
tivistic magnetohydrodynamics or RMHD) we need to add the electromagnetic part
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Tαβem to the momentum-energy tensor and add an equation for the electromagnetic
field. Using the field tensor Fαβ (Fαβ ��Fβα, Ei � F0i and Bi �

1
2ε

i jkF jk) and its
dual F αβ

�

1
2ε
αβγδFγδ the Maxwell equations in covariant form are

∂αFαβ
�� jβ � ∂αF αβ

� 0 � (8)

The inhomogeneous equation is used to calculate the four-current j α. The current
density in RMHD is given by �J�∇��B�∂t�E. The homogeneous equation comprises
both the induction equation and ∇ � �B � 0. The electromagnetic contribution to the
momentum-energy tensor is given by

Tαβem � FαγF
γβ� 1

4η
αβFγδF

γδ � (9)

Ohm’s law for a perfectly conducting fluid (�E ��v��B � 0) is written covariantly as

Fαβuβ � 0 � (10)

This expression can be used to eliminate �E from the equations. This is done by
introducing the four-vector bα � F αβuβ. The field tensor can then be written in the
form F γδ � εαβγδbαuβ The components of this new vector are given by

bα � �Γ��v ��B���B�Γ�Γ��v ��B��v� � (11)

and we can write the momentum-energy tensor (9) in the following form (note that
bαuα � 0 and that �b�2 � bαbα � ��v ��B�2 ��B2�Γ2)

Tαβem � �b�2 �uαuβ� 1
2η

αβ��bαbβ � (12)

The energy-momentum conservation equation (2) takes the form

∂α�wtotu
αuβ�bαbβ� ptotηαβ� � 0 � (13)

where wtot � w� �b�2 and ptot � p� 1
2 �b�

2. The induction equation from (8) trans-
forms to

∂α�uαbβ�bαuβ� � 0 � (14)

The set of RMHD equations is composed of the continuity equation (1), the temporal
and spatial parts of the momentum-energy equation (13), and the field equation (14).
Again we split these equations in their temporal and spatial parts to obtain

∂t�Γρ��∂i�Γρvi� � 0 � (15)

∂t
�
Γ2wtotv

j �b0b j��∂i
�
Γ2wtotv

iv j �bib j � ptotδi j�� 0 � (16)

∂t
�
Γ2wtot� �b0�2� ptot

�
�∂i

�
Γ2wtotv

i�b0bi�� 0 � (17)

∂tB
j �∂i

�
viB j�Biv j�� 0 � ∂iB

i � 0 � (18)

The RHD equations (5)–(7) may be obtained from these equations simply by taking
�B � 0; the non-relativistic MHD equations emerge in the limit v2 � 1. When taking
this limit one needs to subtract the contribution of the rest-mass energy density from
the energy equation. The fact that the magnetic field equations are unchanged from
classical MHD is of course due to the fact that Maxwell’s equations are already
Lorentz invariant.
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2.1 Recovering the Primitive Variables

Although (15)–(18) are already in conservation form, we will rewrite them in the
form actually used in the code:

∂t�U�∑
i
∂i�F

i � 0 � (19)

where �U � �D��S�E��B�T with D � Γρ, �S � �Γ2w�B2��v� ��v ��B��B and E � Γ2w�
B2� ptot are conserved variables. The fluxes are given by

�Fi � �Uvi ��0��
�
�B�Γ2 ���v ��B��v

�
Bi � ptot�I

i� ptotv
i
� ��v ��B�Bi���vBi�T �

�Ii denotes the ith column of the identity matrix.
To numerically advance the conserved variables �D� �S�E��B� in time one needs to

calculate the values of the primitive variables �ρ��v� p� �B� in order to determine the
fluxes. In classical (M)HD this is an almost trivial operation, but due to the coupling
between variables by various powers of the Lorentz factor we have to compute the
primitive variables by numerically solving a nonlinear equation.

Following the method outlined in [4] we reduce the problem to an equation for
ξ� Γ2w, which is then solved by the Newton–Raphson method. First note that from
the definition of �S follows that �v � �B � ξ�1�S ��B and the velocity can be expressed in
conserved variables and ξ only:

�v �
�
�S�ξ�1��S ��B��B

�
��ξ�B2� � (20)

Using the equation of state (4), the density and kinetic pressure are

ρ� D�Γ� p � �γ�1�
�
ξ�Γ2

�D�Γ
�
�γ � (21)

From the definition of the total energy E we find a single equation for ξ:

f �ξ� � ξ�
γ�1
γ

�
ξ
Γ2 �

D
Γ

�
�B2

� 1
2

�
B2

Γ2 �
��S ��B�2

ξ2

�
�E � 0 � (22)

where the Lorentz factor is given by

1�Γ2 � 1�
�
�S�ξ�1��S ��B��B

�2
��ξ�B2�2 � (23)

Given a set of values for the conserved variables �D� �S�E��B� (22) is solved by
means of the Newton–Raphson method. By (20) and (21) the complete set of primi-
tive variables is then determined.

From (23) we see that Γ2 � 1 and thus v2 � 1, as required. The positivity of the
density directly leads to the positivity of D. The condition p � 0 translates into the
condition

ξ2�Γ2 � D2 � (24)
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This condition is satisfied for ξ � ξ0, where ξ0 is the maximum root of the fourth
order equation ξ2

0�Γ2
� D2. Because f �ξ� is a monotonically increasing function of

ξ, we find that if f �ξ0�� 0 then (22) has a single solution representing a physically
allowable state.

2.2 Calculating Propagation Speeds

The numerical fluxes for the TVDLF method used in this work are based on the
maximum propagation speed for a given state (see section 3). As the equations them-
selves are formulated in the observers frame, the propagation speeds are measured
in that same frame. Although at the moment we need only the largest eigenvalue
for our numerical scheme, in the future one might want to implement more sophis-
ticated solvers based on more or all characteristic speeds, so for completeness we
summarize all waves. For details we refer to [5, 4, 6] and references therein.

The system of RMHD equations admits seven waves: two Alfvén, two fast and
two slow magnetosonic waves and one entropy wave. In contrast to classical MHD
the symmetry of the wave speeds with respect to the fluid velocity is lost, but the
ordering is still maintained: λ�F �λ

�

A �λ�S �λ0�λ�S �λ�A �λ
�

F . For waves propagating along
the x-axis in the observers frame, the entropy wave propagates with the fluid velocity:
λ0 � vx. The eigenvalues of the two Alfvén waves are given by

λ�A � �ux�wtot�bx���u0�wtot�b0� � (25)

In our numerical scheme, however, we are interested in the eigenvalue with the
largest absolute value for a given state (i.e. one of the fast magnetosonic waves)
and unfortunately in RMHD there is no simple analytical expression for the mag-
netosonic eigenvalues. The eigenvalues λ�F�S are the roots of the following quartic
equation:

w�e�p�1��u0λ�ux�4

� �1�λ2�
�
�w� e�p �b�2��u0λ�ux�2� �b0λ�bx�2

�
� 0 � (26)

where e�p � �∂e�∂p�s � c�2
s , with cs � �γp�w�1�2 the gas dynamic sound speed.

Rewriting the left hand side yields a simple fourth order polynomial in λ, but the ex-
act analytical solution for its roots is cumbersome and inefficient to calculate numer-
ically in the code. There is an extra complication: when the fluid velocity approaches
the speed of light, the eigenvalues all tend to unity and lie very close together. This is
a notoriously difficult case for root finding routines, so we transform to a new vari-
able µ � 1��1� λ� and multiply the resulting equation by µ 4 resulting in a fourth
order polynomial equation for µ. The roots of this equation are well separated (for
λ� 1 we have µ� ∞) and can be found using a root finding technique. In our code
we employ Laguerre’s method [7] for polynomials.
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3 The AMRVAC Code

The Versatile Advection Code (VAC, see [8]) is a finite volume based numerical code
to solve a system of conservation laws on a fixed computational grid. Recently, the
code AMRVAC (Adaptive Mesh Refinement VAC) has been developed to extend the
capabilities of VAC to calculations with dynamical and automatic grid refinement
[1, 2]. The refinement method is summarized in Sec. 3.1. Due to the use of LASY
syntax (Loop Annotated Syntax, see [9]) the code can easily be configured to run in
1D, 2D or 3D, and with one, two or three components for vector quantities. In 1D and
2D grids with cylindrical and spherical symmetry are selectable. Available physics
modules are ideal hydrodynamics, ideal and resistive magnetohydrodynamics, and,
as described here, also relativistic hydro- and magnetohydrodynamics.

The scheme we use for this work is a Lax–Friedrich type Total Variation Dimin-
ishing (TVD) scheme called TVDLF. The finite volume discretization of the conser-
vation law (19) is

Un�1
i �Un

i �
∆t
∆x

� f n
i�1�2� f n

i�1�2� � (27)

where U n
i is the cell average value of the conserved variable U at the discrete time t n

for the i-th mesh cell with interfaces indicated by i�1�2. The numerical fluxes are

f n
i�1�2 �

1
2

�
F�UL

i�1�2��F�UR
i�1�2�� cmax

�
UR

i�1�2�UL
i�1�2

��
� (28)

where the maximum propagation speed is cmax �max�
��λmax�UL�

�� � ��λmax�UL�
��� and

the states left and right of the interface are

UL
i�1�2 �Un

i �
1
2

¯∆Un
i � UR

i�1�2 �Un
i�1�

1
2

¯∆Un
i�1 � (29)

In the work presented here we use minmod limited slopes ¯∆Un
i . Time integration is

done using an explicit second order predictor-corrector scheme.
In 2D and 3D MHD calculations various schemes are selectable to ensure that

∇ ��B � 0 is preserved during the calculation (See [2] for details). Although most of
these schemes are straightforwardly adaptable to the relativistic case, we did not yet
perform runs testing their results for RMHD. The simulations shown in this paper
are therefore without any scheme to control ∇ � �B errors in the calculations.

3.1 AMR Strategy

Our AMR implementation closely follows the original algorithm in [10] for creating
a properly nested hierarchy of ‘optimally fitted’ grids. An important difference is
that during the automated creation of ‘rectangular’ grids, we algorithmically exclude
the formation of overlapping grids at the same nesting level and enforce a minimal
efficiency of each individual new grid. This efficiency is determined as the ratio of
cells identified for refinement to the total number of cells contained within the rect-
angle. Specifically, once an arbitrary number of cells is flagged for refinement, one
subsequently surrounds each cell with a user-set zone of buffer cells (connected to
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the temporal frequency with which a full regridding cycle is activated to ensure con-
sistency with the CFL constraint); which are then processed into non-overlapping
rectangles by a sequence of mergers and bisections. Note that this approach dif-
fers from the Berger and Rigoutsous [11] algorithm exploiting edge detection from
pattern recognition techniques. Similarly though, our AMR implementation creates
optimally fitted, but very different sized higher level grids. Parallelization is done
using OpenMP which was shown to work effectively on up to several tens of proces-
sors on ccNUMA architectures [1, 12, 2]. The parallelism is exploited over the grids
per refinement level, and works well when the number of grids on each grid level
exceeds the number of processors in use.

The refinement criterion is a variant of the Richardson-type error estimation pro-
cedure from Berger and Collela [13], which is generally applicable to any system of
equations and integration method used. Needed are two solution vectors �Un�1

l and
�Un

l on level l, separated in time by the corresponding ∆t n�1
l . The error is estimated

as follows:

� coarsen the �Un�1
l spatially by a factor of 2 to obtain �Un�1

2∆xl
;

� advance �Un�1
2∆xl

using 2∆tn�1
l to �Un�1

c ;

� advance �Un
l with ∆tn�1

l to �Un�1
f ;

� spatially coarsen (average) �Un�1
f to Uf

� using the solutions �Un�1
c , �Un�1

f , and Uf all corresponding to time t � t n�1
l �

2∆tn�1
l , flag for refinement on the basis of a selection of weighted tolerance cri-

teria.

The latter typically compares selected components of the conserved variables, cho-
sen problem-dependently with mutual weighting factors. One then flags for refine-
ment when a critical tolerance level εtol is exceeded. It is possible to extend the re-
finement criteria with user-forced refinement or derefinement, or exploit primitive or
auxiliary variables (like the Lorentz factor for the relativistic simulations discussed
here) in the flagging criterion. The need for additionally exploiting uncoarsened data
�Un�1

f is advocated by Bell et al. [14]. As a result, where the criterion is fulfilled, a
multitude of 2D level l cells are flagged, for a D-dimensional problem.

We point out that in AMRVAC, we can already allow for a level-dependent choice
of the discretization scheme employed. This is a first step toward full Adaptive Mesh
and Algorithm Refinement (AMAR), introduced by Garcia et al. [15], who coupled
a continuum description with a particle method on the finest level of the AMR hi-
erarchy. The possibility to couple different physics modules across the various grid
levels is due to the fact that the only communication between different level solutions
is through (i) the update process that is needed to keep the different level solutions
consistent and to restore global conservation and (ii) the filling of ‘ghost’ cells as
used for imposing boundary conditions. It is conceivable that once a suitable map-
ping of the fluxes used in the update process for non-relativistic versus fully relativis-
tic simulations is properly implemented, one could solve for (M)HD flow problems
where both non-relativistic versus ultra-relativistic flow regions are essential ingredi-
ents. On the various grid levels, one would then solve the corresponding HD, MHD,
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RHD, or RMHD equations depending on the locally occurring flow velocities and
magnetic field strengths.

4 Results

With the methods outlined in the previous sections various test runs were per-
formed.For all runs we took γ� 4�3 for the adiabatic constant.
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��
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Fig. 1. The Lorentz factor Γ versus radius for spherical explosions with different initial pres-
sure ratios. A base grid of 1000 cells and four refinement levels with a refinement factor of 4
on each level was used, resulting in an effective resolution of 128 000 cells.

First a simple 1D spherical RHD explosion was set up by putting a high pressure
in a small region around the origin and simulating the resulting expansion. At t � 0
we take �ρ�vr� p� � �3�0�0� pi�po� for 0 � r � 0�5 and �ρ�vr� p� � �0�001�0� po� for
0�5� r� 4�0, where po � 0�001 in all cases. The outgoing blast wave sweeps up mat-
ter in a thin and dense shell. This shell lies between the forward shock and a contact
discontinuity, and due to Lorentz contraction its thickness, and thus the separation
between the two discontinuities, is inversely proportional to the Lorentz factor of the
blast wave. By increasing the initial pressure ratio pi�po we increase the Lorentz
factor of the resulting blast wave, as can be seen in Fig. 1. The extreme pressure
contrast and thinness of the shock wave require locally very high grid resolutions,
which shows that AMR is indispensable in relativistic simulations.

Next we performed two 1D RMHD shock-tube tests, the first is the relativistic
analog of the Brio–Wu shock tube test, see Fig. 2. Initial conditions are �ρ�v x�vy� p�
Bx�By� � �1�0�0�0�1�0�0�5�1�0� for x � 0�5 and �0�125�0�0�0�1�0�5��1�0� for x �
0�5. The second (Fig. 3) is a flow collision problem with two Γ� 100 flows colliding
at x � 0�5. Initial conditions are �ρ�vx�vy� p�Bx�By� � �1�0��0�99995�0�0�1�10�0�
�7�0� for x� 0�5. In both cases the AMR algorithm accurately tracks all shocks and
waves (4 levels with a refinement ratio of 4 on each level, the base level consists
of 50 cells). In the flow collision problem a noticeable ’wall heating’ error around
x � 0�5 occurs, but otherwise the code handles the extreme shocks satisfactory.

A more astrophysically relevant simulation is the axisymmetric 2D RHD rela-
tivistic jet shown in Fig. 4. A jet with radius r0 � 1�0, density ρ� 0�1 and pressure
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Fig. 2. Relativistic analog of the Brio–Wu shock tube test. The panels, from left to right and
from top to bottom, show: density, pressure, Lorentz factor, x-velocity, y-velocity and perpen-
dicular magnetic field By.

Fig. 3. Flow collision test; ultra-relativistic flows (Γ� 100) collide at x � 0�5. Panels are the
same as Fig. 2.

p � 0�01 is injected with vz � 0�99 (Γ � 7) into a homogeneous background with
ρ� 10�0 and p� 0�01. The domain of the calculation is 0 � r � 8�0 � z � 20 with a
base grid of 80�120. Three additional grid levels were used with a refinement factor
of two, giving an effective resolution of 640�1600.

Finally the relativistic extension of the 2D MHD rotor test from [6] is shown in
Fig. 5. An initially rotating disk of dense plasma is embedded in a homogeneous
magnetic field �B� 1�0�ex (�ρ�vx�vy� p� � �10�0��αy�αx�1�0� for �x2 � y2�1�2 � 0�1,
where α � 9�95; the background is �ρ�vx�vy� p� � �1�0�0�0�1�0�). The maximum
Lorentz factor is about 10. The disk is decelerated by the winding of the magnetic
field lines, and the plasma is flung outward in and oblong shell. Strong shocks and
torsional Alfvén waves are generated. The results of this complex 2D RMHD prob-
lem agree quite well with the results published in [6].

5 Conclusions

The multi-dimensional grid adaptive code AMRVAC is extended with relativistic hy-
drodynamics and relativistic magnetohydrodynamic modules. The code performed
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Fig. 4. Axisymmetric RHD jet with Γ � 7. Equidistant contours of logρ are shown and the
4-level grid structure is indicated by grayscales.

Fig. 5. RMHD rotor simulation at t � 0�4. Three grid levels with a refinement factor 2, effective
resolution is 400�400 cells.

quite well on all test problems, the AMR algorithm speeds up the calculations pre-
sented here so that they could easily be performed on a single desktop processor.
Extension toward larger resolutions and higher Lorentz factors is expected to be
straightforward as AMRVAC has been shown to perform well on larger parallel
computers [12]. To asses the reliability and accuracy of the multidimensional ultra-
relativistic calculations it is however desirable to compare results obtained by differ-
ent R(M)HD solvers in a more quantitative study. Such a validation is essential to get
a reliable understanding of the astrophysical objects that we try to model with these
computations.
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9. G. Tóth, J. Comput. Phys. 138 981 (1997).

10. M.J. Berger, SIAM J. Sci. Stat. Comput. 7 904 (1986).
11. M.J. Berger and I. Rigoutsos, IEEE Transactions on Systems, Man and Cybernetics 21,

1278 (1991).
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AMR applied to non-linear Elastodynamics
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Summary. We describe an AMR scheme for non-linear elastodynamics in Lagrangean co-
ordinates. The scheme uses a linear Riemann solver and computes the deformation gradient
from the displacements in order to ensure that it is consistent. Solid bodies with stress free
boundaries are modeled by embedding them in a very weak material with a smooth transi-
tion in material properties at the boundary. A full approximation multigrid is used to compute
states in dynamical equilibrium.

1 Introduction

Since the equations governing the dynamics of hyperelastic materials are a set of
non-linear hyperbolic conservation laws (see e.g. [MC01]), the most appropriate way
to solve these equations numerically is to use a characteristic based conservative
scheme. However, it is generally believed that the complexity of associated Riemann
problem makes the computational cost of such schemes prohibitive. Here we show
that this difficulty is more apparent than real and that it is possible to devise a method
that is almost as fast as the conventional finite element schemes. This has several
advantages: it is much more robust; it has excellent shock capturing properties; a
characteristic based algorithm is essential for an adaptive scheme in order to avoid
the generation of errors at refinement boundaries. As one would expect, the scheme
is excellent at propagating the waves that occur in dynamic problems and, when
combined with a multigrid, it is also very effective at finding equilibrium solutions.

Using such a scheme, it is possible to study a number of interesting properties of
such systems, such as the existence, or otherwise, of non-evolutionary shocks and the
appearance of stress singularities at stress-free boundaries. The latter are particularly
important because they cause considerable difficulties for conventional finite element
methods.

It is well known that, in linear elasticity, a concave corner in an elastic body with
a stress free boundary leads to a singularity, but that such a corner cannot appear
if it is not present in the initial configuration. In the non-linear case a body with
an initially smooth boundary can develop corners if the deformation is sufficiently
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large, but, since the location of this singularity is not necessarily known a priori, a
dynamically adaptive grid is required to ensure high resolution in the neighbourhood
of the singularity. However, the mere use of an adaptive grid is not enough unless
something is also done about the singularity.

An effective way of dealing with this is to model a stress free boundary by im-
mersing the elastic body in a very weak material with a smooth transition in prop-
erties between the two materials. This removes the singularity, but its nature can
be studied by varying the thickness of the transition region. This technique has the
additional advantage that it provides a simple way of representing complex body
shapes on a Cartesian grid. For this an adaptive grid is essential, since an accurate
representation of the body would be prohibitively expensive with a uniform grid.

These ideas will be illustrated by an example in which the material law models
polyurethane foams.

2 Elastodynamics

As for fluid dynamics, it is possible to write the equations of elastodynamics in ei-
ther Eulerian or Lagrangean form. The unlimited distortion that occur in fluid flows
make Lagrangian methods unsuitable for multi-dimensional problems, but this is not
true for elastodynamics unless the material undergoes a substantial degree of plastic
flow. [MC01] used an Eulerian formulation precisely because they were interested in
problems with plastic flow, but since we are not, a Lagrangean method is the most
appropriate.

Let x� x�X� t�, where x is the current (Eulerian) position of a particle with initial
(Lagrangean) position X. Define the deformation gradient, A, by

Ai j �
∂xi

∂Xj
�

2.1 Kinematic Equations

Since we have

∂x
∂t

� v� (1)

the deformation gradient evolves according to

∂Ai j

∂t
�
∂vi

∂Xj
� (2)

The stretches, λi (i � 1 � � �3), are the square roots of the eigenvalues of A tA, and
the Jacobian, J, is then given by

J � �A� � λ1λ2λ3�
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2.2 Equation of Motion

In Cartesian coordinates the equation of motion is simply

∂ρvi

∂t
�

∂S ji

∂Xj
� fi (3)

where S is the nominal stress tensor and f i is ith component of the body force.
A hyperelastic material possesses a strain energy, U , which is a function of the

deformation gradient, A. The simplest way to determine the relation between S and
the strain energy is to use Hamilton’s variational principle with the body force set to
zero

δ
� t2

t1

�
V
�

1
2
ρv2
�U�dVdt � 0� (4)

The corresponding Euler equations are

∂ρvi

∂t
�

∂
∂Xj

∂U
∂Ai j

�

Comparing this with (3) gives

Si j �
∂U
∂A ji

(5)

2.3 Strain energy

The behaviour of the material is determined by the form of the elastic strain energy,
U , which is a function of AT A since it must be invariant under rigid body rotations.
It can therefore be written as a function of the stretches, λ 1�λ2�λ3 defined in section
2.1, or as a function of the invariants I1, I2, I3 where

λ3
� I1λ2� I2λ� I3 � 0

is the characteristic polynomial of AT A. Note that I3 � J2.
For rubberlike materials, such as polyurethane, it is common practice to use an

expression of the form

U �
N

∑
i�1

2µi

α2
i

�
λαi

1 �λαi
2 �λαi

3 �
1

βiJαiβi

�
(6)

in which µi, αi and βi are determined empirically (e.g. [OG84]). Although it is pos-
sible to determine similar expressions in terms of I1, I2 and I3, this is less common.
This unfortunate since it is much simpler and computationally cheaper to work with
the invariants.
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2.4 Cauchy Stress Tensor

The nominal stress tensor describes the stress in the Lagrangean frame, but it is more
useful to display the stresses in an Eulerian frame as given by the Cauchy stress
tensor, T. This is related to the nominal stress tensor by

T�
1
J

AS� (7)

2.5 Conservation Form

The kinematic equations (2) together with the equations of motion (3) constitute a
set of non-linear, hyperbolic conservation laws, which we can write in the form

∂Q
∂t
�
∂F
∂X
�
∂G
∂Y
�
∂H
∂Z
� s� (8)

in Cartesian coordinates. Here Q is a vector of conserved quantities, Q i, given by

Qi � ρvi i� 1 � � �3�

Qi � A j1 i� 4 � � �6� j � i�3�

Qi � A j2 i� 7 � � �9� j � i�6�

Qi � A j3 i� 10 � � �12� j � i�9�

(9)

F, G, H are the corresponding fluxes and s represents the body forces. The fluxes are

Fi � �S1i i� 1 � � �3�

Fi � �v j i� 4 � � �6� j � i�3�

Fi � 0 i� 7 � � �12�

Gi � �S2i i� 1 � � �3�

Gi � 0 i� 4 � � �6�

Gi � �v j i� 7 � � �9� j � i�6
Gi � 0 i� 10 � � �12�

Hi � �S3i i� 1 � � �3�

Hi � 0 i� 4 � � �6�

Hi � 0 i� 7 � � �9�

Hi � �v j i� 10 � � �12� j � i�9�

The source term is

si � fi i� 1 � � �3�

si � 0 i� 4 � � �12�
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3 Numerical Scheme

It has long been known ( see e.g. [RO86]) that the most effective numerical schemes
for equations of this type are conservative finite volume schemes that utilise the
solution to one dimensional Riemann problems to determine the fluxes. Not only are
such schemes essential for problems involving the propagation of large amplitude
waves, their upwind nature ensures that no errors are generated at the boundaries
between coarse and fine grids that arise with an adaptive grid methods such as that
described in section 3.6. Furthermore, as we shall see in section 3.5, they can be
combined with a multigrid to give a very efficient method of obtaining a steady
states. They do suffer from the disadvantage that the elastic Riemann problem is
quite complicated, but, as we shall see, its computational cost is not excessive.

3.1 Riemann Problem

In order to determine the fluxes for a multidimensional scheme, it is sufficient to
solve the one dimensional Riemann problem for each direction. For the X direction,
we set the derivatives with respect to Y and Z to zero in equations (8) to obtain

∂Q
∂t
�
∂F
∂X

� s� (10)

where now

Qi � ρvi i � 1 � � �3�

Qi � Ai1 i � 4 � � �6�

Note that although all components of A play a role, only the first column can vary
for a one dimensional problem in the X1 direction.

A Riemann problem for such a system is one for which the source terms are zero
and the initial data consists of a single discontinuity at X � 0, i.e.

Q � constant � QL X � 0�
Q � constant � QR X � 0�

(11)

As is well known (see e.g. [RO86]), the solution to the Riemann problem consists
of the 6 elementary waves of the system, separated by constant regions. Although it is
possible to determine the exact solution, this is not necessary for a numerical scheme.
For this particular system we find that a linear solution suffices even for very strong
waves.

With the source term set to zero, the linear version of (10) is

∂Q
∂t

�B
∂Q
∂X

� 0� (12)

where

Bi j �
∂Fi

∂Q j
evaluated at Qm �

1
2
�QL�QR��
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B is of the form

B�
�

0 �C
�I�ρ 0

�
�

where I is the 3�3 identity matrix and

Ci j �
∂U

∂Ai1∂A j1
� (13)

Let si, li, ri be the eigenvalues and left, right eigenvectors of B. We then have

ri � �rpi�rAi�
t � li � �lpi� lAi��

where

rpi � �ρsirAi� CrAi � �sirpi�
lpiC � �silAi� lAi � �ρsilpi�

This gives

CrAi � ρs2
i rAi� lpiC � ρs2

i lpi�

The wavespeeds, si, of this system are given by the eigenvalues of the matrix,
C�ρ, which is called the acoustic tensor in the X1 direction. From (13) it is clear that
it is symmetric, so that the eigenvectors rAi are orthogonal and lAi ∝ rt

Ai. Furthermore,
it is also positive definite provided that U is a convex function. There are therefore 6
real wavespeeds of the form si � �c j, where c2

j � j � 1 � � �3� are the eiqenvalues of
the acoustic tensor. These correspond to fast, slow and rotational acoustic waves.

The normalised eigenvectors of B are

ri � ��ρsirAi�rAi�
t � li �

1
2
��

1
ρsi

rAi�rAi��

where rAi are the normalised eigenvectors of C. The solution to equations (12) with
the initial data (11) has a constant state, Q�, at X � 0 given by

Q� � QL � ∑
si�0

li � �QR�QL� � Q� � QR � ∑
si�0

li � �QL�QR�� (14)

Although these eigenvectors and eigenvalues have to be calculated numerically,
this requires only the computation of the eigenvalues and eigenvectors of the sym-
metric matrix, C, which is not particularly expensive.

3.2 Finite Volume Numerical Scheme

Had we determined the exact state at the interface, Q�, then the corresponding fluxes,
F� could have been obtained from

F� � F�Q���
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However, since the Q� given by (14) is a solution to the linearised equations (12),
it is much better to calculate fluxes that are consistent with these equations. In the
linearised equations, the fluxes at the interface are given by

F� �

1
2
�FL �FR�∑

i

�si�li � �QR �QL�ri�

The fluxes at the Y , Z interfaces are calculated in a similar manner and these are
then used to construct a second order conservative scheme of the form

1
∆t

�Qn�1
i jk �Qn

i jk� �
1
∆X

�Fn�1�2
i�1�2 jk �Fn�1�2

i�1�2 jk��

1
∆Y

�Gn�1�2
i j�1�2k �Gn�1�2

i j�1�2k��

1
∆Z

�Hn�1�2
i jk�1�2 �Hn�1�2

i jk�1�2�� sn�1�2
i jk �

(15)

Here Qn
i jk is the numerical solution in the i jk cell at timestep n and Fn�1�2

i�1�2 jk etc are the

interface fluxes calculated from the Riemann problems at the half-time, t � t �∆t�2.
These are obtained by first calculating the solution at the half-time using a first order
scheme and then using averaged gradients to determine the states on the left and
right of the interface [FA91]. Note that, since this is an explicit scheme, the timestep
is limited by the Courant condition

∆t �
∆x
sm

where sm is the maximum wavespeed in the computational domain.

3.3 Consistency of deformation gradient

If (15) is used to calculate the components of the deformation gradient, then there is
no guarantee that these are consistent with the displacement field. Even worse, the
accumulation of numerical errors means that the body will not, in general, return to
the undeformed state once the external stresses are removed.

It is therefore better to use (15) for the velocities only and to then use these to
calculate the displacements from a numerical approximation to (1)

1
∆t

�xn�1
i jk �xn

i jk� � vn�1�2
i jk

The deformation gradients at the new time are then obtained from the x n
i jk via a

central difference. This does not destroy conservation since it amounts to using the
mean velocities at the interface to compute the fluxes of the deformation gradient. It
does, however, mean that the scheme is not strictly upwind, but this seems to have no
adverse effect on either wave propagation or the performance of the adaptive grid.
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3.4 Boundaries

In problems involving elastic bodies there are generally three types of boundary,
rigid walls, free surfaces and regions of self-contact. Each of these can be dealt with
automatically by appropriate modifications to the equations.

Free Boundaries and Self-contact

We introduce a scalar, α, that is unity in the material and zero in the surrounding
medium (usually air). The elastic energy then takes the form

U � αUm ��1�α�Us�

where Um is the elastic energy function for the material and Us is chosen so as to
model the surroundings. It would be nice if Us could correspond to a fluid, but this
is impossible since there would then be no restriction on the strain. However, the
surrounding material can be made sufficiently weak for this to give a very good
approximation to a free surface. Us can also be chosen so as to approximate an ap-
propriate external pressure. This also automatically deals with self contact, since as
the two surfaces approach each other, the stress will tend towards that in the elastic
material.

Although the real body may have a sharp boundary, there are several reasons why
the scalar cannot be a discontinuous function of position. Since we are working with
a Cartesian grid, this would mean that the surface of the body consists of sharp steps,
which would not only be unrealistic, but would also lead to numerical difficulties.
There is, however, a much more important reason for imposing a smooth transition
between the material and the surroundings. The equilibrium equations are a set of
non-linear elliptic equations and such equations, like their hyperbolic counterparts,
can have singularities even if the undeformed body has a smooth boundary. Indeed,
it seems that a sufficiently large compression generates a singularity for any body
for which the undeformed boundary is not convex. This is presumably why finite
element codes that attempt to impose a sharp boundary fail for large deformations
whenever the numerical resolution is sufficiently high.

Fortunately, there is a simple solution to this difficulty, which is to smooth out
the discontinuous boundary by applying a diffusion operator to the scalar. Experience
shows that there are no numerical difficulties provided the boundary is diffused over
about 5 to 10 grid points, which requires about 20 to 40 iterations of a diffusion
operator. As we shall see, it is possible to study the form of such singularities by
carrying out a sequence of calculations with different numerical resolution.

It might seem that one cannot impose accurate boundary conditions with this
technique, but since the width of the boundary scales with the mesh spacing, we
can make the boundary as sharp as we please simply by increasing the numerical
resolution. The adaptive grid described in 3.6 makes it possible to achieve this at
minimal cost.



AMR applied to non-linear Elastodynamics 243

Rigid Bodies

We now define a scalar, α, which is zero in the material and unity inside the rigid
body. In order to impose a given displacement, x b, on the rigid body, we add a force

f��α
�

c�K2ρ�xb�x��2K
dx
dt

�
(16)

where K is a positive coefficient,

ci �
∂S ji

∂Xj

is the force due to the stresses and the second term on the RHS is a drag that ensures
critical damping. This has the effect of forcing x � x b inside the body.

3.5 Steady States

A time dependent code can obviously be used to obtain steady states by simply im-
posing the appropriate boundary and initial conditions and then marching forward in
time until the solution becomes steady. However, a hyperelastic material is a Hamil-
tonian system and will therefore not reach a steady state unless there is some dissi-
pative mechanism. In the real system this is provided by viscoelastic and other irre-
versible effects, but for numerical purposes it is much better to introduce an artificial
dissipative process.

The easiest way to do this is to add a drag force of the form

fd ��Dρv (17)

where D is a drag coefficient. Ideally, D should to be such as to make the system
critically damped, but it is not, in general, possible to do this exactly. However, a
suitable value of D is given by

D � 2ω� (18)

where ω�2π is the smallest frequency of vibration of the undamped system. ω can
be estimated from

ω� 2πs�L� (19)

where s is a mean sound speed and L is the largest dimension of the system.
If there are considerable differences between the sound speeds in different parts

of the system, then it is better use a drag coefficient determined from the local sound
speed

D�X� �
4πs�X�

L
�
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Matrix Timestep

If the sound speed is approximately the same everywhere, then time to reach the
steady state should be of order L�s. However, suppose there are two regions, R 1, R2,
with sizes L1, L2 and sound speeds, s1, s2. If L1�s1� L2�s2 because s1� s2, region
R2 will relax much more rapidly than R1. The time to reach the steady state will then
be of order L1�s1. For an explicit scheme, the timestep scales like 1�s2, which means
that cost of reaching the steady state is increased by a factor s2�s1.

This inefficiency can be removed using a matrix timestep in which the solution
in each cell is advanced with a timestep determined by the sound speed in that cell,
i.e the solution at n�1 is obtained from

Qn�1
i jk �Qn

i jk�∆tn
i jk

dQn
i jk

dt
where dQn

i jk�dt is calculated from (15) and ∆t n
i jk is the maximum stable timestep for

cell i jk.

Multigrid

Suppose that we have a uniform grid with mesh spacing ∆X covering a domain of
size L in which the sound speed is of order s. The timestep is then proportional to
∆X�s and the time to reach the steady state is proportional to L�s. The number of
timesteps therefore increases like 1�∆X . Since the computational cost per timestep
is proportional to 1�∆X d , where d is the number of dimensions, the cost of the cal-
culation grows like 1�∆X d�1.

It is clear from this that such calculations will be very expensive if there are re-
gions in which the solution varies so rapidly that an accurate solution requires a small
∆X . If these regions only occupy a small fraction of the domain, then the adaptive
grid described in the next section can reduce the cost considerably. However, if we
are merely interested in reaching the steady state, then a multigrid can be used to
improve the efficiency, irrespective of any gains to be had from an adaptive grid (see
e.g. [BR82]).

A multigrid exploits the fact that, for a hyperbolic system, the explicit timestep
on a grid with mesh spacing ∆X is of the same order as the frequency of waves
with wavelength ∆X . The components of the residual with wavelength of order ∆X
will therefore be destroyed after a few timesteps, provided that they are significantly
damped. The residual then consists of waves whose wavelength is significantly larger
than ∆X . Since the decay time of these waves is much longer than the timestep on
this grid, it is more efficient to destroy them by evolving the solution on a coarser
grid. This procedure is repeated recursively until the coarsest possible grid is reached,
whereupon the change in the solution is mapped down to the finest grid. This con-
stitutes one multigrid cycle. Because the interpolation from a coarse to fine grid
introduces components in the residual whose wavelength is comparable to the mesh
spacing on the fine grid, the effect of a multigrid cycle is to destroy the longest wave-
lengths that are present in the residual. Successive multigrid cycles remove shorter
and shorter wavelengths until the solution converges to the steady state.
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In order to implement this algorithm, we set up N grids, G 0 � � �GN , with mesh
spacings ∆Xn � ∆X0�2n. Now write the discrete equations on Gn as

Qm�1
n �Qm

n

tm�1� tm
�Ln�Qm

n � � Sn

where

Qm
n solution on Gn after m relaxations

Ln relaxation operator on grid Gn

In�1
n fine to coarse operator from Gn to Gn�1

In
n�1 coarse to fine operator from Gn�1 to Gn

Sn multigrid source term on grid Gn.
The multigrid source term is given by

Sn � Ln�I
n
n�1Qn�1�� In

n�1�Sn�1�Ln�1�Qn�1��

with SN � 0. Since the second term is simply the rate of change of the solution on
Gn�1 projected onto Gn, it vanishes if the solution is converged on Gn�1. But then
the first term ensures that the solution is also converged on Gn.

After an appropriate number of relaxations on a coarse grid, G n�1, we cannot
just project the solution on Gn�1 onto Gn since this would destroy the small scale
information on Gn. Instead the Gn solution is updated by interpolating the difference
between the Gn�1 and Gn solutions according to

Qn �Qn � In
n�1�Qn�1� In�1

n Qn�

There remains the question of how relaxations should be distributed among the
grids in order to achieve the fastest convergence. The simplest approach is to use a
fixed strategy in which the number of relaxations per grid is always the same. How-
ever, it is possible to do better by using the information generated by the multigrid
process to choose the most appropriate grid for the relaxations. [AF91] showed that
a simple way of doing this is to use the operators I n

n�1, In�1
n to determine the wave-

length of the dominant component of the residual and then to select the grid which
damps this most effectively.

Clearly if the residual on a grid Gn,

Rn � Sn�Ln�Qn��

is dominated by components whose wavelength is much larger than ∆X n, then it can
be accurately represented on Gn�1. We should therefore expect the quantity

Kn �
�In

n�1In�1
n Rn�Rn�
�Rn�

to be small. Here � � � stands for some appropriate norm. [AF91] show that the grid
that most effectively damps the dominant mode in the residual is the coarsest grid for
which Kn � 1�

�
2. A simple, but effective strategy is to relax a few times on this grid,

correct to the next finer grid, relax and so on until the finest grid is reached. Since
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the longest wavelengths are destroyed first, one would expect the grid selected by
this criterion to become finer and finer as the steady state is approached. Eventually
it only chooses the finest grid, at which point convergence has been achieved.

3.6 Hierarchical Adaptive Grid

In order to achieve high resolution without incurring excessive computational costs,
we use a hierarchical adaptive grid. As for the multigrid described in the previous
section, this uses a hierarchy of grids G0 � � �GN such that, if the mesh spacing is ∆X
on G0, then it is ∆X�2n on Gn. Grids G0 and G1 cover the whole domain, but the finer
grids need only exist in regions which require high resolution. The grid hierarchy
is used to generate an estimate of the truncation error by comparing solutions on
grids with different mesh spacings and the grid refines if this error exceeds a given
tolerance. Refinement also occurs in time so that if the time step on G0 is ∆t, then it
is ∆t�2n on Gn.

Unlike most AMR codes (e.g. [BO84], [BC89], [BBSW94], [QU96]), refinement
is on a cell by cell basis instead of being organized into patches. This gives a more
efficient grid at the cost of some increase in the cost of integration. It is particularly
efficient when the regions requiring high resolution are thin sheets, such as boundary
layers and shocks, or, as in this application, the diffused boundary of an elastic body.
As we have shown in section 2.5, the equations of elastodynamics are hyperbolic
conservation laws and can therefore readily be incorporated into such a code.

4 Examples

4.1 One dimensional Riemann problems

For this problem we use a strain energy of the form (6) with N � 1, µ 1 � 1, α1 � 12,
β1 � 0�125, which models a polyurethane foam. Note that the large value of α 1

means that the stress becomes very large even for moderate deformations.
We start by showing that the numerical algorithm can cope with reasonably

strong one dimensional Riemann problems. As we have shown in section 3.1, there
are two non-linear waves, fast and slow and a linearly degenerate rotational wave.
Figure 1 shows the solution for initial data that generates only fast and slow waves
and we can see that the scheme is able to capture very strong shocks even though it
uses a linear Riemann solver.

Figure 2 shows the solution for a Riemann problem with a discontinuity in the
direction of the transverse shear. This generates two strong rotational waves and
weaker waves of the other two families.

We have not compared these numerical solutions with the exact solutions since
the latter would be tedious to calculate. However, the numerical scheme evidently
converges and the discontinuities are evolutionary and are captured without oscil-
lations or other numerical artifacts. Since this is a conservative scheme, the Lax
theorem [LA73] assures us that the scheme does indeed converge to the appropriate
weak solution.
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Fig. 1. Jacobian, J and py � A21 for a Riemann problem with J � 2�0, py � 1�0, pz � 0�0,
vx � 0�0, vy � 0�1 in x� 0 and J � 1�0, py � 0�5, pz � 0�0, vx � 0�0, vy ��0�1 in x � 0. FR
– fast rarefaction, SR – slow rarefaction, FS – fast shock, SS – slow shock.

-1.0 -0.5 0.0 0.5 1.0
X

0.00

0.02

0.04

0.06

0.08 py pz

Fig. 2. py � A21 and pz� A31 for a Riemann problem with J� 1�0, py � 0�1, pz� 0�0, v� 0�0
in x� 0 and J � 1�0, py � 0�0, pz � 0�1, v� 0�0 in x � 0.
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4.2 Two dimensional steady problem

In order to illustrate the methods for steady problems described in 3.5 and the utility
of the adaptive grid, we consider the deformation of a two dimensional body through
a sequence of steady states. The initial shape of the body (figure 3) consists of a
square with a circular cut-out. It is defined by a scalar, α, which is 1 in the body and
0 in the surroundings.

The energy function is

U � αµmU ��1�α�µsU

where µm � 1 and µs � 0�001 and

U �
2

α2
1

�
λα1

1 �λα1
2 �

1

βJα1β1

�

with α1 � 11�5, β1 � 0�125. In order to make the wave speeds the same in both
materials in the initial state, we set the density in the material to 1 and that in the
surroundings to 0�001. The small value of µ s ensures that the stress at the boundary
of the body is very small, which gives a good approximation to a stress free boundary.
As can be seen in figure 2, the scalar has been diffused by a number of iterations of
a diffusion operator to give a smooth transition between the two materials.

Symmetry is imposed at X � 0�X � 2 and Y � 0 and the boundary at Y � 1 is a
piston that imposes zero tangential stress and moves vertically downwards in a series
of steps. After each change in the position of the piston, the solution is relaxed to a
steady state using the multigrid.

Fig. 3. Scalar describing the initial shape of the body with a diffused bounday.
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Figure 4 shows the deformation of the body at various positions of the top bound-
ary. It can be seen that at large deflections the initial circular cut-out closes and the
radius of curvature of the boundary becomes very large near the y � 0 plane. If the
boundary were infinitely sharp, this would be a cusp but the diffused boundary avoids
this. There is, nevertheless, a large stress at the point where a cusp would form, as
can be seen in figure 5.

Fig. 4. Scalar and level 0 grid in the Eulerian frame. The deflection of the top boundary is: a)
-0.2, b) -0.4, c) -0.6, d) -0.8.
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Fig. 5. Hydrostatic pressure at a deflection of the top boundary of�0�8. Linear grey scale with
white = -0.284, black = 0.645.

This is an example of the appearance of a sharp corner in an initially smooth
body and this would lead to a stress singularity. Of course, this cannot happen in a
real system, instead the material must either deform inelastically, or there must be
some physical mechanism that limits the stress. In the case of a polyurethane foam,
it seems likely that the inhomogeneity due to the presence of bubbles introduces
a length scale that prevents the stress from becoming singular. Unfortunately, the
proper treatment of this effect requires a non-local material law i.e. one in which the
stress is not merely a function of the local strain.

-2.2 -2.0 -1.8 -1.6 -1.4

log∆X

0.65

0.70

0.75

0.80

log Pmax

Fig. 6. Maximum hydrostatic pressure as a function of mesh spacing on the finest grid.

We can, however, investigate the nature of the singularity by looking at how
the maximum stress behaves as a function of the thickness of the transition region
between the body and the surroundings. The simplest way to do this is to compute the
solution at a number of different resolutions and to use a fixed number of iterations
of the diffusion operator to smooth the boundary. We find that the discretization
errors are neglible as long as there are about 10 cells in the transition region, so the
differences between these solutions are entirely due to the thickness of the transition
region. Figure 6 is a log–log plot of the maximum hydrostatic pressure against the
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Fig. 7. Force on the Y � 1 boundary as a function of the deflection of the boundary. The line
is for ∆X � 6�25 10�3 on the finest grid and markers are for ∆X � 1�25 10�2.

mesh spacing, which shows that the pressure appears to be increasing as an inverse
power of the mesh spacing and hence as an inverse power of the thickness of the
transition region.

Table 1. Grid filling factors in the undeformed state.

Grid Size Filling Factor
G0 20�10 1�0
G1 40�20 1�0
G2 80�40 0�260
G3 160�80 0�166
G4 320�160 0�07

Table 2. Grid filling factors at a deflection of �0�8.

Grid Size Filling Factor
G0 20�10 1�0
G1 40�20 1�0
G2 80�40 0�498
G3 160�80 0�290
G4 320�160 0�135
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Fig. 8. Grids G1
� � �G4. a) Initial state, b) at a deflection of �0�8.

Although the maximum stress increases without limit as the resolution is in-
creased, the force on the Y � 1 boundary converges as can be seen in figure 7. This
also illustrates the strongly non-linear nature of the material.

Finally, it is worth looking at filling factors on the various grid levels. From table
1, it is clear that, in the initial state, the filling factor reduces by a roughly a factor of
2, which is simply because, as can be seen in 8a, the grid is only refining where the
scalar varies. The filling factors behave in the same way in the final state (table 2),
even though they are somewhat larger because the grid now refines in regions, such
as the slot, in which the distortion is large (8b).
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5 Conclusions

We have shown that it is possible to extend upwind methods and adaptive grids to
non-linear Lagrangean elastodynamics and that they are just as effective in this case
as they are for fluid dynamics. In order to do this, we have found simple, but effec-
tive, solutions to the two main difficulties: the complexity of the Riemann problem
and the consistency of the deformation gradient. Furthermore, the combination of an
adaptive grid and a variable material strength makes it possible to compute equilib-
rium states of complex elastic bodies without encountering the problems associated
with singularities that afflict conventional finite element methods.
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A Parallel AMR Implementation of The Discrete
Ordinates Method for Radiation Transport

Louis H. Howell

Lawrence Livermore National Laboratory, Livermore, CA 94551
nazgul@llnl.gov

Summary. Requirements for efficient parallel numerical computations fall into two broad
categories: scalable algorithms and scalable implementations. For the discrete ordinates method
the basic algorithmic building block is the transport sweep, and some form of convergence ac-
celeration is required in order to combine sweeps into an efficient solver. This paper will
focus on the implementation side of the issue. I will present a method for performing parallel
transport sweeps in the context of a code for time-dependent radiation hydrodynamics using
block-structured adaptive mesh refinement. Sweep patterns involving a single refinement level
as well as sweeps coupling multiple levels will both be discussed. 2D and 3D numerical results
will compare the parallel performance of these schemes with the multigrid solvers called by a
radiation diffusion package implemented in the same code.

1 Introduction

This paper will present some details of parallel implementation and performance
of a radiation transport code that is still under development. The best background
for this work is [HG03], in which I describe the algorithm used in the same code
for single-group radiation diffusion, using time-dependent, block-structured adaptive
mesh refinement (AMR) and coupling to a Godunov scheme for multi-fluid Eulerian
gasdynamics. The present work develops a discrete ordinates transport algorithm as
an alternative to radiation diffusion, but many aspects of the diffusion model—in par-
ticular, the nonlinear coupling between the radiation field and the fluid energy, and
the role of the radiation solver in the AMR timestepping scheme—apply in very sim-
ilar ways to the discrete ordinates model. The block structured AMR algorithm itself
has its roots in the schemes developed for hyperbolic systems by Berger and Oliger
[BO84] and extended by Berger and Colella [BC89] and by Bell et al. [BBSW94].
Work on a previous, serial AMR implementation of discrete ordinates for combustion
applications appeared in [HPCJF99]. More extensive information on the genealogy
of these algorithms can be found in several of these references.

Solution of the equations for the discrete ordinate discretization of the radiative
transport equation is an iterative process. The steps of this iteration are built up out of
operations called transport sweeps, often combined with some form of convergence
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acceleration. In an earlier paper [How02] I discussed the form of the equations to
be solved for radiation transport, the parallel iterative scheme for AMR calculations,
and conjugate gradient acceleration using two different preconditioners. The first two
of these topics will be summarized as background in the following sections, but the
acceleration scheme will not be discussed. (The main results shown in [How02] were
that an adaptive mesh calculation could reproduce the accuracy of a similar uniform
grid calculation at much lower cost, and that conjugate gradient acceleration could
greatly reduce the number of transport sweep iterations required for convergence.
See [RAN97] for additional discussion of acceleration techniques.)

Instead, this paper will focus on the parallel scaling properties of the sweep im-
plementation, both in single- and multiple-level problems and in 2 and 3 spatial di-
mensions. Other developments since [How02] include support for 2D axisymmetric
(RZ) coordinates and 3D adaptive mesh refinement.

2 Derivation of Equations

This section and the next will present bare-bones descriptions of the equations for
radiation transport and the issues arising from the AMR grid structure, respectively.
More complete treatments are found in the references.

The single-level timestepping scheme operates in a split fashion, starting with
advection and conduction and followed by the radiation update. Let �ρE� � represent
the new time �n�1� fluid energy just prior to the radiation step:

�ρE�� � �ρE�n �∆t

�
� �∇ � �uρE �up��n�

1�2 �
1
2
∇ �

�
κ0T

5�2∇T
�n�1�2

�
� (1)

Radiation transport then uses a gray, fully-implicit discretization coupled to the fluid
energy equation:

In�1
� In

c∆t
��Ω �∇�In�1�

�
κn�1

a �κn�1
s

�
In�1 � κn�1

a Bn�1 �κn�1
s φn�1

� (2)

φn�1 �
1

4π

�
4π

In�1dΩ� (3)

�ρE�n�1 � �ρE���∆t �4πκn�1
a

�
Bn�1

�φn�1�
� (4)

The two coefficients κa and κs are for absorption and for isotropic scattering, respec-
tively. Emission from the fluid to the radiation field is κaB, and I is the gray radiative
intensity and is a function of both position and direction.

The discrete ordinate method discretizes the directional dependence of I by
choosing a set of discrete directions Ωm and weights wm that satisfy appropriate
quadrature properties on the unit sphere. Equation (3) becomes

φn�1 �
1

4π ∑m
wmIn�1

m � (5)
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In Cartesian coordinates (2) remains essentially the same, with I replaced by I m and
Ω byΩm. Coupling between ordinate directions takes place only through φ (via scat-
tering), and through reflections at the boundaries. (Axisymmetric and other curvilin-
ear coordinate systems introduce an additional complication as the streaming term
�Ω �∇�I gives rise to angular differencing between ordinate directions. See [LM93]
or [CL68] for this and other general information about discrete ordinates.)

The multifluid formulation stores separate volume, mass, and energy fractions
for each material present in a cell. Quantities derived from the fluid state, such as
emission and absorption coefficients, are likewise computed separately for each ma-
terial, but for radiation quantities only a single cell-based value is used. There is thus
a separate fluid energy equation for each fluid, and terms involving κ a and κs in the
radiation equation become sums over materials. These details do not significantly
impact the solution algorithm and are omitted from the rest of this paper.

The implicit coupling between the radiation and fluid energy equations—most
quantities in (2) and (4) are at time n�1—requires a nonlinear update iteration sim-
ilar to those used in [HG98] and [HG03] for diffusion. First, the new-time emission
term is expressed as an extrapolation from the current best approximation (desig-
nated by a star (�) superscript):

κn�1
a Bn�1 � κ�aB��

1
cv
�en�1

� e��
∂�κaB�
∂T

� (6)

By substituting into (2) and (4), we obtain

In�1
� In

c∆t
��Ω �∇�In�1��κ�a�κ�s � In�1 �

�κ�s �η
�κ�a�φ

n�1 ��1�η��κ�aB�
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4π∆t

�
�ρE��� �ρE��

�
� (7)

�ρE�n�1 � η��ρE����1�η��
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�ρE���∆t �4πκ�a
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where

η� �

∂�κaB�
∂T

�

ρn�1cv

4π∆t
�
∂�κaB�
∂T

�
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It remains only to group similar terms in (7) together to reduce it to a convenient
form for development of the transport solver,

�Ωm �∇�Im�σt Im �
1

4π
σs∑

m�

wm�Im� �Sm� (10)

where
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σt � κ�a�κ
�
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1

c∆t
(11)

σs � κ�s �η
�κ�a (12)

Sm �
1

c∆t
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m��1�η��κ�aB�
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4π∆t

�
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Note that the effective scattering coefficient σs includes a contribution ηκa from the
linearization of the emission term. This can be thought of as representing absorption
and re-emission during the timestep, and can play a major role in the behavior of the
solver even when true (physical) scattering is absent from the problem.

Finite volume spatial discretization of the streaming operator in (10) gives—in
2D Cartesian coordinates—

µm

∆x
�Im�i�1�2� j� Im�i�1�2� j��

ξm

∆y
�Im�i� j�1�2

� Im�i� j�1�2
��σt Im �

1
4π
σs∑

m�

wm� Im� �Sm� (14)

The simplest solution algorithm for this equation consists of repeated transport
sweeps, holding the scattering (σs) term fixed. For each ordinate direction Ωm, a
sweep begins at the upstream corner of the domain and moves through the grid,
using an upwind discretization to specify the relationship between the quantities at
edges and centers of each cell. Many such closures are possible; the ones used for the
calculations in this paper were the Step [CL68] and Simple Corner Balance (SCB)
[Ada97] discretizations. The scattering term is updated after each sweep until con-
vergence, or more sophisticated convergence acceleration techniques can be used.

3 AMR Timestep

The previous section described a timestep for a uniform mesh. The elaboration of
this for AMR is very similar to the algorithm for diffusion I present in [HG03],
which itself descends from previous AMR work on other systems combining explicit
advection with some kind of implicit global coupling. Finer levels are advanced at
smaller timesteps than coarser levels, in a recursive fashion. The basic outline is,

Multilevel timestep for levels �� � � � � � max:

1. Advance level � one timestep as a uniform mesh,
2. Do ∆t��∆t��1 multilevel timesteps for levels ��1� � � � � �max,
3. Synchronize intensities between levels � and ��1.

The single level steps require calls to a single level transport solver, inside a nonlin-
ear update loop coupling the radiation to the fluid energy. The synchronization oper-
ations require calls to a multilevel transport solver to compute a consistent, coupled
solution across all active levels. This is a more complicated solver, but is typically
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Fig. 1. Two level sweep: First sweep through the entire coarse level, then sweep the finer
level grids using interpolated coarse data at their upstream edges. At the downstream edges
(doubled lines), accumulate flux differences to be applied as internal edge sources during the
next coarse sweep.

called only once per coarse timestep, not embedded within a nonlinear iteration. A
variant of the multilevel timestep, involving an additional multilevel solve at the be-
ginning of each coarse timestep, is also described in [HG03]. I have not implemented
this variation for discrete ordinates but could easily add it in the future if needed.

On each level of grids, sweeps proceed grid-by-grid across the entire level, pass-
ing through upstream grids before downstream grids in each ordinate direction. (How
to do this in parallel, with different grids on different processors, will be discussed in
the next section.) At upstream edges of a level, intensities are interpolated from the
next coarser level. The intent is that the computed solution depend on the region of
cells making up the level, but not on the pattern of rectangular grids into which the
region is broken up.

For multilevel solutions, the algorithm is similar to that described for a serial
implementation in [JFHCP98]:

Multilevel transport sweep for levels �� � � � � � max:

1. Sweep all ordinate directions at level �,
� At upstream edges interpolate intensities from level ��1,
� At downstream edges of level �� 1, increment intensities by the quantities

stored in the flux registers from the previous sweep,
2. Do a multilevel sweep for levels ��1� � � � � �max,
3. Accumulate difference between level �� 1 and � intensities in flux registers at

downstream edges of level ��1.

The “flux registers” mentioned here are data structures at the downstream edges of
the fine grids, as shown in fig. 1. When transport sweeps are iterated to convergence,
three quantities must be updated after each sweep: the scattering source, boundary
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reflection source, and this new “refluxing source” associated with AMR. Fortunately,
the refluxing source tends to converge more rapidly than either of the other two
sources, so that the AMR algorithm does not require significantly more iterations
than a similar single level calculation.

One minor difference with the current algorithm is that the sources are applied at
cell edges, while in [JFHCP98] they were applied at cell centers. This only makes a
difference for discretizations like diamond difference [CL68] and step characteristic
[Mat99] that distinguish between fluxes entering different edges of a cell.

The same flux register data structures are used for accumulating differences in
intensities for the synchronization phase of the multilevel timestep algorithm. In this
case, the fine intensities are averaged in time (over the fine steps making up the
coarse step), as well as in space (over the fine faces making up each coarse cell face).
The goal for both cases is conservation, but for the multilevel transport solver it is
conservation in an instantaneous sense, while for the timestepping scheme it is in a
time-integrated sense.

4 Parallel Transport Sweep Algorithm

Parallel support for the code as a whole is provided by BoxLib [RBLCB00], This
is a purely spatial decomposition, based on MPI, with different grids distributed to
different processors. There is no provision for two or more processors to share a
single grid. Each refinement level is distributed across the entire processor set, since
in most parts of the code only one level is active at a time. No attempt is made to place
physically-adjacent coarse and fine grids on the same processors. For reasonably
efficient load balancing, it is best to divide the coarsest level into the same number of
equal-sized grids as there are processors, and to arrange for there to be at least three
times as many fine grids as processors on each level.

The radiation algorithm can influence the regridding operations by tagging cells
for refinement in future timesteps, but it is not possible for any module of the code
to adaptively alter the grid structure according to error criteria applied during the
current timestep. Questions of load balancing, grid layout, error estimation, and re-
finement criteria are therefore outside the immediate scope of the radiation module.
My emphasis in designing the radiation algorithm has been to take the grid structure
as given, and compute the best and fastest radiation solution using the data provided
on that grid.

