


Verification Methodology
Manual

for
SystemVerilog



Verification Methodology
Manual

for
SystemVerilog

by

Janick Bergeron
Eduard Cerny
Alan Hunter

Andrew Nightingale



Janick Bergeron, Synopsys, Inc. Eduard Cerny, Synopsys, Inc.
Andrew Nightingale, ARM, Ltd. Alan Hunter, ARM, Ltd.

Verification methodology manual for SystemVerilog / by Janick Bergeron … [et al.]. 
          p. cm. 
      Includes bibliographical references and index. 
      ISBN-13: 978-0-387-25538-5 (alk. paper) 
      ISBN-10: 0-387-25538-9 (alk. paper) 
      ISBN-10: 0-387-25556-7 (e-book) 
       1. Verilog (Computer hardware description language) 2. Integrated circuits--Verification. 
   I. Bergeron, Janick. 

   TK7885.7 V44 2005 
   621.39’2--dc22                                   

       2005051724 

Cover: Die photograph of the ARM926EJ-S™ PrimeXsys™  Platform Development  
Chip  2005 ARM Ltd. 

ARM is a registered trademark and ARM926EJ-S and PrimeXsys are trademarks of ARM  
Limited.  “ARM” is used to represent ARM Holdings plc; its operating company ARM  
Limited; and the regional subsidiaries ARM INC.; ARM KK; ARM Korea Ltd.; ARM Taiwan;  
ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Belgium N.V.; AXYS Design  
Automation Inc.; AXYS GmbH; ARM Embedded Technologies Pvt. Ltd.; and ARM Physical  
IP, Inc. Synopsys is a registered trademark of Synopsys, Inc. 

 2006 Synopsys, Inc. and ARM Limited 
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring 
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or 
scholarly analysis. Use in connection with any form of information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now 
know or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, 
even if the are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are subject to proprietary rights. 

Printed in the United States of America.    

9  8  7  6  5  4  3  2  1                   SPIN  11055174        

springeronline.com 



Verification Methodology Manual for SystemVerilog v

FOREWORD

When I co-authored the original edition of the Reuse Methodology Manual for Sys-
tem-on-Chip Designs (RMM) nearly a decade ago, designers were facing a crisis.
Shrinking silicon geometry had increased system-on-chip (SoC) capacity well into
the millions of gates, but development teams simply didn't have the time or resources
to design so much logic while meeting product schedules. At that time, design reuse
was emerging as the best way to resolve this dilemma. The RMM was written to pro-
vide an extensive set of rules, guidelines, and best practices for developing reusable
IP that could be quickly and easily integrated into SoC designs.

IP-reuse-based SoC design methodology is now a fully accepted industry practice,
and I am proud that the three editions of the RMM have helped to guide this evolu-
tion. It is now time for a book providing similar guidance for verification methodol-
ogy and verification reuse. As many studies have shown, verification has emerged as
the biggest portion of SoC development, consuming the most time and resources on
most projects. The practices that sufficed for small designs-hand-written directed tests
with minimal coverage metrics-are woefully insufficient in the SoC world.

I am pleased to introduce the Verification Methodology Manual for SystemVerilog, a
book that will revolutionize the practices of verification engineers much as the RMM
led designers to a better methodology with more predictable results. It encompasses
all the latest techniques, including constrained-random stimulus generation, cover-
age-driven verification, assertion-based verification, formal analysis, and system-
level verification in an open, well-defined methodology. It introduces and illustrates
these techniques with examples from SystemVerilog, the industry standard linking
RTL design, testbenches, assertions, and coverage together in a coherent and compre-
hensive language.
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This book is not a theoretical exercise; it is based upon many years of verification
experience from the authors, their colleagues, and their customers. It is practical and
usable for SoC teams looking to greatly reduce the pain of verification while signifi-
cantly increasing their chances of first-silicon success. It is my hope that the Verifica-
tion Methodology Manual for SystemVerilog will be an essential reference guide for a
whole new generation of SoC projects.

Pierre Bricaud
Co-Author of Reuse Methodology Manual for System-on-Chip Designs
Synopsys, Inc.
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PREFACE

When VHDL first came out as an IEEE standard, it was thought to be sufficient to
model hardware designs. Reality proved to be a little different. Because it did not
have a predefined four-state logic type, each simulator and model vendor had to
create its own—and incompatible—logic type. This situation prompted the quick
creation of a group to create a standard multi-valued logic package for VHDL that
culminated with the 1164 standard. With such a package, models became
interoperable and simulators could be optimized to perform well-defined operations.

The authors of this book hope to create a similar standard for verification components
within the SystemVerilog language. The infrastructure elements specified in the
appendices can form the basis of a standard verification interface. If model vendors
use it to build their verification components, they will be immediately interoperable.
If simulator vendors optimize their implementation of the standard functions, the
runtime performances can be improved.

HOW THIS BOOK IS STRUCTURED
The book is composed of chapters and appendices. The chapters describe guidelines
that must or should be followed when implementing the verification methodology.
The appendices specify application-generic support elements to help in the
implementation process.

Chapter 3 provides guidelines for writing assertions. Its companion Appendix B
specifies a set of predefined checkers that can be used in lieu of writing new
assertions.
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Chapter 4 describes the components of a verification environment and how to
implement them. Its companion Appendix A specifies a set of base and utility classes
that are used to implement the generic functionality required by all environments and
components.

Chapter 5 describes how to provide stimulus to the design under verification and how
it can be constrained to create interesting conditions. The generator classes specified
in Appendix A help to rapidly create VMM-compliant generator components.

Chapter 6 describes how to use qualitative metrics to drive the verification process
and using a constrainable random verification environment built using the guidelines
presented in the previous chapters to efficiently implement it.

Chapter 7 describes how assertions can be used with formal technology. Only a subset
of the checkers described in Appendix B can be used within this context.

Chapter 8 describes how the principles presented in the previous chapters can be
leveraged for system-level verification. Its companion Appendix C specifies a
command language and extensible component infrastructure to implement block and
system-level verification environments.

Chapter 9 describes how the integration of a general-purpose programmable
processor in a system can be verified using a set of predefined C functions described
in Appendix D.

The support infrastructure is specified in appendices A through D by describing the
interface and functionality of each element. No implementation is provided. It is up to
each vendor to provide a suitable implementation. This gives the opportunity to EDA
or IP vendors to optimize the implementation of the infrastructure for their particular
platform. It also eliminates the risk that unintended side effects of a particular
"reference" implementation might be interpreted as expected behavior. The code for
the interface specifications is available at the companion Web site:

http://vmm-sv.org

Note that the methodology can be followed without using the support elements
specified in the appendices. Any functionally equivalent set of elements, providing
similar functionality, would work. However, using a different set of support elements
will likely diminish the interoperability of verification components and environments
written using different support infrastructures.
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HOW TO READ THIS BOOK
This book is not designed as a textbook that can be read and applied linearly.
Although the authors have made their best effort to present the material in a logical
order, it will be often difficult to appreciate the importance or wisdom of some
elements of the methodology without a grasp of the overall picture. Unfortunately, it
is not possible to draw an overall picture without first building the various elements
used to construct it.

The chicken-and-egg paradox is inherent to describing methodologies. A
methodology is about taking steps today to make life easier in some future. A
successful methodology will help reduce the overall cost of a project through
investments at earlier stages that will provide greater returns later on. In a practical
description of a methodology, it is difficult to justify some of the initial costs as their
future benefit is not immediately apparent. Similarly, describing the future benefits is
not possible without describing the elements that, when put together, will create these
benefits.

A reader unfamiliar with an equivalent methodology would typically require two
readings of the entire book. A first reading will help form the overall picture of the
methodology, how the various elements fit together and the benefits that can be
realized. A second reading will help appreciate its detailed implementation process
and supporting library.

Although everyone will benefit from reading the entire book, there are sections that
are more relevant to specific verification tasks. Designers must read Chapter 3. They
should also read Chapter 7 if they intend to use formal technology to verify their
design. Verification leaders and project managers should read Chapters 2 and 6.
Verification engineers responsible for the implementation and maintenance of the
verification environment must read Chapters 4 and 5 and should read Chapter 8.
Verification IP developers should read Chapters 4 and 8. Verification engineers
responsible for implementing testcases should read the first half of Chapter 5. If they
are also responsible for implementing functional coverage points, they should read
the second half of Chapter 6. Embedded software verification engineers should read
Chapter 9.
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FOR MORE INFORMATION
At the time of writing, SystemVerilog was in the process of being ratified as an IEEE
standard. In addition to several books already—or to be—published, more
information about SystemVerilog can be obtained from:

http://www.eda.org/sv

http://www.eda.org/sv-ieee1800

This book assumes the reader has experience with the entire SystemVerilog language.
It is not designed as an introductory or training text to the verification or assertion
constructs. The following books, listed in alphabetical order, can be used to gain the
necessary experience and knowledge of the language constructs:

Janick Bergeron, "Writing Testbenches Using SystemVerilog", Springer
Ben Cohen, Srinivasan Venkataramanan and Ajeetha Kumari, "SystemVerilog 
Assertions Handbook", VhdlCohen Publishing
Chris Spear and Arturo Salz, "SystemVerilog for Verification", Springer

In this book, code examples are provided as extracts that focus on the various points
they are designed to illustrate. It does not contain a full example of the methodology
application within its page. Such an example would consume several tens of pages
filled with SystemVerilog code. It would be difficult to navigate, would become
obsolete as improvements to the methodology are made and impossible to actually
simulate. Pointers to several complete examples and the complete code that includes
the various examples can be found at the companion Web site:

http://vmm-sv.org

The companion Web site will also contain an errata for the latest edition of the book.
It may also publish additional guidelines as the methodology evolves and is
expanded. These additional guidelines will be included in future editions. Discussions
on the use or interpretation of the methodology and suggestions for improvement are
carried in the forums at:

http://verificationguild.com
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CHAPTER 1 INTRODUCTION

In the process of design and verification, experience shows that it is the latter task that
dominates time scales. This book defines a methodology that helps minimize the time
necessary to meet the verification requirements. It also takes the opportunity offered
by the definition of a methodology to also define standards that will enable the
creation of interoperable verification environments and components.

Using interoperable environments and components is essential in reducing the effort
required to verify a complete product. A consistent usage model is present in all
verification environments. System-level environments are able to leverage the
components, self-checking structure and coverage from block-level environments.
Formal tools are able to share the same properties used by simulation. Verification IP
is able to meet the requirement of verifying the interface block as well as the system-
level functionality that resides behind it.

The methodology described in this book defines standards for specifying reusable
properties that are efficient to simulate and that can be formally verified. It defines
standards for creating transaction and data descriptors to facilitate their constrainable
random generation while maintaining a flexible directed capability. This methodology
standardizes how bus-functional models, monitors and transactors are designed to
provide stimulus and checking functions that are relevant from block to system.
Furthermore, this methodology sets standards for the integration of the various
components into a verification environment so they can be easily combined,
controlled and later extricated to leverage in different environments. The book also
defines standards for implementing coverage models and software verification
environments. These standards, when put together in a coherent methodology, help
reduce the effort required to verify a design.
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The methodology described in this book could be implemented using a different
language or a different set of standards. But interoperability is maximized when the
same language and the same set of standards are used. The classes and associated
guidelines specified in this book can be freely used by anyone, users and EDA
vendors alike. The objective is to create a vibrant SystemVerilog verification
ecosystem that speaks a common language, uses a common approach and creates
highly interoperable verification environments and components.

VERIFICATION PRODUCTIVITY
The progress of a verification project is measured by the number of functional
features that are confirmed as functionally correct. Therefore, verification
productivity is a measure of how many such features are confirmed as functionally
correct over a period of time, including the time necessary to debug and fix any
functional errors in the same features. The greater the productivity, the faster a high-
quality product can be manufactured. This measure of productivity is not necessarily
correlated to the amount of code written in the same time period, nor is it correlated to
the runtime performance of the simulations used to confirm functional correctness. It
is possible to achieve a higher verification productivity while writing less code and
running more concurrent simulations.

Historically, verification methodologies have evolved alongside the design
abstraction and kept pace with the complexities of the designs being implemented.
When design was done at the mask level, verification was accomplished by
simulating transistor models. When design transitioned to standard cells, verification
transitioned to gate-level digital simulations. When design took advantage of the
simulation language to introduce logic synthesis, verification evolved to transaction-
level testbenches using bus-functional models. Throughout these evolutionary steps,
the approach to verification has not fundamentally changed: Individual design
features are verified using individual testcases crafted to exercise the targeted feature.

However, the traditional individual testcase approach does not scale to handle today’s
largest multi-million gate designs. A project with one thousand separate features to
verify would require over one calendar year to complete with the help of a team of 10
verification engineers able—on average—to write, debug and maintain one testcase
every three days for the entire duration of the project. That effort requires an
unusually large team of unusually productive engineers. Such large projects require a
different approach.
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Increasing Productivity
The methodology presented in this book improves the productivity of a verification
project through four different mechanisms: assertions, abstraction, automation and
reuse.

When using assertions to identify defects on interfaces or in runtime assumptions,
errors are reported close in space and time to their ultimate cause. Otherwise, the
consequence of the error may have been detected after several clock cycles if and
when it reached a monitored output and checked against expectations. Some classes
of errors produce symptoms that are easy to detect at the boundary of the design—a
missing packet for example. However, some classes of errors have symptoms that are
not so obvious—for example, an arbitration error that can be recovered from, only
producing a small reduction in throughput for a certain class of service. Assertions
create monitors at critical points in the design without having to create separate
testbenches where these points would be externally visible.

Verifying at an increasing the level of abstraction is simply continuing the past
historical trend. But unlike historical increases in abstraction, this one need not be
accompanied by an equivalent increase in the design abstraction. It is still necessary
to verify low-level implementation and physical details. Once low-levels of
functionality are verified, verification can proceed at higher levels using a layered
testbench architecture. The layering of transactors to form successive layers of
abstraction is also used to break away from the monolithic bus-functional model that
makes it difficult to introduce additional or combinations of protocol layers.

The design-specific nature of the tests and the response-checking mechanism makes
general purpose automation of the verification process impossible. True automation
would produce the exact same testcases that would be written manually. But random
stimulus can emulate automation: Left to its own devices, a properly-designed
random source will eventually generate the desired stimulus. Random stimulus will
also create conditions that may not have been foreseen as significant. When random
stimulus fails to produced the required stimulus, or when the required stimulus is
unlikely to be produced by an unbiased random stimulus source, constraints can be
added to the random stimulus to increase the probability (sometimes to 100%) of
generating the required stimulus. Due to the random nature of the stimulus, it is
necessary to use a coverage mechanism to identify which testcases have been pseudo-
automatically produced so far. This coverage metrics measure the progress and
productivity of the verification process. Verification requirements that were
automatically met are quickly identify, allowing the effort to be concentrated on those
that remain to be met.
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Reusing code avoids having to duplicate its functionality. Reuse is not limited to
reusing code across projects. First-order reuse occurs when the same verification
environment is reused across multiple testcases on the same project. By reusing code
as much as possible, a feature can be verified using just a few lines of additional code.
Ultimately, testcases should become simple reconfigurations of highly reusable
verification components forming a design-specific verification environment or
platform. Note that this book is not about a reuse methodology. Reuse is only a
means, not an end.

VERIFICATION COMPONENTS
As stated previously, first-order reuse occurs when a design-specific verification
environment is reused across testcases for that design. Second-order reuse occurs
when some components of the design-specific verification environment are reused in
a system-level environment. Third-order reuse occurs when those same components
are reused across different verification environments for different designs. For all of
these reuse opportunities to be realized, verification components have to be properly
designed.

For verification components to be reusable, they must be functionally correct and
they must be configurable to meet the needs of the environments and testcases built
on top of them. The term configurable in this context refers to the ability of the
verification component to exhibit the required functionality to adequately exercise the
design or system under verification. A configurable verification component can be
used to drive an interface in a block-level environment. Later, the same component
can be used, without modification, in a system-level verification environment. A
verification component must thus meet the different stimulus and monitoring
requirements of a block-level environment and a system-level environment. This
book describes methodologies to build, then leverage, verification components to
reduce the verification effort and increase reusability.

Interface-Based Design
Nowadays, designs have external interfaces and on-chip buses which, in all
likelihood, implement industry-standard protocols such as the AMBA™ Protocol
Family, USB or Utopia. The benefits of standardized external interfaces and on-chip
buses are well understood and include availability of design IP, reusability of existing
validation components during design development and ease of understanding by
engineers during development.



Verification Components

Verification Methodology Manual for SystemVerilog 5

Early in the design process, functional partitioning takes place to make the detailed
design phase both manageable and suitable for execution by an engineering team. As
shown in Figure 1-1, this procedure introduces many new internal interfaces into the
design.

Figure 1-1. Interface-Based Design

Being internal, design engineers are free to implement these interfaces. There can
often be as many different implementations of interfaces as interfaces themselves. To
validate a partitioned design, verification components are required to stimulate each
internal interface from the perspective of each agent on that interface. The number of
verification components required for a partitioned design is therefore potentially
proportional to the number of interfaces, which in itself grows exponentially with the
number of partitions. For example, verifying the partitioned designed shown in Figure
1-1—with three internal interfaces and four external interfaces—requires 13 different
verification components, as illustrated in Figure 1-2.

Figure 1-2. Verification Environments for Partitioned Design

An interface-based design methodology should have internal interfaces well specified
early in the design process, aim to minimize the number of unique interfaces and
leverage a library of common verification components. This approach will enable
designers to concentrate on the value-add of the design while meeting the
performance goals of the various interfaces.
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DESIGN FOR VERIFICATION
Design for verification is a response to the problems encountered when verifying the
current (and future) complex microelectronics devices. Like design for synthesis and
design for test, it requires a change in how designs are specified, captured and
implemented.

Design for synthesis methodologies introduced, along with RTL-based specifications,
specific hardware design language (HDL) coding styles and required synchronous
designs. These restrictions allowed the use of a set of tools supporting the
methodology—logic synthesis, cycle-based simulation, static timing analysis and
equivalence checking—which contributed to increasing the overall design
productivity.

Design for test separated testing for structural defects from verifying the functional
aspects of the devices. These methodologies imposed further restrictions on the
designs—synchronous interfaces, no clock gating, no latches and exclusive bus
drivers—but also came with additional tool support. These methodological
restrictions, coupled with the tools that supported them, helped improve the
controllability and observability of internal structural failures to yield enormous gains
in device reliability at a much lower cost.

Design for verification involves the designer in the verification process as early as
possible, even before—and especially during—the design process itself. Small
upfront investments by designers can reap a substantial reduction in the effort and
time required to verify a design. Design for verification includes providing a way for
the designer to express his or her intent concisely and naturally as part of the design
process so that it can be objectively verified. To that end, SystemVerilog provides
assertions to check the behavior and assumptions of the design and interface signals.
It also provides specific language constructs—such as the always_comb block—to
remove ambiguity and further specify the intent of the implementation code. 

Design for verification also encourages designers to make architectural and design
decisions that minimize the verification costs of the system. For example, a write-
only and a read-only register can share the same address, but making every writable
register readable helps in verifying that they can be written to correctly. Similarly,
minimizing the number of unique internal interfaces and using industry standard
external interfaces and on-chip buses, as mentioned in “Interface-Based Design” on
page 4, helps minimize the number of verification components that must be created.
The ability to preset large counters, bypass computation paths or force exception
status bits can also greatly ease the verification process. These decisions may require
the addition of nonfunctional features in the design.
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Design for verification elements and features would not be exercised during the
normal operations of the design. Some, such assertions, are usually removed from the
final design by the synthesis process. However, these elements and features can help
in on-chip diagnostics and debugging. For example, assertions may be synthesized
into an emulated version of the design and their failure indication routed to a status
register where they can generate an interrupt should they fail.

The Benefit of Assertions
The three main sources of functional flaws in taped-out designs are design errors,
specification errors and errors in reused modules and IP (either internal errors or
incorrect usage). Most of these errors are due to ambiguous or changing
specifications or unwritten or unverified assumptions on the behavior of surrounding
blocks.

When creating the RTL implementation of a design, the designer often makes
assumptions on the behavior of the surrounding designs and on internal
synchronization. These assumptions are usually extraneous to the specification,
unwritten and not verified during simulation. Any change in the behavior of the
surrounding designs or functional errors in internal synchronization may violate these
assumptions, which leads to failures. The symptoms of these failures may not be
apparent until much later in the simulation—if at all—when the data affected by the
failure reaches an observed output. These undocumented assumptions make the
detection and the identification of the cause of a failure difficult and time consuming. 

Designers should state such assumptions using assertions and insert them into the
RTL code where these assumptions are used. A violation of these assumptions would
cause an assertion failure near the point in space and time of the ultimate cause of the
failure. This approach makes debugging the design that much easier.

A similar situation exists when reusing an existing module or IP block. If the
assumptions on the usage of the module are not precisely stated and verified, errors
may be difficult to identify due to the black-box nature of reused designs. Assertions
can play an important role in specifying the usage rules of the module.

Temporal constructs, like those available in SystemVerilog, provide an efficient
means for system architects to complement design specifications with non-ambiguous
and executable statements in the form of properties that, when asserted, precisely
express the intent or requirement of the specification. Such assertions reduce
ambiguity and thus the chance of misinterpretation. Since properties are a different,
more abstract description of the required behavior than the RTL specification of the
design’s implementation, they increase the likelihood of detecting a design error
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during simulation. Moreover, formal and hybrid (a combination of formal engines and
simulation) tools can prove that the design does not violate some properties under any
legal input stimulus.

Finally, properties can be used to describe interesting stimulus and states that should
be covered during verification. These properties are not used to detect failures, but to
detect the occurrence of some important condition. They specify corner cases created
by the chosen implementation architecture that may not have been obvious based on
the functional specification alone. A designer can thus contribute to the verification
plan of a design by including coverage properties in the RTL design. Similarly,
several compliance statements of standard protocols can be implemented using
coverage properties.

METHODOLOGY IMPLEMENTATION
The methodology presented in this book is quite extensive. It contains several
different—but interrelated—facets and elements. The increase in productivity that
can be obtained by this methodology comes from its breath and depth. It is not a
methodology designed to be tidily presented in a 30-minute conference paper or
three-page journal article on a toy example. It is designed to be scalable and
applicable to real-life designs and systems.

The goal of the methodology is to obtain the maximum level of confidence in the
quality of a design in a given amount of time and engineering resources. To
accomplish this goal, it uses assertions, functional abstraction, automation through
randomization and reuse techniques all at the same time. The guidelines presented in
the subsequent chapters are designed to implement a verification process that
combines all of these techniques to maximum effect.

It may be difficult to appreciate the usefulness of a particular set of guidelines without
knowing the overall methodology implementation. But it is equally difficult to
effectively implement a methodology without detailed guidelines to construct its
basic elements. It may thus be beneficial to read this book twice: the first time to learn
the overall methodology; the second time to learn its implementation details.

Methodology Adoption
It is not necessary to adopt all the elements of the methodology presented in the
following chapters. Obviously, maximum productivity is achieved when all of the
synergies between the elements of the methodology are realized. But real projects,
with real people and schedules, may not be able to afford the ramp-up time necessary
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for a wholesale adoption. Individual elements of the methodology can still be adopted
and provide incremental benefits to a project.

Many design teams already use assertions to detect errors in the design or interface
signals. Many other books have already been written on their benefit. Adopting the
methodology elements presented in Chapter 3 will accelerate their correct application,
development and deployment. The same chapter also describes how to construct
reusable assertion-based checkers that can be used without knowing the underlying
assertion language, thus minimizing the cost of introducing assertions into an existing
design methodology.

The message service, embodied in the vmm_log class described in “Message
Service” on page 134, is the easiest one to adopt. It can immediately replace the
message routines or packages that most teams develop for themselves. Its adoption
requires no change in methodology and provides additional functionality at no cost.
But unlike traditional message packages, it allows messages from verification
components reused from different sources to be consistently displayed and controlled,
without modifying the reused component itself.

Formalizing the simulation steps described in “Simulation Control” on page 124, as
embodied in the vmm_env base class, is the next natural adoption step. All
simulations have to perform the same overall sequence of steps to successful
completion. Instead of creating an arbitrary synchronization and sequencing scheme
with each new verification environment, the vmm_env base class helps to formalize
the execution steps in a consistent and maintainable fashion. Different block-level
environments will be easier to combine to create system-level environments if they
use a similar control mechanism. Formalizing the simulation steps allows different
tests to intervene at the appropriate time, without ever violating the simulation
sequence.

Modeling transactions using transaction descriptors and building all data models upon
the vmm_data base class, as described in “Data and Transactions” on page 140,
creates a uniform stimulus creation mechanism described in “Controlling Random
Generation” on page 227. Whether transactions or data, all stimulus is created the
same way. Both can be easily randomized and constrained using identical
mechanisms. Different tests can apply different constraints without having to rewrite
the random generator. Fully directed or partially directed transactions can also be
easily created.

Once transactions and data are modeled as objects, interfacing transactors using
vmm_channels as described in “Transaction-Level Interfaces” on page 171 and
decoupling transactor functionality according to protocol and abstraction layers
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comes next. Using these channels allows the creation of finer-grain plug-and-play
transactors that can be reused across verification environments within the same
project. Having a well-defined transaction-level interface mechanism enables the
creation of transactors operating at higher level of abstraction without having to be
associated with a physical level interface like traditional bus-functional models. It
also enables the construction of verification environments along layers that can be
built top-down—first on a transaction-level model of the DUT then adapted to a RTL
model—or bottom-up—first verifying low-level operations then on to more complex
and abstract functions.

A major step must be taken to adopt factory-patterned generators described in
“Random Stimulus” on page 213 and callback methods in transactors as described in
“Transactors” on page 161. But they offer the ability to create tests with fewer lines of
codes in a single file, without modifying—and potentially breaking—code that is
known to work. Tests can be written without affecting any of the already-written tests.
And because tests can be written with so few lines to target a specific function of the
device under test, it becomes cost effective to implement a true coverage-driven
verification methodology. As a secondary benefits, generators and transactors that can
meet the unpredictable needs of different tests, will be able to meet the needs of
different verification environments or projects, making them truly reusable.

If the nature of the corner cases of the system depends on the synchronization of
concurrent stimulus on multiple interfaces, adopting the extensible verification
component (XVC) approach described in Chapter 8 becomes a good idea. Once the
interesting stimulus parameters for an interface are known and implemented, it
provides a natural command-based interface for writing system-level tests unlikely to
occur spontaneously in a purely random environment. And should more stimulus
parameters or patterns be required, they can be easily added to the environment
without requiring modifications to the existing, working environment. It also creates
an easy-to-learn test specification mechanism that can be used without being familiar
with the details of the entire methodology or its implementation.

Formal tools are very effective in finding hard-to-identify or hard-to-reach corner-
case bugs on complex control-dominated design blocks, such as arbiters, bus protocol
controllers, instruction schedulers, pipeline controls, and so on. The RTL
implementation of these structures is compared against a description of their expected
behavior using assertions. When writing assertions that can be formally proven as
well as simulated, the guidelines described in Chapter 7 become pertinent in addition
to those in Chapter 3.

If there is any software component to the project, verifying the hardware/software
interaction will require the adoption of the techniques described in Chapter 9.
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Guidelines
The purpose of this book is not to extol the virtues of SystemVerilog and the
verification methodology it can support. Rather, like its predecessor the Reuse
Methodology Manual, this book is focused on providing clear guidelines to help the
reader make the most effective use of SystemVerilog and implement a productive
verification methodology. The book does not claim that its methodology is the only
way to use SystemVerilog for verification. It presents what the authors believe to be
the best way.

Not all guidelines are created equal, and the guidelines in this book are classified
according to their importance. More important guidelines should be adopted first,
then eventually supported by a greater set of less important guidelines. However, it is
important to recognize the synergies that exist among the guidelines presented in this
book. Even if they are of lesser importance, adopting more of the guidelines will
generally result in greater overall efficiency in the verification process.

Rules —  A rule is a guideline that must be followed to implement the methodology.
Not following a rule will jeopardize the productivity gains that are offered by other
aspects of the methodology. SystemVerilog Verification Methodology Manual-
compatibility (VMM-compatibility) requires adherence to all rules. VMM-
compliance requires that all rules be followed.

Recommendations —  A recommendation is a guideline that should be followed. In
many cases, the detail of the guideline is not important—such as a naming convention
—and can be customized. Adherence to all recommendations within a verification
team or business unit is strongly recommended to ensure a consistent and portable
implementation of the methodology.

Suggestions —  Suggestions are recommendations that will make the life of a
verification team easier. Like recommendations, the detailed implementation of a
suggestion may not be important and may be customizable.

Alternatives — Alternatives provide different mechanisms for achieving similar
results. Different alternatives may not be equally efficient or relevant and depend on
the available verification components and the verification environment being
constructed.

The guidelines in this book focus on the methodology, not the tools that support
SystemVerilog or other aspects of this methodology. Additional guidelines may be
required to optimize the methodology with a particular toolset.
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Basic Coding Guidelines
There is no value in reiterating generic coding guidelines—such as rules for
indentation and commenting—that can be found in a variety of sources. All previous
coding guidelines applicable to Verilog will remain applicable to SystemVerilog.
However, the presence of high-level and verification-centric constructs in
SystemVerilog require that some additional basic coding guidelines be specified.

Recommendation 1-1 — Unique prefixes or suffixes should be used to identify the
construct that implements user-defined types.

SystemVerilog has a rich set of user-definable types: interface, struct,
union, class, enums. It may be difficult to know what construct is used to
implement all user-defined types, and thus what are the allowed operations on objects
of that type. Using a construct-specific prefix or suffix helps identify the underlying
implementation.

Example 1-1. Using Unique Construct-Specific Suffixes
typedef enum ...   states_e;
typedef struct ... header_s;
typedef union ...  format_u;
class packet_c;
   ...
endclass: packet_c
interface mii_if;
   ...
endinterface: mii_if

Recommendation 1-2 — End tags should be used.

SystemVerilog supports end tags on all of the named constructs that create a scope.
Because there can be several dozens or hundreds of lines within that scope,
indentation alone is often insufficient to clearly identify the matching opening and
closing markers. By using end tags, associating a closing marker with its
corresponding marker is much easier.

Example 1-2. Using End Tags
function compute_fcs(...);
   ...
   if (...) begin: is_special
      ...
   end: is_special
   ...
endfunction: compute_fcs
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Definition of Terms
Verification is about communication. A design must be unambiguously specified to
be correctly implemented and verified against that specification. Verification often
identifies miscommunication of intent among the various teams in a project. A book
about verification must also be as unambiguous as possible. The following section
defines the terminology used in this book. Other works may use the same terms to
mean other things.

Assertion —  A property that must hold true at all times. if statements and the entire
verification environment can be considered assertions. But in this book, the term
refers only to the behavior described using the property specification constructs.

Assertion-based verification —  The systematic use of assertions to help identify
design faults and specify assumptions on input signals.

Assertion coverage —  A measure of how thoroughly an asserted property has been
exercised. Does not imply any measure of functional intent. Part of code coverage.

Bus-functional model —  A transactor with a physical-level interface.

Code coverage —  A measure of the structural code constructs exercised during
specific simulations. Includes several metrics, such as line coverage, path coverage,
toggle coverage, expression coverage and assertion coverage.

Checker — A verification component that verifies the correctness of a protocol.
Low-level checkers are usually implemented using assertions. Checkers may be
combined with monitors.

Class property —  A data member in a class type declaration.

Constrained-random —  A modification of a verification environment, through
additional constraints, to increase the likelihood that specific stimulus will be
generated.

Coverage — A measure of progress of the verification process. Includes several
coverage metrics, such as code coverage, functional coverage and FSM coverage.

Coverage property —  A property that, when true, indicates that an interesting
condition has occurred. The occurrence is recorded in a database for later analysis.
Coverage properties can be used to implement functional coverage points.
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Cross coverage —  The combination of two or more coverage metrics to measure
their relative occurrences. Cannot be used to combine heterogeneous coverage
measurements, such as code coverage and functional coverage.

Data protection class property —  A class data member implementing a protocol
mechanism used to detect, and sometimes repair, errors in data or a transaction. FCS,
CRC and HEC fields are examples of data protection class properties.

Design for test —  Nonfunctional design requirements and activities to make
structural testing of the manufactured design easier.

Design for verification —  Nonfunctional design requirements and activities to
make functional verification easier. Includes assertion-based verification.

Directed random  —  A synonym for constrained-random.

Directed testbench —  Testbench specified using hand-crafted stimulus. Usually
contains a hand-crafted description of the expected response as well. May include
some random data for the irrelevant portions of the stimulus that do not affect the
outcome of the feature targeted by the testcase. May be implemented on top of a
random verification environment.

Discriminant class property  —  A class data member, usually randomized, whose
value determines the presence or absence of additional data representing different
data or transaction formats.

FSM coverage — A measure of the visited states and transitions observed on a
finite-state machine during specific simulations. Can be automatically extracted from
the FSM implementation or independently specified.

Formal verification — A mathematical comparison of an implementation against a
specification or requirement to determine if the implementation can violate its
specification or requirement.

Functional coverage —  A measure of the testcases and interesting conditions that
were observed as having been exercised on the design (e.g., corner cases, applied
input scenarios, and so on.)

Functional coverage point —  A specific testcase or interesting condition that must
be observed as having been exercised on the design.

Generator  —  A proactive transactor that autonomously generates stimulus.
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Monitor  —  A reactive or passive transactor that autonomously reports observed
data or transactions. May includes a checker or equivalent checking functionality for
the observed protocol, but not the data or transactions transported by the protocol.

Passive transactor —  A transactor that strictly observes the design under
verification or lower-level transactors. It has no control of the timing and initiation of
transactions. May include functional coverage points. See reactive transactor and
proactive transactor.

Proactive transactor —  A transactor that provides stimulus to the design under
verification or a lower-level transactor and is under full control of the timing and
initiation of transactions. See reactive transactor.

Property —  A specification of functional behavior using a sequence of Boolean
expressions. Properties can be used to specify events, conditions that must always
hold true or functional coverage points. 

Random environment —  Synonym of verification environment.

Reactive transactor — A transactor that provides stimulus to the design under
verification or a lower-level transactor but has no control over the initiation of
transactions. It may have limited control over the timing of certain elements of
transaction initiated by the DUT or lower-level transactor, such as the insertion of
wait states. See proactive transactor and passive transactor.

Scenario — A sequence of random or directed stimulus that is particularly
interesting to the device under test. A scenario is unlikely to be spontaneously
generated with individually constrained-random stimulus. Multiple scenarios are
applied to the device under test during a single simulation.

Simulation —  A run, with a specific seed and set of source files, of a model and
associated testbench, resulting in a specific set of output messages and coverage
metrics.

Stimulus —  Input to the design under verification. Includes, but is not limited to,
configuration information, transactions, instructions, exceptions and injected protocol
errors.

Structural coverage —  A synonym for code coverage.

System  —  A design composed of independently verified sub-designs. A system
may go on to become an independently verified design in a super-system.
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Test —  A synonym for testcase.

Testcase —  A requirement of the functional verification process. Usually
corresponds to an interesting feature or corner condition of the design that must be
verified.

Testbench —  A complete verification environment applying stimulus and checking
the response of a design to implement one or more testcases. A testcase can be
verified using a directed testbench or constrained-random testbench with functional
coverage.

Testing —  The process to determine that a physical device was correctly
manufactured without defects, according to a specific implementation.

Transaction —  An operation on an interface. A transaction can be abstract and high-
level—such as the reliable transmission of a TCP packet—or physical—such as a
write cycle on a APB™ interconnect.

Transactor —  A verification component of a verification environment. A transactor
is a static object that autonomously generates, processes or monitors transactions.
Bus-functional models are transactors—but transactors are not limited to bus-
functional models. See proactive transactor, reactive transactor and passive
transactor.

Validation —  The process to determine that a specification meets its functional and
market requirements.

Verification —  The process to determine that an implementation meets its
specification.

Verification component —  A potentially reusable component of a verification
environment. See transactor.

Verification environment —  Verification automation, abstraction and response
checking environment used to verify a specific design. Can be used to implement
constrained-random simulations. Can be used to implement directed testbenches.
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CHAPTER 2 VERIFICATION PLANNING

As stated in the previous chapter—and in several other published works—more effort
is required to verify a design than to write the RTL code for it. As early as 1974, Brian
Kernighan, creator of the C language, stated that “Everyone knows debugging is twice
as hard as writing a program in the first place.” A lot of effort goes into specifying
the requirements of the design. Given that verification is a larger task, even more
effort should go into specifying how to make sure the design is correct.

Every design team signs up for first-time success. No one plans for failures and
multiple design iterations. But how is first-time success defined? How can resources
be appropriately allocated to ensure critical functions of the design are not
jeopardized without a definition of what functionality is critical? The verification
plan is that specification. And that plan must be based on the intent of the design, not
its implementation. Of course, corner cases created by the implementation, which are
not apparent from the initial intent, have to be verified but that should be done once
the initial intent-based verification plan has been completed.

This chapter will be of interest to verification lead engineers and project managers. It
will help them define the project requirements, allocate resources, create a work
schedule and track progress of the project of time. Examples in this chapter are based
on OpenCore Ethernet IP Core Specification, Revision 1.19, November 27, 2002.
This document can be found in the Examples section of the companion Web site:

http://vmm-sv.org
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PLANNING PROCESS
The traditional approach of writing verification plans should be revised to take
advantage of new verification technologies and methodologies. The new verification
constructs in SystemVerilog offer new promises of productivity but only if the
verification process is designed to take advantage of them. Individual computers, like
individual language features, can improve the productivity of the person sitting in
front of it. But taking advantage of the network, like the synergies that exist among
those language features, can be achieved only by redesigning the way an entire
business processes information; and it can dramatically improve overall efficiency.

The traditional verification planning process—when there is one—involves
identifying testcases targeting a specific function of the design and describing a
specific set of stimulus to apply to the design. Sometimes, the testcase may be self-
checking and looks for specific symptoms of failures in the output stream observed
from the design. Each testcase is then allocated to individual engineers for
implementation. Other than low-level bus-functional models directly tied to the
design’s interface, little is reused between testcases. This approach to verification is
similar to specifying a complete design block by block and hoping that, once put
together, it will meet all requirements.

A design is specified in stages: first requirements, then architecture and finally
detailed implementation. The verification planning process should follow similar
steps. Each step may be implemented as separate cross-referenced documents, or by
successive refinement of a single document.

Functional Verification Requirements
The purpose of defining functional verification requirements is to identify the
verification requirements necessary for the design to fulfill the intended function.
These requirements will form the basis from which the rest of the verification
planning process will proceed. These requirements should be identified as early as
possible in the project life cycle, ideally while the architectural design is being carried
out. It should be part of a project’s technical assessment reviews.

It is recommended that the requirements be identified and reviewed by a variety of
stakeholders from both inside and outside the project team. The contributors should
include experienced design, verification and software engineers so that the
requirements are defined from a hardware and a software perspective. The reviews
are designed to ensure that the identified functional verification requirements are
complete.
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Rule 2-1 — A definition of what the design does shall be specified.

Defining what the design does—what type of input patterns it can handle, what errors
it can sustain—is part of the verification requirements. These requirements ensure
that the design implements the intended functionality. These requirements are based
on a functional specification document of the design agreed upon by the design and
verification teams.

These requirements are outlined, separate from the functional specification document.

Example 2-1. Ethernet IP Core Verification Requirements
R3.1/14/0 Packets are limited to MAXFL bytes
R3.1/13/0 Does not append a CRC
R3.1/13/1 Appends a valid CRC
R4.2.3/1 Frames are transmitted

Rule 2-2 — A definition of what the design must not do shall be specified.

Defining what makes the behavior of the design incorrect is also part of the
verification requirements. These requirements ensure that functional errors in the
design will not go unnoticed. The section titled "Response Checking" on page 31
specifies guidelines on how to look for errors.

A functional specification document is concerned with specifying the intended
behavior. That is captured by Rule 2-1. Verification is concerned with detecting
errors. But it can only detect errors that it is looking for. The verification requirements
must outline which errors to look for. There is an infinite number of ways something
can go wrong. The verification requirements enumerate only those errors that are
relevant and probable, given the functionality and architecture of the design.

Rule 2-3 — Any functionality not covered by the verification process shall be
defined.

It is not possible to verify the behavior of the design under conditions it is not
expected to experience in real life. The conditions considered to be outside the usage
space of the design must be outlined to clearly delineate what the design is and is not
expected to handle.

For example, a datacom design may be expected to automatically recover from a
parity error, a complete failure of the input protocol or a loss of power. But a
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processor may not be expected to recover from executing invalid instruction codes or
a loss of program memory.

Example 2-2. Ethernet IP Core Verification Requirements
R3.1/9/0 Frames are lost only if attempt limit is

reached
R4.2.3/2 Frames are transmitted in BD order

Rule 2-4 — Requirements shall be uniquely identified.

Each verification requirement must have a unique identifier. That identifier can then
be used in cross-referencing the functional specification document, testcase
implementation and functional coverage points.

Rule 2-5 — Requirement identifiers shall never be reused within the same project.

As the project progresses and the design and verification specifications are modified,
design requirements will be added, modified or removed. Corresponding verification
requirements will have to be added, modified or removed. When adding new
requirements, never reuse the identifier of previously removed verification
requirements to avoid confusion between the obsolete and new requirements.

Rule 2-6 — Requirements shall refer to the design requirement or specification
documents.

The completeness of the functional verification requirements is a critical aspect of the
verification process. Any verification requirement that is missing may cause a
functional failure in the design to go unnoticed. Cross-referencing the functional
verification requirements with the design specification will help ensure that all
functional aspects of the design are included in the verification plan.

Furthermore, verification is complex enough without verifying something that is not
ultimately relevant to the final design. If something is not specified, don’t verify it.
Do not confuse this idea with an incomplete specification. The former is a "don’t
care." The latter is a problem that must be fixed.

Recommendation 2-7 — Requirements should be ranked.

Not all requirements are created equal. Some are critical to the correct operation of
the design, others may be worked around if they fail to operate. Yet others are
optional and included for speculative functionality of the end product.
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Ranking the requirements lets them be prioritized. Resources should be allocated to
the most important requirements first. The decision to tape-out the design should
similarly be taken when the most important functional verification requirements have
been met.

Example 2-3. Ethernet IP Core Verification Requirements Ranking
R3.1/14/0 Packets are limited to MAXFL bytes SHOULD
R3.1/14/1 Packets can be up to 64kB SHOULD
R3.1/14/2 Packets can be up to 1500 bytes MUST

Recommendation 2-8 — Requirements should be ordered.

Many requirements depend on the correct operation of other requirements. The latter
requirements must be verified first. Dependencies between requirements should be
documented.

For example, verifying that all configuration registers can be correctly written to must
be completed before verifying the different configurations.

Example 2-4. Ethernet IP Core Verification Requirements Order
R4.2.3/1 Frames are transmitted
R3.1/13/0 Does not append a CRC
R3.1/14/2 Packets can be up to 1500 bytes
R3.1/13/1 Appends a valid CRC

Recommendation 2-9 — The requirements should be translated into a functional
coverage model.

A functional coverage model allows the automatic tracking of the progress of the
verification implementation. This model also enables a coverage-driven verification
strategy that can leverage automation in the verification environment to minimize the
amount of code necessary to implement all of the requirements of the functional
verification. More details on functional coverage modeling and coverage-driven
verification can be found in Chapter 6. For example, Example 6-8 shows how the
requirements shown in Example 2-5 can be translated into a functional coverage
model.
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Example 2-5. Ethernet IP Core Verification Requirements Coverage Model
R3.1/14/0 Packets are limited to MAXFL bytes

At least one packet transmitted with length:
MAXFL-4
MAXFL-1
MAXFL
MAXFL+1
MAXFL+4
65535

MAXFL set to
Default (1536)
1518
1500

HUGEN set to
0
1

Cross coverage of
frame length x MAXFL x HUGEN value

Recommendation 2-10 —Implementation-specific requirements should be specified
using coverage properties.

Some functional verification requirements are dictated by the implementation chosen
by the designer and are not apparent in the functional specification of the design.
These functional verification requirements create corner cases that only the designer
is aware of. These requirements should be specified in the RTL code itself through
coverage properties.

For example, the nature of the chosen implementation may have introduced a FIFO
(first-in, first-out). Even though the presence of this FIFO is not apparent in the
design specification, it still must be verified. The designer should specify coverage
properties to ensure that the design was verified to operate properly when the FIFO
was filled and emptied.

Note that if the FIFO was never supposed to be completely filled, as assertion should
be used on the FIFO is Full state instead of a coverage property.

Verification Environment Requirements
The primary aim of this step is to define the requirements of the verification
infrastructure necessary to produce a design with a high degree of probability of being
bug-free. Based on the requirements identified in the previous step, this step identifies
the resources required to implement the verification requirements.
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Rule 2-11 — Design partitions to be verified independently shall be identified.

Not all design partitions are created equal. Some implement critical functionality with
little system-level controllability or observability. Others implement day-to-day
transformations that are immediately observable on the output streams. The physical
hierarchy of a design is architected to make the specification of the individual
components more natural and to ease their integration, not to balance the relative
complexity of their functional verification.

Some functional verification requirements will be easier to meet by verifying a
portion of the design on its own. Greater controllability and observability can be
achieved on smaller designs. But smaller partitions also increases their number, which
increases the number of verification environments that must be created and increases
the verification requirements of their integration.

The functional controllability and observability needs for each verification
requirement must be weighed against the cost brought about by creating additional
partitions.

Recommendation 2-12 —Reusable verification components should be identified.

Every independently verified design presents a set of interfaces that must be driven or
monitored by the verification environment. A subset of those interfaces will also be
presented by system-level verification of combinations of the independently-verified
designs.

Interfaces that are shared across multiple designs—whether industry-standard or
custom-designed—should share the same transactors to drive or monitor them. This
sharing will reduce the number of unique verification components that will need to be
developed to build all of the required verification environments. To that end, it will
often be beneficial for the designs themselves to use common interfaces to facilitate
the implementation of the functional verification task.

Different designs that share the same physical interfaces may have different
verification requirements. The verification components for those interfaces must be
able to meet all of those requirements to be reusable across these environments.

The opportunity for reusable verification components may reside at higher layers of
abstraction. Even if physical interfaces are different, they may transport the same
protocol information. The protocol layer that is common to those interfaces should be
captured in a separate, reusable verification component. For example, MII (media-
independent interface) and RMII (reduced media-independent interface) are two
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physical interfaces for transporting Ethernet media access controller (MAC) frames.
Although they have different signals, they transport the same data formats and obey
the same MAC-layer protocol rules. Thus, they should share the same MAC frame
descriptor and MAC-layer transactor.

Recommendation 2-13 —Models of the design at various levels of abstraction
should be identified.

Many functional verification requirements do not need a model of the detailed
implementation—such as a RTL or gate-level model—to be met. Furthermore,
requirements that can be met with a model at a higher level of abstraction can do so
with much greater performance. Some requirements, such as software validation, can
be met only with difficulty if only an implementation-level model is available.
Having a choice of models of the design at various levels of abstraction can greatly
improve the efficiency the verification process.

Rule 2-14 — The supported design configurations shall be identified.

Designs often support multiple configurations. The verification may focus on only a
subset of the configurable parameters first and expand later on. Similarly, the design
may implement some configurable aspect before others with the verification process
designed to follow a similar evolution.

The configuration selection mechanism should also be identified. Are only a handful
of predetermined configurations going to be verified? Or, is the configuration going
to be randomly selected? If the configuration is randomly selected, what are the
relevant combinations of configurable parameters that should be covered? Constraints
can be used to limit a random configuration to a supported configuration. Functional
coverage should be used to record which configurations were verified.

Some configurable aspects require compile-time modification of the RTL code. For
example, setting a top-level parameter to define the number of ports on the device or
the number of bits in a physical interface is performed at compile-time. The model of
the design is then elaborated to match. In these conditions, it is not possible to
randomize the configuration because, by the time it is possible to invoke the
randomize() method on a configuration descriptor, the model of the design has
already been elaborated—and configured.

A two-pass randomization of the design configuration may have to be used. On the
first pass, the configuration descriptor is randomized and an RTL parameter-setting
configuration file is written. On the second pass, the RTL parameter-setting
configuration file is loaded with the model of the design, and the same seed as in the
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first pass, is reused to ensure the same configuration descriptor—used by the
verification environment—is randomly generated.

Example 2-6. Supported Ethernet IP Core Configurations
- Variable number of TxBD (TX_BD_NUM)

- If TX_BD_NUM == 0x00: TX disabled
- If TX_BD_NUM == 0x80: Rx disabled

- MAXFL (PACKETLEN.15-0, MODER.14)
- Optional CRC auto-append (MODER.13)

Rule 2-15 — The response-checking mechanisms shall be identified.

The functional verification requirements describe what the design is supposed to do
when operating correctly. It should also specify what kind of failures the design
should not exhibit. The self-checking structure can easily determine if the right thing
was performed. But it is much more difficult to determine that no wrong things were
done in the process. For example, matching an observed packet with one of the
expected packets is simple: If none match, the observed packet is obviously wrong.
But if one matches, the question remains: Was it the packet that should have come out
next?

The self-checking mechanisms can report only failures against expectations. The
more obvious the symptoms of failures are, the easier it is to verify the response of the
design. The self-checking mechanisms should be selected based on the anticipated
failures they are designed to catch and the symptoms they present.

Some failures may be obvious at the signal level. This type of response is most
efficiently verified using assertions. Some failures may be obvious as soon as an
output transaction is observed. This type of response checking can be efficiently
implemented using a scoreboarding mechanism. Other failures, such as performance
measurements or fairness of accesses to shared resources, require statistical analysis
of an output trace. This type of response checking is more efficiently implemented
using an offline checking mechanism.

The available self-checking mechanisms are often dictated by the available means of
predicting the expected response of the design. The existence of a reference or
mathematical model may make an offline checking mechanism more cost effective
than using a scoreboard.
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Rule 2-16 — Stimulus requirements shall be identified.

It will be necessary to apply certain stimulus sequences or put the design into certain
states to meet many of the functional verification requirements. Putting the design
into a certain state is performed by applying a certain stimulus sequence. Thus, the
problem is reduced to the ability of creating specific stimulus sequences to meet the
functional verification requirements.

Traditionally, a directed sequence of stimulus was used to meet those requirements.
However, the methodology presented in this book recommends the use of random
generators to automatically generate stimulus to avoid writing a large number of
directed testcases. Should the random stimulus fail to generate the required stimulus
sequences, they are to be constrained to increase the probability that they will
generate them in subsequent simulations.

The ability to constrain a random generator to create the required stimulus sequences
does not happen by accident. Generators must be designed based on the stimulus
sequences required by the verification requirements. They must offer the mechanisms
to express constraints that will ultimately force the designed stimulus patterns to be
generated as part of a longer random stimulus stream. If it remains unlikely that the
required stimulus sequence will be randomly generated, then a directed stimulus
sequence has to be used.

Example 2-7. Ethernet IP Core Stimulus Requirements
- Random configuration

- Maximum packet length (PACKETLEN.MAXFL, MODER.HUGEN)
- Appending of CRC (MODER.CRCEN)
- Number of transmit buffer descriptors (TX_BD_NUM)

- Transmitted Packets
- With and without CRC (TxBD.CRC)
- Good & bad CRC
- Bad CRC only if MODER.CRCEN or TxBD.CRC == 0

- Various length (tied to maximum packet length)

Rule 2-17 — Trivial tests shall be identified.

Trivial tests are those that are run on the design first. Their objective is not to meet
functional verification requirements, but to ascertain that the basic functionality of the
design operates correctly before performing more exhaustive tests. Performing a write
cycle followed by a read cycle, injecting a single packet or executing a series of null
opcodes are examples of trivial tests.
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Trivial tests need not be directed. Just as they can be used to determine the basic
liveliness of the design, they can be used to determine the basic correctness of the
verification environment. A trivial test may be a simple constrained-random test
constrained to run for only a very short stimulus sequence. For example, a trivial test
could be constrained to last for only two cycles: the first one being a write cycle, the
second one a read cycle and both cycles constrained to use the same address.

The verification environment must be designed to support the creation of the trivial
tests.

Example 2-8. Trivial Tests for Ethernet IP Core
- Rx disabled, transmit 1 packet
- Tx disabled, receive 1 packet

Recommendation 2-18 —Error injection mechanisms should be defined.

Designs may be able to sustain certain types of errors or stimulus exceptions. These
exceptions must be identified as well as the mechanism for injecting them. Then, it is
necessary to specify how correctness of the response to the exception will be
determined.

Based on the verification requirements, it is necessary to identify the error injection
mechanisms required in the verification environment. For low-level designs, it may
be possible to inject errors at the same time as stimulus is being generated. For more
complex systems with layered protocols, low-level errors are often impossible to
accurately describe from the top of the protocol stack. Furthermore, there may be
errors that have to be injected independent of the presence of high-level stimulus.

Exceptions may need to be synchronized with others stimulus—such as interrupt
requests synchronized with various stages in the decode pipeline. Synchronizing an
exception stream with a data stream may require using a multi-stream generator (see
“Multi-Stream Generation” on page 236).

Example 2-9. Ethernet IP Core Error Injections
- Collisions at various symbol offsets (early, latest 
early, earliest late, late)
- Collide on all transmit attempts
- Bad CRC on Rx frame
- Bad DA on Rx frame when MODER.PRO == 0
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Recommendation 2-19 —Data sampling interfaces for functional coverage should
be identified.

A functional coverage model should be used to track the progress toward the
fulfilment of the functional verification requirements. The functional coverage model
will monitor the verification environment and the design to ensure that each
requirement has been met.

This monitoring requires that a signature is used in the design or verification
environment to indicate that a particular verification requirement has been met. By
observing the signature, the functional coverage model can record that the
requirement corresponding to the signature’s coverage point has been met.

For the coverage model to be able to observe those signatures, there must be set data
sampling mechanisms. These mechanisms let the relevant data be observed by the
functional coverage model. Data that is in different sampling domains or at the wrong
level of abstraction will require a significant amount of processing before it can be
considered suitable for the functional coverage model. Planning for a suitable data
sampling interface up front will simplify the implementation of the functional
coverage model.

Example 2-10. Coverage Sampling Interfaces for Ethernet IP Core
- DUT configuration descriptor
- Tx Frame after writing to TxBD
- TxBD configuration descriptor after Tx frame written

Recommendation 2-20 —Tests to be ported across environments should be
identified.

To verify the correctness of the design integration or its integrity at different
implementation stages, it may be necessary to port some tests to different
environments. For example, some block-level tests may need to be ported to the
system-level environment. Another example is the ability to take a simulation test and
reuse it in a lab set up on the actual device. Yet another example is the ability to
reproduce a problem identified in the lab in the simulation environment.

Tests that must be portable will likely have to be restricted to common features
available in the different environments they will execute in. It is unlikely that these
tests will be able to arbitrarily stress the capability of the design as much as a
particular environment allows them to. Due to the different functional verification
requirements met by the different verification environments, it is not realistic to
expect to be able to port all tests from one environment to another.
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Verification Implementation Plan
The primary aim of implementing the functional verification plan is to ensure that the
implementation culminates in exhaustive coverage of the design and its functionality
within the project time scales. The implementation is based on the requirements of the
verification environments as outlined above.

This implementation plan should be started as early as possible in the project life
cycle. Ideally, it should be completed before the start of the RTL-coding phase of the
project and before any verification testbench code is written. This step is necessary to
produce a design with a high degree of probability of being bug-free.

Recommendation 2-21 —Functional coverage groups and coverage properties
should be identified.

The functional verification requirements should be translated into a functional
coverage model to automatically track the progress of the verification project. A
functional coverage model is implemented using a combination of covergroup or
cover property. Which one is used depends on the nature of the available data
sampling interface and the complexity of the coverage points.

Coverage properties are better at sampling signal-level data in the design based on a
clock signal. But they can implement only a single coverage point. Coverage groups
are better at sampling high-level data in the verification environment and can
implement multiple coverage points that use the same sampling interface

Chapter 6 provides more guidelines for implementing functional coverage models.

Recommendation 2-22 —Configuration and simulation management mechanisms
should be defined.

It must be easy—not just possible—to reproduce a simulation. It is necessary that
there be a simple mechanism for ensuring that the exact model configuration used in a
simulation be known. Which version of what source files, tools and libraries were
used? Similarly, it must be simple to record and reissue the exact simulation
command that was previously used —especially using the same random seed.
Command-line options cannot be source-controlled. Therefore a script should be used
to set detailed command-line options based on broad, high-level simulation options.
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Recommendation 2-23 —Constrainable dimensions in random generators should
be defined.

The random generators must be able to be constrained to generate the required
stimulus sequences. Constraining the generators may involve defining sequences of
data. But it also may involve coordinating multiple independent data streams onto a
single physical channel or parallel channels, each stream itself made up of data
sequence patterns. Constraints, state variables and synchronization events may need
to be shared by multiple generator instances.

Controlability of the randomization process require the careful design of the data and
transaction descriptor structures that are randomized and the generators that
randomize them. The ability to constrain the generated data to create detailed
stimulus scenarios tends to require more complex randomization processes. It may be
more efficient to leave a few complex stimulus sequences as directed stimulus, and
leave the bulk of the data generation to a simple randomization process.

Recommendation 2-24 —Stimulus sequences unlikely to be randomly generated
should be identified.

There are some stimulus requirements that will remain unlikely to be automatically
generated. Rather than complicate the random generators to create them or have to
specify an overly complicated set of constraints to coerce the generators, it may be
easier to specify them as directed stimulus sequences.

Directed stimulus sequences need not be for the entire duration of a simulation. They
may be randomly injected as part of a random stimulus stream.

Recommendation 2-25 —End-of-test conditions should be identified.

When a test is considered done is an apparently simple but important question.
Running for a constant amount of time or data may hide a problem located in a deeper
state or by data being constantly pushed out by the forward pressure created be
subsequent stimulus. Additional termination conditions could be defined: once a
certain number of error messages have been reported, once a certain level of coverage
has been hit, a watchdog timer has expired or the design going idle—whatever idle is
must also be defined. The end-of-test condition could be created by only one
condition or require a combination of the termination conditions.

Even when the end-of-test condition has been identified, how the simulation ends
gracefully should be specified. There may be data that must be drained from the
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design or statistics registers to be read. The contents of memories may have to be
dumped. The testbench may have to wait until the design becomes idle.

Example 2-11. End of Test Conditions for Ethernet IP Core
- After N frames have been transmitted
- After M frames have been received
- If TxEN and interrupt not asserted for more than X 
cycles

RESPONSE CHECKING
Rule 2-2 requires the enumeration of all errors that must be detected by the
verification environment. These detection mechanisms require a strategy for
predicting the expected response and to compare the observed response against those
expectations. This section focuses on these strategies. Guidelines for the
implementation of the self-checking structure can be found in section titled "Self-
Checking Structures" on page 246.

It is difficult to describe a methodology for checking the response of a design because
that response is unique to that design. Response checking can be described only in
general terms. A broad outline of various self-checking structures can be specified.
The availability in the SystemVerilog language of high-level data structures greatly
facilitates the implementation of response checking. But it is not possible to describe
the details of its overall implementation without targeting it to a specific design.

With traditional directed testcases, because the stimulus and functionality of the
design are known, the expected response may be intellectually derived up front and
hard-coded as part of the directed test. With random stimulus, although the
functionality is known, the applied stimulus is not. The expected response must by
computed based on the configuration and functionality of the design. The observed
response is then compared against the computed response for correctness.

It is important to realize that the response-checking structure in a verification
environment can only identify problems. Correctness is inferred from the failure to
find inconsistencies. If the response-checking structure does not explicitly check for a
particular symptom of failure, it will remain undetected. The functional verification
requirements must include a definition of all possible symptoms of failure.
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Recommendation 2-26 —Response checking should be separate from stimulus.

In directed tests, the response can be hardcoded in parallel with the stimulus. Thus, it
can be implemented in a more ad-hoc or distributed fashion, in the same program
that implements the stimulus. However, it is better to treat the response checking as an
independent function.

Response checking that is hardcoded with the stimulus tends to focus on the
symptoms of failure of the feature targeted by the directed test. This coding style
causes functionality to be repeatedly checked in tests that focus on the same feature.
But a test targeting a specific feature may happen to exercise an unrelated fault. If the
response checking is concerned only with the feature being verified, then the failure
will not be detected. This style of response checking may allow errors to go unnoticed
if they occur in another functional aspect of the design.

By separating the checking from the stimulus, all symptoms of failures can be
verified at all times.

Embedded Monitors
Response is generally understood as being observed on the external outputs of the
design under verification. However, limiting response to external interfaces only may
make it difficult to identify some symptoms of failure. If the verification environment
does not have a sufficient degree of observability over the design, much effort may be
spent trying to determine the correctness to an internal design structure because it is
too far removed from the external interfaces. This problem is particularly evident in
systems where internal buses or functional units may not be directly observable from
the outside.

Suggestion 2-27 — Design components can be replaced by transactors.

Transactors need not be limited to interfacing with external interfaces. Like
embedded generators described in section titled "Embedded Stimulus" on page 226,
monitors can mirror or even replace an internal design unit and provide observability
over that unit’s interfaces. The transaction-level interface of the embedded monitor
remains externally accessible, making the mirrored or replaced unit interfaces
logically external.

For example, an embedded RAM block could be replaced with a reactive transactor
(slave), as illustrated in Figure 2-1. Correctness could be determined, not by dumping
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or replicating the entire content of the memory, but by observing and fulfilling—
potentially injecting errors—each memory access in real time. 

Figure 2-1. Replacing a Slave Unit with a Reactive Transactor

This approach is implementation-dependent. As recommended by Recommendation
2-32, assertions should be used to verify the response based on internal signals.
However, assertions may not provide the high-level capabilities required to check the
response. Assertions are also unable to provide stimulus, and thus cannot be used to
replace a reactive transactor.

Assertions
The term assertion means a statement that is true. From a verification perspective, an
assertion is a statement of the expected behavior. Any detected discrepancy in the
observed behavior results in an error. Based on that definition, the entire testbench is
just one big assertion: It is a statement of the expected behavior of the entire design.
But in design verification—and in this book—assertion refers to a property expressed
using a temporal expression.

Using assertions to detect and debug functional errors has proven to be very effective
as the errors are reported near—both in space and time—the ultimate cause of the
functional defect. But despite their effectiveness, assertions are limited to the types of
properties that can be expressed using clocked temporal expressions. Some
statements about the expected behavior of the design must still be expressed—or are
easier to express—using behavioral code. Assertions and behavioral checks can be
combined to work cooperatively. For example, a protocol checker can use assertions
to describe the lower-level signaling protocol and use behavioral code to describe the
higher-level, transaction-oriented properties.

Assertions work well for verifying local signal relationships. They can efficiently
detect errors in handshaking, state transitions and physical-level protocol rules. They
can also easily identify unexpected or spurious conditions. On the other hand,
assertions are not well suited for detecting data transformation, computation and
ordering errors. For example, assertions have difficulties verifying that all valid
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packets are routed to the appropriate output ports according to their respective
priorities.

The following guidelines will help identify which response-checking requirements
should be implemented using assertions or behaviorally in the verification
environment. More details on using assertions can be found in Chapters 3 and 7.
Typical response-checking structures in verification environments are described in
“Scoreboarding” on page 38, “Reference Model” on page 39 and “Offline Checking”
on page 40.

Recommendation 2-28 —Assertions should be limited to verifying physical-level
assumptions and responses.

Temporal expressions are best suited to cycle-based physical-level relationships.
Although temporal expressions can be stated in terms of events representing high-
level protocol events, the absence of a clock reference makes them more difficult to
state correctly. Furthermore, the information may already be readily available in a
transactor, making the implementation of a behavioral check often simpler.

Rule 2-29 — A response-checking requirement that must be met on different levels
of abstraction of the design shall be implemented using procedural
code in the verification environment.

Assertions are highly dependent on RTL or gate-level models. They cannot be easily
ported to transaction-level models. Any response checking that must be performed at
various abstraction levels of the design is better implemented in the testbench.

Recommendation 2-30 —Response checking involving data storage, computations,
transformations or ordering should be implemented in the
verification environment.

Temporal expressions are not very good at expressing large data storage requirements
(such as ordering checks) and complex computations (such as a cyclic redundancy
checks). Data transformation usually involves complex computations and some form
of data storage. Data ordering checks involve multiple dimension queuing models.
These types of checks are usually better implemented in the verification environment.
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Rule 2-31 — Responses to be checked using formal analysis shall be implemented
using assertions.

Formal tools cannot reason on arbitrary procedural code. They usually understand
RTL coding style and temporal expressions. Some design structures are best verified
using formal tools. Their expected response must be specified using assertions.

Recommendation 2-32 —Response checking involving signals internal to the design
should be implemented using assertions.

Some symptoms of failures are not obvious at the boundary of the design. The failure
is better detected on the internal structure implementing the desired functionality. The
expressiveness of the temporal expressions usually makes such white-box verification
easier to implement using assertions. Furthermore, being functionality internal to the
design, it is unlikely that the equivalent check already exists in—or could be
leveraged from—procedural code in a transactor. The response may also be
interesting to verify using formal tools, as described in Chapter 7.

Recommendation 2-33 —Assumptions made or required by the implementation on
input signals should be checked using assertions.

Often, the implementation depends on some assumed or required behavior of its input
signals. Any violation of these assumptions or requirements will likely cause the
implementation to misbehave. Tracing the functional failure of a design, which is
observed on its outputs, to invalid assumptions or behavior on its input signals is
time-consuming. These assertions capture the designer’s assumptions and knowledge.
They can be reused whenever the design is reused and detect errors should it be
reused in a context where an assumption or requirement no longer hold. The
assumptions and requirements may also be required to successfully verify the
implementation using formal tools, as described in Chapter 7.

Recommendation 2-34 —Implementation-based assertions should be specified in-
line with the design by implementation engineers.

Assertions that are implied or assumed by a particular implementation of the design
are specific to that implementation. Different implementations may have different
implications or assumptions. Therefore, they should be embedded with the RTL code.
They can be captured only by the designer as they require specific knowledge about
the implementation that only the designer has.
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Rule 2-35 — Assertions shall be based on a requirement of the design or the
implementation.

Assertions must be used to verify the intent of the design, not the language used to
implement it. They must be considered similar to comments and not simply capture
the obvious behavior of the language, as illustrated in the following example:

Example 2-12. Trivial and Obvious Assertion
always @ (posedge clk)
   i <= i + 1;
...
a: assert property (
   @(posedge clk) i == $past(i) + 1
);

Accuracy
The simplest comparison function compares the observed output of the design with
the predicted output on a cycle-by-cycle basis. But this approach requires that the
response be accurately predicted down to the cycle level, a complex task. If the design
specification does not specify a particular end-to-end latency, why verify at a more
accurate level of precision?

The layered verification environment (see section titled "Testbench Architecture" on
page 104) allows the separation of verifying the timing from the content. The
verification of the content of the design output can easily be performed with complete
accuracy: Either the content of the output matches the expected content or it does not.
The verification of the timing of the design output can easily sustain irrelevant
variations. It may occur at different times, but as long as the output eventually comes
within acceptable time boundaries, no error is reported.

The timing of physical interfaces can also be verified separately from the data being
transported. Transactors can verify that the relative placement of signal transitions fall
within acceptable bounds, as specified by the protocol. But they do not verify that
these transitions occur at specific points in absolute time.

Ordering and sequencing are other aspects of accuracy. In some classes of designs, it
may be difficult to predict the exact order in which the output transactions will be
observed. Similarly, it may be difficult to determine in advance which particular
transactions will be dropped to maintain some higher priority functions in the design.
Rather than trying to predict the exact sequence of the output, it may be sufficient to
predict the relative order of independent streams of transactions or simply assume that
any transaction not observed on the output was dropped. Of course, any assumption
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that could mask a functional defect should be independently confirmed through other
means during the verification process.

Rule 2-36 — Response checking shall not be more accurate than necessary.

If it is not specified, don’t check for it. Suggestion 2-41 and Suggestion 2-42 describe
types of behavior that may be checked with varying degrees of accuracy.

Recommendation 2-37 —Response checking should be transaction accurate.

The response should be verified based on the correctness of the transaction data. The
timing of transactions should only be verified with respect to the occurrence of other
transactions i.e., sequencing, ordering and maximum latency.

Recommendation 2-38 —Only interfaces should be checked for timing accuracy.

Transactors monitoring an interface should check that the timing of the signals on that
interface is internally consistent and timing accurate. The relative position of signal
transitions should fall within acceptable bounds but not verified against an absolute
time reference.

Interfaces should not be checked cycle by cycle to allow for nonfunctional variations.
For example, whether a read cycle introduces zero or several wait states is not
functionally relevant—unless the function being verified is the performance of the
interface.

Recommendation 2-39 —The relative timing of different interfaces should not be
verified.

The relative timing of signal transitions on different interfaces should not be verified,
unless some specified relationship exists between the interfaces.

Recommendation 2-40 —Cycle-level accuracy should be checked only when the
specification is stated at the cycle level.

If the functional verification requirement includes a cycle-level check of the response
or throughput of a design, then these requirements trump all previously stated
recommendations in this section. If it is specified, it must be verified.

Suggestion 2-41 — It may not be necessary to predict the exact transaction execution
order.
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This suggestion is a special case of Rule 2-36. It may be sufficient to verify that some
relative order is maintained. For example, check that independent streams
multiplexed onto a single output stream are in order, but do not attempt to predict the
exact inter-stream ordering. Another example would be out-of-order processor
instructions: As long as instructions are executed in order of data dependencies, the
exact execution order may not need to be predicted.

Suggestion 2-42 — It may not be necessary to predict exactly which transaction will
be dropped.

This suggestion is a special case of Rule 2-36. In some applications—e.g., network
routers, transactions can be dropped as part of normal operations of the designs. Is it
important to predict which transaction will be dropped? Or that, if transactions are
observed to have been dropped, that the minimum number of transactions were
dropped and for the right reasons, regardless of which ones were dropped? For
example, would it be important to predict which packets were dropped to meet
quality-of-service requirements? Or would it be sufficient to check that those packets
that were dropped belong to the lowest quality-of-service class?

Instead of predicting which transaction will be dropped, it may be sufficient to
identify that transactions were dropped and that it occurred if and only if a valid
condition was present. Assertions can be used to detect the occurrence and duration of
drop conditions, isolating the verification environment from implementation details.

Scoreboarding
A scoreboard is used to dynamically predict the response of the design. As illustrated
in Figure 2-2, the stimulus applied to the design is concurrently provided to a transfer
function. The transfer function performs all transformation operations on the stimulus
to produce the form of the final response then inserts it in a data structure. Observed
response from the stimulus is forwarded to the compare function to verify that it is an
expected response. 

Figure 2-2. Scoreboarding

The transfer function is a transaction-level reference model that usually operates in
zero time. It may also be implemented using a reference or golden model. The data
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structure stores the expected response until it can be compared against the observed
output. The compare function looks up the expected response in the data structure to
identify if the observed response matches expectations. The data structure and
compare function handle any acceptable discrepancy between the observed response
and the expected output, such as ordering or latency.

The transfer function and data structure are usually configurable to match the
configuration of the DUT: Different configurations may yield different responses.
Transfer functions may be implemented in C. The Direct Programming Interface may
be used to integrate them in the SystemVerilog environment. A directed test may
implement its expected response using a test-specific transfer function that models
only the necessary subset of the functionality that is exercised.

The term “scoreboard” is not well-defined in the industry. It sometimes refers to the
storage data structure only, sometimes it includes the transfer function as well, and
sometimes it includes the comparison function. In this book, the term scoreboard is
used to refer to the entire dynamic response-checking structure.

Scoreboarding works well for verifying the end-to-end response of a design and the
integrity of the output data. It can efficiently detect errors in data computations,
transformation and ordering. It can also easily identify missing or spurious data. On
the other hand, it is not well suited for detecting errors whose symptoms of failures
are not obvious at the granularity of a single response. For example, scoreboarding
has difficulty verifying the fairness of internal resource allocations and quality-of-
service arbitrations. It may also be difficult to use a scoreboard to measure overall
performance of the design under verification.

Reference Model
A reference model, like a scoreboard, is used to dynamically predict the response of
the design. As illustrated in Figure 2-3, the stimulus applied to the design is
concurrently provided the reference model. The output of the reference model is
compared against the observed response. 

Figure 2-3. Reference Model 
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Reference models have the same capabilities and challenges as scoreboards. Unlike a
scoreboard, the comparison function works directly from the output of the reference
model. The reference model must thus produce output in the same order as the design
itself. However, there is no need to produce the output with the same latency or cycle
accuracy: The comparison function can handle latency and cycle discrepancies
between the expected and observed response. A reference model need not be pin-
accurate with the design. A reference model can be at the transaction level, with a
high-level transaction interface: The comparison of the observed response with the
response of the reference model is performed at the transaction level, not at the cycle-
by-cycle level.

Using reference models depends heavily on their availability. If they are available,
they should be used. If they are not available, scoreboarding techniques will be more
efficient to implement. More often than transfer functions, reference models are
implemented in C. The Direct Programming Interface may be used to integrate them
in the SystemVerilog environment.

Offline Checking
Offline checking is used to predict the response of the design before or after the
simulation of the design. As illustrated in Figure 2-4, in a pre-simulation prediction,
the offline checker produces a description of the expected response, which is
dynamically verified against the observed response during simulation. The compare
function can dynamically compare the predicted response to the observed response or
a utility can perform the comparison post-simulation. As illustrated in Figure 2-5, in a
post-simulation prediction, the recorded stimulus and response of the design is
compared against the predicted result by the offline response checker. In both cases,
the response can be checked at varying degrees of details and accuracy, from cycle-
by-cycle to transaction-level with reordering.

Using pre-simulation response prediction with dynamic response checking lets a
simulation report any discrepancy while the design is in or near the state where the
error occurs. It also avoids needlessly running long simulations when a fatal error
occurs early in the run. Pre-simulation checking cannot generate stimulus based on
the dynamic state of the design—such as the insertion of wait states—and may not
exercise the design under all possible conditions.

Offline checking works well for verifying the end-to-end response of a design and the
integrity of the output data based on executable system-level specifications or
mathematical models. It can efficiently detect errors in data computations,
transformation and ordering. Offline checking can also easily identify missing or
spurious data. Post-simulation offline checking is also well suited for detecting errors
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whose symptoms of failures are not obvious at the granularity of a single response.
For example, it can verify the fairness of internal resource allocations and quality-of-
service arbitrations by performing statistical analysis over the entire recorded
response.

Figure 2-4. Pre-Simulation Offline Checking 

Figure 2-5. Post-Simulation Offline Checking

Offline checking need not be implemented separately from the runtime simulation
environment. The invocation of external programs necessary to generate the input,
predict the response and compare it with the observed response can be done by the
simulator at the start or the end of the simulations. Although offline checking is
usually used with a reference model, it can be used with scoreboarding techniques
implemented as a separate offline program.

SUMMARY
This chapter described the necessary steps required to plan a verification project.
First, the requirements that must be met by the verification projects are defined. These
requirements create specifications for the stimulus, response-checking and functional
coverage aspects of the verification environment.

Next, various strategies for computing or specifying the expected response of a
design under verification were presented. The different strategies have different
advantages and limitations when comparing the observed response against expected
results. A particular strategy may have to be used to identify certain classes of
failures, which may not be as easily identifiable in another approach.
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Assertions are best for verifying implementation-specific and physical-level
relationships; whereas testbenches are best for verifying transaction-level responses.
Unlike testbenches, assertions are not limited to the primary DUT outputs to check its
response. The complete response of a design will be verified using a combination of
assertions and one or more verification environments.
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CHAPTER 3 ASSERTIONS

Concurrent and immediate assertions are an integral part of SystemVerilog. They
provide an effective way to improve observability and localization of design errors by
placing functional checks at critical points inside a design and on external interfaces.
When an assertion fails during simulation, the cause of the reported error can be more
easily identified than by observing simulation traces. Concurrent assert
property statements can also be proven or falsified using formal tools, thus further
increasing confidence in the quality of the design. Finally, coverage properties
provides information on how well the design has been functionally exercised during
simulation.

This chapter first introduces SystemVerilog concurrent assertions and their possible
uses. This introduction will be useful to readers new to the notion of assertions. Next,
this chapter examines the role of assertion on internal signals and interfaces of a
design. This will be useful to designers, because it requires detailed knowledge of the
design. Assertions on external interfaces useful to both verification and design
engineers, are also examined.

This chapter presents several guidelines for writing efficient assertions and coverage
properties. Guidelines and techniques for packaging assertions into reusable checkers
are also presented. Using checkers simplifies the process of adopting assertions.
Checkers can be divided into two broad categories: basic checkers and assertion-
based verification IP. Basic checkers will be of interest to anyone who plans to use
checkers or develop new ones. The section on assertion-based verification IP is
mainly directed toward developers of such IP. This chapter ends with a discussion on
how to verify assertion-based checkers.
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SPECIFYING ASSERTIONS
Assertions are observers that monitor signals in the DUT for correct behavior. They
could be implemented as Verilog modules or VHDL entity-architecture pairs, like the
checkers in the Open Verification library (OVL). Writing assertions for complex
sequential behaviors using Verilog or VHDL is difficult. Worse, there is the risk that
an assertion will be implemented in the same manner as the function it is to verify and
thus contain the same errors. These are the main reasons specialized languages for
writing assertions have been developed.

In SystemVerilog, unlike the procedural code of the DUT or testbench, the assertions
are expressed using a declarative language. The declarative language was influenced
by a number of similar predecessor languages—Intel’s ForSpec language, Motorola’s
CBV and Synopsys’ OpenVera Assertions (OVA)—and the Accellera Property
Specification Language (PSL) in an effort to realign the two assertion languages.
SystemVerilog’s assertions bring a number of innovations that are particularly useful
in dynamic verification, such as: 

• the well-defined sampling of all variables in the simulation cycle that avoids races 
between the design, assertions and the verification environment,

• local variables that are dynamically allocated during property evaluation, provid-
ing much increased modelling power,

• the action blocks which can be attached to assert and cover statements. It 
executes whenever the statement succeeds or fails, providing a flexible way to 
communicate with the testbench or even other assertions,

• the possibility of triggering the execution of non-blocking tasks at any point 
within assertion sequences, and

• recursive properties which open new ways to formulate properties.

Assertions can influence many parts of the verification process, as shown in Figure 3-
1. Whether written using the SystemVerilog assertion language to describe a
particular behavior or by using a checker from the SystemVerilog Checker library, the
application of assertions remains the same. Assertions formalize the unambiguous
specification of protocols used in the design and can verify that the DUT satisfies the
specified behavior using simulation, emulation or formal means.
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Figure 3-1. Assertions in a Verification Process

In formal tools, some properties stated using the assert property statement are
used as assertions to be proven on the DUT. These proofs are usually subject to other
properties that describe the assumed behavior of the environment using assume
property statements. In simulation, asserted and assumed properties are
continuously verified to ensure that the design or the testbench never violate them. In
some tools, the assumptions on the environment can be used as sequential constraints
on the DUT inputs in constrained-random simulation. Functional coverage specified
using the cover property statement can confirm that specific corner cases have
been exercised in simulation or, using formal tools, it can be determined if the corner
cases can be reached and then generate a test to activate them. 

Assertions can be parameterized for reuse in different contexts. Assertions can be
packaged in modules or interfaces to create a reusable checker library. Such a
library usually deals with properties suitable for checking generic behaviors in any
design. Sets of assertions describing standard protocols such as PCI, PCI Express,
AMBA AHB™ Protocol, Utopia, etc. can be packaged to create reusable assertion-
based verification IP units. The verification IP includes a complete set of checks and
coverage points for a particular standard protocol. Implementing such assertion-based
verification IP is described in the section titled "Assertion-Based Verification IP" on
page 86.

Assertions in a DUT can be applied along one of two categories: on internal signals of
the design, including inter-block interfaces and on external interfaces of the design,
either standard or custom

Protocol Description

Simulation

Emulation

Stimulus Generation

Functional Coverage

Formal Analysis

Assertion Specification

Custom
Assertions

Assertion
Libraries



Assertions

46 Verification Methodology Manual for SystemVerilog

Applying assertions to internal signals requires detailed knowledge of the internal
structure of the design. Therefore, the DUT designers are best placed to insert such
assertions and coverage points. Essentially, the assertions and coverage points
represent a form of active comments within the design. The next subsection covers
this application of assertions.

Applying assertions to external interfaces treats the DUT as a black box. It is
concerned with the correct function of the design, regardless of its implementation.
These assertions are usually written by verification engineers as part of the testbench
development. If the external interface is an industry or company standard, assertion-
based protocol verification IP may be used. The issues related to using assertions on
external interfaces are discussed later in this chapter.

Assertion Language Primer
This chapter requires some basic understanding of the SystemVerilog assertion
language operators. The reader should consult the SystemVerilog Language Reference
Manual and other books for more details on this subject.

Table 3-1.  Summary of Sequence Operators

##M

##[M:N]a

a. where N >= M >= 0, and N can be $ to specify open ended

Concatenation. For example, "a ##[1:4] b" states that b must
follow a within one to four clock ticks.

[*M]

[*M:N]a
Repetition. For example, "s[*1:3]" states that s is repeated
between one to three times, at each clock tick. This is equivalent
to writing s or (s ##1 s) or (s ##1 s ##1 s).

b[->M]

b[->M:N]a
Goto repetition. For example, "expr[->1]" is equivalent to
writing "(!expr)[*0:$] ##1 expr," which states: match
on the first occurrence of expr being true, including the case
where expr is true at the current clock tick.

b[=M]

b[=M:N]a
Non-consecutive repetition. For example, "expr[=1]" is
equivalent to writing "(!expr)[*0:$] ##1 expr ##1
(!expr)[*0:$]". The difference is the trailing repetition of
"!expr". It is useful in situations where some number of
occurrences of the Boolean expression are allowed to be true
anywhere within some other temporal sequence, e.g. when using
the within operator.
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Table 3-1.  Cont.

Sequence operators construct sequence expressions from Boolean expressions.
Boolean expressions are sequence expressions of length one. Sequences are used in
properties for use in assertions and covers. Sequence operators are summarized in
Table 3-1.

b
throughout
s

Throughout. For example, 
"req throughout (grant[->1])" states that req must
remain asserted until grant becomes asserted.

s1 within
s2

Within. The sequence expression will match if s1 occurred at
least once anywhere between the start and end of s2. For
example, "(expr[=3]) within (a[->1])" states that
expr must be true for three (possibly non-consecutive) clock
ticks while awaiting the occurrence of a becoming true.

s1
intersect
s2

Intersect. s1 starts at the same time as s2; The intersection will
match if s1, starting at the same time as s2, matches at the same
time as s2 matches. For example, "1’b1[*3:5] intersect
(a ##0 b[->1] ##0 c[->1]), states that a being true in
the current cycle must be followed by b being true at the same
time or later, which in turn must be followed by c being true at
the same time as b or later, and the entire sequence from a to c
must not last more than three to five cycles.

s1 and s2 And. With s1 starting at the same time as s2, the sequence
expression matches with the later of s1 and s2 matching. For
example, "(a ##[1:3] b) and (c ##2 d)" states that
this sequence will match at cycle 3 after a and c being true at the
same time followed by b being true one or two cycles later and d
being true two cycles after c. It will also match at cycle 4 after a
and c being true at the same time followed by b being true three
cycles later and d being true two cycles after c.

s1 or s2 Or. The sequence expression matches when the first of s1 or s2
matches. For example, "(a ##[1:3] b) or (c ##2 d)"
states that this sequence will match at cycle 2 when b is true one
cycle after a being true. It will also match at cycle 3 when a is
true followed by b true two cycles later, or c is true followed by d
true two cycles later, etc.



Assertions

48 Verification Methodology Manual for SystemVerilog

Property operators construct properties out of sequence expressions. A sequence can
be promoted to a property. Property operators are summarized in Table 3-2.

Once instantiated (or inlined) in an assert property, cover property or
assume property statement, every property or part thereof must have a clock
associated with it. The clock can be specified directly in the property or in the
property statement. It can also be inferred from the surrounding context of a
clocked always block or a default clocking block specification.

Table 3-2.  Summary of Property Operators

s |-> p
s |=> p

Implications. Whenever the antecedent sequence s matches, the
consequent property p must be true starting at the clock tick
where s matched, or to the nearest future clock tick after s
matched, respectively. For example, the property
"$rose(trig) ##1 req |=> req[*3:5] |-> ack"
will be vacuously true when the antecedent does not match
because "$rose(trig)" is false, or "$rose(trig)" is true
but it is not followed by req true one cycle later, or
"$rose(trig)" is true followed one cycle later by req true
but in the subsequent two cycles req becomes false. It will be
non-vacuously true when, for every match of the antecedent
sequence, the property is true: "$rose(trig)" is true followed
one cycle later by req true and one cycle later req is true for
three to five cycles, and then ack is asserted for each of these
cycles that req is asserted beyond the first two cycles. An
example of a satisfying trace (waveform) is shown in Figure 3-2.

Figure 3-2. A Satisfying Trace for Example Property

not p Not. For example, "req |-> not (##[1:3]ack)" states
that, when req is true, ack must not be true within three cycles.

3:4
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trig
req
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Table 3-2.  Cont.

By default, a property will start a new evaluation attempt at every clock tick of its
associated clock when it is instantiated or inlined in a property statements or when
a sequence s is used with one of the pseudo-method s.ended, s.triggered or
s.matched. If the property statement is placed in an initial block, it will
evaluate only once, starting on the first clock tick. 

Evaluation is carried out over the values of the variables sampled in the preponed
scheduling region and the immediate values of local variables in the property. The
preponed region is located at the beginning of a time step, before the active region.
Therefore, assertions use the stable value design variables have reached just before
the next clock edge. 

Depending on the structure of the property, every evaluation attempt creates one or
more evaluation threads. Multiple threads are created when the property involves
choices induced by intervals in concatenations or repetitions, or by the use of the or
operator, and when more than one thread continues evaluation because the boolean
expressions evaluate true. 

A sequence matches on the observed trace when it successfully reaches (one of) its
end point(s). Note that for a given evaluation attempt, a sequence may have more than
one match due to multiple threads reaching their end points. 

An assert property or assume property statement succeeds when its
evaluation arrives at the conclusion true. It fails otherwise. For example, if the
property is a sequence, then for a given evaluation attempt the property succeeds on
the first match of the sequence. It fails for a given evaluation attempt if the sequence
has no match. In properties involving implications, for the property to succeed, the
consequent must evaluate true for every matching thread of the antecedent sequence.

A cover property over a property matches if the property succeeds, a cover
property over a sequence matches whenever the sequence matches.

p1 and p2
p1 or p2
if (b) p1
else p2

Property and, or, if-else. b is a boolean expression and p1 and p2
are properties. The operators combine the logical truth of the
component properties as implied by the name of the logic
operator. 

disable
iff (b)

Disabling. If the immediate value of b is true—it is not sampled
by any clock—it preempts any evaluation attempt in progress and
declares it as a vacuous success.
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ASSERTIONS ON INTERNAL DUT SIGNALS

Assertions and coverage points on internal signals are inserted by the designer during
the detailed implementation of a block. This section contains some guidelines on
typical areas in the design that should be instrumented with assertions. This list is not
exhaustive as it is not possible to enumerate all design structures. However, a basic
rule is that any design code that embodies non-trivial behavior over time should be
instrumented with assertions.

Recommendation 3-1 — Internal assertions should be used instead of comments.

An assertion, with its failure message, serves as a form of documentation—an
“active” comment—that describes in both formal and natural languages the expected
behavior of the signals involved in the assertion. If that behavior is not respected, the
assertion fails and the failure reports the violation. Of course, not all comments can be
turned into an assertion. But where practical, internal assertions will provide
increased observability and immediate identification of structural design errors.
Something a comment cannot do. Trying to identify the ultimate cause of an error by
observing signal waveforms is much more tedious. Assertions shorten the debug time.

Recommendation 3-2 — Internal corner cases should be identified using coverage
properties or coverage group.

To ensure the completeness of the verification suite, designers should identify all
corner cases in the implementation using a cover property statement or a
covergroup instead of specifying a testcase for the verification team to write.
Functional coverage points provide automatic feedback about the yet unverified
corner cases of the design. There is no need to rely on the verification plan
documentation process AND the continued correct implementation of a testcase to
verify implementation-specific corner cases. This guideline is consistent with
Recommendation 2-10.

Recommendation 3-3 — Assertions on internal signals should be placed with the
design code.

Internal assertions express requirements or functionality that may not be apparent in
the design specification. They may be the consequence of the chosen implementation
architecture or an arbitrary communication protocol between two design blocks. The
assertion statements should be placed in the RTL code where they apply because they
are intimately tied to that code and must be maintained in concert. It is possible to
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inline the assertion or coverage point close to the point in the design for easier
understanding, as shown in Example 3-1.

Example 3-1. Inlined Concurrent Assertion
module moduleA(input bit clk, output ...);
   ... // design code
   check_progress : assert property (
   @(posedge clk) disable iff (reset)
   (valid_in && !stall) ##1 (!stall[->3]) |-> ##1 f3 );
   ... // design code
endmodule : moduleA

For consistency with Recommendation 3-1, inlined assertions should be located near
the RTL code implementing the behavior they verify. In doing so, it is important that
the implementation does not taint the assertion implementation. If the same error is
duplicated in the assertion, it will not detect the corresponding invalid behavior.
Alternatively, the assertions could be located together at the top or bottom of the file.

Recommendation 3-4 — Assertions inside always blocks should be used with
caution.

If the signals involved in the assertion are assigned in a synchronous always block,
then placing the assertion directly inside the procedural code lets the sampling clock
and the enabling condition be extracted from the always block code. For example,
the assertions in Example 3-2 and Example 3-3 are functionally equivalent.

Example 3-2. Extracting Clock and Enabling Condition From always Block
always @(posedge clk) 
  if (reset) st_in <= 0;
  else
    if (!st_in && ready_in) begin : set_st_in         
      st_in <= 1;
      ...
      st_hold: assert property(
          ##1 (st_in [*1:$]) ##0 accepted_in)                 
           else 
        $display(“st_in did not hold till accepted_in”);
    end : set_st_in
    else
      if (st_in && accepted_in) st_in <= 0;
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Example 3-3. Equivalent Concurrent Assertion
    st_hold: assert property( @(posedge clk)                   
     (!reset && (!st_in && ready_in))                     
       |->              
          ##1 (st_in [*1:$]) ##0 accepted_in)                  
     else 
   $display(“st_in did not hold till accepted_in”);

Although syntactically convenient, there is some danger in inferring the enabling
condition from the RTL code. If the condition is in fact incorrect, the assertion may
not detect the error. For instance, consider the case when the condition over !st_in
&& ready_in is incorrect. In that case the assertion will be triggered, like the RTL
code, by the incorrect condition and will succeed if st_in and accepted_in are
still computed correctly. If it were written independently, the condition in the
assertion would be derived from the required behavior and through this difference
trigger the assertion at a different time than the computation in the always block. That
does not guarantee detection, but it may increase its likelihood. 

