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PREFACE

The traditional Alexander von Humboldt Colloquium on Celestial Mechan-
ics, the sixth in the series after the first one 20 years ago, was held in Bad
Hofgastein, in the Hotel Winkler, on 21–27 March, 2004. Like in the for-
mer colloquia, some 45 scientists from all over the world gathered in the
Austrian Alps to present and discuss their newest results in different fields of
our science.

We had a wide spectrum of talks covering the most recent developments
in our area from the theoretical point of nonlinear dynamical systems to
the application to ‘real’ astrodynamical problems. We had interesting talks
and discussions on the formation of planetary systems, their stability and
also the problem of habitable zones in extrasolar planetary systems. A spe-
cial topic was the stability of Trojans in our planetary system, where more
and more realistic dynamical models are used to explain their complex
motions: besides the important contribution from the theoretical point of
view, the results of several numerical experiments revealed the structure
of the stable zone around the libration points. Even in extrasolar plane-
tary systems, such stable orbits for terrestrial like planets may exist and
be stable. The Heinrich Eichhorn lecture, given by Zoran Knežević, from
Beograd, in honor of this Austrian astronomer, was devoted to another
very important topic in Celestial Mechanics: the determination of orbits of
Near Earth Asteroids.

All authors were encouraged to write papers of a length that they con-
sidered suitable for the presentation of their results. The editorial board of
Celestial Mechanics and Dynamical Astronomy arranged for competent and
fast refereeing so that all papers could be reviewed and, when necessary,
revised before publication.

Each preface in the five preceding colloquia showed that as time is going
on it is more and more difficult to find sponsors for our scientific meetings,
a fact from which many of us are suffering. Nevertheless we managed to
find the necessary funds also for the 2004 meeting. Special thanks have to
go to the director of the IAP in Potsdam, Prof. Klaus Strassmeier, with-
out whom, our efforts would have been unsuccessfully. His interest on the
subject of extrasolar planetary systems, a hot topic in Astronomy, and his
financial support saved our meeting. We also have to thank the Austrian gov-
ernment, which supported us with a notable amount of money, furthermore
the Salzburger Landesregierung, the Österreichische Forschungsgemeinschaft
and the Austrian Space Agency. Thanks are also due to the Marktgemeinde
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Bad Hofgastein who made the very successful Salzburger Abend with indige-
nous music from Salzburg possible. Special thanks also to the former director
of the Institute of Astronomy in Vienna, Prof. Paul Jackson for his generous
private donation. We should not forget our hosts Mr. and Mrs. Winkler and
their employees from the hotel who made the stay quite enjoyable. None of
us will forget the very last evening, when the staff of kitchen under the lead-
ership of the cook himself came to offer us as farewell the famous Salzburger
Nockerln, a traditional Austrian dessert. Everyone got a lot of scientific input
during the lectures and the discussions and, to summarize, we all had a splen-
did week in Salzburg in the Hotel Winkler. We all hope to come again in 2008
to discuss new results and new perspectives on a high level scientific standard
in the Gasteinertal.

Rudolf Dvorak and Sylvio Ferraz-Mello
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Abstract. Contemporary surveys provide a huge number of detections of small solar
system bodies, mostly asteroids. Typically, the reported astrometry is not enough to com-
pute an orbit and/or perform an identification with an already discovered object. The
classical methods for preliminary orbit determination fail in such cases: a new approach
is necessary. When the observations are not enough to compute an orbit we represent the
data with an attributable (two angles and their time derivatives). The undetermined vari-
ables range and range rate span an admissible region of solar system orbits, which can
be sampled by a set of Virtual Asteroids (VAs) selected by an optimal triangulation. The
attributable results from a fit and has an uncertainty represented by a covariance matrix,
thus the predictions of future observations can be described by a quasi-product structure
(admissible region times confidence ellipsoid), which can be approximated by a triangu-
lation with each node surrounded by a confidence ellipsoid. The problem of identifying
two independent short arcs of observations has been solved. For each VA in the admis-
sible region of the first arc we consider prediction at the time of the second arc and the
corresponding covariance matrix, and we compare them with the attributable of the sec-
ond arc with its own covariance. By using the penalty (increase in the sum of squares,
as in the algorithms for identification) we select the VAs which can fit together both arcs
and compute a preliminary orbit. Even two attributables may not be enough to compute
an orbit with a convergent differential corrections algorithm. The preliminary orbits are
used as first guess for constrained differential corrections, providing solutions along the
Line Of Variations (LOV) which can be used as second generation VAs to further predict
the observations at the time of a third arc. In general the identification with a third arc
will ensure a least squares orbit, with uncertainty described by the covariance matrix.

Key words: asteroid recovery, ephemerides, orbit determination

1. Introduction

The astrometric observations of a small body by themselves do not provide
an orbit for the observed body, thus do not provide information on the
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nature of the object (asteroid, comet, satellite, Transneptunian). The first
complete mathematical method to convert astrometry into orbits had been
established by Gauss (1809): he devised an algorithm to compute a pre-
liminary orbit satisfying three given observations in different nights. When
additional observations became available, Gauss proposed to correct the
preliminary orbit by solving a least squares problem. This method is now
called differential corrections, and this sequence, preliminary orbit followed
by least squares,1 is now the algorithm almost universally used and consid-
ered classic. At the time when the asteroids were detected as “intruders”
not found in star charts, the observations were indeed typically only one
per night, and the algorithms found by Gauss were the optimal solution
of the orbit determination problem. The fact is, the circumstances of the
observations of asteroids (and other small bodies) are now deeply changed:
the historical discovery procedure should not be conditioning our way of
thinking about orbit determination to be performed with modern data.

The number of asteroid observations has in recent years increased
dramatically, mostly because of the automated surveys like LINEAR,
LONEOS, Catalina, Spacewatch, NEAT. The procedures of operation of
these surveys are basically the same, although they can differ in details. A
number of images of the same area on the celestial sphere are taken over
a short time span, typically within a single night. The images are then dig-
itally blinked and all the changes from one to another logged. If an object
moves from image to image, at a constant rate and along a straight line,
this is probably the detection of a real body. The series of observations,
usually consisting of 3–5 positions over a time span 1–2 hours, are reported
as a sequence of individual observations of the same object (note that this
initial identification is done by the observer); we shall refer to this sequence
as a very short arc.

This method of work is optimal for the discovery of asteroids and com-
ets, but it is not suited for the determination of their orbits. In Gauss’
method for preliminary orbit determination the curvature of the arc on the
celestial sphere appears as divisor already in the first iteration. The smaller
the curvature, the less accurate the resulting orbit: taking also into account
the observational errors, often the standard algorithm fails to provide the
solution. Either the preliminary orbit cannot be determined at all, or it can
be computed, but the differential corrections do not converge. In such a
case, we speak of a Too Short Arc (TSA), by which we mean too short for

1In the modern orbit determination, the least squares solution is computed by solving
numerically the perturbed N-body problem, while Gauss was using the analytical solution
of the 2-body problem, but the spirit is not changed.
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orbit determination. The reported sequence of observations can be consid-
ered the detection of a moving object, rather than a discovery.

This situation is unsatisfactory, given the wealth of information con-
tained in these observations, which remains unused due to the failure of
the orbit determination procedure. Without an orbit, on the other hand,
we cannot determine what kind of body we are looking at, we can neither
compute an ephemeris for the later follow up observations, nor identify the
observed object with any other associated to a known orbit. We need to
establish a new paradigm for the process leading from astrometry to orbit
determination, working efficiently and reliably under the prevailing observ-
ing conditions of today.

Our goal is to develop the procedure which would allow to extract all
the existing information from the TSA, and to combine it with some plau-
sible assumptions about the nature of the motion of the detected body,
in order to get preliminary orbits. Our research plan consists of several
steps, of which three are completed (Milani et al., 2004, 2005a,b); these are
described in the present paper. The basic idea is as follows: a TSA com-
prises a number of observed positions with deviations from alignment com-
patible with a random observational error. We can fit a straight line to the
data and compute two average angular coordinates and their corresponding
average angular rates, assigning the results to the reference epoch (simple
mean of the observing times). We shall call such a set of data an attribut-
able.

Note that an attributable does not provide any information on the geo-
centric distance (range) of the body and its radial velocity (range rate) at
the reference time. However, the range and range rate are constrained if we
assume that the body belongs to the solar system, but that it is not a satel-
lite of the Earth. Hence we introduce a concept of admissible region, which
in our algorithm replaces the conventional confidence region as defined in
the classical orbit determination procedure. Such a region can be sampled
by virtual asteroids, and we can compute a sort of generalized ephemerides
which allow identification in the sense of attribution (Milani et al., 2001),
linking of two TSA’s and computation of preliminary orbit, detection of
virtual impactors, etc.

Our method represents an extension and important upgrade of the exist-
ing methods developed by Virtanen et al. (2001), by Tholen and Whiteley
(2003) and by Goldader and Alcock (2003). We introduced several sig-
nificant improvements making our method more efficient and reliable,
but we agree with these authors’ main conclusion that ephemerides pre-
diction is often possible, with an accuracy good enough e.g. for recov-
ery planning, even when the orbit cannot be computed in the usual
way.
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2. Definition of the Admissible Region

We assume that at time t an asteroid A with heliocentric position P is
observed from the Earth, which is at the same time in P⊕. Let (r, α, δ) be
spherical coordinates for the geocentric position P −P⊕.

DEFINITION 1. We shall call attributable a 4-dimensional vector A =
(α, δ, α̇, δ̇), observed at a time t .

Here t has to be interpreted as the mean of the observation times. The
angles (α, δ) can be specified as necessary: usually the geocentric equatorial
coordinates, right ascension and declination for the standard epoch J2000,
are used. Also, with the data contained in the observations we option-
ally can have another component of the attributable – an average appar-
ent magnitude h. Note that range and range rate (r, ṙ) are left completely
undetermined by this definition.

The conditions to constrain (r, ṙ) make use of the following well–known
quantities:

Heliocentric two-body energy

E�(r, ṙ)= 1
2
‖Ṗ ‖2 −k2 1

‖P ‖ , (1)

where k =0.01720209895 is Gauss’ constant;
Geocentric two-body energy

E⊕(r, ṙ)= 1
2
‖Ṗ − Ṗ⊕‖2 −k2µ⊕

1
‖P −P⊕‖ , (2)

where µ⊕ is the ratio (mass of the Earth)/(mass of the Sun);

Radius of the sphere of influence of the Earth

RSI =a⊕
(µ⊕

3

)1/3
=0.010044 AU ,

that is the distance from the Earth to the collinear Lagrangian point L2,
apart from terms of order µ

2/3
⊕ . Here a⊕ is the semimajor axis of the orbit

of the Earth;

Physical radius of the Earth

R⊕ �4.2×10−5 AU.
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The following four conditions make now obvious physical sense:

(A) D1 ={(r, ṙ) :E⊕ �0} (A is not a satellite of the Earth);
(B) D2 ={(r, ṙ) : r �RSI} (the orbit of A is not controlled by the Earth);
(C) D3 ={(r, ṙ) :E� �0} (A belongs to the solar system);
(D) D4 ={(r, ṙ) : r �R⊕} (A is outside the Earth).

DEFINITION 2. Given an attributable A, we define as admissible region the
domain

D={D1 ∪D2}∩D3 ∩D4 .

3. Borders of the Admissible Region

The multi-line border of the admissible region can be mathematically
described in a rigorous way. The procedures and all the results are
described in full detail in Milani et al. (2004).

The admissible region cannot have more than two connected compo-
nents. More precisely, the degree six polynomial resulting from condition
(C) cannot have more than three real positive roots: when there is only one
such root, the admissible region has only one component, when there are
three, it has two components (see Figures 1 and 2 in Milani et al., 2004).

The boundary of the admissible region consists of

1. part of the algebraic curve E� = 0. If the degree six polynomial has
three positive roots there is another component, a simple closed curve,
at larger values of r: this includes the case when this curve reduces to a
single point, if there is a double positive root;

2. two segments of the straight line r =R⊕;
3. two portions of the curve ṙ2 =G(r) (corresponding to E⊕ = 0) and one

segment of the straight line r =RSI if RSI <r0; if RSI � r0 the two por-
tions of the ṙ2 =G(r) are joined at r = r0.

Note that G(r) derives from condition (A):

ṙ2 � 2k2µ⊕
r

−η2r2 :=G(r),

where η is the proper motion and G(r)>0 for

0<r <r0 = 3

√
2k2µ⊕

η2
.
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Figure 1. Residuals in right ascension (above) and declination (below) with respect to the
fit of the observations of the asteroid 2004 SA1 taken by LINEAR on 14 January 2004.
The crosses represent the observations as reported, the continuous line is the best fitting
parabola, the dotted lines the confidence boundaries for the parabolic fit, the circles are
the observations “without astrometric error”, computed from a very well determined orbit
known a posteriori.

This result provides full analytical and topological description of the
admissible region. From the metric point of view, however, the definition
of the region is not entirely satisfactory, since the inner boundary might
be too close to the observer. Instead of condition (D), therefore, one can
set an upper limit for the absolute magnitude of the body to exclude very
small and very close objects of minor importance:

(E) the absolute magnitude H of the object is �Hmax.

The region defined by condition (E) is a half plane r � rH (the differ-
ence between the absolute and the observed apparent magnitude does not
depend on the range rate). As an example, if we set Hmax =25, correspond-
ing to a body which most likely would not result in a very significant
damage on the ground in case of impact, and the measured apparent mag-
nitude is �20, the resulting rH �0.01 AU.2

2For an accurate computation of rH the phase effect has to be taken into account.
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Figure 2. Triangulation of the modified admissible region for the prediscovery observa-
tions of 2000 EC98. The cross marks the actual position, in the range, range rate plane,
of the Centaur, as determined a posteriori with additional observations.

Sometimes it is also desirable to limit the upper boundary of the admis-
sible region to exclude from consideration the long periodic comets with
large orbital semimajor axes a>amax =100AU; condition (C) in such a case
becomes (C100) E� � −k2/(2amax). If we apply these alternative conditions
(E) and (C100) in place of (C) and (D), we speak of the modified admissible
region.

4. Sampling the Admissible Region

Given a very short arc of observations and the corresponding attributa-
ble A0 = (α, δ, α̇, δ̇) at the mean observation time t , we need to represent
the uncertainty of the orbit, hence of the ephemerides, in a different way
with respect to the traditional method of covariance matrices and confi-
dence ellipsoids. This because a least square solution for the orbital ele-
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ments X, with its normal matrix C and covariance matrix �, is in general
not computable.

If the arc is very short, to the point that there is no significant infor-
mation on the curvature of the path on the celestial sphere, the values of
(r, ṙ) are not constrained by the observations. If, to the contrary, there is
significant curvature, this allows to constrain both the range and the range
rate (Danby, 1989, Ch. 6). Figure 1 shows a typical example of a set of
four observations spanning only one hour, for which the curvature is not
significant, that is less than the uncertainty resulting from the known per-
formance of the station (Carpino et al., 2003.)

Even without curvature information, if we assume the object belongs
to the solar system we can limit the uncertainty in the (r, ṙ) plane to the
admissible region. The (modified) admissible region is a compact subset of
the r > 0 half plane. However, this is still an infinite set, with a complex
shape, thus there are infinite possible orbits and we need to find efficient
ways to sample them with a finite number of points in the initial condi-
tions space, the Virtual Asteroids (VAs) sharing the reality of the object, in
the sense that the orbit through one of them is a good approximation of
the orbit of the real object, but we do not know which one.

This requires to sample the admissible region D with a number of
points. The most natural and geometrically significant way to sample a
2-dimensional region is a triangulation, with nodes and sides joining them.
Regions with simple boundaries (such as the r > 0 half plane) can be
triangulated by equilateral triangles, but the admissible region has a com-
plicated boundary. A Delaunay triangulation has a number of optimal prop-
erties, e.g., it is the triangulation with the largest minimum angle (among
all the triangles).

There is an efficient algorithm to compute a Delaunay triangulation,
starting from a finite sampling of the boundary. Thanks to the explicit
analytic description of the admissible region we can sample the boundary
with approximately uniform distances and compute a Delaunay triangula-
tion with the given nodes on the boundary. Then the nodes are selected as
points (ri, ṙi), i = 1,N sampling the admissible region, with the sides and
the triangles providing an additional geometric structure.3

As an example, from the prediscovery observations of the Centaur 2000
EC98 taken on February 5, 2000 (one month before the official “discovery”)
we have computed the attributable, the modified admissible region and its

3The properties defining the Delaunay triangulation are metric ones, thus the nodes
selected depend upon the choice of a metric. Different metrics can be used to enhance
the resolution in some portions of the admissible region, e.g., when the main goal is to
search for either NEO, or main belt asteroids, or TNO.
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Delaunay triangulation, shown in Figure 2. Note that in this case, as it is
common for Centaurs and Transneptunians, the admissible region has two
connected components and the real object is in the one farther from the
Earth.

The set of VAs selected is then

Xi =
(
α, δ, α̇, δ̇, ri, ṙi

)
, i =1,N.

The set of six coordinates forming the vector Xi = (α, δ, α̇, δ̇, ri, ṙi) can
be considered as a set of orbital elements.4 They can be converted into
Cartesian position and velocity (topocentric, then heliocentric since the
observer’s position is well known), as well as into other types of elements,
e.g., Keplerian.

To assess how representative are the set of orbital element vectors {Xi}
with respect to the full set of possible orbits we need to take into account
that even the measured part of the Xi vectors, that is the 4-dimensional
vector A0, has some uncertainty. The values of the angles and their rates
are computed by least square fit to a set of observations, thus their uncer-
tainty can be represented in the conventional way with a 4 × 4 covariance
matrix �A. If we assume the value of two variables (ri, ṙi), without uncer-
tainty, then the uncertainty of the 6-vector Xi is represented by the condi-
tional covariance matrix, a 6×6 matrix �X

�X =
[

�A 0
0 0

]
with 0 suitable matrices with null coefficients. This matrix is obviously not
positive-definite, but has the (r, ṙ) subspace as kernel (null space).

A geometric description of the confidence region for the orbits compat-
ible with the given attributable with uncertainty (A0,�A) can be given as
follows: for each point A of a confidence ellipsoid centered in A0 (in the
4-dimensional attributable space) we need to compute the admissible region
D(A). This gives as confidence region a subset of the 6-dimensional
elements space with a positive 6-dimensional volume. However, if the
attributable A0 is well determined, the confidence region is flattened, with
a two dimensional “base plate” {A0} × D(A0). This set is not exactly a
product (confidence ellipsoid × admissible region), because the confidence
region changes with the attributable; however, it is not very different from
a product and the set of VAs Xi, i = 1,N selected along {A0} × D(A0) is
quite representative.

4The epoch corresponding to the initial conditions is tj = t − rj /c, with c the speed
of light, to take into account the light travel time.
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5. Propagating to Another Epoch

Given a triangulation Bi, i = 1,N , each (Xi,�X) is an orbital element set
with uncertainty.

If these elements are converted into other coordinates Y , such as
Keplerian elements, and propagated (nonlinearly) to some later epoch t1,
the covariance matrix can be propagated (linearly) to a new one �Y (t1).
The fact that the covariance matrix �X is not invertible does not mat-
ter, but of course �Y (t1) will also have a 2-dimensional kernel. Then it
is possible to compute the predicted attributable (for observation time t1)
with uncertainty (Ai,�Ai ) for each node. The ephemerides (with confidence
ellipse) computed in the conventional case of a well determined orbit are
thus replaced by the union of N confidence ellipsoids, one for each VA, in
the 4-dimensional space of the attributables A′ at the new epoch.

If another very short arc of observations is available at the second
epoch, its attributable with uncertainty (A1,�A1) can be compared with the
predictions for each VA. As an example, for the same asteroid of Figure 2,
we have computed the attributable A1 corresponding to the official discov-
ery observations of March 3–4, 2000: Figures 3 and 4 show the predic-
tions Ai for the same attributable, computed by using only the data of
February 5.

Both in angles and in proper motion the predictions can be good
enough for pointing the telescope and to discriminate this object from oth-
ers in the same fields, that is by using the triangulation technique the “dis-
covery” could have been a targeted recovery. Note that the uncertainty
arises from two mathematically very different sources: the span of the
admissible region, and the confidence ellipsoids. In this example, if only
the connected component farther from the Earth is considered the span of
the predictions from the different VA selected in the admissible region is
small, while the size of the ellipsoid is the main error term. On the con-
trary the other connected component would give predictions for the differ-
ent VAs spread over a large part of the sky, none of them close to the
recovery observations. This means that a targeted recovery after one month
was possible only assuming that the object was on an orbit beyond Jupiter,
an assumption which was by no means obvious given the available data.

6. Identification and Preliminary Orbits

When using the data from surveys, the correspondence between the very
short arcs of observations and the physically distinct objects is not known.
This is the problem of asteroid identification. Since the arcs are too short,
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Figure 3. Prediction (propagated triangulation) for the observations of March 3–4, 2000
based only on the prediscovery observations of February 5, projected on the (α, δ) plane.
The confidence ellipses are also drawn, but the uncertainty of the prediction is dominated
by the unknown location on the (r, ṙ) plane at the time of the prediscovery attributable.

more than one TSA needs to be used to constrain the orbit, to be able to
obtain a least squares solution. However, how do we know whether two
TSAs belong to the same object, having an orbit for neither one of the
two?

An algorithm has been defined (Milani et al., 2001) to decide whether
two arcs of observations are to be identified, provided that an orbit is
available (for at least one of the two) with its uncertainty, represented
by a covariance matrix: this case of identification is called an attribution,
hence the term attributable. When both observed arcs are TSA, the only
available orbits are the ones of the VA defined by the triangulation of the
admissible region of the first attributable.5

The predicted attributable with uncertainty (Ai,�Ai ) is computed for
each node and it is compared with the attributable computed from the

5Of course it is also possible to triangulate the admissible region of the second attrib-
utable: the algorithm is not invariant by exchanging the two observed arcs.
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Figure 4. Detail of the previous figure, showing only the predictions from the nodes
belonging to the second connected component of the admissible region, the one farther
from the Earth. For this subset of VAs, the uncertainty is dominated by the uncertainty
of the attributable, as expressed by its covariance matrix and represented here by the con-
fidence ellipses. The recovery attributable as observed is labeled by the letter R.

observations of the second arc (A1,�A1). By means of the normal matrices

CAi = [�Ai ]−1 , CA1 = [�A1

]−1

the attribution penalty Ki is computed as

Ci
1 =CAi +CA1,

C =CAi −CAi

[
Ci

1

]−1
CAi =CA1 −CA1

[
Ci

1

]−1
CA1,

Ki � 1
2

[
Ai −A1

]T
C
[
Ai −A1

]
.

If the attribution penalty Ki is low for some VA index i, then the two
attributables A0 and A1 may belong to the same object. If this is the case,
we need a preliminary orbit to be used as first guess to start the differential
correction procedure. One possibility is to use Xi as the preliminary orbit,
but there are ways to define a better one, taking into account that an opti-
mal “compromise” attributable between the predicted Ai and the observed
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A1 is provided by the algorithms of Milani et al. (2001, 2005b, submitted):

Ai
1 = [Ci

1

]−1
(CA1 A1 +CAi Ai).

This algorithm has a geometrical interpretation in terms of intersections of
the two families of confidence ellipsoids.

At this stage, the identification between the two attributables can only
be hypothetical. The values of the attribution penalty to be considered
acceptable cannot be very small, because the minimum of the values of Ki

for i =1,N is not the same as the minimum for all possible choices of (r, ṙ)

in D(A0): the finite sampling implies an increase of the penalty with respect
to the minimum possible. As a result, acceptable values may occur also for
couples of attributables which either cannot be fit together, or would give
large residuals.

The procedure outlined in this section has to be interpreted just as
a step of a multi-stage filtering process to select the proposed identifica-
tions, to be confirmed by finding an orbit fitting both sets of observations
according to the least square principle.

7. Constrained Differential Corrections

When only two very short arcs are available the classical differential correc-
tion procedure, starting from a rough preliminary orbit, may not converge.
Even if it converges to a nominal least squares solution, the latter may be
poorly determined and may a posteriori turn out to be very far from the
true orbit. A good strategy is to seek for a Line Of Variations (LOV) orbit,
by means of a constrained differential corrections algorithm (Milani et al.,
2005a).

At a point X in the elements space (at an epoch near the observa-
tions) the orbit determination has a weak direction V1(X), corresponding to
the long axis of the confidence ellipsoid computed with the normal matrix
C(X). The point X is on the LOV if the cost function Q restricted to the
hyperplane H(X) normal to the weak direction V1(X) has a local mini-
mum. The differential corrections can be constrained to corrections lying
on the hyperplane H(X). If the iterations converge, then the limit point is
on the LOV (Milani et al., 2005a). In other words, the constrained differ-
ential corrections are attempting to find a five parameter solution, with
the assumed variable along the weak direction. It is often the case, when
there are few data, that constrained differential corrections converge, but
full differential corrections do not.
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This procedure is very effective when combined with the computation of
preliminary identification orbits described in the Section 6. For the same
example of the previous Figures, namely the attributables formed with the
prediscovery data of February 5, 2000 and with the discovery data of
March 3–4 for the Centaur 2000 EC98, we have selected the 5 VAs with√

Ki �6, corresponding to the nodes 4, 15 and 25–27 of the triangulation,
computed the preliminary orbits and used them to start the constrained
differential corrections.

The LOV is represented by a straight line segment on the (r, ṙ) plane of
the first attributable in Figure 5, with the 5 LOV solutions labeled with the
node indexes. Note that 3 out of the 5 LOV solutions are outside the admissible
region, and indeed they are hyperbolic; nevertheless, one of the elliptic solutions
(number 4) is quite close to the “true” solution (as determined a posteriori with
additional observations), which is marked with a crossed square.
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Figure 5. Identification of the discovery observations (March 3–4, 2000) with the prelim-
inary orbits based upon the February 5 prediscovery observations. The sides of the tri-
angulation joining nodes with identification penalty �36 are marked with a full line, the
others are dotted. The true solution is marked with a crossed square.



FROM ASTROMETRY TO CELESTIAL MECHANICS 15

In this case the attempt to compute a nominal solution, even start-
ing from a comparatively good guess (such as the LOV point number 4),
fails. However, the two elliptic solutions (in particular number 4) are good
enough to compute useful predictions, allowing identification with addi-
tional observations, as described in the next Section.

8. From Multiple Solutions to the Nominal Orbit

When a third very short arc is available, the observations can be compared
with the predictions resulting from the LOV solutions. As an example, from
LOV solution number 4 of Figure 5 we have computed the predictions for
an observation of 2000 EC98 on April 4, 2000. The confidence region is not
small, although it is narrow.

The attribution of this observation to one of the LOV orbits com-
puted as described in the Section 7 is quite obvious. Differential corrections
provide an orbit fitting the three very short arcs with a normalized RMS of 0.35.
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Figure 6. Confidence ellipse on the (α, δ) residuals plane for a recovery observation of
2000 EC98 on 4 April 2000, computed by using one of the LOV solutions based upon
the observations of February 5 and March 3–4. The cross is the recovery observation.
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The orbit is still not tightly constrained by the observations, e.g., the semimajor
axis is 11.3±0.8 AU, the eccentricity 0.33±0.15, but the confidence ellipsoid is
still a reasonably accurate description of the uncertainty region. As this exam-
ple shows, the attribution of additional observations becomes easier and easier
as more short arcs are available. After three short arcs have been fitted, the orbit
determination procedure can follow the classical paradigm, with step by step
improvements obtained by full differential corrections.

This could be the new paradigm, replacing the classical one (Gauss’ pre-
liminary orbit from three observations followed by full differential correc-
tions). First, the attributables are computed by fitting the observations of
the available very short arcs. Let us suppose three attributables belonging
to the same object are available: the steps leading to the orbit determina-
tion are the following:

1. The admissible region of the first attributable is computed and sampled
by a Delaunay triangulation, providing a set of VAs.

2. The predictions for the time of the second arc, computed from the VAs
of the first, are compared with the second arc attributable.

3. For the VAs such that the attribution penalty (with the second attribut-
able) is low a preliminary orbit is computed.

4. The above preliminary orbits are used as first guess in constrained
differential corrections, providing, when there is convergence, LOV solu-
tions fitting both very short arcs.

5. The LOV orbits are propagated and the predictions are compared with
the attributable of the third arc.

6. For the LOV orbits such that the attribution penalty (with the third
attributable) is low full differential corrections are used to check the
attribution.

7. The orbit resulting from the fit to three very short arcs is used with
its covariance, as in the classical procedure, for additional attributions
when more observations are available.

In this way the orbit progresses from the stage in which there is an
essentially 2-dimensional indetermination (steps 1–3), to a 1-dimensional
indetermination (steps 4, 5), to a single nominal least squares solution
(steps 6, 7).

9. Conclusions and Future Work

The new procedure, as described in the previous Section, has been rigor-
ously defined, but to test it for reliability and efficiency in processing a
large data set of astrometric observations is quite another matter.
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Indeed the preceding discussion does not clearly indicate the main diffi-
culty, namely, the false identifications. The problem to be solved is by
no means to find an orbit fitting three very short arcs of observations,
known to belong to the same object. If this was the case, by selecting one
observation from each arc we could use Gauss’ preliminary orbit method,
then proceed with the classical paradigm. The problem is to compute �N

orbits, given �N very short arcs in each one of three separate nights cov-
ering the same (large) region in the sky: for the current surveys, the num-
ber N is of the order of a few thousands, for the next generation surveys
N > 100,000. It is computationally impossible to proceed, for each triple
formed with one arc per each night, with the classical orbit determina-
tion procedure6. Thus we need to apply the most computationally intensive
tests, such as the differential corrections, to a very small subset of the set
of all triples.

The challenge is to define a sequence of filtering stages, with increasing
computational load and screening a decreasing number of couples/triples
of arcs. Of the steps listed in the previous Section, the ones with com-
putational load linear in N , such as step 1, are not a problem. Step 2 is
quadratic in N and requires a very efficient use of the orbit propagator,
possibly a simplified one. Step 3 is quadratic, but simple; it should pro-
vide a number of couples candidate for identification by far smaller than
N2, because step 4 is the most computationally intensive. Steps 5 and 6
are expensive, but they should be performed only on the confirmed cou-
ples. Step 7 needs to be performed only on the confirmed triples. All this
would be inefficient if the number of spurious identifications resulting from
steps 2–4 was large.

To test the algorithms of the new paradigm, and especially the global
data flow and computational load, we need to use first simulated data.
Real data are affected by too many errors and we can not know which
identifications remain to be found. In a simulation, we have a “ground
truth”, that is the catalog of objects used as input, thus we can exactly
compute the level of completeness of a set of identifications obtained with
a given procedure, and also the fraction of false identifications. By training
our algorithms with the simulation test cases we can select the most effi-
cient sequence of operations and the best values for the control parameters.
After this, we have to test on real data.

So far the individual steps have been tested on both simulated and real
data, but the full procedure has been tested only on comparatively small
simulations. The next stages of our work will include testing on full scale

6For � 1015 preliminary orbits and a similar number of differential corrections, the
CPU time with a current processor would be between 1012 and 1013 s.
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simulations of the next generation surveys, and on the real data of the cur-
rent surveys. Only after these tests are successfully concluded we will be
able to claim we have established a new paradigm for the conversion of
astrometric data into catalogs of orbits, and a new link between astrometry
and celestial mechanics.
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Abstract. The orbits of fictitious bodies around Jupiter’s stable equilibrium points L4 and L5

were integrated for a fine grid of initial conditions up to 100 million years. We checked the

validity of three different dynamical models, namely the spatial, restricted three body problem,
a model with Sun, Jupiter and Saturn and also the dynamical model with the Outer Solar
System (Jupiter to Neptune). We determined the chaoticity of an orbit with the aid of the

Lyapunov Characteristic Exponents (=LCE) and used also a method where the maximum
eccentricity of an orbit achieved during the dynamical evolution was examined. The goal of
this investigation was to determine the size of the regions of motion around the equilibrium
points of Jupiter and to find out the dependance on the inclination of the Trojan’s orbit.

Whereas for small inclinations (up to i ¼ 20�) the stable regions are almost equally large, for
moderate inclinations the size shrinks quite rapidly and disappears completely for i > 600.
Additionally, we found a difference in the dynamics of orbits around L4 which – according to

the LCE – seem to be more stable than the ones around L5.

Key words: difference L4 and L5, stability regions, trojans

1. Introduction

The quite complicated dynamics of Trojans was discussed by several authors
since the discovery of the first Trojan in 1906 (Achilles by Max Wolf in
Heidelberg); especially in recent years numerical and analytical work has
been accomplished. One of the first estimations of the stability regions
around the equilibrium points was made by Rabe (1967) in the framework of
the restricted three-body problem. Érdi in many papers (e.g. 1988, 1997)
studied the motion of the Trojans also with analytical methods in the model
of the spatial elliptic restricted three-body problem and even took into ac-
count partly Saturn’s perturbations. Using numerical methods Milani (1993,
1994) could show that some of the real Trojans are on chaotic orbits. An
extensive study via numerical simulations was undertaken by Levison et al.
(1997) who found that the Trojans undergo a slow dispersion in Gigayears
time scales. In simple dynamical models also analytical and semianalytical
methods can be applied which lead to estimates of the stable regions too
small compared to the real ones (e.g. Celletti and Giorgilli, 1991; Beaugé and

Celestial Mechanics and Dynamical Astronomy (2005) 92:19–28
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Roig, 2001; Skokos and Docoumetzidis, 2001; Efthymiopoulos, 2005). Also
possible escapes from the Trojan cloud were discussed by different groups
(e.g. Pilat-Lohinger et al., 1999; Dvorak and Tsiganis, 2000; Marzari and
Scholl, 2002; Tsiganis et al., 2000) in connection with chaotic orbits. The goal
of this investigation is twofold: first we wanted to find out how the largeness
of the stable areas around the Lagrangian equilibrium points of Jupiter
changes with the inclination of the asteroids (e.g. Schwarz and Gyergyovits,
2003; Brasser et al., 2004). Second we wanted to check why there is a different
number of real Trojans around L4 and L5

1. In fact this difference is signifi-
cant (NðL4Þ=NðL5Þ ¼ 5=3) and it is something which we do not understand
up to now. In Figure 1 we show a histogram with respect to the inclinations
and also one with respect to the eccentricities, where the difference in the
distribution for L4 and L5 Trojans is well visible. Although we have some
indications, our results cannot confirm that the reason for the actual differ-
ence is due to a different dynamical structure.

2. Dynamical Models and Numerical Methods

It is evident that the influence of the terrestrial planets is very small on
asteroids around the stable Lagrangian equilibrium points. In numerical
simulations the necessary time step – when we include inner planets – would
be in the order of 1/10 (including Mars) down to 1/80 (including Mercury) of
the time step needed for an integration of the OSS. Therefore any numerical
work on the dynamics of Trojans is undertaken by adding the masses of the
inner planets to the Sun, which is a way of taking into account their influence
on the motion of the other bodies in the Solar system. In our case we tested
three models, namely

1. SUN+JUPITER+massless asteroids (=SJA), which is the spatial elliptic
restricted three-body problem

2. SUN+JUPITER+SATURN+massless asteroids (=SJS)
3. SUN+outerplanets (JUPITER to NEPTUNE)+massless asteroids (the

outer Solar system = OSS).

As integration method for solving the equations of motion we used two
different methods:

– On one hand we used the Lie-integrator with recurrence formulae for the
Lie-terms which can also be utilized for high eccentric orbits due to the
automatic step size (e.g. Hanslmeier and Dvorak, 1984; Lichtenegger,

1By September, 10th 2004 the numbers are for Jupiter Trojans L4: 1060, L5: 628.
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1984). We already used this method for many numerical simulations and
compared it to other methods (e.g. Tsiganis et al., 2000).

– On the other hand we used the program orbit9, developed by Milani2

(1999), a high order Runge Kutta method. This software also computes the
Lyapunov Characteristic Exponents (=LCE), respectively, the Lyapu-
novtime (=LT) which are essential for the determination of the chaoticity
of an orbit (e.g. Froeschlé, 1984).
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Figure 1. Distribution of all real L4 and L5 Trojans with respect to their inclination (top) and
their eccentricity (bottom); L5 Trojans are depicted in light grey.

2For detailed information see: http://copernico.dm.unipi.it/� milani/propel5/node3.html
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Additionally to the LCEs we computed the maximum eccentricity during
the evolution of an orbit to determine its stability and also the region of
stable motion around the two equilibrium points. Our stability criterion for a
Trojan was, that the eccentricity should not exceed e ¼ 0:5; this is a good
measure which we tested and compared to other definitions like crossing the
line of syzygy.3

The integration times were slightly different for the different runs in the
three models; we used always at least 107 years, but for the LCEs we used
always 108 years.

We present the results of the numerical experiments as follows:

– the largeness of the stable region around the equilibrium points depending
on the initial semimajor axes and the synodic longitudes with respect to the
initial inclination in the model SJS (Figure 2);

– the state of chaoticity of the orbits close to L4 and L5 depending on initial
eccentricity and inclination via the LT in the model OSS (Figures 3 and 4);

– the extension in the synodic longitude of the stable zones for a fixed value
of the semimajor axis aTrojan ¼ aJupiter depending on the inclination in the
OSS (Figure 5);

– the comparison of L4 and L5 Trojans in all three models in an initial
condition diagram eccentricity versus LT (Figure 6).

3. Stable Regions Around L4 and L5

We determined the extension of the stable regions with the Lie-integrator and
the maximum eccentricity of an orbit as stability parameter. In the model of
the SJS we integrated the equations of motion from 0� to 360� for a
grid of Dk ¼ 1� in the synodic longitude and semimajor axis of
4:9AU < aTrojan < 5:6AU with Da ¼ 0:02 AU for massless fictitious Trojans.
We set the initial inclination to 0� < iTrojan < 60� with Di ¼ 5� and the initial
eccentricity to zero; X and x of the Trojans were set to the respective orbital
elements of Jupiter. In Fig. 2 we can see that the size of the stable region for
small inclinations 0� < i < 15� is almost the same and it is also equally large
for both Lagrangian points. There is only a small decrease in the size with
decreasing inclination of the Trojan’s orbit 20�OiO35� (not shown here).
For high inclinations 40� < i < 55� (see also Figure 2) the size shrinks very
fast and the stable region disappears completely for i ¼ 60�. The size of the
stable region (number of stable orbits) was determined with a least square
fit: NðiÞ ¼ a � i2 þ b � iþ c with: a ¼ �0:0046� 0:0007; b ¼ 0:0800� 0:0352;

3Alignment of Sun, Jupiter and the Trojan.
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c ¼ 9:13406� 0:3782. N corresponds to the percentage of the stable orbits
out of the grid in initial conditions specified above.

4. Lyapunov-Times for Fictitious L4 and L5 Trojans Depending on iini and eini

With the forementioned program orbit9 we integrated for a grid De ¼ 0:01
between 0 < e < 0:2 and Di ¼ 1:�75 between 0� < i < 34� fictitious Trojans
around L4 and L5 with a semimajor axis a ¼ aJupiter.

4 In the dynamical model

Figure 2. Largeness of the stable regions around L4 and L5 in the dynamical model SJS
synodic longitude versus initial semimajor axis (in AU). Eight different initial inclinations of
the fictitious Trojans are shown: i ¼ 0� and i ¼ 5� (first row), i ¼ 10� and i ¼ 15� (second row),
i ¼ 40� and i ¼ 45�(third row), i ¼ 50� and i ¼ 55� (fourth row); in the synodic coordinates the

position of Jupiter is at k ¼ 180� and a=5.2 AU. Points indicate stable orbits.