The standard BoxLib primitives provide adequate support for most parallel oper-
ations, but transport requires more detailed control due to the dependencies between
grids during sweeps. The left side of fig. 2 shows a simple 4� 4 array of grids. An
ordinate in the first quadrant must start in the grid marked “1” since all other grids
are downstream of this one. After grid 1 is swept, that same ordinate can sweep
through both grids marked 2 simultaneously—assuming these grids are on different
processors—while another ordinate in the first quadrant can sweep grid 1. It takes
seven steps to sweep a single ordinate through all of the grids, but with a large enough



Parallel AMR Discrete Ordinates 261

4 5 6 7
3 4 5 6
2 3 4 5
1 2 3 4

�
�
�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

A

B C

Fig. 2. Left: “Waves” of grids in 2D. Grids with the same number are able to sweep the same
ordinate simultaneously; with seven different ordinates all 16 grids can be kept busy at once.
Right: In 3D it is not always possible to sort grids into waves. Each of these three grids is in
front of one of the others.
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Fig. 3. Timings for 2D grids arranged in a square array, one grid per processor, each grid is
400�400 cells. Sn transport sweeps (Step and SCB) are for all 40 ordinates of an S8 ordinate
set.
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Fig. 4. Timings for 3D grids arranged in a cubical array, one grid per processor, each grid
is 40�40�40 cells. Sn transport sweeps (Step and SCB) are for all 80 ordinates of an S8
ordinate set.

ordinate set the pipeline will be full for a while and all of the grids (processors) will
be working most of the time.

The structures supporting the parallel sequencing are called waves and stages.
Grids with no upstream dependencies make up the first wave, grids depending only
on the first wave make up the second wave, and so on. Stages are the steps of the
calculation; each stage specifies which wave is sweeping which ordinate at a partic-
ular time, and controls the communication of information from each grid to the next.
During a single stage each grid only sweeps one ordinate, so there must be at least
as many stages as there are ordinates to complete a transport sweep.

Not all ordinates are in the first quadrant, of course. In Cartesian coordinates the
first stage for the 4�4 array of grids actually has the grids on all four corners active
(cf. the algorithm in [DS96]). The angular differencing needed for axisymmetric co-
ordinates introduces additional dependencies, so for that case only ordinates pointing
towards the axis are able to sweep in the first stage, so only two corners can be active
at first. 3D calculations can start inward from all eight corners. Adaptive mesh prob-
lems have more complicated grid layouts on each level, so the waves have a more
irregular appearance, but the basic ideas work the same way.
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Fig. 5. This is the tiling pattern used in the 2D AMR scaling tests. Grids are arranged in a
square array, with 4 coarse grids and 18 fine grids for every four processors. Each coarse grid
is 256�256 cells.

Each quadrant of ordinates has its own wave structure. On a regular mesh the
waves for opposing quadrants—1 and 3, for example—are clearly identical, just
taken in the opposite order. I have found it beneficial to do the same thing for AMR
meshes (that is, for quadrant 3 use the waves for quadrant 1 in reverse order), instead
of building separate wave structures from the farthest upstream grids in all cases. The
reason is so that ordinates from these opposing quadrants can sweep different waves
of grids during the same stage of the calculation with minimal interference.

Choices must often still be made about which of two intersecting waves to sweep
during a particular stage, with the goal of minimizing the number of stages required
to sweep the entire ordinate set. I don’t have a perfect algorithm for this sequencing
problem, but I do have a number of heurstic rules that work fairly well. These can be
considered tradeoffs between “order” and “evenness”. “Order” is characterized by
full pipelines: some quadrants take precedence over others, so those ordinates sweep
through the mesh without interference. The drawback of order is that some quadrants
finish well before others and thus leave large regions idle in later stages. “Evenness”
is an attempt to treat all quadrants with equal priority, so that they finish in step and
late stages have all corners of the mesh still active. The drawback of evenness is
that pipelines are disrupted, leaving gaps. The additional constraints introduced by
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Fig. 6. Transport sweep and multigrid times for fine grids only using the tiling pattern shown
in fig. 5. Sn transport sweeps (Step and SCB) are for all 40 ordinates of an S8 ordinate set.

axisymmetric coordinates put a premium on order, while for Cartesian coordinates
some form of evenness often gives a more efficient sequence of stages.

Since no single heuristic gives consistently shorter sequences, the code currently
checks several schemes and picks the best for each particular grid layout. The ex-
pense of this is small but, as the next section suggests, may become a scaling issue
when hundreds of processors are involved. In [How02] I give some more information
about the sequencing tradeoffs, including figures and tables for various mesh sizes
and ordinate sets.

One final sequencing difficulty that only arises in 3D problems is illustrated by
the right side of fig. 2. Dependency loops can form for 3D adaptive grid layouts, so
that each grid of a loop depends on one of the others. In order to sweep this kind
of configuration at least one grid must be split into pieces to break the loop. Any of
the three grids in the figure could be split. In my code grids are split only in the z
direction—this is always possible—so that the resulting fragments have contiguous
data. So the choice for this figure would be to split grid B along the plane separating
grids A and C. The resulting four grids could then be sorted and swept in order.

The discussion so far in this section has focused on sweep patterns for a single
level of grids, but these sweeps can be combined for multilevel problems in the man-
ner presented in [JFHCP98] and summarized in the previous section. The parallel



Parallel AMR Discrete Ordinates 265

0 50 100 150 200
Processors

0

2

4

6

8

10

12

14

W
al

l−
cl

oc
k 

S
ec

on
ds

Fine Step Sweep
Fine SCB Sweep
Fine SMG Setup
Fine SMG V−cycle
Fine PFMG Setup
Fine PFMG V−cycle

Fig. 7. Transport sweep and multigrid times for fine grids only using a 3D tiling pattern similar
to that shown for 2D in fig. 5. Grids are arranged in a cubical array, with 8 coarse grids and
58 fine grids for every eight processors. Sn transport sweeps (Step and SCB) are for all 80
ordinates of an S8 ordinate set. Fine SMG Setup times are off the scale, taking 41 and 126
seconds for 64 and 216 processors, respectively.

communication operations that must be implemented for the full multilevel transport
scheme are then

1. Transfers from grid to grid on the same level according to the pattern of stages,
2. Transfers from a coarse level to upstream edges of a fine level,
3. Transfers from a coarse level to downstream edges of a fine level, to initialize

flux registers,
4. Transfers from a fine level back to a coarse level as a refluxing source.

Some optimizations are possible. The third type of transfers (coarse data initializing
flux registers) are only needed because at present the flux registers are associated
with the fine grids. Implementation of coarse-processor data structures for holding
this data would eliminate these transfers entirely. Also, when the communication
operations are used during the single-level solves of an AMR timestep, it is not nec-
essary to perform any transfers between levels while iterating a level to convergence,
only when preparing to transfer converged solution information to another refine-
ment level.
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Fig. 8. Multilevel sweep timings compared to sweeps on the fine level alone. Fine level setup
costs are also included for comparison. 2D grids are arranged in a square array of tiles, with 4
coarse grids and 18 fine grids for every four processors. Each coarse grid is 256�256 cells.
Sn transport sweeps (Step and SCB) are for all 40 ordinates of an S8 ordinate set.

5 Parallel Scaling

The runs presented in this section were all performed on ASCI Blue-Pacific. This
IBM SP system has four processors per node, so the numbers of MPI processes used
in the tests were always multiples of four. The number of cells per processor was the
same for all the runs compared in each figure, so perfect scaling would be represented
by flat horizontal lines on each plot.

The first tests (figs. 3 and 4) examine performance on a single uniform level of
grids, with one grid per processor. In 2D the grids are arranged in square arrays of
various sizes, and in 3D in cubical arrays. The times shown are for sweeping all ordi-
nates of an S8 ordinate set (40 ordinates in 2D, 80 in 3D) across each array of grids.
For comparison, the times for the setup phase and a single V-cycle are shown for
two geometric multigrid algorithms in the hypre library [CCF98], used in this code
for radiation diffusion calculations [HG03]. Note that in comparing single sweeps
and single V-cycles, I am comparing building blocks of solvers rather than complete
solution times. Comparing solution times would bring in questions of algorithm effi-
ciency, and for discrete ordinates would require an examination of acceleration tech-
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Fig. 9. Multilevel sweep timings compared to sweeps on the fine level alone. Fine level setup
costs are also included for comparison. 3D grids are arranged in a cubical array of tiles, with
8 coarse grids and 58 fine grids for every eight processors. Each coarse grid is 32� 32� 32
cells. Sn transport sweeps (Step and SCB) are for all 80 ordinates of an S8 ordinate set.

niques and convergence behavior that is beyond the scope of this paper. (I show
preliminary single-processor comparisons of acceleration schemes in [How02].)

In these two figures, as well as in the AMR results presented later in the section,
the sweep times for the step and simple corner balance (SCB) discretizations are very
similar. This may indicate that these routines are constrained more by memory access
times than by floating point performance. (SCB does more arithmetic per cell, but
both discretizations access the same amount of data.) It is also interesting to observe
in these results that all 40 or 80 ordinates for an S8 problem can be swept in a time
comparable to that of a single multigrid V-cycle for a diffusion problem involving a
single unknown.

The increase in times for the transport sweeps on larger arrays of grids can be
partially accounted for by the greater numbers of stages required for the parallel
computation. In 2D this ranges from 40 stages for 4 processors to 74 stages for 196
processors, while in 3D the increase is from 85 stages for 8 processors to 113 stages
for 216 processors. (Remember that perfect efficiency would be 40 stages in 2D,
80 in 3D, the same as the number of ordinates in the S 8 set.) Another factor is the
increase in communication per grid: In the smallest cases only half of the faces of
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each grid require communication (the others being on the boundary). As the arrays
of grids become larger, nearly all grid faces require communication. This latter effect
applies to the multigrid cycles as well as to the transport sweeps.

To extend the scaling study from uniform mesh to AMR, we need a way to gen-
erate more interesting grid layouts while keeping the work per processor fixed. Fig-
ure 5 shows a tiling pattern I have used for these tests in 2D—the tiles are replicated
to preserve the ratio of one coarse grid per processor. In this pattern, and its 3D coun-
terpart, the refined regions in neighboring tiles do not touch each other. This means
that the number of Sn stages, and the communication per fine grid, remain fixed as
the pattern grows larger. (Other patterns where the fine regions do touch would also
be interesting to look at, but this one allows me to eliminate these two effects from
the comparison.)

The results for single-level sweeps across the fine level only are shown in figs. 6
and 7. The Sn results scale fairly well, and are flatter than those in figs. 3 and 4,
showing the effect of the fixed number of stages and constant communication costs.
The pattern chosen for 3D was complicated enough to require several grid splits to
break dependency loops, as discussed in the previous section.

The scaling of the hypre solvers is not the main subject of this paper, but it is
worth mentioning that the PFMG algorithm is showing good results, while the scal-
ing for the SMG setup phase seems poor (particularly in 3D). I would like to stress
that these tests were done only weeks before the workshop, and that the hypre devel-
opers had not had a chance even to reproduce and diagnose the effects shown, much
less correct them. Since that time they have begun to look for the problems and work
on improvements. A partial explanation for the adaptive mesh results is that hypre
has previously been optimized mainly for problems with a single grid per processor.

The final two figures (8 and 9) show performance of the multilevel algorithm
coupling coarse and fine levels. Multigrid comparisons are not shown since we do
not currently use hypre for multilevel solves. The curves for the fine level alone
are reproduced from the previous two figures. Note that the times for the multilevel
solves rise with the number of processors, while the times for a single level remain
relatively flat. This is because the tiles of the grid layout are in contact at the coarse
level.

I also include fine level setup times in these last two plots. (Setup times for the
coarse level are smaller and would be visible at this scale only for the largest num-
bers of processors.) The curve labeled “wave setup” shows costs independent of the
ordinate set, while “stage setup” costs are those that depend on the ordinate set used.
Since neither are scaling well, this is not a terribly important distinction. Though the
setup costs can be amortized over the number of transport sweeps required to reach
convergence, it seems clear that I will have to develop better setup implementations
in order to push the code much beyond 200 processors.
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6 Future Work

Further development of the discrete ordinates capability will proceed along at least
three fronts: multigroup support, acceleration schemes, and applications. Experience
with applications will feed back into the development work through code validation
and through testing the practical limits of the implementation in various ways. Just as
the scalability tests in the previous section indicate a need for further work in order
to run on more than a few hundred processors, it is likely that applications tests will
reveal a need for improved convergence acceleration methods beyond those already
implemented [How02]. Additional physics may be needed once support for multiple
frequency groups is in place.
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1 Radiation transport in code ARWEN

1.1 Introduction

Radiation transport calculations have been implemented in the ARWEN code [14] as
a means of energy transportation. For that purpose, the Boltzman equation (eq 1) is
solved for the radiation intensity. The algorithm used includes finite differences for
the spatial component, discrete ordinates for the angular dependence and multigroups
of energy for the energy dependence of the radiation.

1
c
∂I
∂t
��Ω �∇I�κI � ε (1)

The radiation calculations are coupled to the fluid dynamics. That means that the
mutual interaction (through absorption and emission processes) with matter is taken
into account in the calculations. The implementation of the interaction with matter
results in a emission term dependent on the radiation intensity itself. The conven-
tional algorithms present an important problem for achieving convergence in that
case, resulting in the necessity of the introduction of more sophisticated acceleration
techniques. The method of Diffusion Synthetic Acceleration (DSA) [3] has been im-
plemented in our calculations, to overcome those difficulties.

All these calculations are performed under Adaptive Mesh Refinement (AMR)
environment, to achieve a most optimum scheme of calculations. The algorithms
concerning AMR involve both the resolution of single mesh calculations and the
exchange of data between meshes and levels. This exchange of data, as commonly
done in CFD [5], implies transmission of inward boundary conditions from coarse
levels to finer ones, and correction of the coarse solutions by means of the finer ones.

All the handling of data specific from AMR has been treated using the BoxLib
library [6], programmed in C++ and designed to simplify the programming of codes
working with AMR. The library allows for parallel run in the code due to its internal
structure [15] simplifying parallelization tasks to the programmer.
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Another special feature of the transport of thermal radiation lays in the nonlinear
dependence of the emissivity with the temperature. The resolution of the equation
on the same domain, but using different levels of refinement, may lead to highly
inconsistent values of emissivity, that results on the necessity of strong corrections
among levels. A special method for calculations of emissivities has been introduced,
to reduce the inconsistencies as much as possible. This method applies to single
mesh calculation, but it is specially introduced to solve problems arising just in AMR
calculations.

The above mentioned points have been the key points in the development of new
algorithms for the resolution of the radiation transport equation using AMR. This
points have been implemented in the ARWEN code, resulting in a proper treatment
of the equation and leading to convergence.

1.2 The ARWEN code

The ARWEN code was designed to perform calculations of high temperatue and
density fluids. These thermodynamic conditions are commonly reached in laser pro-
duced plasmas, with laser intensities over 1010W�cm2. This kind of plasmas are
obtained in inertial confinement fusion (ICF) experiments, astrophysical laser lab-
oratories, extreme ultraviolet amplificators, etc, and examples of simulations with
ARWEN are given at the end of the paper.

The code ARWEN solves numerically the compressible fluid dynamics equations
with electron heat conduction and radiation transport. We separate this three main
calculations by time splitting. The CFD part is a Godunov type scheme, with the
Riemann problem solved in one or two temperatures (electron and ion) and with
linear or parabolic reconstraction of profiles [8, 10]. For the electron heat conduction
is solved by a multigrid technique with parabolic interpolation at boundaries [9].
Because heat conduction coeficients are flux-limited, special care must be given to
handle the non linear behaviour of the equation. For instance, convergence is very
slow sometimes, and the switching between different methods helps to accelerate the
convergence in this case.

The equation of state (EOS) and opacities is another important part of the code,
and we have paid much attention to that topic. The thermodynamic data is storaged
in tables both in direct form, with all data dependent of density and temperature,
and in inverse form, with all data dependent of density and internal energy. In one
step both kind of tables are used, and some precaution is taken to assure this back
and forward interpolation is consistent. Other conditions to the EOS that are en-
forced when possible are the Bethe (∂2 p�∂v2

�
�
S � 0) and Smith medium condition

(v∂p�∂v� γ� 1
2 pv�e). These conditions are related to the existence of a solution of

the associated Riemann problem. The code Arwen can not handle phase transitions
or elastic-plastic flow. When possible the EOS data is a tabular representation of a
analytical EOS named QEOS[13], with a multiplier of pressure dependent of density
and temperature. For opacities we use a tabular data obtained with the Jimena[12]
code.
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1.3 Coupling between radiation and matter

In radiation hydrodynamics, both the fluid and radiation fields are closely coupled
to each other. Mainly that happens by the energy conservation equation, although
at high temperatures the momentum exchange becomes also important. Radiation is
emitted and absorbed depending on the thermal state of matter. Specially in optically
thin media, that produces an non-local coupling of thermal states. Emission depends
most strongly on temperature, and it can be modified as an effect from distant regions
of the system. Those variation of temperatures of course introduce variations on the
emission. These considerations have to be taken into account when designing a ra-
diation fluid dynamic code. There are two ways of considering the proper emission:
either the timestep is reduced in such a way that there are no appreciable temperature
changes, or the emissivity changes are properly treated in the equation.

εν�T 1�� εν�T 0��
∂εν
∂T

�T 1
�T 0� (2)

Accordingly to equation 2, the emissivity is considered in an implicit way that
is approximated by its linealized form. This expression is introduced in equation 1,
and by a simple energy balance of matter following reference [3], the expression 3 is
reached.

�Ω �∇Iν�κIν � χν
�

E
σ f �νIν dν�Sν (3)

where the coefficient of the new equation depend on both the atomic and thermal
properties of the contituent matter. Other atomic properties, as is absorption coeffi-
cient, are the same way influenced by the temperature variations, but they are not
considered, since the overall effect is smaller than the originated from emissivity.
The consideration of variable coefficients with temperature would lead to a non-
linear transport equation, increasing enormously the complication of its resolution.

The resolution of equation 3 not only increases the required computational effort,
but it introduces a serious problem in the convergence rate of the variable source.
The problem has already been studied for neutronics, and special algorithms, named
as acceleration techniques have been developed [1]. From those algorithms, DSA
has been chosen for producing best results. The algorithm has been implemented
in the calculations at a single-mesh level, that is, inside mesh calculations, but not
specifically on the AMR algorithms.

The improvements regarding this modification appear in situations where the
temperature suffers from sudden rise. That may happen in illumination by laser or
thermal radiation, collision of hypervelocity systems, etc. . .

1.4 Interaction among meshes in the AMR scheme

Block structured AMR [4] involves both calculations in homogeneous single meshes,
and special exchange of information among them. AMR meshes are structured in a
hierarchycal tree involving different levels of refinement. Inside every level of the
tree, all meshes are non-overlapping and have the same cellsize. Some of the meshes
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inside the same level share at least part of the boudaries, so that common information
has also to be shared among them.

The interaction ways among meshes may be organized in three main sets:

� Interaction between meshes in the same level.
� Fine boundary conditions from coarse meshes.
� Correction of coarse calculations from finer results.

and each of these classification sets has to be treated in a special way for the radiation
transport equation.

The transmission of information among meshes belonging to the same level pro-
vides boundary conditions from neighbour contiguous meshes. Accordingly to [7],
this transmission of information has to be done following a downstram propagation.
That involves ordering the meshes belonging to the same level, given a direction of
propagation. That process means no special problem for bidimensional calculations,
although it need special treatment in 3D cases. An additional problem arising in dis-
crete ordinates lays in the different directions of propagation of the different angular
discretized directions. In the 2D case it results on four possible orderings. There are
two ways of treating the calculations:

� Handling each direction of propagation separately.
� Performing all four sweeps for all directions.

In the case of this code, in order to implement DSA properly, the kernel of cal-
culations has been extracted from the DANTSYS system [2] for neutronics. That
makes impossible to do separate sweeps for the different directions solved. The solu-
tion applied is therefore to perform four different sweeps following the four possible
orderings. That ensures that every direction has been swept at least once following
the right direction.

The transmission of intensity values between meshes in the same level is straight-
forward. Using the discrete ordinates algorithm, intensity values are calculated both
in cell body and in cell sides. The latter values and directly transportable as boundary
conditions to neighbouring meshes.

During the full AMR calculation, fine meshes take under certain circumstances
boundary conditions from coarser meshes already calculated. That transmission of
information from coarse to fine meshes is produced in an alike manner as in fluid
dynamics. A conservative procedure is followed, assuring that the total flux crossing
the coarse-fine boundary has the same magnitude measured from both the coarse or
fine side.

The transmission of data, as shown in figure 1, implies interpolating the coarse
data. From that process, fine values are obtained, and used as inward boundary con-
ditions for the fine mesh. It is important to remark that the process is a per-direction
interpolation, that is, radiation comes into the fine mesh only for some of the direc-
tions of propagation (exactly for half of them). It is just for those directions pointing
into the fine mesh, that the process must be done.

Once performed the finest calculations the so produced data, believed to be the
most accurate, replaces and corrects the data obtained from coarser meshes. The
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Fig. 1. Data transfer from coarse to fine mesh.

replacement takes place in the coarse regions overlapped by finer meshes. That re-
placement is done in a conservative way, averaging properly the values of intensity
over a coarse cell. Another correction from those finer values take place by the out-
going flux coming from fine meshes. In the case of CFD, due to restrictions on the
Courant number, that influence is restricted to the neighbouring line of cells sur-
rounding the finer meshes. In radiation transport, on the contrary, the differences in
boundary fluxes may influence distant regions. That point forces the recalculation of
coarse meshes having into account the outgoing fluxes from finer meshes.

Fig. 2. Flux correction from finer to coarser meshes.

That correction applies to intensity values on cell sides of the coarse mesh (see
figure 2). The introduction of precalculated fluxes is straightforward to implement in
a normal algorithm of discretes ordinates but again the DSA implementation makes
it more difficult to introduce. Having a starting point of a solver code that admits
volumetric sources with dependance on the direction, the method applied consists of
a way of converting the flux correction into a volumetric source.

The volumetric source, as shown in figure 3, is calculated to produce the same
outgoing flux in the coarse cell neighbouring the fine mesh. Once it is done so, the
radiation propagates the same way in both cases (contour or volumetric corrections).
Using a one-dimensional aproximation for the propagation of the corrections under
the assumption of no coupling with matter, the expression 4 is reached:
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Fig. 3. Equivalence between flux correction and volumetric source.
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where ∆Ic represents the correction in incoming boundary intensity.
Once introduced the commented corrections, the outgoing flux of the neighbour-

ing coarse cells is changed into the correct value, but even so the cell centered value
remains incorrect. In figure 4 there is a simple scheme of the linealized intensity pro-
files inside a cell, in both the cases of contour correction (exact case) and the result
of applying a volumetric source. It is easily noticed, that imposing a common outgo-
ing intensity (right edge) does not mean at all that the cell-centered intensity takes
also the proper value. It is therefore necessary to introduce another correction, since
cell-centered intensities are used for energy balances. Checking figure 4 it is clearly
seen that the necessary correction takes the value of ∆I c

0 � ∆Ic�2, half the value of
the correction of the incoming intensity. This expression is valid in both the cases of
coupling with matter or not.

Ic
0

Ic

Ic
�∆Ic

xi�1�2 xi�1�2

Iout

cell

Fig. 4. Correction to the cell-centered intensity.

1.5 Calculation of sources

As it was pointed out before, in block structured AMR, some parts of the domain are
calculated with different cellsizes, corresponding to different levels in the hierarchy.
Regarding radiation transport, the coefficients of the equation are calculated using
the thermodynamic states of matter calculated in every of the levels. Those ther-
modynamical states are granted to be consistent, since the conservative algorithms
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used in CFD keep balances in some keys magnitudes (density, energy and momen-
tum). However, even under the assumption of total conservation of those magnitudes
(what is ensured by conservative projection of values), there may appear important
inconsistencies in derived magnitudes. In highly nonlinear derived magnitudes, the
obtained result is far from being conservative. That may result in big inconsistencies
in the final solution, when it applies to sources that affect the balance of radiation in
the system. Of course this undesired effect applies to every coefficient, since atomic
properties of matter shows typically a highly nonlinear dependency with tempera-
ture (being closer to linearity in respect to density). All these inconsistencies can be
treated by the interlevel flux correction, that have been presented in previous sec-
tions. However, and due to the application of approximation, it is desirable that those
corrections are as small as possible. This is why there is also an aim of reducing
the source of the inconsistencies, and not only correcting them (which will also be
done).

In order to reduce those differences of values corresponding to the same region
of the system, two main techniques have been implemented:

� Projection and replacement of values to ensure conservation of desired values.
� Consideration of first order profiles of thermodynamical properties to produce

more accurate values on the regions not covered by finer meshes.

The first of this technique has no difference from the application it has in CFD
calculations. It produces consistency on the coefficients and source of the transport
equation, with a result of more consistent radiation fields in the different levels of
refinemente. However still arises one question when doing calculation without ex-
tremely fine meshes. If the existing levels present inconsistencies, is the finest level
reliable enough to believe its values? In a infinitely refined mesh, of course calcu-
lated data is reliable, but specially in rough meshes there may still be wrong values
in the finest level.

Those regions where the inconsistencies appear take place where there are bug
gradients of the thermodynamical data, specially temperature. Those areas may be
localized in simulations applied to nuclear fusion around shock waves or ablation
fronts, where temperature may rise up to five orders of magnitude in relatively short
distance (few cells in the mesh). A special method must be implemented to take
this particularities into account. Of course, in the bulk of the system with smaller
gradients, this correction will have little effect. The same way AMR works, the cor-
rection (which means a calculation overhead) applies just in the regions where it is
needed, thus optimizing the calculation efforts. However those regions, for example
in the boundary of cold solid matter and hot plasma, may emit most of the existing
radiation in the system.

Several correction methods may be developed to take into account the internal
profiles of atomic values. In our code, calculations have been focused just to the
emissivity. The correct value of the average emissivity in a cell is the following:

εi �
1
∆xi

�
i
ε�x�dx �

1
∆xi

�
i
ε�ρ�x��T �x�� dx (5)
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while the commonly accepted aprroximation is:

ε̂i � ε�ρi�Ti� � ε
�

1
∆xi

�
i
ρ�x�dx�

1
∆xi

�
i
T �x�dx

�
(6)

An analytical approximation for the emissivity has been considered [11], as well
as a exponential spatial profile of the thermodynamical variables.

ε � a �ρb
�T c (7)

log ρ̂�x� � logρ0�ρx
� x (8)

log T̂ �x� � logT 0�T x
� x (9)

Using this approximations, the actual value of the emissivity may be integrated
using expression 5, leading to a result of the form:

ε� ε̂ �F�ρx
�T x� (10)

where F�ρx
�T x� reflects the effect of internal profiles in the thermodynamical vari-

ables. It is straightforward to see that F�0�0� � 1, corresponding to a flat spatial pro-
file. Function F depends on the approximation done in the emissivity and typically
will vary from material to material, and in certain cases even for different regions. In
figure 5 can be seen the values of F for different values of the slope parameters, that
in a normal simulation may have values up to 3 or 4.

            

Fig. 5. Values of the correction factor for gold



Radiation Transport in AMR 279

1.6 Examples

In the following we will give an actual example of running the ARWEN code. In
the figure 6 is represented the density evolution of a ICF guided target. First a X
ray thermal radiation drives the compresion of the shell and afterward the same ther-
mal radiation produces a jet by acumulation phenomena in the laser axis. This jet
collides with the compressed shell, increasing the temperature to the ignition condi-
tions. Typically three levels of AMR are used, being the finest one dedicated only
to the laser energy source when is present. It allows a good precision for the criti-
cal density, where the most part of the laser energy is deposited. In this simulation,
radiation burn throw the shell, heating the inner surface of the target and filling the
interior with a medium temperature plasma.

Fig. 6. Density evolution of a ICF guided target, driven by thermal radiation of 300 eV.
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HERA: A Hydrodynamic AMR Platform for
Multi-Physics Simulations

Hervé Jourdren

CEA/DAM - Ile de France, Dpartement Sciences de la Simulation et de l’Information, BP 12
- 91680 Bruyres-Le-Chtel, France

Summary. The development at CEA/DAM of a new AMR multi-physics hydrocode platform
led to convincing results on a wide range of applications, from interface instabilities to charge
computations in detonics.

In this paper, we focus on:
1. A selection of numerical results illustrating gains to be expected from AMR in such

fields, including precise comparisons between AMR and uniform grids (up to 100 millions
cells in 2D using CEA’s teraflops machine TERA-1).

2. An introduction to the hyperbolic framework and resulting suite of consistent multima-
terial compressible flow solvers (hydrodynamics, hypo-elasticity, nT hydro and nT MHD).

3. A presentation of an innovative hydrocode architecture, allowing three different parallel
modes at runtime: (i) a MPI mode for uniform or well-balanced AMR grids, (ii) a multithread
mode on SMPs and (iii) a hybrid MPI/multithread mode on clusters of SMPs. Multithread-
ing is used there to diminish grain sizes, to control memory cache effects and dynamic load
balancing.

4. Finally, an overview of the user-model API is given, in both C++ and Python vector
modes, for platform extensions using Strang-type operator splitting.

1 Multifluid hydrodynamics

For many users of traditional Lagrangian, ALE or Eulerian hydrocodes, one of the
first objections to AMR is usually that “soon or later, AMR grids have to be refined
everywhere to capture the growing complexity of most unsteady flows”. Detailed
numerical comparisons between AMR and uniform grids of same finest resolutions
are then quite helpful. Up to now, such comparisons are not widely available in the
literature. The next two examples have been used for a number of years, among
others, to get support for the HERA1 project. The third example involves a more
complex flow, making use of CEA’s teraflops machine TERA-1 to get a reference
uniform grid result, for comparison to AMR in 2D.

1French acronym for Hydrodynamique Euler Raffinement Adaptatif.
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Single-mode Richtmyer-Meshkov

The goal of the first test problem is to illustrate that cell-by-cell AMR, pionieered
more than a decade ago in multifluid context using interface tracking [3] or con-
centration equation [5], may reveal surprisingly efficient when used with interface
reconstruction and elementary grid strategies.

As illustrated Fig. 1, the finest level of 2x2 AMR refinement is applied on the
incident shock, on the transmitted shock during the first instants, and on the interface
during the whole computation. The comparison of AMR and uniform grid results
clearly indicates that the interface instability is well-reproduced using such a simple
AMR strategy, leading to a substantial reduction of the total number of cells and
CPU time.

(a) (b) (c)

(d)

(e)

Fig. 1. Single-mode Richtmyer-Meshkov instability using a cell-by-cell 2D/AMR grid with in-
terface reconstruction (StonyBrook #1 benchmark, 96 cells per wavelength). The AMR com-
putation is about 7 times cheaper than the uniform grid one, without any significant difference
on the development of the interface instability.

Shaped charge computation

In a different context – armor-anti armor – but with a very same AMR strategy,
the finest 3x3 refinement level is here imposed on the detonation wave treated by a
programmed burn approach, on the reflected shock in the detonation products, and
on the liner during all the computation.
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Again, the agreement between the AMR computation and the uniform grid one
is quite satisfactory (Fig. 2), leading to a 24 reduction factor in CPU time (Alpha
processor: 5 minutes instead of 2 hours). Such a reduction factor is representative
of this type of computation in 2D. The 3D/AMR result is provided Fig. 3 with a
comparison to the 2D/AMR axisymmetrical one, exhibiting an excellent agreement
on the shape of the jet and associated velocity distribution on the axis.

(a) (b) (c) (d)

Fig. 2. 2D/AMR hemispherical shaped charge computation (a) 2.5 microseconds, (b) 12.5
microseconds, (c) 27.5 microseconds, (d) 40 microseconds. Four-level 3x3 AMR (top) vs.
uniform reference grid (bottom).

Multi-mode Richtmyer-Meshkov

Let’s consider finally a more complex flow, combining features of the two previous
ones: multi-mode instabilities in a cylindrical implosion, involving a succession of
HE and inert materials as sketched Fig. 4.

The grid strategy is exactly the same as before, with the finest grid resolution on
the detonation waves – treated now by a reaction rate model – and on the perturbated
liner. A difference with the two previous examples is the initialization of the liner,
performed when it’s just about to be reached by the flow, such a capability being used
here to save a very significant amount of computer time. With a spatial resolution
of 15 microns, the reference uniform grid computation involves 100 millions cells,
requiring 20,700 hours of CPU time with CEA’s teraflops machine TERA-1 (256x80
hours, Alpha EV68 1Ghz processor). The AMR computation requires 3.5 millions
cells by the end of the computation and about one week in mono-processor mode. As
illustrated Fig. 5, the positions of the liner are extremely close in both computations,
along with development of the interface instabilities.

2 Hyperbolic solvers

The choice of AMR orthogonal grids has been motivated in this project by a number
of numerical issues, including:
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(a)

(b) (c)

Fig. 3. 3D/AMR hemispherical shaped charge computation (a) final geometry at 40 microsec-
onds, (b) 3D/AMR geometry (top) vs. 2D/axi (bottom) at 38 microseconds, (c) jet velocity
profile on the axis (solid line for 3D/AMR, dash line for 2D/axi).
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Fig. 4. Multi-mode Richtmyer-Meshkov test problem. Initial 2D plane geometry.

(a) (b)

(c) (d)

Fig. 5. Multi-mode Richtmyer-Meshkov test problem. Zooms at 10 microseconds of the 100
millions cells (15 microns) uniform grid (a, c), and AMR grid of about 3.5 millions cells, with
same spatial resolution on the reaction zones and perturbated liner (b, d). A complex acoustic
wave structure is clearly noticeable with the uniform grid. It’s not the case in the AMR case,
without any visible influence however on the position of the interface and the development of
the instability.
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i) the nice properties of the resulting diffusion operator, called by most plasma
physics models (positivity, convergence, etc)

ii) the natural AMR extension of advanced ADI interface reconstruction algorithms
for multifluid advection [4], [6]

iii) and also efficiency criteria, with simple formulae for volumes, surfaces, partic-
ules trajectography, etc.

In a truly multi-physics context, a general treatment of discontinuous solutions of
hyperbolic systems of conservation laws is still challenging (i.e. derivation of a gen-
eral shock capturing scheme [1], [2]). The choice of a conservative approach seemed
quite natural there2, but also appeared as a major source of scepticism since “ex-
tensions of Godunov-type hydro schemes to systems as elasticity, radiation hydro-
dynamics or MHD are still in their infancy, when compared to VNR-type staggered
grid schemes”.

The resulting mathematical framework worked-out at CEA/DAM for this pur-
pose is detailed in [7], providing a consistent suite of multi-physics AMR flow
solvers3.

3 Parallelism and dynamic load balancing

It’s often said that “cell-by-cell AMR may look attractive from a user point of view,
but leads to severe difficulties on the parallel side”.

The parallel strategy explored with the HERA platform involves advanced pro-
gramming techniques. Portability being a crucial issue, a combination of message
passing and multithreading has been selected4, with a strict domain decomposition
SPMD approach. The grain size of a parallel simulation is controled by using an ar-
bitrary number of subdomains per processor (overloading factor). Each subdomain
is then treated by a thread or eventually by a process. Thanks to the choice of the
C++ programming language, object oriented polymorphism is used for all opera-
tions related to subdomains (process or thread) and message passing (MPI or shared
memory), communications within same address spaces being then handled automa-
tiquely via shared memory, otherwise via MPI.

As a consequence, with completely thread-safe and reentrant AMR solvers and
physical modules, the HERA architecture supports three different modes of paral-
lelism at runtime:

2Rankine-Hugoniot conditions are satisfied automatically with conservative schemes;
AMR implementations are also much easier than VNR staggered grid ones, most notably
in 3D with arbitrary refinement factors as 2x2x2 or 3x3x3.

3Recovering by construction, for example, the basic hydro scheme when deviatoric
stresses (resp. magnetic field components) are set to zero in the elastic solver (resp. MHD
solver).

4OpenMP has been disregarded for portability reasons, implementations being platform
dependant, without any control on the underlying thread scheduling algorithm (a crucial issue
when used in pure SPMD domain decomposition mode along with MPI).
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i) a MPI mode, for uniform or well-balanced AMR grids;

ii) a “pure” multithread mode on SMPs;

iii) and a hybrid MPI/multithread mode on clusters of SMPs.

In the third mode, a user-space non-preemptive multithreading approach is used,
with a specific scheduling policy tuned to the needs of AMR computations. Within
a HERA process, the thread scheduler is then modified so that all number crunching
operations are performed first, communication threads being given the CPU resource
only when all computing threads of the process are blocked on a communication
phase. Such a thread scheduling policy helps keeping CPU busy as long as possible,
and minimizes the number of context switches to benefit from cache effects.

As a first illustration of the capabilities of such a parallel code architecture, grind
times for a 2D/AMR hydro test problem of about 1.4 millions cells on one processor
are given Fig 6 with increasing overloading factors. Up to 30 computing threads
per process, a significant grind time reduction appears, resulting directly from cache
effects on the Alpha EV68 processor.

(a) (b)

Fig. 6. Multithreaded hydrodynamics in mono CPU mode (a) structure of the four-level 1.4
million cells 3x3 AMR grid and underlying 1D domain decomposition (cylindrical Sod’s
shock tube problem) (b) AMR hydrodynamic grind times. Up to 30 threads per process, gains
from cache effects are clearly noticeable.

Using several processors, the efficiency of the strategy is illustrated Table 1 by
speedup results for a 2D/AMR nonlinear electronic conduction problem, using an
implicit scheme and a conjugate gradient method with diagonal preconditionning
(Fig. 7). With an overloading factor of 8 multithreaded subdomains per process and
the same type of domain decomposition given Fig. 6, a speedup of about 14.4 on 16
processors is achieved, to be compared to 7 in pure MPI mode.

In practice, diminishing grain size is usually not sufficient to achieve good
speedups.
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Dynamic load balancing has also to be done, performed automatically by the
AMR platform, currently by subdomain migrations using the standard check-point/restart
procedure.

Fig. 7. Nonlinear electronic conduction. Structure of the four-level 3x3 AMR grid.

Table 1. Nonlinear electronic conduction (600,000 cells, four-level 3x3 AMR).

mode threads/processor processors speedup total time

serial 1 1 1556.
MPI 1 16 7.04 221.
MT/MPI 2 16 10.24 152.
MT/MPI 4 16 10.81 144.
MT/MPI 8 16 14.41 108.
MT/MPI 16 16 11.04 141.

As final example, a speedup curve for the Top Hat #1 benchmark [8] – a radi-
ation hydrodynamic problem treated here with an equilibrium diffusion model – is
reported Fig. 8. For a converged Eulerian computation, the reference 4 millions cells
uniform grid simulation costs 3,330 CPU hours (128x20 hours) for 10 microseconds
of physical time. The AMR computation, offering the same resolution on the Mar-
shak wave and on the interface, just requires 50 CPU hours in monoprocessor mode,
with virtually the same temperature profile, exhibiting a spectacular AMR efficiency
of about 70.

In parallel mode, with dynamic load balancing & subdomain migrations, the wall
clock time is reduced to 3 hours 10 minutes, a 15.6 speedup on 16 processors. With
more than 16 processors, the average number of cells per multithreaded subdomain
gets to low (3,000 cells) for the cost of extra-communications.
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(a) (b)

(c) (d)

Fig. 8. Top Hat #1 benchmark, constant opacitites. Equilibrium diffusion model at 2 microsec-
onds (a) and 10 microseconds (b). Temperature profiles at 10 microseconds (c). Speedup curve
with MPI and MPI/multithread parallel modes, using dynamic load balancing and subdomain
migrations (d).

4 User-model API

The C++ programming language, selected for the development of the AMR parallel
kernel code, evolved favorably over the last few years, with compilers offering a
much better support of the full norm and shorter compilation times 5.

Consequently, advanced C++ features are also used now within AMR solvers and
physical modules, most notably with the introduction of templates for all variables
located on cells and faces (’global’ or per material). This insures a complete source-
code decoupling of AMR solvers and physical modules from memory management,
an issue handled dynamically at runtime by the AMR kernel, allowing for exam-
ple dynamic switches on a per-material basis from direct addressing to compressed

5It’s also well-established now that C++ may compete favorably with Fortran in terms of
CPU performance.
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memory-chunks or vice versa, depending upon the current number of cells of each
material.

Full feature objet-oriented APIs are also provided:

i) in C++, AMR solvers and user-models being objects loaded at runtime or stati-
cally linked to the kernel6, vector syntax being eventually available using PETE
Portable Expression Template Engine;

ii) or in Python vector mode, for user-models defined within data sets and inter-
preted at runtime7, implemented via SWIG wrapping, the underlying AMR C++
vectors being the same “templatized” vectors as in PETE compiled mode.

The two APIs are quite close, with the same entry points to the AMR solvers. An
example of extension of the platform in combustion using Python is provided Listing
1 with full source code, data set and associated gaphical output Fig. 9.

In Python vector mode, such local models are 15-20 % slower than in compiled
C++.

Introduction of just in time compiling techniques is on the way, along with com-
parisons to C# mechanisms, to determine whether AMR solvers may also be imple-
mented that way, in interpreted vector mode on the top of the AMR C++ parallel
kernel.

Such an issue may be relevant for future use of the platform by numericists.

#! /usr/bin/env python
#
# HERA - V0.1 CEA 2003 (C)
#
# Example of reactive flow extension via Python user-model
#

pythonExtensionModule = """from heraAPI import *

class MyModel (HydroAPI):

def CreeGdrInt(self):
self.createVariable("burn", self.VAR_SORTIE
| self.VAR_INTENSIVE | self.VAR_PROJETABLE_MASSE)

def EqEtatInit(self): # EOS at initialisation
rho = self.var("rho"); pmat = self.var("pmat")
eint = self.var("eint"); cmat2= self.var("cmat")
burn = self.var("burn"); burn.assign(0. * burn)

gamma, pzero = 3.8060, 28.445e8

eint.assign((pmat+gamma*pzero) / ((gamma- 1.)*rho))
cmat2.assign(gamma * (pmat + pzero) / rho)

def EqEtat(self): # EOS at each time step
rho = self.var("rho"); eint = self.var("eint")
pmat = self.var("pmat"); cmat2= self.var("cmat")

# MIXTURE STIFFENED-GAS EOS

gamma1, pzero1 = 3., 0.
gamma2, pzero2 = 3.8060, 28.445e8
dcj = 8600.; q = dcj**2/(2.*(gamma1**2-1.))

burn = self.var("burn")
gamma = self.temporaryVariable()
pzero = self.temporaryVariable()

gamma.assign(1. + (gamma1 - 1.) * (gamma2 - 1.)
/((burn*(gamma2-1.))+((1.- burn)*(gamma1-1.))))

pzero.assign(((gamma - 1.) / gamma)
* (burn * (gamma1 * pzero1) / (gamma1 - 1.)
+ (1.-burn)*(gamma2*pzero2) / (gamma2 - 1.)))

# EOS OUTPUT

pmat.assign((gamma-1.)*rho*(eint+burn*q)-gamma*pzero)
cmat2.assign(gamma * (pmat + pzero) / rho)

def Calcul(self):

# BURN FRACTION INCREMENTATION - FOREST FIRE MODEL

pmat = self.var("pmat"); burn = self.var("burn")

pref,pmin,a,b,n = 35.e8,1.e8,0.07e6,4.2e-5,2.85

6Different versions of the platform can be easily administrated, with solvers and physical
modules linked statically to the kernel or available via dynamic libraries.

7In Python mode, no user-access to the ’include’ files of the platform is necessary.
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p = self.temporaryVariable()
p = maximum(1.e-99, pmat)

burn.assign(burn + where ( pmat <= pmin , 0. ,
self.deltat()*((1.-minimum(burn, 1.)) *a
*pow(p/pref,n) * (1.+b*pow(p/pref,7. - n)))));

burn.assign(minimum(1., burn))

herausermodel_HE = MyModel()

"""

import hera

mat1 = hera.Mat("HE", ext="PythonUserModel"
, amr_ini=2, amr_min=2)

mat1.ini (rho = 1844, pmat = 1.0e5)
mat1.frt ( (0.21, 0.0), (0.21, 0.1), (0.9, 0.1), (0.9, 0.0) )

mat2 = hera.Mat("Imp", gamma=3.5, pzero=35.e9
, amr_ini=3, amr_min=3, amr_max=3)

mat2.ini (vitesse = 1.0e3, rho = 7882, pmat = 1.0e5);
mat2.frt ( (0.2, 0.0), (0.21, 0.0), (0.21, 0.1), (0.2, 0.1) )

mat3 = hera.Mat("Conf", gamma=3.5, pzero=350.e8

, amr_ini=3, amr_min=3, amr_max=3)

mat3.ini (rho = 7882, pmat = 1.0e5);
mat3.frt ( (0.2, 0.1), (0.9, 0.1), (0.9, 0.), (0.91, 0.)

, (0.91, 0.11), (0.2, 0.11) )

s1 = hera.Solver("Godunov", lag=2, advect=2 , limiter="superbee"
, amr_crit = "shlieren")

NX = 11; NY = 4

for i in range(3):

amrData = hera.Data (dim = 2, geom = 1
, xmin = 0. , ymin = 0., xmax = 1.1, ymax = 0.40
, nx = NX * 2**i, ny = NY * 2**i
, amr_fact = 3, amr_max = 4, amr_extra=1, amr_frt=0
, amr_plus = 0.10, amr_minus = 0.060
, tfinal = 90.e-6, tmpost = "0. 5.e- 6/100.e-6 10.e-6"
, dt_ini = 4.e-8
)

simu = hera.Simu ("ForestFire"+str(i), amrData, (s1,)
, (mat1, mat2, mat3), ext = pythonExtensionModule)

simu.run()

Listing 1. A complete Python user-model with AMR data set (mixture EOS and
shock to detonation reaction rate).

Fig. 9. Graphical output corresponding to the Python data set.

5 Conclusion

A long-going effort has been devoted at CEA/DAM to the evaluation of multifluid
AMR hydrodynamics, on a wide range of unsteady fluid flow problems. Patch-based
AMR being essentially seen as a natural extension of current Eulerian hydrocodes
on MPPs, a cell-by-cell approach has been considered. The evaluation revealed suc-
cessful on cartesian grids, with impressive CPU time reductions when compared
to uniform grids, as illustrated in this paper by several examples. Interestingly, the
choice of a cell-by-cell approach also led to various advances, modifying the tradi-
tional view one may have of hydrocode development. Staggered grid hydrodynamic
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schemes being especially difficult to implement, most notably with arbitrary refine-
ment factors, cell-centered Godunov-type schemes have been considered. In a truly
multi-physics perspective, this led to the development of a mathematical ADI frame-
work to cover consistently hyperbolic systems as hydrodynamics, hypo-elasticity, nT
hydro and nT MHD. On the computer programming side, cell-by-cell AMR being
also quite difficult to parallelize, a new type of parallel code architecture has been ex-
plored, using advanced C++ techniques. The choice of such a language, and related
development tools, now opens the way for new types of interaction with final users,
that may be able to develop code extensions by their own. A version of the AMR
platform has been delivered recently to physicists for research work in the field of
Laser Plasma Interaction.
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1 Introduction

We are interested in problems containing several different materials that become
highly distorted, after some impulse, with time. Numerical simulation of these phe-
nomena requires sophisticated numerical techniques and a high level of computing
power. Currently this takes the form of a 3TFlop IBM SP2 MPP (massive parallel
processing) machine known as BLUEOAK. For applications containing High Ex-
plosive (H.E.) sub-millimetre zoning will be required in and around the detonation
front. However, it would be prohibitively computationally expensive to have it every-
where. To circumvent this an Adaptive Mesh Refinement (AMR) capability has been
developed to dynamically localise the mesh where greater resolution is required.

In an earlier paper[3] we presented an overview of the development of the respec-
tive two and three dimensional Eulerian multi-material codes SHAMROCK and HY-
DRA. In this paper we discuss the parallelisation based upon the in-house paral-
lel/communications library TYPHON. Finally, some applications are presented.

2 Governing Equations

For multi-material flows we make the assumption that each material has a clear inter-
face between its neighbours. Each material is assumed to be fluid like (and inviscid)
but may have material strength. We also assume that there is no heat conduction be-
tween the adjacent materials. The applicability of these assumptions are discussed
further within the introduction to the paper by the author[2].

The conservation equations for mass, momentum and energy of a given material
component within the flow are,



296 A.S. Dawes

dρ
dt
�ρ∇ � u� 0 (1)

ρ
du
dt

� ∇ �σ (2)

ρ
dε
dt

���σ �∇� �u (3)

where ρ is the density, u is the velocity vector, ε is the specific internal energy and
σ is stress tensor. The stress tensor can be divided up into a sum of the hydrostatic
pressure p and deviatoric stress tensor thus σ��pi�s where i is the unit tensor. For
closure an Equation of State (EoS) for the pressure in terms of the other thermody-
namic variables (usually ρ and ε) must be supplied as well as differential equations
for the incremental changes in the deviatoric components. A good background to
these topics can be found in the article by Benson[1] and the book by Wilkins[12].

3 Numerical Method

The numerical method is second order in space and time and is based on dual stag-
gered and non-staggered Cartesian grids. Density, specific internal energy, stress
tensor components and pressure are stored at cell centres, while the velocity com-
ponents are stored at the vertices. The method consists of two phases. The first is a
Lagrangian predictor/corrector step producing an intermediate solution. The second
phase remaps this solution back onto the original fixed Eulerian mesh employing
operator splitting together with Van Leer’s second order (and a “third” order) mono-
tone technique. A full description of this approach can be found in the paper by
Youngs[13]. For multi-materials we employ the volume-of-fluid (VOF) technique,
and in two dimensions, is also discussed in the paper by Youngs. A comprehensive
review of the VOF technique can be found in the paper by Rider and Kothe[9]. The
extension to three dimensions is complicated by the fact that the material interfaces
have to be reconstructed from the volume fractions during the remap stage. For pla-
nar surfaces these can be broken down into five simple shapes and are illustrated in
Figure 1.

We have adopted Quirk’s patched based philosophy[8] for adaptive mesh refinement.
Patches are intuitively easier to implement, than cell-by-cell, for multi-physics mod-
els.

4 Parallelisation

Parallelisation was based upon the Single Program Multiple Data (SPMD) model[4]
[5]. A single copy of the hydrocode program is executed on every processor with the
mesh domain decomposed across the processors. This latter stage has been accom-
plished using the TYPHON library[11].
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Using the SPMD model each processor acts in isolation (from all others) until data
is required from its neighbours. This then takes the form of a communication. The
library was developed for HYDRA to simplify these tasks and to abstract the ”com-
mon” parallel/communication events into subroutines or functions. To use the library
a communication phase must be first registered. Once this is done the respective vari-
ables that will be communicated/exchanged are registered. A typical code fragment
for both these events are illustrated in Figure 2.

The TYPHON library was originally developed for uniform three dimensional
meshes. However, the success of the SHAMROCK code has brought about its re-
development. To bridge the gap between this library and the hydrocodes Jones et
al[7] have come up with the concept Generic, Adaptive and Parallel (GAP). Essen-
tially, for parallel AMR there are generic functions or events which are common to
the codes. For example, the flagging of cells, for sub-division, is generic. The sub-
sequent subdivision to create the patch distribution is also generic. The replacement
library TYPHON GTI (GAP Technology Included) is under development.

5 Results and Discussion

x

x1

x2

3

x

x1

x2

3

x2

x1

x2

x3

3) PENTAGONAL SECTION2) QUADRILATERAL SECTION A1) TRIANGULAR SECTION

4) HEXAGONAL SECTION 5) QUADRILATERAL SECTION B

x

x1

x2

3 x

x1

3

Fig. 1. Interface intersecting Cell.

5.1 Sod Shock Tube Problem

Sod’s shock tube problem[10] consists of a high pressure/density region and a low
pressure and density region separated by a diaphragm. It is broken resulting in a
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Fig. 2. TYPHON Registration Phase.

Fig. 3. Sod Shock Tube Problem. Dynamically changing mesh (left) and Pressure Results
(right).

shock wave propagating into the low pressure region, a rarefaction propagating into
the high pressure region and both are separated by a contact wave. The calculation
was performed using SHAMROCK and results are shown in Figure 3. It is observed
that the code correctly adapts around the shock wave, contact discontinuity and rar-
efaction; as the rarefaction weakens so the mesh de-refines around it.
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Fig. 4. Plane Wave Generator. Dynamically changing mesh (left) and Pressure Results (right).

Fig. 5. Particle and AMR before impact.

5.2 Plane Wave Generator

This problem consists of a HE insert in a aluminium case and detonated at one point
in the centre of the rear face. The diverging detonation wave propagates outwards and
hits a varying thickness barrier which is used to non-uniformly attenuate it to produce
a planar propagating wave. The calculation was performed using SHAMROCK and
results are shown in Figure 4. The calculation correctly follows the advancement of
the shock wave and progression of the material interfaces.
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Fig. 6. Particle, AMR and Density Contours after Impact.
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Fig. 7. Scalability Results from ASCI Frost.

5.3 Hydrodynamic Ram

This problem consists of a 12mm diameter steel sphere travelling at 2km/s. The
sphere hits a water tank made of 3.2mm thick Aluminium plate. The particle and
initial SHAMROCK patch distribution is illustrated in Figure 5. The particle subse-
quently penetrates the plate and into the water. In Figure 6 the particle, AMR distri-
bution and density are illustrated. The bow shock wave ahead of the distorted particle
is clearly visible.
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Fig. 8. Scalability Results from BlueOak.

5.4 Freund Problem

This problem consists of a 3mm spherical shell of Aluminium with inner radius of
5.7 cm surrounded by 3cm thick H.E. with inner radius 6cm. The HE is detonated on
the axis on its outer surface. The HE compresses the metal shell with the outer sur-
face expanding outward. Further details of the experimental setup can be found in the
reference by Freund et al[6]. A uniform mesh calculation was run on HYDRA using
different numbers of processors and at different mesh resolutions to show the scala-
bility of the code. Results are presented for runs performed on LLNL 1 ASCI2 Frost
machine (during 2001) in Figure 7. Results are also presented for runs performed on
AWE’s BLUEOAK machine (during 2003) in Figure 8. It is observed that the scala-
bilities are very similar between the two machines. This is because ASCI Frost and
BLUEOAK are based on similar hardware. At the time of writing this article the 3D
AMR option for HYDRA was under development.
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Summary. Following the work of [BD99], the present paper presents a general approach to
adaptive mesh refinement for ocean models. The numerical procedure is briefly described,
as well as a software package which easily allows for the actual implementation of multi-
resolution within any existing finite difference model. The effectiveness of this approach for
ocean modelling, even at a basin-scale, is illustrated in the context of a primitive equation
numerical model of the north Atlantic. Several experiments are presented, which demonstrate
the potentialities of mesh refinement and emphasize the role of the refinement criterion.

1 Introduction

The need for a detailed description and understanding of local phenomena gives rise
to increasing interest of ocean modellers for local refinement techniques. As a mat-
ter of fact, it is often impossible, due to computer limitations, to define an uniformly
very high resolution in a global (or basin-scale) ocean general circulation model
(OGCM). On the other hand, a high resolution local model is extremely dependent
of the specification of the boundary conditions, which are often only very crudely
known. A convenient and frequently used way to overcome these difficulties is the
nested grid approach, in which a high-resolution local model covering the area of
interest is embedded within a regional or global lower resolution model. The inter-
action between the two models can be either one-way or two-way. In the first case,
the global model solution is interpolated to provide boundary conditions for the lo-
cal model, but there is no retroaction of the local solution onto the global one. At
the opposite, in the two-way case, the local solution is used to update (and hopefully
improve) the global solution.

In the context of ocean modelling, a number of studies have already used the
nested grid techniques. [SH91] developed a nested grid system and validated it on
two analytic problems: the barotropic modon and an anticyclonic vortex. These
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two test cases were also treated by [LAM96] to compare the performances of dif-
ferent nesting methods. Nested models have also been used for realistic regional
oceanic studies : [OC92] for the Norwegian coastal current, [FM95], [FM96] for the
Island-Faroe front; [PSBHW97] and [PS98] illustrated numerical and physical con-
siderations about nested boundary conditions in models of the Greenland-Iceland-
Norwegian sea and of the Mediterranean sea; [GHMY03] investigated the role of
horizontal resolution on JEBAR in a nested simulation of the Kuroshio, [GRR98)]
developed a multiply-nested ocean circulation model to study the response of the
ocean to a westerly wind burst and to a tropical cyclone.

While the fine grids were always static in these studies, the notion of mesh move-
ment appeared recently in the context of ocean modelling [BD99] [RG99]. In order
to be able to follow an evolving oceanic feature, [RG99] implemented a mesh move-
ment scheme within their multiply-nested ocean model. The mesh movement can be
specified a priori or determined in the course of the model run. It has been success-
fully applied to several idealized and realistic test cases.

In a previous paper ([BD99], henceforth denoted BD99), we addressed the inter-
est for ocean modelling of the general adaptive mesh refinement (AMR) algorithm
introduced by [BO84]. In this method, the number, the size and the resolution of the
fine grids can evolve during the run according to any specified criterion. Moreover,
our implementation is independent of the model, which allow our tools to be easily
implemented within any existing finite-difference model. The effectiveness of the
method was demonstrated in BD99 in the classical case of the barotropic modon,
and for a multilayer quasigeostrophic box model. Following this work, the aim of
the present paper is to show that these previous results can be extended to realis-
tic OGCMs for basin-scale simulations, by describing an application to a primitive
equation model of the north Atlantic. The paper is organized as follows: the AMR
method and the way we implement it are briefly recalled in section 2, and the OGCM
and its north Atlantic configuration are presented in section 3. Section 4 is devoted to
simulations with adaptive refinement, and emphasizes the peculiar importance of the
choice of the refinement criteria for the simulation of the general circulation. Finally
some conclusions are drawn in section 5.

2 The AMR method and its implementation

2.1 General description

Our work is based on the AMR method proposed by [BO84] for the solution of par-
tial differential equations using finite difference techniques. A complete description
of this method can be found in this latter paper, in [BC89], or in BD99, and we will
only give here a brief overview.

The AMR strategy features a hierarchy of embedded grids, with different levels
of resolutions, and which interactions are specified by a time-integration scheme.
More precisely, the level 0 contains one only coarse grid G 0, of resolution h0, cover-
ing the whole domain. This root grid contains a set of n 1 finer grids G1�i (i� 1� � � � �n1)
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of resolution h1, forming the level 1. This nesting is recursive, each grid at level l
containing eventually some finer grids at level l� 1. A maximum number of levels
L must of course be defined by the user. The refinement ratio h l�hl�1 is a constant
integer r (typically between 2 and 5). An example of grid hierarchy and the associ-
atesd time integration scheme are symbolized on Fig. 1.
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Recursive Procedure INTEGRATE(l)

If l == 0 Then nbstep = 1
Else nbstep = refinement-ratio
Endif
Repeat nbstep times

Step on all grids at level l
If level l+1 exists Then
Compute boundary conditions at level l+1
INTEGRATE(l+1)
update level l

Endif
End Repeat
End Procedure INTEGRATE

Fig. 1. An example of grid hierarchy and the time integration scheme

We will note kl the time step on grids at level l. A usual way to define kl is to impose
kl�kl�1 � r, which ensures that the CFL number hl�kl is constant and does not de-
pend on the resolution level. To advance the whole grid hierarchy by one coarse time
step k0 (from time T to time T � k0), we begin by advancing the coarse grid by one
time step k0. Then boundary conditions are computed for grids at level 1 at time steps
T�T�k1� � � � �T�rk1�T�k0. This is usually done by some interpolation in time and
space of the coarse grid solutions at time T and T � k0. Given these boundary con-
ditions, the grids at level 1 can then be advanced by r time steps k 1. This procedure
is of course recursive, and grids at finer resolution levels are advanced in the same
manner. For every resolution level l except the finer one, the solutions on the differ-
ent grids at the end of each time step are updated (and hopefully improved) by using
the solutions on the embedded grids at level l� 1 at the same physical time. This
fine-to-coarse grid transfer of information can be performed in several ways (simple
copy of corresponding values, averaging or other filtering operators...) and can take
into account different constraints (e.g. conservation of mass across coarse/fine grid
interfaces).
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The number, the size and the location of the different grids can either be fixed
or evolve during the simulation. In this last case, a criterion is applied at regular
time intervals (every N coarse time steps k0) at each grid point to detect if a finer
grid is necessary, or if an existing fine grid can be removed. Such a criterion can
rely on a mathematical basis (some estimate of the truncation error for instance), on
physical basis (e.g. some turbulence indicator), or on a combination of both. Since
this criterion detects only a set of points, an algorithm must then be applied to cluster
these points into rectangular subgrids. An efficient regridding procedure is described
for example in [BR91].