Recommendation 3-5 — Inlined assertions should be embedded in ‘ifdef blocks.

If a particular tool does not support inlined assertions, they can be automatically
eliminated by defining or undefining the corresponding pre-processor symbol. The
standard SYNTHESIS symbols should not be used because some synthesis tools may
support assertions.

Example 3-4. Controlling the Introduction of Inlined Assertions
...
‘ifndef NO_INLINED_ASSERTION
   st_hold: assert property( @(posedge clk)
     (!reset && (!st_in && ready_in))
         |-> ##1 (st_in [*1:$]) ##0 accepted_in)
   else $display(“st_in did not hold till accepted_in”);
‘endif
...

Rule 3-6 — Assertions for normal DUT operations shall be disabled when reset is
in progress.

Unless the assertion targets the behavior during or right after reset, the behavior
embodied in the assertion may be violated. Therefore, the assertion should be
disabled. There are two possible ways to disable an assertion. One way is to use the
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disable iff clause in the assertion, as shown in Example 3-5. This kind of
disabling can also be used with formal tools.

Example 3-5. Reset in disable iff
  check_progress : assert property (
     @(posedge clk) disable iff (reset)
        (valid_in && !stall) ##1 (!stall[->3]) 
         |-> ##1 f3 );

The other way is to turn off all assertions that should not run during reset using the
system task $assertoff before entering reset, and then once reset is over, enable
them using the system task $asserton. However, this works only in simulation and
not with formal tools.

Recommendation 3-7 — The checkers from the VMM checker library should be
used wherever possible.

Using predefined checkers has a number of advantages as compared to writing
custom assertions: the amount of coding is reduced, custom checkers may not be easy
to write and debug by novice users and the standard checkers have been thoroughly
verified.

As long as there is a predefined checker matching the required behavior, they provide
a quick way to add assertions to the design. The standard VMM Checker Library
currently has 51 checkers. These include 31 checkers that are equivalent—including
having the same name—to the well-known Accellera OVL. Most of the remaining 20
checkers cover more complex behaviors such as arbiters, memories and FIFOs.

The VMM checkers can verify behaviors from very simple boolean invariant
properties like assert_always to medium complexity time-based properties like
assert_window and handshaking properties like assert_handshake or
assert_valid_id to complex hardware blocks such as FIFOs, stacks, memories
and arbiters. For more detail, please refer to Appendix B.

The desired behavior may not be entirely covered by a single checker in the library. It
is often possible to decompose the behavior into a collection of properties that can be
implemented using standard checkers. Together, they imply the overall behavior.

Note that novice users can learn how to write assertions and coverage points by
examining the existing VMM checkers and tailor them to the specific needs of their
project. Since the VMM checkers try to be very general, the derived specialized
versions may be more efficient.
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Rule 3-8 — Assertion-based checkers shall be encapsulated using an interface
construct.

The interface construct should be used because it provides the most flexibility: it
can be instantiated in a module, an interface or a program.

Rule 3-9 — Every FSM shall have assertions that verify the state encoding and
transitions.

The checks shall verify that invalid states are not reached, that the reset state is correct
and is always reached upon reset, that only valid transition sequences are taken, that
outputs are correct for all states and transitions and that assumptions on inputs to the
FSM are respected by its environment.

It is important, however, that the RTL code not be simply duplicated in the assertions.
Any error in the RTL code would be replicated in the assertions. The FSM assertions
must be specified based on the FSM requirements. 

Many VMM standard checkers are suitable for verifying FSM behavior, such as: 
assert_bits, assert_next_state, assert_value, 
assert_cycle_sequence, assert_code_distance, 
assert_next, assert_transition, assert_one_hot, 
assert_one_cold, assert_zero_one_hot

The state and transition properties should also be covered to ensure that all states and
transitions have been exercised.

Rule 3-10 — Every internal block interface shall have assertions that verify the
assumed interface protocol.

Unverified assumptions used in the implementation of an interface are often a source
of errors if the neighboring block violates these assumptions. Therefore, each
interface should have assertions on the complete protocol. 

Numerous standard VMM checkers can be used to build the appropriate assertions for
an interface protocol. For example: 

assert_change, assert_unchange, assert_hold_value, 
assert_req_ack_unique, assert_valid_id, 
assert_reg_loaded, assert_req_requires, assert_window, 
assert_even_parity, assert_odd_parity, assert_driven, 
assert_no_contention, assert_frame, assert_handshake, 
assert_time, assert_win_change, assert_win_unchange.
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Recommendation 3-11 —Interface-related assertions or checkers should be
specified in the interface declarations.

If the interface signals and behavior are specified using the interface construct,
the assertions should be placed inside that construct, thus assuring that, wherever that
interface is used, the protocol is verified. 

If it is an interface external to the block or design, the architecture of the checker
should follow the guidelines for reusable assertion-based checkers in the section titled
"Architecture of Assertion-Based IP" on page 90.

Example 3-6. Assertions in an interface Declaration
interface itf_in(input clk, reset);
  wire [7:0]  data_in;
  reg  [1:0]  id_in;
  wire        ready_in;
  wire        accepted_in;
 `ifndef NO_INLINED_ASSERTION
  a0: assert property(
    @(posedge clk) disable iff (reset) 
      $rose(ready_in) || 
     (ready_in && $past(accepted_in)) 
        |-> ##[1:10] accepted_in ) 
    else 
$display(“accepted_in not within 5 to 10 clock cycles”);
...
endinterface : itf_in

Rule 3-12 — Every FIFO, stack or memory shall have assertions on its proper use.

An incorrect use of a FIFO or a stack—overflow, underflow, data corruption—and
invalid memory accesses—overwriting without reading, reading before writing,
etc.—are common kinds of errors. Any design implementing these functions shall
have assertions verifying their usage by other functions. The following checkers for
these structures can be found in the standard VMM Checker Library: 

assert_fifo, assert_dual_clk_fifo, 
assert_multiport_fifo, assert_stack, assert_memory_sync, 
assert_memory_async, assert_fifo_index.

Rule 3-13 — Assertions shall be used to verify that arbitration for access to
resources follows the appropriate rules.

Errors in arbitration may create unfair access to a shared resource or lead to starvation
of some requestors. The symptoms of these failures can be very difficult to detect at
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the boundary of the design. Assertions that verify rules of the specific arbitration
algorithm can be very effective in detecting such problems.

The assert_arbiter checker in the standard VMM Checker Library is designed to
verify different arbitration algorithms: priority with or without fairness, FIFO or least-
recently-used (LRU). However, there are many variants and additional arbitration
rules, making it is impossible to create a completely general arbitration checker. The
user can use the checker for verifying the basic functionality and enhance it with DUT
specific assertions. 

Rule 3-14 — There shall be no assertion on the periodicity of the system clock itself.

The SystemVerilog assertion language targets synchronous systems where all signals
are updated synchronously with a clock. An assertion verifying the clock signal itself
would have to run on simulation time as its sampling clock, which is impossible in the
current formulation of the assertion language. Properties that monitor the clock signal
must be implemented using procedural code.

Rule 3-15 — There shall be no concurrent assertion to monitor combinatorial
signal glitches or asynchronous timing.

Concurrent assertions target synchronous systems where all signals are updated and
sampled synchronously with a clock. Properties that monitor combinational glitches
or asynchronous timing must be implemented using procedural code and immediate
assertions. 

Rule 3-16 — There shall be no assertion that verifies the correctness of the
SystemVerilog language or known-to-be-good components.

Assertions should capture intent that is not obvious in the code itself. They should not
verify that the tool correctly interprets the semantics of the SystemVerilog language.
Such assertions are considered trivial and guaranteed to always be met in a correct
implementation of the language.

Example 3-7. Trivial Assertion
  assign     d0 = data_in + data_in;

useless_assert : assert property( 
    @(posedge clk) disable iff (reset)
                  d0 == data_in + data_in );
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Recommendation 3-17 —Assertions should verify that arithmetic operations do not
overflow and/or the target registers do not change value
by more than some +/- delta.

In many cases, the automatic truncation of overflow or underflow value is a source of
errors. Similarly, large changes in a register value may be a symptom of functional
errors. The following VMM standard checkers may help formulating those checks:

assert_no_overflow, assert_no_underflow, assert_delta, 
assert_range, assert_increment, assert_decrement.

Rule 3-18 — Decoding and selection logic shall have assertions to verify mutual
exclusion.

Violation of mutual exclusion may lead to bus contention and other interference
between blocks targeted by the selection/decode logic. The following VMM checkers
may be useful to verify such logic:

assert_bits, assert_code_distance, assert_one_hot, 
assert_one_cold, assert_mutex, assert_no_contention, 
assert_value, assert_zero_one_hot, assert_proposition, 
assert_never, assert_next.

Rule 3-19 — Whenever a signal is to hold for some time or until some condition
occurs, such behavior shall be verified using assertions.

For example, implementations of specification requirements such as “once asserted,
s must remain asserted for three clock cycles” and “once asserted, load must remain
asserted until eop is asserted” should be verified using assertions. 

The standard VMM Checker Library contains a number of checkers that can be used
in this context:

assert_always, assert_never, assert_unchange, 
assert_change, assert_hold_value, assert_reg_loaded, 
assert_req_resp, assert_time, assert_window, 
assert_width, assert_win_change, assert_win_unchange.

Rule 3-20 — Any time-bounded well-defined relationship between signals shall be
checked using assertions.

For example, implementations of specification requirements such as “When
data_valid_in is asserted, data_valid_out will be eventually asserted,
within a certain amount of time,” or “signal a asserted implies that condition c holds
within one to three clock cycles.” Assertions should be used to verify the stated
cause-effect relationships.
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Many VMM standard checkers can be used to verify such relationships:
assert_always, assert_never, assert_req_requires, 
assert_always_on_edge, assert_change, assert_frame, 
assert_implication, assert unchange, assert_win_change, 
assert_win_unchange, assert_next.

Rule 3-21 — During a reset, conditions on control signals and shared buses shall be
verified using assertions.

Such checks shall verify that a reset operation lasts at least the required minimum
number of cycles, that bus drivers are tri-stated or, equivalently, that enable signals on
bus drivers are de-asserted. As per Rule 3-15, this rule assumes resets span at least
one clock cycle and can thus be sampled by the assertion. In addition to the VMM
standard checkers mentioned in Rule 3-20, the following are likely to be useful:

assert_no_contention, assert_driven.

It is also possible to verify that, when exiting asynchronous reset, signals have a
certain value just before the deactivating transition on the reset. Example 3-8 assumes
that reset is asynchronous and active high and that the signal data_out must be tri-
stated before exiting the reset condition. Note that this assertion cannot be used with
formal tools that do not accept case equivalence relations (===, !==) which are non-
synthesizable.

Example 3-8. Using Reset to Verify Signal Values
  check_z : assert property( 
      @(negedge reset) (data_out === 8'bzzzzzzzz) );

The assertion in Example 3-8 verifies the intended behavior because data_out is
sampled in the preponed region of the time step in which negedge reset occurs.
Thus its value is the one just before the deactivating transition on reset.

Suggestion 3-22 — A category attribute on assert and cover property
statements may be used for tool-specific control of assertions in
simulation.

A category attribute on assert and cover property statements allows tools
that recognize this attribute to provide additional control of assertions that is beyond
the simple hierarchical controls available through the standard system tasks
$assertoff, $asserton and $assertkill.

For example, all assertions that carry some specific category value could be started
and stopped. Failures or coverage reports could be sorted based on category values. If
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the category values are mapped to the test plan sections, these controls can select
assertions and covers according to the test plan hierarchy rather than the design
hierarchy.

Tools that do not support this attribute will ignore it. In Example 3-9, the category
attribute is assigned a parameter of the same name.

Example 3-9. Using category Attribute
(* category = category *) assert_stack_hi_water_chk:
    assert property( @( posedge sva_checker_clk)
      disable iff( !not_resetting)
        not( $rose(sva_v_stack_ptr > hi_water_mark))) 
    else sva_checker_error(“”);

Rule 3-23 — A specific failure message of an assert property statement shall
be produced through a VMM message service interface in the action
block of the assertion.

This rule applies if the assertions are running with a VMM compliant testbench. In
that case an instance of the VMM message service interface class must be created in
the module or interface containing the assertion. Whereas the assertion may be
synthesizable, the message service interface is not. A preprocessor symbol can be
used to select the appropriate configuration for the tool as shown in Example 3-10.
The vmm_log class and its usage are as described in “Message Service” on
page 134.

Example 3-10. Using VMM Message Service Interface for Reporting
`ifndef SYNTHESIS
  vmm_log log = new(“pipeline checks”, $psprintf(%m));
....
  check_z : assert property( 
     @(negedge reset) data_out === 8'bzzzzzzzz )
  else 
    `vmm_error(log, “data_out not Hi-Z when in reset”);
‘endif

ASSERTIONS ON EXTERNAL INTERFACES
Assertions on external interfaces are used by verification engineers. The assertions
can be created by them or can already be provided by designers on block interfaces
that become exposed as external system interfaces. Assertions on external interfaces
are derived from the functional specification of the interface signals and protocols and
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coverage statements are related to the verification plan, rather than the internal
structural features of the blocks. The DUT is generally viewed as a black box.
However, specifying certain assertions may be require access the enable signals of
shared bus drivers, as explained in the rules governing reusable assertion-based
checkers in section titled "Reusable Assertion-Based Checkers" on page 77.

Many of the guidelines regarding assertions on internal signals and interfaces apply to
assertions on external interfaces. The guidelines related to the use of checkers, the
form of properties in cover property statements, and failure reporting are all
applicable. 

Rule 3-24 — External interface assertions shall be attached to the DUT module
using the bind statement or become part of the interface.

Because the DUT is treated as a black box, internal signals are not visible and no code
can be inserted in the design by verification engineers. The bind statement provides
a non-intrusive means for attaching checkers without any design code modification.
Also, the separation of the verification code simplifies maintenance. If the interface
signals are specified using an interface, then the assertions can simply be placed
inside the interface and thus become part of its specification.

Rule 3-25 — Assertions shall be divided into two categories: assertions on local
interface protocols and assertions on signals from two or more
interfaces.

The first category is concerned with local behavior of the interface protocol. This type
of assertion makes sure that communication follows the specified rules. Often, these
protocol assertions are suitable for verification by formal tools.

The second category is concerned with end-to-end properties of the DUT, relating
some conditions on one of its interfaces with conditions on some other interface. Such
assertions may cover a very small portion of the behavior and be amenable to formal
proofs, but more often the portion of the design determining the behavior to be
verified by the assertion is too big for the formal tool. The assertions covering the
global behavior may be suitable only for simulation or for searching for bugs using
formal techniques. Furthermore, end-to-end properties may be easier to check in the
testbench.
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Recommendation 3-26 —Custom assertions verifying local protocols should follow
rules for constructing reusable assertion-based checkers.

Even if the interface protocol is not standard and may not be reused on another
design, the reusability rules assure that the checker can be used both for block-level
verification with formal tools—where some assertions become assumptions on the
environment—and at block or system-level simulations—where all interface
assertions verify the communication on interconnections among blocks.

Recommendation 3-27 —Assertions involving end-to-end behavior of the DUT may
reuse definitions and variables from the local interface
protocol checkers.

Assertions that verify some global end-to-end behavior of the DUT may deal with
more coarse information units like bits assembled into bytes, or bytes into words, etc.
Sequences and checker auxiliary variables that assemble required information may
already exist in the local interface checkers and should be reused.

Suggestion 3-28 — Checks over global behavior of the DUT at the transaction level
may be better implemented using scoreboarding techniques.

At the transaction level, the behavior is often expressed in terms of information
exchanges and transformations using (potentially large) blocks of data or transaction
descriptors. The events that determine the validity of the generated or received
descriptors are often on a different time scale than the system clock of the design.
Also, their decoding, checking and routing may involve complex algorithms. These
may not be easily expressible in assertions and can be difficult to prove by formal
tools due to their complexity.

In general, if the check involves extensive data structures or algorithms and spans a
large portion of the design, checking by using testbench monitors is more appropriate. 

Recommendation 3-29 —Physical-level assertions can be used to notify testbench
monitors.

Interface protocol checkers can be used to validate the protocol and if an error is
detected, these checkers can notify the testbench monitors verifying the application-
level data. For example, if an assertion fails, a flag can be set in the action block of the
assertion. That flag can be watched by the testbench monitor. The monitor can take
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appropriate action—such as suspending monitoring activities for the remainder of the
transaction—if the flag becomes set.

Example 3-11. Notifying a Monitor from an Assertion
interface mii_sva_checker (
  reset_n, TX_CLK, ...,
  TX_FrameError, ...);
...
  task TX_SetFrameError(input mii_sva_tx_error_type i);
    TX_FrameError = i | TX_FrameError;
  endtask : TX_SetFrameError
...
  mii_TX_3: assert property(mii_3_p)
     else begin
       sva_checker_error(“ ... “);
       TX_SetFrameError(MII_TX_NO_CRS_W_COL);
     end
...
endinterface : mii_sva_checker

In Example 3-11, the failure of assertion mii_TX_2 is reported using the
sva_checker_error task (which may use the vmm_log facility for reporting).
A bit corresponding to that error in the TX_FrameError signal is then set. The
testbench can then react to a change of value of the flag to disable the monitor that is
currently extracting the frame the data. The testbench is responsible for resetting the
flag.

In some cases, it may be useful to clear the flag only once the system has recovered,
e.g. after the reception of a new packet. Alternately, the simulation could be stopped if
the failure is fatal. 

The flags can also be used to disable other assertions and covers, by using a reduction
or over the flag bits inside the disable iff clause of the appropriate assertions.
Example 3-12 illustrates that organization.

Example 3-12. Using Flags to Disable Other Assertions
interface mii_sva_checker (
  reset_n, TX_CLK, ...,
  TX_FrameError, ...);
...
  task TX_SetFrameError(input mii_sva_tx_error_type i);
    TX_FrameError = i | TX_FrameError;
  endtask : TX_SetFrameError
...
  property mii_TX_3_p; 
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    disable iff (resetting || (| TX_FrameError)) 
      $rose(TX_EN) |-> !CRS;
  endproperty : mii_TX_3_p
  mii_TX_3: assert property(mii_3_p)
     else begin
       sva_checker_error(“ ... “);
       TX_SetFrameError(MII_TX_NO_CRS_W_COL);
     end
// similarly in other assertions and covers
// related to the TX function
...
endinterface : mii_sva_checker

Notice that as long as at least one bit gets set in the TX_FrameError vector, the
assertions related to the TX function are disabled. Hence, the first assertion that fails
disables all the other ones. Once the testbench clears the TX_FrameError flags, the
assertions are re-enabled.

ASSERTION CODING GUIDELINES
This section describes some basic guidelines for writing assertions to be verified
using simulation. Note that Chapter 7 contains additional guidelines that should be
followed when the assertions are to be used with formal tools or emulation systems.
Additional guidelines are required because the assertions may have to be compiled to
synthesizable RTL code.

Rule 3-30 — Open-ended interval ##[n:$] shall be constrained by other
operators.

Failures of assertions involving a time shift with an open-ended interval to model
eventuality cannot be detected using simulation. At best, a simulator will indicate that
the evaluation attempt of the assertion did not finish before the end of the simulation
run.

Example 3-13. Eventuality Property
a14: assert property( @(clk) a |-> ##[1:$] b );

The assertion in Example 3-13 cannot fail in simulation and, unless a b is sampled
true after a is sampled true, the evaluation attempt will remain active until the end of
the simulation run. Nevertheless, an indication that b is missing can be deduced from
the fact that the evaluation attempt of the assertion has not completed by the end of
simulation. If a becomes true often without b becoming true at all, the simulation
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may have to maintain a large number of active evaluation threads, which can affect
simulation performance.

Similarly, the following negated property cannot succeed:

Example 3-14. Negated Property
a15: assert property ( @(clk) not (a ##[1:$] b) );

The property in Example 3-14 states that whenever a is true, it must never be
followed by a b being true. Unless it fails (i.e., b is true after a), the evaluation
attempt will remain active until the end of simulation. If many such attempts are
created, severe simulation performance problems could arise1.

Open-ended intervals are useful when constrained by other operators.

Example 3-15. Constraining by Intersection to Limit Length
a_length: assert property 
     ( @(posedge clk)
       y |-> 1’b1 [*20:30] 
               intersect
             (a ##[1:$] b ##[1:$] c)
     ) else ...;

This property in Example 3-15 states that after y, a must be followed by b, then must
be followed by c, and the total extent of the sequence a ... b ... c is at least 20 and at
most 30 clock ticks.

Similarly, using an open-ended interval together with the within operator also
limits the extent of the eventuality as shown in the example below.

Example 3-16. Bounding Length Using within
a_within: assert property 
     ( @(posedge clk)
       y |-> (a ##[1:$] b ##[1:$] c) 
                within
              x[->2]
     ) else ...;

1. Most formal tools can detect a failure of the above negated property, but may not do the 
same in the case of the positive assertion shown in Example 3-13, unless the tool can verify 
unbounded liveness.
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The property in Example 3-16 states that whenever y occurs, then within the first
occurrence of x after y the sequence a ... b ... c must be detected at least once. Note
that if x remains false until the end of simulation, the evaluation attempt will never
fail and will remain active until the end of the run. Therefore, it may be preferable to
verify (possibly by a separate assertion) that x will effectively occur after a y within
some specific number of clock cycles. If only one occurrence of the sequence on the
left-hand side of within should appear, the property could be written as follows: 

a_within: assert property 
     ( @(posedge clk)
       y |-> (a[->1] ##1 b[->1] ##1 c[=1]) 
                intersect
              x[->2]
     ) else ...;

In this case, there must be no additional occurrence of c after the sequences is
detected within x[->2].

Rule 3-31 — Open-ended ## intervals shall not be used in antecedent sequences of
an implication without other constraints.

Consider the property s0 ##[M:$] s1 |=> s2.

If the property is used in an assertion that is not inside an initial block (i.e., it is
always activated) then at every clock tick a new attempt is started. In each evaluation
attempt for the property to hold, whenever s0 ##[M:$] s1 matches, s2 must also
match. However, due to the open-ended interval, it will match on every occurrence of
s1 that follows s0, and it will search for such an occurrence of s1 until the end of
simulation. If s0 occurs many times during the simulation, all of these attempts and
threads will remain active and, unless s2 does not match after a match of the
antecedent thus causing a failure, the evaluation attempts will remain undecided until
the end of simulation. With the ever increasing number of evaluation threads, the
simulation load may increase quite considerably.

It is often the case that s1 in the above example is a boolean expression b. The
problem with this form is that an evaluation attempt of b is started any time s0
matches, but that attempt will remain active, searching for b to be true until the end of
simulation and the attempt will never terminate unless s2 fails after b. Yet, the
probable intent was to detect only the first match of b2 after s0. This detection can
be accomplished in the following way:
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Example 3-17. Using the go-to Operator in Place of Eventuality
a_go_to: assert property( @(posedge clk)
       (s0 ##1 b[->1]) |=> s2
  ) else ...;

Notice how, in Example 3-17, s1 was modified using the go-to [->] operator to
match only on the first occurrence of b strictly after s0. If s1 is a temporal sequence,
then the go-to operator cannot be used and the solution is to use the first_match
operator, as in Example 3-18. However, this operator is less efficient. 

Example 3-18. Using first_match Operator 
a_first_match: assert property ( @(posedge clk)
      s0 ##1 first_match( ##[1:$] s1 ) |=> s2
  ) else ...;

Rule 3-32 — The $past system function shall not be used over a large number of
clock cycles.

Large number of clock cycles may reduce verification performance because the
$past operator resembles a shift register with as many stages as the delay argument.
What is a large number depends on the specific tool, but it is a good practice to avoid
using $past with more than a few clock cycles.

Consider reformulating the same property without the use of a deep look into the past
using that operator. Often this reformulation can be achieved by identifying a
condition that marks the instant when the value is valid. Use that condition to store
the value in a variable for use later. Note, however, that overlapping transactions (e.g.,
a pipeline) require using local variables or a FIFO object.

Recommendation 3-33 —A large time window should be delimited using variables.

Large time intervals in the ##[M:N] and [*M:N] operators may require long
compilation times or use a lot of runtime resources. If the bound is large (> 20),
consider rewriting the property in some other way. For example, express such
properties with the help of variables.

Suppose that after start, the signal stop should be asserted within 150 to 256 clock
ticks. A direct but potentially inefficient way to code this property would be to use
##[150:256]:

Example 3-19. Coding with a Large Time Shift Interval
a1: assert property(@(clk) start |-> ##[150:256] stop);
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If the protocol is such that after a start is issued, a stop must be received before
the next start (i.e., there are no overlapping start-stop sequences), then the
property should be coded using a variable. Additional assertions should be specified
to verify the non-overlapping assumption of the start-stop sequences. Notice
that a missing stop is also detected because the assertion will also fail as soon as the
timer reaches the upper limit of 256. 

Example 3-20. Non-Overlapping Transactions with a Large Time Interval
  logic [10:0] timer = 0;
  always @(posedge clk) begin : nooverlap
    if (reset || stop)   timer <= 0;
    else if (start)      timer <= 1;
    else if (timer != 0 && timer <= 255)
      timer <= timer + 1;

    timing: assert property( 
      disable iff (reset) 
      $rose(stop) || $rose(timer == 256)
        |->  (timer > 150) && (timer <= 255) )
    ) else ...;
  end : nooverlap

In the case of overlapped transactions, the long ## interval can be avoided by using
local variables. For example, if start is asserted then stop must be asserted within
the next n >= 0 cycles. This can be verified using the property shown in Example 3-
21. Note that n may be a register in the design.

Example 3-21. Overlapping Transactions with a Large Time Interval
property overlap_p;
   logic [10:0] timer;
   @(posedge clk) 
     (start, timer = n) |-> 
       ((timer > 0, timer=timer-1)[*0:$] ##1 stop);

endproperty : overlap_p
timer_overlap:  assert property (overlap_p) else ...;

Suggestion 3-34 — It may be preferable to code assignments to auxiliary variables
using ternary ?: expressions.

For some assertions, it is important to detect the presence of X or Z states on signals.
Using the ?: operator will propagate any unknown on the predicate condition to the
final result. If an if-else statement is used, as in Example 3-20, the else result
would be used and the unknown condition would not be detected by the assertions
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using that result. Example 3-20 could be re-coded using ?: as shown in Example 3-
22.

Example 3-22. Using Ternary ?: Expressions to Propagate Unknowns
  logic [10:0] timer3 = 0;
  always @(posedge clk) begin : nooverlap_ternary
    timer3 <= 
      (reset || stop) ? 0 : 
        start ? 1 : 
         (timer3 != 0 && timer3 <= 255) ? timer3 + 1 : 
           timer3;

Recommendation 3-35 —Reduction and word-level operators should be used to
simplify boolean expressions in sequences.

It is often necessary to test for specific values of bits in a bit vector. Instead of
comparing each individual bit, it is often possible to use reduction operators and
word-level operators to simplify the boolean expression and thus improve verification
tool performance.

For example, to test that all bits in a vector W are set to 1, use (&W) instead of W ==
’1. To test that there is an odd number of bits in W, use (^W). To verify that there is
at least one bit set in the same position in words W1 and W2, use |(W1 & W2).

Recommendation 3-36 —The use of boolean expressions should be given preference
over edge expressions.

Edge expressions add overhead during verification, and in many cases, edge detection
is not needed. For example, to check that a pulse on signal x is only one clock cycle
wide can be written as:

$rose(x) |-> ##1 $fell(x);

However, a simpler equivalent check can be stated as:
x |-> ##1 !x;

Rule 3-37 — An implication shall not be used in a negated property.

The form s1 |-> s2 is used in a positive assertion, while the form s1 |->
not(s2) is used in a negative assertion that forbids s2 from occurring. For
example, suppose it is necessary to verify that when a occurs, then it is not followed



Assertion Coding Guidelines

Verification Methodology Manual for SystemVerilog 69

by b in the next clock cycle. If b is boolean, this property could be coded as shown in
Example 3-23

Example 3-23. Property with Negated Boolean in the Consequent
a1: assert property(@(posedge clk) a |-> ##1 !b 
) else ...;

However, if b is a sequence, this property could also be expressed using the violating
sequence and a negation as shown in Example 3-24.

Example 3-24. Complemented Property Containing an Implication
a2: assert property(@(posedge clk) not( a |-> ##1 b )
) else ...;

The problem is that whenever a is false, then a |-> #1 b succeeds, and hence, the
negation (not) will fail. This is clearly not the intended result. It is required that if a
happens and it is followed by b then the assertion should fail which is exactly how the
property should be written:

Example 3-25. Moving Negation to the Consequent
a3: assert property(@(posedge clk) a |-> not( ##1 b ))
else ...;

Here, a3 will report a failure only when the a occurs and is followed by b. An
additional advantage of this formulation is that vacuity of the assertion can also be
detected, i.e., the situation when a never occurs.

Recommendation 3-38 —Variables should be used to store expected results for data
checking.

Static variables can be used to keep or compute expected values that will be compared
later with monitored signals provided that multiple transactions do not overlap. 

Example 3-26. Checking Expected Value in a Non-Overlapping Transaction
logic [7:0] v_data_in = 0;
always @(posedge clk) begin : no_overlap
  v_data_in <= 
    port_in.accepted_in && all_empty ? port_in.data_in : 
                                       v_data_in;
  data_check: assert property (
    disable iff (reset) 
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    all_empty && port_in.accepted_in |-> 
       ##4 (port_out.data_out == (v_data_in << 1))
  ) else $display (“...”);
end : no_overlap

If multiple transactions overlap and may carry different data values, the mechanism
used in Example 3-26 is not sufficient because the same variable is used by all
overlapping transactions. Usually the transaction is also identified by some tag (or id)
so that the request and the subsequent acknowledgment can be matched, as shown in
Example 3-27.

Example 3-27. Checking Expected Value in Overlapping Transactions
property p;
  logic [7:0] v_data_in; 
  logic [1:0] v_id_in;
  @(posedge clk) disable iff (reset)
    (port_in.accepted_in, v_data_in = port_in.data_in, 
                          v_id_in = port_in.id_in) ##1 
    (port_out.accepted_out &&   
    (port_out.id_out==v_id_in))[->1]  
        |-> 
      (port_out.data_out ==  (v_data_in<<1));
endproperty : p
overlap_data_check: assert property(p) 
   else ...;

Rule 3-39 — Assertions shall be disabled upon reset condition.

When an assertion evaluation is triggered, the property expressed may not hold if,
during the consequent evaluation, a reset occurs. Use the disable iff clause if a
reset during the evaluation of the assertion should cancel the evaluation.

Example 3-28. Using disable iff
check_progress : assert property(
     @(posedge clk) disable iff (reset)
     (valid_in && !stall) ##1 (!stall[->3]) |-> ##1 f3 
) else ...;

If reset becomes true while evaluating the body of the property, then the evaluation
is terminated without a failure. 

An alternative that may not work with formal tools is to stop the assertions before
entering reset by using the $assertoff system task and re-enable them after reset
using $asserton.
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Suggestion 3-40 — The operand of disable iff may be a formal argument of the
property.

The boolean expression of disable iff may be a formal argument of a reusable
property. However, since only one top-level disable iff clause can appear in a
property statement, a property that contains a disable iff cannot be
instantiated in another property that already contains that clause.

Example 3-29. Parameterized disable iff Operand
property p(disable_bool, ... other formals... );
  disable iff(disable_bool) ... ;
endproperty: p

Recommendation 3-41 —Group assertions by clock source in an always block.

When assertions are grouped together in a file (rather than inlined in place of
application), it may be more convenient to infer their clock from an always block.
In this way, it does not have to be repeated in every assertion and the clock can be
easily changed. Using a default clocking block is also an option, but then the
same clock will apply to all assertions unless explicitly overridden.

Example 3-30. Using an always Block to Infer a Clock
logic [7:0] v_data_in = 0;
always @(posedge clk) begin : no_overlap
  v_data_in <= 
    port_in.accepted_in && all_empty ? port_in.data_in : 
                                       v_data_in;
  data_check: assert property (
    disable iff (reset) 
    all_empty && port_in.accepted_in |-> 
       ##4 (port_out.data_out == (v_data_in << 1))
  ) else ... ;
end : no_overlap

Recommendation 3-42 —Sequence, property and block definitions should be
delimited using labels.

To improve the readability of the assertion code (and any SystemVerilog code in
general), it is preferred to label both the beginning and the end of the block using the
same label. 
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Example 3-31. Labeling of Blocks
property p;
   ...
endproperty: p

sequence s;
   ...
endsequence: s

always @(clk) begin: a
   ...
   for (...) begin: f
      ...
      if (...) begin: i_true
         ...
      end: i_true
   end: f
end: a

Coverage Properties
Assertions are designed to specify expected behavior. Structural coverage metrics can
also be gathered on assert property statements described in the preceding
sections. Although knowing which assertions have been exercised is necessary, it is
not sufficient for measuring how much the DUT has been exercised. The same
language used to specified expected behavior can also be used to specify required
behavior. The cover property statement is designed to specify functional
coverage points.

Functional coverage can be subdivided into two basic classes—data/stimulus
coverage and protocol/activity coverage. The former is concerned with the coverage
of computed data and is best measured by using the covergroup statement. The
latter is concerned with the coverage of the sequencing or control aspects of the DUT
and is best expressed using cover property statements. More details on
functional coverage can be found in Chapter 6.

Because of its sequential and physical-level nature, protocol coverage is more easily
described and gathered by specifying temporal sequences. Each describe some
characteristic protocol element that must be exercised during tests. Also, coverage
properties can serve as goals for automatic test sequence generation using formal
tools. However, there are certain aspects in protocol coverage that are also best
implemented using covergroup constructs or a combination of a sequence and
covergroup. These are particularly useful when covering the observed latencies
between the occurrences of two conditions, packet/data lengths, etc.
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Recommendation 3-43 —Significant events should be covered using coverage
properties.

cover property statements on local interfaces or those on structures like FIFOs,
stacks, arbiters, etc. can detect the occurrence of signal value sequences that identify
significant events related to the behavior of the protocol or object. The occurrence of
the significant events should be included in the functional coverage model to ensure
that they have all been exercised.

Often, the occurrence of significant events is an opportunity for sampling additional
data for more complex functional coverage models. Sequence definitions that detect
such significant events can also be used as sampling events in covergroups.

Rule 3-44 — Only sequences shall be used in cover property statements.

If properties containing implications are used, they succeed when their antecedent
fails. This success is vacuous and is not indicative of the success of the entire
assertion. Only the non-vacuous successes—when the antecedent matches the
observed behavior—signal the occurrence of the significant event associated with the
property. To avoid confusion about what is vacuous, the best practice is to use only
sequences in coverage properties: Sequences either match or not on the observed
trace.

Example 3-32. Checking Assertion
a0: assert property (
  @(posedge clk) disable iff (reset) 
  $rose(ready_in) || (ready_in && $past(accepted_in)) 
        |-> ##[1:10] accepted_in 
) else $display(“...”);

To cover the specification in Example 3-32, it is preferable to express it as shown in
Example 3-33.

Example 3-33. Coverage Property
  c1: cover property (
    @(posedge clk) (!reset) throughout
    $rose(ready_in) || (ready_in && $past(accepted_in)) 
        ##[1:$] accepted_in );

If the coverage tool implements vacuous success filtering, then this rule may not be as
important. However, note that in complex properties involving nested implications,
the vacuity detection may not be accurate; hence, it is preferable to express the
expected sequences to be covered (i.e., not as a property containing an implication).
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Similar considerations apply to properties involving the if operator without an else
branch. Notice also the open-ended interval when awaiting accepted_in. The
cover is written to match on any occurrence of the handshake, its purpose is not to
verify the latency. 

Rule 3-45 — Cover properties for normal DUT operations shall be disabled when
reset is in progress.

Like assertions, there are two ways to disable coverage. The same system tasks can be
used as in Rule 3-6. In the other cases, it is preferable to use the throughout
operator to disable coverage instead of disable iff.

Example 3-34. Using throughout to Disable Cover Property
  c1: cover property (
    @(posedge clk) (!reset) throughout
    $rose(ready_in) ... );

Whenever reset becomes true, the boolean expression on the left-hand side of the
throughout operation becomes false, thereby forcing no match of the sequence.
Were disable iff used instead, a reset would cause a vacuous match that could
confuse the reader of the coverage report unless vacuous matches are eliminated by
the tool. Using throughout to disable a cover will not detect asynchronous reset
pulses that occur between two clock ticks. 

Recommendation 3-46 —coverage properties should be used to enumerate
compliance test sequences.

The specifications of standard protocols such as the AMBA Protocol Family, PCI, etc.
often contain compliance sequences that describe the types of transactions and
sequences of transactions that must be supported by the DUT to be considered
compliant. Using coverage properties to specify such compliance sequences can
provide useful information about the progress of the interface controller verification
and its level of compliance. Note that compliance statements involving data
transformation properties may be better implemented using testbench monitors.

Recommendation 3-47 —Inlined cover property statements and sequence
declarations should be used to specify corner cases
implied by the design.

Corner cases are often implied by the chosen architecture of a design. They are not
obvious from the design specification. These corner cases can be added to the
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functional verification requirements by specifying them using inlined cover
property statements.

Recommendation 3-48 —Coverage measurement should be turned on in regression
tests for all assert and cover statements each time the
design or the testbench has been modified.

Every time the design has changed significantly or the testbench is modified, the
previous coverage data is not valid anymore and has to be reconstituted. However, if
only new tests are added, coverage should be turned on only for these new tests and
the results then merged with the existing coverage data.

Suggestion 3-49 — The action statement associated with a cover property state-
ment may be used to trigger an event.

The event may be used by the testbench to detect that the property was covered. The
event can then trigger further coverage in a covergroup, or a different phase in the
testbench.

Example 3-35. Notifier in Failure Action Statement
event p5_covered;

always @p5_covered $display(“Cover c5 matched”);

property p5;
  @(posedge clk) !reset throughout 
  ($rose(cnt == 1) ##[1:$] (cnt == 10));
endproperty : p5

c5: cover property(p5)
  begin
    -> p5_covered;
  end

Suggestion 3-50 — The action statement associated with a cover property state-
ment may force sampling in a covergroup instance using the
sample() method.

Rather than tie a covergroup to an event triggered by a coverage property, it may
be simpler to trigger the coverage sampling by directly calling the sample()
method.
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Example 3-36. Covergroup Sampling from Action Statement of Cover Property
covergroup cg;
  coverpoint pre_cnt { 
    bins which_cnt[] = {[0:15]}; }
endgroup : cg;
cg covergroup_instance = new();

// There shall be as many matches of c6 as the sum of 
// all bin counts in the covergroup_instance

c6: cover property(p6) covergroup_instance.sample();

Suggestion 3-51 — Sequences may be used as the sampling event in a cover-
group.

When a sequence matches the observed trace, it is possible to trigger sampling in a
covergroup. This match becomes very useful for covering the values of local
variables that were collected during the evaluation of the sequence. The following
example illustrates a possible approach to covering an MII packet length: 

In Example 3-37, cnt is a local variable that counts the number of nibbles in the
frame, and sample_TX_Length is a task that converts the count to octets, stores it
in a static variable TX_FrameLength and forces sampling by the covergroup.
The always block outputs a message whenever the sequence matches. It is also
necessary that the sequence be instantiated for it to run.

Example 3-37. Coverage of Packet Length Using a covergroup and a 
sequence

int TX_FrameLength = 0;

covergroup length_cg;
  coverpoint TX_FrameLength;
  option.per_instance = 1;
endgroup : length_cg

length_cg mii_TX_frame_length_cg = new ();

task store_cnt(input int x);
  TX_FrameLength = x; 
  mii_TX_frame_length_cg.sample();
endtask : sample_TX_Length

sequence frame_length_s;
  int cnt;
  @(posedge TX_CLK) 1'b1 ##1 
  ( (not_resetting && !COL) throughout  
    ($rose(TX_EN), cnt=1) ##1 
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    (TX_EN, cnt++)[*0:$]) )
  ##1 
  (!TX_EN, store_cnt(cnt)); 
endsequence : frame_length_s

always @(frame_length_s) 
        $display(“Frame length sampled”);

Rule 3-52 — Cover property statements shall not be used to implement
coverage of a large set of data values.

It is possible to implement coverage of data values using cover property
statements embedded in one or more loops in a generate statement. However,
although very easy to code, the resulting large number of generated cover
property statements can considerably diminish compilation and simulation
performance. The following example illustrates this case:

Example 3-38. Inefficient Use of cover property for Data Coverage
genvar i;
generate
  for (i=0; i<256; i++) begin : many_cov
    cnt_cov: cover property ( 
      @(posedge clk) !reset && cnt[4] && 
                     (cnt[7:0] == i[7:0]) );
  end : many_cov
endgenerate

In Example 3-38, the generate loop, once unrolled, will construct 256 cover
properties that must be evaluated on every clock tick. Yet, only one will ever match at
each clock tick. This kind of coverage is best implemented using a covergroup:

covergroup cg @(posedge clk)
  coverpoint cnt[7:0] iff (cnt[4] && !reset) 
    { bins cnt_cov[] = {[0:255]}; }
endgroup
cg cg_inst = new();

REUSABLE ASSERTION-BASED CHECKERS
Reusable checkers can verify some relatively simple properties typically found in any
design. They are usually included in a library of checkers. The VMM checker library
is an example of simple reusable checkers. This section specifies guidelines for
writing simple reusable checkers.
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Some checkers can also be used as abstract models of the environment. They can be
used as constraints for random test generators or assumptions for formal verification
engines. Guidelines are required to write reusable checkers that can be used as
abstract models as well as checkers.

Assertion IP can verify complete behaviors of specific standard protocols and
behaviors, such as PCI, Utopia, SPI, AMBA Protocol Family, etc. Due to their more
complex nature, additional guidelines are required for writing assertion IP. These
guidelines are specified in “Assertion-Based Verification IP” on page 86.

Simple Checkers
Simple checkers are intended to verify behaviors that are typical to many designs.
Thus, the checkers must be reusable in various contexts, either instantiated directly in
a DUT or bound using bind statements. It is not expected that these checkers will
appear in a testbench program; instead, these checkers may be partly associated with
a module or an interface.

Each checker may contain auxiliary state variables, cover statements and/or
covergroups, and of course one or more assert statements. Both assertions and
coverage can be globally controlled on an individual checker or a whole design sub-
hierarchy. Reporting of any errors or assertion failures may also be done using the
message service (See “Message Service” on page 134).

Rule 3-53 — Checkers shall be packaged using an interface.

interfaces can be instantiated in either a module, an interface or a
program.

Example 3-39. Checker Packaging
(* sva_checker *) interface assert_stack(
   clk, reset_n, push, push_data, pop, pop_data);

Rule 3-54 — The inclusion of assert property statements in the checker shall
be controlled by the macro ASSERT_ON.

This inclusion is for compatibility with the Accellera OVL. If this macro is defined,
then the assertions in the checker are compiled; otherwise, they are excluded.
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Rule 3-55 — The inclusion of cover property statements in the checker shall be
controlled by the macro COVER_ON.

This inclusion mechanism is similar to the ASSERT_ON control. If this macro is
defined, then all coverage statements (cover property statements and
covergroup instances) in the checker are compiled; otherwise, they are excluded.

Using the above two macros, the user can use the checker for coverage, assertions or
both.

Rule 3-56 — A checker shall have a category parameter to allow category-based
control of its operation.

There are system tasks that allow controlling checkers, not only by their position in
the hierarchy, but also by their category. The category parameter is used as an
attribute of the assert property, cover property statements and
covergroup instances2.

Rule 3-57 — A global reset signal shall be optionally specified by the macro
ASSERT_GLOBAL_RESET.

The reset (or enable) signal can be passed through a port, but also by defining the
macro ASSERT_GLOBAL_RESET. This macro can refer to some global signal or
expression which is then used as the reset condition.

Example 3-40. Reset Selection
`ifdef ASSERT_GLOBAL_RESET
  assign not_resetting = (`ASSERT_GLOBAL_RESET != 1'b0);
`else
  assign not_resetting = ( reset_n != 0);
`endif

In Example 3-40, if ASSERT_GLOBAL_RESET is defined, then this condition—
when equal to 0—becomes the reset condition. Otherwise, the reset is taken to be the
port reset_n of the checker. For example, if the macro is defined as:

‘define ASSERT_GLOBAL_RESET top.reset

then the checker would be reset anytime top.reset == 0.

2. Note that the assertion attribute category is implemented in the Synopsys VCS simulator, 
but may not be supported by other tools.
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Rule 3-58 — Non-synthesizable code shall be controlled by the standard macro
SYNTHESIS.

Several constructs useful for simulation are not supported by synthesis. See IEEE
1364.1 Standard for Verilog Register Transfer Level Synthesis for a specification of
the synthesizable subset.

Example 3-41. Use of SYNTHESIS Macro
`ifndef SYNTHESIS
   // non-synthesizable code here
‘endif

Rule 3-59 — A checker shall create an instance of the message service interface
class.

This message service interface shall be used to issue all messages from the checker
instance when the checker is used with a VMM compliant testbench.

Example 3-42. Instance of the Message Service Interface Class
vmm_log log = new(“assert_name”, $psprintf(“%m”));

The vmm_log based reporting is part of the messaging tasks used in the standard
checkers and contained in the sva_std_tasks.h file.

Rule 3-60 — The initial identification of the checker instance shall be controlled by
the macro ASSERT_INIT_MSG.

It is often required that each checker instance reports its existence. This initial
identification must be controlled by a macro as illustrated on the following example:

Example 3-43. Issuing an Initial Checker Identification Message
`ifdef ASSERT_INIT_MSG
  initial sva_std_init_msg();
`endif

The vmm_log class instance and the category parameter are global and visible to
all reporting task calls.
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Rule 3-61 — Non-synthesizable assertions shall be under the control of the macro
SVA_CHECKER_FORMAL.

Assertions that check for the presence of ’x or ’z using case equality (= = =) are not
synthesizable and may not be used with formal tools. These assertions must be
conditionally included or excluded

Example 3-44. Non-Synthesizable Assertion
`ifdef SVA_CHECKER_FORMAL
`else
   (* category = category *)assert_no_contention_no_xs :
   assert property( 
     @(posedge sva_checker_clk) 
     disable iff (!not_resetting)
             (^bus1 !== 1'bx) || (en_vector == 0))
   else sva_checker_error(“”);
`endif // SVA_CHECKER_FORMAL

Rule 3-62 — Assertion failures shall be reported in the else part of the assertion
action block using the message service.

This rule is a consequence of Rule 4-43 on page 134. The task sva_std_error()
shall include the assertion category in a standard way in the error message.

Example 3-45. Assertion Failure Reporting
task sva_checker_error;
  input bit [60*8-1:0] err_msg;
  `ifndef SYNTHESIS
  begin
   `ifdef ASSERT_MAX_REPORT_ERROR
   error_count = error_count + 1;
   if (error_count <= `ASSERT_MAX_REPORT_ERROR) begin
   `endif
     `ifndef SVA_CHECKER_NO_MESSAGE
     `ifdef SVA_VMM_LOG_ON
     `vmm_error(log, 
     $psprintf(
       “SVA_CHECKER_ERROR:%s:%0s:severity %0d: \
        category %0d”, 
        msg, err_msg, severity_level, category));
     `else
     $display(
       “SVA_CHECKER_ERROR:%s:%s:%0s:severity %0d: \
        category %0d : time %0t : %m”,
        assert_name, msg, err_msg, 
        severity_level, category, $time);
   `endif
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   `ifdef ASSERT_MAX_REPORT_ERROR
  end
  `endif
  `endif
  if (severity_level == 0) sva_checker_finish;
end
`endif
endtask
...
(* category = category *) assert_one_hot: 
  assert property (
    @(sampling_ev) disable iff (!not_resetting) 
      ($countones(test_expr) == 1) ) 
    else 
      sva_std_error(.err_msg({“failure “, msg});

The reporting tasks are included in the sva_std_task.h file that is included in
each checker. The vmm_log class instance and the parameter category are visible
in the tasks. The user may modify the tasks to suit particular reporting needs.

Rule 3-63 — Design variables used on the right-hand side of auxiliary state
variable assignments shall be sampled with #1step skew.

Since assertions sample design variables in the pre-poned region, the auxiliary state
variables must reflect the same values to present a consistent view of the design state.
Therefore, a clocking block shall be used to sample these variables with an input
skew of #1step.

Example 3-46. Sampling of Design Variables for Auxiliary State Variables
clocking sampling_ev @(posedge sva_checker_clk);
   input not_resetting, push, push_data, pop, pop_data;
endclocking : sampling_ev
... 
// use sampled value in an assignment
always @(sampling_ev) begin
   sva_v_deferred_pop_sr <= 
               { sva_v_deferred_pop_sr[pop_lat-2:],
                 sampling_ev.pop}; 
end

Rule 3-64 — Sequences of events and boolean conditions shall be covered using
cover property statements.

Sequences of events and boolean conditions are most simply and efficiently described
using properties. Furthermore, such coverage points are often useful targets for test
generation using hybrid-formal tools (provided that the properties are written in a
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synthesizable style). Example 3-47 illustrates using cover property statements
in the assert_stack checker to cover an empty stack condition. Similar
statements can be written for stack full or high-watermark conditions.

Example 3-47. Cover Property in assert_stack for Empty Condition
cover_number_of_empty : cover property( 
  @(posedge sva_checker_clk) 
  (not_resetting) throughout(
     sva_v_deferred_pop ##1 
    ( !$stable( sva_v_stack_ptr) && 
      ( sva_v_stack_ptr == 0)) ) );

Rule 3-65 — Data-related coverage shall be implemented using covergroup
constructs.

Data-related properties usually classify various data values as they are observed into
bins, indicating how many times each value or range of values occurred. This
classification is usually more efficiently described using the covergroup construct.
Example 3-48 illustrates this classification on the coverage of various fill levels of the
stack in the assert_stack checker. Note that, as required by Rule 3-63, it is
necessary to introduce sampling of data in the preponed region using the clocking
construct.

Example 3-48. Coverage of Stack Fill Levels
logic [16:0] sva_v_stack_ptr;
always @(sampling_ev) begin
  sva_v_stack_ptr <= ... ;
  past_sva_v_stack_ptr <= sva_v_stack_ptr;
end

...

covergroup depth_cg @(sampling_ev);
  coverpoint sva_v_stack_ptr 
    iff (sampling_ev.not_resetting &&         
      |(past_sva_v_stack_ptr^sva_v_stack_ptr)) {
         bins observed_depth[] = {[0:depth]};}
         option.per_instance = 1;
         option.at_least = 1;
         option.name = “observed_outstanding_contents”
         option.comment = “Bin index is the fill level”
endgroup : depth_cg

depth_cg depth_cover = new();
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Suggestion 3-66 — Coverage of response delays may be implemented using assertion
coverage.

This form of coverage requires support by the underlying simulator. It has to sample
the different delays specified in ## and * operators. 

Example 3-49. Delay Coverage Using cover property
c1: cover property (
  @(posedge clk) (!reset) throughout
       (!ready_in || accepted_in) ##1
       ready_in ##[1:$] accepted_in );

Recommendation 3-67 —Delay coverage, when delay or latency is measured by
counting clock ticks, should be implemented using a
covergroup triggered from a sequence.

Because automatic delay coverage may not be available in the tools, it is preferable to
use local variables in a sequence and a covergroup for measuring the delays or
latencies. This is particularly true when the maximum delay or latency values are
large and it can be implemented in a similar way as in Example 3-37 for covering the
lengths (duration) of a packet. 

Rule 3-68 — Assertions or coverages that are triggered only at the end of 
simulation shall be controlled by the macro 
ASSERT_END_OF_SIMULATION.

As specified in the Accellera OVL, the macro ASSERT_END_OF_SIMULATION
can be used to trigger sampling only at the end of simulation. The user must define
the macro to be some expression that transitions from zero to one to mark that event.
Usually, the sampling clock is also required to trigger the expression. The following
example is taken from the assert_quiescent checker:

Example 3-50. Triggering by ASSERT_END_OF_SIMULATION
`ifdef ASSERT_END_OF_SIMULATION 
  (* category = category *) assert_quiescent_state: 
  assert property( @( posedge clk) 
    disable iff (!not_resetting)
    ($rose(sample_event) ||
     $rose(`ASSERT_END_OF_SIMULATION ==1'b1) )
       |-> 
         (state_expr == check_value) )
   else sva_checker_error(“”);
`else 
  (* category = category *) assert_quiescent_state: 
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  assert property( @( posedge clk) 
    disable iff (!not_resetting)
        $rose(sample_event)) |-> 
                ( state_expr == check_value) )
    else sva_checker_error(“”);
`endif

Rule 3-69 — Coverage points shall be selectable by parameter(s).

Once coverage points have been sufficiently covered, it may be desirable to disable
them in subsequent runs to speed up the simulation. Also, when some reusable
checkers are deployed, not all coverages may be of interest in a given instance of the
checker. Therefore, individual coverage points shall be selectable by setting a bit in a
parameter of the checker. Each cover property or covergroup is associated
with one bit in the parameter. By setting the bit to one, a conditional generate
statement will include the coverage into the executable model. In the VMM checkers,
there are up to three coverage levels each independently controlled by a parameter.
Example 3-51 shows the selection of one cover property at level three, parameter bit
position zero.

Example 3-51. Selecting a Coverage Point
interface assert_stack (...);
  ...
  parameter coverage_level_3 = 0;
  ...
  generate
    ...
    if( ( coverage_level_3&1 ) != 0) 
    begin : cov_level_3_0
      (* category = category, checkerType = “LIMIT”,
         checkerLevel = 3 *) 
      cover_stack_hi_water_chk : cover property( 
        @( posedge sva_checker_clk) 
        not_resetting && 
        $rose(sva_v_stack_ptr == hi_water_mark)); 
    end : cov_level_3_0
    ...
  endgenerate
  ...
endinterface : assert_stack

Rule 3-70 — Checker coverage points shall be subdivided into three levels.

Level one is associated with the basic coverage representing the triggering
condition(s) of the checker and possibly the matching situation.
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Level two provides coverage of ranges of values such as data, delay, latency, etc. that
require implementation using covergroups.

Level three represents coverage of corner cases of data, latencies, delays, etc., i.e., in
general, the limits of the ranges in Level two. These are provided so that the corner
case can become a reachability goal for formal tools. Also, in simulation, it may be
sufficient to know whether the corner cases have been hit without requiring to know
how the ranges in Level two were covered.

Not all levels may have meaning in a particular checker and thus need not always
exist.

Rule 3-71 — Each coverage level shall be controlled by a separate parameter.

There shall be three parameters controlling the coverage levels independently using
the mechanism illustrated in Example 3-51: coverage_level_1,
coverage_level_2, coverage_level_3.

Level one coverage must be present in every checker, but the inclusion of the other
two levels depends on their usefulness in the particular behavior that is verified by the
checker. The default values of the parameters are such that Level one coverage points
are the only ones selected. 

Assertion-Based Verification IP
This section contains a collection of guidelines for the development of reusable
assertion-based verification IP using SystemVerilog. The development of a reusable
checkers must take into account many factors, such as: configuration of protocol
options, parameterization of signal widths and resource requirements, assertions and/
or assumptions, use in simulation and/or formal tools, controls in simulation,
reporting of usage errors, failure reporting and message contents, coverage properties
and other coverage points, 4-valued and/or 2-valued evaluation of expressions,
efficiency, and packaging for SystemVerilog and VHDL design environments.

The guidelines that follow are subdivided into sections that address the above issues
based on property rules, architecture and controls, naming convention and coding
style, documentation and release items and testing.

The first question that arises when faced with the development of a checker for a bus
protocol is often “Where do I start?” The protocol description is spread over many
pages in different forms: text, timing diagrams, state machines, perhaps some
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algorithms and even logic diagrams. For assertion-based verification IP, a list of
precise statements that can be expressed in temporal language is required.

Rule 3-72 — Each rule shall be based on a requirement stated in the specification
document.

The rules shall each have a succinct name, a brief description and a cross-reference to
the section (and paragraph number) in the protocol specification document.

The rules should not introduce more constraints on the behavior than the specification
imposes because it may result in false failures of assertions. They may also lead to
false positive results or inconsistencies if used as assumptions. Overconstraining can
happen easily when interpreting timing diagrams in which actual causal relations are
not clearly identified. For example, event B may be depicted between two to six
cycles after event A, and event C between three to eight cycles after event A. Unless a
timing constraint between B and C is also depicted or the textual description implies
such a constraint, no temporal relationship between events B and C should be
imposed.

An underconstrained rule will be more permissive and may lead to a false positive
outcome if used as an assertion and to a false negative result if used as an assumption.
Such a situation may arise when some protocol requirements are spread over multiple
diagrams or spread over multiple pages. Underconstraining rules are often best
detected if used as assumptions because they may lead to failures on assertions or lead
to a dead end in random simulation constrained by these underconstrained
assumptions.

Rule 3-73 — The rules shall be subdivided according to the signal direction they
control.

The distinction of assertions by signal direction is extremely important if the checker
is to be used in (hybrid-)formal tools in a system- or a block-level test. In a system-
level test, all the rules of the bus are used as assertions. In a block-level test, only
those rules that pertain to the block output signals may be used as assertions. The
rules that control input signals should be used as assumptions on the inputs of the
block. In a simulation tool, all rules are used as assertions.

Often, it may be difficult to identify which signal is to be constrained by a specific
rule. Fortunately, with careful reading, the specifications are usually quite clear as to
what signal is concerned.
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For example, in a single-master single-slave system, there are signals from master to
slave (M–S) and from slave to master (S–M). The rules should be subdivided into two
subsets according to the direction they characterize, M–S and S–M. Let ready_in
be a signal from master to slave and accepted_in a signal from slave to master. If
the rule says “Whenever ready_in is asserted, then within one to ten cycles
accepted_in should be asserted,” the rule indicates a required behavior of
accepted_in, assuming that ready_in is asserted. Thus, the rule belongs to the
S–M subset. This rule could be described by the property shown in Example 3-52.

Example 3-52. Assertion Implementing a Protocol Rule
a0: assert property (
  @(posedge clk) disable iff (reset) 
  (!ready_in || accepted_in) ##1 ready_in 
      |-> ##[1:10] accepted_in ) 
else $display(“...”);

Note that the predicate condition may refer to signals from either set; it is the signals
in the conclusion that determine the subset. Also notice that ready_in need not
return to zero between requests.

The statement “When ready_in is asserted, it must remain so until accepted_in
is asserted,” is a rule that controls the behavior of ready_in and not that of
accepted_in. Therefore, the rule belongs to the M–S subset. It can be expressed in
a property as shown in Example 3-53.

Example 3-53. Assertion Implementing a Protocol Rule
a1: assert property (
  @(posedge clk) disable iff (reset) 
  (!ready_in || accepted_in) ##1 ready_in
        |-> ready_in[*1:$] ##0 accepted_in ) 

Notice that there is no time constraint involved. Only the stability of ready_in until
accepted_in is verified. The timing aspect that constrains accepted_in is
specified in Example 3-52.

The identity of the constrained signal may not be obvious. For example, in the
statement “FRAME must not be asserted if DATA==eof is going to appear on the
output within the next four cycles,” it seems that FRAME is to be constrained by some
future signal value. However, such a situation is non-causal and can be resolved in
two ways. Either there is another signal (possibly internal to the DUT) that does
indicate that DATA==eof will occur in the future and that signal can be used to
constrain FRAME, or the constraint is actually on DATA not being equal to eof if
FRAME is asserted. The latter case can be expressed as shown in Example 3-54.
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Example 3-54. Property Implementing a Protocol Rule
property DATA;
   @(clk) FRAME |-> ##1 (DATA != eof)[*4];
endproperty : DATA

Suggestion 3-74 — Rules may refer to internal signals in the device.

Some rules may be usable only in block-level white-box verification. These rules
should be put in a separate subcategory and are not used as assumptions on the
design. The inclusion of the rules should be controlled by a parameter of the checker.

Rule 3-75 — Rules shall refer to internal driver signals of external buses.

If there are multiple drivers on the same signal within a single design block, it is not
possible to identify which driver is currently driving the bus by observing only the
signal. By referring to the internal driver enable signal of each driver, it is possible to
identify which master is driving the bus and at what point the driving started and
stopped.

For example, the FRAME signal on a PCI bus is a shared signal among a number of
devices. Suppose that the ports of a PCI master checker are frame_out_n,
frame_in_n, and frame_en_n. In a white-box verification with access to the
internal signals, the checker ports would be mapped to the internal signals:

.frame_out_n (DUT_frame_out_n),

.frame_in_n  (DUT_frame_in_n),

.frame_en_n  (DUT_frame_en_n)

In a black-box verification in which there is no access to the internal signals
frame_in_n and frame_en_n, the port mapping may be:

.frame_out_n (FRAME_n),

.frame_in_n  (FRAME_n),

.frame_en_n  (1’b0)

where FRAME_n is the shared bus signal.

Recommendation 3-76 —The set of rules should not contain redundant rules.

The protocol rules should be disjoint, i.e., a rule should not cover (parts of) behaviors
characterized by another rule. The reason is not only the efficiency of the checker, but
also easier problem identification in case of a failure of the assertion.

For example, the specification of the PCI protocol contains redundant rules:
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Rule 1: If PERR# is enabled and a data parity error is detected by a master during 
a read transaction, the master must assert PERR# two clocks after a completion of 
a data phase in which a parity error occurs. (Section 3.7.4.1 of PCI 2.2 Specifica-
tion.)
Rule 2: Master always drives PERR# (when enabled) for a minimum of one clock 
for each data phase in which a parity error is detected (Section 3.8.2.1 of PCI 2.2 
Specification.)

Rule 1 detects the first occurrence of PERR#, and at that point, Rule 2 is also verified
because once PERR# is asserted, it is for at least one cycle. Rule 2 is thus redundant.
In the description, Rule 1 should refer to both items in the protocol specification.

Recommendation 3-77 —Contradictions in the rules should be eliminated.

Such contradictions may occur due to misinterpretation of the specification in an area
only partially related to another rule. Identifying contradictions is a difficult task.
Often, they may be detected only when testing the entire checker and in particular if
the properties are used as assumptions.

Rule 3-78 — Compliance statements or functional coverage shall be expressed
using cover property statements.

Protocol specifications are often accompanied by compliance statements that state
what sequences of transactions or operations must be supported by the design to be
compliant. These compliance statements can be expressed using cover property
statements and used in the evaluation of functional coverage.

Example 3-55. Write Followed by a Read
SnpsApb_cv_WriteAfterRead: 
   cover property (@(posedge clk) 
      SETUP_WR_SELECT ##1 ENABLE_WR_DSEL ##1 
      IDLE[*0:$] ##1 SETUP_RD_COV ##1 ENABLE_READ

);

Architecture of Assertion-Based IP
When architecting assertion-based verification IP, one must consider various issues:
packaging and configuration, protocol layers, reuse of common definitions, assume
versus assert, coverage points, control mechanisms, and failure reporting.

The guidelines specified for the basic checkers in the previous section are applicable
to assertion-based verification IP.
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Rule 3-79 — Reusable checkers shall be packaged in an interface.

Reusable IP checkers shall be bound or instantiated in a design or on its boundary
interfaces. The encapsulation in an interface provides the necessary capabilities
and implementation flexibility for the internal structure of the IP.

Rule 3-80 — For use with VHDL testbenches and models, there shall be an
equivalent component (entity) declaration.

The component shall have the same generics as the SystemVerilog interface has
parameters and also the same ports as the SystemVerilog interface. For IP that is to be
used in mixed SystemVerilog/VHDL environments, the parameter and port types in
the parent SystemVerilog checkers should be limited to those available in VHDL and
supported by the mixed language tool(s).

Recommendation 3-81 —Global configuration should be implemented using
‘define macros.

Parameters that affect all instances of the checker may be implemented using
‘define macros and placed in a header file. This file is then included wherever
needed. Only this file needs to be edited when changing the global configuration. The
definitions can also be generated randomly by a separate program to build tests in
which the architectural configuration is also randomized. An alternative is to use the
+define+ compilation option to specify the actual macro definitions. 

Rule 3-82 — Global coverage and assertions shall be enabled using macros.

As in the VMM checker library, coverage and assertions should be turned on globally
by defining the macro COVER_ON and ASSERT_ON, respectively.

Rule 3-83 — Individual coverage points shall be selectable using bits in
parameter(s).

Unlike in the basic checkers, the subdivision into levels may depend on the particular
protocol. Therefore, the coverage points must be individually selectable.

Rule 3-84 — Instance-specific configuration shall be implemented using
parameters.

The majority of configuration values shall be passed to the checker through module or
interface parameters because they allow creating multiple instances of the checker
each configured differently.



Assertions

92 Verification Methodology Manual for SystemVerilog

Recommendation 3-85 —Definitions, sequences, properties and auxiliary variables
that are common to different parts or layers of the protocol
should be packaged in an interface.

Encapsulating common elements in a separate interface reused in different checkers
for the same protocol will ease maintenance. For example, the same definitions may
be reused in a checker for the master and for the slave checkers of the PCI protocol.

Rule 3-86 — For multi-agent protocols properties, each signal direction shall be
packaged in a separate top-level interface.

As specified in Rule 3-73, rules shall constrain only signals of one direction. This
separation by direction shall also be reflected in the checker architecture. Since there
can be multiple instances of each agent-device, the checker for a signal direction may
be multiply instantiated with different parameter settings. Example 3-56 shows the
interface declaration for a Wishbone bus checker, master and slave.

Example 3-56. Separate Interfaces for Separate Signal Directions
(* sva_checker *)
interface wb_master_chk_if (
   CLK_I, RST_I, ACK_I, ADR_O, CYC_O, DAT_I, DAT_O,
   ERR_I, RTY_I, SEL_O, STB_O, WE_O, TAG_O
) ;
... // Body of master protocol checker
    // Verifies behavior of signals driven by master
    // (xyz_O signals)
endinterface : wb_master_chk_if

(* sva_checker *)
interface wb_slave_chk_if (
   CLK_I, RST_I, ACK_O, ADR_I, CYC_I, DAT_I,DAT_O,
   ERR_O, RTY_O, SEL_I, STB_I, WE_I, TAG_O
 ) ;
... // body of slave protocol checker
    // verifies behavior of signals driven by a slave
    // (xyz_O signals)
endinterface : wb_slave_chk_if

Rule 3-87 — Point-to-point protocols properties shall be packaged in a single
interface.

Point-to-point protocols only involve two devices connected over a bundle of wires.
A single instance of the checker is required. However, the role of the properties as
assumption or assertion must be controlled independently for both signal directions. 
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Rule 3-88 — Selection of assumption or assertion role shall be controlled by the
parameter <agent>_assume.

The string <agent> identifies the direction of the signals. The parameter
<agent>_assume selects the directives. When set to one, it shall configure
properties to act as assumptions. When set to zero, it shall configure properties to act
as assertions.

Example 3-57. Selection of Assume or Assert in MII/MAC Checker
// mii_TX_assume is the name of the parameter 
`ifdef ASSERT_ON
  generate
    if(mii_RX_assume) begin : mii_RX_assumptions
      always @(rxc) begin
        mii_RX_2: assume property(mii_2_p); 
        mii_RX_7: assume property(mii_RX_7_p); 
      ...
    end : mii_RX_assumptions

    else begin : mii_RX_assertions
      always @(rxc) begin
        mii_RX_2: assert property(mii_2_p) 
        else begin
          sva_checker_error(“...”);
          RX_SetFrameError(MII_RX_CRS_NOT_W_COL);
        end
        mii_RX_7: assert property(mii_RX_7_p) 
        else begin
          sva_checker_error(“...”);
          RX_SetFrameError(MII_RX_BAD_OR_NO_SDF);
        end
        ...
    end : mii_RX_assertions
  endgenerate
‘endif

Rule 3-89 — Single-layer protocols shall use a two-level or a flat architecture.

Many on-chip and external memory or system bus protocols have a simple one-layer
structure. Most signaling is achieved out-of-band using separate control signals. The
preferred architecture reflects the flat format of the protocol specification. 

Shared items between a number of assertions/coverage items, such as common
sequence and property definitions and static auxiliary variable declaration and
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assignments may be placed in an interface. The interface is instantiated and
the shared items are referenced through the interface instance name.

Example 3-58. A Two-Level Architecture
interface itf_common(logic reset,
                     logic clk,
                     ...);
... // sequences, properties and auxiliary variables 
    // shared by a number of assertions / coverage items
endinterface

interface VMM_protocol_master // Can also be interface
    #( ... )// parameters 
     ( /// ports
     input logic reset,
     input logic clk,
     input logic sig_a,
     input logic sig_b,
      ...        );  // other ports
  itf_common common_items;

  (* category = assert_category *)
    a: assert property(
        common_items.p1(sig_a) );
    ... // other assertions and coverage items
endinterface

Rule 3-90 — Multi-layer protocols shall use a multi-level architecture.

In multi layered protocols, like PCI Express, the checks are usually at different
abstraction levels in each layer. Therefore, it is preferable to implement each protocol
layer checks as a separate section or level in the checker, similar to the layer
architecture shown in Figure 4-5. For complex protocols, each layer may be packaged
in a separate interface. These levels are placed in the top-level interface of
the checker for each signal direction. The communication link between the levels
should be implemented as a well defined block of code that performs the abstraction
function between protocol layers. Again, for complex protocols, this block of code
could be encapsulated in an interface to hide implementation details. For
example, the communication link may contain byte counters and packet assembly and
disassembly statements that relate a byte-level protocol layer with a packet layer. The
layered structure simplifies modeling because the rules and encapsulation follow the
protocol definition. Furthermore, the communication link code controls the direction
of signal flow depending on the use context: inward for assertions and outward
toward the design ports for assumptions.
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For example, consider the following protocol. Device Dev1 asserts req and holds
until ack is received from Dev2. At that point, data is placed by Dev2 on signal
data and is valid for one clock cycle—the duration of ack, which is also one cycle
wide. req must stay high until and including ack is asserted, and then req must be
deasserted for at least one cycle. ack cannot be asserted unless req is asserted. Upon
reception of two bytes of data, the sixteen bits are XORed. The result must be equal to
zero.

A multi-layer protocol checker, shown in Example 3-59, has the following structure.
Because the protocol is quite simple and point-to-point, a single top-level
interface named DL_PL_checker is used. It contains the code for the physical
layer checks—PL—the data link layer checks—DL—and the communication link.
The communication link does the packet assembly from data bytes into a variable
called packet for assertions on data or disassembly from packet into data bytes
for assumptions on data. 

The selection of assert or assume is done by the parameters dl_pl_ack_assume
and dl_pl_req_assume. When dl_pl_ack_assume is set to one, the checker
acts as an assumption on ack and data. When dl_pl_req_assume is set to
zero, the checker acts as assumption on req. Otherwise the checker implements
assertions. 

Example 3-59. Multi-Level Protocol Checker Architecture
// Two-level data link - physical layer checker
// Packets of length 2 bytes only in this example

interface DL_PL_checker 
  #(parameter bit dl_pl_ack_assume = 0, 
              dl_pl_req_assume = 0)
  (input rst, clk, req, ack, inout [7:0] data);

// physical layer checks PL  // properties of req

  property p_req1; // stable req
    @(posedge clk) disable iff (rst)
      $rose(req) |-> req[*1:$] ##0 ack;
  endproperty : p_req1

  property p_req2; // req Return-to-Zero
    @(posedge clk)  disable iff (rst)
      ack |-> ##1 !req;
  endproperty : p_req2

  property p_req3;
    @(posedge clk)  disable iff (rst)
      ack |-> ##[1:6] req;
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  endproperty : p_req3

// properties of ack
  property p_ack1; // pulse only
    @(posedge clk) disable iff (rst)
      ack |-> ##1 !ack;
  endproperty : p_ack1

  property p_ack2; // no ack w/o req
    @(posedge clk) disable iff (rst)
      !req |-> !ack;
  endproperty : p_ack2

  property p_ack3; // ack latency
    @(posedge clk) disable iff (rst)
      $rose(req) |-> ##[1:5] ack;
  endproperty : p_ack3

  generate

    if (dl_pl_ack_assume) begin : drive_ack
      aa1: assume property (p_ack1);

      aa2: assume property (p_ack2);

      aa3: assume property (p_ack3);
    end : drive_ack

    else begin : verify_ack
      aa1: assert property (p_ack1) else 
        $display(“ack too wide”);

      aa2: assert property (p_ack2) else
        $display(“spurious ack”); 

      aa3: assert property (p_ack3) else
        $display(“ack too late”);
    end : verify_ack

    if (dl_pl_req_assume) begin : drive_req
      ar1: assume property (p_req1);

      ar2: assume property (p_req2); 

      ar3: assume property (p_req3);  
    end : drive_req

    else begin : verify_req
      ar1: assert property (p_req1) else
        $display(“req dropped”);
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      ar2: assert property (p_req2) else
        $display(“req not returned to 0");  

      ar3: assert property (p_req3) else
        $display(“req too late”);  
    end : verify_req

  endgenerate

// Communication link with DL layer

// variables for the DL layer
  logic [1:0][7:0] packet = 0;
  logic cnt = 0; // only 2 octets

  clocking p_clk  @(posedge clk);
    input rst, ack, data;
  endclocking : p_clk

// count 2 data octets 
  always @(p_clk)
    cnt <= rst ? 0 : p_clk.ack ? 
                       !cnt : cnt;  
  generate

    if (dl_pl_ack_assume) begin : drive_pl
// disassemble packet into octets
      assign data = rst ? 
        0 : ack ? 
        (cnt ? packet[1] : packet[0]) :
        0;

// assure stable packet during disassembly
      assume_data_2: assume property  
        ( disable iff (rst)
          (1'b1 ##1 !$fell(cnt)) 
            |-> $stable(packet)
         );
    end : drive_pl

    else begin : verify_dl
//assemble packet for DL layer assertions
      always @(p_clk)
        packet[cnt] <= p_clk.rst ?
           0 : p_clk.ack ? 
                 p_clk.data :
                  packet[cnt];
    end : verify_dl
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  endgenerate

// data link layer check DL

  property p_data_1;
    @(posedge clk) 
    disable iff (rst)
      (1'b1 ##1 $fell(cnt)) 
         |-> ((^packet) == 0);
  endproperty : p_data_1

  generate

    if (dl_pl_ack_assume) begin : drive
// assumption on data
      adt1: assume property (p_data_1);
    end : drive

    else begin : verify
// assertion on data
      adt1: assert property (p_data_1) else 
                  $display(“data_property failed”);
    end : verify    

  endgenerate

endinterface : DL_PL_checker

Rule 3-91 — Users shall have control over individual assertions at run time.

Assertion names must be listed in the documentation so that the user can enable/
disable individual checks using system tasks at run time.

Rule 3-92 — Users shall be able to enable or disable assertions or coverage of the
entire checker at run time.

It must be possible to globally enable or disable all assertions or assumptions or
coverage using system tasks, using either the system tasks $assertoff and
$asserton with the hierarchical name of the checker instance or using a
category associated with the checker.

Rule 3-93 — Formal subset selection shall be controlled using the
SVA_CHECKER_FORMAL macro.

The control is the same as in the basic VMM checkers, as described in Example 3-61.
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Rule 3-94 — Each assertion shall produce a short but meaningful message with
useful variable values upon failure using the message service.

This is the same output reporting as in VMM checkers, as specified in Rule 3-62.

Rule 3-95 — Parameter values shall be verified for valid values and value
combinations.

The validity of parameter values shall be verified in an initial block and the
simulation shall be terminated with failure indication if they are inconsistent.

Rule 3-96 — Coverage of variable values shall be implemented using
covergroups.

As in VMM checkers, coverage shall be implemented using both cover property
and coverage groups depending on the type of the data covered. However, for use
with formal tools, it is preferable to implement the corner cases using cover
property.

Recommendation 3-97 —Checkers shall include an assert_category
parameter.

The parameter should be assigned to the category attribute of all assertions.

Recommendation 3-98 —Checkers shall include a cover_category parameter.

The parameter should be assigned to the category attribute of all cover property
statements and covergroup instances.

If the tools support this functionality, these two parameters permit controlling and
interrogating the assertions and cover points according to the category value, the
same way as in the basic checkers.

Documentation and Release Items

Rule 3-99 — The release of an assertion-based verification IP shall contain the
following items:

• Files containing the checker modules/interfaces
• Header file with user-configured macro definitions 
• All the tests used for verifying the IP
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• README file describing the contents of the release
• Text file with Release notes indicating any restrictions related to this particular 

release not documented in the main User Guide
• User Guide

Rule 3-100 —A User Guide for the assertion-based verification IP shall include the
following information:

• Checker documentation version and date
• Protocol version and specifications covered by the checker
• Summary of features relative to configuration, protocol subsets, etc.
• Simulation controls
• Coverage information
• Table of rules, separated by signal direction/device type
• List of macro definitions if any, indicating the default behavior and permissible 

values
• Description of ports and parameters including defaults for each checker unit
• List of any restrictions and limitations of the checker
• Global organization of the checker (details as far as allowed by required IP protec-

tion rules, if any)
• Layout of the directory structure in the checker distribution
• Example of use, including sample binding statements in block-level tests under 

assertion and assumption forms and in system-level assertion-only form 
• Instructions on how to compile and execute tests and how to interpret the results
• Information on which assumptions are sufficient to prove individual assertions.

QUALIFICATION OF ASSERTIONS
Assertions in general and reusable checkers in particular have to be thoroughly
verified for compliance with their requirements. Bugs can arise due to improper
implementation of the assertion itself, misinterpretation of the assertion language
constructs, incorrect parameter values and port connections in the bind statements of
checkers, typographical errors, or ambiguity in the protocol specification. An error in
an assertion or in the deployment of a checker may result in false reporting of
successful design verification. The qualification problem is complex because, not



Qualification of Assertions

Verification Methodology Manual for SystemVerilog 101

only the acceptance of correct protocol behavior has to be verified, but also that
violations of the specification must be detected and reported by the assertion or
checker. In other words, both the good and the wrong behaviors must be thoroughly
verified.

In the case of reusable protocol checkers, the space of possible violations may be
quite large and a carefully prepared and reviewed verification plan is an absolute
necessity for assuring acceptable quality of the checker. There are a number of ways
to verify that a given assertion or checker complies with the requirements. Depending
on the complexity of the checked behavior, the methods vary from simple to very
complex involving hybrid formal tools.

Visual inspection —  This inspection may be sufficient if the abstraction level of the
assertion matches the natural language specification. Visual inspection requires solid
understanding of assertion language semantics. Typically, this is used on simple
assertions involving a few temporal operators. 

For example, the until property: 
c |-> d[*1:$] ##1 e;

It is sufficient to make sure that the boolean expressions c, d and e are correct., and
that the corner timing cases are valid.

In-situ — Qualification in the context of the DUT is the easiest method to
implement, but may only exercise a subset of all accepting sequences. In addition,
error injection into the design requiring temporary modifications is necessary to
verify that the assertion rejects incorrect behaviors.

Assertion testbenches  —  A testbench can be written to exercise the assertion or the
reusable checker, like any other DUT. For any realistic protocol checker, the
verification development represents a major endeavor and should not be
underestimated.

Formal verification  —  An interesting alternative may be to use the assertions in the
checker as assumptions in a system model configured only using a set of wires and
continuous assignments to the bus. The formal tool is used to generate random test
sequences that satisfy these assumptions and observe them in a waveform viewer to
check their validity. This approach will generate only the “positive” tests. In a
subsequent step, cover property statements are added that encode the negations
of the assertions. These cover statements are then used as goals in the formal tool to
ascertain that none of these goals are reachable with the set of assertions used as
assumptions. Additional cover property statements that represent the positive
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corner cases of each behavioral rule are then used as search goals to ascertain that all
of them are reachable. If not, these corner cases cannot be reached.

The amount of work using the formal approach may not be any less than writing a
functional testbench. However, the advantage is that it will also verify that the set of
assertions are not mutually contradictory and that they can be used effectively as
assumptions. The limitation of this approach may be the performance limits of the
tool on complex multi-layered protocols. Also, the boolean expressions and auxiliary
variable assignments must be synthesizable.

SUMMARY
In this chapter, assertions and their usage in the design verification process were
introduced first. This section was followed by guidelines for inserting assertions
inside the DUT by the designers, and then for using assertions on external interfaces
as applied by the design verification personnel. In the latter case, the DUT is viewed
as a black box.

The rest of the chapter concentrated on providing guidance on good coding practices
for assertions and coverage, and for constructing assertion-based checkers and
verification IP. This content included a description of a number of standard VMM
macro symbols and parameters used in VMM-compatible checkers. The objective
was also to create verification IP that can be used alone or integrated with a testbench
monitor. Such an integration is possible due to the powerful features of the
SystemVerilog language.

The guidelines were presented with simulation in mind as the primary verification
tool. However, at the block level, assertions with formal and emulation tools are
gaining on importance; therefore, the information in this chapter was written so as not
to contradict the constraints imposed by these tools. The more strict rules to satisfy
such constraints are the subject of Chapter 7.

For further reading on SystemVerilog Assertions:

Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari, "SystemVerilog Asser-
tions Handbook … for Formal and Dynamic Verification", Vhdlcohen Publishing.
Srikanth Vijayaraghavan, Meyyappan Ramanathan, "A Practical Guide for Sys-
temVerilog Assertions", Springer.
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CHAPTER 4 TESTBENCH 
INFRASTRUCTURE

One of the challenges when transitioning from a procedural language, such as Verilog
or VHDL, to a language with object-oriented features—such as SystemVerilog—is
making effective use of the object-oriented programming model. When used properly,
these features can greatly enhance the reusability of testbench components. This
section contains guidelines or directives to make the most out of these language
features to create verification components and combine them into a powerful
verification environment that will satisfy the needs of all the testcase that must be
applied to the DUT.

This chapter will be of interest to those responsible for creating a verification
environment for a particular design. It will also be of interest to those creating
reusable verification IP. The requirements for the transactors and the verification
environment that use them will be defined by the verification planning process
(Chapter 2) and the selected stimulus and response checking mechanisms (Chapter 5).
They must also offer the appropriate data sampling interfaces to allow the
implementation of functional coverage points (Chapter 6).

The guidelines presented in this chapter are based on the VMM Standard Library
specified in Appendix A. Although the methodology and approaches described here
could be implemented in a different class library, using a well-defined and openly
accessible library guarantees interoperability of the various verification components.
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TESTBENCH ARCHITECTURE
This section describes the recommended testbench architecture. Testcases are
implemented on top of a verification environment, as illustrated in Figure 4-1. The
verification environment implements the abstraction and automation functions that
help minimize the number and details of testcases that need to be written. The
verification environment will also be reused, without modifications, by as many
testcases as possible to minimize the amount of code required to verify the DUT. For
a given design under test, there may be several verification environments as
illustrated in Figure 8-4. But the number of environments should be minimized and
testcases built on top of existing environments as much as possible. Minimizing the
number of lines required to implement a testcase is an important objective of this
methodology. Investing in the few—or one—verification environments to save a
single line in the potentially thousands of testcases will be a worthwhile investment.

Figure 4-1. Tests on Top of Verification Environment.

Verification environments are not monolithic. As illustrated in Figure 4-2,
environments are composed of layers, mirroring the abstraction layers in the data
processed by the design—as shown in Figure 4-3—and to meet the varied
requirements of all the testcases that need to be written on top of it. Each layer
provides a set of services to the upper layers or testcases, while abstracting it from the
lower-level details.

Although Figure 4-2 shows testcases interacting only with the upper layers of the
verification environment, they can by-pass any layer to interact with any component
of the environment or the DUT to accomplish their goal. Testcases are implemented
as a combination of additional constraints on generators, new random scenario
definitions, synchronization mechanisms between transactors, error injection
enablers, DUT state monitoring and directed stimulus. Because the verification
environment must be able to support, without modification, all testcases required to
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verify the DUT, it must be assembled with carefully designed, reusable components.
The next sections will describe how to build such components. 

Figure 4-2. Layered Verification Environment Architecture.

Figure 4-3. Application of Layered Testbench Architecture
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Complete verification environments are never implemented in one shot. They are not
delivered to the testcase writers as a finished product from the ivory tower of
verification architects. Rather, they evolve to meet the increasingly complex
requirements of the testcases being written and responses being checked. Initially
supporting only a trivial directed testcase with no self-checking, layers are added to
evolve them into full-fledged self-checking constrained-random verification
environment. The methodology described in this chapter allows this evolution to
occur in a backward-compatible fashion to avoid breaking existing testcases.

The layered architecture makes no assumption about the DUT model. It can be an
RTL or gate-level model as well as a transaction-level model. The DUT can also be
simulated natively in the same simulator as the verification environment, co-
simulated on a different simulator or emulated on a hardware platform. 

Figure 4-4 shows the general structure used to implement complete testbenches.

Figure 4-4. General Implementation Structure

Rule 4-1 — The signal layer shall be implemented and the DUT shall be
instantiated in a top-level module

This top-level module will contain the design portion of the simulation. Any element
of the signal layer or DUT will be accessible via cross-module references through the
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endmodule
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top-level module. There is no need to instantiate the top-level module anywhere.
Guidelines for implementing the signal layer can be found in “Signal Layer” on
page 107.

Rule 4-2 — The verification environment shall be implemented in a top-level class

The environment will leverage generic functionality from a verification environment
base class. It will be able to refer to the signal layer or any DUT element via cross-
module references into the top-level module. The environment will be instantiated by
each testcase. Guidelines for implementing the top-level environment class can be
found in “Simulation Control” on page 124.

Rule 4-3 — Testcases shall be implemented in an initial block in a program block

The initial block describes the testcase procedure. The testcase procedure can
refer to any public members in the verification environment via hierarchical
references through the top-level environment class. It will also be able to access
any element of the signal layer or DUT via cross-module references through the top-
level module. The verification environment will be designed to minimize the number
of statements in testcases. Guidelines for implementing testcases can be found in
“Test Layer” on page 123 and in “Generating Stimulus” on page 211.

Signal Layer
This layer provides signal-level connectivity to the DUT. The signal layer provides
pin name abstraction to enable verification components to be used, unmodified, with
different DUTs or different implementation models of the same DUT—for example,
an RTL description of the DUT using interface constructs and a gate-level
description of the same DUT using individual bit I/O signals. This layer may also
abstract synchronization and timing of synchronous signals with respect to a
reference signal.

The signal abstraction provided by this layer is accessible and may be used by all
layers and testcases above it, if signal-level access is required. However, verification
environments and testcases should be implemented in terms of the highest possible
level services provided by lower layers and avoid accessing signals directly unless
absolutely necessary.
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Rule 4-4 — interfaces shall be packaged in the same file as the transactors
that use them.

Command-layer transactors have a physical-level interface composed of individual
signals. All signals pertaining to a physical protocol are bundled in a single
interface construct. The interface declarations and the class declarations
for transactors operating on those interfaces are intimately related. They shall be
packaged together in the same file.

Example 4-1. Packaging of interface Declaration
interface mii_if(...);
   ...
endinterface: mii_if;
...
class mii_phy_layer ...;
   virtual mii_if.phy_layer sigs;
   ...
endclass: phy_layer
...

If an interface declaration already exists for the protocol signals—for example in
the RTL design code—and it meets (or can be made to meet) all of the subsequent
requirements outlined in this section, then it should be physically moved to the file
packaging the transactors that will use them. In most cases, different interface
declarations will exist or be required. Their respective signals can be mapped to each
other as described in Rule 4-14 on page 113.

Rule 4-5 — Interfaces shall be named with a prefix that matches the
associated component name prefix or package name.

To minimize the collisions between interface names and other identifiers in the
global name space, they shall use a likely-unique prefix. That prefix should be the
same as any prefix used for related transactors. The name of the package that
optionally contains the transactors that make use of the interface may also be
used as the prefix to further document the association.

Rule 4-6 — All interface signals shall be declared as wire.

The same interface constructs are used by verification components regardless of their
perspective or role on the interface. Some components will drive signals, others will
simply monitor their value. Which signal is being driven or monitored may be
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different depending on the functionality of the verification component. Wires are able
to represent a physical interface signal regardless of the direction of the signal.

Example 4-2. Verification interface Signal Declaration
interface mii_if();
   wire       tx_clk;
   wire [3:0] txd;
   wire       tx_en;
   wire       tx_err;
   wire       rx_clk;
   wire [3:0] rxd;
   wire       rx_dv;
   wire       rx_err;
   wire       crs;
   wire       col;
   ...
endinterface: mii_if

Rule 4-7 — Synchronous interface signals shall be sampled and driven using a
clocking block.

This approach will avoid race conditions between the design and the verification
environment, and it will allow the verification environment to work with RTL and
gate-level models of the DUT without any modifications or timing violations.

Example 4-3. Synchronous Interface Signal Declaration
interface mii_if;
   ...
   parameter setup_time = 5ns;
   parameter hold_time  = 3ns;
   clocking mtx @(posedge tx_clk);
      default input #setup_time output #hold_time;
      output txd, tx_en, tx_err;
   endclocking: tx

   clocking mrx @(posedge rx_clk);
      default input #setup_time output #hold_time;
      input rxd, rx_dv, rx_err;
   endclocking: rx
   ...
endinterface: mii_if

Furthermore, code located in program blocks executes in the reactive region. This
execution implies that all pending signal assignments will have been made to their
target variables. Any variable assigned using a non-blocking assignment sampled
after a clock edge would have its current value sampled, not its previous value. In
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Example 4-4, the module would report a value of Q equal to 0; whereas, the program
would report a value of Q equal to 1. Using a clocking block is the only way to sample
the value present in a variable before the clock transition.

Example 4-4. Sampling Differences Between Module and Program Blocks
module dff;

reg Q = 0;
reg clk = 0;
initial #10 clk = 1;

always @ (posedge clk) Q <= 1;

always @ (posedge clk) $write("Module Q = %b\n", Q);

endmodule: dff

program p;
initial
   forever begin
      @ (posedge dff.clk) begin
         $write("Program Q = %b\n", dff.Q);
      end
   end
endprogram

Rule 4-8 — Set-up and hold time in clocking blocks shall be defined using
parameters.

This style will allow changing the set-up and hold time, on a per instance basis, to
meet the needs of the DUT without having to modify the interface declaration itself.
Modifying the interface declaration would have global effects; whereas, parameters
can be specified for each interface instance.