4The angle k was chosen such that for L4 Trojans the actual position was 60� ahead of

Jupiter’s mean longitude and for L5 Trojans 60� behind.
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OSS we fixed the integration time to 100 Million years, computed the LTs for
each orbit and plotted it in the respective inclination versus eccentricity
diagram. Globally there is the expected tendency to more chaotic orbits for
larger eccentricities AND larger inclinations; this is true for both equilibrium

Figure 3. Initial condition diagram iini versus eini for fictitious L4 Trojans showing LTs in the
dynamical model OSS; the initial semimajor axes were set to the one of Jupiter.

Figure 4. Caption like in Figure 4 but for L5 Trojans.
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points. Furthermore we can see that in the L4 diagram (Figure 3) even for
large inclinations and small eccentricities the LT is relatively large; this is not
the case for the L5 Trojans (Figure 4). From a comparison of these two
figures it seems that there is more chaos around L5; this is the confirmation of
results of a former study (Schwarz et al., 2004). In addition we checked the
validity of these results by computations of the orbits of fictitious Trojans in
the two simpler models SJA and SJS; this comparison will be discussed in the
final chapter.

5. Extension of the Stable Zone Depending on the Synodic Longitude

of the Trojan

In a further step of our investigation we checked the extension of the stable
region with respect to the initial synodic longitude k in the dynamical model
OSS with orbit9. The initial conditions were the same as in the former runs
(aini ¼ aJupiter), but we varied k from k ¼ 0� to k ¼ 360� with a grid of Dk ¼ 1�

and varied the inclination from i ¼ 0� to i ¼ 50� with Di ¼ 2:�5. The position

Figure 5. Initial condition diagram iini versus the synodic longitude k for fictitious L4 (lower
graph) and L5 (upper graph) Trojans showing the LTs in the dynamical model OSS. The initial

semimajor aini of the fictitious Trojan with initially a circular orbit was set to the one of
Jupiter, which is located at k =180�.
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of Jupiter (Figure 5) is at k ¼ 180�, the two Lagrangian points are at 120�

and 240� for L5 respectively, L4. Again we can see a slightly different
structure with more chaotic orbits in the L5 region (upper graph).

6. Comparison of the Three Dynamical Models SJA, SJS and OSS

We directly compared the three dynamical models SJA, SJS and OSS5 for a
cut of the former Figures 3 and 4 with three different inclinations (i ¼ 10�; 20�

and 30�) and a time interval of 107 years, where we varied the eccentricities
from e=0 to e=0.2 with a grid of De ¼ 0:01. Figure 6 shows the respective
results for i ¼ 30�; there we have plotted how the LT depends on the initial
eccentricity of the fictitious body close to L4 and to L5. In the upper graph for
model SJA we see that the two lines almost coincide and that the LT is
around 5� 106 for all different eccentricities. In the middle graph for model
SJS we can see that the LT for all orbits around L5 is lower than in the model
SJA (dashed line) and differs significantly from L4. The same effect is visible
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Figure 6. Comparison of L4 and L5 Trojans in the three dynamical models SJA (upper graph),
SJS (middle graph) and OSS (lower graph) for iini ¼ 30�. LT is plotted versus the initial
eccentricity for the L4 (solid line) and the L5 Trojans (dashed line).

5Note that taking a more realistic model we introduce additional degrees of freedom and

thus new resonances appear (see Robutel et al., 2005).
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in the lower graph when we compare the dynamical models OSS and SJS6. In
the model SJA there is no decreasing LT visible and the lines are almost
straight; in the two models SJS and OSS there is a small dependance on the
eccentricity visible (slight decrease with eini). It should be emphasized that the
cut for i ¼ 30� is representative and we got similar results for other inclina-
tions. We conclude from this comparison that the effect of different chaoticity
of the orbits for the Lagrangian points is an effect which already appears
when we include Saturn in the model. But, the difference in the chaotic
behaviour of the L4 and the L5 orbits – found with the aid of the LCE – could
be due to a biased choice of initial conditions for Trojans around the two
equilibrium points. We therefore can not yet claim that there is in fact a
difference in the dynamics between the two stable Lagrangian points for more
realistic models including other planets.

7. Conclusions

In this investigation we established the size of stable regions of fictitious
Trojans around the equilibrium points of Jupiter for different dynamical
models: the elliptic restricted problem, a model including also Saturn and one
where the outer planets with their mutual perturbations and their gravita-
tional force on the fictitious Trojans were fully taken into account. This goal
was achieved with long term numerical experiments for fictitious Trojans
around L4 and L5 for a chosen grid of initial conditions. We have tested
different initial eccentricities and inclinations of these Trojans and deter-
mined their stability with a straightforward check of their maximum eccen-
tricity (using results of the Lie-series integration). The major point of our
investigation is that we can see how the stability regions shrink with larger
inclinations and that they finally disappear completely for i ¼ 60�. As proper
tool for determining the dynamical state we also computed the LCE
(respectively, the LT) which gave us an estimation of the chaoticity of an
orbit depending on the inclination and the eccentricity of the Trojans. For
that reason we used a programm provided by Milani et al. (loc.cit) for time
scales of 108 years which gives a good estimate of the LCE. We also pointed
out a possible difference in the stability between the two Lagrangian points,
but this will be a topic of further investigations.

6We did not find this difference when we used the maximum eccentricity. The LCE is a

more sensitive tool.
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Abstract. A symplectic mapping model for the co-orbital motion (Sándor et al., 2002, Cel.
Mech. Dyn. Astr. 84, 355) in the circular restricted three body problem is used to derive
Nekhoroshev stability estimates for the Sun–Jupiter Trojans. Following a brief review of the
analytical part of Nekhoroshev theory, a direct method is developed to construct formal

integrals of motion in symplectic mappings without use of a normal form. Precise estimates are
given for the region of effective stability based on the optimization of the size of the remainder
of the formal series. The stability region found for t ¼ 1010 yrs corresponds to a libration

amplitude Dp ¼ 10:6�. About 30% of asteroids with accurately known proper elements
(Milani, 1993, Cel. Mech. Dyn. Astron. 57, 59), at low eccentricities and inclinations, are
included within this region. This represents an improvement with respect to previous estimates

given in the literature. The improvement is due partly to the choice of better variables, but also
to the use of a mapping model, which is a simplification of the circular restricted three body
problem.

Key words: Nekhoroshev stability, Trojan asteroids

1. Introduction

In recent years, considerable attention has been paid to the so-called
Nekhoroshev stability estimates for non-linear Hamiltonian dynamical sys-
tems of the form

HðJ;/Þ ¼ H0ðJÞ þ �H1ðJ;/Þ; ð1Þ
where ðJ;/Þ are action angle variables, and the Hamiltonian satisfies
appropriate non-degeneracy and analyticity conditions. The Nekhoroshev
time T (Nekhoroshev, 1977; Benettin et al., 1985), or time of practical sta-
bility, is defined by the relations

jJðtÞ � Jð0Þj < �a for all tOT; with T ¼ O exp
�0
�

� �b� �� �
; ð2Þ

where a, b and �0 are parameters depending on the number of degrees of
freedom and the particular form of H0 and H1. The Nekhoroshev estimates
apply to all the orbits in an open domain of initial conditions, independently
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of whether a particular orbit is regular, i.e., lays on a KAM torus, or chaotic.
Regular orbits are stable for infinite times, thus they always remain confined
on their respective KAM tori. On the other hand, chaotic orbits diffuse, in
general, away from the domain of their initial conditions in the action space
in a time which is finite, although it can be extremely long. The Nekhoroshev
formula (2) predicts a finite time of stability for both regular and chaotic
orbits. But this is only a lower bound, i.e., an underestimate of the real time
of stability. This is due to the fact that the Nekhoroshev formula applies
globally, i.e., for all the initial conditions within a particular domain of phase
space. Nevertheless, the Nekhoroshev estimates are obtained by precise
analytical methods, while most methods to determine the details of diffusion
for particular orbits are subject to numerical uncertainties.

In many applications, the Nekhoroshev time T is fixed. For example, in
celestial mechanics T is equal to the age of the solar system. In this case, the
techniques of the analytical part of the Nekhoroshev theorem can be used to
provide estimates of the size of the region of practical stability, i.e., the size of a
domain in the actions for which the Nekhoroshev time is equal to T. This
possibility is linked to the asymptotic properties of formal series, the con-
struction of which is at the core of the analytical part ofNekhoroshev theorem.
Precisely, the analytical part of the theorem is based on the construction of a
Birkhoff normal form for the Hamiltonian H by a series of consecutive near-
identity canonical transformations ðIðiÞ; hðiÞÞ ! ðIðiþ1Þ; hðiþ1ÞÞ ! � � �, where the
variables ðIðiþ1Þ; hðiþ1ÞÞ differ by corrections of order Oð�iþ1Þwith respect to the
variables ðIðiÞ; hðiÞÞ and ðIð0Þ; hð0ÞÞ ¼ ðJ;/Þ. After N successive normalizations
the Hamiltonian has the form

HðIðNÞ; hðNÞÞ ¼ ZNðIðNÞ; hðNÞÞ þ RNðIðNÞ; hðNÞÞ; ð3Þ
where the part ZN (normal form), is an integrable Hamiltonian containing
terms up to order �N. In the non-resonant case ZN depends on IðNÞ alone,
while in the resonant case ZN depends on IðNÞ and on resonant linear com-
binations of the angles hðNÞ. In both cases, one may define approximate
integrals UðNÞ of the Hamiltonian (3). In the non-resonant case, the integrals
are as many as the numbers of degrees of freedom and they coincide with the
actions UðNÞ ¼ IðNÞ. In resonant cases, in general, there are fewer integrals
than the number of degrees of freedom, and they are defined by relations of
the form UðNÞ

res ¼ k � IðNÞ; where k is an integer vector spanning the plane
normal to a vector n satisfying the resonance condition n � xðIðNÞÞ ¼ 0. In
both cases, the integrals U are approximate. The speed of their variations is
determined by the size of the remainder RðNÞ, since we have

dUðNÞ

dt
¼ fUðNÞ;Hg ¼ fUðNÞ;RðNÞg: ð4Þ
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Now, the asymptotic properties of the formal series allow one to prove
that the size of the remainder jjRNjj, as a function of N, initially decreases as
N increases, giving the impression that the Hamiltonian is transformed, step
by step, to an integrable Hamiltonian in the new variables. However, the
decrease of the size of the remainder stops at a particular order Nopt, which is
called the optimal order of truncation of the formal series. For N > Nopt, the
size of the remainder increases with N, tending to infinity as N ! 1. The
minimum remainder, is obtained for N ¼ Nopt. It can be shown (e.g.,
Giorgilli, 1999) that the size of the optimal remainder is estimated by

jjRoptjj ¼ 1

Oðexpð1=�bÞÞ : ð5Þ

It follows that the time derivative (4) is exponentially small with respect to
1=�, i.e., we obtain Nekhoroshev’s formula.

If the Hamiltonian (1) has an elliptic equilibrium point, then in the
neighborhood of this point the effective perturbation is the distance q from
the equilibrium point. In such a case, we can obtain exponential estimates
depending on q, namely

jjRoptjj ¼ 1

Oðexpð1=qbÞÞ ; ð6Þ

which yield an exponentially long Nekhoroshev time T ¼ Oðexpð1=qbÞÞ
(Giorgilli, 1988; Lochak, 1992; Fass�o et al., 1998; Niederman, 1998). If the
time T is fixed, say the age of the solar system, the size of the region of
practical stability q can be determined. In practice, the size q is determined
directly from the norm of the optimal remainder jjRoptjj found by calcu-
lating the normal form with the help of a program performing computer
algebra operations. The results are rigorous on the condition that one can
determine rigorously the radius of convergence of the Hamiltonian
expansion and the bounds on the round-off errors generated by the com-
puter manipulator (e.g., Celletti et al., 2000). In practice, even without such
rigorous bounds, the results are in general quite precise, because the
roundoff error does not have a serious influence on the sizes of the dom-
inant terms in the series, which are determined mainly by the mechanism of
accumulation of small divisors.

An alternative way to produce formal integrals with exponentially small
remainders is the direct method due to Whittaker (1916), Cherry (1924) and
Contopoulos (1960). Consider an isochronous Hamiltonian of the form

Hðp;/Þ ¼ x� � pþ �H1ðp;/Þ ð7Þ
i.e., for which the point p ¼ 0 is an elliptic equilibrium point. We consider
formal integrals given as series in the powers of �, namely U ¼ U2 þ U3 þ � � �,
where the terms Ui are of order �i�2, i.e., of order i=2 in the actions p. The
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integrals can be calculated without any transformation of the Hamiltonian to
a normal form, by just solving, at successive orders, the equation fU;Hg ¼ 0.
This yields the recursion scheme for the ith formal integral, i ¼ 1; . . . ; n given
by

U2 ¼ x�ipi; fUr;H2g ¼ �
Xr�1

j¼2

fUj;Hr�jg ð8Þ

If we truncate the integral U at order N, we obtain a truncated series UðNÞ

which represents an approximate integral of the Hamiltonian H. The time
derivative of the truncated series is given by

dUðNÞ

dt
¼ RN ¼

X1
j¼Nþ1

Uj; ð9Þ

where

Ur ¼
XN
k¼2

fUk;Hr�kg; r > N ð10Þ

It can be shown that the series RN, called the remainder of the integral, is
convergent (Giorgilli, 1988). In most cases the convergence is rather fast, so
that the size of RN does not differ much from the size of the first order term
of the reainder UNþ1. At any rate, the size of RN can be estimated ana-
lytically. In a recent work (Efthymiopoulos et al., 2004) it is shown that the
patterns of accumulation of small divisors in the Birkhoff normal form and
in the integrals found by the direct method are similar, so that the size of
remainders, as estimated by the two methods, grow, as a function of N, by
essentially the same law. It follows that the optimal remainder, as calcu-
lated by the direct method, has an exponentially small size, thus it leads to
an exponentially small rate of variation of the values of U.

The purpose of the present paper is to demonstrate the applicability of the
formal integrals calculated by a direct method by considering a problem that
represents an example of application of Nekhoroshev stability estimates in a
system of physical interest: the problem of the Sun–Jupiter Trojan asteroids.

The best Nekhoroshev result obtained so far as regards the stability of the
Trojans is the estimate of the size of the region of effective stability given by
Giorgilli and Skokos (1997), and by Skokos and Dokoumentzidis (2001). The
size of the region of stability found by these authors, for T fixed to 109

revolutions of Jupiter, is about 10 times smaller than the size of the region
within which most real asteroids are observed. This is already a realistic result
compared to the previous estimates on the same problem, which were giving
a size of about 104 km (Simo, 1989; Celletti and Giorgilli, 1991). Neverthe-
less, this result is obtained by considering a simple model for the Trojan
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motion, namely the Sun–Jupiter circular restricted three body problem
(CRTBP). This model cannot capture the reach resonant structure of the
phase space in the neighborhood of the triangular points, since most resonant
phenomena are produced by secular perturbations induced either by the
elliptic motion of Jupiter or by other planets (especially Saturn). The details
of this structure, as revealed by elaborate numerical methods (Levison et al.,
1997; Dvorak and Tsiganis, 2000; Tsiganis et al., 2000, 2002), are beyond the
scope of the present theory of Nekhoroshev estimates.

Some numerical results published in this issue (Robutel et al., 2005), ob-
tained with frequency analysis of orbits in the full problem, indicate the
existence of resonant strips responsible for the slow chaotic diffusion of the
asteroids, which are generated by secular resonances. At the border of the
stability zone these strips overlap. However, most strips do not penetrate into
a region, which extends up to �5.3 AU for eccentricities not larger than 0:05,
inclinations �IJupiter. Now, this region is about seven times larger than the
region of stability determined analytically by Giorgilli and Skokos (1997) and
twice larger than the region found in the present paper. Thus, theory has still
much to do to improve the estimates even with the CRTBP (which, numer-
ically, gives overestimated stability regions extending up to a ¼ 5:4 AU),
before adding more degrees of freedom (which will reduce the estimates). We
conjecture that the results on Nekhoroshev stability derived by the CRTBP
model are physically relevant in a region devoid of chaotic strips due to
secular resonances. Thus, the question of optimizing the analytical Nek-
horoshev estimates represents both a mathematically and physically inter-
esting problem. The addition of more degrees of freedom is, of course, an
obvious next step in our study.

Section 2 gives the general setting of the direct method of construction of
formal integrals for symplectic mappings without use of a normal form. It
also explains how to obtain precise Nekhoroshev estimates of the region of
effective stability by calculating the norm of the remainder series of the
formal integrals. Section 3 presents the application of this method to the
problem of the Trojan asteroids. This allows one to obtain an estimate of the
size of the region of effective stability expressed in terms of proper elements.
The final outcome is that Nekhorshev stability, for 1010 yrs, is guaranteed in
a region corresponding to a libration amplitude Dp ’ 10:6�. This is the angle
corresponding to the amplitude of libration of the critical argument of the
asteroid (e.g., Erdi, 1988). About one third of the asteroids with published
proper elements by Milani (1993) are included in this region of stability.
A correction factor to this result is estimated as 1:28, giving Dp ’ 13:5�.
Section 4 contains the main conclusions of the present study and suggestions
for future research.
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2. Nekhoroshev Stability for Mappings

2.1. FORMAL INTEGRALS FOR MAPPINGS. THE DIRECT METHOD

We shall consider first the construction of formal integrals in non-linear
symplectic mappings by a method, which is the discrete analog of the direct
method of Whittaker (1916), Cherry (1924) and Contopoulos (1960). The
method is easily exemplified in the case of 2D symplectic mappings. Consider
the non-linear symplectic mapping given by the equations

x0 ¼ Fðx; yÞ;
y0 ¼ Gðx; yÞ ð11Þ

with an elliptic point at the origin. Let x=2p be the rotation number at the
origin. Then, by a standard linear symplectic transformation to new complex
conjugate canonical variables z; z�, the mapping takes the form

z0 ¼ eix½zþ F2ðz; z�Þ þ F3ðz; z�Þ þ � � ��; ð12Þ
where Fsðz; z�Þ, s ¼ 2; 3; . . . are complex polynomial functions of order s in
the variables ðz; z�Þ. Furthermore, if the mapping equations (12) are trun-
cated at order N, the symplecticity condition is satisfied also up to terms of
order N.

The linearized map z0 ¼ eixz possesses the exact integral

U2ðz; z�Þ ¼ zz�; ð13Þ
which represents circles around the origin. We look for a formal integral of
the non-linear mapping (12) starting with the term (13), namely

Uðz; z�Þ ¼ U2ðz; z�Þ þ U3ðz; z�Þ þ � � �

¼ zz� þ a30z
3 þ a21z

2z� þ a12zz
2
� þ a03z

3
� þ � � �

¼
X1

p;qP0;pþq¼2

apqz
pzq�:

ð14Þ

For pþ q ¼ 2 we have apq ¼ dpq. For pþ q > 2, the unknown coefficients apq
can be specified by a recursive scheme. The series (14) must satisfy the fol-
lowing homological equation (Bazzani and Marmi, 1991)

Uðz0; z0�Þ ¼ Uðz; z�Þ: ð15Þ
Equation (15) takes the formX1

m;nP0;mþn¼2

amnz
0mz0n� ¼

X1
p;qP0;pþq¼2

apqz
pzq�: ð16Þ

Applying the mapping Equation (12) to each monomial term z0mz0n� yields
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z0mz0n� ¼
X1

pþq¼mþn

Amnpqz
pzq�; ð17Þ

where the sum is over all positive integers p; q.
The coefficients Amnpq are known quantities from the mapping equations.

In particular, for the same orders mþ n ¼ pþ q, we have

Amnpq ¼ eiðp�qÞx if m ¼ q; n ¼ p;

0 otherwise.
ð18Þ

Then, the left-hand side of Equation (16) takes the formX1
mþn¼2

amnz
0mz0n� ¼

X1
mþn¼2

amn

X1
pþq¼mþn

Amnpqz
pzq�

¼
X1
pþq¼2

Xmþn¼pþq

mþn¼2

amnAmnpq

 !
zpzq�: ð19Þ

Equating the last expressions in Equations (16) and (19) yields a relation
between the coefficientsXmþn¼pþq

mþn¼2

amnAmnpq ¼ apq: ð20Þ

This is a linear system of equations for the unknown coefficients apq. Notice
that the coefficients apq of any given order s ¼ pþ q depend on the known
coefficients Amnpq and on the coefficients amn of orders mþ n smaller or equal
to s. Therefore, the system (20) can be solved step by step for successive
orders. In fact, from Equation (18) it follows that the system (20) is diagonal.
Namely

½1� eiðp�qÞx�apq ¼
Xmþn<pþq

mþn¼2

amnAmnpq: ð21Þ

A term zpzq� is called ‘resonant’ if the quantity 1� eiðp�qÞx in the left-hand side
of (21) is equal to zero. If a term is not resonant, then Equation (21) can be
solved immediately yielding

apq ¼
Pmþn<pþq

mþn¼2 amnAmnpq

1� eiðp� qÞx : ð22Þ

If however a term is resonant, then the construction cannot in general pro-
ceed, unless the right-hand side of (21) (numerator of (22)) is also zero, in
which case the coefficient apq remains unspecified and it can be assigned
arbitrary values. In this case the resonant term is called ‘arbitrary’.

We distinguish two cases:
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(a) Non-resonance. If x=2p is irrational, then 1� eiðp�qÞx becomes zero iff
p ¼ q. This condition corresponds to terms of the form zpzp� which are
powers of the second order term U2. In this case, by applying a theorem
of Birkhoff (1920) it is possible to show the existence of a solution of (21)
that defines a non-resonant formal integral series. Therefore, the
numerator of (22) for p ¼ q is always zero, and terms of the form zpzp�
appear with arbitrary coefficients (see Bazzani and Marmi, 1991 for de-
tails).

(b) Resonance. If x=2p ¼ n=m, with n;m relatively prime integers, then
1� eiðp�qÞx becomes zero if p� q ¼ Km, with K integer. In this case we
have the appearance of zero divisors in (22), and the formal construction
cannot proceed further.

In the resonant case, however, it is still possible to proceed by an algo-
rithm which is the discrete analog of the ‘resonant third integral’ of Conto-
poulos (1963). This algorithm is as follows. Starting the construction as
previously with U2 ¼ zz�, yields a zero divisor in (22) with non-zero
numerator for p ¼ m; q ¼ 0 or for p ¼ 0; q ¼ m, meaning that the coefficients
of the terms zm and zm� , of degree m, cannot be specified and the construction
cannot proceed further.

On the other hand, due to the resonant rotation angle x=2p ¼ 1=m, there
is one more real-valued isolating integral of the linearized mapping
z0 ¼ ei2p=mz. This is the phase integral

S0;m ¼ zm þ zm� : ð23Þ

Starting the construction with the terms S0;m yields a zero divisor in Equation
(22), in the resonant terms S1;mþ1 ¼ zmþ1z� þ zzmþ1

� , of degree mþ 2.
Now, starting a constructionwith the fourth order termU2;2 	 U0

4 ¼ z2z2� it is
easy to prove that this term cannot produce a resonant term of degree m, but
only resonant terms of degreemþ 2, namely S1;mþ1 ¼ zmþ1z� þ zzmþ1

� . Thus, if
the terms U2;2 and S0;m are combined, i.e., if the construction starts with both
terms present, it is possible to eliminate the resonant termsS1;mþ1, i.e., to render
the corresponding numerator in Equation (22) equal to zero. The correct series
starts with the terms

Uð4Þ
res ¼ b2;2U2;2 þ � � � þ S0;m þ � � � ; ð24Þ

where the value of the coefficient b2;2 is chosen by the requirement that the
numerator of (22) for p ¼ mþ 1; q ¼ 1 (or p ¼ 1; q ¼ mþ 1) is zero. Thus,
the solution of Equation (21) for the terms S1;mþ1 is an arbitrary constant.
This method eliminates the resonant terms of order mþ 2.
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In the same way it is possible to eliminate all the resonant terms of sub-
sequent orders. A careful analysis of the contributions of the various reso-
nant terms to resonant terms of higher order reveals the appropriate
algorithm, which is given by the following scheme:

– Start the construction with S0;m

– For q ¼ 2; . . . ;N, solve a linear system for the coefficients of the terms Uq;q

and Sq�2j;qþjðm�2Þ ( j ¼ 1 to ½ðq� 1Þ=2�) so as to eliminate the terms
Sqþ1�2j;qþ1þjðm�2Þ with ( j ¼ 1 to ½ðq� 1Þ=2� þ 1Þ
The same algorithm eliminates also all the terms of the form Uq;q, up to

ordet N, as in the non-resonant construction.
This method is easy to implement by a computer program. In fact,

the algorithm is faster than the algorithm of the resonant normal form, be-
cause it avoids any canonical transformation from old to new variables, and
then back to the old variables, in terms of which the final integral is expressed.

2.2. DETERMINATION OF THE REGION OF EFFECTIVE STABILITY

Let UðNÞðz; z�Þ ¼ U2ðz; z�Þ þ U3ðz; z�Þ þ � � � þ UNðz; z�Þ be a formal integral of
the mapping (12) truncated at order N. The homological equation (15) is
satisfied up to order N, i.e.,

UðNÞðz0; z0�Þ ¼ UðNÞðz; z�Þ þ RðNþ1Þðz; z�Þ; ð25Þ
where the remainder RðNþ1Þ contains terms starting at order Nþ 1, namely

RðNþ1Þ ¼ U
ðNþ1Þ
Nþ1 þU

ðNþ1Þ
Nþ2 þ � � � ð26Þ

We shall define the norm of a polynomial as the sum of the moduli of the
polynomial coefficientsXr

k;l¼1

aklz
kzl�

�����
����� ¼

Xr
k;l¼1

jaklj ð27Þ

and the polynomial norm at radius q asXr
k;l¼1

aklz
kzl� q ¼

Xr
k;l¼1

jakljqkþl:

�����
����� ð28Þ

The series

jjRðNþ1Þjjq ¼ jjUðNþ1Þ
Nþ1 jjq þ jjUðNþ1Þ

Nþ2 jjq þ � � � ð29Þ
is absolutely convergent in a disk q < R with R > 0 (Bazanni and Marmi,
1991). The size of jjRðNþ1Þjj can be bounded from above as follows: the
remainder up to order M is given by the finite sum
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RðNþ1;MÞ ¼ U
ðNþ1Þ
Nþ1 þU

ðNþ1Þ
Nþ2 þ � � � þU

ðNþ1Þ
M : ð30Þ

Assuming that the mapping (11) is analytical, the expansion (12) is conver-
gent in a disk of non-zero radius around the origin. This implies that there is
a positive constant rF such that jjFnjjrnFO1 for all n with 1On < 1. Then, for
all nPN, and for all q with 0OqOrF, the following inequality holds (Bazanni
and Marmi, 1991):

jjUðNþ1Þ
nþ1 jjqO

q
rF

n

ðn�Nþ 1Þ jjU
ðNþ1Þ
nþ1 jjq: ð31Þ

The ratio bn ¼ n=ðn�Nþ 1Þ is a decreasing sequence of n, having its max-
imum bN ¼ N at n ¼ N. Thus, the following bound holds also:

jjUðNþ1Þ
nþ1 jjqO

Nq
rF

jjUðNþ1Þ
nþ1 jjq ð32Þ

implying that, for q sufficiently small, the subsequence jjUðNþ1Þ
n jj

for n ¼ N;Nþ 1; . . . is bounded from above by a converging geometrical
sequence with ratio Nq=rF. Thus, the remainder series is absolutely
convergent. However, the bound (32) is far from optimal. A much bet-
ter bound is found by applying the inequality (31) for n ¼ M. Thus we
find

jjRðNþ1ÞjjqOjjRðNþ1;M�1Þjjq þ jjUðNþ1Þ
M jjq

X1
k¼0

ðgðNþ1Þ
M;q Þk; ð33Þ

where

g
ðNþ1Þ
M;q ¼ Mq

rFðM�Nþ 1Þ :

Let q� be such that g
ðNþ1Þ
M;q�

< 1. Then, for all q < q� we have

jjRðNþ1Þjjq O jjRðNþ1;M�1Þjjq þ jjUðNþ1Þ
M jjq

1

1� g
ðNþ1Þ
M;q�

: ð34Þ

Define now the constant Bq� as

Bq� ¼
jjRðNþ1;M�1Þjjq� þ jjðNþ1Þ

M jjq�1=ð1� g
ðNþ1Þ
M;q�

Þ
jjUNþ1jjqNþ1�

: ð35Þ

Then, the following lemma holds:

for all q < q�; jjRNþ1jjqOBq� jjUðNþ1Þ
Nþ1 jjqNþ1: ð36Þ
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Equation (36) determines a rigorous upper bound for the size of the

remainder jjRNþ1jjq in terms of the size of the leading term of the remainder

jjUðNþ1Þ
Nþ1 jj.
The next step is to define appropriate bounds on the values of the trun-

cated integral UN. Since UNðz; z�Þ ¼ zz� þOðjzj3Þ ¼ q2 þOðq3Þ, with q ¼ jzj,
and UN is real-valued, it follows that there exists a radius q0 such that, for all
z with jzj < q0, UNðz; z�Þ > 0. Furthermore, the following inequality holds
obviously

for all q < q0; q2 �
XN
k¼3

jjUkjjqkOUNðz; z�ÞOq2 þ
XN
k¼3

jjUkjjqk: ð37Þ

Let now IN > 0 denote a fixed value of the function UNðz; z�Þ. Define the
maximum radius qmaxðINÞ as

qmaxðINÞ ¼ max q : UNðqei/; qe�i/Þ ¼ IN; 0O/ < 2p
� � ð38Þ

and the minimum radius

qminðINÞ ¼ min q : UNðqei/;qe�i/Þ ¼ IN; 0O/ < 2p
� �

: ð39Þ
Since the value IN ¼ 0 corresponds to the origin, we have qmaxð0Þ ¼ 0 while,
by continuity arguments, the function qmaxðINÞ is monotonically increasing in
a neighborhood of the origin with qmaxðINÞ ¼ I

1=2
N þOðINÞ. Select IN so that

qmaxðINÞ < q0. Define the coefficient

A ¼ 1

q2maxðINÞ
XN
k¼3

jjUkjjqkmaxðINÞ: ð40Þ

Then, the following inequality holds

for all qminðINÞOqOqmaxðINÞ; q2 �
XN
k¼3

jjUkjjqkPð1� AÞq2; ð41Þ

which, in view of Equation (37) implies that

for all qminðINÞOqOqmaxðINÞ; IN > ð1� AÞq2: ð42Þ
A comment is in order to clarify the meaning of the above, rather tech-

nical, inequalities. When one works with the normal form approach, the level
curves of the truncated integrals IN after N Birkhoff normalizations represent
exact circles, i.e., UNð~z; ~z�Þ ¼ ~z~z�, where ð~z; ~z�Þ are the new canonical vari-
ables after N successive canonical transformations. Thus the relation IN ¼ q2

is exact. This one-to-one correspondence between level values of the integrals
and the respective radii q allows to convert the variations of the integrals DIN
to variations Dq determining immediately the size of the region of effective
stability in the phase space of the new canonical variables. This is no longer
true with integrals UN calculated with a direct method, because in that case
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the level curves UNðz; z�Þ are deformed circles. Thus one has to define annuli
qminðINÞOqOqmaxðINÞ, which contain the level curve UNðz; z�Þ ¼ IN. The
norm of the remainder (Equation (36)) is given in terms of q rather than IN.
By using the coefficient A an ‘effective radius’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IN=ð1� AÞp

is defined such
that the size of the remainder can be expressed in terms of the level value IN
rather than q. Precisely, for all IN such that qmaxðINÞ < q� the following
inequality holds

for all qminðINÞOqOqmaxðINÞ < q�;

jjRNþ1jjqOBq� jjUNþ1jj IN
1� A

� �ðNþ1Þ=2
: ð43Þ

Finally, consider a discrete time t ¼ 1; 2; . . . ; corresponding to the number
of iterations of the mapping (12). Let UNðtÞ 	 UNðzt; z�tÞ. Initially, an orbit is
on the level curve IN ¼ UNð0Þ. But due to Equation (25), at every iteration
the orbit changes level curve by moving to a new integral curve I0N, which
differs from IN by RNþ1. The value of RNþ1 is real, but it can be either
positive, or negative. Let us now suppose that after t steps, the orbit has
reached the level curve UNðz; z�Þ ¼ I0N, with I0N > IN. The maximum value of
the variation I0N � IN is found by replacing the remainder RNþ1 in Equation
(25) by its upper limit given by Equation (43). This yields

I0N � INOtBq� U
ðNþ1Þ
Nþ1

��� ��� I0N
1� A

� �ðNþ1Þ=2
: ð44Þ

Equation (44) implies that the minimum time t needed for an orbit to
reach a level curve UNðz; z�Þ ¼ I0N, starting from the level curve
UNðz; z�Þ ¼ IN, is given by

tmin ¼ ðI0N � INÞð1� AÞðNþ1Þ=2

Bq� U
ðNþ1Þ
Nþ1 ðI0NÞðNþ1Þ=2:

������ ð45Þ

Equation (45) always underestimates the Nekhoroshev time of stability,
because the expression in the denominator is an upper bound of the real
size of the remainder which overestimates the speed of variations DIN.
Indeed, Equation (45) implies that the time to reach infinity I0N ! 1 is
equal to zero, which is obviously wrong. This is due to the fact that the size
of the remainder during the whole excursion from IN to I0N ! 1 is esti-
mated by the value of the denominator of Equation (45), when I0N ! 1,
which is infinite. To circumvent this problem, we follow the approach of
Giorgilli and Skokos (1997), namely, we find the maximum of (45) with
respect to I0N, which corresponds to the least possible underestimate of the
Nekhoroshev time. The maximum of (45) is at I0N ¼ ðNþ 1ÞIN=ðN� 1Þ,
which yields the optimal Nekhoroshev time
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tnk ¼ 2ð1� AÞðNþ1Þ=2

ðNþ 1ÞBq� jjUðNþ1Þ
Nþ1 jjðI0NÞðN�1Þ=2 : ð46Þ

Solving Equation (46) with respect to I0N yields the level curve UNðz; z�Þ ¼ IN
such that no initial condition in the interior of this curve may travel a dis-
tance larger than DIN ¼ I0N � IN within the time tnk. This is given by

IN ¼ N� 1

Nþ 1

� �
2ð1� AÞðNþ1Þ=2

ðNþ 1ÞBq� jjUðNþ1Þ
Nþ1 ktnk

 !2=ðN�1Þ
: ð47Þ

The region of effective stability defined by Equation (47) is a function of the
order of truncation N of the formal integral. This reflects the fact that the size
of the remainder depends on N. The asymptotic character of this dependence

(e.g., Bazzani and Marmi, 1991) is expressed in the estimate jjUðNþ1Þ
Nþ1 jj � N!

which, by use of Stirling’s formula, implies

IN � 1

tnk

� �2=N
e

N

� �2
: ð48Þ

For large N, IN decreases as 1=N2, but for small N, IN increases with N

essentially as 1=
ffiffiffiffiffiffi
t2nk

n

q
. It follows that there is an optimal order of truncation

N ¼ Nopt at which IN has its maximum value. This defines the optimal region
of Nekhoroshev stability for the given time of stability. In the actual calcu-
lations, we do not make any use the asymptotic formula (48), but only of
Equation (47). Namely, the region of stability is determined by evaluating IN
up to the order N ¼ Nopt, where IN reaches its maximum value. Thus all the
above described inequalities are fulfilled.

3. Application to the Trojan Asteroids

3.1. THE MAPPING MODEL

When seeking to determine a region of Nekhoroshev stability, a crucial factor
is the choice of appropriate variables which should be such so as to fit better
the shape of the region that needs to be described. A natural choice of
variables for the Trojan motion are the canonical variables

x ¼
ffiffiffiffi
a
a0

r
� 1; s ¼ k� k0;

x2 ¼
ffiffiffiffi
a
a0

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1

� �
; -; ð49Þ
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where a, e are the semi-major axis and eccentricity of the asteroid, a0 is the
semi-major axis of Jupiter, s is the critical argument, i.e., the difference be-
tween the mean longitude of the asteroid and of Jupiter, and - is the lon-
gitude of the pericenter of the asteroid. These variables have the advantage
that the pair of action–angle variables x; s are immediately translated in the
motion of the asteroid in configuration space. Namely, x gives the amplitude
of librations perpendicularly to the circle of the 1:1 coorbital motion, while
s� s0 measures the synodic libration around the equilibrium values s0 ¼ p=3
(for L4) or 5p=3 (for L5). If both librations are considered nearly harmonic,
then, following Érdi (1988), the amplitude of librations is measured by the
parameter Dp given by

Da ¼ a� a0 ’ 2a0x ’
ffiffiffiffiffiffi
3l

p
a0Dp sin/; Ds ¼ s� s0 ’ Dp cos/; ð50Þ

where/ is thephaseof a libration,which is definedby thepositionof theguiding
center of themotion of the asteroid along a tadpole-shaped orbit. According to
Equation (50) the parameter Dp is the amplitude of libration of the critical
argument. For most asteroids the amplitude of librationDp ranges from a few
degrees up to about Dp ’ 35� (Milani, 1993; Érdi, 1997; Levison et al., 1997),
while in generalDp decreases as the eccentricity increases.

Now, the period of oscillations of x2 is shorter than the period of oscil-
lations in the plane ðx; sÞ by a factor ’1/13. Thus, if Hðx;x2; s;-Þ is a 2
degrees of freedom Hamiltonian describing the motion in the variables (49) in
a rotating frame, a good first approximation of the stability region is ob-
tained by averaging H with respect to the short period terms. The resulting
Hamiltonian hHiðx; s;x2Þ is of one degree of freedom, with x2 as a param-
eter. In this approximation, the width of the stability region coincides with
the width of the separatrix passing through the unstable Lagrangian point at
s ¼ p. This gives Dp ’ 75�.

However, the averaging process ignores all the resonant phenomena
producing chaos near the separatrix. To reintroduce these phenomena,
Sándor et al. (2002) used the averaged Hamiltonian hHi to produce a map-
ping for the Trojan motion, based on the method of Hadjidemetriou (1991).
The mapping of Sándor et al. reproduces the characteristics of the Poincaré
surface of section of the original Hamiltonian. In particular, the mapping has
the same fixed points and with the same stability as the Hamiltonian.

In the case of zero eccentricity e ¼ 0, the mapping reads

xnþ1 ¼ xn þ 2pl sin sn 1� 1

ð2� 2 cos snÞ3=2
 !

;

snþ1 ¼ sn þ 2p
1

ð1þ xnþ1Þ3
� 1

 !
: ð51Þ
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Figure 1(a) shows the phase portrait of the mapping (51). The invariant
KAM curves of this mapping correspond to librations around L4. Each
invariant curve defines approximate proper elements corresponding to the
amplitudes of libration Dp ¼ smax � smin, and dp ¼ amax � amin, where a is
defined in terms of x by Equation (49). Figure 1(b) shows Dp as a function of
dp, calculated from Figure 1(a), by considering 10 invariant curves of Fig-
ure 1(a) with initial conditions x ¼ 0 and s ¼ p=3þ nDs with n ¼ 1; 2; . . . ; 10
and Ds ¼ p=60. Notice that the points of Figure 1(b) are almost on a straight
line with slope ’ ð1=0:273Þ(rad/AU). The theoretical value given by Érdi
(1988) is ð1=0:2783Þ(rad/AU).