2.2 Implementation

In order to implement efficiently and easily this method into any existing finite differ-
ence ocean circulation model, we have developed the Fortran-90 software package
AGRIF (Adaptive Grid Refinement In Fortran), available to the scientific community.
In our approach, the model is seen as a black box. The package must only know some
of its features (e.g. the name of the global variables, their position in the cells. . . ),
which are described by the user in a configuration file. The user also indicates in
this file some AMR parameters (e.g. the refinement ratio r, the maximum number
of resolution levels. . . ) and provides the refinement criterion if any. A complete de-
scription of this package is given in [DB02]. AGRIF is already used in different fixed
grid refinement applications: in the ROMS model for high resolution modelling of
the Los Angeles Bay currents, or in the OPA model for simulation at 1/15 Æ resolution
of the Labrador sea.

3 Configuration of the numerical experiments

3.1 Model description

The numerical simulations which are presented in section 4 were performed with the
OPA OGCM [MDIL99]. This model solves the primitive equations on the sphere,
with the rigid-lid hypothesis. It uses horizontal curvilinear coordinates and vertical
z-coordinate. The equations are discretized using standard second-order centered fi-
nite difference schemes, on an Arakawa C-grid. Discretization in time uses a leapfrog
scheme for non-diffusive terms, and an Euler scheme for diffusive ones. Subgrid
scale processes are parameterized both horizontally and vertically by a laplacian dif-
fusion operator. For the vertical part, the values of the coefficients are computed at
each time step by a turbulent closure model (TKE). A no-flux condition is imposed
for temperature and salinity at the ocean bottom, and a slip condition is chosen for
the velocity at the solid boundaries.

3.2 AMR implementation

We have implemented in this model the capability for mesh refinement and mesh
adaptivity using the AGRIF package mentioned previously. In the present applica-
tions, the refinement ratio between successive resolution levels is chosen equal to 3.
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Boundary conditions for embedded grids are linearly interpolated in time and space.
The variables on the different grids at the end of each time step are updated with
values of corresponding variables on finer grids, using a classical ‘full-weighted’ fil-
ter. Moreover, a correction step is added to ensure conservation of mass through grid
interfaces. Some specific difficulties were encountered, due to the fact that we ad-
dress realistic applications. We can cite for instance the management of islands, or
of irregular coastlines and bottom topography at different resolutions. This last point
can lead for example to different values for the volume of the ocean, depending on
the resolution levels, or to grid points being located on the boundary for a particular
resolution level, but one mesh inside or outside the domain for another level. Some
conventions and specific near-boundary schemes were included in the package to
deal with those difficulties.

In the present study, several refinement criteria were tested and compared. Since
the ocean circulation is essentially horizontal, we have defined two-dimensional cri-
teria R�x�y�, the points corresponding to the highest values of R�x�y� being detected
for refinement. In the present implementation of the method, the refinement itself is
also only horizontal (the number of vertical levels remains the same on every grid).

Let V � �u�v� a 2D velocity field. We can define the following quantities :

� Q1�V � � �V��
�

u2� v2 (Euclidean norm of V )

� Q2�V � � �CurlV��

����∂v
∂x

�
∂u
∂y

���� (absolute value of the relative vorticity)

� Q3�V � �
∂u
∂x
∂v
∂y
�
∂v
∂x
∂u
∂y

. This expression is the restriction to the 2D incompress-

ible case of the more general 3D quantity
1
2 ∑i� j

�
A2

i j �S2
i j

�
, where Ai j and Si j are

respectively the antisymmetric and symmetric parts of the deformation tensor :

Ai j �
1
2

�
∂ui

∂x j
�
∂u j

∂xi

�
Si j �

1
2

�
∂ui

∂x j
�
∂u j

∂xi

�

for any velocity field u. This quantity, used in the context of turbulence studies
[HWM88] [Del99], can be seen as a measure of the balance between vorticity
and shearing.

In our numerical experiments, we have compared three refinement criteria : R 1�x�y��
Q1�V �x�y��, R2�x�y� �Q2�V �x�y�� and R3�x�y� �max�0�Q3�V �x�y���, with V being
a vertical average of the velocity field on the upper levels of the model (correspond-
ing to the first 1000 meters).

Fine grids initialization

When a new grid is created, the 3D velocities and the 2D barotropic streamfunc-
tion are interpolated independently. So there is no reason for the resulting barotropic
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transport to be non divergent (divHŪh � 0) as it is required by the rigid lid approxi-
mation. A correction step must then be added.
A first solution can be that the barotropic velocities are replaced using the stream-
functionΨ. The corrected velocities �u�

�v�� are given by :

����
���

u� � u�
1
H
∂Ψ
∂y
�

1
H

� 0

�H
u

v� � v�
1
H
∂Ψ
∂x
�

1
H

� 0

�H
v

(1)

In this solution, the whole correction acts on the barotropic part of the velocity. Thus
this can lead to large variations �U �U ��, which destabilizes the algorithm in actual
simulations.

In this study, we have chosen an algorithm that also modifies the streamfunction. We
have to solve the following problem : find three correction terms u �

�v�
�Ψ� so that

u� � u�u�
� v� � v� v�

� Ψ� �Ψ�Ψ�

with the condition that ����
���

ū� ��
1
H
∂Ψ�

∂y

v̄� ��
1
H
∂Ψ�

∂x
or equivalently ����

���
ū� ū� ��
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H
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�
1
H
∂Ψ�
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��ū�
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If we assume that the field ū�
� v̄� has a zero curl (which implies that the barotropic vor-

ticity of the corrected field equals the barotropic vorticity of the interpolated field),
we have to solve for Ψ� the following equation
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This equation has exactly the same structure that the barotropic vorticity equation
already solved in the model and so the same solver can be used. On the boundary
of the high resolution domain, we take Ψ � � 0. Once this solution is found, the new
barotropic streamfunction Ψ� � Ψ�Ψ� is computed and we deduce the velocity as
in the first solution (eq (1)).
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3.3 North Atlantic configuration

The computational domain covers the whole north Atlantic ocean, from 20 ÆS to
70ÆN. The grid is isotropic, with a constant mesh size ∆λ in longitude, and a varying
mesh size ∆Φ�∆λ�cosΦ in latitude. Two buffer zones are implemented at the north-
ern and southern boundaries. In these areas covering 5 Æ of latitude, the temperature
and salinity are relaxed towards climatological values.

4 Numerical experiments

The resolution of the root coarse grid is equal to 1Æ in longitude, with 20 vertical lev-
els. In the following numerical experiments we used a refinement factor of 3 leading
to a resolution of 1/3Æ on the fine grids. The 1Æ model corresponds to a non eddy-
permitting coarse resolution whereas the 1/3Æ resolution model is eddy-permitting.
Starting from rest, a 10 years spin up is done and the next three years are used for
the diagnostics.

A series of four experiments have been conducted, which are summarized on
table 1. The first one is a reference run with a uniform resolution of 1/3 Æ on the
whole domain. The second one is a coarse grid run with a uniform resolution of
1Æ. During the adaptive run, we chose the refined areas in order to cover a pro-
portion of approximatively 15-20% of the domain. The space and time refinement
factors are equal to 3, leading to a computational cost approximatively equal to
�1��0�15� 0�20�� 33� � 5� 6�5 times the cost of the uniform coarse resolution
run. It is interesting to note that the closest run at a uniform usual resolution, in term
of computational cost, is a 1/2Æ model (cost equal to 8 times the coarse model cost).
That is why such an additional experiment has been conducted.

Table 1. Computational costs of the different simulations

resolution cost
uniform 1Æ 1

adaptive run 1-1/3Æ 5-6.5
uniform 1/2Æ 8
uniform 1/3Æ 27

4.1 Influence of the refinement criterion

In order to compare the different criteria, we conducted a one year experiment (start-
ing from rest). Instantaneous plots of the streamfunction are showned on figure (2).
In all these experiments, the detection of areas to be refined is done every four days.
When new grids are created, interpolations are done everywhere except at points
which were already inside a high resolution grid (in the previous grid hierarchy).
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Fig. 2. Instantaneous streamfunction after one year, using different refinement criteria, left:
norm of velocity, middle: vorticity, right: Hunt criterion

The values of the different state variables at these points are simply ”restored” from
the existing ones. An indicator of the grid movement from one refinement stage to
another is the percentage of restored points, which is given by table 2.

Table 2. Percentage of restored points

refinement criterion restored points in percentage
norm of velocity 88%

vorticity 75%
Hunt criterion 80%

It appears that the velocity criterion is the more stable (with actually a small differ-
ence in refined areas between winter and summer).
Comparing the Hunt’s and the vorticity criteria, differences appear mainly in the
north of the domain (subpolar gyre and Greenland-Iceland-Scotland ridge). We be-
lieve that the buffer area creates a strong shear that produces vorticity detected by
the vorticity criterion but not by the Hunt criterion. The Hunt criterion will be kept
for the experiments described next.

4.2 Comparison of the AMR solutions with fixed resolution solutions

For all these experiments, the 1/3Æ will be our reference run. All results pre-
sented here correspond to a three-year average after the ten-year spin up time. The
barotropic streamfunction and the temperature field at 100m depth corresponding to
the four different simulations are plotted on figures (3) and (4).

Comparing the uniform 1/3Æ and 1Æ resolution runs (top left and bottom left pic-
tures), we observed usual differences. Strongest ones appear in the representation of
the subpolar gyre both in its transport and its southward extension. The intensifica-
tion of the Gulf stream is clearly visible on the temperature field with an enhancement
of the warm water eastward penetration. Strong equatorial currents are also visible
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Fig. 3. Barotropic streamfunction : from left to right: uniform 1/3Æ simulation (reference simu-
lation), uniform 1/2Æ simulation, uniform uniform 1Æ simulation, adaptive 1Æ-1/3Æ simulation.
Contour interval is of 5 Sverdrup

Fig. 4. Temperature at 100 m depth: from left to right: uniform 1/3Æ simulation (reference
simulation), uniform 1/2Æ simulation, uniform uniform 1Æ simulation, adaptive 1Æ-1/3Æ simu-
lation.

in the 1/3Æ run on the temperature field. However these currents are essentially baro-
clinic and have no real impact on the barotropic streamfunction.

If we now compare the two other simulations, it appears that the adaptive simu-
lation is nearer to the 1/3Æ simulation than the 1/2Æ simulation is, with an exception
at the equator and in the Antilles current. This is however not surprising since we
have seen that our criterion nether refines in this area (expect near the west coast).
Two different reasons can explain this absence of refinement. First it may be approx-
imatively in the jump from 1Æ to 1/2Æ resolution that these equatorial currents appear.
Additionnaly, even if these currents were present in the 1 Æ resolution run, as already
said these currents are mainly baroclinic and this can explain why our refinement
criterion (which is always computed by taking an average on the first 1000m) does
not detect this area.
In other areas, the adaptive simulation seems better reproduce the 1/3 Æ reference run
than the 1/2Æ run does: this is clearly visible in the subpolar gyre (where the differ-
ences were the most marked between the 1Æ and the 1/3Æ simulations) and in the gulf
stream region.



312 Laurent Debreu, Eric Blayo, and Bernard Barnier

5 Summary and conclusions

In this paper, we discussed the application of an adaptive mesh refinement method
to ocean modelling. Integration of adaptive mesh refinement capabilities was done
with the use of the AGRIF tool [DB02].

To our knowledge, the application of full adaptive mesh refinement applications
in the context of ocean modelling has not been studied before. The goal of this paper
was to give some first insights in the context of realistic simulations.

The configuration with a 1Æ resolution is a non eddy-permitting simulation. This
is clearly a drawback, especially for the evaluation of the different refinement criteria.
However its low cost lets us perform several long term simulations.

The results highlights the importance of the choice of the refinement criterion.
The Hunt criterion, a balance between vorticity and shearing, seems to lead to the
best refinement location. However its use here was only on vertically averaged cur-
rents and so does not take into account the baroclinicity of the currents as may have
an important role in the detected area, as for example in equatorial regions.

Comparing the reference run (a 1/3Æuniform resolution run) with the adaptive
(AMR) run we saw that for a global cost in CPU time and memory divided by a
factor of 4-5, we can achieve quite similar results in the main turbulent areas like
the subpolar or subtropical gyres. The comparison AMR - 1/2 Ærun (which was the
closest run for a uniform resolution run) shows that AMR gives in general better
results except in regions where refinement never takes place.

Even if this adaptive mesh refinement method seems potentially very attractive,
it still requires a lot of improvements. An increase of the root grid resolution is
clearly needed, a resolution of 1/3Æ or 1/4Æ should lead to an improvement of the
meaning of the refinement criteria, and consequently of the grids location. Among
the other possibilities, the vertical refinement is the most promising, allowing both an
increased vertical resolution where and when needed and also to refine horizontally
only some parts of the water column, leading in an additional gain in CPU.
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Summary. The latest release of the PARAMESH parallel, adaptive mesh refinement software
package is discussed. Its features and some of the applications it is being used with are high-
lighted. Further, we discuss the philosophy of the design of the package as well as some the
problems and solutions we have found when importing into various applications.

1 Introduction to PARAMESH

PARAMESH [1] was written primarily by Peter MacNeice and Kevin Olson at
NASA’s Goddard Space Flight center as part of the NASA/ESTO-CT project (for-
mally HPCC). Other contributors to date include C. Mobary, R. deFainchtein, C.
Packer (NASA/GSFC), R. DeVore (NRL), M. Zingale, J. Dursi, A. Siegel, K. Riley
(U. of Chicago), and R. Loy (Argonne Lab).

This paper is divided into 2 parts: A short introduction to PARAMESH and a
series of brief descriptions of some of the applications it is being used for.

1.1 PARAMESH: What is it ?

PARAMESH is a set of subroutines which are written in Fortran 90. The package
is fully parallel and communications between processes are handled using calls to
the MPI communications library. PARAMESH has been tested using a number of
different Fortran 90/95 compilers and different computer architectures, with an em-
phasis on using Beowulfs. Some of these include the Portland Group compiler, the
NAG compiler, the Intel compiler, and the Lahey/Fujitsu compiler. Architectures
which have been used to run PARAMESH include the IBM SP, SGI, HP-Compaq,
and Cray. The current released version of PARAMESH is version 3.0. We expect to
release version 3.01 before the end of 2003.

The kind of application developers we are targeting with PARAMESH are those
who already have a pre-existing, uniform-mesh, serial code. PARAMESH is de-
signed to enable such users to easily incorporate both parallelization and dynamic
adaptive mesh refinement (AMR) into their application. We provide templates that
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help them to do this. Further, we distribute the source code, allowing users to mod-
ify it for their specific application. Alternately, we collaborate with users to make
modifications to PARAMESH for their specific application if they request this.

PARAMESH is a subset of the block-adaptive technique described by Burger
& Oliger [2] and Burger & Collela [3]. In our case we bi-sect the region of space
covered by the computational domain, forming a set of child blocks. Child blocks can
themselves be bi-sected, their children bi-sected, and so on. This process is carried
out recursively until the desired resolution in a certain region of space is reached.
Only jumps in refinement of a factor of 2 in resolution are allowed. This naturally
leads to the use of a tree data structure to organize the blocks and their relationships
to one another.

Fig. 1. PARAMESH blocks are created by recursively bisecting space as shown here.

For the purposes of parallelization, the blocks are ordered according to a morton
space-filling curve [4]. This curve is ‘cut’ into a number of pieces equal to the number
of processors. The length of each piece is determined by a user selectable work
weighting which can be specified at runtime and enables some control over the load
balance of the algorithm. This type of curve has the property that blocks which are
nearby in physical space also tend to be nearby along the morton curve.

The refinement-derefinement process is very simple from the users’ point of
view. Blocks are simply marked with logical flags which indicate whether the
blocks are to refine or derefine. Calling the PARAMESH routine for refinement-
derefinement then results in the appropriate set of new blocks being created (or de-
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Fig. 2. PARAMESH blocks are arranged according to a tree data structure. We show in the
figure above the tree relationships of the blocks originally shown in Figure 1. The numbers
shown at the ’nodes’ of the tree refer to the numbers of the blocks shown in Figure 1.

Fig. 3. Morton Space Filling Curve. This figure shows an example of a ’morton space filling’
curve threading a set of PARAMESH blocks.



318 Kevin M. Olson and Peter MacNeice

Fig. 4. Each block in PARAMESH is a logically Cartesian mesh of cells. This figure shows
an example of a single PARAMESH block. Interior cells of the block are shown in red and
the ‘guardcells’ (cells which overlap with neighboring blocks) are shown in blue. A user of
PARAMESH is free to choose the number of guardcells and the number of interior cells in a
block.

stroyed), the tree being reconstructed, the blocks being redistributed according to the
morton space filling curve, and all internal control information being reconstructed
and stored for later use by other PARAMESH functions.

Each PARAMESH block is itself a Cartesian mesh of cells. Each block is sur-
rounded by a ‘guard’ or ‘ghost’ cell region. The guardcells are filled by either copy-
ing data from neighboring blocks at the same refinement level or by interpolation
if there is a refinement jump. The PARAMESH package provides a routine which
takes care of this interpolation procedure using Lagrange polynomials to a user cho-
sen, arbitrary order. The user is also free to modify this routine to satisfy any special
interpolation requirements they might have for their application.

The user has the option of storing cell, face, edge, or corner data, or any combi-
nation of them, on a single computational cell within a PARAMESH block.

We provide support for ‘flux’ conservation or ‘refluxing’ at refinement jumps
where fluxes (or any quantity) that are computed at cell faces are averaged (or
summed) from the fine cells to course cell faces where two blocks of different re-
finement abut one another.

We also provide a similar procedure which can be applied to values computed at
cell edges such that circulation integrals around cell faces are consistent at refinement
jumps.
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Fig. 5. This figure shows a single cell within a PARAMESH block. Data can be located in any
combination at cell centers, cell edges, cell faces, or cell corners.

Fig. 6. PARAMESH supports ‘refluxing’ or flux averaging at jumps in refinement.
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Fig. 7. PARAMESH supports averaging of edge based quantities which can be useful for
algorithms which require the circulation integral of that quantity to be continuous at refinement
jumps.

2 Applications

2.1 NRL AMR-MHDFCT

The Naval Research Lab’s AMR-MHDFCT code was the application for which
PARAMESH was originally developed. Many of the choices we made in designing
PARAMESH were influenced by the requirements of this code and the requirement
that it get a certain level of performance on the Cray T3E.

It is a Flux Corrected Transport MHD code, with magnetic fields stored at cell
faces [6]. It uses 3 guardcells around each block. Electric fields are computed at cell
edges and the edge averaging described earlier is used to ensure a consist update
of the magnetic fields. All other variables are stored at the cell centers. It is mostly
being used for Solar physics applications.

2.2 ATHENA

The second code PARAMESH was applied to was another MHD code known as
ATHENA. It was written in-house at Goddard by a team lead by D. S. Spicer. It uses
a High Order Godunov Technique with a corner-transport-upwind scheme [5], com-
bined with a constrained transport algorithm [9] for advancing the magnetic fields.
It can use different cell reconstructions and hence different numbers of guardcells
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Fig. 8. Shown here are results of a simulation using the NRL AMR-MHDFCT code. The
simulation is of an active region of the sun (which starts with closed field lines), testing if
that region can move into a coronal hole region with open field lines [7]. In order for this to
occur the field lines in the ‘front’ must reconnect and move to the ‘back’ of the active region.
For this to be simulated successfully, regions with reconnection must be followed with very
high resolution. For this calculation refinement is triggered by high values in J2�B2. The finest
blocks are shown in white. The base mesh was 64x64x128 cells and refinement was allowed
to 5 levels below that. This simulation, and many in solar physics, are uniquely suited to AMR
because of the need to follow reconnection events, which usually occur on small scales relative
to the overall volume of the computation.
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Fig. 9. Results of simulation using a variant of the NRL AMR-MHDFCT code [8]. It uses
FCT in the same way as previously described except that it uses spherical coordinates and
works in 2.5 dimensions (carries azimuthal B field). The mesh is refined near the inner bound-
ary representing the solar surface as shown in panels a, b and c above. The initial field is a
combination of the sun’s dipole field superposed with an octopole field near the equator. Shear
along the model solar surface is introduced near the equator. As result, a flux rope forms and
propagates away from the surface. This is shown in the bottom panel where the magnetic field
lines are shown superposed over the density.
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around blocks can be used. It is being applied to problems in solar and magneto-
spheric physics.

Fig. 10. Results of a simulation of the earth’s magnetosphere using ATHENA. Density is
plotted, along with the field lines being advected toward the ’earth’ as well as the distorted
field lines of the earth.

2.3 FLASH

The FLASH code [10, 11] is an astrophysics code which uses PARAMESH as its
main AMR package. This code implements a number of CFD schemes, an MHD al-
gorithm, a nuclear reaction network with energy feedback, stellar equations of state,
self-gravity using multigrid, and particles (which can be passive or gravitationally
interacting). It uses 4 guardcells around each block with all variables stored at cell
centers. The main purpose for this code is the simulation of astrophysical thermonu-
clear flashes which occur in close binary star systems where one of the stars’ sizes
has exceeded its Roche limit and some of its material is accreting onto the compan-
ion star. Depending on conditions, it is believed that such a situation can give rise to
observed X-ray bursts, classical novae, and Type I supernovae.

2.4 IBEAM

IBEAM is a project funded by NASA/ESTO-CT to build a modern software frame-
work for Astrophysics. They are using as their starting point the FLASH code and
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Fig. 11. Example of a calculation using FLASH. The simulation is part of an effort to validate
the code by comparing it to laboratory experiments [12]. Shown are the results of a simulation
of a layered, 3 material (copper, polymide plastic, and carbonized resorcinol formaldehyde
foam) target being hit by a shock. The copper initially has a sinusoidal shape milled into one
of its interfaces. As the shock propagates through this interface it excites Richtmeyer-Meshkov
instabilities. The above figure shows the numerical experiment at a time well after the shock
wave has passed through the interfaces between the three materials. The upper panel shows
the entire computational area. The bottom panel shows a blow-up of one of the Richtmeyer-
Meshkov fingers.
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are collaborating with them and are adding functionality which is compatible with
the FLASH code as well as their own framework. The physics they are attempt-
ing to model is radiation, hydrodynamics and they have developed relativistic hydro
modules, Multigrid for radiation diffusion (single group), BiCGstab algorithm (for
radiation). GMRES and Boltzmann transport are currently under development. Their
target application is the simulation of Gamma Ray bursts.

Fig. 12. This figure shows a relativistic shock hitting a dense blob of material is shown. Density
is shown with the PARAMESH blocks overlaid.

2.5 Other MHD codes

PARAMESH has been incorporated into several other MHD applications similar to
those discussed earlier. D. Odstrcil (NOAA) has used PARAMESH in combination
with FCT and TVD schemes for MHD. He is using it to model interacting magnetic
flux ropes propagating away from the sun.

Yet another MHD app. using PARAMESH was developed by a group from the
University of California at Berkley [13]. They have combined PARAMESH with the
Zeus code [14] and are using it for studying the emergence of magnetic flux from the
solar surface.

2.6 General Relativity

A group at Goddard lead by Dr. Joan Centrella at Goddard Space Flight Center is
developing an application which solves the Einstein equations in order to simulate
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Fig. 13. Simulation of two, interacting Flux Ropes propagating away from the sun (courtesy
D. Odstrcil (NOAA)).

Fig. 14. Simulation of magnetic flux emerging from the solar surface using the ZEUS +
PARAMESH code developed at the University of California, Berkley.
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Fig. 15. This slide shows the results of a recent simulation of the head on collision of two
black-holes. The meshes of different refinement are shown in different colors. The variable
shown is the lapse function (courtesy D. Choi).
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Fig. 16. This slide shows a typical mesh during one of the runs of the above data assimila-
tion/model pollution transport code. The mesh is overlaid on a map of the south Asia.

Fig. 17. This figure shows a simulation of vertical ’post’ moving through water. The surface
of the simulated water surface is shown.
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the collision of super-massive Black Holes colliding in the centers of galaxies. They
are interested in simulating events of this type since it is fundamental to predicting
the amplitude of the propagating gravitational wave-forms which would result. Such
simulations are therefore critical to the design and interpretation of measurements
from the Laser Interferometer Space Antenna (LISA) to be launched in 2011 [15].

AMR is important for this app. since one needs to model the details of the col-
lision (which occur on small, relative size scales) at the same time a large volume
around the collision is modeled to simulate the wave forms which result from and
propagate away from the collision site. This group is using finite difference tech-
niques and multigrid. Plans are to also being made to incorporate a compressible
fluid algorithm.

2.7 Pollution Transport and Data Assimilation

A group at Michigan Tech. and Virginia Tech. is using PARAMESH for adaptive
mesh calculations of Pollution Transport with data assimilation. The model incorpo-
rates diffusion and advection of pollution constituents as well as a chemical reaction
network which includes 80 chemical species.

A unique feature of the way this group uses PARAMESH is that they refine
the mesh only in 2 spatial dimensions while the 3rd (perp. to earth’s surface) re-
mains fixed. The model also ingests actual meteorological data and interpolates it
to the non-uniform, adapting mesh so that data is assimilated into the running com-
putational model. A specialized routine for doing this was written for them by the
PARAMESH developers.

2.8 Ship’s Hulls Moving through water

Finally we show an application using PARAMESH for simulating Breaking Waves
around ship hulls [16]. The model uses a Finite Volume technique to model water
flow. They also use a volume of fluid technique to track the air-water interface and
a cut-cell technique to model the interior boundary of the ship hull. They are using
PARAMESH as a parallelization technique, but plan to incorporate AMR to follow
breaking wave and ‘spray’ formation in more detail.
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1 Introduction

Adaptive Mesh Refinement methods combined with modern shock-capturing tech-
niques hold great promise for the simulation of many astrophysical fluid dynamics
environments. This is particularly true of problems involving strong shocks followed
by efficient cooling via radiative losses. The high degrees of compression achieved in
such circumstances require high resolutions that can tax the computational resources
of many research groups. The need to accurately compute various micro-physical
processes (non-equilibrium ionization, radiation transport, etc.) place further con-
straints on acceptable resolution for a simulation.

In this contribution we present a new AMR code for astrophysical applications
called AstroBEAR. The code is designed on the BEARCLAW framework (Bound-
ary Embedded Adaptive Mesh Refinement for Conservation Laws) [M04] and it of-
fers generalized adaptive facilities including mesh refinement in a grid-based formal-
ism [BL98]. The code is flexible and efficient being designed specifically for multi-
physics applications in which processes operating under different time and length
scales can be simultaneously simulated.

Our design philosophy in the construction of AstroBEAR was to develop a code
that would perform well for a targeted list of astrophysical applications. These in-
clude: the interaction of shocks and winds with heterogeneous environments; astro-
physical jets; stellar wind blown nebulae; accretion disk physics including the accre-
tion disk wind outflows and the interaction of disks with an embedded proto-planet.
These applications are accessed via pre-defined modules. Various modules providing
handling of physical processes (ionization dynamics, chemistry, radiative cooling, ra-
diation pressure, central gravity, etc.) can be accessed without code re-compilation
and can be switched on and off at runtime by the user.

In this paper we describe the general numerical method used including aspects
of the code which are still under development (i.e. the formalism for treating flux
conservation in MHD).
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2 Hydrodynamic and MHD Solver Method

2.1 Integration Scheme

AstroBEAR is designed to solve problems in astrophysical hydrodynamics and
magneto-hydrodynamics. The relevant equations we solve are

∂t

�
���
ρ
ρU
E
B

�
����∇ �

�
���

ρU
ρU�U� p̃I �B�B
U�ε� p̃��B�U �B�

U�B�B�U

	


� �

�
���

Sρ
Sm

Se

SB

	


� (1)

∇ �B � 0

The symbols have the standard definition, ρ is the density, U � �u 1�u2�u3�
T is

the velocity field, E is the total energy, B � �B1�B2�B3�
T is the magnetic field, p̃ �

p� �B�2�2 is the total pressure, p is the thermal pressure and �B�2�2 is the magnetic
pressure. Using these definitions the equation of state is:

p � �γ�1�

�
E �

1
2
ρ�U�2 �

1
2
�B�2


�

where γ is the ideal gas constant.
The mass, momentum, energy and magnetic field source terms (S ρ�Sm�Se� SB)

can take a variety of forms depending on the problem including geometrical source
terms for non-Cartesian geometries and source terms associated with the solution
to the flux conservation constraint as in the 8-wave and GLM methods [P94, D01].
This ∇ �B � 0 condition requires special consideration and we have implemented a
number of methods to deal with it.

For both Hydrodynamics and MHD, however, we have chosen to utilize a sin-
gle integration scheme in the form of the Wave Propagation Algorithm of LeVeque
[L97]. We note, though, that the BEARCLAW package includes a variety of integra-
tion schemes.

Many of the problems we are interested in studying involve extremely strong
shocks, rarefactions and density contrasts. As we shall see in paper II a typical prob-
lem may involve flows at Mach numbers up to 200 and density jumps of ρ 2�ρ1 � 105.
Since all numerical methods have inherent strengths and weaknesses we have cho-
sen to pursue an approach in which a set of Riemann solvers is precompiled in the
code and the end user makes a particular choice of the Riemann solver to be used,
moreover different Riemann solvers can be used on different subdomains of the com-
putational domain. For example, efficient methods for solving the exact Riemann
problem can be formulated [T99] for pure hydrodynamics. For the MHD equations
the complexity of the flux Jacobian often leads to the use of linearized Riemann
solvers.

In one dimension the Wave Propagation Algorithm takes the form [L97]

q�i � qi �
∆t
∆x
�A�∆qi�A�∆qi�1��

∆t
∆x

�F̃i�1 � F̃i�1� (2)
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where F̃ are the correction fluxes which will be defined in terms of the waves W p
i

and their speeds λp
i arising from the i-th Riemann problem at the interface between

cells i and i+1. The A� and A� terms describe the fluctuation splitting and they are
defined as

A�∆q�
M

∑
p�1

�λp��W p
� (3)

where λ� � min�λ�0� and λ� � max�λ�0�. Without limiters the correction fluxes
take the form

F̃i �
1
2

M

∑
p�1

�λp
i �

�
1�

∆t
∆x

�λp
i �

�
W p

i � (4)

Flux, slope or wave limiters φ are introduced into the method described above to
reduce oscillations resulting from discretization. The functions φ adjust the fluxes,
carried by the waves into and out of the cell, to reduce high frequency oscillations
associated with the Gibbs effect. BEARCLAW provides the user with choices of a
variety of standard limiters such as MinMod and Superbee (see [L97] and references
therein).

An important component of the wave propagation algorithm is the implemen-
tation of transverse waves for multi-dimensional problems. For the example of 2-
dimensional problems the governing equations include fluxes in both the x and y
directions Fi� j and Gi� j. Since the waves resulting from the solution of a Riemann
problem in the normal direction and originating at interfaces should propagate in
a multi-dimensional manner one should include their effect on other neighboring
cell averages. Transverse fluctuations may be defined by decomposing each fluctua-
tion A�∆q into the ”up-going” B�A�∆qi� j and the ”down-going” B�A�∆qi� j com-
ponents. Here * refers to the left or right propagating fluctuation. In practice the
transverse fluctuations are found by determining the Jacobian matrix B of the fluxes
G in the transverse dimension. This can be an exact Jacobian matrix as for the case
of an exact Riemann solver or an approximate one as for the case of the linearized
Riemann solvers. Subsequently eigenvalues µs and eigenvectors ws of B are deter-
mined and the latter can be used to decompose A �∆q into their linear combination.
Based on this we finally get for the transverse fluctuations

B�A�∆qi� j � Σs�µ
s��βsws

� (5)

Thus when updating the cells �i� j� and �i� 1� j� after solving the Riemann prob-
lem at the interface between them via an x pass, the transverse fluctuations are used
to modify the four neighboring y fluxes below and above these two cells, namely
Gi� j� Gi� j�1� Gi�1� j and Gi�1� j�1.

2.2 Riemann Solvers

Hydrodynamic Solvers: We have constructed both linearized Roe solvers and exact
Riemann solver modules for hydrodynamics. In spite of the additional computational
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cost we find that the extreme conditions found in some simulations necessitate an ex-
act Riemann solver. Moreover, the increased stability of the scheme resulting from
the use of the exact as opposed to a linearized Riemann solver and, therefore, larger
acceptable time steps compensate for the increase in the computational overhead
due to the exact Riemann solver and decrease numerical viscosity. In simulations
in which a clump is initiated with high velocity we found near vacuum conditions
created for which the Roe solver failed to find a solution. In addition, we found
strong oscillations in density and pressure behind the extreme shocks and cooling
environments. When radiative cooling is included there was also a need to maintain
accurate tracking of post-shock conditions to avoid run-away cooling though this is-
sue also relied on the use of a robust ODE solver for stiff systems of equations due to
source terms. Finally the formation of so-called carbuncles [Q94] requires particular
care. These structures appear as randomly located sharply pointed corrugations in
the shock and can completely dominate the behavior of the completed solution.

The use of the exact Riemann solver with the proper consideration of vacuum
states and transonic rarefactions resulting from the solution of a Riemann problem
resolved many of the issues listed above. However, we found that carbuncles could
still form in some cases in particular in the presence of strong radiative cooling.
Our solution then relied on two approaches. First, we included the implementation
of transverse waves for the exact Riemann solver. This was done by extracting the
interface state from the exact solution of the Riemann problem, i.e. the state between
the two nonlinear waves, in the normal direction. These hydrodynamic primitives
ρ� p�u1�u2�u3 where then used for each transverse dimension to construct the exact
Jacobian matrix of the fluxes and then to find its eigenvalues and eigenvectors. After
that each fluctuation A �∆q was decomposed into the ”up-going” B �A�∆qi� j and the
”down-going” B�A�∆qi� j components as discussed in the previous section.

We also implemented a spectrally differentiated numerical viscosity via splitting
the contact discontinuity (CD) into 2 waves W �

l and W �

r moving with speeds u�l �
u�� ε and u�r � u�� ε, where u� is the original speed of the CD. The amount of a
conserved quantity Q carried into a cell by the CD is

∆Q � ∆tu��Q�

r �Q�

l �� (6)

where the � refers to the subregion of the Riemann problem solution between the left-
and right-going non-linear waves with r and l denoting the solutions on either side
of the CD. Performing a conservative split of ∆Q, assuming here that the Riemann
problem is being solved in the x-direction, one gets the state between the waves W �

l

and W �

r

ρ�
ρ�l �ρ

�

r

2
; ρu1 � ρu�; ρu�2�3� �

ρ�l u�2�3��l �ρ�r u�2�3��r

2
; E �

E�

l �E�

r

2
� (7)

The extent of the diffused region then depends on the quantity

ε� ηCDMIN��ul �u��� �ur �u���� (8)

where ul (ur), depending on the nature of the left (right) non-linear wave, are either
the speed of the left (right) shock or the tail of the left (right) rarefaction and ηCD
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is a user specified quantity between 0 and 1. Using this formalism we were able to
eliminate the carbuncles while limiting numerical diffusion.

In Figure 1 we present two 1-D tests of the hydrodynamic method. The first is a
Sod-type shock tube designed to assess the entropy satisfaction property of the code.
The second tracks the evolution of a strong blast wave and is intended to assess the
overall robustness and accuracy of the numerical scheme. Both tests were taken from
[T99]. In both cases we find excellent agreement with the exact result with nominal
spreading. 2-D results will be presented in Paper II.

Fig. 1. 1-D tests of the method. Resolution 500 cells, the limiter used was MinMod. Top: Sod-
type shock tube; time t � 0�2; initial discontinuity at x� 0�3. Bottom: Strong blast wave; time
t � 0�012; initial discontinuity at x� 0�5.

MHD Solvers: To solve the MHD equations we used the Riemann solver developed
by J. Rossmanith [R02] in conjunction with the Wave Propagation algorithm. Due to
the complexity of the flux Jacobian this approximate Riemann solver uses arithmetic
average, instead of Roe average, values to determine the state at cell interfaces. In
general the two approaches produce comparable results [RJ95, RJF95].

2.3 Source Terms

In many cases of interest to astrophysical fluid dynamics the source terms will com-
prise a stiff system of ODE’s. Radiative cooling in the limit tcool �� thydro is an often
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encountered case where the timescales for changes in the flow variables can have
very different values for the different processes (flow vs. radiative cooling). Great
care must be taken in integrating such source terms. We have chosen to use the 4th-
order accurate implicit Rosenbrock method, in particular its implementation by Kaps
and Rentrop [KR79, PTVF97]. This was implemented in the form of a generic mod-
ule capable of integrating arbitrary systems of source terms that are functions only
of temporal and spatial coordinates. For a specific choice of source terms a user sim-
ply must provide their description and the Jacobian matrix based on the source term
functions. We note that in the presence of extremely strong source terms this method
can also fail producing negative densities or pressures. In order to prevent this we
included adaptivity in time in the implicit integration.

3 ∇ � B treatment

The elliptic equation ∇ � B� 0 serves as a constraint for MHD. If the initial field is
divergence free, the Maxwell equations retain the condition during subsequent evolu-
tion. When solving the MHD equations numerically, however, flux conservation can
be violated via truncation errors. Having a non-divergence free magnetic field will
create forces along the magnetic field of the order of Fl � B � �B�2�∇ �B� which can
render the simulation useless. Thus at each step the divergence must be corrected,
or ’‘cleaned”. Several methods are available and have been discussed extensively in
the literature. For example in [T00] these methods are reviewed and compared. As
part of an ongoing research effort we have implemented a number of methods in
AstroBEAR. We discuss these below.

3.1 The 8 Waves Method

Powell [P94] derived the MHD equations without the constraint ∇ �B � 0. This cre-
ates an additional source term S in the system (1)

S ���∇ �B�

�
���

0
B
U

U �B

�
��� � (9)

The equation for the divergence of B now becomes an advection equation. The
non-vanishing divergence term will be advected with the flow instead of remaining at
the location of its creation. This procedure can work well only with outflow boundary
conditions. It does have the great advantage of being inexpensive compared to other
methods. However, it may also create incorrect jump condition across strong shocks
because we are not solving the “right” MHD equations.
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3.2 The GLM Method

This method, introduced by Dedner et al. [D01] is a generalization of the 8 waves
method of Powell. It introduces a generic set of equations for dealing with the diver-
gence of B. These equations can be hyperbolic, elliptic or parabolic. We have coded
a form of the advection-diffusion equation which advects the divergence of B error at
the fastest speed in the system while also diffusing it away. Once again the system of
equations that is solved is not the original MHD set and thus has the same problem
as the 8 waves method around strong shocks.

3.3 The Projection Method

A number of tests were carried out with a projection method suitable for AMR com-
putations. The full details of the method may be found in [MVF04]; a brief descrip-
tion is given here. It was shown by Tóth [T00] that the Poisson solver step, required
in the projection method and proposed by Brackbill and Barnes [BB80], does not
entail excessive computational penalties, especially if fast techniques are used. The
problem that arises in applications to AMR is that the grids on different levels are
coupled leading to the necessity of solving the Poisson equation on the entire grid
hierarchy for each of the time subcycling steps. While this is indeed the case when
applying the projection method to equations exhibiting a true elliptic subsystem (e.g.,
the incompressible Navier-Stokes equations), in the case of MHD the equation set
is hyperbolic so a grid-by-grid correction procedure is feasible. The procedure is
presented in the context of a 2D cell-centered finite volume method with the cell av-
erage magnetic field on a coarse grid cell C2h

i� j with edges of length 2h and cell area

A2h
i� j defined by3

Bi� j �
1

A2h
i� j

�
C2h

i� j

B�x�y� dxdy � (10)

The embedded fine grid field is respectively

bi� j �
1

Ah
i� j

�
Ch

i� j

B�x�y� dxdy� (11)

Three issues have to be addressed in constructing a projection correction for an
AMR computation of MHD flows:

1. the interpolation operator used to initialize fine grid values from coarse grids
should not introduce divergence errors;

2. the restriction operator used to update coarse grid values from more accurate fine
grid values should maintain zero-divergence of the finer grid;

3. the fixup procedure employed to ensure conservation at coarse-fine interfaces
should maintain zero divergence on the coarse grid.

3Here as an example we assume the refinement ratio of 2 though it can be any positive
even number.
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The main interest in this work is in 2nd-order accurate schemes so the divergence
of the magnetic field is sought to be maintained zero to O�h 2� accuracy. It is straight-
forward [MVF04] to show that directly injecting coarse grid values to embedded
fine grids (constant function interpolation) leads to O�h� errors in the divergence on
the fine grid. Linear interpolation, either continuous or discontinuous, at adjoining
cell faces does lead to O�h2� accuracy in the fine grid divergence and is a suitable
interpolation procedure. For instance, in the case of piecewise continuous linear in-
terpolation the child grid values are given by

b2i�1�2 j�1 � B1
i� j�xi�

h
2

�y j�
h
2
�� b2i�2 j�1 � B2

i� j�xi�
h
2

�y j�
h
2
�� (12)

b2i�1�2 j � B3
i� j�xi�

h
2

�y j �
h
2
�� b2i�2 j � B4

i� j�xi�
h
2

�y j �
h
2
�� (13)

with the interpolation functions defined by

B1
i� j�x�y� � �Bi� j�Bi�1� j�

x� xi

2h
��Bi� j�Bi� j�1�

y� y j

2h
�Bi� j � (14)

B2
i� j�x�y� � �Bi�1� j�Bi� j�

x� xi

2h
��Bi� j�Bi� j�1�

y� y j

2h
�Bi� j � (15)

B3
i� j�x�y� � �Bi� j�Bi�1� j�

x� xi

2h
��Bi� j�1�Bi� j�

y� y j

2h
�Bi� j � (16)

B4
i� j�x�y� � �Bi�1� j�Bi� j�

x� xi

2h
��Bi� j�1�Bi� j�

y� y j

2h
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Taylor series expansion of the discrete fine grid divergence shows that second order
accuracy is maintained

∇h �b2i�1�2 j�1 �
∂Bx
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as long as the coarse grid field itself has zero divergence to second-order accuracy

∂Bx

∂x
�
∂By

∂y
� O�h2� � (19)

The natural restriction operator used in AMR computations of conservation laws
is simple averaging of embedded fine grid quantities

B̃i� j �
1
4
�b2i�1�2 j�1�b2i�2 j�1�b2i�1�2 j�b2i�2 j� (20)

This can be shown to maintain O�h2� accuracy for the updated coarse grid values at
cells away from coarse-fine interfaces since a series expansion at such points gives
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However at coarse-fine interfaces (denoted, for instance, by an index pair �I�J�) the
same procedure leads to a divergence

∇2h � B̃I�J �
∂Bx

∂x
�
∂By

∂y
�

h
32

��
∂2

∂x2 �
∂2

∂y2

�
�Bx�By�

�
�O�h2� � (22)

introducing a 1st-order error in divergence. Further errors are introduced by the con-
servative fixup procedures typically used in AMR computations. This leads to the
necessity of re-establishing a divergence-free field on a coarse grid after time subcy-
cling has been completed and fine grid values along with conservative fixups have
been introduced on the coarse grid. It is relatively easy to include the appropriate
correction in the sequence of AMR computations:

1. trial time steps taken on a coarse grid determine placement of fine grids; if the
initial coarse grid magnetic field is divergence-free to O�h 2� accuracy so is the
field on the newly constructed fine grids;

2. the coarse grid is advanced to t �∆t through some procedure of solving the
MHD equations; typically this would introduce divergence errors which remain
not corrected for now;

3. time steps are taken on the fine grid; assume that the fine grid is at the finest level
of resolution allowed during the computation, then after each time step required
for time subcycling a projection correction is applied individually on each fine
grid;

4. at the end of fine grid time subcycling, fine grid values are injected onto the
coarse grid and the conservative fixup is applied; the projection procedure is
now applied on the coarse grid by solving

�φ� ∇ �B� (23)

where B is the initial estimate of the magnetic field at t �∆t, and setting

Bn�1 � B�∇φ � (24)

The Poisson equation is discretized using a standard 5-point stencil and solved
through an FFT-based method.

The above procedure is repeated for all embedded grid levels. One question that
arises is the posing of boundary conditions for the fine grids. In most of AMR com-
putations boundary conditions for fine grids are imposed by space-time interpolation
of coarse grid quantities. This would introduce additional errors in the context of the
above procedure since a divergence correction for the coarse grid at the new time
t �∆t has not been carried out when boundary values for fine grids are required.
Though the errors would be eliminated during the course of the fine grid projection
step, it is preferable not to introduce such errors at all. This is accomplished through
an extended boundary ghost cell region, initialized from coarse grid values at t and
which is divergence free to O�h2� by virtue of the linear interpolation procedure.

Additional problems arise when shocks form in the flow domain. In this case
the stencil of the discrete approximation of the Laplacian operator is not valid when
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crossing the shock. An additional source term must be included in the Poisson equa-
tion to account for this effect. For details see [MVF04].
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Abstract. In this paper we introduce Enzo, a 3D MPI-parallel Eulerian block-
structured adaptive mesh refinement cosmology code. Enzo is designed to simulate
cosmological structure formation, but can also be used to simulate a wide range of as-
trophysical situations. Enzo solves dark matter N-body dynamics using the particle-
mesh technique. The Poisson equation is solved using a combination of fast fourier
transform (on a periodic root grid) and multigrid techniques (on non-periodic sub-
grids). Euler’s equations of hydrodynamics are solved using a modified version of the
piecewise parabolic method. Several additional physics packages are implemented in
the code, including several varieties of radiative cooling, a metagalactic ultraviolet
background, and prescriptions for star formation and feedback. We also show results
illustrating properties of the adaptive mesh portion of the code. Information on pro-
filing and optimizing the performance of the code can be found in the contribution
by James Bordner in this volume.

1 Introduction

In astrophysics in general, and cosmology in particular, any given object of interest
can have many important length and time scales. An excellent example of this is
the process of galaxy formation. When studying the assembly of galaxies in a cos-
mological context, one wants to resolve a large enough volume of the universe to
capture enough large-scale structure (a box with length on the order of several mega-
parsecs5). However, in order to adequately resolve structure in an individual galaxy
one wants to have resolution two orders of magnitude smaller than the ultimate size
of the objects of interest (a dwarf galaxy is on the order of� 1 kiloparsec). This typ-
ical cosmological problem requires roughly five orders of magnitude of dynamical

51 parsec = 3.26 light years = 3�0857�1018cm
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range, which is prohibitively expensive when done using a single grid. Many other
astrophysical phenomena, such as the study of molecular clouds and the formation
of stars and galaxy clusters, require similarly large dynamical range. Many scien-
tists have adopted Lagrangean techniques such as smoothed particle hydrodynamics
(SPH)[1] to address these issues. However, this type of method suffers from several
drawbacks, including poor shock resolution and fixed mass resolution in regions of
interest. The use of grid-based techniques with structured adaptive mesh refinement
avoids many of these problems, and additionally allows the use of higher-order hy-
drodynamics schemes.

In this paper we present Enzo, an MPI-parallel 3D Eulerian adaptive mesh re-
finement code. Though it was originally designed to study cosmological structure
formation, the code is extensible and can be used for a wide range of astrophys-
ical phenomena. For more information on the performance and optimization of
the Enzo code, see the contribution by James Bordner in this volume. The Enzo
web page, which contains documentation and the source code, can be found at
http://cosmos.ucsd.edu/enzo/.

2 Methodology

2.1 Application and AMR Implementation

Enzo is developed and maintained by the Laboratory for Computational Astrophysics
at the University of California in San Diego. The code is written in a mixture of C++
and Fortran 77. High-level functions and data structures are implemented in C++ and
computationally intensive lower-level functions are implemented in Fortran. Enzo is
parallelized using the MPI message-passing library6 and uses the HDF57 data format
to write out data and restart files in a platform-independent format. The code is quite
portable and has been ported to numerous parallel shared and distributed memory
systems, including the IBM SPs and p690 systems, SGI Origin 2000s and numerous
Linux Beowulf-style clusters.

The code allows hydrodynamic and N-body simulations in 1, 2 and 3 dimensions
using the structured adaptive mesh refinement of Berger & Colella[2], and allows
arbitrary integer ratios of parent and child grid resolution and mesh refinement based
on a variety of criteria, including baryon and dark matter overdensity or slope, the
existence of shocks, Jeans length, and cell cooling time. The code can also have
fixed static nested subgrids, allowing higher initial resolution in a subvolume of the
simulation. Refinement can occur anywhere within the simulation volume or in a
user-specified subvolume.

The AMR grid patches are the primary data structure in Enzo. Each individual
patch is treated as an individual object, and can contain both field variables and
particle data. Individual patches are organized into a dynamic distributed AMR mesh

6http://www-unix.mcs.anl.gov/mpi/
7http://hdf.ncsa.uiuc.edu/HDF5/
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hierarchy using arrays of linked lists to pointers to grid objects. The code uses a
simple dynamic load-balancing scheme to distribute the workload within each level
of the AMR hierarchy evenly across all processors.

Although each processor stores the entire distributed AMR hierarchy, not all pro-
cessors contain all grid data. A grid is a real grid on a particular processor if its data
is allocated to that processor, and a ghost grid if its data is allocated on a differ-
ent processor. Each grid is a real grid on exactly one processor, and a ghost grid on
all others. When communication is necessary, MPI is used to transfer the mesh or
particle data between processors. The tree structure of a small illustrative 2D AMR
hierachy – six total grids in a three level hierarchy distributed across two processors
– is shown on the left in Figure 1.

Processor 1 Processor 2

ghost zone

Distributed hierarchy Grid zones

real grid
ghost grid

real zone

Fig. 1. Real and ghost grids in a hierarchy; real and ghost zones in a grid.

Each data field on a real grid is an array of zones with dimensionality equal to that
of the simulation (typically 3D in cosmological structure formation). Zones are par-
titioned into a core block of real zones and a surrounding layer of ghost zones. Real
zones are used to store the data field values, and ghost zones are used to temporarily
store neighboring grid values when required for updating real zones. The ghost zone
layer is three zones deep in order to accomodate the computational stencil in the hy-
drodynamics solver (Section 2.3), as indicated in the right panel in Figure 1. These
ghost zones can lead to significant computational and storage overhead, especially
for the smaller grid patches that are typically found in the deeper levels of an AMR
grid hierarchy.

For more information on Enzo implementation and data structures, see references
[3], [4], [5] and [6].

2.2 N-body Dynamics

The dynamics of large-scale structures are dominated by “dark matter,” which ac-
counts for � 85% of the matter in the universe but can only influence baryons via
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gravitational interaction. There are many other astrophysical situations where gravi-
tational physics is important as well, such as galaxy collisions, where the stars in the
two galaxies tend to interact in a collisionless way.

There are multiple ways that one can go about calculating the gravitational po-
tential (which is an elliptical equation in the Newtonian limit) in a structured AMR
framework. One way would be to model the dark matter (or other collisionless
particle-like objects, such as stars) as a second fluid in addition to the baryon fluid
and solve the collisionless Boltzmann equation, which follows the evolution of the
fluid density in both physical space and velocity space (referred to collectively as
“phase space”. This is computationally prohibitive due to the large dimensionality of
the problem and because the interesting portion of the solution to the equation does
not tend to occupy a small volume of the computational domain, which makes this
approach unappealing in the context of an AMR code.

Enzo uses a totally different approach to collisionless systems, namely, the N-
body method. This method follows trajectories of a representative sample of indi-
vidual particles and is much more efficient than a direct solution of the Boltzmann
equation in most astrophysical situations. The particle trajectories are controlled by
a simple set of coupled equations (for simplicity, we omit cosmological terms):

d�xp

dt
� �vp (1)

d�vp

dt
��∇φ (2)

Where �xp and �vp are the particle position and velocity vectors, respectively, and
the term on the right-hand side of the second equation is the gravitational force term.
The solution to this can be found by solving the elliptic Poisson’s equation:

∇2φ� 4πGρ (3)

where ρ is the density of both the collisional fluid (baryon gas) and the collision-
less fluid (particles).

These equations are finite-differenced and for simplicity are solved with the same
timestep as the equations of hydrodynamics. The dark matter particles are sampled
onto the grids using the triangular-shaped cloud (TSC) interpolation technique to
form a spatially discretized density field (analogous to the baryon densities used to
calculate the equations of hydrodynamics) and the elliptical equation is solved using
FFTs on the triply periodic root grid and multigrid relaxation on the subgrids. Once
the forces have been computed on the mesh, they are interpolated to the particle
positions where they are used to update their velocities.

2.3 Hydrodynamics

The primary hydrodynamic method used in Enzo is based on the piecewise parabolic
method (PPM) of Woodward & Colella [7] which has been significantly modified for
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the study of cosmology. The modifications and several tests are described in Bryan
et al. [8], but we provide a short description here.

PPM is a higher-order-accurate version of Godunov’s method with third-order-
accurate piecewise parabolic monotolic interpolation and a nonlinear Riemann solver
for shock capturing. It does an excellent job capturing strong shocks and outflows.
Multidimensional schemes are built up by directional splitting, and produce a method
that is formally second-order-accurate in space and time and explicitly conserves
energy, momentum and mass flux. The conservation laws for fluid mass, momentum
and energy density are written in comoving coordinates for a Friedman-Robertson-
Walker spacetime. Both the conservation laws and Riemann solver are modified to
include gravity , as calculated in Section 2.2.

There are many situations in astrophysics, such as the bulk hypersonic motion
of gas, where the kinetic energy of a fluid can dominate its internal energy by many
orders of magnitude. In these situations, limitations on machine precision can cause
significant inaccuracy in the calculation of pressures and temperatures in the baryon
gas. In order to address this issues, Enzo solves both the internal gas energy equa-
tion and the total energy equation everywhere on each grid, at all times. This dual
energy formalism ensures that the method yields the correct entropy jump at strong
shocks and also yields accurate pressures and temperatures in cosmological hyper-
sonic flows.

As a check on our primary hydrodynamic method, we also include an imple-
mentation of the hydro algorithm used in the Zeus astrophysical code. [9, 10] This
staggered grid, finite difference method uses artificial viscosity as a shock-capturing
technique and is formally first-order-accurate when using variable timesteps (as is
common in structure formation simulations), and is not the preferred method in the
Enzo code.

2.4 Additional Physics Packages

Several physics packages are implemented in addition to dark matter and adiabatic
gas dynamics. The cooling and heating of gas is extremely important in astrophysical
situations. To this extent, two radiative cooling models and several uniform ultravio-
let background models have been implemented in an easily extensible framework.

The simpler of the two radiative cooling models assumes that all species in the
baryonic gas are in equilibrium and calculates cooling rates directly from a cooling
curve assuming Z � 0�3 Z�. The second routine, developed by Abel, Zhang, Anni-
nos & Norman [11, 12], assumes that the gas has primordial abundances (ie, a gas
which is composed of hydrogen and helium, and unpolluted by metals), and solves a
reaction network of 28 equations which includes collisional and radiative processes
for 9 seperate species (H�H�

�He, He�, He���H�
�H�

2 �H2� and e�. In order to in-
crease the speed of the calculation, this method takes the reactions with the shortest
time scales (those involving H� and H�

2 ) and decouples them from the rest of the
reaction network and imposes equilibrium concentrations, which is highly accurate
for cosmological processes. See Anninos et al. [12] and Abel et al. [11] for more
information.
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The vast majority of the volume of the present-day universe is occupied by low-
density gas which has been ionized by ultraviolet radiation from quasars, stars and
other sources. This low density gas, collectively referred to as the “Lyman-α Forest”
because it is primarily observed as a dense collection of absorption lines in spectra
from distant quasars (highly luminous extragalactic objects), is useful because it can
be used to determine several cosmological parameters and also as a tool for studying
the formation and evolution of structure in the universe (see [13] for more informa-
tion). The spectrum of the ultraviolet radiation background plays an important part in
determining the ionization properties of the Lyman-α forest, so it is very important to
model this correctly. To this end, we have implemented several models for uniform
ultraviolet background radiation based upon the models of Haardt & Madau [14].

One of the most important processes when studying the formation and evolution
of galaxies (and to a lesser extent, groups and clusters of galaxies and the gas sur-
rounding them) is the formation and feedback of stars. We use a heuristic prescription
similar to that of Cen & Ostriker [15] to convert gas which is rapidly cooling and in-
creasing in density into star “particles” which represent an ensemble of stars. These
particles then evolve collisionlessly while returning metals and thermal energy back
into the gas in which they formed via hot, metal-enriched winds.

As mentioned in Section 1, Enzo can be downloaded from the web at http:
//cosmos.ucsd.edu/enzo/. Vigorous code development is taking place, and we
are in the process of adding ideal magnetohydrodynamicsand a flux-limited radiation
diffusion scheme to our AMR code, which will significantly enhance the capabilities
of the code as a general-purpose astrophysical tool.

3 Adaptive Mesh Characteristics

The adaptive nature of grid cells in the AMR simulations results in a wide range of
baryon mass scales being resolved. Figure 2 shows the distribution of cells as a func-
tion of overdensity for a range of Enzo simulations in a simulation volume which is
3 h�1 megaparsecs on a side. These simulations use either a 643 or 1283 root grid
and either 5 or 6 levels of refinement (such that Lbox�e � 4096, where Lbox is the
box size and e is the smallest spatial scale that can be resolved). All grids are refined
by a factor of 2.0, and grids are refined when dark matter density (baryon density)
exceeds a factor of 4.0 (2.0) times the mean density of cells at that level. In addi-
tion, a simulation is performed where the overdensity threshold is doubled. Initial
conditions are generated using power spectra and methods common to cosmologi-
cal simulations. Examination of Figure 2 shows that the entire density range in the
simulations is covered by large numbers of cells. In particular, cells at low densities
are well-resolved in these simulations, which is in stark contrast to simulations per-
formed using Lagrangian methods, which are typically undersampled at low density.
Raising the overdensity threshold for refinement decreases the total number of cells
but their relative distribution as a function of overdensity is unchanged. In all sim-
ulations the total number of cells at the end of the run has increase by a factor of
� 8�10 from the number of cells in the root grid.
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Enzo Zeus 64dm/64grid

Zeus 64dm/64grid High OD
Zeus 128dm/128grid

Enzo Zeus 64dm/128grid
Enzo PPM 64dm/128grid

Fig. 2. Number of cells as a function of baryon overdensity (normalized by bin size) for a
representative suite of Enzo cosmology simulations. The simulations are labelled such that
the first number corresponds to the number of dark matter particles and the second number
shows the root grid size, ie, 64dm/128grid means that the simulation has 643 dark matter
particles and a 1283 root grid. Simulations with two different hydrodynamic methods are used.
PPM: Piecewise Parabolic Method. [8] Zeus: The hydro method used in the Zeus astrophysical
code. [9]

Figure 3 shows the distribution of number of cells at the end of a simulation as
a function of the mass of baryons in that cell. Arrows indicate the mean cell mass
contained on the root grid at the onset of the simulation for simulations covering the
same spatial volume as the simulations described above with a 643

�1283 or 2563 root
grid (labelled N64, N128 and N256, respectively). Over the course of the simulation
the mean mass resolution, as indicated by the peak of the distribution, increases by
almost an order of magnitude relative to the initial mass resolution, though the dis-
tribution of cell masses is quite large. Figure 3 shows that the mean cell mass as a
function of overdensity (at the end of the simulation run) stays fairly constant, which
lower mean cell masses in underdense regions and higher mean cell masses in highly
overdense regions (presumably due to the limitation on the number of levels of adap-
tive mesh refinement allowed). The mean cell mass over the entire density range is
between � 5� 10 times better than the starting mass resolution for all simulations.
Runs with lower overdensity criteria for refinement have somewhat better mass res-
olution overall.