Example 4-5. Specifying Set-Up and Hold Times for Synchronous Signals
mii_if #(.setup_time(1),
          .hold_time  (0)) mii();

Rule 4-9 — Individual modports shall be declared for each type of proactive,
reactive and passive transactors.

Different transactors may have different perspectives on a set of signals. For example,
one may be a master driver, another a reactive monitor or a slave driver and another
may be a passive monitor. Certain interfaces may have different types of proactive
transactors, such as arbiters and agents. To ensure that each transactor uses the
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interface signals appropriately, a modport must be declared for each of their
individual perspectives.

Example 4-6. Module Port Declarations
interface mii_if;
   ...
   modport mac_layer(clocking mtx,
                     clocking mrx,
                     input    crs,
                     input    col, ...);
   ...
   modport phy_layer(clocking ptx,
                     clocking prx,
                     output   crs,
                     output   col, ...);
   ...
   modport passive(clocking ptx,
                   clocking mrx,
                   input crs,
                   input col, ...);
   ...
endinterface: mii_if

As described in “Transactors” on page 161, transactors will be implemented as
separate class definitions and will interface to the physical signals through
virtual modports. Transactions and transactors should not be defined as tasks
inside the interface declaration. An interface declaration that is shared with
the RTL design may contain such tasks, but they should not be used by the
verification environment.

Rule 4-10 — The direction of asynchronous signals shall be specified in the
modport declaration

As per Rule 4-6, the signals declared in the interface create a bundle of wires. The
direction of information on the individual wires depends on the role of the agent
connected to those wires. For example, wires carrying address information will be
outputs for a bus master but will be inputs for a bus slave or bus monitor. The
direction of asynchronous signals is specified directly in the modport as they are not
sampled via clocking blocks.
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Rule 4-11 — The direction of synchronous signals shall be specified in the
clocking block declaration.

The direction of synchronous signals is specified in the clocking block. As per Rule
4-12, the entire clocking block is included in the modport port list. Thus, the
synchronous signals are already visible and their direction are already enforced.

This rule implies that they will generally be one clocking block per modport for
each clock domain in the interface

Rule 4-12 — The clocking block shall be included in modports port list
instead of individual clock and synchronous signals.

Transactors must be able to delay the driving or sampling of synchronous signals by
an integer number of cycles. By referring to the clocking block that defines the
synchronization of an interface, an integer number of cycles can be specified without
having to know the details of the synchronization event that is specified in the
clocking block declaration. Because all signals in a clocking block are visible,
adding the synchronous signals to the modport port list would be redundant.
Furthermore, having to refer to synchronous signals through their respective
clocking blocks highlights their synchronous nature and associated sampling and
driving semantics.

Example 4-7. Waiting for the Next Cycle on the tx Interface
foreach (bytes[i]) begin
   ...
   @(this.sigs.mtx);
   this.sigs.mtx.txd <= nibble;
   ...
   @(this.sigs.mtx);
   this.sigs.mtx.txd <= nibble;
   ...
end

Rule 4-13 — The design and all required interfaces and signals shall be instantiated
in a module with no ports.

This top-level module contains both the verification environment and the design.
Since the verification environment is responsible for the stimulus and monitoring of
all signals to and from the DUT, this top-level module does not require any further
inputs or outputs. It will also minimize the amount of code that will be duplicated in
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all of the tests when instantiating this top-level module, since no ports will need to be
mapped.

Example 4-8. Simple Top-Level Module
module tb_top;

bit tx_clk;
bit rx_clk;
...
mii_if #(...) mii();

assign mii.tx_clk = tx_clk;
assign mii.rx_clk = rx_clk;
...
eth_top    dut(...
               .mtx_clk_pad_i(mii.tx_clk),
               .mtxd_pad_o   (mii.txd),
               ...);
...
endmodule: tb_top

Rule 4-14 — Signals in different interface instances implementing the same
physical interface shall be mapped to each other.

Verification components and the design may have been written using different
interface declarations for the same physical signals. To connect the verification
components to the design, it will be necessary to map two separate interface
instances to the same physical signals. This can be accomplished with continuous
assignments for unidirectional signals and aliasing for bidirectional signals.

Example 4-9. Mapping Two Different Interface Instances to the Same Physical 
Signals

interface eth_tx_if;   // RTL Design Interface
   bit         clk;
   wire  [3:0] d;
   logic       en;
   logic       err;
   logic       crs;
   logic       col;
endinterface: eth_tx_if

module tb_top;

bit        tx_clk;
eth_tx_if  mii_dut(); // Design Interface Instance
mii_if     mii_xct(); // Transactor Interface Instance
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assign mii_dut.clk    = tx_clk;  // Unidirectional
assign mii_xct.tx_clk = tx_clk;
alias  mii_xct.txd    = mii_dut.d; // Inout
...
endmodule: tb_top

Rule 4-15 — Clock generation shall be done in the top-level module.

Clock signals must be scheduled in the design regions. They must therefore be
generated outside of the verification environment, in an always or initial block.
Clock signals should not be generated inside verification components or transactors
because they are scheduled in the reactive region.

Rule 4-16 — There shall be no clock edges at time 0.

There are race conditions between initial scheduling of the initial and always
blocks implementing the clock generators and those implementing the design.
Delaying the clock edges to a point in time until after all initial and always
blocks have had the chance to be scheduled at least once eliminates those race
conditions.

It is a good idea to wait for the duration of a few periods of the slowest clock in the
system before generating clock edges.

Example 4-10. Clock Generation in Top-Level Module
module tb_top;
bit tx_clk;
...
initial
begin
   ...

#20; // No clock edge at T=0
   tx_clk = 0;
   ...
   forever begin
      #(T/2) tx_clk = 1;
      #(T/2) tx_clk = 0;
   end
end
endmodule: tb_top
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Rule 4-17 — The bit type shall be used for all clock and reset signals.

Using a two-state type ensures that the clock signals will be initialized to a known,
valid value.

If a four-state logic type, such as logic, is used to implement the clock signals, the
initialization of those signals to 1’b0 may be considered as an active negative edge
by some design components. The alternative of leaving the clock signals at 1’bx
while the clock edges are being delayed—as per the previous rule—may cause
functional problems if these unknown values are propagated.

Recommendation 4-18 —The timing relationship of unrelated clock signals should
be randomized as part of the testcase configuration.

Clock signals with an asynchronous relationship are inherently synchronized when
simulated with a fixed initial phase and a common timing reference such as the
internal simulation time. To ensure that problems related to asynchronous clock
domains can surface during simulation, the relationship of such clocks should be
randomized.

Example 4-11. Randomizing Clock Offsets
integer tx_rx_offset;  // 0-99% T lag
integer T = 100;
initial
begin
   ...
   tx_rx_offset = {$random} % 100;
   #20; // No clock edge at T=0
   tx_clk = 0;
   rx_clk = 0;
   ...
   fork
      begin
         #(T * (tx_rx_offset % 100) / 100.0);
         forever begin
            #(T/2) rx_clk = 1;
            #(T/2) rx_clk = 0;
         end
      end
   join_none

   forever begin
      #(T/2) tx_clk = 1;
      #(T/2) tx_clk = 0;
   end
end
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To enable tests to control the random clock relationship values, these values should be
randomized as part of the testcase configuration descriptor. The randomized value
would then be assigned to the appropriate variable in the clock generation code, in the
extension of the vmm_env::reset_dut() method. See “Simulation Control” on
page 124.

Command Layer
Transaction-level testcases written using Verilog or VHDL are typically implemented
on top of a command layer.

The command layer typically contains bus-functional models, physical-level drivers,
monitors and checkers associated with the various interfaces and physical-level
protocols present in the DUT. The command layer provides a consistent, low-level
transaction interface to the DUT, regardless of how the DUT is modeled. At this level,
a transaction is defined as an atomic data transfer or command operation on an
interface, such as a register write, the transmission of an Ethernet frame, or the
fetching of an instruction. Atomic operations are typically defined using individual
timing diagrams in interface specifications.

Reading and writing registers is an example of an atomic operation. The command
layer provides methods to access registers in the DUT. To speed up device
initialization, this layer may have a mechanism that bypasses the physical interface to
peek and poke the register values directly into the DUT model. Such choice should be
selectable at run time, where all subsequent register accesses would be done in the
same manner until the mode selection is modified. Note that the implementation of a
direct-access, register read/write driver is dependent upon the implementation of the
DUT.

A driver actively supplies stimulus data to the DUT. A proactive driver is in control of
the initiation and type of the transaction. Whenever a new transaction is supplied by
the higher layers of the verification environment to a proactive driver, the transaction
is immediately executed on the physical interface. For example, a master bus-
functional model for an AMBA AHB interface is a proactive driver. 

A reactive driver is not in control of the initiation or type of the transaction, but may
be in control of some aspect of the timing of its execution, such as the introduction of
wait states. The transaction is initiated by the DUT, and the reactive driver supplies
the required data to successfully complete the transaction. For example, a program
memory interface bus-functional model is a reactive driver: The DUT initiates read
cycles to fetch the next instruction and the bus-functional model supplies new data in
the form of an encoded instruction.
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A monitor reports observed high-level transaction timing and data information. A
reactive monitor includes elements to generate the required low-level handshaking
signals to terminate an interface and successfully complete a transaction. Unlike a
reactive driver, a reactive monitor does not generate transaction-level information.
For example, a Utopia Level 1 receiver is a reactive monitor: it receives ATM cells
without having to generate additional data but generates a cell enable signal back to
the DUT for flow control. A passive monitor simply observes all signals involved in
the transaction without any interference. A passive monitor is suitable for monitoring
transactions on an interface between two DUT blocks in a system-level verification
environment.

When interfacing with an RTL or gate-level model, the physical abstraction layer may
translate transactions to or from signal assertions and transitions. When interfacing
with a transaction-level model, the physical abstraction layer becomes a pass-through
layer. In both cases, the transaction-level interface presented to the higher layers
remains the same, allowing the same verification environment and testcases to run on
different models of the DUT, at different levels of abstraction, without any
modifications.

The services provided by the command layer may not be limited to atomic operations
on external interfaces around the DUT. These services can be provided on internal
interfaces for missing—or temporarily removed—design components. For example,
an embedded memory acting as an elastic buffer for routed data packets could be
replaced with a testbench component to help track and check packets in and out of the
buffer rather than only at DUT endpoints. Or, an embedded code memory in a
processor could be replaced with a reactive driver that would allow on-the-fly
instruction generation instead of using pre-loaded static code. Alternatively, an
embedded processor could be replaced with a transactor to allow the testbench to
control the read and write cycles of the processors instead of indirectly through code
execution. When replacing DUT components with a transactor, care must be taken
that it be configured to an equivalent functionality. For example, if the transactor
implements a superset of the transactions or timing compared to the DUT component,
it should be configured to restrict its functionality to match that of the DUT
component.

Rule 4-19 — Drivers and monitors shall execute in the reactive region.

This implementation will ensure that they avoid race conditions between the design,
the assertions and the verification environment. If Rule 4-22 and Rule 4-89 are
followed, this rule will be automatically followed.
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Example 4-12. Low-Level Driver Implemented in the Top-Level Module file
module tb_top;
...
bit rst = 0;
...
endmodule: tb_top
...
program tb_top_env;

   task reset;
      tb_top.rst <= 1;
      ...
   endtask: reset

endprogram: tb_top_env

Rule 4-20 — Drivers and monitors shall be implemented as transactors.

Although a different label is used to refer to command-layer transactors from
functional-layer transactors, they only differ in their interfaces. The high-level
interface on both sets of transactors is a transaction-level interface. The low-level
interface on command-layer transactors is a physical-level interface and is designed
to connect to the DUT. On a functional-layer transactor, the low-level interface is a
transaction-level interface, which is designed to connect to the high-level interface of
another transactor.

In all other respects, command- and functional-layer transactors operate in the same
way and should be implemented using the same techniques and offer the same type of
capabilities.

Recommendation 4-21 —A monitor transactor should be configurable as reactive
or passive.

Instead of having two separate monitors, it will be easier to maintain a configurable
monitor because the functionality can be shared between the two flavors.
Furthermore, environments built on top of a reactive monitor can be reused in a
system-level environment with little modification by reconfiguring the reactive
monitor into a passive mode.

Functional Layer
The functional layer provides the necessary abstraction layers to process application-
level transactions and verify the correctness of the DUT.
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Unlike interface-based transactions of the physical layer, the transactions in the
functional layer may not have a one-to-one correspondence with an interface or
physical transaction. Functional transactions are abstractions of the higher-level
operations performed by a major subset of or the entire DUT, beyond the physical
interface module. A single functional transaction may require the execution of dozens
of command-layer transactions on different interfaces. It may depend on the
completion status of some physical transactions to retry some transactions or delay
others.

Functional layer transactors can be proactive, reactive or passive. A proactive
transactor controls the initiation and the kind of transaction and typically supplies
some or all of the data required by the transaction. A reactive transactor does not
control the initiation nor the kind of transaction, and it is only responsible for
terminating the transaction appropriately by supplying response data or handshaking.
Reactive transactors may report the observed transaction data they are reacting to.
Passive transactors monitor transactions on an interface and simply report the
observed transactions.

At all times, the self-checking structure included in this layer verifies the correctness
of the response of the DUT, based on the configuration and stimulus streams. The
correctness may be determined at various levels of abstraction—physical or
functional— according to the functionality being verified. The correctness of the
response should not imply or require that a particular model of the DUT is used, nor
should it depend on unspecified ordering or timing relationships among the
transactions.

As illustrated in Figure 4-5, the functional layer should be sub-layered according to
the protocol structure. For example, a functional layer for a TCP/IP over Ethernet
device should contain a sub-layer to transmit—and if necessary retry—an Ethernet
frame. Additional sub-layers may be provided to encapsulate IP fragments into
Ethernet frames, fragment large IP frames into smaller IP fragments that will fit into a
single Ethernet frame and encapsulate a TCP packet into an IP frame.

A testcase is performed as a series of functional transactions at the appropriate level
of abstraction, rather than always using low-level physical transactions or physical
signals.

It must be possible to turn off all or some of the higher sub-layers. As tests are
implemented, they are first concerned with verifying the lower-level operations of the
DUT. These lower-level operations correspond to the lowest sub-layers of the
functional layer. Stimulus—and self-checking—is performed at the relevant
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abstraction sub-layer to easily create the relevant scenarios and corner cases for that
level of abstraction. 

Figure 4-5. Functional Sub-Layers

This checking requires that any stimulus provided by the higher sub-layers be turned
off to prevent undesirable noise from affecting a testcase. This requirement is often a
by-product of the implementation of the verification environment itself: It is typically
implemented bottom-up, with the low-level testcases implemented first. As additional
levels of functionality are being verified, additional sub-layers are added to the
functional layer. To maintain backward compatibility with the existing lower-level
testcases, these additional sub-layers must be disabled by default.

The functional layer is also responsible for configuring the DUT according to a
configuration descriptor. The configuration descriptor is a high-level description of
the DUT configuration that is “compiled” into the necessary register reads and writes
and embedded memory images.

This layer includes a functional coverage model for the high-level stimulus and
response transactions. It records the relevant information on all transactions processed
or created by this layer.
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Rule 4-22 — Transactors shall execute in the reactive region.

This implementation will ensure that they avoid race conditions between the design,
the assertions and the verification environment.

If Rule 4-91 is followed, transactors are implemented using classes. Classes
instantiated in program blocks and whose threads are started in program blocks
will have reactive semantics, which is a consequence of Rule 4-28.

Example 4-13. Transactors Instantiated in program block
class mii_phy_layer extends vmm_xactor;
   ...
endclass: mii_phy_layer
...
class tb_env extends vmm_env;
   ...
   mii_phy_layer phy;
   ...
   virtual function void build();
      ...
      this.phy = new(...);
      ...
   endfunction: build
   ...
   virtual task start();
      ...
      this.phy.start_xactor();
      ...
   endtask: start
endclass: tb_env

program test;
   tb_env env = new;
   ...
endprogram

Rule 4-23 — Monitors shall be implemented as transactors.

Although a different label is used to refer to stimulus transactors (driver) from
response transactors (monitor), they only differ in the direction of the information
flow. The interfaces on both sets of transactors are transaction-level interfaces. In all
other aspects, drivers and monitors operate in the same way and should be
implemented using the same techniques and offer the same type of capabilities.
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Recommendation 4-24 —A reactive transactor should be configurable as passive.

Instead of having two separate transactors, it will be easier to maintain a configurable
transactor because the functionality can be shared between the two flavors.
Furthermore, environments built on top of an reactive transactor can be reused in a
system-level environment with little modification by reconfiguring the reactive
transactor into a passive mode.

A reactive functional layer driver will usually have a request/response transaction-
level interface, as described in section titled "Reactive Response" on page 192. When
configured as a passive monitor, the direction of the response channel is simply
reversed to observe the response generated from a previous request.

Scenario Layer
This layer provides controllable and synchronizable data and transaction generators.
By default, they initiate broad-spectrum stimulus to the DUT. Different generators or
managers are used to supply data and transactions at the various sub-layers of the
functional layer. This layer also contains a DUT configuration generator.

Atomic generators generate individually constrained transactions. Atomic generators
are suitable for generating stimulus where putting constraints on sequences of
transactions is not necessary. For example, the configuration description generator is
an atomic generator.

Scenarios are sequences of random transactions with certain relationships. Each
scenario represents an interesting sequence of individual transactions to hit a
particular functional corner case. For example, a scenario in an Ethernet networking
operation would be a sequence of frames with a specified density—i.e., a certain
portion of the time the Ethernet line is busy sending/receiving, and otherwise, the line
is idle. Scenario generators generate scenarios in random order and sequence and
produce a stream of transactions that correspond to the generated scenarios. Scenario
managers initiate scenarios as defined by and under the direction of a particular
testcase and produce a stream of transactions that corresponds to the requested
scenarios.

This layer may be partially or completely bypassed by the test layer above it,
depending on the amount of directedness required by the testcase. Consequently,
generators must be able to be turned off, either from the beginning or in the middle of
a simulation, to allow for the injection of directed stimulus. The generator must also
be able to be restarted to resume the generation of random stimulus after a directed
stimulus sequence.
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Rule 4-25 — Generators shall execute in the reactive region.

This implementation will ensure that they avoid race conditions between the design,
the assertions and the verification environment. This rule is a consequence of Rule 4-
26 and a special case of Rule 4-22.

Rule 4-26 — Generators shall be implemented as transactors.

A generator is a transactor with an output transaction-level interface and usually
without any input interfaces. In all other aspects, generators behave like transactors
and should be implemented using the same techniques and offer the same type of
capabilities.

Example 4-14. Generator are Transactors
class eth_frame_gen extends vmm_data;
   ...
endclass

Test Layer
Testcases involve a combination of modifying constraints on generators, the
definition of new random scenarios, synchronization of different transactors and the
creation of directed stimulus.

This layer may also provide additional testcase-specific self-checking not provided by
the functional layer at the transaction level. For example, checks where correctness
will depend on timing with respect to a particular synchronization event introduced
by the testcase.

Rule 4-27 — Testcases shall be implemented in a single initial block in a
program block.

This implementation will ensure that they are executed as part of the reactive region
and avoid race conditions among the design, the assertions and the verification
environment. Using a single initial block limits the execution of a testcase to a
single overarching thread, making it easier to understand the steps involved in
accomplishing that testcase. This rule is consistent with Rule 4-3.

Rule 4-28 — Testcases shall instantiate the verification environment in a program
block.

The environment instantiates all necessary transactors and manages their execution.
Rule 4-22 requires that transactors execute in the reactive region. Therefore, the
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environment that encapsulates them must be instantiated in a program block. As an
added benefit, the program block implementing the testcase will be able to access
any required element of the verification environment. The environment is instantiated
in a local variable to prevent initialization race conditions.

Example 4-15. Testcase Accessing Verification Environment Elements
program test;
...
tb_env env = new;
initial
begin

env.run();
end
endprogram: test

Rule 4-29 — Testcases shall access elements in the top-most module or design via
absolute cross-module references.

The program block implementing the testcase must be able to access any required
element of the signal layer or the design. The top-most module is never instantiated
and its elements are accessed via the $root name space.

Example 4-16. Testcase Accessing Design Elements
program test;
...
initial
begin
   fork
      forever begin
         @ (posedge tb_top.wb_int);
         ‘vmm_note(env.log, "Interrupt asserted!");
         ...
      end
   join_none
   ...
end
endprogram: test

SIMULATION CONTROL
In general, the successful simulation of a testcase to completion involves the
execution of the following major functions:
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1. Generating the testcase configuration.
This generation includes a description of the verification environment configura-
tion and the DUT configuration. This generation also includes a description of the 
testcase duration. It is used by the self-checking structure to determine the appro-
priate response to expect and by the verification environment to configure the 
DUT.

2. Building the verification environment around the DUT according to the generated 
testcase configuration.
The specific type and number of transactors that need to be instantiated around the 
DUT to exercise it correctly may depend on the configuration that will be used. 
For example, a DUT may be configured with an Intel-style or a Motorola-style 
processor interface. Each will require a different command-layer transactor. Simi-
larly, 16 GPIO pins may be configured as 16 1-bit interfaces or one 16-bit inter-
face (or anything in between). Each configuration will require a different number 
of command-layer and functional-layer transactors and scoreboards in the self-
checking structure.

3. Disabling all assertions and resetting the DUT.
4. Configuring the DUT according to the generated testcase configuration.

This configuration may involve writing specific values to registers in the DUT or 
setting interface pins to specific levels.

5. Enabling assertions and starting all transactors and generators in the environment.
Transactors and generators should not be started as soon as they are instantiated. 
The DUT must first be configured to be ready to correctly receive any stimulus. 
Starting the generators too soon complicates the response checking because some 
initial stimulus sequences must be ignored.

6. Detecting the end-of-test conditions.
The end of a test may be determined using a combination of conditions. Depend-
ing on the DUT, a testcase is terminated after running for a fixed amount of time 
or number of clock cycles or number of transactions or until a certain number of 
error messages have been issued or when all monitors are idle.

7. Stopping all generators in an orderly fashion.
8. Draining the DUT and collecting statistics.

To determine success of a simulation, it may be necessary to drain the DUT of any 
buffered data or download accounting or statistics registers. Any expected data 
left in the scoreboard is then assumed to have been lost. The value of accounting 
or statistics registers is compared against their expected values.

9. Reporting on the success or failure of the simulation run.
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Not all DUTs require all of those steps. Some steps may be trivial for some DUTs.
Others may be very complex. But every successful simulation follows this sequence
of generic steps. Individual testcases intervene at various points in the simulation
flow to implement the unique aspect of each testcase.

As illustrated in Figure 4-6, the vmm_env base class (See “vmm_env” on page 365.)
formalizes these simulation steps into well-defined virtual methods. These methods
must be extended for a verification environment to implement its DUT-specific
requirements. The vmm_env base class supports the development of a verification
environment by extending each virtual method to implement the individual
simulation steps as required by the target DUT. The base class already contains the
functionality to manage the sequencing and execution of the simulation steps. The
DUT-specific environment class extension also instantiates and interconnects all

OOP Primer: Virtual Methods

Virtual methods behave differently from non-virtual methods when their
implementation is overloaded in a class extension. A base class bc contains a
virtual method vm() and a non-virtual method nvm(). A derived class dc
overloads both of these methods:

class bc; class dc extends bc;
   virtual task vm();    virtual task vm();
      $display("bc::vm()");       $display("dc::vm()");
   endtask    endtask
   task nvm();    task nvm();
      $display("bc::nvm()");       $display("dc::nvm()");
   endtask    endtask
endclass: bc endclass: dc

Code calling those methods will invoke different implementations depending on
the type of class handle used to refer to the method.
initial begin
   dc dc_obj = new;      // Both handles refer to same
   bc bc_obj = dc_obj;   // instance of class "dc"

   dc_obj.vm(); // -> $display("dc::vm()");
   dc_obj.nvm(); // -> $display("dc::nvm()");

bc_obj.vm(); // -> $display("dc::vm()");
   bc_obj.nvm(); // -> $display("bc::nvm()");
end
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transactors, generators and self-checking structures to create a complete layered
verification environment around the DUT.

Figure 4-6. Execution Sequence in vmm_env Class

Note that the simulation sequence does not allow a testcase to invoke the
reset_dut() method in the middle of a simulation—i.e., during the execution of
wait_for_end(). It is often necessary to verify that the design can be properly
dynamically reset and reconfigured. The body of the vmm_env::reset_dut()
and vmm_env::cfg_dut() should be implemented in separate tasks. A hardware
reset testcase would simply call these tasks directly to perform the hardware reset and
reconfiguration. The reset and reconfiguration sequence would be considered part of
the wait_for_end step for that particular testcase, not a separate step in the simulation.
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Rule 4-30 — Extensions of the vmm_env class shall implement the gen_cfg(),
build(), reset_dut(), cfg_dut(), start(),
wait_for_end(), stop() and cleanup() virtual methods.

These methods implement each of the generic steps that must be performed to
successfully simulate a testcase. They must be overloaded to perform each step as
required by the DUT. Even if a method does not need to be extended for a particular
DUT, it is should be extended anyway—and left empty—to explicitly document that
fact.

Rule 4-31 — Extensions of the gen_cfg(), build(), reset_dut(),
cfg_dut(), start(), wait_for_end(), stop() and
cleanup() virtual methods shall call their base implementation
first.

The implementation of these methods in the base class manages the sequence in
which these methods must be invoked. They make it unnecessary for each testcase to
enumerate all intermediate simulation steps. To ensure the proper automatic ordering
of the simulation steps, each method extension must call their base implementation
first.

If this rule is violated, the execution sequence of the various simulation steps will be
broken.

Example 4-17. Extending Simulation Step Methods
class tb_env extends vmm_env;
   ...
   virtual task wait_for_end();
      super.wait_for_end();
      ...
   endtask
   ...
endclass

Rule 4-32 — Extensions of the vmm_env class shall not redefine the
vmm_env::run() method.

This method is not virtual because it is not intended to be specialized for a particular
verification environment. It is the method that executes the virtual methods in the
proper sequence. It must not be redefined to prevent its semantics from being
modified. See “task run()” on page 366.
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Rule 4-33 — The extension of the vmm_env::gen_cfg() method shall
randomize the testcase configuration descriptor using a factory
pattern.

This extension will let tests constrain the testcase configuration descriptor to ensure
that a desirable configuration is generated without requiring modifications to the
environment or configuration descriptor. See “Controlling Random Generation” on
page 227 for more details on the factory pattern. The randomized configuration value
can be further modified procedurally once this method returns.

Example 4-18. Randomization of Testcase Configuration Descriptor
class tb_env extends vmm_env;

test_cfg cfg;
   ...
   function new();
      super.new();
      this.cfg = new;
      ...
   endtask

   virtual function void gen_cfg();
      super.gen_cfg();
      if (!this.cfg.randomize()) ...
   endfunction: gen_cfg
   ...
endclass: tb_env

The testcase configuration descriptor includes all configurable elements of the DUT
and the execution of a testcase. Not only does it describe the various configurable
features of the design, but also it may include simulation parameters such as
asynchronous clock offsets, as required by Recommendation 4-18. It may also
include other variable parameters such as how long to run the simulation for, how
many instances of the DUT in the system or the MAC addresses of “known” external
devices.

Some environments may not have any randomizable parameters. Albeit rare, these
environments have a configuration that is described by an empty configuration
descriptor, a descriptor without any rand class properties or a descriptor constrained
to a single solution.
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Rule 4-34 — Environment components shall be instantiated only in the
vmm_env::build() method extension.

Transactors, generators, scoreboards and functional coverage models must be
instantiated according to the testcase configuration, which is final only when the
vmm_env::build() method is invoked. No environment components must be
instantiated in the constructor or other methods. The only object that is instantiated in
the environment constructor is the default testcase configuration descriptor instance
that will be a randomized vmm_env::gen_cfg() method extension.

Example 4-19. Instantiating Environment Components
class tb_env extends vmm_env;
   ...
   function new();
      super.new();
      this.cfg = new;
      ...
   endtask
   ...
   virtual function void build();
      super.build();
      ...
      this.phy_src = new("Phy Side", 0);
      ...
   endfunction: build
   ...
endclass: tb_env

Rule 4-35 — All transactors and generators shall be instantiated in public class
properties.

A testcase needs to be able to control transactors and generators as required to
implement the objectives of the testcase. The transactors and generators can be
controlled directly if they are publicly accessible.

Example 4-20. Transactor Properties in Verification Environment
class tb_env extends vmm_env;
   ...
   eth_frame_atomic_gen host_src;
   eth_frame_atomic_gen phy_src;
   eth_mac              mac;
   mii_phy_layer        phy;
   ...
endclass: tb_env
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Rule 4-36 — Self-checking integration callback instances shall be registered in the
vmm_env::build() method extension.

Integrating the scoreboard into the environment is part of the building process. All
necessary references will exist and can be passed to the callback extension
constructors if required. See “Integration with the Transactors” on page 253 for more
details.

Example 4-21. Integrating Scoreboard Via Callbacks
class tb_env extends vmm_env;
   ...
   virtual function void build();
      ...
      begin
         sb_mac_sbc sb = new(...);
         this.mac.append_callback(sb);
      end
      ...
   endfunction: build
   ...
endclass: tb_env

Rule 4-37 — The self-checking integration callbacks shall be the first to be
registered with a transactor.

Additional callback extensions can be registered with the same transactor using the
vmm_xactor::append_callback() or
vmm_xactor::prepend_callback() method. They can be used to sample
data into a functional coverage model or modify the data for error injection. The self-
checking structure must be aware of all known exceptions or errors that were injected
in the stimulus or observed on the response to be able to correctly predict the expected
response or assess the correctness of the observed response.

By registering the scoreboard integration callbacks first, they can act as a reference
point for subsequent callback registrations. Any callback that can modify the callback
information is registered before it—so they will be invoked before the scoreboard
integration callbacks. Other callbacks are registered afterward, thus being called after
the scoreboard integration callback, ensuring that they observe the same data that was
used to determine the correctness of the response.
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Rule 4-38 — Callback extension instances that can modify or delay the transactions
shall be registered before the scoreboard callback extension instances.

Some callback extensions may modify or delay the transaction before it is processed
by the transactor. For example, error injection callback extensions could corrupt a
parity byte. Registering those callback extensions before the scoreboard callback
extensions ensures that the scoreboard will see the actual transaction that will be
executed.

Because the scoreboard callback extensions are registered first, these callback
extensions are registered using the vmm_xactor::prepend_callback()
method. 

Rule 4-39 — Callback extension instances that do not modify the transactions shall
be registered after the scoreboard callback extension instances.

Some callback extensions do not modify the transaction and simply record its content.
For example, functional coverage callback extensions may save some transaction
parameters for later sampling by a coverage group. Registering those callback
extensions after the scoreboard callback extensions ensures that the content of the
transaction that was checked for correctness will be sampled.

Because the scoreboard callback extensions are registered first, these callback
extensions are registered using the vmm_xactor::append_callback()
method.

Recommendation 4-40 —The vmm_env::cfg_dut() method should have a fast
implementation that writes to registers and memories via
direct accesses.

Configuring a DUT often takes a significant amount of simulation time because a
relatively slow processor or serial interface is usually used to perform the register and
memory updates. Once that interface has been verified to ensure that all registers and
memories can be updated, it is no longer necessary to keep exercising that logic.

The DUT-specific extension of the vmm_env::cfg_dut() method should have a
“fast-mode” implementation, controlled by a parameter in the testcase configuration
descriptor, that causes all register and memory updates to be performed via direct or
API accesses, bypassing the normal processor interface.
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Rule 4-41 — The extension of the vmm_env::start() method shall start all
transactors and generators.

The environment should not require any additional external intervention to operate
properly. All transactors and generators must be started in the extension of the
vmm_env::start() method. If a testcase does not require the presence or
operation of a particular transactor, it can be stopped afterwards.

Example 4-22. Starting Transactors
class tb_env extends vmm_env;
   ...
   virtual task start();
      super.start();
      ...
      this.mac.start_xactor();
      ...
   endtask: start
   ...
endclass: tb_env

Configuring the DUT often requires that the configuration and host interface
transactors be started in the extension of the vmm_env::cfg_dut() method.

Rule 4-42 — The vmm_env::wait_for_end() method shall have
configurable aspects.

A testcase must be able to control how long it is going to run. It may be in terms of
number of transactions to be executed or absolute time. There must be some
properties in the testcase configuration descriptor, used by the
vmm_env::wait_for_end() method, that control the duration of a simulation.

Example 4-23. Configurable Testcase Duration
class tb_env extends vmm_env;
   ...
   virtual task wait_for_end();
      super.wait_for_end();
      ...
      wait (this.cfg.run_for_n_tx_frames == 0 &&
            this.cfg.run_for_n_tx_frames == 0);
      ...
   endtask: wait_for_end
   ...
endclass: tb_env
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Rule 4-43 — The vmm_env::wait_for_end() method shall return when the
vmm_env::end_test event is triggered.

The vmm_env::end_test event can be used by directed testcases or other
functions of the verification environment to indicate that the end-of-test condition has
been detected.

Example 4-24. Extension of the vmm_env::wait_for_end() Method
class verif_env extends vmm_env;

...
   virtual task wait_for_end();
      super.wait_for_end();
      fork
         ... // Other termination conditions
         @(this.end_test) disable wait_for_end;
      join_none
      ...
   endtask: wait_for_end
   ...
endclass: tb_env

Suggestion 4-44 — The vmm_env::wait_for_end() method may have other
termination conditions.

End-of-test conditions are entirely user-defined. The occurrence of any of the end-of-
testcase conditions detected by the method extension must cause the method to return.

Message Service
Transactors, scoreboards, assertions, environment and testcases use messages to
report any definite or potential errors detected. They may also issue messages to
indicate the progress of the simulation or provide additional processing information to
help diagnose problems.

To ensure a consistent look and feel to the messages issued from different sources, a
common message service should be used. A message service is only concerned with
the formatting and issuance of messages, not their cause. For example, the time
reported in a message is the time at which the message was issued, not the time a
failed assertion started. The VMM message service uses the following concepts to
describe and control messages: source, filters, type, severity and handling. See the
section titled "vmm_log" on page 368 for more details.

Message Source —  Each instance of the message service interface object represents
a message source. A message source can be any component of a testbench: a
command-layer transactor, a sub-layer of the self-checking structure, a testcase, a
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generator, a verification IP block or a complete verification environment. Messages
from each source can be controlled independently of the messages from other
sources.

Message Filters —  Filters can prevent or allow a message from being issued. Filters
are associated and disassociated with message sources. They are applied in order of
association and control messages based on their identifier, type, severity or content.
Message filters can promote or demote messages severities, modify message types
and their simulation handling. After a message has been subjected to all the filters
associated with its source, its effective type and severity may be different from the
actual type and severity originally specified in the code used to issue a message.

Message Type —  Individual messages are categorized into different types by the
author of the code used to issue the message. Assigning messages to their proper type
lets a testcase or simulation produce and save only (or all) messages that are relevant
to the concerns addressed by a simulation. Table 4-1  summarizes the available
message types and their intended purposes:

Table 4-1.  Message Types 

Message Type Purpose

vmm_log::FAILURE_TYP An error has been detected. The severity 
of the error is categorized by the 
message severity.

vmm_log::NOTE_TYP Normal message used to indicate the 
simulation progress.

vmm_log::DEBUG_TYP Message used to provide additional 
information designed to help diagnose 
the cause of a problem. Debug messages 
of increasing detail are assigned lower 
message severities.

vmm_log::TIMING_TYP A timing error has been detected (e.g., 
set-up or hold violation).

vmm_log::XHANDLING_TYP An unknown or high-impedance state 
has been detected or driven on a physical 
signal.
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Table 4-1.  Cont.   

Message Severity —  Individual messages are categorized into different severities by
the author of the code used to issue the message. A message’s severity indicates its
importance and seriousness and must be chosen with care. For fail-safe reasons,
certain message severities cannot be demoted to arbitrary severities. Table 4-2
summarizes the available message severities and their meaning:

Table 4-2.  Message Severities 

Message Type Purpose

vmm_log::REPORT_TYP
vmm_log::PROTOCOL_TYP
vmm_log::TRANSACTION_TYP
vmm_log::COMMAND_TYP
vmm_log::CYCLE_TYP

Additional message types that can be 
used by transactors.

vmm_log::INTERNAL_TYP Messages from the VMM base classes. 
Should not be used when implementing 
user-defined extensions.

Message Severity Indication

vmm_log::FATAL_SEV The correctness or integrity of the simulation 
has been compromised. By default, 
simulation is aborted after a fatal message is 
issued. Fatal messages can only be demoted 
into error messages.

vmm_log::ERROR_SEV The correctness or integrity of the simulation 
has been compromised, but simulation may be 
able to proceed with useful result. By default, 
error messages from all sources are counted 
and simulation aborts after a certain number 
are observed. Error messages can only be 
demoted into warning messages.

vmm_log::WARNING_SEV The correctness or integrity of the simulation 
has been potentially compromised, and 
simulation can likely proceed and still 
produce useful result.

vmm_log::NORMAL_SEV This message is produced through the normal 
course of the simulation. It does not indicate 
that a problem has been identified.
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Table 4-2.  Cont. 

Simulation Handling —  Different messages require different action by the
simulator once the message has been issued. Table 4-3 summarizes the available
message handling and their default trigger:

Table 4-3.  Simulation Handlings 

Message Severity Indication

vmm_log::TRACE_SEV This message identifies high-level internal 
information that is not normally issued.

vmm_log::DEBUG_SEV This message identifies medium-level internal 
information that is not normally issued.

vmm_log::VERBOSE_SEV This message identifies low-level internal 
information that is not normally issued.

Simulation Handling Action

vmm_log::ABORT_SIM Terminates the simulation immediately and 
returns to the command prompt, returning an 
error status. This is the default handling after 
issuing a message with a 
vmm_log::FATAL_SEV severity.

vmm_log::COUNT_ERROR Count the message as an error. If the 
maximum number of such messages from all 
sources has exhausted a user-specified 
threshold, the simulation is aborted. This is 
the default handling after issuing a message 
with an vmm_log::ERROR_SEV severity.

vmm_log::STOP_PROMPT Stop the simulation immediately and return to 
the simulation runtime-control command 
prompt.

vmm_log::DEBUGGER Stop the simulation immediately and start the 
graphical debugging environment.

vmm_log::DUMP_STACK Dump the callstack or any other context status 
information and continue the simulation.

vmm_log::CONTINUE Continue the simulation normally.
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The guidelines below are to be applied when creating messages from within
transactors, data and transaction models, the self-checking structure, the verification
environment itself or testcases.

Rule 4-45 — All simulation messages shall be sent through the message service.

Do not use $display() to manually produce output messages. If a predefined
method that produces output text must be invoked (such as the
vmm_data::psdisplay() method), do so within the context of a message.

Example 4-25. Issuing a Message with Externally-Displayed Text
vmm_log log = new(...);
...
if (log.start_msg(vmm_log::DEBUG_TYP,
                  vmm_log::TRACE_SEV)) begin
   log.text("Transmitting frame...");
   log.text(fr.psdisplay("   "));
   log.end_msg();
end

Rule 4-46 — Messages of type FAILURE_TYP shall be of severity WARNING_SEV,
ERROR_SEV or FATAL_SEV only.

A failure of lower severity does not make sense, except when being demoted to
prevent its issuance. 

Recommendation 4-47 —Messages of type FAILURE_TYP should be issued using
the ‘vmm_warning(), ‘vmm_error() or
‘vmm_fatal() macros.

These macros provide a shorthand notation for issuing single-line failure messages.

Example 4-26. Using a Macro to Issue a Message
‘vmm_error(this.log, "Unable to write to TxBD.TxPNT");

Rule 4-48 — Messages of type NOTE_TYP shall be of severity NORMAL_SEV only.

A note of higher or lower severity does not make sense, except when being demoted
to prevent its issuance or promoted to detect unexpected code execution.
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Recommendation 4-49 —Messages of type NOTE_TYP should be issued using the
‘vmm_note() macro.

This macro provides a shorthand notation for issuing single-line note messages.

Rule 4-50 — Messages of type DEBUG_TYP shall be of severity TRACE_SEV,
DEBUG_SEV or VERBOSE_SEV only.

A debug message of higher severity does not make sense, except when being
promoted to detect unexpected code execution.

Recommendation 4-51 —Messages of type DEBUG_TYP should be issued using the
‘vmm_trace(), ‘vmm_debug() or
‘vmm_verbose() macros.

These macros provide a shorthand notation for issuing single-line debug messages.

Recommendation 4-52 —Calls to text output tasks should be made only once it has
been confirmed that a message will be issued.

The $display(), $write() and $sformat() system tasks are runtime
expensive. These tasks are also heavily used in the implementation of any
vmm_data::psdisplay() method extension. They should be called only when
their formatted output will be required. Example 4-25 creates the formatted output
only if the message will be issued.

VCS provides the $psprintf() function that returns the formatted string instead
of writing it into a string, like $sformat() does. This function can be used with the
message macros, to display messages with runtime formatted content. The macros are
designed to invoke the $psprintf() function only if the message will be issued, as
per this recommendation.

Example 4-27. Using a Macro and the $psprintf() System Function
`vmm_debug(this.log,
           $psprintf("Buffering TX Frame at 'h%h:\n%s",
                       tx_pnt, fr.psdisplay("   ")));
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DATA AND TRANSACTIONS
One of the challenges when transitioning from a procedural language, such as Verilog
or VHDL, to an object-oriented language such as SystemVerilog, is making effective
use of the object-oriented programming model. This section contains guidelines or
directives to help strike the right balance between objects and procedures.

Rule 4-53 — A data item shall be modeled using a class, not a struct nor a
union.

A data item is any atomic amount of data eventually or directly processed by the
DUT. Packets, instructions, pixels, picture frames, SDH frames and ATM cells are all
examples of data items. A data item can be composed of smaller data items by
composing a class from smaller classes. For example, a class modeling a picture
frame could be composed of thousands of instances of a class modeling individual
pixels.

Example 4-28. Ethernet MAC Frame Data Model
class eth_frame extends vmm_data;
   ...
   rand bit [47:0] dst;
   rand bit [47:0] src;
   rand bit [15:0] len_typ;
   rand bit [ 7:0] data[];
   rand bit [31:0] fcs;
   ...
endclass: eth_frame

Using the class construct has advantages over using struct or union constructs.
The latter would only be able to model the values contained in the data item; whereas,
classes can also model operations and transformations—such as calculating a CRC
value or comparing two instances—on these data items using methods. Class
instances are more efficient to process and move around as only a reference to the
instance is assigned or copied. Struct and union instances are scalar variables and
their entire content is always assigned or copied1.

A class can also contain constraint declarations to control the randomization of
data item values; whereas a struct and union cannot. Finally, it will be possible
to modify the default behavior and constraints of a class through inheritance,

1. Except when passed to a ref task or function argument.
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without actually modifying the original base model. Struct and union do not
support inheritance.

Rule 4-54 — Transactions shall be modeled using transaction descriptors.

The natural tendency is to model transactions as procedure calls, such as read() and
write(). This approach makes it more difficult to generate random streams of
transactions, constraining transactions and registering transactions with a scoreboard.

Transactions are better modeled using a transaction descriptor. As shown in Example
4-29, a transaction descriptor contains all of the necessary information to ultimately
call the appropriate procedure that implements it, which is shown in Example 4-30.

Example 4-29. Transaction Descriptor Object
class wb_cycle extends vmm_data;
   ...
   typedef enum {READ, WRITE, ...} cycle_kinds_e;
   rand cycle_kinds_e kind;
   ...
   rand bit [63:0] addr;
   rand bit [63:0] data;
   rand bit [ 7:0] sel;
   ...
   typedef enum {UNKNOWN, ACK, RTY, ERR,
                 TIMEOUT} status_e;
   status_e status;
   ...
endclass: wb_cycle

Example 4-30. Transaction Procedures
task read(input  bit [63:0] addr,
          output bit [63:0] data,
          input  bit [ 7:0] sel,
          ...);

task write(input logic [63:0] addr,
           input logic [63:0] data,
           input logic [ 7:0] sel,
            ...);

Tests never actually call the procedure that implements the transaction. Calling is
performed by the transactor itself. Instead, tests submit a transaction descriptor to a
transactor for execution. This approach offers several advantages: 
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1. It is easy to create a series of random transactions. Generating random transactions 
becomes a process identical to generating random data. Notice how all properties 
in Example 4-29 have the rand attribute.

2. Random transactions can be constrained. Constraints can be applied to object 
properties only. Constraining the transactions modeled using procedures requires 
additional procedural code. Procedural constraints, such as weights in a rand-
case statement, cannot be modified without modifying the source code, thus pre-
venting reusability.

3. New transactions can be added without modifying interfaces. A new transaction 
can be added by simply creating a new variant of the transaction object. No new 
class is created, no class interface is modified and no testcase is changed.

4. It allows easier integration with the scoreboard. Since a transaction is fully 
described as an object, a simple reference to that object instance passed to the 
scoreboard is enough to completely define the stimulus and derive the expected 
response.

This approach may appear to complicate the writing of directed or manual stimulus.
The section titled "Directed Stimulus" on page 219 shows how this type of stimulus
can be easily created.

Rule 4-55 — Data and transaction model classes shall be derived from the
vmm_data class.

This base class provides a standard set of properties and methods proven to be useful
in implementing verification environments and testcases. Furthermore, since
SystemVerilog does not have the concept of a void or anonymous type, it provides a
common base type for writing generic data processing and transfer components. See
section titled "vmm_data" on page 383 for more details.

Recommendation 4-56 —A channel class named <class_name>_channel
should be declared for any class derived from the
vmm_data class.

The channel object is the primary transaction and data interface mechanism used by
transactors. It is implemented using a parametrized class and can be used with any
class that is derived from the vmm_data class. To simplify the syntax of referring to
the channel class type and isolate users from the implementation details of the
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channel class, a macro is provided to define the channel class. See section titled
"vmm_channel" on page 387 for more details.

Example 4-31. Declaring a Channel Class
class wb_cycle extends vmm_data;
   ...
endclass: wb_cycle

‘vmm_channel(wb_cycle)

Alternative 4-57 —Data and transaction descriptor models may be packaged sepa-
rately.

Data and transaction models may need to be used by different transactor sets, each
implementing or generating the data items or transactions according to different
mechanisms or protocols. For example, the model for an Ethernet frame will need to
be used by transactors implementing the MAC functionality and transactors
implementing the various media-independent physical interfaces, as well as
generators that create streams of Ethernet frames.

Example 4-32. Separate Ethernet Frame and Transactor Packaging
In eth_frame.sv:

   class eth_frame extends vmm_data;
      ...
   endclass: eth_frame
   ...

In mii.sv:

   ...
class mii_phy_layer extends vmm_xactor;

      ...
endclass: mii_phy_layer

   ...

Class Properties/Data Members
This section gives directives for properties and methods that can be used to model,
transform or operate on data and transactions. 
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Rule 4-58 — All data classes shall have a public static class property
referring to an instance of the message service interface.

This instance of the message service interface is used to issue messages from any data
item or transaction instance when a more localized message service interface (such as
a transactor) is not readily or clearly available. The class property must be public to
be controllable.

A class-static instance is used to avoid creating and destroying too many instances of
the message service interface as there will be thousands of object instances created
and destroyed throughout a simulation.

Example 4-33. Declaring and Initializing a Message Service Interface
class eth_frame extends vmm_data;

static vmm_log log = new("eth_frame", "class");
   ...
   function new();
      super.new(this.log);
   endfunction: new
   ...
endclass: eth_frame

Data and transaction descriptors will flow through various transactors in the
verification environment. Messages related to a particular data object instance should
be issued through the message service interface in the transactor where the need to
issue the message is identified. That way, the location of the message source can be
easily identified—and controlled. Information about the data or transaction that
caused the message can be included in the text of the message or by using the
vmm_data::psdisplay() method. See Example 4-25 for an example.

Do not provide a new instance of a message service interface with each data or
transaction descriptor as this will cause significantly more runtime memory to be used
and affect the runtime performance of the message service management procedures. It
will not provide more information as the apparent source of the messages will be the
same, regardless of the location of the data or transaction descriptor in the verification
environment, making it more difficult to localize the problem.

Similarly, do not use the message service interface of the transactor that created the
data or transaction descriptor by passing a reference via the data or transaction
descriptor constructor. The apparent source of all data-related messages would be that
transactor, regardless of its current location in the verification environment.
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Rule 4-59 — All class properties corresponding to a protocol property or field shall
have the rand attribute.

The rand attribute of a class property can be turned off to make it non-random.
However, it cannot be made rand after the fact. See Example 4-29 for an example.

Rule 4-60 — A rand class property shall be used to define the kind of transaction
being described.

A class must be able to model all possible kinds of transactions for a particular
protocol. Do not use inheritance to describe each individual transaction. Instead, use a
class property to identify the kind of transaction described by the instance of the
transaction descriptor. See the kind class property in Example 4-29 for an example.

Rule 4-61 — The size of a rand array-type class property shall be unconditionally
constrained to limit its value.

If the size of a randomized array is left unconstrained, it may2 be randomized to an
average length of 230. To avoid this situation, the size of a randomized array should
always be constrained to a reasonable value. It is a good idea to locate this constraint
in a separate constraint block to let it be turned off or overridden.

Example 4-34. Declaring a class with a Randomized Array
class eth_frame extends vmm_data;
   ...
   rand bit [15:0] len_typ;
   rand bit [ 7:0] data[];
   ...
   constraint valid_len_typ {
      (data.size() <= 1500 && len_typ == data.size())
      || len_typ >= 16'h0600;
   }

constraint limit_data_size {
      data.size() < 65536;

}
   ...
endclass: eth_frame

2. How arrays are randomized is simulator-specific.
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Rule 4-62 — All class properties with a rand attribute shall be public.

This approach will make it possible to turn off their rand attribute, constrain them in
a derived class, higher-level classes or via the randomize-with statement. If the
properties are local, none of this will be possible. This rule breaks one of the most
basic rules of object-oriented programming. But, these software rules were designed
for a programming language where randomization and constraint solving does not
exist. See Example 4-29 for an example.

Recommendation 4-63 —All class properties without a rand attribute should be
local.

Object state information should be accessed via public methods. This approach will
ensure that the implementation can be modified while preserving the interface. Also,
if properties are interrelated, using methods to set their value will ensure they remain
consistent.

However, if a set of independent class properties has individual of set_...() and
get_...() methods, these class properties can be made public and the methods
eliminated.

Recommendation 4-64 —Transaction descriptors should have implementation and
context references.

Transaction descriptors for higher-level transactions should have a list of references
to the lower-level transactions used to implement them. This list would be added to by
lower-level transactors in the verification environment as they implement the higher-
layer transaction. The completed list will only be valid when the transaction's
processing has ended. A scoreboard can then make use of the list of sub-transactions
to determine its status and what response to expect. 

Conversely, the descriptor for a low-level transaction should have a reference to the
higher-level transaction descriptor it implements. This reference will help the
scoreboard or other verification environment components make sense of the
transaction and help determine the expected response. 

Example 4-35. Transaction Context References
class usb_packet extends vmm_data;
   ...
   usb_transaction context_data;
   ...
endclass: usb_packet
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class usb_transaction extends vmm_data;
   ...
   usb_packet packets[];
   usb_transfer context_data;
   ...
endclass: usb_transaction

class usb_transfer extends vmm_data;
   ...
   usb_transaction transactions[];
   vmm_data        context_data;
   ...
endclass: usb_transfer

In cases where a transaction may be implemented using different lower-level
protocols, the implementation references should be of type vmm_data to be able to
refer to any transaction descriptor, regardless of the protocol. Similarly, the context
reference of a low-level transaction should be of type vmm_data, if it can
implement or carry information from different higher-level protocols. As shown in
Example 4-36, an Ethernet frame can transport any protocol information and thus
should have a generic context reference.

Example 4-36. Protocol-Generic Context Reference
class eth_frame extends vmm_data;
   ...

vmm_data context_data;
   ...
endclass: eth_frame

Rule 4-65 — Data protection class properties shall model their validity, not their
value.

The information in CRC, HEC or parity properties is not in the actual value of the
class property but in their correctness. These properties must be modeled using a
mask, indicating which bit of the class property value is to be valid or corrupted (on
transmission) or was valid or not (on reception). A value of zero indicates that the
corresponding bit was valid.
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The actual value of these properties is computed using methods and inserted or
compared in the data object only upon packing and unpacking or physical
transmission or reception.

Example 4-37. Frame Check Sequence (FCS) Validity Class Property
class eth_frame extends vmm_data;
   ...

rand bit [31:0] fcs;
   ...

constraint valid_fcs {
      fcs == 32’h0000_0000;
   }
   ...
   virtual function [31:0] compute_fcs();
      ...
      compute_fcs = this.utils.compute_crc32(...);
   endfunction: compute_fcs
...
endclass: eth_frame
...
function void eth_utils::frame_to_bytes(eth_frame frame,
                                        ...);
      ...
      ... = this.compute_crc32(...) ^ frame.fcs;
endfunction: frame_to_bytes

Rule 4-66 — A constraint block shall keep the value of protection class properties
equal to zero by default.

Protection errors can be injected by overriding or turning the constraint block off. See
Example 4-37 for an example.

Rule 4-67 — Fixed payload data shall be modeled using explicit class properties.

Some protocols define fixed fields and data in normally user-defined payload for
certain data types. For example, fixed-format 802.2 link-layer information may be
present at the front of the user data payload in an Ethernet frame. Another example is
the management-type frame in 802.11: The content of the user-payload is replaced
with protocol management information.

Fixed payload data should be modeled using explicit properties as if they were
located in non-user-defined fields. The length of the remaining user-defined portion
of the payload should be reduced by the corresponding number of bytes used by the
fixed payload data, not modeled in explicit properties.
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User-defined data is often modeled as an array of bytes. Leaving it up to the user to
correctly interpret or format fixed payload data is error prone. Applying constraints to
payload elements becomes cumbersome as fixed data may overlap multiple bytes or
be concatenated in the same byte.

Example 4-38. Fixed Payload Format Class Property
class eth_frame extends vmm_data;
   ...
   typedef enum {UNTAGGED, TAGGED, CONTROL}
      frame_formats_e;
   rand frame_formats_e format;
   ...

rand bit [15:0] opcode;
 rand bit [15:0] pause_time;

   ...
   typedef enum [15:0] {PAUSE = 16'h0001} opcodes_e;
   ...

constraint valid_pause_frame {
      if (format == CONTROL && opcode == PAUSE) begin
          dst     == 48'h0180C2000001;
          max_len == 42;
      end
   }
   ...
   virtual function int unsigned byte_pack(...);
      ...
      case (format)
      ...
      CONTROL: begin
         ... = 16'h8808;
         ... = this.opcode;
         case (this.opcode)
         PAUSE: begin
            ... = this.pause_time;
         end
         endcase
      end
      ...
   endfunction: byte_pack
...
endclass: eth_frame

Rule 4-68 — Class inheritance shall not be used to model different data formats.

Data units and transactions often contain information that is optional or is unique to a
particular kind of data or transaction. For example, Ethernet frames may or may not
have virtual LAN (VLAN), link-layer control (LLC), sub-network access protocol
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(SNAP) or control information—in any combination. Another example is the
instruction set of a processor where different types of instructions use different
numbers and modes of operands.

Using traditional object-oriented design practices, inheritance looks like an obvious
implementation: Use a base class for the common properties then extend it for the
various differences in format. This approach also seems the natural choice as the
SystemVerilog equivalent3 to e’s when inheritance. Using inheritance to model data
formats creates three problems, two of which are related to randomization and
constraints—concerns that do not exist in traditional object-oriented languages.

The first problem is the difficulty of generating a stream containing a random mix of
different data and transactions formats. Because an Ethernet device must be able to
accept any mix of various Ethernet frame types on any given port, just like a
processor must be able to execute any mix of instructions, it is often necessary to
generate a random mix of data items with different formats. 

Using a common base class gets around the type-checking problem. However, in
SystemVerilog, objects must first be instantiated before they can be randomized. And
because instances must be created based on their ultimate type, not their base type, the
particular format of a data item or transaction would be determined before
randomization of its content. Thus, it would be impossible to use constraints to
control the distribution of the various data and transaction formats or to express
constraints on a format as a function of the content of some other class property (e.g.,
if the destination address is equal to this, then the Ethernet frame must have VLAN
but no control information).

The second problem is the difficulty of adding constraints to be applied to all formats
of a data item or transaction descriptor. To add constraints to a data model, the most
flexible mechanism is to create a derived class. To add a constraint that must apply to
all formats of a data model cannot be done by simply extending the base class
common to all formats as it simply creates yet another class unrelated to the other
derivatives. It would require extending each one of the ultimate class extensions.

The final problem is that you will not be able to recombine different but orthogonal
format variations. For example, the optional VLAN, LLC and control format
variations on an Ethernet frame are orthogonal. This aspect creates eight possible
variations of the Ethernet frame. Because SystemVerilog does not support multiple

3. SystemVerilog’s inheritance is equivalent to e’s like inheritance. Tagged unions
are the closest constructs to its when inheritance.



Data and Transactions

Verification Methodology Manual for SystemVerilog 151

inheritance, using inheritance to model this simple case will require eight different
classes: one for each combination of the presence or absence of the optional
information.

This approach creates an exponential number of classes. This problem could be
solved if the language supported multiple inheritance—an oft-mentioned grievance
against the language—but it would not help in solving the significantly more serious
previous two problems. This problem is better solved using proper modeling
methodology than a new language capability.

Rule 4-69 — Composition shall not be used to model different data formats.

Composition is the use of class instances inside another class to form a more complex
data or transaction descriptor. Optional information from different formats can be
modeled by instantiating—or not—a class containing that optional information in the
data model. If the information is not present, the reference would be set to null. If
the information is present, the reference would point to an instance containing that
information. This technique also suffers from two severe problems with
randomization and one minor problem.

The first problem is that the randomization process in SystemVerilog does not
allocate sub-instances, even if the reference class property has the rand attribute.
The randomization process either randomizes a pre-existing instance or does nothing
if the reference is null.

The second problem is that it complicates the expression of constraints that may
involve a null reference. A null reference would cause a runtime error and
constraint guards must be used to detect the absence of the optional properties.
Furthermore, it is not possible to express constraints to determine the presence or
absence—or their respective ratio—of the sub-instance. It would thus be impossible
to define the data format based on some other (possibly random) properties.

The last problem is the needless introduction of hierarchies of references to access
properties that, in all respect, belong to the same data or transaction descriptor. One
would have to remember whether a class property is optional or not and under which
optional instance it is located to know where to access it. However, a runtime error
while attempting to access non-existent information in the current data format would
be a nice type-checking mechanism. But that benefit does not outweigh the other
disavantages.
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Rule 4-70 — Tagged unions shall not be used to model different data formats.

Unions allow multiple data formats to coexist in the same bits. Tagged unions
enforce strong typing in the interpretation of multiple orthogonal data formats. This
approach is the SystemVerilog almost-equivalent to e’s when inheritance.

Unfortunately, tags cannot be randomized. It is not possible to have a tagged
union randomly select one of the tags, much less constrain the tag based on other
class properties. It is also not possible to constrain fields in randomly-tagged unions
because the value of the tag is not yet defined until solved.

Should the restrictions on constraining and randomizing tagged unions be
eventually lifted, they should be used in lieu of Rule 4-71.

Rule 4-71 — A class property with the rand attribute shall be used to indicate if
optional properties from different data formats are present.

Instead of using inheritance, composition or tagged unions to model different
data and transaction formats, use the value of a discriminant class property. It will be
necessary for methods that deal with the ultimate format of the data or transaction—
such as byte_pack() and compare()—to procedurally check the value of these
discriminant properties to determine the format of the data or transaction and decide
on a proper course of action.

Example 4-39. Using a Discriminant Class Property to Model Data Format
class eth_frame extends vmm_data;
   ...
   typedef enum {UNTAGGED, TAGGED, CONTROL}
      frame_formats_e;

 rand frame_formats_e format;
   ...
   rand bit [47:0] dst;
   rand bit [47:0] src;
  rand bit [ 2:0] user_priority;

   rand bit        cfi;
   rand bit [11:0] vlan_id;
   ...
   virtual function string
      psdisplay(string prefix = "");
      $sformat(psdisplay,
         "%sdst=48'h%h, src=48'h%h, len/typ=16'h%h\n",
         prefix, da, sa, len_typ);
      case (this.format)
      TAGGED: begin
         $sformat(psdisplay,
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            "%s%s(tagged) cfi=%b pri=%0d, id=12'h%h\n",
             psdisplay, prefix,
             cfi, user_priority, vlan_id);
      end
      ...
      endcase
      ...
      $sformat(psdisplay, "%s%sFCS = %0s",
               psdisplay, prefix,
               (fcs) ? "BAD" : "good"));
   endfunction: psdisplay
   ...
endclass: eth_frame

Because a single class is used to model all formats, constraints can be specified to
apply to all variants of a data type. Also, because the format is determined by an
explicit class property, constraints can be used to express relationships between the
format of the data and the content of other properties. Orthogonal variations are
modeled using different discriminant properties allowing all combinations of
variations to occur within a single model.

This technique may appear verbose but does not require any more lines of code or
statements to fully implement. Inheritance provides for better localization of the
various differences in formats, but does not reduce the amount of code—and may
even increase it. Furthermore, this technique does not require that the optional
properties be modeled in specific locations amongst the other properties to enable
some built-in functionality to operate properly. The data and transaction models are
implemented to facilitate usage, not match some obscure language or simulator
requirement.

However, this approach has an obvious disadvantage: There is no type checking to
prevent the access of a class property that is not currently valid given the current
value of a discriminant class property.

Suggestion 4-72 — A discriminant class property may be combined with composition
to model different data formats.

If strong type checking is required, this approach may be combined with composition
to create the data or transaction descriptor. The presence or absence of optional class
properties is not indicated by a reference to a sub-class that is null or not. Instead,
the discriminant property indicates that fact. The descriptor can be fully populated
before randomization then pruned afterward to eliminate the unused class properties.
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However, it may be difficult to ensure the correct construction of a manually-
specified descriptor.

Example 4-40. Combining a Discriminant Class Property and Composition
class eth_vlan_data;
   rand bit [ 2:0] user_priority;
   rand bit        cfi;
   rand bit [11:0] id;
endclass: eth_vlan_data

class eth_frame extends vmm_data;
   ...
   typedef enum {UNTAGGED, TAGGED, CONTROL}
      frame_formats_e;

 rand frame_formats_e format;
   ...
   rand bit [47:0] dst;
   rand bit [47:0] src;

 rand eth_vlan_data vlan;
   ...
   function void pre_randomize();
      if (this.vlan == null) this.vlan = new;
   endfunction

   function void post_randomize();
      if (format != TAGGED) this.vlan = null;
   endfunction
   ...
endclass: eth_frame

Methods
This section presents guidelines for using methods in data and transaction models.

Recommendation 4-73 —The constructor should be callable without arguments.

This style will allow the predefined atomic and scenario generators to be used to
generate streams of data or transaction descriptors. If arguments are useful, they
should have default values. See Example 4-33 for an example.

Recommendation 4-74 —All non-local methods should be virtual.

This structure will allow the functionality of methods to be extended in class
derivatives. If a method is not virtual, it will not be possible to modify the behavior of
existing code to perform a slightly different task—for example, injecting error—
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without modifying the original code. See the specification of the vmm_data base
class on page 383 for an example.

Rule 4-75 — All methods shall be functions.

Methods in data and transaction descriptors should be concerned only with their
immediate state. There should not be any need for the simulation time to advance or
for the execution thread to be suspended within these methods. See the specification
of the vmm_data base class on page 383 for an example.

Data and transaction processing requiring time to advance or the execution thread to
be suspended should be located in transactors.

Rule 4-76 — All classes derived from the vmm_data class shall provide
implementations for the psdisplay(), is_valid(),
allocate(), copy() and compare() virtual methods.

These methods provide the basic functionality required to implement a verification
environment. They have no built-in equivalent in the SystemVerilog language. Refer
to “vmm_data” on page 383 for the detailed specification of these methods.

The vmm_data::allocate() method is a simple call to new and appears
redundant. But, it enables the creation of factories and the use of polymorphism in
transactors, which is not possible with the direct use of the constructor. Refer to “OOP
Primer: Factory Pattern” on page 217 for a short explanation of factories.

The vmm_data::copy() method creates a suitable copy of the data or transaction
instance. It may be shallow or not; or it may be deep or not. For example, the context
references in a descriptor should always be copied shallow. This method hides the
details of the class implementation from the user.

Recommendation 4-77 —All classes derived from the vmm_data class should
provide implementations for the byte_size(),
byte_pack() and byte_unpack() virtual methods.

It is necessary to implement these methods if a data model needs to be transmitted
across a physical interface or between different simulations (e.g., from SystemVerilog
to SystemC). Refer to “vmm_data” on page 383 for the detailed specification of these
methods.

SystemVerilog does not define packed classes. Yet, in many instances, a data item
must be transmitted over a certain number of byte lanes across a physical interface.
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The same stream of data, received over the physical interface must be interpreted
back into higher level structure and information. This is automatically handled by
packed struct and unions, but not in classes. The advantages and flexibility
offered by classes is not worth sacrificing for this simple built-in operation in
other data structures. The same functionality can be encapsulated in those predefined
methods.

The implementation of the byte_pack() method shall only pack the relevant
properties based on the value of discriminant properties. Not all properties may be
valid or relevant under all possible data or transaction formats. The packing methods
must check the value of discriminant properties to determine which class property to
include in the packed data, in addition to their format and ordering. See Example 4-38
for an example.

Rule 4-78 — The vmm_data::byte_unpack() method shall interpret the
packed data and set discriminant properties appropriately.

Often, discriminant properties are logical properties, not directly packed into bit-level
data nor directly unpacked from it. However, the information necessary to identify a
particular variance of a data object is usually present in the packed data. For example,
the value 16’h8100 in bytes 12 and 13 of an Ethernet MAC frame stream indicate
that the VLAN identification fields are present in the next two bytes. If the
information about the data format is not available in the bytes to be unpacked, the
optional kind argument may be used to specify a particular format to expect.

The unpacking methods must interpret the packed data and set the value of the
discriminant properties accordingly. Similarly, it must set all relevant properties to
their interpreted values based on the interpretation of the packed data. Properties not
present in the data stream should be set to unknown or undefined values.

Example 4-41. Unpacking an Ethernet Frame
class eth_frame extends vmm_data;
   ...
   typedef enum {UNTAGGED, TAGGED, CONTROL}
      frame_formats_e;
   rand frame_formats_e format;
   ...
   rand bit [47:0] dst;
   rand bit [47:0] src;

rand bit        cfi;
rand bit [ 2:0] user_priority;
rand bit [11:0] vlan_id;

   ...
   virtual function int unsigned byte_unpack(
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      const ref logic [7:0] array[],
      input int unsigned    offset = 0,
      input int             len    = -1,
      input int             kind   = -1);
      integer i;

      i = offset;
      this.format = UNTAGGED;
      ...
      if ({array[i], array[i+1]} === 16’h8100) begin
         this.format = TAGGED;
         i += 2;
         ...
         {this.user_priority, this.cfi, this.vlan_id} =
            {array[i], array[i+2]};
         i += 2;
         ...
      end
      ...
   endfunction: byte_unpack
   ...
endclass: eth_frame

Rule 4-79 — A virtual method shall be provided to compute the correct value of
each data protection class property.

Because the data protection class property is encoded simply as being valid or not, it
must be possible to derive its actual value by other means when necessary. The
method must be virtual to allow for the introduction of a different protection value
computation algorithm if necessary. The packing method is responsible for corrupting
the value of a data protection class property if it is modeled as invalid, not the
computation method. See Example 4-37 for an example.

Constraints

Rule 4-80 — A constraint block shall be provided to ensure the validity of
randomized class property values.

Some properties may be modeled using a type that can yield invalid values. For
example, a length class property may need to be equal to the number of bytes in a
payload array. This constraint would ensure that the value of the class property and
the size of the array are consistent. Note that “valid” is not the same thing as “error-
free.” Validity is a requirement of the descriptor implementation, not of the data or
transaction being described. 
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This constraint block must never be turned off nor overridden; hence, it is a good idea
to use a unique name, such as “class_name_valid”.

Example 4-42. Basic Frame Validity Constraint Block
class eth_frame extends vmm_data;
   ...
   rand int unsigned min_len;
   rand int unsigned max_len;
   ...
   constraint eth_frame_valid {
      min_len <= max_len;
   }
   ...
endclass: eth_frame

Recommendation 4-81 —Constraint blocks should be provided to produce better
distributions on size or duration class properties.

Size and duration properties do not have equally interesting values. For example,
short or back-to-back and long or drawn-out transactions are more interesting than
average transactions. Randomized class properties modeling size, length, duration or
intervals should have a constraint block that distributes their value equally between
limit and average values.

Example 4-43. Constraint Block to Improve Distribution
class eth_frame extends vmm_data;
   ...
   constraint interesting_data_size {
      data.size() dist {min_len               :/ 1,
                        [min_len+1:max_len-1] :/ 1,
                        max_len               :/ 1};
   }
   ...
endclass: eth_frame

A similar modification of value distributions should be implemented to increase the
likelihood that corner cases will be generated. However, the definition of a corner-
case is usually DUT-specific. Any constraint designed to hit DUT-specific corner
cases must be implemented in a class extension of the data or transaction descriptor,
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not in the descriptor class itself. This implementation will avoid polluting a reusable
data or transaction model with DUT-specific information.

Example 4-44. Adding DUT-Specific Corner-Case Constraints
class long_eth_frame extends eth_frame;
   constraint long_frames {
      data.size() == max_len;
   }
   ...
endclass: long_eth_frame

Rule 4-82 — A distribution constraint block shall constrain a single class property.

Use one constraint block per class property to make it easy to turn off or override
without affecting the distribution of other properties. See Example 4-43 for an
example.

Recommendation 4-83 —Discriminant class properties should be solved before
dependent class properties.

A conditional constraint block does not imply that the properties used in the
expression are solved before the properties in the body of the condition. If a class
property in the body of the condition is solved with a value that implies that the
condition cannot be true, this result will further constrain the value of the properties in
the condition. If there is a greater probability of falsifying the condition, it is less
likely to get an even distribution over all discriminant values.

In Example 4-45, if the length class property is solved before the kind class
property, it is unlikely to produce CONTROL packets because there is a low
probability of the length class property to be solved as 1.

Example 4-45. Poor Distribution Caused by Conditional Constraints
class some_packet;
   typedef enum {DATA, CONTROL} kind_typ;
   rand kind_typ kind;

   rand int unsigned length;
   ...
   constraint valid_length {
      if (kind == CONTROL) length == 1;
   }
endclass: some_packet
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This problem can be avoided and a better distribution of discriminant properties can
be obtained by forcing the solving of the discriminant class property before any
dependent class property using the solve before constraint.

Example 4-46. Improved Distribution Caused by Conditional Constraints
class some_packet;
   typedef enum {DATA, CONTROL} kind_typ;
   rand kind_typ kind;

   rand int unsigned length;
   ...
   constraint valid_length {
      if (kind == CONTROL) length == 1;
      solve kind before length;
   }
endclass: some_packet

Rule 4-84 — Constraint blocks shall be provided to avoid errors in randomized
values.

Error can be randomly injected by selecting an invalid value for error protection
properties. A constraint block should keep the value of such properties valid by
default. See Example 4-37 for an example.

Rule 4-85 — An error-prevention constraint block shall constrain a single class
property.

Use one constraint block per error injection class property to make it easy to turn off
or override without affecting the correctness of other properties.

Recommendation 4-86 —Undefined external constraint blocks named
“test_constraintsX” should be declared.

External constraint blocks are defined outside of the class that declares them.
If left undefined, they are considered empty and do not add any constraints to the
class instances. These constraint blocks can be defined later by individual
tests to add constraints to all instances of the class. See Alternative 5-21 on page
229.
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Example 4-47. Declaring Undefined External constraint Blocks
class eth_frame extends vmm_data;
   ...
   extern constraint test_constraints1;
   extern constraint test_constraints2;
   extern constraint test_constraints3;
   ...
endclass: eth_frame

TRANSACTORS
The term transactor is used to identify components of the verification environment
that interface between two levels of abstractions for a particular protocol or to
generate protocol transactions. In Figure 4-2, the boxes labelled Driver, Monitor,
Checker and Generator are all transactors. The lifetime of transactors is static to the
verification environment: They are created at the beginning of the simulation and stay
in existence for the entire duration4. They are structural components of the
verification components; they are similar to modules in the DUT. Only a handful of
transactors get created. In comparison, transactions have a dynamic lifetime:
Thousands get created by generators, flow through transactors, get recorded and
compared in scoreboards then freed.

Traditional bus-functional models are called command-layer transactors. Command-
layer transactors have a transaction-level interface on one side and a physical-level
interface on the other. Functional-layer and scenario-layer transactors only have
transaction interfaces and do not directly interface to physical signals.

This section specifies guidelines designed to implement transactors that are reusable,
controllable and extendable. Note that reusability, controllability and extensibility are
not goals in and of themselves. These features will enable transactors to be reused by
different testcases and different verification environments. They will enable
transactors to be controlled to meet the specific needs of specific testcases, and they
can be extended to include the features required by specific environments. This
control and extension must be accomplished without modifying the transactors
themselves to avoid compromising the correctness of known-good transactors or to
modify the behavior or functionality of existing testcases.

4. Some classes of reconfigurable designs may require dynamically reconfigurable verification 
environment topologies. In that case, transactors will have a more dynamic lifetime.
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Rule 4-87 — All transactor-related declarations shall have a unique prefix.

Transactors will need to be used by different verification environments. Different
environments will require different combinations of transactors. Using a unique
prefix for all global name-space declarations will prevent collisions with other
transactors.

Example 4-48. MII Transactors
class mii_cfg;
   ...
endclass: mii_cfg
...
class mii_mac_layer extends vmm_xactor;
   ...
endclass: mii_mac_layer
...
class mii_phy_layer extends vmm_xactor;
   ...
endclass: mii_phy

Rule 4-88 — All transactor-related declarations shall be in the same file.

All declarations required by a transactor must be packaged together. Using a single
file to package all these related declarations simplifies the task of bringing all
necessary declarations required to use a transactor into a simulation. This rule is
consistent with Rule 4-4.

Rule 4-89 — Transactors shall be usable in both the active and reactive regions.

Using transactors in the reactive region will ensure that they avoid race conditions
between the design, the assertions and the verification environment, as required by
Rule 4-22. When using transactors in transaction-level models, they should execute in
the active region, similar to a RTL model, to avoid the same DUT-testbench race
conditions.

To be usable in both the active and reactive region, transactors must be declared in a
scope that is accessible by both modules and program blocks.

Example 4-49. Transactors Declared in $root
class mii_mac_layer extends vmm_xactor;
   ...
endclass: mii_mac
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Suggestion 4-90 — Transactor-related declarations may be packaged in a pack-
age.

Using a package to package all related declarations may offer the opportunity for
separate compilation in some tools. Although a package appears to eliminate the
need for a unique prefix, the potential to use the “import pkgname::*”
statement still necessitates the clear differentiation of names that may potentially
clash in the global name space.

Example 4-50. MII Transactor Package
package mii;

class mii_cfg extends vmm_data;
   ...
endclass: mii_cfg
...
class mii_mac_layer extends vmm_xactor;
   ...
endclass: mii_mac_layer
...
class mii_phy_layer extends vmm_xactor;
   ...
endclass: mii_phy_layer
...
endpackage: mii

Rule 4-91 — Transactors shall be implemented using a class.

Transactors and data are both implemented using the class construct. The
difference between a transactor class and a data class is their lifetime. Transactor
instances are created in limited number at the beginning of the simulation and remain
in existence through out. Data and transaction descriptors instances are created in
very large number throughout the simulation and have a short life span. In that
respect, transactor classes are used much like modules: modules instances, too,
are static throughout the simulation. The current state of each transactor is maintained
in local properties, and the execution threads are implemented in local methods.

Classes are used instead of modules because their instantiation is performed at
run time. Therefore, the structure of the verification environment can be dynamically
configured5 according to the generated testcase configuration descriptor. Modules,

5. And their topology dynamically reconfigured if necessary.
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being instantiated during the elaboration phase, define a structure before the simulator
has had the chance to randomize the testcase configuration descriptor.

Classes are also preferred because they offer an implementation protection
mechanism. It is possible to limit the access to various properties and methods in the
class by declaring them as protected or local. No such protection mechanism
exists in modules. Protecting the implementation of a class lets the
implementation control the interface that is exposed to the user, and this protection
lets the implementation be modified in a backward-compatible fashion. Modules,
with their unrestricted access to all of their internal constructs, may put the
implementor in a straitjacket if users use internal state information and procedures.

Classes also offer the opportunity to provide basic shared functionality to all
transactors through a shared base class. Because modules are not built on the
object-oriented framework, they cannot be used to offer such shared functionality.

Rule 4-92 — Transactors shall be implemented in classes derived from
vmm_xactor.

The vmm_xactor base class contains standard properties and methods to configure
and control transactors. To ensure that all transactors have a consistent usage model,
they must be derived from a common base class. Refer to “vmm_xactor” on page 411
for the detailed specification of this class.

Rule 4-93 — All threads shall be started in the extension of the
vmm_xactor::main() task.

The runtime behavior of transactors is controlled by the
vmm_xactor::start_xactor() and vmm_xactor::reset_xactor()
functions. For these functions to work properly, all threads that implement
autonomous behavior for a transactor must be forked in the body of the
vmm_xactor::main() task.

Rule 4-94 — No threads shall be started in the constructor.

This rule is a corollary of the previous guideline. Threads started in the constructor
cannot be controlled by the vmm_xactor::start_xactor() and
vmm_xactor::reset_xactor() methods.

It is important that no threads be started as soon as a transactor is instantiated. When
the verification environment is initially built and the transactor instantiated, the DUT
may not be yet ready to receive stimulus. Transactors and generators may have to be
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suspended until the DUT has been properly configured. Furthermore, if a testcase
needs to inject directed stimulus, it must be able to suspend a transactor or generator
for the entire duration of the simulation. If that transactor or generator has already had
the opportunity to generate stimulus, it may be impossible to write the required
directed testcase.

Rule 4-95 — Extensions of the vmm_xactor::main() task shall call
super.main().

Transactors may be implemented as successive derived classes all based on the
vmm_xactor class. Each inheritance layer may include relevant autonomous
threads started in their extension of their respective vmm_xactor::main() task.
The execution of the implementation of this task in all intermediate extensions of the
vmm_xactor base class is necessary for the proper operation of the transactor and
control methods.

Example 4-51. Extension of the vmm_xactor::main() Task
task mii_mac_layer::main();

super.main();
   ...
endtask: main

Rule 4-96 — The vmm_xactor::start_xactor(),
vmm_xactor::stop_xactor() and
vmm_xactor::reset_xactor() functions shall be extended to
add protocol or transactor-specific functionality.

These methods are virtual to enable the addition of functionality specific to the
implementation of a transactor or a protocol to be executed when a transactor is
started, stopped or reset. Should a transactor or protocol not have specific
functionality to be executed at these control points, the functions should still be
extended to allow further extension of the transactor class to overload these virtual
methods if necessary. Refer to “vmm_xactor” on page 411 for the detailed
specification of these methods.

Rule 4-97 — Extensions of the vmm_xactor::start_xactor(),
vmm_xactor::stop_xactor() and
vmm_xactor::reset_xactor() shall call their implementation
in the base class using the super prefix.

The implementation of a virtual method in a base class that has been overloaded in a
derived class is only invoked when implicitly called using the super prefix. When a
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transactor extends these methods to perform transactor or protocol-specific
operations, they must invoke the implementation of these virtual methods in the base
class for proper operation.

Example 4-52. Extension of a Control Method
function void
   mii_mac_layer::reset_xactor(reset_e typ = SOFT_RST);

super.start_xactor(typ);
...

endfunction: reset_xactor

Rule 4-98 — Layers of a protocol shall be modeled as separate transactors.

Protocols are often specified using a layering concept, each with different levels of
abstraction. The transactors implementing these protocols should follow a similar
division. The functional layer of the verification environment is built using sub-layers
of relevant transactors. For example, a USB functional layer could be composed of
USB transaction (host or endpoint) and USB transfer (host controller or device) sub-
layers.

Rule 4-99 — Transactors shall be identified—or configurable—as proactive,
reactive or passive.

Proactive transactors initiate transactions. Reactive transactors respond to
transactions. A passive transactor will simply observe the interface in both directions,
reporting observed data as it flows by and any protocol violation it observes. The
verification environment must be able to control the timing of transactions initiated
by proactive transactors, but the verification environment has no control over the
initiation or type of transactions observed by reactive or passive transactors. 

When modeling reactive and passive transactors, care must be taken so that no data is
lost if the transactor is executing user-defined callbacks while a significant event
occurs on the upstream interface.

This guideline does not imply that a transactor shall be dynamically reconfigurable,
for example from proactive to passive. Due to the significant differences in behavior
between modes, it is acceptable to provide this optional configurability at
construction-time.



Transactors

Verification Methodology Manual for SystemVerilog 167

Recommendation 4-100 —For every proactive or reactive transactor, there should
be a passive transactor.

Proactive and reactive transactors are used when direct interaction with an interface is
required to complete or initiate a transaction. When the DUT is embedded into a
system, that interface may no longer be controllable and instead, is controlled by
another block in the system.

A passive transactor should be available to monitor the transactions that used to be
under the control of the block-level environment to be able to reuse the block-level
functional coverage model or self-checking structure. 

Rule 4-101 —All messages issued by a transactor instance shall use the message
service interface in the vmm_xactor::log class property.

This usage will ensure that all messages from that transactor have a consistent format
and can be controlled as a single set of messages. 

Recommendation 4-102 —Transactor objects should indicate the occurrence of
significant protocol and execution events via the
notification service interface in the
vmm_xactor::notify class property.

These notifications can be used by the verification environment to synchronize with
the occurrence of a significant event in a transactor or a protocol interface. When
relevant, status information about the reason of the event occurrence should be
supplied by the transactor and attached to the notification.

Rule 4-103 —Transactors shall assign the value of their
vmm_xactor::stream_id class property to the
vmm_data::stream_id class property of the data and transaction
descriptors flowing through them.

The stream identifiers used to set the stream identifier in data and transaction
descriptors as they flow through should be set by the transactor and reported to user-
defined code extensions in callback methods. This identifier may be used to
differentiate between multiple instantiations of the same transactor or the path taken
by a data item or transaction descriptor through a verification environment.
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Rule 4-104 —Transactors shall be configurable if the protocol they implement has
options.

Even though designs may be implemented using the same interface protocols, there
may be differences in how the protocol is physically implemented by different
designs. Optional elements of the protocol, such as bus width, the number of
outstanding transactions, clock frequency or the presence of optional side-band
signals shall be configurable.

Rule 4-105 —Transactors shall be configured using a randomizable configuration
descriptor.

The configuration of a transactor must be specified using a configuration descriptor.
All the properties in the configuration descriptor must have the rand attribute to
allow the generation of a random configurations—both to verify the transactor itself
under different conditions and to make it usable as a component of the testcase
configuration descriptor.

Example 4-53. MII Transactor Configuration Descriptor
class mii_cfg;
   rand bit is_100Mb;
   rand bit full_duplex;
endclass: mii_cfg

Rule 4-106 —Transactor configuration descriptor shall be passed via the
constructor.

A transactor must be configured before being used. The best way to ensure that the
transactor is configured is to require the configuration descriptor be provided as a
constructor argument. The transactor may choose to keep a reference to the original
configuration descriptor instance or make a copy of it.

Recommendation 4-107 —A reconfigure() method accepting a new
configuration descriptor should be provided to
dynamically reconfigure a transactor.

It should be possible to modify the configuration of a transactor during the
simulation. Merely modifying the original configuration descriptor instance may not
be sufficient as the transactor has no means of efficiently detecting such a change, or
it may have an internal copy different from the original instance. Calling a
“reconfiguration” method ensures that the transactor is properly notified of the need
for a different configuration.
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Reconfiguring a transactor that is running may yield unexpected results. The
reconfigure() method may invoke the vmm_xactor::reset_xactor()
function.

Physical-Level Interfaces
Command-level transactors and bus-functional models are components of the
command layer. They translate transaction requests from the higher layers of the
verification environment to physical-level signals of the DUT. In the opposite
direction, they monitor the physical signals from the DUT or between two DUT
modules. They also notify the higher layers of the verification environment of any
transactions initiated by the DUT.

The physical-level interface of command-layer transactors must interact with the
signal-layer construct. As such, they must follow the guidelines outlined in section
“Signal Layer” on page 107.

Rule 4-108 —Physical interfaces shall be specified using a virtual modport
interface as an argument to the transactor constructor.

This specification lets each instance of a transactor be connected to a specific
interface instance without hardcoding a signal naming or interfacing mechanism. The
signal layer creates the necessary interface instances in the top-level module. The
appropriate interface instance is specified when constructing a transactor to
connect that transactor to that interface instance.

Example 4-54. Virtual Interface in Constructor
interface mii_if;
   ...
   modport mac_layer(...);
   ...
endinterface: mii_if
...
class mii_mac_layer extends vmm_xactor;
   ...
   function new(...,
                virtual mii_if.mac_layer sigs,
                ...);
      ...
   endfunction: new
   ...
endclass: mii_mac_layer



Testbench Infrastructure

170 Verification Methodology Manual for SystemVerilog

Rule 4-109 —The virtual interface shall be stored in a public class property.

This structure will let testcases access the physical interface signals, if required.

Example 4-55. Virtual Interface in Properties
class mii_mac_layer extends vmm_xactor;

virtual mii_if.mac_layer sigs;
   ...
   function new(...,
                virtual mii_if.mac_layer sigs,
                ...);
      ...
      this.sigs = sigs;
      ...
   endfunction: new
   ...
endclass: mii_mac_layer

Rule 4-110 — Command-layer transactors shall not refer directly to clock signals.

The clocking block separates timing and synchronization of synchronous signals
from the reference signal. It defines the timing and sampling relationships between
synchronous data and clock signals. If a transactor waits for the next edge of the clock
by using an @(posedge...) statement, it may wait for the wrong active edge—or
the wrong clock signal—compared to the one specified in the clocking block and
sample the wrong value of the synchronous signals. To wait for the next cycle of
synchronous signals, use the @ operator with a clocking block reference.

Example 4-56. Waiting for the Next Clock Cycle
task mii_mac_layer::tx_driver();
   ...

@this.sigs.mtx;
   this.sigs.mtx.txd <= nibble;
   ...
endtask: tx_driver

task mii_mac_layer::rx_monitor();
   ...

@(this.sigs.mrx);
   if (this.sigs.mrx.rx_dv !== 1’b1) break;
   a_byte[7:4] = this.sigs.mrx.rxd;
   ...
endtask: rx_monitor
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TRANSACTION-LEVEL INTERFACES
This section applies to the transaction-level interfaces of transactors. In command-
layer transactors—drivers and monitors, the transaction-level interface lets the higher
layers of the verification environment stimulate the DUT by specifying which
transactions should be executed or be notified of which transactions have been
observed at a given point in time on a DUT interface. 

Transaction-level interfaces remove the higher-level layers from the physical
interface details. In functional-layer transactors, a high-level transaction interface is
used to receive a description of high-level transactions to be executed. These high-
level transactions are executed—or implemented—by executing one or more lower-
level transactions, generally of a different type. These lower-level transactions are
submitted to a lower level transactor—in a lower functional sub-layer or in the
command layer via a low-level transaction interface. For example, an IP packet
transaction could be segmented into one or more IP segments by a segmented
transactor. Transaction-level interfaces are mechanisms to exchange transactions
between two transactors or a directed testcase and a transactor.

Because transactions are specified using descriptors, a conduit can be used to
exchange these descriptors between two transactors. A connection between two
transactors or a testcase and a transactor is established by having each endpoint refer
to the same conduit, as illustrated in Figure 4-7. The connection can be made by
instantiating the endpoints in any order to allow the building of verification
environments in a bottom-up or top-down fashion. The conduit allows a transactor—
whether upstream or downstream—to be connected to any other transactor with a
compatible conduit, without requiring any source code modifications.

Figure 4-7. Transaction Interface Channel

Traditionally, transaction-level interfaces have been implemented using procedure
calls in the transactors themselves. But invoking a procedure in a transactor instance
requires having a reference to that transactor in the first place. This requires that
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having a reference to the lower-level transactor instances so they can call methods in
them. This structure creates some difficulties: 

1. You cannot build a verification environment on top of the physical layer that can 
then be retargeted, without modifications, to a different physical-layer implemen-
tation.

2. You cannot build a verification environment on a transaction-level model that can 
be reused, unmodified, on an implementation with physical-level interfaces.

By encapsulating the transaction exchange mechanism into a conduit, the transactors
are considered as endpoints that can be replaced easily, without any knowledge
required by or of the other endpoint.

Rule 4-111 — A channel shall be used to exchange transactions between two
transactors.

Each connection between two endpoints requires a channel instance. An instance
cannot be shared by more than one connection.

The vmm_channel is a template class that must be specialized based on the data or
transaction descriptor it will carry. Based on a previous guideline, a channel class
name should have already been defined for every vmm_data derivative as the data or
transaction descriptor class name with the “_channel” suffix. For example, the
class eth_frame_channel should already exist to carry instances of the
eth_frame class. Refer to “vmm_channel” on page 387 for the detailed
specification of this class.

An interface cannot be used as a transaction-level interface because, like a
module, it is a static construct. It would not be possible to create dynamically
reconfigurable verification environments. Furthermore, interfaces are not built
on top of the object-oriented framework and cannot be derived from one another. It
would thus not be possible to provide common functionality through a base
interface like it is possible through a channel base class.

Rule 4-112 — References to channel instances shall be stored in public class
properties suffixed with “_chan”.

This structure lets the connection between two transactors be made in arbitrary order.
The first one creates the channel instance, then the second one uses the reference to
the channel in the first one.
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Furthermore, this structure lets directed portions of tests put manually created
transaction descriptors into a channel by suspending the execution of the upstream
transactor and accessing the channel’s put() method.

Example 4-57. Channel Reference Properties
class mii_mac_layer extends vmm_xactor;
   eth_frame_channel tx_chan;
   eth_frame_channel rx_chan;
   ...
endclass: mii_mac_layer

Recommendation 4-113 —Channel instances should be specified as optional
constructor arguments.

Connecting two transactors requires that they be endpoints on the same channel
instance. It should be possible to specify channel instances to connect to as optional
constructor arguments. If none are specified, new instances are internally allocated.