(a) (b)

(c)

Figure 1. (a) The phase portrait of the mapping (51). (b) The relation dp versus Dp (see text for

definitions) as found by the invariant curves of the mapping (51). (c) The Poincaré surface of
section for the equations of motion under the full Hamiltonian of the planar circular restricted
three-body problem. The section is given by the variables ðs; xÞ when the surface -� k0 ¼ 0 is

crossed by an orbit at the positive sense. The Jacobi constant is taken equal to E ¼ �1:49948,
which is very close to the Jacobi constant at L4, EL4 ¼ �1:49952. This corresponds to
eccentricities e < 0:04.
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It should be stressed that a large fraction of the KAM tori of Figure 1(a)
are destroyed, when the eccentricity of Jupiter, or other secular perturba-
tions, are turned on. Thus, it makes no sense to try to define a region of
effective stability by identifying its limit as the outermost KAM curve of
Figure 1. This is what we avoid doing by use of Nekhoroshev theory, i.e., we
avoid determining whether an orbit is of KAM type or not. Precisely, the
power of Nekhoroshev theory is in the fact that the size of the remainder of
formal series at any order is determined by the accumulation of small divisors
corresponding to near-resonances of similar order. The sequences of small
divisors ak, as a function of the order k can be determined by the relation

ak ¼ min expðiðm� nÞxÞ � 1;m; n > 0;mþ n ¼ kf g; ð52Þ
where x is the rotation number of the central fixed point.

Figure 1(c) shows the Poincaré surface of section for the exact Hamilto-
nian model of the CRTBP (Szebehely, 1967), at the Jacobi constant
E ¼ �1:49948, which is very close to the value at L4 EL4 ¼ �1:49952. The
maximum eccentricity, at the outer invariant curve is e ¼ 0:04, thus the
surface of section can be compared with the mapping phase portrait, which
corresponds to e ¼ 0. The mapping portrait is angularily deformed with
respect to the Hamiltonian portrait. This phenomenon is an artifact of the
method to produce the mapping. However, the extent of the stability region
is the same in the two portraits, and the resonant chains of same multiplicity
are at approximately the same distances from the center. The rotation
number of the central point of Figure 1(c) can be used to compare the
sequences of divisors found for the mapping model (51) with the corre-
sponding sequences for the Hamiltonian model. The comparison is shown in
Figure 2(a), for even orders, and Figure 2(b), for odd orders. The sequences
are similar, in general, but there is a small divisor appearing in the mapping
model at order 37, which appears much later (at higher orders) for the
Hamiltonian model. However, this divisor does not affect the results on
Nekhoroshev stability, because it was checked numerically that it does not
produce dominant terms in the formal series up to order �50 because of the
‘retardation effect’ (Turchetti, 1989).

We conclude that the mapping (51) is a good model of the planar CRTBP
for orbits with low proper eccentricities. On the other hand, the present
model is of limited use in the case of orbits with high proper eccentricities.
Let us note, however, that the ratio dp=Dp remains remarkably constant in
this case too, as well as in the case where the proper elements are determined
either by the elliptic restricted three body problem (Érdi, 1988), or by precise
numerical integrations including the effects of the major planets. For
example, the ratios the proper elements Dp and dp for 177 asteroids published

CHRISTOS EFTHYMIOPOULOS44



by Milani (1993), in a full model with all major planets, respect the costancy
of the ratio Dp=dp, despite the fact that the individual variations exhibited by
Dp or dp for particular asteroids are large.

3.2. RESULTS

To calculate a formal integral for the mapping (51), the mapping has to be
written first in the form (12). The mass parameter is set l ¼ 00095387536.
The mapping (51) is Taylor expanded around the elliptic point x0 ¼ 0,
s0 ¼ p=3. Setting x ¼ x0 þ u, s ¼ s0 þ v the polynomial expansion of the
mapping is given in the variables u; v by

u0 ¼ uþ 0:013485095vþ h.o.t;

v0 ¼ �18:849555921uþ 0:745811943vþ h.o.t: ð53Þ
The expansion (53) is truncated at order 60, meaning that the mapping (53)
satisfies the symplectic condition also up to terms of order 60. The size of the
first neglected term increases with the distance from the elliptic equilibrium.
At the border of the stability the error is � 10�19, which is below the com-
puter precision.

By a standard procedure, the linearized mapping is diagonalized so that
its invariant ellipses are transformed to invariant circles. The diagonaliz-
ing transformation is given in terms of the complex conjugate variables z; z�
by

(a) (b)

Figure 2. The sequences of divisors ak defined by Equation (52) for the mapping model (51)

(line with dots) and for the mapping defined by the surface of section of the full Hamiltonian
of the planar CRTBP (line without dots). (a) Even orders. (b) Odd orders.
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uffiffiffi
2

p ¼ 0:08043775836ðzþ z�Þ þ 0:02096888502iðz� z�Þ;
vffiffiffi
2

p ¼ 0:00054271899ðzþ z�Þ � 3:10785164655iðz� z�Þ: ð54Þ

After the above transformation, the mapping takes the standard form

z0 ¼ ei2pxzþ h.o.t; ð55Þ
where the rotation number is equal to x ¼ �0:0811163650236938. This value
is quite close to the value of the rotation number x2=x1 ¼ �0:0807256266212
of the frequencies x1;x2 found by the diagonalization of the Hamiltonian of
Giorgilli and Skokos (1997, Equation (4)). In particular, we notice that the
rotation number is negative, namely the two first frequencies of the system
have opposite sign. This is characteristic of the Lagrangian points L4 and L5.

A formal integral for the mapping (55) is calculated by a computer pro-
gram as described in Section 2. Then, the estimate of the effective region of
stability can be obtained as explained in Subsection (3.1), after the constants
A and Bq� have been specified. To specify these constants we proceed in the
following way. Setting the Nekhoroshev time equal to tnk ¼ 109 periods of
Jupiter, we obtain first an approximation to the radius of the region of
stability by finding the maximum value of the quantity

qN ¼ 1

NjjUNjjtnk

� �1=ðN�1Þ
ð56Þ

with respect to N. This maximum value is set equal to q�, while the order
N ¼ Nopt, where the maximum occur is set as the optimal order of truncation.
Then, the value of q� is used to calculate Bq� by Equation (35), and A by
Equation (40), where qmax is set equal to q�. In fact, in all the calculations we
have multiplied the value of the coefficient Bq� by a factor 2, called a ‘safety
factor’. By this method the values of both A and Bq� are overestimated,
because q� is always larger than the effective radius corresponding to the level
value IN found by Equation (47). This makes the results precise although not
necessarily optimal.

In the particular case of the mapping (55) we find the parameters

rF ¼ 0:11; Nopt ¼ 38; A ¼ 0:1896; Bq� ¼ 7:83

and by the criterion (47), the region of effective stability for tnk ¼ 109 is
identified as the interior of the closed curve U38ðz; z�Þ ¼ I38 with

I38 ¼ 4:31587� 10�4:

This result can now be expressed in terms of the proper elements Dp and dp. It
is known that the librations around the fixed point are not exactly symmetric

CHRISTOS EFTHYMIOPOULOS46



(Namouni and Murray, 2000). Thus, the amplitude of the libration Dp is
defined as

Dp ¼ vmax � vmin

2
; ð57Þ

where vmin and vmax are the minimum and maximum value of v; respectively
on the curve U38ðu; vÞ ¼ I38, where the integral U38 is expressed in terms of
the old variables u; v. Similarly, by defining umin and umax we find the
amplitude of oscillations

xp ¼ umax � umin

2
; ð58Þ

which gives the amplitude of oscillations of the semi-major axis

dp ¼ ½ðxp þ 1Þ2 � 1�a0 ð59Þ
with a0 ¼ 5:2037AU, i.e., the semi-major axis of Jupiter. The final results
are

Dp O 10:6�; dp O 0:0512 AU ð60Þ

This result represents an improvement over previously obtained Nekhoro-
shev estimates of the region of effective stability (Giorgilli and Skokos, 1997;
Skokos and Dokoumentzidis, 2001). The region of stability where real
asteroids are observed extends to Dp ’ 33�, meaning that the region given in
Equation (60), by analytical methods, has a size equal to about one third the
real size of the observed region of stability. Previous estimates were giving a
size smaller by a factor 10 for most asteroids, and up to a factor 30 in the
worst case (Giorgilli and Skokos, 1997). It should be stressed, however, that
the mapping model used here is also a simplification of the Hamiltonian
problem, which reproduces approximately the dynamics only at low proper
eccentricities.

The improvement made by the present estimates can be checked also by
finding the proportion of real asteroids which are in the region of stability
defined by Equation (60). Milani (1993) published proper elements for 174
asteroids in the 1:1 resonance with Jupiter calculated by numerical inte-
gration of the orbits in a model including Jupiter and the other major
planets. These elements were reconfirmed by Beaugé and Roig (2001) up to
a marginal difference in the values of Dp. There are 54 out of 174 asteroids
for which Dp < 10:6�. This corresponds to a proportion of about one third
of the asteroids for which Nekhoroshev stability is guaranteed. However,
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this criterion is not very reliable, because many asteroids have eccentricities
and inclinations well above zero, so that for these asteroids the mapping
(51) is not even approximately valid. A more relevant comparison can be
mabe by selecting only those asteroids with low values of ep and ip. From
tables 1 and 2 of Milani (1993) there are 49 asteroids with epO0:08 and
ipO10�, i.e., sin ipO0:17. Of these asteroids, 14 are within the region of
stability defined by Equation (60). Thus, Nekhoroshev stability for 1010

years is guaranteed for about 30% of the asteroids in this sample. It should
be stressed that this estimate is pessimistic due to the upper bounds set in
the various inequalities. For example, the size of the region of stability is
underestimated due to the coefficient A and the safety factor 2 in the
coefficient Bq� . The factor of underestimation is ’ ð1� AÞ=21=N ’ 0:786.
Thus, a correction factor 1=0:786 ¼ 1:27 gives a more realistic value of the
libration angle Dp ¼ 1:27� 10:6� ¼ 13:5�. With the latter value, the fraction
of asteroids of the above sample which are inside the region of Nekhoro-
shev stability increases to 57%. Figure 3 shows the distribution of the 49
asteroids of the sample with respect to Dp. For comparison, the value found
by Nekhoroshev theory and its correction are plotted as vertical lines in the
same diagram.

Figure 3. The distribution of real Trojan asteroids with respect to the libration amplitude Dp

following Milani (1993). The histogram refers to asteroids for which epO0:08 and ipO10�. The
left vertical line gives the limit of Nekhoroshev stability according to Equation (60), while the
right vertical line gives a correction of this limit as explained in the text.
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4. Discussion and Conclusions

The history of Nekhoroshev estimates for the stability region of the Trojan
asteroids of Jupiter is characterized by a sequence of successively improved
estimates. The first estimates (Simo, 1989; Celletti and Giorgilli, 1991) gave a
region too small, 10�3 the size of the real region. The next advancement was
by Giorgilli and Skokos (1997), yielding 1/10 of the real size. The sources of
improvements were (a) the use of better variables, and (b) the measurement
of the size of the remainder directly from the data of the calculated formal
series. This eliminated the need for a priori estimates of this size, which were
necessarily more pessimistic.

The present paper improves the previous results by a factor 3. About 30%
of real asteroids are included in the stability region found theoretically. The
improvement is due partly to the choice of the variables given in Equation
(49). This is because the most suitable variables to describe a motion corre-
sponding to a perturbed Keplerian ellipse are Delaunay variables. However,
the improvement is also due to the use of a mapping (Sándor et al., 2002)
which is a simplified model of the Hamiltonian model of the CRTBP. Thus,
the present results are not strictly comparable with the previous results.
However, the improvement due to the choice of better variables is real.

The main limitation in all the above studies is the choice of the circular
restricted three body model. The inclusion of higher order perturbations due
both to Jupiter and to the other major planets is a necessary next step to
demonstrate the extent of validity of the present results.

However, there is one more limitation of the above method of obtaining
Nekhoroshev estimatesof the stability region.This is the fact thatEquation (44)
overestimates the real variation of the integralDI ¼ I0N � IN for any time t > 1.
In fact, Equation (25) gives the variationof the value of the integral for one step.
Thisvariation iswell estimatedbyusing thenormof the remainder insteadof the
precise value of the remainder. For example, Figure 4 gives the average per step
absolute variationDIof thevalueof IN forN ¼ 38as foundnumerically (dashed
curve), and analytically, by using the norm of the remainder (solid curve). The
variation DI is plotted as a function of the distance q along a line of initial
conditions ðv ¼ 0; u ¼ qÞ. The plateau on the left for the dashed curve (numer-
ical) is due to the threshold 10�12 of roundoff errors. Beyond this threshold, the
variations found by the remainder criterion are comparable to those found
numerically, except for a factor due to the summingof the absolute values of the
coefficients in the norm of the remainder.

On the other hand, Equation (44) gives an upper bound of the cummulative
variation I0N � IN after t steps, which is estimated from above as t� the per-step
variation. But this is a serious overestimation, because the real variationsDI at
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everystepmayhaveopposite signs, thusaddingtoatotalvariationmuchsmaller
than their absolute sum. An elementary example is the random walk model.
AfterN random steps, themaximumpossible variation isN�DI, but themean
variation isonlyN1=2 �DI.ForN ¼ 1010 (ageof theUniverse) the twoestimates
differ by five orders of magnitude. On the other hand, the maximum variation
provides a rigorous upper bound of the variation, while the mean variation,
althoughmore realistic, is not a rigorous estimate.

This kind of problem cannot be faced by the present method to obtain
Nekhoroshev stability estimates, but requires a detailed theory of the diffu-
sion at the border of the stability region. However, even the present estimates
are realistic and demonstrate the usefulness of Nekhoroshev theory.

In conclusion the present paper:

(1) Provides an algorithm for the construction of formal integrals in sym-
plectic mappings by a direct method, i.e., without use of the normal form.
The algorithm is given for both the non-resonance and resonance cases.

(2) Determines a method to obtain precise analytical Nekhoroshev estimates
on a region of effective stability for a given time of stability.

(3) Implements the above methods in the case of a symplectic mapping for
coorbital motion in the circular restricted three body problem, derived by
Sándor et al. (2002). By this method, the effective stability for the Trojan

Figure 4. The average variation DI of the value of the formal integral, truncated at order 38,
as a function of the distance q along a line of initial conditions ðv ¼ 0; u ¼ qÞ. The dashed line
is a numerical evaluation along the orbits, while the solid line is the analytical estimate by the

norm of the remainder.
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asteroids, over 109 periods of Jupiter, is demonstrated theoretically in a
region corresponding to a maximum amplitude of libration Dp ¼ 10:6�.
About 30% of asteroids with known proper elements, at low proper
eccentricities and inclinations, are included in this region.

(4) A further improvement requires (a) a more complete model (elliptic þ
other major planets), and (b) the use of a detailed theory of diffusion at
the border of the stability region. These are topics of current research.
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Abstract. In this paper, we make a systematic study of the global dynamical structure of the
Sun–Jupiter L4 tadpole region. The results are based on long-time simulations of the Trojans
in the Sun, Jupiter, Saturn system and on the frequency analysis of these orbits. We give some
initial results in the description of the resonant structure that guides the long-term dynamics of

this region. Moreover, we are able to connect this global view of the phase space with the
observed Trojans and identify resonances in which some of the real bodies are located.

Key words: Arnold web, Frequency Map analysis, Trojan asteroids, resonances

1. Introduction

The long-term stability of the Jovian Trojan asteroids is a classical problem
of dynamical astronomy. In the literature, this question is usually ap-
proached using analytical (see Giorgilli et al., 1989; Celletti and Giorgilli,
1991; Giorgilli and Skokos, 1997; Skokos and Dokoumetzidis, 2000; Gabern
and Jorba, 2001) or numerical methods. Among the numerical studies, two
points of view are prominent:

(1) Local approach. Definition and computation of proper elements and
proper frequencies. A synthetic theory for the proper elements was first
established by Milani (1993, 1994). Later on, Beaugé and Roig developed
a semi-analytical theory for Trojan proper elements (Beaugé and Roig,
2001). The question of Trojan proper frequencies was also tackled by
(Gabern et al., 2004).

(2) Global approach. Since the work by (Levison et al., 1997), where the
spatial distribution of the escape times was studied, different attempts to
describe the global dynamics of the co-orbital region have been done:
(Michtchenko et al., 2001; Nesvorny and Dones, 2002 and Tsiganis
et al., 2005).
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In this paper, we try to combine these two different approaches by placing
several hundreds of observed Trojans in the corresponding global dynamical
background.

First, we show some initial results of a global and systematic study of the
tadpole region near the Jupiter co-orbital L4 point (Robutel et al., in prep-
aration). We describe some of the families of resonances that are funda-
mental to understand the complicated structure underlying the 1:1 mean
motion resonance between Jupiter and a Trojan. The computations are based
on the Frequency Map analysis (Laskar, 1999) and the results rely on an
estimate of the chaoticity of some relevant slices of the phase space. These
global pictures of the dynamical structure around the L4 co-orbital region
and the knowledge of the specific values of the fundamental frequencies allow
us to identify the resonances that arrange the main structures of the phase
space.

Once these global dynamical pictures are obtained, a natural question is
what information they provide concerning the real Trojan asteroids. In this
regard, we explain a way of superimposing the observed Trojans in these
dynamical maps and we are able to identify actual asteroids inside some of
the main resonances of the global pictures.

The simulations are based on a direct numerical integration of the Re-
stricted 4-Body Problem defined by Sun, Jupiter, Saturn and the asteroid
(SJS model). Gabern et al. (2004) already showed that for studying the
Trojan problem, restricted 3-body models are not enough. Moreover, in
(Gabern, 2003), some relatively simple semi-analytic four and five body
models (3-body models with 2-dimensional quasi-periodic forcing (Gabern
and Jorba, 2004) were used to study this problem and also proved not
accurate enough for the complete description of the fundamental frequencies
of the Trojan asteroids. Thus, more planetary frequencies have to be taken
into account.

In (Robutel et al., in preparation), it is shown that the SJS model already
captures the main global dynamical structures of the co-orbital regions.
Actually, the addition of Uranus and Neptune to the problem, does not affect
the main features of the phase space, but just shifts slightly the location of the
resonances and makes everything a little bit more unstable (Robutel et al., in
preparation).

2. Frequency Map and Global Structure of the Phase Space

In Figure 1, we show a dynamical map of the tadpole region of the leading
Lagrangian point L4 (similar pictures are obtained in the L5 case). This
picture is generated by an integration of 32;000 fictitious Trojans. Their
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initial semi-major axis and eccentricities are chosen on a grid of 400� 80
points belonging to the domain

ða; eÞ 2 A ¼ ½5:2035; 5:4030� � ½0:05; 0:30�; ð1Þ
where the points in the mesh are equally separated at a distance of
Da ¼ 0:0005AU, for the a-axis, and De ¼ 0:003125, for the e-axis. The
remaining initial elliptic elements are fixed and equal the following values:
r ¼ k� k5 � p=3, rg ¼ -� -5 � p=3, X ¼ X5 and I ¼ I5 þ 2�, where the
subscript 5 denotes the elements of Jupiter. The choice of these values is
natural if one realizes that, for the Sun–Jupiter Elliptic Restricted Three
Body Problem (ERTBP), the elliptic elements of the L4 point are: a ¼ a5,
e ¼ e5, r ¼ rg ¼ 0, X ¼ X5 and I ¼ I5.

The trajectories of these bodies are numerically integrated using a sym-
plectic integrator of the family SABAn (Laskar and Robutel, 2001) on two
consecutive time spans of 5 Myears each. Then, using the Frequency Map
Analysis method (Laskar, 1990, 1999), two determinations of their funda-
mental frequencies are associated to every Trojan (one for each time span).

If we assume that the motion of Jupiter and Saturn is quasi-periodic
(which is a very natural assumption on the 10 Myears considered here;
Laskar, 1990; Robutel and Laskar, 2000) the orbit of this planetary system
lies on a five-dimensional invariant torus, with fundamental frequencies
ðn5; n6; g5; g6; s6Þ. The two first frequencies are the proper mean motions
(frequencies associated to the orbital motion) of Jupiter and Saturn,
respectively; while the other three are the secular frequencies of the Sun–
Jupiter–Saturn system (see Table I).

In these conditions, the motion of the asteroid can be seen as a 3-degrees
of freedom Hamiltonian system with quasi-periodic forcing. This implies that
a quasi-periodic trajectory is parametrized by eight fundamental frequencies.
Five correspond to the quasi-periodic forcing and the remaining three

TABLE I

Fundamental frequencies.

Planet freq. (00/year) Asteroid freq. Min. (00/year) Max. (00/year)

n5 109254:63165 m 7000 9500
n6 43995:34975 g 250 450

g5 4:02760 s �50 10
g6 28:00657
s6 �26:03912

The first two columns show the fixed frequencies used for the planets, subscript 5 stands for

Jupiter and 6 for Saturn. In the last three columns, we show the minimum and maximum
values (for the initial conditions considered) of the frequencies of the test-particles.
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characterize the dynamics of the Trojan (Jorba and Villanueva, 1997). These
three fundamental frequencies ðm; g; sÞ are respectively the proper libration
frequency (connected to the libration in the 1:1 Mean Motion Resonance
(MMR) with Jupiter), the proper precession perihelion frequency of the
asteroid and the one corresponding to its node. They are the image of the
Frequency Map, which can be defined as (Laskar, 1999)

Fh0: ða; e; IÞ �! ðm; g; sÞ; ð2Þ
where h0 ¼ ðk0;-0;X0Þ is the fixed phase vector given above.

In general, the Frequency Map is a correspondence from an action space
to a frequency space (Laskar, 1999). Even though this is not exactly the
case here, our choice of initial phases h0 makes the elements ða; e; IÞ very
close to action variables (Robutel et al., in preparation). Thus, we can
assume that, at least inside regular regions of the phase space, the map Fh0
defines a one-to-one correspondence between the domain D ¼ A� S (where
A is given by (1) and S ¼ I5 þ ½0�; 38�� is the interval of inclinations con-
sidered) and its image F ¼ Fh0ðDÞ. The last three columns of Table I give
the extremes of this frequency domain F . For theoretical reasons discussed
in (Robutel et al., in preparation), the frequency set F is a representative
domain in the sense that the fundamental frequencies of a given Trojan
belong to F , no matter which their initial phases are. This assumption is
satisfied for the large majority of the observed Trojans.

Therefore, the determination of the fundamental frequencies m, g and s is
the key point of our study. Besides giving an estimation of the diffusion rate
used to detect instabilities (Laskar, 1990; Robutel and Laskar, 2001), it
allows us to study the dynamical structures of the frequency space. Indeed, it
is in this space (see Figure 2) that phenomena associated to resonances
become clear and are quite easy to identify (Robutel et al., in preparation). In
addition, the fundamental frequencies are considered in Section 3 as proper
elements (Milani, 1993), and are used to locate observed Trojans on our
dynamical maps (i.e., Figure 1).

The bodies remaining inside the co-orbital region during the whole inte-
gration (10 Myears) are colored, in Figure 1, according to the relative vari-
ation of the proper libration frequency dm ¼ ðm1 � m2Þ=m1. Being m1 (m2) the
determination of the proper libration frequency, m, on the 1st (2nd) time-
interval. The color code goes from dark gray, corresponding to motion close
to quasi-periodic (dm < 10�7), to light gray, for strongly irregular motion
(dm > 10�2). The black points (i.e., the top-right corner of the plot) corre-
spond to initial conditions that escape from the co-orbital region before the
10 Myears integration ends.

Given this color code, it is clear from Figure 1 that the instability increases
with the distance from the L4 equilibrium point (placed in the left-bottom
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corner in this coordinates), ending in the black region (near the top-right
corner). This leads to split this part of the phase space into three different
domains: the escape domain (black), the high diffusion domain, defined
arbitrarily by dm > 10�3 (light gray to white), and the long-term stability
domain, with dm < 10�4;5 (dark gray).

By comparing this figure (and also Figure 3) with the ones obtained by
Tsiganis et al. (2005), we note that a strong correlation exists between the
value of dm and the escape time from the co-orbital regions. More precisely,
our high diffusion domain (dm > 10�3) corresponds to an escape time of
about 107 – 108 years, while the escape time inside the long-term stability
region is larger than 109 years.

These two domains are strongly interpenetrated. Indeed, Figure 1 shows a
kind of Arnold web made of unstable tongues (light gray) generated by res-
onances. These structures are practically isolated at a small distance of L4 and
they have a trend to overlap when the distance increases, until complete
overlapping is reached close to the border of the black area. Each one of these
tongues is generated by resonances that can be split in four different families.

Family 1: The first two families belong to a larger class of resonances, which
is the one that gathers the secondary resonances between the proper libration
frequency m and a linear combination of planetary mean motions. The first

Figure 1. Dynamical map of the tadpole region surrounding L4. It corresponds to a section of
the phase space in the plane ða0; e0Þ where the other initial elliptic elements are fixed (for

instance, the inclination is I ¼ I5 þ 2�). The gray code corresponds to the temporal variation
of m in logarithmic scale: log dm (units: Myears�1). The symbols inside the plot indicate main
resonant structures. See text for more details.
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family involves the high frequency n5, while the second family is related to the
short period combination n5 � 2n6. Although this distinction in two different
sets is quite arbitrary, it becomes natural if one realizes that the resonances
related to n5 already arise in the ERTBP (or even in the circular one), while,
of course, the second family of resonances only can appear when the per-
turbation of two planets is considered.

Indeed, in the case of the RTBP (circular and planar cases) the secondary
resonances associated to n5 take the form:

pm� n5 þ g ¼ 0; with p 2 f12; 13; 14g: ð3Þ
Since g 
 m 
 n5 (see Table I), the resonances (3) are isolated and do not
generate significant chaotic behaviors. On the contrary, as soon as a non zero
eccentricity is given to Jupiter, the resonance (3) has to be replaced by the
multiplet

pm� n5 þ qg ¼ 0; where q is an integer ð4Þ
that generates, by overlapping, a large chaotic zone. It is worth to mention
that this kind of secondary resonances can be seen as the overlapping of the
1:1 MMR with the high order resonances (p : p�1). By overlapping, these
narrow resonances that accumulate far before reaching the stable an unstable
L3 manifolds (surfaces that separate tadpole orbits from horseshoe orbits
(Nesvorny et al., 2002)), generate strong global instability.

The number of harmonics associated to the first family of resonances still
increases when Saturn’s perturbation is taken into account. Indeed, because
of the additional secular frequencies of the planetary system g5, g6 and
eventually s6, the resonant relation defining the first family becomes:

pm� n5 þ qgþ q5g5 þ q6g6 ¼ 0; with qþ q5 þ q6 ¼ 1: ð5Þ
Two of the most important contributions of this family are visible in Fig-
ure 1. The large gap above the white region indicated by ‘‘B’’ is generated by
(5) with p ¼ 14, while the V-shaped (large light gray to white) region labeled
by ‘‘A’’ is associated to p ¼ 13.

Family 2: The second family in the class of secondary resonances, that we will
call secondary three body resonance, plays an important role in the Trojan
swarms. This type of resonance appears when the libration frequency m and the
high frequency n5 � 2n6 are close to commensurability. Among all the possible
combinations, the ones that generate large chaotic regions are given by:

5m� 2ðn5 � 2n6Þ þ pgþ p5g5 þ p6g6 ¼ 0; with pþ p5 þ p6 ¼ �2: ð6Þ
Nesvorny and Dones (2002) first mentioned the possibility of instabilities
generated by this family.

In the same way as in Family 1, because the secular frequency g is more
than fifteen times larger than g5 and g6, a given p defines a multiplet of
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resonant harmonics. The four widest regions associated to this family are
indicated in Figure 1 by the numbers 0 to �3 corresponding to the value
of the integer p. It is important to mention that these resonances do not
come from the direct action of Saturn, but from the short period pertur-
bations of Jupiter’s orbit due to Saturn (the same type of effect appears in
(Ferraz-Mello, 1997) for a different problem).

Indeed, the frequencies corresponding to n5 � 2n6 and to the Great
Inequality 2n5 � 5n6 are associated with terms of large amplitude in the
quasi-periodic approximation of Jupiter’s eccentricity. For small Trojan
eccentricity, resonant regions corresponding to different members of this
family are isolated between them. But for larger Trojan eccentricities, these
regions overlap in the neighborhood of the long white half-arch labeled by
‘‘a’’.

Family 3: This white arch (that cuts the vertical axis at about e ¼ 0:265)
corresponds to the location of the secular resonance s ¼ s6. This resonance,
which influence on the Trojans was already suggested by (Yoder, 1979) and
studied by Bien and Schubart (1984), Milani (1993), Dvorak and Tsiganis
(2000) and Marzari and Scholl (2002) (among others) is known to induce
very strong instabilities in the neighborhood of the long-term stability
domain. Indeed, the majority of the Trojans that enter this secular resonance
escape the co-orbital region in a few tenths of million years. Apart from this
first order resonance, a lot of other secular resonances are present in the
Trojan phase space, especially of the form:

qsþ q6s6 þ p5g5 þ p6g6 ¼ 0 ð7Þ
with qþ q6 þ p5 þ p6 ¼ 0 and ðqþ q6Þ even.

The significance of the secular resonances increase with the initial incli-
nation of the Trojan, but even for high inclinations, these resonances are thin
and isolated (Robutel et al., in preparation). For instance, the little quarter of
circle in the left bottom of Figure 1, where the diffusion rate is of about 10�5,
corresponds to the location of the sixth order secular resonance
2s� 3g5 þ g6 ¼ 0.

Family 4: The two most representative members of the last family are
associated to the unstable structures denoted by ‘‘a’’ and ‘‘b’’ in Figure 1.
They penetrate deeply inside the long-term stability region. These structures,
and the other thin curves in the left side of ‘‘b’’, are generated by the Great
Inequality. From the ‘‘frequencies point of view’’, this phenomenon leads,
inside the resonance, to the relations:

4gþ ð2n5 � 5n6Þ þ q5g5 þ q6g6 þ r6s6 ¼ 0 with q5 þ q6 þ r6 ¼ �1: ð8Þ
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Contrarily to what happens in Family 1 and Family 2, the relation (8) does
not contain the libration frequency m and, thus, it is not a secondary reso-
nance of the usual type. Although these structures seem to be very narrow
and isolated, they play an important role in the slow diffusion process that
drives Trojans from the long time stability inner regions to the short time
stability boundary. An example of this transport along resonances is shown
in Figure 2 and discussed below.

The interest of this family (and to a Less extent of Family 2) is enhanced
by the fact that some observed Trojans seem to evolve inside these resonances
(see Section 3) and, consequently, may be subject to long-term transport
phenomena.

In order to illustrate that it is in the frequency space where the dynamical
phenomena associated to resonances can be easily interpreted, we show in
Figure 2 the projection on the ðg; sÞ plane of the image of A� ðI5 þ 2�Þ by
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Figure 2. Projection on the ðg; sÞ plane (units: 00/year) of the image of ða; e; IÞ 2 A � ðI5 þ 2�Þ
by the Frequency Map (2). It is in this space where resonances of the third and fourth family
are easy to identify. The labels indicate the same resonant structures shown in Figure 1. The

thick black points correspond to a path of a fictitious body that, starting in the resonance ‘‘a’’
(near s � �17), is subject to long-term transport along this resonance. This body is ejected
from the co-orbital region after 355 Myears of integration time. See text for more details.



the Frequency Map Fh0 . This plot is the counterpart of Figure 1 in terms of
frequencies.

Figure 2 is made up of a union of curves (more or less smooth) that are the
image of the lines e0 ¼ constant by the Frequency Map. The triangular shape
of the picture is explained in the following way: the upper vertex of the
triangle corresponds to the L4 point, and the right and left edges correspond,
respectively, to the line e ¼ 0:05 (eccentricities lower limit) and to a ¼ 5:2035
AU (semi-major axis lower bound). These curves are smooth in regular re-
gions, but singularities arise in chaotic zones. Singularities of the Frequency
Map are directly correlated with instabilities of the corresponding trajectories
(see Laskar, 1999 for more details).

The resonances of Family 3 and Family 4 are very easy to identify in this
plot. The vertical lines, where frequencies accumulate near g ¼ constant,
correspond to Family 4. In particular, the straight lines marked as ‘‘a’’ and
‘‘b’’ (these resonances are also shown in Figure 1 with the same labels) belong
to Family 4 and clearly are of the form g ¼ constant. Horizontal lines cor-
respond to Family 3 and are of the type s ¼ constant. In particular, the
important resonance s ¼ s6 (seen in Figure 1 as an arch denoted by a) is
easily identified in the central part of the picture. Note that above this hor-
izontal line the dynamics is more regular than below of it, where the chaotic
and escaping dynamics prevails.

In Figure 2, straight lines with finite (and different from zero) slope also
appear. They correspond to resonances of the type pgþ qsþ 2n5 � 5n6þ
p5g5 þ p6g6 þ q6s6 ¼ 0 with pþ qþ p5 þ p6 þ q6 ¼ 3 and qþ q6 even. These
resonances are not discussed in this paper (see Robutel et al., in preparation
for more information).

Of course, resonances belonging to Family 1 and Family 2 do not appear
in Figure 2 as clearly as the secular ones. Indeed, to identify these resonances,
one needs to look at the projection on the ðm; gÞ plane. Nevertheless, these
secondary resonances appear in Figure 2 as singularities of the Frequency
Map and we have marked them with the same labels as in Figure 1: ‘‘A’’,
‘‘B’’, ‘‘0’’, ‘‘)1’’, ‘‘)2’’ and ‘‘)3’’.

In order to illustrate the influence of Family 4 on the long-term transport
from the inner libration region to the outer unstable zone, we have performed
an integration of a fictitious body with an initial condition satisfying the
4gþ ð2n5 � 5n6Þ � g5 ¼ 0 resonance relation (label ‘‘a’’ in Figures 1 and 2).
This particle follows a path along this resonance (downward in Figure 2),
crosses the secular resonance s ¼ s6 and, finally, escapes the co-orbital region.
This path in the frequency space is generated by computing the fundamental
frequencies of the body for every consecutive interval of 5 Myears and
superimposing them (using thick black points) on Figure 2. This allows to
follow its long-term diffusion in the frequency space. During the first
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215 Myears, the fictitious Trojan stays inside the resonance ‘‘a’’ with the
secular frequency s evolving in the range ½�19;�16:72� (00/year) without a
well-defined trend. Then, the trajectory leaves the resonance ‘‘a’’ and wanders
around it for the next 100 Myears (crossing the resonance several times).
Meanwhile, the frequency s decreases from �1900/year to �23:500/year. Finally
the path crosses downward the s ¼ s6 horizontal line and the fictitious Trojan
enters the large chaotic zone associated to this resonance, where it remains
from the 315 to the 355 Myears of integration time, before being ejected.
Other examples of diffusion along resonances and connections between them
are presented in Robutel et al. (in preparation) showing the implication of
the resonant structure in the long-term dynamics of the Trojan asteroids.

The dynamical role of the four families of resonances presented above
depends on the value of the initial inclination. This is particularly true for
Family 3 and Family 4. As we see in Figure 3, when the inclination is small,
Family 3 resonances seem to be negligible, except for the important case
s� s6 ¼ 0. Then, as the inclination becomes larger, new secular resonances
appear. At I � 12�, a small unstable region around L4 marks the birth of the
resonance 3s� s6 � 2g5 ¼ 0. Similarly, other secular resonances appear for
I � 16�, while the latter ones move farther from the Lagrangian point. On the
contrary, the influence of Family 4 decreases when the inclination, I, is in-
creased. The dynamical implications of this phenomena are discussed in
Robutel et al. (in preparation).

3. Analysis of the Observed Trojans

Once the global structure is known, it is tempting to locate the observed
Trojans in our dynamical maps (in plots similar to Figure 1). In this regard,
we downloaded from Bowell (2001) their osculating elliptic elements at the
Julian date 2452200.5 (October 10, 2001) to be used as initial conditions for
the simulations.

Unfortunately, a direct projection of these initial conditions into the
dynamical maps would be meaningless. This is true even if we project in
Figure 1 (where recall that I ¼ I5 þ 2�) only the Trojans with small initial
inclination (Tsiganis et al., 2005).

Indeed, since the initial phases of a given asteroid are, in general, different
from h0 (the ones that define the Frequency Map (2)), a direct projection
would locate the Trojan at the wrong place (because the global dynamical
background would be different from the actual one). Although this procedure
works rather well when the goal is to locate a body on a low resolution map
(Tsiganis et al., 2005), it fails when we ask for an accurate position of the
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Figure 3. Dynamical maps of the tadpole region surrounding L4 for inclinations going from I5
(left-bottom corner) to I5 þ 18� (top-right corner). The axis correspond to the semi-major axis
a0 and eccentricity e0 of the particle. The white dots represent the ‘‘proper elements’’ ða�; e�Þ of
the observed Trojans for which the distance dj;0 defined by (10) is smaller than 100/year. The
white diamonds are associated to the Trojans satisfying the previous condition that moreover
are closer than 0:100/year of one of the resonances given in Tables III–V. See text for details.
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asteroid, which is precisely what we need to connect the real Trojans to the
narrow dynamical structures like the resonant families defined in Section 2.

To get rid of this ‘‘phase inconvenient’’, what we do is to look at the
frequency space F . For every observed Trojan j with initial conditions
ðaj; ej; IjÞ and hj ¼ ðkj;-j;XjÞ, we compute its basic frequencies
ðmj; gj; sjÞ ¼ Fhjðaj; ej; IjÞ, in the same way as it was done for fictitious particles
in Section 2. As Fhjðaj; ej; IjÞ belongs to F , the quantities that we are looking
for are given by:

ð~aj; ~ej; ~IjÞ ¼ F�1
h0 � Fhjðaj; ej; IjÞ; ð9Þ

This expression is well defined when the Hamiltonian system governing the
motion of the Trojans is integrable. Two trajectories having respectively
ð~aj; ~ej; ~Ij; h0Þ and ðaj; ej; Ij; hjÞ as initial conditions are generally not the same,
but they lie on the same invariant torus and, therefore, are dynamically
equivalent. Thus, our choice (9) is natural in the sense that a frequency vector
is not equivalent to a trajectory but to an invariant torus.

In practice, two main difficulties have to be overcome. The first one comes
from the fact that our Hamiltonian is not integrable on an open subset of the
phase space, even though it is integrable on the Cantor set of invariant tori
(this makes Fh0 well defined on this Cantor set). In particular, the frequency
map Fh0 has singularities (asymptotically in the neighborhood of the reso-
nances), and, thus, Fh0 is probably not invertible. The second is that only a
finite number of points of F is known: The domain of initial conditions D is
sliced in 20 planes ða; eÞ for fixed inclinations I�I5 2 ~S ¼ f0�; 2�; 4�; . . . ; 38�g.
For each of these planes, we consider 32,000 initial conditions (see Section 2).
Thus, D is replaced by the discrete set ~D containing 640,000 points. The dis-
crete frequency space ~F ¼ Fh0ð ~DÞ contains less than 420,000 points, because
an important fraction of initial conditions of ~D correspond to escaping or very
chaotic trajectories, for which the quasi-periodic approximation is meaning-
less. Then, for a given actual Trojan, we can approximate the elements
ð~aj; ~ej; ~IjÞ, defined in (9), by the quantities ða�j ; e�j ; I�Þ such that the expression

dj;0 ¼ Fhjðaj; ej; IjÞ � Fh0ða�; e�; I�Þ
�� ��

2
ð10Þ

is minimal in the grid ~D (k � k2 denotes the euclidean norm in R3).
In Figure 3, we plot these ‘‘reference elements’’ ða�j ; e�j Þ, corresponding to

the observed L4 and L5 Trojans for which the Euclidean norm described
above is smaller than 100/year, on the global dynamical maps around the L4

point (this is justified by the fact that no significant differences are found
between the dynamical structures of the L4 and L5 tadpole regions). Only the
first 10 of 20 dynamical maps considered are shown.