348 B.W. O’Shea et al.

N64

N128

N256
Zeus 64dm/64grid
PPM 64dm/64grid High OD

Zeus 128dm/128grid
Zeus 64dm/128grid
PPM 64dm/128grid

Fig. 3. Number of cells as a function of baryonic mass (normalized to bin size) for several
Enzo simulations with Lbox � 3h�1Mpc. The arrows correspond to the mean mass resolution
of the root grid for simulation volumes with the same volume but root grids with 643

�1283 or
2563 cells (labelled N64, N128 and N256, respectively). See Figure 2 for a description of the
line labels.

Zeus 64dm/64grid
PPM 64dm/64grid High OD

Zeus 128dm/128grid
Zeus 64dm/128grid
PPM 64dm/128grid

N256

N128

N64

Fig. 4. Mean baryonic mass in cells as a function of baryon overdensity (normalized to bin
size) in Enzo simulations. These are the same simulations (with the same labels) as in Figure 2.
Horizontal lines correspond to the initial mean mass resolution of simulations with the same
volume but 643

�1283 and 2563 root grid cells (labelled N64, N128 and N256, respectively).
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4 Summary

In this paper we have presented Enzo a cosmology code which combines collision-
less N-body particle dynamics with a hydrodynamics package based on the piece-
wise parabolic method, all within a block-based adaptive mesh refinement algorithm.
Several other physics packages are implemented, including multiple models for gas
cooling and ionization, a uniform ultraviolet background model for gas heating, and
a prescription for star formation and feedback.

Enzo is being released to the public as a community astrophysical simulation
code. This code is being modified and documented to be as widely useful as pos-
sible, and can be found at http://cosmos.ucsd.edu/enzo/. Active development
is taking place, centering on the addition of magnetohydrodynamics and a diffusive
radiative transfer algorithm.

Further information concerning the performance of the Enzo code (including a
package of performance monitoring and visualization tools) is described in a contri-
bution by James Bordner in this volume, and on the Enzo website.
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Toward Optimizing Enzo, an AMR Cosmology
Application

James Bordner

University of California, San Diego

Summary. Enzo is a parallel hybrid SAMR / N-body code designed to simulate cosmolog-
ical structure formation. This paper describes our approach to gathering and visualizing per-
formance information from Enzo, which will be used to direct our subsequent modeling and
optimization effort. Understanding the performance of AMR applications on distributed mem-
ory architectures is challenging, owing in part to the dynamic multilevel data structures and
variety of communication patterns involved. To facilitate the task of measuring, modeling, and
optimizing Enzo’s performance, we are developing the Enzo Performance Monitoring System
(EPMS). We review some existing performance tools, describe the EPMS, and show some
preliminary performance data obtained using the EPMS.

1 Introduction

Enzo [1] is a 3D MPI-parallel structured AMR [2] / N-body cosmology application
developed at the Laboratory for Computational Astrophysics, University of Califor-
nia, San Diego. The current version of Enzo can simulate a wide variety of astrophys-
ical processes, including hydrodynamics, self-gravity, the evolution of up to twelve
chemical species of H and He, radiative cooling, uniform ultraviolet background ra-
diation, and star formation with feedback. Development is underway to further aug-
ment Enzo with magnetohydrodynamics and implicit radiation diffusion modules. A
branch of the Enzo code is being prepared for public release, and is currently down-
loadable by friendly-users at http://cosmos.ucsd.edu/enzo/. A more detailed
description of Enzo can be found in the paper by O’Shea et al. in this volume.

A necessary step in optimizing an application is to understand its existing per-
formance. Because of the complexity of Enzo’s software implementation, data struc-
tures, and communication requirements, as well as that of modern parallel hardware
architectures, we are designing and implementing the Enzo Performance Monitoring
System (EPMS). The EPMS, currently under development, is a collection of tools for
obtaining, analyzing, and visualizing a wide variety of performance data. When com-
pleted, it will be used to help measure, model, and optimize Enzo’s serial, parallel,
and scaling performance.
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First we review some existing parallel performance tools in §2, then we describe
the design and implementation of the EPMS in §3, and finally we provide some
example performance results in §3.3.

2 Some Existing Performance Tools

There are many software tools already available for probing the serial and paral-
lel performance of applications. In this section we briefly review four of them:
prof/gprof, Jumpshot, PAPI, and svPablo. A more detailed review of performance
tools can be found in [3].

Perhaps the most well-known and widely-used performance tools are the Unix
tool prof and its variants, including the GNU profiler gprof. Using them is easy: first
an application is compiled with the appropriate compiler flag (typically -p or -pg),
then the resulting profile-enabled application is run. Running the application gener-
ates a binary file of profile data, which the prof or gprof tool uses to generate a read-
able text summary of the application’s performance. This summary includes how
much time is spent in each function, and how many times each function is called.
This basic timing information can be valuable when optimizing smaller serial pro-
grams; however, these tools do not directly support parallel applications, and they do
not provide any further information that could help diagnose why certain functions
are particularly costly. Furthermore, timing accuracy can suffer if the profile time in-
tervals are too long, and application execution time can suffer if profile time intervals
are too short. Nevertheless, the tools are very easy to use, and can quickly provide
useful basic performance information.

Jumpshot [4] is a performance visualization tool developed at the Laboratory for
Advanced Numerical Software, Argonne National Laboratory. Jumpshot reads event
traces generated by the MPI1 profiling interface MPE. It displays time-lines of MPI
calls, and can indicate matching sends and receives. Jumpshot’s scope is restricted
to MPI communication performance, and is not designed to match MPI calls to their
location in the source code, let alone differentiate between the same MPI functions
called from different modules. Nevertheless, Jumpshot is relatively easy to use, can
be useful for visualizing communication patterns in an application, and for quickly
spotting possible communication-related performance problems.

The Performance Application Programming Interface, or PAPI 2, is a software
library developed at the Innovative Computing Laboratory, University of Tennessee,
Knoxville. PAPI is designed to provide a portable interface to hardware perfor-
mance counters. Typical performance counters available on modern processors in-
clude floating-point operation counts, cache miss or hit counts, memory load and
store counts, etc. PAPI thus provides a powerful low-level interface to a wide range
of serial performance metrics, and is an important component of the Enzo Perfor-
mance Monitoring System.

1http://www.mcs.anl.gov/mpi/
2http://icl.cs.utk.edu/projects/papi/
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Lastly, svPablo [5] is a larger-scale performance visualization package devel-
oped by the Pablo Research Group, University of Illinois at Urbana-Champaign. It
is portable; can be used to interactively instrument C, Fortran 77, or Fortran 90 code
using a GUI interface; can correlate performance metrics (including PAPI events if
PAPI is available) back to source code lines in a graphical source browser; and can
recognize calls to MPI, MPI I/O, Unix I/O, and HDF I/O. Although svPablo does
not currently support C++ applications such as Enzo, the developers intend to sup-
port C++ in the near future. Of the performance tools reviewed here, it comes closest
to providing the wide range of functionality we envisioned for the Enzo optimization
project.

3 The Enzo Performance Monitoring System

The Enzo Performance Monitoring System (EPMS) is a software system designed
for obtaining and visualizing a wide range of performance-related metrics, including
those based on PAPI or user-defined counters. Care is being taken in its design and
implementation to produce a software product that is both easy to use and applicable
to other applications, while not compromising on functionality.

system
Enzo

PAPI

jbPerf

subsystem

Enzo Performance

jbPerf
subsystem

Monitoring System

jbTools

Fig. 1. Enzo Performance Monitoring System.

The EPMS is composed of two subsystems, jbPerf and jbTools, as shown in the
diagram on the left in Figure 1. jbPerf is a performance API called by Enzo for
collecting performance data, then writing the data in trace files; jbTools is a set of
command-line utilities for post-processing trace files generated by jbPerf. As indi-
cated on the right in Figure 1, jbPerf may in turn call PAPI if it is available.

Before describing jbPerf and jbTools in more detail, we first discuss in §3.1 the
range of performance issues the EPMS is being designed to support. These targeted
performance issues, both software- and hardware-related, will help provide context
for understanding the design decisions made during the development of jbPerf and
jbTools. jbPerf will be described in §3.2, and jbTools in §3.3.
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3.1 Targeted Performance Issues

While the overall time to solution is perhaps the most important performance metric,
determining it a priori for a given software application, hardware architecture, and
problem configuration requires detailed knowledge of the software’s performance
characteristics and the hardware architecture. In this section we review some of the
main performance issues, from both hardware and software perspectives.

Concurrent Hardware Performance Issues

Three major potential sources of inefficiency when running a parallel application on
an SMP cluster architecture are load balancing, communication, and storage access.
These are illustrated in Figure 2.

Node

Cache

Disk

Memory

Registers

Node

1

2

2

1

interconnect

1

256

wiring
CPU

SMP bus

Cluster

Storage access

Processor

FPU

Communication Computation Storage

Load balancing

Communication

Fig. 2. Potential sources of performance inefficiency.

The center column in Figure 2 represents the compositional layering of compu-
tational components in an SMP cluster, from the cluster level at the top, down to
the floating-point unit level at the bottom. For concreteness, specific multiplicities
are shown for the NSF TeraGrid3 cluster at NCSA: each of that cluster’s 256 nodes
contains two processors, and each processor contains two floating-point units. The
right column represents the storage subsystem, with storage components roughly

3http://www.teragrid.org/
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matched with the corresponding computational components. The left column rep-
resents the communication subsystem, again with its components roughly matched
with the corresponding computational components. Within each subsystem is a po-
tential for loss of performance: computational load balancing inefficiency, commu-
nication overhead, and memory storage access times.

Load balancing is an issue at multiple architectural levels, but is most important
at the node level, since that level has the highest degree of parallelism. Enzo currently
uses a dynamic load balancing scheme that relocates real grids from heavily loaded
processors to lightly loaded processors. More sophisticated dynamic load balancing
schemes have been developed by Z. Lan [6] [7], which will likely be introduced
into a later version of the public code branch of Enzo. Also, a static load balancing
scheme is being developed for use with Enzo by Liebrock et al., based on Liebrock’s
Ph.D. thesis work [8].

Communication overhead is inevitable in most parallel applications, and can eas-
ily dominate computation. As with load balancing, communication overhead is most
significant at the node level. Specific communication patterns can lead to reduced
efficiencies on some communication systems due to “hot spots” in node interconnect
topologies; these may be difficult or impossible to predict a priori based only on the
interconnect’s nominal latency and bandwidth. Approaches to lowering communi-
cation overhead can include reordering MPI sends and receives to decrease latency,
using nonblocking MPI calls to overlap communication and computation, enhancing
the load balancing scheme to improve grid locality, redesigning algorithms to reduce
the amount of communication needed, or using different algorithms altogether.

Accessing memory and disk can reduce performance due to both the latency and
bandwidth limitations of the higher-level storage components. As with communica-
tion, memory access efficiencies can be difficult to estimate a priori due to hardware
details of the cache hierarchy. Approaches to optimizing storage access speeds can
include prefetching, reordering grid computations into smaller blocks to increase
cache reuse, reordering data to improve spatial and temporal locality, reformulating
algorithms to use cache-efficient high-level BLAS routines, and redesigning algo-
rithms to have higher ratios of floating-point operations to memory references.

These three potential sources of inefficiency—load balancing, communication
overhead, and storage access—are the main sources of hardware-related performance
inefficiencies targeted by the EPMS.

AMR Application Performance Issues

Three performance issues arising from an AMR application perspective that we are
concerned with are code components, AMR hierarchy levels, and simulation time-
steps. While perhaps not the only axes of interest, we nevertheless consider them nec-
essary for a thorough understanding of an AMR application’s overall performance.

Different physics components and data structure manipulation functions in Enzo
can have very different performance characteristics. For example, the computational,
memory, and communication requirements for the hydrodynamics solver are differ-
ent from those of the gravity solver, which in turn are different from those of the mesh
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hierarchy rebuilding component, etc. To better understand the performance and scal-
ing properties of Enzo as a whole, it helps to understand the performance and scaling
properties of its individual components.

Since Enzo is an AMR code, in particular one that takes multiple time steps
on deeper AMR levels, performance characteristics can vary depending on the
AMR level. Understanding how performance characteristics change between differ-
ent AMR levels can be helpful in predicting performance for an Enzo run with a
known static distribution of grids across multiple levels of refinement.

Finally, since the AMR hierarchy is dynamic, to predict the performance of an
entire Enzo simulation, we need to understand how performance properties change
as Enzo’s mesh hierarchy evolves. We therefore wish to collect performance data for
each time-step.

3.2 Collecting Performance Data Using jbPerf

jbPerf is the API component of the EPMS. It consists of a single C++ class that
was designed to collect a wide variety of performance information from a running
application. This performance data can include wall-clock (real) time, CPU (virtual)
time, hardware counters accessed through the optional PAPI library, and user-defined
and controlled counters, which can be used for collecting performance data related
to communication and disk I/O.

start()
stop()
next()

advance()

begin()

init()
finalize()

mode()
papi()

end()

user() increment()
category()
write()

jbPerf

Fig. 3. The jbPerf class.

The core capability of jbPerf is to instrument regions of code using concise
jb::perf.start(region) and jb::perf.stop(region) calls. These calls can be nested, and
both inclusive and exclusive performance data are collected for each region. These
functions are used to collect cumulative performance data for individual code com-
ponents in Enzo.

For regions with dynamically changing performance characteristics, the function
jb::perf.next(region) can be inserted immediately after the call to stop(). Each time
next() is called, a new set of counters is created and initialized for the associated re-
gion. The related function jb::perf.advance() is also provided, which effectively calls
next() globally for all known regions. In Enzo, the advance() function is called after
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each time-step in a simulation. Most event tracing performance libraries implicitly
call next() after each stop(); by making the call explicit and optional, the lengths of
performance traces can be reduced substantially.

Most code regions instrumented in Enzo are in the main time stepping loop,
and are called for all levels. To partition performance data among separate levels,
the jb::perf.category(category) function was added to jbPerf. This function essen-
tially modifies all subsequent code region names by appending the category string.
In Enzo, category() is used to create a separate set of regions for each level, without
requiring modifications to the region arguments of start() and stop().

papi(), user(), and increment() are used to control the PAPI and user counters in
jbPerf. The jb::perf.papi(papi-counter ) function can be called at the beginning of a
program to activate a PAPI event. For example, papi(”fp-ins”) will cause subsequent
start() and stop() calls to count floating-point operations for regions, papi(”lst-ins”)
will count memory load and store instructions, etc. user() is used to create a user-
defined counter, as in jb::perf.user(”hdf-write-bytes”), and increment() is used to in-
crement a user counter, as in jb::perf.increment(”mpi-send-bytes”,num bytes). Thus,
by providing user counters, applications can monitor performance metrics that may
be application-specific or otherwise unavailable, at the cost of having to manually
increment the counters.

Lastly, the function write() is used to dump all data collected so far to disk files.
One file is created for each processor, region, and category combination. Files con-
tain sequences of counts (both inclusive and exclusive) for each active PAPI and user
event, plus other basic performance information such as time stamps and call counts.

3.3 Processing and Visualizing Performance Data Using jbTools

Whereas jbPerf is used to collect performance data as Enzo is run, jbTools will be
used to post-process and visualize the collected data.

Although jbTools is still under active development, it will eventually contain
command-line utilities for generating plots of Enzo performance and scaling data.
Currently implemented utilities include jb-extract for selecting a counter for a re-
gion, jb-add, jb-mul, etc. for performing basic arithmetic operations on sets of counter
data, jb-mflop for computing mflop rates, and jb-load for computing an estimate of
load balancing efficiencies.

Figure 4 illustrates the types of plots we would like jbTools to generate semi-
automatically. Although the plots themselves were not produced directly by jbTools,
they were nevertheless generated from jbPerf output files using existing lower-level
jbTools utilities for processing the data. Actual plots were created manually using
the GNU plotting program gnuplot. The test problem used an initial root grid of size
N � 1283, and was run on eight processors of SDSC’s4 TeraGrid Intel Itanium 2
Linux cluster.

Plotted on the left in Figure 4 is the relative time per time-step spent in the parallel
FFT solver, which is used to compute the gravitational potential on the coarsest-level

4http://www.sdsc.edu/
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Fig. 4. Sample Enzo performance data collected using jbPerf.

grids. Several observations are immediately apparent, including the reduction of the
relative times for later time-steps, the relatively large percentage of time spent in
the FFT during the earlier time-steps, and the bimodal distribution of relative times
during the earlier time-steps. While the cause of the first observation is known 5,
the second and third observations require further investigation. Once jbTools is fully
functional, it is expected to be a powerful tool for quickly investigating just such
performance-related questions.

Plotted on the right in Figure 4 are the numbers of bytes sent and received during
each time-step, relative to the root processor. As the AMR hierarchy begins to grow,
we see an increase in communication traffic as expected. Again, once jbTools is fully
functional, it should help facilitate the task of investigating observed performance
behavior, such as why there are more sends than receives, or whether the floating-
point operation rates are reduced significantly by the increased communication.

4 Conclusions

Although the EPMS is being designed specifically for Enzo, care is being taken to
keep it independent of Enzo, and as easy to use as possible. The design of jbPerf has
more-or-less converged to a steady-state, and the source code is expected to be re-
leased soon at http://cosmos.ucsd.edu/jbPerf/, after some further code refac-
toring. The jbTools subsystem will continue to be developed, and will also be released
publicly. After we begin to obtain more substantial performance and scaling informa-
tion about Enzo, results will be posted at http://cosmos.ucsd.edu/enzo-perf/.

5This is due to the generation of more and more grids in the AMR hierarchy as the simu-
lation progresses, making the relative cost of the coarse-level based FFT less and less.
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Construction and Application of an AMR Algorithm
for Distributed Memory Computers

Ralf Deiterding

California Institute of Technology,1200 East California Blvd., Mail-Code 158-79, Pasadena,
CA 91125, ralf@cacr.caltech.edu

While the parallelization of blockstructured adaptive mesh refinement techniques
is relatively straight-forward on shared memory architectures, appropriate distribu-
tion strategies for the emerging generation of distributed memory machines are a
topic of on-going research. In this paper, a locality-preserving domain decomposi-
tion is proposed that partitions the entire AMR hierarchy from the base level on. It
is shown that the approach reduces the communication costs and simplifies the im-
plementation. Emphasis is put on the effective parallelization of the flux correction
procedure at coarse-fine boundaries, which is indispensable for conservative finite
volume schemes. An easily reproducible standard benchmark and a highly resolved
parallel AMR simulation of a diffracting hydrogen-oxygen detonation demonstrate
the proposed strategy in practice.

1 Introduction

The adaptive mesh refinement (AMR) method after Berger and Collela [BC88] is
widely used for adaptive simulations on logically rectangular finite volume meshes.
Instead of replacing single cells by finer ones, the AMR method constructs a hierar-
chy of properly nested refinement grids. The striking efficiency of this algorithm, in
particular for instationary supersonic gas dynamical problems, was demonstrated by
Berger and her collaborators in [BBS94].

Up to now, various reliable implementations of the AMR method for single
processor computers have been developed [BL98, CW93]. Even implementations
for parallel computers with shared memory architecture have reached a stable state
[BBS94]. Parallelism is an inherent feature of the AMR algorithm and in a shared
memory environment simply the numerical solution on the whole sequence of grids
has to be advanced in parallel to achieve a sufficient load-balancing. The question
for an efficient parallelization strategy becomes more delicate for distributed mem-
ory machines, because the costs of communication can not be neglected anymore.
Due to the technical difficulties in implementing hierarchical adaptive methods in a
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distributed memory environment only few parallelization efforts are documented, cf.
[RBL00, PB97, KB95].

This paper describes a rigorous domain decomposition approach that partitions
the entire hierarchy from the base level on. By employing ghost or halo cell re-
gions, which are synchronized whenever the algorithm applies boundary conditions,
an overlap between subgrids is constructed that allows most operations of the AMR
algorithm to be carried out strictly local. After a brief characterization of the em-
ployed finite volume methods in Sec. 2, we review the sequential AMR algorithm in
Sec. 3. In Sec. 4, we specify the domain decomposition and discuss the necessary
extensions of the previously described subroutines in parallel. Section 5 presents
parallel AMR simulations for the Euler equations of gas dynamics obtained with our
public domain code AMROC [DA03] on typical Linux-Beowulf-clusters.

2 Finite Volume Schemes

The Berger-Collela AMR method is a dynamic mesh adaptation approach, which
is tailored especially for the adaptive numerical solution of hyperbolic conservation
laws

∂t�q��x� t��∇ �

�f ��q��x� t�� ��0 � �x � �x1� � � � �xd�
T
� �

d � t � ��0 (1)

on logically rectangular finite volume (FV) meshes. For simplicity, we restrict our
attention to the two-dimensional case and assume an equidistant FV discretization of
the computational domain G0 � �

2 with mesh widths ∆x1, ∆x2 and a constant time
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with numerical fluxes given by
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For vanishing boundary fluxes, scheme (2) satisfies the important discrete conser-
vation property ∑i� j

�Qκ�1
jk � ∑i� j

�Qκ
jk, which is essential for the correctness of the

approximation, if Eq. (1) admits discontinuous solutions, as it is the case e.g. for Eu-
ler equations. The numerical fluxes in (2) are often evaluated by solving a Riemann
problem between neighboring cells approximately. In this case, a typical stability
condition for H �∆t� could be

CCFL :� max
j�k
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∆t
∆x2

�
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where S j� 1
2 �k, S j�k� 1

2
denote the maximal signal speeds in both space directions ac-

cording to the approximative solution of the Riemann problems at the cell interfaces.
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Fig. 1. Left: Recursive integration order. Right: Sources of ghost cell values.

3 Blockstructured Adaptive Mesh Refinement

A significant advantage of the blockstructured idea over other mesh refinement
strategies is that the update operator H ��� only needs to be implemented on a
single uniform Cartesian grid G, where s layers of auxiliary cells (ghost or halo
cells) around G should be employed to define discrete boundary conditions. Cells
flagged by various error indicators are clustered dynamically at run-time into non-
overlapping rectangular subgrids Gl�m that define the domain of an entire level
l � 0� � � � � lmax by

Gl :�
Ml�

m�1

Gl�m �

Refinement grids are derived recursively from coarser ones and a hierarchy of suc-
cessively embedded levels is thereby constructed. All mesh widths on level l are
rl-times finer than on level l� 1, i.e. ∆tl :� ∆tl�1�rl and ∆xn�l :� ∆xn�l�1�rl with
rl � ��rl � 2 for l � 0 and r0 � 1, and a time-explicit FV scheme (in principle) re-
mains stable under a condition like (3) on all levels of the hierarchy. The recursive
integration order visualized in the left sketch of Fig. 1 is an important difference to
unstructured adaptation strategies and is one of the main reasons for the high effi-
ciency of the approach.

The numerical scheme is applied on level l by calling the single-grid routines
H ��� in a loop over all subgrids Gl�m. The execution of the numerical loop in
UpdateLevel() in Alg. 1 requires the previous setting of the ghost cell values.
Three types of boundary conditions have to be considered in the sequential case,
see right sketch of Fig. 1. Cells outside of the root domain G 0 are used to implement
physical boundary conditions. Ghost cells in Gl have a unique interior cell analogue
and are set by copying the data value from the grid, where the interior cell is con-
tained (synchronization). On the root level no further boundary conditions need to
be considered, but for l � 0 also internal boundaries can occur. They are set by a
conservative time-space interpolation from two previously calculated time steps of
level l�1.

Beside a general data tree that stores the topology of the hierarchy, the AMR
method requires at most two regular arrays assigned to each subgrid, which contain
the discrete vector of state �Q for the actual and updated time step. In the following,
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we denote by �Ql�t� and �Ql�t�∆tl� the unions of these arrays on level l. The regularity
of the input data for the numerical routines allows high performance on vector and
super-scalar processors and cache optimizations. Small data arrays are effectively
avoided by leaving coarse level data structures untouched, when higher level grids
are created. Values of cells covered by finer subgrids are overwritten by averaged
fine grid values subsequently.

3.1 Conservative Flux Correction

Replacing coarse cell values by averaged fine grid values modifies the numerical
stencil on the coarse grid. In general the important property of conservation is lost. A
flux correction is necessary that introduces the involved fine grid fluxes into Eq. (2).
In two and three space dimensions hanging nodes additionally have to be considered.
As an example we consider cell � j�k� in Fig. 2 on level l. After the numerical update

Fig. 2. Location of numerical fluxes required for flux correction. Cells to correct are shaded.

on level l a correction term associated to the boundary of level l � 1 is initialized
by δ�F1�l�1

j� 1
2 �k

:���F1�l
j� 1

2 �k
. During the rl�1 update steps of level l�1 all necessary fine

level fluxes are accumulated, i.e.
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with µ � 0� � � � �rl�1� 1. After the integration of the fine level, the correction is ap-
plied by calculating

�̌Qκ�1
jk :� �̃Qκ�1

jk �
∆tl
∆x1�l

δ�F1�l�1
j� 1

2 �k
�

The edge- or face-centered flux correction terms δ�Fn�l�1 have to be stored along the
boundaries, where a level l � 0 abuts the next coarser level. To avoid the usage of
the numerical fluxes �Fn on the entire level, the grid-wise application of the numeri-
cal scheme and the computation of the correction terms are effectively combined in
UpdateLevel() in the loop over all all grids on level l.
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AdvanceLevel(l)

Repeat rl times
Set ghost cells of �Ql�t�
If time to regrid

Regrid(l)
UpdateLevel(l)
If level l�1 exists

Set ghost cells of �Ql�t�∆tl�
AdvanceLevel(l�1)
Average �Ql�1�t�∆tl� onto

�Ql�t �∆tl�
Correct �Ql�t�∆tl� with δ�Fn�l�1

t :� t�∆tl

Alg. 1. Recursive AMR algorithm.

Regrid(l)

For ι� lc Downto l Do
Flag Nι according to �Qι�t�
If level ι�1 exists?

Flag Nι below Ğι�2
Flag buffer zone on Nι

Generate Ğι�1 from Nι

Ğl :� Gl
For ι� l To lc Do

CĞι :� G0�Ğι, Ğι�1 :� Ğι�1�CĞ
1
ι

Recompose(l)

Alg. 2. Regridding procedure.

3.2 Recursive Grid Generation

The basic recursive AMR algorithm is formulated in Alg. 1. Except the regridding
procedure, all operations have already been explained. New refinement grids on all
higher levels are created by calling Regrid() from level l. Level l by itself is not
modified. To consider the nesting of the level domains already in the grid generation,
Alg. 2 starts at the highest refineable level lc, where 0 � lc � lmax. The refinement
flags are stored in grid-based integer arrays N ι. A clustering algorithm [BBS94] is
necessary to create a new refinement Ğι�1 on basis of N ι until the ratio between
flagged and all cells in every new grid Ğι�1�m is above a prescribed threshold 0 �
ηtol � 1.

Before the new grids Ğι�1 can be used to replace Gι�1, the proper nesting of
the new refinement grids has to be enforced over the modified hierarchy. In Alg.
2 we evaluate the invalid region for level ι� 1 by calculating the complement
CĞι :� G0�Ğι of the next coarser level domain Ğι in G0 and by enlarging CĞι by

one additional layer of cells on level ι. We denote this enlarged region by C Ğ
1
ι . The

operation Ğι�1 :� Ğι�1�CĞ
1
ι then eliminates all invalid regions from the new level

domain Ğι�1.
The reinitialization of the hierarchy is done in the subroutine Recompose(l),

which is formulated in Alg. 3a. In particular, grid-based auxiliary data �̆Q�Ğι� t� is
necessary to reorganize the vector of state. Cells in newly refined regions Ğι�Gι are
initialized by interpolation, values of cells in Ğι � Gι are copied. As interpolation
requires the previous synchronized reorganization of �Qι�1�t�, the recomposition al-
gorithm traverses the hierarchy upwards.

4 Parallelization by Domain Decomposition

We follow a rigorous domain decomposition approach and partition the AMR hier-
archy from the root level on. We assume a parallel machine with P identical nodes
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and split the root domain G0 into P non-overlapping portions G p
0 , p� 1� � � � �P by

G0 �

P�

p�1

Gp
0 with Gp

0 �Gq
0 �� for p �� q �

The key idea now is that all higher level domains are required to follow the decom-
position of the root level, i.e.

Gp
l :� Gl �Gp

0 � (5)

Condition (5) can cause the splitting of a subgrid Gl�m into multiple subgrids on
different processors. Under requirement (5) we estimate the work on an arbitrary
subdomainΩ� G0 by

W �Ω� �
lmax

∑
l�0

�
Nl�Gl �Ω�

l

∏
ν�0

rν

�
� (6)

Herein, Nl��� denotes the total number of FV cells on level l in the given domain. The
product in (6) is used to consider the time step refinement. A nearly equal distribution
of the work necessitates

L p :�
P �W �Gp

0�

W �G0�
� 1 for all p � 1� � � � �P � (7)

A considerable advantage of the proposed decomposition strategy is the reduction of
the communication costs. Together with the use of ghost cells our approach allows an
almost local execution of Alg. 1. In particular, the inter-level operations interpolation
and averaging remain strictly local. The only parallel operations that have to be con-
sidered additionally are the parallel ghost cell synchronization and the application of
flux correction terms across processor borders. Especially UpdateLevel() need not
be modified. Apparently, the new vector of state on each subgrid G p

l�m and the fluxes
can be computed strictly local, but also the evaluation of the correction terms does
not require communication.

4.1 Local Calculation of Flux Corrections

To illustrate this, we assume a parallel border in Fig. 2 at j� 1
2 . Let cell � j�k� be con-

tained in Gq
l and let cell �v�w� be contained in G p

l�1. Then the necessary correction

term δ�F1�l�1
j�1�2�k resides on node p, because it is assigned to the fine level. Its initializa-

tion requires the coarse grid flux �F1�l
j�1�2�k. This flux is available on node p, because

the basic AMR strategy ensures that below �v�w� an interior coarse cell � j�1�k� ex-
ists having �F1�l

j�1�2�k as flux into a ghost cell � j�k�. On the other hand, �F1�l
j�1�2�k is also

computed on node q, where � j�k� is interior and � j�1�k� is a ghost cell. As the ghost
cells have been synchronized before the numerical update, the same boundary flux is
calculated on both nodes, cf. Fig. 3. The fine grid fluxes �F1�l�1

v�1�2�w�ν are only available
on p, because no abutting interior fine grid cell exists on q. As the correction term
δ�F1�l�1

j�1�2�k is also stored on p the summation in (4) remains local. The only operation
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Fig. 3. Flux correction in parallel.

of the flux correction that necessarily requires communication is the final application
of the correction terms as mentioned in the previous section. But the communication
costs are minor, because the corrections are only necessary along lower-dimensional
domains.

4.2 Parallel Grid Generation

Analogous to Alg. 1 the regridding in Alg. 2 is hardly affected by the parallelization.
The flagging of cells on each level can be done locally. If a refinement criterion
requires auxiliary time steps (i.e. error estimation by Richardson extrapolation, cf.
[BC88]), additional synchronizations will be necessary, but this does not affect Alg.
2. The only operation in Alg. 2 that needs special attention is the clustering.

The clustering algorithm could be executed strictly locally on N�G p
ι � or it could

be executed on the data of the entire level N�G ι�. Usually, the results will be identical
for ηtol � 1 only. To avoid the expensive global concatenation of all data sets N�G p

ι �
to N�Gι�, we execute the clustering algorithm strictly locally and communicate just
the results Ğp

ι�1 to obtain the global list Ğι�1 �
�

p Ğp
ι�1. To consider a buffer zone

of b cells before local clustering, the grid-based integer arrays N ι are extended by b
ghost cells. A parallel synchronization of these ghost cells before creating the buffer
zone locally ensures the appropriate flagging of interior cells.

The main changes in the regridding procedure are in Recompose(l). Instead of
Alg. 3a we apply Alg. 3b. Due to our distribution strategy we now have to consider a
complete reorganization of the entire hierarchy even for a regridding at a higher level.
In particular, the whole relevant data of levels with ι� l have to be copied. Like the
synchronization operation, these copy operations are partially local and parallel. For
levels with ι� l the relevant data is �Qι�t�, �Qι�t�∆tι� and δ�Fn�ι, for level l we have to
copy �Ql�t� and δ�Fn�l . The initialization of a level with ι � l is in principle identical
to Alg. 3a. Interpolation is a strictly local operation, provided that the next coarser
level has already been reorganized. The copy operation is a combination of local and
parallel copy.

Alg. 3b is significantly more complex than Alg. 3a, because it considers the gen-
eral case of a complete parallel redistribution of the AMR hierarchy even at higher
level time steps. However, in practice it usually suffices to allow this operation only
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Recompose(l) - sequential

For ι� l�1 To lc�1 Do

Interpolate �Qι�1�t� on �Q̆ι�t�

Copy �Qι�t� on �Q̆ι�t�

Set ghost cells of �Q̆ι�t�
�Qι�t� :� �Q̆ι�t�
Gι :� Ğι

Alg. 3a. Sequential recomposition.

Recompose(l) - parallel

Derive Gp
0 from

�G0� ��� �Gl �Ğl�1� ��� �Ğlc�1�
For ι� 0 To lc�1 Do

If ι � l
Ğp
ι :� Ğι�Gp

0

Interpolate �Qι�1�t� on �̆Qι�t�
else

Ğp
ι :� Gι�Gp

0
If ι� 0

Copy δ�Fn�ι onto δ�̆Fn�ι

δ�Fn�ι :� δ�̆Fn�ι

If ι � l then νι � 0 else νι � 1
For ν� 0 To νι Do

Copy �Qι�t �ν∆tι� on �̆Qι�t�ν∆tι�

Set ghost cells of �̆Qι�t�ν∆tι�
�Qι�t�ν∆tι� :� �̆Qι�t�ν∆tι�

Gp
ι :� Ğp

ι , Gι :�
�

p Gp
ι

Alg. 3b. Parallel recomposition.

on the root level. Under this simplification, Alg. 3b reduces mostly to Alg. 3a. The
creation of the new load-balanced distributions G p

0 then has to be considered just for
the case l � 0 and only �Qι�t� has to be copied over processor borders.

4.3 Partitioning

It is evident, that the overall efficiency of the chosen parallelization strategy depends
especially on the first step of Algorithm 3b, the partitioning algorithm. This algo-
rithm has to meet several requirements. It must balance the estimated workload,
while the parallel synchronization costs should be small. A slight change of the hi-
erarchy should require only a moderate data redistribution. The algorithm must be
fast, because it is carried out on-the-fly.

Distribution strategies based on space-filling curves seem to give an acceptable
compromise between these partially competing requirements. A space-filling curve
defines a continuous mapping from �0�1� onto �0�1� d and is well suited to define an
ordered sequence on the root level cells of a blockstructured domain. This sequence
can easily be split into portions of equal size yielding load-balanced new distributions
Gp

0 . As space-filling curves are constructed recursively, they are locality-preserving
by definition and naturally avoid an excessive redistribution overhead. Further on,
the surface is small, which reduces the synchronization costs.

Our present implementation utilizes a partitioning algorithm based on Hilbert’s
space-filling curve [PB96]. The Figs. 4 and 6 display domain decompositions derived
with this algorithm for the work estimation formula (6). Apparently, the extensions
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of the domain assigned to each node vary remarkably, but the workloads according
to (7) always differ by less than 5%.

5 Computational Results

We use a standard test for Euler equations of a single polytropic gas to evaluate
the proposed parallelization strategy within the MPI-based AMROC implementation
[DA03]. A homogeneous circular region of high pressure and density expands in an
enclosed box. After a few time steps, the initial discontinuity separates into a rapidly
expanding shock wave, a following slower contact discontinuity and a collapsing
smooth rarefaction wave.

We utilize a base grid of 150� 150 cells and apply a two-level refinement with
the factors r1 � 2 and r2 � 4. About 200 root level grid time steps with CCFL � 0�8 to
tend � 0�5 were computed, where the Clawpack implementation of the Wave Propa-
gation Method [LeV97] with the approximate Riemann solver of Roe was employed
as numerical update routine. A repartitioning of the hierarchy was done only at
root level time steps, cf. Sec. 4.2. A standard Linux-Beowulf-cluster of Pentium-III-
1 GHz CPUs connected with Fast Ethernet (effective bandwidth� 40MB) was used
for the benchmarks. Exemplary results on eight nodes are shown in Fig. 4. While the
AMROC computation on one node required 152min, the execution time decreased
to remarkable 13�9min on 16 nodes. Table 1 shows a breakdown of the computa-
tional time for the most important AMR operations. For one node the fractions spent

Table 1. Computational time on P nodes.

Task [%] P =1 P =2 P =4 P =8 P =16
Update by H ��� 86.6 83.4 76.7 64.1 51.9
Flux correction 1.2 1.6 3.0 7.9 10.7
Boundary setting 3.5 5.7 10.1 15.6 18.3
Recomposition 5.5 6.1 7.4 9.9 14.0
Misc. 4.9 3.2 2.8 2.5 5.1
Time [min] 151.9 79.2 43.4 23.3 13.9
Efficiency [%] 100.0 95.9 87.5 81.5 68.3

in different parts of the code are in good agreements with the results in [BC88] and
at least for a moderate number of computing nodes we achieve an acceptable parallel
efficiency.

In order to demonstrate that our parallelization approach is also well suited
for cutting-edge AMR simulations, we briefly present exemplary results for a two-
dimensional hydrogen-oxygen detonation propagating out of a tube into unconfine-
ment. The simulation reproduces the critical width for square tubes and is in per-
fect qualitative agreement with experimental results. The computation was run ef-
fectively in less than 4 days real time on a Linux-Beowulf-cluster of 48 CPUs and
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After 38 time steps After 79 time steps

Fig. 4. Circular Riemann problem in an enclosed box. Isolines of density on two refinement
levels (indicated by gray scales) and distribution to eight nodes (indicated by different colors).

Fig. 5. (Upper four graphics.) Planar
detonation diffraction. Density distribu-
tion on four refinement levels 240µs af-
ter the detonation has left the tube. Mul-
tiple zooms are necessary to display the
finite volume cells.

Fig. 6. Planar detonation diffraction.
Distribution of computational domain
to 48 nodes.
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spent � 2000h CPU time in the update operator H ���, which was a special approx-
imative Riemann solver for multi-component Euler equations with general equation
of state. The reaction terms according to a detailed non-equilibrium reaction mech-
anism were incorporated numerically into H ��� with a fractional step method and
required the additional solution of a stiff initial value problem in each FV cell. See
[Dei03] for details.

As detonation simulations require an extraordinarily high local resolution to cap-
ture the influence of the chemical kinetics correctly, the computation benefits re-
markably from dynamic mesh adaptation. The graphics in Fig. 5 display the solution
on the refinement levels 240µs after the detonation has left the tube (730 root level
time steps with CCFL � 0�8, one half of the domain was simulated) and the enormous
efficiency of the refinement is apparent. The base grid used 508�288 cells and four
levels of refinement with r1�2�3 � 2, r4 � 4, which corresponds to � 150M cells, but
at the time step displayed the simulation uses less than 3�0M cells on all levels.

6 Conclusions

We have described a locality-preserving parallelization strategy for the blockstruc-
tured AMR algorithm after Berger and Colella, which is tailored especially for dis-
tributed memory machines. The approach is based on domain decomposition and
reduces the communication costs. In particular, the important flux correction pro-
cedure, which can become quite complicated in a distributed memory environment,
can be implemented with ease. Benchmark calculations with our MPI-based imple-
mentation AMROC show promising parallel speed-up and we were able to obtain
exceptional detonation simulations with the framework on standard Linux-Beowulf-
clusters, cf. [Dei03].
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The major part of a star’s lifetime, from birth to death, is punctuated by strong
shocks. Such discontinuities can be efficiently treated using Adaptive Mesh Refine-
ment. Moreover, by using theoretical properties of shocks, it is possible to begin the
mesh refining before a gradient appears. We present here our new project of imple-
mentation of shock prediction within AMR techniques with the aim of using Grid
technology as part of the CosmoGrid. This Irish project consists of a network of the
major research computing facilities in Ireland. Such a Grid will allow us to use AMR
techniques applied to astrophysical shocks in a new type of computing architecture.

1 Astrophysical Shocks

1.1 Physical Modelling

Astrophysical systems, like supernova remnants, jets and outflows, are mainly ob-
served thanks to their strong shocks. A typical example is a Type Ia supernova, which
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occurs when a white dwarf undergoes thermonuclear detonation at the end of its life.
This results in a spherical piston-type shock being driven out from the centre. As a
first approximation, the detonation can be modelled using the Euler Equations for an
ideal compressible gas.

∂ρ
∂t
�∇ �ρU� 0 (1)

∂�ρU�
∂t

�∇ � �ρU�U� pI�� 0 (2)

∂� 1
2ρU2� ε�
∂t

�∇ � �U�
1
2
ρU2� p� ε�� � 0 (3)

The equations are expressed in the primitive variables ρ (density),U (velocity)
and p (pressure). An example solution to the Euler Equations for a shock tube or
Riemann problem is illustrated in Figure 1. A more complex physical problem is
sketched in figure 2. This shows a box model of diffusive shock acceleration, a
mechanism proposed responsible for producing nuclear cosmic rays. The situation
becomes even more complex during star formation where magnetic field and chem-
istry play an important role in the dynamics. [Drur99].

1.2 Simulation Results

A sample simulation of magneto-hydrodynamic jet propagation is shown in Figure 3.
The simulation includes MHD, cooling and chemistry. In A, the jet enters a uniform
environment, while it goes through a density step in B and C, from high to low
density in B, and the opposite direction in C. [Lery02]
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Fig. 1. Example of Solution to Riemann Problem: Density, Pressure and Velocity curves for
1-D Simulation
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Fig. 2. Sketch for box model of diffusive shock acceleration. Source: L. Drury et al. 1999

1.3 Adaptive Mesh Refinement Techniques

Steep gradients such as those shown in Figure 1 may be treated using the techniques
of Adaptive Mesh Refinement. Using known properties of shocks, it may be possible
to predict the location of the shock independently, and thus begin the refining before
a gradient becomes apparent. This may allow us to take advantage of the heteroge-
neous nature of the Grid.

2 Grid Refinement

2.1 Sharing Resources

The Grid paradigm is about enabling communities (virtual organizations) to share
resources as they pursue common goals. It allows to aggregate computing power and
to make use of distributed resources in order to get a larger virtual computer. Single
PCs can be added to existing large Beowulf clusters together with any other fast
machine, like Crays. The Grid software allows us to choose automatically the best
set of machines to run a computation at various locations, physically separated.

2.2 Domain Mapping

In order to properly distribute the workload between different processors, the under-
lying data structure can be broken into pieces and each piece assigned to a different
processor designated by the Grid software. The borders of the partitioned data struc-
ture must be exchanged between adjacent nodes. It is therefore desirable to divide
the domain in such a way as to minimize the surface area of the partitions [Berg96].
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Fig. 3. Simulations of a pulsating jet coming from a star in its infancy. Case A: the jet enters a
uniform interstellar medium. Case B: the jet exits the molecular cloud. Case C: the jet enters
a molecular cloud. Note the numerous magnetic and hydrodynamic instabilities as well as the
cavities (C1, C2, and C3) Source: T. Lery

3 CosmoGrid

CosmoGrid is the first Irish countrywide Grid project. It includes all the major uni-
versities and research institutes in Ireland, for a total of 9 institutions. It will consist
of 5 gateways linking the Beowulf clusters and the existing fast computers. The ob-
ject of the program is to increase sharing of high performance computing resources
and encourage cooperation in astrophysics, geophysics and atmospheric physics. It
allows the participants to harness and make available their combined computing
power to perform individual computations in an efficient manner.
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4 Conclusions & Current Status

As Adaptive Mesh Refinement can be computationally intense, it is an ideal candi-
date for the Grid environment. We intend to implement a version of Adaptive Mesh
Refinement which takes advantage of the flexibility offered by grid technology in
order to study astrophysical shocks.

� CosmoGrid gateways are up and running and new clusters are added to the in-
frastructure.

� We are currently selecting an AMR code for the implementation of our shock
models with the aim to use the Grid technology to effectively study the stucture
of shocks and their properties.
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Summary. We have developed a hydrodynamic 3 dimensional AMR code which is suitable
for vectorization and parallelization based on Fully Threaded Tree method. For the case of 3D
FTT-AMR simulation, the number of higher resolution cells is eight times of that of mother
low resolution cells. Therefore if the region where the highest resolution is required has cer-
tain volume, it is better to use single time step for every levels of resolution because we can
avoid artificial flow at the surface of resolution interface. This level-independent time step
also makes possible to simplify the evaluation of refinement indicator. As a result, we can
overcome the demerit of consuming CPU time by computing at level-independent time step
less than CFL limit, by boosting vector acceleration ratio.

1 Introduction

Many astrophysical phenomena originate at small region and propagate to other large
region. Because astrophysical parameters vary wide range, we need Adaptive Mesh
Refinement (AMR) scheme to simulate astrophysical phenomena. For example, star
forms from interstellar gas by collapsing � 10�6. Massive star dies by a supernova
explosion which initiates at the central core and becomes visible when the exploding
shock wave reached to the surface by expanding � 10 6. Certainly such wide range
of space resolution needs AMR scheme. Moreover, because timescales of physical
processes also varies many orders of magnitude from the central dense region to the
outer vacant region. Therefore we need very stable and highly vectorized and/or par-
allelized AMR code in order to simulate astrophysical phenomena. Here, we present
our implementation of vector-parallel orientated AMR code for astrophysical hydro-
dynamic simulation.

Among some AMR methods, we employed Fully Threaded Tree (FTT) method
(Khokhlov [1]) in our simulation code. FTT method gives an easy operation of refin-
ing and coarsening cells by using list-vectors. Refining and coarsening of the oct are
automatically done according to the value of refinement indicator.
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Because we focussed on 3D simulation with vector and parallel options, our FTT
code (see e.g., Ogawa [2] ) is different from Khokhlov’s original FTT method at
following points: Using the level-independent time step and distributing the value of
the refinement indicator of each oct over surrounding octs by a simple point-spread-
function. Such simplification is preferable for keeping longer vector length so that
we could obtain higher vector acceleration ratio and therefore shorter CPU time by
utilizing level independent single time step.

In section 2, we describe our implementation in detail. Section 3 is devoted for
the measurements of vectorization and parallelization efficiency of our code. Sum-
mary and discussion is given in section 4.

2 Our FTT-AMR scheme

Our implementation [2] of vector-parallel orientated AMR code utilizes single level
independent time step and non-local refinement indicator. We adopted Roe-MUSCL
scheme [4] for the part of flux evaluation in which the 3rd order accuracy in space
is achieved. Though our code has 2nd order accuracy in time by employing operator
splitting method [4], we use 1st order in this paper.

For FTT method of AMR code, Khokhlov [1] designed the time step ∆t�l� of
level l cells, which have 2�l side length, to be

∆t�l� � ∆t�lmax�2
lmax�l

� (1)

where subscript max means the maximum level (the highest resolution). When the
hydrodynamical variables are advanced by this time step at level l, the CFL condition
should be satisfied minimally at every level l.

However, when there exists a hydrodynamical flow at the boundary between cells
of different levels, inevitable noise takes place at the boundary and may cause numer-
ical difficulty. This kind of numerical difficulty is a common problem for the case that
different resolution meshes are placed adjacently as like nested grids scheme. When
a flow from larger resolution mesh comes to finer resolution mesh, if the time step of
finer resolution mesh is shorter than that of larger resolution mesh, overshooting of
the flow would be enhanced, because quantities of the finer resolution mesh are time
advanced twice for 2�l cell structure regardless the back effects of the flow. Usually,
one would introduce a damping factor on the flow in order to avoid the growth of
such overshooting or would add ghost meshes to calculate the flow.

In our case, we adapt single level-independent time step determined by the CFL
condition for the highest resolution level lmax cells as

∆t�l� � ∆t�lmax�� (2)

This means that time steps used for lower level calculations are shorter than their
CFL allowance limit which means that we are wasting CPU time. However for the
case of 3D simulation, each oct has at least 23 cells so that the number of higher
resolution octs are at least eight times larger than that of lower resolution parent
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octs of the same volume. When we calculate physical variables of different level
octs with different time steps as like Khokhlov’s case, we should calculate them
with shorter vector length (the total number of each level octs instead of the total
number of octs). Therefore, when we calculate physical variables of each resolution
octs separately with vector option, we are wasting CPU time even though we have
reduced the number of operations themselves.

Therefore, it is worth to calculate physical variavles of all octs at every time step
with longer vector length and reduce the number of executions of do-loops. Then we
could obtain better vector acceleration ratio and resultant reducing of CPU time and
could avoid unphysical flow between different levels interface.

The refinement indicator ξ at every oct of our implementation is calculated as
follows: At first, calculate local value by standard definition of refinement indicator.
Then, sum up indicators of surrounding cell with a simple point-spread-function and
revise the refinement indicator as a non-local one.

In this simulation, the local refinement indicator is calculated under the guideline
of AMR2003 benchmark session for hyperbolic benchmark (single physics; Sedov
point- like explosion): Refinement criterion is that density and pressure jump should
be smaller than 0.1.

We introduce following gradient function G�q�,

G�q� � max

�
max��q��� �q

�

��

min��q��� �q
�

��

�
�1� (3)

where q is physical variables and the suffixes “�” and “�” denote a pair of adjoining
cells and the “�” cell is the one having larger coordinate value. For the case of hydro-
dynamic calculation of Sedov point-like explosion which is given as a bench mark
problem in the benchmark session of AMR2003, only mass density ρ and pressure
P for q in G�q� should be the refinement criterion, we can write down the formula to
determine ξ as

�ξ� 1
when

max�G�ρ��G�P��� 0�1�
(4)

As like Sedov point-like explosion, we often face the strong shock wave in the
astrophysical phenomena. Because stellar envelope has steep density and pressure
gradients small overpressure grows into a strong shock when it propagates into outer
envelope (this is so called “pressure growing”). When this kind of strong shock ap-
proached, standard AMR refinement recipe often could not catch up this sudden
change. Therefore we have to refine meshes well before the arrival of the shock wave.
Such preparation is also better because the shock wave may enhance numerical noise
generated at the time of refinement, which causes numerical instability.

We require not only that the indicator should be smooth in the simulation volume
in order to avoid refining cells having occasional noise but also that the indicator
should have information of nearby cells in order to prepare refinement well before
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the arrival of the shock wave. For this purpose, we revise the definition of ξ as not to
a local indicator but to an indicator of larger volume, i.e., we revise the value of the
target oct by summing ξ of the surrounding octs.

We define ξrev as

ξrev � ∑
nearby surrounding cells

wξ� (5)

where w is a weight function. In this simulation we set w� 1. This simple summation
is better than the sophisticated Khokhlov’s method which estimates diffusion front.
The reason is that we need not estimate diffusion thickness because we used single
level-independent timestep and CFL condition at the highest cells ensures that the
shock and contact discontinuity fronts shift at most only one cell by one time step.
Then, we can code the program for vectorization and/or parallelization much easier.

By using upper and lower thresholds, namely ξ refine and ξcoarsen, when the value
of ξrev falls out of threshold limits, the operation of refining or coarsening is carried
out. We set ξrefine � 2�9 and ξcoarsen � 2�1 through out in this simulation.

3 Performance evaluation of our implementation

Performance evaluation of our code is done according to the guideline of AMR2003
benchmark session. Because our code is vector-parallel orientated, we do not use
provided SGI machine as like other benchmark session presenters but we use NEC
SX-6, a vector-parallel machine, as a counter part.

According to the AMR2003 guideline, we set parameters as the box size �0�1�,
the density at the center ρc � 8, the pressure at the center Pc � 2�10�5, the explosion
energy Etot � 0�25, and the specific heat γ� 1�4. Initial explosion takes place at the
central 4 cells at the center of our simulation box �0�5�0�5�0�5�. Because we set
simulation box size as �0�1� instead of ��1�1� in the guideline, other variables are
normalized according to the box size. We simulated 4 different effective resolution
cases of 1283, 2563, 5123, and 10243, namely cases L5-7, L5-8, L5-9, and L5-10,
respectively.

We used one node (8PEs) SX-6 at Communications Research Laboratory for
this performance evaluation of our implementation. We measured each case with 4
different models according to compiler options; vector-parallel (VP), scalar-parallel
(SP), vector-nonparallel (VN), and scalar-nonparallel (SN).

First, we show how much CPU-times of each part of our code are spent for each
model. In tables 1, 2, 3, and 4 we showed the result of first 1000 steps for the cases
of levels L5-7, L5-8, and L5-9 models and first 4000 steps for the case of L5-10
models. The part of Flux calculates flux of physical parameters and the part of AMR
changes mesh sizes which implements refining and coarsening the mesh at each time
step. The part of Other contains input and output. Total shows the total CPU-time we
spent.
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Table 1. CPU-times spent at each part for the case of 1283 resolution (L5-7).

Part VP SP VN SN

Flux 180.4 s 537.8 s 295.9 s 3214.7 s
AMR 4.3 s 14.1 s 4.9 s 48.8 s
Other 3.3 s 6.3 s 2.0 s 19.1 s
Total 188.0 s 558.2 s 302.8 s 3282.6 s

Table 2. CPU-times spent at each part for the case of 2563 resolution (L5-8).

Part VP SP VN SN

Flux 158.4 s 553.0 s 328.5 s 3141.0 s
AMR 5.7 s 17.3 s 6.3 s 42.1 s
Other 2.7 s 6.1 s 2.2 s 18.6 s
Total 166.8 s 576.4 s 337.0 s 3201.7 s

Table 3. CPU-times spent at each part for the case of 5123 resolution (L5-9).

Part VP SP VN SN

Flux 193.0 s 604.2 s 308.3 s 3257.2 s
AMR 7.3 s 20.8 s 7.2 s 57.6 s
Other 2.8 s 6.3 s 3.4 s 19.2 s
Total 203.1 s 631.3 s 318.9 s 3334.0 s

Table 4. CPU-times spent at each part for the case of 10243 resolution (L5-10).

Part VP SP VN SN

Flux 1107 s 5421 s 2933 s 32538 s
AMR 47 s 235 s 15 s 461 s
Other 11 s 49 s 11 s 196 s
Total 1165 s 5705 s 3004 s 33195 s

The final shapes of Sedov point-like explosion at t � 0�05 are shown in figs. 1, 2,
3, and 4. Density, pressure, and momentum are plotted against the distance from the
center for all cells. Theoretical solution is shown by thin solid curves.

Tables 5, 6, 7, and 8 shows the number of octs we used at 1000 step and at the
final step when t � 0�05. As one can find easily, the most plentiful part of the total
octs is the highest level even for the case of the lowest resolution case at the last half
time steps (see table 5). For the case of higher resolution cases, the portion where
the number of the highest resolution dominates the total number of octs start at much
earlier time step (see table 8). Such oct structure ensures our argument of ignoring
CPU-time consumption by useing the single time step for every level.
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Fig. 1. Sedov point-like explosion at t=0.05 with 1283 resolution. All cells are plotted accord-
ing to the distance from the center.

Table 5. Oct structure at 1000 step �t � 0�0236� and at the final (1747) step �t � 0�05� for the
case of 1283 resolution (L5-7)

Oct level 1000 step final step

L5 4096 4096
L6 1664 2880
L7 6912 12544
Total 12672 19520

The total CPU time τCPU for these cases with VP option, the total vetorization rate
VEC, vector acceleration ratios with parallel option VP � τCPU�SP��τCPU�VP� and
without parallel option VN � τCPU�SN��τCPU�SP� at the 1000 step (4000 step for L5-
10 case), and parallel acceleration ratios with vector option PV � τCPU�VN��τCPU�VP�
and without vector option PN � τCPU�SN��τCPU�SP� at the 1000 step (4000 step for
L5-10 case) are given in Table 9.
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Fig. 2. Sedov point-like explosion at t=0.05 with 2563 resolution. All cells are plotted accord-
ing to the distance from the center.

Table 6. Oct structure at 1000 step �t � 0�0042� and at the final (6666) step �t � 0�05� for the
case of 2563 resolution (L5-8)

Oct level 1000 step final step

L5 4096 4096
L6 704 2880
L7 1664 12160
L8 6912 62464
Total 13376 81600

Our code shows high vectorization rate (more than 99 %) and good parallel ratio
PN ( 5�281�5�881 for 8 PEs). Though vectorization and parallelization compensate
each other because vector length is shorter when we use parallelization, we still have
allowable efficiency in L5-10 case.



386 Miyaji et al.

Fig. 3. Sedov point-like explosion at t=0.05 with 5123 resolution. All cells are plotted accord-
ing to the distance from the center.

Table 7. Oct structure at 1000 step �t � 0�00074� and at the final (18930) step �t � 0�05� for
the case of 5123 resolution (L5-9)

Oct level 1000 step final step

L5 4096 4096
L6 256 2880
L7 704 10816
L8 1664 59392
L9 6912 373312
Total 13632 450496

4 Summary and Discussion

Our code employed simpler method than Khokhlov’s [1] sophisticated method, but
we could show that our approach works well for this simulation. Especially, although
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Fig. 4. Sedov point-like explosion at t=0.05 with 10243 resolution. All cells are plotted ac-
cording to the distance from the center.

we applied plain weight function (w � 1), we have not experienced any numerical
difficulty. When the shock approaches from diogonal direction, the weight of vertices

Table 8. Oct structure at 1000 step �t � 0�00080� and at the final (41938) step �t � 0�05� for
the case of 10243 resolution (L5-10)

Oct level 1000 step final step

L5 4096 4096
L6 256 2880
L7 704 10816
L8 2096 59328
L9 7488 373168
L10 37056 2629128
Total 51696 3079416
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Table 9. Total CPU time and vectorization rates are listed. VP and VN are listed in the upper
part and PV and PN are listed in the lower part of columns.

Cases CPU time VEC VP / PV VN / PN

L5-7 261 s 99.33 % 2.969 10.84
1.611 5.881

L5-8 2640 s 99.50 % 3.456 9.50
2.020 5.555

L5-9 15827 s 99.69 % 3.108 10.45
1.570 5.281

L5-10 166491 s 99.80 % 4.897 11.05
2.579 5.819

Fig. 5. Density contour of the RT instability in SN1987A after 4600 seconds from the explo-
sion at the center on the equator [3].

should be weighted higher because only one vertex represents the shock. However, in
this simulation, though the profile of the front is spherical, plain weight function well
predicts its approach and causes no trouble even we use the plain weight function in
calculating non-local refinement indicator.



Performance of Vector/Parallel Orientated Hydrodynamic Code 389

Fig. 6. 3D view of the RT instability in SN1987A after 4600 seconds [3].