Example 4-58. Top-Down Connection of Two Transactors
eth_mac      mac = new(...);
mii_mac_layer mii = new(..., mac.pls_tx_chan, ...);

Example 4-59. Bottom-Up Connection of Two Transactors
mii_mac_layer mii = new(...);
eth_mac        mac = new(..., mii.tx_chan, ...);

Example 4-60. Third-Party Connection of Two Transactors
eth_frame_channel tx_chan = new(...);
eth_mac      mac = new(..., tx_chan, ...);
mii_mac_layer mii = new(..., tx_chan, ...);

This connection requires that channel instances be allocated if none are specified via
the constructor argument list.

Example 4-61. Optionally Specifying Channel Instances in Constructor
class mii_mac_layer extends vmm_xactor;
   eth_frame_channel tx_chan;
   eth_frame_channel rx_chan;
   ...
   function new(...
                eth_frame_channel tx_chan = null,
                eth_frame_channel rx_chan = null, ...);
      ...
      if (tx_chan == null) tx_chan = new(...);
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      this.tx_chan = tx_chan;
      if (rx_chan == null) rx_chan = new(...);
      this.rx_chan = rx_chan;
   endfunction: new
   ...
endclass: mii_mac_layer

Rule 4-114 — A transactor shall not hold an internal reference to a channel instance
while it is stopped or reset.

If a transactor holds a copy of the reference to a channel instance in an internal
variable, the channel instance cannot be substituted with another one to modify the
output or input of a transactor and dynamically reconfigure the structure of a
verification environment. While unavoidable during normal operations, a reset or
stopped transactor should “release” all such internal references to let the channel
instance be replaced.

Rule 4-115 — Reactive and passive transactors shall allocate a new transaction
descriptor instance from a factory instance using the
vmm_data::allocate() method.

It is often desirable to add user-defined environment-specific or testcase-specific
information to a transaction descriptor. This addition must be done via class
inheritance, not by modifying the original class, to avoid proliferating unrelated
application-specific information into a generic definition—thus lowering its
reusability. The problem is that these additional properties are located in a different
type from the original type.

This problem manifests itself in reactive and passive transactors that monitor and
report transactions observed on a physical or lower-level transaction interface.
Transaction descriptor instances are created internally when a new transaction is
detected. Because these transactors are written in terms of the original base class, they
will allocate an instance of the original, generic class without the required additional
information if a call to new is used. This problem can be solved by creating the new
instances by copying from a factory instance. The vmm_data::allocate() and
vmm_data::copy() methods, being virtual, will allocate an instance of the
derived class found in the factory instance, not the original class.

Example 4-62. Reusable Reactive or Passive Transactor
class mii_phy_layer extends vmm_xactor;
   ...
   eth_frame_channel rx_chan;
   ...
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   local eth_frame rx_factory;
   ...
   function new(..., eth_frame rx_factory = null);
      ...
      if (rx_factory == null) rx_factory = new;
      this.rx_factory = rx_factory;
      ...
   endfunction: new
   ...
   virtual task rx_monitor();
      ...
      forever begin
         eth_frame fr;
         ...
         $cast(fr, this.rx_factory.copy());
         ...
         this.rx_chan.sneak(fr);
      end
   endtask: rx_monitor
   ...
endclass: mii_phy_layer

Example 4-63. Adding User-Defined Transaction Information
class annotated_eth_frame extends eth_frame;
      ...
endclass: my_eth_frame
...
class tb_env extends vmm_env;
   virtual function void build();
      annotated_eth_frame ann_fr;
      ...
      ann_fr = new;
      ...
      this.phy = new(..., ann_fr);
   end
endclass: tb_env

Rule 4-116 — A transactor shall not be both a producer and a consumer for a
channel instance.

Channels cannot enforce which transactor endpoint is the producer and which one is
the consumer. Transaction descriptors “flow” from the vmm_channel::put()
method to the vmm_channel::get() method. A producer is defined by the
simple fact that it calls the put() method, whereas a consumer is defined by the fact
that it calls the get() method. A transactor cannot be both a consumer and producer
for the same channel, unless the channel is used internally and not as a transaction
interface.
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If a bidirectional interface is required, two channel instances must be used, one for
each direction.

A functional layer monitor that can be configured as reactive or passive appears to
break this rule. When in reactive mode, the response channel (see section titled
"Reactive Response" on page 192) is an output channel. When in passive mode, the
response channel is an input channel. The monitor will be a producer when
configured as reactive but a consumer when configured as passive, but never both at
the same time. This guideline is therefore followed.

Rule 4-117 — Reactive or passive transactors shall use the
vmm_channel::sneak() method to put transaction descriptors in
their output channels.

A reactive or passive transactor may block its execution thread on the execution of the
vmm_channel::put() method if the channel is full. This blocking action may
break the implementation of the protocol and cause data to be missed or checks not to
be performed. A transactor should not be written to rely on another endpoint to
constantly drain an output channel. Using the vmm_channel::sneak() function
cannot block, even if the channel is full, and prevents these problems from occurring.

Because the rate of execution of reactive and passive transactors is regulated by the
interface (physical or transaction-level) they are monitoring, using the
vmm_channel::sneak() function should not cause an infinite execution loop in
the monitoring thread.

Completion and Response Models
Transaction descriptors are provided to and reported by transactors via a channel
instance. It is usually important for the higher-layer transactors to know when a
transaction has been completed or how to respond to a reactive transactor.
Furthermore, it must be possible for a proactive or reactive transactor to output status
information about the execution of the transaction.

The following guidelines will help choose a completion or response model suitable
for the transactor and protocol being implemented. A completion model is used by
proactive and reactive transactors to indicate the end of a transaction execution. A
response model is used by a reactive transactor to request, from the higher layers of a
verification environment, additional data or information required to complete a
suitable response to the transaction being reacted to.
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The completion and response models are described using a producer transactor and a
consumer transactor. The consumer transactor executed transactions as requested by
the producer transactor and indicates completion and response information back to
the producer transactor. The completion model is the same for stimulus and monitor
transactors. If the transactor pair was in a stimulus stack, the execution flow would be
toward the DUT. If the transactor pair was in a monitoring or reactive stack, the
execution flow would be away from the DUT.

Rule 4-118 — Transactors shall clearly document the completion model used by
input channels.

The completion model used by a transactor to indicate the completion of a transaction
is crucial to its proper usage. Each transactor must document the completion model
used.

Rule 4-119 — Reactive transactors shall clearly document the response model
expected by output channels.

The response model used by a reactive transactor to request additional response
information to complete a transaction is crucial to its proper usage. Each reactive
transactors must document the expected response model.

In-Order Atomic Execution Model
Transactors with an in-order atomic execution model perform transactions in the same
order as they were submitted. Each transaction is executed only once and completes
in a single execution attempt. Such transactors use a blocking completion model. As
illustrated in Figure 4-8, the execution thread from the producer transactor (depicted
as a dotted line) is blocked while the transaction flows through the channel and is
executed by the consumer transactor. It remains blocked until the execution of the
transaction is completed. 

Figure 4-8. In-Order Atomic Completion Model
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From the producer transactor’s perspective, the blocking completion model is
embodied in the vmm_channel::put() method. When this method returns, the
transaction is completed. Additional completion status information may have been
added to the transaction descriptor by the consumer transactor.

Example 4-64. Upstream of a Blocking Completion Model
class producer extends vmm_xactor;
   ...
   virtual task main();
      ...
      ... begin
         transaction tr;
         ...
         do
            out_chan.put(tr);
         while (tr.status == RETRY);
         ...
      end
      ...
   endtask: main
endclass: producer

The suitability and proper implementation of this completion model requires adhesion
to the following guidelines by the consumer transactor:

Rule 4-120 — Input channel instances shall be reconfigured with a full level of one.

It is the channel instance that will block the execution of the
vmm_channel::put() method, not the consumer transactor. That can only
happen if the channel is considered full as soon as a transaction is put into the channel
itself. Any other configuration would create a non-blocking interface.

To ensure that input channels have a full level of one, consumer transactors must
explicitly reconfigure the input channel instances. Otherwise, externally created
instances with incompatible configurations may be used.

Example 4-65. Reconfiguring an Input Channel Instance
class consumer extends vmm_xactor;
   transaction_channel in_chan;
   ...
   function new(transaction_channel in_chan = null);
      ...
      if (in_chan == null) in_chan = new(...);
      in_chan.reconfigure(1);
      this.in_chan = in_chan;
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   endfunction: new
   ...
endclass: consumer

Rule 4-121 —Transaction descriptors shall be peeked from the input channel.

To keep the vmm_channel::put() method blocked for the producer transactor,
the channel must not be emptied while the transaction is being executed. Therefore,
the vmm_channel::peek() or vmm_channel::activate() method must
be used to obtain the next transaction to be executed from the input channel.

Example 4-66. Peeking Transaction Descriptors
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         transaction tr;
         this.in_chan.peek(tr);
         ...
         this.in_chan.get(tr);
      end
   endtask: main
   ...
endclass: consumer

Rule 4-122 —Transaction descriptors shall be removed from the channel only when
the transaction execution is completed.

This rule is a corollary to the previous guideline. A transaction is removed from a
channel by using the vmm_channel::get() or vmm_channel::remove()
method.

Recommendation 4-123 —The vmm_data::STARTED and vmm_data::ENDED
notifications should be indicated.

An producer transactor may choose to use a non-blocking model by forking the thread
that puts the transaction descriptor into the input channel. Providing a built-in
indication of the execution of the transaction will eliminate the need for additional
synchronization infrastructure in the producer transactor.
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Example 4-67. Indicating Transaction Execution Notifications
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         transaction tr;
         this.in_chan.peek(tr);
         tr.notify.indicate(vmm_data::STARTED);
         ...
         tr.notify.indicate(vmm_data::ENDED, ...);
         this.in_chan.get(tr);
      end
   endtask: main
endclass: consumer

Recommendation 4-124 —Consumer transactors should use the
vmm_channel::activate(),
vmm_channel::start(),
vmm_channel::complete() and
vmm_channel::remove() methods to indicate the
progress of the transaction execution.

Using the vmm_data::STARTED and vmm_data::ENDED notifications require
that the upstream transactor maintain a reference to the transactor descriptor instance
while it flows through the channel and is executed by the consumer transactor. The
active slot interface lets a producer transactor query the execution progress of a
transaction directly from the channel itself. Indicating the vmm_data::STARTED
and vmm_data::ENDED notifications is also implicit when using the
vmm_channel::start() and vmm_channel::complete() methods.

Example 4-68. Transaction Execution Using the Channel’s Active Slot
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         transaction tr;
         ...
         this.in_chan.activate(tr);
         this.in_chan.start();
         ...
         this.in_chan.complete();
         this.in_chan.remove();
      end
   endtask: main
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   ...
endclass: consumer

Suggestion 4-125 —Consumer transactors may add completion status information to
the transaction descriptor.

If the transaction descriptor has properties that can be used to specify completion
status information, these properties may be modified by the consumer transactor to
provide status information back to the producer transactor.

Example 4-69. Providing Status Information In a Transaction Descriptor
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         transaction tr
         ...
         this.in_chan.start(tr);
         ...
            tr.status = ...;
         ...
         tr.in_chan.complete();
         ...
      end
   endtask: main
endclass: consumer

Suggestion 4-126 —Consumer transactors may attach completion status information
to the vmm_data::ENDED notification.

If the transaction descriptor does not have properties that can be used to specify
completion status information, the consumer transactor can provide status
information back to the producer transactor via the vmm_data::ENDED
notification.

The additional status information is provided as a separate status descriptor, derived
from vmm_data, and attached to the vmm_data::ENDED notification by the
vmm_channel::complete() method.

Example 4-70. Returning Status Information Via the ENDED Notification
class transaction_resp extends vmm_data;
   ...
endclass: transaction_resp

class consumer extends vmm_xactor;
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   ...
   virtual task main();
      ...
      forever begin
         transaction tr;
         ...
         this.in_chan.start(tr);
         ...
         begin: status
            transaction_resp tr_status = new(...);
            ...
            this.in_chan.complete(tr_status);
         end
         ...
      end
   endtask: main
endclass: consumer

Out-of-Order Atomic Execution Model
Transactors with an out-of-order atomic execution model execute individual
transactions in a potentially different order than they were submitted. The order in
which transactions are selected for execution is protocol-specific and outside the
scope of this book. Such transactors use a non-blocking completion model. As
illustrated in Figure 4-9, the execution thread from the producer transactor (depicted
as a dotted line) is not blocked while the transaction descriptor flows through the
channel and is executed by the consumer transactor. It is blocked only when the
channel is full and unblocks as soon as it is empty, regardless of the completion of the
transaction.

Figure 4-9. Non-Blocking Completion Model
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transactor to detect the completion of a transaction by waiting for the indication of the
vmm_data::ENDED notification in the transaction descriptor or the
vmm_channel::ACT_COMPLETED indication in the input channel, as illustrated
in Example 4-71.

Example 4-71. Upstream of a Non-Blocking Completion Model
class producer extends vmm_xactor;
   ...
   virtual task main();
      ...
      ... begin
         transaction tr;
         ...
         out_chan.put(tr);
         fork
            begin
               automatic transaction w4tr = tr;
               w4tr.wait_for(vmm_data::ENDED);
               ...
            end
         join_none
         ...
      end
   endtask: main
   ...
endclass: producer

The suitability and proper implementation of this completion model requires that
consumer transactors adhere to the guidelines presented next.

Recommendation 4-127 —Input channel instances in consumer transactors should
be reconfigured with a full level greater than one.

The channel is responsible for eventually blocking the execution of the
vmm_channel::put() method, not the downstream transactor. That blocking
only happens if the channel is considered full. More than one transaction descriptor
must be available in the channel to let out-of-order execution occur. If a full level of
one is used, a blocking interface is created, and out-of-order execution is only
possible if the downstream transactor implements additional transaction descriptor
buffering internally.
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Rule 4-128 —A separate channel instance shall be used for each priority or class of
service.

Out-of-order transactors often execute transactions in a different sequence than
submitted because they implement different priorities or class of services for different
transactions. If a transactor offers more than one execution priority or class of service,
it must use a different input channel for each. Using a single channel may block the
execution of higher priority transactions because it is filled with low-priority
transactions.

Rule 4-129 —Consumer transactors shall use the
vmm_channel::activate(), vmm_channel::start(),
vmm_channel::complete() and
vmm_channel::remove() methods to indicate the progress of the
transaction execution.

The vmm_data::STARTED and vmm_data::ENDED notifications require that
the upstream transactor maintain a reference to the transaction descriptor while it
flows through the channel and is executed by the downstream transactor. With an out-
of-order execution model, it is a complex task to manage these references to all
pending transaction descriptors and identify the next one that will be executed. The
active slot interface lets an upstream transactor query the execution progress of a
transaction directly from the channel itself.

Example 4-72. Out-of-Order Execution Using the Active Slot
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      while (1) begin
         ...
         this.in_chan.activate(tr, i);
         ...
         this.in_chan.start();
         ...
         this.in_chan.complete();
         this.in_chan.remove();
      end
   endtask: main
endclass: consumer
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Suggestion 4-130 —Consumer transactors may add completion status information to
the transaction descriptor.

If the transaction descriptor has properties that can be used to specify completion
status information, these properties may be modified by the downstream transactor to
provide status information back to the upstream transactor.

See Example 4-69 for an example.

Suggestion 4-131 —Consumer transactors may provide completion status informa-
tion via the vmm_channel::complete() method.

If the transaction object does not have properties that can be used to specify
completion status information, the consumer transactor can provide status
information back to the producer transactor via the vmm_data::ENDED
notification.

The additional status information is provided as a separate status descriptor, derived
from vmm_data, and attached to the vmm_data::ENDED notification by the
vmm_channel::complete() method.

See Example 4-70 for an example.

Non-Atomic Transaction Execution
Non-atomic transactors execute transactions in parallel, pipelined, through multiple
attempts, or multiple partial sub-transactions or execute a transaction repeatedly at
regular intervals. Such transactors use a non-blocking completion model. As
illustrated in Figure 4-9, the execution thread from the upstream transactor (depicted
as a dotted line) is not blocked while the transaction descriptor flows through the
channel and is executed by the downstream transactor. It is blocked only when the
channel is full and unblocks as soon as it is empty, regardless of the completion of the
transaction.

The non-blocking completion model lets several transactions be submitted to the
downstream transactor to be completed in the future. It is up to the upstream
transactor to detect the completion of a transaction according to a mechanism defined
by the downstream transactor.

The suitability and proper implementation of this completion model requires that the
downstream transactor adheres to the guidelines presented next.
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Recommendation 4-132 —Input channel instances in the consumer transactors
should be reconfigured with a full level greater than one.

The channel instance is responsible for blocking the execution of the
vmm_channel::put() method, not the downstream transactor. That blocking
only happens if the channel is considered full. More than one transaction must be
available in the channel to allow out-of-order execution to occur. If a full level of one
is used, a blocking interface is created and non-atomic execution is only possible if
the downstream transactor implements additional transaction descriptor buffering
internally.

Rule 4-133 —A separate channel instance shall be used for each priority or class of
service.

If a transactor offers more than one execution priority or class of service, it must use a
different input channel for each. Using a single channel may block the execution of
higher priority transactions because it is filled with low-priority transactions.

Rule 4-134 —Consumer transactors shall use the vmm_channel::get() to
immediately remove a transaction from the channel.

Transactions in the channel are assumed to be available for execution. As soon as a
transaction is selected for execution (either concurrently, partially or as the first
instance of a recurrence), it must be immediately removed from the channel to
prevent it from being selected again by another transaction execution thread.

Example 4-73. Removing a Transaction Descriptor from the Input Channel
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         ...
         this.in_chan.get(tr);
         tr.notify.indicate(vmm_data::STARTED);
         ...
      end
   endtask: main
endclass: consumer
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Recommendation 4-135 —Consumer transactors should indicate the
vmm_data::STARTED and vmm_data::ENDED
notifications.

A producer transactor may track individual transactions by maintaining a reference to
the transaction descriptors as they flow through the channel and are executed by the
downstream transactor. Using the built-in indication of the execution of the
transaction will eliminate the need for additional synchronization infrastructure in the
upstream transactor.

Example 4-74. Indicating Transaction Execution Notifications
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      while (1) begin
         transaction tr;
         this.in_chan.get(tr, i);
         tr.notify.indicate(vmm_data::STARTED);
         ...
         tr.notify.indicate(vmm_data::ENDED);
      end
   endtask: main
   ...
endclass: consumer

The vmm_channel::active(), vmm_channel::start(),
vmm_channel::complete() and vmm_channel::remove() methods
cannot be used because they support an atomic—i.e., one at a time—execution model.
When executing multiple transactions concurrently, these methods cannot be used.

Recommendation 4-136 —An output “completion” channel should be used to send
back (partially) completed transactions.

A producer transactor may require information about the various intermediate
completions of a transaction execution—each execution attempt, each sub-transaction
and each occurrence of a recurring transaction. Since a transaction may have more
than one completion indication, an output channel should be used to return
completion information back to the producer transactor, as illustrated in Figure 4-10.
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Figure 4-10. Completion Channel

Rule 4-137 —Consumer transactors shall use the vmm_channel::sneak()
method to add completed transaction descriptors to the completion
channel.

This usage will avoid the consumer transactor from stalling on a full completion
channel, should the producer transactor fail to drain it. No data is lost even if the
channel becomes full.

Example 4-75. Providing Completion Status Via Completion Channel
class consumer extends vmm_xactor;
   transaction_channel      in_chan;

transaction_resp_channel compl_chan;

   virtual task main();
      ...
      forever begin
         ...
         this.in_chan.get(tr);
         tr.notify.indicate(vmm_data::STARTED);
         ...
         begin
            transaction_resp resp = new(...);
            tr.notify.indicate(vmm_data::ENDED, resp);
            this.compl_chan.sneak(resp);
         end
      end
   endtask: main
endclass: consumer
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Suggestion 4-138 —Consumer transactors may add completion status information to
a copy of the transaction descriptor.

If the transaction descriptor has properties that can be used to specify completion
status information, these properties may be modified by the consumer transactor to
provide status information back to the producer transactor.

A single transaction descriptor may result in multiple completion responses back
through the completion channel. If the same instance is used, subsequent responses
may modify the content of prior responses before the producer transactor has had time
to process them. Using separate instances for each response will ensure that an
accurate history of the transaction execution will be reported via the completion
channel.

See Example 4-75 for an example.

Suggestion 4-139 —Consumer transactors may use a different descriptor to return
transaction completion information.

If the transaction descriptor does not have properties that can be used to specify
completion status information, the consumer transactor can provide status
information back to the upstream transactor via a different status descriptor supplied
through the completion channel.

The additional status information is provided as a separate descriptor, derived from
vmm_data. A reference to the original transaction should be provided in the status
descriptor. It is not necessary to overload all of the virtual methods in the status
information class. See Example 4-75 for an illustration.

Passive Response
Passive transactors monitor transactions executed on a lower-level interface and
report to the higher layers descriptions of the observed transactions. A passive
transactor should report any protocol-level errors it detects, but the higher level
transactors will be responsible for checking the correctness of the data carried by the
protocol. As illustrated in Figure 4-11, passive transactors use an output channel to
report transactions. Each observed transaction is reported using a new instance of the
transaction descriptor.
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Figure 4-11. Passive Response Model

Note that the passive response model is not limited to passive transactors. It can be
used to report on observed transactions in any other transactors. A reactive transactor
may use the passive response model to report on the observed transactions that were
actively replied to. A proactive transactor may use a passive response model to report
on the received transactions as observed on a half-duplex interface.

The suitability and proper implementation of this response model requires that
passive transactors adhere to the guidelines presented next.

Rule 4-140 —Producer transactors shall put transaction descriptor instances in the
output channel using the vmm_channel::sneak() method.

The output channel will block the execution thread of the passive transactor if it ever
becomes full. This blocking may break its implementation or cause data to be lost.
The vmm_channel::sneak() method ignores the channel’s full level and never
blocks the execution thread of the upstream transactor. Because the passive monitor is
observing the proper execution of a protocol, its execution should be regulated by the
time required to execute a complete transaction.

Recommendation 4-141 —Transactors should put an incomplete transaction
descriptor instance in the output channel as soon as the
start of a transaction has been identified.

A consumer transactor may need to know when a transaction has started execution on
an interface. For example, a half-duplex higher-level transactor would need to know
if the transport medium is busy before attempting to execute its own transaction.
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Waiting until the end of the transaction to put it in the output channel may make the
information available too late.

Example 4-76. Incomplete Transaction Descriptor in an Output Channel
class producer extends vmm_xactor;
   ...
   virtual task main();
      ...
      while (1) begin
         ...
         tr = new;
         ...
         tr.notify.indicate(vmm_data::STARTED);
         this.out_chan.sneak(tr);
         ...
         tr.notify.indicate(vmm_data::ENDED);
      end
   endtask: main
endclass: producer

Rule 4-142 —Transactors shall indicate the vmm_data::STARTED and
vmm_data::ENDED notifications.

This rule is a requirement of the previous guideline. If an incomplete transaction
descriptor instance is put into the output channel, the higher-level transactor on the
other side of the channel will need to know when the transaction has been completed.
Using the built-in transaction completion notification event eliminates the need for
additional synchronization infrastructure or mechanisms.

The timestamps associated with these notifications can also be used by the consumer
transactors for identifying time-related information about the transaction, such as its
total execution time.

Example 4-77. Monitoring Transactions from a Passive Transactor
class consumer extends vmm_xactor;
   ...
   virtual task main();
      ...
      while (1) begin
         ...
         this.in_chan.peek(tr);
         tr.notify.wait_for(vmm_data::ENDED);
         this.in_chan.get(tr);
         ...
      end
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   endtask: main
endclass: consumer

Reactive Response
Reactive transactors monitor the transactions executed on a lower-level interface and
may have to request additional data or information from higher-layer transactors to
complete the transaction. Reactive transactors should report any protocol-level errors
detected and locally generate protocol-level answers. But higher-level transactors are
responsible for providing correct data content to be carried by the protocol. 

As illustrated in Figure 4-12, reactive transactors use an output channel to request a
transaction response. A second input channel is used to receive the transaction
response to be applied to the lower-level interface. Each transaction response request
is reported using a new instance of a transaction response descriptor object.

Figure 4-12. Reactive Response Model

Note that the reactive response model is only used to obtain higher-level data carried
by the protocol. Where the entire set of possible responses are fully defined by the
protocol, the response is internally generated by the reactive transactor. For example,
deciding to reply to a USB transaction with an ACK, NACK or a STALL packet (or
not replying at all) can be entirely decided internally. However, the content and length
of a DATA packet in reply to an IN transaction should be provided by a reactive
response model. Note that the response must be provided within sufficient time to
avoid breaking the protocol.

The suitability and proper implementation of this response model requires that
reactive transactors adhere to the guidelines presented next.
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Rule 4-143 —Requestor transactors shall use the vmm_channel::sneak()
method to post a response request into the response request channel.

The implementation of the protocol may require that the requestor transactor perform
additional operations while the response is being “composed.” The
vmm_channel::sneak() method will ensure that the requestor transactor
execution is never blocked, if only to immediately wait for a response via the
response channel.

Example 4-78. Requesting a Response
class requestor extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         ...
         resp = new;
         ...
         this.req_chan.sneak(resp);
         ...
         this.resp_chan.get(resp);
         ...
      end
   endtask: main
endclass: requestor

Rule 4-144 —Requestor transactors shall check that a response is provided within
the required time interval.

The time required to respond to a transaction is usually limited by the lower-level
protocol specification. However, the time required to “compose” the response is
controlled by the responder transactor. Thus, the requestor transactor can check only
that the response comes back when required.

Example 4-79. Checking Response Request Fulfillment Delay
class requestor extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         ...
         resp = new;
         ...
         this.req_chan.sneak(resp);
         resp = null;
         fork
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            this.resp_chan.get(resp);
            #(...);
         join_any
         disable fork;
         if (resp == null) ...
         ...
      end
   endtask: main
endclass: responder

Recommendation 4-145 —Requestor transactors should continue with a default
response if no response is received after the maximum
allowable time interval.

To simplify the usage model of a reactive transactor, a default response may be used if
a higher-level transactor failed to provide an explicit transaction response in time.

Recommendation 4-146 —Requestor transactors should issue a warning message if
no response is received after the maximum allowable time
interval.

The higher-level transactor may have wished to continue with the default response.
Nonetheless, a message should be issued to inform the unwary user of a potential
problem with the verification environment.

Recommendation 4-147 —Transaction response request descriptors should solve to
a valid random response when randomized.

The content of a transaction response descriptor must be filled in by the responding
reactive monitor. By default, a random—but valid—response should be provided.
Therefore, the transaction response descriptor should be designed to provide a valid
response when the randomize() method is used. The transaction response request
descriptor could be user-extended to provide as more constrained response or
procedurally filled in to provide a directed response.

Example 4-80. Providing a Random Response
class responder extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         this.req_chan.get(tr);
         ...
         tr.stream_id = this.stream_id;
         tr.data_id   = response_id++;
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         if (!tr.randomize()) ...
         ...
         this.resp_chan.sneak(tr);
      end
   endtask: main
endclass: responder

Rule 4-148 —Protocol-level response shall be randomly generated using an
embedded generator.

Protocol-level responses are fully defined by the protocol and can be selected by the
reactive transactor without any input required from higher-level transactors. The
response should be generated using an embedded factory-pattern generator. By
default, the generator is constrained to produce the best possible response, but it can
be unconstrained or modified to respond differently or inject errors.

Suggestion 4-149 —Reactive transactors may randomly generate a default response
using an embedded generator.

To ease the creation of verification environments, a reactive transactor may be
configurable to generate the complete protocol response internally instead of
deferring the higher-level data to higher-level reactive transactors. A transactor that
detects that a response was not provided within acceptable time and determines that
the response request is still in the request channel, could assume that there are no
higher-level transactors and choose to compose a default response on its own.

The response should be generated using an embedded generator. By default, the
generator is constrained to produce adequate responses, but it can be unconstrained or
modified to respond differently or to inject errors.

TIMING INTERFACE
Despite the rich set of completion models offered by the channel, it can only provide
transaction information after-the-fact. A channel will transfer a data or transaction
descriptor only once it has been completely received by a monitor. In some protocols
or circumstances, higher-layer transactors require timing-related information as soon
as that information is available, asynchronously from any transaction completion it
may be associated with. For example, a MAC layer Ethernet transactor needs to know
when the medium is busy so it can defer the transmission of any frame it may have.
That information would be stale were it delayed until the frame occupying the
medium had been completely received.
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Figure 4-13. Notification Interface

Transaction-asynchronous timing information can be exchanged between two
transactors via an instance of a notification service interface. Like a channel instance,
a single instance is shared across two transactors. One transactor produces
notification indications while the other waits for the relevant indications. A channel is
used in parallel to transfer any transaction information once it is complete.

Rule 4-150 —A vmm_notify extension shall be used to exchange notifications
between two transactors.

The extension of the vmm_notify class defines all notifications that can be
exchanged between the two transactors.

Example 4-81. Notification Service Class
class eth_pls_indications extends vmm_notify;
   typedef enum {CARRIER, COLLISION} indications_e;

   function new(vmm_log log);
      super.new(log);
      super.configure(CARRIER, ON_OFF);
      super.configure(COLLISION, ON_OFF);
   endfunction: new
endclass: eth_pls_indications
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Rule 4-151 —References to notification service instances shall be stored in public
class properties.

This structure lets the connection between two transactors be made in arbitrary order.
The first one creates the notification service instance, then the second one uses the
reference to the instance in the first one.

Example 4-82. Notification Service Class Property
class eth_mac extends vmm_xactor;
   ...
   eth_pls_indications indications;
     ...
endclass: eth_mac

Recommendation 4-152 —Notification service instances should be specified as
optional constructor arguments.

Like for channels, connecting two transactors requires that they share a reference to
the same notification service instance. It should be possible to specify notification
service instances to connect to as optional constructor arguments. If none are
specified, new instances are internally allocated.

This connection requires that notification service instances be allocated if none are
specified via the constructor argument list.

Example 4-83. Optional Notification Service Instances in Constructor
class eth_mac extends vmm_xactor;
   eth_pls_indications indications;
   ...
   function new(...
                eth_pls_indications indications = null);
      ...
      if (indications == null) indications = new(...);
      this.indications = indications;
      ...
   endfunction: new
   ...
endclass: eth_mac

Rule 4-153 —A transactor shall not hold an internal reference to a notification
service instance while it is stopped or reset.

If a transactor holds a copy of the reference to a notification service instance in an
internal variable, the notification service instance cannot be substituted with another
one to modify the output or input of a transactor and dynamically reconfigure the
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structure of a verification environment. While unavoidable during normal operations,
a reset or stopped transactor should “release” all such internal references to let the
notification service instance be replaced.

CALLBACK METHODS
The behavior of a transactor has to be controllable as required by the verification
environment and individual testcases without requiring modifications of the
transactor itself. These requirements are often unpredictable when the transactor is
first written. By allowing the execution of arbitrary user-defined code in callback
methods, transactors can be adapted to the needs of an environment or a testcase. For
example, callback methods can be used to monitor the data flowing through a
transactor to check for correctness, inject errors or collect functional coverage
metrics.

Rule 4-154 —Transactors shall have a rich set of callback methods.

The actual set of callback methods that must be provided by a transactor is protocol-
dependent. Subsequent guidelines will help design a suitable set in most cases.
Additional callback methods should be provided as required by the protocol or the
transactor implementation.

Recommendation 4-155 —Transactors should call a callback method after
receiving data, letting the user record, modify or drop the
data.

Whether it is a transaction descriptor or sampling a byte on a physical interface, the
new input data should be reported to the user, via a post-reception callback method, to
be recorded in or checked against a scoreboard, modified to inject an error or collect
functional coverage metrics.

Recommendation 4-156 —Transactors should call a callback method before
transmitting data, letting the user record, modify or drop
the data.

Whether it is a transaction descriptor or driving a byte on a physical interface, the new
output data should be reported to the user, via a pre-transmission callback method, to
be recorded in or checked against a scoreboard, modified to inject an error or collect
functional coverage metrics. 
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Recommendation 4-157 —Transactors should call a callback method after
generating any new information, letting the user record or
modify the new information.

Whenever a transaction requires locally generated additional information, the
additional information should be reported to the user, via a post-generation callback
method, to be recorded in or checked against a scoreboard, modified to inject an error
or collect functional coverage. A reference to the original transaction should be
provided to convey context information.

For example, a transactor prepending a packet with a preamble should call a callback
method with the generated preamble data before starting the transmission process.

Recommendation 4-158 —Transactors should call a callback method after making
a significant decision but before acting on it, letting the
user modify the default decision.

Whenever a transactor makes a choice among several alternatives, the choice and
available alternatives should be reported to the user, via a post-decision callback
method, to be recorded in or checked against a scoreboard, modified to select another
alternative or collect functional coverage. All information relevant to the context of
the decision—candidates, rules and alternatives—should be provided to the user,
along with the default decision, via the callback method.

For example, a transactor selecting traffic from different priority queues should call a
callback method after selecting a queue based on the current priority selection
algorithm but before pulling the next item from the selected queue. The user can then
modify the selection.

Rule 4-159 —All callback methods for a transactor shall be declared as virtual
methods in a single class derived from vmm_xactor_callbacks.

This declaration creates a façade for all available callback methods for a particular
transactor. The common base class is required to be able to register the callback
extension instances using the predefined methods and properties in the
vmm_xactor class.

Example 4-84. Declaring a Façade of Callback Methods
virtual class mii_mac_layer_callbacks
         extends vmm_xactor_callbacks;
   virtual task pre_frame_tx(...);
   endtask
   ...
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   virtual function void post_frame_rx(...);
   endfunction
   ...
endclass: mii_mac_layer_callbacks

Rule 4-160 —Callbacks shall be declared as tasks or void functions.

If the transactor implementation or protocol can support delays in the execution of a
callback, it should be declared as a task. Callbacks that must be non-blocking must be
declared as a function.

Restricting callback functions to void functions avoids difficulties with handling a
return value from a function when multiple callback extensions are registered and
cascaded in a transactor. Any status information returned from a callback method
(such as a flag to indicate whether to drop the transaction) should be returned by
modifying an instance referred to by an argument or a scalar argument passed by
reference.

Rule 4-161 —Arguments that must not be modified shall have the const attribute.

Not all callback arguments can be modified. Some must not be modified because
doing so would break the implementation of the transactor. Others should not be
modified to avoid creating inconsistencies within the transaction being executed or
observed.

Arguments without the const attribute can be modified by the user to inject errors.

Rule 4-162 —A reference to the calling transactor shall be included in the callback
arguments.

This inclusion will let one extension of the callback methods be registered with more
than one transactor instance and identify which transactor has invoked the callback
method.

Rule 4-163 —Transactors shall use the ‘vmm_callback() macro to invoke the
registered callbacks.

Callback registration is implemented in the vmm_xactor base class. But calling the
registered callback extensions is the responsibility of the transactor, extended from
the base class. To remove the transactor implementation from the details of callback



Ad-Hoc Testbenches

Verification Methodology Manual for SystemVerilog 201

registrations, and to ensure that they are called in the proper registration sequence,
this macro must be used to invoke the callbacks.

Example 4-85. Invoking Registered Callback Extensions
virtual class mii_mac_layer_callbacks
         extends vmm_xactor_callbacks;
   virtual task pre_frame_tx(mii_mac_layer   xactor,
                             const eth_frame fr,
                             ...);
   endtask
   ...
endclass: mii_mac_layer_callbacks

class mii_mac_layer extends vmm_xactor;
   ...
   virtual task main();
      ...
      forever begin
         ...
         this.tx_channel.activate(fr);
         ...
         ‘vmm_callback(mii_mac_layer_callbacks,
                       pre_frame_tx(this, fr, ...));
         ...
      end
   endtask: main
endclass: mii_mac_layer

AD-HOC TESTBENCHES
The testbench infrastructure presented so far is quite flexible, scalable and powerful.
It makes maximum use of the object-oriented features of SystemVerilog to leverage
predefined functionality and create reusable verification components. The simulation
steps in dynamic verification environments are well-defined.

However, not all testbenches need to leverage all of that flexibility, scalability and
reusability. It must be possible to quickly construct ad-hoc testbenches that will be
thrown away once they have helped accomplish their immediate purpose. Ad-hoc
testbenches are quickly put together, typically by design engineers, to create some
simple stimulus to verify the basic operation of a design unit. The response is usually
checked visually.

In such simple testbenches, there is no need for complete management of the
simulation steps, for dynamically reconfigurable transactors, for multiple sub-layers



Testbench Infrastructure

202 Verification Methodology Manual for SystemVerilog

of functional transactors, for integrating a self-checking structure, for sampling
functional coverage nor for randomly generating high volume of data. Using VMM-
compliant transactors to create these simple testbenches may be perceived as overkill
and will require the acquisition of additional knowledge that is not typically required
for RTL design.

Recommendation 4-164 —Command-layer transactors should have an alternative
encapsulation in a module.

According to Rule 4-91, transactors are implemented in classes. Connecting a
class to a module implementing a DUT requires the instantiation of an interface, the
mapping of the wires in that interface to the wires in the DUT interface, the
instantiation of the transactor configuration descriptor and finally the construction of
the transactor. While they should remain implemented as classes, having the
transactor class pre-instantiated in a module will simplify the instantiation process.

Example 4-86. Module Encapsulation for Transactor Class
module mii_mac_bfm(...);
...
parameter stream_id = -1;
program xactor;
   mii_cfg cfg;
   mii_mac_layer xact;

initial
begin
   string instance;
   $sformat(instance, "%m");
   cfg = new;
   xact = new(instance, stream_id,
              cfg, sigs.mac_layer);
   xact.start_xactor();
   ...
end
endprogram: xactor
endmodule: mii_mac_bfm

Rule 4-165 —The encapsulation module shall be named the same as the
encapsulated transactor class with a “_bfm” suffix.

Class names and module names may share the same $root name space. To avoid
collision, they must be named differently. Using the same name for both, with the
addition of a suffix, clearly identifies the relationship between the class and the
module.
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Rule 4-166 —The encapsulated transactor shall be started.

The transactor should execute transactions without any further interventions. It must
thus be started by calling its vmm_xactor::start_xactor() method in an
initial block in the program block that instantiates it. Transactions will not
actually execute until submitted via the input channel or the procedural interface.

Recommendation 4-167 —The encapsulation module should have a parameter for
the stream identifier and all properties in the transactor
configuration descriptor.

Modules are configured via parameters, not configuration descriptors.

Rule 4-168 —The instance name of the transactor class instance shall be specified
as the module instance name.

The module instance name can be obtained using the %m format specifier in the
$sformat task.

Recommendation 4-169 —The module should use individual signals as its ports.

This style may increase the number of port connections required when instantiating
the module, but may ease the mapping of the signals to other signals. Furthermore,
the module ports can enforce or document signal directions. The module port signals
must be mapped to the interface instance inside the module.

Example 4-87. Individual Signals as Module Port
module mii_mac_bfm(output [3:0] txd,
                   ...
                   input        tx_clk,
                   ...);
mii_if sigs();
assign txd         = sigs.txd;
...
assign sigs.tx_clk = tx_clk;
...
endmodule: mii_mac_bfm

Alternative 4-170 —The module may use the interface as its unique port.

This style may minimize the number of port connections required when instantiating
the module, but may require the mapping of the interface signals to other signals
should the DUT or top-level module not use a compatible interface.



Testbench Infrastructure

204 Verification Methodology Manual for SystemVerilog

Example 4-88. Interface as Module Port
module mii_mac_bfm(mii_if sigs);
...
endmodule: mii_mac_bfm

Recommendation 4-171 —An instance of the relevant atomic generator should be
co-encapsulated.

By including an atomic generator connected to the transactor in the encapsulation, it
will be possible to easily create random stimulus by simply starting the generator and
transactor. Because the transactor is always started by default, starting and stopping
the generator will be sufficient to control the flow of random transactions.

Example 4-89. Co-Encapsulation of a Generator
module mii_mac_bfm(...);
parameter stream_id = -1;
...
program xactor;
   mii_cfg cfg;
   mii_mac_layer xact;

eth_frame_atomic_gen src;

initial begin
   string instance;
   $sformat(instance, "%m");
   cfg = new;
   xact = new(instance, stream_id,
              cfg, sigs.mac_layer);
   xact.start_xactor();

src = new(instance, stream_id, xact.tx_chan);
   ...
end
endprogram
endmodule: mii_mac_bfm

Rule 4-172 —An instance of the relevant protocol checker shall be co-encapsulated.

The protocol checker can be connected to the module ports or interface and verify the
correctness of the protocol. This encapsulation will eliminate having to instantiate the
checker separately from the transactor.
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Recommendation 4-173 —A procedural transaction-level interface should be
provided.

To further reduce the dependency on the object-oriented approach used by the data
and transaction descriptor approach, a procedural interface should be provided.
Designers should already be familiar with this kind of transaction-level interface as it
has been used with Verilog for many years.

The tasks implementing the procedural interface simply create the corresponding
transaction descriptor, randomizing any unspecified properties, then inject the
transaction descriptor using the inject() method of the co-encapsulated generator.

It is important that the procedural interface executes in the reactive region to avoid
race conditions.

Example 4-90. Transaction-Level Procedural Interface
module mii_mac_bfm(...);
...
parameter stream_id = -1;
...
program xactor;
   integer tx_count = 0;
   ...
   task tx_frame(input bit [47:0] da;
                 input bit [47:0] sa;
                 input bit [15:0] len);
      eth_frame fr = new;
      bit       ok;

      fr.stream_id = stream_id;
      fr.data_id   = tx_count++;
      ok = fr.randomize() with {
             dst == da;
             src == sa;
             len_typ == len;
             format == UNTAGGED;
          };
      if (!ok) begin
         ‘vmm_error(...);
         return;
      end
      src.inject(fr);
   endtask: tx_frame
   ...
endprogram: xactor
endmodule: mii_mac_bfm
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Rule 4-174 —Module-encapsulated transactors shall be instantiated in the top-level
module.

Modules cannot be instantiated in a class. Therefore, they cannot be used in an
environment built from the vmm_env base class. They must be instantiated in the top
module that also instantiates the DUT. This structure creates a verification
environment identical to those that were created using Verilog or VHDL. The
module-encapsulated transactor instances can be access via absolute hierarchical
references.

Example 4-91. Instantiating a Module-Encapsulated Transactor
module top;
...
mii_mac_bfm mac(...);
eth_mac  dut(...);
...
endmodule: top

Example 4-92. Accessing an Instance of a Module-Encapsulated Transactor
program test;
initial begin
   ...
   top.mac.xactor.tx_frame(...);
   ...
end
endprogram

LEGACY BUS-FUNCTIONAL MODELS
Dealing with legacy bus-functional models is the opposite problem of packaging
transactors for ad-hoc testbenches. Bus-functional models exist as modules with
procedural transaction-level interfaces.

VMM-Compliance Upgrade
The ideal situation would be to modify the bus-functional model to make it VMM-
compliant. This compliance requires potentially significant changes to the original
source code. Assuming the bus-functional model is relatively well structured, the
following list describes the steps that must be taken to make it VMM-compliant:
1. Encapsulate the ports of the module into an interface. Define a modport to 

match the ports on the original module. Rule 4-4 to Rule 4-9 are applicable. Do 
not use clocking blocks for synchronous signals.
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2. Encapsulate all configuration parameters in a transactor configuration descriptor. 
Rule 4-104 to Recommendation 4-107 are applicable.

3. Transform module-level declarations into class properties and module tasks and 
functions into methods.

4. Encapsulate the body of initial blocks in tasks. Call these tasks in the con-
structor and in the extension of the vmm_xactor::reset_xactor() task. 
Rule 4-96 and Rule 4-97 are applicable.

5. Encapsulate the body of always blocks in a forever loop in tasks. Fork calls 
to these tasks in the extension of vmm_xactor::main(). Rule 4-93 to Rule 4-
95 are applicable.

6. Create a transaction descriptor that can describe calls to and returned information 
from each transaction interface procedure. Rule 4-54 to Recommendation 4-86 are 
applicable. Define a channel of that class and instantiate in the transactor as input 
and/or output channels. Rule 4-111 to Recommendation 4-113 are applicable.

7. For driver operations, fork a thread in the extension of vmm_xactor::main()
to pull transaction descriptors out of the input channel, interpret them, and call the 
corresponding transaction interface procedure. Rule 4-118 to Suggestion 4-139 are 
applicable.

8. For monitor operations, fork a thread in the extension of 
vmm_xactor::main() to call the corresponding transaction interface proce-
dures, create the corresponding transaction descriptor, then sneak it into the output 
channel. Rule 4-140 to Recommendation 4-146 are applicable.

9. Create a callback façade class and add appropriate callback methods. Recommen-
dation 4-155 to Rule 4-163 are applicable.

VMM-Compliant Interface
The transformation may be made more complex if the structure of the original code is
poor. Investing in a complete rewrite may be wise in the long term. If rewriting the
bus-functional model is not an option and the module cannot be turned into a
class, it will be necessary to create a companion class that will interface directly
with an instance of the module. Of course, because of the static nature of module
instances, the companion class will effectively have a static instance as well.

The following list describes the steps required to create a VMM-compliant interface
to a legacy bus-functional model implemented in a module:

1. Create a suitable transaction and transactor configuration descriptors. Rule 4-54 to 
Recommendation 4-86 and Rule 4-104 to Recommendation 4-107 are applicable.
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2. Do not create an interface for the physical signals. Those are handled by the leg-
acy module.

3. Create a transactor class, derived from vmm_xactor. The constructor should 
have arguments for all input and output channels and configuration descriptor but 
not for a virtual interface. Do not include an argument for the instance name 
either. Rule 4-89 to Recommendation 4-113 are applicable.

4. In the constructor, use the hierarchical name of the module instance as the transac-
tor instance name. Set the values of the appropriate class properties in the configu-
ration descriptor using the corresponding parameter values in the module instance. 
The parameters will have to be referenced using an absolute hierarchical name.

Example 4-93. Interfacing to a Single Instance of a Lefacy BFM
class utopia_mgmt extends vmm_xactor;
   utopia_mgmt_cfg cfg;
   ...
   function new(...);
      super.new("Utopia Mgmt", "top.mgmt", ...);
      cfg.is_intel = !top.mgmt.BusMode;
      ...
   endfunction: new
   ...
endclass: utopia_mgmt

5. Implement the required functionality to translate to/from transaction descriptors 
from/to the legacy bus-functional model in one or more independent threads 
forked off the extension of the vmm_xactor::main() task. Interface to the 
module instance using absolute hierarchical names to the necessary variables, 
tasks or functions.

It is necessary to use absolute hierarchical references into the module instance to
interface the dynamic companion class instance to the static module instance. The
steps described above use absolute hierarchical names hard-coded in the companion
class implementation. This convention will work if a verification environment
contains a single instance of the module at the specified hierarchical location. If
multiple module instances are required or if the hierarchical location of the instance is
not known a priori, this approach will not work.

SystemVerilog does not support dynamically computed hierarchical reference names.
Any hierarchical reference must be static and known at compile time. Thus, a
string cannot be used to simply store the path to the module instance. The solution
is to easily replicate a class with different hard-coded hierarchical references using



Legacy Bus-Functional Models

Verification Methodology Manual for SystemVerilog 209

a macro. Each macro expansion will yield a different class, designed to interface
with a specific instance of its companion module.

Example 4-94. Companion Class Macro
‘define utopia_mgmt(path) \
class \path.utopia_mgmt extends utopia_mgmt; \
   ... \
   function new(...); \
      super.new("path", ...); \
      super.cfg.is_intel = !path.BusMode; \
      ... \
   endfunction: new \
   ... \
endclass

It is a good idea to separate instance-generic functionality from instance-specific
functionality in a base class. virtual methods in that base class should be provided
for each procedural interface available in the legacy module. The base class may
also contain generic functionality, such as the channel-based transaction interface.

Example 4-95. Mapping Virtual Tasks to Instance-Specific Module Tasks
‘define utopia_mgmt(path) \
class \path.utopia_mgmt extends utopia_mgmt; \
   ... \

virtual task read(input  [11:0] radd, \
                     output [ 7:0] rdat); \
      \path.read(radd, rdat); \
   endtask: read \
   ... \
endclass

Note how, in Example 4-94, an extended identifier is used to create a unique class
name based on the hierarchical reference it is associated with. It is possible to
interface to multiple instances of the module by creating a different class for each
instance then instantiating them.

Example 4-96. Instantiating Instance-Specific VMM-Compliant Interfaces
module tb_top;
...
utopia_mgmt_bfm host0(...);
utopia_mgmt_bfm host1(...);
...
endmodule

program test;
‘utopia_mgmt(tb_top.host0);
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   ‘utopia_mgmt(tb_top.host1);

   class tb_env extends vmm_env;
      utopia_host host[2];
      ...
      virtual function void build();
         \tb_top.host0.utopia_mgmt host0 = new(...);
         \tb_top.host1.utopia_mgmt host1 = new(...);
         host[0] = host0;
         host[1] = host;
         ...
      endfunction
      ...
   endclass: tb_env
endprogram

SUMMARY
This chapter has focused on the building blocks necessary to create verification
environments. The layered architecture creates opportunities for higher levels of
abstraction. It also encourages the decoupling of independent protocol functionality to
promote reuse between block-level and system-level environments and between
transaction-level and implementation-level verification. A message service and
stimulation step management classes were described to standardize the look and feel
of message and simulation controls.

A data-flow-based architecture for transactors, using a well-defined transaction
interface object, has been defined. This architecture allows the creation of truly
layered environments. It also allows the creation of higher-level verification
components than the traditional bus-functional models available today. By breaking
the close ties to a physical interface, transactors can now be written to operate—and
be reused—at logical protocol layers.

This chapter concluded by presenting techniques and guidelines for dealing with
legacy issues. The first legacy aspect that was considered is the use and integration of
VMM-compliant transactors in more traditional testbench structures and verification
expertise. This chapter also considered how to migrate or interface existing bus-
functional models to make them usable in a VMM-compliant verification
environment.
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CHAPTER 5 STIMULUS AND RESPONSE

The verification planning process, described in Chapter 2, produced three distinct sets
of requirements: functional coverage, stimulus generation and response checking.
This chapter focuses on the last two sets of requirements. Functional coverage will be
addressed in the following chapter.

The first part of this chapter will be of interest to those responsible for creating
testcases. Testcases are created through directed or random stimulus. Directed
stimulus can be considered as a subset of random stimulus and, with a properly
designed random generator, is simple to create. Random generators must be designed
to exercise the DUT according to the requirements outlined in the verification
planning process (Chapter 2). Random generators must also be controllable to cover
the entire spectrum of randomness between pure random and directed stimulus.

The second part of this chapter will be of interest to the verification engineers
responsible for defining the verification environment and how the correctness of the
design will be ascertained. The self-checking mechanism of a verification
environment is highly DUT-specific. It is based on the response validation
requirements defined during the verification planning process (Chapter 2).

GENERATING STIMULUS
The generation of data (packets, frames, instructions) or transaction descriptors is
modeled separately from the data models themselves because of the different
dynamics of their respective lifetimes. In a typical simulation, there will be thousands
of data items or transaction descriptors created, flowing through transactors, recorded



Stimulus And Response

212 Verification Methodology Manual for SystemVerilog

and compared in the self-checking structure. On the other hand, there will be only a
handful of data and transaction sources that need to exist at the beginning of the
simulation and remain in existence until the end.

Generation can be a manual—or directed—process, where transaction descriptors and
data items are individually created and submitted to the appropriate transactor.
Generation can also be automated with the use of independent random generators.
Using randomness is an approximation of automation: left to run for long enough, a
random source will eventually generate, on its own, the stimulus necessary to exercise
a large portion of the functionality to be verified. Unlike the typewriting monkeys of
Shakespeare fame, random generators succeed in their task within a reasonable
amount of time. They are not asked to replicate the exact directed stimulus an
engineer would write to exercise a specific feature. Rather, random generators are
expected to hit any one of a large number of features through non-optimal random
stimulus sequences.

However, pure random stimulus—even constrained to be valid—is rarely useful.
Shakespearian monkeys are unlikely to succeed in their task within a reasonable time
because they produce random letter sequences. If they were restricted to producing
letter sequences that create random English words within grammatically correct
sentences, their chance of success would be dramatically improved. Similarly,
generating Ethernet frames with random destination addresses is unlikely to verify the
functionality of a device that has a specific address—except for the address matching
functionality. It is also similarly unlikely that a random instruction generator will
generate a well-formed loop structure that will also trigger a PC-match debug
function in the processor. The degrees of freedom in random stimulus must be defined
up front to create a mix of random but interesting scenarios.

Although the majority of verification engineers are more familiar with directed
stimulus than random stimulus, random stimulus will be presented first. It is difficult
to evolve from a directed stimulus process to an automated, random stimulus one.
However, directed stimulus can be considered a subset of—or a highly constrained—
random stimulus. The use of directed stimulus on an environment or in a process that
is designed for random stimulus is therefore a natural evolution.

Rule 5-1 — Verification environments shall be designed with random stimulus.

A random-based verification environment can be constrained or overridden to
produce directed stimulus. Accomplishing the opposite is much more difficult. If the
directed stimulus only concerns a subset of the input paths to the DUT, the random
stimulus on the other input paths can be used to provide background noise.
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Random Stimulus
Random stimulus is traditionally used to generate background noise. It can also be
used to generate the main test stimulus. This is often implemented as a “random”
testcase, separate from the directed testcases, when time allows. Random stimulus
can be used in lieu of directed stimulus to implement the bulk of the testbenches.
Coupled with functional coverage to identify if the random stimulus has exercised the
required functionality, constraints are used to direct the generation process in
appropriate corner cases.

This section specifies guidelines on how to write autonomous generators that will
create a stream of random data or transaction descriptors. Generators should be
designed to be easily externally constrained, without requiring modifications of their
source code. Constrained-random tests are then written, not by writing a completely
new or slightly modified generator, but by adding constraints and scenario definitions
to the reusable generators that already exist.

Predefined atomic and scenario generators are provided in the VMM Standard
Library. As per Recommendation 5-23 and Recommendation 5-30, the
vmm_atomic_gen() (see page 415) and vmm_scenario_gen() (see
page 418) macros can be used to automatically create generators that follow all
guidelines outlined in this section for any user-defined type derived from the
vmm_data class.

Rule 5-2 — A generator shall be modeled as a transactor.

As such, all guidelines applicable to transactors are applicable to generators, unless
explicitly superseded in this section.

Example 5-1. Generator are Transactors
class eth_frame_gen extends vmm_xactor;
   ...
endclass: eth_frame_gen

Rule 5-3 — A generator shall have an output channel for each output stream.

A generator is a transactor with no inputs. It produces streams of data or transaction
descriptors that will need to be executed by transactors. To be able to connect the
output of a generator to the input of a transactor, they must use the same transaction
interface mechanism.
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If a generator produces concurrent stimulus for multiple streams, it must have an
output channel for each of the output streams. This channel will let each stream be
connected to their respective execution transactors.

Rule 5-4 — The reference to the generator output channels shall be in public class
properties.

This structure will allow several important operations that are required to implement
testcases or build verification environments to be available, such as:
1. The channel can be queried, controlled or reconfigured.
2. The channel can be referenced as the input channel for a downstream transactor.
3. The channel can be replaced if dynamic environment reconfiguration is required.

Example 5-2. Generator Output Channel class Property
class eth_frame_gen extends vmm_xactor;
   ...
   eth_frame_channel out_chan;
   ...
endclass: eth_frame_gen

Rule 5-5 — A reference to pre-existing output channel instances shall be optionally
specifiable to the generator constructor.

If no channel instance is specified, then the output channel is instantiated in the
constructor. If a channel is specified, then its reference is stored in the appropriate
public class property.

Example 5-3. Connecting a Generator to a Specified Channel Instance
class eth_frame_gen extends vmm_xactor;
   eth_frame_channel out_chan;
   ...
   function new(...,
                eth_frame_channel out_chan = null);
      ...
      if (out_chan == null) out_chan = new(...);
      this.out_chan = out_chan;
      ...
   endfunction: new
   ...
endclass: eth_frame_gen
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Connecting a generator to a transactor requires that the output channel of the
generator be the input channel of the downstream transactor. This connection can be
accomplished only if they share references to a single channel instance.

Figure 5-1. Connecting a Generator to a Transactor

The steps to connect a generator to a transactor are first, connect one of them
internally to instantiate its channel, then second, pass a reference to that channel to the
constructor of the other one.

Example 5-4. Instantiating the Generator First
class tb_env extends vmm_env;
   ...
   eth_frame_gen gen;
   eth_mac       mac;
   ...
   function void dut_env::build();
      this.gen = new(...);
      this.mac = new(..., this.gen.out_chan);
   endfunction: build
endclass: tb_env

Example 5-5. Instantiating the Transactor First
class tb_env extends vmm_env;
   ...
   eth_frame_gen gen;
   eth_mac       mac;
   ...
   function void dut_env::build();
      this.mac = new(...);
      this.gen = new(..., this.mac.tx_chan);
   endfunction: build
endclass: tb_env

Alternatively, a stand-alone channel can be instantiated then passed to the constructor
of the generator and the transactor.

TransactorGenerator

Channel
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Example 5-6. Instantiating the Channel First
class tb_env extends vmm_env;
   ...
   eth_frame_channel gen_to_mac;
   eth_frame_gen     gen;
   eth_mac           mac;
   ...
   function void dut_env::build();

eth_frame_channel gen_to_mac = new(...);
eth_frame_gen     gen = new(..., this.gen_to_mac);

      eth_mac           mac = new(..., this.gen_to_mac);
   endfunction: build
endclass: tb_env

Rule 5-6 — A generator shall randomize a single instance located in a public class
property, then copy the final value to a new instance.

This process is called a factory pattern and yields the most controllable generator. See
section titled "Controlling Random Generation" on page 227 for the various
constraint control mechanisms that can be used to control this generator pattern.

Example 5-7. Factory Pattern
class eth_frame_gen extends vmm_xactor;
   ...

eth_frame randomized_fr;

   function new(...)
      ...
      this.randomized_fr = new;
   endfunction: new

   ...
      while (...) begin
         eth_frame fr;
         if (!this.randomized_fr.randomize()) begin
            ‘vmm_error(...);
             continue;
         end
         $cast(fr, this.randomized_fr.copy());
         ...
         out_chan.put(fr);
      end
   ...
endclass: eth_frame_gen
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OOP Primer: Factory Pattern
A factory creates objects. That can be accomplished using new, but how can
different objects (e.g., subjected to different constraints) be created without
having to modify the original source code?

while (...) begin
   eth_frame fr = new;
   fr.display();
end

The factory pattern defers the object creation to a factory instance by using a
virtual method (see “OOP Primer: Virtual Methods” on page 126). Instead of
using new, virtual methods allocate() or copy() are used.

class eth_frame; class generator;
  ... eth_frame factory;
  virtual function   ...
      eth_frame allocate();     while (...) begin
    eth_frame fr = new;       eth_frame fr;
    allocate = fr;       fr = factory.allocate();
  endfunction       fr.display();
endclass     end

  ...
endclass

The factory instance is publicly available to be replaced according to the needs of
the application:

class my_eth_frame extends eth_frame;
   virtual function eth_frame allocate();
      my_eth_frame fr = new;
      allocate = fr;
   endfunction
endclass

program test1;
   generator gen = new;
initial begin

my_eth_frame my_fr = new;
   gen.factory = my_fr;
   ...
end
endprogram
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Recommendation 5-7 — The name of the class property containing the randomized
instance should have the prefix “randomized_”.

This naming convention will make it easier to identify the location, name and type of
all randomized instances in a verification environment. It also clearly identifies the
purpose of the class property.

Rule 5-8 — The return value of the randomize() method shall be checked and
an error be reported if it is false.

If a contradiction in a set of constraints makes it impossible for the solver to find a
solution, the randomize() method returns non-zero. It is important that an error be
reported to indicate the problem with the constraints in the status of the simulation
and to prevent a partial solution from being used.

Example 5-8. Checking the Success of Randomization Process
if (!this.randomized_fr.randomize()) begin
   ‘vmm_error(this.log, "Unable to find a solution");
   continue;
end

Rule 5-9 — The value of the stream_id class property of the generator shall be
assigned to the stream_id class property in the randomized
instance before each randomization.

The values should be set before every randomization attempt to ensure that the user
does not accidentally modify the stream identifier in the randomized instance. It also
ensures that the stream identifier will be set consistently should the randomized
instance be substituted with another one to modify the constraints.

Example 5-9. Setting the stream_id Class Property
while (...) begin
   ...

this.randomized_fr.stream_id = this.stream_id;
   ...
   if (!this.randomized_fr.randomize()) ...
   ...
end

The stream identifier class property is defined in the vmm_data base class and is
inherited by all data and transaction descriptor classes. It is used to specify stream-
specific constraints when constraints are added using a mechanism that is global to all
instances.
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Example 5-10. Specifying Constraints on a Subset of Streams
constraint eth_frame::tc1 {
   ...

if (stream_id == 2) {
      ...
   }
}

Directed Stimulus
Directed stimulus is manually crafted to verify a specific feature of the design or to hit
a specific functional coverage point. Not all of the stimulus needs to be directed.
Random values can be used to fill portions of the stimulus that are not directly
relevant to the feature being exercised. For example, the content of a packet payload
is irrelevant to the correctness of the packet routing—only that it be transferred
unmodified. Similarly, the content and identity of the general purpose registers used
in an ADD instruction is not relevant, as long as the destination register eventually
contains the accurate sum of the values contained in the two source registers.

Random stimulus may also be used as background noise on the interfaces not directly
related to the feature being verified. The directed stimulus is focused on the interfaces
directly implicated in the verification of the targeted functionality. Similarly, directed
stimulus may be injected in the middle of random stimulus. This sequence may help
identify problems that may not be apparent should the directed stimulus always be
applied from the reset state.

Rule 5-10 — Generators shall be stopped while directed stimulus is being injected.

Directed stimulus is meant to replace random stimulus, not intermix with it. If the
random generator is still running while directed stimulus is injected into its output
stream, the resulting stimulus sequence will be unpredictable.

Generators may be stopped for the duration of the simulation while others, providing
background noise, may be running as usual. Generators may be stopped at some
points during the simulation, then restarted after the directed stimulus has been
injected.

Example 5-11. Stopping a Generator at the Beginning of a Simulation
program test_directed;
...
initial begin
   ...
   env.start();
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   env.host_src.stop_xactor();
   env.phy_src.stop_xactor();
   fork
      directed_stimulus;
   join_none
   env.run();
end

task directed_stimulus;
   ...
endtask: directed_stimulus
endprogram: test

Rule 5-11 — Generators shall provide a procedural interface to inject data or
transaction descriptors.

Directed stimulus can be specified by manually instantiating data and transaction
descriptors, then setting their properties appropriately. When injected in the output
stream, the data or transaction descriptor is first subjected to the callback methods
before being added to the generator output channel. The procedure returns when the
directed data has been consumed by the output channel.

Example 5-12. Directed Transaction Interface
class eth_frame_gen extends vmm_xactor;
   eth_frame_channel out_channel;
   ...

task inject(eth_frame fr,
               ref bit dropped);
      dropped = 0;
      ‘vmm_callback(eth_frame_gen_callbacks,
                    post_inst_gen(this, fr, dropped));
      if (!dropped) this.out_chan.put(fr);

endtask: inject
endclass: eth_frame_gen

With this injection method available, directed stimulus can be easily created and
injected into the output stream of the generator.

Example 5-13. Injecting a Directed Sequence
task directed_stimulus;
   eth_frame to_phy, to_mac;
   ...
   to_phy = new;
   to_phy.randomize();
   ...
   fork
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      env.host_src.inject(to_phy, dropped);
      begin
         // Force the earliest possible collision
         @ (posedge tb_top.mii.tx_en);
         env.phy_src.inject(to_mac, dropped);
      end
   join
   ...
   -> env.end_test;
endtask: directed_stimulus

Recommendation 5-12 —Directed stimulus should not be directly added to the
public output channel.

Directed stimulus could be easily introduced in the output stream of the generator by
directly putting instances of transaction descriptors in the output channel. This
stimulus introduction would be accomplished by calling the
vmm_channel::put() method directly. It requires that the directed stimulus be
familiar with the transactor completion model to identify when the transaction
execution has been completed. Furthermore, such stimulus would not be subjected to
the callbacks methods of the generator and may not be recorded by the scoreboard or
the functional coverage model.

This mechanism should only be used if it is necessary to create an out-of-order or
partial-execution directed stimulus and should be avoided as much as possible. The
reference to the output channel of a generator is public to allow for dynamic
reconfiguration of an environment and to connect it to a downstream transactor. Its
primary purpose is not to allow direct injection of directed stimulus.

Generating Exceptions
By default, transactors will execute transactions without errors, as fast as possible.
However, the verification of a design requires that the limits of a protocol be
stretched—and sometimes broken. A verification environment and the transactors
that compose it must provide a mechanism for injecting exceptions in the execution of
a transaction.

Recommendation 5-13 —Exceptions should be described separately from
transactions.

Whether directly or randomly injected, exceptions should not be determined when a
transaction descriptor is generated. Although quite feasible for transactions that are
generated immediately upstream of a transactor—where there is a one-to-one
correspondence between what is generated and what is executed—it becomes
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impossible to control when the generator is removed from the transactor that must
inject the exception through multiple transactor sub-layers or when the same
transaction can be executed by different transactors, each with different possible
exceptions. 

For example, a TCP packet that is transmitted to a design via an MII interface must
first be encapsulated into an IP packet, then segmented into one or more IP segments.
Each segment is then encapsulated in a MAC frame. Each frame is them
transmitted—and potentially retried—on the MII interface. How can an exception on
nibble number 131 on the second attempt of the MAC frame carrying the last segment
of the TCP packet be controlled? Rather, exceptions should be determined within the
transactor responsible for injecting them.

The callback mechanism, as described in “Callback Methods” on page 198, can be
used to cause a transactor to deviate from its default behavior. Within a callback,
protocol exceptions—such as extra delays, negative replies or outright errors—can be
injected without modifying the original transactor. Many exceptions can be defined
and implemented in the callback methods themselves, such as inserting delays or
corrupting the information in the transaction descriptor. Some exceptions must be
implemented in the transactor itself, such as ignoring an entire transaction or
prematurely terminating a transaction. In the latter case, callback methods will
provide the necessary control mechanism to trigger them.

Directed exception injection is performed by extending the appropriate callback for
the appropriate transactor within the testcase implementation. An instance of the
callback extension is then prepended to the appropriate transactor callback registry.
As shown in Example 5-14, a directed testcase uses the callback mechanism to force a
collision on all input ports of an Ethernet device by aligning the transmission of the
next frame in all MII transactors.

Example 5-14. Aligning the Transmissions in all MII Transactors
class align_tx extends mii_mac_layer_callbacks;
   local int waiting = 0;
   local int until_n = 1;
   local event go;
   ...
   virtual task pre_frame_tx(...);
      waiting++;
      if (waiting >= until_n) ->go;
      else @(go);
      waiting--;
   endtask: pre_frame_tx
enclass: align_tx
...
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program test;
initial begin
   dut_env env = new;

align_tx cb = new(...);
   env.build();

foreach (env.mii[i]) begin
      env.mii[i].prepend_callback(cb);
   end
   env.run();
end
endprogram

Random stimulus is proving to be a powerful mechanism to improve the productivity
of functional verification. But stimulus means more than primary data and
transactions. It also includes protocol exceptions. Instead of having to explicitly inject
protocol exceptions using a directed approach, these exceptions can be included
randomly.

Rule 5-14 — A randomized exception descriptor shall be used to randomly inject
exceptions.

Random injection of a protocol exception is accomplished by randomly generating an
exception descriptor. That exception descriptor is implemented and generated using
the same technique as transaction descriptors. Example 5-15 shows an exception
descriptor for an MII MAC-layer transactor that can be used to create collisions.

Example 5-15. Exception Descriptor for an MII Protocol
class mii_mac_collision;
   typedef enum {NONE, EARLY, LATE} kind_e;
   rand kind_e       kind;
   rand int unsigned on_symbol;
        int unsigned n_symbols;

   constraint early_collision {
      if (kind == EARLY) on_symbol < 112;
   }
   constraint late_collision {
      if (kind == LATE) {
         on_symbol >= 112;
         on_symbol < n_symbols;
      }
   }

constraint no_collision {
      kind == NONE;
   }
endclass: mii_mac_collision
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If more than one exception can be injected concurrently during the execution of the
transaction, the exception descriptor should properly model this capability.

Rule 5-15 — An exception descriptor shall have a reference to the transaction
descriptor it will be applied to.

This reference will allow the expression of constraints to correlate protocol
exceptions with the transactions they are applied to.

Example 5-16. Exception Descriptor for an MII Protocol
class mii_mac_collision;
   ...

eth_frame frame;
   ...
endclass: mii_mac_collisions

Rule 5-16 — An exception descriptor shall have a constraint block to prevent the
injection of exception by default.

To prevent the injection of protocol exception, an exception descriptor must be able to
describe a no-exceptions condition as shown in Example 5-15. A constraint block
should ensure that, by default, no exceptions are injected. Most of the testcases are
not interested in exceptions and thus will use the transactor as-is. For the few tests
responsible for verifying the response of the design to protocol exception, they simply
need to turn off the constraint block.

Example 5-17. Enabling the Injection of Protocol Exceptions
program test_collisions;
...
initial begin
   ...
   env.build();
   ...
   env.phy.randomized_col.
      no_collision.constraint_mode(0);
   ...
   env.run();
end
endprogram: test_collisions

Rule 5-17 — The exception descriptor shall be randomized using a factory pattern.

The random exception generation may be built in the transactor itself, as shown in
Example 5-18. However, this usage requires that the author of the transactor plans for
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every possible exception that could be injected. If the source code for the transactor is
available, the kinds of exceptions that can be injected by the transactor can be evolved
according to the needs of the projects, even a truly reusable transactor should never
have to be modified. If the source code is not available, it may be difficult to
introduce additional exceptions in the transactor without introducing disjoint control
mechanisms.

Example 5-18. Exception Generation Built into a Transactor
class mii_phy_layer extends vmm_xactor;
   virtual mii_if.phy_layer sigs;
   ...

mii_phy_collision randomized_col;

   function new;
      ...
      this.randomized_col = new;
   endfunction: new
   ...
   task tx_driver();
      ...
      if (!randomized_col.randomize()) ...
      ...
   endtask: tx_driver
endclass: mii_phy_layer

The random exception generation can also be built into a callback extension. This
mechanism can be used to add exception injection capabilities into a transactor that
does not already support them, or this mechanism can be used to supplement the
exceptions already provided by the transactor. Example 5-19 shows how the
exception generation is built into a callback extension. The factory pattern requires
that the environment maintains its own reference to the callback extension instance to
let testcases control the randomized descriptor.

Example 5-19. Exception Generation in a Callback Extension
class gen_rx_errs extends mii_phy_layer_callbacks;
   mii_rx_err randomized_rx_err;
   ...
   virtual task pre_frame_tx(...);
      ...
      if (!randomized_rx_err.randomize()) ...
   endtask: pre_frame_tx

   virtual task pre_symbol_tx(...);
      if (this.randomized_rx_err.on_symbol == nibble_no)
         err = 1’b1;
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   endtask: pre_symbol_tx
endclass: gen_rx_errs

Embedded Stimulus
Stimulus is generally understood as being applied to the external inputs of the design
under verification. However, limiting stimulus to external interfaces only may make it
difficult for some testcases to be performed. If the verification environment does not
have a sufficient degree of controllability over the design, much effort may be spent
trying to create a specific stimulus sequence to an internal design structure because it
is too far removed from the external interfaces. This problem is particularly evident in
systems where internal buses or functional units may not be directly controllable from
the outside.

Suggestion 5-18 — Design components can be replaced by transactors.

Transactors need not be limited to driving external interfaces. They can be used to
replace an internal design unit and provide control over that unit’s interfaces. The
transaction-level interface of the embedded transactor remains externally accessible,
making the replaced unit interfaces logically external. Monitors can be similarly used
to replace slave devices, as described in section titled "Embedded Monitors" on
page 32.

For example, an embedded ARM core could be replaced with an AMBA AHB
Interface master transactor, as illustrated in Figure 5-2. The ARM Core design
module is replaced with a different module—with the same name—that contains
an instance of the verification interface properly mapped to the module ports,
as shown in Example 5-20. The AMBA AHB Interface master transactor is then
associated with that interface instance to drive the module ports, as shown in
Example 5-21. Transactions would thus be generated not by executing instructions
but by having the transactor execute transaction descriptors. Connectivity is preserved
and verified because the transactor is inserted within the original design unit
interface. The run-time of testcases is also improved because fewer lines of code are
simulated, there is no need to fetch instructions and there is no object code being
executed by the processor core.
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Figure 5-2. Replacing a Design Unit with a Transactor

Example 5-20. Replacement Module for Embedded Stimulus Generation
module arm_core(input  hclk,
                output mhbusreq,
                input  mhgrant, ...);

ahb_if sigs();
assign sigs.hclk    = hclk;
assign mhbusreq     = sigs.mhbusreq;
assign sigs.mhgrant = mhgrant;
...
endmodule

Example 5-21. Embedded Transactor
task dut_env::build();
   ahb_master core = new(...,
                         top.dut.core_i.sigs.master,
                         ...);
   ...
endtask

When substituting a design block for a transactor, it may be necessary to ensure that
the generated stimulus is representative of system-level activity.

CONTROLLING RANDOM GENERATION
The objective of a random generator is to be able to create all of the necessary
stimulus to fully verify a design. Some of that stimulus can be created without any
constraints other than those required to ensure that valid stimulus is being created.
Other stimulus will require additional or modified constraints to hit certain corner
cases or inject errors.

ARM Core

AMBA AHB Interconnect

AMBA AHB
Interface

Code
Mem

Master
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The ability to create certain stimulus patterns is directly related to the ability to
express the constraints that will cause the patterns to be generated. If it is not possible
to express a constraint between two variables, it will not be possible to create a
relationship between their respective values. Declarative constraints can be expressed
only across properties (or sub-properties) of a class. Procedural constraints can be
expressed across disjoint variables using the std::randomize with statement.
Declarative constraints are preferable as they can be added to, modified or removed
without modifying or duplicating the generation code.

Instead of coding a directed testcase to verify a particular function of the design, it
may be simpler to modify the constraints on the generators to increase the likelihood
that they will generate the required data streams on their own. Adding, or modifying
constraints that already exist, can be simple if the guidelines outlined in this chapter
have been followed.

Alternative 5-19 —A testcase may turn the rand mode of properties ON or OFF.

Because generators are always randomizing the same instance, it is possible to
“remove” the rand mode on arbitrary properties which, for a particular test, must
remain constant. The rand mode of some properties may have been turned off by
default to prevent invalid data from being generated. Turning them back on and
adding relevant constraints can be used to inject errors. This is a procedural constraint
modification and can be executed at any time during the execution of a testcase.

Example 5-22. Controlling the rand Mode of a Class Property
this.host_src.randomized_obj.dst = this.cfg.mac.addr;
this.host_src.randomized_obj.dst.rand_mode(0);
this.host_src.randomized_obj.src = this.cfg.dut_addr;
this.host_src.randomized_obj.src.rand_mode(0);

Alternative 5-20 —A testcase may turn constraint blocks ON or OFF.

Because generators are always randomizing the same instance, it is possible to turn
constraint blocks ON or OFF using the constraint_mode() method. This
method is used to disable constraint blocks that may have been designed to prevent
the injection of errors or to modify the distribution of the generated values to obtain a
different distribution. This is a procedural constraint modification and can be
executed at any time during the execution of a testcase.

Example 5-23. Controlling Constraint Blocks
program test_collisions;
...
initial begin
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   ...
   env.build();
   ...
   env.phy.randomized_col.no_collision
     .constraint_mode(0);
   ...
   env.run();
end
endprogram

Alternative 5-21 —Testcases may provide external constraint block definitions.

If the definition of a randomized class contains extern constraint blocks,
they can be defined for each testcase. This style requires the pre-existence of an
undefined extern constraint block, as per Recommendation 4-86, and can only
be used to add constraints. The new constraint block definition is added simply
by including a source file that defines it. This change is a declarative constraint
modification that applies to all instances of the class. They will be taken into
consideration (unless the constraint block is turned OFF) whenever an instance
of the class is randomized. The constraints apply for the entire duration of the
testcase execution.

Example 5-24. Specifying External Constraints
program test;
...
constraint eth_frame::tc1 {
   data.size() == min_len;
}
initial begin
   ...
   env.run();
end
endprogram

Alternative 5-22 —A testcase may replace randomized instances with instances of a
derived class with additional constraints.

It is not always possible to create the desired data stream simply by turning
constraints on or off or by tweaking distribution weights. If the constraints or variable
distribution weights did not exist prior, it will not be possible to create the necessary
stimulus.

Because generators are always randomizing the same instance (“OOP Primer: Factory
Pattern” on page 217), it is possible to replace the randomized instance with an
instance of a derived class. And because the randomize() method is virtual, the
additional or overridden constraint blocks in the derived class will be used. Unlike the
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external constraint block implementation, this mechanism allows the addition of class
properties and methods and further extension of virtual methods to facilitate the
expression of the required constraints. It also allows the redefinition of existing
constraint blocks and methods.

Although the class extension is declarative and global to a simulation, the substitution
of the randomized instance with an instance of this new class is procedural. This
constraint modification can be executed at any time during the execution of a testcase.

Example 5-25. Replacing a Factory Instance
program test_...;
...
class long_eth_frame extends eth_frame;
   constraint long_frames {
      data.size() == max_len;
   }
endclass: long_eth_frame
...
initial begin
   env.build();
   begin
      long_eth_frame fr = new;
      env.host_src.randomized_obj = fr;
   end
   ...
   top.env.run();
end
endprogram

Example 5-26. Constraining the Test Configuration
class duplex_test_cfg extends test_configuration;
   constraint test_Y {
      mode == DUPLEX;
   }
endclass

program test_Y;
initial begin
   duplex_test_cfg my_cfg = new;
   top.env.randomized_cfg = my_cfg;

   top.env.run();
end
endprogram
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Atomic Generation
Atomic generation is the generation of individual data items or transaction
descriptors. Each is generated independently of the items or descriptors that have
been previously generated or that will be subsequently generated. Atomic generation
is like using a random function that returns a complex data structure instead of a
scalar value.

Example 5-27. Atomic Generator
class eth_frame_gen extends vmm_xactor;
   ...

eth_frame randomized_fr;
   ...
   virtual protected task main();
      ...
      while (...) begin
         ...
         if (!this.randomized_fr.randomize()) ...
         ...
      end
      ...
   endtask: main
endclass: eth_frame_gen

Atomic generation is simple to describe and to use, as shown in Example 5-27. Its
ease of use is the reason atomic generation is used to illustrate most of the generation
and constraints examples in this book—and other literature. However, it is unlikely to
create interesting stimulus sequences on its own, even with the addition of
constraints.

For example, how could an atomic instruction generator be constrained to generate a
well-formed loop structure? How about a nested loop structure? Generating
interesting stimulus sequences requires the ability to constrain random stimulus
within the context of the previous and subsequent items and descriptors.

Recommendation 5-23 —The predefined atomic generator vmm_atomic_gen
should be used.

The predefined atomic generator created by the vmm_atomic_gen macro follows
all relevant guidelines. With a few keystrokes, a powerful atomic generator can be
created for any type derived from the vmm_data class. See “vmm_atomic_gen” on
page 415 for more details.
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Scenario Generation
A scenario generator generates sequences of data items or transaction descriptors.
That is the purpose of the randsequence statement—also known as the stream
generator. However, the randsequence statement is a procedural statement.
Modifying the constraints or defining new scenarios in a scenario generator
implemented using this statement requires that the generator itself be modified—
potentially breaking or modifying the behavior of existing tests. A scenario generator
that makes use of the object-oriented framework will allow such modifications to be
made without modifying the generator.

A scenario is described—and randomized—using an array of data items or
transaction descriptors. It is possible to constrain items and descriptors with respect to
others before or after it in the sequence because the array is randomized all at once.
This style lets the solver consider the past, current and future items and descriptors
when solving a constraint set over a stimulus sequence.

Example 5-28. Scenario Generator
class eth_frame_sequence extends vmm_data;
   ...
   rand eth_frame items[];
   ...
enclass: eth_frame_sequence
...
class eth_frame_sequence_gen extends vmm_xactor;
   ...

eth_frame_sequence randomized_sequence;
   ...
   virtual protected task main();
      ...
      while (...) begin
         if (!this.randomized_sequence.randomize()) ...
         ...
      end
   endtask: main
endclass: eth_frame_sequence_gen

The scenario generator shown in Example 5-28 is remarkably similar to the atomic
generator shown in Example 5-27. In fact, they are identical. The only difference is in
the type of the object being randomized. Whereas an atomic generator randomizes the
data item or transaction descriptor directly, a scenario generator randomizes a
scenario descriptor that contains the data items or transaction descriptors that form the
scenario. All of the techniques illustrated with an atomic generator can be applied to a
scenario generator because they are essentially the same thing. They only differ in the
type of object they randomize.
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Different scenarios are described as different variations of a scenario descriptor.
Based on a (randomized) scenario identifier, each scenario is described as a series of
constraints or procedural steps as shown in Example 5-30. The simplest scenario is
one containing only one unconstrained item, effectively mimicking an atomic
generator.

Example 5-29. Scenario Descriptor
class eth_frame_sequence;
   ...
   rand int unsigned sequence_kind;
   rand int unsigned length;

   rand eth_frame items[];
   ...
endclass: eth_frame_sequence

Example 5-30. User-Defined Scenarios
class my_scenarios extends eth_frame_sequence;
   ...
   constraint burst_of_short_frames {
      if (scenario_kind == SHORT_FRAMES) {
         length > 2;
         foreach (items[i]) {
            items[i].data.size == items[i].min_len;
         }
      }
   }
   ...
   virtual task apply(eth_frame_channel channel,
                      ref int           n_insts);
      if (scenario_kind == REPEAT_10) begin
         repeat (10) begin
            channel.put(items[0]);
         end
         n_insts = 100;
         return;
      end
      ...
      super.apply(ch, n_inst);
   endtask: apply
endclass: my_scenarios

The only problem is that the SystemVerilog standard does not define the semantics of
randomizing the size of an array very precisely. In particular, what is the final content
of a randomized array if the randomized size is greater than the original size of the
array prior to randomization? For arrays of scalars, additional elements are added and
are randomized. But what about arrays of class instances? Are new instances of the
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class created then randomized? What if the array is of a virtual class that cannot be
directly instantiated? What if the array should be filled with instances of derived
classes?

The following guidelines will help implement a scenario generator that will be
portable across different SystemVerilog simulators.

Recommendation 5-24 —Scenario generators should be implemented using the
vmm_scenario_gen macro.

The vmm_scenario_gen macro is used to quickly implement scenario generators
using a predefined set of base classes and templates. It ensures that they follow the
guidelines outlined in this section and present a consistent user-extension interface.

Rule 5-25 — Scenarios shall be described using extensions of a scenario descriptor
base class.

Additional scenarios are described as additional variants of the scenario descriptor.
Different variants can be described in the same extensions, based on the value of the
scenario_id attribute, or as concurrent extensions. The base class needs to
provide scenario identification management and item allocation services.

Rule 5-26 — A scenario shall be identified using an integer class property,
initialized using a define_scenario() method.

The scenario_id class property is an integer value identifying the specific
scenario described by the descriptor. The actual value that corresponds to a particular
scenario is not functionally relevant and assigned by the scenario descriptor base class
in the define_scenario() method. This method ensures that scenario identifiers
are unique, even if a new scenario is added to an intermediate extension of the class. It
also manages the potential need for allocating the data or transaction descriptor
instances in the scenario before randomization.

Example 5-31. Identifying a New Scenario
class my_scenarios extends eth_frame_sequence;

int SHORT_FRAMES = define_sequence(...);
   ...
endclass: my_scenarios
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Rule 5-27 — A random scenario shall be specified using a constraint block with a
conditional constraint based on the value of the scenario_id class
property.

Random scenarios are defined as constraints on the array of individual items that
make up the scenario. To enable the co-existence of concurrent scenarios within the
same descriptor as different values of the scenario_id class property, the
constraints defining a particular scenario must be enclosed in a qualifying pre-
condition. Using a separate constraint block for each random scenario will also allow
a scenario to be redefined in a further extension of the scenario descriptor.

Example 5-32. Specifying a New Random Scenario
class my_scenarios extends eth_frame_sequence;
   ...

constraint burst_of_short_frames {
      if (scenario_kind == SHORT_FRAMES) {
         ...
      }

}
endclass: my_scenarios

Rule 5-28 — Procedural scenarios shall be implemented as extensions of the
scenario descriptor’s apply() method.

Some scenarios are better described using a procedural implementation—such as
using a repeat loop to generate a long sequence of identical data or transaction
descriptors or by using the randsequence statement. These procedural—and often
directed—scenarios are then included in random tests as another available scenario.
That way they will be surrounded by other random or procedural scenarios and may
uncover an unexpected problem.

A procedural scenario may require runtime interaction with the environment to be
fully specified. The data may be a priori generatable but may also depend on runtime
feedback information from the environment. If visibility over the environment or
design signals is required, the necessary signals can be accessed by using cross-
module references.

Example 5-33. Defining a Procedural Scenario
class my_scenarios extends eth_frame_sequence;

...
   constraint back_off {
      if (sequence_kind == BACKOFF) length == 1;
   }
   ...
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   virtual task apply(...);
      if (this.sequence_kind == REPEAT_10) begin
         repeat (10) begin
            channel.put(this.items[0]);
         end
         ...
         return;
      end
      if (this.sequence_kind == BACK_OFF) begin
         @ (posedge env.mii.crs);
      end
      super.apply(...);
   endtask: apply
endclass: my_scenarios

Rule 5-29 — Extensions of the scenario descriptor’s apply() method shall not
execute the default implementation if the scenario items are manually
added to the output channel.

The default implementation of the apply() method forwards the content of the
generated scenario to the generator’s output channel. If a procedural scenario leaves
the scenario array non-empty and the default implementation is called, some items
may be added twice to the output channel.

The default implementation of the method can be skipped by not calling
super.apply() method in a scenario descriptor extension, as illustrated in
Example 5-33, if the REPEAT_10 scenario is generated.

Recommendation 5-30 —The predefined scenario generator
vmm_scenario_gen should be used.

The predefined scenario generator created by the vmm_scenario_gen macro
follows all relevant guidelines. With a few keystrokes, a powerful scenario generator
can be created for any type derived from the vmm_data class. See
“vmm_scenario_gen” on page 418 for more details.

Multi-Stream Generation
It may be necessary to coordinate the generation of scenarios on different stimulus
streams to create interesting conditions in the design under test. Scenario generators
generate stimulus of a single stream. It is not possible to express constraints across
scenarios in different streams because they are generated in different generators and
are not within the object being randomized by any given generator. The ability of
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expressing constraints across streams requires that the data or descriptors for all of the
streams be randomized as a single object.

Alternative 5-31 —Multiple single-stream generators can be synchronized.

This approach can be used if the multi-stream scenario simply requires the initial
synchronization of normally-independent streams. It cannot be used if cross-
correlation of the content of the individual streams or synchronization of individual
transactions within the streams is required.

For example, to generate a collision on an Ethernet medium by forcing all devices to
start transmitting at the same time can be accomplished by synchronizing all
transmitting transactors. This can be implemented through callback extensions, as
shown in Example 5-14.

Alternative 5-32 —A single-stream scenario generator can generate a multi-stream
scenario.

A single-stream scenario generator only knows about its corresponding output
channel. The individual transactions that make up the generated scenarios are applied
to that channel. But that is only a default behavior. A scenario descriptor could refer
to other output channels and its apply() method could forward the generated
transactions to the various output channels to form a multi-stream scenario.

Example 5-34. Multi-Stream Scenario Descriptor
class my_scenarios extends eth_frame_sequence;
   ...
   virtual task apply(eth_frame_channel channel,
                      ref int           n_insts);
      if (this.sequence_kind == ...) begin
         wb_cycle cyc = new(...);
         ...
         channel.put(this.items[0]);
         channel.put(this.items[1]);
         ...
         env.host.exec_chan.put(cyc);
         ...
         fork
            channel.put(this.items[2]);
         join_none
         ...
         env.host.exec_chan.put(cyc);
         ...
         return; // As per Rule 5-29
      end
      super.apply(channel, n_insts);
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   endtask: apply
endclass: my_scenarios

Alternative 5-33 —A multi-stream scenario generator can be used.

A multi-stream scenario generator generates and concurrently applies a scenario for
each one of its output streams. The individual output streams need not carry the same
type of data or transaction descriptors. A multi-stream scenario is generated by
randomizing a multi-stream scenario descriptor that constrains a scenario descriptor
for each of the output streams, as shown in Example 5-35. A multi-stream scenario
generator is similar to a single-stream scenario generator except that it has multiple
output channels and, by default, applies each stream to their respective output channel
concurrently.

Example 5-35. Multi-Stream Scenario Descriptor
class dut_ms_sequence;
   rand eth_frame_sequence to_phy;
   rand eth_frame_sequence to_mac;
   rand wb_cycle_sequence  to_host;
   ...
   virtual task apply(eth_frame_channel to_phy_chan,
                      eth_frame_channel to_mac_chan,
                      wb_cycle_channel  wb_chan);
      ...
   endtask
endclass: dut_ms_sequence

State-Dependent Generation
The traditional way to make the random generation process dependent on external
state information is to embed knowledge of the external state data into the generator
itself as procedural code. The external state is mirrored in the generator and is
represented by a combination of variable values and current location of the various
execution threads. Modifying the generation rules to reach new corner cases or inject
errors required modification of the code itself.

The external controllability of the generators presented earlier was based on the
declarative nature of constraints and methods involved in the randomization process.
To maintain the same level of controllability in a state-dependent generator, it is
necessary to make the relevant state data declaratively visible to the randomization
process. They can then be externally modified to create new corner cases or inject
errors without modifying the generator itself.
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Randomization of a stimulus item—and the constraints considered while randomizing
it—has a well-defined scope: the object instance where the randomize() method
is called. To make the randomization process state-dependent, the state information
must be brought into that scope. Unfortunately, the stimulus item is often not directly
modifiable to make the necessary state information visible. It is typically a generic
data model or transaction descriptor provided along with the transactors that should
not be modified to include DUT-specific or test-specific concerns.

The alternative is to create a broader scope by composing the data model or
transaction descriptor with all of the information required to express the constraints
necessary to create corner cases or inject errors. This higher-level object is the one
that is randomized instead of only the data or transaction. The randomization process
now has the ability to include arbitrary state information and use that information
declaratively to constrain the next stimulus item to be generated.