These pictures show that the majority of the Trojans are inside the long-
time stability region (this was already noticed by many authors: Michtchenko
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et al., 2001; Nesvorny and Dones, 2002 and Tsiganis et al., 2005, for in-
stance) and also suggest that some actual Trojans may stay inside (or very
close to) some of the resonances described in Section 2. This is rather easy to
check when one has the basic frequencies of the observed asteroid.

In Table II, we show the actual Trojans that, for the SJS system, lie very
close (at a distance smaller than 0:100/year) to some resonance corresponding
to Family 1 (5), up to order 40. The first and second columns display the
catalog number and the name of the particular asteroid. In the last column of
the table, we give the distance to the exact resonance in 00/year. The remaining
columns are devoted to the multiplet that defines the particular resonance
inside the family.

In Table III, we show the Trojans that, up to order 16, are at a distance
smaller than 0:100/year of some resonance corresponding to Family 2 (6). The
last column shows the inclination in which the corresponding asteroid is
found in Figure 1 (blank means that the asteroid is at a distance larger that 1
00/year of any of our dynamical maps and, thus, it is not drawn).

TABLE III

Family 2.

Cat. num. Name p p5 p6 dist. (00/year) I� I5

4035 1986WD 0 6 )8 3.30536e)03
5023 Agapenor )1 2 )3 1.02691e)02
9430 Erichthonios )2 6 )6 1.54293e)02 2�

9817 Thersander 0 5 )7 2.60215e)02
11554 Asios )1 )3 2 9.33537e)02
13862 1999XT160 )1 7 )8 9.60684e)02
15536 2000AG191 )2 4 )4 3.51934e)02
24426 2000CR12 )1 )3 2 8.88632e)03
24508 2001BL26 )2 6 )6 2.07783e)02 0�

Actual Trojans at a distance smaller than 0:100/year of the resonance 5m� 2ðn5 � 2n6Þþ
pgþp5g5 þ p6g6 ¼ 0.

TABLE II

Family 1.

Cat. num. Name p q q5 q6 dist. (00/year)

1749 Telamon 13 )12 3 10 2.42080e)02
5259 Epeigeus 13 )12 6 7 2.26021e)02
20739 1999XM193 13 )13 4 10 4.05032e)03

Actual Trojans at a distance smaller than 0:100/year of the resonance pm� n5 þ qgþ
q5g5 þ q6g6 ¼ 0.
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In Table IV, we show some of the real Trojans that are at a distance
smaller than 0:100/year of some representative secular resonance of Family 3
(7). The computations are done up to order 14, and only 10 of the 46 actual
cases found are shown. Note that some Trojans (i.e., 7119 Hiera) may even
be very close to a double resonance. Double resonances were already sug-
gested as a possible explanation for the ‘‘stable chaos’’ of some asteroids
found in (Milani, 1993) and mentioned by Dvorak and Tsiganis (2000), for
high-order secular resonances.

In Table V, we show some of the actual Trojans that are at a distance
smaller than 0:100/year of some secular resonance related to the Great
Inequality and belonging to Family 4 (8). The computations are done up to
order 24 and, even though some Trojans are found inside high order reso-
nances, only the cases close to the largest ones (i.e., ð�1; 0; 0Þ, ð0;�1; 0Þ and
ð�2; 1; 0Þ) are shown. Note that some actual asteroids (for instance, 4057
Demophon, 5233 1988RL10, 5907 1989TU5, 17423 1988SK2 and 18228
Hyperenor) are really very close (distance < 2� 10�300/year) to one of these
resonances. Actually, in some cases, it can be numerically shown that these
particles are captured by these resonances and the period of libration of the
critical angle inside the resonance is about several million years (Robutel
et al., in preparation).

Finally, let us note that we have found some remarkable examples that are
present at the same time in one of the tables of resonances and in the global
dynamical maps of Figure 3 (they are marked with a non-blank last column
in Tables III–V). More concretely, in the 0� inclination picture we can
identify 24508 2001BL26 (Table III), and 5907 1989TU5 and 17423 1988SK2

TABLE IV

Family 3.

Cat. num. Name q q6 p5 p6 dist. (00/year) I� I5

1173 Anchises )5 3 4 )2 9.21333e)02 8�

3391 Sinon 2 )2 1 )1 6.58920e)02
3451 Mentor )6 4 2 0 9.94339e)02
4138 Kalchas )5 1 6 )2 8.14236e)02 2�

5023 Agapenor 3 )3 2 )2 3.22054e)02
5126 Achaemenides )2 )2 7 )3 6.49629e)02
5130 Ilioneus )6 4 2 0 6.09600e)02
7119 Hiera 2 )2 1 )1 6.04987e)02
7119 Hiera )7 5 1 1 2.40070e)02
9818 Eurymachos 1 )3 5 )3 3.38956e)02

Some examples of actual Trojans at a distance smaller than 0:100/year of the resonance

qsþ q6s6 þ p5g5 þ p6g6 ¼ 0, up to order 14. In this case, we only show 10 of the 46 Trojans
found inside this type of resonances.
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(Table V); at 2�, 9430 Erichthonios (Table III) and 4138 Kalchas (Table IV);
at 4�, 18228 Hyperenor (Table V); at 8�, 1173 Anchises (Table IV); at 10�,
5638 Deikoon (Table V) and at 16�, 4543 Phoinix (Table V).

Some of these bodies are inside unstable structures associated to one of the
families described above. These are examples of ‘‘stable chaos’’ (Milani and
Nobili, 1992). For instance, 4543 Phoinix is in stable chaos according to
(Milani, 1993) and we can locate it in Figure 3 (16� case) inside one of the
secular resonances.

Moreover, the three asteroids inside the resonance 4gþ ð2n5 � 5n6Þ�
2g5 þ g6 ¼ 0 that appear in Figure 3 (17423 1988SK2 (0�), 5638 Deikoon
(10�) and 4543 Phoinix (16�)) show the displacement of this resonance in
function of the initial inclination. This resonance exits the region of stability
when the inclination increases. Also, the resonance 4gþ ð2n5 � 5n6Þ � g5 ¼ 0
follows the same evolution. Two examples of asteroids inside this latter case
are: 5907 1989TU5 (0�) and 18228 Hyperenor (4�).

A last interesting example that we want to point out is 1173 Anchises
(Table IV and Figure 3 (8�)). This asteroid lies inside a region of overlapping
and it was already in the list of ‘‘stable chaos’’ in Milani et al. (1997). It is
very close to the s ¼ s6 resonance, to a resonance of Family 2 with p ¼ �2 (6)
and to a secular resonance.

4. Conclusions

In this paper, we have performed a systematic study of the global
dynamical structure of the Sun–Jupiter triangular regions in the SJS model.

TABLE V

Family 4.

Cat. num. Name q5 p5 p6 dist. (00/year) I� I5

4057 Demophon )1 0 0 1.91160e)03
4543 Phoinix )2 1 0 6.37993e)02 16�

5233 1988RL10 )1 0 0 2.73850e)04
5638 Deikoon )2 1 0 2.98601e)02 10�

5907 1989TU5 )1 0 0 3.46164e)04 0�

13184 Augeias 0 )1 0 1.31297e)02
13790 1998UF31 )2 1 0 2.45299e)02
14518 1996RZ30 )2 1 0 2.58076e)02
17423 1988SK2 )2 1 0 7.00885e)05 0�

18228 Hyperenor )1 0 0 1.99257e)03 4�

Actual Trojans at a distance smaller than 0:100/year of the resonance

4gþð2n5 � 5n6Þ þ q5g5 þ q6g6 þ r6s6 ¼ 0, for the cases ð�1; 0; 0Þ, ð0;�1; 0Þ and ð�2; 1; 0Þ.
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Moreover, we have identified and classified in four families the main res-
onances that form the dynamical skeleton and dictate the long-term
dynamics of the Trojan asteroids. In addition, we have shown how to place
the actual Trojans in the global dynamical maps in a consistent way and we
have been able to associate some of them with particular resonances of the
four main families.

The method outlined in this paper seems to be very promising in order to
study a particular real asteroid in its dynamical environment. Moreover, once
the dynamical maps are computed, it is easy to add new observed Trojans
and, if necessary, easy to increase the number of points of the domain ~F (see
Section 3) to get a better accuracy of the asteroids locations.

On the other hand, inside regular regions, it is also possible to improve the
determination of ða�; e�; I�Þ (Section 3) by using interpolation of the n (n > 1)
closest points satisfying (10).

Finally, we cannot end the paper without mentioning that to have really
accurate results for the observed Trojans, one should take into account the
effect of the four major planets (OSS model). This is planned as future work.
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Abstract. It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact
that has put in question their presumed long term stability. Previous numerical results suggest a

slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital
elements space is still an open problem. In this paper, we tackle this problem by means of
extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered

Trojans is integrated for 4 Myrs and their Lyapunov time, TL, is estimated. The ones following
chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The
results of these experiments are presented in the form of maps of TL and the escape time, TE, in

the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in
which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the
TE ¼ 1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability
region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans,

which showed that 17% of the numbered Trojans are unstable over the age of the solar system.
We show that the size distributions of the stable and unstable populations are nearly identical.
Thus, the existence of unstable bodies should not be the result of a size-dependent transport

mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that
surrounds the stability zone, a statistical correlation between TL and TE is found.

Key words: Jupiter Trojans, chaos, 1:1 resonance, effective stability

1. Introduction

Today, almost 100 years since the discovery of (588) Achilles, more than
1,200 numbered and multi-oppositioned Trojans are known (see the AstDys
database, hamilton.dm.unipi.it/cgi-bin/astdys/astibo), orbiting around Jupi-
ter’s Lagrangian points. These bodies are in a 1:1 resonance with Jupiter,
performing tadpole librations about the stable equilibria of the restricted
problem, which are located at a relative mean longitude equal to p/3 (L4) or
)p/3 (L5), with respect to Jupiter. Recently, the stability of these orbits,
previously taken for granted, has been put to question.

The numerical results of Milani (1993, 1994) were the first to show that a
number of Jupiter Trojans follow chaotic orbits. Although the integration
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time was small by today’s standards (5 Myrs), these experiments have re-
vealed some possible routes of escape at the borders of the Trojan region,
related to secular resonances. Subsequently, Levison et al. (1997) were the
first to present numerical results, indicating a slow dispersion of the Trojan
swarms, on a time scale shorter than the age of the solar system. In their runs
it was shown that the region of effective stability (for 4.5 Gyrs) is smaller
than the one found analytically by Rabe (1967). This is in fact the most
extensive long-term numerical integration of Trojans to date. The possibility
of real Trojans escaping from the swarms in the future, due to the destabi-
lizing effect of the v16 and other high-order secular resonances, was shown by
Tsiganis et al. (2000a) and Dvorak and Tsiganis (2000). The role of secular
resonances was extensively studied by Marzari and Scholl (2002).

Analytical works on the long periodic motion of the Trojans are numerous
and a complete list cannot be presented here. We should point out though
that several important papers have been published recently, starting from the
work of Érdi (1988, 1997). More refined models on the long periodic libration
of the Trojans were published by Namouni and Murray (2000) and Nesvorný
et al. (2002). The secular effect of additional perturbing bodies or of an
oblate planet were studied by Morais (1999, 2001).

Milani (1993) defined and computed (synthetic) proper elements for the
Trojans, which allowed him to search for families. Later, Beaugé and Roig
(2001) presented a semi-analytic theory for Trojan proper elements, based on
an asymmetric expansion of the disturbing function and on the principle of
adiabatic invariance. This work, along with an increased sample of real
bodies, allowed them to confirm and improve the results of Milani (1993),
concerning the existence of at least two robust families (those of Menelaus
and Epeios, both around L4).

The first attempt to compute the extent of the stability region for Trojan-
type motion was made by Rabe (1967), who studied the linearized equations
of motion. Nowadays, there exist more refined analytical techniques, based
on the construction of Nekhoroshev-type normal forms. The effective sta-
bility region is defined as an open domain of initial conditions around a torus
of given frequencies (e.g., in our case the resonant torus corresponding to the
Lagrangian points L4,5), for which the time, s, needed to change the actions,
J, by a given small amount, say |J(s))J(0)| 6 e , is larger than the age of the
solar system. This mathematically well defined and quite elegant approach
suffers from the limitations of all strongly constrained theories. From the
technical point of view, the 1:1 resonance seems to be even more difficult to
tackle, compared to other resonances. Also, the models, in which these
techniques are applied, are too simplified, to represent a realistic long-term
evolution for Jupiter Trojans. As a result, the width of the stability region
found by these methods is typically very small, compared to the one which
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can be determined numerically. These points are discussed in detail in Celletti
and Giorgilli (1991), Giorgilli and Skokos (1997) and Skokos and
Dokoumetzidis (2001).

Since the work of Levison et al. (1997), most numerical work has been
oriented towards short-term numerical integrations of large sets of initial
conditions, aiming to unveil the resonant structure of the Trojan swarms, and
define a stability region in terms of regular/chaotic motion. Important results
on this topic have been published by Marzari et al. (2003) and Nesvorný and
Dones (2002). However, the most complete work on this subject was pre-
sented in this meeting by Robutel et al. (2005) in the same volume. We
should also point out the numerical work of Michtchenko et al. (2001),
where the important role of the great inequality on Trojan motion was
shown, in an indirect way. In that paper it was shown that, if Jupiter and
Saturn ever crossed the 5/2 resonance during their early migration, the
Trojans would not have survived. Gomes (1998) also studied the effect of
planetary migration on Trojans, showing that a near 2/1-resonant config-
uration for Jupiter and Saturn would also lead to a fast depletion of the
swarms.

One has to take care though, since an asteroid undergoing chaotic
motion will not necessarily escape from the Trojan region, within the age
of the solar system. We remind the reader that ~30% of the main-belt
asteroids follow chaotic orbits with Lyapunov times TL 6 105 yrs, but
many of them have very stable proper elements over Gyr-long time spans.
In this paper, we report the results of extensive numerical experiments,
performed with the purpose of defining an ‘effective stability’ region for
Trojan-type orbits and comparing with the distribution of real Jupiter
Trojans, in orbital elements space. The term ‘effective stability’ refers not
only to regular (quasi-periodic) orbits, but also to chaotic orbits which,
however, can wander at the border of the stability region, without escaping
within the lifetime of the solar system. The stability region is defined in
terms of two quantities, which provide complementary information: (i) the
Lyapunov time, TL, which measures the (inverse of the) local rate of
exponential divergence for chaotic orbits, and (ii) the escape time, TE,
which denotes the time needed for a Trojan to encounter Jupiter within a
small distance and escape from the tadpole zone.

The structure of this paper is as follows. The way of appropriately
selecting initial conditions for the numerical experiment is described in Sec-
tion 2. The core of our results is given in Section 3, in the form of grey-scale
maps, which allow us to define the stability region in the space of proper
elements and compare it with the distribution of real Trojans. It is shown that
~14% of the real Trojans are outside the stability region. This result is
confirmed by a 4.5 Gyr integration of the 247 real Trojans found on chaotic
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orbits with TL < 4 · 105 yrs. By estimating the diameters of the observed
bodies, we show that the existence of unstable Trojans cannot be the result of
a size-dependent process and that it is most likely the outcome of slow
chaotic diffusion. For the chaotic region surrounding the effective stability
zone, a power-law statistical correlation between TL and TE is found (Section
4). The conclusions of our study and a discussion on open problems are given
in Section 5.

2. Numerical Set-up

The physical model we consider consists of the Sun and the four giant planets
(Jupiter, Saturn, Uranus and Neptune), fully interacting through Newtonian
pointmass gravitational forces. The Trojan (test-particle) is subjected to the
forces of the massive bodies. The equations of motion are numerically inte-
grated, using the 2nd order mixed variable symplectic algorithm (MVS) of
Wisdom and Holman (1991), as it is implemented in the SWIFT package
(Levison and Duncan, 1994). The time step used in our runs was dt ¼ 0.1 yrs,
i.e., smaller than 0.01TJ , where TJ the orbital period of Jupiter. This inte-
gration scheme is not appropriate when close encounters between bodies
occur. However, in the experiments presented here, we are only interested in
calculating the escape time of a Trojan and not in following its subsequent
evolution. Thus, as described above, we define the escape time of a Trojan as
the time at which it approaches Jupiter within 2 Hill’s radii, at which point
we stop integrating its orbit.

The initial conditions for the Trojans were selected in such a way so that,
for each value of the inclination, i, a ‘representative plane’ of initial condi-
tions was studied. By this we mean that the initial conditions were chosen as
to provide a first approximation to proper elements, so that a comparison
with the real Trojan population could be made. To do this, we used the
model of Érdi (1988) for the long-period motion of a Trojan, in the frame of
the elliptic restricted three-body problem, as the basis of our selection.

According to Érdi (1988), the first term in the expansion of the long
periodic variations of a Trojan’s semi-major axis, a, and relative mean lon-
gitude, k)k¢, is given by

a� a0 ¼ df sin hþOðd2f Þ
k� k0 ¼ �p=3þDf cos hþOðD2

f Þ ð1Þ
where primed quantities refer to Jupiter. The amplitude of libration in semi-
major axis, df (in AU), is related to the amplitude of libration, Df (in radians),
of the critical argument, r = k)k¢, through
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df ¼
ffiffiffiffiffiffi
3l

p
a0Df � 0:2783Df ð2Þ

where l is the ratio of Jupiter’s mass to the total mass of the system. In the (r,
a)a¢) plane, each Trojan orbit has the shape of a topological cycle, centered
approximately at the Lagrangian point (at ± p/3), and the angle h is the
angle between the a ¼ a¢ axis and the ‘position vector’ of the Trojan, mea-
sured from ±p/3. During the motion, the angle r librates approximately
between ±p/3)Df and ± p/3 + Df, while h circulates. In our experiments,
we chose initial conditions around L4, with h ¼ p/2, i.e., r ¼ p/3 and
a ¼ a¢ + df.

When a fi a¢ the values of the forced eccentricity and inclination become
equal to the (osculating) values of Jupiter’s elements. Érdi’s model shows that
the libration adds only 2nd-order corrections to these values. Then, by selecting
the longitude of pericenter of the Trojan, �x, and its eccentricity, e, through

�x ¼ �x0 þ p=3

e ¼ e0 þ ef
ð3Þ

and the longitude of the node, W, and inclination, i, through

X ¼ X0

i ¼ i0 þ if
ð4Þ

the eccentricity offset, ef, and the inclination offset, if, become approximate
proper elements, in the framework of the elliptic restricted three-body
problem. Hereafter we will refer to the elements ef, if and Df as eccentricity,
inclination and libration width, dropping the subscripts. This choice of initial
conditions implies that all test particles have initially a mean anomaly equal
to that of Jupiter, M ¼ M¢.

Following the above described scheme, we constructed four sets of initial
conditions, for 0� £ i £ 30� with a step of 10�. Each of these sets consisted of
806 orbits, set on a 31 · 26 grid on the (D, e) plane, with 0 £ e £ 0.25 and
0� £ D £ 45� (the step size being dD ¼ 1�.5 and de ¼ 0.01).

Our first numerical experiment consisted in integrating these 3224 orbits
for tint ¼ 4 Myrs, along with the variational equations. This time is enough
to obtain an estimate of TL, provided that the latter is actually not larger
than ~10% tint (see next section). Subsequently we selected only orbits having
TL < 400,000 yrs to perform our second experiment, which consisted in
integrating these new sets of orbits for tint ¼ 1 Gyr.

3. Strong Chaos versus Effective Stability

The solution of the variational equations provides us with a time series for
the norm of the deviation vector, v(t), for each orbit. For chaotic orbits this
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quantity grows exponentially in time, so we can compute the mean growth
rate (i.e. a short time approximation of the Lyapunov Characteristic Num-
ber), c, by performing a linear least-squares fit on the t ) ln[v(t)/v(0)] curve.
Then, TL ¼ 1/c. This procedure is followed automatically in our code.

It is known, however, that, in order to have an acceptable estimate using
this procedure, the integration time should be long enough for c to have
achieved a constant value (see Milani, 1993). A quantitative check of con-
vergence can be made, and its results are shown in Figure 1, for the sample of
667 numbered Trojans found in the catalogue of proper elements, distributed
by the AstDys database. The correlation coefficient, r2, of the fit, used to
obtain the slope, is plotted against the inverse of the slope, i.e., TL. One can
immediately realize that the quality of the fit drops as TL increases. Since we
are forced to set a limit as to what we consider as a ‘good approximation,’ we
arbitrarily chose to accept any value of TL which was obtained by fit, pro-
vided that r2 ‡ 0.75. Thus, as can be inferred from the plot, for a measure-
ment yielding TL > 400,000 yrs (i.e. longer than about 1/10 of our
integration time span), we cannot decide whether the orbit is mildly chaotic
or regular. For this reason, we decided to exclude orbits with
TL > 400,000 yrs from our second experiment of long-term evolution, and
concentrate on orbits for which we can claim that they are chaotic, on an
acceptable significance level. Concerning our test particle runs, the above
described selection method lead us to discard about 25% of them from the
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Figure 1. The correlation coefficient of the fit, r2, as a function of the value of the inverse of
the slope, i.e., TL, for a sample of 667 numbered Trojans. For TL>0.1 tint » 400,000 yrs, r2

drops below 0.75. Had we selected a different value for tint, the functional form would not have
changed, but the r2 ¼ 0.75 limit would have shifted towards 0.1 tint.
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second experiment. As for the numbered Trojans, 246 bodies (out of 667, i.e.
37%) follow chaotic orbits with TL<400,000 yrs, while the rest could be
considered as following stable orbits.

The results of the two runs can be visualized in Figures 2–5. The top
panels are grey-scale maps of logTL, while the bottom panels are grey-scale
maps of logTE, both TL and TE measured in years. Each figure corresponds
to a different set of initial conditions, i.e., a different initial value of i.
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Figure 2. Maps of log TL (top) and log TE (bottom) for i ¼ 0�. Each grey level corresponds to
a change by one order of magnitude. In each panel the real Jupiter Trojans are superimposed,

as discussed in the text. The open dots denote the stable Trojans (i.e., TL>400,000 yrs), while
the full dots denote the chaotic ones. Note that, in all cases (see also next figures), the
distribution of real Trojans follows the shape of the stability zone, but ~14% of the real objects

lie outside the TE ¼ 1 Gyr limiting curve.
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Figure 2 contains the plots for i0 ¼ 0�, Figure 3 for i0 ¼ 10�, Figure 4 for
i0 ¼ 20� and Figure 5 for i0 ¼ 30�. On each panel all numbered Trojans with
proper inclination in the range i0)5� £ i £ i0+5� are superimposed (obvi-
ously, for i0 ¼ 0�, only bodies with i < 5� are shown). The open dots cor-
respond to bodies on regular orbits (i.e., TL P 400,000 yrs), while the full
dots correspond to bodies following chaotic orbits. As expected, the chaotic
objects are located at greater distances from the nominal location of the
Lagrangian point. This projection technique allows us to compare roughly
the 1 Gyr effective stability region, defined by the numerical integration of
test particles, with the distribution of the real Trojans.
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Figure 3. The same as Figure 2, but for i ¼ 10�. Also note the existence of real Trojans in
highly unstable regions (e.g., object 46676), with TL<105 yrs and TE<108 yrs.
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As can be seen in Figures 2–5, ~86% of the real Trojans are projected
inside the TE P 109 yrs region, following the shape of the limiting 1 Gyr
contour. The remaining 14% (between 12 and 16%, depending on the
inclination) is projected outside the stability zone. Note also that ~3% of the
real Trojans is projected on highly unstable regions, defined by TL O 105 yrs
and TE O 108 yrs. Such an extreme example is asteroid (46676) (see Fig-
ure 3). Integrating its nominal orbit we found that it actually escaped from
the L4 region after TE ¼ 7.2 Myrs, a time which agrees well with the location
of this object in Figure 3 (the border of the 107 yrs contour). The time
evolution of its orbital elements is shown in Figure 6. We should note that, a
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Figure 4. The same as Figure 2, but for i ¼ 20�. Note that the extent of the stability region in
D shrinks, with respect to the low-inclination cases.
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significant fraction of chaotic orbits with TL<400,000 yrs, does not escape
within 1 Gyr. Thus, our region of effective stability also contains chaotic
orbits. The extent of the effective stability region, as given from our results, is
comparable to the one calculated by Levison et al. (1997), which is smaller
than the one initially calculated by Rabe (1967). However, by integrating a
much bigger sample of initial conditions, selected as described in Section 2,
we are able to demonstrate for the first time the dependence of the size and
shape of the effective stability region on the inclination of the Trojans. As can
be seen in the figures, for small values of D, the stability region extends up to
emax ¼ 0.2, for any value of i. On the other hand, for nearly circular orbits,
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Figure 5. The same as Figure 2, but for i ¼ 30� In this case, Dmax ¼ 25�, for nearly circular

orbits.
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the stability region shrinks from Dmax ¼ 35� to Dmax ¼ 25�, as i increases
from 0� to 30� It is evident from the plots that the distribution of the real
Trojans in the (D, e) plane follows the shape of the effective stability region,
as the latter is defined for the corresponding value of i.

Based on these results, we could conclude that ~14% of the real Trojans
follow orbits which are not stable over the age of the solar system. This of
course has to be shown by direct numerical integration of the numbered
Trojans. We performed this experiment, setting our integration time to
1 Gyr. Indeed, out of the 246 numbered Trojans with TL<400,000 yrs, 53
escaped within 1 Gyr, i.e.~8% of the total population (667 objects). This
number differs from our initial estimate, mainly due to three limiting factors
of the above representation: (i) the uncertainty on the approximate proper
elements, defined for the test particles, (ii) the projection of the real Trojans
on only four planes, with respect to their proper inclination, and (iii) the
dependence of the width of the ‘actual’ effective stability region (for 4.5
Gyrs), on the integration time.

We decided to extend our integration for the chaotic numbered Trojans,
going to 4.5 Gyrs. This resulted in 112 chaotic objects, which amounts to
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Figure 6. Time evolution of a, e and i for object (46676). The chaotic evolution of both e and i
is evident. As time progresses, the width of libration in a slowly increases, until the asteroid
encounters Jupiter.
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17% of the total Trojan population, escaping within the age of the Solar
System. The histogram of escape times is shown in Figure 7. One can see that
the number of escaping bodies per unit time decays slowly with time. Note
also that more than half of the integrated objects follow orbits which,
although being chaotic, are stable over the age of the Solar System.

Despite the fact that the existence of unstable Jupiter Trojans has been
known for some years, the mechanism by which they may be generated still
remains an open issue. There are three main possible mechanisms, one could
think of, generating a large fraction of unstable objects: (i) slow chaotic
diffusion from the effective stability region, due to secondary resonances (ii)
collisions, and (iii) drift due to the Yarkovsky thermal effect (see Farinella
and Vokrouhlický, 1999). However, while chaotic diffusion has the same
effect no matter what the size of the body is, collisions and thermal forces
give size-dependent ‘kicks’. Thus, it would be easier for a small body to be
transported away from the Lagrangian point (and outside the stability re-
gion) by mechanisms (ii) and (iii) than it would be for a large body. Hence,
the size distribution of bodies, implanted in the chaotic zone due to mech-
anisms (ii) or (iii), should be different from the size distribution of regular
bodies. In particular, if mechanisms (ii) and (iii) were primarily responsible
for replenishing the chaotic region, there should be a lack of large bodies
among the currently observed chaotic population.

Using the AstDys catalogue of proper elements, we can derive the size
distribution of the Trojans. Fernández et al. (2003) derived the albedo dis-
tribution of Jupiter Trojans, showing that it is characterized by a very tight
concentration of values around ~0.05. Using this estimate and the values of
absolute magnitude, H, reported in the catalogue, an effective diameter, D,
can be calculated for each body. Then we can derive the distribution of
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Figure 7. The fraction of escaping Trojans Nesc/Ntot as a function of time. The size of each bin

is 5�108 yrs.
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diameters for both the regular and the chaotic population of numbered
Trojans. The results are shown in Figure 8. It is evident that the two dis-
tributions are nearly identical. This result clearly suggests that the primary
mechanism responsible for generating unstable objects is chaotic diffusion
through secondary resonances.

It should be noted that the observed Trojans population is only complete
up to H ~ 11–12, and thus there are only 4 bodies with D<10 km in the
catalogue of numbered Trojans. Future observations may reveal a difference
in the small)D tails of these two distributions, since D>10 km bodies are
very little affected by the Yarkovsky effect over 4 Gyrs, but this is not true for
D ~ 1 km bodies. However, the important element here is that the probability
of finding a body as large as 150 km in diameter is the same, in both the
chaotic and the stable region.

4. A Statistical Correlation for Escaping Orbits

Figures 2–5 suggest an approximately smooth decay of both TL and TE, as
we move away from the origin of each plot, i.e. the nominal location of L4 at
(D, e) ¼ (0, 0). This intriguing result lead us to consider the possible existence
of a statistical correlation between these two quantities.

Figure 9 is a log–log plot of TL versus TE for each test particle. As before,
only orbits with good measurements of TL (r2>0.75) were considered. Both
quantities are normalized to the mean revolution period of Jupiter,
TJ � 11:86 yrs. The distribution of points on this plot suggests a power-law
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Figure 8. The diameters (D) distribution of the regular (black) and chaotic (grey) components
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trend, TE » aT1
b, between these two quantities. Performing a least-squares fit

on the data we found a ¼ 0.75 ± 0.08 and b ¼ 1.62 ± 0.03. The correlation
coefficient of the fit is r2 ¼ 0.88.

Although the least-squares line seems to fit the data well, it is evident from
the plot that the dispersion of the points is quite large, especially when
moving towards large values of TL. Thus, the simple power-law relation
described is not useful in determining TE by computing TL from a much
shorter integration. On the other hand, as shown in Figure 9, there is a well
defined lower envelope of the scatter plot. This enables us to make a
meaningful extrapolation, which suggests that orbits with TL>650,000 yrs
(top-right corner of the plot), although chaotic, would be most likely stable
over the age of the solar system.

The scatter of TE values, around a given value of TL, increases with TL,
i.e., when approaching the stability region. In Hamiltonian systems, it is
known that, as the border of a chaotic region is approached, the geometry of
the phase space becomes highly complex, an effect which leads to temporary
confinement of chaotic orbits, starting close to the border. Consequently the
escape time of such orbits, corresponding to a given narrow range of TL

values, can vary by several orders of magnitude, depending on the duration
of the trapping phase. In terms of asteroid dynamics, this is one manifesta-
tion of the stable chaos phenomenon, first discovered by Milani and Nobili
(1992; see also Tsiganis et al., 2000b, 2002a). We remind the reader that
stable chaos refers to orbits characterized by a small value of TL, but of
extremely stable orbital elements and a value of TE typically larger than
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104 � TL. Such orbits, which are close to the stability boundary, can be seen
on the upper part of Figure 7, for (TL/TJ) ~103.

5. Conclusions and Discussion

In this paper we presented the results of an extensive numerical experiment
on Trojan-type motion. A carefully chosen set of 3224 orbits was integrated
for 4 Myrs. From this set, all chaotic orbits with TL<400,000 yrs were
selected and integrated for 1 Gyr. This experiment took a few months of
CPU time on a custom PC. The purpose was to calculate the two relevant
quantities, defining the stability region of the 1:1 resonance with Jupiter – the
Lyapunov time, TL, and the escape time, TE–in a model containing all four
giant planets.

The basic results of this experiment are given in Section 3 (Figures 2–8).
An effective stability region for 1 Gyr is defined (see Figures 2–5), in the
space of proper elements (D; e; i). For nearly circular orbits, the stability
region shrinks in D as i increases while, for small values of D, the maximum
extent in e is almost constant. As shown in these figures, the distribution of
the numbered Jupiter Trojans follows closely the stability curve, for all values
of i. However, about ~14% of the real Trojans was found to lie outside the
stability region.

A 4.5 Gyr integration of the orbits of 246 chaotic numbered Trojans
confirmed the above estimate. Our result is that 17% of the numbered
Trojans follows orbits which are unstable over the age of the Solar System.
We note that there is another 20% of Trojans undergoing chaotic motion,
but whose orbits are stable over 4.5 Gyrs.

The small escape times of many observed Trojans suggest a constant
leakage of bodies from the stability region towards the large chaotic sea.
However, the mechanism that generates this unstable population was not
known up to now. Analyzing the size distribution of the regular and chaotic
components of the Trojan population (Figure 8), we can conclude that the
main mechanism, by which bodies are delivered from the outshirts of the
stability zone to the chaotic region, is independent of the size of the bodies.
Thus, chaotic diffusion, rather than collisions or thermal effects, is at the
origin of the unstable population.

Chaotic diffusion is the result of higher-order resonant multiplets (either
of mean motion or secular type) inside the 1:1 tadpoles region. Robutel et al.
(2005) have identified several types of resonances, which cross the stability
region. The reader is referred to Figures 1 and 3 of the paper by Robutel
et al. (2005) in this volume. The relevance of each of these types of resonance,
concerning the transport of bodies, remains to be assessed.
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In Section 4 we have found an approximate power-law statistical corre-
lation between the values of TL and TE, for chaotic orbits that escape from
the 1:1 resonance. A similar result, with b » 1.7, was reported by Lecar et al.
(1992), for asteroids of the outer main belt. Murray and Holman (1997) have
shown analytically that such a relationship exists, in the region where all
mean motion resonances of order q ¼ 1 overlap. On the other hand, Shev-
chenko (1998) has shown that a relationship of the form, TE ~ TL

2 can also
be found in the immediate vicinity of the border between regular and chaotic
motion, around a perturbed principal resonance. It is not easy to give an
answer as to which of the two mechanisms we are observing in the case of
Trojans. This is obviously related to the study of secondary resonances in the
vicinity of the 1:1 resonance, which will be the topic of future work.
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Érdi, B.: 1997, ‘The Trojan problem’, Celest. Mech. Dyn. Astr. 65, 149–164.
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Nesvorný, D., Thomas, F., Ferraz-Mello, S. and Morbidelli A.: 2002, ‘A perturbative treat-
ment of the co-orbital motion’, Celest. Mech. Dyn. Astron. 82, 323–361.

Rabe, E.: 1967, ‘Third-order stability of the long-period Trojan librations’, Astron. J. 72,
10–19.

Robutel, P., Gabern, F. and Jorba, A.: 2005, ‘The observed Trojans and the global dynamics
around the Lagrangian points of the Sun–Jupiter system’, Celest. Mech. Dynam. Astron.
92, 55–71.

Shevchenko, I. I.: 1998, ‘On the recurrence and Lyapunov time scales of the motion near the
chaos border’, Phys. Lett. A 241, 53–60.

Skokos, C. and Dokoumetzidis, A.: 2001, ‘Effective stability of the Trojan asteroids’, Astron.

Astrophys. 367, 729–736.
Tsiganis, K., Dvorak, R. and Pilat-Lohinger, E.: 2000a, ‘Thersites: a ‘jumping’ Trojan?’,

Astron. Astrophys. 354, 1091–1100.

Tsiganis, K., Varvoglis, H. and Hadjidemetriou, J. D.: 2000b, ‘Stable chaos in the 12:7 mean
motion resonance and its relation to the stickiness effect’, Icarus 146, 240–252.

Tsiganis, K., Varvoglis, H. and Hadjidemetriou, J. D.: 2002a. ‘Stable chaos in high-order
Jovian resonances’, Icarus 155, 454–474.

Tsiganis,K.,Varvoglis,H. andHadjidemetriou, J.D.: 2002b, ‘Stable chaos versusKirkwoodgaps
in the asteroid belt: a comparative study of mean motion resonances’, Icarus 159, 284–299.

Wisdom, J. and Holman M.: 1991, ‘Symplectic maps for the n-body problem’, Astron. J. 102,

1528–1538.

CHAOTIC DIFFUSION OF JUPITER TROJANS 87



DOI 10.1007/s10569-005-2858-x
Celestial Mechanics and Dynamical Astronomy (2005) 92:89–111

© Springer 2005

ANALYTICAL PROPER ELEMENTS FOR THE HILDA ASTEROIDS
I: CONSTRUCTION OF A FORMAL SOLUTION

O. MILONI1, S. FERRAZ-MELLO1 and C. BEAUGÉ2
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Abstract. In this paper, we present the mathematical basis for the calculation of proper
elements for asteroids in 3:2 mean-motion resonance with Jupiter from their osculating
Keplerian elements. The method is based on a new resonant Lie-series perturbation the-
ory (Ferraz-Mello, 1997, 2002), which allows the construction of formal solutions in cases
where resonant and long-period angles appear simultaneously. For the disturbing function,
we used the Beaugé’s expansion (Beaugé, 1996), adapted to include short period terms. In
this paper, the theory is restricted to the planar case and only the perturbations due to
Jupiter are considered.

Key words: Hilda asteroids, perturbation theory, proper elements

1. Introduction

In a time where most of the work in Solar System dynamics is related to
chaotic motion and evolution, proper elements (hereafter PE) are the exact
opposite. For a given dynamical system (in our case, a main-belt asteroid
perturbed by Jupiter), the idea is to construct an integrable approximation
of its solution. The proper elements are functions of the “first integrals”.
Even if the system is chaotic, these “integrals” are still informative when:
(i) the chaos is local, or (ii) it has a very long timescale. In either case, PE
can be thought as quasi-integrals of motion that vary little over a long time
span. In other words, they allow us to search for dynamical structures in
the system, which may have remained practically unchanged in hundreds of
millions of years.

The origin of this idea dates from the early twentieth century. Hirayama
(1918, 1923) (see also Brouwer 1951) used the Laplace-Lagrange secu-
lar linear theory to determine PE for main-belt asteroids. His results
allowed him to discover regions of accumulation of bodies in the space of
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proper elements, which were later named Hirayama families. These are now
believed to be the remnants (fragments) of catastrophic collisions in the
asteroid belt. For many years, most of the effort in this area was devoted
to the construction of better analytical and numerical determinations of
proper elements for asteroids outside mean-motion resonances.

As is common in the three-body problem, the main practical limitation
in the construction of analytical theories stems from the limits of conver-
gence of the disturbing function. The first attempt to avoid these problems
was undertaken by Williams (1969), who constructed a semi-analytical the-
ory based on the numerical determination of the disturbing potential in
a grid of initial conditions. His results not only included new PE, but
also a very important determination of secular resonances in the aster-
oid region. More recently, and as the discovery of new bodies increased
the total population to large numbers, Milani and Knežević (1990, 1992,
1994) introduced the Lie series formalism to estimate proper elements up
to second (and third in some cases) order of the masses. Lemaı̂tre and
Morbidelli (1994) developed a semi-analytical theory, similar to that of
Williams, but based on a Hamiltonian formalism and introducing terms of
second order not present in Williams theory. All theories, whether analyt-
ical or semi-numerical, obtain the PE by successive averaging operations:
the first one to obtain the secular Hamiltonian, and the second one to
derive the proper elements. Finally, in the latest few years, Knežević and
Milani (2000) have adopted a new approach, based on purely numerical
tools and the construction of synthetic solutions.