Vector and parallel acceleration ratios are fair when both options are set, but
actual simulation always needs the highest machine efficiency, i.e., the total num-
ber of octs would be large so that we could expect longer vectorization length even
when we set parallel option. One of such example is a parameter search for 3D
Rayleigh-Taylor ( and/or Richchtmeyer-Meshkov ) instability in the supernova en-
velope. In this case, because the RT instability initiates at the very inner region and
grow into outer large envelope and its non-linear growth makes the structure of den-
sity/composition discontinuity very complicated, we need high resolution AMR code
to simulate the growth of RT instability. We have shown that our code is efficient for
such simulation [3] ( figs. 5 and 6 ). Noro et al. [3] also evaluated the performance
of our code with such RT simulation with pseudo-vector parallel machine of Hitachi
SR8000. Though their result showed good parallel efficiency but vector efficiency
alone is poor (though the total acceleration ratio is 5.736 for 8 PEs but V N � 1�024)
by that pseudo-vector machine because it is actually a parallel machine.

We could conclude that our vector-parallel orientated implementation of the FTT-
AMR scheme is efficient in simulations of astrophysical phenomena. Detailed exam-
ple of our astrophysical simulation would be published elsewhere.

The earth simulator [5] is a massively parallel vector-parallel machine and other
similar machines would be available soon. So, our implemetation of vector-parallel
orientated FTT-AMR scheme would have popularity when one want to use these
machines.
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On the efficiency of AMR in NIRVANA3
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Summary. The efficiency of the grid-adaptive magnetohydrodynamics code NIRVANA3 is
studied. For that two three-dimensional benchmark problems are proposed: a hydrodynamical
implosion problem possessing spherical symmetry and a shock-cloud collision problem in
a magnetic medium. An efficiency parameter is defined which contains both the obtained
speedup factor and an error estimate.

1 Introduction

I investigate the efficiency of a solution-adaptive scheme for the equations of ideal
magnetohydrodynamics (MHD) in three space dimensions given in conservation
form

∂tρ�∇��ρv� � 0 � (1)

∂t�ρv��∇�

�
ρvv�

�
p�

1
2µ

�B�2
�

I�
1
µ

BB
�
� 0 � (2)

∂t e�∇�
��

e� p�
1

2µ
�B�2

�
v�

1
µ
�v�B�B

�
� 0 � (3)

∂tB�∇�E � 0 � (4)

ρ is the mass density, e is the (total) energy density, v is the velocity, E ��v�B is
the electric field, µ is the magnetic permeability and γ is the ratio of specific heats.
The equations are supplemented by the divergence-free constraint for the magnetic
field,

∇�B � 0 �

and the thermal pressure is computed from the ideal gas equation of state

p � �γ�1�

�
e�

1
2
ρ�v�2�

1
2µ

�B�2
�

� (5)

The equations are solved numerically with a hybrid approach: Faraday’s law Eq.
(4) is treated with constraint transport (CT) techniques ie. a special discretization
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utilizing a staggered grid (see eg. Evans & Hawley [6]). Hydrodynamics is updated
with the second-order Godunov-type central scheme of Kurganov et al. [8]. The
combined method is conservative and preserves the zero divergence condition for
B in discretized form up to machine precision. The resulting MHD scheme does
neither rely on Riemann solvers nor on any characteristic decomposition typical for
upwind schemes. It is easy to implement, computationally fast and, yet, compelling
in accuracy to second-order approximate Riemann solver schemes (see Ziegler [12]).
Note that no additional effort is needed to enforce solenoidality of B as opposed to
schemes based on a non-staggered approach. In particular, neither extra source terms
proportional to ∇�B have to be introduced in order to propagate ∇�B-errors away
as in Powell’s [9] approach nor is it necessary to solve a Poisson equation as in the
projection method proposed by Brackhill & Barnes [1].

The MHD scheme is embedded in a grid refinement tool which is based on the
principles of block-structured adaptive mesh refinement (AMR) elaborated by Berger
& Collela [3] and used by many others (see eg. Walder & Folini [11], Berger & LeV-
eque [4], Bell et al. [5], Friedel et al. [7], Balsara & Spicer [2], Steiner et al. [10]).
Although found on the same ideas, the AMR implementation here differs in many
respects from this original approach. I pay attention to these differences in Sect. 2
which thoroughly deals with the AMR design. Worth mentioning at most, block-
structured AMR has been adapted to the central-constraint transport ansatz with
complications arising from the 2-step Runge-Kutta time integrator and the use of CT
ie. the staggered grid. Moreover, the presented AMR approach attempts to combine
flexibility in grid adaptation by using very small blocks of fixed size for refinement
with speed by applying an intelligent patch clustering algorithm to speedup integra-
tion. All such developments has dropped into the software package NIRVANA3 – a
versatile MHD code for grid-adaptive simulations in astrophysics and related fields
of research.

2 AMR design

2.1 Refinement procedure

Controlled by specific criteria refinements on a fixed base grid are realized by hier-
archically nested blocks (or patches) of size 43 cells (in 3D) with increasingly finer
mesh spacing. Blocks of the same resolution build a refinement level l with l � 1 for
the first refinement level and l � L for the maximal allowed refinement level spec-
ified by the user. Adjacent levels have a refinement ratio of 2. Technically, the set
of blocks build an oct-tree data structure. A block stands as a logical unit which not
only holds the MHD variables and positions but also contains information about its
environment in terms of pointers to its parent block or base grid, respectively, its grid
neighbors and its nested child blocks. An example patch distribution is shown in Fig.
1.

The criteria used to control mesh refinement is twofold:
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Fig. 1. An example patch distribution with 7 levels of refinement (the base grid is not shown).
Each rectangle (cube in 3D) represents a patch of dimension 4�4��4� cells

i) on the base grid �l � 0� normalized gradients in all variables are evaluated. If such
gradient of any variable in a local neighborhood exceeds a prescribed threshold
a block is generated and added to the data structure. Variables of the block are
initialized by using conservative reconstruction procedures. If, on the other hand,
gradients for all variables fall short of the thresholds an existing block is de-
stroyed and removed from the data structure.

ii) refinement on blocks are triggered by a simple error indicator: during the update
procedure of the grid hierarchy it becomes necessary to synchronize adjacent lev-
els l and l�1 in a restriction step in order to retain local conservation properties
(see 2.3). Before such restriction is performed, the deviation from conservation
between these two levels is used as indicator for grid refinement. This is reminis-
cent of a Richardson-type error estimation.

2.2 Patch clustering and time integration

Although mesh refinement is done in terms of individual blocks, the MHD solver
does not directly operate on such blocks. Instead, blocks are temporarily mapped
onto larger rectangular grid units called superblocks (see Fig. 2). The equations are
then solved on such superblocks. The purpose of patch clustering is to increase ef-
ficiency: small blocks serve for a flexible adaptation ie. regions which actually need
no refinement but yet are refined are sparse whereas patch clustering significantly
reduces the otherwise overwhelming overhead due to the large number of intercon-
nected blocks. For a given refinement level, blocks making up a coherent region are
clustered in a way such that the corresponding superblock has maximum number
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Fig. 2. The principle of patch clustering. In this example 7 superblocks are created

of cells in x-direction. Guard cells to take up boundary conditions are automatically
added. Since a refinement level usually consists of several coherent regions with ar-
bitrary bounding a whole set of superblocks is created. Depending on the degree of
fragmentation of the grid structure, each refinement level may produce only a few
superblocks or as much as hundreds or even thousands. Patch clustering is compu-
tationally inexpensive compared to the integration step. It just requires to collect the
corresponding patches, to copy variables from these patches to the superblock and to
assign boundary conditions.

The sequence of grids is time-advanced in a certain order. The finest level is in-
tegrated first. The rule then is that a level l � 0 is integrated twice before the coarser
level l� 1 is integrated with a time-step being the sum of the finer time-steps. Of
course, all individual time-steps obey the CFL condition. The last step in the pro-
cedure consists of updating the base grid. Whenever two adjacent levels match in
time during this cycle synchronization of their solutions take place on consistency
reasons and to maintain conservation properties of the core scheme. Synchronization
is discussed next.

2.3 Synchronization processes

Several mechanism in the AMR method ensure that the solution remains consistent
on the adaptive grid hierarchy during the course of evolution:
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i) restriction. Since the fine grid solution is considered more accurate than the
underlying coarse grid solution the latter is replaced by the fine grid solution
by a conservative copy in those regions covered by the fine grid. In case of the
magnetic field this means that the magnetic flux at fine cell faces is mapped onto
coarse cell faces coinciding with those fine cell faces.

ii) flux/electric field fixup. The restriction procedure requires a fixup of the hydro-
dynamical fluxes and of the electric field at refinement interfaces. More precisely,
the numerical flux at a coarse cell face has to be replaced by the temporal sum of
the numerical fluxes of those fine cell faces which cover the coarse cell face. This
restores conservation. Similarly, the electric field at a coarse cell edge must be
replaced by the temporal sum of the electric fields of those fine cell edges which
cover the coarse cell edge. This restores solenoidality of the magnetic field. How-
ever, the situation is complicated by the use of a 2-step Runge-Kutta method. As
a consequence, the fixup steps are carried out for both the predictor step and
corrector step separately.

iii) synchronization of internal boundary conditions. The use of the 2-step Runge-
Kutta time integrator or, more general, any multistage ODE solver requires addi-
tional synchronization. That is, after the predictor step boundary conditions along
common interfaces of superblocks in direct contact need to be synchronized in
order to avoid a time mismatch. For a single-step time integrator this would be
redundant.

3 AMR efficiency

3.1 Definitions

Numerical errors are measured against a single-grid, high-resolution reference solu-
tion in a modified L1-norm. I define the error in some quantity u as

εu �
∑l �ul �uref

l �

∑l �u
ref
l �

where the sum runs over all effective grid cells l of the grid hierarchy. Effective grid
cells are all those not covered by finer cells. On a single grid without AMR l just
stands for the grid indices �i jk�.

uref
l �

1
δVl

∑
�i jk��Il

uref
i jk �δV

ref
i jk

must be understood as an effective reference value for cell l (with volume element
δVl) obtained by volume-averaging reference values u ref

i jk (with volume elements

δV ref
i jk ) in an environment I l that contains all reference cells �i jk� space-filling cell l

ie. δVl � ∑�i jk��Il δV ref
i jk .
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The speedup factor S of an AMR application is defined as the inverse ratio of the
CPU times of the AMR simulation and a comparison simulation with a global fine
grid,

S�
Tcomp

TAMR
�

The speedup factor is often used to characterize the efficiency of an AMR imple-
mentation. As long as the numerical error in the AMR simulation is comparable to
the error in the comparison simulation S is a sufficient number to do so. If this is not
the case, however, because essential features of the solution are not resolved by the
AMR algorithm the speedup S alone is no longer a proper measure to judge whether
an AMR implementation is efficient or not. Instead, I propose to use the number

EFF� S �

εcomp

εAMR

which involves errors for the comparison simulation and AMR simulation, respec-
tively. Whereas S can be determined easily computing the errors requires the ref-
erence solution being performed with even higher resolution than the comparison
simulation.

For the two 3D benchmark problems below (Sect. 3.2, 3.3) such high-resolution
reference simulations could not be done because computer resources were not avail-
able. Yet, to get an estimate of the ratio εcomp�εAMR the following (inconsistent)
procedure has been applied. First, convergence rates from lower resolved single-grid
simulations are calculated using the comparison simulation as reference solution.
With the obtained convergence rates one estimates a pseudo-ε comp by extrapolation.
Second, using the comparison simulation again as reference solution one can com-
pute a pseudo-εAMR. If such pseudo-errors turn out of comparable size one can have
the legitimated hope that εAMR � εcomp holds also for the true errors.

3.2 Implosion problem

The implosion problem considered here as a benchmark is a converging shock prob-
lem possessing spherical symmetry. The gas is confined to a cubic box �x�y�z� �
��1�1�3 with reflecting boundary conditions on all six boundaries. The gas is ini-
tially at rest and has a constant density ρi � 0�125 and constant pressure pi � 0�1
inside an interior sphere of radius R � 0�5 centered around the coordinate origin.
Outside this sphere, ρo � 1, po � 1. A shock forms running to the center, rebounds
and, thereafter, propagates radially outwards accompanied by a rarefaction wave and
contact discontinuity.

Fig. 3 illustrates the result for an AMR simulation with a 503 base grid and two
further levels of refinement at a time after the shock rebound. The effective resolution
is thus 2003. The density, pressure, velocity and patch distribution is shown in the
z � 0 coordinate plane. The inner region r � 0�5 contains the shock and contact
discontinuity which are fully covered by level 2 patches whereas the rarefaction is
resolved by level 1 patches. Fig. 4 (left) shows a scatter plot of the density for both
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Fig. 3. Contour lines of density �0�125 � ρ � 1�74� and pressure �0�778 � p � 1�33�, ve-
locity field �vmax � 0�249� and patch distribution in the z � 0 coordinate plane for the AMR
simulation. Only a quadrant of the spherically symmetric implosion problem is shown at a
time

the AMR simulation and the 2003 single-grid simulation. The curves are somewhat
shifted relative to each other to make a comparison easier. Without shift the curves
would coincide which gives a first (positive) impression on the accuracy of the AMR
result. Fig. 4 (right) presents the time history of the kinetic energy for all simulations
done. Again, there is a remarkable agreement between the AMR solution and the
2003 comparison result. Errors, convergence rates and timings are listed in Table 1.
The resolution study indicates an experimental order of convergence of roughly 1.5.
This is surprisingly good taking note of the presence of discontinuities in the flow.
Errors have been computed for the primitive variables ρ, p, v x, vy, vz and are largest
in the velocity. Pseudo-errors (see Sect. 3.1) for the 200 3 solution are comparable
to those for AMR so that one can indeed argue, supported by Fig. 4, ε comp � εAMR.
From Table 1 the speedup factor S� 9�1 and, hence, an AMR efficiency of EFF� 9
results for the implosion problem. The AMR overhead containing all routines which
were redundant in a single-grid simulation is 21.8% of the total runtime. A detailed
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Fig. 4. Left: scatter plot of the density (ρ versus radius). Dark dots correspond to the reference
simulation whereas light dots correspond to the AMR simulation which is shifted by ∆ρ �
0�1 relative to the reference solution. Right: time history of the kinetic energy for an AMR
simulation (plus signs), 2003 simulation (solid), 1003 simulation (dashed) and 503 simulation
(dotted)

Table 1. Implosion problem – errors, convergence rates, timings

run ερ εp εvx��vy�vz� TIME [s]
503 6�5 � 10�3 8�5 � 10�3 0�185 48
1003 2�2 � 10�3 �1.56

3�0 � 10�3 �1.50
0�064

�1.54
1587

A200 6 � 10�4 10�3 0�029 2111
2003 7 � 10�4� 1�1 � 10�3� 0�022� 19386
�pseudo-errors extrapolated from the measured convergence rate

Table 2. Implosion problem – AMR overhead

% of runtime
mesh refinement: memory allocation, refinement criterion 5.5

patch clustering 2.0
mesh initialization: interpolation 6.4

synchronization: flux sync., restriction, boundary sync. 7.9
total 21.8

split of the total overhead in overhead due to the mesh refinement, patch clustering,
mesh initialization and synchronization processes is given in Table 2.

3.3 Shock-cloud collision

The second benchmark problem is the collision of a density clump with a strong
shock wave in a magnetic environment. The computational domain is a Cartesian
box given by �x�y�z� � ��1�2�1�2�3. There is a discontinuity at x � 0�1 with left and
right states:
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Fig. 5. Contour lines/grey-scale representation of logρ at t � 0 (left panel, 0 � logρ � 1)
and after the collision (middle panel, 0 � logρ � 1�38). Scaling is from minimum (black) to
maximum (white). The right panel shows the resulting patch distribution spanning two levels
of refinement
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The flow is highly supersonic on the right side. At x� �0�3�0�0� a spherical density
clump with radius 0�15 and density ρcl � 10 is embedded. The clump is in pres-
sure equilibrium with its surrounding medium. The adiabatic index γ � 5�3. Zero-
gradient boundary conditions are used for all variables in all directions except at the
upper x-boundary where variables are kept at their initial values. I perform an AMR
simulation with a 503 base grid and two levels of refinement and single-grid simu-
lations on a N3 cube grid with N � 50�100�200. Hence, the effective resolution in
the AMR case is identical to the 2003 simulation. The simulations are stopped at
evolution time t � 0�06 after which a violent collision between the shock and clump
has taken place.

The initial- and resulting density structure is illustrated in Fig. 5. The gas cloud
is strongly compressed, heated and significantly deformed. The magnetic field is
dragged with the cloud and the resulting Lorentz force acting on the cloud in addi-
tion to pressure forces decelerates it. The corresponding growth in magnetic energy
is recorded in Fig. 6. Fig. 5 (right panel) also shows the final patch distribution. All
essential features occurring in the problem are well resolved, that is, the magnetic
shock moving to the right opposite to the supersonic flow, the deformed cloud in-
cluding its tail structure, the fast magnetosonic wave propagating ahead of the cloud
and the stationary Alfvén discontinuity at x � 0�1 which is not seen in the density
structure. Fig. 7 compares results of the several simulations in a cut along the x-axis.
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Fig. 6. Time history of the magnetic energy stored in the x-component (left), y-component
(middle) and z-component (right). Solid line: 2003 simulation, dashed line: 1003 simulation,
dotted line: 503 simulation, plus signs: AMR simulation

Fig. 7. Cut along the x-axis showing the variation in density (left), temperature (middle) and
z-component of the magnetic field (right). Solid line: 2003 simulation, dashed line: 1003 sim-
ulation, dotted line: 503 simulation, plus signs: AMR simulation

Table 3. Shock-cloud collision – errors, convergence rates, timings

run ερ εp εv εB TIME [s]
503 0�0212 0�0221 0�2707 0�2019 194
1003 0�0126

�1.07
0�0097

�1.11
0�1314

�1.05
0�1032

�1.00
5747

A200 0�0009 0�0015 0�0172 0�0068 22561
2003 0�0048� 0�0045� 0�0630� 0�0513� 64485

�pseudo-errors calculated from the measured convergence rate

The logarithm of the density (left panel), logarithm of the temperature (middle panel)
and z-component of the magnetic field (right panel) is shown. As in Fig. 6, note the
excellent agreement between the AMR solution and 200 3 solution.

The single-grid simulations converge with a rate of� 1 measured in all primitive
variables. Using this rate and extrapolating errors one obtains pseudo-errors for the
2003 case which are larger than the pseudo-errors for AMR taking the 200 3 simula-
tion as reference solution. According to the ideas pointed out in Sect. 3.1 that may be
a strong indication that the true errors are very close to each other ie. εAMR � εcomp.
From the timings listed in Table 3 one then derives an AMR efficiency of EFF � 3.
Finally, details of the AMR overhead for this problem can be found in Table 4.
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Table 4. Shock-cloud collision – AMR overhead

% of runtime
mesh refinement: memory allocation, refinement criterion 3.0

patch clustering 2.0
mesh initialization: interpolation 6.2

synchronization: flux sync., restriction, boundary sync. 6.9
total 18.0
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1 Introduction

SAMR is a type of multiscale algorithm that achieves high resolution in localized
regions of adaptive simulations. It shows incredible potential as a means of expand-
ing the tractability of a variety of numerical experiments and has been successfully
applied to simulate many phenomena that are out of reach with fixed-grid methods.
Execution of SAMR applications on parallel and distributed systems involves dy-
namically distributing the workload among the available processors at runtime. In
this paper, we present two novel dynamic load balancing schemes for SAMR appli-
cations: one is for parallel systems and the other is for distributed systems.

With any DLB scheme, the major issues to be addressed are the identification
of overloaded versus underloaded processors, the amount of data to be redistributed
from the overloaded processors to the underloaded processors, and the overhead that
the DLB scheme imposes on the application. In investigating DLB schemes, we first
analyze the requirements imposed by the applications. In particular, we complete a
detailed analysis of ENZO application, a parallel implementation of SAMR in as-
trophysics and cosmology, and identify the unique characteristics that impose severe
challenges on DLB schemes. The results of the detailed analysis of ENZO provide
four unique adaptive characteristics relating to DLB requirements: (1) coarse granu-
larity, (2) high magnitude of imbalance, (3) different patterns of imbalance, and (4)
high frequency of adaptations. In addition, ENZO employs an implementation that
maintains some global information.

Due to the fact that SAMR applications have the above unique adaptive charac-
teristics, most of the existing DLB schemes [Cyb89, EBP00, LK87, OB97, SKK97,
SS94, Wal94, WLR93] are not efficient for them. Therefore, we propose a novel dy-
namic load balancing scheme for SAMR applications on parallel systems (denoted as
parallel DLB). It interleaves a grid-splitting technique with direct grid movements,
for which the objective is to efficiently redistribute workload among all the proces-
sors so as to reduce the parallel execution time.

The emergence of high-performance distributed systems provides an economical
platform to traditional parallel systems. By using distributed systems, researchers
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are able to execute applications that require vast computing power (e.g., beyond
that available at any single site). A distributed system is defined as a comput-
ing system consisting of at least two autonomous computers linked by computer
networks[FK99], thus most of the available DLB schemes designed for homoge-
neous parallel systems are inadequate for distributed systems. For example, some
schemes assume the multiprocessor system to be homogeneous, (e.g. all the proces-
sors have the same performance and the underlying networks are dedicated and have
the same performance). Some schemes consider the system to be heterogeneous in a
limited way (e.g. the processors may have different performance).

In order to efficiently utilize the computing resources provided by distributed
systems, an underlying DLB scheme must consider the heterogeneous and dynamic
features of distributed systems. In this paper, a dynamic load balancing scheme is
proposed for SAMR application on distributed systems (denoted as distributed DLB).
It takes into consideration: (1) heterogeneity of processors, (2) heterogeneity of net-
works, (3) shared nature of networks, and (4) adaptive characteristics of the applica-
tion running on the distributed system. Basically, distributed DLB divides load bal-
ancing process into two phases: global balancing phase and local balancing phase.
Heuristic methods are proposed to evaluate computational gain and redistribution
cost for the global balancing phase.

2 Overview of SAMR and ENZO Code

This section gives an overview of the SAMR method, developed by M. Berger et al.,
and the ENZO code, a parallel implementation of this method for astrophysical and
cosmological applications. Additional details about ENZO and the SAMR method
can be found in [BC89, Bry99, BAN01].

2.1 Layout of Grid Hierarchy

SAMR represents the grid hierarchy as a tree of grids at any instant in time. The
number of levels, the number of grids, and the locations of the grids change with each
adaptation. Initially, a uniform mesh covers the entire computational domain. During
the computation, finer grids are added in regions that require higher resolution. This
process repeats recursively with each adaptation resulting in a tree of grids like that
shown in Figure 1. The top graph in this figure shows the overall structure after
several adaptations. The remainder of the figure shows the grid hierarchy for the
overall structure with the dotted regions corresponding to those that require further
refinement. In this grid hierarchy, there are four levels of grids from level 0 to level 3.
Throughout execution of a SAMR application, the grid hierarchy changes with each
adaptation.

For simplification, SAMR imposes some restrictions on the new subgrids. A sub-
grid must be uniform, rectangular, aligned with its parent grid, and completely con-
tained within its parent. All parent cells are either completely refined or completely
unrefined. Lastly, the refinement factor must be an integer [Bry99].
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Fig. 1. SAMR Grid Hierarchy

The SAMR integration algorithm goes through the various adaptation levels ad-
vancing each level by an appropriate time step, then recursively advancing to the next
finer level at a smaller time step until it reaches the same physical time as that of the
current level.

2.2 ENZO: A Parallel Implementation of SAMR

ENZO [Bry99] is one of the successful parallel implementations of SAMR, which
is primarily intended for use in astrophysics and cosmology. It entails solving the
coupled equations of gas dynamics, collisionless dark matter dynamics, self-gravity,
and cosmic expansion in three dimensions and at high spatial resolution. The code
is written in C++ with Fortran routines for computationally intensive sections and
MPI functions for message passing among processors. ENZO was developed as a
community code and is currently in use at over six sites.

The ENZO implementation manages the grid hierarchy globally; that is, each
processor stores the grid information of all other processors. In order to save space
and reduce communication time, the notation of “real” grid and “fake” grid is used
for sharing grid information among processors. Each subgrid in the grid hierarchy
resides on one processor and this processor holds the “real” subgrid. All other pro-
cessors have replicates of this “real” subgrid, called “fake” grids. Usually, the “fake”
grid contains the information such as dimensional size of the “real” grid and the pro-
cessor where the “real” grid resides. The data associated with a “fake” grid is small
(usually a few hundred bytes), while the amount of data associated with a “real” grid
is large (ranging from several hundred kilobytes to dozens of megabytes).
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3 Parallel DLB Scheme

After taking into consideration the adaptive characteristics of the SAMR application,
we developed a novel DLB scheme which interleaves a grid-splitting option with
direct data movement(denoted as parallel DLB).

3.1 Description

In this scheme, each load balancing step consists of one or more iterations of two
phases: moving-grid phase and splitting-grid phase. The moving-grid phase redis-
tributes grids directly from overloaded processors to underloaded processors by the
guidance of the global information; and the splitting-grid phase splits a grid into
two smaller grids along the longest dimension. Figure 2 gives the pseudocode of our
scheme, and the details are given below.

while (MaxLoad > threshhold * AvgLoad  && Done == 0 ) {                     
Done = 0;

for (j=0;j<NumberOfGrids;j++)    {                                                        //moving-grid phase
for (i=0;i<NumberOfGrids;i++) {
     if (grid(i) resides on MaxProc && grid(i) > AvgLoad/threshold-MinLoad 

                                            && grid(i) < AvgLoad*threshold -MinLoad) {
     move grid(i) from MaxProc to MinProc;
     update load information of MaxProc and MinProc;
     find new MaxProc and MinProc;
     break;
}

}
if (i == NumberOfGrids)
     break;

}

if (MaxLoad > threshold * AvgLoad ) {
     if (MaxProc == LastMax && MinProc == LastMin)
          Done = 1;

//splitting-grid phase

LastMax = MaxProc; LastMin = MinProc;

LastMax=LastMin=0;

 DLB Algorithm

     find the largest grid MaxGrid on MaxProc;

}

split MaxGrid into two and one of them redistributed to MinProc;
update MaxProc, MinProc, MaxLoad, MinLoad, and AvgLoad;

} else {
     Done = 1;
}

Fig. 2. Pseudo-code of Proposed Parallel DLB Scheme

� moving-grid phase: After each adaptation, parallel DLB is triggered by checking
whether MaxLoad�AvgLoad � threshold. The MaxProc moves its grid directly
to MinProc under the condition that the redistribution of this grid will make the
workload of MinProc reach AvgLoad. Here, AvgLoad denotes the required load
for which all the processors would have an equal load. Thus, if there is a suitable
sized grid, one direct grid movement is enough to balance an underloaded pro-
cessor by utilizing the global information. This phase continues until either the
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load balancing ratio is satisfied or no grid residing on the MaxProc is suitable to
be moved.

� splitting-grid phase: If no more direct grid movements can be employed and
imbalance still exists, the splitting-grid phase will be invoked. First, the MaxProc
finds the largest grid it owns (denoted as MaxGrid). If the size of MaxGrid is
no more than �AvgLoad�MinLoad� which is the amount of load needed by
MinProc, the grid will be moved directly to MinProc from MaxProc; otherwise,
MaxProc splits this grid along the longest dimension into two smaller grids. One
of the two split grids, whose size is about �AvgLoad�MinLoad�, is redistributed
to MinProc. After such a splitting step, MinProc reaches the average load. Note
that splitting does not mean splitting into equal pieces. Instead, the splitting is
done exactly to fill the “hole” on the MinProc.

If the imbalance still exists, another attempt of interleaving moving-grid phase
and splitting-grid phase will continue. Note that both the moving-grid phase and
splitting-grid phase execute in parallel. Eventually, either the load is balanced, which
is our goal, or there are not enough grids to be redistributed among all the processors.

Parallel DLB makes sure that each grid movement makes an underloaded pro-
crssor reach, but not exceed, the average load. Further, the use of global load infor-
mation to move and split the grids eliminates the variability in time to reach the equal
balance and avoids chances of thrashing. In other words, the situation that multiple
overloaded processors send their workload to an underloaded processor and make it
overloaded will not occur by using the proposed DLB.

In order to minimize the overhead of the scheme, nonblocking communication is
explored in this scheme. In the mode of nonblocking communication, a nonblocking
post-send initiates a send operation and returns before the message is copied out of
the send buffer. A separate complete-send call is needed to complete the communi-
cation. The nonblocking receive is proceeded similarly. In this manner, the transfer
of data may proceed concurrently with computations done at both the sender and the
receiver sides.

3.2 Performance Results

The proposed scheme was implemented in the ENZO code and examined by exe-
cuting it on the SGI Origin2000 machines at NCSA. Our experiments show that by
using parallel DLB, the parallel execution time of ENZO can be reduced by up to
57% and the quality of load balancing (defined as MaxLoad

AvgLoad ) can be improved by a
factor of six, as compared to the original DLB scheme used in ENZO. More details
about the experiments can be found in [LTB02].

A parameter called threshold is used in parallel DLB (see Figure 2), which de-
termines whether a load-balancing process should be invoked after each refinement.
Intuitively, the ideal value should be 1�0, which means all the processors are evenly
and equally balanced. However, the closer this threshold is to 1�0, the more load-
balancing actions are entailed, so the more overhead may be introduced. Further,
for SAMR applications, the basic entity is a “grid” which has a minimal size re-
quirement. Thus the ideal situation in which the load is perfectly balanced may not
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be obtained. The threshold is used to adjust the quality of load balancing, whose
value influences the efficiency of the overall DLB scheme. Our sensitivity analysis
in [LTB02] indicates that setting it to 1�25 results in the best performance in terms of
execution time and quality of load balancing.

4 Distributed DLB Scheme

After taking into consideration the major issues related to distributed computing,
we propose a dynamic load balancing scheme for SMAR applications on distributed
systems (denoted as distributed DLB).

4.1 Description

In this scheme, a distributed system is divided into multiple groups. Here, a “group”
is defined as a set of processors that have the same performance and share a ded-
icated intra-connected network; in other word, a group is a homogeneous system
connected with dedicated system-area networks [CT00]. A group can be a shared-
memory parallel computer, a distributed-memory parallel computer, or a cluster of
workstations. Communications within a group are referred as local communication,
and those between different groups are remote communications.

Figure 3 illustrates the overall structure of distributed DLB. To address the het-
erogeneity of networks, a two-level approach is explored for load balancing, that
is, the load balancing process is divided into two phases: global balancing phase
and local balancing phase. Each phase consists of three steps: imbalance detection,
evaluation process, and redistribution process. The fundamental objective is to min-
imize remote communication as well as balance the workload among processors.
During the global balancing phase, the proposed scheme interacts with the whole
system which includes all the processors and the networks connected them and the
entire computational domain. However, during the local balancing phase, each pro-
cess only focuses on a portion of the computational domain (as shown by the dotted
arrow lines) and interacts with a single machine.

Distributed DLB address the heterogeneity of processors by generating a relative
performance weight for each processor. When distributing workload among proces-
sors, the load is balanced proportional to these weights. One of the key issues for
global balancing phase is to decide when such an action should be performed and
whether it is advantageous to do so. Heuristic methods have been proposed to evalu-
ate the computational gain and the redistribution cost for global redistributions. The
scheme addresses the dynamic features of networks by adaptively choosing an appro-
priate action based on the current observation of the traffic on the networks[LTB01].

4.2 Performance Results

The proposed distributed DLB was implemented in the ENZO code and tested on
three different distributed environments including a LAN-connect system, a WAN-
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Fig. 3. Overall Structure of distributed DLB

connected system across two cities, and a WAN-connected system across two coun-
tries. Our experiments show that by using distributed DLB, the total execution time
can be reduced by 9%-56% and the average improvement is more than 26%, as com-
pared with using parallel DLB which does not consider the heterogeneous and dy-
namic features of distributed systems. Further, the quality of load balancing can be
either maintained or improved as well, especially when heterogeneous processors are
used.

5 Summary and Future Work

In this paper, we presented two novel dynamic load balancing schemes for SAMR
applications: one is for parallel systems denoted as parallel DLB and the other is for
distributed systems denoted as distributed DLB. Parallel DLB scheme divides the
load balancing process into two steps: moving-grid phase and splitting-grid phase.
Distributed DLB scheme takes into consideration: (1) heterogeneity of processors,
(2) heterogeneity of networks, (3) shared nature of networks, and (4) adaptive char-
acteristics of the application running on the distributed system. Experiments show
that both DLB schemes can significantly improve the performance of SAMR appli-
cations on parallel and distributed systems, in particular, the ENZO code.

Currently, we are working on exploring large-scale cosmology application on
both the nation-wide TeraGrid[tg] and the Illinois-based DOT (Distributed Optical
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Testbed)[TFM�04]. Further, we also work on generalizing the proposed scheme,
with the goal of developing a general and extensible dynamic load balancing tool
to be used with a variety of large-scale adaptive applications on distributed environ-
ments.
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The Impact of AMR in Numerical Astrophysics and
Cosmology

Michael L. Norman

Laboratory for Computational Astrophysics at the Center for Astrophysics and Space
Sciences, University of California at San Diego, La Jolla, CA 92093, USA

Abstract. I survey the use and impact of adaptive mesh refinement (AMR) simula-
tions in numerical astrophysics and cosmology. Two basic techniques are in use to
extend the dynamic range of Eulerian grid simulations in multi-dimensions: cell re-
finement, and patch refinement, otherwise known as block-structured adaptive mesh
refinement (SAMR). In this survey, no attempt is made to assess the relative merits of
these two approaches. Rather, the discussion focuses on how AMR is being used and
how AMR is making a scientific impact in a diverse set of fields from space physics
to the cosmology of the early universe. The increased adoption of AMR techniques
in the past decade is driven in part by the public availability of AMR codes and
frameworks. I provide a partial list of resources for those interested in learning more
about AMR simulations.

1 Introduction

Since its introduction roughly 20 years ago [1], adaptive mesh refinement (AMR) has
emerged as an important class of numerical techniques for improving the accuracy
and dynamic range of grid-based calculations for fluid dynamics problems. Such
problems, especially compressible flow, develop steep gradients (shock waves and
contact discontinuities) which, in the absence of mesh refinement, become sources of
error for the global solution (e.g., [2]). Through appropriate local mesh refinement,
AMR can be thought of as a numerical technique for optimizing the quality of a
numerical solution for a given computational cost (e.g., [3]).

The last ten years have seen the application of AMR methods to problems in
space physics [4, 5, 6], astrophysics [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], and
cosmology [18, 19, 20, 21, 22, 23, 24, 25, 26]. Here, a variety of physical processes
may operate singly or together in astrophysical fluids to expand the range of impor-
tant length- and time-scales. Such processes include gravity and gravitational insta-
bility, reaction kinetics, magnetic reconnection, radiation transfer, ionization fronts,
etc. AMR has also been applied to the solution of gravitational N-body problems
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[27, 20], and to hybrid particle-fluid simulations in cosmology [18, 28]. In such ap-
plications, the physics is intrinsically multi-scale, and AMR can be thought of as a
numerical technique for extending the dynamic range of resolved physics, regardless
of the computational cost. It is these sorts of applications which are reviewed here,
and where AMR can make a scientific and not just an economic impact.

AMR is also having a positive impact on the methodology of computational
physics itself. I am referring to the validation of computational codes through reso-
lution studies. With AMR, it is now practical on today’s supercomputers to perform
resolution studies over a sufficient range of scales to obtain convergent results on
properties of interest which may be compared with laboratory experiments ([17]).

Table 1 shows the impressive diversity of topics AMR has been applied to. Partic-
ularly interesting is the range of physical processes AMR has been adapted to model.
This is listed in the second column of Table 1. As of today, AMR has been success-
fully applied to ideal gas dynamics (Newtonian and special relativistic), reactive gas
dynamics, MHD (ideal and resistive), self-gravitating gas dynamics and MHD, N-
body dynamics, and hybrid fluid/N-body systems. As we heard at this conference,
methods are under development for radiative transfer (Howell), radiation hydrody-
namics (Weaver), and solid mechanics (Falle). It is clear AMR is a method of wide
applicability, and one that is growing in its impact. This growth is fueled in part by
the public availability of AMR codes and frameworks (see Section 3).

Table 1. Classes of AMR applications.

Topic Physics Select References

Code validation HD, reactive HD [17]
Solar and space physics MHD [5]
Supernovae and nucleosynthesis reactive HD [29, 30, 31]
Interstellar medium HD, MHD [9, 15, 32, 33]
Star formation grav HD, grav RHD [13, 11]
Astrophysical jets HD, rel HD [8, 34, 35]
N-body dynamics particles, grav [20, 21]
Hydrodynamic cosmology hybrid [18, 26]

In this paper I survey the use and impact of adaptive mesh refinement simu-
lations in numerical astrophysics and cosmology. Two basic techniques are in use
to extend the dynamic range of Eulerian grid simulations in multi-dimensions: cell
refinement (CR), and patch refinement (PR), otherwise known as block-structured
adaptive mesh refinement (SAMR). Details of these two approaches are given else-
where in this volume. In this review, no attempt is made to assess the relative merits
of these two approaches. Rather, the discussion focuses on how AMR is being used
and how AMR is making a scientific impact in a diverse set of fields from space
physics to the cosmology of the early universe. At the end, I provide a partial list
of software resources for those interested in learning more about AMR simulations.
[NB. The following is meant to be representative rather than complete. I apologize
to authors in advance if their work is not mentioned.]
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2 Applications of AMR

2.1 Solar and Space Physics

Coronal mass ejections (CMEs) are transient solar events in which mass and mag-
netic field are ejected from the solar surface. These dynamic events originate in
closed magnetic field regions of the corona. They produce large-scale reconfigura-
tions of the coronal magnetic field and generate solar wind disturbances which man-
ifest as geomagnetic storms here on Earth. Groth et al. [5, 6] have applied AMR to
3D simulations of solar coronal outflows and ejections. The central question which
motivates their research is what is the mechanism and timescale for coronal mass
ejections (CMEs)? The simulations solve the equations of ideal MHD in 3D Carte-
sian geometry, supplemented with the Sun’s gravitational field and a coronal heating
term. The equations are solved using the upwind, cell-centered, finite volume scheme
of Powell [36, 37], which is a Godunov-type scheme for ideal MHD. Numerical
fluxes are computed using the approximate Riemann solvers of both Roe [38] and
Harten et al. [39], adapted to the MHD eigensystem. The MHD solver is married to
the parallel AMR framework of de Zeeuw et al. [4]. In this approach, the base grid
is decomposed into blocks of constant size, each of which is assigned to a separate
processor. If any cell within a block are flagged for refinement, the entire block is
refined by a factor of two in each dimension, resulting in eight sub-blocks of the size
of the parent block.

The CME problem is initialized with a model of the quiescent solar wind which
involves a high speed wind and open magnetic field lines at high solar latitudes, and a
lower wind speed and closed magnetic field lines in the equatorial region. The CME
event is triggered with the introduction into the computational domain of a density
pulse in the closed field region. The mass loading inflates the closed field region
until it bursts open. Uisng AMR, they are able to follow the CME outburst to 1

2 AU.
According to the authors, the benefits of AMR in this demonstration calculation are
cost/memory savings, and the ability to refine a region of interest (the magnetic X-
point) which moves through the computational volume. Although they were unable
to answer the ultimate question, the authors argue that AMR combined with more
realistic solar magnetic field configurations and initiation mechanisms will lead to
improved understanding of CMEs.

2.2 Supernovae and Nucleosynthesis

An important and growing class of applications for AMR simulations is calculating
the mechanisms and chemical yields of supernovae models in three dimensions. In
recent years, the importance of convective/turbulent motions in both Type Ia (ther-
monuclear) and Type II (core collapse) supernovae has been recognized [40, 41].
Fully 3D simulations are thus required, and AMR serves two fundamental roles. The
first is reducing memory and cpu requirements for expensive 3D simulations, and
the other is resolving and tracking dynamic interfaces where energy generation and
nucleosynthesis takes place.
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Type Ia supernovae are believed to result from the explosive burning of carbon
and oxygen in a white dwarf (WD) accreting matter from a binary companion. As the
WD’s mass approaches the Chandrasekhar limit, a small mass increase causes a sub-
stantial contraction of the star. The compression raises the temperature and thereby
thermonuclear reaction rates, liberating energy which raises the temperature yet fur-
ther. Because the WD is degenerate, a thermonuclear runaway ensues until thermal
pressure becomes comparable to the degenerate electron pressure. At this point, the
WD begins to expand, but not so fast that the thermonuclear reactions are quenched.
According to models [42, 31], a nuclear burning front propagates outward from the
center of the expanding WD liberating of order 10 51 ergs of energy—sufficient to
unbind the star.

Gamezo et al. [31] have developed a 3D AMR code to simulate the physics de-
scribed above, and have addressed several key questions: (1) How does a degenerate
C/O white dwarf explode and with what energy? (2) What is the nature and struc-
ture of the burning front? And (3) what fraction of the WD is burned? They solve
Euler’s equations of gas dynamics for four reactive species coupled to a nuclear reac-
tion network. The energy equation includes nuclear energy generation and neutrino
losses, as well as electron thermal conduction. A key additional incredient to the
physical model is a flame capturing technique which adds one additional PDE to be
solved for a reaction progress variable. The system is evolved for one octant of the
WD star on a 3D Cartesian grid using a cell-refinement AMR technique called FTT
(Fully Threaded Tree) developed by Khokhlov [14]. The benefit of cell-refinement
over SAMR in this application is that the region of interest is a surface—the flame
front—which is more efficiently captured with a cell-refinement technique [14].

Gamezo et al. find that the nuclear flame front is a deflagration front, meaning
it advances subsonically into the unburned gas. The flame front is Rayleigh-Taylor
(hereafter, RT) unstable and becomes highly convoluted, resembling the head of a
cauliflower. AMR is used to track this highly distorted surface as it advances into the
unburned star. They find that a healthy explosion results, but that a substantial frac-
tion of the WD remains unburned at disassembly. This is contrary to observations,
which are found to be more consistent with detonating WD models (e.g., [43, 44]).
Gamezo et al. speculate that the turbulent flame may trigger a detonation at some
point, which would complete the burning and remove this discrepancy. The physics
of deflagration to detonation transition (DDT) depends on resolving the formation of
“hot spots” behind the turbulent flame front on scales comparable to the flame front
thickness [45]. This is tiny compared to the radius of the WD, and thus not captured
by global simulations despite the use of AMR. At present DDT must be studied using
simulations in small volumes (“subscale simulations”.)

An example of this is the work of Timmes et al. [30], who used the FLASH code
[46] to study the cellular structure of carbon detonation waves in degenerate WDs.
Their goal was to assess the effect of numerical resolution on the size and shape of the
detonation cells and the shock wave interactions that create them. FLASH is a block-
structured AMR code combining the piecewise parabolic method for gas dynamics,
nuclear reactions, and the PARAMESH AMR library [46]. The simulation was done
in a 2D column of gas with conditions representative of the WD. The detonation was
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initiated by sending a shock wave into the column with strength consistent with a
steady 1D detonation wave (“CJ wave”). AMR was used to refine by up to a factor
of 8 in cell size the reaction zone behind the shock. AMR thus provided the ability
to have high resolution just in the detonation wave and track it as it propagated many
times its width.

Timmes et al. were able to converge on the size and shape of the detonation cells
with rather modest resolution (about 20 cells per burning length scale), but found
that the size and distribution of pockets of unburned fuel was very sensitive to reso-
lution. As long as this scale is small compared to the WD radius, observations would
average over these compositional differences. However, the burning length scale and
hence detonation cell size becomes comparable to the WD radius as density drops
toward the edge of the star [47]. If the spectra of Type Ia supernovae reflect large
scale abundance variations due to incomplete combustion, the results of Timmes et
al would help define the minimum resolution requires to converge on the inhomo-
geneities.

In a related work, Zingale et al. [48] have applied FLASH to the dynamics of
helium detonation on the surface of a neutron star in 2D. In this application, as in
Gamezo et al., AMR provides the ability to resolve and track the nuclear burning
front in an expanding envelope of gas.

AMR is also making an impact in the understanding of the iron core collapse
supernova explosion mechanism and subsequent explosive nucleosynthesis. Super-
novae classified by observers as Type Ib and II are believed to be powered by the
copious flux of neutrinos emitted as the iron core of a massive star implodes to form
a neutron star or black hole [49]. Earlier 2D simulations showed that neutrino heat-
ing sets up convective motions in material accreting onto the proto-neutron star/black
hole, breaking spherical symmetry [41, 50]. The consequence of this is that the shell
of 56Ni which forms just outside this convective region and is later ejected by the
supernovae is highly perturbed [29].

AMR has not yet been applied to the very difficult problem of neutrino trans-
port/heating in a 3D convective flow, although a large collaboration is attempting
this [51]. Rather, Kifonidis et al. [29, 52] have used AMR to simulate the evolution
of the lumpy nickel shell as it is ejected by the explosion. AMR is used to track the
expansion of the shell over a factor of 100 in radius and its fragmentation by the RT
instability while maintaining high resolution in the shell. The authors map the results
of a 2D axisymmetric core collapse simulation 30 ms after bounce into AMRA, a 2D
AMR hydro code developed by Plewa & Müller [53]. The equations of multispecies
reactive hydrodynamics are solved on an adaptive spherical polar grid using the PPM
algorithm [54] and the Consistent Multifluid Advection (CMA) scheme of Plewa &
Müller. The latter minimizes numerical diffusion of nuclear species while preserving
local mass conservation. Kifonidis et al. find that the 56Ni and other newly formed
iron group elements are distributed throughout the inner half of the helium core by
RT instabilities operating at the (Ni+Si)/O and (C+O)/He shell interfaces seeded by
perturbations from convective overturn during the early stages of the explosion. Us-
ing AMR, they are able to carry the calculation out to 20,000 sec post-bounce, follow
the details of RT growth and mixing. The result is that fast-moving clumps of 56Ni
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are formed with velocities up to 4000 km/s. This offers a natural explanation for the
mixing required in light-curve and spectroscopic modeling of Type Ib explosions,
including SN1987a.

2.3 Interstellar Medium

The essential complexity of the interstellar medium (ISM) stems from the fact that
it is not in equilibrium, dynamically or thermodynamically. A variety of heating and
cooling processes operate to split the ISM into multiple thermal phases, each with
their own characteristic densities, temperatures, and evolutionary timescales. Self-
gravity concentrates the cold, dense phase into molecular clouds, which birth new
stars. The most massive stars create large amplitude disturbances in the local heating
rate through supernova shocks and ionization fronts, changing the dynamical and
thermodynamical state of the gas. To simulate the ISM is rather akin to simulating the
Earth’s weather, which is affected by both local and global influences, and exhibits
complexity in space and time on a vast range of scales. With AMR simulations,
we may eventually be able to build an integrated model of the ISM which captures
both its structural and statistical properties. At present, researchers are looking at
individual processes in greater detail than ever before that ultimately may become
part of an integrated model.

The propagation of interstellar shock waves in the ISM has received consider-
able attention because of their central role as a source of heat and momentum to the
interstellar gas. The phenomenology is rich because the ISM is inhomogeneous, and
the shocks themselves are typically radiative. A set-piece calculation is the interac-
tion of a strong planar shock wave striking an isolated interstellar cloud, idealized as
homogeneous and spherical. The interaction results in the compression and ultimate
shredding of the cloud by a combination of Richtmyer-Meshkov, Rayleigh-Taylor,
and Kelvin-Helmholtz instabilities. Since these instabilities all grow on the shock-
accelerated cloud-intercloud interface, it is important that the interface be tracked
with high resolution.

The first AMR simulations were performed by Klein, Mc Kee & Colella [9]. They
wanted to calculate how long a shocked cloud would remain intact before mixing into
the ISM. They solved the gas dynamical problem in 2D using block-structured AMR
and a second-order Godunov hydrodynamics scheme as described in [3]. They found
that for strong incident shocks, the evolution is determined by a single parameter:
the ratio of cloud to intercloud densities. Using AMR, they performed a resolution
study to determine the minimum resolution needed to capture the most destructive
modes of the instabilities. They found that a minimum of 100 cells per cloud radius
are needed with their second order-accurate scheme, and that the cloud is totally
fragmented.

A closely related problem is the long-term evolution of the dense, metal-rich
clumps ejected by supernova explosions (cf. [52]). Because dense clumps are decel-
erated less than the diffuse interclump ejecta, they catch up to the supernova rem-
nant (SNR) shell and puncture it from behind. The clump first encounters the reverse
shock, traverses the high pressure intershock region, and then exits the forward shock
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if it survives to encounter the onrushing ISM. Cid-Fernandes et al. [32] used the 2D
AMR code AMRA [53] to simulate the evolution of a single clump with proper-
ties appropriate to a Ni clump from a core collapse SN. They initialized the freely
expanding envelope of a Type II SN in spherical polar coordinates, assuming axisym-
metry. They placed a clylindrical plug of denser material just upstream of the reverse
shock, and followed its subsequent evolution by solving the equations of ideal gas
dynamics including equilibrium radiative cooling. Three levels of mesh refinement
tracked the blob, providing local resolution equivalent to a uniform grid of 1536 x
160 grid cells. The benefit of AMR over a uniform grid was a cost savings of 350%.
They found that the clump is strongly compressed in the intershock region by virtue
of the high pressure and strong radiative cooling in the clump. While lacking the res-
olution of Klein et al. [9], they concluded the clump would most likely be disrupted
into secondary fragments before reaching the dense outer shell. They suggested that
x-ray flares would result if the largest of these secondary clumps survived to strike
the dense shell.

Two other AMR-enabled simulations of interstellar shock waves illustrate the
richness of the phenomena. In the first, Poludnenko, Frank & Blackman [55] sim-
ulated the propagation of a planar, adiabatic shock through a clumpy medium. The
motivation for the simulations was to understand mass-loading and mixing of stellar
and galactic outflows by inhomogeneities in the ambient medium. A parameter sur-
vey was carried out to assess the effects of clump mass and spatial distribution on
the flow. 2D AMR simulations where performed in planar geometry using the AM-
RCLAW package of Berger & LeVeque [56], which combines SAMR with a second
order-accurate Godunov scheme for ideal gas dynamics. The contribution of AMR
was to achieve high resolution in each of many clumps scattered randomly through-
out the volume as they are shocked and sheared. Resolution equivalent to a 800 x
1600 uniform grid was achieved in the clumps for a fraction of the cpu and mem-
ory cost, which is particularly important when conducting a large parameter survey.
They found that a critical longitudinal and transverse separation between clumps ex-
ists such that for d � dcrit and L � Lcrit , the post-shock flow is strongly interacting,
leading to enhanced turbulence and mixing.

In the second, a new type of instability was discovered in radiative shocks by
Walder and Folini [57]. Radiative shock waves are found in many types of classical
nebulae, like supernova remnants, planetary nebulae, Wolf-Rayet ring nebulae, etc.
Typically, a shell of dense material is formed by the interaction of a fast outflow with
the circumstellar medium (CSM) or interstellar medium (ISM). This shell will be
bounded by two shocks: an outer, forward shock compressing the CSM/ISM, and an
inner, reverse shock compressing the ejecta. Typically, the outer shock is radiative,
while the inner shock is not because of the relative densities involved. The shocked
media are separated by a contact discontinuity which is normally RT stable at late
times because the shell decelerates.

However, it is well known that strongly radiative shocks suffer from an oversta-
bility such that the shock oscillates about its steady-state position in the rest frame
of the contact discontinuity [58]. In multidimensions, Walder and Folini showed that
different sections of the radiative shock oscillate independently, creating lateral pres-



420 M. L. Norman

sure disturbances within the high pressure shell. These chaotic perturbations some-
times accelerate the CD and thereby excite the RT instability. This leads to fingers
and clumps of dense, shocked CSM/ISM efficiently mixing with the shocked ejecta.
It is suggested by the authors that the mixing will boost the X-ray emission, con-
tribute to rapid variability in the emission spectra, and may contribute to the the
clumpy/filamentary appearance of the nebulae mentioned. The numerical simula-
tions were carried out in 2D using AMRCART, which combines block SAMR with
a second order accurate Godunov solver for gas dynamics. Optically thin radiative
cooling was included assuming equilibrium ionization. The simulation was carried
out in the rest frame of the CD, and hence the role of AMR was not shock tracking,
but rather maintaining high resolution near the unstable interface.

2.4 Star Formation

The gravitational collapse of a gas cloud to form a star is a notoriously difficult prob-
lem because of the large range of length- and time-scales that need to be resolved.
This problem has been solved in one dimension assuming spherical symmetry using
moving adaptive meshes and implicit time integration [59, 60]. Important structures
that need to be resolved span some 9 decades in radius from inside the hydrostatic
protostellar core to the edge of the accreting cloud. Important timescales vary by 6
decades from the sound crossing time in the hydrostatic core to the accretion time.
AMR holds forth the promise that simulations covering this range of scales will
become possible in 3D, permitting a self-consistent investigation of disk accretion
and the dynamical role of magnetic fields. While this is still out of reach, impor-
tant strides have been made on the early stages of non-spherical cloud collapse by
Richard Klein and colleagues [12, 13, 10, 11] . They are investigating the impor-
tant problem of binary star formation using adaptive mesh techniques. They calcu-
late the gravitational fragmentation of slowly rotating molecular cloud cores in 3D,
assuming the gas is isothermal and non-magnetic. The equations of isothermal, self-
gravitating gas dynamics is solved using a second order-accurate Godunov scheme
on a block SAMR grid. The Poisson equation for the gravitational potential is solved
using multigrid relaxation as described in [13].

An important early finding was that the cloud would fragment artificially due to
numerical perturbations unless the local Jeans length is resolved by at least 4 cells
at all times [12]. Since the Jeans length scales as ρ�1�2, if collapse raises the central
density by a factor x, then the grid spacing must be decreased by a factor x�1�2 in
order to avoid artificial fragmentation. The simulations of Truelove et al. [12, 13]
used AMR was to follow compressions of x � 108 at which time the isothermal
assumption breaks down. Local mesh refinement of up to a factor of 10 4 in resolution
was accomplished by recursively adding grids refined by a factor of 4 wherever the
Jeans condition J � ∆x�λJ � 1�4 was about to be violated. Simulations with fixed
dynamic range X will inevitably violate the Jeans condition when x� X . Truelove et
al. showed that an unperturbed cloud will fragment artificially shortly after the Jeans
condition is violated [13]. They went on to show that a slowly rotating cloud with an
m=2 nonaxisymmetric perturbation does not fragment into a binary system as had
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previously been reported on the basis of fixed resolution simulations by Burkert &
Bodenheimer [61], but rather forms a singular isothermal filament in accord with
analytic predictions [62].

At sufficiently high number densities, however, the isothermal assumption breaks
down because the cloud becomes optically thick to its own cooling radiation [63].
Boss et al. [64] simulated the non-isothermal evolution of the singular filament using
both fixed as well as AMR grid codes. Opacity effects were modeled by adopting a
barotropic equation of state with a variable gamma-law. The codes agreed providing
the Jeans condition was obeyed in the fixed grid run. They found that the filament
fragments into a binary system whose properties depend sensitively on the equation
of state. Since the EOS only mocks up radiation trapping in an approximate way,
the implication is that radiative transfer needs to be modeled self-consistently in
future AMR simulations of cloud fragmentation. A flux-limited radiation diffusion
algorithm for AMR grids has recently been introduced by Howell & Greenough [65]
which is beginning to be applied to star formation [11].

2.5 Astrophysical Jets

Astrophysical jets are highly collimated, high speed bipolar outflows powered by
disk accretion onto compact, gravitating objects. They manifest in a surprising diver-
sity of systems and length scales, ranging from the pc-long optical jets from young
stars [66] to the Mpc-long radio jets from active galactic nuclei and quasars [67].
Regardless of their origin, the jets themselves are interesting dynamically and mor-
phologically because they sample both the deep potential wells where they were
launched, and the interstellar/intergalactic medium they propagate through. Because
of their high degree of collimation, the jets are believed to be hypersonic, and in
the case of extragalactic jets, relativistic. A near universal feature of astrophysical
jets, whether from stars or galaxies, is the occurrence of emission knots. Emission
knots are patches of high emissivity arrayed along the length of the jet. These are
generally interpreted as internal shock waves in the jet excited by internal or external
perturbations [68].

Beginning in the early 1980s, there have been extensive numerical studies of
the structure and dynamics of astrophysical jets with the framework of ideal gas
dynamics and MHD. From the standpoint of simulations, the salient difference be-
tween protostellar jets and extragalactic jets is that the former are dense enough to be
strongly radiative, whereas the latter are effectively adiabatic. One of the first appli-
cations of AMR in astrophysics was by Falle & Raga [7, 8], who studied the detailed
structure of an emission knot in a radiative protostellar jet. 1D models by Raga et
al. [69] showed that variations in the outflow velocity would create forward-reverse
double shock pairs which propagate down the jet axis with the mean flow velocity,
in good accord with observations. However, these models could not capture the bow
shock appearance of the knots caused by the lateral expansion of the shocked gas
into the ambient medium. Falle & Raga [8] simulated the multidimensional structure
of a single knot in the rest frame of the knot. The contribution of AMR was to re-
solve the strong cooling region and ionization structure behind the radiative shocks,
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which can be a small fraction of the jet radius. It is impractical to do this with uni-
form grids. The calculations were performed in 2D assuming axisymmetry using a
block structured AMR grid. Six levels of grid refinement were used for an effective
grid resolution of 1280 � 640 cells. The physics included gas dynamics, solved us-
ing the second-order Godunov scheme of Falle [70], non-equilibrium ionization, and
radiative cooling. The simulations showed that the knots could survive as coherent
entities for many jet radii, and were morphologically similar to those observed. The
ability to resolve the ionization structure with AMR allowed them to make synthetic
emission maps in the commonly detected [S II] doublet and thereby diagnose the
physical conditions in observed jets.

Radio observations of radio-loud active galactic nuclei (AGN) mapped with
VLBI techniques reveal one-sided jets with a stationary core and knots of emission
that sometimes move superluminally [67]. This is conventially interpreted as the re-
sult of relativistic Doppler boosting and time dilation when observing a relativistic
jet at small inclination angles [71]. With the advent of good algorithms for relativis-
tic hydrodynamics [72, 73, 35], it becomes possible to model these sources. The
structure, stability, and radio morphology of relativistic jets in compact extragalactic
radio sources has been studied using AMR simulations by Hughes and collabora-
tors [34, 74, 75]. Given the complexities of underlying hydro and the relativistic
radiative transfer, they simply wanted to know whether such models resemble the
data. They carried out 2D axisymmetric simulations using the code of Duncan and
Hughes [72], which combines a second-order Godunov solver for the relativistic gas
dynamics with the block-structured AMR method of Quirk [76]. The contribution
of AMR to this work is to crisply capture the internal shocks without resort to large
uniform grids and supercomputers. Assuming a simple relation between synchrotron
emissivity and gas pressure, Mioduszuski et al. computed synthetic radio maps for a
variety of inclination angles, Lorentz factors, and Mach numbers. They found that the
VLBI maps of superluminal sources are reasonably well fit with strongly perturbed
”pulsed” relativistic jets seen nearly end-on. They found that temporal changes of
the models’ radio appearance is not easily related to the underlying hydrodynamic
quantities due to differential Doppler boosting.