The additional state information can come from many different sources. Its nature is
defined by the stimulus requirements of the DUT, to create valid stimulus according
to higher protocol levels, reach corner cases and inject relevant error conditions. It
may include—but is not limited to—DUT configuration information, interface signal
values, internal state data, past stimulus items and protocol state descriptors.

The set of valid or interesting values may be limited by configurable parameters in the
DUT. For example, a MAC interface will only accept frames that have a matching
destination address. But the address of a MAC interface is programmable (otherwise,
every Ethernet device that uses that MAC interface design would have the same
address). When generating frames to be sent to a MAC interface, the destination
address class property must be constrained to match (or not match to verify the proper
rejection of frames addressed to another device).

This constraint can be accomplished by setting the destination address class property
to the desired value and turning its rand attribute OFF, as shown in Example 5-36.
Alternatively, an Ethernet frame extended with the MAC interface configuration can
be randomized, as shown in Example 5-37.

Example 5-36. Configuration-Dependent Generation
this.host_src.randomized_obj.dst = this.cfg.mac.addr;
this.host_src.randomized_obj.dst.rand_mode(0);
this.host_src.randomized_obj.src = this.cfg.dut_addr;
this.host_src.randomized_obj.src.rand_mode(0);
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Example 5-37. Configuration-Dependent Generation using Composition
class dut_eth_frame extends eth_frame;
   test_cfg  cfg;

   constraint match_dut_address {
      if (!cfg.mac.promiscuous) dst == cfg.dut_addr;
   }
   constraint valid_src_address {
      src == cfg.mac.addr;
   }
   ...
endclass: dut_eth_frame

This latter approach has the advantage that the address-matching constraint can be
arbitrarily overloaded to implement different configuration-dependent generation
rules, without modifying the generator itself. For example, a certain number of frames
with mismatching addresses can be generated as shown in Example 5-38.

Example 5-38. Modifying Configuration-Dependent Generation
class my_dut_eth_frame extends dut_eth_frame;
   rand bit match;

   constraint match_dut_address {
      match dist {1:/9, 0:/1};
      if (match) dst == cfg.dut_addr;
      else       dst != cfg.dut_addr;
   }
   ...
endclass: my_dut_eth_frame

If the validity of a protocol requires a certain sequence in the values of data items
transmitted back and forth between two peers, it is not possible to randomly generate
individual data items without knowing where, in the protocol state sequence, the
exchange is currently situated. 

For example, the successful, error-free exchange of data between two peers on a TCP
socket requires the following exchange of packets between the client and the server:

client   ---- SYN     --->   server
         <--- SYN+ACK ----
         ---- ACK     --->
         <--- ...
      (no SYN, no FIN, no RST)
              ...     --->
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         ---- FIN     --->
         <--- ACK     ----
         <--- FIN     ----
         ---- ACK     --->

To complicate the problem, a TCP server must be able to maintain several concurrent
connections with a certain number of clients, including multiple clients connected to
the same server port and a port on a client connected to different ports on the server.
The protocol state information must thus be tracked for several concurrent
connections, each evolving independently. Random stimulus must be generated
coherently on all concurrent connections, including creating new ones and closing
existing ones.

Before designing and implementing a random generator, it helps to consider what
type of stimulus it will have to generate to exercise the design under all interesting
conditions and corner cases. If we only consider connection establishment,
maintenance and closing on the TCP server, the generator must be able to create—on
its own or with the help of constraints—the following interesting situations:

1. Maximum number of established sessions (one per client, with a single client)
2. Maximum number of ports open
3. Maximum number of established sessions on a single port (host and server)
4. Many very short sessions
5. Sessions to privileged and ordinary ports

The generator should be designed to be constrainable to reach these points if it does
not on its own. The alternative would be to code a generator that can randomly select
a specific point to reach, then generate the stimulus for it—but that is no different than
writing directed testcases in a case statement with a random selector.

Rule 5-34 — Actions relevant to advancing the state of the protocol shall be
generated.

Randomly generated stimulus must be of the proper level of abstraction to offer the
necessary controls to achieve the desired outcome. By generating individual TCP
packets, the level of abstraction is not high enough to reach the desired functional
coverage goal—expressed in terms of connections, not packets. The stimulus
generator should therefore generate connection-related actions, not individual
packets. These actions will eventually map to individual packets, but the packet will
be constrained by the desired action to meet the requirement of the higher level
protocol.
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The possible TCP connection actions that can be generated are: initiate a new
connection, maintain an existing connection or terminate an established connection.
The action must also be targeted to a new client, an existing client or an existing
connection. Once the client, connection and actions have been generated, that
information can be used to generate the next TCP packet to be transmitted to the host.

Alternative 5-35 —Stimulus may be the result of several randomization steps.

The stimulus generation process may be easier to describe and constrain if
decomposed into separate steps. For TCP packets, it is easier when two steps are
used: First, a (random) decision is made whether to create a new client or use an
existing one. Next, an action and the corresponding packet are randomly generated.

The TCP packet generator first randomizes a client selection descriptor that includes
the necessary test configuration parameters to limit the number of clients, as shown in
Example 5-39. If an existing client with existing connections is picked, one of the
sessions is randomly selected for potential action.

Example 5-39. Randomized TCP Client Selector
class tcp_client_selector;
   int max_n_clients;
   int n_clients;

   rand bit new_client;
   ...
   constraint boundaries {
      if (n_clients >= max_n_clients) new_client == 0;
      if (n_clients == 0)             new_client == 1;
   }
endclass: tcp_client_selector

The TCP action (and corresponding packet) are generated in a second step, where a
TCP action descriptor, shown in Example 5-40, is randomized. The descriptor
includes the relevant client and session configuration information to express
constraints that will generate a valid action and packet.

Example 5-40. Randomized TCP Action Descriptor
class tcp_client_action;
   tcp_client_session client;

   typedef enum {OPEN, CHAT, CLOSE} action_e;
   rand action_e action;

   constraint open_iff_before_established {
      if (client.state < tcp_client_session::ESTAB)
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         action == OPEN;
      else action != OPEN;
   }
   ...
endclass: tcp_client_action

Rule 5-36 — State transition rules shall be specified using constraints.

The traditional mechanism for describing state-dependent relationships and
sequences is to use a case statement, with the current state register as a selector.
Each state-dependent decision is implemented in the code block corresponding to the
required current state value. Random decisions may be included in the process. For
example, if there are three possible outcomes for a given current state, the actual
outcome may be decided randomly amongst the three candidates. The problem with
this approach is that the decision process or the constraints in random decisions can
only be modified (for example, to inject errors) by modifying the generator itself.
Because a case statement is procedural, not declarative, it cannot be replaced or
overloaded using object-oriented programming techniques.

The next-state decision can be done using constraints. Because constraints are
declarative, they can be externally modified or added to using any of the techniques
shown earlier. Example 5-41 shows how the content of the next TCP packet is defined
using constraints based on the TCP action to be performed and the current state of the
target connection.

Example 5-41. Subset of Next-Packet Constraints
class tcp_client_action
   tcp_client_session client;
   ...
   rand tcp_packet pkt;
   ...
   constraint syn_iff_open {
      if (action == OPEN) pkt.syn == 1;
      else                pkt.syn == 0;
   }
   ...
   constraint fin_iff_close {
      if (action == CLOSE) pkt.fin == 1;
      else                 pkt.fin == 0;
   }
   ...
endclass: tcp_client_action
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Rule 5-37 — Individual state transition rules shall be specified as separate
constraint blocks.

Note how each next-state transition for the next-packet generation in Example 5-41 is
coded in a separate constraint block, one per protocol rule. Constraint blocks are the
smallest declarative constructs that can be modified or turned off. Expressing
constraints with this level of granularity provides the same granularity of control for
testcases over the protocol implementation. For example, a testcase could randomly
reset a connection halfway though the synchronization steps by overloading the
relevant constraint block, such as illustrated in Example 5-42.

Example 5-42. Injecting Protocol Errors
class my_action extends tcp_client_action
   constraint never_rst {
      if (action == OPEN) rst == 0
   }
endclass: my_action

Rule 5-38 — The generator shall update the protocol state based on the response
received.

The TCP packet generator must also update the state of connections based on packets
received from the server in response to packets sent by the client. An independent
process can monitor the received packets and update the appropriate session
descriptors, as shown in Example 5-43.

Example 5-43. Updating Connection State Based on DUT Response
if (pkt.rst) session.state = tcp_client_session::CLOSED;
else begin
   case (client.state)
   tcp_client_session::SYN_SENT:
      if (pkt.syn && pkt.ack)
         client.state = tcp_client_session::ESTAB;
      else client.state = tcp_client_session::CLOSED;
   ...
   endcase
end

Which Type of Generator to Use?
This chapter has presented several styles of stimulus generators, each with their
capability and limitations. The question that naturally arises is: Which type of
generator should be used? The guidelines below should help answer this question.
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Rule 5-39 — Atomic generators shall be used for configuration generation.

Configuration information is generated only once at the beginning of a simulation.
Therefore, the data-sequencing capabilities of a scenario or state-dependent
generators are not required.

Atomic generators may also be used for simple data interfaces where it will not be
necessary to create specific sequences of input stimulus.

Rule 5-40 — Scenario or state-dependent generators shall be used initially.

Whether a simple scenario generator may be used or a state-dependent generator must
be used depends on the nature of the stimulus required by the design. If the stimulus
must follow certain protocol states, then a state-dependent generator must be used.

They should be able to provide a large portion of the stimulus required by the design.
It may even be possible that they will create more complex scenarios, on their own,
potentially eliminating the need for multi-stream generators.

Rule 5-41 — Scenario generators shall be replaced with a single multi-stream
generator in an extension of the verification environment.

A multi-stream generator may be required to exercise the design under certain
conditions. It should be introduced into the environment by replacing the scenario
generators for the streams now generated by the multi-stream generator. This
substitution should be performed in an extension of the verification environment to
avoid breaking any of the tests written using independent scenario generators. The
substitution is performed in the extension of the vmm_env::build() method, by
setting the reference to the individual scenario generators to null so they will be
reclaimed by the garbage collector and using their output channels.

Example 5-44. Replacing Scenarios Generators with a Multi-Stream Generator
class my_dut_env extends dut_env;
   ms_scenario_gen gen;
   ...
   virtual function void build();
      super.build();
      gen = new(..., {this.src[0].out_chan,
                      this.src[1].out_chan,
                      this.apb_gen.out_chan}, ...);
      this.src[0]  = null;
      this.src[1]  = null;
      this.apb_gen = null;
   endfunction: build
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endclass: my_dut_env

Rule 5-42 — References to replaced scenario generators shall be set to null.

By setting the reference to the individual scenario generators to null, they will be
reclaimed by the garbage collector. But more importantly, it will prevent them from
being started in the extension of the vmm_env::start() method, thus competing
for the output channel.

SELF-CHECKING STRUCTURES
Because each self-checking structure is unique to the design being verified, there is
little functionality that can be reused across self-checking structures. Hence, this book
does not describe a base or utility class to help implement them. Common
functionality—and reuse—can be found across projects in the same application
domain. Entire self-checking structures may even be reusable across generations of
the same product. But this book is concerned with multiple application domains and
no specific products; hence, unlike the other portions of the verification environment,
the book cannot present some base-level functionality.

This section does present techniques for encapsulating and integrating a self-checking
structure as well as techniques for transaction-accurate response checking. These
techniques are generic and are applicable to a wide range of domains.

Rule 5-43 — The self-checking structure shall be encapsulated in a class.

The class will encapsulate the self-checking structure independently of the nature
of its actual implementation. If the self-checking structure is implemented using
SystemVerilog, the implementation would be inlined or instantiated as required in the
class. If the self-checking structure is implemented in C or another co-simulated
model or is performed offline, then the class will abstract the integration mechanics
to present a pure SystemVerilog access interface to the rest of the verification
environment.

Encapsulating the self-checking structure in a class also enables it to be multiply
instantiated, should a system be composed of multiple instantiations of the
corresponding block.



Self-Checking Structures

Verification Methodology Manual for SystemVerilog 247

Example 5-45. Self-Checking Structure
class scoreboard;
   ...
endclass: scoreboard

Rule 5-44 — The self-checking structure shall require a reference to the test and
design configuration descriptor in its constructor.

The response to be checked will depend on the configuration of the design. Since that
configuration is only known at the start of the vmm_env::build() method, it
must be passed to the self-checking structure.

The constructor can then use the value of the configuration descriptor to instantiate
the appropriate data structures or open the required files.

Example 5-46. Self-Checking Structure Configuration
class scoreboard;
   local test_cfg cfg;
   ...
   function new(test_cfg cfg);
      this.cfg = cfg;
      ...
   endfunction: new
   ...
endclass: scoreboard

Rule 5-45 — The self-checking structure shall be instantiated in a public class
property of the verification environment.

Various components of the verification environments will need to have access to the
self-checking structure, either to register stimulus, or to check response or to update
design state information. The instance of the self-checking structure will be globally
visible and accessible whenever the environment is visible.

Example 5-47. Self-Checking Structure Instantiation
class tb_env extends vmm_env;
   test_cfg cfg;
   ...
   scoreboard sb;
   ...
   function void build();
      super.build();
      ...
      this.sb = new(this.cfg);
      ...
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   endfunction: build
   ...
endclass: dut_env

Rule 5-46 — The self-checking structure shall have no reference to the verification
environment.

The self-checking structure needs information from all components in the verification
environment. Thus, it is tempting to have the self-checking structure access the
various components in the environment to obtain that information. Because the
environment is built using a structure of class instances, not module instances, cross-
module references—which are resolved after elaboration—cannot be used.
Hierarchical class references—which are resolved at compilation time—must be
used. This activity creates compilation dependencies between the self-checking
structure and the verification environment.

Furthermore, if a self-checking structure contains internal references to the unit-level
verification environment, it will not be reusable in the system-level environment.

Rule 5-47 — The self-checking structure shall have a procedural interface to report
injected stimulus, exceptions and observed responses.

The verification environment will access the tasks in the self-checking structure
class to record stimulus and response data as required. This access ensures a
strictly linear compilation dependency between the environment and the self-
checking structure.

It will also enable a unit-level self-checking structure to be reused in a system-level
environment, in a different verification environment. The response for different
instances of a design block is verified by accessing the procedural interface in the
appropriate instance of the self-checking structure.

Example 5-48. Self-Checking Structure Procedural Interface
class scoreboard;
   ...
   function void sent_from_mac_side(eth_frame fr);
      ...
   endfunction: sent_from_mac_side
   ...
   function void received_by_mac_side(eth_frame fr);
      ...
   endfunction: received_by_mac_side
   ...
endclass: scoreboard
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Recommendation 5-48 —Channels and mailboxes should not be used to
interface to the self-checking structure.

Channels and mailboxes are designed to implement communication media between
concurrent processes. A self-checking structure should be implemented using zero-
delay processing and should not require running as a separate process.

If the self-checking structure requires simulation time to verify and observe response
or to record a reported stimulus, the blocking thread should be forked from the
procedural interface to prevent the threads of the transactors interfacing with the self-
checking structure from blocking.

Scoreboarding
This section presents guidelines to help you implement a self-checking structure
implemented in SystemVerilog using scoreboarding techniques.

Rule 5-49 — The data structure that holds the expected response shall be designed
to minimize the look-up operation.

Because it may be difficult to predict the exact order in which outputs will be
observed, it is unlikely that a single variable or queue will be sufficient to implement
the data structure. At any given time, there may be several possible valid responses
from the design, depending on the implementation details and internal resources
usage. Response may be concurrently observed on multiple interfaces, with irrelevant
—and unpredictable—ordering among them.

The comparison function will have to identify, as efficiently as possible, if the most-
recently observed response matches one of the possible valid responses. Data
structure design is beyond the scope of this book—and has been well-covered in
many other works—but some language constructs and techniques can be used.

Recommendation 5-50 —A queue should be used to store in-order responses.

If the expected response must come in a specific order, a dynamic array or a
queue should be used to store the individual responses in the order in which they are
expected.

Response is predicted in the same order in which it will be observed. This prediction
requires that a new prediction be added at the end of the data structure and observed
response be checked against—and removed from—the front of the data structure. A
queue is better suited because it is designed to offer the same performance when
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adding or removing an element, regardless of its position in it. A dynamic array
would need to have its entire content shifted by one position every time a response is
checked. This shifting operation would be more inefficient, especially if there is a
large number of predicted responses in the data structure.

Recommendation 5-51 —Multiple queues should be used to store independent in-
order streams.

The response on several concurrent output interfaces may be observed in any order.
But the sequence of responses observed on a single interface is likely to be in-order.
Using one queue per output interface allows the queue to store the predicted
response of each interface in the expected order. They also let the observed response
across the various interfaces be efficiently checked in any order: It is supposed to
match the predicted response at the front of the queue corresponding to the output
interface where it was observed.

Example 5-49. Checking In-Order Response for Multiple Output Ports
class port_sb;

eth_frame frame_seq[$];
endclass: port_sb

class scoreboard;
port_sb predicted[4];

   ...
   function void received_frame(eth_frame fr,
                                int unsigned port_no);
      eth_frame expect = 
         predicted[port_no].frame_seq.pop_front();
      if (!fr.compare(expect)) ...
   endfunction: received_frame
   ...
endclass: scoreboard

Suggestion 5-52 — The scoreboard may not need to predict the exact transactions
that were lost.

Dropping transactions or data items is not a functional fault in many applications. In
some classes of designs, it may be extremely difficult to predict the exact transactions
or data items that will be lost or dropped by the design. The decision to drop a
transaction is often the result of the state of the design, resource utilization and some
implementation-dependent timing or discard algorithm.

Rather than trying to duplicate the discard decision and circumstances in the
scoreboard, it may be easier to simply recognize when transactions may have been
dropped, and assume that they have been properly dropped. The number of assumed-
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dropped transactions is then confirmed using drop-count statistics in the design or
some other means of confirming the assumption about dropped transactions.

A transaction may be assumed dropped when it is present in the data structure ahead
of the predicted response that corresponds to the currently observed response.
Similarly, any predicted response left in the data structure at the end of the simulation
is either assumed to have been dropped or still in-process inside the design.

Example 5-50. Assuming Predicted Responses are Dropped
function void received_frame(eth_frame fr,
                             int unsigned port_no);
   forever begin: look_for_match
      eth_frame expect;
      if (predicted[port_no].frame_seq.size() == 0) ...
      expect = predicted[port_no].frame_seq.pop_front();
      if (fr.compare(expect)) break;
      maybe_dropped.push_back(expect);
   end
endfunction: received_frame

Suggestion 5-53 — The scoreboard may not need to predict the response with full
accuracy.

In some designs, it may not be possible to predict the timing or value of the response
with complete accuracy. For example, the result of a fixed-point operation in a DSP
design may not exactly match the predicted response calculated using floating-point
operations. Or the exact timing of a response may be implementation-dependent as
long as it falls within a certain window.

The observed response may be compared against the predicted response and be
considered valid as long as it is within an acceptable margin of error or bit error rate.

Example 5-51. Verifying the Result of a Fixed-Point Operation
function bit rcompare(real actual,
                      real expect,
                      real err)
   real delta;

   delta = actual - expect;
   if (delta < 0.0) delta= -delta;
   rcompare = delta <= err;
endfunction



Stimulus And Response

252 Verification Methodology Manual for SystemVerilog

Recommendation 5-54 —Serial numbers should not be embedded in the stimulus
data.

To facilitate the checking of the response ordering or locating the corresponding
expected response in the data structure, a unique serial or sequence number is often
added to the data in user-specified fields. This numbering will make it impossible to
reuse the self-checking structure in a system-level environment, should the user-
specified field have to be used to transport higher-level data.

Suggestion 5-55 — An index table may be useful to locate any matching predicted
response.

Instead of using serial numbers embedded in the stimulus data, it may be equally
efficient to use a hashing function to create a likely-unique key from individual
observed response values. That key can be used to look up an associative
array that would provide an index or pointer to the actual location of the expected
data. This strategy can eliminate costly search procedures throughout the data storage
structure.

Example 5-52. Using a Hashing Function to Locate Expected Response
function int hash(eth_frame fr)
   hash = fr.compute_crc();
endfunction

class sb_where_to_find_frame;
   int unsigned port_no;
   int unsigned queue_no;
endclass: sb_where_to_find_frame

sb_where_to_find_frame index_tbl[int];

function bit check(eth_frame actual)
   sb_where_to_find_frame where;
   eth_frame              q[$];
   eth_frame              expect;

   check = 0;
   if (!index_tbl[hash(actual)].exists()) return;

where = index_tbl[hash(actual)];
   q = sb.port[where.port_no].queue[where.queue_no];
   expect = q.pop_front();
   if (actual.compare(expect)) check = 1;
endfunction: check
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Integration with the Transactors
Transactors must be written independently of the verification environment for a
particular design if they are to be reusable in a different environment or with different
designs. The self-checking structure for the design is also created separately to be
reusable in a system-level environment. How can two independent components of the
verification environment—the self-checking structure and a transactor—be integrated
to work together to verify a particular design?

Alternative 5-56 —The procedural interface of the self-checking structure can be
called from a callback extension.

If a callback method has all of the required stimulus, response or state information, it
can pass that information to the scoreboard by invoking the appropriate procedure. As
per Rule 4-37 on page 131, these callback extensions must be registered first.

Example 5-53. Integrating a Scoreboard via Callback Methods
class sb_mac_cbs extends eth_mac_callbacks;
   scoreboard sb;

   function new(scoreboard sb);
      this.sb = sb;
   endfunction: new

   virtual task
      post_frame_tx(eth_mac             xactor,
                    eth_frame           frame,
                    eth_frame_tx_status status);
      if (status.successful && !this.sb.rx_err) begin
         this.sb.sent_from_mac_side(frame);
      end
      ...
   endtask: post_frame_tx
endclass: sb_mac_cbs
...
class tb_env extends vmm_env;
   virtual function void build();
      ...
      begin

sb_mac_cbs cb = new;
         this.mac.append_callback(cb);
      end
      ...
   endfunction: build
   ...
endclass: tb_env
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Alternative 5-57 —The procedural interface of the self-checking structure can be
called by a thread draining an output channel.

Any output channel must be drained to prevent the accumulation of data and the
eventual blocking of the producer thread. If the information in the transaction or data
descriptors coming out of the channel is sufficient for the scoreboard, the thread used
to drain the channel can be used to call the appropriate procedure in the scoreboard.

Note that this mechanism cannot be used if the flow of descriptors is required by an
upstream higher-layer transactor.

Example 5-54. Scoreboard Integration by Draining an Output Channel
virtual function void build();
   ...

fork
      forever begin
         eth_frame fr;
         this.mac.rx_chan.get(fr);
         this.sb.received_by_phy_side(fr);
       end
   join_none
   ...
endfunction: build

Alternative 5-58 —The procedural interface of the self-checking structure can be
called by a thread waiting for the status of an indicated
vmm_notify notification.

If a transactor provides all required information with the status of a notification, a
thread can forward that information to the scoreboard by calling the appropriate
procedure. Note that the status of an indicated notification is lost when the subsequent
indication occurs. Thus, it is important that the scoreboard integration thread does not
block before waiting for the next indication of the notification.

Example 5-55. Scoreboard Integration by Waiting on Notification
virtual function void build();
   ...

fork
      forever begin
         eth_frame_tx_status fr;
         this.mac.notify.wait_for(this.mac.FRAME_SENT);
         $cast(status,
               this.mac.notify.status(
                  this.mac.FRAME_SENT));
          if (status.successful) begin
             this.sb.sent_from_phy_side(status.fr);
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          end
         end
      join_none
   end

Dealing with Exceptions
Protocol exceptions should be injected by the transactor that generates the protocol in
question. This approach avoids complicating the data generation process and makes it
possible to inject errors in a lower-level protocol where there may not be a one-to-one
mapping between the high-level data item and the low-level transactions transporting
it—or low-level maintenance transactions that do not even involve high-level data.

To be able to correctly predict the response, the self-checking structure must be made
aware of exceptions injected during the application of stimulus to the design. The
exception may be benign—such as the insertion of wait states—or the exception may
cause a higher-level transaction to be repeated—such as a collision on an Ethernet
frame—or the exception may cause the entire high-level data transported by the low-
level transaction to be dropped—such as unsuccessful USB transaction in a bulk
transfer.

The task of predicting the consequence of such exceptions, even if incrementally
injected by the various transactor layers, is not more difficult than if the exact same
information had been entirely generated up front. The self-checking structure should
maintain context information for each transaction. That information should be readily
available via the context and implementation references in the data and transaction
descriptors, as recommended in Recommendation 4-64 on page 146. The self-
checking structure can thus determine the integrity of a high-level transaction carried
by a low-level transaction that was subjected to a particular exception.

Rule 5-59 — A description of the injected exception shall be reported to the self-
checking structure.

If exception injection is built into the transactor, the mechanism for reporting the
exceptions depends on the notification mechanism provided by the transactor. If the
exception injection is implemented as a user-extension of a callback method, it should
be reported via the same callback extension that records stimulus with the self-
checking structure.

Example 5-56. Reporting Exceptions to the Self-Checking Structure
class scoreboard;
   ...
   bit rx_err;
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   ...
endclass: scoreboard
...
class gen_rx_errs extends mii_phy_layer_callbacks;
   ...
   virtual task pre_symbol_tx(...);
      if (...) begin
         err = 1;
         this.sb.rx_err = 1;
      end
   endtask: pre_symbol_tx
endclass: gen_rx_errs

Rule 5-60 — Error injection callback registration shall be prepended to the self-
checking integration callback registration.

Exceptions can be injected through a user-defined extension of a callback method.
For example, it could corrupt the CRC of a frame to be injected. For the self-checking
structure to be aware of those exceptions, the execution of the exception injection
callback must be performed before the self-checking integration callback.

To ensure the proper callback execution order, self-checking integration callback
extensions must be registered first. Exception injection callback extensions must then
be registered using the vmm_xactor::prepend_callback() method.

Example 5-57. Prepending Error Injection Callbacks
env.build();
begin
   gen_rx_errs cb = new;
   env.phy.prepend_callback(cb);
end
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SUMMARY
This chapter has presented an architecture and associated coding guidelines for
modeling reusable and controllable random generators. These generators can also be
used as an insertion point for directed stimulus. If designed properly, generators can
be controlled using a variety of ways: making random variables constant, turning off
constraint blocks to relax constraints, adding external constrain block definitions to
tighten constraints and using inheritance to modify constraints.

This chapter has also presented techniques for encapsulating and integrating self-
checking structures. Techniques that can be used to implement a self-checking
structure using scoreboarding have also been detailed.
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CHAPTER 6 COVERAGE-DRIVEN
VERIFICATION

Traditionally, coverage is used as a confidence-building metric. It is used as a safety
net to ensure that the verification plan was as complete and that the design was
verified as thoroughly as possible. Coverage measurements are done toward the end
of the verification process, when the bulk of the testcases have been written. The
coverage metrics are usually expected to be initially relatively high, demonstrating
that the test suite, painfully developed over the previous months, is effective at
verifying the complete functionality of the design. The remainder of the project is
spent either tweaking the test suite to increase the coverage numbers and to justify
why some of these numbers cannot—or need not—reach 100%.

But what if the coverage metrics are, unexpectedly, initially low? This means that a
lot of effort was invested in a low-value test suite.

And what of initial high coverage metrics? The verification team may very well pat
themselves on the back, but could that same level of coverage have been achievable
earlier on in the project, with fewer testbenches?

This chapter presents a process where coverage metrics are used to guide where to
apply the next efforts in the verification process. It is of interest to project leaders and
managers who need to define how to best allocate their resources and keep track of
the progress of the verification project based on the requirements outlined in the
verification plan (Chapter 2). The latter half of this chapter will also be of interest to
verification engineers in charge of implementing functional coverage.

Developing and maintaining a good coverage model is a significant investment—
worthwhile, but still significant. Despite the significance of that effort, only a few
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techniques and constructs are used in the implementation of a coverage model. It is
the complexity of modern designs under test that makes for a complex coverage
model. A full treatment of coverage-based verification would thus have to be specific
to a particular design. This chapter focuses on the design-independent elements of
coverage-driven verification.

COVERAGE METRICS
Coverage metrics are measures of collected coverage data against stated or implied
goals, usually expressed as percentage. Coverage data is collected in one or more
databases by simulation or static tools. Coverage analysis or reporting tools compare
the collected data, usually aggregated from multiple simulations or static analysis,
against the goal for each coverage point. If the collected data fully covers the goal, the
coverage metric is reported as 100%.

Different coverage data can be collected, as described in “Coverage Models” on
page 261. The goal for a specific coverage measurement may be implied (e.g.,
execute every line of source code) or explicitly described (e.g., read and write from
all addresses from 0x000 to 0xFFF inclusively).

The coverage metrics for multiple coverage points is usually distilled into a single
overall coverage metric using a weighted average.

Coverage goals are not usually static during a verification project. An initial set of
coverage goals is outlined in the verification plan. But as the implementation of
testcases proceeds, those goals are updated as new corner cases and interesting
conditions are identified.

Rule 6-1 — Coverage data shall be collected as soon as it is practical.

The incremental contribution of each and every testbench must be known. This
knowledge lets the verification team focus on the high-value testbenches first and
quickly identify testbenches that contribute little toward the verification objectives.

If a promising testbench turns out to contribute little toward increasing the coverage
metrics, the premises behind that testbench must be questioned to identify why it is
not as useful as initially thought. Is there a bug in the testbench itself? Is the feature
verified in another testbench? Or are the targeted features not as significant as
originally thought? By answering these questions up front, the verification efforts can
be focused on the most value-add activities. Testcases should be designed to meet
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their requirements—i.e. meet their coverage targets. Coverage should not be an
afterthought once the testcase has been implemented.

The question then becomes: what is practical? "Practical" does not mean toward the
end of the project, when most testcases have been written. Neither does it mean when
the environment is still being developed. But it is practical to start collecting stimulus
functional coverage as soon as the stimulus generators are implemented. It is also
practical to implement and collect coverage data for a specific coverage point before
implementing the testcase that targets it.

Rule 6-2 — Only coverage metrics that will be looked at shall be collected.

If a coverage metric is never looked at, if its measure of completion is not expected
with baited anticipation after every regression, that coverage metric is probably
irrelevant. It is important to use relevant coverage metrics. Some coverage
measurements are easy to implement and can be used to produce a large number of
coverage metrics. But data is not information, motion is not action. Reaching 100%
coverage on an irrelevant metric may look like progress, but it is not productive work.
Too many irrelevant metrics will also make the analysis task much more difficult and
distract from the real verification objectives.

Rule 6-3 — Only coverage data resulting from error-free verification tasks shall be
considered.

Coverage data is usually collected during many simulations. It may also be collected
by other verification tools, such as formal verification. This data only records that a
particular functional verification requirement has been exercised; coverage data does
not measure a design’s correctness. Coverage data must be qualified by the result of
the verification task performed by the tool that collected the data. If the results were
negative, the coverage data from that task must be ignored.

COVERAGE MODELS
A coverage model embodies the requirements of the functional verification process.
The total stimulus and response space for a complex design is multi-dimensional and
almost infinite. Thus, it is not realistic to expect to exhaustively verify a design for all
possible combinations and sequences of stimuli and responses. A coverage model is a
definition of the stimulus/response space subset that will demonstrate, with an
acceptable degree of confidence, that the functionality of the design is correct.
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For example, the solution space for a 32-bit adder is a three-dimensional space
measuring 232 x 232 x 2 (input A x input B x carry-in). Exhaustively verifying this
simple design, assuming one set of input values can be verified every nanosecond,
and would require over one thousand years. But an adequate level of confidence in
the correctness of an implementation can be obtained by using just a few sets of input
pairs (e.g., all possible combinations of walking-ones, walking-zeroes, all-ones and
all-zeroes—less than one thousand input patterns). That set of inputs is the coverage
model for the combinatorial adder.

A coverage model is composed of structural coverage and functional coverage target
definitions. These definitions can be further refined into sub-metrics like FSM
coverage, expression coverage, cross-coverage and assertion coverage. The collection
of coverage metrics and the source of those metrics is independent of the coverage
model. Coverage metrics from simulation, formal analysis and structural analysis
tools are combined for an overall assessment of verification progress.

Note that combination does not imply distillation into a single percentage number.
Different coverage metrics measure different aspects of the coverage model and, like
apples and oranges, cannot be arbitrarily combined. However, it is possible for a
verification project to assign a relative importance to different metrics and distill a
single number based on a weighted average of the individual metrics.

Structural Coverage Modeling
Structural coverage models are implicitly defined by the code used to implement the
design. Structural coverage includes line coverage, expression coverage, toggle
coverage and automatically extracted FSM coverage. Structural coverage also
includes assertion coverage. Assertion coverage measures the number of vacuous,
non-vacuous success and failures of assertions and the different paths and values used
when evaluating them.

The collection of structural coverage metrics is automatically inserted and enabled by
tools. Only their analysis requires action by the engineers. Because of the implicit and
automated nature of structural coverage metrics, no additional guidelines or
methodologies are required to use them.

However, structural coverage has limitations. It can only be used to measure how
thoroughly an existing implementation has been exercised. It cannot identify
functionality that has not yet been implemented. Neither can it determine if the intent
of a testcase has been achieved.
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Functional Coverage Modeling
Functional coverage modeling may appear to be a relatively recent concept, but any
verification process that is based on a verification plan uses functional coverage
modeling. A verification plan typically details the individual testcases that must be
written to verify a particular design. The plan eventually is summarized into a table,
with the testcase name in a column, the name of the verification engineer assigned to
that testcase in another column and an indication of the completion status of the
testcase in another. Individual engineers report their progress to a lead engineer or
manager who then updates the status of each testcase in the table. The table is
reviewed at regular meetings to identify if the project is on schedule, where additional
resources may be needed or which testcase should be implemented next. That testcase
summary table is a functional coverage model. It is simply tracked and analyzed
through managerial procedures instead of automatically with tools and language
constructs.

Individual testcases can be specified using functional coverage. Instead of being a
mere entry in a table, functional coverage can be used to observe the simulations and
determine whether a particular stimulus sequence has been applied to the design or
whether the design has been through particularly interesting states. This observation
would allow the progress of the verification project to be independently confirmed
through an automated coverage tool. It would also eliminate the risks of a bug in a
testbench that, unbeknownst to the author, prevents some portions of the test from
being executed on the design. Without a failure to indicate a problem, such a
testbench would be assumed—wrongly—to be complete and to cover its intended
objectives.

When the functional coverage of individual tests is measured automatically, it
becomes irrelevant how that test happens to have been covered. It may be
implemented in a directed testcase, hit by pure chance by a random simulation or
proven to be correct by a formal analysis. In a coverage-driven verification process,
the strategy becomes how to use the best implementation vehicle to hit the most
coverage points with the least effort. If individual directed testbenches are required to
hit individual coverage points, it will be necessary to write as many testbenches as
there are coverage points. By adding randomness and simulating the same testbench
with several different seeds, the same testbench may be able to hit multiple coverage
points, effectively replacing multiple directed testbenches.

Randomness can be pushed so far that it becomes impossible to know, a priori, what
many aspects of a simulation will do. That level of randomness is not very useful
unless the simulation also records functional coverage metrics. With functional
coverage metrics, it is possible to know, after the fact, which coverage points were hit
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by the random simulation. With enough degrees of freedom in the random generators
and multiple simulations with different seeds, it is possible to replace several directed
testbenches with one random testbench. Additional coverage points can be targeted
by adding or relaxing constraints on the random testbench, creating new testbenches
with little additional effort.

Like structural coverage, functional coverage has limitations. It can only demonstrate
that some interesting condition has been reached, not that it was reached correctly or
that the corresponding responses were correct. It does not imply completeness: If a
functional coverage models only 70 percent of the DUT’s functionality, then reaching
100 percent functional coverage will only verify that 70 percent. Functional coverage
is an expression of the verification requirements and intent. Therefore, it cannot be
automatically derived or implemented from the DUT or testbench source code. It
must be manually specified and coded, an often tedious task.

There is no way to ensure that a functional coverage model is complete because it is
only a reflection of the verification plan, and there is no automated way to ensure that
the verification plan itself is complete. A functional coverage model should be
subjected to the same type of development and review process as the verification plan
to ensure its completeness. It will also evolve throughout the duration of the
verification project, as new functionality is added or new corner cases are identified.

Recommendation 6-4 — Directed tests should include functional coverage.

Functional coverage is implicit in directed tests. Because the test is directed, the
verification requirement targeted by the test is known. Assuming that the directed test
does what it is intended to do and the simulation completed without errors, it can be
assumed that the functional coverage point associated with the targeted verification
requirement is covered.

The keyword here is “assume.” What if there is a bug in the testbench? What if there
is an architectural change in the design that modifies how the verification requirement
can be met? Tests should confirm that they have met their verification requirements.

Recommendation 6-5 — Functional coverage points should be implemented before
the testcase that targets them.

It is possible that an existing random or directed testcase already exercises the
functionality that is the objective of the next testcase to be written. By implementing
functional coverage first then waiting for the coverage results from the next
regression, the coverage points will be automatically filled if they are—
accidentally—exercised. If they are, then there is no need to implement the testcase.



Coverage Models

Verification Methodology Manual for SystemVerilog 265

If some (or all) coverage points are not filled, then the testcase should be
implemented in the most efficient manner to target the remaining uncovered coverage
point. This may be a directed testcase, a new constrained-random testcase, or a formal
analysis.

Functional Coverage Analysis
Functional coverage analysis is the process of identifying uncovered areas in the
coverage model, then identifying the next functional verification requirement that
should be targeted.

Recommendation 6-6 — Functional coverage data should be designed to facilitate
analysis.

The initial reaction of first-time coverage users is to worry about the runtime cost of
collecting functional coverage data. But this cost pales in comparison to the cost of
analyzing the collected data. The collected coverage data must be optimized to ease
its interpretation first. Optimization for runtime performance should come second.

The best way to optimize for interpretation is to understand the difference between
data and information. Data is a collection of raw numbers; information is the
knowledge extracted from them. Instead of covering raw data, information should be
covered.

For example, the coverage of a 1K-deep FIFO could collect read and write pointer
values. But this approach creates one million different coverage points and makes it
difficult to relate the coverage space to the verification requirements. 

A more useful coverage would be the occupancy level of the FIFO. Although this
makes the correlation of the coverage space to requirements much easier, it still yields
one thousands separate coverage points. The best coverage is whether the FIFO was
ever full or empty. This data reduces the number of coverage points to two and creates
the simplest coverage space that can be easily related to the verification requirements.
Should the FIFO Full coverage point be empty, it clearly implies that no simulation
every filled the FIFO. That type of information is much more difficult to deduce from
the more complex coverage spaces.

A complete functional coverage of a FIFO would eventually include conditions such
as read pointer ahead/behind the write pointer, read/write when full/empty,
simultaneous read and write and full/empty with pointers at minimum/maximum
values.
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Coverage Grading
A common worry when using coverage metrics in tandem with random stimulus is
the possibility of witnessing a significant drop in the coverage rating simply because
different seeds were used.

To avoid this problem and help optimize the simulation cycles, coverage analysis
tools can also grade the various coverage data sources. The grading helps determine
which simulation or analysis contributes the most toward the current coverage rating.
Grading can be based on absolute contribution to the coverage rating or rate of
contribution over time. These simulations and analyses, together with their initial
seed value, are collected to create the regression suite. By running the most efficient
simulations and analyses first, the same level of coverage rating can be reliably
obtained in less time.

FUNCTIONAL COVERAGE IMPLEMENTATION
Metrics in a structural coverage model can be automatically generated and collected.
For example, to obtain a rating of the line execution coverage, all that is required is
the specification of a command-line option. No additional work is required by the
user— and no excuses can be presented against using it.

But a functional coverage model must be manually specified and captured. Functional
coverage—which models the functional verification requirements—captures the
intent of the verification effort. Because intent cannot be automatically derived from
the implementation, functional coverage must be independently captured.

Two constructs are available in SystemVerilog to specify functional coverage:
coverage groups and coverage properties.

Rule 6-7 — Coverage groups shall be used when covering data in the verification
environment.

Coverage properties use concurrent temporal expressions to define cover points. In
SystemVerilog, temporal expressions support references to static variables—variables
and nets in module and interface—only. Because the verification environment is
constructed using classes, which are dynamic constructs, concurrent temporal
expressions cannot be used.
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Recommendation 6-8 — Coverage properties should be used to specify
implementation-specific functional verification
requirements.

As described by Recommendation 2-10, some functional verification requirements
are dictated by the implementation chosen by the designer and are not apparent in the
functional specification of the design. These requirements create corner cases that
only the designer is aware of. These requirements should be specified in the RTL
code itself by the designer through coverage properties.

Example 6-1. Implementation-Specific Coverage Property
cover_stack_hi_water_chk :
   cover property( @(posedge sva_checker_clk) 
      not_resetting && 
       $rose(sva_v_stack_ptr == hi_water_mark)); 

Recommendation 6-9 — Coverage properties should be used to specify physical
interface compliance requirements.

A design must be compliant with the specification of the physical interfaces present
on its periphery. To ensure compliance, the design must be verified to operate
correctly under various conditions of the physical interface. These conditions, often
called protocol compliance statements, should be specified using coverage properties.

Recommendation 6-10 —Coverage groups should be used if the sampled data must
be mapped into different coverage points.

Coverage properties can specify only a single coverage point. If a sampled value is to
be mapped into different coverage points, a coverage group is better suited with its
bins option in the coverpoint element.

For example, sampling the value of an address bus may need to be mapped into
different coverage points, one per target device in the address space. This mapping
can be more easily described using a single coverage group than multiple coverage
properties.

Example 6-2. Mapping Sampled Data into Different Coverage Bins
frame_len: coverpoint frame_len {
   bins max_fl_less_4 = {cfg.max_frame_len - 4};
   bins max_fl_less_1 = {cfg.max_frame_len - 1};
   bins max_fl        = {cfg.max_frame_len};
   bins max_fl_plus_1 = {cfg.max_frame_len + 1};
   bins max_fl_plus_4 = {cfg.max_frame_len + 4};
   bins max_size      = {65535};}
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Recommendation 6-11 —Coverage groups should be used if the sampled data must
be crossed-covered with other data.

Coverage properties can specify only a single coverage point. If two sampled values
must be combined to form a two-dimensional space in the coverage model, it would
require an exponential number of coverage properties. The cross element in a
coverage group can easily describe multi-dimensional combinations of sampled
values.

Example 6-3. Crossing Coverage Elements
covergroup frame_coverage;
   ...
   cross direction, hugen, max_fl, frame_len;
endgroup

Coverage Groups
The covergroup statement specifies functional coverage points by sampling
variables and expressions. A coverage group specifies what is being sampled, when it
is sampled and how many samples are required to consider a coverage point “filled.”

Suggestion 6-12 — The data sampled by the coverage point need not be the data
sampled in the testbench.

The data sampled by the coverage points is the data that will be recorded in the
coverage database and will be available for analysis. As specified in
Recommendation 6-6, the collected coverage data should be designed to ease
analysis, not simplify the implementation of the coverage group. Therefore, the data
sampled by the coverage group may have to be a more informative or transformed
version of the data sampled in the verification environment.

It is tempting to use a convenient clock signal to sample in-scope variables, but it may
not provide the type of information that is easy to analyze. It may be necessary to
introduce additional behavioral code in the verification environment to interpret the
available data into useful coverage data and manually trigger the sampling of the
coverage group using the sample() method.

Example 6-4. Computing Information to be Covered
this.is_tx     = 1;
this.frame_len = fr.byte_size();
this.tx_size_cvr.sample();



Functional Coverage Implementation

Verification Methodology Manual for SystemVerilog 269

Recommendation 6-13 —Sampled values should be mapped to a manageable
maximum number of explicitly named bins.

The mapping process interprets the sampled values into different coverage points. If
no bins are specified, the automatically generated bins will contain only one value
and will not have a meaningful name. For a 32-bit value, this represents over four
billion bins, which is a huge coverage space and an unachievable coverage goal. A
large number of bins makes it impossible for a coverage analysis tool to enumerate all
uncovered coverage points. And those are the coverage points that are the most
interesting!. Having a large number of bins also creates explosions when cross-
coverage is used.

Limiting the number bins to 10 for example, will limit two-dimensional cross-covers
to 100 coverage points. By reducing the number of bins—and thus coverage points,
the coverage space is reduced and makes reaching a coverage goal of 100% quite
achievable. There must be an individual bin for each verification requirement. If two
requirements are mapped to the same bin—or coverage point—it will be impossible
to determine if one of the two requirement has not been met.

Example 6-5. Minimizing the Number of Bins for a 16-bit Sample Value
frame_len: coverpoint frame_len {
   bins max_fl_less_4 = {cfg.max_frame_len - 4};
   bins max_fl_less_1 = {cfg.max_frame_len - 1};
   bins max_fl        = {cfg.max_frame_len};
   bins max_fl_plus_1 = {cfg.max_frame_len + 1};
   bins max_fl_plus_4 = {cfg.max_frame_len + 4};
   bins max_size      = {65535};
}

Rule 6-14 — Stimulus coverage shall be sampled after submission to the design.

Not all sequences of transactions that are generated will be applied, as-is, to the DUT.
In a transactor execution, the scenario may have filtered out some transactions from
the sequence, or the scenario may have injected errors that caused some transactions
to be ignored or rejected by the DUT.

Scenarios are composed of high-level transactions that are composed of command-
level transactions. As transactors execute transactions, they can relate low-level
transactions back to the higher-level transaction that caused it to provide some
context for the low-level transaction. As high-level transactions and scenarios are
generated, they must be buffered until they have been completely implemented by the
lowest-layer of the environment. 
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Figure 6-1. Collecting Stimulus Coverage

As shown in Figure 6-1, low-level transactions are covered first. Using the context
information in the low-level transaction, the coverage model can determine if it is the
(successful) termination of the higher-level transaction or scenario it is part of. If it is,
the higher-level transaction is also recorded in the coverage model. If any low-level
transaction is missing or indicates an improper implementation of a scenario or high-
level transaction, the scenario or high-level transaction is dropped and never included
in the coverage model.

Recommendation 6-15 —Stimulus coverage should be sampled via a passive
transactor stack.

Figure 6-2 shows two alternatives for collecting stimulus functional coverage in a
verification environment. In Figure 6-2(a), the functional coverage is collected in the
generation and driver stack. In Figure 6-2(b), it is collected in a passive transactor
stack. The latter has the additional advantage of being portable to a different
verification environment that uses a different stimulus generation structure (such as
directed testcases) or to a system-level environment where the stimulus is generated
by another design block.
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Figure 6-2. Collecting Stimulus Coverage

Using a passive transactor stack to collect functional coverage directly from the DUT
interface ensures that only what has been observed by the DUT will be recorded in the
functional coverage model. This implementation approach satisfies Rule 6-14.

Suggestion 6-16 — DUT state coverage points can be implemented using coverage
groups instantiated in the self-checking structure.

Some states of the DUT can be inferred from the operations and transformations that
are necessary to verify the correctness of the DUT response. If no errors were
detected, it can be implied that the DUT and self-checking structure have performed
identical operations or transformations. By sampling data in the self-checking
structure that is representative of the relevant DUT state, state functional coverage
can be implemented in the self-checking structure. 

For example, not adding a packet to the scoreboard because it is invalid can be
sampled in the state functional coverage to infer that the DUT has rejected an invalid
packet. If that packet is indeed never observed on the output (i.e., no errors are
detected), the inferred state functional coverage is valid.

Because of its DUT-specific nature of a self-checking structure, it will always be
developed by the verification team and the source code will always be available.
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Since the source code is available, it can be modified to insert the DUT state
functional coverage model.

Example 6-6. Coverage Group in Self-Checking Structure
class scoreboard;
   ...
   covergroup frame_coverage;
      ...
   endgroup: frame_coverage
   ...
endclass: scoreboard

Recommendation 6-17 —Coverage groups should not be added to vmm_data class
extensions.

The vmm_data base class is designed to help model data and transaction descriptors.
Although it may be seem natural to put the data and transaction-related coverage
groups in those same classes, it creates several limitations.

There are hundreds of thousands of data and transaction descriptors created and
garbage collected in the course of an average simulation. A corresponding number of
coverage group instances will therefore need to be created and tracked. Each coverage
group will contain coverage data for a single data or transaction instance only.
Individual coverage metrics will be meaningless and only cumulative coverage will
be useful. It would be more efficient to collect hundreds of thousands of coverage
samples in a single instance of a coverage group.

If a verification environment has multiple streams of the same data or transaction
descriptors, it will be necessary to cross-cover all sampled data with a stream
identifier to differentiate the coverage metrics on a per-stream basis. If each stream
has its own set of coverage group instances, coverage metrics for each stream will be
individually collected for the thousands of data or transaction descriptor in each
stream, without having to use cross-coverage. Cumulative coverage can also be used
to report coverage metrics regardless of the stream where the data was collected.

Recommendation 6-18 —Functional coverage should be associated with testbench
components with a static lifetime.

To avoid creating a large number of coverage group instances with few coverage data
in them, they should be associated with objects with transactors, monitors, generators,
the self-checking structure or the design under verification. They are all created at the
beginning and live until the end. By associating functional coverage groups with
these verification environment components, data and transaction descriptors can be
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sampled as they flow through them. It will thus be possible to measure coverage for
individual transactor instances and cumulative coverage for all instances of a
particular transactor.

Recommendation 6-19 —Coverage groups should be encapsulated in coverage
objects.

Instantiating coverage groups in coverage objects will allow the encapsulation of the
transformation of the data as sampled on the verification environment or the DUT
into a form that can be sampled by the functional group themselves to fill coverage
points.

Rule 6-20 — The data sampling interface of the coverage class shall be designed to
match the verification environment.

Inserting functional coverage into a verification environment must be as unobtrusive
as possible and require the minimum number of extensions. Matching the data
sampling interface of the coverage object to the verification environment makes the
integration of the coverage model in the environment that must easier.

As illustrated in Figure 6-3, any discrepancies or gaps between the data sampling
interface and the sampled values in the functional coverage group are bridged by
transformations and computations inside the coverage class itself.

Figure 6-3. Structure of Functional Coverage Class

The data sampling interface should be designed to match the available data as
reported by the various transactors via callback methods or in public properties.

Rule 6-21 — The coverage class shall reconcile sampling domains when crossing
variables sampled in different sampling domains.

The sampling mechanism built into the functional coverage groups only allows for a
single sampling event to cause the sampling of all sampled variables. Because cross-
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coverage is not allowed across coverage groups, all variables to be cross-covered
must be sampled by the same coverage group—hence, the same sampling event. With
variables in different sampling domains that are valid at different (and potentially
asynchronous) points in time, this structure may yield false coverage points.

Cross-covering data across sampling domains requires resolution of the sampling
domain differences by the user. This resolution can be done using arbitrary
SystemVerilog code in a coverage object to concurrently sample, each in their own
domain, all required variables. Then when an appropriate window is identified,
sample the intermediate values into a coverage group to be crossed. This approach is
illustrated in Figure 6-4.

Figure 6-4. Cross-Coverage Across Sampling Domains

Recommendation 6-22 —The coverage weight of coverpoint involved in a
cross-coverage should be set to zero.

If the cross-coverage goal is met, it usually implies that the coverage goal of the
individual samples in the cross-coverage have been met. Setting their coverage
weight to 0 prevents the overall coverage score of the coverage group from being
artificially raised. The score would have been raised by having some (or all of the)
components of the cross-coverage fully covered but not the cross-coverage itself.
Because the cross-coverage is more representative of the true coverage goal, it alone
should contribute to the coverage group score.

Example 6-7. Setting Weight of Coverpoint to 0
covergroup frame_coverage;
   direction: coverpoint is_tx {
      bins Tx = {1};
      bins Rx = {0};
      option.weight = 0;
   }
   ...
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   cross direction, ...;
endgroup: frame_coverage

Recommendation 6-23 —The coverage weight of a covergroup should be set to
the number of coverpoints and cross-points
with a non-zero coverage weight.

By default, the coverage weight of a coverage group is the same whether the coverage
group contains a single sample or dozens of large cross-coverages. The latter is much
more difficult to fill than the former and thus, should carry a greater weight in the
overall coverage rating. This guideline weighs coverage groups proportionally to the
number of relevant coverage samples and crosses it contains.

Example 6-8. Setting Weight of Covergroup
covergroup frame_coverage;
   direction: coverpoint is_tx {
      bins Tx = ...;
      bins Rx = ...;
      option.weight = 0;
   }
   hugen: coverpoint cfg.huge_enable {
      option.weight = 0;
   }
   max_fl: coverpoint cfg.max_frame_len {
      bins fl_1500 = ...;
      bins fl_1518 = ...;
      bins fl_0600 = ...;
      option.weight = 0;
   }
   frame_len: coverpoint frame_len {
      bins max_fl_less_4 = ...;
      bins max_fl_less_1 = ...;
      bins max_fl        = ...;
      bins max_fl_plus_1 = ...;
      bins max_fl_plus_4 = ...;
      bins max_size      = ...;
      option.weight = 0;
   }
   cross direction, hugen, max_fl, frame_len ...

option.weight = 2 * 3 * 6;
endgroup: frame_coverage

Rule 6-24 — The sampling frequency of a coverage group shall be minimized.

Every time the sampling event of a coverage group occurs, a potentially large amount
of data is sampled, expressions are computed and assigned to state bins and a
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database is updated. This activity consumes simulation bandwidth and reduces
performance.

Although tools are optimized for performance, they should not be overburdened. Data
for functional coverage should be sampled as little as possible: Repeatedly sampling
the same value reduces performance while providing no new information. For
example, avoid sampling data using a clock. Instead, use another event that is more
indicative of a potential change in value of the sampled data.

Recommendation 6-25 —The comment option in covergroup, coverpoint
and cross should be used to document the
corresponding verification requirements.

Coverage points specify the functional coverage requirements of the verification
project. Thus, they should be cross-referenced to the requirement they implement to
ensure that all requirements are covered by the coverage model.

If a URL is specified in the comment string, coverage analysis tools should be able
to hyperlink the coverage item to the documentation describing the verification
requirement implemented by the coverage item.

Example 6-9. Documenting Coverage Requirements
covergroup frame_coverage;
   ...
   cross direction, hugen, max_fl, frame_len {
      option.comment = "Coverage for Example 2-5";
   }
   ...
endgroup: frame_coverage

Coverage Properties
Properties can be functionally covered to determine if they have had the opportunity
to fire, and if they completed successfully during a simulation. 

The same mechanism can be used to implement coverage points. A coverage point is
described using a concurrent temporal expression—or property. The temporal
expression is not designed to perform checking and report an error if some conditions
are seen or fail to materialize. It is designed to simply report occurrence of an
interesting condition in the design. By covering these expressions, they can form
additional coverage points in the coverage space.
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Guidelines described in Chapter 3 can be used to implement coverage properties.
Furthermore, following the guidelines described in Chapter 7 may enable formal tools
to cover coverage points specified using properties.

FEEDBACK MECHANISMS
In a coverage-driven verification process, the analysis of the collected coverage data
is used to identify where to focus the next verification efforts. Thus, a feedback
mechanism is required to translate uncovered areas in the coverage model into
additional stimulus or analysis.

Recommendation 6-26 —A manual coverage feedback mechanism should be used.

There are mechanisms in SystemVerilog to dynamically query the coverage rating of
different coverage points. The information can then be used to alter, at run time, state
variables in constraints on the stimulus. A simulation could therefore automatically
focus on the uncovered areas of the coverage space and reduce the likelihood that the
same coverage points will be repeatedly hit.

That’s the theory. In practice, things are a little different.

First, this focusing on uncovered areas can only work on input coverage, where there
can be a direct correlation between the coverage rating of particular coverage points
and state variables in stimulus constraints. This relationship quickly becomes tenuous
at best for internal coverage points or output coverage.

Furthermore, this automated feedback mechanism is not trivial to implement. It must
be coded and debugged to ensure that the stimulus converges toward greater
coverage. The objective is not to minimize the number of testbenches, but to
minimize the effort required to reach the desired coverage goals. It is likely to be
easier to reach with more trivial testbenches than a few complex ones.

By intellectually identifying how the stimulus must be constrained or directed, it will
be easy to specify that new stimulus in an additional test that specifically targets holes
in the coverage space. These tests should be simple to write and debug—as long the
the guidelines presented in this book are followed. They are run for a few seed values
and added to the regression suite. With a few iterations, a particular set of related
coverage points should be covered in less time than it would take to automate the
process to do the same in a single testbench.
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There are exceptions to this guideline. In some circumstances, it may be worthwhile
to invest the time and effort to close the coverage loop automatically. For example, if
a testbench is going to be reused in different versions of the simulator and constraint
solver, it may generate different stimulus for the same seed values. Also, this
testbench may be a useful mechanism for demonstrating the operation of the design to
a third party.

At the time of writing, researchers are studying techniques for automatically closing
the coverage feedback loop without additional requirements from the user.

Recommendation 6-27 —More simulations with different seeds should be run if the
input coverage is low and few simulations have been run.

If the coverage metrics report that only 8 out of 10 opcodes have been observed in the
instruction decoder, and only three simulations have been run so far, run more
simulations.

Recommendation 6-28 —Quality of distribution in the generator should be
improved if the input coverage is low and many
simulations have been run.

If the coverage metrics report that only 8 out of 10 opcodes have been observed in the
instruction decoder, and 25 simulations have been run so far, there is a problem with
the distribution in the instruction generator.

Example 6-10. Matching Generation Distribution with Coverage Requirements
covergroup frame_coverage;
   ...
   max_fl: coverpoint cfg.max_frame_len {
      bins fl_1500 = {1500};
      bins fl_1518 = {1518};
      bins fl_0600 = {'h0600};
      weight=0;
   }
   ...
endcover: frame_coverage
...
class test_cfg;
   ...
   rand bit [15:0] max_frame_len;
   ...
   constraint coverage_driven {
      max_frame_len inside {1500, 1518, ’h0600};
   }
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   ...
endclass: test_cfg

Recommendation 6-29 —A new test should be created if constraints need to be
modified or new scenarios defined.

If a test did not hit certain coverage points it was designed to hit, fix the test. But to hit
additional coverage points, a new test should be created. This approach will allow the
existing test to continue working in the regression suite and maintain the existing
coverage level.

If the guidelines outlined in this book are followed, the amount of code required to
write a new test should be minimal. 

Recommendation 6-30 —A directed test should be used if a scenario is too complex
to define or unlikely to happen randomly.

If it is unlikely that the required stimulus will be randomly generated, specify a
directed stimulus sequence. For example, verifying that all status bits will generate
maskable interrupts would require that they be randomly masked and unmasked, then
that the design randomly hits each exception condition, then they be randomly
masked and unmasked once the corresponding status bit is set. This sequence is
unlikely to occur—or very difficult to describe—in a random test. But it is a simple
directed test, especially if the status bits can be forced.

However, it need not be a 100% directed testcase. It can be a directed stimulus
sequence randomly injected within a stream of other random sequences. This
approach may highlight problems that may not be apparent if the directed stimulus is
always applied from the reset state.

Recommendation 6-31 —Formal technology should be used if the problem size fits
the capacity of the tool and a coverage property is used.

It is very difficult to hit a coverage point embedded deep in the design; it may be
easier to use formal technology to meet this functional verification requirement. The
next chapter will detail how formal technology can be used to its best effects.
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SUMMARY
This chapter defined the concept of coverage metrics and how they form a coverage
model. The coverage model is an embodiment of the verification requirements. A
coverage model is composed of structural coverage metrics and functional coverage
metrics. The structural metrics can be automatically collected and measured. Because
functional coverage metrics specify verification intent, they must be implemented
manually.

Next, guidelines were specified on how to best implement functional coverage.
Functional coverage can be implemented using coverage groups or coverage
properties. When collecting coverage data, it is important to ensure that the data is in
the form that will be observed by the DUT. It is also important to reconcile data from
different clock domains.

Coverage metrics must be designed to facilitate analysis of the holes. From a
coverage report, it should be easy to identify which testcases need to be created next.
The feedback from functional coverage metrics to testcases can be automated. But in
most cases, an intellectual feedback process using different closure mechanisms
based on the targeted holes is more efficient.
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CHAPTER 7 ASSERTIONS FOR FORMAL 
TOOLS

The SystemVerilog assertions language has well defined semantics for both
simulation and formal tools, in particular, model checkers. While it is possible to
simulate almost any assertion given enough memory and time, the capacity
constraints on formal tools are much tighter. Furthermore, the latter usually require
that the model structure including the assertions be statically determined. Similar
constraints apply in emulation.

Therefore, when writing assertions that should be used in formal/emulation and in
simulation, the guidelines expressed in this chapter should be considered in addition
to those in Chapter 3. In other words, the decision to use (even potentially) formal
tools or emulation influences the assertion style and it should be made early in the
development process.

Why and when should formal tools be used if it means sacrificing some freedom of
expression on the assertions side? It has been shown that formal tools are very
effective in finding corner-case bugs on complex control-dominated design blocks,
such as arbiters, bus protocol controllers, instruction schedulers, pipeline controls,
and so on. Another useful application is to check relatively simple structural
properties that can be automatically extracted from the design, e.g., bus driver mutual
exclusion, parallel and full case check and clock domain crossing. If the design
contains such structures, it is advisable to use formal tools to identify and fix any
bugs they can find before committing the design to silicon. That is, use formal tools
after most of the simpler problems have been eliminated using simulation-based tests.

This chapter provides a brief introduction into model checking and the possible uses
of assertions with formal tools. The main part of the chapter provides guidelines for
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the style to be used when writing assertions for such tools. These guidelines also
apply to using assertions in emulation because emulation has similar resource
constraints and synthesizability requirements to formal tools. The chapter should thus
be of interest to anyone who plans to use SystemVerilog assertions with formal tools,
emulation or hardware prototyping. 

MODEL CHECKING AND ASSERTIONS
The formal tools used to verify properties specified using a temporal language have
been usually called model checkers or property checkers. They verify that the DUT is
a model of the temporal expression of the assertion, i.e., the behavior of the model
satisfies the property.

Model checking has evolved considerably over time. At the time of writing, model
checking tools often involves many different verification engines. The engines may
implement binary-decision-diagram-based (BDD-based) reachability algorithms,
satisfiability (SAT) algorithms, automatic test pattern generation (ATPG), symbolic
simulation, regular value-based simulation, and so on. The engines usually operate
with efficient model reduction and abstraction mechanisms, all carefully orchestrated
during their execution to reap the maximum benefit in performance and the ability to
reach a definitive conclusion: the tool finds a violation of the property or it proves it
correct on the DUT.

Unfortunately, all the powerful formal verification algorithms embedded in the
engines solve problems that have non-deterministic polynomial complete (NP-
complete) complexity or worse. Hence, they must rely on heuristics. It then follows
that, due to the complexity of the DUT or the properties, the verification process may
run out of available time or memory: The result is inconclusive. The user must then
simplify (break up) the property or reduce the DUT to something more manageable.

Formal tools accept a set of temporal properties as statements about the DUT
behavior. Usually, they also require a model of the environment of the DUT. This
model of the environment can also be described using temporal properties. In most
cases, all variables are expanded to the bit level. Very few commercial tools (if any)
can handle word-level variables and operations.

The tools may then carry out the following tasks:

1. Given a set of properties that represent assumptions on the behavior of the envi-
ronment, prove that the DUT satisfies the assertions on its behavior.
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The main goal is to find any design errors that would falsify the assertion. The tool 
may use algorithms that favor bug hunting over proofs. When a failure is detected, 
the tool generates a test sequence that drives the design to the failure state (the 
counter-example). This trace can be used with a simulator to debug the design.

2. Given a coverage goal specified as a cover property statement or a particular 
signal state of the design, the tool generates a stimulus sequence that drives the 
design to reach that goal.
A set of assumptions on the environment is still needed as in (1) above to avoid 
generating tests that are outside the expected behavior of the environment of the 
design.

3. Given a set of state variables in the DUT, the tool determines a lower bound on the 
set of states that cannot ever be reached.
A set of assumptions on the environment is useful to make the bound tighter. This 
set of unreachable states is useful in determining the maximum obtainable state 
coverage by identifying and removing unreachable states from the coverage 
model. Also, some of the unreachable states may actually represent design errors.

Formal tools generally require that the model of the DUT and the expressions,
auxiliary variable types and assignments used with and in assertions be synthesizable.
It is generally understood that synthesizable assertions means that the code used to
implement the assertions satisfy similar syntactic restrictions as RTL code. In
particular, only bounded data types and statically allocated variables can be used and
no assignments or comparisons with the values X or Z can be made.

Except for local variables, SystemVerilog assertions are based on extended regular
expressions and thus can be relatively easily compiled into equivalent RTL logic.
When local variables are declared as part of sequence or property definitions,
they are allocated dynamically at run time, as needed in individual evaluation
attempts and threads. This language feature increases considerably the modeling
power and ease of use of the assertion language. However, it is possible to write
properties that may require an unknown (possibly unbounded) amount of dynamically
allocated resources, which cannot be synthesized

With a sufficient amount of resources, it is possible to implement local variable
allocation mechanisms in hardware. The problem is that such properties may easily
exceed the capacity of the formal tools. Therefore, it is far better to recognize such
limits up front and provide guidelines regarding the style to be used for synthesizable
assertions. The style then guarantees that the assertion can be converted into an
efficient synthesizable RTL model.
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Even if synthesizable, not all types of designs and assertions can be accepted by
formal tools because of capacity limitations. These limitations are specific to a
particular tool and the type of proof engines used within that tool. Even when the type
of engine is known (e.g., BDD-based reachability), it is impossible to determine a
priori how the tool will behave on a particular design or property. There are a few
general guidelines that may help to avoid capacity problems. In addition to the
guidelines specified in Chapter 3, the rest of this chapter contains three kinds of
guidelines: general guidelines that should be followed in all cases, style guidelines
showing how certain behaviors can be modeled without using local variables, and
guidelines that indicate what kind of structures can be used with local variables and
yet remain synthesizable.

In general, assertions can be proven or failed faster with fewer assumptions. While
trying to minimize the number of assumptions, it is easy to over- or underconstrain
the inputs. Overconstraining1 inputs leads to false positives whereas
underconstraining2 inputs leads to false negatives. Finding the correct combination of
assumptions that neither over- or underconstrain the inputs is often a difficult task. It
is therefore important to have access to high-quality assertion-based verification IP
(AIP), as discussed in Chapter 3.

Some formal tools—like Synopsys’ Magellan—may use constrained-random
simulation as one of the verification engines. Random stimulus engines are mainly
employed in bug-hunting mode, since a proof is not possible in that case. Without any
specific user-written testbench, the simulation stimulus is randomly generated within
the constraints imposed by the assumption properties on the environment. In addition
to false positives and negatives, improperly constrained inputs in a random generation
engine may lead to dead end conditions, forcing the analysis to a halt. The tool may
also contain an analysis engine for determining and eliminating dead-end states in the
set of assumptions. It can provide a list of situations where a dead end occurs and
suggest additional constraints that would avoid reaching the dead end.

Both under- and overconstraint analysis and resolution are difficult problems and can
be quite time consuming. These tasks also require a good knowledge of the expected
behavior of the environment. The guidelines in this chapter may help in the
formulation and debugging of both assertions and assumptions for use with hybrid-
formal tools.

1. Overconstraining means that the space of the possible input sequences is smaller than what 
the DUT is designed for. 

2. Underconstraining means that the space of possible input sequences is larger than what the 
DUT is designed for.
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Recommendation 7-1 — The simulation testbench should be used to validate the
assumptions on the DUT environment.

If a simulation testbench exists for the DUT, it is useful to verify that the properties on
the DUT environment do not fail when running as assertions in simulation. A failure
would indicate either a problem in the testbench or that the assumption is not correct.
Both the testbench and the assumptions can be jointly debugged.

Rule 7-2 — Non-synthesizable assertions shall be under the control of the macro
VMM_FORMAL.

As mentioned in Rule 3-58 on page 80, assertions that check for the presence of ’x or
’z using case equality (= = =) are not synthesizable and may not be used with formal
tools. Therefore, the inclusion of these assertions shall be controlled by a macro.

Recommendation 7-3 — Properties that verify end-to-end behavior of the DUT at
the transaction level should be avoided.

At the transaction level, the behavior is often expressed in terms of information
exchanges using (potentially long) blocks of data or packets. The events that
determine the validity of the generated or received data are often on a different time
scale than the system clock of the design. Also, the data decoding, checking and
routing may involve complex algorithms. End-to-end properties may also involve
most of the behavior of the block so that there may be little model reduction possible.
If, in addition, the size and sequential complexity of the block is high, it is then likely
that the formal tool will not be able to complete the proof. However, if the tool is
organized for bug hunting using a mix of simulation and formal engine, it may still be
useful to probe the design in this mode using such a property.

Recommendation 7-4 — Proving properties that involve multiple complex design
blocks should be avoided.

Such properties may only allow minimal model reductions and thus may cause the
problem to exceed the capacity of the tool. It is better to provide assertions that
characterize the behavior of each block on each interface and use them as assertions/
assumptions to verify properties of each block independently.

Recommendation 7-5 — The DUT should be architected as an interconnection of
blocks that have well-defined interfaces with their
neighbors.

Such an architecture simplifies proving properties of each block independently as
recommended by Recommendation 7-4.
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Recommendation 7-6 — Properties should be broken into a series of smaller ones,
such that, collectively, they are equivalent to or imply the
original property.

As mentioned in Chapter 3, smaller and simpler properties facilitate understanding
and debugging. Also, they provide finer control when adding or removing
assumptions to prove properties. It is usually more effective to prove assertions with
the smallest possible number of assumptions on the environment.

Example 7-1. Breaking a Property into Smaller Ones that Imply the Original
// If v occurs then w must be asserted for one cycle 
// followed by a z within 0 to 4 cycles
property p;
  @(posedge clk)
    v |-> w ##1 !w ##[0:4] z;
endproperty : p

// Break up into 3 properties
  property p1;
    @(posedge clk)
    v |-> w; // if v then w
  endproperty : p1
  a_p1: assert property (p1); 

  property p2;
    @(posedge clk)
    w |-> ##1 !w;
  endproperty : p2
  a_p2: assert property (p2);

  property p3;
    @(posedge clk)
    w |-> ##[1:5] z;
  endproperty : p3
  a_p3: assert property (p3);

  property p_auxiliary;
    @(posedge clk)
    w |-> v;
  endproperty : p_auxiliary
  a_p_auxiliary: assert property(p_auxiliary);

In Example 7-1, properties p1, p2 and p3 imply collectively p. However, if w can
also occur without a v, then p2 and p3 could trigger without a v, that is, a_p2 or
a_p3 could fail while a_p would not. If a w should not occur without a v then add
the property p_auxiliary and the associated assertion a_p_auxiliary to
verify that assumption.
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Recommendation 7-7 — Proving the correctness of arithmetic operations using a
high-level description should be avoided.

Property-checking algorithms used in commercial tools are generally weak on
proving arithmetic operations because they try to compare the implementation against
a functional specification. This weakness is particularly apparent in the case of
multiplication where the internal data structures of the tool tend to grow exponentially
in size with the number of bits in the operands. The reader should consult the
literature on formal verification for techniques how to deal with arithmetic operations
on large words.

Example 7-2. Avoid Property on an Arithmetic Operation
reg [31:0] a, b, result;
reg , reset_n, clk;
// a multiplier, result is available 
// at the next clock cycle
multiplier mult_inst(clk, reset_n, a, b, result); 
bad_property: assert property (
    @(posedge clk) disable iff(!reset_n)
                  result == $past(a * b) );

Recommendation 7-8 — A time_0 variable should be provided if the initial reset
or initialization condition is not visible to the properties.

In many protocols, there are properties that must hold from the moment reset is de-
asserted to the occurrence of some condition. In some formal tools, the reset sequence
may be handled in a separate initialization procedure, in which case the formal
verification engines and the assertions/assumptions may not see the deactivation of
the reset signal. If an assumption uses this deactivation to trigger, it may not see the
deactivating transition and thus not trigger. Since that assumption is not applied, it can
lead to under-constrained inputs and a potential false negative failure of assertions or
even a dead end.

A solution is to provide a variable (e.g., called time_0) that is initialized to one then
reset to zero on the first clock tick, retaining zero thereafter. Assertions that must hold
between a reset (time zero) and some other condition can be conditioned either by the
de-assertion of reset or by the fact that time_0 == 1.

Example 7-3. Detecting Initial Time
bit checker_time_0 = 1’b1;
always @(posedge clk)
   if (reset) time_0 <= 1’b1;
   else time_0 <= 1'b0;
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a: assert property(
   @( posedge clk) disable iff (reset)
   ( ((en_vector != 0) ##1 (en_vector == 0)) or 
    sva_checker_time_0 ) 
        |-> (en_vector == 0)[*1:max_quiet] ##1 
            ($countones(en_vector) == 1) )
else ...;

An alternative is to write a separate assertion that covers only the behavior starting at
time zero. This assertion should be placed in an initial block so as to evaluate
only once starting at the first clock tick.

Rule 7-9 — All auxiliary state variables shall be initialized.

An uninitialized auxiliary state variable may cause a mismatch between simulation
and formal tools due to differences in interpreting the initial unknown value ’x. The
initialization should be done both in an initial block and also under reset conditions,
as illustrated in Example 7-3 on the time_0 variable.

Rule 7-10 — Referring to past values at time < 0 shall be avoided.

A property that is activated by observing the past value of a variable using $past,
$rose, $fell and $stable over an expression expr may not correctly trigger
at the first clock tick because the preceding sampled value of expr is unknown. The
behavior of a simulator and a formal tool may then differ.

A possible solution is to shift the antecedent of the property by one clock tick (or
more) forward as shown in Example 7-4 in the case of entering state == IDLE.

Example 7-4. Avoiding Initial Unknown Value
M3: assert property ( 
     @(posedge clk) disable iff (!reset_n)
     $rose(state == IDLE) 
       |-> 
##[min_req_latency:max_req_latency] req );

Change to:

M3: assert property ( 
      @(posedge clk) disable iff (!reset_n)
      !(state == IDLE) ##1 (state == IDLE)
        |->
          ##[min_req_latency:max_req_latency] req );
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Recommendation 7-11 —Non-synthesizable code should be enclosed in ‘ifndef
SYNTHESIS blocks.

If the formal tool generates warnings about the presence of initial blocks, the
number of such messages can be reduced by eliminating the non-synthesizable code
by defining the standard macro SYNTHESIS.

Recommendation 7-12 —A property should not be stated solely over an auxiliary
state variable value if the property is to be used as an
assumption on DUT inputs.

As illustrated in Example 7-5, this type of assertion cannot be used effectively as an
assumption because it requires constraining the DUT inputs driving the auxiliary
variable tmp in the past clock tick. Depending on the tool and the complexity of the
assumptions, this usage may not be possible with random simulation constrained by
assumption properties. The result could be that no constraint is imposed at clock tick
t, leading to a potential inconsistency and dead end at tick t+1 if (!tmp == 1)
does not hold. See the footnote on page 291.

Example 7-5. Assumption Over Auxiliary Variable
Let port_A and port_B be the input ports of the DUT
that are to be constrained by the assumption.

logic [bw-1:0] tmp = ’1; //auxiliary state variable
always @(posedge clk)
   tmp <= c1 ? port_A :
               c2 ? port_B: tmp;
property p;
   @(posedge clk)(| tmp) == 1'b1; 
endproperty : p
a: assume property (p);

Consider modifying the assertion—and breaking it into two simpler properties—as
shown below.

Example 7-6. Assumption Avoiding the Use of Auxiliary Variable
property p1;
   @(posedge clk)
   c1 |-> (| port_A) == 1’b1;
endproperty : p1
property p2;
   @(posedge clk)
   !c1 && c2 |-> (| port_B) == 1’b1;
endproperty : p2
a1: assume property (p1);
a2: assume property (p2);
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The constraints on port_A and port_B are applied in the current clock cycle rather
than in the past one.

Recommendation 7-13 —Signals that are inputs to the design should not appear as
arguments in a sequence that is used with the matched
or ended property in the consequent of property
property if it is to be used as an assumption on DUT
inputs.

The problem is that this form of assertion may not be used effectively in random
simulation under assumption properties because it may require constraining inputs in
past clock cycles if no present instance of design inputs is in the assertions. For
example, let a and b be design inputs to be controlled by the assumption c, as shown
in Example 7-7.

Example 7-7. Use of ended in a Consequent of an Assumption
sequence s1;
   @(posedge clk) a ##1 b;
endsequence : s1
property p1
   @(posedge clk) c |-> ##1 s1.ended;
endproperty : p1
a1: assume property (p1);

Property p1 should be re-written without using ended. From Example 7-7, the
solution is simple due to the ##1 delay before ended, as shown in Example 7-8.

Example 7-8. Avoiding the Use of ended in a Consequent of an Assumption
sequence s1;
   @(posedge clk) a ##1 b;
endsequence : s1
property p1
   @(posedge clk) c |-> s1;
endproperty : p1
a1: assume property (p1);

In general, the transformation may not be as simple. It may be preferable to approach
the problem differently right from the start rather than trying to rewrite the assertion
later.
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Recommendation 7-14 —Signals that are inputs to the design should not appear
only as arguments of the $past system function in a
property if it is to be used as an assumption on DUT
inputs.

This form of assertion may not be used effectively in random simulation as
assumption properties because it may require constraining inputs in past clock cycles
if no present instance of design inputs is in the assertions. For example, let a and b be
design inputs and let c be an output. The assertion in Example 7-9 is not causal
because the occurrence of the output c at the present time is constraining the values of
the inputs a and b in the preceding clock cycle. The cause follows the effect.
Although this form can be used as an assumption for formal tools, it cannot be
effectively used as a constraint in random simulation because it requires constraining
inputs in the past clock cycle. Most likely, this property should be an assertion on c
rather than an assumption on a && b.

Example 7-9. Assumption with $past over Input Signals 
property p;
   @(posedge clk)
   c |-> $past(a && b);
endproperty : p
a: assume property (p);

When writing assumptions, the sequence expressions should be projecting values on
inputs forward in time using the # and * operators rather than using the $past
operator3.

Recommendation 7-15 —Auxiliary state variables should be used.

To maintain simplicity and reduce the possibility of dead-end situations when
modeling assertions for interface protocols, it may be preferable to provide auxiliary
finite state machines that track the protocol. The assertions or assumptions can often
become simple combinational properties dependent on the state of the machine. This
is illustrated next on a simple example.

3.  A dead-end avoidance procedure can resolve many issues relative to constraining signal 
values in past clock cycles. However, the complexity of the assertions may limit the usabil-
ity of the algorithm. Thus, it is advisable to respect Recommendation 7-12, Recommenda-
tion 7-13 and Recommendation 7-14.
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For example, a handshake between two entities, as shown in Figure 7-1, can use the
auxiliary state machine shown in Figure 7-2 to tracks the protocol. Example 7-10
shows the assertions and assumptions for this protocol.

Figure 7-1. Master-Slave Handshake Protocol

Figure 7-2. Auxiliary State Machine

Example 7-10. Handshake Protocol with an Auxiliary State Machine
// MasterCheck
  M1: assert property (@(clk)
        state == W_ACK |-> req );
  M2: assert property (@(clk)
        state == RZ |-> !req );
//SlaveCheck 
  S1: assert property (@(clk) // bounded liveness
        (state == IDLE) && req 
          |-> 
      ##[min_ack_latency:max_ack_latency] ack );
  S2: assert property (@(clk)
        (state == I) || (state == RZ) |-> !ack );

ASSERTIONS ON DATA
The following guidelines will help to write assertions on data that can be formally
verified. Because the use of local variables places certain limitations on the suitability
of the assertions for formal verification, guidelines with and without local variables
are outlined in separate sections.
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Without Local Variables
Without the use of local variables, task calls and non-synthesizable boolean
expressions and functions, all SystemVerilog properties are synthesizable into RTL
code. However, without such variables, how can the correctness of data values that
are carried over time be verified?

There is a simple solution available when there are no overlapping transactions to be
verified. Over the span of the assertion evaluation attempt there is no new value
introduced. Regular variables can thus be used to store the value to be carried over
time. This usage has been illustrated in Example 3-26.

In the case of overlapping evaluation attempts, there are two techniques for avoiding
local variables. The first is to use value enumeration and the other is to use
specialized static data structures. The examples that follow each guideline in this
section are first specified using local variables and then replaced by a form that does
not require local variables.

Recommendation 7-16 —Enumeration should be used for small data value ranges.

The application of this guideline is specific to the behavior to be specified. It is
limited to relatively simple situations involving small data ranges. The original
assertion is replicated for all possible values of the variable. In Example 7-12, the
assertion has been transformed into 256 assertions, one for each possible value of
data_in.

Example 7-11. Data transformation verification
property data_check_p;
  logic [7:0] v_data_in;
  @(posedge clk) disable iff (reset) 
  (all_empty && port_in.accepted_in, 
   v_data_in=port_in.data_in)
     |-> 
       ##4 (port_out.data_out == (v_data_in << 1));
endproperty : data_check_p
data_check: assert property (data_check_p);

Example 7-12. Parity In Is the Same as Parity Out, Using Enumeration
genvar i;
  generate
    for (i=0; i<=255; i=i+1) begin : forall_7_12
      property p;
        @(posedge clk) disable iff (reset) 
        (all_empty && port_in.accepted_in && 
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         (i==port_in.data_in))
          |-> 
            ##4 (port_out.data_out == (i << 1));
      endproperty : p
      data_check: assert property (p);
    end : forall_7_12
endgenerate

In Example 7-11, the variable v_data_in could be replaced by using a
$past(port_in.data_in, 4) because the test of the output data happens a
fixed number of clock cycles after the input value is available. If the number of clock
ticks is variable or even unknown (e.g. in an open-ended interval), the solution using
$past may not be suitable due to the large number of registers required to
implement the assertion.

Example 7-13 and Example 7-14 verify that a data transformation is correct. It is
assumed that a particular data tag id value is not reused until the same id exits the
design with the transformed data, validated by out_ready (this property should be
verified by a separate assertion).

Example 7-13. Checking Tagged Data with Local Variables
property p;
  logic [7:0] v_data_in;
  logic [1:0] v_id_in;
  @(posedge clk) disable iff (reset)
    (port_in.accepted_in, 
     v_data_in = port_in.data_in, 
     v_id_in = port_in.id_in) ##1 
       (port_out.accepted_out &&
        (port_out.id_out==v_id_in) 
       )[->1]  
    |-> 
      (port_out.data_out ==  (v_data_in + v_data_in) );
endproperty : p
overlap_data_check: assert property(p);

Example 7-14. Checking Data with id Enumeration and an Array for Data4

genvar i;
generate
  for (i=0; i<4; i=i+1) begin : forall_id_7_14

4. In the assignments to v_data_in in the always block, the inputs appearing on the right-
hand side of the assignments should be first sampled at #1step in a clocking block. 
This is to avoid mismatch between the values observed by the assertions that sample signals 
in the preponed region and by the variables assigned in the always block.
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    logic [7:0] v_data_in;
    always @(posedge clk) begin : each_id
      v_data_in <= reset ? 
        0 :
        port_in.accepted_in && (port_in.id_in == i) ? 
          port_in.data_in :
          v_data_in;
      data_check: assert property (
        disable iff (reset)
        port_out.accepted_out && (port_out.id_out==i)
          |->
            (port_out.data_out == (v_data_in<<1)) ) 
      else ...;

   // An auxiliary property to verify that an id value
   // is not reused before exiting on port_out
      id_check: assert property (
        port_in.accepted_in && (port_in.id_in == i)
          |=>
              !(port_in.accepted_in && 
              (port_in.id_in == i))
                throughout
              (port_out.accepted_out && 
          (port_out.id_out==i))[->1] )
      else ...;
    end : each_id
  end : forall_id_7_14
endgenerate

The original assertion Example 7-13 is replicated into four assertions, one for each
possible value of tag_in. Each enumerated assertion is much simpler to prove than
the original one. Since at most four data_in values can be processed by the DUT at
any time, the array data needs only four elements to store the input data for later
comparison. If, by analyzing the design, it can be determined that the treatment of the
tag values is symmetrical for all the four values, it may be sufficient to prove only one
of the assertions.

Furthermore, if it can be determined by analyzing the structure of the RTL code that
the output value function (in this case just a copy of the input value) is symmetrical
for all values, it may be sufficient to prove the property for one data_in value only.
This proof can be achieved by using another generate loop over the possible
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values of j and then proving only one of the generated 256 assertions as shown in
Example 7-15, or simply by constraining the input to a constant value.

Example 7-15. Enumeration Over Tag and Data Value Ranges
genvar i, j;
logic [7:0] sum_data; // result predictor
always @(port_in.data_in) 
  sum_data = (port_in.data_in<<1);
generate
  for (i=0; i<4; i=i+1) begin : forall_id_7_15
    for (j=0; j<256; j=j+1) begin : forall_data_7_15
      overlapped_data_check: assert property(
        @(posedge clk) disable iff (reset)
        port_in.accepted_in && 
        (sum_data == j) && 
        (port_in.id_in == i) ##1 
          (port_out.accepted_out && 
           (port_out.id_out==i) )[->1]  
            |->
              (port_out.data_out == j) )
       else ...;
    end : forall_data_7_15
  end : forall_id_7_15
endgenerate

Example 7-16 shows that enumeration can also be used over the position of individual
data bits in addition to data values. 

Example 7-16. Enumeration of Bit Index Values
genvar i, j, k;
logic [7:0] sum_data; // result predictor
  sum_data = (port_in.data_in<<1);
always @(port_in.data_in) 
generate
  for (i=0; i<4; i=i+1) begin : forall_id_7_16
    for (j=0; j<8; j=j+1) begin : forall_index_7_16
      for (k=0; k<2; k=k+1) begin : forall_bit_7_16
        overlapped_data_check: assert property(
          @(posedge clk) disable iff (reset)
          port_in.accepted_in && 
          (sum_data[j] == k) && 
          (port_in.id_in == i) ##1 
            (port_out.accepted_out && 
              (port_out.id_out==i))[->1]  
            |->
              (port_out.data_out[j] == k) )
         else ...;
      end : forall_bit_7_16
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    end : forall_index_7_16
  end : forall_id_7_16
endgenerate

With Local Variables
The introduction of local variables into property specifications may create assertions
with dynamic allocation of variables. Without the knowledge of the dynamic behavior
of the signals sampled by the assertion, it may be impossible to predict the storage
requirements for the assertion during the lifetime of evaluation threads and attempts.
However, this knowledge is a requirement for constructing the equivalent
synthesizable RTL code.

The problem of determining the amount of storage for local variable instances at
compilation time is caused by unbounded non-deterministic branching involving
local variable assignments. Unbounded non-deterministic branching can be created
by [M:$] intervals in ## delays or repetition, if the operand contains an assignment
to a local variable. The simplest solution to controlling the storage needs is to require
finite branching. The amount of storage can then be determined at compile time.

In the following example, the objective is to count the number of clock cycles when c
is asserted between the occurrence of a and d, as illustrated in the timing diagram in
Figure 7-3. Sampling is assumed to be on posedge clk.

Figure 7-3. Waveform for Example 7-17

The shaded part of the waveform for a indicates that after the first assertion of a,
some further assertions of a may or may not occur, as discussed in the examples that
follow. In an evaluation attempt triggered by the first assertion of a, the value of the

clk

a

c

d
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local variable x in Example 7-17 would be two when the consequent is evaluated
(when d is asserted).

Example 7-17. Example of Unbounded Branching with Variable Assignment
property p1;
  bit [7:0] x;
  @(posedge clk)
    (a, x = 0) ##1 (!c[*0:$]) ##1
    ( ((c, x = x+1) ##1 (!c[*0:$]))[*0:$] ) ##1 d
      |->
        (x <= 8'd10);
endproperty : p1

It is impossible to determine how many threads that increment x may become active
simultaneously. All of these threads, if they match on d, must then satisfy the
consequent of the implication for the evaluation attempt to succeed. Furthermore,
unless it is known that there can be no new match on a during one attempt of
evaluation, it is impossible to know how many copies of x are needed globally in the
multiple overlapping evaluation attempts.

If the user knows that the first d  that occurs after a should terminate the search, the
property could be rewritten so that the number of copies of x needed in one attempt is
bounded:

Example 7-18. One Copy of x
property p2;
  bit [7:0] x;
  @(posedge clk)
    (a, x = 0) ##1 
    (
      !d throughout 
          (!c[*0:$]) ##1
          ( ((c, x = x+1) ##1 (!c[*0:$]))[*0:$] )
    ) 
    ##1 d
      |-> (x <= 8'd10);
endproperty : p2

There are at most two copies of x needed in each evaluation attempt. One to continue
counting and one holding the last value while d is tested whether to compare x with
expr or to just stop that thread. However, careful analysis is still required to
ascertain that the expression !d is actually the complement of d. A more direct
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solution is to use the if-else statement together with recursion, as shown in
Example 7-19.

Example 7-19. Using if-else and Recursion
property p3;
  int x;
  @(clk) (a, x = 0) |=> p_rec(x);
endproperty : p3
property p_rec(x);
  @(clk)
  if (d) 
    (x <= 8'd10)
  else 
    if (c) (1, x=x+1) |=> p_rec(x)
    else   1 |=> p_rec(x) ;
endproperty : p_rec
a7_19: assert property (p3);

There remains the question about how many instances of x are needed between
multiple overlapping attempts. If there is no knowledge that a cannot occur again
before d, it is impossible to know how many instances of x are needed. 

The possible approaches to the problem may be as follows:

1. The user indicates an upper bound on the number of concurrent attempts that 
require local variable allocation. If the bound is violated, the property implemen-
tation in RTL would fail.

2. Design code is analyzed to determine that a cannot occur again before d.
3. Reformulate the property to indicate explicitly that a single attempt is possible at 

any time.

Approach one depends on whether the users can accept such a requirement and does
not require the tool to analyze the property. 

Approach two depends on the ability of the tools to analyze the DUT at the same time
as constructing the RTL code for the property. This ability of the tool cannot be
predicted, and also it couples the property tightly to the particular DUT, thus limiting
reuse. 

Approach three is probably the most useful one.
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In Example 7-20, the evaluation attempt would terminate vacuously when a becomes
true a second time before d. In Example 7-21, the additional unwanted (!) occurrence
of a is checked by a separate property.

Example 7-20. Using Repetition, Vacuous Success on an Additional a
property p4;
  int x;
  @(clk)
    (a, x = 0) ##1 
    (
      !d && !a throughout 
         (!c[*0:$]) ##1
         ( ((c, x = x+1) ##1 (!c[*0:$]))[*0:$] )
    ) 
    ##1 d
       |-> (x <= 8'd10);
endproperty : p4
a7_20: assert property (p4);

The boolean expressions a, b, c and d must be analyzed to determine that no new
evaluation of the property is possible while an evaluation attempt is in progress.