For the resonant case, Schubart (1968) analyzed the long-term behavior
of Hilda asteroids, via a numerical averaging over short-period terms (syn-
odic angle). He derived three characteristic parameters (eccentricity, incli-
nation and amplitude of librations) for all the real Hilda asteroids known
at the time (Schubart 1982a, b).

Milani (1993) calculated synthetic proper element for Trojan asteroids
by mean of a purely numerical treatment. More recently Beaugé and Roig
(2001) developed a semi-analytical theory to obtain proper elements for
the Trojans. Their theory consists, basically, in a succession of averaging
operations and a hierarchical distinction of faster and slower angles.

In the theory presented in this paper, we construct analytically the
planar invariants of motion for Hilda asteroids by application of the Lie
series theory, starting from the osculating elements and ending with the
dynamical proper elements. The work is divided in the following parts:
(i) passage from osculating to semi-mean1 orbital elements by averaging
over the short periods terms. (ii) Analytical integration of the Hori Kernel

1Semi-mean is a nomenclature proposed by Milani and now widely adopted.
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(pendulum model) (iii) Application of the resonant Lie series theory to
average over the librating resonant angle and obtain the mean elements.
(iv) Calculation of the proper actions from the solution of the result-
ing equations. (In practice, through the elimination of the remaining
long-period angular variable).

2. Variables and Equations

2.1. THE PLANAR ASTEROIDAL PROBLEM

Consider an asteroid moving around the Sun in the same plane as Jupiter and
in a 3:2 mean-motion resonance with this planet. The planet is considered on
an uniformly precessing orbit. Let a, e, � , aJ , eJ , �J be the osculating semi-
major axis, eccentricity and longitude of perihelion of the asteroid and Jupiter,
respectively, and let nJ be the mean motion of Jupiter. We will denote by gJ the
precession rate of Jupiter, due to the gravitational effects of the other planets.
To take into account the time dependence, we work in the extended phase space.
In this space, the canonical elements of the asteroid are:

λ , L=√
µa

� , G−L=L(
√

1− e2 −1) (1)

t , T
where L, G are the usual planar Delaunay variables and T is the canonical
conjugate of t .

In the 3:2 resonance, we use the standard resonant variables (see, for
instance, Ferraz-Mello, 1987):

θ1 =3λJ −2λ−�

θ2 =3λJ −2λ−�J (2)

θ3 =λ−λJ

J1 =L−G

J2 = nJ G+T
nJ −gJ

(3)

J3 =3L+2
(gJ G+T )

nJ −gJ

.

The equations of motion are

θ̇i = ∂H
∂Ji

J̇i = − ∂H
∂θi

(4)
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Figure 1. Distribution of actual Hildas in osculating eccentricity and semi-major axis. The
solid line represents the limit of convergence of the Laplace expansion of the disturbing
function (see Ferraz-Mello, 1994).

where the Hamiltonian is

H =− µ2

2L2
+T − εR, (5)

R is the disturbing function and ε = GmJ /m�. For the sake of future
calculations, we note that if T is eliminated from Equation (3) (in the
definition of J3), we obtain L=J3 −2(J1 +J2).

Since the Hildas have, generally, eccentricities larger than the radius
of convergence of the classical expansion in Laplace coefficients (see
Figure 1), we use, in this work, the Beaugé’s representation, which is not
given by infinite series and is thus valid for all values of eccentricity
(see the Appendix I for details). We also mention that the asymmetric
expansion of Ferraz-Mello (1987) cannot be used because of the large
amplitude of libration of some of the actual asteroids. Beaugé’s expansion
was adapted to include short period terms. It is

R = 1
aJ

4∑
i=0

15∑
j=0

15∑
k=0

15∑
l=−15

15∑
m=−15

15∑
n=−15

Rijklmn ×

(α −αres)
iej ek

J cos(lθ1 +mθ2 +nθ3) (6)
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with

e =
√

1−
[
1− J1

J3−2(J1+J2)

]2
,

a = [J3 −2(J1 +J2)]
2 /µ,

(7)

where Rijklmn are constant coefficients, α = a
aJ

and αres = 2
3

2
3 . We note that,

at variance with the formulation presented in the Appendix, we expand the
disturbing function in powers of α − αres instead of α. Since α − αres is
small near the resonance, the expansion can be limited to order 4 in this
parameter.

3. First Averaging: The Semi-Mean Elements

The first averaging is done over the fast angle θ3 (the mean synodic
longitude of the asteroid). It is done using the non-resonant Lie series
theory (Hori, 1966; Ferraz-Mello, 1990) up to first order in the small
parameter.

We start with the Hamiltonian given by Equation (5) and we search
a canonical transformation, via Lie series, leading to the transformed
Hamiltonian

H ∗ =EW(1)H (θ∗
1 , θ∗

2 , θ∗
3 ;J ∗

1 , J ∗
2 , J ∗

3 )=
∞∑
l=0

εl

l!
Dl

W(1) (H). (8)

If we assume

H ∗ =H ∗
0 + εH ∗

1 + ε2H ∗
2 + ε3H ∗

3 +· · · , (9)

W(1) =W
(1)

1 + εW
(1)

2 +· · · , (10)

and introduce these expansions in Equation (8), we obtain the perturbation
equations

H ∗
0 =

(
− µ2

2L2
+T

)
(J ∗

1 ,J ∗
2 ,J ∗

3 )

,

H ∗
1 =

(
R +

{
H ∗

0 ,W
(1)

1

})
(θ∗

1 ,θ∗
2 ,θ∗

3 ;J ∗
1 ,J ∗

2 ,J ∗
3 )

, (11)

...
...

We adopt the averaging

H ∗
1 =〈R〉θ∗

3
(12)
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and obtain the first-order Lie generator

W
(1)

1 = 1
aJ

4∑
i=0

15∑
j=0

15∑
k=0

15∑
l=−15

15∑
m=−15

15∑
n=−15

Rijklmn

l�1 +m�2 +n�3
×

(α∗ −αres)
ie∗j

ek
J sin(lθ∗

1 +mθ∗
2 +nθ∗

3 ) (13)

where

�j = ∂H ∗
0

∂J ∗
j

, j =1,2,3. (14)

The functions e∗(J ∗) and a∗(J ∗) are defined by the same functional
relations as e(J ) and a(J ) (Equation 7).

The semi-mean elements and the osculating elements are related by the
canonical transformation generated by W(1), which, at first order is

θi = θ∗
i +{θ∗

i ,W
(1)

1 }
Ji = J ∗

i +{J ∗
i ,W

(1)

1 }. (15)

The semi-mean Hamiltonian is

H ∗ =H0(J
∗)− ε

1
aJ

4∑
i=0

15∑
j=0

15∑
k=0

15∑
l=−15

15∑
m=−15

Rijklm0 ×

(α∗ −αres)
ie∗j

ek
J cos(lθ∗

1 +mθ∗
2 ). (16)

4. Second Averaging: The Mean Elements

The Resonant Lie Series Theory used to obtain the mean elements consists
basically of the followings steps (see, for details, Ferraz-Mello 2003):

– Expand the Hamiltonian H ∗ about a reference value;
– split the Hamiltonian into two parts:

H ∗(θ∗, J ∗)=H ∗
pendulum +
H ∗; (17)

– integrate the pendulum in the variables set {θ∗
1 , (J ∗

1 + J ∗
2 )} and obtain

the corresponding angle-action variables (w∗
1,�

∗
1);

– extend the transformation to include the other degree of freedom via
the Henrard-Lemaı̂tre Transformation;

– obtain the equations of perturbation;
– average over the fast angle w∗

1.
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4.1. EXPANSION OF THE HAMILTONIAN ABOUT A REFERENCE VALUE

Once made the first averaging, the resulting Hamiltonian does not depend
on the angle θ∗

3 . Then, J ∗
3 is a constant. We fix the value of this constant

at the reference value

J ∗
3 =Lres =√

µares =
[

2µ2

3nJ

]1/3

and expand L∗ about it. Since L∗ = J ∗
3 − 2(J ∗

1 + J ∗
2 ), this is equivalent to

expand the Hamiltonian in Taylor series around ξ =J ∗
1 +J ∗

2 =0.
The unperturbed part can be written as:

H ∗
0 =−µ2

2

∞∑
i=0

(i +1)

(J ∗
3 )(2+i)

2i(J ∗
1 +J ∗

2 )i +3nJ (J ∗
1 +J ∗

2 )−nJ J ∗
3 −gJ J ∗

2 .

Introducing nres = µ2

(J ∗
3 )3 , H ∗

0 can be written:

H ∗
0 =− µ2

2(J ∗
3 )2

+ (3nJ −2nres)(J
∗
1 +J ∗

2 )

−µ2

2

∞∑
i=3

(i +1)

J 2+i
3

2i(J ∗
1 +J ∗

2 )i −nJ J ∗
3 −gJ J ∗

2 . (18)

Because of the definition of n we have 3nJ −2nres =0
The Hamiltonian H ∗(θ∗, J ∗) is a two-degrees-of-freedom Hamiltonian

where θ∗
1 is critical (resonant) and θ∗

2 is a long period angle.
In the following expressions, we also expand J ∗

1 in the neighborhood of
−J ∗

2 through the substitution of the expression

J ∗
1 =−J ∗

2 + ξ (19)

It is worth emphasizing that we do not assume J ∗
1 and J ∗

2 small, but
only J ∗

1 +J ∗
2 small.

The disturbing function is expanded as:

R=R0 + ∂R
∂ξ

|ξ=0(J
∗
1 +J ∗

2 )+· · ·

where

∂R
∂ξ

∣∣∣∣
ξ=0

=
[

∂R
∂a∗

∂a∗

∂ξ
+ ∂R

∂e∗
∂e∗

∂ξ

] ∣∣∣∣
ξ=0

. (20)
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At ξ =0 we have (see Equation 7)

a∗|ξ=0 = J ∗
3

2

µ

e∗|ξ=0 =
√

1−
(

J ∗
2 +J ∗

3

J ∗
3

)2

(
∂a∗

∂ξ

)∣∣∣∣
ξ=0

=−4
J ∗

3

µ
(21)

(
∂e∗

∂ξ

)∣∣∣∣
ξ=0

= (−1)

[
1−

(
J ∗

2 +J ∗
3

J ∗
3

)2
]−1/2

(J ∗
2 +J ∗

3 )(2J ∗
2 −J ∗

3 )

J ∗
3

3

It is worth emphasizing that to calculate the partial derivatives with
respect to ξ in Equation (21), we use Equation (19) and consider the
momentum J ∗

2 as a constant.

4.2. THE HORI KERNEL

Because of the resonance, H0(J
∗) is not topologically adequate to be used

as a Hori kernel for the second averaging. We have to choose a new Hori
kernel that reproduces the topological features of the flow in the neigh-
borhood of the resonance. For that sake, orders of magnitude have to be
assigned to variables and parameters so that the main terms are all present
in the main resonant part of the Hamiltonian, on the same footing, while
the remaining non-trivial terms are of higher order. We use, now, the fact
that J ∗

1 +J ∗
2 is small and assume that:

ξ =J ∗
1 +J ∗

2 =O(
√

ε).

Figure 2 shows that the main critical terms of the disturbing function
are

R0
10(J

∗
2 ) cos θ∗

1 +R0
01(J

∗
2 ) cos θ∗

2 +R0
20(J

∗
2 ) cos 2θ∗

1

where the functions R0
10, R0

01 and R0
20 are generically defined by

R0

m =−

⎛⎝ 4∑
i=0

15∑
j=0

15∑
k=0

Rijk
m0
(α∗ −αres)

i

aJ

e∗j
ek
J

⎞⎠
ξ=0

(22)

(In this expression, the eccentricity and semi-major axis are evaluated at
ξ =0, that is, at J ∗

3 =√
µares and J ∗

1 =−J ∗
2 .)
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Figure 2. Main coefficients of the disturbing function.

For asteroids with eccentricities in the neighborhood of 0.2, the first
term is clearly dominant and we will keep only it in the Hori kernel, letting
the other two terms to be considered with the next order perturbations.
This choice makes the work considerably simpler, but limits the validity
of the theory. In a more precise theory they should also be considered.
We note that the routine of calculation would be the same, with only the
introduction of the solutions of a more complex Hamiltonian instead of
the simple pendulum. This would introduce new technical difficulties but
without precluding the construction of the solutions.

Thus, we consider that the main part of the Hamiltonian is now,

F ∗
2 = 1

2
ν11(J

∗
1 +J ∗

2 )2 −gJ J ∗
2 + εR0

10(J
∗
2 ) cos θ∗

1 (23)

where ν11 =− 12µ2

(J ∗
3 )4 and the angle θ∗

2 is cyclical and thus J ∗
2 is a constant in

the solution of this abridged Hamiltonian. Therefore R0
10 is constant and

F ∗
2 is the Hamiltonian of a simple pendulum whose solution, in the case

of small-amplitude librations can be given by (Ferraz-Mello, 2002):

J ∗
1 +J ∗

2 =−8
ω0

1

|ν11|
{

[cosw∗
1]Q− [2 cosw∗

1 − cos 3w∗
1]Q3

−
[

17
2

cosw∗
1 −5 cos 3w∗

1 − cos 5w∗
1

]
Q5
}

+O(Q7), (24)

where

ω0
1 =
√

εν11R0
10, (25)
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and

sin θ∗
1 =8[sin w∗

1]Q−24[2 sin w∗
1 − sin 3w∗

1]Q3

−8[
25
2

sin w∗
1 −3 sin 3w∗

1 −5 sin 5w∗
1]Q5 +O(Q7). (26)

The quantity R0
10 is a positive quantity. Would R0

10 be negative, the
definition of the angle θ1 should be changed, by adding π , before using the
classical pendulum results.

The amplitude Q is a finite quantity related to the action �∗
1 of the

pendulum through

Q=
√

ν11�
∗
1

32ω0
1

.

In what follows, we assume that Q is a small quantity (small-amplitude
libration hypothesis).

After introduction of the new variables, Equation (23) becomes

F ∗
2 =F(�∗

1, J
∗
2 )−gJ J ∗

2 , (27)

where

F(�∗
1, J

∗
2 )= εR0

10(J
∗
2 )
(
1−32Q2 +64Q4)+O(Q6) (28)

is the Hamiltonian of a pendulum, written in terms of the new action.

4.3. EXTENSION TO THE SECOND DEGREE OF FREEDOM

The variables introduced in the previous section, w∗
1,�

∗ are action-angle
variables only while F ∗

2 is considered as a one-degree-of-freedom
Hamiltonian. As the variables of the given system are θ∗

1 , θ∗
2 ,�∗

1,�
∗
2, we

have to extend the canonical transformation to include the second degree
of freedom. For that sake, we use the Henrard-Lemaı̂tre transformation
(Henrard and Lemaı̂tre, 1986)

θ∗
1 = θ∗

1 (w∗
1,�

∗)
J ∗

1 = J ∗
1 (w∗

1,�
∗)

θ∗
2 = w∗

2 −�2(w
∗
1,�

∗)
J ∗

2 = �∗
2

(29)

where

�2 =
∫ w1

0

(
∂θ∗

1

∂w∗
1

∂J ∗
1

∂�∗
2

− ∂θ∗
1

∂�∗
2

∂J ∗
1

∂w∗
1

)
dw∗

1 .
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It is necessary, beforehand, to write θ∗
1 in terms of w∗

1,Q(�∗
1). We use,

for sin θ∗
1 and (J ∗

1 +J ∗
2 ) the pendulum solutions given in the previous sec-

tion. In addition, since we are only considering small-amplitude librations,
we may use the approximation

θ∗
1 =arcsin(sin θ∗

1 )= sin θ∗
1 + sin3

θ∗
1

6
+· · · (30)

which is expanded about Q=0. At the order O(Q7), we have

θ∗
1 =8 sin w∗

1Q+
[

16 sin w∗
1 + 8

3
sin 3w∗

1

]
Q3

+
[

92 sin w∗
1 +24 sin 3w∗

1 + 8
5

sin 5w∗
1

]
Q5 (31)

and, after some calculations, we obtain

�2 =−8 sin w∗
1Q− 16

|ν11|
∂ω0

1

∂�∗
2

sin 2w∗
1Q2 −

[
16 sin w∗

1 + 8
3

sin 3w∗
1

]
Q3

− 16
|ν11|

∂ω0
1

∂�2

[
2 sin 2w∗

1 + sin 4w∗
1

]
Q4

−
[

92 sin w∗
1 +24 sin 3w∗

1 + 8
5

sin 5w∗
1

]
Q5 +O(Q6) (32)

and the transformation is completed.

4.3.1. Some Auxiliary Transformations

For the sake of writing the Hamiltonian in terms of the new variables, we
expand the cosines in powers of Q

cos θ∗
1 =1−16[1− cos 2w∗

1]Q2 −32[cos 2w∗
1 − cos 4w∗

1]Q4

−[64+112 cos 2w∗
1 −128 cos 4w∗

1 −48 cos 6w∗
1]Q6 +· · · . (33)
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Up to terms of order Q3, we also have:

cos θ∗
2 = cosw∗

2 +4[cos(w∗
1 +w∗

2)− cos(w∗
2 −w∗

1)]Q

+8
{

−2 cosw∗
2 +

(
1+ 1

|ν11|
∂ω0

1

∂�∗
2

)
cos(w∗

2 +2w∗
1)

+
(

1− 1
|ν11|

∂ω0
1

∂�∗
2

)
cos(w∗

2 −2w∗
1)

}
Q2

−
{(

32
|ν11|

∂ω0
1

∂�∗
2

+24
)

cos(w∗
1 +w∗

2)

−
(

32
|ν11|

∂ω0
1

∂�∗
2

−24
)

cos(w∗
2 −w∗

1)

+
(

32
|ν11|

∂ω0
1

∂�∗
2

+12
)

cos(3w∗
1 +w∗

2)

+
(

32
|ν11|

∂ω0
1

∂�∗
2

−12
)

cos(w∗
2 −3w∗

1)

}
Q3, (34)

cos 2θ∗
1 =1+ [−64+64 cos 2w∗

1]Q2 (35)

and

cos(θ∗
1 − θ∗

2 )= cosw∗
2 −

{
8

|ν11|
∂ω0

1

∂�∗
2

cos(w∗
2 −2w∗

1)

− 8
|ν11|

∂ω0
1

∂�∗
2

cos(2w∗
1 +w∗

2)

}
Q2 +O(Q4) (36)

4.4. THE HAMILTONIAN UP TO ORDER O(ε3/2Q3)

Up to order O(ε3/2), the Hamiltonian can be written in the form:

H ∗ =F ∗
2 +F ∗

3 (37)

where F ∗
2 is given by Equation (27) and

F ∗
3 = 1

6
ν111(J

∗
1 +J ∗

2 )3 + ε(J ∗
1 +J ∗

2 )
dR10

dξ
|ξ=0 cos θ∗

1

+εR0
00 + εR0

01 cos θ∗
2 + εR0

20 cos 2θ∗
1 + εR0

1−1 cos(θ∗
1 − θ∗

2 ).

In this equation, ν111 = − 96µ2

J ∗
3

5 and the newly introduced coefficients are
defined as in Equation (22).
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In the new variables, we have:

F ∗
3 =

[
−8εω0

1

|ν11|

(
∂R10

∂ξ

∣∣∣∣
ξ=0

)
Q

−
(

64ν111(ω
0
1)

3

|ν11|3 − 80εω0
1

|ν11|
∂R10

∂ξ

∣∣∣∣
ξ=0

)
Q3

]
cosw∗

1

−
(

64ν111(ω
0
1)

3

3|ν11|3 + 72εω0
1

|ν11|
∂R10

∂ξ

∣∣∣∣
ξ=0

)
Q3 cos 3w∗

1

+ [εR0
01 + εR0

1−1 −16εR0
01Q2] cosw∗

2

−
[

4εR0
01Q−

(
24εR0

01 − 32εR0
01

|ν11|
∂ω0

1

∂�∗
2

)
Q3

]
cos(w∗

1 −w∗
2)

+
[

4εR0
01Q−

(
24εR0

01 + 32εR0
01

|ν11|
∂ω0

1

∂�∗
2

)
Q3

]
cos(w∗

1 +w∗
2)

+
(

8εR0
1−1

|ν11|
∂ω0

1

∂�∗
2

+8εR0
01 + 8εR0

01

|ν11|
∂ω0

1

∂�∗
2

)
Q2 cos(2w∗

1 +w∗
2)

−
(

8εR0
1−1

|ν11|
∂ω0

1

∂�∗
2

−8εR0
01 + 8εR0

01

|ν11|
∂ω0

1

∂�∗
2

)
Q2 cos(2w∗

1 −w∗
2)

+
(

32εR0
01

|ν11|
∂ω0

1

∂�∗
2

−12εR0
01

)
Q3 cos(3w∗

1 −w∗
2)

+
(

32εR0
01

|ν11|
∂ω0

1

∂�∗
2

+12εR0
01

)
Q3 cos(3w∗

1 +w∗
2)

+ εR0
00 + εR20(1−64Q2)+64εR0

20Q2 cos 2w∗
1 +O(Q4) (38)

4.5. AVERAGING

Let us consider the canonical transformation (w∗,�∗) → (w∗∗,�∗∗)
generated by the Lie generator

W(2)(w∗∗,�∗∗)=W
(2)

2 +W
(2)

3 +· · · (39)

where the subscript indicates the degree in the elements of S.
The perturbation equations are

F ∗∗
2 =F ∗

2 (�∗∗)
F ∗∗

3 =F ∗
3 (w∗∗,�∗∗)+{F ∗∗

2 ,W
(2)

2 }1 (40)
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Since the action �∗∗
1 has order O(

√
ε), in the application of the Lie

Theory, it is necessary to take into account that the Poisson bracket con-
tains two parts of different orders. Indeed, if f, g are two functions with
degrees r and s in the variables of the set S ≡ (�∗∗

1 ,
√

ε), the Poisson
bracket is

{f, g}={f, g}1 +{f, g}2

where

{f, g}1 = ∂f

∂w∗∗
1

∂g

∂�∗∗
1

− ∂f

∂�∗∗
1

∂g

∂w∗∗
1

=O(r + s −1)

{f, g}2 = ∂f

∂w∗∗
2

∂g

∂�∗∗
2

− ∂f

∂�∗∗
2

∂g

∂w∗∗
2

=O(r + s) (41)

To solve the second of Equations (40), we adopt

F ∗∗
3 = 1

2π

∫ 2π

0
F ∗

3 (w∗∗,�∗∗)dw∗∗
1

and obtain the resonant Lie generator

W
(2)

2 =
(

∂F ∗∗
2

∂�∗∗
1

)−1 ∫
[F ∗∗

3 −F ∗
3 (w∗∗,�∗∗)]dw∗∗

1

or

ω̂1W
(2)

2 =
[
−8εω0

1

|ν11|

(
∂R10

∂ξ

∣∣∣∣
ξ=0

)
Q

−
(

64ν111(ω
0
1)

3

|ν11|3 − 80εω0
1

|ν11|
∂R10

∂ξ

∣∣∣∣
ξ=0

)
Q3

]
sin w∗∗

1

−
(

64ν111(ω
0
1)

3

9|ν11|3 + 24εω0
1

|ν11|
∂R10

∂ξ

∣∣∣∣
ξ=0

)
Q3 sin 3w∗∗

1

−
[

4εR0
01Q−

(
24εR0

01 − 32εR0
01

|ν11|
∂ω0

1

∂�∗
2

)
Q3

]
sin(w∗∗

1 −w∗∗
2 )

+
[

4εR0
01Q−

(
24εR0

01 + 32εR0
01

|ν11|
∂ω0

1

∂�∗
2

)
Q3

]
sin(w∗∗

1 +w∗∗
2 )

+
(

4εR0
1−1

|ν11|
∂ω0

1

∂�∗
2

+4εR0
01 + 4εR0

01

|ν11|
∂ω0

1

∂�∗
2

)
Q2 sin(2w∗∗

1 +w∗∗
2 )
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−
(

4εR0
1−1

|ν11|
∂ω0

1

∂�∗
2

−4εR0
01 + 4εR0

01

|ν11|
∂ω0

1

∂�∗
2

)
Q2 sin(2w∗∗

1 −w∗∗
2 )

+
(

32εR0
01

3|ν11|
∂ω0

1

∂�∗
2

−4εR0
01

)
Q3 sin(3w∗∗

1 −w∗∗
2 )

+
(

32εR0
01

3|ν11|
∂ω0

1

∂�∗
2

+4εR0
01

)
Q3 sin(3w∗∗

1 +w∗∗
2 )

+32εR0
20Q2 sin 2w∗

1 +O(Q4). (42)

ω̂1 is the frequency of the angle w∗∗
1 :

ω̂1 = ∂F ∗∗
2

∂�∗∗
1

= ∂F(�∗∗)
∂�∗∗

1

(43)

From the pendulum equations for small oscillations (Ferraz-Mello, 2002),
it is easy to see that,

ω̂1 ≈ω0
1(�

∗∗
2 )(1−4Q(�∗∗

1 ,�∗∗
2 )2)

The quantities ν11,ω
0
1,Q,Rij appearing in the right-hand side of

Equation (42) have the same definitions as before, but with �∗∗ instead of �∗.
At this order, the canonical transformation of the semi-mean action-angle

elements into mean elements is given by

w∗
1 = w∗∗

1 +{w∗∗
1 ,W

(2)

2 }1

w∗
2 = w∗∗

2 +{w∗∗
2 ,W

(2)

2 }1

�∗
1 = �∗∗

1 +{�∗∗
1 ,W

(2)

2 }1

�∗
1 = �∗∗

1 +{�∗∗
2 ,W

(2)

2 }1

(44)

and the resulting Hamiltonian for the mean elements is:

H ∗∗ =F(�∗∗)−gJ �∗∗
2 + εR0

00(�
∗∗
2 )+ εR0

20(�
∗∗
2 )(1−64Q2)

+ [εR0
01(�

∗∗
2 )+ εR0

1−1(�
∗∗
2 )−16εR0

01(�
∗∗
2 )Q2] cosw∗∗

2 . (45)

5. Third Averaging: The Proper Elements

The Hamiltonian obtained in the previous section is a one-degree-of-freedom
Hamiltonian (the only variables are, now, w∗∗

2 and �∗∗
2 ), hence integrable.

We may use again a Lie series theory up to first order in the small
parameter

√
ε to construct the solution of this system. We consider the
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canonical transformation (w∗∗
2 ,�∗∗

2 ) → (w∗∗∗
2 ,�∗∗∗

2 ) generated by the Lie
generator W(3)(w∗∗∗

2 ,�∗∗∗
2 ) and the “perturbation” equations2

H ∗∗∗ =H ∗∗(w∗∗∗
2 ,�∗∗∗

2 )+{F ∗∗∗
2 ,W(3)} (46)

To solve the latest equation, we adopt the averaging

H ∗∗∗ = 1
2π

∫ 2π

0
H ∗∗(w∗∗∗

2 ,�∗∗∗
2 )dw∗∗∗

2

and the Lie generator

W(3) =
(

∂H ∗∗∗

∂�∗∗∗
2

)−1 ∫
[H ∗∗∗ −H ∗∗(w∗∗∗

2 ,�∗∗∗
2 )]dw∗∗∗

2 .

We thus obtain

H ∗∗∗ =F(�∗∗∗)−gJ �∗∗∗
2 + εR0

00(�
∗∗∗
2 )+ εR0

20(�
∗∗∗
2 )(1−64Q2)

and

W
(3)

3 = 1
ω̂2

[
εR0

10(�
∗∗∗
2 )+ εR0

1−1(�
∗∗∗
2 )−16εR0

10(�
∗∗∗
2 )Q2] sin w∗∗∗

2 (47)

where

ω̂2 = ∂H ∗∗
0

∂�∗∗
2

We have thus obtained two quasi integrals �∗∗
1 and �∗∗∗

2 , which are the
sought Dynamical Proper Elements. �∗∗∗

2 is related to �∗∗
2 through

�∗∗∗
2 =�∗∗

2 + ∂W
(3)

3 (w∗∗,�∗∗)
∂w∗∗

2

=�∗∗
2 + 1

ω̂2

[
εR0

01(�
∗∗
2 )+ εR0

1−1(�
∗∗
2 )−16εR0

01(�
∗∗
2 )Q2] cosw∗∗

2

The transformation of the angles is similar.
In the actual application to the asteroids, it maybe considered of interest

to construct Keplerian-like semi-major axis and eccentricity as functions of
the proper actions �∗∗

1 and �∗∗∗
2 . They can be obtained through the follow-

ing steps: (i) Equations formally equal to Equation (29) are used to obtain
the formal variables J ∗∗∗ and θ∗∗∗; (ii) These variables can be used to
determine the equivalent Delaunay’s moments; and (iii) Equations formally
equal to Equation (7) are used to obtain the equivalent elliptical proper
elements a∗∗∗ and e∗∗∗.

2For sake of simplicity we omitted in all equations of this section the dependence on
the constant �∗∗

1 .



PROPER ELEMENTS FOR THE HILDA ASTEROIDS 105

6. Conclusions

We have presented the mathematical basis for the construction of analytical
proper elements for resonant asteroids. This theory becomes possible
thanks to two recent theoretical advances: The extension of Lie Series Per-
turbations Theory to systems including both a resonant and a long-period
(i.e. degenerate) angles (Ferraz-Mello, 1997, 2002) and a representation of
the disturbing function valid in high eccentricities (Beaugé, 1996; Beaugé
and Michtchenko, 2003).

In this low-order theory, the semi-mean elements are calculated up to
first order in the mass of Jupiter. The passage to the mean and proper ele-
ments is obtained solving the perturbation equations up to order O(ε3/2)

and using an approximation of the libration of the critical angle up to the
order of the square of the libration amplitude.

The results show the feasibility of the proposed scheme. However, one
should be aware that much work is still necessary to reach he conclusion of
this investigation and to have PE for the asteroids in the Hilda group. The
extension to the inclined case is the main of the forthcoming steps. The
extension of Beaugé’s approximation of the disturbing force in the spatial
case is done and the actual construction of PE is in progress. However, the
influence of the other planets, indispensable for the correct calculation of
the proper frequencies, was not yet considered. Only then, it will be possi-
ble to apply the theory to the known population of Hildas and to compare
to results obtained by numerical means (e.g. Schubart, 1982a,b). It would
also be important, then, to compare the whole procedure to the numeri-
cal and semi-numerical averaging techniques used by Milani (1993) and by
Beaugé and Roig (2001) in the case of the Trojan asteroids.
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Appendix A. The Disturbing Function

The disturbing function is

R= 1



− rrJ

r3
J

(48)



106 O. MILONI, S. FERRAZ-MELLO AND C. BEAUGÉ

where


=|r − rJ |= (r2 + r2
J −2rrJ cosS

)1/2
. (49)

S is the angle between the asteroid and Jupiter as seen from the Sun.
In this paper we use an improved version of the expansion first

suggested by Beaugé (1996). This expansion is valid in large domains of
the phase space excluding a region around the singularities associated to
collisions between Jupiter and the asteroid.

A.1 BEAUGÉ’S APPROXIMATION. THE PARAMETER δ

The big problem in the expansion of R comes from the term 
−1, so
let us first deal with it. Introducing the ratio ρ = r/rJ , we obtain from
Equation (49)

rJ



= (1+ρ2 −2ρ cosS

)−1/2
. (50)

Instead of expanding this function in Fourier series of S (Laplace approach)
or power series of ρ (Legendre polynomials), we use a best-fit approach.
We write

rJ



= (1+x

)−1/2
. (51)

where

x =ρ2 −2ρ cosS (52)

and represent the function (1+x)−1/2 by a polynomial of order N in x:

(1+x)−1/2 �
N∑

n=0

bnx
n (53)

whose coefficients bn are determined numerically through a linear regression.
The variable 1+x is a measure of the proximity of the initial condition

to the singularity in 1



. It is equal to 0 at the singularity, and increases
as we go away from the collision curve. We note that the values of ρ and
S are not separately significant; only the distance from the singularity is
important.

The numerical fit is performed using values of x > −1 + δ, where δ is
a positive parameter close to zero. In Beaugé’s approximation, the num-
ber of terms necessary to represent 
−1 depends on the magnitude of 
−1

in the domain to be studied: Near the minimum of 
−1, a few terms are
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Figure 3. Limits of validity of Beaugé’s approximations for asteroids in 3:2 resonance with
Jupiter for eJ =0 and different values of δ. The thick black line is the locus of the points
where xmin =−1 (collision curve). The non-labeled curves adjacent to it correspond to δ=
0.001. Axes: X = e cos θ1; Y =|e sin θ1|.

enough to have a good representation of (1+x)−1/2. This number increases
quickly as we approach orbits that may come close to a collision (Beaugé
and Michtchenko, 2003). For the Hildas, δ>0.1 and a good approximation
may be obtained with a reasonable number of terms (in this paper, we are
using N =15).

Beaugé’s approximation no longer requires that the ratio of the distances
of the two planets is small. In a mean-motion resonance, the method is
valid even for crossing orbits as long as the resonance does not allow the
asteroid to come close to Jupiter.

The limits δ in the 3:2 commensurability (α � 0.763) are shown in
Figure 3 (for eJ = 0). The maximum value (δ = 0.39) lies at e ∼ 0.51, θ1=0
(on the horizontal axis). This point is very close to the corotation sta-
tionary solution of the 3:2 asteroidal resonance (e1 = 0.45 for e2 → 0; see
Ferraz-Mello et al., 1993). The singularities of 
−1 lie on the thick black
line (collision curve).

To transform the above approximation into a function having the form
needed in a theory, many transformations have to be done. Introducing the
explicit expression for x into Equation (53), it becomes

rJ



�

N∑
k=0

n∑
j=0

ck(−2)j
(

k

j

)
ρ2k−j cosj S (54)

where the ck are constant coefficients, easily obtainable in terms of the bk.
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Since the theory presented in this paper is restricted to coplanar orbits,
we introduce the definition of S in the planar case: S = f − fJ + 
� .
Changing from powers of the cosines to multiples of the argument, and
introducing the planar expression of S, we can rewrite the last equation as:

aJ



�

N∑
k=0

N−k∑
i=0

2Ak,iα
m

(
r1

a1

)m(
r2

a2

)−m−1

cos k(f −fJ +
�) (55)

where m=2i +k.
The next step is the transformation of true into mean anomalies. For

that sake we use the two-body Fourier expansions:(
r

a

)n

cos (kf )=
∞∑

j=0

(
X

n,k
j +X

n,k
−j

)
cos (j
) (56)

(
r

a

)n

sin (kf )=
∞∑

j=0

(
X

n,k
j −X

n,k
−j

)
sin (j
)

where the superscript n may be either positive or negative. The coefficients
X

n,k
j are the Hansen coefficients (see Tisserand, 1889; Kaula, 1962). Hansen

coefficients are functions of the eccentricity that may be expanded into
power series of the eccentricities:

X
n,k
j = e|k−j |

∞∑
s=0

Y
n,k
s+u1,s+u2

e2s (57)

(u1 = max (0, j −k) and u2 = max (0, k − j)) where the numbers Y
n,k
s+u1,s+u2

are the Newcomb operators. Newcomb operators are independent of the
eccentricities and, thus, the same for all initial conditions; they obey to
some simple recurrence relations allowing them to be easily calculated for
all values of the subscripts (see Brouwer and Clemence, 1961).

Introducing Equation (57) into Equation (56), we obtain, after some
algebra,(

r

a

)n

cos (kf )=
∞∑
i=0

∞∑
m=−∞

Bn,k,i,mei cos (m
) (58)

(
r

a

)n

sin (kf )=
∞∑
i=0

∞∑
m=−∞

Cn,k,i,mei sin (m
)

where Bn,k,i,m and Cn,k,i,m are constant coefficients expressed as functions
of Newcomb operators. These coefficients, first calculated by Leverrier, do
not depend on the orbital parameters and may be calculated once for all.
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They have some interesting properties. The most important of them is the
d’Alembert property: Bn,k,i,m = Cn,k,i,m = 0 when |m| < i or when |m| − i is
odd.

The latest expansions are power series in e convergent for e <

0.6627434 · · · (see Wintner, 1941). Introducing now Equation (58), and their
analogues for Jupiter, into the expression of the direct part of the disturbing
function, and reordering the terms, we get:

1



� 1
aJ

∞∑
j,k=0

∞∑
m,n=−∞

N∑
l=0

N−l∑
i=0

Al,iD2i+l,j,k,m,nα
2i+leie

j

J

× cos (m
−n
J + l
�) (59)

where the coefficients D2i+l,j,k,m,n are given by:

D2i+l,j,k,m,n = 1
2γmγn

(B2i+l,l,j,|m| + sign(m)C2i+l,l,j,|m|) (60)

×(B−2i−l−1,l,k,|n| + sign(n)C−2i−l−1,l,k,|n|)

and γm is a simple bi-valuated function defined as:

γm =
{

1/2 if m=0
1 if m>0 (61)

This is the direct part of the disturbing function

A.2 THE INDIRECT PART

The function appearing in the indirect part of R is

rrJ

r3
J

. (62)

Comparing Equation (48) to Equation (55), we can see that the indirect
contribution has exactly the same functional form as one of the terms
of the expansion (Equation 55). So, it is possible to add the indirect part
directly in the definition of the coefficients used in the previous section.

This can be done very simply modifying the coefficient Ak,i with k = 1,
i =0 in the following way:

A1,0 −→A1,0 −1/2. (63)

In this simple manner, we can obtain a single series for the disturbing
function of the planetary three-body problem in heliocentric relative coor-
dinates. Recall that the coefficients are constant for all initial conditions,
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and therefore need only be determined once. (For more details, see Beaugé,
1996; Beaugé and Michtchenko, 2003.)

Each term in R depends on the mean anomalies 
 ,
J and on the
difference of the perihelion longitudes 
� . In terms of the resonant
canonical variables used in the theory, these arguments may be written as
(m−
)θ1 + (
−n)θ2 + (3m−2n)θ3.
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Abstract. The stability of co-orbital motions is investigated in such exoplanetary systems,
where the only known giant planet either moves fully in the habitable zone, or leaves it for
some part of its orbit. If the regions around the triangular Lagrangian points are stable, they
are possible places for smaller Trojan-like planets. We have determined the nonlinear stability

regions around the Lagrangian point L4 of nine exoplanetary systems in the model of the
elliptic restricted three-body problem by using the method of the relative Lyapunov indicators.
According to our results, all systems could possess small Trojan-like planets. Several features

of the stability regions are also discussed. Finally, the size of the stability region around L4 in
the elliptic restricted three-body problem is determined as a function of the mass parameter
and eccentricity.

Key words: co-orbital motion, exoplanets, nonlinear stability

1. Introduction

We speak of co-orbital motion when two planets move in nearly the same
orbits. In this case they are in a 1:1 mean motion resonance. In the Solar
system there are many examples for this type of motion. The most well-
known co-orbital objects are Jupiter’s Trojan asteroids, sharing their orbits
with Jupiter, while also librating around the triangular Lagrangian points L4

or L5 of the Sun–Jupiter system. The number of the known Trojans now is
above 1600, while their estimated number is one million. Mars and Neptune
also have Trojan asteroids, while Earth has a few temporarily captured co-
orbital companions.