2.6 Galaxies and Cosmology

Although AMR was invented for accurately integrating the hyperbolic partial dif-
ferential equations of fluid dynamics, the adaptive mesh used in conjunction with
the particle-mesh (PM) and P3M N-body techniques [77] is extremely powerful for
simulations of collisionless, self-gravitating systems of particles as arise in galac-
tic dynamics and cosmological structure formation. AMR N-body codes have been
developed by Couchman [27], Jessop et al. [78], Kravtsov et al. [20], Bryan and Nor-
man [18, 19] and Knebe et al. [79]. These codes differ in AMR data structures and
how AMR is used to optimize the N-body calculation.

Couchman adaptively introduces one or two levels of block mesh refinement
around highly clustered regions of particles in order to reduce the number of particle-
particle pairs in a P3M calculation of dark matter clustering, resorting instead to the
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faster PM calculation on the subgrids. The Poisson equation is solved on each level
of the grid hierarchy using Fourier techniques with special Greens functions. The
algorithm is referred to as AP3M (Adaptive P3M).

Jessop et al. combine the classic PM scheme with block structured local mesh
refinement to achieve high force resolution in condensed systems. The Poisson equa-
tion is solved at all levels of the grid hierarchy using Neumann boundary conditions
interpolated from parent grids and an ADI relaxation scheme. The algorithm is re-
ferred to as PM2 (Particle Multiple Mesh).

Kravtsov et al. combine the octree cell refinement approach of Khokhlov [14]
with PM to create the ART (Adaptive Refinement Tree) code. The Poisson equation
is solved using successive multilevel relaxation.

Bryan & Norman adapted and generalized Couchman’s AP 3M to an arbitrarily
deep AMR grid hierarchy and married it to a PPM-derived hydro solver (see next
section.) Two Poisson solvers are implemented: one based on Fourier techniques, and
another using multigrid relaxation techniques (see O’Shea et al., these proceedings).

Knebe et al.’s code is similar to the ART code in that cell refinement and multigrid
relaxation is used, but the underlying data structures and timestepping schemes are
somewhat different.

Klypin et al. [21] have applied the ART code to the gravitational clustering of
cold dark matter in cosmological simulations of structure formation. The key diffi-
culty of all such calculations is to resolve the scales on which galaxies form (1-10
kpc) in cosmological volumes large enough to sample the longest perturbation waves
or to get good statistics (� 100 Mpc). The required spatial dynamic range is there-
fore 104

� 105 in 3D for multiple centers of interest (galaxies). AMR is one option
for achieving such resolution; meshless tree codes are another (cf. [80]). Klypin et al.
investigated the long-standing overmerging problem, in which N-body simulations
of the formation of clusters of galaxies yield too few galaxy-sized dark matter (DM)
halos compared with observations [81, 80]. Rather, early simulations found that the
galaxy DM halos merged with one another as they orbited within the cluster poten-
tial. Originally, it was thought that overmerging was a consequence of the omission
of dissipative baryons from the models (e.g., [82]).

Klypin et al. showed that the overmerging problem is primarily a numerical res-
olution problem. Namely, that with inadequate force resolution, galaxy DM halos
are numerically smeared out. As a consequence, the portion of the DM halo that is
beyond its tidal radius gets stripped by cluster tidal forces as well as through close
encouters with other galaxy halos. The DM halos essentially evaporate in a few or-
bits and their cores sink to the center of the cluster by dyamical friction. Klypin
et al. combined analytic estimates and ART simulations to determine the resolution
requirements to avoid overmerging. The simulations used 128 3 DM particles and a
base grid of 2563 cells in a volume 15 h�1 Mpc on a side. Up to 7 levels of 2x cell
refinement were permitted, for a maximum dynamic range of 32,000 and spatial res-
olution of 0.5 h�1 kpc. They found that a force resolution of 1-2 h�1 kpc and a mass
resolution of � 2� 108h�1M� is sufficient to sample the population of galaxy DM
halos in a rich cluster of galaxies.



424 M. L. Norman

2.7 Hydrodynamic Cosmology

The marriage of a gravitational N-body code for the cold dark matter in the universe
with a hydrodynamics code to model the baryonic component is referred to as a
cosmological hydrodynamics code. A natural marriage is a PM N-body code with
an Eulerian gas dynamics code, and a number of such codes have been developed
[83, 84, 85, 86, 87, 88]. The spatial resolution of these codes is limited to the grid
spacing, which limits the spatial dynamic range to 1000 or less on current high-
end machines. This makes them useful for simulations of the diffuse intergalactic
medium (e.g., [89]), but is far short of the 10 4�5 dynamic range needed for galaxy
large scale structure studies, as discussed above. AMR overcomes this limitation.

AMR hydrodynamic cosmology codes have been developed by Byran & Norman
[18, 19], Kravtsov [90], and Teyssier [91]. The Bryan & Norman code Enzo com-
bines a block-SAMR code for ideal gas dynamics using a version of the PPM al-
gorithm adapted to cosmological flows [87], with a PM collisionless matter solver
as described above (see also paper by O’Shea et al., these proceedings.) The code
has been supplemented with the multispecies primordial gas chemistry model of
Anninos et al. [92], photo-ionization heating by an evolving metagalactic UV back-
ground, and a parameterized model for star formation and feedback. The Kravtsov
code builds upon the ART N-body code described above, and adds the second-order
Godunov solver for ideal gas dynamics described in [14]. The RAMSES code [91]
developed by Teyssier is similar to the Kravtsov code with minor differences in im-
plementation.

A problem all three groups have attacked is the formation of an X-ray cluster of
galaxies, treating the baryons as non-radiative. This is a good approximation since
the 108 K gas characteristic of many X-ray clusters has a cooling time long compared
to the Hubble time. A particular set of initial conditions known as the Santa Barbara
cluster has served as a community test problem, and is described in Frenk et al. [93].
The chief difficulty is resolving the X-ray core radius (� 100 kpc) in the forming
cluster within a simulation volume 64 Mpc on a side. Most of the X-ray luminosity is
contained within this region. If one wants to resolve the core radius with 10 cells, say,
then a dynamic range of 6,400 is required. Bryan & Norman [18] achieved a dynamic
range of 8,192 using a base grid of 128 3 cells and 6 levels of 2x refinement. These
results were compiled with those of 11 other codes and presented in [93]. It was
found that to compute the X-ray luminosity to within a factor of 2 accuracy, at least
this resolution is required. Kravtsov, Klypin & Hoffman [94] simulated the Santa
Barbara cluster with the ART code with the same resolution as Bryan & Norman,
and found excellent agreement with their results. These simulations, as well as those
of Teyssier [91], have shown that the distribution of thermal pressure in the cluster
is a much more robust quantity. The significance of this is that Sunyaev-Zeldovich
(SZ) effect in clusters of galaxies, which is proportional to the line-of-sight integral
of the intracluster gas pressure, is robustly predicted. This makes AMR simulations
a powerful tool for guiding upcoming observational surveys of high redshift clusters
using the SZ effect (e.g., [95]).
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A second fruitful application of AMR cosmological hydrodynamics concerns
the formation of the first bound objects and stars in the universe. Within the CDM
model of structure formation, dark matter begins clustering on small mass scales af-
ter the epoch of matter-radiation equality—about 30,000 years after the Big Bang.
The characteristic mass scale for DM halos increases with time such that by redshifts
of z=20-30, it becomes comparable to the Jeans mass in the expanding, adiabatically
cooling, primordial gas. Abel, Bryan & Norman [22] have used AMR to simulate
how baryons collect into the potential well of such a low mass DM halo and the
ensuing cooling and contraction of the gas to form a primordial molecular cloud in
the halo’s center. The simulation used a 643 base grid and 12 levels of 2x refinement
for a dynamic range of 2�6�105. In addition to dark matter, gravity and gas dynam-
ics, the calculation solved a 9-species chemical reaction network to model the gas
phase reactions which produce molecular hydrogen—the primary coolant in primor-
dial gas. At this resolution, a primordial molecular cloud of size � 5 pc was well
resolved in a simulation volume 128 kpc (comoving) on a side at z=19. At the end of
the calculation, a single, gravitationally unstable cloud core of mass� 100M� began
collapsing. To follow the evolution of the collapsing core to higher densities, Abel,
Bryan & Norman [23] used an additional 15 levels, for a dynamic range of 10 10.
The mesh refinement was driven by the Jeans condition and an analogous condition
based on the local cooling time. At this resolution, they were able to refute the pre-
diction by Silk [96] that a chemo-thermal instability would fragment the collapsing
core into low mass stars. At the end of the calculation, only a single, collapsing, fully
molecular cloud core was found with a size comparable to the Solar System. With
mean density of 1015 cm�3, this core would trap its cooling radiation and become
hydrostatic. Based on the accretion rate at the end of the simulation, it is predicted
that the cloud envelope of would accrete in 10 4 years, forming a Population III star
with a mass in the range 30� 300M�. A calculation with 34 levels of refinement
(dynamic range 1012) by Bryan, Abel & Norman [97] confirms this result.

Table 2. Downloadable AMR Software.

Code Description URL

AMRCLAW SAMR infrastructure and hyperbolic solvers [98]
AMRCART SAMR application: 3D MHD [99]
BEARCLAW SAMR infrastructure and PDE solvers [100]
CHOMBO SAMR infrastructure and PDE solvers [101]
Enzo SAMR application: hydrodynamic cosmology [102]
FLASH SAMR application: reactive fluid dynamics [103]
MLAPM AMR application: cosmological N-body [104]
NIRVANA SAMR application: 2D and 3D MHD [105]
PARAMESH SAMR infrastructure [106]
SAMRAI SAMR infrastructure [107]
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3 AMR Software

Here I tabulate some AMR libraries and application codes that are available for
download (Table 2). This list is incomplete, because of the lack of centralized in-
formation about such tools, as well as the rapid rate of development in the field.
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Summary. The formation of Giant Molecular Clouds (GMCs) sets the stage for the forma-
tion of protostellar systems by the gravitational collapse of dense regions within the GMC that
fragment into smaller core components that in turn condense into stars. Developing a theory
of low mass star formation remains one of the most elusive, and most important, goals of the-
oretical astrophysics. Inherent in the difficulty in attaining this goal is that the gravitational
collapse depends critically upon initial conditions within the cores which only recently have
been known with sufficient accuracy to permit a realistic theoretical attack on the problem.
Observations of stars in the vicinity of the Sun show that binary systems are prevalent and
appear to be a general outcome of the collapse and fragmentation process. Despite years of
progress, theoretical studies have still not determined why binary stars occur with such fre-
quency, or indeed, even what processes determine the transition from single stars to binaries
and thence to multiple stellar systems.

One of the goals of this research is to understand the nature and physical properties of
the formation of binary and multiple stellar systems with typical low mass stars 0.2 to 3 M�.
Basic questions concerning this process remain unanswered. What determines the fraction of
an unstable cloud that will fragment into protostellar objects? What determines the pattern
of stellar clustering into binaries and multiple systems? Even after fragmentation occurs, we
have little understanding of the subsequent collapse. Consequently, it is unclear how the mass
distribution of fragments maps onto eventual stellar masses, something we must understand to
explain the stellar initial mass function (IMF).

We have developed a powerful numerical technology that will contribute to answering
these questions. This technology consists of a parallel adaptive mesh refinement (AMR) self-
gravitational radiation hydrodynamics code. Our 3-D AMR code dynamically and automat-
ically inserts and removes patches of recursively finer mesh through computational space
as dictated by the changing temporal and spatial resolution requirements of the simulation.
This results in considerable computational efficiency over conventional codes when applied
to problems involving gravitational collapse across many orders of magnitude in density at
locations in the computational volume not determinable beforehand.
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In this paper we present preliminary results for the investigation of the parameter space of
marginally stable, turbulent molecular cloud cores as they evolve from larger scale turbulent
clouds. We discuss our initial conditions for molecular cloud cores and how they relate to ob-
servations of cloud cores. We present preliminary results of the collapse and fragmentation of
turbulent cores leading to the formation of binary stellar systems and a preliminary calculation
of the collapse of a 100 M� spherical core leading to high mass star formation. Finally, we
briefly describe new advances in our code where we have developed a general moving sink
particle method with AMR and a newly developed unsplit Godunov MHD capability.

1 Introduction

Most stars exist in gravitationally bound binary and low-order multiple systems.
Although several mechanisms have been put forth to account for binary star for-
mation, fragmentation has emerged as the leading mechanism for the past decade
([bodetal2000]). This point of view has been strengthened by observations that have
shown that the binary frequency among pre-main-sequence stars is comparable to or
greater than that among nearby main-sequence stars ([duch99]). This suggests that
most binary stars be formed during the protostellar collapse phase which points to
fragmentation as the most probable formation mechanism.

Until very recently, the extreme variations in length scale inherent in the star for-
mation process have made it difficult to perform accurate calculations of fragmen-
tation and collapse, which are intrinsically three-dimensional in nature. In order to
address the fundamental issues outlined above, we have developed a robust, parallel
adaptive mesh refinement (AMR) self-gravitational hydrodynamics code, including
the effects of multifluids, radiation transport, and self-gravity, and applied it to a
number of models of low mass star formation.

Over the last few years, we have begun a program of research investigating
the properties of marginally stable, turbulent molecular cloud cores. Using turbu-
lent simulations, we have generated models with radii, masses, density contrasts,
turbulent linewidths, projected aspect ratios, and projected velocity gradients con-
sistent with observations of molecular cloud cores ([kleinetal2001], [burkbod2000],
[kleinetal2003]). This work represents a significant improvement over the previous
theoretical work on such cores, which typically assumed a uniform spherical core
with an artificially imposed perturbation (i.e. 10% m� 2 or white-noise density per-
turbations), and rigid solid-body rotation. Crucially, the turbulent spectrum imposes
a characteristic scale on the models, which is the scale at which the core linewidth
becomes supersonic.

Answers to basic questions concerning the fragmentation and collapse process
remain elusive:(1) Why do most stars form in binary systems? (2) What determines
the efficiency of star formation? (3) What are the properties of protostellar disks
formed in turbulent molecular cloud cores? Are they typically aligned or misaligned
relative to one another? (4) What determines the distribution of fragment masses,
which is related to the initial distribution of stellar masses, as well as the initial
orbital angular momenta and rotational spins of the individual fragments?
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Binary stars have a wide range of periods, ranging from less than a day to more
than 106 yr ([bodetal2000]). The median period is 180 yr; for a total binary mass of
1 M�, the corresponding separation is about 30 AU� 4�5�10 14 cm. Since our study
is aimed at understanding the formation of binary systems rather than the formation
of individual stars, we shall not attempt to resolve structures less than about 10 AU
in size.

It is crucial that the initial models which one uses faithfully describe those present
in nature. High-resolution observations of molecular cloud cores (eg. [mott2001])
indicate that the mean column density of pre-stellar molecular cloud cores is close
to that of a centrally condensed isothermal sphere supported primarily by thermal
pressure. Moreover, observations of linewidths in star-forming regions indicate that
the non-thermal linewidths are typically transonic on the scale of cores, and obey a
power law linewidth-size relation ([lar81]). In the past year, we have generated self-
consistent, initial conditions for cores in virial balance between gravity and ther-
mal and turbulent pressures, which incorporate density fluctuations in addition to
those present in the velocity field, and which match these key known observational
properties of cores. (We describe the procedure by which we generate these models
later in §2.2.) In contrast, nearly all calculations which appear in the literature deal
with cores unrealistically initially far from equilibrium (e.g. [bossbod79], [boss91],
[burkbod93]), without any turbulent support, leading to highly supersonic collapse
velocities, and artificially symmetric collapses.

2 Computational Methodology

2.1 The Eulerian Code

Following the evolution of a collapsing molecular cloud as regions within it increase
in density across many orders of magnitude is a formidable task. Conventional grid-
based codes require that the finest-resolution gridding be applied over large volumes
that may evolve to be devoid of fragments and thus not require the small zoning. Our
3-D adaptive code overcomes this problem.

First, the code employs a conservative higher-order Godunov scheme to solve
the Euler equations of compressible gas dynamics using an optimized approximate
Riemann solver ([toro97]). The algorithm is second-order accurate in both space and
time for smooth flow problems, and it has a robust and accurate treatment of shocks
and contact discontinuities. The code is capable of handling an arbitrary number of
fluids.

The second major component of the code is a self-gravity solver. At each time
step we solve a Poisson problem on the adaptive grid hierarchy to obtain the gravi-
tational potential; we then apply the gradient of this potential as a source term in the
momentum and energy equations ([true98], [klein99]). A multigrid iteration scheme
is used to solve the linear system of equations resulting from the discretization of the
Poisson equation on a level. These level solutions are then iterated to convergence to
obtain a solution for the gravitational potential on all levels.
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The third component is an adaptive, coupled radiation hydrodynamics solver
using single-frequency flux-limited diffusion. The radiation transfer module uses a
split method optimized for physical conditions where radiation-gas energy exchange
by emission/absorption dominates the work done by the radiation field on the gas.
First, the code solves a fully implicit system consisting of the emission/absorption
and diffusion parts of the radiation and gas energy equations ([how2003]). It uses
a Newton-Raphson iteration method, with an adaptive parallel multigrid method to
find provisional solutions in each loop of the iteration. These solvers for hydrody-
namics, self-gravity, and radiative transfer are coupled together within the adaptive
mesh refinement infrastructure of our code. The adaptive mesh refinement scheme
employs an automatic, dynamic regridding strategy based on an underlying rectan-
gular discretization of the spatial domain ([bergol84], [bercol89]; [belletal94]). The
overall algorithm conserves total energy, mass, and momentum because the time-
step update applied at each grid at each level of refinement and the couplings at the
interfaces between grids at different levels are all in conservation form.

A fourth component of our code is ideal MHD. We have developed a new fully
2nd order unsplit Godunov MHD ([crockettal2004]). It uses a conservative higher-
order Godunov scheme similar to the hydrodynamics solver. We use a Poisson solve
(using the same solver used by self-gravity) to ensure divergence-free fields. With
our new methodology we have demonstrated much lower numerical dissipation than
standard split scheme staggered mesh MHD codes currently in use. Our ideal MHD
is currently being incorporated into our AMR framework and integrated with the rest
of our code.

2.2 Sink Cell Development

Once fragmentation occurs in dense molecular clouds, each fragment begins to col-
lapse to form stars. The computational timestep during collapse is determined by the
free-fall timescale of the densest region, which is much shorter than the accretion
timescale of the envelope because the free-fall time scale varies as ρ�1�2. Therefore
even with the power of the AMR code, following the evolution until most of the mass
accretes is computationally demanding.

To handle this we have developed a sink particle technology for our code
(Krumholz, McKee & Klein, poster this conference and [Krumetal2004]). We fix
the maximum level of refinement at first protostellar core densities, and create a sink
particle in any cell above that density that violates the Jeans condition ([true97]),

∆x � JλJ � J
�
πc2

s�Gρ
�1�2

, where J is a constant of order unity, λJ is the Jeans
length in a cell of length ∆x, and cs and ρ are the sound speed and density in the cell.
[true97] found that, to prevent artificial fragmentation, one generally cannot allow
a cell to violate this criterion with J � 0�25. Sink particles can move through the
computational grid, accreting gas and interacting gravitationally. We have tested our
method against a number of problems with known solutions, inlcuding a collapsing
isothermal sphere, Bondi accretion, Bondi-Hoyle accretion, and evolution of a Ke-
plerian disk around a sink particle. Our method provides excellent agreement with
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theoretical results, generally reproducing predicted accretion rates as well as density
and velocity profiles to better than 5% accuracy.

2.3 Self-Consistent Initial Conditions

Truly accurate simulations for star formation must begin from realistic initial condi-
tions, with self-consistent turbulence in both velocity and density. To generate such
conditions, we start with a smooth Bonnor-Ebert sphere and perturb it on large scales;
we adjust the energy injection rate of the perturbation to achieve the desired turbu-
lent Mach number. This naturally produces the turbulent power spectrum p�k�∝ k �4

predicted by theory and by Larson’s law ([lar81]). After a few sound crossing times,
we take the resulting object as our initial condition for a collapse calculation. We
simulate observations of these cores to determine: the axis ratio ([myersetal91]); β,
the ratio of rotational kinetic to gravitational potential energy ([goodetal93]); and γ,
the exponent of the single-object linewidth-size relation ([ossen2002]). As shown in
the table below, there is excellent agreement between our simulated cores and obser-
vations.

Property Simulation Observed
Axis Ratio 0.60 0.55� 0.04
β 0.023 � 0.02
γ 0.49 0.5� 0.04

Our models are then evolved in time with fully coupled self-gravitational hydro-
dynamics with AMR using either a stiffened barotropic equation of state or alterna-
tively using the fully coupled self gravitational radiation-hydrodynamics.

We have found that it sometimes necessary to allow for density as well as velocity
perturbations. Here we again start with Bonnor Ebert spheres initially in virial equi-
librium. We then generate velocity fields on density structures by generating power
on large scales with a Gaussian random field and allowing density perturbations to
develop. We then use smooth potentials to keep small regions from undergoing col-
lapse until the cloud is well mixed. We allow the hydrodynamics to evolve the core
and inject energy to maintain the turbulence while maintaining the Mach number.
The initial simulation is run for a crossing time to check the spectrum of the veloc-
ity field; the aspect ratio; the rotational support and the linewidth size relation. it is
only when all these aspects of the simulated core are in good agreement with core
observations that we commence with a full scale collapse simulation.

In Figure 1 we show a Mach 1 simulated core typical of what we may find in
the Taurus cloud region. The figure also shows what the observer would see after
taking into account telescope beam smearing at a typical distance to Taurus. We note
that the simulated core shows substantial structure, although this structure would not
be readily observable. We have carefully examined the properties of our simulated
cores and compared them with observations prior to evolving the cores under full
self-gravitational collapse. Our simulated core has β = 0.029, 0.001, 0.002 in the x,



436 Klein et al.

Fig. 1. The left panel shows a column density projection of a self- consistent (velocity and
density perturbed) turbulent core correspsonding to velocity of Mach 1.0. The right panel
shows a simulated ’observed’ core obtained by beam smearing the simulated core with a 40
arc second beam at a distance of 140 parsecs, similar to the Taurus cloud. The range of column
densities represented goes from 10�5 gm/cm3 to 2 10�2 gm/cm3.

y, and z projections with a mean value of 0.02 and a mode � 0.0 in excellent agree-
ment with the [goodetal93] sample. Likewise we find excellent agreement wih the
axis ratio of [myersetal91]. A calculation of the power spectral density vs. wavenum-
ber shows an average slope of -4.1 in excellent agreement with a k�4 spectrum. we
have examined the linewidth-size relation of our simulated core and compared in de-
tail with observations. First we filter the simulated core with a 40 arc sec beam. We
then compute the velocity centroid in each pixel of the column density map of Fig-
ure 1. We compute the dispersion velocity of the velocity centorids within a Gaussian
beam of varying width centered on the peak of the column density maps for each of
the three projections. In Figure 2 we show the results of the velocity dispersion of
the centroid vs. beam width at FWHM for the x, y and z projections of the simu-
lated core. These slopes are compared with observed slopee of the sample from the
[ossen2002] sample and the agreement appears to be excellent.

In this paper we discuss only barotropic calculations with initial models using
velocity perturbations on turbulently perturbed Bonnor Ebert spheres ; our models
with detailed radiation transfer and self-consistent turbulent cores with both velocity
and density perturbations will be discussed elsewhere.

3 Simulations of Low Mass Star Formation from a Mach 3 Core

We have begun a detailed study of the collapse and fragmentation of isolated, low
mass turbulent molecular cloud cores with detailed radiative transfer as well as mod-
els with barotropic equations of state. Beginning with a smooth density background
distribution, we perturbed the velocity field of the core with a turbulent velocity spec-
trum. In a typical model with barotropic equation of state, we begin with an isolated
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Fig. 2. The figure shows the velocity dispersion vs. log of beam width of the simulated core
for 3 projections of the core. The line with crosses is the x projection, the line with asterisks
is the y projection, and the line with diamonds is the z projection. The dashed line shows the
slope of the linewidth size relation for observed cores based on the [ossen2002] sample.

11 M� core with a turbulent Mach number of M � 3, and formed a binary stellar
system with an initial orbital separation of� 5000 AU (see Figure 3). Using our sink
particle methodology, we introduced sink particles at densities comparable to that
of a first molecular protostellar core (� 10�14 gm/cm3). The stars begin unbound
with respect to one another, and with a relatively high specific angular momentum
J�M � 5�1020 cm2/s, typical for prestellar molecular cloud cores, but high in com-
parison to known binaries. Additionally the system begins with a very high eccen-
tricity; a generic outcome of filamentary collpase scenarios ([inut97]). At the point
shown, some 164,000 yr after the beginning of the calculation, and 22,000 yr after
the formation of the binary system the binary has accreted about 6% of the initital
mass of the core. A key queston for this and other ongoing calculations, is whether
the binary continued evolution will show that the binary will lower its J�M ratio to
a value in closer agreement with observation via gravitational torques with the gas
interior to the core, or whether large-scale tidal effects are effective in doing so.

In the left panel of Figure 3 we note the formation of the binary deep within the
turbulent core. Our calculations with the full radiative transfer looks quite similar at
this time since the gas surrounding the binary is just making the transition from op-
tically thin to optically thick and radiative transfer effects are not yet prominent. Our
future calculations will explore the full effects of radiative transfer on fragmentation
and formation of binaries; for this paper we concentrate on barotropic models. The
figure represents the log of the column density projection along the z axis in the 3D
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simulation. Projections for the column density along the other ordinal directions are
similar. The binary forms along filaments embedded within the highly non-spherical
core. These filamentary structures are ubiquitous in all of our turbulent simulations.
In the right hand panel we take a close look at the binary by telescoping into higher
levels of AMR grid refinement. We note the outer region of the core shows evidence
of the coarser grid structure with lower levels of refinement. The gas in these outer
regions satisfies the Jean condition ([true97]) at lower densities and therefore lower
refinement levels. The binaries however, are formed in much denser gas and the
resolution seen here represents 9-10 levels of refinement with factors of 2 between
refinement levels. Our AMR methodology allows us to take arbitrary refinement fac-
tors between levels. For these collapse calculations we have found that factor of 2
refinement between levels is an optimal choice between accuracy and computational
efficiency. The binaries are surrounded by protostellar disks. The mass in the bina-
ries is continuing to accrete from both the surrounding protostellar disks as well as
being fed from the surrounding large scale filament. At about 176,000 yr the pair
has formed an unequal mass binary system with each star accreting 0.4 and 0.2 M�
respectively. Calculations of the separation distance of the binary system show that
they have are about 1000 AU apart at this time. We are continuing evolution of the
system to determine the final masses and other properties of the binary system. We
are also performing a parametric variation of the Mach number and turbulent real-
ization to determine transition points that separate single star formation from binary
formation and the transition from binary formation to multiple star formation.

4 Preliminary Simulation of High Mass Star Formation

We have begun studies of the formation of masssive stars from turbulent cores. A
preliminary calculation is shown in Figure 5. Here we show the results of a simu-
lation of a 100 M� spherical core with� 0.1 pc in radius. The core is initially in
slow rotation with β = 0.02 and ρ ∝ r�2. We allow the core to collapse including the
full effects of gravity, radiative transfer and radiation pressure. In this preliminary
simulation the finest scale we resolve is 10 AU.

In Figure 5 we show the log density in a horizontal (edge on) and vertical(face
on) slice). We note the formation of a disk surrounding the protostar. At this time
in the simulation (4000 years), the massive star and disk is are still at a very early
stage of development. The temperature has reached about 1200 K so that central dust
has just begun to sublimate. The luminosity is only about 0.1 Eddington at this time
(L� 104L�odot).

5 Summary and Future Directions

We have begun detailed investigations of the formation of low mass and high mass
stars from the collapse and fragmentation of turbulent molecular cloud cores using
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Fig. 3. This figure shows the log of the column density in z projection of a collapsed Mach
3 core at 176,000 yrs. The linear scale in each dimension is approximately 1/3 of a pc, and
the peak density shown is 3 103 gm/cm3. The formation of a binary system along a filament
is evident. The next figure focuses in and shows the binary with its surrounding protostellar
disks.

our high resolution self-gravitational radiation-hydrodynamics AMR code. We be-
gin with realistic initial conditions for isolated cloud cores and demonstrate that by
starting with a smooth Bonnor-Ebert sphere and perturbing it on large scales we
can adjust the energy injection rate of the perturbation to achieve the desired tur-
bulent Mach number. Our simulated cores reproduce the turbulent power spectrum
predicted by theory and the linewidth-size relation of Larson’s laws as well as show-
ing excellent agreement with observed aspect ratio’s of cores and rotation rates in
excellent accord with observations.

We present preliminary calculations of the collapse of a Mach 3 turbulent core
leading to the formation of a bound binary system. Our early results, including for
the first time radiative transfer, show close agreement between the radiative and non-
radiative results at times up until the collapse begins to transition from optically thin
to optically thick flow. At these times, both members of the binary system appear to
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Fig. 4. This figure focuses in and shows the binary from the last figure with its surrounding
protostellar disks.

Fig. 5. This figures shows the early stages of the development of a high mass star. The first
plot shows the log of the density of an edge on cut through the equatorial plane and the second
panel is a face on view of the disk and star. The linear scales along each axis are 600 AU, and
the range of densities represented is 106 cm�3 to 1011 cm�3.
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accrete gas from the surrounding filamentary structure they are part of as well as the
surrounding protostellar disks. The binary appears to have a 2:1 mass ratio, but most
of the mass accretion from the surrounding core has yet to have taken place. We have
developed for the first time a new fully Lagrangian sink particle methodology with
our full AMR framework to enable evolution of the collapsing fragmenting systems
to long dynamical times. Several calculations are currently in progress to ascertain
the role of turbulence in the low mass and high mass star formation process. Future
work we are investigating will involve the role of MHD in determining the properties
of low stars and high mass stars as they evolve from violent turbulent conditions in
molecular clouds.
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Summary. At the end of their lives low mass stars such as our Sun lose most of their mass.
The resulting planetary nebulae show a wide variety of shapes, from spherical to highly bipo-
lar. According to the generalized interacting stellar winds model, these shapes are due to an
interaction between a very fast tenuous outflow, and a denser environment left over from an
earlier slow phase of mass loss. Previous analytical and numerical work shows that this mech-
anism can explain cylindrically symmetric nebulae very well. However, many circumstellar
nebulae have a multipolar or point-symmetric shape. With two-dimensional calculations, Icke
showed that these seemingly enigmatic forms can be easily reproduced by a two-wind model
in which the confining disk is warped, as is expected to occur in irradiated disks. Here, we
present the extension to fully three-dimensional adaptive mesh refinement simulations of such
an interaction.

1 Introduction

In the final phases of stellar evolution, low mass stars, such as our Sun, first swell
up and shed a dense, cool wind in the asymptotic giant branch (AGB) phase. This
episode is followed by a fast, tenuous wind that is driven by the exposed stellar
core, the future white dwarf. The planetary nebulae (PNe) resulting from this ex-
pulsion phase come in a wide variety of shapes, from spherical to highly bipolar.
Some even have a multipolar or point-symmetric shape. Balick ([Bal87]) proposed
that such forms arise due to an interaction between a slow disk-shaped inner AGB
nebula and the fast ‘last gasp’ of the star. Analytical ([Ick88]; [IPB89]) and numeri-
cal ([SL89]; [Ick91]; [MEI91]) work shows that this Generalized Interacting Stellar
Winds (GISW) mechanism works very well (for an up-to-date review, see [BF02]).
Several scenarios for obtaining a disk around a PN exist, and it is in general assumed
in the models that the shape of the dense gas around the star is a disk or a toroid.

Icke ([Ick03]) proposed that the point-symmetric shapes observed in a number of
PNe are formed in an interaction between a spherical stellar wind and a warped disk.
It is prossible to produce such a warp around a single star, through the combined
effects of irradiation and cooling (e.g. [Pri96]; [MBP96]). Whereas Icke’s computa-
tions were restricted to a two-dimensional proof-of-principle, we now present a first
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series of fully three-dimensional hydrodynamic computations of such a wind-disk
interaction using the technique of Adaptive Mesh Refinement (AMR).

2 Point-symmetric nebulae

Work on cylindrically symmetric nebulae showed ([Ick88]; [Ick91]; [IMB92]) that
sharply collimated bipolar flows are a frequent and natural by-product of the GISW
model. However, many circumstellar nebulae have a multipolar or point-symmetric
(i.e. antisymmetric) shape ([Sch93]; [ST98]). The nebulae that are formed in the
wind-disk interaction would naturally acquire the observed antisymmetry if the disk
that confines the fast wind is warped, instead of symmetric under reflection about
the equatorial plane. Several mechanisms have been proposed for warping a disk
surrounding a single star. The most interesting one for our purposes invokes radiative
instability ([Pet77]; [IP90]; [Pri96]; [MBP96]).

Livio & Pringle already proposed ([LP96]; [LP97]) that the precession of warped
disks might be responsible for point-symmetric nebulae. They proved conclusively
that the various physical scales for mass, accretion, luminosity and precession match
the observations. The production of the nebulae proper they attributed to an unspeci-
fied ‘jet’ mechanism. While leaving open the possibility that jets may be responsible
for additional structures, we show that the interaction between a warped disk and a
spherically symmetric wind suffices. The lobes of point-symmetric nebulae ([Sch93];
[ST98]) look as if they were produced almost simultaneously. This is difficult in the
case of a precessing jet, which would make a corkscrew-like nebula of a type not
readily apparent in post-AGB shells, although some objects do show features that
are likely to be due to precession ([Sch93]).

3 Radiation driven warping

When an accretion disk is subject to external torques it may become unstable to warp-
ing ([BP75]; [Pet77]; [PP83]) and when irradiated by a sufficiently luminous central
star even an initially flat disk will warp ([IP90]; [Pri96]; [MBP96]; [MBN98]). The
difference in radiation pressure on slightly tilted annuli at different radii will induce
the warp. Essential is that the disk is optically thick for the stellar radiation and for
its own cooling flux. This restricts the disks to a specific subclass of high density and
low temperature.

Analytical considerations lead to expressions for growth and precession rates
and morphologies of the warp whereas numerical calculations including the ef-
fects of self-shadowing show that the non-linear evolution of the warp can pro-
duce highly distorted shapes, even with an inverted, counter-rotating inner disk re-
gion ([Pri97]). Applications of warped disk theory range from active galactic nuclei
([Pri97]; [MBN98]) to X-ray binaries ([MB97]), protostellar disks ([AP97]), and
PNe ([LP96]; [LP97]).
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Since we intend to study warped disks in PNe, we need a mechanism to form
accretion disks in these systems. Plausible scenarios include the coalescence of com-
pact binaries ([SL94]), absorption of planetary systems, or the formation of a disk
due to a main-sequence companion being out of equilibrium when emerging from a
common envelope (CE) phase with a primary AGB star. In this case, the companion
loses most of the mass it accreted during the CE phase which subsequently forms
a disk around the primary ([SL94]) and which, in a later stage, can get radiatively
warped when illuminated by the central star of the PN.

For a PN the luminosity of the central star alone is sufficiently high to induce a
radiation driven warp. Following [Pri97], an expression for the radius R crit beyond
which the disk is unstable to radiation driven warping is found from comparing the
timescales of the viscous and radiation torques, leading to

Rcrit � �2π�A�2 � (1)

with the contant A defined by A2
� 1�4c�2G�1M�1

�
L2
�
η�2Ṁ�2

acc. Here c is the speed
of light, G the gravitational constant, η � ν2�ν1 is the ratio of the azimuthal to the
radial viscosity, M� is the mass and L� the luminosity of the central star and Ṁacc

is the disk’s accretion rate. We assumed a surface density Σd � Ṁacc��3πν1� (e.g.
[Pri81]).

In a Cartesian coordinate system, the warped disk surface is given by ([Pri96])

x�R�φ� � R

�
�

cosφsinγ � sinφcosγcosβ
�cosφcosγ � sinφsinγcosβ

� sinφsinβ

�
� � (2)

with local disk tilt angle β�R�φ�, and orientation angle of the line of nodes γ�R�φ�.
Here, R and φ are the non-orthogonal radial and azimuthal coordinates respectively,
pointing to the surface of the disk (cf. [Pri96]). In our model calculations we adopt
the case of a steady precessing disk with no growth and zero torque at the origin
for which we have in the precessing frame that γ � A

�
R and β � sinγ�γ, with the

constant A defined by Eq. (1) ([MBP96]).

4 Time scales

Since radiative cooling plays such an important role in our model (see the next sec-
tion), we need to compare the cooling time scale to three other time scales related
to the disk: the precession and growth time scales of the warp, and the shock pass-
ing time. The latter is defined as the time the expanding wind blown bubble takes to
travel to the outer disk radius Rd .

Adopting a cooling function of the formΛ�Λ 1T�1�2
s and using the jump condi-

tions for a strong shock, the cooling time of the shocked gas is given by (cf. [Kah76];
[KM92]) tc � Cv3

s�ρe, with vs the shock speed, and ρe the pre-shock environment
density. When assuming a fully ionized gas of cosmic abundances, the constant C
has a value of 6�0�10�35 gcm�6 s4.
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Analytical relations for the radius Rs�t� and speed vs�t� of the outer shock as
functions of time can be derived (e.g. [LC99]) and with these the shock passing time
readily follows from setting Rs�tsp� � Rd as

tsp � �2�3πρe�
1�2 Ṁ�1�2

w v�1�2
w R2

d � (3)

The precession time scale of the disk is given by ([MBP96])

tp � 48π2cG1�2M1�2
� L�1

�
R3�2

d Σd � (4)

where we assumed Keplerian rotation. The time scale for the initial growth of the
warp is of the same order. When we use Eq. (1) for the critical radius as a typical
disk radius, we find that the different time scales scale as

tp ∝ M2
�L�4
� Ṁ3

accη
3Σd (5)

tsp ∝ ρ
1�2
e Ṁ�1�2

w v�1�2
w M2

�
L�4
�

Ṁ4
accη

4 (6)

tc ∝ ρ
�5�2
e Ṁ3�2

w v3�2
w M�3

�
L6
�
Ṁ�6

accη
�6 (7)

We are quite limited in our choice of M�, L�, vw, and Ṁw since values for
these parameters are strongly constrained by stellar evolution and wind models (e.g.
[PPK88]; [Blo95]) but since the dependence of t p, tsp, and tc on Ṁacc is so strong,
a proper choice of this latter parameter leads to the desired proportion between the
different time scales.

For our calculations we used Ṁw � 10�8M� yr�1, vw � 200kms�1, M�� 0�6M�,
L� � 104L�, ρe � 10�15gcm�3, Ṁacc � 10�7M� yr�1, Σd � 1gcm�2, and η � 1
resulting in Rcrit � 2AU, tp � 17yr, tsp � 0�4yr, tc � 10�8yr, and density contrast
χ � ρd�ρe � 300 with ρd the disk density. So tc � tsp � tp showing that cooling
will indeed be of importance and that we can safely ignore the disk’s precession.

5 Mechanism

The mechanism behind the formation of the multipolar lobes seen in the simulations
is as follows (see also [Ick03]). As the central wind impinges on the inner rim of the
disk, a three-dimensional bow shock develops around it. One branch of this shock
flies off into space creating a lobe jutting out from the nebula, whereas the other
slams into the concave side of the disk, scooping up disk material and thereby pro-
ducing a set of smaller, unstable lobes (see Fig. 1). The opening angle of the shock
depends inversely on the Mach number of the wind. Due to the cooling of the gas, the
swept up shell is highly compressed and therefore thin, and the ram pressure from
the wind directly drives the shell outwards, which are necessary ingredients for the
bow shock to produce the lobes. When the density of the disk is not too high, the
wind breaks through the concave part of the disk, producing another pair of lobes.
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Fig. 1. 2D example of a wind-disk interaction showing the evolving AMR grid structure su-
perimposed on a plot of the logarithm of the density. Every square represents a grid of 8x8
cells. Five different levels of refinement are visible. The effective resolution of this simulation
is 1024x1024 cells.
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6 Numerical implementation

We used the three-dimensional hydrocode Flash ([FOR00]) to model the interac-
tion between a spherical wind and a warped disk. This parallelized code implements
block-structured AMR ([BO84]; [BC89]) and a PPM type hydrosolver ([WC84];
[CW84]).

Besides implementing the proper initial and boundary conditions, we also added
our own cooling module in order to model radiative cooling using a cooling curve
([DM72]; [MKR02]). This curve gives the energy loss rate as a function of temper-
ature for a low density gas in collisional ionization equilibrium. The radiative losses
were implemented through operator splitting and if the hydro timestep was larger
than the cooling time, the former was subdivided into smaller steps when calculating
the cooling.

To construct the warped disk, Eq. (1) was combined with a constant ‘wedge an-
gle’ θd and a proper value for A, i.e. Rd was taken to be a few times Rcrit , see Eq. (2).
This disk was given a constant density which, through the density contrast χ, resulted
in a value for the environment density ne. The spherical wind was implemented as
an inner boundary condition and given a 1�r 2 density profile and a constant wind
velocity vw. The pressure was calculated from an equation of state with a constant
adiabatic index γ.

7 2D wind-disk simulations

To check the implementation of the wind-disk interaction model into the AMR
code described above, we repeated a number of the two-dimensional calculations
previously done by [Ick03] (see Fig. 1). Because he used a different hydrosolver
(FCT/LCD) and the outcome of the calculations strongly depend on turbulent pro-
cesses in the gas, the simulations did not agree in every single detail but the overall
point-symmetric morphologies were retrieved. All these simulations were run us-
ing a small value for the adiabatic index (γ � 1�1) resulting in ‘momentum driven’
bubbles.

To see what happens when more realistic cooling is applied, we ran some simu-
lations with the cooling curve module and an adiabatic index γ� 5�3. This showed
that, apart from the production of the by now familiar point-symmetric lobes, the
outer shell of swept up gas is thinner and unstable and developes into a number of
smaller lobes merging with one another as the shell expanded.

8 3D AMR Simulations

Following the two-dimensional trial calculations, we ran wind-disk simulations in
three dimensions on a Cartesian grid with an effective resolution of up to 512 3 cells
using five levels of refinement. Since we found in our two-dimensional calculations
that simulations with cooling applied through a cooling curve did not result in a
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Fig. 2. Isosurfaces of the density at the end of the wind-disk simulation as seen from different
angles (left column) and the corresponding synthesized Hα images (right column).
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qualitatively different morphological outcome compared to calculations with a low
value for the adiabatic index (γ� 1�1), we opted not to use the cooling curve module
for our three-dimensional simulations to save computational time.

We used the following parameters: γ� 1�1, ne � 5�108 cm�3, χ� 100, θd � 5o,
and vw � 200 kms�1. In Fig. 2 we present a visualization of the three-dimensional
shape of the swept up shell through isosurfaces at different viewing angles. Also
shown are the corresponding synthesized Hα images, derived by projecting the three-
dimensional data cube onto the plane of the sky. For this, we simply integrated the
density squared along the line of sight and used this as a rough estimate for the
emission.

9 Conclusions

Our computations show that the wind-disk interaction model in which the confin-
ing disk is warped results in a wide variety of point-symmetric shapes. Nebulae
that show ’punched holes’, such as NGC 7027 ([CHM02]), are readily accommo-
dated in this model. Other candidates for our model are the quadrupolar PNe K3-
24 and NGC 7026, in which the inner disk is still visible, while the outer nebula
shows clear point-symmetric structures. Also, the shapes of the proto-PNe M1-26
and M 4-18 (and maybe He 2-47) can be explained with our model. As a fur-
ther application, large-scale explosions in non-planar disks, such as might occur
in active galaxies, are expected to show similar patterns, provided that the disk
material can cool rapidly enough. Movies of these simulations can be found at
http://www.strw.leidenuniv.nl/AstroHydro3D/ .
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Summary. Here, we report our current effort to apply adaptive mesh refinement techniques
to the simulations of black hole spacetimes and gravitational waves. We solve Einstein’s equa-
tions written in the first-order in time and second-order in space form. We demonstrate that
using quadratic-order guardcell filling along with “refluxing” of first order derivatives of the
variables as interface conditions at the refinement jumps are essential for accurate evolutions
of gravitational waves. Some preliminary results for the head-on collisions of binary black
holes are also given.

1 Gravitational Wave Astrophysics

Study of binary black hole spacetimes constitutes a fundamental two body prob-
lem in general relativiy. It also promises to provide a great opportunity to learn as-
trophysics through the “eyes” of gravitational radiation generated by such exotic
compact objects from the hearts of galaxies. Numerical relativity which aims to ac-
curately calculate black hole dynamics and waveforms generated from such system
using computational simulations, becomes essential tools to any researchers who
wants to explore the physics of strongly gravitating systems and astrophysics that is
enabled by gravitational waves.

Gravitational waves carry astrophysical information about the sources that are
otherwise unobtainable. For example, gravitaional waves in the low frequency regime
of 10�4

�10�1 Hz carry information about the supermassive black holes at the cen-
ter of galaxies and the host galaxies. They also shed lights on the study of structure
formation, galaxy merger history, and cosmology. In many cases, gravitational wave
signals are the only probe to study them because of lack of electromagnetic signals.
Even in the situations where information carried by electromagnetic signals such as
γ-ray and X-ray is available, gravitational waves are expected to provide a funda-
mentally new “window” to the universe because they carry a very different kind of
information than electromagnetic signals.

With the operation of ground-based gravitational wave detectors including LIGO
in US and the space-borne LISA detector which is scheduled to be launched in 2012,
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gravitational wave astrophysics will soon be an exciting new branch of astronomy.
Being strongest sources of gravitational signals detectable with these observatories,
detailed understanding of the strong field dynamics of binary black holes and the
expected waveforms generated from them is important not only to help interpret the
gravitational wave signals, but also to help guide design of the detectors themselves.

2 Challenges in Simulating Colliding Black Holes and
Gravitational Waves

Inspiraling and merging black hole binaries are believed to be strongest astrophysical
sources of gravitational radiation. Study of these sources requires the full numerical
solutions of Einstein’s equation of general relativity. However, solving Einstein’s
equations poses a number of difficult challenges.

� First of all, lack of symmetry for general binary systems requires to solve the
equations in full 3-dimensions, which is computationally very expensive. This is
a particually severe problem if one were to use uniform grid.

� Secondly, gravitational potential of the binary black hole and the gravitational
waves generated from it have very different spatial scales. Typically,

λGW � �10�100�MBH (1)

where λGW is a wavelength of gravitational waves and MBH total mass of binary
black hole spacetimes. Schemes that are based on a simple uniform mesh are not
adequate to handle this discrepancy in scales.

� Thirdly, the presence of steep gradients and diverging fields around the black
hole physical singularities makes it extremely difficult to maintain accuracy and
stability.

Therefore, detailed calculations of black hole binary mergers in 3-dimensions
will benefit greatly from the application of mesh refinement techniques. This mo-
tivates our current 3-dimensional mesh refinement code developement efforts at
NASA/GSFC to solve Einstein’s equations.

3 Einstein’s Equations

A full simulation of binary black hole merger and gravitational waves from the
merger is still a daunting task even with mesh refinement. A number of open is-
sues which are still under active research makes it haders to solve the full problem
at once. Therefore, to begin with, we adopt a strategy that devides the full problem
into two regimes and tackle the sub-problems seperately: study of dynamics of the
black holes near the source region and study of the wave propagation in the wave
zone farther away from the black holes.
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� Source region: This is where a highly nonlinear and complex strong field dy-
namics occurrs and will benefit by the application of adaptive mesh refinement
(AMR).

� Wave zone: This is a linear regime where effects from the nonlinear terms
are small or negligible. It is expected that the use of fixed mesh refinement is
enough to set up a grid with successitve coarser resolutions farther away from
the sources.

Building on the experience gained here, we will later simulate dynamics of merg-
ing binary black holes and wave propagation together.

In many commonly used numerical approaches, Einstein’s equations are ex-
pressed as a system of 10 or more coupled nonlinear partial differential equations.
We use an approach based on the “3 + 1” spacetime split [1], in which the initial data
is specified on some spacelike slice and then evolved forward in time. Within this
framework, the spacetime metric takes the form

ds2
��α2dt2�gi j�dxi�βidt��dx j �β jdt�� (2)

The geometry of the given spacelike slice is described by the 3–metric g i j. The lapse
function α governs the advance of proper time across the surface and the shift vector
βi the motion of the spatial coordinates within the hypersurface as the data is evolved
forward in time. α and β are freely–specifiable functions of space and time. (For sim-
plicity, we explicitly set the shift vector β i � 0 here.) Then, the Einstein’s equations
essentially becomes evolution equations of the metric, g i j, and the extrinsic curvature

of the hypersurface, Ki j , �� 1
2
∂gi j
∂t . In reality, we use a slightly different formalism,

so-called BSSN formalism [2, 3]. Here original variables �gi j�Ki j� are decomposed
into the conformal variables �ψ�K� g̃ i j� Ãi j� Γ̃i� defined as follows:

e4ψ � det�gi j�
1�3 (3)

g̃i j � e�4ψgi j (4)

K � gi jKi j (5)

Ãi j � e�4ψ�Ki j �
1
3

gi jK� (6)

Γ̃i ��∂ jg̃
i j

� (7)

Evolution equations for the conformal variablse are cast into the system of equa-
tions that are first-order in time and second-order in space.

In the calculations presented below, we use finite difference method with spatial
derivatives being calculated by centered differencing and time updating by (iterative)
Crank-Nicholson scheme [4].
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4 Block-based Adaptive Mesh Refinement

We use PARAMESH software [5] to implement parallelization and the mesh refine-
ment. PARAMESH works on logically Cartesian, or structured, grids and carries out
mesh refinement on grid blocks rather than individual cells. The underlying mesh
refinement technique is similar to that of Ref. [6], in which grid blocks are bisected
in each coordinate direction when refinement is needed.

The grid blocks all have the same logical structure, with nxb zones in the
x�direction, and similarly for nyb and nzb. Thus, refinement of a block in 1-D yields
two child blocks, each having nxb zones but with zone sizes a factor of two smaller
than in the parent block. When needed, refinement can continue on the child blocks,
with the restriction that the grid spacing can change only by a factor of two, or one
refinement level, at any location in the spatial domain.

Each grid block is surrounded by a number of guard cell layers that are used
in computing finite difference spatial derivatives near the block’s boundary. These
guard cells must be filled using data from the interior cells of the given block and the
adjacent block.

PARAMESH handles the creation of grid blocks, and builds and maintains the data
structures needed to track the spatial relationships between blocks. It takes care of
all inter-block communications and keeps track of physical boundaries on which par-
ticular conditions are set, guaranteeing that the child blocks inherit this information
from the parent blocks. In a parallel environment, PARAMESH distributes the blocks
among the available processors to achieve load balance, maximize block locality, and
minimize inter-processor communications.

5 Gravitational Waves

Here we propagate weak gravitational waves through the computational domain that
has fixed mesh refinement boundaries, which simulates a situation where gravita-
tional waves that are generated from the source region propagate through grids where
resolutions becomes coarser and coarser farther away from the sources. To set up
ghost zones at the refinement jumps, we apply the following conditions.

� Quadratic interpolation to set up fine grid guardcells
� Reflux to set up coarse grid guardcells by considering first derivatives of the

variables as ”fluxes” and match them, i.e., copy first derivatives computed in the
fine grid to the coarse grid.

We found them to be essential for an accurate and stable evolution [7, 8]. This is
shown in Figs. (1) and (2). In the figures, we show FMR evolution of gravitational
waves. Initial data (metric at t � 0) is given by the Teukolsky solution [9]. Analytic
solution is such that gravitational waves are linear and progate without spreading
leaving flat space behind as it moves across the computational domain. Geodesic co-
ordinate conditions, α� 1�β i

� 0 for all t, is used. To save computational resources,
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Fig. 1. Gravitational waves: gzz�x�y� on z � 0 at 4 different times. Gravitational wave prop-
agates through 2 (fixed) refinement boundaries located near r � 4�0 and r � 8�0. Linear in-
terpolation used at the refinement jumps and no “refluxing” is applied. Numerical errors of
reflected waves are evident.

we carry out the time integration only in one octant of the computational volume. At
the outer edge of the grids, simple outgoing wave condition is used.

In Fig. (1), interface conditions at the refinement jump are linear interpolations
and no refluxing. This is a usual interface condition when equations are written in
fully first order forms. However, for a system of equations that has second deriva-
tives, this interface condition gives rise to reflected waves from the refinement jumps
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Fig. 2. Gravitational waves: gzz�x�y� on z � 0 at 4 different times. Gravitational wave prop-
agates through 2 (fixed) refinement boundaries located near r � 4�0 and r � 8�0. Quadratic
interpolation used at the refinement jumps and “refluxing” is applied.

which is unphysical. The error is basically attributed to the fact that linear interpola-
tion only smoothly connect the functions, not first derivatives.

In Fig. (2), we use quadratic interpolations and refluxing of variables to set
up ghost cells at the refinement jumps. Reflection waves are reduced dramatically.
Quadratic interpolation and refluxing ensure that the functions and their first deriva-
tives are smoothly connected over the refinement jumps.
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Fig. 3. Black holes: Lapse function α�x�y� on z � 0 plane for a head-on collision of black
holes with unequal masses at 4 different times: a black hole with mass M � 2 is located at
x ��5 and a black hole with mass M � 1 is locate at x � 5. Holes have zero velocity and zero
spin initially. Grid boundaries at �20. Yellow lines are block boundaries. Each block has 83

cells.

6 Binary Black Holes

Here we apply AMR techniques to a problem of head-on collisions of binary black
holes. Black hole singularity is treated analytically using so-called puncture tech-
nique [10]. Initial data is two initially non-moving non-spinning black holes of dif-
ferent mass. “1+log” slicing condition is used for lapse function, α. Refinement cri-



460 Dae-Il (Dale) Choi

Fig. 4. Metric component gxx on z� 0 plane at 4 different times.

teria is based on the error measure computed by first derivatives of the lapse function,
α.

Fig. (3) shows expansion of the refined region as lapse function collapses near
the centers of each black hole. Here block-boundaries are indicated by yellow lines.
Fig. (4) shows metric function gxx on Z � 0 plane for 4 different times.
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1 Introduction

In this contribution we present tests and an application of a new AMR code for astro-
physical applications called AstroBEAR. The code is designed on the BEARCLAW
framework (Boundary Embedded Adaptive Mesh Refinement for Conservation Laws)
[M04] and it offers generalized adaptive facilities including mesh refinement in
a grid-based formalism [BL98]. The code is flexible and efficient being designed
specifically for multi-physics applications in which processes operating under differ-
ent time and length scales can be simultaneously simulated. In paper I [PVCFM04]
we described the plan of the code including the Riemann solvers, method for stiff
source terms and the various procedures being adopted for dealing with errors in
∇ � B� 0 condition. In this paper we provide results from selected tests of the MHD
code as well as an application of the hydro code to an astrophysical problem.

2 Magneto-Hydrodynamic Tests

1-D Tests: We have carried out a number of shock-tube problem tests to check the
accuracy of both the Riemann solver and the behavior of the AMR grid. Note that
these problems were actually carried out on a 3-D grid in which only quantities
in the x direction were allowed to change. To confirm the behavior of the AMR
code we compared high resolution uni-grid simulations to those carried out with
different levels of adaptive refinement. We also have compared our AMR simulations
to analytic or semi-analytic results where possible ([RJ95], [R02])

Table 1. Initial left and right states for test 1.

ρ Vx Vy Vz P Bx By Bz

left 1.08 1.2 0.01 0.5 0.95 2.0/
�

4π 3.6/
�

4π 2/
�

4π
right 1.0 0 0 0 1.0 2.0/

�
4π 4.0/

�
4π 2/

�
4π
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Fig. 1. 1-D shock tube test of AstroBEAR AMR Code. Shown are density (left) and By (right).
The shock propagates in the x direction.

Figure 1 shows the evolution of 7 waves driven from the initial state presented
in the table 1. This test, taken from [B98], uses γ � 1�667. Examination of results
of the simulation demonstrates that the approximate Riemann solver we use does a
satisfactory job recovering the published results.

Table 2. Initial left and right states for test 1.

ρ Vx Vy Vz P Bx By Bz

left 1 0 0 0 1 0.7 0 0
right 0.3 0 0 1 0.2 0.7 1 0

Figure 2 shows the flow driven from an initial state given in table 2 ([RJ95]). In
this test 6 waves are generated: a hydro rarefaction; a switch-on slow shock; a contact
discontinuity; a slow shock; a rotational discontinuity; a fast rarefaction. Examina-
tion of figure 2 again demonstrates that our solver can capture the correct results to
better than a a few percent including the shock speed. In addition, here we see that
the grid generation algorithm in AstroBEAR accurately tracks the evolution of the
steep gradients.

2-D Tests: We have run our 1-D tests obliquely through the grid to test the 2-
D performance of the code. We find the waves shown in figures 1 and 2 remain
well resolved and accurately tracked. In order to test the ability of our divergence
cleaning method however we have also run a true 2-D test in the form of the Orszag-
Tang vortex. In paper 1 we presented details of a new cell centered projection method
for correcting the magnetic field and removing the ∇ � B errors and the Orszag-Tang
vortex provides a test of this method.

Figure 3 shows a close up of the density in a single vortex of our Orszag-Tang
simulation at t1� 0�6. On the left the simulation is done without any divergence treat-
ment added to the Riemann solver. The effect of the divergence errors on the simu-
lation are apparent in the irregular striations in the vortex. Shortly after t 1 the com-
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Fig. 2. 1-D shock tube test of AstroBEAR AMR Code. Shown are density (left) and By (right).
The shock propagates in the x direction. The locations of the refined zones are marked with
circles

Fig. 3. A comparison of the density fields from the Orszag-Tang vortex u �

��siny�sinx�0�� B � ��siny�sin2x�0� problem at time t1 � 0�6. The non-physical variations
due to divergence build-up seen in the left plot are removed by the projection method as seen
in the right plot.

putation terminates due to build-up of divergence errors. On the right we show the
simulation in which divergence cleaning with the projection method was used. The
flow is smooth and well behaved. This simulation was able to proceed to arbitrary
termination times. Both figures show the three-level AMR grids used in the compu-
tation. When discontinuities are present, the standard discretization of the Laplace
operator through a five-point stencil can be extended. This can be done by incorpo-
rating any jumps across the stencil arms as a RHS term in the Poisson equation used
in the divergence clean-up step. This approach is still being developed at this time.
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3 Hydrodynamic Application: Hypersonic Radiative Bullets

In this section we provide an example of an AstroBEAR application. We choose an
astrophysical problem which demonstrates the codes’ abilities and performance in
terms of the solvers and integration schemes as well as the AMR engines’ capacity
to resolve various flow features on multiple scales.

Massive outflows are a ubiquitous phenomena associated with both the birth and
death of stars. In many cases these flows are both highly structured on large scales
and heterogeneous on smaller scales ([Fr99]). Luminious Blue Variables (LBVs) are
massive, highly variable stars which experience periods of intense mass loss. The
LBV η Carinae is one of the most massive stars in the galaxy and shows many of the
characterstics common to all stellar outflows including a prominent bipolar outflow
[MDB98].

Of the many questions surrounding the nature of mass loss from η Carinae, the
origin of the long thin “strings” observed in the outer nebular regions remain par-
ticularly vexing. First observed by [MBW96] and further studied by [WDC99] the
strings show two remarkable properties: very high values of length-to-width ratios
and the presence of the Hubble-type flows, i.e. linear velocity increase from the base
of the strings to their tip. The strings also show a decrease in surface brightness to-
ward the string-head. The true tips may be invisible at optical wavelengths. These
features represent the key challenges that must be met by any model that hopes to
offer a successful explanation of the string origin and evolution.