Example 7-21. Signaling Failure if Another a Before and Including d
a7_21: assert property (
  @(posedge clk)
  (a |=> !a throughout (d[->1]) ) 
);

Once the assumption on a and d are in place and verified by other assertions, it is
easier to use a static counter and simple assertions as shown in Example 7-22.

Example 7-22. Using a Static Counter to Count c’s
localparam MAX_C = 8'd11; // value > exp
logic [7:0] x = MAX_C; 
always @(posedge clk) 
  x <= d || a?
     0 : 
     c && (x<MAX_C) ?
       x+1 :
       x ;
property p5; 
  @(posedge clk)
    d || c |-> (x < 8'd10);
endproperty : p5

/* The assertion will fail on any c that exceeds the 
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maximum of 8'd10. This is unlike the other assertions 
where a failure is detected only when d occurs and the 
count of c's exceeds the maximum. It is left to the 
reader to modify this assertion or the others so that 
all have the same reporting - either all when d occurs 
or whenever c occurs that exceeds the maximum count.*/

a7_22: assert property (p5);

This solution also lets the property be a constraint on c (or d), which the preceding
solution using local variables may not do without additional processing of potential
dead ends.

In finite branching (outside an indefinite loop) such as in [*M:N], the number of
local variable instances can be determined by analyzing the branching structure
within the repetition. With the current knowledge of the property structure and
potential solutions, the recommendations for writing “synthesizable” properties with
local variables are as follows.

Let p be a property and p_head and p_tail be subsequences of the property such
that if p_head matches, then p_tail is evaluated. 

Rule 7-17 — A variable assignment shall not occur on the right-hand side of
##[M:$] delay. 

If there is a variable assignment reachable from the right-hand side of a ##[M:$]
delay, then this unbounded non-determinism will generate an unknown number of
copies of the variable. A possible solution is to exit with one choice only, e.g., the
delay must be specified by using [->1] go-to repetition with a Boolean operand
instead of a ## delay. 

Rule 7-18 — [*M:$] repetition shall have a deterministic exit.

If the loop involves a variable assignment or if there is a variable assignment
following the loop, again the number of copies of the local variable may be
impossible to determine. Therefore, there must be only a single exit from the loop,
i.e., the choice to loop or not must be deterministic. 

Rule 7-19 — s1 within s2: There shall be no variable assignment in s1.

The within operator is derived using basic operators that involve ##[0:$] preceding
s1. This derivation may make it impossible to determine the number of required
copies of the local variable, as specified in Rule 7-17.
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Rule 7-20 — If p_tail contains a local variable assignment, then p_head shall
involve only finite branching constructs. 

Example 7-23 illustrates such a structure.

Example 7-23. Finite Branching Before Local Variable Assignment
property p;
   int id; int data;
   @(clk)
      s1 ##[M1:N1] (ready_in, id=id_in, data=data_in) 
        |-> 
          ##[M2:N2] ready_out && 
                    (id == id_out) && 
                    (data_out == fnct(data));
endproperty : p

Whenever s1 matches and is followed by ready_in within [M1:N1] clock ticks,
the id_in and data_in signals are sampled and then, within [M2:N2] clock
ticks, ready_out must be asserted and id_out must match the value of stored
id_in. The output data data_out value must be equal to a function fnct of the
stored data_in. The number of instances of the variables id and data is at most
N1-M1+1 in a single match of s1. Note that once s1 matches, then the consequent
must match on all occurrences of ready_in within the [M1:N1] interval.

The RTL implementation of the property in Example 7-23 may be obtained using a
shift register of length M1-N1+N2 stages.

Compatibility with Formal Tools
In designing assertion-based verification IP, care must be taken to use synthesizable
assertion statements and formulate them so that the appropriate set of assertions can
be used as assumptions, as described earlier in this chapter and in Chapter 3

The VMM Checker Library has been constructed so as to operate with formal tools
with minimal additional requirements. No local variables are used. Also, for any
range coverage using a covergroup at Level two, there are Level three cover
property statements on the limit values of the range. These statements can be used
as search goals by a formal tool.
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SUMMARY
In this chapter, the rules and recommendations for using assertions with formal tools
have been outlined. Since formal tools are generally more restrictive in the kind of
models they can effectively use, it is likely that some of the rules may be relaxed or
tightened, depending on the specific tool. Therefore, the contents of the chapter
should be interpreted as providing better understanding of the issues involved and
make the user aware that not all assertion forms may be usable with all formal tools.
Similar restrictions will likely apply to assertions used in a synthesizable form in
emulation and hardware prototyping.

Summary of basic rules:

• Keep assertions simple.
• Use auxiliary state variables.
• Initialize all variables.
• Handle initial reset that may not be seen by assumptions.
• Avoid constraints on past values.
• Use no unbounded (or large bounded) intervals in antecedent or consequent of 

implication.
• Use deterministic choices whenever possible (go-to repetition or if-else rather 

than ##).
• Limit the use of local variables (if supported at all).
• Avoid end-to-end properties over large blocks.
• Separate properties by signal direction to use as assertions or assumptions. 
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CHAPTER 8 SYSTEM-LEVEL
VERIFICATION

A system is a design that is composed of independently designed and independently
verified blocks as well as a block interconnect infrastructure. System-level
verification is the verification of the correct interaction among these individual
blocks. Each block, including the block interconnect infrastructure—a bus and
associated bridges and other supporting elements—has been verified individually.
Therefore, system-level verification should focus on the functionality embodied by
the combination of the blocks. Any functionality that is entirely contained within a
block is better verified at the block level.

System-level verification can take place on systems of any size, from tens of
thousands to tens of millions of ASIC gates. In all cases, the principal requirement of
verifying that the specified functionality and performance goals have been met is the
same. The system architect establishes performance, latency and bandwidth goals for
the various components of the system. The implementation teams must meet these
goals. The verification teams, along with demonstrating that these goals are met, must
verify all corner cases introduced by the implementation to demonstrate that an
invalid state or behavior cannot be reached.

The biggest challenge facing a system design team is not in the specification and
integration of many design blocks. It is in achieving a confidence level in the
correctness of the final design. This chapter, and its companion Appendix C,
describes a methodology and verification tasks applied to system-level verification.
This chapter will be of interest to block- and system-level architects and verification
engineers, with a focus on system-level integration verification.
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Beginning with a discussion of extensible verification components and their co-
ordination via a manager component, this chapter then moves onto discussing system-
level verification and verifying transaction-level environments. Wrapping up this
chapter is a discussion of hardware-assisted verification.

EXTENSIBLE VERIFICATION COMPONENTS
The techniques described in previous chapters suggest the creation of individual
transactors that can be reused from block- to system-level environments. When
considering these transactors from a system-level perspective, it may be necessary to
extend or combine their block-level functionality into system-level functionality. This
section describes the how individual transactors can be structured into system-level
transactors referred to as an extensible verification component (XVC).

XVCs provide a foundation for modular, scalable and reusable system-level
verification environments, with the aim of minimizing test set-up overhead. XVCs
can be used to drive block interconnect infrastructures or external interfaces. They
can also support other XVC components by monitoring system state and providing
notification information.

Methods of generating test vectors to hit code and functional coverage on a DUT have
been established now for many years and can be implemented in numerous ways. The
purpose of an XVC is to support system-level integration and functional verification
using both directed and random testing using a unified methodology approach. The
structure of an XVC is such that it is highly portable to different system-level designs
and across design abstraction levels.

An XVC can encapsulate verification expertise and system-level functions in a
standard way. Despite potentially having widely varying levels of functionality, the
user of an XVC is always presented with the same look and feel at a testbench level,
which contributes to a reduced learning curve and enabling a consistent system-level
test-bench control mechanism.

XVC Architecture
An XVC is a container for verification IP divided into two elements. The top layer is
a user-extensible library of test actions with a defined action interface for integration
into a verification environment. The bottom layer integrates individual transactors for
implementing the actions on a physical- or transaction-level interface.
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The action interface of the top layer allows coordination of test stimulus. The top
layer verification environment interface of an XVC can connect directly to an XVC
manager. An XVC manager can support any number of XVCs at one time and uses
this interface to schedule execution of individual actions within any given XVC.
XVCs can also pass data and status back up to the test control infrastructure to
communicate with other XVCs in the same environment. 

As illustrated in Figure 8-1, an XVC has two layers. The generator layer executes
user-defined actions. The driver layer interacts with the DUT to execute or monitor
the transactions as required by the action. The generation layer controls the
transactors in the driver layer. The action library contains a selection of known test
actions that can be executed by the XVC. 

Figure 8-1. Structure of an XVC

Recommendation 8-1 — XVCs should be under the control of a single XVC
manager.

Experience shows that most of the system verification issues are observed when
blocks compete for common system resources. To create the necessary competitive
scenarios, it is not sufficient to simply execute a single-threaded test. Similarly, it is
unlikely that independent stimulus streams on independent external interface will
create the required scenarios. Verification components must therefore be coordinated
to create the required stimulus. This coordination is easiest to achieve when a single,
central controller coordinates the execution of multiple XVCs.

See “XVC Manager” on page 316 for more details on XVC managers. 

Rule 8-2 — XVCs shall be configurable to match the design they are testing.

Even though designs may be implemented using the same interface protocols, there
may be differences in how the protocol is physically implemented by different
designs. Parameters such as bus width, FIFO depth, clock frequency, optional side
band signals shall be configurable in the XVC.
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Rule 8-3 — XVCs shall be configurable to constrain functionality as required. 

When a DUT implements only a subset of a particular interface protocol, a
corresponding driver XVC shall be configurable to prevent certain stimulus from
being generated. 

Recommendation 8-4 — XVCs should be configurable to allow for error injection. 

As well as testing for known good conditions within a DUTs state space, the
verification requirements may require that invalid protocol or data be applied to test
the error detection and recovery mechanisms of the DUT.

Rule 8-5 — Stimulus XVCs shall support directed stimulus and constrained-
random stimulus generation.

Using directed stimulus may cover a large area of state space. However, interesting
corner case states can be automatically explored by the ability to apply constrained-
random stimulus as part of the action library.

Conversely, an environment based on constrained-random stimulus may not be able
to reach specific corner cases. It may be necessary to resort to directed stimulus to
meet the more stringent stimulus requirements.

Recommendation 8-6 — Protocol-checking XVCs should be separate from driving
and or monitoring XVCs.

When error injection is disabled, the correctness of the protocol must be maintained.
A pure protocol-checking XVC should be developed for this purpose. A pure
protocol-checking XVC can be used in different system verification environment
configuration independently of the nature of the protocol agents.

Recommendation 8-7 — Coverage collection XVCs should be separate from
driving and or monitoring XVCs.

Although it is possible for an XVC implementation to combine a driver, a protocol
checker, a scoreboard and coverage monitor, practical experience has proven that a
more effective approach would be to implement single-purpose XVCs to cover these
functions independently. These individual XVCs can then be more easily combined,
reused and maintained. Information can be shared among XVC functions via a
common data structure.
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For example, notification descriptors can be exchanged between XVCs with coverage
or scoreboard related information contained within them. These descriptors can be
used to develop reactive test scenarios where different stimulus behavior patterns are
triggered depending on observed behavior or coverage feedback.

Suggestion 8-8 — An XVC may not have a need to connect to a DUT.

There is no prescribed way of implementing functionality within a specific XVC. An
XVC need not always connect to a device under test. A passive XVC may just have a
generator layer that acts as a counter or coverage collection or scoreboarding
component.

Implementing XVCs
XVCs are implemented by defining their driver layer using individual transactors.
Which transactors are used is application-specific and beyond the scope of this
section. Actions that make use of the functionality provided by the driver layer can
then be predefined for that XVC. Additional actions can be further defined by users.

Appendix C specifies a set of base classes available to help in implementing
interoperable XVCs. Figure 8-2 shows a conceptual relationship between the classes
associated with implementing an XVC.  

Figure 8-2. VMM Classes Used for Building an XVC

The XVC generator layer is the main engine of the XVC. It is able to parse action
commands into action descriptors and interpret these descriptors to execute the
described actions. For example, an Ethernet source XVC may have separate actions to
configure the generator, start the generation and stop the generation. The XVC driver
layer is the part of the XVC that implements the actions. It may be implemented using
one or more transactors. It may also have a number of different implementation
configurations, each communicating to different abstraction levels of the DUT or
acting as different types of agents on an interface.

A fully implemented XVC presents a simple interface to the design/verification
engineer, leaving the verification engineer to concentrate more on exercising the
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functionality of the device under test. This structure reduces the learning curve for
verification engineers who wish to reuse the XVC.

The remainder of this section provides guidelines for implementing an XVC using the
the base classes provided in VMM library and described in Appendix C.

Rule 8-9 — XVCs shall be derived from the xvc_xactor base class.

The xvc_xactor base class, in collaboration with the xvc_action base class,
provides a common baseline functionality. To inherit and take advantage of the XVC
base functionality and to promote a common coding standard and reuse, each XVC
must be derived from the same base class.

Example 8-1. Implementing an XVC
class ahb_master_xvc extends xvc_xactor;
   ...
endclass: ahb_master_xvc

Rule 8-10 — XVCs shall contain an execution channel instance in the
xvc_xactor::exec_chan class property.

To connect the XVC generator layer to the XVC driver layer, an internal execution
channel needs to be created. This channel will be used by action descriptors to
execute the action.

Example 8-2. Instantiating an Execution Channel
class ahb_master_xvc extends xvc_xactor;
   ...
   function new(...);
      ...
      super.exec_chan = new(...);
      ...
   endfunction: new
   ...
endclass: ahb_master_xvc

Rule 8-11 — Transactor instances used to implement the XVC driver layer shall be
stored in the xvc_xactor::xactors[] class property.

An XVC driver layer is required to translate transaction information into stimulus or
from response that is compatible with the DUT. This translation is performed by one
or more transactors with the top-most transactor connected to the execution channel
in the xvc_xactor::exec_chan class property.
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The transactor instances must be stored in the xvc_xactor::xactors[] array to
allow the xvc_xactor base class to register and unregister any callbacks
extensions required by the action execution.

Example 8-3. Storing Transactor Instance References 
class ahb_master_xvc extends xvc_xactor;
   ahb_master_xactor ahb_master;

   function new(...);
      ...
      this.ahb_master = new(...);
      super.exec_chan = this.ahb_master.in_chan;
      super.xactors.push_back(this.ahb_master);
      ...
   endfunction: new
   ...
endclass: ahb_master_xvc

Rule 8-12 — The xvc_xactor::start_xactor(),
xvc_xactor::stop_xactor(),
xvc_xactor::reset_xactor() methods shall be extended to 
call their corresponding methods in the execution transactors.

Extending these methods will allow the correct starting, stopping and resetting of the
XVC. The base class does not automatically invoke these methods in the transactors
found in the xvc_xactor::xactors[] class property.

Implementing Actions
An XVC action is a high-level operation implemented using the transactors in the
driver layer of an XVC. An XVC action is described by an action descriptor. An
action descriptor can be manually created and specified, or randomized or set by
parsing an action command. Actions always execute in order. Actions may execute
atomically or can be interrupted by other actions. Actions may execute in zero-time or
may be blocking. Actions may be immediate, completing only once their execution
has completed. Others may fork off threads that keep executing, even though the
action is nominally completed. Other actions may terminate threads started by
previous actions. For example, a start-generation action would execute in zero-time
without being interrupted and start a generation thread. A stop-generation action may
have to wait for an opportune moment, and then terminate the generation thread
started by the start-generation action. 

The remainder of this section specifies guidelines for implementing actions using the
VMM library as defined in Appendix C.
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Rule 8-13 — Action descriptors shall be derived from the xvc_action base class.

The xvc_action base class provides common functionality shared by all action
descriptors. It is also the type used by the xvc_xactor base class to implement
generic XVC functionality. To be usable with xvc_xactor-based XVCs, action
descriptors must be derived from the xvc_action base class.

Example 8-4. Defining an Action
class ahb_master_config extends xvc_action;
   ...
endclass: ahb_master_config

Rule 8-14 — The xvc_action::parse() method shall be extended.

This method lets actions be defined using commands. The syntax of the command
used to specify a user-defined action is defined by this method. This method is
invoked by the xvc_xactor::parse() method when parsing a command based
on known actions.

Rule 8-15 — If the parsed command is invalid, it shall be silently ignored.

If the syntax is not recognized, the command shall be ignored without producing an
error message. The command may be a valid command for another action. If an error
message is produced, the simulation will be considered failed even though the
command was valid for another action.

If a command is not recognized by any of the known actions, the
xvc_xactor::parse() method will issue an appropriate message.

Rule 8-16 — The xvc_action::parse() method shall return an action
descriptor instance corresponding to the parsed command or null.

If the command is successfully parsed, the corresponding action descriptor is returned
as a new instance of the action descriptor class. Any parameter is set according to the
values specified in the command.

If the command is not recognized, null is returned.

Example 8-5. Parsing an Action Command
class ahb_from_file extends xvc_action;
   string fname;
   ...
   virtual function xvc_action parse(string argv[]);
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      parse = null;
      if (argv.size() != 2) return;
      if (argv[0] != "read") return;
      begin
         ahb_from_file act = new;
         act.fname = argv[1];
         parse = act;
      end
   endfunction: parse
   ...
endclass: ahb_from_file

Rule 8-17 — The xvc_action::execute() method shall be extended.

The actual execution of the action is performed when the XVC invokes the action
descriptor's execute() method. The user-defined implementation of this method
defines the execution of the action.

This method interprets any argument or parameters in the action descriptor instance
and executes the action accordingly.

Example 8-6. Definition of an Action Execution
class ahb_from_file extends xvc_action;
   string fname;
   ...

virtual task execute(...);
      int fp = $fopen(fname);
      if (fp == 0) ...
      ...
   endtask: execute
   ...
endclass: ahb_from_file

Rule 8-18 — Actions shall run via the execution channel.

The execution channel, found in the xvc_xactor::exec_chan class property, is
provided to the action execution via the exec_chan argument of the
xvc_action::execute() method. While executing the action, transactions can
be supplied to or received from the XVC driver layer via that channel.
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Example 8-7. Executing an Action
class ahb_from_file extends xvc_action;
   string fname;
   ...
   virtual task execute(vmm_channel exec_chan,
                        xvc_xactor  xvc);
      ...
      ahb_tr = new;
      ahb.kind = WRITE;
      ...
      exec_chan.put(tr);
      ...
   endtask: execute
   ...
endclass: ahb_from_file

Example 8-7 shows an atomic immediate action. A more autonomous XVC may
require using state-based or command actions. State-based or command actions
modify the state of an autonomous XVC. They may start, modify or terminate
independently executing threads. For example, a generator XVC could implement
configure, start-generation and stop-generation actions.

Alternative 8-19 —Actions may include callback extensions in their execution.

The execution channel and the abstraction layer provided by the XVC driver layer
may prove insufficient to execute the desired action. Some actions will find it
necessary to use callback extensions for one or all of the execution transactors.

Action-specific callback extensions can be automatically registered by the XVC with
the appropriate execution transactor if their instance is stored in the
xvc_action::callbacks class property. If an element of the array is not null
(i.e., contains a callback extension instance), then it is prepended to the corresponding
execution transactor in the xvc_xactor::xactors[] class property (e.g.,
extension found in xvc_action::callbacks[0] will be registered with
xvc_xactor::xactors[0]). The callback registration occurs before the action's
execute() method is invoked and unregistered when it returns.
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Example 8-8. Including Callback Extensions in Action Execution
class ahb_with_retries_cbs extends ahb_master_cbs;
   ...
endclass: ahb_with_retries_cbs

class ahb_with_retries extends xvc_action;
   ...
   function new(...);
      ...
      ahb_with_retries_cbs cbs = new(...);
      super.callbacks[0] = cbs;
   endfunction: new
   ...
endclass: ahb_with_retries

Alternative 8-20 —An XVC may support out-of-order action execution via interrupt
actions.

Each XVC may have any number of interrupt actions. Interrupts are executed at the
earliest opportunity. Actions are scheduled for execution by the XVC manager and
can be scheduled as either interrupt actions or normal actions. Actions to be
scheduled as interrupt actions are submitted to an XVC via the interrupt channel.

Rule 8-21 — Non-atomic normal actions shall invoke the
xvc.wait_if_interrupted() method.

Non-atomic actions are actions that may be interrupted by higher-priority interrupt
actions. The granularity of the interruption is defined by the points where the
xvc.wait_if_interrupted() method is invoked. This method must be
invoked at all points, in the execution of an action, where it can be safely interrupted.

Example 8-9. Non-Atomic Normal Action
class ahb_from_file extends xvc_action;
   ...
   virtual task execute(vmm_channel exec_chan,
                        xvc_xactor  xvc);
      ...
      while (...) begin
         ahb_tr = new;
         ahb.kind = WRITE;
         ...
         xvc.wait_if_interrupted();
         exec_chan.put(tr);
      end
      ...
   endtask: execute
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   ...
endclass: ahb_from_file

Rule 8-22 — Interrupt actions shall not invoke the
xvc.wait_if_interrupted() method.

Interrupt actions are atomic actions that cannot be interrupted by higher-priority
interrupt actions. Any call to the xvc.wait_if_interrupted() method is
ignored and a warning message is issued.

XVC MANAGER
With the ever increasing design complexity of system-level designs, support for
coordination of multiple verification components is essential to provide a working
platform from where the construction of complex verification scenarios can begin.
The XVC manager is an optional verification component responsible for the high-
level synchronization of XVCs. The synchronization and XVC control mechanisms
can be user-defined according to the need of the system or a specific test. 

Rule 8-23 — There shall be only one instance of the XVC manager. 

The purpose of the XVC manager is to coordinate XVCs to create relevant conditions
for particular tests. Using multiple XVC managers would require an additional level
of coordination among the managers.

Recommendation 8-24 —An XVC manager should be extended from the
xvc_manager base class.

The xvc_manager base class provides generic functionality that is useful for
controlling and synchronizing a varying number of XVCs in a system-level
verification environment. It is designed to work in collaboration with the features
present in the xvc_xactor and xvc_action base classes.

Example 8-10. Defining an XVC Manager
class env_manager extends xvc_manager;
   ...
endclass: env_manager
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Predefined XVC Manager
A predefined XVC manager that uses test scenario descriptions written as external
configuration files in a plain text format is available. These files can be reused or
modified to new requirements with relative ease. The ability to direct the test via
simple text input files enables the user to quickly achieve effective test results without
a detailed understanding of the internals of the verification environment. The
predefined XVC manager is specified in “vmm_xvc_manager” on page 444.

Having test scenarios specified as external files also eliminates the need for any re-
compilation of testbench components or DUT to run different test scenarios. This
specification in turn helps to minimize test turnaround times for large and complex
system designs. See “vmm_xvc_manager” on page 444 for a description of the test
scenario file syntax.

Figure 8-3. Structure of the Predefined XVC Manager

The concept of a test scenario is fundamental to the function of the predefined XVC
manager. The predefined XVC manager directs XVCs within the scope of a test
scenario. A system-level test program can contain one or more test scenarios. Test
scenarios are designed to meet one or more verification requirements. A test program
might consist of a number of test scenarios which, when taken together, fulfills
several test requirements for a DUT. Test scenarios can also be used to encapsulate
common sequences of actions so they can be reused by different test programs. For
example, the operations required of a number of XVCs to configure a system could be
contained in a scenario.

Test scenario files for the predefined XVC manager are fixed prior to run time and
cannot be dynamically modified. A test program includes the descriptions of test
scenarios and information regarding the order in which each scenario is executed.
Scenarios may be repeated any number of times and in any order. Every test action
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that can be executed in the test program is checked by its target XVC before
executing the first action. This checking prevents a semantic or syntax error in the
scenario file from aborting a simulation after a long run.

The remainder of this section specifies guidelines for using the predefined XVC
manager as defined in Appendix C.

Rule 8-25 — The predefined XVC manager shall not be extended in any way. 

The predefined XVC manager is designed to be fully portable and generic from a
verification environment to another. There is no need to extend it in any way to
specialize it to a particular environment. This continuity is also true for the syntax of
the test description file or scenario input file.

Rule 8-26 — A test scenario shall include one or more XVCs.

As the predefined XVC manager does not generate stimulus or collect coverage or
scoreboard data by itself, there shall be at least one XVC within the testbench
environment that is used by the test scenario.

Rule 8-27 — A test scenario shall end only when all the XVCs associated with it
have completed their actions or when a predetermined system
notification is indicated.

When executing a scenario, the predefined XVC manager queues all of the actions
scheduled to run on an XVC. Once all XVCs have completed their actions, the
scenario ends.

The predefined XVC manager is also responsible for detecting an end-of-simulation
condition and stopping the simulation run. The trigger for this condition may be
either:

• A state transitioned to a particular system state—the simplest being that the 
system transitioned from active to idle

• A specific runtime limit was reached

These conditions are specified in the manager scenario file STOPON command. See
“Commands” on page 447 for more details on the predefined XVC manager
command set.
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Rule 8-28 — A test scenario shall guarantee that a scenario finishes in a timely and
orderly manner.

The user should define scenarios to end at the appropriate time. This definition can be
categorized in a number of ways depending on the requirements of the test being
implemented:
• When functional coverage goals are met
• When all input stimulus is exhausted
• If some unexpected state or error condition occurred

The predefined XVC manager allows graceful-stop and immediate-stop requests for
this purpose.

SYSTEM-LEVEL VERIFICATION ENVIRONMENTS
To fully verify the requirements of a block or a system, common practice is to
construct a custom testbench targeted solely at meeting these demands. However,
unless a standard approach is taken, block-level testbench components or functional
coverage elements cannot easily be reused at the system level.

Rule 8-29 — A transactor shall be used in place of the CPU or DSP processor.

This chapter demonstrates using verification components in place of a CPU/DSP to
control different system-level verification environments. Using a CPU/DSP in
software-driven, system-level verification environments is still very much
encouraged, but that usage is covered in detail in Chapter 9.

A transactor presents a direct cycle-level accurate mechanism for driving stimulus
into the system without the overhead of programming a processor to perform this
task. This transactor provides an easy-to-control bus master. This approach also
avoids the verification of both master and slave bus agents in one environment, which
can lead to challenging error detection conditions. For example if there were an error
in the connection of a master or slave bus agent, then either could be masking the
connection issue. A transactor will also be easier to synchronize with other events in
the system design or verification environment.

Finally, a transactor can be written to generate a much wider range of protocol values
and behaviors over a smaller number of bus cycles, and can therefore be used to
achieve better functional coverage.
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Recommendation 8-30 —System-level verification should be split across multiple
verification environments.

For a given system design, its associated functional verification plan specifies
system-level verification requirements. It is easier to use a number of different
verification environments to meet these requirements. Each environment is concerned
with a particular set of orthogonal functional verification goals and is designed to
cover those requirements efficiently. The orthogonality of the system-level
requirements makes using a single environment needlessly complex and can in fact
mask certain system configuration errors.

Figure 8-4 shows different system-level verification environments for the same
system. Dotted boxes represent “sockets” where the CPU/DSP and design blocks
(peripherals) interface to the block interconnect infrastructure. In all cases, the CPU/
DSP has been replaced with a verification component that drives transactions into the
system, as per Rule 8-29. In the block interconnect infrastructure environment, even
the peripherals themselves have been substituted for verification components. In the
other environments, the peripherals are present and verification components are used
to drive and monitor stimulus on their external interfaces.

Verification can begin with any of the verification environments shown in Figure 8-4
and at any abstraction level. However, a system design implemented at a given
abstraction level may be more or less suited to one verification environment over
another. Considering each environment in Figure 8-4 in bottom-up order:

Block interconnect infrastructure environment —  As described earlier, the block
interconnect infrastructure is first pre-verified in its own verification environment.
Verification components substitute for the master and slave peripherals at the points
where the peripherals would interface to the bus. The purpose of this verification
environment is to check the functional correctness of data transfers, protocol rules
and bus performance requirements, such as latency and bandwidth.

Basic integration environment —  Integration verification checks the correctness of
the connectivity by toggling all I/O ports in a system. Replacement for the various
system components with verification components to drive bus transactions is the
preferred method of applying integration stimulus. Integration tests are written to
ensure that each block has been correctly integrated into the system-level hierarchy.
Internal functional behavior of the system components is not verified. 

Low-level system functional environment —  The purpose of this environment is to
cover any functionality that cannot readily be observed from the transactor
substituting for the CPU/DSP. Such functionality may include monitoring of control
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signals, reset mode checking, or any other functionality that is not easily looped back
to the CPU/DSP for read-back or control. As with the basic integration environment,
internal functional behavior of the system components is not verified.

Figure 8-4. System-Level Verification Environments

System validation environment —  System validation ensures that the overall
performance requirements—such as latency and bandwidth—of the system are met.
In this environment, verification components drive or monitor the external interfaces
of all blocks in the system. Only the CPU/DSP is replaced with a transactor. This
environment should use an abstraction model of the system that efficiently simulates
with high throughput with the required level of accuracy to help minimize test
turnaround time.

Recommendation 8-31 —System-level verification environments should reuse block-
level verification components where applicable.

The guidelines outlined in the previous chapters make it possible to architect block-
and system-level verification environments so that the effort spent in creating the
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different block-level verification components is not discarded when moving to the
system level. 

Verification components constructed as described in previous chapters can readily be
reused at the system level when required. However, instead of being directly
controlled, block-level components can be reconfigured to let them perform
operations that are more relevant to the system. The reconfigurability of verification
components addresses the difference in purpose of the block- and system-level
verification.

For example, in block-level verification, tests focus on meeting code and functional
coverage requirements of the block under test. These tests create stimulus to exercise
corner case states—stimulus that may not be representative of system-level
operations or corner cases. When the block is integrated into the system, the
verification component may have to be reconfigured to create different stimulus
patterns designed to exercises system-level corner cases. For reactive verification
components that drive and monitor an interface, it usually involves reconfiguring the
component from reactive to passive mode so that only the monitoring function is
enabled.

It must be noted that the benefits of reusing such components should not
automatically be assumed. They should be considered according to the system-level
test requirements. For example, if requirements can be met by simply looping back
the external interface of a block, then there is no benefit to reusing the block-level
verification component for that interface.

Rule 8-32 — A watchdog timer shall terminate the simulation in the absence of
progress.

System-level environments must contain a watchdog timer mechanism that will bring
the simulation to a halt in a controlled but timely fashion in the event of a lockup in
the DUT. The watchdog timer is reset whenever progress is observed by the
verification components monitoring simulation progress.

Because of the inherent complexity of the system being verified, system-level
simulations are usually lengthy. Simulation resources must be used efficiently to
perform as many system-level tests as possible. A watchdog timer will prevent
simulations from running without accomplishing any useful work until manually
interrupted. Such simulations also waste regression runs by preventing the execution
of subsequent tests.
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Recommendation 8-33 —System-level verification environments should be XVC-
based.

Extensible verification components or XVCs are better than raw transactors and
generators for system-level verification because XVCs are specifically designed for
creating relevant system-level stimulus scenarios. Unlike individual transactions in a
low-level transactor, XVC actions are abstractions of lower-level transactors and/or
generator behavior. Also, XVCs have a common communications interface and
structure that lets their actions be synchronized. See section titled "Verifying
Transaction-Level Models" on page 332 for more details on the structure and
implementation of an XVC.

Recommendation 8-34 —AN XVC-based environment should use an XVC manager.

To be able to drive multiple simultaneous input streams into a system design to
emulate real-world operation with minimal set-up cost, an XVC manager should be
used to coordinate a group of one or more XVCs via their respective communications
interfaces.

Figure 8-5 shows an example of XVC-based verification environment. Each XVC is
attached to its corresponding physical interface and is controlled by an XVC manager.
See “XVC Manager” on page 316 for more details on the XVC manager.

Figure 8-5. XVC-Based Verification Environment with XVC Manager

Block Interconnect Infrastructure Verification
A block interconnect infrastructure must support the peripherals, memory map,
bandwidth and latency requirements of the system. Prior to integrating the system
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peripherals with this bus interconnect infrastructure, it is desirable to verify the
infrastructure as a design block in its own right. 

A block interconnect infrastructure can be represented as a matrix or interconnect
with a built-in arbitration algorithm as shown in Figure 8-5. It may also include
additional supporting elements, such as bridging elements to other bus subsystems,
data downsizers, data upsizers, bit-swizzlers and so on. These elements may also have
been independently verified prior to integration into the bus interconnect
infrastructure.

The block interconnect infrastructure verification environment is used to verify
interconnect arbitration schemes and bus bandwidth requirements. It should also
include a bus protocol functional coverage model. Transactions should be
scoreboarded to verify the functionality of the bus infrastructure by tracing
transactions from a master through the infrastructure elements to the target slave
device.

When integrating combinations of interconnect infrastructure elements such as the
ones mentioned above, it is desirable to ensure that, although they function correctly
in isolation, they do not produce unexpected effects once combined. Diagnosing
problems with interconnect elements and identifying the cause would be a difficult
task using a fully populated system environment. Such an environment is not
specifically designed to efficiently verify that connectivity. However, if a system-
level verification environment is only concerned with checking the block interconnect
infrastructure behavior, problems can be identified and diagnosed with greater
efficiency.

Rule 8-35 —  All bus agents shall be replaced by XVCs. 

A bus agent is any design block that interfaces directly with the block interconnect
infrastructure. A bus agent can be a master (proactive driver) or a slave (reactive
driver). Unlike actual design blocks, XVC transactors can be controlled at a
transaction or cycle level to create stimulus in patterns specifically designed to create
system-level corner cases. If master or slave peripherals were used as bus agents
instead, it would be difficult—if not impossible—to coerce them into creating the
required stimulus to create the same corner case.

Recommendation 8-36 —Constrained-random stimulus should be used.

Constrained-random stimulus has proven to be the most effective method of verifying
a block interconnect infrastructure. Even a simple infrastructure has an extremely
large functional verification space due to the number of different transaction
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permutations that it supports. Randomly generating stimulus will quickly achieve a
high level of functional coverage and should hit many corner cases that are often
overlooked when handcrafting directed stimulus.

Figure 8-6. Structure of a Block Interconnect Infrastructure Environment

Figure 8-6 details the structure of a block interconnect infrastructure verification
environment. It includes a bus interconnect and a single 64- to 32-bit downsizer
element. Note the locations of the monitors in the environment and the presence of
the scoreboard component that receives transaction information from each monitor
via the XVC manager. Analysis of the resulting scoreboard coverage enables the
verification engineer to modify the random stimulus to obtain the required functional
coverage.

Figure 8-7 shows how XVCs in a block interconnect infrastructure verification
environment are linked and communicate through an XVC manager. The XVC
manager controls the overall simulation. Progress in the testbench is measured by
monitoring the transactions that have passed through the interconnect infrastructure
and by measuring the functional coverage that is being achieved. Upon completion of
a test, the simulation is gracefully stopped by the XVC manager. Each XVC is
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allowed to complete its current transaction—thus preventing false protocol or
transaction monitoring errors.

Figure 8-7. Simulation Control Communication in Random Block Interconnect 
Infrastructure Environment

Basic Integration Verification
The objective of basic integration verification is to verify the correctness of
communications among design blocks.

Figure 8-8. Structure of a Basic Integration Environment

Recommendation 8-37 —The design blocks should be put into simple loop-back
modes where possible.

The loop-back approach allows an XVC bus master—usually replacing the CPU or
DSP in the system—to be the sole source of stimulus in the integration environment.
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This structure thus eliminates the need for synchronizing multiple stimulus streams
and greatly simplifies the self-checking mechanism. For example, the external
interface of the UART in Figure 8-8 is looped back. This loop back enables the UART
control and status registers to be accessed and checked without requiring an external
connection to the UART.

Care must be taken when using loop-back mode in certain peripherals such that the
loop-back state does not hide a device configuration problem—i.e., where there is no
inherent checking of correct device behavior. A possible solution, illustrated in Figure
8-8 by the LCD controller peripheral test block (PTB), would be to have a transactor
that monitors DUT I/O and sends feedback to the master transactor indicating success
or failure.

In some systems, it may not be possible to use a loop back structure on certain
peripherals. For example, non-symmetrical devices require a corresponding master or
slave component to enable data transfer. In this case, a verification component that
provides the required interface functionality must be used.

Recommendation 8-38 —Stimulus for software-accessible registers should be
automatically generated.

Stimulus for a bus master to access all software-accessible registers can be
automatically generated from a set of configuration files that describe the locations
and capabilities of software-accessible registers in peripherals. Recommendation 9-7
on page 351 briefly discusses register description. Figure 8-9 illustrates the process
behind the generation of the master XVC’s stimulus in Figure 8-8. One of the master
XVCs uses the generated stimulus file.

Figure 8-9. Automatic Generation of Register Integration Stimulus 
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The automatically generated stimulus provides a single-threaded basic register
interconnect test for each peripheral in the system design. Automatic generation of
the stimulus minimizes the overhead required when reconfiguring the system memory
map or adding/removing peripherals. Note that the C source and C header files are
used in the hardware/software verification environment as described in Chapter 9. 

Recommendation 8-39 —User-directed tests should supplement the generated
register test. 

User-directed tests should be supplied to verify specific initialization and corner cases
that cannot be automatically generated. 

For example, a user-directed test would be required to verify that an interrupt line on
a peripheral block has been correctly integrated into the interrupt controller block.
The automatically generated register checks will establish that the interrupt controller
status register and the peripheral configuration registers are accessible. But the user-
supplied stimulus would be responsible for generating or forcing the interrupts and
for polling the status register of the interrupt controller to determine that the correct
interrupt is indicated.

Low-Level System Functional Verification
The previous system-level environments are useful for system integration
verification, but do not readily cover the following potential functional verification
requirements related to system integration testing:
• Reset mode checking
• Any control signals or configurations that cannot be determined or implied by a 

bus master agent read operation
• Any system integration functionality that is not looped back or visible or 

controllable by the CPU/DSP transactor

To address the above requirements, a low-level system functional verification
environment builds upon the basic integration environment. At this stage, the system
is being verified as a known good integration of known good blocks. As illustrated in
Figure 8-10, the functional verification environment adds XVCs to provide external
stimulus to the peripherals in the system.

Like the basic integration environment, the functional verification environment
includes XVCs to drive and monitor all external peripheral interfaces. The CPU/DSP
block continues to be replaced with a transactor to provide better control over the bus
transactions they create.
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Figure 8-10. Structure of a Low-Level System Functional Verification Environment

System Validation Verification
The system validation environment concentrates on checking the performance
requirements of the system. This environment features the pre-verified and integrated
block interconnect infrastructure and design blocks. The maximum achievable
performance of the block interconnect infrastructure can be verified using the
interconnect infrastructure verification environment. The purpose of this environment
is to ensure that the combination and interaction of the blocks still meets the required
system performance requirements.

Figure 8-11 builds on the low-level system functional environment in Figure 8-10. It
includes transaction monitors and scoreboard XVCs. In this example, the stimulus is
targeted at verifying the bandwidth of the LCD controller master as it transfers image
data from the memory model via DMA. Test results from the scoreboard can be
correlated with the results from the LCD control XVC that checks the generated pixel
data coming from the LCD controller itself.
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.

Figure 8-11. Structure of a System Validation Environment

Rule 8-40 — The system shall be populated with models of the various blocks at the
highest possible abstraction level suitable for the type of verification
being done.

Using RTL models for all blocks in the entire system usually yields a large system
model that will be inefficient to simulate. Many verification requirements can be met
with models at higher levels of abstraction. For example, for system-level
performance analysis, it is often sufficient to populate the system using transaction-
level models of the various design blocks.

Recommendation 8-41 —The verification environments should be portable across
abstraction levels of the system or its blocks.

The system verification environment can be used to demonstrate that an RTL
implementation is equivalent to the high-level transaction-level model of the system.
By running the same test suite on different models of the system, they can be
demonstrated to be functionally equivalent. “Verifying Transaction-Level Models” on
page 332 expands on verifying transaction-level models.

B
rid

ge
Sl

av
e 

Ta
p

Sl
av

e 
Ta

p

M
astr Tap

Slave Tap
M

astr Tap
M

astr Tap

UART

Sys
Ctrl

LCD
Ctrl

Mem
Ctrl

Video
Ctrl

Intrpt
Ctrl

Master
XVC

Master
XVC

IRQ
XVC

SIO
XVC

Sys
XVC

LCD
XVC

RAM
Model

XVC
Manager

Scoreboard
XVC

Monitor
XVCs

DUT



System-Level Verification Environments

Verification Methodology Manual for SystemVerilog 331

Recommendation 8-42 —The verification environments should be modular to
optionally exclude selected verification components and/
or design blocks

Depending on the goal of a particular functional verification test, it may not be
necessary to include all the XVCs for a particular test. It may also be possible to
disable clock input signals to design blocks that are not associated with a particular
test. Both of these techniques will aid in increasing the simulation or emulation
performance and reduce test turnaround time. A modular verification environment
using transactors that can easily be disabled—or not even instantiated in the
vmm_env::build() method extension—should be considered.

Figure 8-12. Verification Environment with Selected Blocks and Components 
Excluded

Figure 8-12 shows the verification environment from Figure 8-11 reconfigured to
disable clock inputs to design and verification components not related to the
functional test being performed. Disabled test components and peripherals are shown
with hatched shading.
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VERIFYING TRANSACTION-LEVEL MODELS
Design methodologies often include building a micro-architectural or transaction-
level model of the design. This inclusion not only enables rapid prototyping and
performance analysis, but also provides an executable specification for HDL
implementation of the design. Like any model, the transaction-level model must be
verified. A VMM-based verification environment can be developed to verify the
transaction-level model.

Recommendation 8-43 —Verification environments should be reusable across
different abstraction views of the same DUT.

If a verification environment is architected along layers, as described in “Testbench
Architecture” on page 104, it can be reused from a transaction-level model to an
implementation model, as illustrated in Figure 8-13. This reuse can shorten the time
spent in RTL verification by writing tests at the transaction-level and by starting the
development of these tests before the RTL implementation of the design is available.
Of course, a test suite developed for a transaction-level model cannot always verify
signal-level failures. The latter is better verified through additional tests or via formal
techniques.

Figure 8-13. Reusing a Transaction-Level Verification Environment with an RTL 
Implementation
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Recommendation 8-44 —A transaction-level model of the design should be written.

Writing a transaction-level model of the design is an intrinsic part of some design
methodologies. For others, the first model of the design is written at the RTL level
and writing a transaction-level model of the design appears to be a costly activity that
will detract from the actual design. But writing a transaction-level model, if the RTL
code is not yet available, is an investment—not a cost—that repays itself many times
over the duration of the entire project.

A properly written transaction-level model only takes a fraction of the time it takes to
write an RTL model, thus enabling the design and the verification team to work in
parallel. It also executes orders of magnitude faster than the RTL model, allowing the
verification environment and tests to be developed and debugged much faster. When
the RTL model finally becomes available, all components of the verification
environment are already at a very mature level. They can immediately verify the
functional aspects of the design and can meet high functional coverage for these
aspects.

Recommendation 8-45 —A transaction-level model should have a pin-accurate
shell.

Transaction-level models are faster to write and simulate because they do not have to
deal with the intricacies of physical signals and protocols. They can receive, execute
and respond to transactions as high-level transaction descriptors. They do not need to
exchange or operate on transactions as a collection or sequence of bits on some
physical wire.

However, having the ability to substitute an RTL design block in a system with a pin-
accurate transaction-level model will enable simulation to run much faster and with
less demands on the simulation resources. By judiciously selecting a suitable mix of
RTL and transaction-level models to populate a system, it is possible to meet the
system-level verification requirements with a set of much lighter models. It may even
be possible to meet all of the requirements without having to resort to emulation.

Rule 8-46 — Transaction-level models shall not be written nor considered
equivalent to RTL models.

Transaction-level models and RTL models are not equivalent and should never be. A
transaction-level model should be an abstraction of an RTL model. If it was
equivalent to an RTL model, i.e., if the transaction-level model included all of the
implementation details and artifacts, there would be no advantage in development and
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simulation time. It is not possible to have a one-to-one comparison of a transaction-
level model and a RTL model in all aspects—timing, delay, latency and behavior.

A transaction-level model—and the verification environment that verifies it—should
only be as accurate as necessary, given a specification that describes timing and
behavioral properties. The subsequent RTL model should be considered a subset of
that specification.

Alternative 8-47 —A transaction-level model can be written using SystemVerilog.

Design methodologies that require or produce a transaction-level model of the design
often use SystemC as the modeling language. It is an excellent choice and there are no
reasons to use a different modeling language because the SystemC model may be
used in other contexts than functional verification of the implementation. But for
those design methodologies where a transaction-level model is written only to
accelerate the development of verification environments, with no need to reuse that
model in other context, SystemVerilog can also be a good modeling language choice.

SystemVerilog provides all of the necessary high-level constructs that make writing
transaction-level models more efficient. Using SystemVerilog to implement a
transaction-level model will also eliminate the technical challenges of integrating the
SystemC model with the SystemVerilog verification environment. And as illustrated
in Figure 8-14, verification components may also be used within a SystemVerilog
transaction-level model to accelerate its implementation.

Figure 8-14. Using Verification Components to Write Transaction-Level Models

Transaction-Level Interface
Stimulus transactions must be transmitted from the verification environment to the
transaction-level model. Similarly, response transactions must be observed from the
transaction-level model by the verification environment. It is possible to exchange
transactions via a pin-level interface but having to write a pin-accurate transaction-
level model increases its complexity and its runtime burden. Transactions should be
exchanged at a higher level of abstraction.
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Rule 8-48 — A vmm_channel shall be used to interface to the transaction-level
model.

The vmm_channel construct is a transaction-level interface used between
transactors, as described in Chapter 4. The same mechanism can be used to exchange
transaction descriptors between the verification environment and the transaction-level
model, as shown in Figure 8-15.

Figure 8-15. Transaction-Level Interface to a Transaction-Level Model

Using a vmm_channel to exchange transaction descriptors with a transaction-level
model is simple to implement if the transaction-level model is written in
SystemVerilog. But if a language boundary has to be crossed—for example, to verify
a transaction-level model written in SystemC—the interfacing mechanism becomes
more challenging.

Recommendation 8-49 —Cross-language channels should be used if available.

A standardized transaction-level communication mechanism offers opportunity for
automation. Simulators that integrate SystemVerilog and SystemC can abstract the
transition between the languages by providing channels with endpoints residing in the
different languages. As illustrated in Figure 8-16, the upper layer of the verification
environment would not be aware of the nature of the model at the other end of the
channel. They can thus be reused, unmodified, from a transaction-level model to an
RTL model. Cross-language channels automatically map transaction descriptors from
one language into the other, without requiring both domains to have a common
memory layout for their high-level data structures.
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Figure 8-16. Portable Environments Through Cross-Language Channels

HARDWARE-ASSISTED VERIFICATION
In a fully simulated environment, a transactor can be used to drive the external
interface of a peripheral. This is simple to accomplish because the peripheral, its
external interface and the transactors are all included in the same simulation
environment. However, there may be circumstances where the design must be
verified on actual hardware. Emulation of the design is usually required because a
pure software-based verification does not offer the runtime performance necessary to
meet some verification requirements.

Peripherals integrated into a hardware-assisted verification of the design may have a
number of interfaces to consider for verification. The bus interface is de-facto handled
by the system itself. But any external interface needs to be driven or monitored during
block- and system-level testing, and under the control of the simulation-based
environment manager.

Although transactors are traditionally developed to interact directly with a simulated
model of the design, it is possible to write a stand-alone, synthesizable RTL
verification component for an external interface that has little or no dependency on a
simulated verification components. Such a verification component, called a
peripheral test block (PTB), could either operate standalone, could be controlled by an
external driver such as a file-reader bus-functional model or could be controlled by an
XVC.

Typical usage models for such a test block include:
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• For FPGA implementation or emulation of the device or system under test
• For shipment as an out-of-the-box verification component to a customer with no 

particular dependency on the customer’s verification tools
• For simple testbench environments where simple loop-back communications are 

all that are required for external interface testing of a device

Examples of peripherals that a PTB can address:

Sequential Data Peripherals —  These peripherals transfer data sequentially, a
single word, byte or nibble etc. at a time. The content or structure of the sequential
data is not defined. Each transfer is independent of the previous or subsequent
transfers. Peripherals of this type include UARTs and GPIO.

Sequential Block Peripherals —  These peripherals transfer data sequentially, a
block of data at a time (multiple words, bytes or nibbles etc.). The format of the data
in the block is defined for individual transfers and blocks are transferred in a fixed
order. Peripherals of this type include video controllers and network interfaces
(Ethernet, USB etc.).

Random Block Peripherals —  These peripherals transfer data a block at a time.
The format of the data in the block is defined for individual transfers and blocks are
transferred in an arbitrary order. Peripherals of this type include Serial Peripheral
Interface, Memory Stick, SD-Card and Multi-Media-Card reader interfaces.

Examples of peripherals that a PTB does not attempt to address include:

Random Data Peripherals —  These devices transfer the data in a random way for
example a single word, byte or nibble etc. at a time. The format for the data is not
defined for the transfer larger than the entity size and data can be read out in any
order. Peripherals of this type include ROMs and RAMs.

Rule 8-50 — A peripheral test block must have a generic external interface.

The PTB is a way of creating a synthesizable transactor for peripherals within an
emulated system design. It can be reused between different hardware-based
verification environments. It should therefore present a generic external interface to
suit different integration mechanisms, such as direct interaction with transaction-level
transactors or through software-programmable register interface provided by a
hardware wrapper. 
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Figure 8-17. External Interface on a Peripheral Test Block

Figure 8-17 illustrates the external interfaces that a PTB can have. In this example, the
PTB for the UART has an AMBA APB interface wrapper to enable it to be set up and
controlled by the verification environment. Also in this example, the PTB for the
system controller peripheral is directly controlled by an XVC. The XVC may be used
in a simulation environment to perform random functional testing on the system
controller, and the XVC may generate a set of test vectors that can be replayed at
FPGA level or at silicon level. The PTB wrapper may be an external AMBA APB
interface wrapper as used on the UART device. The LCD PTB does not require XVC
interaction or external control in this example, and the PTB can be reused from
simulation through to FPGA and silicon testbench environments.
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Peripheral Test Block Structure
Figure 8-18 illustrates the internal structure of the PTB. The interface to the DUT is
on the left of the diagram, and the control interface is on the right of the diagram.

Figure 8-18. Structure of Peripheral Test Block

Rule 8-51 — A peripheral test block shall have a peripheral interface logic block.

A PTB has a physical interface layer similar to the command-layer transactor of an
XVC that communicates directly with the physical-level interface of a DUT. This
block works in the peripheral clock domain and performs data translation at the DUT
interface. Protocol checking of the data and associated signals can also be done using
SystemVerilog-based assertions. One such example would be to use the synthesizable
subset of the VMM checker library described in Appendix B.

Figure 8-19. Interfacing to a Peripheral Test Block
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Rule 8-52 — Transferring non-static data across clock domains shall require
synchronization and acknowledgement.

Data that crosses asynchronous clock domains must be synchronized to the new clock
domain using two or more flip-flops. Because of the asynchronous nature of the
resynchronization, there is no way for the upstream clock domain to know when all
the bits of the data have been successfully transferred to the downstream clock
domain. Providing an acknowledge signal back into the upstream clock domain
explicitly confirms the successful transfer and the possibility of transferring another
datum.

In Figure 8-19, the Config peripheral interface provides a Commit and Sample
register in the peripheral clock domain and returns an acknowledge in the DUT clock
domain for commit and sample operations to indicate that the action is completed. A
synchronized transfer is initiated by writing data in the Transfer register with the
appropriate commit or sample bit asserted. The completion of the transfer can be
detected by reading the Transfer register with the CommitAck or SampleAck
bit asserted. 

Recommendation 8-53 —A peripheral test block should support control registers.

Control registers should be available in the PTB to be accessed from the peripheral
test interface as n-bit-wide registers. Control registers act as general-purpose
configuration registers for the DUT and are the hardware communication input
channels for the peripheral interface logic. For example, a UART PTB designed to
test a UART would have control registers to program the baud rate, parity stop bits,
buffer depth and so on.

Each of these registers can be written in any order without initiating an immediate
transfer. The contents of all control registers are transferred in a single cycle onto the
control bus to maximize simulation/emulation efficiency between the peripheral test
interface and its driver.

In a simulation-based environment, the control signals are directly driven by an XVC.
The XVC can modify all bits of the control signals in a single access. This ability
removes the requirements of a hardware peripheral test interface.

Recommendation 8-54 —A peripheral test block should support status registers.

Status registers should be available in the PTB to be accessed from the peripheral test
interface as n-bit-wide registers. Sample registers act as general-purpose feedback
registers from the DUT and are the hardware communication output channels for the
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peripheral interface logic. Each of these registers can be read in any order without
initiating an immediate transfer. The contents of all sample registers are transferred in
a single cycle from the status bus to maximize simulation/emulation efficiency
between the peripheral test interface in the same manner as their corresponding
control registers.

In a simulation-based environment, the status signals are directly sampled by an
XVC. The XVC can sample all bits of the status signals in a single access. This ability
removes the requirements of a hardware peripheral test interface.

Recommendation 8-55 —A peripheral test block should support event signals.

Event signals should be available in the PTB. Event signals are intended as general-
purpose asynchronous feedback notification signals. Typical usage includes
monitoring transfer buffers, indicating DUT error conditions or assertion
completions. Each event is a single signal so no specific requirement is placed on
making sure some signals do not change before others.

If a transfer of information greater than a single bit is required, then the information
should be included in the status signals and an event signal used to indicate that
information is available. When the event is observed, the peripheral test interface can
read the status signals (as defined in Recommendation 8-54) to recover the required
information.

In a simulation-based environment, the event signal is directly accessible from an
XVC. The XVC can monitor it directly. This ability removes the requirements of a
hardware peripheral test interface.

Recommendation 8-56 —A peripheral test block should support a transmit buffer
for hardware-only environments.

A transmit/write buffer should be available in the PTB to support buffered
asynchronous transfers between the two clock domains. The data is transferred on a
first-in, first-out basis and a control flow mechanism should ensure that no data is lost
due to overrun. A transmit buffer may be preferred over control registers for burst
data transfers.

In a simulation-based environment, there is no requirement for such a buffer: The
XVC used as the peripheral test interface has the ability to transfer data in zero
simulation time. 
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Recommendation 8-57 —A peripheral test block should support a receive buffer for
hardware-only test environments.

A receive/read buffer should be available in the PTB to support asynchronous
transfers between the two clock domains. The data is transferred on a first-in, first-out
basis and a control flow mechanism should ensure that no data is lost due to overrun.
A receive buffer may be preferred over status registers for burst data transfers.

In a simulation-based environment, there is no requirement for such a buffer: The
XVC used as the peripheral test interface has the ability to transfer data in zero
simulation time.

SUMMARY
Along with being reusable, any XVC or verification environment must be flexible
enough to suit the given system under test, e.g., bus width, protocol subset restrictions
and generation constraints. All must be easily configurable via parameters.

The following functionality should be provided by reusable verification components:

• Directed stimulus generation
• Constrained-random stimulus generation
• Block-level synchronization
• System-level synchronization
• Protocol integrity checking
• Error injection
• Functional coverage data collection

An XVC manager component is used to synchronize and schedule the above
functionality. This single control point also simplifies the development and
maintenance of tests.

Finally, when migrating the design to abstraction levels where high-level verification
components are not readily supported, hardware-assisted verification using a PTB
may be required.
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CHAPTER 9 PROCESSOR INTEGRATION 
VERIFICATION

Verification using embedded software is an important part of any system verification
infrastructure where a host processor directs application data and controls memories
and peripherals. For system-level testing where a CPU or DSP is part of the system
design being tested, it is desirable to have a verification environment that supports the
execution of test software to demonstrate that the system can successfully support the
execution of an operating system, application software or a DSP control algorithm.
This chapter, and its companion Appendix D, will be of interest to block- and system-
level architects and verification engineers, with a focus on system-level integration
verification using software.

This chapter introduces the concept of software test environments to complement the
hardware-centric infrastructure described in the previous chapters. The environment
is used in place of an operating system in a CPU-centric system design. System
verification can thus be conducted prior to the operating system being available on the
system itself. XVCs in the verification environment will work in concert with the
software test framework such that both external and software-internal stimulus can be
generated and synchronized to create interesting and relevant system conditions to
meet the hardware/software verification requirements.

SOFTWARE TEST ENVIRONMENTS

Recommendation 9-1 — CPU or DSP integration should be tested using software
test routines. 
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Where the system design includes a CPU or DSP, software test routines must be used
to direct the processor(s) to address the system peripherals they are responsible for
interacting with. This direction is needed because the bus-functional model’s
approach, although good for integration testing, often will not have the same timing
characteristics as the end processor to be used. 

For example, a processor may insert an extra idle cycle due to an internal processing
operation. The arbitration unit may decide to take away bus ownership during that
extra idle cycle and hence delay a slave transaction or even defer it to another master.
In contrast, a bus-functional model may generate slightly different behavior whilst
still driving the bus with the same stimulus. Were the bus-functional model not to
generate an additional idle cycle in this scenario, the arbitration handover would not
take place, leading to a different scenario being played in the system.

In another aspect, unless the CPU/DSP transactor also emulates the instruction fetch-
and-execute cycle from external memory, it is also unlikely to exhibit the same
behavior as the actual CPU or DSP in operation. It would be possible to program the
transactor to exhibit this behavior, but in practice it is far simpler to program the CPU
or DSP to execute instructions to perform this task.

Chapter 8 introduced different hardware-centric, system-level verification
environments. For software verification of systems, two additional environments,
illustrated in Figure 9-1, are required.

Figure 9-1. Processor Integration Verification Environments

Verification can proceed at any system abstraction level. However, a system design
implemented at a given abstraction level may be more or less suited to one
verification environment over another. 
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Basic Software Integration Environment —  To support Recommendation 9-1, this
environment supports integration verification using the actual CPU/DSP. It is
assumed that basic integration testing has been performed on the system such that the
block interconnect infrastructure and integrated design blocks provide a known good
starting point. The basic software integration environment also supports a limited
degree of peripheral design block integration verification.

Full System Environment —  This environment enables full functional verification,
such as OS booting and execution of application code and/or hardware benchmarking
tests. A combination of code and verification components is used to provide system
stimulus, usually with the verification components providing stimulus on the external
interfaces of the system. This environment should be used with an abstraction model
of the system capable of high simulation/emulation speed.

Basic Software Integration Verification
The primary role of this environment, when compared to “Basic Integration
Verification” on page 326, is to ensure that the system CPU/DSP is correctly
integrated. This integration is achieved by executing software test routines on the
CPU/DSP such that it interacts with the rest of the system peripherals.

Recommendation 9-2 — Design block integration verification should be performed
using this environment as required.

Using software is a more indirect approach to integration verification as it
demonstrates integration by stimulating peripheral registers or stimulates a device's
external interface via a memory-mapped verification component. This type of testing
is more accurate in nature and verifies the timing and protocol of signals between the
CPU and the devices to which it is directly coupled.

Recommendation 9-3 — The basic software integration verification environment
should support a single software threading model.

Single-threaded software verification environments make it very simple to run and
debug multiple tests. Verifying correct interaction among different system peripherals
is also straightforward to achieve using a single-software thread where the number of
interacting peripherals is constrained to a small number. For example, a software
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control thread can be used to program timer and interrupt controller peripherals first,
then monitor transmission of data through a serial port device next.

Figure 9-2. Structure of a Basic Software Integration Environment

Figure 9-2 shows an example of a basic software integration verification
environment. A software debugger may be used to trace the progress of the test code,
which is loaded as a binary image into the environment memory model. When a
debugger is used, it is also possible to load an alternative code image via the
debugger.

In this example environment, complex interaction among peripherals is not required.
Rather than using XVCs, a single PTB-based monitor is used to confirm that the LCD
controller has been initialized correctly by the software (see “Peripheral Test Block
Structure” on page 339 for more details on PTBs). The primary goals for this example
are to check that the CPU can access each of the system peripherals program registers
and that it can successfully load and execute instructions using the memory controller.
Other than performing register tests, a simple scenario of initializing the LCD
controller to output a sample image is also included in the software test code.

Full System Verification Environment
Figure 9-3 shows a system verification environment that builds upon the hardware
integration environments described in Chapter 8 and the basic software integration
environment described earlier in this chapter. This environment should only be used
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once a high level of confidence in the integration of the design blocks has been
achieved.

Figure 9-3. Structure of a Full System Verification Environment

There are two considerations when verifying functionality using this software-based
verification environment:

1. The visibility and controllability over system-level hardware events is more lim-
ited than the hardware-oriented system-level testbench environments described in 
Chapter 8.

2. It is not possible to verify the operation of bus transactions outside of the range of 
bus transaction types supported by the host processor model used in the environ-
ment—a consideration when the system is to be designed for compatibility with 
different CPU types.

Despite these considerations, this verification environment can be very effective in
furthering system-level verification to include:

• Prototyping high-level software driver functionality
• Supporting an OS boot given an execution environment that can run the design 

between hundreds of KHz to several MHz or faster
• Complex interaction scenarios such as simultaneous interrupt and DMA requests 

handling from multiple peripherals
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• In-system functional testing of peripherals by playing them off against each other, 
e.g., multiple bus masters accessing the same memory controller

XVCs and an XVC manager can be used to interact with the system test software to
address the visibility and controllability issue. 

Suggestion 9-4 — The software test framework can communicate with the XVC
manager.

The XVC manager can be connected to the software execution environment via a
debugger. This connection lets certain test scenarios be controlled from the XVC
manager instead of the main software execution thread. It allows the coordination of
hardware events or protocol being monitored by any of the XVCs present in the
system with software actions being executed on the CPU.

Suggestion 9-5 — The full system verification environment can support a multi-
threading model.

A single-thread model is useful for the reasons described in Recommendation 9-3, but
it does not offer accurate timing of cross-peripheral interactions. Transmitting data
concurrently through multiple serial ports would require a far more complex and
difficult to debug single-threaded control program. By letting users execute multi
threaded tests, it is possible to specify concurrent tests as if they were individual
single-threaded tests. Multi threaded tests can thus emulate operations such as:
• Concurrent interaction with two different peripherals
• Multiple peripherals concurrently transferring data across a system
• Concurrent or real-time operating system services

Concurrent test execution can be implemented by having a scheduler maintain a set of
threads, one per test. Software tests can be written and run as if they were in a single-
threaded environment, but a new thread can be created at any time to run another test
concurrently. In addition to threading on one processor, support for multi-processor
threading may be a requirement of a software verification environment, depending on
the configuration of the system being tested.

Using a multithreading software verification model may be considered a lower
priority requirement when a block interconnect environment is used to fully verify
latency and bandwidth prior to system integration, and an OS boot test is executing
multithreaded software tasks to access system peripherals.
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Recommendation 9-6 — Verification of a CPU-based system should include an OS
boot.

During an OS-boot sequence, the system exercises interaction sequences among
design components in a way that is representative of its real-world operation. It is a
form of verification that would otherwise be impractical to set up with the any of
system-level verification environments mentioned in Chapter 8.

A typical embedded operating system, such as embedded Linux, may require in
excess of one billion cycles to complete its boot sequence. For practical reasons this
requirement can only be met on a transaction-level model of the system or a
hardware-assisted verification environment due to the sheer number of cycles
required. An RTL design in an emulated environment can execute at up to 400 KHz.
The same RTL design in a pure software simulation environment may only execute at
up to 1 Khz. Thus, a software test requiring 36 million cycles to complete would take
approximately 10 hours of real time to execute in the pure software simulation
environment. The same test run on the emulation environment would be expected to
complete in approximately 90 seconds.

In contrast, depending on the changes made to the RTL between tests, it can take up to
an hour to completely rebuild and remap the design to the emulator. To compile and
rerun the same code for execution on the software simulator requires only a few
minutes.

The net gain between using an emulator and a software simulator can be argued as
marginal in the early phases of a project. At this stage, the design is still being
debugged and modified frequently and the simulation tests can be partitioned to run in
under an hour. However, the same RTL design would be expected to complete an OS
boot in a software simulation environment in approximately 12 days, compared to
just 40 minutes on an emulator. A complex test, such as an OS boot, is only attempted
when the design is mature and believed to be functionally correct. The few rebuild
and re-mapping cycles that may be necessary to complete the test in this case would
not outweigh the gain in runtime performance over software-based simulation.

STRUCTURE OF SOFTWARE TESTS
The extensibility of the software verification environment must be as straightforward
as possible when new peripherals are added or new tests designed. The following
guidelines will help in implementing a modular code structure sufficient for
supporting a wide range of verification challenges in a bus-based system.
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Figure 9-4 is an overview of the software verification framework structure described
in this chapter. Note that the automated test generation engine introduced in Chapter 8
is being reused here to generate peripheral register description header files.

Figure 9-4. Software Verification Framework Structure

Figure 9-5 shows a left-to-right flow of how software tests are compiled and executed
on the software verification environment above. Refer to Appendix D for more detail
on software verification framework structure definitions. 
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.

Figure 9-5. Software Test Execution Process

Recommendation 9-7 — All software-accessible peripherals should be described in
a system descriptor.

It is recommended that a system descriptor be available for the software verification
environment. This system descriptor contains information on each software-
accessible system peripheral. The information it contains is based on the design
specification such as system memory map, interrupt and DMA request line
allocations. The information can be extracted from the design or specification
document, or portions of the design can be automatically generated from the system
description as shown in Figure 9-5 above.

The example below shows an XML description of a single software-accessible
register in a peripheral. It describes an interrupt clear register in the peripheral named
GPIO_1 residing at system address 0x30000000.
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Example 9-1. Register Description File
<peripheral name="GPIO_1" offset="0x30000000">
   ...
   <register name="IC" offset="041C">
      <descriptivename>Interrupt clear register</
descriptivename>
      <description></description>
      <bitfield name="IntClear">
         <function></function>
         <bitpos>0</bitpos>
         <size>8</size>
         <initialvalue>0</initialvalue>
         <accesstype>RO</accesstype>
      </bitfield>
   </register>
   ...
</peripheral>

Suggestion 9-8 — Elements of the system software can be auto-generated from the
system descriptor.

This system descriptor can be turned into C code that is directly usable by the system
software. For example, the C code in Example 9-2 can be generated from the (partial)
system descriptor Example 9-1.

Example 9-2. Automatically Generated Register Test C Code 
volatile struct s_IC {
   unsigned IntClear : 8;
};
typedef volatile struct {
   union {
      ...
      union { 
         s_IC IC;         // Interrupt clear register
         unsigned IC_raw; // for raw access };
         ...
      }
   }
} t_system_peripheral_GPIO_1;

Recommendation 9-9 — The system descriptor should be translated into an array
of type svSYS_SystemElement named
svSYS_SystemData.
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The predefined svSYS_SystemElement structure contains all the relevant
information required by the software verification environment support code to access
peripherals. See Appendix D for more details.

The values of each field are automatically generated by the build process. Where
system description fields cannot be readily determined from the system description
data, default values are used.

Recommendation 9-10 —Symbols should be used to index into the system descriptor
data.

As peripherals are added or removed from the system, the location of peripheral
descriptors in the system descriptor may be modified. To avoid breaking existing
tests, no peripheral descriptor should be accessed using a hardcoded location in the
system descriptor. If symbolic values are used, only the value of the symbols needs to
be updated.

Recommendation 9-11 —Enumerals named svSYS_Element_XXXX_N should
provide symbols to index into the system descriptor.

A peripheral named XXXX may be instantiated more than once. Each instance is
differentiated using an instance number N. For example, the symbols to access the
descriptor for instance #0 of peripheral P123 is named svSYS_Element_P123_0.
The enumerals must be defined in the same order as the peripheral descriptors they
correspond to in the system descriptor.

Example 9-3. Symbols to Index into the System Descriptor
typedef enum {
   ...
   svSYS_Element_P123_0, //Symbolic index P123 #0
   svSYS_Element_P123_1, //Symbolic index P123 #1
   ...
}

Recommendation 9-12 —All externally visible identifiers should follow the naming
convention.

Externally visible identifiers may conflict with each other if they are not kept
separate.

This chapter and Appendix D uses the prefix svMOD_ for all externally visible
identifiers, where MOD is a unique identifier for the code module the identifier
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belongs to. The module identifier SYS is reserved for the support software. sv stands
for software verification, not SystemVerilog.

Recommendation 9-13 —Each system descriptor should have a corresponding test
action sheet.

An action sheet is used to group all of the associated test actions with a particular
peripheral. An action sheet item comprises:
• A text description for the test actions name
• A test level for the test action to be used with the test level specified in the 

peripherals system descriptor
• A pointer to the test action function

Along with user-defined test actions, the build process generates two default tests
based on the description of the system peripherals:

• An initial state test: Designed to check the successful initialization of the 
peripheral after system reset

• A register test: Designed to check the accessibility of each of the programmer’s 
registers on the peripheral

TEST ACTIONS
The guidelines presented in this section will help define and implement software test
actions.

Recommendation 9-14 —Device tests should be in the form of test actions.

For every peripheral, there shall be one or more test actions. Each action is designed
to test a specific part of the peripheral’s functionality. These actions are written
predominantly in C, with assembler being used where necessary. Every action should
be self verifying by checking the result of the action against an expected result and
return a pass or a fail indication. The software verification framework will output a
message should the action fail.

Recommendation 9-15 —Test actions source files should be reusable by the software
build process from one system design to another.

Where reusable peripheral blocks in a bus-based system may have corresponding
reusable verification components, it is also possible to treat corresponding test actions
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as reusable verification IP in the same context. A test action is built with a common
method name/entry point and parameter list, and extracts its operating parameters
from dynamic data held within the parameter list rather than from a set of predefined
system constants. The dynamic data itself is generated from a system description.

Recommendation 9-16 —Actions should follow a naming convention.

A general object code linker requires that any build configuration cannot contain
functions with common names.

Furthermore, the build system should be able to automatically generate a test software
framework for any given system design with a default set of test actions. This
automatic generation requires that it can parse explicit test actions from within the
source code directory structure. In this case, action YYYY for device XXXX must be
named svXXXX_YYYY such that the build process can identify it as a valid test
action.

Recommendation 9-17 —Actions should adhere to the svSYS_SeqTest()
function prototype.

For the same reason that test actions must follow a set naming convention for the
bootstrap module to be able to call arbitrary actions, test actions must also follow a
predefined prototype.

Example 9-4. Defining a Software Test Action
svSYS_eTestResponse 
svP123_FirstAction(svSYS_SystemElement * SysData)
{
   ...
}

Recommendation 9-18 —Each test action should define a name by using the
svTEST_NAME() macro.

This macro associates an arbitrary text with a known symbol in the action object file.
This association is so that test actions can be called in a uniform manner whilst
providing good debug visibility.

For example, the svP123_FirstAction action would define a name as:
svTEST_NAME(svP123_FirstAction, “Test Interrupts”)
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Recommendation 9-19 —Each test action should define a test complexity level by
using the svTEST_LEVEL() macro.

This macro associates an arbitrary integer with a known symbol in the action object
file. This data is added to the system descriptor data to let the user select groups of
tests appropriate to the test level that is required, i.e., register tests, functional testing,
peripheral interaction and so on.

For example, the svP123_FirstAction action would define a level as:

svTEST_LEVEL(svP123_FirstAction, 3)

Recommendation 9-20 —A test complexity level should be no greater than 31.

The test runtime environment provides a mechanism for selecting tests based on their
complexity level using bits in a 32-bit value. This limits the complexity level to
values in the 0 to 31 range inclusively.

Recommendation 9-21 —Action should use the svSYS_GET_SYS_DATA() macro
to access other peripherals.

Actions that target a single peripheral only require the information supplied via their
SysData argument. But if an action requires access to other peripherals, that action
needs a mechanism to access the descriptors for those peripherals. This access is
accomplished by the svSYS_GET_SYS_DATA() macro. See Appendix D for more
details.

Recommendation 9-22 —Any reference to data outside of the system descriptor
should be enclosed by the svSYS_HARDCODED()
macro.

In rare occasions, it may be necessary to access test data that is not available from the
system descriptor structure. This need for access will affect portability of the tests.
The software framework offers the svSYS_HARDCODED() macro to identify these
cases.

Recommendation 9-23 —The svIO_BYTE_READ(), svIO_BYTE_WRITE(),
svIO_WORD_READ() and svIO_WORD_WRITE()
should be used to access memory-mapped registers in
peripherals.

These macros are provided by the software framework to access absolute memory
locations in the data space.
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Recommendation 9-24 —Exceptions should be thrown by calling the
svSYS_ThrowException() function.

Any action may throw an exception. Exceptions may be thrown when actions wish to
terminate when an error condition is detected in a subroutine. Exceptions are thrown
and caught in a system-specific way. The svSYS_ThrowException()
function hides the system-specific mechanism for generating a processor interrupt
and exception handling.

Example 9-5. Throwing an Exception on a Software Test Action
if (...) svSYS_ThrowException();

Suggestion 9-25 — Assumptions can be checked using the svSYS_ASSERT()
macro.

Any assumption or expectation made in a software test should be verified using an
assertion. The assertion will throw an exception if it fails.

Example 9-6. Checking an Assumption
svSYS_ASSERT(Mode == 0);

Suggestion 9-26 — The svSYS_CACHE_BLOCK_START() and
svSYS_CACHE_BLOCK_END() macros can be used to define
code regions to be locked in the instruction cache.

These macros provide an easy method to identify the boundaries of cacheable code
regions. They mark the start and end of a block by introducing an empty function. It is
expected that entire test actions will be cached.

Example 9-7. Identifying the Boundaries of Test Actions
svSYS_CACHE_BLOCK_START(MyBlock)

svSYS_eTestResponse P123_FirstAction(svSYS_SystemElement 
* SysData)
{
   svSYS_CacheLines locked =
   svSYS_CacheLock(svInstructionCache,
                   &MyBlock_CacheBlockStart,
                   &MyBlock_CacheBlockEnd);
   ...
   svSYS_CacheUnlock(locked);
}

svSYS_CACHE_BLOCK_END(MyBlock)



Processor Integration Verification

358 Verification Methodology Manual for SystemVerilog

Because functions are used to create the boundary symbols, it is not possible to lock
individual code statements in the cache. Only entire functions can be locked down.
Note that no such macro exists for the data cache.

Suggestion 9-27 — A register test action can be generated from the system descrip-
tor.

For every peripheral, a basic register test action can be generated from the system
descriptor. The test action should only use the pSysData->BaseAddress data.
The test should check that the base address lies in an uncached and unbuffered region
of the memory management unit page table and should exit with svTestFailed
otherwise. The test should then proceed to verify that all bits in the software-
accessible registers in the peripheral are accessible and can be written or are read-
only.

Note that not all registers may be automatically testable in all peripherals. If the
behavior of certain registers vary depending on the value of other registers, it will not
be possible to automate the verification of those registers.

Recommendation 9-28 —Test actions should use svSYS_Printf() function to
issue all messages.

The message service described in “Message Service” on page 134 may be available to
software tests. Using a single function to issue all messages lets them be directed to
the message service should it be available, or provide similar functionality.

Note that the messages that can be issued from a software test are much simpler than
in a simulation-based environment. The message may have to be produced and saved
in a hardware-based platform that does not have the same I/O capability as the
simulation-based environment.

Suggestion 9-29 — A bootstrap module can complete the system configuration before
entering the main software test control loop.

The primary purpose of the bootstrap module is to abstract low-level platform
specific initialization code, which will only vary by system parameters. The majority
of system verification test software can be written independently from parameters
such as CPU type and cache configuration, MMU, interrupt controller used, heap and
stack size and location and memory controller RAM configurations.

Furthermore, certain debugger applications are able to load code into debug scratch
space that can then be executed directly on the target system. This mechanism allows
directed tests to be further modularized as self-contained execution elements.
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Compilation Process
The guidelines in this section provide recommendations for structuring and compiling
the source files that implement the software tests.

Recommendation 9-30 —A top-level script should manage the full compilation
process.

The compilation process should managed by a top-level Perl script or makefile. A full
compilation process will perform the following steps:
1. Visit the entire directory tree under the root directory looking for directories 

named testcode.
2. In all such directories found, locate all C and ASM files in that directory identified 

by the .c and .s suffixes, respectively.
3. Compile all C and ASM files to object files in the relevant object code directory if 

the source is newer than the existing object code file in the object code directory.

Compilation will only be needed if tests have been added or modified and will only
recompile the files that were modified since the last compilation. The source files will
not need to be recompiled to run specific tests sequences.

Suggestion 9-31 — The compilation process can support creating a configurable
software test image to be loaded into the verification environ-
ment.

It may be desirable to have a common code base that can be reused, compiled and
linked to perform a particular function to a particular target, rather than to have many
fixed build scripts and fixed test code modules. Tests are added as calls into the
main() routine. This addition influences the way in which the software image is
built, as it requires all elements from the test code library that are used for that
particular run. The linker optimizes the test image to contain only those library
routines called from main(). The software build process should support a
mechanism for selecting different test configurations depending on the requirements
for a particular run. The test code may be required to test each system peripheral in
turn, or the interaction among peripherals, or just concentrate on a single peripheral
for any particular test run. A default main() configuration would be to include all
tests that are defined in the test action library.

Recommendation 9-32 —The compilation process should maximize portability
between target verification environments.
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It may be desirable to support building for different target environments depending on
the type of verification to be carried out. Single-peripheral tests may require a high
visibility simulation environment for debugging. Full-system or regression test runs
may require the runtime performance of an FPGA–based environment. It may be
necessary to perform the same tests on different verification environments to ensure
that they are conformant with each other.

The test build process must be able to target the same test code to these different
environments.

Recommendation 9-33 —There should be a defined directory structure for the
software compilation process.

A defined directory structure will let the compilation process easily identify and
include test code modules. Directory structure is a very subjective topic and it is
outside of the scope of this chapter to define a specific structure. The chosen directory
structure should be consistent and follow company standards hierarchy and naming
conventions.

For illustration purposes, a simple example directory structure is presented below. In
this example, files containing test code are placed in a directory named testcode.
There is one testcode directory per peripheral and these directories are located
under the root directory. 

This example structure shown in Figure 9-6 allows the creation of a build tree where
the build process traverses the directory tree and locates the test code to be compiled
and linked. This structure allows test modules to be associated with their
corresponding peripherals and does not restrict the number of peripherals being
integrated into the system design.

Figure 9-6. Directory Structure for System Software Verification
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All scripts supporting the build process would be located in the bin directory. The
code framework (e.g., bootstrap and support code) is placed in a directory named
testcode under the sys directory.

The use of a separate object files subdirectory in the directory structure from
Figure 9-6 is to let objects from different build target configurations exist
independently from the source code from which they were built, e.g., simulation vs
FPGA build. Separating the object code in this way also allows for creating parallel
builds and debug sessions or for keeping known good test runs whilst changing or
developing new tests. 

Running Tests
The guidelines presented next provide recommendations for identifying which tests to
include in a software image and build that image for execution on a target verification
environment. After all source files have been compiled, running a test sequence
requires:
1. Specifying the tests and test conditions in a top-level source file.
2. Compiling these top-level source files into object files in the relevant object code 

directory if the source is newer than the existing object code file in the object code 
directory.

3. Linking all required object files into an appropriate .elf or binary files.
4. Running the .elf or binary on the chosen target and setting up other binaries as 

needed.

The guidelines presented in this section describe mechanisms for selecting tests in a
directed fashion, selecting test sequences and runtime test selection.

Alternative 9-34 —Test actions can be invoked directly by using the
svSYS_ACTION_RUN() macro.

Directed testing can be performed by selecting a specific set of test actions. For
example, the following statement will execute the action defined by the
svP456_FooAction on the P456 peripheral:

svSYS_ACTION_RUN(P456, 0, svP456_FooAction)

It will be translated into the function call:
svSYS_ActionRun("svP456_FooAction", "P456", 
&svP456_FooAction,
                svSYS_SystemData[svSYS_Element_P456_0]);
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Alternative 9-35 —Test actions can be invoked via action sheets.

An action sheet identifies all available actions for a given peripheral. The bootstrap
module code can then iterate through all tests for a particular peripheral. All tests in
an action sheet must target the same peripheral.

An action sheet is specified as a zero-terminated array of
svSYS_ActionSheetItem elements.

Example 9-8. Zero-Terminated Action Sheet
const svSYS_ActionSheetItem ActionSheet_P123 [] = {
   {&MyP123FirstAction,
    &MyP123FirstAction_Level, 
    &MyP123FirstAction_Name},
   {&MyP123SecondAction,
    &MyP123SecondAction_Level,
    &MyP123SecondAction_Name},
   {0} //Must be zero terminated
}

An action sheet is then executed using the svSYS_ACTION_SHEET_RUN()
macro. It will iterate through all items of the appropriate complexity level on the
action sheet associated with the peripheral in the specified order. For example: 

svSYS_ACTION_SHEET_RUN(P456, 0, 1, svTestSequence)

Suggestion 9-36 — Tests can be executed in different orders

It is possible that a certain execution order of test actions can mask problems. The
order of execution of all relevant tests in an action sheet is specified by the third
argument of the svSYS_ACTION_SHEET_RUN() macro. See Appendix D for
more details.

Suggestion 9-37 — Tests from multiple action sheets can be executed.

A svSYS_AllActionSheetsRun() can be implemented to iterate through all
peripherals in the system descriptor, in a specified sequence. For each selected
peripheral, it executes its associated action sheet.

Suggestion 9-38 — Tests can be allowed to be chosen and run without recompiling
and rebuilding. 

The global variables svSYS_Peripherals and svSYS_Sequence can be
checked by the svSYS_AllActionSheetsRun(). If either is zero, the function
will return. Otherwise, any time the variables have changed, the function will run
itself again, using the values of the global variables as parameters. If the execution of
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a test sequence is stopped and new values inserted in the global variables, a new set of
tests will be run. Users can thus modify the selection of components and test
sequences at run-time using a debugger.

Bootstrap
The bootstrap module performs the following tasks:
1. Do minimal setup.
2. Set up the memory controllers.
3. Do further setup including stacks, heap, caches, MMU (no remapping, using a 

pre-generated page table).
4. Optionally perform the board configuration.
5. Execute the test(s).
6. Perform end-of-test operations.

After completing the end-of-test operations, the bootstrap module should report a
summary of tests. The number of tests passed, skipped and failed should be reported.

The guidelines presented next should be followed when creating a bootstrap module.

Suggestion 9-39 — The bootstrap module can identify the underlying execution envi-
ronment.

If the bootstrap code is common among different target environments, i.e., only needs
to change configuration parameters such as timing values, and memory types, the
bootstrap module could first ascertain which environment is being targeted and
perform the bootstrap operations accordingly. 

Any bootstrap functionality that is common to all platforms can be implemented in
the bootstrap code module. For example, in a CPU-based design, the bootstrap
module will set up caches and memory management units. The bootstrap module
should also include any setup that varies only by system parameters, such as stack and
heap location and limits.

Recommendation 9-40 —Configuration parameters should be obtained from a
system description address map file. 

Many modern linker applications support the facility to import address map
configuration data. The resulting object code can thus be correctly relocated in the
system address map. This data should be derived from the system descriptor.
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Recommendation 9-41 —Memory set-up code should not use the stack.

Because the stack is setup by the same bootstrap module that sets up the memories, it
may not have been initialized.

SUMMARY
The importance of the processor integration environment is demonstrated when
system components are integrated together as they would be in the final system.
Modeling environments aside, this environment is the designer’s first "real"
opportunity to trial software, including driver code, on "real" hardware. This
environment also helps the system designer reduce risk by exercising software-based
tests that qualify predicted bandwidth and latency corner-case scenarios identified in
earlier stages of development, e.g., transaction modeling.

The concept of two distinct software test environments, one for component
integration testing and the other for system software soak testing has also been
introduced, which supports the above goals through a staged approach where
confidence in lower-level integration testing can be gained before running more
complex system tests.

Using a software test action framework maintains a consistency with the XVC
methodology discussed in Chapter 8, and this framework facilitates these more
complex system tests, e.g., synchronizing external system stimulus with software
states. Using a system descriptor to abstract system resources used by the test
software also reduces maintenance and promotes portability to future and derivative
designs.

Ultimately, the software test action framework can also be used as a vehicle to carry
the verification forward into an end-user FPGA and/or silicon implementations of the
design.
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APPENDIX A VMM STANDARD LIBRARY 
SPECIFICATION

This appendix specifies the detailed behavior of a set of base and utility classes that
can be used to implement a VMM-compliant verification environment and
verification components. The actual implementation of these classes is left to each
tool provider. Chapter 4 provides detailed guidelines on how to use these classes.

VMM_ENV
The class is a base class used to implement verification environments. The guidelines
covering the implementation of verification environments based on this class can be
found in section titled "Simulation Control" on page 124.

vmm_log log;
Message service interface for the verification environment. This property is set by the
constructor using the specified environment name and may be modified at run time.

vmm_notify notify;
enum {GEN_CFG,

BUILD,
RESET_DUT,
CFG_DUT,
START,
WAIT_FOR_END,
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STOP,
CLEANUP,

REPORT};

Notification service interface and predefined notifications used to indicate the
progression of the verification environment. The predefined notifications are used to
signal the start of the corresponding predefined virtual methods. All notifications are
ON/OFF.

function new(string name = “Verif Env”);
Creates an instance of the verification environment, with the specified name. The
name is used as the name of the message service interface.

task run()
Runs all remaining steps of the simulation, including vmm_env::stop(),
vmm_env::cleanup() and vmm_env::report(). This method must be
explicitly invoked in the test programs.

virtual function void gen_cfg();
Randomizes the test configuration descriptor. If this method has not been explicitly
invoked in the test program, it will be implicitly invoked by the
vmm_env::build() method.

virtual function void build();
Builds the verification environment according to the value of the test configuration
descriptor. If this method has not been explicitly invoked in the test program, it will
be implicitly invoked by the vmm_env::reset_dut() method.

virtual task reset_dut();
Physically resets the DUT to make it ready for configuration. If this method has not
been explicitly invoked in the test program, it will be implicitly invoked by the
vmm_env::cfg_dut() method.

virtual task cfg_dut();
Configures the DUT according to the value of the test configuration descriptor. If this
method has not been explicitly invoked in the test program, it will be implicitly
invoked by the vmm_env::start() method.
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virtual task start();
Starts all the components of the verification environment to start the actual test. If this
method has not been explicitly invoked in the test program, it will be implictly
invoked by the vmm_env::wait_for_end() method.

event end_test;
Event that, when triggered, should cause the vmm_env::wait_for_end()
method to return. It is up to the user-defined implementation of the
vmm_env::wait_for_end() method to detect that this event has been triggered
and return.

virtual task wait_for_end();
Waits for an indication that the test has reached completion or its objective—
whatever these may be. When this task returns, it signals that the end of simulation
condition has been detected. If this method has not been explicitly invoked in the test
program, it will be implictly invoked by the vmm_env::stop() method.

virtual task stop();
Stops all the components of the verification environment to terminate the simulation
cleanly. If this method has not been explicitly invoked in the test program, it will be
implicitly invoked by the vmm_env::cleanup() method.

virtual task cleanup();
Performs clean-up operations to let the simulation terminate gracefully. Clean-up
operations may include letting the DUT drain off all buffered data, reading statistics
registers in the DUT and sweeping the scoreboard for leftover expected responses. If
this method has not been explicitly invoked in the test program, it will be implicitly
invoked by the vmm_env::run() method.

virtual task report();
Reports final success or failure of the test and close all files. If this method has not
been explicitly invoked in the test program, it will be implicitly invoked by the
vmm_env::run() method.
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 VMM_LOG
The vmm_log class used implements an interface to the message service. The
guidelines covering the usage of the message service can be found in section titled
"Message Service" on page 134.

Several methods apply to multiple message service interfaces, not just the one where
the method is invoked. All message service interfaces that match the specified name
and instance name are affected by these methods. If the name or instance name is
enclosed between slashes (e.g., “/.../”), then they are interpreted as sed-style regular
expressions. If a value of “” is specified, then the name or instance name of the
current message service interface is specified. If the recurse parameter is TRUE
(i.e., non-zero), then all interfaces logically under the matching message service
interfaces are also specified.

function new( string name,
string instance,
vmm_log under = null);

Creates a new instance of a message service interface, with the specified interface
name and instance name. Furthermore, a message service interface can optionally be
specified as hierarchically below another message service instance to create a logical
hierarchy of message service interfaces. 

virtual function void is_above(vmm_log log);

Specifies that this message service instance is hierarchically above the specified
message service interface. This method is the corollary of the under argument of the
constructor and need not be used if the specified message service interface has
already been constructed as being under this message service interface.

virtual function vmm_log copy(vmm_log to = null);
Copies the configuration of this message service interface to the specified message
service interface (or a new interface if none is specified) and returns a reference to the
interface copy. The current configuration of the message service interface is copied,
except the hierarchical relationship information, which is not modified.

virtual function string get_name();
virtual function string get_instance();
Returns the name and instance name of the message service interface.
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virtual function void list( string name = “/./”,
string instance = “/./”,
bit recurse = 0);

Lists all message service interfaces that match the specified name and instance name.
If the recurse parameter is TRUE (i.e., non-zero), then all interfaces logically
under the matching message service interface are also listed.

enum { FAILURE_TYP,
NOTE_TYP,
DEBUG_TYP,
TIMING_TYP,
XHANDLING_TYP,
REPORT_TYP,
PROTOCOL_TYP,
TRANSACTION_TYP,
COMMAND_TYP,
CYCLE_TYP,
INTERNAL_TYP,
DEFAULT_TYP,
ALL_TYPS};

Enumerated type defining symbolic values for message types used when specifying a
message type in properties or method arguments. Table 4-1 on page 135 describes the
purpose of the various message types. The vmm_log::DEFAULT_TYP and
vmm_log::ALL_TYPS are special symbolic values usable only with some control
methods and are not used to issue actual messages. Multiple message types can be
specified to some control methods by combining the value of the required types using
the bitwise-or or addition operator.

enum { FATAL_SEV,
ERROR_SEV,
WARNING_SEV,
NORMAL_SEV,
TRACE_SEV,
DEBUG_SEV,
VERBOSE_SEV,
DEFAULT_SEV,
ALL_SEVS};

Enumerated type defining symbolic values for message severities used when
specifying a message severity in properties or method arguments. Table 4-2 on
page 136 describes the purpose of the various message severities. The
vmm_log::DEFAULT_SEV and vmm_log::ALL_SEVS are special symbolic
values usable only with some control methods and are not used to issue actual
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messages. Multiple message severities can be specified to some control methods by
combining the value of the required severities using the bitwise-or or addition
operator.

enum { IGNORE,
CONTINUE,
DUMP_STACK,
STOP_PROMPT,
DEBUGGER,
COUNT_ERROR,
ABORT_SIM,
DEFAULT_HANDLING};

Enumerated type defining symbolic values for simulation handling used when
specifying a new simulation handling when promoting or demoting a message using
the vmm_log::modify() method.