It can be expected that co-orbital objects exist also in exoplanetary sys-
tems. Laughlin and Chambers (2002) outlined a possible formation mecha-
nism of a 1:1 resonant pair in the protoplanetary accretion disc, which is
maintained during migration to small semi-major axes as a result of the
planets’ interaction with the disc. There are a few studies on extrasolar
Trojans. Caton et al. (2001) and Davis et al. (2001) searched for Trojan
planets in eclipsing binaries by looking for transits about 60� ahead and
behind the primary stellar eclipse on the chance that a Trojan planet is found
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in the L4 or L5 points of the binary system. They investigated 18 systems and
in a few cases they found anomalies in the light curves near the phases 0.2
and 0.8, however, there has been no confirmation of existing Trojan planets
as yet. Laughlin and Chambers (2002) discussed the viability and detect-
ability of extrasolar Trojan planets. They have shown that two planets with
masses comparable to Jupiter or Saturn around a solar-mass star can per-
form stable tadpole-type librations around the vertices of an equilateral tri-
angle. Pairs of Saturn-mass planets can also execute horseshoe orbits around
a solar-mass star, but this is not possible for Jupiter-mass pairs. A pair of
extrasolar planets both in tadpole-type and horseshoe-type orbits induces a
characteristic pattern in the radial velocity component of the central star that
could be detected. A third possible configuration for a 1:1 resonance is when
one planet is initially in a very eccentric orbit, the other is in a circular orbit
and the planets exchange angular momentum and swap eccentricities in a
manner that allows them to avoid close encounters (Novak, 2002; Laughlin
and Chambers, 2002). Nauenberg (2002) determined numerically the non-
linear stability domain of the triangular Lagrangian solutions in the general
three-body problem as a function of the eccentricity and Routh’s mass
parameter. This study indicates that there is a wide range of Jupiter-size
planetary masses (including brown dwarfs) and eccentricities for which such
solutions can exist in exoplanetary systems.

In exoplanetary studies an important problem is the existence of terrestrial
planets in the habitable zones. If a giant planet moves in the habitable zone
the existence of terrestrial planets is questionable. However, as Menou and
Tabachnik (2003) noted, habitable terrestrial planets could exist at the stable
Lagrangian points of the giant planets. In this paper we study this possibility.
We investigate 5 exoplanetary systems, in which the only known giant planet
is always in the habitable zone, and determine the region around the
Lagrangian point L4 of the systems in which stable tadpole-type motion is
possible. We also study 4 systems, in which the value of the semi-major axis
of the giant planet falls between the limits of the habitable zone, but due to
the larger eccentricity of the orbit the giant planet leaves for some time the
habitable zone.

2. Exotrojan Stability Regions

For the investigation of the nonlinear stability of orbits around the triangular
Lagrangian points we used the method of the relative Lyapunov indicators
(RLI) (Sándor et al., 2000, 2004). The RLI measures the convergence of the
finite-time Lyapunov indicators to the maximal Lyapunov characteristic
exponents of two very close orbits. This method is extremely fast in
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determining the ordered or chaotic nature of individual orbits, as well as
distinguishing between stable and unstable regions of the phase space.
According to our experiments, gained in different dynamical problems, it is
enough to integrate the close orbits for a few hundred times the longest
orbital period of the system. In this investigation we made the integration for
103 periods of the giant planets.

Table I gives the main parameters of the 5 studied systems, in which the
giant planet moves in the habitable zone. The second and third columns give
the mass of the central star and the minimum mass of the giant planet in solar
mass, the fourth and fifth columns contain the semi-major axis and the
eccentricity of the giant planets’ orbit, and the last column indicates the
region of the habitable zone (HZ).

Table II gives the same parameters for 4 systems, in which the giant
planet’s orbit is not fully in the habitable zone, due to the values of the semi-
major axis and the eccentricity.

We took the other orbital elements of the giant planets zero. Note, that
from a dynamical point of view there is no difference between the systems of
Tables I and II, the difference is rather conceptual being the possible ter-
restrial Trojan planets fully in the habitable zone or not.

We studied the nonlinear stability of orbits around the Lagrangian point
L4 of all systems in the model of the elliptic restricted three-body problem by
using the method of the RLI. Some of the results are shown in Figures 1–4.
Figure 1 displays the stability region around L4 in the system HD 108874.

TABLE I

Parameters of exoplanetary systems with the giant planet in the habitable zone.

System ms [m�] mp [m�] a [AU] e HZ [AU]

HD 17051 1.03 0.00194 0.91 0.24 0.7–1.3
HD 28185 0.99 0.00570 1.03 0.07 0.7–1.3

HD 108874 1.00 0.00178 1.06 0.14 0.7–1.3
HD 177830 1.17 0.00152 1.14 0.10 0.9–1.8
HD 27442 1.20 0.00128 1.18 0.07 0.9–1.8

TABLE II

Parameters of exoplanetary systems with the giant planet partly outside the habitable zone.

System ms [m�] mp [m�] a [AU] e HZ [AU]

HD 150706 1.00 0.00100 0.82 0.26 0.7–1.3
HD 114783 0.92 0.00090 1.20 0.10 0.6–1.25

HD 20367 1.05 0.00116 1.25 0.23 0.75–1.40
HD 23079 1.10 0.00261 1.65 0.10 0.85–1.60
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Changing the semi-major axis of the orbit of a fictitious planet with negligible
mass around the semi-major axis of the giant planet’s orbit with a stepsize
Da ¼ 0:002 AU, and the synodic longitude of the fictitious planet (the dif-
ference between the mean orbital longitudes of the fictitious and the giant
planets) between 20�–180� with a stepsize Dk ¼ 2�, and assuming an initial
orbital eccentricity for the fictitious planet equal to the eccentricity of the
giant planet, we computed the values of the RLI for all orbits originating
from these initial conditions. We did the same computations for all systems
of Tables I and II. Figure 1 shows the logarithm of the RLI values, corre-
sponding to each initial point, in a black and white scale. Smaller values of
the RLI (lighter regions) correspond to more stable orbits, larger RLIs
(darker regions) correspond to chaotic orbits. The black background corre-
sponds to escape orbits or to collision orbits with the giant planet. Some
structures of the light stability region can be distinguished, among them a
ring-like structure near the edge of the stability region. This is more pro-
nounced in Figure 2 corresponding to the case of the system HD 114783.
This ring stucture has been also shown by Dvorak et al. (2004), and this
might correspond to higher order resonances (13:1, 14:1) between the short
and long period components of libration. This is also in agreement with the
result obtained by symplectic mappings for coorbital motion by Sándor and
Érdi (2003).

The system HD 27442 has a similar stability structure, therefore it is not
shown here. From Figures 1 and 2 it can also be seen that the center of the
stability region (most light area) is shifted towards the opposite direction of
the giant planet, probably due its large orbital eccentricity. It is interesting to
compare this result with that obtained in the circular restricted three-body
problem. In that model the center of libration is shifted with the increase of

Figure 1. Stability region around L4 in the system HD 108874.
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the orbital eccentricity of the test particle towards the opposite direction of
the smaller primary (Namouni and Murray, 2000; Sándor et al. 2002).

Figure 3 shows the stability region around L4 for the system HD 28185.
Here an interesting structure of five stability islands can be noticed, which
might be the result of the disruption of a larger stability region due to the
larger mass of the giant planet.

Figure 4 displays the case of HD 23079, in which the giant planet moves
partly outside the habitable zone. The fine structure of the stability region at
the opposite side with respect to the giant planet is well observable. Note that
orbits here suffer slow chaotic diffusion as long time integrations show. Note
also a bar-like structure of the most stable region in the middle of the figure.
This structure has also been described by Dvorak et al. (2004).

In all studied systems there is an extended stability region around the
triangular Lagrangian points, where a small planet with negligible mass

Figure 2. Stability region around L4 in the system HD 114783.

Figure 3. Stability region around L4 in the system HD 28185.
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could exist. We are going to make computations with larger masses of the
Trojan-like planets, and our preliminary results indicate the existence of
stability regions around the triangular Lagrangian points in these cases as
well.

Certainly, the size of the stability region depends very much on the
studied systems. If there is an additional giant planet in the system that
can largely modify the structure and the extent of the stability region. This
is shown as an example in Figure 5 for the system HD 108874, where we
assumed a second giant planet with the same mass as the real one
(0.00178 m�) but in an outer orbit (a ¼ 1:82 AU, e ¼ 0:06). Comparing
Figure 5 with Figure 1 the change is evident.

Figure 5. Stability region around L4 in the perturbed system HD 108874.

Figure 4. Stability region around L4 in the system HD 23079.
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3. Size of the Stability Region Around L4

In the model of the elliptic restricted three-body problem, that we have
applied to the study of the systems in Tables I and II, the stability of the
triangular Lagrangian points depends on the mass parameter and the orbital
eccentricity of the primaries. The stability of orbits around L4 also depends
on these parameters. Nonlinear stability of motions around L4 was studied
by Györgyey (1985) for the mass parameter of the Earth–Moon system and
for a few values of the eccentricity. Lohinger and Dvorak (1993) made a
systematic survey of a wide range of mass parameters and eccentricities.
Nauenberg (2002) determined the nonlinear stability domain of the trian-
gular Lagrangian solutions as a function of Routh’s mass parameter and the
eccentricity.

We also determined the stability region around L4 in the model of the
elliptic restricted three-body problem depending on the mass parameter l
and the eccentricity e of the primaries. We changed the mass parameter in the
region 0�0.045 with a stepsize Dl ¼ 0:001, and the eccentricity in the region
0�0.4 with a stepsize De ¼ 0:02. For each pair of l and e we determined the
size of the stability region around L4 in the same way as we did it for the
investigated exoplanetary systems. The size of the stability region is charac-
terized by the number of stable orbits of the test particle. We considered an
orbit stable if it did not cross the axis of conjunction of the three bodies, and
the value of the RLI remained below 10�11 during the whole integration time,
which was 103 periods of the primaries.

Figure 6 displays the number of stable orbits in a logarithmic black and
white scale as the function of the mass parameter and eccentricity of the

Figure 6. Size of the stability region around L4 depending on the eccentricity and the mass
parameter.
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primaries. Figure 6 is in good agreement with the results of Lohinger and
Dvorak (1993) and Nauenberg (2002). It can be seen that the stability region is
the largest for small values of both e and l. The investigated 9 exoplanetary
systems have stability regions around L4 with sizes corresponding to the left
side of Figure 6. Beside the largest stability region at the left side of Figure 6,
there is also an extended stability region near l ¼ 0:02 for small values of e.
This was also found by Lohinger and Dvorak (1993). The unstable regions at
about l ¼ 0:015 and l ¼ 0:024 correspond to the resonances 3:1 and 2:1
between the librational frequencies. It can be seen in Figure 6 that for a given
mass parameter the size of the stability region around L4 decreases as the
eccentricity of the primaries increases, as shown also by Dvorak et al. (2004).

4. Conclusions

We have studied the nonlinear stability of motions around the Lagrangian
points L4 in 9 exoplanetary systems in the model of the elliptic restricted three-
body problem by using the method of the relative Lyapunov indicators. Each
systemhas an extended stability region aroundL4, whose extent depends on the
mass and orbital eccentricity of the giant planet. It is possible that exotrojan
planets of small mass exist in these systems. The stability regions have some
interesting features, such as a ring-like structure corresponding to higher order
resonances, and a bar-like structure ofmore stable domains in themiddle of the
stability region. The stability regions are the largest for small values of both the
mass parameter and the eccentricity, and for a givenmass parameter the size of
the stability region decreases with the increase of the eccentricity.

Further works are necessary to investigate the problem for non negligible
masses of exotrojan planets and these investigations are underway.
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Abstract. The famous Laplace problem is the three-body, secular, planetary problem. Its
plane version has the great theoretical advantage of being integrable (Ferraz-Mello, private

correspondence, 2001) and Ferraz-Mello et al. (Chaotic World: from order to Disorder in
Gravitational N-Body Systems, Kluwer Academic Publisher, 2004)). Nevertheless it remains a
very complex problem with many singularities and many possibilities of collisions. Large
eccentricities lead generally to large perturbations especially if the two planets have the same

direction of revolution about their star.

Key words: plane secular, three-body problem

1. Introduction

The discovery of many extrasolar planets with a great variety of eccentricities
has given a new impetus to the study of the long term evolution and the
stability of planetary systems. The simplest non-trivial case is this of a single
star with two much less massive planets. The full study of that case remains a
dream, even in the plane case, but, if the resonances are negligible, the secular
approximation of that plane problem is integrable and a general presentation
can be done.

2. Elements of the Problem

We will use the usual notations.
G ¼ Cavendish constant ¼ 6.672 · 10)11 m3/kg s2,
M ¼ mass of the star,
m1 ¼ mass of the inner planet,
m2 ¼ mass of the outer planet, m1 + m2 
 M,
m¢ ¼ Mm1/(M + m1) ffi m1, m¢ is the ‘‘inner reduced mass’’,
m¢¢ ¼ (M + m1) m2/(M + m1 + m2) ffi m2, m¢¢ is the ‘‘outer reduced mass’’.
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Delaunay’s orbital elements of coplanar orbits:
L1, H1, l1, h1: for the inner orbit; L2, H2, l2, h2: for the outer orbit

L1 ¼ m0n1a21; ð1Þ
H1 ¼ m0n1a1b1 cos i1; ð2Þ

n1 ¼ mean angular motion of the inner planet,
a1 ¼ semi-major axis of the inner orbit; n21a

3
1 ¼ G (M + m1),

b1 ¼ semi-minor axis of the inner orbit ¼ a1ð1� e21Þ1=2,
e1 ¼ eccentricity of the inner orbit,
i1 ¼ inclination of the inner orbit ¼ either 0� or 180�.

The outer orbital plane will be the reference plane and thus the outer
inclination i2 is always 0�.

L2 ¼ m00n2 a22; ð3Þ
H2 ¼ m00n2 a2 b2; cos i2 ¼ 1; ð4Þ

n2 ¼ mean angular motion of the outer planet,
a2 ¼ semi-major axis of the outer orbit; n22 a

3
2 ¼ G (M + m1 + m2),

b2 ¼ semi-minor axis of the outer orbit ¼ a2ð1� e2
2Þ1=2,

p2 ¼ semi-latus rectum of the outer orbit ¼ a2ð1� e2
2Þ,

e2 ¼ eccentricity of the outer orbit.
l1, l2: mean anomalies,
h1, h2: longitudes of pericenters,

x ¼ h1 � h2: ð5Þ
The angle x will be one of the main parameters of the problem (Figure 1).

Figure 1. The two orbits, the angle x and the three mutual distances.
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3. Delaunay’s Equations of Motion

The classical Delaunay’s equations of motion are the following:

(A) The Hamiltonian H is equal to the energy integral.

H ¼� ðG2M2m2
1 m0=2L2

1Þ � ½G2ðMþm1Þ2m2
2 m00=2L2

2�
þ Gm2½ðMþm1Þ=R�M=r2 �m1=r12�;

ð6Þ

with: R ¼ distance between the outer planet and the center of mass of the
inner system.

ðMþm1ÞR2 þm0r21 ¼ Mr22 þm1r
2
12: ð7Þ

(B) If the Hamiltonian H is expressed in terms of G, of the masses and of the
eight Delaunay’s parameters, it leads to the usual Hamiltonian equations
with j ¼ either 1 or 2.

dLj=dt ¼ �@H=@lj; dHj=dt ¼ �@H=@hj; dlj=dt ¼ @H=@Lj;

dhj=dt ¼ @H=@Hj:
ð8Þ

This set of equations has two integrals of motion : the Hamiltonian H itself
and the angular momentum c:

c ¼ H1 þH2 ¼ constant: ð9Þ

4. The Secular Problem

The Von Zeipel elimination (1916–1917) of the short period parameters l1
and l2 leads to the following (to the third order in m1/M and m2/M).

The secular LS1 and LS2 are constant, and thus also the secular semi-major
axes aS1

and aS2
and the secular mean angular motions nS1 and nS2 .

The secular mean anomalies lS1 and lS2 are ignorable and have nearly
constant time-derivatives very close to nS1 and nS2 (these derivatives would be
constant in the absence of the ‘‘negligible’’ third order terms of Equation
(10)).

For the remaining secular parameters HS1 , HS2 , hS1 , hS2 , we will drop the
subscript S and they will be governed by the secular Hamiltonian HS.

HS ¼ HS0ðLS1
;LS2

Þ � Gm1m2Uþ third order terms (order Gm3
j =Ma2Þ;

ð10Þ
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with

U ¼ mean mutual potential of the two orbits (for G

¼ 1 and unit of massesÞ

¼ ð1=4p2Þ
Z 2p

0

dl1

Z 2p

0

dl2
r12

¼ ð1=4p2Þ
Z 2p

0

dE1ð1� e1 cosE1Þ
Z 2p

0

dE2ð1� e2 cosE2Þ=r12 ð11Þ

and with

E1 andE2¼ eccentric anomalies ; E1�e1 sinE1¼ l1; E2�e2 sinE2¼ l2:

ð12Þ
(Notice that the ‘‘)G m1 m2 U’’ term is not the average of the last term of (6),
its main part is )G m1 m2/a2S, fortunately that main part is only a function of
the masses and L2S : it has no effects on the interesting parameters HS1 , HS2 ,
hS1 , hS2 and can be associated with the HS0 (LS1 , LS2) term of (10) ).

This elimination assumes that the ratio of the two periods T1 and T2 is
irrational.

If T1/T2 ¼ p/q, a second-order term (taking account of lS1 and lS1 ) must be
added into the expression (10) of HS , fortunately the main factor of that
term is the following K:

K ¼ sup frqeðq�epÞ
1 ; rme

ðq�epÞ
2 ; r2e

ðq�2eÞ
2 e

jp�2j
1 ; r2e

ðqþ2eÞ
2 e

ðpþ2Þ
1 g; ð13Þ

with: 1 Op < q; p prime to q

r ¼ a1=a2 ffi ðp=qÞ2=3 < 1;

e ¼ cos i1 ¼ �1;

m ¼ sup f2; pg: ð14Þ
For large (q ) ep) that factor K is generally extremely small.

5. Expression of the Mean Mutual Potential U

Let us call q and h the polar coordinates of an arbitrary point P, either inside
or outside of a given Keplerian orbit O (Figure 2).

Let us call a, b, p, e, r, l, E, v the usual orbital elements of that Keplerian
orbit:
a ¼ semi-major axis,
e ¼ eccentricity,
b ¼ að1� e2Þ1=2 semi-minor axis,
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p = að1� e2Þ ¼ semi-latus rectum,
r ¼ distance OM ¼ að1� e cosEÞ ¼ p/(1 + e cos v),
E ¼ eccentric anomaly,
v ¼ true anomaly,
l ¼ mean anomaly ¼ E ) e sin E.

The expression of the potential UK of the Keplerian orbit (with unit G and
mass) at the point P is given by

UK ¼ ð1=2pÞ
Z 2p

0

dl=rp ¼ ð1=2pÞ
Z 2p

0

dEð1� e cos EÞ=rp: ð15Þ

We must express UK in terms of q, h and the orbital elements. We will need
the follwing usual expressions (for integers k and m, with m P 0 and with
Pk(cos a) ¼ kth Legendre polynomial).

Aðk;mÞ ¼ ð1=2pÞ
Z 2p

0

daPkðcos aÞ cos ma; ð16Þ

Bðk;mÞ ¼ ð1=2pÞ
Z 2p

0

dl rk cos mv: ð17Þ

(These B(k, m) coefficients are related to the ‘‘Hansen coefficients’’ (see
Tisserand, 1889a).)

The expression A(k, m) is zero if the difference (k ) m) is odd and/or
negative, and if not we obtain:

n ¼ ðk�mÞ=2 ¼ integerP0; Aðk;mÞ ¼ Ck�n
2k�2n � Cn

2n=4
k; ð18Þ

where Cb
a is the usual Pascal integer a!/b! (a ) b)!, with 0! ¼ 1.

This expression (18) gives another formulation of the Legendre polyno-
mial Pk(cos a):

Figure 2. The Keplerian orbit O and the point P.
v ¼ true anomaly ¼ h +a,
rp ¼ distance MP.
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Pkðcos aÞ ¼
Xk
n¼0

Ck�n
2k�2n � Cz2n

n � cosðk� 2nÞa	 

=4k: ð19Þ

Notice that all coefficients of the cos (k ) 2n)a are positive and that their sum
is +1.

For instance

P2ðcos aÞ ¼ f6 cos 2aþ 4þ 6 cosð�2aÞg=16 ¼ ð1þ 3 cos 2aÞ=4; ð20Þ
P3ðcos aÞ ¼ f20 cos 3aþ 12 cos aþ 12 cosð�aÞ þ 20 cosð�3aÞg=64

¼ ð3 cos aþ 5 cos 3aÞ=8: ð21Þ
The expression B(k, m) is more complex, we will especially consider two
cases: (1�) The case when m 6 k + 1, with A ¼ integer part of (k + 1 ) m)/
2; (and thus A P 0). (2�) The case when k + 2 + m 6 0, with A¢ ¼ integer
part of ()k ) 2 ) m)/2; (and thus A¢ P 0).

In the case m 6 k + 1, we obtain:

Bðk;mÞ ¼ ð1=2pÞ
Z 2p

0

dlrk cosmv

¼ ð�1Þmak½Cm
kþmþ1=C

m
kþ1� �

XA
j¼0

C
j
mþ2j � Cmþ2j

kþ1 � ðe=2Þðmþ2jÞ
h i

:

ð22Þ
For instance

Bð�1; 0Þ ¼ 1=a; Bðþ1; 0Þ ¼ að1þ e2=2Þ: ð23Þ
In the case k + 2 + m 6 0 we obtain:

Bðk;mÞ ¼ ð1=2pÞ
Z 2p

0

dl rk cosmv ¼ ½pð3þkÞ=b3�

�
XA0

j¼0

C
j
mþ2j � Cmþ2j

�k�2 � ðe=2Þðmþ2jÞ
h i

:

ð24Þ

For instance

Bð�2; 0Þ ¼ 1=ab; Bð�4; 0Þ ¼ ð1þ e2=2Þ=pb3: ð25Þ
If m + 2 > ()k) P 2, the quantity B(k, m) is zero, but its expression is
mixed and more complex in the remaining cases, i.e. the cases when
m > k + 1 P 0; for instance B()1; +1) ¼ ) e/(a + b).

We now need the usual expressions of 1/rp and we will use them in (15).
If q is larger than r:

1=rp ¼ 1=qþ rP1ðcosaÞ=q2þ r2P2ðcosaÞ=q3þ�� �þ rnPnðcosaÞ=qnþ1þ���
ð26Þ
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If q is larger than r:

1=rp ¼1=rþ qP1ðcos aÞ=r2 þ q2P2ðcos aÞ=r3
þ � � � þ qnPnðcos aÞ=rnþ1 þ � � � ð27Þ

Hence the outer and inner parts Uout and Uin of the potential UK:

Uoutðq; hÞ ¼ Uo0 þ 2
X1
m¼1

Uom cosmh; ð28Þ

with, for positive or zero m:

Uom ¼
X1
k¼0

Aðk;mÞ � Bðk;mÞ=qðkþ1Þ; ð29Þ

that is, with (18) and (22)

U
om¼ð�1Þm

P1
q¼0

C
q
2q
�Cmþq

2mþ2q
�Cm

2mþ2qþ1�ða=4Þðmþ2qÞ=Cm
mþ2qþ1�qðmþ2qþ1Þ

	 

�Pm;qðeÞ; ð30Þ

with, for the polynomial in e, Pm, q (e)

Pm; qðeÞ ¼
Xq
j¼0

C
j
mþ2j � Cmþ2j

mþ2qþ1 � ðe=2Þðmþ2jÞ ð31Þ

and similarly, with (27), (18), (24) and the polynomials (31):

Uinðq; hÞ ¼ Ui0 þ 2
X1
m¼1

Uim cosmh; ð32Þ

with, for m positive or zero

Uim ¼
X1
k¼0

Aðk;mÞ � Bð�k� 1;mÞ � qk; ð33Þ

that is, for m ¼ 0

Ui0 ¼ 1=aþ
X1
q¼1

ðCq
2qÞ2 � ðq=4Þ2q=b3pð2q�2Þ

h i
� Po;q�1ðeÞ ð34Þ

and, for positive m

Uim ¼
X1
q¼1

C
q
2q � Cmþq

2mþ2q � ðq=4Þðmþ2qÞ=b3pðmþ2q�2Þ
h i

� Pm; q�1ðeÞ: ð35Þ

These expressions of the outer potential Uout, given in (28)–(31), and the
inner potential Uin, given in (32)–(35), have a well defined domain of con-
vergence. The first is absolutely converging if q>a(1 + e) and the second if
q<a(1 ) e). Expressions with a stronger convergence and a larger domain of
convergence can be considered (for instance outside the ‘‘main circle’’ of the
Keplerian ellipse of interest), but we will not consider them.
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It is now easy to obtain a general expression of the mean mutual potential
U of the two coplanar non-intersecting Keplerian ellipses of interest (for
G ¼ 1 and unit of masses). We need either the outer potential Uout1 of the
inner orbit, or the inner potential Uin2 of the outer orbit, and thus

U¼ð1=2pÞ
Z 2p

0

Uout1ðr2;v2�xÞdl2¼ð1=2pÞ
Z 2p

0

Uin2ðr1;v1þxÞdl1: ð36Þ

These expressions lead to the following (and for simplicity we will present the
mean mutual potential U in a way slightly different from Uout in (28) and Uin

in (32)).

U ¼ ð1=a2Þ þUo þ 2 �
X1
m¼1

ð�1ÞmUm cosmx; ð37Þ

with, for positive or zero m:

Um ¼ðb2=a22Þ
X1
q¼1

C
q
2q � Cmþq

2mþ2q � Cm
2mþ2qþ1=C

m
mþ2qþ1

h i
� ða1=4p2Þðmþ2qÞ

� Pm; qðe1Þ � Pm; q�1ðe2Þ;
ð38Þ

with the polynomial Pm,q (e) given in (31).
This expresion (37) and (38) of the mean mutual potential U is absolutely

converging if a1(1 + e1)<a2(1 ) e2), but it is diverging if a1(1 + e1)>
a2(1 ) e2).

If the ratio a1/a2 is small, the main terms are the following.

U ¼ ½ð1=a2Þ þ ða21=4b32Þ � ð1þ 3e21=2Þ
þ ð9a41=64b32 p22Þ � ð1þ 5e21 þ 15e41=8Þ � ð1þ 3e22=2Þ þ � � ��
� e1e2 cosx½ð15a31=16b32p2Þ � ð1þ 3e21=4Þ þ � � ��
þ e21e2

Notice that all coefficients Um in (37) are positive, and thus, when the only
variable is the angle x, the mean mutual potential U is maximum for
x ¼ 180�. It seems that, for non intersecting coplanar orbits, U is a mono-
tonic and decreasing function cos x.

Of course, if a1(1 + e1)>a2(1 ) e2), the above expression (37) and (38)
has no interest since it is diverging, and we have used a direct numerical
computation of the integral (11) with r12 given by Figure 1 and the following:

r212 ¼ ðx2 � x1Þ2 þ ðy2 � y1Þ2;
ðx2 � x1Þ ¼ a2ðcosE2 � e2Þ � a1ðcosE1 � e1Þ cosxþ b1 sinE1 sinx;

ðy2 � y1Þ ¼ b2 sinE2 � b1 sinE1 cosx� a1ðcosE1 � e1Þ sinx: ð40Þ
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6. Description of Secular Motions

The remaining problem is the following.
We consider two planets with coplanar, non-intersecting elliptical orbits

about their star. The secular, second-order approximation leads to constant
Delaunay’s parameters L1 and L2 (and thus to constant semi-major axes a1
and a2, and constant mean angular motions n1 and n2), it leads also to
ignorable mean anomalies l1 and l2, with time-derivative very close to the
mean angular motions n1 and n2.

Hence the main remaining questions are that of the secular evolution of
the remaining Delaunays parameters H1, H2, h1 and h2 (H1 ¼ L1 (1 ) e21 )

1/2

cos i1, with i1 ¼ either 0� or 180�; H2 ¼ L2 (1 ) e22 )
1/2, with i2 ¼ 0�; h1 and h2

are the longitude of pericenters with: x ¼ h1 ) h2).
The main elements of the secular evolution are:

(A) The integral of angular momentum c is the sum H1 + H2

c ¼ H1 þH2 ¼ constant: ð41Þ

(B) The Hamiltonian HS of Equation (10) is a second integral of secular
motion, and, because of its expression, the mean mutual potential U is
also an integral of the secular motion.

(C) For large values of the ratio a2/a1, the main terms of dh1/dt and dh2/dt
are the following:

dh1=dt ¼ ½3n1m2 cos i1a
2
1b1=4Mb32� þOfn1m2a

4
1=Mb32p2g;

dh2=dt ¼ ½ð6þ 9e21Þn2m1a
2
1=8Mp22� þOfn2m1a

3
1=Mp32g;

dx=dt ¼ ðdh1=dtÞ � ðdh2=dtÞ: ð42Þ
Hence a good presentation of the secular motions is to draw the U ¼ con-
stant curves on an x, y plane with:

x ¼ H1=L1 ¼ ð1� e21Þ
1=2

cos i1; �1OxOþ 1;

y ¼ H2=L2 ¼ ð1� e22Þ1=2 0OyOþ 1: ð43Þ
The U ¼ constant curves are symmetrical with respect to the y axis, and, in
the x, y plane, the motion will remain on the straight line defined by:

L1xþ L2y ¼ c: ð44Þ
Notice that this straight line has always a negative slope, and this detail will
give the main difference between planets rotating in the same direction
(i1 ¼ 0�) and planets rotating in opposite directions (i1 ¼ 180�); the latter
ones will have much less perturbations.

The Figure 3 presents the U ¼ 0.2066 curves for a2/a1 ¼ 5 and for several
values of the angle x.
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On Figure 3, we can recognize many types of motion, according to the
straight line L1 x + L2 y ¼ c.

Along the straight line AB, we find a periodic solution with a decreasing
circulation of x, along CD a periodic solution with an increasing circulation
x, along EF a periodic solution with a libration of x about 180�, along GH a
periodic solution with a libration of x about 0�.

Straight lines tangent to the curve drawn for x ¼ 180� corresponds to
stable solutions with a constant x, while straight lines tangent to the concave
part of the curve drawn for x ¼ 0� corresponds either to unstable solutions
with a constant x, or to solutions that are asymptotic to these unstable
solutions.

Notice the straight line JK. If we start at J the conditions are e1 ¼ 0,
i1 ¼ 0� and e2 ¼ 0.7, while the slope corresponds to a ratio m2/m1 ¼ 2. But
the point K is very far from J and the motion cross the y axis and thus
reaches the eccentricity e1 ¼ 1: the inner planet will fall into its star!

In the solar system a libration of the angle x of the planets Jupiter and
Uranus has been noticed during the nineteenth century by the astronomers
Stockwell and Tisserand (Tisserand, 1889b). That angle remains forever
between 180� ) 71�33¢ and 180� + 71�33¢.

Figure 4 presents some U ¼ constant curves for large values of the ratio
a2/a1. The perturbations remains slow and small, especially for motions in

Figure 3. The curves U ¼ 0.2066 for a1 ¼ 1; a2 ¼ 5 and several values of the angle x.
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the opposite directions (left half of the figure) and for motions with small
eccentricities (the two upper corners of the figure).

Figure 5 presents two U ¼ constant curves for a2/a1 ¼ 3. Only the case of
two very small eccentricities leads to small perturbations.

Figure 4. Some U ¼ constant curves for large values of the ratio a2/a1.

Figure 5. Two U ¼ constant curves for a1 ¼ 1; a2 ¼ 3.
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7. Conclusions

In the non-resonant cases the secular version of the three-body, planar,
planetary problem is integrable and shows that the perturbations of plane-
tary orbits can be very large, even for very small planetary masses.

The small perturbations occur especially for quasi-circular orbits and/or
widely separated orbits.

Planets revolving in opposite directions have, in general, less perturbations
than planetes revolving in the same direction.

It remains to enlarge this analysis and especially to study the cases leading
to planetary collisions or to very close planetary approaches
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Abstract. A complete study is made of the resonant motion of two planets revolving around a
star, in the model of the general planar three body problem. The resonant motion corresponds
to periodic motion of the two planets, in a rotating frame, and the position and stability
properties of the periodic orbits determine the topology of the phase space and consequently

play an important role in the evolution of the system. Several families of symmetric periodic
orbits are computed numerically, for the 2/1 resonance, and for the masses of some observed
extrasolar planetary systems. In this way we obtain a global view of all the possible stable

configurations of a system of two planets. These define the regions of the phase space where a
resonant extrasolar system could be trapped, if it had followed in the past a migration process.
The factors that affect the stability of a resonant system are studied. For the same resonance

and the same planetary masses, a large value of the eccentricities may stabilize the system, even
in the case where the two planetary orbits intersect. The phase of the two planets (position at
perihelion or aphelion when the star and the two planets are aligned) plays an important role,
and the change of the phase, other things being the same, may destabilize the system. Also, the

ratio of the planetary masses, for the same total mass of the two planets, plays an important role
and the system, at some resonances and some phases, is destabilized when this ratio changes.
The above results are applied to the observed extrasolar planetary systemsHD 82943, Gliese

876 and also to some preliminary results of HD 160691. It is shown that the observed config-
urations are close to stable periodic motion.

Key words: periodic orbits, resonances, extrasolar systems, HD 82943, GJ 876

1. Introduction

The position and the stability properties of the periodic orbits (or, equiva-
lently, of the fixed points of the Poincaré map) play an important role in the
study of the dynamical evolution of a planetary system, because they
determine the topology of the phase space. In particular, the mean motion
resonances of a planetary system correspond to a periodic motion, in a
rotating frame. This is the reason why the resonances play an important role
in the study of the long term evolution of a planetary system.

There are several papers on the dynamics of the 2/1 resonant planetary
motion and on the mechanisms that stabilize the system, or generate chaotic
motion and instability: Gozdjiewski and Maciejewski (2001), Kinoshita and

Celestial Mechanics and Dynamical Astronomy (2005) 92:135–156
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Nakai (2001), Laughlin and Chambers (2001), Lee and Peale (2001, 2002),
Ferraz-Mello (2002), Ferraz-Mello et al. (2003), Ji et al. (2002, 2003a,b),
Mahlhotra (2002a, b), Bois et al. (2003), Gozdjiewski et al. (2004), Beaugé
et al. (2004). In these papers different methods have been applied (averaging
method, direct numerical integrations of orbits, or various numerical meth-
ods which provide indicators for the exponential growth of nearby orbits),
for a range of orbital parameters. In this way the regions where stable motion
exists have been detected, in the orbital elements space.

In the present paper a complete study is made of the resonant motion of
two planets revolving around a star, which will be called the sun, in the model
of the general planar three body problem, by computing all the basic families
of resonant periodic orbits. The families of periodic orbits are very useful in
the study of the stability and the evolution of an extrasolar planetary system.
This is so, because it is close to a stable periodic orbit that a stable system
could exist. In addition, the motion close to a periodic motion is the motion
with the smallest variation of the orbital elements, a condition which may
play an important role in the appearance of life. Finally, the regions of phase
space close to a stable periodic motion are the regions where a planetary
system may be finally trapped, if it had followed a migration process in the
past, before it settled down to its present position. The study of this process is
however beyond the object of the present paper.

We consider symmetric periodic orbits, which in this case are the most
important resonances, which means that the perihelia of the two planets are
either in the same direction or in opposite directions (aligned or antialigned),
when the two planets are in the same line with the sun. In this symmetric case,
the line of apsides of the two planets precesses slowly, in such a way that
Dx ¼ 0 or 2p. Several families of periodic orbits are computednumerically, for
the 2/1, and for themasses of the systemsHD82943,HD160961 andGliese 876.

The factors that affect the stability of a resonant system are studied. For
the same resonance and the same planetary masses, the value of the planetary
eccentricities is in some cases important and a large value of the eccentricities
may stabilize the system, which for smaller eccentricities is unstable. The
phase of the two planets (position at perihelion or aphelion when the star and
the two planets are aligned) plays an important role, and the change of the
phase, other things being the same, may destabilize the system. Also, the ratio
of the planetary masses, for the same total mass of the two planets, plays an
important role and the system, at some resonances and some phases, is
destabilized when this ratio changes. The stability analysis of a resonant
planetary system by the method of periodic orbits, that we present in this
paper, allows us to obtain a global view of the dynamics of all the observed
planetary systems at the 2/1 resonance. In this way the stability of all these
systems can bet treated in a unified way.
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The above results are applied for the study of the observed extrasolar
planetary systemsHD 82943, Gliese 876,HD 160691, at the 2/1 resonance and
all the possible configurations which lead to stable motion are found. The
elements of the above systems, as obtained from the observations, given in the
web site http://www.obspm.fr/encycl/catalog.html maintained by Jean
Schneider. All the masses are multiplied by sin i, where i is the inclination of
the planetary orbit and are therefore the minimum masses. In the present
study we considered sin i ¼ 1. In the case of HD160961 there is some ambi-
guity on the value of the elements (Gozdjiewski et al., 2003), but we used the
elements published in the above mentioned site, in order to show that even for
very high eccentricities, the system may be stable for a suitable phase.

In all the following the central star will be called the sun, the inner planet
will be called P1 and the outer planet P2.

2. The Dynamical Model

2.1. THE EQUATIONS OF MOTION

The model we used in the study of periodic motion of the planetary system is
the general three body problem, for planar motion. As we shall see in the
following, the gravitational interaction between the two planets is important,
even for small planetary masses.

The center of mass of the planetary system is considered as fixed in an
inertial frame, and the study is made in a rotating frame of reference xOy,
whose x-axis is the line sun-P1, the origin O is the center of mass of these two
bodies and the y-axis is perpendicular to the x-axis (Figure 1). In this rotating
frame P1 moves on the x-axis and P2 on the xOy plane. The coordinates are
the position x1 of P1, x2, y2 of P2 and the angle h between the x-axis and a
fixed direction in the inertial frame. The coordinates x1;x2; y2, define the
position of the system in the rotating frame and the angle h defines the
orientation of the rotating frame, so these four coordinates determine the
position of the system in the inertial frame. This is a system of four degrees of
freedom, and the Lagrangian of the system is (Hadjidemetriou, 1975)

L ¼ 1

2
ðm1 þm0Þfqð _x21 þ x21

_h2Þ þm2

m
½ _x22 þ y22 þ _h2ðx2 þ y2Þ

þ 2 _hðx2 _y2 � _x2y2Þ�g � V;

ð1Þ

where

V ¼ �Gm0m1

r01
� Gm0m2

r02
� Gm1m2

r12
; ð2Þ
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and
m ¼ m0 þm1 þm2; q ¼ m1=m0: ð3Þ

G is the gravitational constant and r01, r02 and r12 are the distances between
the sun and P1, the sun and P2 and P1P2, respectively. We note that the angle
h is ignorable, so besides the energy (or Jacobi) integral there also exists the
angular momentum integral, L ¼ @L=@ _h ¼ constant,

L ¼ ðm0 þm1Þ _h qx21 þ
m2

m
ðx22 þ y22Þ

h i
þm2

m
ðx2 _y2 � _x2y2Þ

n o
: ð4Þ

By making use of this latter integral, we can eliminate the angle h and thus
reduce the system to a system of three degrees of freedom. This can be
achieved by constructing the Routhian function, which is the new
Lagrangian of the reduced three degrees of freedom system (Pars, 1965;
Hadjidemetriou, 1975). The value of the angular momentum appears as a
fixed parameter in the differential equations of motion in the rotating frame.