Several models have been suggested for the strings including jets [GLRF99] and
ionization shadows [S01]. A particularly promising model has been proposed by
[RMH02] who suggest that a single hypersonic bullet propagating in the ambient
medium generates each of the strings. Since the ”Great Eruption” that ejected the
main nebula around 1840 was know to be an impulsive event with most of the mass
and momentum directed in the polar directions [SGH03] it is plausible that fragments
or bullets could have emerged from that event as well.

In what follows we present simulations of radiative hypersonic bullets appro-
priate to the strings of η Carinae using the AstroBEAR hydrodynamics code. This
problem poses a number of computational challenges. The Mach numbers of the
bullets are high 10�Mb � 200. The initial conditions demand an instanteous accel-
eration of the clump which leaves a strong vacuum region in the wake. The cooling
in the clump, via radiative losses, will produce disparate timescales between the ra-
diative and hydrodynamic processes with t cool�thydro � 10�5 in some cases. Finally,
the fragmentation of the flow will leave many high density ”clumplets” whose evo-
lution will have to be tracked. Together these issues act as a good test of the entire
code.

3.1 Simulation Set-up

There are three dimensionless parameters that describe the evolution of the sys-
tem. The first two are the density contrast between the bullet and ambient medium
χb � ρb�ρa and the Mach number Mb of the bullet velocity at time t � 0�0. These
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determine the hydrodynamic regime of the system evolution. The cooling parameter
ψb, describes the effects of cooling and is defined as

ψb �
tcool

thydro
� (1)

Here the hydrodynamic timescale thydro is defined as the bullet crushing time (or
clump crushing time tcc as described by [PFB02])

thydro �

�
χ1�2

b

�
Fc1Fst

�
�1�2

�2rb

vb
� (2)

where rb is bullet radius, vb is bullet velocity, Fc1 � 1�3 and

Fst � 1�
2�16

1�6�55χ�1�2
� (3)

The two factors Fc1 and Fst relate the unperturbed upstream conditions with the inter-
nal bullet post-shock ones and are described in [PFB02]. The interaction of the bullet
and ambient medium launches a shock which propagates into the bullet (with post-
shock temperature Tps and density ρps). The cooling rate Λps for such a temperature
can be found using the standard cooling curve of [DM72]. The cooling timescale is
then estimated as follows

tcool �
Tps�Tmin

�γ�1�ρpsΛps
kmH � (4)

where Tmin � 100K is the minimum temperature gas can cool down to. Using the
Rankine-Hugoniot relations the internal bullet post-shock temperature T ps is

Tps � Tb

�
1�

2γ
γ�1

�
M2

is�1
���

1�
2

γ�1

�
1�

1

M2
is

��
� (5)

where Tb is the unshocked bullet temperature. Internal bullet post-shock density ρ ps

is

ρps � ρb

�
1�

2
γ�1

�
1�

1

M2
is

���1
� (6)

Mis is the internal bullet shock Mach number described by the expression

Mis � Mb
�
Fc1Fst

�1�2
� (7)

In our study we carried out simulations covering bullet Mach numbers in the
range Mb � 10�200. For the cooling parameter we have explored a range of condi-
tions from the quasi-adiabatic regimeψb� 1 to the extremely strongly cooled regime
ψb � 10�5.

As an example of the behavior of the code we first present a simulation in the
strongly cooled regime. Figure 4 shows a Schlieren image (gradient of the density
logarithm) in a simulation with Mb � 10, χb � 100 and ψb � 2�5 � 10�2. This run
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Fig. 4. Radiative clump simulations with Mb � 10, χb � 100 and ψb � 2�5 � 10�2. Solid lines
show embedded refinement levels.

was carried out in cylindrical symmetry with the symmetry axis defined along the
x direction. We use an adaptive grid with 4 levels of refinement. This provided a
resolution of 128 cells per cloud radius or an equivalent resolution of 1024 � 7680
cells. We will discuss the detailed behavior of the flow in radiative bullets below but
here we simply wish to note that one can clearly see that the AMR engine is tracking
the regions where shocks create high densities and where fragmentation of the clump
takes place and leads to the formation of smaller clumplets.

We now focus on a simulation which best matches the conditions observed in the
strings of η Carine. This simulation was initialized with bullet radius rb � 3�0 �1015

cm and initial density ρb � 105 cm�3 translating into an initial bullet mass mb �

0�5 � 10�5M�. The initial bullet Mach number was Mb � 20, or vb � 235 km s�1.
The computational domain was 1�8 �1017 cm � 2�4 �1016 cm, or expressed in terms
of bullet radii 60rb � 8rb. The ambient density was ρa � 100 cm�3 and the ambient
temperature Ta � 104K. It is assumed that initially the bullet is in pressure equilib-
rium with the ambient material.

This run has the same resolution as that shown in Figure 4. This resolution is
sufficient to place it in the converged regime in the adiabatic case [KMC94]. In the
cooling case one has to be more precise in one’s definition of convergence. Since the
key process is bullet fragmentation via instabilities at the upstream surface, our crite-
rion of convergence was the constancy of the initial fragmentation spectrum. In this
sense the above resolution ensured that the instability wavelength, and therefore the
number of fragments into which the bullet breaks up, does not change with increas-
ing resolution. On the other hand, it should be mentioned that such resolution might
not be sufficient to track the contraction of each fragment due to radiative cooling
to its smallest size defined by the equilibrium between cooling and external heating.
Outflow boundary conditions were prescribed on all boundaries.

For the simulation described above the cooling parameter was ψ b � 2�8 � 10�5.
The hydrodynamic timescale, i.e. the bullet crushing time, was t hydro � 2�54 �
109 s � 80 yrs�, the cooling timescale was tcool � 70�9 � 105 s � 82 days. The
total run time was 8�26 �109 s � 261�6 yrs. Thus the evolution of the system was in
a regime strongly dominated by cooling.

When the interaction of an inhomogeneity proceeds in the adiabatic regime, the
dominant process is the lateral clump re-expansion [KMC94, PFB02]. The inter-
nal shock compresses the clump and once such compression is completed the re-
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expansion begins into regions of lowest total pressure, i.e. the lateral direction. Such
re-expansion is responsible for the destruction of the clump, (when acting in combi-
nation with instabilities at the upstream clump surface). When more than one clump
is present lateral re-expansion also drives interclump interactions via merging and
formation of larger structures that subsequently alter the global flow [PFB02].

The fundamental distinction between the radiatively cooled inhomogeneous sys-
tems, including individual bullets, and the adiabatic ones is the minimal role of lateral
re-expansion. Instead, the dominant process is the formation of instabilities at the
upstream surface of the bullet with a wavelength significantly smaller than the one
observed in the adiabatic case. As the bullet drives through the ambient medium hy-
drodynamic instabilities (Richtmeyer-Meshkov, Rayleigh-Taylor) produce the initial
instability seed. The resulting density variations quickly trigger the onset of thermal
instabilities which then become the dominant process responsible for bullet frag-
mentation. In our simulation such instabilities start developing with a wavelength of
about 10% of the initial bullet radius or 3�0 � 1014 cm � 20 a.u. This initial scale
is crucial for subsequent evolution since it determines not only the continuing pro-
cess of bullet fragmentation but also the structure of the downstream flow. As was
mentioned above, we did not observe any significant changes in the fragmentation
spectrum with changing grid resolution, therefore we believe that we observed the
true fragmentation spectrum corresponding to the given flow conditions. Of course
this conclusion may be altered with fully 3-D simulations.

One noteworthy point is that the evolution of the bullet and its fragments ap-
pear to proceed in such a manner that there is constant mass loss of bullet material.
This implies a steady “mass loading” of the downstream flow via the hydrodynamic
ablation. Mass loading has been claimed to be an important process in all clumpy
hydrodynamic systems [HDPS86, HD88].

Since the wavelength of the initial fragmentation spectrum is approximately con-
stant along the bullet radius, the fragments produced by the instability are of different
mass with the most massive being closest to the symmetry axis and the outermost be-
ing the lightest. As a result the fragments are “peeled off” from the bullet one by one
starting with the outermost in radius. Each fragmentation event results in the for-
mation of a distinct “ring-like” feature in the bullet wake. The formation or rings is
a consequence of the axisymmetry of these simulations. In 3-D it is likely that the
rings would themselves fragment [KBPB03].

Figure 5 shows the computational domain at time t � 261�6 yrs. In Figure 5a
the synthetic Schlieren image (gradient of the density logarithm) is shown illustrat-
ing the shock and vortex sheet structure in the flow. Figure 5b shows the synthetic
observation image of the computational domain. Since our simulation did not track
the full ionization dynamics of the flow, the image represents the total radiative en-
ergy losses summed along each ray. The 2D distribution of the state vector obtained
in the simulation was extended using cylindrical symmetry to a 2048�2048�7680
cells 3D data cube. Thus the synthetic observation image represents the 2D projected
distribution of emissivity I integrated in the z-direction according to the formula

Ii j �∑
k

n2
i jkΛi jk�Ti jk�� (8)
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Fig. 5. a) Synthetic Schlieren image of the computational domain at time 261.6 yrs. Shown
is the gradient of the density logarithm. b) Synthetic observation image of the computational
domain for the same time as in a). Note the periodic ring-like structures in the domain resulting
from individual fragmentation episodes.

where i� j� and k are the cell indices in the x-, y-, and z-direction respectively, and
the cooling rate Λ�T � here, as well as in the simulation, was determined based on the
cooling curve described by [DM72].

The second process that determines the structure of the flow in the wake is gas
re-expansion into the cavity excavated by the bullet. The highest temperature reached
by gas in the system is at the tip of the central bullet fragment and is about 3�5 � 10 5

K. Gas passing through the bullet bowshock cools down very rapidly. That weakens
the bowshock and makes it more oblique, which in its turn prevents further heating of
the ambient gas. As it can be seen in Figure 5a, the bowshock essentially disappears
half-way downstream from the bullet head. Beyond the turbulent region immediately
behind the bullet head and in between the stripped bullet fragments, the gas tends to
re-expand essentially at the sound speed of the ambient gas and fill the cavity. Such
re-expansion causes gas to rebound on the axis resulting in a reflected shock. The
effect of this shock can be seen in Figure 5a around the symmetry axis as a collection
of features that are narrower than the bowshock.

3.2 Velocity Distribution and Hubble-type Flow

Another key property of the strings is the presence of the Hubble-type flows in the
bullet wake. Left panel of Figure 6 shows the distribution of the total velocity v tot�x�
along the symmetry axis of the bullet/wake as a function of distance from the bullet
head. The linear velocity decrease from the maximum value of 210 km s�1from head
to base is clear aside from some minor fluctuations arising due to the unsteadiness
of the downstream flow. Note that very little deceleration of the bullet head has oc-
cured. Given that the initial bullet velocity is 235 km s�1we see that after 260 yrs.
in which the bullet material traveled the distance of 1�8 � 10 17 cm � 0�058 pc, the
bullet material lost only� 10% of its original velocity. That is due to the fact that the
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Fig. 6. Left: distribution of total velocity along the symmetry axis of the bullet at the time
261.6 yrs. (same time in the simulation as the one shown in Figure 5. Right: distribution of the
emissivity-weighed total velocity along the symmetry axis of the bullet at the same time.

central fragment retains most of the original bullet mass while it has a rather small
cross-section due to the cooling-induced contraction.

One should be cautious, however, in directly comparing the total velocity distri-
bution shown in the left panel of Figure 6 to the observationally determined velocity
distributions in the strings of η Carinae (cf. Figure 6 in [WDC99]). Quantities, more
closely resembling the ones that are obtained observationally, should be employed
in order to make such comparison relevant. For example, one can create emissivity-
weighed total velocity vemis�x� maps of the flow. This distribution along the x-axis
is shown in the right panel of Figure 6. The distribution of this quantity is signif-
icantly more noisy than the total velocity cross-cut. However, the local maxima of
vemis�x� roughly tend to fall on the same line as that in the previous figure giving
some indication of the presence of the Hubble-type flow.
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Summary. This paper presents the methodology behind and results of adaptive mesh refine-
ment in global magnetohydrodynamic models of the space environment. Techniques used
in solving the governing equations of semi-relativistic magnetohydrodynamics (MHD) are
presented. These techniques include high-resolution upwind schemes, block-based solution-
adaptive grids, explicit, implicit and partial-implicit time-stepping, and domain decomposition
for parallelization. Recent work done in coupling the MHD model to upper-atmosphere and
inner-magnetosphere models is presented, along with results from modeling a solar coronal
mass ejection and its interaction with Earth’s magnetosphere.

1 Introduction

Space weather is the term that has been coined to describe the intricate processes
coupling the Sun to the geospace environment. Conditions on the Sun, in the solar
wind, and in the Earth’s magnetosphere, ionosphere and thermosphere can influence
the performance and reliability of space- and ground-based technological systems,
and can endanger human life and health. Global computational models for space
weather, based on first principles, are beginning to be developed by a number of
research groups. The hope for such models is that they will eventually fill the gaps
left by measurements, extending the spatially and temporally limited observational
database into a self-consistent global understanding of our space environment.

Presently, and in the foreseeable future, magnetohydrodynamic (MHD) models
are the only models that can span the enormous distances present in the Earth-Sun
system. In addition, adaptive mesh refinement (AMR) is a necessity, due to the enor-
mous range of scales: the distance from Earth to Sun is 23,456 R E ; the Earth’s bow
shock standoff distance is around 15 RE ; the length of the magnetotail is around 100
RE .

However, it should not be forgotten that even generalized MHD equations are
only a relatively low-order approximation to more complete physics; they provide
only a simplified description of natural phenomena in space plasmas. To address this
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fact, current work in space-weather modeling is, in part, focused on coupling global
MHD models for the region between the Earth and the Sun to models specifically de-
veloped for the near-Sun and near-Earth regions. Both the global AMR MHD model
developed by the authors, and the coupling to other models for use in modeling the
entire space-weather problem, are discussed below.

2 Non-Relativistic Magnetohydrodynamics

The governing equations for an ideal, non-relativistic, compressible plasma may be
written in a number of different forms. While the different forms of the MHD equa-
tions describe the same physics at the differential equation level, there are important
practical differences when one solves discretized forms of the various formulations.

2.1 Fully Conservative Form

The fully conservative form of the equations is

∂U
∂t
� �∇ � F�T � 0 � (1)

where U is the vector of conserved quantities and F is a flux diad,

U �

�
���

ρ
ρu
B

Emhd

�
��� (2)

F �

�
�����

ρu

ρuu�
�

p� 1
2µ0

B2
�

I� 1
µ0

BB

uB�Bu

u
�

Emhd � p� 1
2µ0

B2
�
�

1
µ0
�u �B�B

�
�����

T

(3)

where Emhd is the magnetohydrodynamic energy, given by

Emhd �
1
2
ρu2�

1
γ�1

p�
1

2µ0
B2 (4)

2.2 Symmetrizable Formulation

Symmetrizable systems of conservation laws have been studied by a number of au-
thors, including Godunov [11] and Harten [14]. One property of the symmetrizable
form of a system of conservation laws is that an added conservation law

∂�ρs�
∂t

�
∂�ρsux�

∂x
�
∂�ρsuy�

∂y
�
∂�ρsuz�

∂z
� 0
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for the entropy s can be derived by a linear combination of the system of equa-
tions. For the ideal MHD equations, as for the gasdynamic equations, the entropy is
s� log�p�ργ�. Another property of symmetrizable systems is that they are Galilean
invariant; all waves in the system propagate at speeds u�cw (for MHD, the possible
values of cw are the Alfvén, magnetofast and magentoslow speeds). Neither of these
properties holds for the fully conservative form of the MHD equations.

Godunov showed that the fully conservative form of the MHD equations (eq. 1)
is not symmetrizable [11]. The symmetrizable form may be written as

∂U
∂t

��∇ �F�T � Q � (5)

where

Q ��∇ �B

�
���

0
1
µ0

B
u

1
µ0

u �B

�
��� (6)

Vinokur separately showed that eq. (5) can be derived starting from the Euler equa-
tions and Maxwell equations, if no stipulation is made about ∇ �B in the derivation.
Powell showed that this symmetrizable form can be used to derive a Roe-type ap-
proximate Riemann solver for solving the MHD equations in multiple dimensions
[20].

The MHD eigensystem arising from Eq. (1) or Eq. (5) leads to eight eigen-
value/eigenvector pairs. The eigenvalues and associated eigenvectors correspond
to an entropy wave, two Alfvén waves, two magnetofast waves, two magnetoslow
waves, and an eighth eigenvalue/eigenvector pair that depends on which form of the
equations is being solved. This last wave (which describes the jump in the normal
component of the magnetic field at discontinuities) has a zero eigenvalue in the fully
conservative case, and an eigenvalue equal to the normal component of the velocity,
un, in the symmetrizable case. The expressions for the eigenvectors, and the scaling
of the eigenvectors, are more intricate than in gasdynamics [30].

The symmetrizable formulation (given by Eq. 5) is formally not fully conserva-
tive. Terms of order ∇ �B are added to what would otherwise be a divergence form.
The danger of this is that shock jump conditions may not be correctly met, unless
the added terms are small, and/or they alternate in sign in such a way that the errors
are local, and in a global sense cancel in some way with neighboring terms. This
downside, however, has to be weighed against the alternative; a system (i.e., the one
without the source term) that, while conservative, is not Gallilean invariant, has a
zero eigenvalue in the Jacobian matrix, and is not symmetrizable. In practice, using
the symmetrizable formulation, and adding a technique to keep the magnitude of
∇ �B small, is a viable approach, and the one used in this work.
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3 Semi-Relativistic Plasmas

While the solar-wind speed remains non-relativistic in the solar system, the intrinsic
magnetic fields of several planets in the solar system are high enough, and the density
of the solar wind low enough, that the Alfvén speed,

VA �

�
B2

µ0ρ

can reach appreciable fractions of the speed of light. In the case of Jupiter, the Alfvén
speed in the vicinity of the poles is of order ten times the speed of light! Even Earth
has a strong enough intrinsic magnetic field that the Alfvén speed reaches twice the
speed of light in Earth’s near-auroral regions.

For these regions, solving the non-relativistic ideal MHD equations does not
make sense. Having waves in the system propagating faster than the speed of light,
besides being non-physical, causes a number of numerical difficulties. However,
solving the fully relativistic MHD equations is not practical, nor really necessary.
What is called for is a semi-relativistic form of the equations, in which the flow
speed and acoustic speed are non-relativistic, but the Alfvén speed can be relativistic.
A derivation of these semi-relativistic equations from the fully relativistic equations
is given in [12]: the final result is presented here.

3.1 The Semi-Relativistic MHD Equations

The semi-relativistic ideal MHD equations are of the form

∂Usr

∂t
��∇ � Fsr�

T � 0 (7)

where the state vector, Usr, and the flux diad, Fsr, are

Usr �
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In the above,
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are the Poynting vector, the electromagnetic energy density, and the electromagnetic
pressure tensor, respectively. The electric field E is related to the magnetic field B by
Ohm’s law.

3.2 Lowering the Speed of Light

This new system of equations has wave speeds that are limited by the speed of light;
for strong magnetic fields, the modified Alfvén speed (and the modified magneto-
fast speed) asymptote to c. The modified magnetoslow speed asymptotes to a, the
acoustic speed. This property offers the possibility of a rather tricky convergence-
acceleration technique for explicit time-stepping schemes, first suggested by Boris
[6]; the wave speeds can be lowered, and the stable time-step thereby raised, by arti-
ficially lowering the value taken for the speed of light. This method is known as the
“Boris correction.”

The semi-relativistic MHD equations given above are valid in physical situations
in which VA � c. A slight modification yields a set of equations, the steady-state
solutions of which are independent of the value taken for the speed of light. Defining
the true value of the speed of light to be c0, to distinguish it from the artificially
lowered speed of light, c, the equations are:

∂Usr

∂t
� �∇ � Fsr�

T � Qc0 (13)

where the state vector, Usr, and the flux diad, Fsr, are as defined above, and the new
source term in the momentum equation is

Qc0 �
1
µ0

�
1

c2
0

�

1
c2

�
E∇ �E

An implementation of the semi-relativistic equations has been made in the work
presented here. Typically, the non-relativistic form of the equations is solved every-
where but near planets with intrinsic magnetic fields, where the semi-relativistic form
is solved.

4 Solution Techniques

4.1 The Upwind Finite-Volume Scheme

The MHD equations are well suited for finite volume methods when the governing
equations are integrated over a computational cell i, yielding

dUi

dt
��

1
Vi
∑
faces

F � n̂A�

Qi

Vi
∑
faces

B � n̂A � (14)

where Vi is the volume of cell i, A is the surface area of the faces forming the com-
putational cell, n̂ is the unit vector normal to the cell faces, U i is the cell-averaged
conserved solution vector, and Q i is given by
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Qi ��

�
���

0
1
µ0

Bi

ui
1
µ0

ui �Bi

�
��� � (15)

The numerical face fluxes, F � n̂, are defined in terms of the left and right interface
solution states, UL and UR, as follows

F � n̂� F �UL�UR� n̂� � (16)

where UL and UR are the state vectors at the left and right sides of the interface.
Because the MHD equations are a system of hyperbolic conservation laws, many

of the techniques that have been developed for the Euler equations can be applied
relatively straightforwardly. In particular, the high-resolution finite-volume approach
of van Leer [33] (i.e. approximate Riemann solver + limited interpolation scheme +
multi-stage time-stepping scheme) is perfectly valid. The Rusanov/Lax-Friedrichs
approximate Riemann solver can be applied directly; no knowledge of the eigen-
system of the MHD equations is required other than the fastest wave speed in the
system. A Roe-type scheme [29] can be constructed for non-relativistic MHD [21],
but requires more work, because of the complexity of the eigensystem. In addition,
an HLLE-type Riemann solver has been derived by Linde [17]; it is less dissipative
than the Rusanov/Lax-Friedrichs scheme, but less computationally intensive than
the Roe scheme. Whichever approximate Riemann solver is chosen to serve as the
flux function, standard interpolation schemes and limiters can be used to construct a
finite-volume scheme.

One way in which the numerical solution of the MHD equations differs from that
of the gasdynamic equations is the constraint that ∇ �B � 0. Enforcing this constraint
numerically, particularly in shock-capturing codes, can be done in a number of ways,
but each way has its particular strengths and weaknesses. This issue is explained
more fully in a number of references such as [7, 20, 21, 8, 18, 9]. Tóth has published
a numerical comparison of many of the approaches for a suite of test cases [31].

5 Block-Based AMR for MHD

For typical solar-wind flows, length scales can range from tens of kilometers in the
near-Earth region to the Earth-Sun distance (1�5�10 11 m), and timescales can range
from a few seconds near the Sun to the expansion time of the solar wind from the Sun
to the Earth (�105 s). The use of AMR is not only extremely beneficial, but a virtual
necessity for solving problems with such disparate spatial and temporal scales.

Building on prior work by Berger [1, 3, 4, 5] and work by Quirk [22, 23],
and keeping in mind the desire for high performance on massively parallel com-
puter architectures, a relatively simple yet effective block-based AMR technique has
been developed and is used in conjunction with the finite-volume scheme described
above. Here the governing equations are integrated to obtain volume-averaged solu-
tion quantities within rectangular Cartesian computational cells. The computational
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Fig. 1. (left) Self-similar blocks used in parallel block-based AMR scheme. (right) Self-similar
blocks illustrating the double layer of ghost cells for both coarse and fine blocks.

cells are embedded in regular structured blocks of equal sized cells. The blocks are
geometrically self-similar with dimensions �̃x� �̃y� �̃z and consist of Nx�Ny�Nz

cells, where �̃x, �̃y, and �̃z are the nondimensional lengths of the sides of the rectan-
gular blocks and Nx, Ny, and Nz are even, but not necessarily all equal, integers. Typi-
cally, blocks consisting of anywhere between 4�4�4� 64 and 12�12�12� 1728
cells are used (see Figure 1). Solution data associated with each block are stored in
standard indexed array data structures. It is therefore straightforward to obtain solu-
tion information from neighboring cells within a block.

Computational grids are composed of many self-similar blocks. Although each
block within a grid has the same data storage requirements, blocks may be of differ-
ent sizes in terms of the volume of physical space that they occupy. Starting with an
initial mesh consisting of blocks of equal size (i.e., equal resolution), adaptation is ac-
complished by the dividing and coarsening of appropriate solution blocks. In regions
requiring increased cell resolution, a “parent” block is refined by dividing itself into
eight “children” or “offspring.” Each of the eight octants of a parent block becomes
a new block having the same number of cells as the parent and thereby doubling
the cell resolution in the region of interest. Conversely, in regions that are deemed
overresolved, the refinement process is reversed, and eight children are coarsened
and coalesced into a single parent block. In this way, the cell resolution is reduced
by a factor of 2. Standard multigrid-type restriction and prolongation operators are
used to evaluate the solution on all blocks created by the coarsening and division
processes, respectively.

The decision of where to adapt is made based on user-determined adaptation
criteria. The user can choose up to three criteria from a large list (typical criteria are
�∇�B�, �∇�u�, �∇p�). Each block is assigned a value equal to the maximum over
all cells of the quantity being used in the adaptation criterion. The blocks are then
sorted by these values. The top of the list is flagged for refinement; the bottom of
the list is flagged for coarsening. The number of blocks flagged for refinement and
coarsening is based on user-specified rules for the percentage of blocks to be refined
or coarsened.

Two neighboring blocks, one of which has been refined and one of which has
not, are shown in Figure 1. Any of the blocks shown in Figure 1 can in turn be
refined, and so on, leading to successively finer blocks. In the present method, mesh
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refinement is constrained such that the cell resolution changes by only a factor of 2
between adjacent blocks and such that the minimum resolution is not less than that
of the initial mesh.

In order that the update scheme for a given iteration or time step can be applied
directly to all blocks in an independent manner, some additional solution informa-
tion is shared between adjacent blocks having common interfaces. This information
is stored in an additional two layers of overlapping “ghost” cells associated with each
block as shown in Figure 1. At interfaces between blocks of equal resolution, these
ghost cells are simply assigned the solution values associated with the appropriate
interior cells of the adjacent blocks. At resolution changes, restriction and prolonga-
tion operators, similar to those used in block coarsening and division, are employed
to evaluate the ghost cell solution values. After each stage of the multistage time-
stepping algorithm, ghost cell values are reevaluated to reflect the updated solution
values of neighboring blocks. With the AMR approach, additional interblock com-
munication is also required at interfaces with resolution changes to strictly enforce
the flux conservation properties of the finite-volume scheme [1, 2, 3]. In particular,
the interface fluxes computed on more refined blocks are used to correct the inter-
face fluxes computed on coarser neighboring blocks so as to ensure that the fluxes
are conserved across block interfaces.

6 Parallel Implementation

6.1 Explicit Time-Stepping

The parallel block-based AMR solver was designed from the ground up with a view
to achieving very high performance on massively parallel architectures. The underly-
ing upwind finite-volume solution algorithm, with explicit time stepping, has a very
compact stencil and is therefore highly local in nature. The hierarchical data structure
and self-similar blocks make domain decomposition of the problem almost trivial
and readily enable good load-balancing, a crucial element for truly scalable com-
puting. A natural load balancing is accomplished by simply distributing the blocks
equally among the processors. Additional optimization is achieved by ordering the
blocks using the Peano-Hilbert space filling curve to minimize inter-processor com-
munication. The self-similar nature of the solution blocks also means that serial per-
formance enhancements apply to all blocks and that fine-grain parallelization of the
algorithm is possible. The parallel implementation of the algorithm has been carried
out to such an extent that even the grid adaptation is performed in parallel.

Other features of the parallel implementation include the use of FORTRAN 90 as
the programming language and the message-passing interface (MPI) library for per-
forming the interprocessor communication. Use of these standards greatly enhances
the portability of the code and leads to very good serial and parallel performance.
The message passing is performed in an asynchronous fashion with gathered wait
states and message consolidation.



Parallel, AMR MHD for Space Weather 481

Number of Processors

P
ar

al
le

l P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

256 512 768 1024 1280 1536
0

100

200

300

BATS-R-US Code Scaling on Different Architectures

Black dashed lines
represent perfect scaling

from single node performance

32 64 96 128
0

10

20

30

40

50

555666 5122

Black dashed lines
represent perfect scaling

from single node performance
SG

I O
rig

in
20

00
 (3

00
 M

Hz 
R12

k)

SGI O
rig

in
20

00
 (2

50
MHz R

10
k)

Cray T3E-1200 (600 MHz)

Cray T3E-600 (300MHz)

Pentium Pro (200MHz)
IBM SP2 (166 MHz)

Cray T3E-600 (300MHz)

Cray T3E-1200 (600MHz)

SGI O
rig

in
20

00
 (3

00
 M

Hz R
12

k)

Fig. 2. Parallel speedup of MHD code on various architectures. Black dashed lines represent
perfect scaling from single node performance.

Implementation of the algorithm has been carried out on Cray T3E supercomput-
ers, SGI and Sun workstations, on Beowulf type PC clusters, on SGI shared-memory
machines, on a Cray T3D, and on several IBM SP2s. The code scales nearly per-
fectly to 1,500 processors and a sustained speed of 342 GFlops has been attained
on a Cray T3E-1200 using 1,490 PEs. For each target architecture, simple single-
processor measurements are used to set the size of the adaptive blocks. The scaling
on various architectures is shown in Figure 2.

6.2 Implicit Time-Stepping

A number of time-stepping algorithms have been implemented in the AMR MHD
solver. The simplest and least expensive scheme is a multistage explicit time step-
ping, for which the time step is limited by the CFL stability condition. An uncon-
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ditionally stable fully implicit time stepping scheme [32, 16] has also been imple-
mented. The second-order implicit time discretization (BDF2) requires the solution
of a non-linear system of equations for all the flow variables. This can be achived
by the Newton-Krylov-Schwarz approach: a Newton iteration is applied to the non-
linear equations; a parallel Krylov type iterative scheme is used to solve the linear
systems; the convergence of the Krylov solver is accelerated with a Schwarz type pre-
conditioning. Two Krylov solvers have been implemented: BiCGSTAB and GMRES.
A modified block incomplete LU (MBILU) preconditioner is applied on a block by
block basis. Since every block has a simple Cartesian geometry, the preconditioner
can be implemented very efficiently. The resulting implicit scheme requires about
20-30 times more CPU time per time step than the explicit method, but the physical
time step can be 1,000 to 10,000 times larger. This implicit algorithm has a very good
parallel scaling due to the Krylov scheme and the block by block application of the
preconditioner.

In addition, it is possible to combine explicit and implicit time stepping. Magne-
tosphere simulations include large volumes where the Alfvén speed is quite low (tens
of km/s) and the local CFL number allows large explicit time steps (tens of seconds
to several minutes). In these regions implicit time stepping is a waste of computa-
tional resources. Since the parallel implicit technique is fundamentally block based,
only those blocks where the CFL condition would limit the explicit time step to less
than the selected time step (typically � 10 s) are treated implicitly. Needless to say,
this combined explicit-implicit time stepping represents more computational chal-
lenges (such as separate load balancing of explicit and implicit blocks). Overall, this
solution method seems to be a very promising option, though further work remains
to be done to optimize the combined explicit-implicit technique.

7 Coupling to Other Models

The method described in the preceding sections is for the ideal and semi-relativistic
MHD equations. While these equations are a suitable model for much of the solar-
wind physics between Sun and Earth, other physical processes dominate in the near-
Sun and near-Earth regions.

To address this, the group at University of Michigan is working to couple the
parallel, adaptive MHD code described above to other models specifically tailored to
their respective regimes. In particular, the following models have been incorporated:

� The Rice Convection Model (RCM), which models the dynamic behavior of the
particles and the electric fields and currents of Earth’s inner magnetosphere (the
region inside the closed magnetic field lines). The physics of this region are com-
plicated, because it contains overlapping particle distributions with a wide range
of energies and characteristics. These different coexisting particle populations
cannot be treated as a single fluid, because they all move differently. The RCM
represents the particles in terms of 30-200 separate fluids. Its equations and nu-
merical methods have been specifically designed for accurate treatment of the in-
ner magnetosphere [15, 13, 34, 10], including the flow of electric currents along
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magnetic field lines to and from the conducting ionosphere. The RCM does its
primary calculations on a 2D grid on a spherical shell in the ionosphere. Values
in the magnetosphere are computed by mapping out along magnetic field lines.
The ionospheric grid is fine, typically about 0.5 degrees latitude in the auroral
zone. The RCM computes the currents and the associated electric fields self-
consistently. The essential limitation of the RCM is that it only describes the in-
ner magnetosphere: one needs a global model for the magnetosphere’s magnetic
field. This can be achieved by coupling RCM to the global MHD code described
above. The two codes communicate dynamically, providing a more full picture
of the inner magnetosphere and the global magnetosphere than would be possible
with either code alone.

� Two ionospheric models: a simple height-integrated electrostatic model [25, 28,
26], in which an empirically-driven conductance tensor is used to solve for the
potential in the ionosphere, with plasma density, temperature and velocity com-
puted by the global model; and a sophisticated model known as the thermosphere
– ionosphere – electrodynamics general circulation model (TIEGCM) [24] which
has been used in numerous studies of the ionosphere - thermosphere system. The
TIEGCM solves for the thermospheric and ionospheric composition, tempera-
ture, and winds. It solves for mass mixing ratios of the neutral major species O 2,
N2, and O using full transport and chemistry, while the minor species N( 2D�,
N(4S�, NO, He, and Ar are obtained by assuming that they are in local equilib-
rium with the major species. For the ions, the O�

2 dynamics are considered, while
the species N�2 , NO�, and N are considered to be in local equalibrium with O�

2 .
The TIEGCM is a full three-dimensional code with 5Æ latitude by 5Æ longitude by
0.5 scale height altitude cells. There are 29 pressure levels in the model such that
the simulation spans from � 95 km to 650 km in altitude. The TIEGCM/global
MHD coupling has been fully implemented and tested the first results obtained
with the coupled model have also been reported [27].

8 Applications

The figures in this section show results from the most ambitious simulation our group
has carried out to date. The calculation tracks a coronal mass ejection (CME) from
its generation at the Sun to its interaction with the Earth’s magnetosphere-ionosphere
system.

The earth’s magnetosphere is highly sensitive to the orientation of the incoming
solar wind, as shown in Figures 3 and 4. The first shows the steady solution for the
Earth’s magnetosphere when the incoming solar wind has a northward component to
the interplanetary magnetic field (IMF); the second shows the result for a southward
IMF. As can be seen, the magnetic-field topology (the white lines) and the pressure
(color contours) differ dramatically between the two cases. In the northward-IMF
case, the tail extends tens of Earth radii, and the pressure distribution in the equa-
torial plane is nearly axisymmetric. In the southward-IMF case, the magnetic-field
topology is totally different, and there is a build-up of pressure in the tail.
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Fig. 3. Magnetospheric topology for northward interplanetary magnetic field. White lines rep-
resent magnetic-field lines; color contours represent pressure.

Fig. 4. Magnetospheric topology for southward interplanetary magnetic field. White lines rep-
resent magnetic-field lines; color contours represent pressure.
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Fig. 5. Global View of Coronal Mass Ejection Calculation (t=69 hours). White lines represent
projection of magnetic-field lines onto the meridional plane; color contours represent number
density.

In actuality, the magnetic-field orientation of the solar wind is far from steady.
In particular, if a coronal mass ejection takes place, and moves towards Earth, the
Earth’s magnetosphere sees a rapid change in density, pressure and magnetic-field
orientation in the incoming solar wind, and responds accordingly. The calculation
carried out here is for a CME that takes approximately three days to reach Earth.
Up to 14 million cells were used in the calculation: the mesh-refinement criteria led
to varying amounts of cells in time, and to a large range in cell size. The smallest
cell was 1/32 solar radii (21,750 km); the largest was 4 solar radii (2�785�10 6 km).
Figures 5 and 6 give an idea of the use of AMR in the calculation; the second plot is
a 2000 times magnification of the first plot.

The calculation is begun with a steady-state solar-wind solution, the magnetic-
field topology of which is shown in Figure 7. A flux rope described by a similarity
solution [19] is introduced as a perturbation on this steady state, and the evolution in
time of the resulting flow is computed. Figures 8 and 9 show two snapshots in time
of the magnetic field (white lines) and the flow speed (color contours).

The grid, which is highly adapted along the Sun-Earth line and coarser away
from it, allows the CME to be tracked all the way to Earth. There, the coupling with
the magnetosphere and ionosphere codes allow the geoeffectiveness of the CME to
be calculated. Figure 10 shows noon-midnight meridional cuts through the magneto-
sphere solutions at four times. The white lines are magnetic-field lines projected on
the plane; the color contours show the pressure.
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Fig. 6. Zoomed-In View of Coronal Mass Ejection Calculation. (t=69 hours). White lines
represent projection of magnetic-field lines onto the meridional plane; color contours represent
number density.

Fig. 7. Steady Corona. Magnetic-field lines and color contours of magnetic-field magnitude
are shown.
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Fig. 8. Coronal Mass Ejection Evolution (t=1.5 Hours). Magnetic-field lines and color con-
tours of flow speed are shown.

Fig. 9. Coronal Mass Ejection Evolution (t=3.0 Hours). Magnetic-field lines and color con-
tours of flow speed are shown.
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Fig. 10. Response of the Magnetosphere to the Coronal Mass Ejection. Projection of the
magnetic-field lines on the meridional plane and color countours of pressure are shown at
four different times.

This calculation, while still short of the ultimate goal of predictive calculations
of space weather, is an important step on the way to that goal. The adaptive mesh al-
lows a global simulation to be carried out while sufficiently resolving the near-Earth
region, the near-Sun region, and the evolving CME. The parallel implementation al-
lows the daunting computational task to be carried out in a reasonable wall-clock
time. Finally, the coupling to an inner magnetosphere and ionosphere model assure
that the appropriate physical processes are being modeled in each region.

Concluding Remarks

With the combination of adaptive mesh refinement, domain-decomposition paral-
lelization, and robust finite-volume solvers, methods for solving the ideal MHD
equations are developing into powerful tools for a number of applications. With at-
tention to some issues particular to solar-wind modeling (high Alfvén speeds, strong
embedded magnetic fields, pressure positivity and divergence control), these tools
are becoming quite sophisticated. Much of the work to be done in improving these
tools is in coupling them to solvers for regions in which semi-relativistic ideal MHD
is not a sufficient model. The results presented in this paper, while preliminary, hint
at the new abilities and insights that can be gained from this approach.
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Summary. We present results from adaptive mesh refinement (AMR) simulations of two
MHD applications relevant to magnetic fusion. The applications are: pellet injection in toka-
maks (PI) and magnetic reconnection (MR). For PI, AMR is essential to provide the resolu-
tion required to simulate realistic pellet sizes relative to device dimensions (typical ratios are
O�10�3��. We present results from 3D AMR simulations in a tokamak geometry with em-
phasis on differences between the low-field and high-field side pellet launches. For MR, We
present results from 2D AMR simulations in which both the outer “inviscid” region and the
inner “resistive” region are well-resolved. AMR provides an efficient means of resolving the
near-singular current sheets in the inner region where the actual breaking and reconnection
of the magnetic field lines takes place. The numerical method developed is an explicit un-
split upwinding treatment of the 8-wave formulation, coupled with a MAC projection method
to enforce the solenoidal property of the magnetic field. The Chombo framework is used for
AMR.

1 Introduction

Magneto-hydrodynamic fusion applications often exhibit a wide range of spatial and
temporal scales. In this paper, we focus on two MHD applications relevant to mag-
netic confinement fusion. The applications chosen are: (a) pellet injection (PI) in
tokamaks and (b) magnetic reconnection (MR). Both applications benefit from adap-
tive mesh refinement (AMR) in the sense that we are able to resolve small features
while still being able to compute MHD flows in a practical manner.

PI: Injecting small pellets of frozen hydrogen into a tokamak is a proven method
of fueling. Experimentally, it is known that the density distribution, after the pellet
ablates upon encountering the high temperatures in a tokamak, is not consistent with
the distribution inferred from assuming that the ablated material remains on the flux
surfaces where the ablation occurred. The subsequent redistribution of mass is be-
lieved to be due to anomalous MHD processes. The mass redistribution is observed
to be a sensitive function of the angle (with respect to the mid-plane) in which the
pellet is injected [1, 2]. It is this phenomenon which we seek to explain.
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MR: Magnetic reconnection refers to the breaking and reconnecting of oppositely
directed magnetic field lines in a plasma. In the process, magnetic field energy is
converted to plasma kinetic and thermal energy. MR occurs in many contexts: for
example, in the sawtooth-like oscillations observed in the operation of a tokamak,
and in solar coronal events. In general, in MR, two regions are distinguished: an
outer “inviscid” region and an inner “resistive” region whose width scales with η

1
2 ,

where the actual breaking and reconnecting of the magnetic field lines takes place.
In this paper, we present results from simulations of MR in an idealized canonical
two dimensional setting in which both the inner and outer regions are well-resolved.
AMR is an obvious computational methodology to resolve the near-singular current
sheets.

2 Pellet Injection in Tokamaks

2.1 Physical Problem

The physical problem we are dealing with involves the injection of frozen fuel pellets
into a tokamak. The physical processes are broadly distinguished into the following
two stages. The first stage is the ablation of mass at the pellet surface due to the high
temperature background plasma encountered by the pellet. The ablated pellet mass,
which is a neutral gas, is rapidly heated by electrons and ionizes to form plasma.
The second stage is the redistribution of the ablated pellet material by free streaming
along the magnetic field lines and by anomalous MHD processes which cause mass
flow across field lines and flux surfaces. The pellet ablation phenomenon of the first
stage is considered well-understood [3, 4], and as such we use existing ablation
models. The thrust of the work described here is an accurate and efficient simulation
of the second phase.

2.2 Mathematical Model

Our mathematical model consists of single fluid MHD equations with source terms
in the continuity equation to model the mass injected into the system by the pel-
let, and source (sink) terms in the energy equations to model electron heating and
corresponding cooling on flux surfaces. The equations are written below.

∂U
∂t
�
∂Fj�U�

∂x j
�
∂Fv� j�U�

∂x j
�ST �U��S∇�B�U��Spellet�U�� (1)

where the solution vector U �U�x1�x2�x3� t��U�R�z�R0φ� t� is U � �ρ�ρui�Bi�e�T ,
and the flux vector Fj�U� is given by

Fj�U� �

����
���

ρu j

ρuiu j � ptδi j �BiB j �BT B3δi j �BiBTδ3 j �B jBTδi3

u jBi�uiB j �BTδi3u j �BTδ3 jui

�e� p� 1
2 BkBk�u j �B j�Bkuk��BT B3u j � �Bkuk�BTδ3 j

����
���

� (2)
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In the above equations, R, z, φ, are the radial, axial and toroidal coordinates, R0 is the
major radius, ρ is the density, ui is the velocity, Bi is the magnetic field, p and pt are
the pressure and total pressure, respectively, and e is the total energy per unit volume
of the plasma. For numerical stability and robustness, we have subtracted out the
equilibrium toroidal component of the initial equilibrium magnetic field, B T �xi�0��
g0�R. These equations are closed by the perfect gas equation of state,

e �
p

γ�1
�
ρ
2

ukuk�
1
2

BkBk� (3)

which we note does not include the contribution 1�2B 2
T . The flux vector Fv� j�U�

corresponds to the diffusive resistivity/viscosity terms and is omitted in the interest
of brevity. The toroidal geometry terms are modeled in the source terms as
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For a large aspect ratio tokamak, ST �U� is small but it contains essential toroidal
effects which cause the in-out asymmetry discussed in Section 2.5. The source terms
S∇�B�U�, written below,

S∇�B�U� ��∇ �B�
�

0�BR�Bφ�Bz�uR�uz�uφ�uz��B �u�
�T
�� (5)

are included because we use the symmetrization procedure of Godunov [5] which
leads to the 8-wave formulation. This formulation was also used by Powell et
al. [6] in their AMR implementation of ideal MHD. Finally, the source terms
Spellet � �Sn�n0�0�0�0�0�0�0�Se�n0�

T , where n0 is some reference number density,
correspond to the mass source and energy source/sink terms, and are described next.

2.3 Pellet Ablation Model

In the present model, the pellet is described by a sphere of frozen molecular hydrogen
of radius rp. The trajectory xp�xi� t� of the pellet is prescribed with a given initial
location xp0 � xp�xi�0� and constant velocity u p. The density source term arises from
the ablation of the pellet and is written in terms of number density, ( i.e., atoms per
unit volume per unit time) as

Sn � Ṅδ�x� xp�� (6)

where the delta function is approximated as a Gaussian distribution centered over
the pellet with a characteristic size equal to 10r p. The ablation rate of the pellet,



494 Samtaney et al.

originally derived by Parks and Turnbull [3] and modified for hydrogen pellets by
Kuteev [7] is given below (in atoms/sec)

Ṅ ��4πr2
p

drp

dt
2nm � 1�12�1016n0�333

e T 1�64
e r1�33

p M�0�333
i � (7)

where ne is the background plasma density in cm�3, Te is the background plasma
electron temperature in eV, Mi is the atomic mass number in atomic units and
nm � 2�63� 1022�cm3 is the molecular density of frozen hydrogen. A useful ap-
proximation which eliminates the electron timescale from the problem is to consider
the electron heat flux as being instantaneous compared to the other processes being
computed. The time-asymptotic effect of the large electron heat flux is to make the
temperature uniform along field lines, i.e., T � T �ψ�. Thus, for single fluid equa-
tions, the temperature T �ψ� in the volume Vψ between flux surfaces ψ and ψ� dψ
will equilibrate as the density changes while still conserving energy in the volume
Vψ. This leads to the following energy source terms in the energy equation

Se � 3
�
SnT �ψ��nṪ�ψ�

�
� (8)

The first term in Se corresponds to the localized increase in energy due to the heating
of the ablated pellet mass, while the second term corresponds to a global adiabatic
cooling of the entire flux surface. In practice, we compute the contribution due to
the second term by separately solving a 1D model for the pellet injection assuming
only classical processes are present. We then use table lookup and interpolation to
compute the term Ṫ �ψ� in our 3D AMR simulation.

2.4 Initial and Boundary Conditions

The initial condition is a static equilibrium state. The initial magnetic field is written
in terms of two function ψ�R�z� and g�R�z�, i.e.,

B �
1
R
�φ̂�∇ψ�gφ̂�� (9)

These functions satisfy the Grad-Shafranov equation,

R
∂
∂R

1
R
∂ψ
∂R

�
∂2ψ
∂z2 �R2 dp

dψ
�g

dg
dψ

� 0� (10)

where p � p�ψ� and g � g�ψ�. For a torus with rectangular cross-section of radial
extent 2a and axial extent of 2b � 2κa we may write ψ�R�z� � f �R�cos�πz�κa�.
Further, with g�R�z� � g0 � constant we get

R
d

dR

�
1
R

d f
dR

�
�

�
R0π

a

�2�
αR2

�

1
4κ2

�
f � 0 (11)

which permits a Frobenius-type series solution. The value of α is determined by im-
posing the boundary conditions ψ � 0. The pressure is written as p � p̄� p 0ψ2
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where p̄ is a small background pressure to avoid zero ion-acoustic speeds and
p0 � απ2��2a2R2

0�. The toroidal field function is g0 � R0απ2�ψ�maxq0��2ab�, where
q0�� 1� is the on-axis safety factor. Boundary conditions imposed are perfectly con-
ducting walls in the radial/axial directions and periodic in the toroidal direction. In
our simulations we use κ� 1� a�R0 � π�9, for which α� 0�481509.

2.5 Simulation Results

In this section, we present preliminary results from early to intermediate stages of
pellet injection. The results discussed here correspond to a midpoint toroidal field
of 0�23 T , β � 0�1, and a pellet of 1 mm radius moving radially with a velocity of
3200 m�s in a tokamak with minor radius of a � 0�26 m. Two cases are discussed:
one in which the pellet is initialized on the high field side (HFS or the so-called inside
launch case) and the other in which the pellet is injected from the low field side (LFS
or the “outside” launch case). Because the temperature of the plasma is low near
the edges of the tokamak, we initialize the pellet at some radial distance inside the
tokamak. This is merely to save computational effort and have interesting dynamics
take place relatively quickly. In both the LFS and the HFS cases, the initial location
of the pellet is on the same flux surface so that the pellet encounters the same initial
temperature. Based on preliminary tests which suggested that the energy sink term
provides only a small contribution, but is nonetheless computationally expensive to
evaluate and occasionally leads to noisy solutions, we omitted the sink term in the
results presented here.

Fig. 1. Density isosurface (ρ � 2) for a HFS pellet launch. (a) t � 2 (b) t � 20 (c) t � 60
viewed radially inwards. The magnetic field lines are shown in red. The box outlines depict
the meshes. Time is normalized by the Alfvèn wave transit time. (Note that although the
domain is a torus the visualizations are presented in a cube)

Fig. 1 shows a density isosurface, viewed radially inwards, at times t � 2�20�60
(time is normalized by the Alfvén time) for the HFS case. The outlines of the various
meshes in the calculation are also shown in Fig. 1. At t � 2 the pellet ablated mass
is roughly in the shape of an ellipsoid with its major axis aligned along the magnetic
field lines. The pellet cloud is a localized region of high β with the dominant mass
motion being along the magnetic field lines. As time progresses, the ablated mass
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Fig. 2. Density field in a poloidal cross-section. (a1) HFS t � 2, (a2) HFS t � 20, (a3) HFS
t � 60, (b1) LFS t � 2, and (b2) LFS t � 20, and (b3) LFS t � 60.

moves parallel to the magnetic field at speeds of about one-third of the local acous-
tic speed. In addition to the “classical” parallel transport there is clear evidence of
“anomalous” transport perpendicular to the flux surfaces.

We now examine this phenomenon in more detail and compare and contrast be-
tween HFS and LFS pellet launches. Fig. 2 shows poloidal slices at the mean toroidal
pellet location for the HFS and LFS cases. At time t � 2 we observe the ablated mass
in a cloud around the mean pellet position. At later times (t � 20�60), the pellet ab-
lated mass has a significant outward radial displacement compared to the mean pellet
location.

The LFS case shows a dramatic turning around of the mass due to the zero mass
flux boundary conditions (Fig. 2-b3) It is conjectured that an outflow boundary con-
dition would lead to a substantial loss of the ablated mass and thus poor fueling
efficiency in the LFS case. The observed outward displacement implies that HFS
launches are more favorable for refueling tokamaks as opposed to the LFS launches,
consistent with observed behavior in experiments [8, 1]. We may reconcile this seem-
ingly “anomalous” transport by appealing to the model by Parks [9] which notes that
magnetic curvature and ∇B-induced charged particle drifts cause a local separation
of charges in the pellet cloud. This leads to an axially-oriented electric field, and so
the E�B drift is radially outward in both the LFS and the HFS cases.

It is instructive to examine the flow pattern of the perpendicular drift velocity
v� � E�B��B�2. The radial component of v� is the dominant one and is shown in
Fig. 3 in a poloidal slice. For the HFS case, in Fig. 3(a), there is a dominant outward
radial v� carrying the bulk of the pellet mass outward. This is flanked on either side in
the axial direction by inward radial motion resulting in a nearly incompressible flow
pattern. So the simple picture of only outward radial v� drift is augmented by this
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Fig. 3. Perpendicular drift velocity v� in a Poloidal cross-section. (a1) HFS t � 20, (a2) HFS
t � 60, (b1) LFS t � 20, and (b2) LFS t � 60.

somewhat smaller turning around of the mass which leads to the mushroom-shaped
structure in the poloidal plane.

For the LFS case too, the outward radial E�B drift grows with time and is clearly
seen in Fig. 3(b). The perpendicular transport of the ablated mass brings into question
some of the assumptions made in the earlier section. In calculation of the ablation
rate, we assumed that the ablated mass is heated instantaneously to the flux surface
temperature. However, the motion of the ablated mass radially outwards in the HFS
case means that the temperature the pellet encounters will actually be smaller than
that assumed. Furthermore, the energy sink term in the equations, which are based
on a one-dimensional parallel transport model, will need to be modified.

3 Magnetic Reconnection in 2D

3.1 Physical Problem and Mathematical Model

We are interested in simulating magnetic reconnection in two dimensions in which
we resolve both the inner reconnection region and the outer global region with ap-
propriate precision. Two compressible plasma columns are allowed to merge and the
reconnection rate is calculated. Our mathematical model for this is the single fluid
resistive MHD equations written below in conservation form:
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∂U
∂t
�
∂Fj�U�

∂x j
�
∂Fv� j�U�

∂x j
� (12)

where the solution vector U �U�x�y� t� is,

U � �ρ�ρui�Bi�e�T
�

and the flux vectors Fj�U� and Fv� j�U� are given by
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where Re, S, Pe are, respectively, the Reynolds number, Lundquist number and Peclet
number. The non-dimensional plasma properties are: the viscosity µ, the conductivity
κ, and the resistivity η. The stress tensor is related to the strain as

τi j � µ

�
∂ui

∂x j
�
∂u j

∂xi

�
�

2
3

µ
∂uk

∂xk
δi j�

Note that we have included equations for the perpendicular magnetic field and mo-
mentum above (some times referred to as a 2.5D model).

3.2 Initial and Boundary Conditions

The initial condition is comprised of an MHD equilibrium state with uniform den-
sity (ρ � 1) and uniform pressure (p � 0�2). The magnetic flux is ψ�x�y�0� �

�coskxxsinkyy and the perpendicular magnetic field is Bz�x�y�0� � ��k2
x � k2

y�
1
2

ψ�x�y�0�, with kx � 3π�2, ky � 2π, defined on a domain ��1 : 1�� �0 : 1�. The bound-
ary conditions are reflecting at the top/bottom, and open at left/right. Furthermore,
the top/bottom boundaries are perfectly conducting with specified Dirichlet condi-
tions for temperature. The non-dimensional resistivity is a nonlinear function given
by

η� η���η��η��
�
1� exp��177�69ψ2�

�
�max�0� �sign�ψ��

where η� � 1� η� � 0�1�S� The sole purpose of this nonlinear resistivity is to an-
nihilate the middle flux tube and set up appropriate conditions which lead to the re-
connection of the outer flux tubes. The initial conditions and the nonlinear resistivity
are similar to those used by Breslau [10] in studies of magnetic reconnection.
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3.3 AMR Simulations Results

At relatively small values of Lundquist number, S� 10 3, the entire process can be di-
vided into three phases: (a) decay of middle flux tube, followed by (b) reconnection,
and (c) decay of the reconnection layer. This is shown in Figure 4. We now discuss
some recent observations at S � 104. A time sequence of the vertical component of
the magnetic field is shown in Figure 5. As the two flux tubes move in closer we
observe an intensification of the perpendicular current. During reconnection, the cur-
rent layer becomes unstable and results in the ejection of high pressure plasma with
the ejection direction alternating between the top and bottom (See Figure 6). The
peak reconnection rate is plotted in Figure 7 where we see that, for S � 10 4, before
the current layer becomes unstable, the peak reconnection rate is consistent with the
expected Sweet-Parker scaling, but that after the onset of the current layer instability
the peak reconnection rate is higher than the theoretical reconnection rate.

4 Numerical Method

In this section, we focus on the evaluation of the hyperbolic flux terms, F j�U�, in
Eqn. (1) and Eqn. (12). We use a finite volume technique wherein each variable is
stored at the cell center. The numerical fluxes of conserved quantities are obtained
at the cell faces using a combination of the 8-wave formulation [5] and unsplit
upwinding [11, 12]. We define a vector of “primitive” variables W � �ρ�u i�Bi� p�T .
Given the conserved quantities and all the source terms, i.e.,U n

i �Sn
i (in this notation,

i is a 3-tuple corresponding to the three dimensions), we want to compute a second-

order accurate estimate of the fluxes: F
n� 1

2

i� 1
2 ed (d indicates the d-th direction, 0� d � 2

for PI and 0� d � 1 for MR ). The first step is to compute W n
i in each cell, followed

by fitting a linear profile in each cell subject to slope limiting. We then extrapolate
the primitive and conserved variables at the cell faces using the normal derivative
terms and the source terms at the cell centers, as follows.

Wi���d �W n
i �

1
2
��I�Ad

i
∆t
h
�P�∆dWi� Ui���d �U�Wi���d��

∆t
2

Sn
i (13)

where Ad
i � �∇WU∇W Fd��Wi� and P��W � � ∑�λk�0�lk �W�rk, and ∆dWi is the un-

divided but limited slope in the d� th direction. The eigenvalues, and left and right
eigenvectors of Ad

i are λk, lk, and rk, respectively with k � 1 � � �8 in the eight-wave
formulation (see Powell et al. [6] for the left and right eigenvectors). We compute
corrections to Ui���d corresponding to one set of transverse derivatives appropriate to
obtain �1�1�1� diagonal coupling:

Ui���d1�d2 �Ui���d1 �
∆t
3h
�F1D

i� 1
2 ed2

�F1D
i� 1

2 ed2
�� d1 �� d2�0 � d1�d2 � 3 (14)

where F1D
i� 1

2 ed � RP�Ui���d �Ui�ed ���d�. The notation F � RP�UL�UR� implies that the

flux F is evaluated by solving a linearized Riemann problem using U L and UR as
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left and right states, respectively. We next compute final corrections to Ui���d due to
transverse derivatives:

U
n� 1

2
i���d �Ui���d�

∆t
2h
�Fi� 1

2 ed1 �d2
�Fi� 1

2 ed1 �d2
�� (15)

where Fi� 1
2 ed1 �d2

� RP�Ui���d1�d2 �Ui�ed1 ���d1�d2
�, and 0 � d � 3;d1 �� d2 �� d. At this

stage, we solve another Riemann problem at the cell faces using U
n� 1

2
i���d and U

n� 1
2

i�ed
���d

as the left and right states, respectively. The magnetic field obtained from the solution
to the Riemann problem at n� 1

2 at the cell faces is not guaranteed to be divergence
free. We enforce the solenoidal property of the magnetic field by a MAC projection,
using B at the cell faces to obtain a cell-centered monopole charge density. A Poisson
solver is used to find a scalar field satisfying ∇2χ � ∇ �B with Neumann boundary
conditions in the radial/axial directions and periodic in the toroidal direction. The

magnetic field at the cell faces is then corrected according to B
n� 1

2

i� 1
2 ed � B

n� 1
2

i� 1
2 ed �∇χ.

Finally the fluxes at cell faces are obtained as F
n� 1

2

i� 1
2 ed � F�U

n� 1
2

i� 1
2 ed � and the conserved

quantities at the cell centers are updated using these fluxes. The Poisson equation
in the projection step above is cast in a residual-correction form and solved using a
multi-grid technique on each level in the AMR hierarchy. The residual smoothing is
a Gauss-Seidel relaxation procedure with red-black ordering. When meshes cannot
be coarsened any further, the Poisson solve is taken to convergence using a bottom-
smoother which is a biconjugate gradient solver. We implemented the above method
into the Chombo framework and have developed a second-order in space and time,
adaptive parallel MHD code. Chombo is a collection of C++ libraries for implement-
ing block-structured AMR finite difference calculations [13]. Particular care is taken
in implementing coarse-fine interface interpolations of appropriate order to ensure
second-order accuracy. Furthermore, conservation at coarse-fine interfaces is main-
tained by flux-refluxing. This leads to a non-zero cell-centered ∇ �B in coarse cells
which are adjacent to coarse-fine boundaries, which being a set of codimension one
does not significantly affect the accuracy of the solution.