Unless otherwise specified, message types are assigned the following default severity
and simulation handling:

Table A-1.  Default Message Severities and Handling 

Message Type Default Severity Default Handling

FAILURE_TYP ERROR_SEV COUNT_ERROR

NOTE_TYP NORMAL_SEV CONTINUE

DEBUG_TYP DEBUG_SEV CONTINUE

TIMING_TYP
XHANDLING_TYP

WARNING_SEV CONTINUE

TRANSACTION_TYP
COMMAND_TYP

TRACE_SEV CONTINUE

REPORT_TYP
PROTOCOL_TYP

DEBUG_SEV CONTINUE

CYCLE_TYP VERBOSE_SEV CONTINUE

Any type FATAL_SEV ABORT_SIM
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virtual function vmm_log_format
set_format(vmm_log_format fmt);

Globally sets the message formatter to the specified message formatter instance. A
reference to the previously used message formatter instance is returned. A default
global message formatter is provided.

virtual function string set_typ_image(int typ,
      string image);

Globally replaces the image used to display the specified message type with the
specified image. The previous image is returned. Default images are provided.

virtual function string set_sev_image(int sev,
      string image);

Globally replaces the image used to display the specified message severity with the
specified image. The previous image is returned. Default images are provided.

Example A-1. Colorizing the severity display on ANSI terminals
log.set_sev_image(vmm_log::WARNING,
                  "\033[33mWARNING\033[0m");
log.set_sev_image(vmm_log::ERROR_SEV,
                  "\033[31mERROR\033[0m");
log.set_sev_image(vmm_log::FATAL_SEV,
                   "\033[41m*FATAL*\033[0m");

virtual function bit start_msg( int typ,
int sev = DEFAULT_SEV);

Prepares to issue a message of the specified type and severity. If the message service
interface is configured to ignore messages of the specified type or severity, the
function returns FALSE. It returns TRUE otherwise.

virtual function bit text(string msg = “”);

Adds the specified text to the message being constructed. This method specifies a
single line of message text and a newline character is automatically appended when
the message issued. Additional lines of messages can be produced by calling this
method multiple times, once per line. Each additional line is prefixed with the prefix
specified in the vmm_log::format() method. If an empty string is specified as
message text, all previously specified lines of text are flushed to the output, but the
message is not terminated. This method may return FALSE if the message will be
filtered out based on the text.
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A message must be flushed and terminated by calling the vmm_log::end_msg()
method to trigger the message display and the simulation handling. A message can be
flushed multiple times by calling the vmm_log::text("") method, but the
simulation handling and notification will take effect on the message termination.

If additional lines are produced using the $display() system task or other display
mechanisms, they will not be considered by the filters, nor included in explicit log
files. They may also be displayed out of order if they are produced before the
previous lines of the message are flushed.

For single-line messages, the ‘vmm_fatal(), ‘vmm_error(),
vmm_warning(), ‘vmm_note(), ‘vmm_trace(), ‘vmm_debug(),
‘vmm_verbose(), ‘vmm_report(), ‘vmm_command(),
‘vmm_transaction(), ‘vmm_protocol() and ‘vmm_cycle() macros can
be used as a shorthand notation.

Table A-2.  Message Type and Severity for Shorthand Macros

Macro Message
Type

Message
Severity

‘vmm_fatal(vmm_log log,
           string txt);

Failure Fatal

‘vmm_error(vmm_log log,
           string txt);

Failure Error

‘vmm_warning(vmm_log log,
            string txt);

Failure Warning

‘vmm_note(vmm_log log,
          string txt);

Note Default

‘vmm_trace(vmm_log log,
           string txt);

Debug Trace

‘vmm_debug(vmm_log log,
           string txt);

Debug Debug

‘vmm_verbose(vmm_log log,
             string txt);

Debug Verbose

‘vmm_report(vmm_log log,
            string txt);

Report Default

‘vmm_command(vmm_log log,
            string txt);

Command Default
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Table A-2.  Cont.  

virtual function void end_msg();

Flushes and terminates the current message and triggers the message display and the
simulation handling. A message can be flushed multiple times using the
vmm_log::text("") method, but the simulation handling and notification will
only take effect on message termination. 

virtual function void enable_types( int typs, 
string name = "",
string inst = "", 
bit recursive = 0);

virtual function void disable_types( int typs,
string name = "",
string inst = "",
bit recursive = 0);

Specifies the message types to be displayed/disabled by the specified message service
interfaces. Message service interfaces are specified by value or regular expression for
both the name and instance name. If no name and no instance are explicitly specified,
this message service interface is implicitly specified. 

If the name or instance named are specified between “/” characters, then the
specification is interpreted as a regular expression that must be matched against all
known names and instance names, respectively. Both names must match to consider a
message service interface as specified. If the recursive argument is TRUE, all
message service interface hierarchically below the specified message service
interfaces are included in the specification, whether their name and instance name
matches or not. A message service interface must exist to be specified.

Macro Message
Type

Message
Severity

‘vmm_transaction(vmm_log log,
                string txt);

Transaction Default

‘vmm_protocol(vmm_log log,
             string txt);

Protocol Default

‘vmm_cycle(vmm_log log,
          string txt);

Cycle Default
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The types argument specifies the messages types to enable or disable. Types are
specified as the bitwise-or or sum of all relevant types.

By default, all message types are enabled.

virtual function void set_verbosity(int severity, 
string name = "",
string inst = "", 
bit recursive = 0);

Specify the minimum message severity to be displayed when sourced by the specified
message service interfaces. See the documentation for the vmm_enable_types()
method for the interpretation of the name, inst and recursive argument and
how they are to specify message service interfaces.

The default minimum severity can be changed by using the
“+vmm_log_default=<sev>” runtime command-line option, where “<sev>” is
the desired minimum severity and is a one of the following: “error,” “warning,”
“normal,” “trace,” “debug” or “verbose”. The default verbosity level can be
later modified using this method.

The minimum severity level can be globally forced by using the
“+vmm_force_verbosity=<sev>” runtime command-line option. The
specified verbosity overrides the verbosity level specified using this method.

virtual function int get_verbosity();

Returns the minimum message severity to be displayed when sourced by this message
service interface.

virtual function int
   modify( string name = "", 

string inst = "", 
bit recursive = 0,
int typs = ALL_TYPS, 
int severity = ALL_SEVS, 
string text = "/./",
int new_typ = UNCHANGED, 
int new_severity = UNCHANGED,
int handling = UNCHANGED);

Modifies the specified message source by any of the specified message service
interfaces with the new specified type, severity or simulation handling. The message
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can be specified by type, severity, numeric ID or by text pattern. By default, messages
of any type, severity, ID or text is specified. A message must match all specified
criteria.

This method returns a unique message modifier identifier that can be used to remove
it using the vmm_log::unmodify() method. All message modifiers are applied
in the same order they were defined before a message is issued.

virtual function void unmodify( int mod_id = -1,
string name = "",
string instance = "",
bit recursive = 0);

Removes the specified message modification from the specified message service
interfaces. By default, all message modifications are removed.

virtual function void log_start( int file,
string name = "",
string instance = "",
bit recurse = 0) 

Appends all messages produced by the specified message service interfaces to the
specified file. The file argument must be a file descriptor, as returned by the
$fopen() system task. By default, all message service interfaces append their
messages to the standard output. Specifying a new output file does not stop messages
from being appended to previously specified files.

virtual function void log_stop( int file,
string name = "",
string instance = "",
bit recurse = 0);

Messages issued by the specified message service interfaces are no longer appended
to the specified file. The file argument must be a file descriptor, as returned by the
$fopen() system task. If the specified file argument is 0, messages are no longer
sent to the standard simulation output and transcript. If the file argument is
specified as –1, appending to all files, except the standard output, is stopped.

virtual function void stop_after_n_errors(int n);
Aborts the simulation after the specified number of messages with a simulation
handling of COUNT_ERROR has been issued. This value is global and all messages
from any message service interface count toward this limit. A zero or negative value
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specifies no maximum. The default value is 10. The message specified by the
vmm_log_format::abort_on_error() is displayed before the simulation is
aborted.

virtual function int
           get_message_count( int severity = ALL_SEVS,

string name = "",
string instance = "",
bit recurse = 0);

Returns the total number of messages of the specified severities that have been issued
from the specified message service interfaces. Message severities can be specified as
a sum of individual message severities to specify more than one severity.

virtual function int
           create_watchpoint(int types = ALL_TYPS,

int severity = ALL_SEVS,
string text = "",
logic issued = 1'bx);

Creates a watchpoint descriptor that will be triggered when the specified message is
used. The message can be specified by type, severity or by text pattern. By default,
messages of all types, severities and text are specified. A message must match all
specified criteria to trigger the watchpoint. The issued parameter specifies if the
watchpoint is triggered when the message is physically issued (1'b1), physically not
issued, i.e., filtered out (1'b0) or regardless if the message is physically issued or not
(1'bx).

A watchpoint will be repeatedly triggered every time a message matching the
watchpoint specification is issued by a message service interface associated with the
watchpoint.
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virtual function void
           add_watchpoint( int watchpoint_id,

string name = "",
string instance = "",
bit recurse = 0);

virtual function void
           remove_watchpoint(int watchpoint_id,

string name = "",
string instance = "",
bit recurse = 0);

Adds or removes the specified watchpoint to or from the specified message service
interfaces. If a message matching the watchpoint specification is issued by one of the
specified message service interfaces associated with the watchpoint, the watchpoint
will be triggered.

virtual task wait_for_watchpoint( int watchpoint_id,
ref vmm_log_msg msg);

Waits for the specified watchpoint to be triggered by a message issued by one of the
message service interfaces attached to the watchpoint. A descriptor of the message
that triggered the watchpoint will be returned.

virtual task wait_for_msg( string name = "",
string instance = "",
bit recurse = 0,
int typs = ALL_TYPS,
int severity = ALL_SEVS,
string text = "",
logic issued = 1'bx,
ref vmm_log_msg msg);

Sets up and waits for a one-time watchpoint for the specified message on the specified
message service interface. The watchpoint is triggered only once and removed after
being triggered.

virtual task report( string name = “/./”,
string instance = “/./”,
bit recurse = 0);

Reports a failure if any of the specified message service interfaces have issued any
error or fatal messages. Reports a success otherwise. The text of the pass or fail
message is specified using the vmm_log_format::pass_or_fail() method.
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virtual function void
           prepend_callback(vmm_log_callbacks cb);
virtual function void
           append_callback(vmm_log_callbacks cb);
Globally prepends or appends the specified callback façade instance with the message
service. Callback methods will be invoked in the order in which they were registered.

A warning is issued if the same callback façade instance is registered more than once.
Callback façade instances can be unregistered and re-registered dynamically.

virtual function void
           unregister_callback(vmm_log_callbacks cb);
Globally unregisters the specified callback façade instance with the message service.
A warning is issued if the specified façade instance is not currently registered with the
service. Callback façade instances can later be re-registered.

vmm_log_msg
This class describes a message issued by a message service interface that caused a
watchpoint to be triggered. It is returned by the
vmm_log::wait_for_watchpoint() and vmm_log::wait_for_msg()
method.

vmm_log log;
A reference to the message reporting interface that has issued the message.

time timestamp;
The simulation time when the message was issued.

int original_typ;
Original message type as specified in the code creating the message.

int original_severity;
Original message severity as specified in the code creating the message.

int effective_typ;
Effective message type as potentially modified by the vmm_log::modify()
method.
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int effective_severity;
Effective message severity as potentially modified by the vmm_log::modify()
method.

string text[$];
Formatted text of the message. Each element of the array contains one line of text as
built by individual calls to the vmm_log::text() method.

bit issued;
Indicates if the message has been physically issued or not. If non-zero, then the
message has been issued.

int handling;
The simulation handling after the message is physically issued.

vmm_log_format
This class is used to specify how messages are formatted before being displayed or
logged to files. The default implementation of these methods produces the default
message format.

virtual function string format_msg( string name,
string instance,
string msg_typ,
string severity,
string lines[$]);

This method is called by all message service interfaces to format a message on the
first occurrence of a call to the vmm_log::end_msg() method or empty
vmm_log::text("") method call. Subsequent calls to the
vmm_log::end_msg() method or empty vmm_log::text("") method use
the vmm_log_format::continue_msg() method.

The lines parameter contains one line of message text for each non-empty call to
the vmm_log::text() method.
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virtual function string continue_msg( string name,
string instance,
string msg_typ,
string severity,
string lines[$]);

This method is called by all message service interfaces to format a message on the
first occurrence of a call to the vmm_log::end_msg() method or empty
vmm_log::text("") method call. Subsequent calls to the
vmm_log::end_msg() method or empty vmm_log::text("") method use
the vmm_log_format::continue_msg() method.

The lines parameter contains one line of message text for each non-empty call to
the vmm_log::text() method since the last empty call to the
vmm_log::text("") method. It does not contain lines that were previously
formatted in a prior call to this method or the
vmm_log_format::format_msg() method.

virtual function string abort_on_error( int count,
int limit);

This method is called when the total number of COUNT_ERROR messages exceed the
error message threshold. The string returned by the method describes the cause of the
simulation aborting. If null is returned, no explanation is displayed.

This method is called and the returned string is displayed before the
vmm_log_callbacks::pre_abort() callback methods are invoked.

virtual function string pass_or_fail( bit pass,
string name,
string instance,
int fatals,
int errors,
int warnings,
int dem_errs,
int dem_warns);

This method is called by the vmm_log::report() method to format the final
pass/fail message at the end of simulation. The pass argument, if true, indicates that
the simulation was successful. The name and instance arguments are the
specified name and instance names specified to the vmm_log::report() method.
The fatals argument is the total number of vmm_log::FATAL_SEV messages
that were issued. The errors argument is the total number of
vmm_log::ERROR_SEV messages that were issued. The warnings argument is
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the total number of vmm_log::WARNING_SEV messages that were issued. The
dem_errs argument is the total number of vmm_log::ERROR_SEV messages that
were demoted. The dem_warns argument is the total number of
vmm_log::WARNING_SEV messages that were demoted.

vmm_log_callbacks
This class provides a façade for the callback methods provided by the message
service. Callbacks are associated with the message service itself, not a particular
message service interface instance.

virtual task pre_abort(vmm_log log);
This callback method is invoked by the message service before the simulation is
aborted because of an ABORT simulation handling or exceeded maximum number of
COUNT_ERROR messages. The message service instance provided as argument can
be used to issue further messages.

virtual task pre_stop(vmm_log log);
This callback method is invoked by the message service before the simulation is
stopped because of a STOP simulation handling. The message service instance
provided as argument can be used to issue further messages.

virtual task pre_debug(vmm_log log);
This callback method is invoked by the message service before the breaking into the
debugger because of a DEBUGGER simulation handling. The message service
instance provided as argument can be used to issue further messages.

Example A-2. Issuing a Simple Message
program test;
   vmm_log log = new("Test", "Singleton");

initial begin
   if (log.start_msg(vmm_log::DEBUG_TYP)) begin
      void’(log.text("Starting test"));
      log.end_msg();
   end
   ...
end
endprogram
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Example A-3. Issuing a Simple Message using a Macro
program test;
   vmm_log log = new("Test", "Singleton");

initial begin
   ‘vmm_debug(log, "Starting test");
   ...
end
endprogram

Example A-4. Issuing a Complex Message
program test;
   vmm_log log = new("Test", "Singleton");

initial begin
   ...
   while (log.start_msg(vmm_log::FAILURE_TYP,
                        vmm_log::WARNING_SEV)) begin
       string str;
       if (!log.text(...)) break;
       if (!log.text(transaction.psdisplay())) break;
       $sformat(str, ...);
       if (!log.text(str)) break;
       log.end_msg();
       break;
   end
   ...
end
endprogram

Example A-5. Pattern-Based Message Promotion
Demote all messages with an ERROR_SEV severity containing the pattern “abort” 
in all instances of message service interfaces named “AMBA AHB Interface Mas-
ter” to a WARNING_SEV severity. 

program test
   verif_env env = new;

initial begin
   env.build();
   env.log.modify("AMBA AHB Interface Master", "/./", ,
                 , , vmm_log::ERROR_SEV, "/abort/",
                  , vmm_log::WARNING_SEV);
   ...
end
endprogram
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VMM_DATA
This base class is to be used as the basis for all transaction descriptors and data
models. It provides a standard set of methods expected to be found in all descriptors.
It also creates a common class—akin to C’s void type—that can be used to create
generic components. The guidelines covering the development of data and transaction
descriptors based on this class can be found in section titled "Data and Transactions"
on page 140.

function new(vmm_log log);
Creates a new instance of this data model or transaction descriptor with the specified
message service interface. The specified message service interface is used when
constructing the vmm_data::notify property.

Because of the potentially large number of instances of data objects, a class-
static message service interface should be used to minimize memory usage and to
be able to control class-generic messages:

class eth_frame extends vmm_data {
   static vmm_log log = new(“eth_frame”, “class”);
   function new()
      super.new(this.log);
      ...
   endfunction
endclass: eth_frame

function vmm_log set_log(vmm_log log);
Replaces the message service interface for this instance of a data model or transaction
descriptor with the specified message service interface and returns a reference to the
previous message service interface. Can be used to associate a descriptor with the
message service interface of a transactor currently processing the transaction or to set
the service when it was not available during initial construction.

int stream_id;
int scenario_id;
int data_id;
Unique identifiers for a data model or transaction descriptor instance. They specify
the offset of the descriptor within a sequence and the sequence offset within a stream.
These properties must be set by the transactor that instantiates the descriptor. They are
set by the predefined generator before randomization so they can be used to specify
conditional constraints to express instance-specific or stream-specific constraints.
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vmm_notify notify;
enum { EXECUTE;

STARTED;
ENDED};

A notification service interface with three pre-configured events. The EXECUTE
notification is ON/OFF and indicated by default. It can be used to prevent the
execution of a transaction or the transfer of data if reset. The STARTED and ENDED
notifications are ON/OFF events and indicated by the transactor at the start and end of
the transaction execution or data transfer. The meaning and timing of the notifications
is specific to the transactor executing the transaction described by this instance.

function void display(string prefix = "");
Displays the current value of the transaction or data described by this instance in a
human-readable format on the standard output. Each line of the output will be
prefixed with the specified prefix. This method prints the value returned by the
psdisplay() method.

virtual function string psdisplay(string prefix = "");
Returns an image of the current value of the transaction or data described by this
instance in a human-readable format as a string. The string may contain newline
characters to split the image across multiple lines. Each line of the output must be
prefixed with the specified prefix.

virtual function bit is_valid(bit silent = 1,
int kind = -1);

Checks if the current value of the transaction or data described by this instance is
valid and error-free, according to the optionally specified kind or format. Returns
TRUE (i.e., non-zero) if the content of the object is valid. Returns FALSE otherwise.
The meaning (and use) of the kind argument is descriptor-specific and defined by
the user-extension of this method.

If silent is TRUE (i.e., non-zero), no error or warning messages are issued if the
content is invalid. If silent is FALSE, warning or error messages may be issued if the
content is invalid.

virtual function vmm_data allocate();
Allocates a new instance of the same type as the object instance. Returns a reference
to the new instance. Useful to implement class factories to create instances of user-
defined derived class in generic code written using the base class type.
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virtual function vmm_data copy(vmm_data to = null);
Copies the current value of the object instance to the specified object instance. If no
target object instance is specified, a new instance is allocated. Returns a reference to
the target instance.

Note that the following trivial implementation will not work. Constructor copying is a
shallow copy. The objects instantiated in the object (such as those referenced by the
log and notify properties) are not copied and both copies will share references to
the same service interfaces. Furthermore, it will not properly handle the case when the
to argument is not null.

Example A-6. Invalid Implementation of the vmm_data::copy() Method
function vmm_data atm_cell::copy(vmm_data to = null)
   copy = new this;
endfunction

The following implementation is usually preferable:

Example A-7. Proper Implementation of the vmm_data::copy() Method
function vmm_data atm_cell::copy(vmm_data to = null)
   atm_cell cpy;

   if (to != null) begin
      if ($cast_assign(cpy, to)) begin
         ‘vmm_fatal(log, “Not a atm_cell instance”);
         return;
      end
   end else cpy = new;

   this.copy_data(cpy);
   cpy.vpi = this.vpi;
   ...
   copy = cpy;
endfunction: copy

The base-class implementation of this method must not be called as it contains error
detection code of a derived class that forgot to supply an implementation. The
vmm_data::copy_data() method should be called instead.

virtual protected function void copy_data(vmm_data to);
Copies the current value of all base-class data properties in the current data object into
the specified data object instance. This method should be called by the
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implementation of the vmm_data::copy() method in classes immediately
derived from this base class.

virtual function bit compare( input vmm_data to, 
output string diff,
input int kind = -1);

Compares the current value of the object instance with the current value of the
specified object instance, according to the specified kind. Returns TRUE (i.e., non-
zero) if the value is identical. If the value is different, FALSE is returned and a
descriptive text of the first difference found is returned in the specified string
variable. The kind argument may be used to implement different comparison
functions (e.g., full compare, comparison of rand properties only, comparison of all
properties physically implemented in a protocol and so on.)

virtual function int unsigned byte_pack(
ref logic [7:0] bytes[],
int unsigned offset = 0, 
int kind = -1);

Packs the content of the transaction or data into the specified dynamic array of bytes,
starting at the specified offset in the array. The array is resized appropriately. Returns
the number of bytes added to the array.

If the data can be interpreted or packed in different ways, the kind argument can be
used to specify which interpretation or packing to use.

virtual function int unsigned byte_unpack(
const ref logic [7:0] bytes[],
input int unsigned offset = 0,
input int len = -1,
input int kind = -1);

Unpacks the specified number of bytes of data from the specified offset in the
specified dynamic array into this descriptor. If the number of bytes to unpack is
specified as -1, the maximum number of bytes will be unpacked. Returns the number
of bytes unpacked. If there is not enough data in the dynamic array to completely fill
the descriptor, the remaining properties are set to unknown and a warning may be
issued.

If the data can be interpreted or unpacked in different ways, the kind argument can
be used to specify which interpretation or packing to use.
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virtual function int unsigned byte_size(int kind = -1);
Returns the number of bytes required to pack the content of this descriptor. This
method will be more efficient than vmm_data::byte_pack() for simply
knowing how many bytes are required by the descriptor because no packing is
actually done.

If the data can be interpreted or packed in different ways, the kind argument can be
used to specify which interpretation or packing to use.

virtual function int unsigned max_byte_size(
int kind = -1);

Returns the maximum number of bytes that will ever be required to pack the content
of any instance of this descriptor. A value of 0 indicates an unknown maximum size.
Can be used to allocate memory buffers in the DUT or verification environment of
suitable sizes.

If the data can be interpreted or packed in different ways, the kind argument can be
used to specify which interpretation or packing to use.

virtual function void save(int file);
Appends the content of this descriptor to the specified file. The format is user defined
and may be binary. By default, simply packs the descriptor and saves the value of the
bytes, in sequence, as binary values and terminated by a newline.

virtual function bit load(int file);
Sets the content of this descriptor from the data in the specified file. The format is
user defined and may be binary. By default, interprets a complete line as binary byte
data and unpacks it.

Should return FALSE (i.e., zero) if the loading operation was not successful.

VMM_CHANNEL
This class implements a generic transaction-level interface mechanism. The
guidelines covering the usage of the channel can be found in section titled
"Transaction-Level Interfaces" on page 171.
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Offset values, either accepted as arguments or returned values, are always interpreted
the same way. A value of 0 indicates the head of the channel (first transaction
descriptor added). A value of –1 indicates the tail of the channel (last transaction
descriptor added). Positive offsets are interpreted from the head of the channel.
Negative offsets are interpreted from the tail of the channel. For example, an offset
value of –2 indicates the transaction descriptor just before the last transaction
descriptor in the channel. It is illegal to specify a non-zero offset that does not
correspond to a transaction descriptor already in the channel.

The channel includes an active slot that can be used to create more complex transactor
interfaces. The active slot counts toward the number of transaction descriptors
currently in the channel for control-flow purposes but cannot be accessed nor
specified via an offset specification.

The implementation uses a macro to define a class named “<class_name>_chan”
derived from the class named “vmm_channel” for any user-specified class named
“class_name”.

‘vmm_channel(class_name);
Defines a channel class to transport instances of the specified class. The transported
class must be derived from the vmm_data class. This macro is typically invoked in
the same file where the specified class is defined and implemented.

This macro creates an external class declaration and no implementation. It is typically
invoked when the channel class must be visible to the compiler but the actual channel
class declaration is not yet available.

function new( string name,
string instance,
int unsigned full = 1, 
int unsigned empty = 0,
bit fill_as_bytes = 0);

Creates a new instance of a channel with the specified name, instance name and full
and empty levels. If the fill_as_bytes argument is TRUE (i.e., non-zero) the
full and empty levels and the fill level of the channel are interpreted as the number of
bytes in the channel as computed by the sum of vmm_data::byte_size() of all
transaction descriptors in the channel, not the number of objects in the channel. If the
value is FALSE (i.e., zero), the full and empty levels and the fill level of the channel
are interpreted as the number of transaction descriptors in the channel. It is illegal to
configure a channel with a full level lower than the empty level.
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vmm_log log;
Message service interface for messages issued from within the channel instance.

function void reconfigure( int full = -1, 
int empty = -1,
logic fill_as_bytes = 1'bx);

If not negative, reconfigure the full or empty levels of the channel to the specified
levels. Reconfiguration may cause threads currently blocked on a
vmm_channel::put() call to unblock. If the fill_as_bytes argument is
specified as 1’b1 or 1’b0, the interpretation of the fill level of the channel is
modified accordingly. Any other value leaves the interpretation of the fill level
unchanged.

function int unsigned full_level();
function int unsigned empty_level();
Returns the currently configured full or empty level.

function int unsigned level();
Returns the current fill level of the channel. The interpretation of the fill level
depends on the configuration of the channel instance.

function int unsigned size();
Returns the number of transaction descriptors currently in the channel, including the
active slot, regardless of the interpretation of the fill level.

function bit is_full();
Returns TRUE (i.e., non-zero) if the fill level is greater than or equal to the currently
configured full level. Returns FALSE otherwise. 

vmm_notify notify
An event notification interface used to indicate the occurrence of significant events
within the channel. The notifications shown in Table A-3 are pre-configured.
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Table A-3.  Pre-Configured Notifications in vmm_channel Notifier Interface

Symbolic Property Corresponding Significant Event

vmm_channel::FULL Channel has reached or surpassed its 
configured full level. This notification is 
configured ON/OFF. No status is returned.

vmm_channel::EMPTY Channel has reached or underflowed the 
configured empty level. This event is 
configured ON/OFF. No status is returned.

vmm_channel::PUT A new transaction descriptor has been added 
to the channel. This event is configured 
ONE_SHOT. The newly added transaction 
descriptor is available as status.

vmm_channel::GOT A transaction descriptor has been removed 
from the channel. This event is configured 
ONE_SHOT. The newly removed transaction 
descriptor is available as status.

vmm_channel::PEEKED A transaction descriptor has been peeked from 
the channel. This event is configured 
ONE_SHOT. The newly peeked transaction 
descriptor is available as status.

vmm_channel::ACTIVATE
D

A transaction descriptor has been transferred 
to the active slot. This notification also 
implies a PEEKED notification. This event is 
configured ONE_SHOT. The newly activated 
transaction descriptor is available as status.

vmm_channel::
   ACT_STARTED

The state of a transaction descriptor in the 
active slot has been updated to STARTED.
This event is triggered ONE_SHOT. The 
currently active transaction descriptor is 
available as status.

vmm_channel::
   ACT_COMPLETED

The state of a transaction descriptor in the 
active slot has been updated to COMPLETED.
This event is configured ONE_SHOT. The 
currently active transaction descriptor is 
available as status.
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Table A-3.  Cont.  

function void flush();
Flushes the content of the channel. Flushing will unblock any thread currently
blocked in the vmm_channel::put() method. This method will cause the FULL
notification to be reset or the EMPTY notification to be indicated. Flushing a channel
unlocks all sources and consumers.

function void sink();
Flushes the content of the channel and sinks any further objects put into it. No
transaction descriptors will accumulate in the channel while it is sunk. Any thread
attempting to obtain a transaction descriptor from the channel will be blocked until
the flow through the channel is restored using the vmm_channel::flow()
method. This method will cause the FULL notification to be reset or the EMPTY
notification to be indicated.

function void flow();
Restores the normal flow of transaction descriptors through the channel.

function void lock(bit [1:0] who);
function void unlock(bit [1:0] who);
Blocks any source (consumer) as if the channel was full (empty) until explicitly
unlocked. The side that is to be locked or unlocked is specified using the sum of the
symbolic values shown in Table A-4.

Symbolic Property Corresponding Significant Event

vmm_channel::
   ACT_REMOVED

A transaction descriptor has been removed 
from the active slot. This notification also 
implies a GOT notification. This event is 
configured ONE_SHOT. The newly removed 
transaction descriptor is available as status.

vmm_channel::LOCKED A side of the channel has been locked. This 
event is configured ONE_SHOT.

vmm_channel::UNLOCKED A side of the channel has been unlocked. This 
event is configured ONE_SHOT.
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Table A-4.  Channel Endpoint Identifiers

Locking a source does not indicate the FULL notification, nor does locking the sink
indicate the EMPTY notification—although they have the same control-flow effect.

function bit is_locked(bit [1:0] who);
Returns TRUE (i.e., non-zero) if any of the specified sides is locked. If both sides are
specified, returns TRUE if any side is locked.

Example A-8. Querying the Lock Status of a Channel
while (chan.is_locked(vmm_channel::SOURCE +
                      vmm_channel::SINK)) begin
   chan.notify.wait_for(vmm_channel::UNLOCKED);
end

task put( class_name obj,
int offset = -1);

Puts the specified transaction descriptor in the channel at the specified offset. If the
fill level of the channel, including the active slot, is greater than or equal to the
configured full level, or if the source is locked, the task will block until the fill level of
the channel is less than or equal to the configured empty level and the source is
unlocked.

It is an error to specify an offset that does not already exist in the channel.

This method may cause the FULL notification to be indicated and will cause the
EMPTY notification to be reset.

function void sneak(class_name obj,
int offset = -1)

Puts the specified transaction descriptor in the channel at the specified offset. This
task will never block, regardless of the configured full level. Use only when a
guaranteed non-blocking version of vmm_channel::put() is required—for

Symbolic Property Channel Endpoint

vmm_channel::SOURCE The producer side, i.e., any thread calling the 
vmm_channel::put() method

vmm_channel::SINK The consumer side, i.e., any thread calling the 
vmm_channel::get() method
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example, inside a function—and threads using this method have some other
means of eventually blocking their execution.

It is an error to specify an offset that does not already exist in the channel or sneak a
new transaction descriptor into a locked channel.

This method may cause the FULL notification to be indicated and will cause the
EMPTY notification to be reset.

function class_name unput(int offset = -1);
Removes the specified transaction descriptor from the channel. It is an error to
specify an offset to a transaction descriptor that does not exist.

This method may cause the EMPTY notification to be indicated and will cause the
FULL notification to be reset.

task get( output class_name obj,
input int offset = 0);

Retrieves the next transaction descriptor in the channel at the specified offset. If the
channel is empty, the function will block until a transaction descriptor is available to
be retrieved. This method may cause the EMPTY notification to be indicated or the
FULL notification to be reset.

It is an error to invoke this method with an offset value greater than the number of
transaction descriptors currently in the channel or with a non-empty active slot.

task peek( output class_name obj,
input int offset = 0);

Gets a reference to the next transaction descriptor that will be retrieved from the
channel at the specified offset without actually retrieving it. If the channel is empty,
the function will block until a transaction descriptor is available to be retrieved.

It is an error to invoke this method with an offset value greater than the number of
transaction descriptors currently in the channel or with a non-empty active slot.

task activate( output class_name obj,
input int offset = 0);

If the active slot is not empty, first removes the transaction descriptor currently in the
active slot.
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Move the transaction descriptor at the specified offset in the channel to the active slot
and update the status of the active slot to vmm_channel::PENDING. If the channel
is empty, this method will wait until a transaction descriptor becomes available. The
transaction descriptor is still considered as being in the channel.

It is an error to invoke this method with an offset value greater than the number of
transaction descriptors currently in the channel or to use this method with multiple
concurrent consumer threads.

function class_name active_slot();
Returns the transaction descriptor currently in the active slot. Returns null if the
active slot is empty.

function class_name start();
Updates the status of the active slot to vmm_channel::STARTED. The transaction
descriptor remains in the active slot. It is an error to call this method if the active slot
is empty. The vmm_data::STARTED notification of the transaction descriptor in
the active slot is indicated.

function class_name complete(vmm_data status = null);
Updates the status of the active slot to vmm_channel::COMPLETED. The
transaction descriptor remains in the active slot and may be restarted. It is an error to
call this method if the active slot is empty. The vmm_data::ENDED notification of
the transaction descriptor in the active slot is indicated with the optionally specified
completion status descriptor.

function class_name remove();
Updates the status of the active slot to vmm_channel::INACTIVE and removes
the transaction descriptor from the active slot from the channel. This method may
cause the EMPTY notification to be indicated or the FULL notification to be reset. It
an error to call this method with an active slot in the vmm_channel::STARTED
state. The vmm_data::ENDED notification of the transaction descriptor in the
active slot is indicated.

function active_status_e status();
Returns one of the enumerated values in Table A-5, indicating the status of the
transaction descriptor in the active slot.
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Table A-5.  Pre-Configured Notifications in vmm_channel Notifier Interface

task tee(output class_name obj);
When the tee mode is ON, retrieve a copy of the transaction descriptor references that
have been retrieved by the get() or activate() methods. The task will block
until one of the get() or activate() methods successfully completes.

This method can be used to fork off a second stream of references to the transaction
descriptor stream. Note that the transaction descriptors themselves are not copied.
The references returned by this method are referring to the same transaction
descriptor instances obtained by the get() and activate() methods.

function bit tee_mode(bit is_on);
Turn the tee mode ON or OFF for this channel. Returns TRUE if the tee mode was
previously ON. A threads blocked on a call to the vmm_channel::tee() method
will not unblock execution if the tee mode is turned OFF. If the stream of references is
not drained via the vmm_channel::tee() method, data will accumulate in the
secondary channel when the tee mode is ON.

function void connect(vmm_channel downstream);
Connect the output of this channel instance to the input of the specified channel
instance. The connection is performed with a blocking model (see section titled "In-
Order Atomic Execution Model" on page 177) to communicate the status of the
downstream channel to the producer interface of the upstream channel. Flushing this

Symbolic Property Corresponding Significant Event

vmm_channel::INACTIVE No transaction descriptor is present in the 
active slot.

vmm_channel::PENDING A transaction descriptor is present in the
active slot but it has not been started yet.

vmm_channel::STARTED A transaction descriptor is present in the
active slot and it has been started, but it is not
completed yet. The transaction is being
processed by the downstream transactor

vmm_channel::COMPLETED A transaction descriptor is present in the
active slot and it has been processed by the
downstream transactor, but it has not yet been
removed from the active slot.
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channel will cause the downstream connected channel to be flushed as well. However,
flushing the downstream channel will not flush this channel.

The effective full and empty levels of the combined channels is equal to the sum of
their respective levels minus one. However, the detailed blocking behavior of the
various interface methods will differ from using a single channel with an equivalent
configuration. Additional zero-delay simulation cycles may be required while
transaction descriptors are transferred from the upstream channel to the downstream
channel.

Connected channels need not be of the same type but must carry compatible
polymorphic data.

The connection of a channel into another one can be dynamically modified and
broken by connection to a null reference. However, modifying the connection while
there is data flowing through the channels may yield unpredictable behavior.

function class_name for_each(bit reset = 0);
Iterates over all of the transaction descriptors currently in the channel. The content of
the active slot, if non-empty, is not included in the iteration. If the reset argument is
TRUE, a reference to the first transaction descriptor in the channel is returned.
Otherwise, a reference to the next transaction descriptor in the channel is returned.
Returns null when the last transaction descriptor in the channel has been returned. It
will keep returning null unless reset.

Modifying the content of the channel in the middle of an iteration will yield
unexpected results.

function int unsigned for_each_offset();
Returns the offset of the last transaction descriptor returned by the
vmm_channel::for_each() method. An offset of 0 indicates the first
transaction descriptor in the channel.

function bit record(string filename);
Starts recording the flow of transaction descriptors added through the channel
instance in the specified file. The vmm_data::save() method must be
implemented for that transaction descriptor and defines the file format. A transaction
descriptor is recorded when added to the channel by the vmm_channel::put()
method.
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A null filename stops the recording process. Returns TRUE if the specified file was
successfully opened.

task bit playback(output bit success,
input string filename, 
input vmm_data loader,
input bit metered = 0);

Locks all sources of the current channel and playback the transaction descriptors
found in the specified file. The vmm_data::load() load method in the object
specified by the loader argument is used and defines the file format. The
transaction descriptors are added one by one in the order specified in the file. If the
metered argument is TRUE, the transaction descriptors are added to the channel
with the same relative time interval as they were originally put in when the file was
recorded.

All consumers are locked out from the channel during playback. Normal operation
resumes after the data has been entirely played back. Returns TRUE if the playback
was successful.

VMM_BROADCAST
Channels are point-to-point data transfer mechanisms. If multiple consumers are
extracting transaction descriptors from a channel, the transaction descriptors are
distributed among the various consumers and each of the N consumers sees 1/N
descriptors. If a point-to-multi-point mechanism is required, where all consumers
must see all of the transaction descriptors in the stream, a vmm_broadcast
component can be used to replicate the stream of transaction descriptors from a
source channel to an arbitrary and dynamic number of output channels. If only two
output channels are required, the vmm_channel::tee() method of the source
channel may also be used.

Individual output channels can be configured to receive a copy of the reference to the
source transaction descriptor (most efficient but the same descriptor instance is shared
by the source and all like-configured output channels) or to use a new descriptor
instance copied from the source object (least efficient but uses a separate instance that
can be modified without affecting other channels or the original descriptor). A
vmm_broadcast component can be configured to use references or copies in
output channels by default.
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In the As Fast As Possible (AFAP) mode, the full level of the output channels is
ignored. Only the full level of the source channel will control the flow of data through
the broadcaster. Output channels are kept non-empty as much as possible. As soon as
an active output channel becomes empty, the next descriptor is removed from the
source channel (if available) and added to all output channels, even if they are already
full.

In the As Late As Possible (ALAP) mode, the slowest of the output or input channels
controls the flow of data through the broadcaster. Only once all active output
channels are empty, the next descriptor is removed from the source channel (if
available) and added to all output channels.

If there are no active output channels, the input channel is continuously drained as
transaction descriptors are added to it to avoid data accumulation.

This class is based on the vmm_xactor class.

vmm_log log;
Message service interface for this broadcaster. Set by the constructor and uses the
name and instance name specified in the constructor.

function new( string name, 
string instance, 
vmm_channel source,
bit use_references = 1, 
bcast_mode_typ mode = AFAP);

Creates a new instance of a channel broadcaster object with the specified name,
instance name, source channel and broadcasting mode. If use_references is
TRUE (i.e., non-zero), references to the original source transaction descriptors are
assigned to output channels by default (unless individual output channels are
configured otherwise).

See the documentation for the broadcast_mode() method on page 399 for a
description of the available modes.

virtual function void start_xactor();
Starts this vmm_broadcast instance. The broadcaster can be stopped. Any
extension of this method must call super.start_xactor().
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virtual function void stop_xactor();
Suspends this vmm_broadcast instance. The broadcaster can be restarted. Any
extension of this method must call super.stop_xactor().

virtual function void
           reset_xactor(reset_e rst_type = SOFT_RST);
Resets this vmm_broadcast instance. The broadcaster can be restarted. The input
channel and all output channels are flushed.

virtual function void
           broadcast_mode(bcast_mode_e mode);
Changes the broadcasting mode to the specified mode. The new mode takes effect
immediately. The available modes are specified by using one of the class-level
enumerated symbolic values shown in Table A-6.

Table A-6.  Broadcasting Mode Enumerated Values

Enumerated Value Broadcasting Operation

vmm_broadcast::ALAP As Late As Possible.
Data is broadcast only when all active output
channels are empty. This delay ensures that
data is not broadcast any faster than the
slowest of all consumers can digest it.

vmm_broadcast::AFAP As Fast As Possible.
Active output channels are kept non-empty as
much as possible. As soon as an active output
channel becomes empty, the next descriptor
from the input channel (if available) is
immediately broadcast to all active output
channels, regardless of their fill level.

This mode must not be used if the data source
can produce data at a higher rate than the
slowest data consumer and if broadcast data in
all output channels are not consumed at the
same average rate.
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virtual function int
           new_output(vmm_channel channel,

logic use_references = 1'bx);
Adds the specified channel instance as a new output channel to the broadcaster. If
use_references is TRUE (i.e., non-zero), references to the original source
transaction descriptor is added to the output channel. If FALSE (i.e., zero), a new
instance copied from the original source descriptor is added to the output channel. If
unknown (i.e., 1'bx), the default broadcaster configuration is used.

If there are no output channels, the data from the input channel is continuously
drained to avoid data accumulation.

This method returns a unique identifier for the output channel that must be used to
modify the configuration of the output channel.

Any user extension of this method must call super.new_output().

virtual function void bcast_on(int unsigned output_id);
virtual function void bcast_off(int unsigned output_id);
Turns broadcasting to the specified output channel on or off. By default, broadcasting
to an output channel is on. When broadcasting is turned off, the output channel is
flushed and the addition of new transaction descriptors from the source channel is
inhibited. The addition of descriptors from the source channel is resumed as soon as
broadcasting is turned on.

If all output channels are off, the input channel is continuously drained to avoid data
accumulation.

Any user extension of these methods should call super.bcast_on() or
super.bcast_off(), respectively.

virtual protected function bit
                add_to_output( int unsigned decision_id,

int unsigned output_id, 
vmm_channel channel, 
vmm_data obj);

Overloading this method allows the creation of broadcaster components with
different broadcasting rules. If this function returns TRUE (i.e., non-zero), the
transaction descriptor will be added to the specified output channel. If this function
returns FALSE (i.e., zero), the descriptor is not added to the channel. If the output
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channel is configured to use new descriptor instances, the dat parameter is a
reference to that new instance.

This method is not necessarily invoked in increasing order of output identifiers. It is
only called for output channels currently configured as ON. If this method returns
FALSE for all output channels for a given broadcasting cycle, lock-up may occur. The
decision_id argument is reset to 0 at the start of every broadcasting cycle and is
incremented after each call to this method in the same cycle. It can be used to identify
the start of broadcasting cycles.

If transaction descriptors are manually added to output channels, it is important that
the vmm_channel::sneak() method be used to prevent the execution thread
from blocking. It is also important that FALSE be returned to prevent that descriptor
from being added to that output channel by the default broadcast operations and thus
from being duplicated into the output channel.

The default implementation of this method always returns TRUE.

VMM_SCHEDULER
Channels are point-to-point transaction descriptor transfer mechanisms. If multiple
sources are adding descriptors to a single channel, the descriptors are interleaved with
the descriptors from the other sources in a fair but uncontrollable way. If a multi-
point-to-point mechanism is required to follow a specific scheduling algorithm, a
vmm_scheduler component can be used to identify which source stream should
next be forwarded to the output stream.

This class is based on the vmm_xactor class.

vmm_log log;
Message service interface for this scheduler. Set by the constructor and uses the name
and instance name specified in the constructor.

protected vmm_channel out_chan;
Reference to the output channel. Set by the constructor.

function new( string name,
string instance,
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vmm_channel destination,
int instance_id = -1);

Creates a new instance of a channel scheduler object with the specified name,
instance name, destination channel and optional instance identifier.

virtual function void start_xactor();
Starts this vmm_scheduler instance. The scheduler can be stopped. Any extension
of this method must call super.start_xactor().

virtual function void stop_xactor();
Suspends this vmm_scheduler instance. The scheduler can be restarted. Any
extension of this method must call super.stop_xactor().

virtual function void
           reset_xactor(reset_e rst_typ = SOFT_RST);
Resets this vmm_scheduler instance. The output channel and all input channels
are flushed. If a HARD_RST reset type is specified, the scheduler election factory
instance in the randomized_sched property is replaced with a new default
instance.

virtual function int new_source(vmm_channel chan);
Adds the specified channel instance as a new input channel to the scheduler. This
method returns an identifier for the input channel that must be used to modify the
configuration of the input channel or -1 if an error occurred.

Any user extension of this method must call super.new_source().

virtual function void sched_on(int unsigned input_id);
virtual function void sched_off(int unsigned input_id);
Turns scheduling from the specified input channel on or off. By default, scheduling
from an input channel is on. When scheduling is turned off, the input channel is not
flushed and the scheduling of new transaction descriptors from that source channel is
inhibited. The scheduling of descriptors from that source channel is resumed as soon
as scheduling is turned on.

Any user extension of this method should call super.sched_from_input() or
super.sched_from_input(), respectively.



vmm_scheduler

Verification Methodology Manual for SystemVerilog 403

virtual protected task
                  schedule(output vmm_data obj,
                  input vmm_channel sources[$],

int unsigned input_ids[$]);
Overloading this method allows the creation of scheduling components with different
rules. It is invoked for each scheduling cycle. The transaction descriptor returned by
this method in the obj argument is added to the output channel. If this method
returns null, no descriptor is added for this scheduling cycle. The input channels
provided in the sources argument are all the currently non-empty ON input
channels. Their corresponding input identifier is found in the input_ids argument.

New scheduling cycles are attempted whenever the output channel is not full. If no
transaction descriptor is scheduled from any of the currently non-empty source
channels, the next scheduling cycle will be delayed until an additional ON source
channel becomes non-empty. If there are no empty input channels and no OFF
channels, lock-up will occur.

The default implementation of this method randomizes the instance found in the
randomized_sched property.

virtual protected task get_object(output vmm_data obj,
                    vmm_channel source,

int unsigned input_id,
int offset);

This method is invoked by the default implementation of the
vmm_scheduler::schedule() method to extract the next scheduled
transaction descriptor from the specified input channel at the specified offset within
the channel. Overloading this method allows access to or replacement of the
descriptor that is about to be scheduled. User-defined extensions can be used to
introduce errors by modifying the object, interfere with the scheduling algorithm by
substituting a different object or recording of the schedule into a functional coverage
model.

Any object that is returned by this method via the obj argument must either have
been internally created or physically removed from the input source using the
vmm_channel::get() method. If a reference to the object remains in the input
channel (e.g., by using the vmm_channel::peek() or
vmm_channel::activate() method), it is liable to be scheduled more than
once as the mere presence of an instance in any of the input channel makes it
available to the scheduler.
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vmm_scheduler_election randomized_sched;
Factory instance randomized by the default implementation of the
vmm_scheduler::schedule() method. Can be replaced with user-defined
extensions to modify the election rules.

vmm_scheduler_election
This class implements the random election rules for the next scheduling cycle. The
election is performed by randomizing an instance of this class. The default
implementation provides a round-robin election process.

int instance_id;
Instance identifier of the vmm_scheduler class instance that is randomizing this
object instance. Can be used to specified instance-specific constraints.

int unsigned election_id;
Incremented by the vmm_scheduler instance that is randomizing this object
instance before every election cycle. Can be used to specified election-specific
constraints.

int unsigned n_sources;
Number of sources. Equal to 
vmm_scheduler_election::sources.size().

vmm_channel sources[$];
Input source channels with transaction descriptors available to be scheduled.

int unsigned ids[$];
Unique input identifiers corresponding to the source channels at the same index in the
sources array.

int unsigned id_history[$];
A queue of the (up to) 10 last input identifiers that were elected.

vmm_data obj_history[$];
A list of the (up to) 10 last transaction descriptors that were elected.
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rand int unsigned source_idx;
Index in the sources array of the elected source channel. An index of –1 indicates
no election. The default_round_robin constraint block constrains this
property to be in the 0 to sources.size()-1 range.

rand int unsigned obj_offset;
Offset, within the source channel indicated by the source_idx property, of the
elected transaction descriptor within the elected source channel. The
default_round_robin constraint block constrains this property to be equal to 0.

constraint default_round_robin;
Constraints required by the default round-robin election process.

function void post_randomize();
The default implementation of this method helps performs the round-robin election.

VMM_NOTIFY
The vmm_notify class implements an interface to the notification service. The
notification service provides a synchronization mechanism for concurrent threads or
transactors. Unlike event variables, the operation of the notification is define at
configuration time. Furthermore, notification can have status and timestamp
information attached to their indication.

function new(vmm_log log);
Creates a new instance of this class, using the specified message service interface to
issue error and debug messages.

virtual function vmm_notify copy(vmm_notify to = null);
Copies the current configuration of this notification service interface to the specified
instance. If no instance is specified, a new one is allocated using the same message
service interface as the original one. A reference to the target instance copied is
returned.

Only the notification configuration information is copied and merged with any pre-
configured notification in the destination instance. Copied notification configuration
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will replace any pre-existing configuration for the same notification identifier. Status
and timestamp information is not copied.

virtual function int
           configure( int notification_id = -1,

sync_e sync = ONE_SHOT);
Defines a new notification associated with the specified unique identifier. If a
negative identifier value is specified, a new, unique identifier greater than 1,000,000
is returned. The thread synchronization mode of a notification is defined when the
notification is configured, not when it is triggered or waited upon, using one of the
vmm_notify::ONE_SHOT, vmm_notify::BLAST, or
vmm_notify::ON_OFF synchronization types. This definition timing prevents a
notification from being misused by the triggering or waiting threads.

Table A-7.  Notification Synchronization Mode Enumerated Values

A warning may be issued if a notification is configured more than once.

Notification identifiers numbered from 1,000,000 and up are reserved for
automatically generated notification identifiers. Predefined notification identifiers in
the VMM base classes use identifiers 999,999 and down. User-defined notification
identifiers can thus use values 0 and up.

virtual function int is_configured(int notification_id);
Checks if the specified notification is currently configured. If this method returns 0,
the notification is not configured. Otherwise, it returns an integer value corresponding

Enumerated Value Broadcasting Operation

vmm_notify::ONE_SHOT Only threads currently waiting for the
notification to be indicated are notified.

vmm_notify::BLAST All threads waiting for the notification to be
indicated in the same timestep at the
indication are notified. This mode eliminates
certain types of race conditions.

vmm_notify::ON_OFF The notification is level-sensitive.
Notifications remain notified until explicitly
reset. Threads waiting for a notification that is
still notified will not wait. This mode
eliminates certain types of race conditions.
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to the current vmm_notify::ONE_SHOT, vmm_notify::ONE_BLAST or
vmm_notify::ON_OFF configuration.

virtual function bit is_on(int notification_id);
Checks if the specified vmm_notify::ON_OFF notification is currently in the
notify state. If this method returns TRUE, the notification is in the notify state and any
call to the vmm_notify::wait_for() method will not block. A warning is
issued if this method is called on any other types of notifications.

virtual task wait_for(int notification_id);
Suspends the execution thread until the specified notification is notified. It is an error
to specify an unconfigured notification. Use the vmm_notify::status()
function to retrieve any status descriptor attached to the indicated notification.

virtual task wait_for_off(int notification_id);
Suspends the execution thread until the specified vmm_notify::ON_OFF
notification is reset. It is an error to specify an unconfigured or a non-ON/OFF
notification. The status returned by subsequent calls to the
vmm_notify::status() function is undefined.

virtual function bit is_waited_for(int notification_id);
Checks if a thread is currently waiting for the specified notification, including waiting
for an ON/OFF notification to be reset. It is an error to specify an unconfigured
notification. The function returns TRUE if there is a thread known to be waiting for
the specified notification.

Note that the knowledge about the number of threads waiting for a particular
notification is not definitive and may be out of date. As threads call the
vmm_notify::wait_for() method, the fact that they are waiting for the
notification is recorded. Once the notification is indicated and each thread returns
from the method call, the fact that they are no longer waiting is also recorded. But if
the threads are externally terminated via the disable statement or a timeout, the
fact that they are no longer waiting cannot be recorded. In this case, it is up to the
terminated threads to report that they are no longer waiting by calling the
vmm_notify::terminated() method.

When a notification is reset with a hard reset, no threads are assumed to be waiting for
any notification.
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virtual function void terminated(int notification_id);
Indicates to the notification service interface that a thread waiting for the specified
notification has been disabled and is no longer waiting.

virtual function vmm_data status(int notification_id);
Returns the status descriptor associated with the specified notification when it was
last indicated. It is an error to specify an unconfigured notification.

virtual function time timestamp(int notification_id);
Returns the simulation time when the specified notification was last indicated. It is an
error to specify an unconfigured notification.

virtual function void indicate( int notification_id,
vmm_data status = null);

Indicates the specified notification with the optional status descriptor.

virtual function void
      set_notification( int notification_id, 

vmm_notification ntfy = null);
Defines the specified notification using the specified notification descriptor. If the
descriptor is null, the notification is undefined and can only be indicated using the
vmm_notify::indicate() method. If a notification is already defined, the new
definition replaces the previous definition.

virtual function vmm_notification
          get_notification(int notification_id);
Gets the notification descriptor associated with the specified notification, if any. If no
notification descriptor is associated with the specified notification, null is returned.

virtual function void reset( int notification_id = -1,
reset_e rst_typ = SOFT);

Resets the specified notification. A vmm_notify::SOFT reset clears the specified
ON_OFF notification and restarts the vmm_notification::indicate() and
vmm_notification::reset() methods on any attached notification
descriptor. A vmm_notify::HARD reset clears all status information and attached
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notification descriptor on the specified event and further assumes that no threads are
waiting for that notification. If no notification is specified, all notifications are reset.

Example A-9. Defining Three User-Defined Notifications
class bus_mon extends vmm_xactor;
   static int EVENT_A = 0;
   static int EVENT_B = 1;
   static int EVENT_C = 2;

   function new(...);
      super.new(...);
      super.notify.configure(this.EVENT_A);
      super.notify.configure(this.EVENT_B,
                             vmm_notify::ON_OFF);
      super.notify.configure(this.EVENT_C,
                             vmm_notify::BLAST);
   endfunction
endclass: bus_mon

vmm_notification
This class is used to describe a notification that can be autonomously indicated or
reset based on a user-defined behavior, such as the composition of other notifications
or external events. Notification descriptors are attached to notifications using the
vmm_notify::set_notification() method.

virtual task indicate(ref vmm_data status);
Defines a method that, when it returns, causes the notification attached to the
descriptor to be indicated. The value of the status argument is used as the indicated
notification status descriptor. This method is automatically invoked by the
notification service interface when a notification descriptor is attached to a
notification using the vmm_notify::set_notification() method.

This method must be overloaded in user-defined class extensions. It can be used to
implement arbitrary notification mechanisms, such as notifications based on a
complex composition of other indications (e.g., notification expressions) or external
events.

virtual task reset();
Defines a method that, when it returns, causes the ON/OFF notification attached to
the notification descriptor to be reset. This method is automatically invoked by the
notification service interface when a notification definition is attached to a
vmm_notify::ON_OFF notification.
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This method must be overloaded in user-defined class extensions.

Example A-10. Notification Indicated When Two Other Notifications Are Indi-
cated

class notify_a_and_b extends vmm_notification;
   local vmm_notify notify;
   local int        a;
   local int        b;

   function new(vmm_notify notify,
                int        a,
                int        b) {
      this.notify = notify;
      this.a      = a;
      this.b      = b;
   }

   virtual task indicate(ref vmm_data status)
      fork
         void = this.notify.wait_for(a);
         void = this.notify.wait_for(b);
      join
   endtask
endclass: notify_a_and_b

class bus_mon extends vmm_xactor;

   static int EVENT_A = 0;
   static int EVENT_B = 1;
   static int EVENT_C = 2;

   function new(...);
      super.new(....);
      super.notify.configure(this.EVENT_A);
      super.notify.configure(this.EVENT_B,
                             vmm_notify::ON_OFF);
      super.notify.configure(this.EVENT_C,
                             vmm_notify::BLAST);

      begin
         notify_a_and_b AB = new(super.notify, 
                                 this.EVENT_A,
                                 this.EVENT_B);
         super.notify.set_notification(this.EVENT_C,
                                       AB);
      end
   endfunction
endclass: bus_mon
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VMM_XACTOR
This base class is to be used as the basis for all transactors, including bus-functional
models, monitors and generators. It provides a standard control mechanism expected
to be found in all transactors. The guidelines covering the development of transactors
based on this class can be found in section titled "Transactors" on page 161.

function new( string name,
string instance,
int stream_id = -1);

Creates an instance of the transactor base class, with the specified name, instance
name and optional stream identifier. The name and instance name are used to create
the message service interface in the vmm_xactor::log property and the specified
stream identifier is used to initialize the vmm_xactor::stream_id property.

virtual function string get_name();
virtual function string get_instance();
Returns the name and instance name of this transactor respectively.

vmm_log log;
Message service interface for messages issued from within this transactor instance.

int stream_id;
Unique identifier for the stream of transaction and data descriptors flowing through
this transactor instance. It should be used to set the vmm_data::stream_id
property of the descriptors as they are received or randomized by this transactor.

virtual function void
           prepend_callback(vmm_xactor_callbacks cb);
virtual function void
           append_callback(vmm_xactor_callbacks cb);
Prepends or appends the specified callback façade instance with this instance of the
transactor. Callback methods will be invoked in the order in which they were
registered.

A warning is issued if the same callback façade instance is registered more than once
with the same transactor. A façade instance can be registered with more than one
transactor. Callback façade instances can be unregistered and re-registered
dynamically.
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virtual function void
           unregister_callback(vmm_xactor_callbacks cb);
Unregisters the specified callback façade instance for this transactor instance. A
warning is issued if the specified façade instance is not currently registered with the
transactor. Callback façade instances can later be re-registered with the same or
another transactor.

vmm_notify notify;
enum {XACTOR_IDLE;

XACTOR_BUSY;
XACTOR_STARTED;
XACTOR_STOPPED;
XACTOR_RESET};

Notification service interface and pre-configures notifications to indicate the state and
state transitions of the transactor. The vmm_xactor::XACTOR_IDLE and
vmm_xactor::XACTOR_BUSY notifications are vmm_notify::ON_OFF. All
other events are vmm_notify::ONE_SHOT.

virtual function void start_xactor();
Starts the execution threads in this transactor instance. The transactor can later be
stopped. Any extension of this method must call super.start_xactor(). The
base class indicates the vmm_xactor::XACTOR_STARTED and
vmm_xactor::XACTOR_BUSY notifications and resets the
vmm_xactor::XACTOR_IDLE notification.

virtual function void stop_xactor();
Stops the execution threads in this transactor instance. The transactor can later be
restarted. Any extension of this method must call super.stop_xactor(). The
transactor will actually stop when the vmm_xactor::wait_if_stopped() or
vmm_xactor::wait_if_stopped_or_empty() method is called. It is calls
to these methods that define the granularity of stopping a transactor.

virtual function void
          reset_xactor(reset_e rst_typ = SOFT_RST);
Resets the state and terminates the execution threads in this transactor instance,
according to the specified reset type. The base class indicates the
vmm_xactor::XACTOR_RESET and vmm_xactor::XACTOR_IDLE
notifications and resets the vmm_xactor::XACTOR_BUSY notification.
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Table A-8.  Reset Types

To facilitate the implementation of this method, the actual values associated with
these symbolic properties are of increasing magnitude (e.g.,
vmm_xactor::FIRM_RST is greater than vmm_xactor::SOFT_RST). Not all
reset types may be implemented by all transactors. Any extension of this method must
call super.reset_xactor(rst_type) first to terminate the
vmm_xactor::main() method, reset the notifications and reset the main thread
seed according to the specified reset type. Calling super.reset_xactor() with
a reset type of vmm_xactor::PROTOCOL_RST is functionally equivalent to
vmm_xactor::SOFT_RST.

protected task wait_if_stopped()
protected task wait_if_stopped_or_empty(vmm_channel chan)
Blocks the thread execution if the transactor has been stopped via the
stop_xactor() method or if the specified input channel is currently empty. These
methods will indicate the vmm_xactor::XACTOR_STOPPED and
vmm_xactor::XACTOR_IDLE notifications and reset the

Enumerated Value Broadcasting Operation

vmm_xactor::SOFT_RST Clears the content of all channels, resets
all ON_OFF notifications and terminates
all execution threads but maintains the
current configuration, notification
service and random number generation
state information. The transactor must be
restarted. This reset type must be
implemented.

vmm_xactor::PROTOCOL_RST Equivalent to a reset signaled via the
physical interface. The information
affected by this reset is user defined.

vmm_xactor::FIRM_RST Like SOFT_RST, but resets all
notification service interface and
random-number-generation state
information. This reset type must be
implemented.

vmm_xactor::HARD_RST Resets the transactor to the same state
found after construction. The registered
callbacks are unregistered.
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vmm_xactor::XACTOR_BUSY notification. The tasks will return once the
transactor has been restarted using the start_xactor() method and the specified
input channel is not empty. These methods do not block if the transactor is not
stopped and the specified input channel is not empty.

Calls to these methods define the granularity by which the transactor can be stopped
without violating the protocol. If a transaction can be suspended in the middle of its
execution, the wait_if_stopped() method should be called at every
opportunity. If a transaction cannot be suspended, the
wait_if_stopped_or_empty() method should only be called after the current
transaction has been completed, before fetching the next transaction descriptor for the
input channel.

Example A-11. Stopping a Transactor Execution at Appropriate Points
protected virtual task main();
   fork
      super.main();
   join none
   while (1) begin
      transaction tr;
      this.wait_if_stopped_or_empty(this.in_chan);
      this.in_chan.get(tr);
      ...
      this.wait_if_stopped();
      ...
   end
endtask: main

protected virtual task main();
This task is forked off whenever the start_xactor() method is called. It is
terminated whenever the reset_xactor() method is called. The functionality of
a user-defined transactor must be implemented in this method. Any additional
subthreads must be started within this method, not in the constructor. It can have a
blocking or non-blocking implementation.

Any extension of this method must first fork a call to super.main().

virtual function void save_rng_state();
This method should save, in local properties, the state of all random generators
associated with this transactor instance.
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virtual function void restore_rng_state();
This method should restore, from local properties, the state of all random generators
associated with this transactor instance.

virtual function void xactor_status(string prefix = "");
Displays the current status of the transactor instance in a human-readable format
using the message service interface found in the vmm_log::log property, using
vmm_log::NOTE_TYP messages. Each line of the status information is prefixed
with the specified prefix. 

‘vmm_callback( callback_class_name,
method(args));

This macro simplifies the syntax of invoking callback methods in a transactor. For
example, instead of:

foreach (this.callbacks[i]) begin
   ahb_master_callbacks cb;
   if ($cast_assign(cb, this.callbacks[i])) continue;
   cb.ptr_tr(this, tr, drop);
end

Use:

‘vmm_callback(ahb_master_callbacks,
               ptr_tr(this, tr, drop));

vmm_xactor_callbacks
This class implements a pure virtual base class for callback containments. See the
documentation for the vmm_xactor::append_callback() method on
page 411.

VMM_ATOMIC_GEN
A macro is used to define a class named <class_name>_atomic_gen for any
user-specified class derived from vmm_data1, using a process similar to the
‘vmm_channel macro.

1. With a constructor callable without any arguments.
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The atomic generator class is an extension of the vmm_xactor class and as such,
inherits all of the public interface elements provided in the base class.

‘vmm_atomic_gen(class_name, “Class Description”);
Defines an atomic generator class named <class_name>_atomic_gen to
generate instances of the specified class. The generated class must be derived from
the vmm_data class and the <class_name>_channel class must exist.

function new( string instance, 
int stream_id = -1, 
<class_name>_channel out_chan = null);

Creates a new instance of the <class_name>_atomic_gen class with the
specified instance name and optional stream identifier. The generator can be
optionally connected to the specified output channel. If no output channel instance is
specified, one will be created internally in the
<class_name>_atomic_gen::out_chan property.

The name of the transactor is defined as the user-defined class description string
specified in the class implementation macro appended with “Atomic Generator”.

<class_name>_channel out_chan;
References the output channel for the instances generated by this transactor. The
output channel may have been specified via the constructor. If no output channel
instances were specified, a new instance is automatically created. This reference in
this property may be dynamically replaced but the generator should be stopped during
the replacement. 

int unsigned stop_after_n_insts;
The generator will stop after the specified number of object instances has been
generated and consumed by the output channel. The generator must be reset before it
can be restarted. If the value of this property is 0, the generator will not stop on its
own.

The default value of this property is 0.

<class_name> randomized_obj;
Transaction or data descriptor instance that is repeatedly randomized to create the
random content of the output descriptor stream. The individual instances of the output
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stream are copied from this instance, after randomization, using the
vmm_data::copy() method.

The atomic generator uses a class factory pattern to generate the output stream
instances. The generated stream can be constrained using various techniques on this
property.

The vmm_data::stream_id property of this instance is set to the generator’s
stream identifier before each randomization. The vmm_data::data_id property
of this instance is also set before each randomization. It will be reset to 0 when the
generator is reset and after the specified maximum number of instances has been
generated.

enum {GENERATED};
Notification identifier for the notification service interface in the
vmm_xactor::notify property provided by the vmm_xactor base class. It is
configured as a vmm_xactor::ONE_SHOT notification and is indicated
immediately before an instance is added to the output channel. The generated instance
is specified as the status of the notification.

enum {DONE};
Notification identifier for the notification service interface in the
vmm_xactor::notify property provided by the vmm_xactor base class. It is
configured as a vmm_xactor::ON_OFF notification and is indicated when the
generator stops because the specified number of instances has been generated. No
status information is specified.

virtual task inject(<class_name> data,
                   ref bit dropped);
Injects the specified transaction or data descriptor in the output stream. Unlike
injecting the descriptor directly in the output channel, it counts toward the number of
instances generated by this generator and will be subjected to the callback methods.
The method returns once the instance has been consumed by the output channel or it
has been dropped by the callback methods.

This method can be used to inject directed stimulus while the generator is running
(with unpredictable timing) or when the generated is stopped.
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<class_name>_atomic_gen_callbacks
This class implements a façade for atomic generator, transactor, callback methods.
This class is automatically declared and implemented for any user-specified class by
the atomic generator macro.

virtual task post_inst_gen(<class_name>_atomic_gen gen,
<class_name> data,
ref bit drop);

Callback method invoked by the generator after a new transaction or data descriptor
has been created and randomized but before it is added to the output channel.

The gen argument refers to the generator instance that is invoking the callback
method (in case the same callback extension instance is registered with more than one
transactor instance). The data argument refers to the newly generated descriptor—
which can be modified. If the value of the drop argument is set to non-zero, the
generated descriptor will not be forwarded to the output channel, but the remaining
registered callbacks will still be invoked.

VMM_SCENARIO_GEN

A macro is used to define a class named <class_name>_scenario_gen for any
user-specified class derived from vmm_data2, using a process similar to the
‘vmm_channel macro.

The scenario generator class is an extension of the vmm_xactor class and as such,
inherits all of the public interface elements provided in the base class.

‘vmm_scenario_gen( class_name, “Class Description”);
Defines a scenario generator class to generate sequences of related instances of the
specified class. The specified class must be derived from the vmm_data class and
the <class_name>_channel class must exist. It must also have a constructor
with no arguments or that has default values for all of its arguments.

2. With a constructor callable without any arguments.
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The macro defines classes named <class_name>_scenario_gen,
<class_name>_scenario, <class_name>_scenario_election and
<class_name>_scenario_gen_callbacks.

function new( string instance, 
int stream_id = -1, 
<class_name>_channel out_chan = null);

Creates a new instance of a scenario generator transactor with the specified instance
name and optional stream identifier. The generator can be optionally connected to the
specified output channel. If no output channel is specified, one will be created
internally in the <class_name>_scenario_gen::out_chan property.

The name of the transactor is defined as the user-defined class description string
specified in the class implementation macro appended with “Scenario Generator”.

<class_name>_channel out_chan;
References the output channel for the instances generated by this transactor. The
output channel may have been specified via the constructor. If no output channel was
specified, a new instance is automatically created. The reference in this property may
be dynamically replaced but the generator should be stopped during the replacement.

int unsigned stop_after_n_insts;
The generator will stop after the specified number of transaction or data descriptor
instances have been generated and consumed by the output channel. The generator
must be reset before it can be restarted. If the value of this property is 0, the generator
will not stop on its own based on the number of generated instances (but may still stop
based on the number of generated scenarios).

The default value of this property is 0.

int unsigned stop_after_n_scenarios;
The generator will stop after the specified number of scenarios have been generated
and entirely consumed by the output channel. The generator must be reset before it
can be restarted. If the value of this property is 0, the generator will not stop on its
own based on the number of generated scenarios (but may still stop based on the
number of generated instances).

The default value of this property is 0.
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<class_name>_scenario scenario_set[$];
Set of available scenario descriptors that may be repeatedly randomized to create the
random content of the output stream. The
<class_name>_scenario_gen::select_scenario property is used to
determine which scenario descriptor, out of the available set of descriptors, is
randomized next. The individual instances of the output stream are then created by
calling the <class_name>_scenario::apply() method of the randomized
scenario descriptor. 

By default, this property contains one instance of the atomic scenario descriptor
<class_name>atomic_scenario. Out of the box, the scenario generator will
generate individual random descriptors.

The vmm_data::stream_id property of the randomized instance is assigned the
value of the generator’s stream identifier before randomization. The
vmm_data::scenario_id property of the randomized instance is assigned a
unique value before randomization. It will be reset to 0 when the generator is reset
and after the specified number of instances or scenarios has been generated.

<class_name>_scenario_election select_scenario;
References the scenario descriptor selector that is repeatedly randomized to determine
which scenario descriptor, out of the available set of scenario descriptors, will be
randomized next.

By default, a round-robin selection process is used. The constraint blocks or
randomized properties in this instance can be turned off or the instance can be
replaced with a user-defined extension to modify the election rules.

enum {GENERATED};
Notification identifier for the vmm_xactor::notify notification service interface
provided by the vmm_xactor base class. It is configured as a
vmm_notify::ONE_SHOT notification and is indicated immediately before a
scenario is applied to the output channel. The randomized scenario is specified as the
status of the notification.

enum {DONE};
Notification identifier for the vmm_xactor::notify notification service interface
provided by the vmm_xactor base class. It is configured as a
vmm_notify::ON_OFF notification and is indicated when the generator stops
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because the specified number of instances or scenarios has been generated. No status
information is specified.

virtual task inject_obj(<class_name> obj);
Injects the specified descriptor in the output stream. Unlike injecting the descriptor
directly in the output channel, it counts toward the number of instances and scenarios
generated by this generator and will be subjected to the callback methods as an atomic
scenario. The method returns once the descriptor has been consumed by the output
channel or it has been dropped by the callback methods.

This method can be used to inject directed stimulus while the generator is running
(with unpredictable timing) or when the generated is stopped.

virtual task inject(<class_name>_scenario scenario);
Injects the specified scenario descriptor in the output stream. Unlike injecting the
descriptors directly in the output channel, it counts toward the number of instances
and scenarios generated by this generator and will be subjected to the callback
methods. The method returns once the scenario has been consumed by the output
channel or it has been dropped by the callback methods.

This method can be used to inject directed stimulus while the generator is running
(with unpredictable timing) or when the generated is stopped.

<class_name>_scenario
This class implements a base class for describing scenarios or sequences of
transaction descriptors. This class named <class_name>_scenario is
automatically declared and implemented for any user-specified class named
“class_name” by the scenario generator macro, using a process similar to the
‘vmm_channel macro.

static vmm_log log;
Message service interface to be used to issue generic messages when the message
service interface of the scenario generator is not available or in scope.

int stream_id;
Stream identifier. It is set by the scenario generator before the scenario descriptor is
randomized. Can be used to express stream-specific constraints.
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int scenario_id;
Scenario identifier within the stream. It is set by the scenario generator before the
scenario descriptor is randomized and incremented after each randomization. Can be
used to express scenario-specific constraints. The scenario identifier is reset to 0
when the scenario generator is reset or when the specified number of scenarios has
been generated.

function int unsigned
                define_scenario( string name, 

int unsigned max_len);
Defines a new scenario with the specified name and the specified maximum number
of transactions or data descriptors. Returns a unique scenario identifier that should be
assigned to an int unsigned property.

function void
   redefine_scenario( int unsigned scenario_kind,

string name,
int unsigned max_len);

Redefines the name and maximum number of descriptors in a previously defined
scenario. Used to redefine an existing scenario instead of creating a new one and
constraining the original scenario out of existence.

function string
            scenario_name(int unsigned scenario_kind);
Returns the name associated with the specified scenario identifier.

rand int unsigned scenario_kind;
When randomized, selects the identifier of the scenario that is generated. Constrained
to the known scenario identifiers defined using the
<class_name>_scenario::define_scenario() method. Can be
constrained to modify the distribution of generated scenarios.

rand int unsigned length;
Randomized number of items in the scenario. Defines how many instances in the
<class_name>_scenario::items[] property are part of the scenario.
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rand <class_name> items[];
Instances of user-specified <class_name> that are randomized to form the
scenarios. Only elements from index 0 to
<class_name>_scenario::length-1 are part of the scenario.

The constraint blocks and rand attributes of the instances in the randomized array
may be turned ON or OFF to modify the constraints on scenario items. They can also
be replaced with extensions.

By default, the output stream is formed by copying the values of the items in this
array onto the output channel.

<class_name> using;
Instance used in the default implementation of the pre_randomize() method
when invoking the fill_scenario() method. Set to null by default. Can be
replaced by an instance of a derived class to subject the items of the scenario to
different constraints or content.

rand int unsigned repeated;
Number of times the items in the scenario are applied. The repeated instances in the
scenario count toward the total number of instances generated but only one scenario is
considered generated, regardless of the number of times it is repeated.

This property is unconstrained by default. To avoid accidentally repeating a scenario
many times, a warning message will be issued if the value of this property is greater
than the value specified in the repeat_thresh property.

static int unsigned repeat_thresh;
To avoid accidentally repeating a scenario many times because the repeated
property was left unconstrained, a warning message will be issued if the value of the
repeated property is greater than the value specified in this property. The default
value is 100.

function void
   allocate_scenario(<class_name> using = null);
Allocates a new set of instances in the items property, up to the maximum number
of items in the maximum-length scenario. Any instance previously located in the
items array is replaced. If a reference to an instance is specified in the using
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argument, the array is filled by calling vmm_data::copy() on the specified
instance. Otherwise, the array is filled with new instance of <class_name> class.

function void fill_scenario(<class_name> using = null);
Allocates new instances in the items property, up to the maximum number of items
in the maximum-length scenario in any null element of the array. Any instance
previously located in the items array is left untouched. If a reference to an instance
is specified in the using argument, the array is filled by calling
vmm_data::copy() on the specified instance. Otherwise, the array is filled with a
new instance of <class_name> class.

virtual task apply( <class_name>_channel channel,
ref int unsigned n_insts);

Applies the items in the scenario descriptor to the specified output channel and
returns when they have all been consumed by the channel. The n_insts argument is
set to the number of instances that were consumed by the channel. By default, copies
the values of the items array using their vmm_data::copy() method.

This method may be overloaded to define procedural scenarios.

<class_name>_atomic_scenario
This class implements a predefined atomic scenario descriptor. An atomic scenario is
composed of a single unconstrained transaction or data descriptor. This class named
<class_name>_atomic_scenario is automatically implemented for any user-
specified class named “class_name” by the scenario generator macro, using a process
similar to the ‘vmm_channel macro.

int unsigned ATOMIC;
Symbolic scenario identifier for the atomic scenario described by this descriptor. The
atomic scenario is a single, random, unconstrained, transaction descriptor (i.e., an
atomic descriptor).

constraint atomic_scenario;
Specifies the constraints of the atomic scenario. By default, the atomic scenario is a
single unrepeated unconstrained item. This constraint block may be overridden to
redefine the atomic scenario.



vmm_scenario_gen

Verification Methodology Manual for SystemVerilog 425

<class_name>_scenario_election
This class implements a random selection process for selecting the next scenario
descriptor, from a set of available descriptors, to be randomized next. This class
named <class_name>_scenario_election is automatically implemented
for any user-specified class named “class_name” by the scenario generator macros,
using a process similar to the ‘vmm_channel macro.

int stream_id;
Stream identifier. It is set by the scenario generator to the value of the generator
stream identifier before the scenario selector is randomized. Can be used to express
stream-specific constraints.

int scenario_id;
Scenario identifier within the stream. It is set by the scenario generator before the
scenario selector is randomized and incremented after each randomization. Can be
used to express scenario-specific constraints. The scenario identifier is reset to 0
when the scenario generator is reset or when the specified number of scenarios has
been generated.

int unsigned n_scenarios;
Number of available scenario descriptors in the scenario set. The final value of the
select property must be in the [0:n_scenarios-1] range.

int unsigned last_selected[$];
A history (maximum of 10) of the last scenario selections. Can be used to express
constraints based on the historical distribution of the selected scenarios (e.g., “never
select the same scenario twice in a row”).

int unsigned next_in_set;
The next scenario descriptor index that would be selected in a round-robin selection
process. Used by the round_robin constraint block.

<class_name>_scenario scenario_set[$];
The available set of scenario descriptors. Can be used to procedurally determine
which scenario to select or to express constraints based on the scenario descriptors.
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rand int select;
The index, within the scenario_set array, of the selected scenario descriptor to
be randomized next.

constraint round_robin;
Constrains the random scenario selection process to a round-robin selection. This
constraint block may be turned off to produce a random scenario selection process or
allow a different constraint block to define a different scenario selection process.

<class_name>_scenario_gen_callbacks
This class implements a façade for callback containments for the scenario generator
transactor. This class named <class_name>_scenario_gen_callbacks is
automatically implemented for any user-specified class named “class_name” by the
scenario generator macro, using a process similar to the ‘vmm_channel macro.

virtual task pre_scenario_randomize(
<class_name>_scenario_gen gen,
ref <class_name>_scenario scenario);

Callback method invoked by the generator after a new scenario has been selected but
before it is randomized. The gen argument refers to the generator instance that is
invoking the callback method. The scenario argument refers to the newly selected
scenario descriptor which can be modified. Note that any modifications of the
randomization state of the scenario descriptor—such as turning constraint blocks ON
or OFF—will remain in effect the next time the scenario descriptor is selected to be
randomized. If the reference to the scenario descriptor is set to null, the scenario
will not be randomized and a new scenario will be selected.

To minimize memory allocation and collection, it is possible that the elements of the 
scenarios may not be allocated. Use the 
<class_name>_scenario::allocate_scenario() or 
<class_name>_scenario::fill_scenario() to allocate the elements of 
the scenario if necessary.

virtual task post_scenario_gen(
<class_name>_scenario_gen gen,
<class_name>_scenario scenario,
ref bit dropped);

Callback method invoked by the generator after a new scenario has been randomized
but before it is applied to the output channel. The gen argument refers to the
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generator instance that is invoking the callback method. The scenario argument
refers to the newly randomized scenario that can be modified. Note that any
modifications of the randomization state of the scenario descriptor—such as turning
constraint blocks ON or OFF—will remain in effect the next time the scenario
descriptor is selected to be randomized. If the value of the dropped argument is set
to non-zero, the generated instance will not be applied to the output channel.
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APPENDIX B VMM CHECKER LIBRARY 

This appendix describes the checkers currently available in the VMM Checker
Library. In the first group, there are 31 checkers that are equivalent to the checkers in
the Accellera OVL but contain extensions for coverage. A second group of 19
checkers verify more complex behaviors than those in the first group.

Assertions are enabled globally by defining the symbol ASSERT_ON. If this symbol
is not defined, the code for all checkers is physically removed at compile-time.

All the checkers contain coverage statements that can be globally enabled by defining
the COVER_ON symbol. In addition, three coverage levels can be independently
enabled on a per-instance basis. Level 1 coverage provides an indication of the
coverage of the trigger conditions of the checker and, in some cases, of the basic
functionality. Level 2 coverage collects data on the profiles of delay or data values
observed during the simulation. Finally, Level 3 coverage provides information on the
occurrence of corner cases such as hitting the user-specified minimum and maximum
values on delays and value ranges.

OVL-EQUIVALENT CHECKERS (SVL)
This section describes the 31 OVL-like checkers. All checkers, except
assert_proposition, are triggered at the positive edge of a triggering signal or
expression clk. A clock cycle is defined as the duration between two consecutive
positive edges of the clock signal. 
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The values of all actual signals or expressions in the ports of the checkers are sampled
just before the positive edge of clk. Therefore, any pulses happening on the signals
or expressions between consecutive positive edges of clk are not observed by the
checkers.

Moreover, whenever an edge of a signal or expression on a port of a checker other
than the clock is used in the checker, it is the sampled from the edge, as detected by
looking at two consecutive samples of the signal.

The checker assert_proposition monitors an expression at all times but fires
only when the test_expr undergoes a falling transition (from 1 or x or z to 0
(false)).

In the following descriptions, an assertion that fires means that an error condition has
been detected. 

assert_always —  Continuously monitors test_expr at every positive edge of
clock signal clk. test_expr must always evaluate to true. If test_expr
evaluates to false, the assertion fires. The test_expr can be any valid expression.

assert_always_on_edge — Continuously monitors the test_expr at every
specified edge of the sampling_event. test_expr must always evaluate true
at the sampling_event. If test_expr evaluates to false, the assertion fires.
Note that the transition on the sampling event is determined by sampling
sampling_event at two consecutive positive edges of the clock signal clk.

assert_change — Continuously monitors the start_event at every positive edge
of the clock signal clk. When start_event is true, the checker ensures that the
expression, test_expr changes values on a clock edge at some point within the
next num_cks number of clocks. 

assert_cycle_sequence —  Verifies the following conditions:

• When necessary_condition = 0, if all num_cks-1 first bits of a vector of 
Boolean events (event_sequence[num_cks-1:1]) are true (1) in
consecutive clock cycles, the last Boolean (event_sequence[0]) must be 
true in the next clock cycle. 

• When necessary condition = 1, if the first bit of a vector of 
(event_sequence[num_cks-1]) is true, then all the remaining 
event_sequence[num_cks-2:0] bits must become true in the subsequent 
num_cks-1 clock cycles.
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assert_decrement —  Continuously monitors test_expr at every positive edge of
the clock signal clk. It checks that test_expr always decreases by the value
specified by value. The test_expr can be any valid expression. The checker will
not start until the first clock edge after reset_n is asserted.

assert_delta — Continuously monitors test_expr at every positive edge of clock
signal clk. It verifies that test_expr always changes value by a value greater than
or equal to min and less than or equal to max value. The test_expr can be any
valid expression. The checker will not start until the first clock edge after reset_n
is asserted.

assert_even_parity  — Ensures that the variable, test_expr, has an even number
of bits set to 1 at any positive edge of the clock signal clk.

assert_fifo_index — Ensures that a FIFO element a) never overflows or underflows
b) allows/disallows simultaneous push and pop operations. 

assert_frame — Validates proper cycle timing relationships between two events in
the design. When a start_event (a bit) evaluates true, then test_expr must
evaluate true within a minimum and maximum number of clock cycles.

assert_handshake —  Continuously monitors the req and ack signals at every
positive edge of the clock signal clk. It ensures that ack occurs after req within a
specified minimum and maximum number of clock cycles. Both req and ack must
go inactive prior to starting a new cycle. Verifying that req is persistent until ack
arrives and that it remains active for some cycle after ack is controlled by checker
parameters.

assert_implication —  Continuously monitors antecedent_expr. If it evaluates
to true, then it verifies that the consequent_expr is true. When
antecedent_expr evaluates to false, then consequent_expr expression will
not be checked at all and the implication is satisfied.

assert_increment —  Continuously monitors test_expr at every positive edge of
the clock signal clk. It verifies that test_expr increases by the value specified by
value. The test_expr can be any valid expression. The checker will not start
until the first clock edge after reset_n is asserted.

assert_never — Continuously monitors test_expr at every positive edge of the
clock signal clk. It verifies that test_expr never evaluates true. The
test_expr can be any valid expression. When test_expr evaluates true, this
checker fires.
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assert_next —  Validates proper cycle timing relationships between two events in the
design. When a start_event evaluates true, then the test_expr must evaluate
true exactly num_cks number of clock cycles later. This checker supports
overlapping sequences.

assert_no_overflow —  Continuously monitors test_expr at every positive edge
of the clock signal clk. It verifies that a specified test_expr will never: 
• Change value from a max value (default is (2**width)-1) to a value greater 

than max, or 
• Change value from a max value (default is (2**width)-1) to a value less than 

or equal to a min value (default is 0). 

assert_no_transition —  Continuously monitors test_expr at every positive edge
of the clock signal clk. When it evaluates to the value of start_state, it ensures
that test_expr will never transition to the value of next_state. The width
parameter defines the number of bits in test_expr.

assert_no_underflow —  Continuously monitors test_expr at every positive
edge of the clock signal clk. This checker verifies that test_expr will never:
• Change value from a min value (default is 0) to a value less than min, or
• Change to a value greater than or equal to max (default is (2**width)-1).

assert_odd_parity — Ensures that the variable, test_expr, has an odd number of
bits set to 1 at any positive edge of the clock signal clk.

assert_one_cold —  Ensures that the variable, test_expr, has only one bit set to 0
at any positive clock edge when the checker is configured for no inactive states. The
checker can also be configured to accept all bits equal to either 0 or 1 as the inactive
level.

assert_one_hot — Ensures that the variable, test_expr, has only one bit set to 1
at any positive edge of the clock signal clk.

assert_proposition —  Continuously monitors test_expr and verifies that
test_expr always evaluate true. If test_expr transits from true to false while
reset_n is 1, the checker fires. Unlike assert_always, test_expr is not
sampled by a clock. 
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assert_quiescent_state — continuously monitors state_expr at every positive
edge of the sampling event sample_event and verifies that the value
state_expr is equal to the value check_value and optionally at the end of
simulation.

assert_range —  Continuously monitors test_expr at every positive edge of the
clock signal clk. The checker ensures that the test_expr is always within the
min and max value range.

assert_time — Continuously monitors start_expr. When it evaluates true, the
checker ensures that test_expr evaluates to true for the next num_cks number of
clock cycles.

assert_transition — Continuously monitors test_expr at every positive edge of
the clock signal clk. When test_expr evaluates to the value start_state, the
checker ensures that test_expr will always change to the value of next_state.
The width parameter defines the number of bits in test_expr.

assert_unchange —  Continuously monitors start_event at every positive edge
of the clock signal clk. When start_event evaluates true, the checker ensures
that test_expr will not change value within the next num_cks number of clock
cycles.

assert_width —  Continuously monitors test_expr. When test_expr
evaluates true, it ensures that test_expr evaluates to true for a specified
minimum number of clock cycles and does not exceed a maximum number of clock
cycles.

assert_win_change —  Continuously monitors start_event at every positive
edge of the clock signal clk. When start_event evaluates true, it ensures that
test_expr changes values prior to and including the occurrence of end_event.

assert_win_unchange —  Continuously monitors start_event at every positive
edge of the clock signal clk. When start_event evaluates true, it ensures that
test_expr will not change in value up to and including end_event becoming
true.

assert_window —  Continuously monitors start_event at every positive edge of
the clock signal clk. When start_event evaluates true, it ensures that the
test_expr evaluates true at every successive positive clock edge of clk up to and
including the end_event expression becoming true. This checker does not evaluate
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test_expr on start_event. It begins evaluating test_expr at the next
positive clock edge of clk.

assert_zero_one_hot —  Continuously monitors test_expr at every positive edge
of the clock signal clk. It verifies that test_expr has exactly one bit asserted or
no bit asserted. 

ADVANCED CHECKERS
This section describes 19 advanced checkers. These advanced checkers use the same
controls as the OVL-equivalent checkers described in the previous section. In
addition, they have a clock edge selection parameter, edge_expr, that lets the user
select posedge or negedge clock edge selection for sampling in the assertions and
cover statements.

assert_arbiter — Ensures that a resource arbiter provides grants to corresponding
requests within min_lat and max_lat cycles. reqs and grants are vectors of
size [no_chnl-1:0] where the bits correspond to the individual channels. They
are assumed to be 1 when active. The checker can verify a priority arbitration scheme
alone or in conjunction with (as a secondary criterion) round-robin, FIFO or LRU
selection algorithms. The checks are not enabled unless reset_n evaluates true.

assert_bits — Ensures that the value of exp has between min and max number of
bits that are asserted or deasserted as indicated by the deasserted flag. The check
is not enabled unless reset_n evaluates true.

assert_code_distance — Ensures that when exp changes, the number of bits that
are different compared to exp2—the Hamming distance—are at least min but no
more than max in number. The check is not enabled unless reset_n evaluates true.

assert_data_used —  Ensures that data from src[sleft:sright] appears in
dest[dleft:dright] within the window specified as start cycles from after
the time trigger is asserted until finish number of cycles after trigger is
asserted. 

assert_driven — Ensures that all bits of exp are driven (i.e., none are ‘Z’ or ‘X’).
The check is not enabled unless reset_n evaluates true.
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assert_dual_clk_fifo —  Checker for a dual-clock, single-input and single-output
FIFO. It assumes that enqueuing is enabled when enq is asserted at the active clock
edge of enq_clk and effectively occurs enq_lat cycles later. Dequeuing is
enabled when deq is asserted at the active edge of deq_clk and effectively occurs
deq_lat cycles later. It can verify that neither overflow or underflow of the FIFO
occurs, that it reaches a watermark and that the enqueued data value is the correct one
upon dequeue.

assert_fifo  —  Checker for a single-clock, single-input and single-output FIFO. All
signals are sampled at the active edge of the clock signal clk. It assumes that
enqueuing is enabled when enq is asserted and effectively occurs enq_lat cycles
later. Dequeuing is enabled when deq is asserted and effectively occurs deq_lat
cycles later. It can verify that neither overflow or underflow of the FIFO occurs, that it
reaches a watermark and that the enqueued data value is the correct one upon
dequeue. Also, if pass_thru is 1, it allows simultaneous enqueue and dequeue of
data on empty or full queue. Otherwise a dequeue on an empty queue will report an
underflow.

assert_hold_value — Ensures that exp of width bw remains at value for min to
max number of cycles. That is, it must stay at value for min cycles, then it may
change and after max cycles it must change to some other value. The check is not
enabled unless reset_n evaluates true.

assert_memory_async —  Ensures the integrity of an asynchronous memory content
and access. When addr_chk evaluates true, it ensures that start_addr <=
raddr <= end_addr as sampled by the negedge of ren, and that start_addr
<= waddr <= end_addr as sampled by the negedge of wen. All other checks
apply only if the address is valid. There is no clock other than the ren and wen
expressions that indicate when each operation is to take place by their falling edges.