2.2. PERIODIC ORBITS

The differential equations of motion in the rotating frame xOy are invariant
under the transformation

x1 ! x1; x2 ! x2; y2 ! �y2; t ! �t;

which implies that if the planet P2 starts perpendicularly from the x-axis
(y2 ¼ 0; _x2 ¼ 0) and at that time _x1 ¼ 0, and after some time t ¼ T=2 the
planet P2 crosses again the x-axis perpendicularly and at that time it is
_x1 ¼ 0, the orbit is periodic with period equal to T, symmetric with respect to
the x-axis. We remark that the second perpendicular crossing of P2 from the
x-axis may take place after several non perpendicular crossings.

From the above we see that the non zero initial conditions of a symmetric
periodic orbit, in the rotating frame, are

x10; x20; _y20: ð5Þ
This implies that a family of symmetric periodic orbits is represented by a
smooth curve in the three dimensional space x10; x20; _y20.

x x

y

x

y

2

2

1

Ο PSUN 1

P2

θ

Figure 1. The rotating frame xOy.
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The periodic orbits that we will construct are in this rotating frame, which
means that the relative position of the planetary system is repeated in the
inertial frame. In order to avoid duplication of the results we fix the units of
mass, length and time. This is achieved by taking the total mass of the system
as the unit of mass, the gravitational constant equal to unity and also by
keeping a fixed value of the angular momentum L for all the orbits of a
family of periodic orbits. So, the normalizing conditions are

m0 þm1 þm2 ¼ 1; G ¼ 1; L ¼ constant:

In practice, we made the integration of the planetary system in the inertial
frame (where the center of mass is fixed) and the reduction to three degrees of
freedom in the rotating frame was made by a coordinate transformation. The
method of integration was based on Taylor series expansion, and the accu-
racy was 10�14.

We have computed all the basic families of periodic orbits of two planets
in planar motion, in the 2/1 mean motion resonance. Along these orbits the
resonance (or the ratio of the semi major axes) of the two planets is almost
constant. The planetary orbits are perturbed ellipses and their eccentricity
varies along the family, starting from zero values. Most of these families
bifurcate from the family of circular orbits of the two planets, along which
the orbits of the planets are almost circular, and the ratio T1=T2 of their
periods starts from very large values and decreases along the family. At the
2/1 resonance a gap appears, for non zero planetary masses, and two distinct
families of resonant elliptic orbits start from this gap (Hadjidemetriou, 2002;
Hadjidemetriou and Psychoyos, 2003).

The periodic orbits that we computed are symmetric with respect to the
rotating x-axis, which means that at t ¼ 0, when the two planets are on the
same line with the sun, the line of apsides are on this line and the position of
the perihelia are either in the same direction or in opposite directions. Con-
sequently, we have at t ¼ 0 eight different phases, that are equivalent in pairs,
and are given in Table I and Figure 2. All the possible initial phases of a
periodic orbit, and the equivalent phase at t ¼ T=2, are summarized in Table I.

Each of the symmetric families of periodic orbits that we present in the
following sections belongs to a certain type, as described in Table I. In order
to distinguish between the different families we will use the terminology:

– Family 1: Type 1 (x1 ¼ x2), perihelia in the same direction.
– Family 2: Type 4 (x1 ¼ x2 þ p), perihelia in opposite directions.
– Family 3: Types 2 and 3. Starts as type 2 and ends as type 3, because the
eccentricity ofP1 crosses zero and the planet goes fromperihelion to aphelion.

As we shall see in the following, there are two basic families of periodic
orbits, family 1 and family 2 (family 3 appears only in one case and is
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unstable). In family 1 the perihelia of the two planetary orbits are in the same
direction and the two planets are both at perihelion at t ¼ 0. In family 2, the
perihelia are in opposite directions and at t ¼ 0 P1 is at aphelion and P2 at
perihelion (see Figure 2).

In the following we will present families of periodic orbits for the masses
of the extrasolar planetary systems HD 82943, Gliese 876 and HD 160961. In
order to have a better physical insight, we will not present the families of
periodic orbits in the space of initial conditions, but in the space e1e2 of the
planetary eccentricities. In order to avoid artificial discontinuities, we use the
convention e > 0 if the planet is at aphelion and e < 0 if it is at perihelion.

3. The System HD 82943

3.1. FAMILIES OF PERIODIC ORBITS FOR THE MASSES OF THE SYSTEM HD 82943

We computed all the basic families of periodic orbits at the 2/1 resonance, for
the masses of HD 82943, normalized to m0 þm1 þm2 ¼ 1. The basic results
have been presented in Hadjidemetriou and Psychoyos (2003), but for rea-
sons of completeness, and for comparison with further results on the 2/1
resonance, we will repeat them here. The basic families are given in Figure 3.
The normalized masses (corresponding to the masses given by Israelian et al.,
2001) are m0 ¼ 0:9978, m1 ¼ 0:0008, m2 ¼ 0:0014. Note that m1 < m2.
There are three different families: Family 1, corresponding to the initial phase
sun – perihelion – perihelion, family 2, corresponding to the initial phase sun –
aphelion – perihelion and family 3, corresponding to the initial phase sun –

S PPP' 1 2

Periastra in the same direction

2 S PPP' 21

Periastra in opposite directions

2

Figure 2. The four equivalent pairs of configurations at the 2/1 resonance.

TABLE I

All possible phases at t = 0 and t = T/2 for the 2/1 resonance

Type 1: Sun – P1(per) – P2(per) ! P2 (ap) – Sun – P1 (per)
Type 2: Sun – P1 (ap) – P2 (ap) ! P2 (per) – Sun – P1 (ap)
Type 3: Sun – P1 (per) – P2 (ap) ! P2 (per) – Sun – P1 (per)
Type 4: Sun – P1 (ap) – P2 (per) ! P2 (ap) – Sun – P1 (ap)
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aphelion – aphelion ! sun – aphelion – perihelion. In family 1 the perihelia are
in the same direction and in family 2 they are in opposite directions. In family
3 the perihelia are in the same direction at one end, but as e1 decreases and
passes from the value e1 ¼ 0, the perihelia shift to the opposite direction. All
orbits of the family 1 are stable. The family 2 is unstable for small eccen-
tricities. A gap appears on this family, due to close encounters between the
two planets, and after the collision area the orbits on this family become
stable, although the planetary orbits intersect. All orbits of family 3 are
unstable. We remark that along the family 2, although all orbits have the
same phase, the orbits with small planetary eccentricities are unstable, but the
system is stabilized when the eccentricities are large. Four typical orbits on
these families are presented in Figure 4.

The stability we mention above is the linear stability. In order to study the
non linear stability, we considered two types of perturbations, that preserve
the resonance: We shift the position of P2 along its orbit to a new, non
symmetric position, and also we rotate the orbit of P2 by a certain angle. The
evolution of the perturbed orbits were studied by computing the Poincaré
map on the surface of section y2 ¼ 0. We found that in all cases the linearly
stable orbits have a stable region, where bounded motion exists, with
bounded variation of the orbital elements. The linearly unstable orbits
become chaotic and in many cases one planet escapes. The details of the
computations are in Hadjidemetriou and Psychoyos (2003).
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3.2. THE PLANETARY SYSTEM HD 82943 WITH VARIABLE RATIO OF THE PLANETARY

MASSES

In order to study the effect of the mass ratio of the planets on the stability of
the system, we considered a planetary system with the same total mass of the
planets as HD 82943, but with the masses reversed: m1 ! m2 and m2 ! m1.
Now m1 ¼ 0:0014;m2 ¼ 0:0008, m1 > m2. The new families of periodic orbits
are shown in Figure 5a. We note that the family 3 of Figure 3 no longer exists
and a large part of the family 1 is now unstable. The stability of the family 2
is not affected by the inversion of the masses.

In Figure 5b we present the families 1 both for the true and the inverse
masses, andwe select two orbits, orbit 1 and orbit 2 on these two families. Orbit
1 is stable and orbit 2 is unstable. They both have the same eccentricity for P2,
e2 ¼ 0:30, and the eccentricities of P1 are e1 ¼ 0:06 and 0.09 for the orbit 1 and
orbit 2, respectively. In order to study the long term stability we computed the
evolution of these two orbits by shifting the position ofP2 on its orbit by about
45�, by the Poincaré map on the surface of section y2 ¼ 0. The results are in
Figure 6, for the evolution of the eccentricities and the semi major axes. We
note that in both cases the system remains bounded, but there is an important
qualitative difference between the linearly stable and unstable orbits. The
variation of the eccentricities of the stable orbit 1 is very small, while it is large
for the unstable orbit 2. The variation of the semimajor axes is small in both
cases, but still there is a difference between the stable and the unstable orbit.

As we showed above, the whole family 1, corresponding to the phase sun –
perihelion – perihelion, is stable when the mass of the inner planet is smaller
than the mass of the outer planet, but the system is destabilized if the mass of
the inner planet is larger than the mass of the outer planet. So the mass ratio
m1=m2 plays an important role on the stability, for this phase.

We remark that a periodic orbit has two non unit pairs of eigenvalues (and
one more pair which is always equal to unity, because of the existence of the
energy integral). In the present case, where we have a nearly integrable
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dynamical system (two weakly coupled Keplerian orbits), there exist two
stability indices, which are close to the value �2 (corresponding to the two
non unit pairs of eigenvalues). The orbit is stable if both stability indices are
larger than �2 (and smaller than 2).

It turns out that along the family 1 the first stability index is in all cases
larger than �2 (and close to this value), but the second stability index, which
we will call b, may cross the value �2, b < �2, for a region of the family 1,
and the system is destabilized. This is the mechanism how the system is
destabilized at the 2/1 resonance.

In order to find the exact value of m1=m2 where instability appears for the
first time on a region of the family 1, asm1=m2 varies (andm1 þm2 ¼ constant),
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we computed several families for differentmass ratios and the results are shown
inFigure 7a and b. In this figurewe present the stability index b along the family
1 for three different mass ratios, close to the transition value, which is equal to
m1=m2 ¼ 0:97. The x-axis in panel (a) is the eccentricity e1, and in panel (b) the
eccentricity e2, which play the role of a parameter along the family. For the y-
axis we used the value 103ð2þ bÞ, instead of the stability index b, so the tran-
sition value is zero, corresponding to b ¼ �2.

From all the above we see that the system is stable, at the phase sun –
perihelion – perihelion, if themass ratio of the planets ism1=m2 < 0:97, provided
that the mass of the sun is kept equal to m0 ¼ 0:9978 in normalized units.

In the case m1=m2 > 0:97 an unstable region appears on the family 1 (see
Figure 5a), which increases as the ratio m1=m2 increases. At both ends of this
unstable region there are critical points, with one stability index equal to
b ¼ �2, and we have a bifurcation of a new resonant 2/1 family of non-
symmetric periodic orbits, from each critical point. It turns out that these two
non symmetric families are connected, so in fact there is one non symmetric
family of periodic orbits that starts from the first critical point and ends to
the second critical point (Voyatzis and Hadjidemetriou, 2005). This is in
agreement with the work of Beaugé et al. (2004), who found non symmetric
periodic orbits in the 2/1 resonance.

3.3. THE EVOLUTION OF THE SYSTEM HD 82943

The elements of the system HD 82943 are (Israelinian et al., 2001): m0 ¼ 1:05
MSUN, m1 sin i ¼0.88 MJ, m2 sin i ¼ 1:63 MJ, a1 ¼ 0:73 AU, a2 ¼ 1:16 AU,
T1 ¼ 221:6� 2:7 d, T2 ¼ 444:6� 8:8 d, e1 ¼ 0:54� 0:05, e2 ¼ 0:41� 0:08,
x1 ¼ �, x2 ¼ 117:8� 3:4. This is a system very close to the 2/1 resonance.

In our numerical computations we considered four different cases, all with
the same masses, semimajor axes and eccentricities, of the system HD 82943,
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given above, corresponding to the four different phases presented in Figure 1.
These four positions are shown in Figure 2, where the families of periodic
orbits are presented. It turned out that two phases, sun – perihelion – peri-
helion and sun – aphelion – perihelion, which are close to stable periodic
orbits, are stable and the other two phases are unstable. The study was made
by considering the Poincaré map on the surface of section y2 ¼ 0. This map is
in the four dimensional phase space x1; _x1;x2; _x2 and in the above two stable
phases the motion is clearly on a 4-torus. In the other two phases, close
encounters between the two planets take place (line x1 ¼ x2 in the Poincaré
maps of Figure 8c and d) and the system is destabilized in a rather short time.
Projections of the Poincaré map for all the above four cases are shown in
Figure 8. In the first two cases, where we have bounded motion, the variation
of the eccentricities is quite large, contrary to the semimajor axes whose
variation has a small amplitude (Hadjidemetriou and Psychoyos, 2003).

Ji et al. (2003, submitted for publication) found, by a numerical explo-
ration of the evolution of HD 82943 that this system is stabilized if, in
addition to being in the 2/1 resonance, it is also in an apsidal resonance, with
the axes of the two planets antialigned. This means, in fact, that the orbit
should be close to a periodic orbit. This result coincides with our result, as
presented in Figure 8b (phase: sun – aphelion – perihelion). Note that this
phase is stable, despite the fact the the two planetary orbits intersect.

3.4. NEW ORBITAL VALUES FOR HD 82943

New values for the system HD 82943 were given recently by Mayor et al. (in
preparation). The orbital elements and the values of the masses are quite
different from those published before. The new values are: m0 ¼ 1:05 MSUN,
m1 sin i ¼ 1:85 MJ, m2 sin i ¼ 1:84 MJ, a1 ¼ 0:75 AU, a2 ¼ 1:18 AU,
T1 ¼ 219:4� 0:2 d, T2 ¼ 435:1� 1:4 d, e1 ¼ 0:38� 0:01, e2 ¼ 0:18� 0:04,
x1 ¼ 124� 3, x2 ¼ 237� 13. This is a system very close to the 2/1 resonance
and although it is stated that the values of the eccentricities may be different
from those published, we repeated the study of the evolution of this system,
as in Section 3.2, using the new values. In Figure 9 we present the families of
periodic orbits for the new masses of HD 82943 and we also show the po-
sition of the system corresponding to these new elements. We note that the
phase sun – perihelion – perihelion is very close to the stable region of the
family 1, but not far from the unstable region.

In Figure 10a–d we show the evolution of the system for the above four
configurations, using the new elements. We note that the only stable phase is
sun – perihelion – perihelion. Note that the phase sun – aphelion – perihelion is
unstable, contrary to the case of Figure 8b (for the same phase), for the old
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elements of HD 82943, which is stable. This is so because now this phase is
close to the close encounter zone, because the values of the eccentricities are
in the new case smaller, and the system is destabilized.

4. The System Gliese 876

4.1. FAMILIES OF PERIODIC ORBITS FOR THE MASSES OF GLIESE 876

We repeated the study of the families of periodic orbits for the masses of the
system Gliese 876, as for the system HD 82943. In this case we also have

Figure 8. The evolution of HD 82943 for the four different possible phases. Projection of the
Poincaré map on coordinate planes. (a) sun – perihelion – perihelion, (b) sun – aphelion –
perihelion, (c) sun – aphelion – aphelion, (d) sun – perihelion – aphelion. In cases a and b the
motion is bounded, on a 4-torus.
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m1 < m2, but now the normalized planetary masses are larger, compared to
the normalized masses of the system HD 82943. The normalized masses of
Gliese 876 (corresponding to the masses given by Marcy et al., 2001) are
m0 ¼ 0:98275;m1 ¼ 0:00166;m2 ¼ 0:00559. This means that the gravitational
interaction between the two planets is stronger and in particular, for the phase
sun – aphelion – perihelion and small planetary eccentricities, it dominates. As
a consequence, the part of the family 2 corresponding to small eccentricities
practically does not exist at all and we have in this region a much larger gap.
We remind that we also had a gap for the masses of HD 82943 (Figure 3). In
fact, a 2/1 resonant motion for this phase and small eccentricities cannot exist
at all, because the two planets are trapped into a 1/1 resonance and the two
planets revolve around the sun as a close binary, as we will show in the next
section. (Such orbits do exist however, if the planetary masses are smaller, as
we verified by numerical computations). In Figure 11 we present the families 1
and 2 of periodic orbits, for the masses of Gliese 876. In this figure we also
indicate the position of Gliese 876, for the observed elements (sun – perihelion
– perihelion) and for the three other possible phases.

From this figure we can find all the possible stable configurations that the
system Gliese 876 could obtain. A different approach to this problem was
made by Gozdjiewski et al. (2002), who made a complete stability investi-
gation using the MEGNO technique, and they found estimations of the 2/1
mean motion resonance widths.
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4.2. THE EVOLUTION OF GLIESE 876

The observed system Gliese 876 corresponds to the phase where the line of
apsides of both planets are almost on the same line and the perihelia in the
same direction. The elements of this system are (Marcy et al., 2001; Laughlin
and Chambers, 2001; Rivera and Lissauer, 2001): m0 ¼ 0:32 MSUN,
m1 sin i ¼ 1:89 MJ, m2 sin i ¼ 0:56 MJ, a1 ¼ 0:21 AU, a2 ¼ 0:13 AU,
T1 ¼ 61:02 d, T2 ¼ 30:1 d, e1 ¼ 0:10, e2 ¼ 0:27, x1 ¼ 333, x2 ¼ 330. This
position is indicated in Figure 11, for e1 ¼ �0:10; e2 ¼ �0:27. We also show

Figure 10. The evolution of HD 82943, new, for the four different possible phases. Projection
of the Poincaré map on coordinate planes. (a) sun – perihelion – perihelion, (b) sun – aphelion –
perihelion, (c) sun – aphelion – aphelion, (d) sun – perihelion – aphelion. The motion is bounded,

on a 4-torus, only in the case (a). In the case (d) the motion is initially on a 4-torus (black
region to the right), but later chaotic motion develops. In the cases (b) and (c) close encounters
between P1 and P2 take place (points close to the line x1 ¼ x2) and the system is destabilized.
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in this figure the other three possible phases with the same eccentricities. The
phase e1 ¼ þ0:10; e2 ¼ �0:27 (sun – aphelion – perihelion) is inside the close
approach region, and is indicated in Figure 11 by an empty circle.

The evolution of the true system is studied by computing the Poincaré
map on the surface of section y2 ¼ 0. In Figure 12a we show a projection of
the Poincaré map on the plane x1; _x1 and in Figure 12b and c we present the
evolution of the eccentricities and semimajor axes. We note that the system
moves on a well defined 4-torus (a projection is in Figure 12a) and the
amplitude of the variation of the eccentricities and semimajor axes is small.
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In Figure 13a we show the orbit of the system when initially the two
planets are placed at the phase sun – aphelion – perihelion. The gravitational
interaction between the two planets dominates the attraction from the sun
and the system is trapped to a 1/1 resonance, forming a close binary which
revolves around the sun. Note that the same phase gives a stable configu-
ration for the system HD 82943 (Figure 8b), because the planetary eccen-
tricities are larger, and this fact stabilizes the system, because the close
encounters between the planets are avoided.

In Figure 13b and c we show the evolution of the eccentricities and
semimajor axes for the phases sun – aphelion – aphelion and sun – perihelion –
aphelion. In both cases the system is destabilized, due to close encounters
between the two planets, as is verified from the projection of the Poincaré
map on the x1x2 plane. Note that in both cases the system is at first trapped
on a torus, but soon chaotic motion develops and the system is destabilized.

A stability analysis of the system Gliese 876 was made by Gozdziewski
et al., 2002. They used the MEGNO technique and proved that the system is
stable if, in addition to being at the 2/1 resonance, it is also in a x1 � x2 ’ 0
secular resonance. This means that the system should be close to a periodic
orbit, and this coincides with our results, as shown in Figure 12, which
corresponds to the stable phase sun – perihelion – perihelion.

5. The System HD 160961

5.1. FAMILIES OF PERIODIC ORBITS FOR THE MASSES OF HD 160961

In this case we also computed the basic 2/1 resonant families of periodic
orbits, corresponding to the masses of the system HD 160961, which is a
system very close to the 2/1 resonance. The normalized masses (corre-
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Figure 13. (a) The orbit of Gliese 876 for the phase sun – aphelion – perihelion inside the close
approach zone. Due to the strong gravitational interaction between P1 and P2 the two planets

are trapped into a close binary which revolves around the sun. (b) The evolution of the
semimajor axes of Gliese 876 for the unstable phase sun – aphelion – aphelion. (c) The evo-
lution of the semimajor axes of Gliese 876 for the unstable phase sun – perihelion – aphelion.
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sponding to the masses given by Jones et al., 2002) are
m0 ¼ 0:997612;m1 ¼ 0:001503;m2 ¼ 0:000885. Two families, family 1 and
family 2 are presented in Figure 14. Note that m1 > m2 and consequently an
unstable region appears in family 1. In this figure we also present the position
of the real system HD 160961, for two different phases: sun – perihelion –
perihelion and sun – aphelion – perihelion. Two more possible phases (sun –
aphelion – perihelion and sun – aphelion – aphelion) are not shown. Only one
phase, namely sun – aphelion – perihelion is close to a periodic orbit, and it is
the only stable configuration, as we will show in the following.

5.2. THE EVOLUTION OF THE SYSTEM HD 160961

The elements of the systemHD160961 are given (Jones et al., 2002):m0 ¼ 1:08;
MSUN, m1 sin i ¼ 1:7 MJ, m2 sin i ¼ 1 MJ(?), a1 ¼ 1:48 AU, a2 ¼ 2:3 AU(?),
T1 ¼ 637:3 d, T2 ¼ 1300 d(?), e1 ¼ 0:31, e2 ¼ 0:8(?), Omega (deg):, x1 ¼ 320,
x2 ¼ 99(?). Although the above values are not the only possible fits to the
observational data and possibly they are not correct (Gozdjiewski et al., 2003),
we computed the Poincaré map with these elements, for all four different
phases, mentioned in the previous section. These are computed for the sym-
metric case. The only stable configuration is the one corresponding to the
phase sun – aphelion – perihelion (perihelia in opposite directions) and its
evolution is given in Figures 15 and 16. The motion is clearly on a 4-torus
(Figure 16a) and the evolution of the eccentricities of the two planets is almost
periodic. The same is true for the semimajor axes (not shown). We also note
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Figure 14. The families 1 and 2 of periodic orbits, for the masses of HD 160961. The position
of the real system HD 160961 for two different phases are also shown.
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that the angle x2 � x1 librates around 180 (Figure 16b). Note that this con-
figuration is stable, despite the fact that the two planetary orbits intersect.

Starting from the above configuration, we extended the study of the evo-
lution of the system, by changing the anglex2 � x1. We found that the system
remains boundedup tox2 � x1 ¼ 45�. Beyond this value, the system is chaotic.

In Figure 17 we present the evolution of the semimajor axes and the angle
x2 � x1 of the system HD 160961 for the phase sun – perihelion – aphelion.
The motion is clearly chaotic.

Figure 15. The Poincaré map of the system HD 160961, for the phase sun – aphelion –
perihelion. Projection on the x1x2 plane. The motion is bounded, on a 4-torus.

Figure 16. The evolution of the eccentricities and the angle x2 � x1, which librates around the
value p, corresponding to the system HD 160961, for the phase of Figure 15.
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In Figure 18 we present the evolution of the semimajor axes of the system
HD 160961, for the phases sun – aphelion – aphelion and sun – perihelion –
perihelion. In this case also the motion is chaotic.

Bois et al. (2003), studied the stability of HD 160961 by the MEGNO
technique. They found that the system is stable if it is in a 2/1 resonance,
combined with an apsidal secular resonance, corresponding to the phase aph-
elion – sun – aphelion! sun – aphelion – perihelion. Their results are in complete
agreement with the results that we obtained, as shown in Figures 15 and 16.

6. Conclusions

Several techniques have been used to study the dynamical evolution and the
stability of an extrasolar planetary system. In the present work we present a
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Figure 17. The evolution of the semimajor axes and the angle x2 � x1 corresponding to the

system HD 160961, for the phase sun – perihelion – aphelion.
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the phases sun – aphelion – aphelion (panel (a)) and sun – perihelion – perihelion (panel (b)).
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method to obtain a global view of all the stable and unstable resonant
configurations of a planetary system, by making a complete study of all the
basic families of resonant periodic orbits.

The periodic orbits (or, equivalently, the corresponding fixed points in a
Poincaré map on a surface of section) determine the topology of the phase
space. In particular, close to a stable periodic orbit there exists a region where
the orbit librates around the exact periodic orbit, and consequently stable,
bounded, motion could be expected to exist in nature. On the contrary, the
motion close to an unstable periodic orbit is chaotic, and in some cases one
planet escapes. Consequently, a planetary system could not exist in nature at
this region of the phase space. So, if we know the families of periodic orbits, we
know in what regions of the phase space, or, equivalently, in the space of the
orbital elements, a planetary system could exist in nature. These are the re-
gions where a planetary system could be trapped in its present form, if it had
followed a migration process in the past. The stable regions can also serve as a
guide to select the best fits of elements in the observation of a new planetary
system. These latter topics however, are beyond the scope of the present paper.

The periodic orbits that we study are in the model of the general planar
three body problem and are periodic in a rotating frame. This means that the
relative configuration is repeated in the inertial frame. The two planets re-
volve around the sun in elliptic orbits, which are perturbed because of their
mutual gravitational interaction, and are in mean motion resonance. In
addition, since the most important families are symmetric with respect to the
rotating x-axis (Section 2), they are also in an apsidal secular resonance,
which means that either x1 � x2 ¼ 0 or x1 � x2 ¼ p. This means that the
apsidal lines are either aligned or antialigned.

The present study is restricted to the 2/1 resonance, and we found, in a
global way, all the factors that stabilize a resonant planetary system. In this
way, the study of the dynamics of all the observed 2/1 resonant planetary
systems, HD 82943, Gliese 876 and HD 160961, can be made in a unified way.

We found that the phase of the two planets, that is, their position at
perihelion or aphelion, when they are in the same line with the sun, plays an
important role for the stability. The most stable phase is sun – perihelion –
perihelion, for m1 < m2, which is equivalent to the phase aphelion – sun –
perihelion. The perihelia are in this case aligned.

The value of the eccentricities of the planetary orbits is also an important
stabilizing parameter, especially in the phase sun – aphelion – perihelion,
which implies that the two perihelia are antialigned. For small eccentricities
the system is chaotic, but if the eccentricities are large, the close encounters
are avoided, and the system is ordered and stays bounded. This is clearly seen
by comparing Figures 8b and 10b. Thus, the increase of the eccentricities
plays a stabilizing role. We remark that in this latter phase the two planetary
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orbits intersect, but the resonance generates a phase protection mechanism,
which does not allow the two planets to come close to each other.

The other two possible phases, sun – perihelion – aphelion and sun –
aphelion – aphelion are always unstable. In some cases (Figure 13b and c) the
system sticks on a 4-torus for a long time interval, but finally chaotic motion
develops and the system is destabilized. The mechanism of generation of
instability is the close approach between the two planets, as is seen in Figures
8c and d and 10c and d.

Another factor that plays an important role on the stability of a planetary
system is the ratio m1=m2 of the planetary masses. We found that in the phase
sun – perihelion – perihelion the system is stable if the mass of the inner planet
is smaller than the mass of the outer planet and becomes unstable if m1 > m2.
The change of the mass ratio however, does not affect the stability in the
phase sun – aphelion – perihelion.

The above results, applied to the observed systems HD 82943, HD 160961
and Gliese 876, showed that the phase sun – perihelion – perihelion is stable in
all cases. The real systems can be considered as perturbed periodic orbits
corresponding to this resonance. The phase sun – aphelion – perihelion is
stable only in the case HD 82943, old data, because the eccentricities are
large. In all other systems, including HD 82943 with the new data, the system
is unstable, because the eccentricities are small.
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Abstract. We compare two different N-body models simulating elliptical galaxies. Namely,
the first model is a non-rotating triaxial N-body equilibrium model with smooth center, called

SC model. The second model, called CM model, is derived from the SC by inserting a central
mass in it, so that all possible differences between the two models are due to the effect of the
central mass. The central mass is assumed to be mainly due to a massive central black hole of

mass about 1% of the total mass of the galaxy. By using the fundamental frequency analysis,
the two systems are thoroughly investigated as regards the types of orbits described either by
test particles, or by the real particles of the systems at all the energy levels. A comparison

between the orbits of test particles and the orbits of real particles at various energy levels is
made on the rotation number plane. We find that extensive stable regions of phase space,
detected by test particles remain empty, i.e. these regions are not occupied by real particles,
while many real particles move in unstable regions of phase space describing chaotic orbits.

We run self-consistently the two models for more than a Hubble time. During this run, in spite
of the noise due to small variations of the potential, the SC model maintains (within a small
uncertainly) the number of particles moving on orbits of each particular type. In contrast, the

CM model is unstable, due to the large amount of mass in chaotic motion caused by the
central mass. This system undergoes a secular evolution towards an equilibrium state. During
this evolution it is gradually self-organized by converting chaotic orbits to ordered orbits

mainly of the short axis tube type approaching an oblate spheroidal equilibrium. This is clearly
demonstrated in terms of the fundamental frequencies of the orbits on the rotation number
plane and the time evolution of the triaxiality index.

Key words: chaos, frequency maps, N-body simulations, galaxies: elliptical, galaxies: evolution

1. Introduction

Self-consistent galactic models realized by N-body simulations are efficient
tools in studying the structure and evolution of galaxies. We use these tools in
investigating the orbital structure, the evolution and the stability of models
simulating elliptical galaxies.
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If we assume that elliptical galaxies are non-rotating triaxial equilibrium
configurations with a smooth center, i.e. the density near the center is flat, the
potential in this region tends to be harmonic. The most favored type of
ordered orbits in this case is the type of box orbits, i.e. orbits composed of
three oscillations along the corresponding principal axes of the anisotropic
system. They satisfy three integrals of motion, which are approximately the
energies along the three axes of the box. The pericenters of these orbits can be
arbitrarily close to the center.

In real galaxies, in principle, the central region may not be smooth. In
many cases the density near the center, instead of being flat, presents a cuspy
density profile (Ferrarese et al., 1994; Lauer et al., 1995; Gebhardt et al.,
1996; Faber et al., 1997). Furthermore, the dominant opinion today is that
the center is occupied by a black hole. Recent investigations provide accu-
mulated evidence that massive central black holes in galaxies must be quite
common (Kormendy and Richstone, 1995; Kormendy et al., 1997, 1998; van
der Marel et al., 1997, 1998; Magorrian et al., 1998; Cretton and van den
Bosch 1999; Gebhardt et al., 2000). The massive central black holes may be
surrounded by other types of mass, e.g. gas, clouds, stars, etc.

The dynamical effect of a central force field (produced by a massive central
black hole and its direct environment) on the orbits of stars in a galaxy is
important. Orbits passing near the center are appreciably deflected by the
central force field that dominates locally. As a consequence, the integrals of
motion of ordered orbits are destroyed when these orbits approach the
center. Thus, the orbits become chaotic (Gerhard and Binney 1985; Merritt
and Fridman 1996).

This effect may have important consequences on the stability of galaxies.
This field of research is very active in recent years (e.g. Merritt and Fridman,
1996; Merritt and Valluri, 1996; Fridman and Merritt, 1997; Valluri and
Merritt, 1988; Merritt and Quinlan, 1998; Siopis, 1999; Siopis and Kandrup,
2000; Kandrup and Sideris, 2002; Poon and Merritt, 2002, 2004; Kandrup
and Siopis, 2003; Kalapotharakos et al 2004; Voglis and Kalapotharakos,
2005)

In order to investigate further this problem, we concentrate our study on a
comparison between the following two models:

(i) a triaxial N-body model with smooth center in virial equilibrium, here-
after called Smooth Center (SC) model and

(ii) a model, called Central Mass (CM) model, that is created from the SC
model by inserting a central mass. The central mass is assumed to be
mainly due to a black hole of size comparable to the largest masses of
black holes in the centers of galaxies estimated from observational data.
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The comparison regards the various types of orbits described by the indi-
vidual particles in each system, as they are mapped on the space of their
fundamental frequencies. It is obvious that all the differences between the two
models must be attributed to the presence of the central mass.

As we will see below, this comparison reveals important features of the
dynamical role a central black hole can play in real galaxies, such as the
destabilization of orbits of certain types (e.g. box orbits) or enhancement of
the stability of other types (e.g. short axis tube orbits). We show that
redistribution of different types of orbits can take place, so that the system
develops a secular evolution towards a new equilibrium configuration.

In Section 2 we describe the main features of the two models (Sections 2.1
and 2.2, respectively). In Section 3 we give a short description of the method
developed earlier (Voglis et al., 2002) to distinguish themass in chaotic motion
from the mass in ordered motion in N-body models and explain how this
method is applied in our problem.Weuse also the frequency analysismethod to
make a similar distinction and we compare the results of the two methods. In
Section 4,weuse the frequency analysismethod to identify all the types of orbits
of test particles in the SC model and compare them with the orbits of the real
particles of the system on the rotation number plane i.e. the plane of the two
fundamental frequencies of oscillation of the orbits along the middle and the
longest axis, respectively, divided by the fundamental frequency along the
shortest axis. The types of orbits that appear at various energy levels are
examined. In Section 5 the same method is applied at a particular snapshot of
the CM model to identify the various types of orbits on the rotation number
plane and compare with the results of Section 4. In section 6 the secular evo-
lution of the CMmodel is examined by representing the orbits on the rotation
number plane at different snapshots of the system. Our conclusions are sum-
marized in Section 7.

2. Description of the Models

2.1. THE SC MODEL

The derivation of the smooth center model is described in detail in previous
papers (Contopoulos et al., 2002; Voglis et al., 2002). In brief, this N-body
model is the outcome of dissipationless collapse and relaxation derived from
quiet cosmological initial conditions. In the relaxed equilibrium configuration
this model is characterized by a triaxial bar. Let the principal axes, shortest,
intermediate and longest axes be respectively along thex,y,z cartesian axes. The
maximum ellipticity of the equidensity contours (on the x–z plane) in the inner
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parts is of E7 type, while it tends to an E5 type in the outer parts (on the same
plane).

The number of particles used is N ’ 1:5� 105. The evolution is followed
by a N-body code based on the conservative technique Allen et al., 1990 In
this code the Poisson equation is solved in terms of an orthogonal set of basis
functions (Spherical Bessel functions and Spherical Harmonics). The po-
tential provided by this technique is smooth. Particles do not see their
neighbors. They move under the global field created by their distribution at
any time. In the central region this potential is roughly harmonic. In its
typical version the code gives the global potential expanded in 120 terms. In
spherical coordinates ðr; h;/Þ the radial expansion is extended up to 20 terms
and the angular expansions ðh;/Þ up to quadrupole terms. Among the 120
terms, 20 are monopole terms (depending only on r), 20 quadrupole terms
(depending on r and h) and 80 triaxial terms (depending on the three coor-
dinates). This potential can be written as

Vðr; h;/Þ ¼
X19
l¼0

Bl00Vl00ðrÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
20 monopole terms

þ
X19
l¼0

Bl20Vl20ðr; hÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
20 quadrupole terms

þ
X19
l¼0

Bl21Vl21ðr; hÞ cos /þ
X19
l¼0

Cl21Vl21ðr; hÞ sin/

þ
X19
l¼0

Bl22Vl20ðr; hÞ cos 2/þ
X19
l¼0

Cl22Vl20ðr; hÞ sin 2/|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
80 triaxial terms

ð1Þ

where Bl00;Bl20;Bl21;Cl21;Bl22;Cl22 (with l ¼ 0; . . . ; 19) are the coefficients of
the expansion.

The adopted scaling units are as follows. The unit of energy is defined so
that the value of the potential at the center (deepest value) of the SC model is
equal to Vð0Þ ¼ �100. The length unit is the half mass radius Rh of this
system. The time unit is the half mass crossing time defined as
Thmct ¼ ð2R3

h=GMgÞ1=2 in terms of Rh and the mass Mg of the galaxy.
It is useful to express some important time scales in this unit. The period

Tcp of a circular orbit of radius Rh is Tcp ¼ 2pThmct. The relation between
the radial period Tr of an orbit (i.e. the time needed for a star to go from the
pericenter to the apocenter and back to the pericenter of its orbit) and the
circular period Tcp of the same energy can be written as Tcp ¼ fTr where the
factor f is f ¼ 1 in the Kelperian potential, and f ¼ 2 in the harmonic
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potential. In the potential of our N-body system f ranges between these two
values. For orbits of the N-body systems with energies near the value of the
potential at the half mass radius, the values of f are close to 2.

The radial period of the orbits with energy equal to the mean value of the
potential at the half mass radius, denoted by Thmr, is Thmr � 3Thmct. A star in
circular motion, in a typical galaxy, describes about 50 cycles in a Hubble
time tHub. Therefore, a Hubble time can be written as

tHub � 50Tcp ¼ 50fThmr � 300Thmct: ð2Þ
In a self-consistent run the coefficients of the potential (1) are re-evaluated at
regular small time steps Dt ¼ 0:025Thmct. The variations of the coefficients in
this model are quite small. They have only a small noise depending on the
number N of particles, i.e. of the order of 1=

ffiffiffiffi
N

p
K1%.

If the coefficients of the potential are fixed at a given snapshot we can
write an autonomous 3D Hamiltonian

H ¼ _r2

2
þ L2

/

2r2 sin h2
þ L2

h

2r2
þ Vðr; h;/Þ: ð3Þ

Using this Hamiltonian we can study the phase space of the system. We can
find the various types of orbits using test particles and compare with the
orbits of the real particles of the system in this Hamiltonian.

Any possible changes in the types of orbits, due to the variations of the
coefficients in time, can be checked if we fix the values of the coefficients at a
different snapshot and repeat the study of the Hamiltonian (3). No serious
changes are detected in the phase space of this model even after run times
that considerably exceed the Hubble time.

2.2. THE CM MODEL

We choose a particular snapshot of the SC model (after a run time of
tSC ¼ 100Thmct in the relaxed configuration). At this snapshot the time is reset
to t ¼ 0 and a central mass of a given size is inserted abruptly to create the
CM model. So all the differences between the two models can be attributed to
the presence of the central mass of this size.

We consider the case when the time of growth of the central black hole is
much less than the galaxy’s life time. In this case the main dynamical effect of
the black hole depends mainly on its final size. For this reason we simplify the
model by neglecting the transient period of growth of the black hole and we
insert abruptly the central mass.

For the central mass Mcm, we have adopted the central potential

VcmðrÞ ¼ GMcm

a
arctan

r

a

� �
� p

2

h i
; ð4Þ
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where a is a softening length given by

a ¼ 0:05
Mcm

Mg
Rg; ð5Þ

where Rg is the radius of the galaxy. Notice that the force derived from this
potential is

FcmðrÞ ¼ �G Mcm

r2 þ a2
; ð6Þ

i.e. it is of a Keplerian nature only for orbits with pericenters much larger
than a. The force at the center of this model tends to a finite constant.
Stars with pericenters below the softening length a are not deflected
strongly by the CM. This softening length does not significantly alter the
global behavior of the system, since the number of orbits with pericenters
less than a is small.