Fig. 4. Time sequence (left to right) of reconnection at S � 103. The top row is the vertical
magnetic field in which black bounding boxes depict the meshes. The bottom row shows the
perpendicular magnetic field with AMR meshes superimposed.



Adaptive Mesh Refinement for MHD Fusion Applications 501

Fig. 5. Time sequence of the y-component of the magnetic field. The black bounding boxes
depict the meshes in this AMR hierarchy. In this simulation 6 AMR levels were employed.

Fig. 6. Time sequence of the perpendicular current corresponding to the previous figure. The
current layer is unstable which causes ejection of high pressure plasma from the reconnection
layer.

5 Conclusion

In this paper, we presented a numerical method which is based on an unsplit upwind-
ing method coupled with the eight-wave formulation. A MAC-projection scheme is
implemented to enforce the solenoidal property of the magnetic field. This projec-
tion requires the solution of a Poisson equation which is solved using a multi-grid
technique. A pellet injection model was implemented as a source term in the density
equations and corresponding energy sources and sinks in the energy equation. AMR
simulations of the pellet injection process were carried out for the inside and outside
launch cases. Preliminary studies indicate that AMR provides a speed-up exceed-
ing two orders of magnitude over corresponding uniform mesh simulations essential
to accurately resolve the physical processes involved in pellet injection. AMR is an
effective way of achieving computational efficiency in detailed and resolved simu-
lations of the pellet injection process. It was observed that the pellet ablated mass
is dominantly transported along magnetic field lines but that a E�B drift causes a
significant outward radial motion of the pellet cloud in both the LFS and HFS cases.
A high resolution numerical simulation is a viable method of computing the relative
importance of these two competing phenomena for redistributing the pellet mass.
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Fig. 7. Maximum reconnection rate measured at the center point. For S � 104 the maximum
reconnection rate before the onset of the current layer instability falls on the Sweet-Parker
scaling curve which lies above this after the current layer becomes unstable.

In magnetic reconnection, it was found that current layer becomes unstable at
the higher Lundquist number investigated. The peak reconnection rate during this
phenomenon is larger than the theoretical reconnection rates. It is still an open ques-
tion whether such a mechanism is partially responsible for observed reconnection
rates which are faster than those suggested by the Sweet-Parker scaling. In our MR
studies, we observed speed-ups ranging from 6 to 32, due to AMR compared with
uniform mesh simulations at the finest resolution.
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1 Motivation

The resolution of current operational global atmospheric models has been signif-
icantly increased thanks to the latest generation of supercomputers. Indicatively,
the model used by ECMWF (European Centre for Medium-Range Weather Fore-
casts), which runs on two identical (but independent) IBM Cluster 1600 supercom-
puter systems, has a resolution of TL511L60, which is equivalent to an (evenly
geographically-distributed) horizontal resolution of about 40 km around the globe
and 60 levels (computational cells) along the vertical. This amounts to 20,911,680
computational cells to discretise earth’s atmosphere.

However, considering the hugely disparate length- and time-scales of atmo-
spheric flows, this resolution is still not adequate to properly resolve many impor-
tant phenomena which have an impact on short- to medium-term numerical weather
prediction. The same can be said for orographic effects and their interaction with
weather phenomena (eg. rain bands). In turn, there are weather events that impact
on seasonal totals (eg. tropical cyclones, and jetstreams) and ultimately to climate
prediction.

When chemically-active simulations are necessary, eg. to study phenomena like
stratospheric ozone depletion, the lack of resolution has an even more detrimental ef-
fect on the results. To put this in context, consider the results of the two stratospheric
polar vortex simulations shown in figure 1. These show snapshots of potential vortic-
ity (PV), advected on a single isentropic layer at a high and a low grid-resolution grid
(0�5� 0�5 degrees and 3� 3 degrees, respectively). The high resolution run reveals
fine filamentary structures over North America and over the eastern Atlantic, while
a thicker filament is prominent over Russia. Capturing accurately the behaviour of
tracer transport in these regions is important because the chemical composition of
the atmosphere is different inside and outside of the polar vortex, so reduced mixing
(because of misrepresentation of the topology of the vortex) will have an effect on
the production and depletion of chemical species. This is exactly what is happen-
ing in the coarse integration, which has given a much broader spatial extent to the
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Fig. 1. Snapshot of the evolution of the stratospheric potential vorticity field on the 450K
surface, at 0�5�0�5 degrees (left) and 3�3 degrees resolutions.

polar vortex over Russia and missed altogether the finer filaments, so any processes
associated with these structures will not be accounted for properly.

The obvious solution of a uniform increase of the model resolution is not a vi-
able option because of the associated computational cost in terms of memory as well
as time of integration. Higher resolution operational computations are nevertheless
performed by means of Nested Limited Area Modelling (NLAM). The UK Meteo-
rological Office (UKMO) , for instance, has successfully adopted such an approach,
where a global model is used to provide boundary conditions to a mesoscale regional
model centered on the United Kingdom. The global model has an approximate hori-
zontal resolution of 60km in mid-latitudes while the regional one has approximately
11km. Both the global and mesoscale models have 38 levels in the vertical. Another
widely used example is the Penn State - NCAR mesoscale model (MM4 and MM5)
(see also the review by Koch and McQueen 1987 and more recent implementations
eg. Pielke et al. 1992). A disadvantage of this technique is that the boundary con-
ditions of the finer-scale model are ill posed and the solution will be contaminated
after a short period of time. A continuous update of the boundary conditions partly
rectifies this problem. However this is essentially a one-way interaction approach,
which is not well suited to problems where the impact of the small region on the
global one is of importance.

This problem is by-passed in some models by integrating the governing equa-
tions on a single computational domain, while increasing the resolution locally by
stretching the grid in such a way as to increase the cell population over the domain of
interest. Spurious solutions will be generated at the coarse/fine boundaries; this can
be easily corrected by varying the resolution smoothly. Examples are the operational
French and Canadian models (see Courtier and Geleyn 1988 and Coté et al. 1993,
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respectively) and the ones reported in the articles by Paegle (1989) and Hardiker
(1997).

All of the above approaches are based on static grids. Current implementations
of time-dependent mesh refinement include the OMEGA framework (Bacon et al.
1999) and the work by Behrens et al. (2000); both of these models use unstructured
meshes. Continuous dynamic grid adaption in the form of node movement (by means
of a coordinate transformation technique) within a global model has been recently
presented by Prusa and Smolarkiewicz (2003). Structured adaptive mesh refinement
has been used in limited-area models for mesoscale storm simulations (Skamarock
and Klemp, 1993), but not in global atmospheric modelling.

In spite of these developments, discretisation along the third (vertical) dimen-
sion still remains an issue. Most of the current models attempt to capture the vertical
structure of the atmosphere from the ground to its uppermost limit (including re-
gions of significant variation like the boundary layer and the tropopause) using 30 to
60 computational cells (levels). Clearly this is not adequate, so subgrid-scale mod-
els (parametrisations) are widely employed, with various degrees of success. Models
which are chemically-active use even fewer cells (12 levels to discretise 20 km), due
to the expense of solving multi-species chemistry, especially for long integrations
(Chipperfield 2003). If the processes along the vertical are to be studied by cap-
turing them explicitly, then an efficient three-dimensional time-dependent adaptive
methodology has to be used.

To this end, a structured adaptive mesh refinement algorithm for the simulation
of three-dimensional chemically-active global atmospheric transport has been devel-
oped.

In the rest of this article some background on operational chemistry and transport
modelling is given, followed by an overview of the numerical discretisation tech-
nique of the governing equations on planar and spherical geometries. Issues specific
to AMR on spherical surfaces are discussed and finally the approach is evaluated by
means of model problems which have an exact solution as well as real-world case
studies.

2 Building an AMR Global Atmospheric Model

This work is concerned with a particular kind of global atmospheric models, namely
off-line chemistry and transport models (CTMs), which are the main computational
tools of the atmospheric chemistry modelling community. Widely publicised topics
of research include the observed downward trend of stratospheric ozone over polar
regions (the Antarctic ozone hole) and the aftermath of the 1991 eruption of Mt.
Pinatubo.

As the term ‘off-line’ implies, CTMs differ from general circulation models
(GCMs) in the respect that the velocity field (winds) and the rest of the dynamic
and thermodynamic variables are not calculated by solving the primitive equations
of meteorology. Rather, these and any other input required for the chemical source
terms are provided by meteorological analyses or from the output of GCMs (running
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in diagnostic or prognostic mode, respectively). Vertical advection rates are usually
calculated by other means (eg. from heating rates using a radiation scheme - see for
example Chipperfield et al, 1996). The chemical fields are initialised by assimilation
of observations or measurements.

So in fact CTMs integrate systems of multidimensional, linear advection equa-
tions with variable coefficients, coupled through forcing terms. These are in the form:

∂ψi

∂t
�v �∇ψi � Qi�S� i � 1� ����Ns (1)

whereψ represents the advected scalar quantity which is usually, but not exclusively,
a chemical mixing ratio, v � �u�v�w�T is the advection velocity vector, Qi describes
the chemical reactions of Ns chemical species and S denotes other parametrisation
terms which may be present. Although the equations to be solved are linear, the vari-
ability of the velocity field in space and time means that the numerical scheme needs
to address most of the issues related to nonlinear equations, eg. initially smoothly-
varying parts of the flow which steepen to form discontinuities (albeit on discrete
space).

Given that the grid management in our approach is separate from the numerical
discretisation (and indeed from the governing equations), the validity of the grid-
adaption approach is not affected, as long as the system remains hyperbolic/parabolic
with source terms. If a mixed hyperbolic/elliptic system has to be integrated on the
adapted grid, there are additional issues to be considered.

In the rest of this section we present the numerical methodology to solve the
system (1) above, the implementation of AMR on concentric spherical surfaces and
finally the add-ons necessary to run such a model operationally (i.e. initialising it
with real-world data and forcing it with meteorological analyses).

2.1 Numerical formulation

Considering inert transport for a single species in the first instance, the governing
equations for multidimensional scalar advection can be written in the form

∂ψ
∂t

�v �∇ψ � 0 � (2)

We are seeking to apply standard finite volume techniques for the integration of this
equation. In the general case, when ∇ � u �� 0, the conservation form of Eq. (2) is

∂ψ
∂t

�∇ � f�ψ� � ψ∇ � v (3)

where f�ψ� � ψv is the flux function. We chose to discretise the left hand side of
equation (3) using flux-based, cell-centred finite volume schemes, whilst a discreti-
sation of the right hand side (which is effectively a forcing term) can be included in
the update formula, or may be treated by means of operator splitting. Multidimen-
sional extensions are implemented by means of dimensional splitting, but unsplit
schemes can also be used. The resulting scheme can be written as:
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ψ�n�1�x
i jk � ψn

i jk�
∆t

Vi jk
�� �A f �ψ��i�1�2 jk � �A f �ψ��i�1�2 jk

� ψn
i jk �Aun�i�1�2 jk � ψn

i jk �Aun�i�1�2 jk � (4)

ψ�n�1�xy
i jk � ψ�n�1�x

i jk �
∆t

Vi jk
�� �A f �ψ��i j�1�2k � �A f �ψ��i j�1�2k

� ψn
i jk �Avn�i j�1�2k� ψn

i jk �Avn�i j�1�2k � (5)

ψ�n�1�xyz
i jk � ψ�n�1�xy

i jk �
∆t

Vi jk
�� �A f �ψ��i jk�1�2� �A f �ψ��i jk�1�2

� ψi jk �Awn�i jk�1�2� ψi jk �Awn�i jk�1�2 � � (6)

where superscripts ���n�1�x , ���n�1�xy and ���n�1�xyz represent the two intermediate
updates and the final solution for a given timestep, A, V are the cell face areas and
volumes, respectively, �i� j�k� indexes the grid cells in the three coordinate dimen-
sions and half indices indicate faces between cells. The grid faces have also been
assumed to be perpendicular to the axes of the coordinate system being used.

If the final solution of the equation is ψ�n�1�
i jk and the solution operators for the

partial update equations (4), (5) and (6) are X , Y and Z respectively, then the sug-
gested splitting is of the form

ψn�1
i jk � X ∆tY ∆tZ∆tψn

i jk (7)

which is formally first order accurate in time (but still second order accurate in
space); higher order accuracy may be achieved by employing other types of splitting,
at the expense of computational cost. However, the validation case studies indicate
that (for the meshes used) there is little, if any, detrimental effect on the quality of
the solution.

To evaluate the numerical fluxes, a considerable number of finite volume schemes
have been implemented and compared for accuracy, speed and the ability to maintain
the interrelationships between the advected species (Walker 2003). For the purposes
of this paper we present results using the second-order accurate Weighted Average
Flux (WAF) method for hyperbolic conservation laws (Toro 1989); however, this can
be replaced by most finite volume schemes that operate on structured, logically-
rectangular meshes. The WAF flux along the x direction is simply:

f wa f
i�1�2 �

1
2
�1�φ1�1�2�ui�1�2ψi �

1
2
�1�φ1�1�2�ui�1�2ψi�1 (8)

where ui�1�2 � �ui � ui�1��2 and φ is a parameter which includes the effect of flux
limiter functions:

φ � sgn�ν��1���ν��1�b�� ν� u∆t�∆x (9)

where b implements the limiting procedure. Any limiter function can be used; for
example, in the case of superbee:
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b � max�0�min�2r�1��min�r�2�� (10)

where r � ∆ψupwind�∆ψlocal, is an indication of the steepness of the solution. Similar
expressions for the fluxes along the other two directions can be derived.

The basic algorithm described above does not as yet take into account the ge-
ometry of the problem. To discretise the thin (albeit three-dimensional) planetary
atmospheric layer, we chose to use a regular longitude(λ)-latitude(θ)-height(r) struc-
tured grid. For reasons detailed below, this is not necessarily the optimum way to
fit a grid in a thin region between two concentric spherical surfaces, but it has the
advantage that existing operational ancillary algorithms (related to parametrisations
and post-processing) can still be used with relatively minor modifications.

The information stored for cell geometry has to explicitly account for the change
of lengths, areas and volumes associated with the spherical polar co-ordinate sys-
tem. The volumes of the cells are given exactly by Vi jk � 1

3∆λ �sinθ j�1�2 �

sinθ j�1�2� �3r2
k∆r � �∆r�3�4� � The values of ∆λ, ∆θ and ∆r are taken to be con-

stant over the whole computational domain so they are fixed from the start of the
calculation. Similarly, the face areas are given by Ai�1�2 jk � rk∆θ∆r, Ai j�1�2k �

cosθ j�1�2 rk∆λ∆r and Ai jk�1�2 � r2
k�1�2∆λ �sinθ j�1�2� sinθ j�1�2�. To compensate

for the variation in the cell sizes a small modification is necessary to the WAF method,
and in particular to the local dual cell CFL number used in the calculation of φ:

νi�1�2 � ui�1�2∆t
2Ai�1�2

Vi �Vi�1
� (11)

A different way to achieve the same result would be to apply the finite volume
method to the transformed differential equations written in curvilinear (spherical po-
lar) coordinates.

2.2 Implementation of AMR on the sphere

The basic structure of the AMR procedure as presented in Berger and Oliger (1984)
and Berger and Colella (1989) has been retained, save for a number of application-
dependent modifications. The computational domain is covered by a single regular
longitude(λ)-latitude(θ)-height(r) coarse grid G 0, upon which the AMR hierarchical
system of grid levels1 G1, G2 etc can be built, see figure 2. The convergence of the
grid lines towards the poles creates a smooth distortion of the grid and as a result
there is a considerable difference in size between the cells near to the equator and the
ones adjacent to the pole. As a result, a difference from a 3D orthogonal, cartesian
AMR code is that the cell geometry has to be generalised to curve-faced hexahedra,
which are allowed to vary in size as a function of latitude.

The variation of the cell volumes over the grid affects the transfer of solution
information from fine meshes to coarse ones, which must be carried out through a
volume weighted averaging procedure to ensure conservation. Since there are exact

1This should not to be confused with the terminology used in atmospheric models where
‘levels’ refers to the number of cells discretising height.



Fig. 2. Cylindrical (left) and satellite projections of a hierarchy of adaptive meshes (two levels
of refinement) on a spherical surface (details about this particular integration are given in
section 3.2).

expressions for the cell volumes, which additionally do not vary in the zonal di-
rection, this procedure is simplified considerably. For the corresponding transfer of
information from coarse meshes to fine ones (used to fill the dummy cells surround-
ing the mesh boundaries and the updated mesh structure) a MUSCL reconstruction is
found to allow for the possibility that the integral-average of a linear reconstruction
is not necessarily equal to the reconstructed solution value at the cell’s centre. This is
no longer guaranteed to be monotonic, but it will not change the sign of the solution.
An interpolation which is inherently conservative and monotonic over this geometry
is part of future work.

The distortion of the cells leads to singular points on the co-ordinate system and
on the resulting grid at the poles. This poses a serious problem to many cell-vertex
numerical schemes, but not so for the family of cell-centred finite volume schemes
discussed above, where no information is kept at the vertices.

The boundary conditions can be described if we consider the cylindrical and
satellite projections of the same single-layer AMR grid shown in figure 2. The grid
boundary defined by points A,B,C merges with the corresponding boundary F,E,D,
while the boundary A,F, which appears as a line on the cylindrical projection, col-
lapses into a single point on the satellite projection, namely the north pole (ditto for
line C,D which is the south pole). Periodic boundary conditions are enforced across
both boundaries. The communication at the pole is facilitated by information transfer
between diametrically opposite cells (which implies that an even number of longi-
tudes has to be used), remembering that the velocity field has to be negated. For the
inner and outermost shells reflective and transmissive boundary conditions have been
used, but these can be modified to suit specific operational requirements.

For our implementation of AMR, the refinement factor between any two con-
secutive grid levels can take any positive integer value, which is directionally inde-
pendent, i.e. the horizontal refinement factor can be different to the vertical. This is
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particularly useful feature, considering the aspect ratio of the atmospheric layer. A
simple monitor function (adaption criterion) used for tracking flow features of inter-
est can be:

ξi jk �max��ψi�1 jk �ψi�1 jk�� �ψi j�1 j �ψi j�1k�� �ψi jk�1 �ψi jk�1�� � (12)

which in effect considers local cell differences in tracer values; this is suitable for
idealised advection studies. Alternative criteria can be used, depending on the com-
plexity of the flow dynamics (or physics/chemistry), such as vorticity or rate of reac-
tion.

2.3 Operational issues

Some additional modifications are essential in order to run such a model using meteo-
rological analyses. The analyses are provided from a number of sources, eg. ECMWF.
Initial conditions are interpolated trilinearly from this data on to the initial adapted
grid. The winds are read at regular intervals (typically six hours) and their values at
intermediate time-intervals have to be interpolated (trilinearly in space, linearly in
time) to match the variable timestepping nature of the approach.

Two separate models have been build based on the approach described in this and
in the previous sections, namely CTM-AMR-SL (Nikiforakis and Toro 1995, Walker
and Nikiforakis 2000), which was based on a two-dimensional internal ballistics al-
gorithm (Boden and Toro 1997), and CTM-AMR-3D (Hubbard and Nikiforakis 2003,
Nikiforakis and Camaji 2003) which was based on a three-dimensional gas-dynamics
agorithm (Berger 2000). The former operates on single spherical layers of the atmo-
sphere and is more suitable for stratospheric flows (which are highly stratified), while
the latter is a full three-dimensional code, albeit lacking explicit orography. By this
we mean that although the effects of orography can be seen in the velocity, pressure
and temperature fields as in any other CTMs (since these models are forced by mete-
orological analyses), the lower boundary is a smooth spherical surface, so there is a
natural limit as to the location of its lowest level. In the next section some numerical
results from these models are presented.

3 Results

The gains from AMR codes are obvious for flows where distinct gas-dynamical or
chemically-active features exist (like shock waves or flames), which additionally
cover a relatively limited part of the computational domain. It is not immediately
apparent whether AMR can be of any use in the atmosphere where such features do
not exist. The intention of this evaluation exercise was not so much to quantify the
efficiency of the code, but to assess whether AMR would be of any use at all for
global atmospheric calculations. Problems with exact solutions on spherical surfaces
and real world case-studies were attempted. The numerical results are from CTM-
AMR-SL as well as CTM-AMR-3D.
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3.1 Model problems

An initial indication of the accuracy and performance of the codes is given by model
problems which have an analytical solution, so some absolute statements can be
made about the speed-up of the runs correlated to error estimates.

Solid body rotation

The first test case considers solid body rotation of a cosine bell-shaped profile on
a single spherical surface traversing the pole at various angles to the equator. The
velocity components of the advecting wind field (Williamson et al. (1992)) are given
by

u � u0�cosα cosθ� sinα cosλ sinθ�
v � �u0 sinα sinλ (13)

where α is the angle between the axis of solid body rotation and the polar axis of
the spherical coordinate system. The period of the rotation is taken to be 12 days,
and the radius of the earth to be 6371�22km, giving a value of u 0 � 38�61ms�1. The
initial scalar distribution is of the form

ψ �

�
�1� cos�πr�R���2 if r � R
0 if r � R

(14)

where
r � cos�1�sinθc sinθ� cosθc cosθ cos�λ�λc�� (15)

is the great circle distance between �λ�θ� and the bell centre, initially taken as
�λc�θc� � �π�2�0�0�. The bell radius R is set to 7π�64, as proposed by Williamson
and Rasch (1989). All numerical experiments were run with a maximum Courant
number of 0.9.

This case study was used to evaluate both the single-layer and the 3D models (the
latter in single-layer mode), representative results shown in figures 3 and 4. The bell
is rotated at different values of α, and the error is measured using the standard l 1, l2
and l∞ norms, shown as bars in figure 3. These results compare favourably with the
ones found in the open literature for the same case-study (eg. Williamson and Rasch,
1989; Lin and Rood, 1996; Nair et al 1999), inspite the lower order of accuracy
of the underlying numerical scheme. The stalks show cpu times on a SUN ULTRA

10 workstation. While the errors of the AMR runs are of similar magnitude to the
unadapted ones, the savings in cpu times (factors of 20 up to 50, depending on α) are
significant. Unfortunately these are not representative on the performance of AMR

when it comes to using meteorological analyses, as discussed below. The sequence
of contour plots in figure 4 shows that the profile crosses the pole without distortion,
so there is no apparent problem with the methodology at the pole singularity.

The message from this case-study is that the alterations on AMR necessary to
operate on spherical domains had no detrimental effect on mesh management and
communication, or on the overall code efficiency and accuracy, not least for the prob-
lematic regions of the grid singularities at the poles.
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Fig. 3. Error emasures correlated to cpu time for the solid body rotation problem for various
angles of rotation and refinement ratios. All runs are at an effective resolution of 384�192;
in every subplot there are bars of l1, l2 and l∞ norms for a constant cell-width run (run nos.
3,6,9,12), a run with two levels of refinement at 64�32(�2�3) (run nos. 1,4,7,10) and a run
with one level of refinement at 128�64(�3) (run nos. 2,5,8,11). The errors of the AMR runs
are of similar magnitude to the unadapted ones, but the savings in cpu times are significant.

Fig. 4. Solid body rotation of a cosine bell as it traverses the North Pole; no distortion of the
profile, due to the singular point at the pole, is apparent.
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Kinematic cyclogenesis

A case study which is more relevant to atmospheric flows is a generalisation of the
idealised cyclogenesis problem of Doswell (1984) to spherical geometry, as pre-
sented by Nair et al. (1999). Given a rotated coordinate system �λ �

�θ�� with its north
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Fig. 5. Solution surface and superimposed meshes for the cyclogenesis case-study, from a
global 3D run, using dynamically-adaptive grids for a spatially-varying vortex (left). The so-
lution has been projected stereographically onto the planes tanget to the centre of rotation and
only the region in the vicinity of the solution is shown. The errors and cpu times on the right
refer to comparisons with the exact solution on a single spherical surface.

pole at �λ0�θ0�with respect to the regular spherical coordinate system �λ�θ�, a steady
circular vortex is defined by zero normal velocity v �

� dθ��dt and tangential velocity

u��θ�� � cosθ�
dλ�

dt
�

3
�

3
2

asech2�γρ� tanh�γρ� � (16)

where a is the radius of the sphere,

ρ�θ�� �
2cosθ�

1� sinθ�
� (17)

and γ � 3�2 is a stretching parameter that controls the length scale of the vortex.
ρ can be interpreted as the distance from the north pole of the polar stereographic
projection of the point �λ ��θ��. The amplitude of the vortex has been normalised to
have a maximum tangential velocity of unity, which occurs when

θ� � 2tan�1
�
γ� c
γ� c

�
� c �

1
4

ln

��
3�1�
3�1

�
� 0�3292395 (18)
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The initial conditions are taken to be

ψ�λ�
�θ�

�0� � � tanh
�ρ
δ

sinλ�

�
� (19)

in which δ� 0�01 is the characteristic width of the frontal zone. This problem has an
analytic solution, which is given by

ψ�λ�
�θ�

� t� � � tanh
�ρ
δ

sin�λ�
�ωt�

�
� ω�θ�� �

u��θ��

acosθ�
(20)

where ω�θ�� is the angular velocity. Further details of the stereographic projection in
the rotated coordinate system can be found in Nair et al. (1999), which also presents
results with which these can be compared.

Fig. 6. Global mesh arrangement and the iso-surface of the solution for the kinematic cyclo-
genecis problem, for a static grid case, where the grid has been refined up to a specific height
(left). Some of the surfaces have been removed in the zoom (right) to reveal detail. This mesh
arrangement is suitable for mesoscale studies, as a two-way interaction replacement of nested
grids.

The problem can be modified further to accommodate a variation on the strength
of the vortex as a function of height. The solution surface and the adapted grid (two
levels of refinement) are shown in figure 5, on a stereographic projection on the plane
tangent to the plane of rotation and for an area limited at the vicinity of the vortex.

The error measures (figure 5) and cpu times refer to comparisons with the exact
solution on a single spherical surface. The errors, as with the previous case-study,
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are within reasonable limits and are of similar magnitude, irrespective of the mesh
arrangements. Although there is a saving in cpu-time using AMR, the gains are less
significant as compared to the solid-body rotation problem. In fact, a better arrange-
ment for this kind of problem is the one shown in figure 6 where only static grids
have been used. This grid arrangement is more suitable as a replacement for NLAMs,
as discussed in the introduction, possibly in conjuction with dynamically-adaptive
grids. While the static grids capture in detail the flowfield in the area of interest at
all times, the dynamic grids can resolve and track the important features at a global
scale, which in turn can influence the solution within the limited area. Further work
on this topic will be reported in a separate article.

3.2 Meteorological flows

Time-dependent adaptive mesh refinement is cost-efficient only if there are distinct
features in the flow and also if these features do not cover a large portion of the
domain. Since AMR has not been used before in global atmospheric simulations,
questions arise whether these prerequisites exist.

Some intuition in this matter is provided by considering that there is a notable
variation of the magnitude of potential vorticity (PV) in certain regions of the atmo-
sphere, namely at the edge of the polar vortex and also at the tropopause. At the same
time, PV is less sensitive to other physical and chemical processes than most dynamic
variables and chemical species, at least for short-term integrations (of the order of a
few days, depending on the circumstances), making comparisons with observations
feasible to some extent.

Since no orography exists in the current version of these models, we can only
begin to evaluate them for the upper layers of the atmosphere. We therefore consider
two case studies in this section, one from the evolution of the northern polar vortex
and another from a case of stratosphere-troposphere exchange. The highly stratified
nature of the former allows employment of CTM-AMR-SL, while the considerable
variation of PV along the vertical in the latter, necessitates use of CTM-AMR-3D.

Stratospheric polar vortex flow

For this case-study we consider the period between 16 and 26 January 1992. This
period was studied as part of the EASOE (European Arctic Stratospheric Ozone Ex-
periment) campaign (November 1991 - April 1992). EASOE was conceived against
a background of growing concern over stratospheric ozone decline over populated
latitudes of the northern hemisphere, to improve our understanding of its behaviour.
The high degree of distortion of northern polar vortex, and the filamentary structures
related with wave breaking events, offer a good case-study for testing AMR. The
evolution of the stratosphere during this period has been well documented, making
it well-suited as an operational-case benchmark.

Unadapted as well as adapted integrations were performed using the CTM-AMR-
SL on the 450K isentropic surface. This was forced by ECMWF analyses to advect
PV (potential vorticity). The objective was to compare the cpu run-times between
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a high resolution unadapted integration and an adaptive one at the same effective
resolution. The results from the two runs have to be in good agreement with each
other an also compare favourably with a third-party simulation, which has in turn
been validated against analyses and observations. We are of course aware that it is not

Fig. 7. Contours (polar stereographic projection) of the stratospheric potential vorticity field
on the 450K surface on January 18 and 24 1992 from a 720�360 single-layer integration. The
corresponding mesh distributions (satellite projection) are from an adaptive run, of the same
effective resolution on a 120�60(� 2 � 3) grid. AMR accelerated the computation by a factor
of five, in this case.

easy to make accurate assessment of performance correlated to accuracy for global
models because although qualitative comparisons can be done with observations,
the data is not reliable enough to do detailed comparisons on this scale. Also, since
the models are initialised from sparse data which have been assimilated, the initial
conditions for the calculations (and hence the results) are as good as the assimilation
procedure.
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Two snapshots of the results for the unadapted and AMR runs (showing con-
tour plots and mesh arrangement respectively) are presented in figure 7. The fine-
mesh unadapted integration discretised the 450K spherical surface on a 0�5�0�5 de-
grees, 720�360 (259200 computational cells) grid. The adaptive run was initialised
in exactly the same way as the fine-mesh unadapted one and data were output in
the same dates and times. The base mesh of this run was 120�60 cells (effective
lowest-level grid-resolution of 3deg�3deg) and there are two levels of refinement
at factors of 2 and 3, giving an effective highest grid-resolution of 720�360 cells
(0�5deg�0�5deg), i.e. the same as the unadapted run.

Plumb et al (1994), have used a contour advection technique to study the same
period, initialised and forced in a similar way to ours. Their results show favourable
qualitative agreement with observations and can be used as a valid numerical bench-
mark. The main features of the flow as described in that paper are captured in our
integrations and there is very good qualitative agreement with their contour plots.

The results from the unadapted and AMR runs are nearly identical, but while the
unadapted integration took about 10 hours real time (9.53 cpu units) on a desktop
SUN workstation, the AMR one required just over two hours (1.59 cpu units), so
there is a factor of five saving in cpu-time, even for a single tracer. It has to be kept
in mind that this figure is not representative because in operational simulations there
are typically more that 10-20 species, while the overhead associated with AMR is
the same, so the efficiency of the algorithm increases significantly. For reference we
mention that a lower resolution integration (3�3 degrees, 120�60 = 7200 compu-
tational cells, i.e. the same resolution as the base grid of the AMR run), took just over
4.5 minutes on the same machine.

The major advantage becomes obvious if we consider the total number of cells
that need to be integrated. This is illustrated in figure 2, for the 20 January 1992,
where polar stereographic and cylindrical projections are shown side by side. Be-
cause of the decreasing cell-size, as we move from the equator to the poles, the
former gives a false impression of the number of cells that have to be integrated; the
true number is shown in the cylindrical projection. If the integration was chemically-
active, and keeping in mind that chemistry solvers are very expensive compared with
advection ones, the savings are expected to be significantly higher.

Stratosphere/troposphere exchange

The ability of AMR to capture a highly temporal and spatial variation of the flow
along all three space dimensions is evaluated using CTM-AMR-3D in a region of the
tropopause. The case-study is a stratosphere-troposphere exchange event which took
place over the North Atlantic during June 1996. The feature of interest is an isolated
cyclonic vortex (cut-off low), which formed as a result of a meridional excursion of
a jetstream. Within the vortex the tropopause is 2-3 km lower than in the surrounding
atmosphere, which forms a pocket of isolated high PV, stratospheric air (Hoskins et al
1995, Gouget et al 2000). The cut-off low decayed over a period of few days, and the
trapped air either returned to the polar stratosphere or mixed in the troposphere. The
process is therefore of importance to stratosphere-troposphere exchange, which is of
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interest because of its implications to the transport of chemical species between the
two atmospheric regions. Given the highly three-dimensional nature of this process,
which take place within a very narrow region of the atmosphere, AMR is well suited
for its study.

Base mesh

Second level
First level

Filament

Tube

NP

SP
Fig. 8. Three dimensional simulation of a stratosphere-troposphere event over the Atlantic
during June 1996. Note that although the grid appears to contain triangular cells, this is nothing
but a graphical artefact (see main text).

Meteorological analyses from the ECMWF Re-Analysis datasets (the ERA project)
were used to provide three-dimensional velocity fields and values of potential vor-
ticity at intervals of 6 hours for the period between 06:00 17 June and 18:00 23 June
(the numerical calculation only used the data between 300K and 360K). Snapshots
of the results are presented in figures 8, 9 and 10. These integrations were performed
on an underlying coarse 120� 60� 8 mesh with two levels of refinement, the first
by a factor of 2 in each dimension and the second by a factor of 3. The adaption
criterion
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Fig. 9. Snapshot of the evolution of an isolated cyclonic vortex (cut-off low) over the Atlantic
(90 degrees west to Greenwich Meridian), on 20 June 1996. The PV = 2.0 isosurface is shown;
the computational meshes are shaded by PV magnitude. Global atmospheric AMR run on a
120�60�8��2�3� grid, between 290K and 370K.

ξi jk �
max��ψi�1 jk�ψi�1 jk�� �ψi j�1k�ψi j�1k�� �ψi jk�1�ψi jk�1��

max�1�

�ψi jk�
� (21)

was used for these runs, where ψ represents PV. The grid cells are flagged for adap-
tion when this expression satisfies ξ� 1�0. As in the previous case-study, we are only
interested in the evolution of PV in the northern hemisphere, and this is enforced by
the conditional statement 1 � ψ � 10. Because PV decreases in magnitude towards
the equator, the denominator includes

�ψ to ensure that the monitor can track steep
gradients of the solution without using an excessive number of fine mesh patches.

Comparisons with observations and between various computational runs are dis-
cussed in the paper by Hubbard and Nikiforakis (2003), where it was found that the
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Fig. 10. Visualisation of a cut-off low over the Atlantic, 21 June 1996. The PV=2.0 isosurface
is shown; the computational meshes are shaded by PV magnitude. For details of this integration
see the caption in figure 9.

shape and size of these flow features agree closely with observations. Also, the un-
adapted and AMR results are in good agreement between them. The flow features
that we were interested to capture included filaments and vertical tubes, across the
boundaries of which there was abrupt change of PV magnitude. Figure 8 shows a
section of the computational domain, where a coarse grid covers most of the south
hemisphere, while the first level of refinement covers most of the northern one. The
second level of refinement has picked the regions of high three-dimensional vari-
ation of PV. Note that although the grid appears to contain triangular cells, this is
only a graphical artefact created by converting the hierarchy of structured rectangu-
lar meshes into a single unstructured grid whose vertices correspond to the original
cell centres.

A detail of the domain on a stereographic projection (90 degrees west to the
Greenwich meridian and 300K to 350K isentropic surfaces), is shown in figure 9.
The steep variation of PV inside and out of the tubes and filaments is evident by
plotting the 2.0 PV units isosurface (translucent blue). The isosurface intersects four
planes of constant values of potential temperature (310K to 340K), where the meshes
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are coloured by PV magnitude. Finally, figure 10 shows a PV=2.0 isosurface (which
helps to visualise the synoptic vortical structure over the Atlantic) and the underly-
ing computational meshes, which are coloured by PV magnitude. The criterion has
flagged the second-level meshes efficiently, but it is not clear at this stage whether
it would be more cost-efficient to have a lower mesh coverage at the first level of
refinement. The effect of more involved adaption criteria is part of our current work.

The number of computational cells during this run varied between 2.7 and 3.1
million and it was obtained using one-sixth of the cpu time of the constant cell-width
equivalent integration (12.4416 million cells) on a SUN-ULTRA 10 workstation.

4 Concluding remarks

In this article the development of AMR models for global atmospheric chemistry and
transport (CTMs) at the University of Cambridge is reviewed. After a brief introduc-
tion of CTMs, the governing equations and the methodology for their numerical solu-
tion is presented. This is followed by the modifications of the standard AMR method-
ology necessary to operate on spherical layers and to be forced by meteorological
analyses. Although atmospheric flows do not exhibit the same features of shocked
gas dynamics (where AMR has been known to be very efficient), initial results based
on idealised and real-world case-studies indicate that considerable savings can be
achieved. Future work will concentrate on the implementation of different systems
of equations and orography.
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Summary. We compare the results of two–dimensional simulations to experimental data ob-
tained at Los Alamos National Laboratory in order to validate the FLASH code. FLASH is
a multi–physics, block–structured adaptive mesh refinement code for studying compressible,
reactive flows in various astrophysical environments. The experiment involves the lateral in-
teraction between a planar Ma=1.2 shock wave with a cylinder of gaseous sulfur hexafluoride
(SF6) in air. The development of primary and secondary flow instabilities after the passage
of the shock, as observed in the experiments and numerical simulations, are reviewed and
compared. The sensitivity of numerical results to several simulation parameters are exam-
ined. Computed and experimentally measured velocity fields are compared. Motivation for
experimental data in planes parallel to the cylinder axis is provided by a speculative three–
dimensional simulation.

1 Introduction

The impulsive acceleration of a material interface can lead to complex fluid motions
due to the Richtmyer–Meshkov (RM) instability. Here, the misalignment of pressure
and density gradients deposits vorticity along the interface, which drives the flow and
distorts the interface. At later times the flow may be receptive to secondary instabil-
ities, most prominently the Kelvin–Helmholtz instability, which further increase the
flow complexity and may trigger transition to turbulence.

Experimental investigations of impulsively accelerated interfaces have focused
mainly on interfaces with single–mode perturbations, and on the case we consider
here, shock–accelerated cylindrical gas columns [1, 2, 3]. The experiments are rel-
atively inexpensive and turnaround times are short. The challenges are diagnostics
and repeatability: after the shock passes, the flowfield evolution is driven by flow
instabilities and vortex dynamics, which are sensitive to the initial conditions and
noise in the system. Specifically, for the present case of a single shock–accelerated
gas cylinder, the flow is dominated by a counter–rotating vortex pair.

Verification and validation are critical in the development of any simulation code,
without which one can have little confidence that the code’s results are meaningful.
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The sensitivity and the complex evolution of the vortex pair are desirable properties
for our primary purpose, which is to use the experiments to validate our simulation
code. A well–designed, well–characterized, and accurately diagnosed experiment is
essential for validation.

FLASH is a multi–species, multi–dimensional, parallel, adaptive–mesh–refinement,
fluid dynamics code for applications in astrophysics [4]. Calder et al. discuss initial
validation tests of the FLASH code [5]. Herein we continue our validation effort
by comparing FLASH simulations to an experiment performed at the Los Alamos
National Laboratories [2, 3].

2 Two–Dimensional Simulations

2.1 Experimental Facility and Initial Conditions

The experimental apparatus is a shock–tube with a 7.5 cm square cross–section.
Gaseous SF6 flows from an 8 mm diameter nozzle in the top wall of the shock–tube,
forming a cylinder of dense gas in the otherwise air–filled test section. A Ma=1.2
shockwave travels through the shock–tube and passes through the cylinder. Our in-
terest is in the resulting evolution of the SF6. The experiment is nominally two–
dimensional, and the experimental data are taken in a plane normal to the cylinder
axis.

The initial SF6 distribution (before the shock impact) is visualized by Rayleigh–
Scattering from the SF6 molecules [2]. The image plane is 2 cm below the top wall
of the test section. As the SF6 flows downward, air diffuses into the SF6 column,
reducing the peak concentration of the heavy gas. One limitation of the visualization
technique is that the pixel intensity in the images gives only the mole fraction of
SF6 relative to the peak mole fraction. The scaling between pixel intensity and mole
fraction is linear, with the proportionality constant specified by the maximum initial
mole fraction of SF6, denoted XSF6.

After shock passage, two–dimensional velocity vectors in a plane are obtained
using particle image velocimetry (PIV) [6]. The technique yields high resolution
(spacing between vectors is about 187 microns) and high accuracy (measurement
error is 1.5% of the structure convection velocity). Raw images are interrogated us-
ing a two-frame cross-correlation technique [7], which produces approximately 3600
vectors per realization. For PIV both the air and the SF6 must be seeded with wa-
ter/glycol droplets, nominally 0.5 µm in diameter, the displacement of which is used
to obtain velocity data—hence, simultaneous velocity and composition images can-
not be obtained.

The 608�468 pixel image of the initial SF6 distribution is shown in Fig. 1. The
pixel size is 38 microns when projected into the measurement plane. The pixel in-
tensity is plotted, with 20 contours equally spaced between values of 5 and 165. The
deformation of the contours indicates that the distribution of SF 6, as revealed by the
diagnostics, is only approximately radially symmetric. Also, the signal is completely
dominated by noise at the level of about 5–10% (the two lowest density contours
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in Fig. 1). Since the asymmetries are likely to vary from one experimental shot to
another and the flowfield evolution is highly sensitive to noise, smooth initial condi-
tions for our simulations are obtained by fitting a radially–symmetric function to the
experimental data.

Fig. 1. (a) The initial conditions for the single–cylinder experiment with an 8mm nozzle. (b)
Residuals between the experimental image and the composite Gaussian fit. The scale varies
from -10 (black) to +10 (white) in intensity units. The maximum signal in the image has an
intensity of about 165. Note a semi–regular non–radial m=4,l=4 component with maximum
signal reaching about 10% of local intensity.

To obtain the smooth initial conditions we used the MINGA minimization pack-
age [8]. The fit extended out to a radius of 150 pixels from the center. After examining
many trial functions, we selected the form:

C�r� � u1e��r2�u2
2��u3e��r2�u2

4��u5e���r�u6�
2�u2

7��u8e���r�u9�
2�u2

10�

where u1 � 144�0725, u2 � 69�45422, u3 � 9�221577, u4 � 20�10299, u5 � 32�47960,
u6 � 42�59238, u7 � 32�10067, u8 ��1�559247, u9 � 98�27106, and u10 � 15�51837.
(The length units are pixels, and the maximum intensity will be rescaled to X SF6.)
Residuals are shown in Fig. 1. The experimental data appears to contain a significant
non–radial signal which can be characterized by an m=4, l=4 perturbation with an
amplitude of about 10%. Our fit does not account for this additional component.

2.2 Overview of the Simulations

As the shock travels, it accelerates the medium through which it propagates. As the
shock traverses the cylinder, vorticity is deposited baroclinically along the interface,
i.e., due to the misalignment of the pressure gradient (normal to the shock) and the
density gradient (normal to the interface.) The vorticity deposition is not uniform:
it is maximum when the gradients are perpendicular, and since the shock is slowed
in the SF6, the maximum is shifted to the downstream portion of the cylinder edge.
Once the shock has passed through the SF6, vorticity generation due to the primary
instability is complete. The existing vorticity drives the flow: a counter–rotating vor-
tex pair forms, then rolls up. The vortex Reynolds number of the flow, as measured
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experimentally, is Re� Γ�ν� 5�104. The development and evolution of the vortex
pair and subsequent instabilities at the interface proceed in a weakly compressible
regime. More precise descriptions can be found in the references [1, 9, 3].

Figure 2 shows a sequence of images from our baseline simulation. The mini-
mum grid resolution is 78 microns, the initial peak mole fraction of SF 6 is 0.6, and
the Courant (CFL) number is 0.8. (The CFL number is a nondimensional measure
of the timestep size.) For all simulations, the streamwise and spanwise extent of the
domain were 64 cm and 8 cm, respectively. Overall the flow features in the simula-
tion results are similar to those in the experimentally obtained images. Next we will
describe the effects of several simulation parameters on the computed results. The
amount and location of small–scale structure, relative to the experimental data, is
used as a qualitative metric.

0 50 750610470330190

Fig. 2. Evolution of the SF6, with time elapsed after shock impact listed in µs. The mass
fraction of SF6 is shown, with XSF6=0.6 and CFL=0.8.

2.3 Effects of Simulation Parameters

Effect of Maximum Initial Mole Fraction

Because the experimental images provide only information about the relative mole
fractions, the maximum mole fraction of SF6 at the start of the simulation is a free
parameter in our initial conditions. We have focused on two values, X SF6=0.8, mo-
tivated by experimental estimates, and XSF6=0.6, better supported by comparison of
simulation and experimental results. Simulation results are presented in Fig. 3. For
XSF6=0.8, the numerical solution shows excessive small–scale structure compared
to the experimental data.

Effect of Grid Resolution

Using FLASH’s adaptive mesh refinement capability, we have run simulations at
three grid resolutions. Results at 750 µs are presented in Fig. 4, with minimum grid
spacings of 156 microns, 78 microns and 39 microns. We observe that the amount
of small–scale structure increases on finer grids. This can be understood since the
numerical dissipation in FLASH’s shock–capturing scheme (PPM) is resolution de-
pendent, and no physical viscosity model was used for these simulations. (Estimates
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X      =0.8SFSF6 6
X      =0.6

Fig. 3. SF6 mass fraction at 750µs after shock impact. Initial maximum SF6 mole fraction
XSF6=0.6 on the left, and on the right XSF6=0.8.

of the length scale of molecular diffusion at the flow conditions of the experiment are
below 10 microns.) At a grid resolution of 39 microns, the primary vortex cores are
not easily identified among the diffuse, turbulent structures. At the lower resolutions,
the two primary vortex cores are unambiguous.

dx=156 dx=78 dx=39
Fig. 4. SF6 mass fraction at 750 µs with increasing grid resolution, labeled in microns. At the
highest level of resolution, the vortex cores appear diffuse.

Flow–Mesh Interaction

It is known that unavoidable interpolation errors near discontinuous jumps in grid
resolution can act as sources of spurious small–scale structure [10]. To test this pos-
sibility we have run simulations in which a predetermined area around the vortices
is uniformly refined to the highest resolution. Compared to fully adaptive refinement
(the default) this approach significantly reduces the amount of perturbations intro-
duced by the grid adaption process.

In Fig. 5 we compare the results from a fully adaptive grid and grids with max-
imally refined rectangles of 3� 3 cm, 4� 4 cm, and 4� 8 cm. The vortex structure
is always less than 2 cm across. The results are shown at 750 µs after shock impact.
For all grids, the minimum grid spacing is 78 microns and the CFL number is 0.8.
For the different grids the large scale morphology, such as size of the cylinder cross–
section and the basic vortex structure, remains the same. However, the shape of the
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cross–section visibly differs depending on the grid, as does the amount and location
of small–scale structures. In particular, differences are noticeable in the small–scale
instabilities present on the vortex rolls. Since all other simulation aspects are the
same, the differences must originate with perturbations at jumps in refinement.

4x4 rectAdaptive  4x8 rect3x3 rect

Fig. 5. Solutions on different grids, 750 µs after shock impact at CFL=0.8. Left to right:
fully adaptive grid; 3� 3 cm refined rectangle; 4� 4 cm refined rectangle; 4� 8 cm refined
rectangle. In the rightmost image, the refined rectangle covers the entire spanwise extent of
the test section.

Effect of Courant Number

The timestep in an explicit hydrodynamic code is limited by the CFL number. In
general we use a value of CFL=0.8, but we have also performed simulations with
the time step size limited by CFL=0.2. Reducing the timestep generally reduces the
temporal truncation error; however, it might have an adverse effect on the spatial
error. Additionally the mesh can adapt more often per unit of simulation time, and if
errors are committed every time the mesh adapts, this could lead to a less accurate
solution.

We repeated the simulations described above, but at CFL=0.2. The results are
shown in Fig. 6. The simulations at CFL=0.2 are much less sensitive to grid adaption:
there is much less variation between solutions on adaptive and locally uniform grids
at CFL=0.2 than at CFL=0.8. One explanation for these results is that the errors at the
fine–coarse boundaries are larger and lead to stronger perturbations at higher CFL
numbers. An alternative explanation is that at higher Courant numbers, PPM does
not adequately compute solutions at these conditions. Our simulations indicate that
for FLASH, a lower CFL number is preferred in this regime.

Our fully adaptive grid simulations provides a speed–up factor of about 10, com-
pared to the grids with the 4�8 cm maximally refined rectangle. Such large savings
demonstrate the advantages of adaptive mesh refinement. At the same time, caution
is warranted: our results also demonstrate that AMR generates perturbations which,
depending on other simulation parameters and the flow regime, can give rise to spu-
rious small–scale structures.
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4x4 rectAdaptive  4x8 rect3x3 rect

Fig. 6. Solutions on different grids for CFL=0.2; for other details see Fig. 5.

2.4 Metrics for Comparison to Experimental Data

Evolution of Cylinder Size

In Fig. 7 we present integral scale measures – the streamwise and spanwise extent of
the SF6 – over time. The contour of SF6 mass fraction equal to 0.1 was used to define
the edge of the SF6. We plot results for our baseline simulation and simulations
where a single parameter is varied relative to the baseline. For a given maximum
initial SF6 mole fraction, the cylinder height and width are essentially insensitive to
the parameters varied. These integral measures provide a basis for comparison of our
simulation results to those of others (e.g. [3, 11]), as well as to the experimental data.

Baseline
CFL = 0.2
XSF6 = 0.8
39µm resolution
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Fig. 7. Integral scale measures plotted at nine simulation times. For the baseline case,
XSF6=0.6, CFL=0.8, and 78 micron resolution. For other cases a single parameter varies from
the baseline case.
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Velocity Comparisons

We compare the magnitude of the velocity fluctuations from the experimental data
to that from the simulation results. The velocity fluctuation is defined as the velocity
in the frame of reference of the vortices. To find the velocity fluctuation we subtract
the convective velocity, which we define as the streamwise velocity component in
the lab frame at the point of the maximum vorticity.

The experimental data are the velocity components and the corresponding vor-
ticity on 60�60 points uniformly covering a 12�12 mm region around one of the
primary vortices. We find the convective velocity to be 101.25 m/s. The magnitude of
the velocity fluctuations are plotted as flooded contours in the left plot of Fig. 8, to-
gether with streamlines of the velocity fluctuations. The plot is oriented such that the
shock has passed through the image from top to bottom, and the centerline (between
the primary vortices) is near the right edge of the plot.

The right plot of Fig. 8 shows the same quantities but from the simulation data
(78 micron resolution, XSF6=0.6, CFL=0.2), for which the convective velocity is
92.90 m/s. The velocity fluctuation field in the simulations compares reasonably well
to the experimental data. The maximum and minimum fluctuations occur in approxi-
mately the same places. The velocities in the simulation are up to 10% higher than in
the experiment. The simulation data shows more structure, and there is some (visual,
at least) correlation between the structure in the velocity fluctuations and the SF 6

distribution.

Experiment Simulation

Fig. 8. Velocity fluctuation magnitude and streamlines around one primary vortex 750 µs after
shock impact. The shock has passed through the image from the top to bottom. Left: experi-
mental data. Right: simulation data.
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3 Three–Dimensional Simulation

While the experiment is nominally two–dimensional, several factors might contribute
to non–negligible three–dimensional effects. Probably the most significant experi-
mental deviations from two–dimensionality are due to the diffusion of the SF 6 as it
flows from the top of the test section to the bottom. As a result, the mixture com-
position and density vary with height. (This is why we assume the maximum initial
mole fraction of SF6 is less than 1.0 in the two–dimensional simulations.) Even if
the cylinder were invariant with height, the flowfield after the shock passes the cylin-
der is dominated by vorticity dynamics, and small scale structures arising from flow
instabilities eventually develop at the vortex edges. The effects of such inherently
three–dimensional phenomena cannot be captured in two–dimensional simulations.

We executed a speculative three–dimensional simulation which, though it can-
not definitively establish that three–dimensional effects are essential for the shock–
cylinder interaction, compels further experimental and computational investigation.
Our z-direction extension of the initial conditions is purely ad hoc, because we have
no corresponding experimental data. Of course, this simulation cannot be used as a
validation test for the FLASH code, but we hope it will open a new line of investiga-
tion and discussion.

For this simulation the z-direction is parallel to the cylinder axis, with z=0.0 cm
at the bottom wall and z=8.0cm at the top wall. To initialize the flowfield, we begin
with the “raw” image in Fig. 1. Only after this simulation was completed did we learn
that the raw images have spurious high frequency noise, and smooth approximations
to the raw data are believed to better represent the true SF6 field [2]. The streamwise
(x) and spanwise (y) dimensions of the image are rescaled linearly with z, so the SF 6

covers a smaller area at the top wall and a larger area at the bottom. Consequently the
maximum mole fraction of SF6 in each plane varies as z2, and is 0.64 at the top wall
and 0.47 at the z=6.0 cm plane, at which the “raw” image was obtained. Otherwise
the initialization is the same as for the two–dimensional simulations. The simulation
was run at CFL=0.8 using fully adaptive mesh refinement, and the minimum grid
spacing was 156 microns in all three spatial dimensions.

Near the top wall in our simulation, the vortices have rolled up more than at the
bottom, and more small scale structure has developed. This observation appears to
hold throughout the course of the simulation, and can be understood as follows. The
rescaling of the initial SF6 distribution results in larger composition gradients, and
correspondingly larger density gradients, near the top and smaller gradients near the
bottom. The primary source of vorticity generation in this problem is through baro-
clinic torque, so more vorticity is deposited near the upper wall, where the density
gradients are largest.

The circulation provides a quantitative measure of the vortex development. The z-
component of circulation was calculated for the lower-y half of each xy-plane of the
simulation, bounded by the centerline, y=0.0 cm, and the inflow and outflow bound-
aries. Figure 9 shows the circulation at z=0.0, 2.0, 4.0, 6.0 and 8.0 cm as functions
of time. The profiles are essentially the same up to 300 µs after the shock impact,
with the magnitude in each plane increasing from the bottom wall to the top wall;
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this suggests that there are no significant three–dimensional effects through this time
other than the diffusion of the SF6 as it flows vertically. However, after 300 µs, dif-
ferences between the profiles for each height appear, beginning with the profile near
the top wall, and eventually spreading to lower heights.

We find that by the end of the simulation, the z-component of velocity has
reached a maximum of 17 m/s, which is more than half of the maximum of the
spanwise component. Positive z-velocity is maximum in the vortex cores, away from
the upper and lower walls. Apparently, the stronger vortices near the upper wall have
correspondingly lower core pressures compared to the weaker vortices near the lower
wall; this pressure difference accelerates gas toward the upper wall through the vor-
tex cores. The acceleration is compounded because the cores of the vortices are filled
with air, and the heavier SF6 is wrapped around the outside. The lighter air in the
core of each vortex is inside a tube of SF6, and is preferentially accelerated toward
the upper wall. The different circulation profiles and large z-component of velocity
suggest that three–dimensional effects are not negligible for the initial conditions we
assumed. Only with experimental data can we test those assumptions.
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Fig. 9. Z–component of circulation in the lower-y half of the xy-plane at five vertical locations
in the tunnel, as a function of time.

4 Concluding Remarks

To date we have made a large number of two–dimensional simulations to validate
the FLASH code for problems dominated by vortex dynamics. While this is work in
progress, we can make the following remarks:

� The overall morphology of the flowfield is captured by the simulations, but dif-
ferences exist in the location and extent of small–scale structure.

� Simulation velocity magnitudes lie within 10% of experimental values.
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� For vortex–dominated subsonic flows, FLASH users should be cautious regard-
ing the choice of CFL number, mesh refinement criteria, and if PPM is used,
contact steepening.

Our three–dimensional simulation, despite issues with the initial conditions, suggests
that three–dimensional effects might be important for this experiment, and measure-
ments should be made parallel to the cylinder axis to examine the issue.
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a)

b)

Plate 1. [Fig. 8 on p. 155] Schlieren pictures of the density field of a Mach 4 shock-vortex
interaction and associated multilevel grids. a) time t � 0, b) time t � 0�4.
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Plate 2. [Fig. 9 on p. 156] Total view of NACA0012 airfoil, M � 0�95, α � 0�0Æ. Left: Com-
putational grid. Right: Pressure distribution, Mmin � 0�0, Mmax � 1�45, ∆M � 0�05.

Plate 3. [Fig. 10 on p. 156] Detail of Fig. 9.
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Plate 4. [Fig. 1 on p. 168] Surface plots of u�t�x�y� for �x�y� � �0�

1
2 �

2, from solving the
HeatEq. (18-19), on adaptive piecewise-polynomial spaces �2

k (15) corresponding to elements
�k (13) that cover the biperiodic domain �0�1�2. Each �k contains 72 Gauss quadrature nodes
�x�j�k (16). The plots (a-f) correspond to times t in the rows of Table 1. Each vertical plot axis

is labeled u�min:�max�n� to indicate the smallest and largest element edges 2��max and 2��min at
time step n. In (19) were set e�a1 �e�a2 � 2

5 ,�l�2π�1�2� and �xo �� 1
2 �

1
2 �. Observe that in (a)

the peaks (red) generate locally small-scale representations, that evolve with time to locally
larger scales.
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Plate 5. [Fig. 2 on p. 169] As in Fig. 1 but for ux � ∂xχ from the Burgers Eq. (21-22), zoomed
to view �x�y� � � 1

2 �1�� �0�

1
2 �. Observe the formation over time of steep fronts along the line

family�l ��x � �2��1�π, e.g., the line 1� x � 2y� 1
2 is prominent in this view. This behavior

is no more than the rotation of 1D Burgers dynamics into 2D, since if U�t�x� solves the 1D
Burgers Eq., then �u�t��x� ��lU�l2t��l ��x� solves (20).
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After 38 time steps After 79 time steps

Plate 6. [Fig. 4 on p. 370] Circular Riemann problem in an enclosed box. Isolines of density
on two refinement levels (indicated by gray scales) and distribution to eight nodes (indicated
by different colors).

Plate 7. [Fig. 5 on p. 370] (Upper four
graphics.) Planar detonation diffraction.
Density distribution on four refinement
levels 240µs after the detonation has
left the tube. Multiple zooms are nec-
essary to display the finite volume cells.

Plate 8. [Fig. 6 on p. 370] Planar
detonation diffraction. Distribution of
computational domain to 48 nodes.
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Plate 9. [Fig. 6 on p. 516] Global mesh arrangement and the iso-surface of the solution for
the kinematic cyclogenecis problem, for a static grid case, where the grid has been refined up
to a specific height (left). Some of the surfaces have been removed in the zoom (right) to re-
veal detail. This mesh arrangement is suitable for mesoscale studies, as a two-way interaction
replacement of nested grids.
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Base mesh

Second level
First level

Filament

Tube

NP
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Plate 10. [Fig. 8 on p. 520] Three dimensional simulation of a stratosphere-troposphere event
over the Atlantic during June 1996. Note that although the grid appears to contain triangular
cells, this is nothing but a graphical artefact (see main text).
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Plate 11. [ Fig. 9 on p. 521] Snapshot of the evolution of an isolated cyclonic vortex (cut-off
low) over the Atlantic (90 degrees west to Greenwich Meridian), on 20 June 1996. The PV

= 2.0 isosurface is shown; the computational meshes are shaded by PV magnitude. Global
atmospheric AMR run on a 120�60�8��2�3� grid, between 290K and 370K.
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Plate 12. [Fig. 10 on p. 522] Visualisation of a cut-off low over the Atlantic, 21 June 1996.
The PV=2.0 isosurface is shown; the computational meshes are shaded by PV magnitude. For
details of this integration see the caption in figure 9.
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