Checks can also be enabled to verify that memory locations are written into before
being read, that there is at least one read between two consecutive writes to an
address, or similarly that there is at least one write between two consecutive reads to
an address. The checker can also verify that the value written last to a memory
location is the one being read out later.

assert_memory_sync —  Ensures the integrity of a synchronous memory content
and access. When addr_chk evaluates true, it ensures that start_addr <=
raddr <= end_addr when ren is true as sampled by the active edge of rclk, and
that start_addr <= waddr <= end_addr when wen is true at the active edge of
wclk. All other checks apply only if the address is valid. 
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Checks can also be enabled to verify that memory locations are written into before
being read, that there is at least one read between two consecutive writes to an
address, or similarly that there is at least one write between two consecutive reads to
an address. The occurrence of simultaneous read and write operation when rclk is
the same as wclk can be verified. The checker can also verify that the value written
last to a memory location is the one being read out later or at the same time if
pass_thru is enabled.

assert_multiport_fifo — Checker for a single-clock, multi-input and multi-output
FIFO. enq and deq are bit vectors of equal size no_ports. Each pair of
corresponding bits in these vectors defines the enqueue and dequeue enable signals
for a FIFO port. Bit 0 has the lowest priority, while the highest-order bit no_ports-
1 has the highest priority. The enqueue port and the dequeue port of the highest
priority are processed at every active clk edge. 

enq_data is a concatenation of the data from the different ports, dimensioned as
[no_ports*elem_size-1:0], with data vectors appearing in the same order as
the enq requests. Whenever a bit in enq is asserted 1, the corresponding data port in
enq_data must be valid after enq_lat clock cycles. Only the highest-priority
data is actually enqueued. 

deq_data is a concatenation of the data from the different ports. It is assumed that it
is dimensioned the same way as enq_data, with data vectors appearing in the same
order as the deq requests. Whenever a bit in deq is asserted 1, the corresponding
data port in deq_data must be valid after deq_lat clock cycles. Only the data of
the highest-priority dequeue request is compared with the reference data when
value_chk is 1. Overflow, underflow, watermark, value and pass-thru checks can
be enabled as in the assert_fifo checker.

assert_mutex   —  Ensures that a and b never evaluate true at the same time. The
checker is not enabled unless reset_n evaluates true.

assert_next_state — Ensures that, when exp is in current state cs, exp will
transition to one of the specified legal next states in ns. no_ns specifies the number
of legal next states. ns is a bit vector of the concatenated legal state values that exp
can transition to from cs.

assert_no_contention — Ensures that bus always has a single active driver and that
there is no ‘X’ or ‘Z’ on the bus when driven (en_vector != 0). The total number
of en_vector bits that are asserted can be at most 1. min_quiet and
max_quiet define and interval in the number of clock cycles within when the bus
may remain quiet, i.e., no diver enabled.
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assert_reg_loaded —  Ensures that the register dst_reg is loaded with src data.
The check for dst_reg holding the memorized value of src starts with delay
cycles (minimum 1, which is default) after the trigger condition evaluates true and
within end_cycle cycles after the trigger evaluates true or when stop
becomes true (whichever occurs first).

assert_req_ack_unique —  Verifies that each req receives an ack within the
specified interval min_time and max_time active clock edges of clk. The
arriving ack’s are attributed to req’s in a FIFO order.

assert_stack — Verifies operations of a stack. When push is asserted 1, it ensures
that there is no stack overflow. push_lat specifies the number of clock cycles
between the assertion of push and when push_data is valid. Similarly, when pop
is asserted 1, it ensures that the stack is not empty. pop_lat specifies the number
of clock cycles between the assertion of pop and when pop_data must be valid.
Data value, stack empty, full, watermark and pass-thru checks can be selectively
enabled.

assert_valid_id —  The signal issued_sig asserted 1 validates a request
identified by the value in issued_id. This request is expected to be
acknowledged by ret_id validated by ret_sig asserted 1 within
[min_lat:max_lat] latency. A reset_sig asserted true with reset_id
value of one of the currently issued and still outstanding IDs resets that outstanding
ID to empty, i.e., a ret_sig asserted for the ID is then considered as invalid until
newly issued. 

The bit width id_bw of the IDs can be any value supported by the tool; however, the
maximum number of outstanding IDs at any time is limited by the value of the
parameter max_ids. For a given ID, there can be at most max_out_per_id
outstanding issues. The arriving returns of that ID are matched in a FIFO manner to
the requests when verifying the latency of the return (similarly as in the
assert_req_ack_unique checker).

assert_value — Ensures that exp can only be one of the specified values in a set.
no_vals indicates the number of values in the set, which is defined by a bit vector
vals of width [bw*no_vals-1 : 0] of the concatenated values of bw bits each
that exp must evaluate to. 
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APPENDIX C XVC STANDARD LIBRARY 
SPECIFICATION

This appendix specifies the detailed behavior of a set of base and utility classes that
can be used to implement an XVC-compliant verification environment and
verification components. The actual implementation of these classes is left to each
tool provider.

XVC_MANAGER
This class is a base class for implementing XVC management functions, as described
in “XVC Manager” on page 316. A predefined XVC manager, as described in “Pre-
defined XVC Manager” on page 317 is specified in section titled
“vmm_xvc_manager” on page 444.

vmm_log log;
Message service interface used to issue all messages from the XVC manager. The
name is specified as “XVC Manager” and the instance name is the instance name of
the xvc_manager instance, as specified in the constructor.

vmm_log trace;
Message service interface for execution trace messages that may be routed differently
than the generic messages issued through the message service instance in the log
class property.
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vmm_notify notify;
Notification service interface for the global notifications. The event identifier is the
same as the global notification identifier specified in the test file. All events corre-
sponding to global notifications are triggered ONE_SHOT.

function new(string instance = "Main");
Creates an instance of the XVC manager with the specified instance name.

function bit add_xvc(xvc_xactor xvc);
function bit remove_xvc(xvc_xactor xvc);
Puts or removes the specified XVC instance under the control of this XVC manager.
Returns non-zero if the operation is successful and error-free. An XVC instance can-
not be under the control of more than one XVC manager at any given time.

XVC instances can only be added or removed from the control of an XVC manager
when a manager is not running a test.

function bit split( string command,
ref string argv[]);

Splits the specified command into blank-separated tokens, suitable for the
xvc_xactor::parse() method. Quotes and escaped characters are interpreted
like the C shell when splitting arguments into main’s argv array.

protected xvc_xactor xvcQ[$];
Array of XVC instances under the control of this XVC manager instance. The content
of this array is managed using the add_xvc() and remove_xvc() methods.

XVC_XACTOR
This class is a base class for implementing XVC-compliant transactors, as described
in “Extensible Verification Components” on page 306. This base class is derived from
the vmm_xactor class and offers the following additional interface elements:

vmm_log trace;
Message service interface for execution trace messages that may be routed differently
than the generic messages issued through the message service instance in the
vmm_xactor::log class property.
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vmm_notify notify;
Notification service interface for the local notifications. The event identifier is the
same as the local notification identifier specified in the test file. All events corre-
sponding to local notifications are triggered ONE_SHOT.

function new( string name,
string instance,
int stream_id = -1,
xvc_action_channel action_chan = null,
xvc_action_channel interrupt_chan = null);

Creates an instance of the XVC transactor with the specified name and instance name
and optional stream identifier. The input action and interrupt channels are optionally
connected to the specified channel instances. Action and interrupt channels, if speci-
fied, are reconfigured to a full level of 1 and 64 k respectively. The name, instance
name and stream identifier are used as the vmm_xactor name, instance name and
stream identifier, respectively. The name and instance name will be used to configure
the vmm_log instance found in the vmm_xactor base class.

function void add_action(xvc_action action);
Adds the specified XVC action descriptor to the known actions of the XVC transac-
tor. New action definitions may hide previous definitions as they are considered by
the parse() method in the reverse order of registration.

function xvc_action parse(string argv[]);
Parses the specified action command and returns the corresponding action descriptor.
If the action is not known to the XVC transactor, null is returned. The command is
specified as an array of string tokens similar to argv in C’s main() function argu-
ment.

xvc_action_channel action_chan;
Input channel for actions to be executed by the XVC transactor. If no channel instance
was specified in the constructor, a new instance is internally allocated. The XVC
transactor uses an in-order, blocking completion model, as described in section titled
"In-Order Atomic Execution Model" on page 177.
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xvc_action_channel interrupt_chan;
Input channel for interrupt actions to be executed by the XVC transactor at the earliest
opportunity. If no channel instance was specified in the constructor, a new instance is
internally allocated. An interrupt action will be executed after the current action exe-
cution completes of when the current action invokes the
wait_if_interrupted() method. The XVC transactor uses an in-order, non-
blocking completion model for interrupt actions, as described in section titled "Out-
of-Order Atomic Execution Model" on page 182.

protected task wait_if_interrupted();
Suspends the execution thread if an interrupt action is waiting to be executed by the
XVC. This method must only be called from within an implementation of the
xvc_action::execute() method.

protected vmm_channel exec_chan;
Channel that must be used to execute the actions in the XVC.

protected vmm_xactor xactors[];
Lower-level transactors used by this XVC. Actions may require the registration of
callback extensions to implement their execution.

XVC_ACTION
This class is a base class to implement XVC action descriptors. An action descriptor
defines the command used to invoke it and how to execute it. Actions are XVC-spe-
cific and cannot be executed on different XVCs. This base class is derived from the
vmm_data class and offers the following additional interface elements:

function new( string name,
vmm_log log);

Creates a new instance of an action descriptor. The action is named using the speci-
fied name and the specified message interface is passed to the vmm_log::new()
method.

function string get_name();
Returns the name of the action, as specified in the constructor.
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virtual function xvc_action parse(string argv[]);
Parses the specified command and returns a new instance of the action descriptor that
corresponds action descriptor. Returns null without issuing any error or warning
messages if the command is not recognized.

virtual task execute(vmm_channel exec_chan,
xvc_xactor xvc);

Executes the action described by this instance of the action descriptor, through the
specified input channel. The action is executed by generating and putting the neces-
sary transaction descriptor in the specified input channel.

At appropriate points during the execution of the action, the
xvc_xactor::wait_if_interrupted() method should be called to let
interrupt actions be executed. The calls to this method define the granularity of the
action execution. For example, an atomic action would never call
xvc_xactor::wait_if_interrupted().

vmm_xactor_callbacks callbacks[];
Transactor callbacks extensions that must be registered with the transactors in the
XVC to properly execute the action described by this instance of the action descriptor,
prior to invoking the execute() method. If not null, the callback extension
instance is prepended to the registered callbacks of the corresponding lower-level
transactor in the XVC before the action is executed, then unregistered upon comple-
tion of the execution.

virtual function int unsigned
              byte_pack(ref logic [7:0] bytes[],

input int unsigned offset = 0,
input int kind = -1);

The default implementation packs the name of the action descriptor into the specified
dynamic array of bytes, starting at the specified offset in the array and ending with a
byte set to 8’h00. The array is resized appropriately. Returns the number of bytes
added to the array.
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virtual function int unsigned
              byte_unpack( const ref logic [7:0] bytes[],

input int unsigned offset = 0,
input int len = -1,
input int kind = -1);

The default implementation unpacks the name of the action descriptor from the speci-
fied offset in the specified dynamic array until a byte set to 8’h00, the specified
number of bytes have been unpacked or the end of the array is encountered, which-
ever comes first. Returns the number of bytes unpacked.

virtual function int unsigned byte_size(int kind = -1);

The default implementation returns the length of the action descriptor name plus one.

virtual function int unsigned
                       max_byte_size(int kind = -1);
The default implementation returns the length of the action descriptor name plus one.

VMM_XVC_MANAGER
The class implements the predefined XVC manager as described in “Predefined XVC
Manager” on page 317. It is implemented as an extension of the xvc_manager base
class and provides the following additional elements.

task run(string testfile);
Starts all of the XVCs under the control of the manager and runs the test in the speci-
fied command file on the XVC manager instance. This task returns once the test has
completed as defined in the test itself. The XVCs are not stopped nor reset when the
test completes and are still running.

Notifications
The XVC manager base class provides a notification service interface in its
xvc_manager::notify class property. The predefined XVC manager uses noti-
fications to coordinate actions and XVCs. XVCs also use notifications in their respec-
tive notification service interface in their vmm_xactor::notify class property to
coordinate with the predefined XVC manager.
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Events are used in a scenario description in place of decision-making constructs. This
is partly to reduce the complexity of the scenario description syntax, but more
importantly to keep the scenario description as a portable top-level entity. Any
specific or complex decision-making logic can easily be implemented as an XVC
action, which in turn could indicate more events.

Event indications can be used to control the execution of a scenario. Users may
specify a trigger event for any action within a scenario description. The predefined
XVC manager will wait for that event to be indicated before causing an XVC to
execute the corresponding action. For example, the XVC manager can instruct XVC
“A” to execute actions A, B and C; then wait for event 1 to be indicated before
executing action D.

Scenario events are defined as local to a test scenario or global to all scenarios. A
scenario event is mapped to a vmm_notify::ONE_SHOT notification with the
same numerical identifier in the predefined XVC manager notification service
interface and in all XVC notification service interfaces. When a scenario event is
indicated, the corresponding notification is indicated in the XVC manager and in all
XVC instances.

XVC notifications can be mapped onto scenario events using the MAPEVENT
command. When an XVC indicates a notification mapped to a scenario event, the
indication will be propagated to the XVC manager and all other XVCs.

A combination of scenario events can be mapped onto a single scenario event using
the MAP command.

The remainder of this section describes the syntax of the predefined XVC manager
test scenario description language used to implement XVC tests. Table C-1.
summarizes the convention used to describe the syntax of the various commands. All
other textual elements as specified as-is.

File Structure
A file is composed of commands, comments and blank lines, each terminated by the
newline or end-of-file character. A command may span multiple lines if the newline is
escaped using a backslash (\) character.
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Table C-1.  Grammar Notation

Lines are composed of tokens. Tokens are blank-separated strings. Tokens may
contain environment variable substitutions. Blanks may be included in a token by
quoting it using double quotes. A quoted string may contain a double-quote character
by escaping it using a backslash.

The commands VERBOSITY, STOPONERROR and STOPONEVENT must appear, in
any order or number, before any other commands.

The commands ACTION and INTERRUPT must appear after a SCENARIO
command.

The EXECUTE commands must be the last commands.

All other commands can appear anywhere in the command sequence.

User-defined tokens, such as XVC names or action descriptions, are case-sensitive.
All predefined tokens, such as DISPLAY or WAIT, are case insensitive.

Example C-1. Typical Command Sequence
VERBOSITY ...
STOPONERROR ...

LOG ...

MAPEVENT ... GLOBAL ...
EVENT ... GLOBAL ...

SCENARIO ...
EVENT ...
ACTION ...
ACTION ...

Simulation Handling Action
TOKEN Case-insensitive, predefined token
<token> Required user-defined token
[token] Optional token
{token} Optional token that can be specified 0 or

more times

(tokens|tokens) A mandatory choice of tokens
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INTERRUPT ...

SCENARIO ...
EVENT ...
MAPEVENT ...
ACTION

EXECUTE ...

Environment Variables
Any token can contain environment variable substitution.

Syntax:
... ${<env_name>}

where <env_name> is the name of an environment variable. It is an error if the
variable is not set.

The content of the environment variable is included in the token. An environment
variable containing blank characters is not interpreted as multiple tokens. A dollar
sign ($) can be specified by escaping it using a double dollar sign ($$).

Commands

Comments
Specifies arbitrary text that is ignored by the XVC manager.

Syntax:
// {<string>}

A comment is terminated by the next newline character. Any character following the
“//” is ignored. Commands may be specified before the “//” characters.

Example:
// This is a comment line, followed by a blank line

ACTION xvc a "write 0x400 0x55AA" // Comment on action
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#include
Includes a scenario definition file in the current scenario definition file.

Syntax:

#INCLUDE <filename>

where <filename> is the name of a file that will be included as if its entire content
had been specified instead of the #include command. Included files may include
other files. If the filename is a relative path, the path is interpreted as relative to the
location of the file containing the #include directive, not necessarily the current
working directory.

It is illegal for an included file to contain X, QUITON or LOG commands or global
notification definitions.

#define
Defines a symbolic name for a numeric identifier to aid the readability and maintain-
ability of test command files.

Syntax:
#define <symbol> (<nid>|<sid>|<sev>|<sid>.<sev>|<gev>) 

where <symbol> is an alphanumeric string with no spaces or control characters.

<nid>, <sid>, <sev> and <gev> are unsigned integer values referring to a local
XVC notification identifier, scenario identifier, scenario event or global event,
respectively. 

VERBOSITY
Sets the global message verbosity level.

Syntax:
VERBOSITY (<instance>|ALL) <severity_level>

where <instance> is a string or regular expression specifying the instance names
of the XVCs from which messages of the specified severity or higher should be
displayed. Specifying ALL is identical to specifying /./.
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<severity_level> specifies the minimum severity levels of messages to be
displayed. Messages of a lower severity level will not be displayed. For further
information, see the vmm_log::set_verbosity() method on page 374.

LOG
Writes messages issued from specified XVC instances into a user-specified file. This
includes messages issued through the trace message service interfaces.

Syntax:

LOG (<instance>|ALL) <filename>

where <instance> is a string or regular expression specifying the instance names
of the XVC from which messages should be logged to the specified file. Specifying
ALL is identical to specifying /./. A single XVC instance can log messages to more
than one file.

<filename> is the name of the file to which the messages will be written. If the
name is prefixed with a ‘+’ character, the messages are appended to the file. If the
name is prefixed with a ‘-’, the messages are no longer written to the specified file.

Examples:

LOG ALL "Messages.log"

LOG UART "+UART.log"
...
LOG UART "-UART.log"

LOG NONE
Stops writing messages to files and closes all log files. Applies to all XVC instances
and all files. This action includes messages issued through the trace message service
interfaces.

Syntax:
LOG NONE
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XVCTRACE
Writes messages issued from specified XVC instances via their
xvc_xactor::trace message service interface or the XVC manager via its
xvc_manager::trace message service interface into a user-specified file.

Syntax:

XVCTRACE (<instance>|MANAGER|ALL) <filename>

XVCTRACE NONE

where <instance> is a string or regular expression specifying the instance names
of the XVC from which trace messages should be logged to the specified file.
Specifying ALL is identical to specifying /./. MANAGER specifies the XVC manager
itself. If NONE is specified, trace messages are no longer logged to a file.

COVFILE
Specifies the name of the functional coverage database file.

Syntax:
COVFILE (<dbname>|NONE)

where <filename> is the name of the database to which coverage information will
be written. If NONE is specified, no functional coverage is to be collected during
simulation.

STOPONERROR
Stops the simulation after <count> error messages have been issued. By default, the
simulation stops after issuing 10 messages with a severity of ERROR_SEV. The simu-
lation always stops when a message with a FATAL_SEV severity level is issued.

Syntax:
STOPONERROR <count>
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STOPONEVENT
Stops the simulation if the specified circumstance occurs before the natural end of the
test.

Syntax:

STOPONEVENT [<sid>.]<sev> \
   <(IMMEDIATE|GRACEFUL)> [<count>]

where [<sid>.]<sev> specifies a a global or local event.

If IMMEDIATE is specified, the simulation is stopped as soon as the specified event is
indicated. If GRACEFUL is specified, the XVC manager will delay the end of the
simulation until all actions executing in the current scenario have completed.

<count> is the number of times the specified events must be indicated before the
simulation is stopped.

SCENARIO
Defines a new test scenario and implicitly terminates the definition of a previous test
scenario.

Syntax:

S[CENARIO] <sid> [<description>]

where <sid> is a unique unsigned integer identification number for the scenario to
be defined. Two scenarios cannot have the same identification number in the same
simulation.

<description> is an arbitrary description string that will be displayed to the
simulation output and log file(s) whenever that scenario is executed. 

This command starts the definition of a new scenario. Any subsequent EVENT,
MAPEVENT, ACTION or INTERRUPT commands will define this scenario. A
subsequent SCENARIO or EXECUTE command terminates the scenario.

Actions may not execute in the sequence they are specified in the scenario. Actions
targeted to different XVCs will execute concurrently, as soon as the target XVC can
execute the next action. Only actions targeted to the same XVC will execute in the
sequence specified in the scenario.

It is an error to define a scenario that does not contain at least one action.



XVC Standard Library Specification

452 Verification Methodology Manual for SystemVerilog

EVENT
Defines a local or global event. It allows actions of different XVCs to be coordinated
within a scenario. Only global events can be defined outside of a scenario.

Syntax:

E[VENT] [ONESHOT] [(LOCAL|GLOBAL)] (<sev>|<gev>) IS
   [<sid>.]<sev>{(,|+)[sid.]<sev>} [<descr>]

where <sev> or <gev> is a unique unsigned identification number of the local or
global event to be defined. Global events must have globally-unique identifiers.
Scenario events must have scenario-unique identifiers. A scenario event with the
same identifier as a global event will hide the global event within that scenario.

If ONESHOT is specified, the event will be indicated only once during the entire test,
even though the criteria for notification may occur multiple times. By default, the
event is notified each time the criteria occurs.

If LOCAL is specified, the event is local to the current scenario. If GLOBAL is
specified, the event is global to all scenarios. By default, events are local. Global
events can be defined either outside or inside a scenario.

The event is notified when the specified notifications have been observed to be
notified. <sev>{+<sev>} specifies that the defined event is indicated when all of
the specified events are indicated, in any order. <sev>{,<sev>} specifies that the
defined event is indicated when any of the specified events are indicated. The +
operator has precedence over the , operator. When defining global events, events
local to scenarios can be referred to by prefixing them with the appropriate scenario
identifier using the <sid>. notation.

<descr> is an optional string message, which will be displayed in a DEBUG_TYP,
TRACE_SEV trace message if and when the notification is indicated. If no description
is specified, a default description is used.

Example:
EVENT 3 IS 2 + 1

Declares local scenario event 3 that will be indicated following the occurrence of the
events 2 and 1.

E GLOBAL 6 IS 2,3.1 "Setup complete"
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Declares a global event 6 that will be indicated, with the message “Setup complete”
displayed, as soon as either global event 2 or the local event 1 in scenario 3 have been
indicated.

MAPEVENT
Maps a local XVC event to scenario or global event. It allows the actions of different
XVCs to be coordinated within a scenario.

Syntax:

M[APEVENT] [ONESHOT] [(LOCAL|GLOBAL)] (<sev>|<gev>) IS \
   <xid> E[VENT] <nid> [<descr>]

where <sev> or <gev> is a unique unsigned identification number of the local or
global event to be defined. Global events must have globally-unique identifiers.
Scenario events must have scenario-unique identifiers. A scenario event with the
same identifier as a global event will hide the global event within that scenario.

If ONESHOT is specified, the event will be indicated only once during the entire test,
even though the criteria for notification may occur multiple times. By default, the
event is notified each time the criteria occurs.

If LOCAL is specified, the event is local to the current scenario. If GLOBAL is
specified, the event is global to all scenarios. By default, events are local. Global
events can be defined either outside or inside a scenario.

<xid> is a string or regular expression specifying the instance name of the XVCs
that is the source or cause of this event.

<nid> identifies the local event using the notification identifier in the
xvc_xactor::notify notification service interface that, when indicated, will
indicate this event.

<descr> is an optional string message, which will be displayed in a DEBUG_TYP,
TRACE_SEV trace message if and when the event is indicated. If no description is
specified, a default description is used.

Example:
Mapevent 3 is "CLCD" event 1

Defines a local event 3 that will be indicated whenever the XVC instance named
“CLCD” indicates its local notification 1.
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MAPEVENT GLOBAL 5 is /^AHB/ event 5 "Abort"

Defines a global event 5 that will be indicated whenever any one of the XVCs with an
instance name matching the regular expression indicates its local notification 5.

ACTION
Adds an action execution to the scenario definition.

Syntax:
A[CTION] <instance> <action> \
   [W[AIT] <wait_for>] [E[MIT] <notification>]

where <instance> is the instance name of the XVC for which the action is
intended. Regular expressions cannot be used because actions cannot be targeted to
multiple XVC instances.

<action> is the string that defines the action to be executed. The syntax of this
token is action-specific and is defined in the xvc_action::parse() method of
the relevant action descriptor.

The <wait_for> and <notification> tokens are described in the WAIT and
EMIT options sections. 

This command adds an action to the action list of the specified XVC instance. The
WAIT option lets the start of the action be synchronized with the indication of one or
more specified scenarios or global events(s). The EVENT options lets the completion
of that action indicate the specified local notification.

Examples:
ACTION ARM_DMA "5 True enable 5 9" WAIT 1

The XVC instance named ARM_DMA waits for the next indication of the scenario or
global event ‘1’, then it will execute the specified action.

ACTION uart "enable master mode" EMIT 4

The XVC instance named uart will execute the specified action. When the action
completes, the local XVC notification ‘4’ will be indicated.
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INTERRUPT
Add a high-priority action execution to the scenario definition.

Syntax:

I[NTERRUPT] [ONESHOT] <instance> <action> \
   [W[AIT] <wait_for>] [E[MIT] <notification>]

where <instance> is the instance name of the XVC for which the interrupt action
is intended. Regular expressions cannot be used because actions cannot be targeted to
multiple XVC instances.

<action> is the string that defines the interrupt action to be executed. The syntax of
this token is action-specific and is defined in the xvc_action::parse() method
of the relevant action descriptor.

If ONESHOT is specified, the interrupt action will only execute one on the first
occurrence of the specified event. Subsequent occurrences of the event will not cause
the interrupt action to re-execute

The <wait_for> and <notification> tokens are described in the WAIT and
EMIT options sections.

Schedule the specified action for execution whenever the specified WAIT condition is
observed. If no WAIT condition is specified, the interrupt action is scheduled once
immediately. The interrupt action will interrupt the execution of any action that is
currently executing by the target XVC instance. The granularity of the interruption is
defined by the implementation of the to-be-interrupted action in the
xvc_action::execute() method by invoking the
xvc_xactor::wait_if_interrupted() method. Interrupt actions cannot be
interrupted.

If two interrupt actions are scheduled to execute on the same XVC instance at the
same time, they will be executed in a non-deterministic order.

Examples:
INTERRUPT ARM_DMA "Reconfigure Generation" W 1

The XVC instance named ARM_DMA will execute the specified action whenever
global or scenario event ‘1’ is indicated, at the earliest possible action interruption
point.
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INTERRUPT ARM_IAHB "Reset ~/nIRQ"  E 4

The XVC instance named ARM_DMA will immediately execute the specified interrupt
action at the next interruption opportunity. When the action completes, the local XVC
notification ‘4’ will be indicated.

... WAIT <wait_for>
This is an option for the ACTION and INTERRUPT command, not a stand-alone
command. It is used to specify a global or scenario event indication for which the
XVC will wait before starting the action.

Syntax:
... W[AIT] <sev>|<gev>

where <sev> or <gev> is the identifier for a scenario or global event.

The ACTION or INTERRUPT command will be delayed until the specified event has
been indicated.

Example:
ACTION ... W 1

... EMIT <indication>
This is an option for the ACTION and INTERRUPT command, not a stand-alone
command. It is used to specify a xvc_xactor::notify notification that is indi-
cated when the XVC completes the execution of an action.

Syntax:
... E[MIT] <nid>

where <nid> is the identifier for a notification in the xvc_xactor::notify
notification service interface of the XVC executing the action.

Example:
ACTION ... EVENT 1

When the execution of the action completes, notifications ‘1’ will be indicated,
potentially allowing other XVC actions to be executed if they are mapped to global or
scenario events.
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EXECUTE
Executes the specified scenarios, in sequence.

Syntax:

[E]X[ECUTE] <sid>{ <sid>}

where <sid> is the unique identifier of a scenario to execute.

Example C-2. Example Test Scenario Description File
// Test Set-up
//---------------------------------------------------
VERBOSITY ALL TRACE
LOG ALL "Trace.txt"
COVFILE NONE
STOPONERROR 1

// Global events
MAPEVENT GLOBAL 1 IS a EVENT 1

//Scenario definitions
//---------------------------------------------------
scenario 1 "Demonstrating XVCs"

action a "Action 1" 
action b "Action 1" 

scenario 2 "My second scenario - action end events"

action a "Action 2" E 1
action b "Action 2" W 1

scenario 3 "My third scenario - interrupt actions"

action xvc a "Action 1" E 1
interrupt xvc b "Action 1" W 1

// Execution
//---------------------------------------------------
x 1 2
x 3
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APPENDIX D SOFTWARE TEST 
FRAMEWORK

This appendix specifies the detailed behavior of a C library that can be used to imple-
ment a VMM-compliant software verification environment and tests. The actual
implementation of these classes is left to each tool or platform provider.

BASIC TYPES
The following are definitions of standard types, with explicit bit widths for clarity:

typedef unsigned int        BOOL;
typedef signed   char       BYTE8;
typedef unsigned char       UBYTE8;
typedef signed   short      HWD16;
typedef unsigned short      UHWD16;
typedef signed   int        WORD32;
typedef unsigned int        UWORD32;
typedef signed   long long  LLONG64;
typedef unsigned  long long   ULLONG64;

A word is defined to be 32-bits long.
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SYSTEM DESCRIPTOR
The system descriptor is an array of peripheral device descriptors.

const svSYS_SystemElement svSYS_SystemDescriptor[] = 
{...}

A symbol must exist that specifies the index of a peripheral descriptor in the system
descriptor. The symbol must be named svSYS_Element_XXXX_N where XXXX is
the name of the peripheral and N is the instance number.

Peripheral Descriptor
A svSYS_SystemElement is a descriptor for an instance of a peripheral device.
Each peripheral instance is described using the following structure:

typedef const struct SystemElement svSYS_SystemElement;
struct SystemElement {
   UWORD32                   Tested;
   svSYS_SystemID            DeviceID;
   UWORD32                   BaseAddress;
   svSYS_SystemInterrupts    Interrupts;
   svSYS_SystemClocks        Clocks;
   svSYS_SystemDMA           DMA;
   svSYS_ActionSheetItem   * pActionSheet;
   svSYS_CheckState          pCheckState;
   UWORD32                   Padding[x];
};
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The following is an example of a fully specified peripheral descriptor in a system
descriptor:

const svSYS_SystemElement svSYS_SystemDescriptor[] = {
   ...
   //Data for P123 UART instance #0
   {
      0x1,                    // Selected for testing
      "P123",                 // Device ID "P123"
      0x20000000,             // Base Address
      {{svSYS_GET_SYS_DATA(P123, 0), 12}},
                              // One interrupt at
                              // controller 0, source 12
      {4000000},              // One clock at 4MHz
      {{&svSYS_GET_SYS_DATA(P456, 0), 1, 4}},
                              // One DMA at
                              // controller 0, channel 4
                              // accessible via port 0
      ActionSheet_P456,       // Address of action sheet
      svP456_CheckState       // State checking function
    }
    ...
}

typedef enum {
   ...
   svSYS_Element_P123_0,
   ...
   svSYS_Element_P456_0,
   ...
}

Tested
This structure property identifies peripheral sets this peripheral belongs to. A periph-
eral belongs to peripheral set N if bit N of this structure property is set. A peripheral
can thus belong to more than one peripheral set.

DeviceID
This structure property specifies the name of the peripheral, for example “P123”. It is
a null-terminated string padded with zeros if it is less than seven characters.

typedef unsigned char svSYS_SystemID[8];

BaseAddress
This structure property specifies the hardware base address of the peripheral.
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Interrupts
This structure property specifies the interrupts generated by the peripheral. A periph-
eral can generate interrupts to up to eight different interrupt controllers.

typedef svSYS_SystemInterrupts 
svSYS_SystemInterrupts[8];

Each entry in the array describes a single interrupt connection from the device to a
controller. See “Interrupt Descriptor” on page 463 for a description of the interrupt
descriptor.

Clocks
This structure defines the frequency of the clocks signals supplied to the peripheral.
Each element of the array is a clock rate in Hz. If a clock signal is not used, the fre-
quency value is specified as 0.

typedef UWORD32 svSYS_SystemClocks[4];

DMA
This structure property describes up to four DMA channels connected to the periph-
eral.

typedef SYS_SystemDMA svSYS_SystemDMA[4];

Each entry in the array describes a single DMA connection from the device to a con-
troller. See “DMA Channel Descriptor” on page 464 for a description of the DMA
channel descriptor.

pActionSheet
This structure property is a pointer to zero-terminated array of actions called an action
sheet. These actions—and only these actions—are available for execution on this
peripheral. Multiple instances of the same peripheral may refer to the same action
sheet.

const svSYS_ActionSheetItem ActionSheet_P123 [] = {
   {&MyP123FirstAction, &MyP123FirstAction_Level, 
    &MyP123FirstAction_Name},
   {&MyP123SecondAction, &MyP123SecondAction_Level,
    &MyP123SecondAction_Name},
   ...
   {0} //Must be zero terminated
}
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See “svSYS_ActionSheetItem” on page 467 for a specification of the action sheet
entry.

pCheckState
This structure property is a pointer to a function that checks if the peripheral is in an
idle state.

typedef svSYS_eTestResponse(* svSYS_CheckState)
   (svSYS_SystemElement * pPeriph)

The function returns svTestPassed if the peripheral is currently in an idle state
and svTestFailed otherwise. The meaning of idle is specific to each peripheral
but in general, idle will mean that the peripheral is disabled and has no interrupts
flagged.

See “svSYS_eTestResponse” on page 466 for the specification of
svSYS_eTestResponse.

Padding
This structure property pads the value of the structure to a power-of-two number of
words if needed. It will allow rapid iteration through the array of peripheral descrip-
tors.

Interrupt Descriptor
This structure describes a single interrupt connection from a peripheral to an interrupt
controller. Peripheral interrupts are described by the Interrupts struct property of
that peripheral's descriptor, as specified in “Peripheral Descriptor” on page 460.

typedef struct {
   svSYS_SystemElement  * pController;
   UWORD32                Source;
} svSYS_SystemInterrupts;

pController
This structure property is a pointer to the peripheral descriptor for the interrupt con-
troller. If the value is NULL, there is no interrupt described and this descriptor is to be
ignored.
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Source
The interrupt number, in the interrupt controller, of the interrupt that is generated by
the peripheral.

DMA Channel Descriptor
This structure describes a single DMA channel connection between a peripheral and a
DMA controller. The DMA channels for a peripherals are specified by the DMA
struct property in that peripheral's descriptor. See “Peripheral Descriptor” on
page 460 for more details.

typedef struct {
   svSYS_SystemElement  * pController;
   UHWD16                 Masters;
   UHWD16                 Channel;
} svSYS_SystemDMA;

pController
This structure property is a pointer to the peripheral descriptor for the DMA control-
ler. If the value is NULL, there is no DMA channel described and the descriptor must
be ignored.

Masters
This structure property indicates which of the master ports of the DMA controller can
access the DMA channel. Master ports are identified by their corresponding bit posi-
tion. For example, a value of 0x5 specified that the DMA channel to the peripheral is
accessible from master ports 0 and 2.

Channel
The DMA channel number, in the DMA controller, of the DMA channel to the
peripheral.
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TEST ACTIONS
The following macros, declarations and functions are available to support the specifi-
cation and execution of test actions on specific peripherals.

svTEST_NAME()
This macro is used to specify an arbitrary string to describe a test action. The string is
accessible as an externally visible character array named <actionname>_Name. It
is used to identify the running test action in simulation messages and the debug chan-
nel.

#define svTEST_NAME(action, descr) const char 
action##_Name[] = descr;

The action parameter is the name of the function implementing the test action. The
descr parameter is a string literal which describes or identifier the test action. For
example:

svTEST_NAME(svP123_FirstAction,
            "Test Interrupts on P123")

svTEST_LEVEL()
This macro is used to specify a complexity-level value to a test action. The value is
accessible as an externally visible unsigned integer named <action-
name>_Level.

#define svTEST_LEVEL(action, level) \
   const unsigned int action##_Level = level;

The action parameter is the name of the function implementing the test action. The
level parameter is an integer value specifying the complexity level of the test
action. For example:

svTEST_LEVEL(svP123_FirstAction, 3)

svSYS_GET_SYS_DATA()
This macro returns the address of the peripheral descriptor corresponding to the spec-
ified instance of the specified peripheral. The macro uses the specified instance and
peripheral name to construct the symbolic name of the index of the peripheral
descriptor in the system descriptor.

#define svSYS_GET_SYS_DATA(Device, DeviceNum) \
   (svSYS_SystemDescriptor +
    svSYS_Element_##Device##_##DeviceNum)
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svSYS_eTestResponse
The svSYS_eTestResponse type is used to specify the result for a test action, as
described in Table D-1.

typedef enum {
   svSYS_TestSkipped    = -1,
   svSYS_TestFailed     = 0,
   svSYS_TestPassed     = 1,
   svSYS_TestException  = 2,
   svSYS_TestAvailable  = 3
} svSYS_eTestResponse;

Table D-1  Test Status Codes

svSYS_SeqTest
This pointer-to-function type is a prototype for test action functions.

typedef svSYS_eTestResponse (*svSYS_SeqTest)
   (svSYS_SystemElement * pPeriph);

The pPeriph parameter is a pointer to the system descriptor for the peripheral tar-
geted by this test action. The action is responsible for retrieving and using the fields
of interest.

svSYS_ActionRun()
Runs the specified test action on the specified peripheral.

void SYS_ActionRun (
   char                 * pTestName,
   char                 * pDeviceName,
   svSYS_SeqTest          Action,
   svSYS_SystemElement  * pPeriph
};

The pTestName parameter is a pointer to the description or name of the test action
to be executed. The pDeviceName parameter is a pointer to the descriptor or name

svSYS_TestSkipped Test not performed

svSYS_TestFailed Test failed

svSYS_TestPassed Test passed

svSYS_TestException Test generated an exception

svSYS_TestAvailable Test marked as available
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of the target peripheral. The Action parameter is a pointer to the test action function
to be executed. The pPeriph parameter is a pointer to the peripheral descriptor of
the target peripheral.

This function standardizes the behavior and output of actions and performs common
pre- and post-action operations:

• Outputs a debug message containing pTestName, pDeviceName and 
pPeriph->BaseAddress

• Configures the exception handler to use a test-specific routine
• Runs the pPeriph->pCheckState() function to check that the peripheral is 

in an idle state and outputs a debug message describing the result
• Calls the test action, passing in the pPeriph pointer
• Restores the original exception handler 

• Outputs a debug message describing the test result
• Adds a new entry to the test summary report

svSYS_ActionSheetItem
This structure defines a test action that is part of a test action sheet. A test action sheet
is specified as a zero-terminated array of svSYS_ActionSheetItem. See “pAc-
tionSheet” on page 462.

typedef struct {
   svSYS_SeqTest   TestFunction;
   WORD32        * pLevel;
   char          * pName;
} svSYS_ActionSheetItem;

The TestFunction structure property is a pointer to the function implementing the
test action. The pLevel structure property is a pointer to the test complexity-level
value for the test action. The pName structure property is a pointer to the description
or name of the test action.
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svSYS_ActionSheetRun()
This function is used to execute the test actions found in a specific test action sheet.

void SYS_ActionSheetRun (
   char                * pDeviceName,
   UWORD32               Sequence,
   svSYS_eTestOrder      TestOrder,
   svSYS_SystemElement * pPeriph
);

The pDeviceName parameter is a pointer to the descriptor or name of the target
peripheral. The Sequence parameter specifies the complexity levels that are to be
executed. The testOrder parameter specifies the order in which to execute the test
actions found in the action sheet. The pPeriph parameter is a pointer to the periph-
eral descriptor of the target peripheral.

This function will iterate through all test actions found in the action sheet pPeriph-
>ActionSheet in the order specified by the TestOrder parameter. If the bit in
the Sequence value corresponding to the complexity level of the test is set, the test
is executed. Otherwise, the test is skipped and a new entry is added to the test sum-
mary report.

svSYS_eTestOrder
This enumerated type is used to specify the order of execution of tests in an action
sheet.

typedef enum {
   svSYS_TestSequence,
   svSYS_TestReverse,
   svSYS_TestRandom
} svSYS_eTestOrder;

The execution order specified by each value is described in the following table:
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Table D-2  Test Sequencing Codes

svSYS_AllActionSheetsRun()
This function iterates through all peripherals in the system descriptor in a specified
order and executes all tests in the test action sheet for each peripheral.

void svSYS_AllActionSheetsRun (
   UWORD32          Peripherals,
   UWORD32          Sequence,
   svSYS_eTestOrder PeriphTestOrder,
   svSYS_eTestOrder ActionTestOrder);

The Peripherals parameter is specifies which peripherals should be tested in the
run. The Sequence parameter specifies the complexity levels that are to be exe-
cuted. The PeriphTestOrder parameter specifies the order in which to test the
peripherals found in the system descriptor. The ActionTestOrder parameter
specifies the order in which to execute the test actions found in the action sheet.

Peripherals are selected by and-ing the value of the peripherals parameter to the
peripheral's tested value. If the result is non-zero, the action sheet associated with the
peripheral is run. If the result is zero, the peripheral is skipped. This mechanism cre-
ates 32 different sets of peripherals that can be included or excluded from a test run. If
a peripheral is selected, its action is sheet is run.

UWORD32 svSYS_Peripherals;
UWORD32 svSYS_Sequence;
These global variables may be polled by the software test framework after every exe-
cution of svSYS_AllActionSheetsRun(). If the value of either variable has
changed since the last poll, the svSYS_AllActionSheetsRun() is invoked
again. If either is zero or the values have not have changed, the polling continues until
a change is detected.

svSYS_TestSequence Execute tests in order specified in the
action sheet

svSYS_TestReverse Execute tests in the reverse order specified
in the action sheet

svSYS_TestRandom Execute tests in random order
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These variables lets different peripherals or tests be dynamically selected using a
debugger. If the execution of the software test is stopped and new values inserted, a
new set of tests will be run after the completion of the current test run.

LOW-LEVEL SERVICES

svSYS_DebugLevel
Global variable used to specify the current debug level for the software test. A value
of svSYS_FATAL_SEV is invalid and interpreted as svSYS_ERROR_SEV. The
value of this variable can be modified at run time or via a debugger.

svSYS_eMsgLevel svSYS_DebugLevel = svSYS_NORMAL_SEV;

typedef enum {
   svSYS_FATAL_SEV,
   svSYS_ERROR_SEV,
   svSYS_WARNING_SEV,
   svSYS_NORMAL_SEV,
   svSYS_TRACE_SEV,
   svSYS_DEBUG_SEV,
   svSYS_VERBOSE_SEV
} svSYS_eMsgLevel;

svSYS_Printf()
This function is used to issue all messages from a software test.

void svSYS_Printf(svSYS_eMsgLevel     Level,
                  svSYS_ePrintType    Type,
                   void              * pParam);

This function will print the specified message to the defined output channel if the
Level parameter is less than or equal to the current verbosity level defined by the
svSYS_DebugLevel variable.

The Type parameter specifies the format of the data pointed to by the pParam
parameter, using one of the following enumerated values:

typedef enum {
   svSYS_PrintString,
   svSYS_PrintHex,
   svSYS_PrintDec,
   svSYS_PrintBoolean
} svSYS_ePrintType;
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svSYS_EnvironmentGet()
This function identifies the software verification environment used to execute the
software tests.

svSYS_eEnvironment svSYS_EnvironmentGet(void);

The value returned by this function is one of the following enumerated values:

Table D-3  Verification Environment Identification Codes

svSYS_Ignore()
This function verifies if the current verification environment matches one of the spec-
ified unsupported verification environments. It is used to skip tests that cannot be exe-
cuted on specific verification environments.

BOOL svSYS_Ignore(UWORD32 TestMask);

The TestMask parameter is the bitwise-OR of the enumerated values corresponding
to the unsupported environments. If the current environment matches one of the spec-
ified unsupported environments, a svSYS_NORMAL_SEV “Test Skipped” message is
issued and TRUE is returned. Otherwise, FALSE is return. The test action code is
responsible for aborting the test if it is to be ignored.

if (svSYS_Ignore(svSYS_EnvFPGA | svSYS_EnvPV)) return;

svSYS_HARDCODED()
This macro has no effect on the code but identifies potential porting issues.

#define svSYS_HARDCODED(code) code

svSYS_Malloc()
svSYS_Free()
The software framework does not implement a full heap, due to the overheads associ-
ated with managing system resources. Instead, it offers the following functions:

void * svSYS_Malloc(unsigned int size);
void svSYS_Free(void *);

svSYS_EnvSimulator Simulation-based environment

svSYS_EnvFPGA FPGA-based environment
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There must be a block of data for dynamic memory allocation, which is identified in a
linker definition file as execution region heap. The heap would be located from a heap
base address constant to a heap limit-1.

Where memory leakage is not an issue, a simple heap management process can be
used. The heap manager maintains a pointer to the top of the current heap. When
svSYS_Malloc() is called, the heap is checked for the requested space, then the
current pointer is returned and the pointer is incremented by the requested space size.
Freed dynamic memory is never reclaimed and the svSYS_Free() function may
be implemented as a blank macro.

In platforms and environments where memory leak is an issue, these functions may
implement a more complex dynamic memory management system, including garbage
collection.

svIO_BYTE_READ()
svIO_BYTE_WRITE()
svIO_WORD_READ()
svIO_WORD_WRITE()
The software framework provides macros for accessing memory-mapped registers,
given the base address and an offset in bytes.

For word-width (32-bit) registers, the following macros are available:

typedef volatile UWORD32 svRegister;

#define svIO_WORD_READ(_Addr, _Offset)\
           *((svRegister*) ((UWORD32)_Addr +
                            (UWORD32)_Offset))

#define svIO_WORD_WRITE(_Addr, _Offset, _Value) \
           *((svRegister*) ((UWORD32)_Addr +
                            (UWORD32)_Offset)) = \
                                (UWORD32)_Value;
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For byte-width registers the following are available:
typedef volatile UBYTE8 svRegisterByteAccess;

#define svIO_BYTE_READ(_Addr, _Offset) \
       *((svRegisterByteAccess*) ((UWORD32)_Addr +
                                  (UWORD32)_Offset))

#define svIO_BYTE_WRITE(_Addr, _Offset, _Value) \
        if(_Value != (_Value & 0xFF)) SYS_swi();\
        *((svRegisterByteAccess*) \
           ((UWORD32)_Addr + (UWORD32)_Offset)) =
              (UBYTE8)_Value;

svSYS_RAND()
This function will generate and return a pseudo-random number. It is used by the
svSYS_AllActionSheetsRun() function for sequencing tests in random order.
It is also available for use within test actions to create random tests.

UWORD32 svSYS_RAND(UWORD32 Limit)

The returned value will be between 0 and Limit-1. It is recommended that Limit
be a power of 2 for runtime efficiency. The implementation of this function may
invoke the standard C rand() function. The seed is set during initialization by the
bootstrap module.

svSYS_BlockCopy()
This function copies a block of 32-bit words from one location to another.

void svSYS_BlockCopy(UWORD32  * pSourceAddr,
                     UWORD32  * pDestAddr,
                      UWORD32    NumWords);

This function may be implemented using processor instructions or DMA channels.

svSYS_ThrowException()
This function is used to throw a software interrupt (SWI) exception.

svSYS_ThrowException()

This function hides the system-specific way of generating a processor exception and
catches this exception.
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svSYS_ASSERT()
This macro is used to verify that a condition holds true and throws an SWI exception
otherwise.

svSYS_ASSERT(BOOL Assertion)

If the value of the Assertion parameter is FALSE, an SWI exception is thrown.

Cache Lockdown
Some processors have the ability to lock down and free either or both the instruction
and data cache. This ability ensures that there will be no instruction or data bus activ-
ity while a cache is locked down.

Cache lockdown is implemented using the following functions:

svSYS_CacheLock()
This function locks all addresses between the start and end addresses into cache. The
start address is included. The end address is normally excluded but may be locked
down if cache line size requires it.

typedef UWORD32 svSYS_CacheLines;
typedef enum {
   svSYS_InstructionCache,
   svSYS_DataCache
} svCacheType;
svSYS_CacheLines svSYS_CacheLock(
   svSYS_CacheType    eCache,
   void             * pStartAddress,
   void              * pEndAddress);

The return value that describes the block of locked cache lines is specified Table D-4.

If there is insufficient cache space to lock the requested address range, the maximum
available number of cache lines should be locked, leaving at least one free cache line.
It is recommended that a debug message will be generated to indicate this occurrence.

It is assumed that cache locking and unlocking will remain the responsibility of the
user.
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Table D-4  Cache Lines Descriptor

svSYS_CacheUnlock()
This function unlocks a set of cache lines.

void svSYS_CacheUnlock(svCacheLines LockedLines);

The descriptor for the cache lines to unlock, specified by the LockedLines param-
eter, is identical to the descriptor returned by the svSYS_CacheLock() function.

svSYS_CACHE_BLOCK_START()
svSYS_CACHE_BLOCK_END()
Macros used to name a block of instructions that can be locked in the instruction
cache.

#define svSYS_CACHE_BLOCK_END(name) \
   void name##_CacheBlockEnd(void) {}

#define svSYS_CACHE_BLOCK_END(name) \
   void name##_CacheBlockEnd(void) {}

These macros create symbols that can be used to specify start and end addresses to the
svSYS_CacheLock() function.

Interrupt Controller
Software test actions can configure interrupt controllers to verify the interrupt sourc-
ing features of a peripheral. Note that this is not done to test the interrupt controller,
where controller-specific actions will be needed, but to test a peripheral generating an
interrupt to the interrupt controller.

The normal process of using interrupts is to bind an interrupt handler to an interrupt.
An interrupt handler is a software routine that is executed when the interrupt occurs.

Bits 7-0 First cache line number

Bits 15-8 Last cache line number

Bits 23-16 Unused

Bits 31-24 0: Instruction cache
1: Data cache
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The following example illustrates how to use some of the interrupt support routines to
enable interrupts before executing the test and disables them afterwards:

void MyTestHandler(UWORD32                Source,
                   svSYS_SystemElement *  pPeriph)
{
   ... // Interrupt handler during test action */
}

svSYS_eTestResponse 
P123_InterruptTest(svSYS_SystemElement * pPeriph)
{
   svSYS_InterruptAllBind(&MyTestHandler, pPeriph);

   ... // Test action using interrupts

   svSYS_InterruptAllUnBind(&MyTestHandler, pPeriph);
}

The following functions are available to configure interrupt controllers:

svSYS_InterruptInit()
Initializes the specified interrupt controller.

void svSYS_InterruptInit(
   svSYS_SystemElement  * pController,
   BOOL                    Enabled);

The pController parameter specifies the interrupt controller to be initialized. This
function must be invoked before tests that use the interrupt controller.

If the Enabled parameter is FALSE, all interrupts will be disabled at the interrupt
handler. If TRUE, all interrupts not already asserted will be enabled. After initializa-
tion, the handler for all interrupt sources is set to the following routine:

void SYS_BadInterrupt(UWORD32 Source);

This routine will generate an exception, indicating that an unexpected interrupt has
occurred.

svSYS_InterruptHandler
The interrupt handler routine must comply with the following prototype:

typedef __irq void (*svSYS_InterruptHandler)(
   UWORD32                Source,
   svSYS_SystemElement  *  pPeriph);
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The Source parameter is the number of the interrupt, in the controller, that is being
handled. The pPeriph parameter specifies the peripheral descriptor for the periph-
eral generating the interrupt.

svSYS_InterruptBind()
This function binds a handler to an individual interrupt and enables the interrupt.

void svSYS_InterruptBind(
   svSYS_InterruptHandler   Handler,
   svSYS_SystemElement    * pPeriph,
   UWORD32                  IntIndex,
   svSYS_eInterruptType     IntType,
   UBYTE8                    priority);

The Handler parameter specifies the interrupt handler routine to be run when the
interrupt occurs. The pPeriph parameter specifies the peripheral descriptor of the
peripheral generating the interrupt. The IntIndex parameter specifies the interrupt
number in the peripheral's list of interrupts. The IntType parameter specifies the
type of interrupt (either svSYS_IRQ or svSYS_FIQ). And the Priority parame-
ter specifies the priority level of the interrupt on a scale 0 (low) to 15 (high).

svSYS_InterruptUnBind()
This function unbinds an interrupt handler routine from an individual interrupt,
restoring the unexpected interrupt handler and leaving the enable status unchanged.

void svSYS_InterruptUnBind(
   svSYS_SystemElement *  pPeriph,
   UWORD32                IntIndex);

The pPeriph parameter specifies the peripheral descriptor of the peripheral generat-
ing the interrupt. The IntIndex parameter specifies the interrupt number in the
peripheral's list of interrupts.

svSYS_InterruptAllBind()
svSYS_InterruptAllUnBind()
These functions will bind all the interrupt sources specified for a peripheral onto a
specified interrupt handler routine and enable the associated interrupts, or unbind
these interrupts.

void svSYS_InterruptAllBind(
   svSYS_InterruptHandler   Handler,
   svSYS_SystemElement    * pPeriph);
void svSYS_InterruptAllUnBind(
   svSYS_SystemElement * pPeriph);
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The Handler parameter specifies the interrupt handler routine to be run when any of
the interrupts occur. The pPeriph parameter specifies the peripheral descriptor of
the peripheral generating the interrupts.

svSYS_InterruptEnable()
svSYS_InterruptDisable()
These functions enable or disable an individual interrupt.

void svSYS_InterruptEnable(
   svSYS_SystemElement *  pPeriph,
   UWORD32                IntIndex);
void svSYS_InterruptDisable(
   svSYS_SystemElement *  pPeriph,
   UWORD32                 IntIndex);

The pPeriph parameter specifies the peripheral descriptor of the peripheral generat-
ing the interrupt. The IntIndex parameter specifies the interrupt number in the
peripheral's list of interrupts.

svSYS_InterruptAllEnable()
svSYS_InterruptAllDisable()
These functions will enable or disable all the interrupt sources specified for a periph-
eral.

void svSYS_InterruptAllEnable(
   svSYS_SystemElement *  pPeriph);
void svSYS_InterruptAllDisable(
   svSYS_SystemElement *  pPeriph);

The pPeriph parameter specifies the peripheral descriptor of the peripheral generat-
ing the interrupt.

Software-XVC Connectivity
For some test scenarios, it may be required to synchronize the execution of software
routines with specific hardware events. For example, it may be necessary to observe a
software stack in response to data packets being driven into a system peripheral. The
software framework, rather than driving the entire system test, can act as a slave wait-
ing for the XVC manager to send commands via a software-interface XVC.

Two global variables are used to hold a pair of base addresses through which data
from a software-interface XVC can be read, and to where data from the software ver-
ification framework can be written. 
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UWORD32 svSYS_DebugXVCBase;
UWORD32 svSYS_DebugXVCSWBase;

Whenever information or commands need to be exchanged between a software-inter-
face XVC and the software, the base addresses are used to monitor requests and
response activity between the XVC and the software environment. The exact commu-
nication protocol and functions are defined by the XVC and the software designer.
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CFG_DUT 365
cfg_dut() 127, 128, 129, 132, 366
channel

consumer 175, 177
direction 175
draining to self-checking 254
producer 175, 177
See also Transaction-level interface

checker 204
definition 13
XVC 308

checker library 53, 77, 302, 429–437
assert_always 57, 58, 430
assert_always_on_edge 58, 430
assert_arbiter 434
assert_bits 54, 57, 434
assert_change 54, 57, 58, 430
assert_code_distance 54, 57, 434
assert_cycle_sequence 54, 430
assert_data_used 434
assert_decrement 57, 431
assert_delta 57, 431
assert_driven 54, 58, 434
assert_dual_clk_fifo 55, 435
assert_even_parity 54, 431
assert_fifo 55, 435
assert_fifo_index 55, 431
assert_frame 54, 58, 431
assert_handshake 54, 431
assert_hold_value 54, 57, 435
assert_implication 58, 431

assert_increment 57, 431
assert_memory_async 55, 435
assert_memory_sync 55, 435
assert_multiport_fifo 55, 436
assert_mutex 57, 436
assert_never 57, 58, 431
assert_next 54, 57, 58, 432
assert_next_state 54, 436
assert_no_contention 54, 57, 58, 436
assert_no_overflow 57, 432
assert_no_transition 432
assert_no_underflow 57, 432
assert_odd_parity 54, 432
assert_one_cold 54, 57, 432
assert_one_hot 54, 57, 432
assert_proposition 57, 432
assert_quiescent 84
assert_quiescent_state 433
assert_range 57, 433
assert_reg_loaded 57, 437
assert_reg_resp 57
assert_req_ack_unique 54, 437
assert_req_loaded 54
assert_req_requires 54, 58
assert_stack 55, 83, 437
assert_time 54, 57, 433
assert_transition 54, 433
assert_unchange 54, 58, 433
assert_unchanged 57
assert_valid_id 54, 437
assert_value 54, 57, 437
assert_width 57, 433
assert_win_change 54, 57, 58, 433
assert_win_unchange 54, 57, 58, 433
assert_window 54, 57, 433
assert_zero_one_hot 54, 57, 434
customizing 53

checksum 147
circular references, avoiding 248
class of service 184, 186
class property

definition 13
payload 148

CLEANUP 366
cleanup() 128, 367
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clock cycles 112, 170
clock domains 112, 115
clock generation 114
code coverage 262

definition 13
limitations 262

coding guidelines
assertions 63–77

command layer 116–118
services 117
transaction 116
transactor 169, 202

COMMAND_TYP 136, 369
compare() 152, 155, 386
complete() 180, 181, 184, 185, 394
COMPLETED 395
completion channel 187
completion model 176–195

blocking 177–181
completion information

See also Transaction descriptor,
status information

definition 176
nonblocking 182–189
passive response 189–192
reactive response 192–195
request/response 122

compliance test suite 74, 90
components

See also Verification component
configurable RTL 24
configuration 24

DUT 129, 132
generator 122
how long to run 133
management 29
random 245
randomizing 129
test 129
transactor 168
XVC 307

configuration descriptor 120, 129, 247
transactor 168

configuration-dependent generation 239
configure() 406

connect() 395
constrained-random

definition 13
constrained-random stimulus 212
constrained-random tests 279
constraint

declarative, advantage of 228
using stream identifier 219
variable visibility 228

constraint_mode() 228
CONTINUE 137, 370
continue_msg() 380
copy() 155, 368, 385, 405
copy_data() 385
corner cases 50, 74

constraints 158
random stimulus 308

COUNT_ERROR 137, 370
COVER_ON 79, 91
coverage

assertion
See also Assertion coverage

code
See also Code coverage

cross
See also Cross coverage

definition 13
FSM

See also FSM coverage
functional

See also Functional coverage
coverage grading 266
coverage group 29, 266, 268–276

bins 269
data coverage 83
delay coverage 84
documentation 276
packaging 273
sampled using property 75
sampled using sequence 76
vs coverage property 72
weight 275

Coverage metric
XVC 308

coverage metric 260–261
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across sampling domains 273
data collection 260, 266
data sampling 268, 273, 275
DUT state 271
feedback 277–279
from regression 261
goal 260
relevance 261
scoreboard 271
stimulus 269, 270
transactions 272
transactor 272
weight 274, 275

coverage model 261–266
block interconnect 324
completeness 264
coverage space 262
data vs information 265
effort 259
implementation 264
in verification environment 266
verification requirements 21
vs verification plan 263

coverage object 273
coverage point

data sampling 268
implementation specific 267
weight 274

coverage property 8, 22, 29, 45, 72–77, 
266, 276–277

category 99
control 79, 85, 91
COVER_ON 79, 91
definition 13
reset 74
vacuous success 73
vs coverage group 72

coverage-driven verification 259–279
COVFILE 450
CPU integration verification 343–364
CRC 147
create_watchpoint() 376
cross coverage 268

definition 14
CYCLE_TYP 136, 369

D
data descriptor

See also Transaction descriptor
data model

See also Transaction descriptor
data protection

definition 14
data_id 383
debug messages 139
DEBUG_SEV 137, 139, 369
DEBUG_TYP 135, 139, 369
DEBUGGER 137, 370
debugger 346, 348
DEFAULT_HANDLING 370
DEFAULT_SEV 369
DEFAULT_TYP 369
define_scenario() 234, 422
definitions

alternative 11
recommendation 11
rule 11
See also Terminology
suggestion 11

design
configuration 24
interface-based

See also Interface-based design
design for test

definition 14
design for verification 6–8

architecture 6
assertions 7
definition 6, 14

directed random
definition 14

directed scenario 235
directed stimulus 30, 219–221

bypassing generators 219
error injection 222

directed testbench
definition 14

directed tests 122, 328
vs formal tools 279
vs functional coverage 263, 264
vs random tests 264, 279
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disable iff property operator 49, 70, 71, 
74

disable_types() 373
disabling property 49
discriminant class property

definition 14
display() 384
distribution 158
DONE 417, 420
driver 116, 121

proactive 116
reactive 116

DUMP_STACK 137, 370
DUT configuration 132

E
embedded generator 195
embedded software 343
embedded stimulus 226–227
EMIT 456
EMPTY 390
empty_level() 389
emulation

See also hardware-assisted
enable_types() 373
end of test

See also vmm_env, wait_for_end()
end_msg() 373
end_test 134, 367
ENDED 179, 180, 181, 183, 184, 185, 187, 

384
end-of-test 363

watchdog timer 322
XVC manager 318

end-of-test condition 133, 134
environment

See also Verification environment
error injection 27, 221–226

callback registration order 256
directed 222
in state-dependent generators 244
preventing 224
random 223
self-checking 255–256
via callback method 222
XVC 308

error messages 138
ERROR_SEV 136, 137, 138, 369
EVENT 452
examples

source code xiv
exception descriptor 221, 223, 255

context information 224
randomizing 224
randomizing in callback method 225

exec_chan 310, 313, 442
EXECUTE 384, 446, 457
execute() 313, 314, 443
execution model

See also Completion model
expected response

See also Response checking
expression coverage 262
external constraint block 229
external constraints 160

F
factory pattern 129, 155, 174, 216, 224, 

229
adopting 10
naming convention 218

FAILURE_TYP 135, 138, 369
fatal messages 138
FATAL_SEV 136, 137, 138, 369
FCS 147
FIFO 55
fill_scenario() 424
finite-state machine 54
FIRM_RST 413
first_match sequence operator 66
flow() 391
flush() 391
for_each 396
for_each_offset() 396
formal

assertions
See also Assertions, formal tools

formal engines 282
formal tools

applicability 281
arithmetic operations 287
assertions
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validation 285
assumptions 284
auxiliary variables 291
bug hunting 283, 284
engines 282
proofs 282
random stimulus 284
reachability analysis 283
reset 287
vs simulation 279

formal verification
definition 14
to qualify assertions 101

format_msg() 379
FSM

defined using constraints 243
FSM coverage 262

definition 14
FULL 390
full_level() 389
functional coverage 263–266

analysis 265
definition 14
implementation 266–277
in directed tests 264
limitations 264
model

See also Coverage model
point

definition 14
sampling 28
vs directed tests 263
vs testcases 263

functional layer 118–122
configuration 120
sub layer 166
sub layers 119, 120, 171
transaction 119

G
GEN_ CFG 365
gen_cfg() 366
GENERATED 417, 420
generation

atomic 231

configuration-dependent 239
multiple steps 242
multi-stream 236–238
peer-to-peer protocols 240
scenario 232–236
state-dependent 238–244

actions 241
transitions 243

strategy, selection 244–246
generator 122, 204

atomic 122
connecting 215
constrainability 30
constructor 214
control 227–246
controllability 30
definition 14
directed interface 220
directed tests 122
embedded 195
naming convention 218
output channel 213
replacing 245, 246
requirements 26, 30
scenario 122
See also Stimulus
See also Transactor
stopping 219
stream_id 218
transactor 213

get() 175, 179, 186, 393
get_instance() 368, 411
get_message_count() 376
get_name() 368, 411, 442
get_notification() 408
get_object() 403
get_verbosity() 374
GOT 390
guidelines

basic 12

H
HARD_RST 413
hardware-assisted verification 336–342, 

349
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synthesizable transactor 336
vs simulation 336, 349

HW/SW verification 343–364

I
IEEE xvi
if/else property operator 49
IGNORE 370
INACTIVE 395
indicate() 408
inheritance 149
inject() 417, 421
inject_obj() 421
input signals

See also Signal layer, direction of 
signals

interface-based design 4–5
verification requirements 5

INTERNAL_TYP 136, 369
INTERRUPT 446, 455
interrupt_chan 442
intersect sequence operator 47, 64, 65
is_above() 368
is_configured() 406
is_full() 389
is_locked() 392
is_on() 407
is_valid() 155, 384
is_waited_for() 407
items[] 423

L
layers 104

command 116–118
functional 118–122
scenario 122–123
signal 107–116
test 123–124

length 422
level() 389
line coverage 262
list() 369
load() 387
lock() 391
LOCKED 391
LOG 449

log 365, 389, 398, 411, 421, 439
log_start() 375
log_stop() 375
loop-back 326

M
main() 164, 165, 414
MAPEVENT 453
mapping signals 113
max_byte_size() 387, 444
memory 55
message

example 381, 382
example using macro 382
filters 135
handling 137
promotion example 382
severity 136
source, definition of 134
type 135

message service 134–139
assertions 59
debug 139
errors 138
fatal 138
filter 135
format

See also vmm_log_format
handling 137
in assertions 80, 81, 99
issuing messages 144
See also vmm_log
severities 369
severity 136
simulation handling 370
source 134
trace 139
type 135
verbose 139
warnings 138

methodology
adoption 8–10
directed testcases 2
history 2
objectives 1
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model checking 281, 282–292
See also Formal tools

modify() 374
modport 110, 111, 169
module

top-level 112, 114, 124, 206
monitor 117

definition 15
embedded 32–33
passive 117, 118
reactive 117, 118
See also Transactor

multi-stream generation 236–238
multi-stream scenario 238

N
naming convention 162
negated property 68
new() 366, 368, 383, 388, 401, 405, 411, 

419, 440, 441, 442
new_output() 400
new_source() 402
NORMAL_SEV 136, 138, 369
not property operator 48
NOTE_TYP 135, 138, 139, 369
notify 167, 365, 384, 389, 412, 440, 441

O
observability 32
offline checking 40–41

applicability 40
limitations 40

ON_OFF 406
ONE_SHOT 406
Open Verification Library 44, 53, 84, 

429–434
operating system 345, 349
or property operator 49
or sequence operator 47
out_chan 416, 419
output signals

See also Signal layer, direction of 
signals

OVL 44, 53, 84, 429–434

P
packed data 155
parity 147
parse() 312, 441, 443
pass_or_fail 380
passive response 189–192
passive transactor 110, 117, 118, 119, 122, 

166, 167, 174, 176, 189, 270
definition 15

peek() 179, 393
PEEKED 390
peer-to-peer protocols 240
PENDING 395
performance, verifying 329
peripheral test block 327, 336, 339–342, 

346
clock domains 339, 340
examples 337
external interface 337
structure 339
XVC 338

physical interface
implementation 169

physical layer
See also Signal layer

physical-level interface 169–170
pipelined transaction execution 185
planning 17–41

contributors 18
coverage sampling 28
directed tests 18
environment requirements 22–28
error detection 19
error injection 27
for SystemVerilog 18
partitioning 23
process 18–31
response checking 31–41

See also Response checking
See also Verification plan
trivial tests 26
verification implementation 29–31
verification requirements 18–22

coverage model 21
identifying 20
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ranking 20
playback() 397
polymorphism 229
post_inst_gen() 418
post_scenario_gen() 426
pre_abort() 381
pre_debug() 381
pre_scenario_randomize() 426
pre_stop() 381
prepend_callback() 131, 132, 256, 378, 

411
preponed region 49
proactive transactor 110, 116, 119, 166, 

167, 176
definition 15

productivity 2–4
promotion

example 382
property

class
definition 13

coverage
definition 13

definition 15
success 49

property checker
See also Model checking

property operators 48
protocol checker 204
protocol layers 166
protocol response 195
PROTOCOL_RST 413
PROTOCOL_TYP 136, 369
psdisplay() 138, 139, 144, 155, 384
PUT 390
put() 173, 175, 176, 178, 179, 183, 186, 

221, 392

Q
quality of service 38

R
race conditions

between DUT and testbench 109, 117, 
121, 123, 162

initialization 114, 124

rand_mode() 228
random environment

See also Verification environment
random generator

See also Generator
random response 194, 195
random scenario 235
random seed 29, 263
random stimulus 212, 213–219, 227–246, 

324
as background noise 219
automation 3
constrained 212
constraint_mode() 228
error injection 223
external constraint block 229
rand_mode() 228

random tests
constrained 279
vs directed tests 264, 279
vs formal tools 279

randomize with 146
randomize() 229, 239

return value 218
randomized_obj 416
randomized_sched 404
randsequence 235

shortcomings 232
reachability analysis 283
reactive channel 192
reactive region 109, 117, 121, 123, 162
reactive response 192–195

default response 194, 195
random 194
random response 195
response delay 193

reactive transactor 110, 116, 117, 118, 
119, 122, 166, 167, 174, 176, 177, 
192, 195

definition 15
Recommendation

definition 11
reconfigure() 168, 389
record() 396
redefine_scenario() 422
reference model 39–40
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applicability 40
C 39, 40
vs scoreboard 40

register tests 346, 354, 358
registers, verifying 327, 328
remove() 179, 180, 184, 394
remove_watchpoint() 377
remove_xvc() 440
repeat_thresh 423
repeated 423
REPORT 366
report() 367, 377
REPORT_TYP 136, 369
request/response 122
reset 287
reset() 408, 409
RESET_DUT 365
reset_dut() 116, 127, 128, 366
reset_xactor() 164, 165, 169, 311, 399, 

402, 412
response channel 192
response checking 246–256

accuracy 36–38
cycle-by-cycle 36
losses 38
ordering 36, 37
timing 37
transaction 37

assertions 33–36
computations 34
correctness, inferring 31
formal analysis 35
in directed testcase 31
in random testcase 31
internal signals 35
offline

See also Offline checking
ordering 34
physical-level 34
planning 31–41
reference model

See also Reference model
scoreboard

See also Scoreboard
See also Self-checking

transformation 34
types of failures 25
white box 35

response descriptor 189
response model

definition 176
See also Completion model

response request descriptors 194
restore_rng_state() 415
reusable assertions

See also Assertions, reuse
reuse

methodology 4
RTL configuration 24
RTL model vs transaction-level model

See also transaction-level model
Rule

definition 11
run() 127, 128, 366

S
sample() 268
save() 387
save_rng_state() 414
SCENARIO 446, 451
scenario

definition 15, 122
system-level 307

scenario descriptor 232, 233
directed 235
multi-stream 238
random scenario 235

scenario generation 232–236
scenario descriptor 232
vs atomic generation 232

scenario generator 122
using 245

scenario layer 122–123
generator 122

scenario_id 234, 235, 383, 422
scenario_kind 422
scenario_name() 422
scenario_set[$] 420
schedule() 403
schedule_off() 402
schedule_on() 402
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scoreboard 38–39, 249–252
accuracy 250, 251
applicability 39
checking ordering 249, 250
data structure 249
definition 39
hashing function 252
integration callback 131
lost transactions 250
See also Self-checking
transaction tagging 252
vs assertions 61
vs reference model 40

select_scenario 420
self-checking

avoiding circular references 248
callback extensions 253
callback registration order 256
channel consumer 254
configuration 247
error injection 255–256
exception descriptor 255
in verification environment 247
interface 248, 249
notification status 254
packaging 246
see also Reference model
See also Response checking
see also Scoreboard
transactor integeration 253–255

self-checking testbench 246–256
sequence

matching 49
See also Scenario generation

sequence operators 46
set_format() 371
set_log() 383
set_notification() 408
set_sev_image() 371
set_typ_image() 371
set_verbosity() 374
signal aliasing 113
signal layer 106, 107–116

asynchronous signals 111
clock generation 114

direction of signals 111, 112
packaging 108
signal declarations 108
signal mapping 113
synchronous signals 109, 112

simulation
definition 15
ending

See also vmm_env, wait_for_end()
simulation control 124–139

DUT configuration 132
executing the test 133, 134
instantiation 130
See also vmm_env
starting environment 133
test configuration 129

SINK 392
sink() 391
size() 389
sneak() 176, 188, 190, 193, 392
SOFT_RST 413
software tests

bootstrap 363–364
compilation 359–361
configuration 359
directory structure 360
execution order 362
portability 359
running 361–363
See also Test action
structure 349–354

software-accessible registers 327
SOURCE 392
Source code xiv
split transaction execution 185
split() 440
stack 55
START 365
start() 128, 133, 180, 184, 367, 394
start_msg() 371
start_xactor() 164, 165, 203, 311, 398, 

402, 412
STARTED 179, 180, 184, 187, 191, 384, 

395
state coverage 271
state-dependent generation 238–244
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injecting errors 244
status descriptor 189
status() 394, 408
stimulus 211–227

constrained-random 212
coverage 269, 270
definition 15
directed 219–221

bypassing generators 219
See also Directed stimulus
XVC 308

directed vs random 212, 219, 228
embedded 226–227
error injection 221–226
random 212, 213–219, 227–246

XVC 308
requirements 26
synchronizing streams 237

STOP 366
stop() 128, 367
stop_after_n_insts 416, 419
stop_after_n_scenarios 419
STOP_PROMPT 137, 370
stop_xactor() 165, 311, 399, 402, 412
STOPONERROR 446, 450
STOPONEVENT 446, 451
stream identification 167
stream_id 167, 218, 383, 411, 421
structural coverage

definition 15
See also Code coverage

sub layers 119, 120, 166
suggestion

definition 11
super.apply() 236
super.main() 165
SVA_CHECKER_FORMAL 81, 98
svIO_BYTE_READ() 356
svIO_BYTE_WRITE() 356
svIO_WORD_READ() 356
svIO_WORD_WRITE() 356
svSYS_ACTION_RUN() 361
svSYS_ACTION_SHEET_RUN() 362
svSYS_ActionSheetItem 362
svSYS_AllActionSheetsRun() 362

svSYS_ASSERT() 357
svSYS_CACHE_BLOCK_END() 357
svSYS_CACHE_BLOCK_START() 35

7
svSYS_Element 353
svSYS_GET_SYS_DATA() 356
svSYS_HARDCODED() 356
svSYS_Peripherals 362
svSYS_Printf() 358
svSYS_SeqTest() 355
svSYS_Sequence 362
svSYS_SystemData 352
svSYS_SystemElement 352
svSYS_ThrowException() 357
svTEST_LEVEL() 356
svTEST_NAME() 355
svTestFailed 358
synchronous interface 109, 112
SYNTHESIS 80, 289
synthesizable assertions

See also Assertions, synthesizable
SysData 356
system

definition 15, 305
system descriptor 351, 353, 354, 358
system descriptor 352
system-level scenarios 307
system-level verification 305–342

objective 305
vs block-level 305

T
tagged union 150, 152
TCP 240
tee() 395
tee_mode() 395
temporal expression 34

formal analysis 35
terminated() 408
terminology 13–16
test

definition 16
See also Testcase

test action 354, 354–364
complexity level 356
naming convention 355
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portability 354
See also Software tests

test action sheet 354, 362
item 354

test configuration 133
test layer 123–124

implementation 123
testbench

ad-hoc 201–206
definition 16
vs assertions 33

testcase
definition 16
directed

generator, bypassing 122
implementation 107, 119, 123
portability 28
See also Simulation control
trivial 26

testing
definition 16

text() 371
throughout sequence operator 47, 74
timestamp() 408
timing interface 195–198

connecting 197
TIMING_TYP 135, 369
toggle coverage 262
top-level module 112, 114, 124, 206
trace 439, 440
trace messages 139
TRACE_SEV 137, 139, 369
transaction

command layer 116
coverage 272
definition 16
describing exceptions 221
functional layer 119
interface

See also vmm_channel
serial numbers 252
vs transactors 161

transaction descriptor 140–160, 171, 189
adding information to 174
advantages 141

asynchronous information 196
basic constraints 157
composition 151, 153
constraints 157–160
constructor 154
context 146
controlling randomization 30
corner cases 158
data members 143–154
data protection 147, 148, 157
discriminant 145, 152, 153, 156, 159
error prevention constraints 160
executing 176
external constraints 160
implementation 146
incomplete 190
inheritance 149
local properties 146
message service 144
methods 154–157
packaging 143
public properties 146
random distribution 158
random properties 145, 146
state-dependent 239
status information 176, 181, 185, 189
virtual methods 154
vs procedures 141

TRANSACTION_TYP 136, 369
transaction-level interface 171–195

bidirectional 176
channel 172
class of service 184
connecting 173
in models 334–335
naming convention 172
procedural 171, 205
See also channel
See also vmm_channel

transaction-level model 117, 349
and SystemVerilog 334
packaging 333
using transactors 334
verifying 332–335
vs RTL model 330, 333
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transactor 161–170
active

See also Proactive transactor
callback methods

See also Callback method
class of service 186
command level 169, 202
configuration 168
configuration descriptor 168
connecting two 173, 197
constructor 164, 168, 169, 173, 197
coverage 272
definition 16, 161
driver 116
DUT independence 253
embedded

See also Generator, embedded
See also monitor.embedded

extending
See also Callback method

generator 123, 213
implementation 163, 164
in transaction-level model 334
memory mapped 345
message service 167
naming convention 162, 202
notifications 167
out-of-order

See also Completion model, non-
blocking

packaging 162, 163, 202
passive 110, 117, 118, 119, 122, 166, 

167, 174, 176, 189, 270
See also Passive transactor

physical-level interface 169–170
pipelined 185
proactive 110, 116, 119, 166, 167, 176

See also Proactive transactor
reactive 110, 116, 117, 118, 119, 122, 

166, 167, 174, 176, 177, 192, 195
See also Reactive transactor

reconfigure() 168
replacing design blocks 117, 226
See also Transaction-level interface
See also Verification component

See also vmm_xactor
self-checking integration 253–255
split transactions 185
stream identification 167
stream_id 218
synthesizable 336
threads 164
timing interface

See also Timing interface
transaction descriptor 141
vs actual CPU 344
vs CPU or DSP 319
vs transactions 161
vs XVC 306

transfer function 38
trivial tests 26

U
unlock() 391
UNLOCKED 391
unmodify() 375
unput() 393
unregister_callback() 378, 412
using 423

V
validation

definition 16
variables in assertions 69
verbose messages 139
VERBOSE_SEV 137, 139, 369
VERBOSITY 446, 448
verification

definition 16
design for

See also Design for verification
verification component 4–5

configuration 4
definition 16
extensible 306–316

See also XVC
identifying 23
reuse 321
See also Transactor
synthesizable 336
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verification environment 104
architecture 104–124
basic software integration 345, 345–

346
block integration 320, 326–328
block interconnect 320, 323–326
bottom-up implementation 120
configuration 331
coverage points 266
definition 16
implementation 106, 107
instantiation 123
layers 104
portability 330, 332
See also vmm_env
self-checking 247
signal layer 106
software 343–349

See also Software tests
stimulus

See also Stimulus
system functional 320, 328
system validation 321, 329–331
system, full 345, 346–349
system-level 319–331
transaction-level model 332
using assertions 61

verification IP 86–90
documentation 99–100
See also Assertions, verification IP

verification plan
definition 17

virtual method 126
virtual modport 169
vmm_atomic_gen 231, 415–418

DONE 417
GENERATED 417
inject() 417
out_chan 416
randomized_obj 416
stop_after_n_insts 416
vmm_atomic_gen_callbacks 418

vmm_atomic_gen() 213
vmm_atomic_gen_callbacks 418

post_inst_gen() 418

vmm_atomic_scenario 424
vmm_broadcast 397–401

add_to_output() 400
AFAP 399
ALAP 399
bcast_off() 400
bcast_on() 400
broadcast_mode() 399
log 398
new_output() 400
reset_xactor() 399
start_xactor() 398
stop_xactor() 399

vmm_callback() 200, 415
vmm_channel 142, 172, 335, 387–397

ACT_COMPLETED 183, 390
ACT_STARTED 390
activate() 179, 180, 184, 393
ACTIVATED 390
active_slot() 394
adopting 9
complete() 180, 181, 184, 185, 394
COMPLETED 395
connect() 395
crossing language boundaries 335
EMPTY 390
empty_level() 389
flow() 391
flush() 391
for_each() 396
for_each_offset() 396
FULL 390
full_level() 389
get() 175, 179, 186, 393
GOT 390
INACTIVE 395
is_full() 389
is_locked() 392
level() 389
lock() 391
LOCKED 391
log 389
new() 388
notify 389
peek() 179, 393
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PEEKED 390
PENDING 395
playback() 397
PUT 390
put() 173, 175, 176, 178, 179, 183, 186, 

221, 392
reconfigure() 389
record() 396
remove() 179, 180, 184, 394
SINK 392
sink() 391
size() 389
sneak() 176, 188, 193, 392
SOURCE 392
start() 180, 184, 394
STARTED 395
status() 394
tee() 395
tee_mode() 395
unlock() 391
UNLOCKED 391
unput() 393

vmm_command() 372
vmm_cycle() 373
vmm_data 142, 155, 181, 213, 231, 236, 

383–387
adopting 9
allocate() 155, 174, 384
byte_pack() 152, 155, 386
byte_size() 155, 387
byte_unpack() 155, 156, 386
compare() 152, 155, 386
copy() 155, 385
copy_data() 385
coverage 272
data_id 383
display() 384
ENDED 179, 180, 181, 183, 184, 185, 

187, 384
EXECUTE 384
is_valid() 155, 384
load() 387
log 144
max_byte_size() 387
methods 155
new() 383

notify 384
psdisplay() 139, 144, 155, 384
save() 387
scenario_id 383
set_log() 383
sneak() 190
STARTED 179, 180, 184, 187, 191, 384
stream_id 167, 218, 383

vmm_debug() 139, 372
vmm_env 365–367

adopting 9
BUILD 365
build() 128, 130, 131, 247, 331, 366
CFG_DUT 365
cfg_dut() 127, 128, 132, 366
CLEANUP 366
cleanup() 128, 367
end_test 134, 367
GEN_CFG 365
gen_cfg() 128, 129, 366
log 365
new() 366
notify 365
REPORT 366
report() 367
RESET_DUT 365
reset_dut() 116, 127, 128, 366
run() 127, 128, 366
START 365
start() 128, 133, 367
STOP 366
stop() 128, 367
WAIT_FOR_END 365
wait_for_end() 30, 128, 133, 134, 367

vmm_error() 138, 372
vmm_fatal() 138, 372
VMM_FORMAL 285
vmm_log 368–382

ABORT_SIM 137, 370
add_watchpoint() 377
adopting 9
ALL_SEVS 369
ALL_TYPS 369
append_callback() 378
COMMAND_TYP 136, 369
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CONTINUE 137, 370
copy() 368
COUNT_ERROR 137, 370
create_watchpoint() 376
CYCLE_TYP 369
DEBUG_SEV 137, 139, 369
DEBUG_TYP 135, 139, 369
DEBUGGER 137, 370
DEFAULT_SEV 369
DEFAULT_TYP 369
disable_types() 373
DUMP_STACK 137, 370
enable_types() 373
end_msg() 373
ERROR_SEV 136, 137, 138, 369
FAILURE_TYP 135, 138, 369
FATAL_SEV 136, 137, 138, 369
get_instance() 368
get_message_count() 376
get_name() 368
get_verbosity() 374
IGNORE 370
INTERNAL_TYP 369
is_above() 368
list() 369
log_start() 375
log_stop() 375
modify() 374
new() 368
NORMAL_SEV 136, 138, 369
NOTE_TYP 135, 138, 139, 369
prepend_callback() 378
PROTOCOL_TYP 369
remove_watchpoint() 377
report() 377
REPORT_TYP 136, 369
See also Message service
set_format() 371
set_sev_image() 371
set_typ_image() 371
set_verbosity() 374
severities 369
simulation handling 370
start_msg() 371
STOP_PROMPT 137, 370

text() 371
TIMING_TYP 135, 369
TRACE_SEV 137, 139, 369
TRANSACTION_TYP 136, 369
unmodify() 375
unregister_callback() 378
VERBOSE_SEV 137, 139, 369
vmm_command() 372
vmm_cycle() 373
vmm_debug() 139, 372
vmm_error() 138, 372
vmm_fatal() 138, 372
vmm_log_callbacks 381
vmm_log_format 379
vmm_log_msg 378
vmm_note() 139, 372
vmm_protocol() 373
vmm_report() 372
vmm_trace() 139, 372
vmm_transaction() 373
vmm_verbose() 139, 372
vmm_warning() 138, 372
wait_for_msg() 377
wait_for_watchpoint() 377
WARNING_SEV 138, 369
XHANDLING_TYP 135, 369

vmm_log_callbacks 381
pre_abort() 381
pre_debug() 381
pre_stop() 381

vmm_log_format 379
abort_on_error() 380
continue_msg() 380
format_msg() 379
pass_or_fail() 380

vmm_log_msg 378
vmm_note() 139, 372
vmm_notification 409

reset() 409
vmm_notify 196, 254, 405–410

BLAST 406
configure() 406
copy() 405
get_notification() 408
indicate() 408
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is_configured() 406
is_on() 407
is_waited_for() 407
new() 405
ON_OFF 406
ONE_SHOT 406
reset() 408
set_notification() 408
status() 408
terminated() 408
timestamp() 408
vmm_notification 409
wait_for() 407
wait_for_off() 407

vmm_protocol() 373
vmm_report() 372
vmm_scenario 234, 421

allocate_scenario() 423
apply() 235, 236, 424
define_scenario() 234, 422
fill_scenario() 424
items[] 423
length 422
log 421
redefine_scenario() 422
repeat_thresh 423
repeated 423
scenario_id 234, 235, 422
scenario_kind 422
scenario_name() 422
stream_id 421
using 423
vmm_atomic_scenario 424

vmm_scenario_election 425
vmm_scenario_gen 234, 236, ??–427

apply() 237
DONE 420
GENERATED 420
inject() 421
inject_obj() 421
new() 419
out_chan 419
scenario_set[$] 420
select_scenario 420
stop_after_n_insts 419

stop_after_n_scenarios 419
vmm_scenario 421
vmm_scenario_election 425
vmm_scenario_gen_callbacks 426

vmm_scenario_gen() 213
vmm_scenario_gen_callbacks 426

post_scenario_gen() 426
pre_scenario_randomize() 426

vmm_scheduler 401–405
get_object() 403
new() 401
new_source() 402
randomized_sched 404
reset_xactor() 402
schedule() 403
schedule_off() 402
schedule_on() 402
start_xactor() 402
stop_xactor() 402
vmm_scheduler_election 404

vmm_scheduler_election 404
vmm_trace() 139, 372
vmm_transaction() 373
vmm_verbose() 139, 372
vmm_warning() 138, 372
vmm_xactor 164, 199, 200, 411–415

adopting 10
append_callback() 131, 132, 411
constructor 164
FIRM_RST 413
get_instance() 411
get_name() 411
HARD_RST 413
log 167, 411
main() 164, 165, 414
new() 411
notify 167, 412
prepend_callback() 131, 132, 256, 411
PROTOCOL_RST 413
reset_xactor() 164, 165, 169, 412
restore_rng_state() 415
save_rng_state() 414
SOFT_RST 413
start_xactor() 164, 165, 203, 412
stop_xactor() 165, 412
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stream_id 167, 411
super.main() 165
threads 164
unregister_callback() 412
vmm_callback() 415
vmm_xactor_callbacks 415
wait_if_stopped() 413
wait_if_stopped_or_empty() 413
XACTOR_BUSY 412
XACTOR_IDLE 412
XACTOR_RESET 412
XACTOR_STARTED 412
xactor_status() 415
XACTOR_STOPPED 412

vmm_xactor_callbacks 199, 415
vmm_xvc_manager 444–??

#define 448
#include 448
ACTION 446, 454
comments 447
COVFILE 450
EMIT 456
EVENT 452
EXECUTE 446, 457
INTERRUPT 446, 455
LOG 449
MAPEVENT 453
notifications 444–445
SCENARIO 446, 451
See also XVC manager
STOPONERROR 446, 450
STOPONEVENT 446, 451
test scenario 317
test scenario completion 318, 319
test scenario syntax ??–457
test specification 317
VERBOSITY 446, 448
WAIT 456
XVCTRACE 450

vmmd_log
DEFAULT_HANDLING 370

vmmdata
psdisplay() 138

W
WAIT 456

wait_for() 407
WAIT_FOR_END 365
wait_for_end 367
wait_for_end() 128, 133, 134
wait_for_msg() 377
wait_for_off() 407
wait_for_watchpoint() 377
wait_if_interrupted() 315, 316, 442
wait_if_stopped() 413
wait_if_stopped_or_empty() 413
warning messages 138
WARNING_SEV 136, 138, 369
when inheritance 150, 152
white-box verification 35
within sequence operator 47, 64

X
XACTOR_BUSY 412
XACTOR_IDLE 412
XACTOR_RESET 412
XACTOR_STARTED 412
xactor_status() 415
XACTOR_STOPPED 412
xactors[] 310, 311, 314, 442
XHANDLING_TYP 135, 369
XVC 306–316, 348

action 309
callback methods 314
definition 311
execution 313
interrupt 315
See also xvc_action

action descriptor 310, 311, 312
action library 306, 307
architecture 306–309
commands 312
configuration 307, 308
coordinating 316
coverage metrics 308
directed random 308
directed stimulus 308
driver layer 307, 310
error injection 308
generator layer 307, 309, 310
implementation 309–311
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implementing
action 311–316

interrupt actions 315
layers 307
out-of-order actions 315
See also xvc_xactor
stimulus 308
vs transactor 306

XVC manager 307, 316–319, 323, 325, 
348

instance 316
predefined 317–319

See also vmm_xvc_manager
See also xvc_manager

xvc_action 310, 312, 316, 442–444
byte_pack() 443
byte_size() 444
byte_unpack() 444
callbacks 314
callbacks[] 443
execute() 313, 443
execution() 314
get_name() 442
max_byte_size() 444
new() 442
parse() 312, 443
See also XVC, action

xvc_manager 316, 439–440
add_xvc() 440
log 439
new() 440
notify 440
remove_xvc() 440
See also XVC manager
split() 440
trace 439
xvcQ[] 440

xvc_xactor 310, 312, 316, 440–442
action_chan 441
add_action() 441
exec_chan 310, 313, 442
interrupt_chan 442
new() 441
notify 441
parse() 441

reset_xactor() 311
See also XVC
start_xactor() 311
stop_xactor() 311
trace 440
wait_if_interrupted() 315, 316, 442
xactors[] 310, 311, 314, 442

xvcQ[] 440
XVCTRACE 450
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