Notice that the density profile derived from the above potential is

qcmðrÞ ¼
G Mcma

2

2prðr2 þ a2Þ2 ; ð7Þ

i.e. this model for r < a gives an r�1 cuspy density profile.
The relative size m of the central mass with respect to the mass of the

galaxy, i.e.

m ¼ Mcm=Mg ð8Þ
is an important parameter. In the CM model we use the value of m ¼ 0:01.
Such a value is of the same order of magnitude as the largest black hole
masses estimated by observational data (Magorrian et al., 1998; Merritt and
Ferrarese, 2001).

In this model, particles move under the superposition of the potential (4)
and the potential due to their distribution in space at any time given by (1) in
which the coefficients are re-evaluated at every small time step
(Dt ¼ 0:025Thmct).

Notice that after the introduction of the central mass the radial profile of
the density of particles near the center does not remain so flat as before. It
develops a weekly cuspy profile.

In order to study the types of orbits which are consistent with a given
snapshot of the total potential we fix the coefficients in (1) at this particular
snapshot and we run the particles in the autonomous Hamiltonian

H ¼ _r2

2
þ L2

/

2r2 sin2 h
þ L2

h

2r2
þ Vðr; h;/Þ þ VcmðrÞ: ð9Þ

As we will see in Section 6 this model presents a secular evolution that can be
studied by applying (9) at many successive snapshots of the potential.
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3. Distinction of Particles in Ordered Motion from Particles in Chaotic

Motion

As a consequence of the non-integrability of the potential (1) a considerable
part of the orbits in the two systems are chaotic.

In Voglis et al. (2002) we have developed a method to identify particles of
N-body models moving in chaotic orbits provided that their mean logarith-
mic divergence rate exceeds a certain threshold.

In brief this method of distinguishing the chaotic from ordered orbits is
based on the combination of two different tools. First, is the calculation of
the mean exponential divergence in a given period of time, between the orbit
of a real particle in the system and a neighboring orbit. The mean exponential
divergence is measured in units of the inverse radial period Trj of the par-
ticular orbit j. We call it Specific Finite Time Lyapunov Characteristic
Number (S-FT-LCN) and we use simply the symbol Lj for it. The orbit j is
integrated in a 3D autonomous Hamiltonian, as the Hamiltonians (3) or (9)
when they are applied to a particular snapshot of the potential (1).

Second, we use the Alignment Index AIj of the orbit j, i.e. the magnitude
of the sum or the difference of two initially arbitrary deviation vectors of this
orbit, normalized to unity at every Dt.

If the orbit is chaotic, the two deviation vectors tend exponentially to be
parallel or antiparallel (depending on their initial orientation). In this case,
the alignment index AIj, expressed by the difference of the deviation vectors if
they are parallel, or by the sum if they are antiparallel, i.e. the smaller value
between the two, tends exponentially to zero (Voglis et al., 1998, 1999;
Skokos 2001).

If the orbit is ordered, or if it is so weakly chaotic that the chaotic char-
acter can not appear during the available integration time, the two deviation
vectors oscillate around each other. Thus, the corresponding values of AIj do
not tend exponentially to zero, but instead they maintain finite values, in
principle close to unity. (It is very improbable to become less than 10�3Þ.

The run time tj of the orbit j is tj ¼ NrpTrj, where Nrp is a number of radial
periods common for all the orbits. In the case of ordered orbits, or chaotic
orbits that temporarily behave as ordered, the values of Lj decrease on the
average as N�1

rp and they are almost independent of the orbit. As Nrp in-
creases, the Lj of chaotic orbits stops decreasing and it is saturated at a
roughly constant value Lj > N�1

rp . Chaotic orbits are characterized by such
constant values of Lj. The detection limit of chaotic orbits is determined by
the maximum number of radial periods Nrp�max. For the adopted value
Nrp�max ¼ 1200 the minimum Lj of the detected chaotic orbits is the
threshold of ’ 10�2:8.
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The index Lj gives the rate of exponential divergence per radial period.
The advantage of using Lj is the fact that the values of Lj measure the chaotic
character independently of the characteristic time scale of the orbit. If the
value of Lj is smaller than the threshold the orbit is either ordered, or close to
ordered, obeying two integrals of motion (at least approximately) beyond its
binding energy. In this sense the index Lj is a measure of the departure from
integrability, or in other words, Lj is a measure of the complexity of the phase
space of the orbit.

The Lyapunov time derived from Lj, i.e. the time L�1
j is expressed in radial

periods Trj and corresponds to different real time scales depending on the size
of Trj. Such a Lyapunov time, L�1

j , cannot be directly compared with a fixed
time scale, for example, the Hubble time. Furthermore, the threshold value of
this Lyapunov time, derived from the threshold value of Lj ¼ 10�2:8, is
smaller for orbits of short radial periods (innermost orbits, i.e. orbits of low
binding energies) than for orbits of long radial periods.

In Voglis et al. (2002), we have also used the CU-FT-LCN, of simply Lcuj,
i.e., the Finite Time LCN measured in a common time unit for all the orbits,
equal to the inverse radial period Thmr of an orbit with energy equal to the
mean value of the potential at the half mass radius. The index Lcuj gives the
total exponential divergence in time Thmr, independently of the number of
radial periods during this time. This quantity measures the combined action
of two effects, i.e the chaotic character of the orbit and the characteristic time
scale of the orbit. For the innermost orbits (where Trj < Thmr), Lcuj takes
larger values than the corresponding values of Lj, while for the outermost
orbits it takes smaller values than Lj. If the value of Lcuj is smaller than the
adopted threshold there is no guarantee that the orbit obeys other integrals of
motion beyond its binding energy. Very small values of Lcuj can be derived
for long period orbits, even if they wander in a large chaotic sea. Therefore,
Lcuj is not an objective measure of the departure from integrability, because
its values are biased by the dynamical time scales of the orbits. For this
reason we prefer using Lj instead Lcuj for distinguishing the orbits.

However, Lcuj is also a useful quantity because the Lyapunov times L�1
cuj,

expressed in common units Thmr, can be directly compared to the Hubble
time. Furthermore, a particular threshold value of Lcuj defines a common
threshold value of the Lyapunov times for all the orbits independently of
their characteristic time scales.

As a consequence of the above properties of the two indices, the number
of chaotic orbits, that can be detected by using a threshold value in Lcuj, is
not exactly the same with those detected by using the same threshold value in
Lj. The threshold of Lcuj gives more chaotic orbits in the inner parts, while
the threshold of Lj gives more chaotic orbits in the outer parts. However,
provided that the adopted thresholds are small enough, so that the minimum

C. KALAPOTHARAKOS AND N. VOGLIS164



Lyapunov times considerably exceed the Hubble time, the difference between
the two sets of the detected chaotic orbits regards only very weakly chaotic
orbits that might equally well be considered as ordered orbits.

Large values of Lj are correlated with large variability per radial period of
the actions of the orbits and hence with larger rates of chaotic diffusion
(Lichtenberg and Lieberman 1992). Chaotic diffusion, however, is important
in a given time provided that this time is longer than the Lyapunov time. The
values of Lj can give us the ability of chaotic diffusion in a given number of
radial periods, but not in a fixed period of time. Thus, after obtaining the
separation of chaotic orbits in terms of Lj, we find the chaotic orbits that can
in principle develop chaotic diffusion in a Hubble time, by calculating their
Lcuj in terms of their Lj as

Lcuj ¼ Lj
Thmr

Trj
: ð10Þ

As mentioned above, the Lyapunov time L�1
cuj, expressed in units of Thmr, can

be directly compared with the Hubble time tHub ’ 100Thmr. Therefore, a
necessary condition for a remarkable chaotic diffusion in one Hubble time is
L�1
cuj < tHub, or LcujJ10�2T�1

hmr.
The threshold Lj ¼ 10�2:8 is adopted for two reasons. First, because the

rate of appearance of new chaotic orbits slows down remarkably by
increasing further Nrp�max (Kalapotharakos et al., 2004). Second, all the
orbits with Lcuj > 10�2 have values of Lj well above the threshold 10�2:8, so
they are certainly included in the set of chaotic orbits. This is seen in
Figure 1, where all the detected chaotic orbits of the SC model are plotted on
the logLj � log Lcuj plane.

Chaotic orbits in a 3D Hamiltonian system can be either fully chaotic, or
partially chaotic. The fully chaotic orbits are characterized by two positive
Lyapunov numbers, the first (or the maximal) LCN corresponding to Lj and a
second LCN, smaller than Lj. The partially chaotic orbits are characterized by
only one positive LCN corresponding toLj and they obey one more integral of
motion beyond their binding energy. Due to this integral, partially chaotic
orbits are confined in space, and are not allowed to diffuse to all directions.

In our distinction between ordered and chaotic orbits in terms of Lj,
partially and fully chaotic orbits are bunched together. Most of the chaotic
orbits with large values of Lj are fully chaotic, e.g. orbits with logLjJ� 2 in
Figure 1. Those with smaller values of Lj can be characterized as partially
chaotic because their second Lyapunov number is either very small or zero.
They obey an approximate integral of motion so they are confined to par-
ticular regions of phase space.

Muzzio and Mosquera (2004), Muzzio et al. (2005), in their study of the
mass in chaotic motion in self-consistent models of stellar systems, have used a
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commonunit for the evaluation of theLyapunovnumbers (as in ourLcuj). They
evaluate both the first and the secondFT-LCNsof the orbits above a threshold.
They show that the orbits of their systems that are characterized as partially
chaotic, but also those of the fully chaotic orbits with low values of the first FT-
LCN,have different spatial distributions comparedwith the fully chaotic orbits
with high values of the first FT-LCN. Fully chaotic orbits with low FT-LCN
and partially chaotic orbits are confined in a prolate-triaxial distribution, while
fully chaotic orbits with high FT-LCN show an almost spherical distribution.
Fully chaotic orbits with low FT-LCN behave as partially chaotic for a long
time. Therefore, a distinction between the chaotic orbits having a confined
spatial distribution and those having an almost spherical distribution can be
obtained by using the values of the first FT-LCN (small or large, respectively).
It is not quite necessary to identify separately the partially and the fully chaotic
orbits, although such a distinction can give more details about the spatial
distribution of the orbits with low FT-LCN.

Figure 1. The chaotic orbits in the SC model detected by Lj above the threshold of 10�2:8 are
plotted on the plane of log Lj� logLcuj. Very small values of Lcuj are only due to the orbits of
long radial periods. The orbits with logLcuj > �2 that can develop chaotic diffusion in a

Hubble are well above the threshold of logLj ¼ �2:8. Partially chaotic orbits are found
mainly among the orbits with low values of log Lj.
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As it is well known, an alternative method to distinguish between ordered
and chaotic motion is the frequency analysis method introduced by Laskar
(1990). (See also Laskar et al., 1992; Laskar, 1993a, 1993b; Papaphillipou
and Laskar, 1996, 1998). This method exploits the fact that the frequencies of
ordered orbits remain constant in time (within the available accuracy). The
frequencies of chaotic orbits, on the other hand, develop a considerable
variability. The distinction is obtained by evaluating accurately the funda-
mental frequencies of the orbits.

For this purpose we use the FMFT code by Sidlichovsky and Nesvorny
(1997) to find the fundamental frequencies mx, my, mz of the oscillations of the
orbits along the x; y; z axes. Notice that these frequencies are measured in
units of the inverse radial period of each particular orbit, as in the case of the
Lj.

In order to check the variability of the fundamental frequencies of the
orbits in a particular snapshot of the potential (1), we select two spans for
every orbit with the same number of radial periods DNrp ¼ 300, common for
all the orbits. The run time of the orbit j is:

span(1): from t ¼ 0 to t ¼ 300Trj

span(2): from t ¼ 900Trj to t ¼ 1200Trj.
The fundamental frequencies along the shortest axis x (the most unstable

direction in the system) are always larger and more sensitive than the fun-
damental frequencies along the other two axes. For this reason we use the
quantity

dxj ¼
jmð1Þxj � mð2Þxj j

mð1Þxj

ð11Þ

as a measure of the variability of frequencies. The upper index gives the
corresponding span from which the frequency is evaluated.

In terms of the three indices, Lj, AIj, dxj, we can obtain a very clear
distinction between ordered and chaotic orbits. This can be seen in
Figure 2a,b, where all the orbits of the two systems are plotted in the three-
dimensional space (logAIj; logLj; log dxjÞ. For most of the orbits (� 95%)
the index logAIj works as a switch taking values either in the region from )3
to 0 for ordered orbits, or very small values, less than -10 for chaotic orbits.
The intermediate values of logAIj correspond to a relatively small number
(� 5%) of weakly chaotic orbits of the lane joining the two groups.

Using the above method we have found that in the SC model about 32%
of the total mass moves in chaotic orbits and about 68% in ordered orbits.
As we have checked, these fractions remain almost the same at various
snapshots selected at very different times even larger than the Hubble time.
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The identities of the particles in the groups are also well preserved, in spite of
the noise due to the variations of the coefficients of the potential. Only a
fraction of 1�2% of the total number of particles jump from one group to the
other and vice versa.

It is worth noticing that Muzzio et al. (2005), in their smooth center model
of an elliptical galaxy, have found a fraction of mass in chaotic motion of
about 53%, i.e. considerably larger than in our study. Partially, this diffrence
is due to an overestimation (with respect to our estimation) of chaos (espe-
cially in the low energy orbits) because of the use of a smaller threshold in
their FT-LCN similar to Lcuj. Another source of this difference is the fact that
our SC model is more flat near the center than their model. However, their
results are in agreement with our conclusion that, even in models of stellar
systems with smooth centers, the fraction of mass in chaotic motion is not
negligible. It is at least of the order of a few tens per cent, although in most of
the chaotic orbits the corresponding Lyapunov numbers may be relatively
small.

Applying our method to various snapshots of the CM model we find that
at the snapshot of t ¼ 0 the fraction of mass in chaotic motion is � 80%. At
the snapshot of t ¼ 150 the chaotic mass is reduced to � 58%, while at the
snapshot of t ¼ 300 this fraction falls down to � 22% and remains perma-
nently (i.e. for a time much longer than a Hubble time) on this level, indi-
cating that the system has reached a well established equilibrium. The
reduction of the fraction of mass in chaotic motion from one snapshot to
another is due to a process of self-organization occurring in the CM model
that is discussed in Section 6.

Figure 2. Distinction between ordered and chaotic orbits using the three indices
logAIj; logLj; log dxj for the two models SC (a) and CM (b). The sensitivity of logAIj is
considerable larger than the sensitivity of the other two indices.
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4. The Frequency Map of the SC Model

We define the rotation numbers my=mx and mz=mx and we mark the frequencies
on the rotation number plane (e.g. as in Papaphillipou and Laskar, 1998;
Wachlin and Ferraz-Mello, 1998; Valluri and Merritt, 1998; Holley-Bockl-
mann et al., 2002). Such diagrams are usually called frequency maps. Typical
examples of orbits found in the SC model are shown in Figure 3a–f. The
letters a,b,. . . label the rows of this figure. Every row gives the three pro-
jections of the same orbit on the planes x� y; x� z; y� z, respectively.
Following a standard terminology (de Zeeuw, 1985; Statler, 1987), the types
of ordered orbits found in this model can be classified in terms of their
rotation numbers as follows:

(a) Box orbits. They are combinations of three oscillations along the
x; y; z axes. They can pass arbitrarily close to the center. Their rotation
numbers my=mx and mz=mx are irrational. The major axis of most of the box
orbits is in average along the longest axis z of the system but it performs
two librational motions around the axis z with constant irrational fre-
quencies either on the y� z or on the x� z plane, filling in this way a
region having the shape of a parallelepiped, with curved surfaces, (Fig-
ure 3a). This type of orbits is compatible only with triaxial equidensity
surfaces.

(b) Inner Long Axis Tube (ILAT) orbits. Such orbits fill tube-like regions
with maximum size along the longest axis z (Figure 3b). The hole of the tube
appears along the z axis due to the component of the angular momentum of
the orbit along this axis. For a number of ILAT orbits this hole may be small,
so that they can pass quite close to the center. In this case the ILAT orbits
resemble the box orbits. For this reason we call them box-like orbits. The
ILAT orbits are characterized by the resonant value of the rotation number
my=mx ¼ 1. Due to this resonance the major axis of the ILAT orbits describes
a precession around the z axis. This type of orbits is compatible with triaxial
and prolate equidensity surfaces.

(c) Outer Long Axis Tube (OLAT) orbits. This is another type of resonant
orbits with the same rotation number my=mx ¼ 1 as the ILAT orbits and with
the hole of the tube being again along the longest axis z (Figure 3c). The
main difference of the OLAT from the ILAT orbits is that the major axis of
the OLAT orbits oscillates up and down the x� y plane instead of precessing
around the z axis. Furthermore, the angular momentum along the z axis and
the radius of the hole are larger compared with the corresponding quantities
of the ILAT orbits. Thus, they do not approach so close to the center. This
type of orbits is compatible with triaxial and prolate equidensity surfaces.
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Figure 3. Examples of the various types of orbits of the particles in the SC model. Each row

gives a type of orbit projected on the three planes x–y, x–z, y–z, respectively. The types of
orbits are box (a), ILAT (b), OLAT (c), SAT (d), HORT (e), chaotic (f).
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(d) Short Axis Tube (SAT) orbits. They form tubes surrounding the
shortest axis x (having their hole along this axis, Figure 3d). They are
characterized by equal rotation numbers, i.e. my=mx ¼ mz=mx. Their major axis
oscillates up and down the plane of the intermediate-longest axes (y� z
plane). Due to their angular momentum along the shortest axis they can not
approach the center. They support the flatness of the system along the
shortest axis. This type of orbits is compatible with triaxial and oblate
equidensity surfaces.

(e) Higher Order Resonant Tube (HORT) orbits. These are tube-like or-
dered orbits corresponding to various resonances of higher order. For
example the ratio of frequencies of the orbit in Figure 3e is approximately
mz : mx ¼ 2 : 3. In general, HORT orbits do no approach very near the center.
This type of orbits is compatible only with triaxial equidensity surfaces.

(f) Chaotic orbits have been discussed in the previous section. Their
rotation numbers vary irregularly in time. An example of chaotic orbit is
shown in Figure 3f. This type of orbits is compatible with all the kinds of
equidensity surface.

As it is well known the resonant orbits satisfy the condition of Diofantos

nxmx þ nymy þ nzmz ¼ 0; ð12Þ
where nx, ny and nz are integers. If one of the three frequencies is irrational to
the others the above equation is satisfied if the corresponding coefficient is
zero. This is the case of the ILAT, OLAT and SAT orbits. For ILAT and
OLAT orbits the vector ðnx; ny; nzÞ that satisfies (12) is ð1;�1; 0Þ, while for
the SAT orbits this vector is ð0; 1;�1Þ.

For the HORT orbit shown in Figure 3e ðnx; ny; nzÞ ¼ ð�2; 0; 3Þ. There are
of course HORT orbits with non-zero integers in all the three components of
the vector ðnx; ny; nzÞ satisfying (12). For box orbits equation (12) is satisfied
only for ðnx; ny; nzÞ ¼ ð0; 0; 0Þ.

As we will see by the end of this section a good number of the detected
chaotic orbits follow the geometry of the above types of ordered orbits and
they satisfy resonance conditions with a good accuracy for not negligible
periods of time.

At high energy levels all the types of orbits are present but this is not the
case at low energy levels. In order to study how the various types of orbits
appear along different energy levels at a given snapshot of the potential, we
run test particles scanning all the available phase space of the corresponding
Hamiltonian at an energy level h. We find the fundamental frequencies of
their orbits and construct the frequency map on the rotation number plane.
This is repeated for a series of energy levels. The same process is repeated for
the orbits of the real particles of the system with energies inside a small
window (of width �1) around h.
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In Figure 4a; a; b; b; c; c; d; d; e; e; f; f the rotation number planes of the
orbits of test particles and the orbits of real particles are shown for com-
parison in pairs at energy levels

h ¼ �80;�70;�60;�50;�40;�10;

respectively, as they result from the snapshot of the potential (1) at t ¼ 0. The
figures of the left column (labelled by Latin letters) give the orbits of test
particles (covering all the available phase space at the corresponding energy).
The figures of the right column (labelled by Greek letters) give the orbits of
the real particles of the system (with energies inside a small window around
the same value of energy).

We first describe Figure 4f (h ¼ �10) where all the types of orbits are
present as indicated in this figure.

The ILAT and OLAT orbits are located on two separated segments along
a vertical line my=mx ¼ 1. The segment of ILAT is for mz=mxK0:7. The almost
empty part of this line near the value mz=mx ¼ 0:7 corresponds to a zone of
instability that separates these two families of orbits.

In Figure 4f the SAT orbits are located along the diagonal my=mx ¼ mz=mx.
The box and the HORT orbits occupy a wide range on this plane with
mz=mxK0:7 and my=mx < 1. The box orbits form an almost continuous distri-
bution in this area, interrupted by straight lines corresponding to HORT
orbits. The points that are irregularly dispersed in between the above types of
orbits correspond to chaotic orbits.

As we can see in Figure 4f the real particles of the system at the same
energy level occupy all the types of orbits of test particles and they are
distributed in a rather similar way. However, this is not always the case
especially for low energies as we will see below.

In the deepest parts of the potential only box and HORT orbits are
allowed. For example, for h ¼ �80 (Figure 4a) only box orbits appear
(and a small number of HORT orbits that are not clearly seen in this
figure). The same happens also for smaller energy levels. It is remarkable
that on the rotation number plane the area of box orbits at low energy
levels has a shape of a curvilinear triangle as in Figure 4a. The three
corners of the triangle correspond to harmonic oscillations along the
longest axis z (top corner), the intermediate axis y (left corner) and the
shortest axis x (right corner), with small amplitude of oscillations along
the other axes in each case.

In Figure 4a the real particles of the system occupy preferably the left side
of the triangle than the right side, which is almost empty. This is because of
the self-consistency. The existence of stable orbits of test particles does not
necessarily imply that these orbits can be occupied by real particles of the
system. The orbits of real particles are further restricted by the self-consis-
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Figure 4. The rotation number plane at the energy levels h ¼ �80;�70;�60;�50;�40;�10 for
the snapshot at t ¼ 0 of the potential (1) of the SCmodel. In the figures of the left column (a), (b),
(c), (d), (e), (f) orbits of test particles are plotted scanning all the available phase space at every

energy level. In the right column a, b, c, d, �, f the orbits of the real particles of the system with
energies in a small window�1 around the corresponding energy are plotted for comparison. The
real particles of the system do not necessarily occupy all the available phase space, because they

are further restricted by self-consistency.
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Figure 4. (Continued)
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tency to follow a distribution that supports the equidensity surfaces having
their axis along y larger than their axis along x, otherwise the system could
not be in equilibium.

In Figure 4b (for h ¼ �70) the area of box orbits is expanded covering
a wider range of values of my=mx. The upper angle of the curvilinear tri-
angle flattens. This flattening corresponds to the increase of the amplitude
of the libration of the major axis of the box orbits either on the y� z
plane (expansion to the left), or on the x� z plane (expansion to the
right). The right corner of the triangle has been destroyed because the
oscillation along the shortest axis has already been unstable. A weakly
populated chaotic layer appears in this area separating the box orbits from
the ILAT orbits, that start appearing at about this level of energy (a few
points along the line my=mx ¼ 1). The left corner still exists, indicating that
the corresponding oscillations (along the y axis) are still stable. This
corner is expanded to smaller values of my=mx.

As shown in Figure 4b the orbits of real particles again do not cover all the
area of stable orbits of test particles. They are preferably located near the left-
upper limit of this area because of self-consistency reasons, as explained above.

At the energy level h ¼ �60 (Figure 4c) the area of box orbits is further
expanded along smaller values of my=mx, due to further increasing of the
libration of the major axis on the y� z plane. The area of box orbits takes the
shape of a lane rather than a triangle. The upper limits of mz=mx form a curved
line with an inverse curvature than the previous curvature (from convex it
becomes concave). This concavity becomes larger and larger as the energy
increases. The box orbits of real particles lie preferably along this line (Fig-
ure 4c).

For h ¼ �50 (Figure 4d) the left end of the lane turns abruptly upwards.
The box orbits at this end become unstable and the SAT orbits appear as a
new family (short straight line with slope 1.0 in Figure 4d). As the energy
increases the area of the SAT orbits increases. The orbits of real particles
follow a roughly similar distribution (Figure 4d).

At the energy level of about h ¼ �40 (Figure 4e,e) the family of OLAT
orbits appears (a few points along the line my=mx ¼ 1 with mz=mxJ0:75. For
higher energy levels all the types of orbits appear as in Figure 4f,f.

As described in Section 3, we have found that the ordered and the chaotic
components are respectively, � 68% and � 32% in the SC model. Further-
more, these fractions as well as the identities of particles in each type of
motion are almost permanent.

All the ordered orbits (of all the energy levels) of the real particles in this
system are plotted on the rotation number plane in Figure 5a, while the
chaotic orbits are plotted in Figure 5b.
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In Figure 5a we see clearly the groups of SAT, ILAT, OLAT and HORT
orbits on sharp straight lines. The box orbits form a not very sharp area due
to the superposition of the box orbits of different energy levels. Note that the
majority of the ordered orbits, i.e. � 91% of the ordered component, moves
in box (and HORT) orbits.

In Figure 5b we see that many chaotic orbits are located along resonant
lines. These orbits diffuse mainly along the resonant lines. As long as they are
trapped on a resonant line they maintain a very small or zero second FT-
LCN, i.e. they are partially chaotic. We collect those of the chaotic orbits of
Figure 5b that are projected upon the most important resonant lines and we
plot them separately in Figure 6a. We plot also their distribution along the
log Lj axis in Figure 6b by a dashed line together with the distribution of all
the chaotic orbits (solid line). We see that among the more weakly chaotic
orbits (i.e. logLjK� 2) there is an almost constant difference between the
values of the two curves at any given Lj. This means that there are many
weakly or partially chaotic orbits located outside the resonant lines. These
are mainly orbits resembling the box type. Among the more strongly chaotic
orbits the ratio of the values of the dashed curve to the values of the solid
curve decreases to zero as logLj increases. The probability of more strongly
chaotic orbits to be trapped along resonant lines is small.

As we have checked, due to the small variations of the potential, some of
the resonant orbits can escape the resonant lines, but other chaotic orbits are
trapped on the same resonant lines, so that the system preserves a dynamical
equilibrium, in which the number of orbits in every type remains remarkably
constant in time.

Figure 5. (a) All the ordered orbits of the SC model plotted on the rotation number plane

independently of their energy. (b) As in (a) but for the chaotic orbits. A number of chaotic
orbits are temporarily trapped near the resonant lines.
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5. The Frequency Map of the CM Model

A similar analysis is performed in the CMmodel using the Hamiltonian (9) at
a snapshot of the self-consistent potential corresponding to a run time
t ¼ 150 after the central mass is inserted.

At this snapshot, as mentioned in Section 3, we found that the fraction of
mass in ordered motion (Lj < 10�2:8) and in chaotic motion (Lj > 10�2:8)
are respectively, � 42% and � 58%. All the particles of these two compo-
nents, plotted on the rotation number plane, are shown in Figure 7a,b,
respectively.

In Figure 7a we see that the particles of the ordered component belong to
resonant orbits only, forming quite sharp straight lines. No box orbits appear
at all. Also the ILAT type is almost absent. The majority ð� 95%Þ of the
ordered orbits in this figure belong to SAT orbits, but there are some OLAT
and HORT orbits as well.

On the other hand, the chaotic component, shown in Figure 7b, con-
tains a large number of orbits in the area of box orbits. These orbits come
from the box orbits in SC model that became chaotic by passing near the
cental mass.

As in Figure 5b, the resonant lines in Figure 7b are occupied by a good
number of weakly or partially chaotic orbits, diffusing mainly along the same
resonant line. Due to the secular evolution of the potential these orbits escape
from the resonant lines, but other chaotic orbits can be trapped along res-

Figure 6. (a) A separate plot of those chaotic orbits in Figure 5b that occupy the most

important resonant lines in the SC model. (b) Distribution of all the chaotic orbits (solid line)
along the log Lj axis and the distribution of the orbits in (a) (dashed line). For small values of
Lj there is a roughly constant difference between the two curves, due mainly to weakly chaotic

orbits resembling box orbits. For large values of Lj the relative occurrence of chaotic resonant
orbits decreases considerably.
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onant lines. As we will see in Section 6, trapping along the line (mz=my ¼ 1) of
SAT orbits is much favored by the new shape of the potential, so most of the
material is organized in SAT orbits.

In Figure 8a,b, which is similar to Figure 6a,b, but for the CM model, we
see that almost all the weakly chaotic orbits (log Lj < �2) are located on

Figure 7. As in Figure 5a,b but for the CM model. Ordered motion (a) occurs in resonant
orbits only. Orbits in the region of box and ILAT orbits are chaotic because of the central

mass and they are shown in (b).

Figure 8. (a) A separate plot of those of the chaotic orbits in Figure 7b that occupy the most
important resonant lines. (b) As in Figure 6b but for the CM model at t ¼ 150. For small
values of Lj the difference between the two curves is quite small, unlike Figure 6b, because

those of the weakly chaotic orbits that resemble box orbits (mentioned in Figure 6b) are
converted either to more strongly chaotic orbits, or to resonant chaotic orbits. For large values
of Lj the relative occurrence of chaotic resonant orbits decreases considerably, as in Figure 6b.
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resonant lines, unlike Figure 6b. This is because those of the weakly chaotic
orbits in the SC model that were outside the resonant lines (resembling box
orbits) have been converted partly to resonant orbits and partly to more
strongly chaotic orbits in the CM model.

On the other hand, in Figure 8b, like in Figure 6b, more strongly chaotic
orbits have a very small probability of being trapped along resonant lines.

An idea of how the various types of orbits are distributed at different
energy levels at the snapshot t ¼ 150 of the CM model is given in Fig-
ure 9a,a,b,b. The left column (Figure 9a,b) refers to test particles, while the
right column (Figure 9a,b) refers to real particles.

Figure 9. As in Figure 4, but for the snapshot at t ¼ 150 of the CM model for two energy
levels. (a),(a) are for the level h ¼ �90. In this model SAT orbits appear from the lowest

energy levels. In low energies the orbits of real particles do not follow the same distribution as
the orbits of test particles. (b), (b) are for a high level h ¼ �10. For high energies the distri-
bution of real particles is not very different than the distribution of test particles.
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At the level of h ¼ �90 (Figure 9a,a) the distribution of the orbits of real
particles, outside the resonant lines, is not the same with the distribution of
the orbits of test particles. Note that the system is not in equilibrium at this
snapshot.

In these figures the majority of the orbits are chaotic, but there are also
many ordered orbits mainly of SAT type. As we have seen (Section 4), in the
SC model, at low energy levels, only ordered box (and a few HORT) orbits
appear. At low energy levels (hK� 50) of the SC model there are no SAT
orbits at all. In contrast, in the CM model SAT orbits appear already from
the lowest energy levels. This is another effect due to the presence of the
central mass. The central mass favors ordered motion of particles in SAT
orbits even at very low energy levels.

At higher energy levels of the CM model a relative increase of the ordered
resonant orbits of all the types occurs. This can be seen on the rotation
number plane as, for example, in Figure 9b,b for h ¼ �10.

6. Time Evolution and Self-organization of the CM Model

In this section we examine the evolutionary features of the CM model.
The introduction of the central mass destabilizes the well established ini-

tial equilibrium structure of the SC model. As we have seen above, almost all
the box and the box-like (ILAT) orbits are converted into chaotic orbits. As a
consequence, at the snapshot t ¼ 0 of the CM model, the fraction of mass in
chaotic motion is found to be about � 80%, in contrast with the fraction
� 32% of mass in chaotic motion found in the SC model. This serious in-
crease of the mass in chaotic motion is accompanied by a serious change in
the distribution of the Lyapunov numbers. This distribution shows a peak in
the region of large values of Lj, due mainly to box orbits that became chaotic.

As mentioned in Section 3, the diffusion of the orbit j is effective in a
Hubble time, if Lcuj > 10�2. In the SC model, the mass in chaotic motion
with LcujJ10�2 is less than 8% and it is almost spherically distributed, un-
able to cause any considerable secular evolution in the system.

Notice that almost spherically distributed chaotic orbits cannot have
serious consequences on producing secular evolution in the system by chaotic
diffusion. Chaotic diffusion is important for producing secular evolution
provided that the corresponding chaotic mass has initially an anisotropic
spatial distribution. A more detailed examination of this effect is given in
Voglis and Kalapotharakos (2005).

In the CM model, the mass in chaotic motion with Lcuj > 10�2 is � 55%
at the snapshot t ¼ 0 and it has an anisotropic distribution consistent with
the configuration of the SC model. As this mass diffuses, it causes serious
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changes on the equidensity surfaces and hence on the self-consistent equi-
potential surfaces of the system. Thus, the system becomes unstable and
undergoes secular evolution towards an equilibrium state. During this evo-
lution many chaotic orbits are trapped, by the new shapes of the equipo-
tential surfaces, in different regions of the phase space, where they are
converted to ordered orbits. The fraction of mass in ordered motion increases
in time, while the mass in chaotic motion decreases. The system is self-
organized. This process goes on until the remaining mass in chaotic motion
cannot considerably affect the equipotential surfaces any more and the sys-
tem achieves an equilibrium configuration.

The secular evolution of the CM model can be clearly demonstrated on
the rotation number plane. We plot all the particles of the system on the
rotation number plane using the Hamiltonian (9) for a series of successive
snapshots of the potential taken from the self-consistent run. In this way we
can follow the various types of orbits that are consistent with the corre-
sponding snapshots of the potential.

As an example, four different snapshots are shown in Figure 10a–d at
times t ¼ 10, t ¼ 100, t ¼ 200, t ¼ 280, respectively, where all the orbits of
the real particles of the system are plotted. In these figures the areas of box,
HORT and ILAT orbits are moving upwards approaching the line of the
SAT orbits (compare Figure 10a–c). The number of all the other types of
orbits decreases while the number of SAT orbits increases.

At the snapshot of t ¼ 280 (Figure 10d) the majority of the orbits appear
along the line of SAT orbits. There is also a smaller number of orbits along
the line of OLAT orbits.Part of these orbits are expected to be (partially)
chaotic with small values of their LCN. In any case a component of angular
momentum along the shortest axis for the SAT orbits and along the longest
axis for the OLAT orbits is approximately conserved.

The fraction of mass in chaotic motion at this snapshot (t ¼ 280) is found
� 22% and remains constant at this level. The system has achieved an almost
oblate spheroidal equilibrium configuration supported by SAT orbits.

The time scale needed for the CM model to reach the equilibrium con-
figuration is comparable with the Hubble time. It is remarkable that cuspy
triaxial models with central mass of the same relative size, i.e. m ¼ 0:01
investigated by other authors, (e.g. Holley-Bockelmann et al., 2002) appear
considerably more stable compared with the CM model here. In Kalapot-
harakos et al. (2004), the CM model (called Q100) is compared with another
model (called C100) containing a central mass of the same size. The C100
model evolves about six times more slowly than the Q100 model. The reason
for this slow evolution is the fact that the C100 model contains initially
(before the central mass is inserted) considerably less mass in box orbits and
more mass in tube-like orbits. Stability in such models has a sensitive
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dependence on the number of box orbits supporting the triaxiality of the
system. If triaxiality is mainly supported by combinations of tube orbits,
rather than by box orbits, stable triaxial configurations are possible even with
large central black holes.

The mechanism by which the chaotic orbits are converted to ordered
orbits of the SAT type is discussed in detail in Kalapotharakos et al. (2004).

In brief, this mechanism is as follows: Due to the deflection of the box or
box-like (ILAT) orbits as they pass near the center, the libration of their
major axis around the z axis becomes chaotic. Provided that the central mass
is large enough the chaotic libration of the major axis, after a transient
period, turns to rotation.

Figure 10. Four snapshots of the rotation number plane of the real particles of the CM model
at times t ¼ 10 (a), t ¼ 100 (b), t ¼ 200 (c), t ¼ 280 (d), indicating the secular evolution of the

system. Most of the chaotic orbits approach gradually the line of the SAT orbits and they are
trapped on this line until an almost oblate spheroidal equilibrium configuration is achieved.
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This rotation takes place preferably close to the y� z plane, i.e. around
the shortest axis (x-axis) of the system, because this orientation is more
stable than others. Since the major axis of the orbit is no more trapped
near the z-axis of the system, it can be directed along all the azimuthal
angles on the y� z plane. If this happens for a good number of orbits the
predominance of the velocity dispersion along z is lost and the two
directions y and z tend to be equivalent as regards the dispersion of
velocities. As a response the equidensity surfaces and the self-consistent
equipotential surfaces approach an oblate spheroidal shape. Due to this
change of the potential the chaotic orbits are gradually trapped and
organized as SAT orbits. In their new SAT form these orbits do not
approach the center any more.

The secular evolution ceases when the remaining chaotic orbits are
isotropically distributed, or the rate of their passing near the central mass is
too small to cause any considerable change on the system.

The secular evolution of the CM model can also be seen in terms of the
triaxiality index T defined as

T ¼ c2 � b2

c2 � a2
; ð13Þ

where a,b,c are the lengths of the principal axes of an equidensity surface
with major axis c ¼ 1 in units of the half mass radius. The triaxiality index T
is equal to 0 for an oblate spheroidal surface and it is equal to 1 for a prolate
spheroidal surface, while it is 0.5 for a maximally triaxial surface.

In Figure 11 the evolution of this index is plotted (in our two models for
comparison) for times much longer than the Hubble time.

The SC model preserves the initial value of the triaxiality index T � 0:9,
indicating that this model preserves its initial triaxial shape (close to a prolate
shape) during all this time.

On the contrary, the triaxiality index of the CM model, starting from the
same initial value, decreases tending to a small constant value. This decrease
is irreversible. The index T remains permanently close to zero, indicating that
the system has achieved an almost oblate spheroidal equilibrium configura-
tion. In this configuration the majority of orbits are of the SAT type as we
have seen above (Figure 10c).

7. Summary and Conclusions

In terms of the fundamental frequency analysis we have investigated all the
types of orbits that are described by the particles in the two examined N-body
systems, i.e. a SC and a model with a large CM.
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The investigation combines the results of the fundamental frequency
analysis with the results obtained by distinguishing chaotic from ordered
orbits in terms of Lj, i.e. the Specific Finite Time Lyapunov Characteristic
Number (S-FT-LCN) and the Alignment Index AIj, a method introduced in
a previous paper. The use of Lj has several pros and cons with respect to the
use of Lcuj, i.e. the Finite Time Lyapunov Characteristic Number in common
units (CU-FT-LCN), that are discussed in Section 3. We show that the
alignment index can make a considerably sharper distinction than the dis-
tinction obtained by the variability of frequencies dxj or by the rate of log-
arithmic divergence Lj of the orbits (Figure 2).

We find that the SC model is stable. It contains a large fraction of ordered
orbits (� 68% of the total mass). The main part of them are box orbits, but
there are also many resonant tube orbits of various types, i.e. ILAT, OLAT,

Figure 11. The secular evolution of the CM model in comparison with the stability of the SC

model for times much longer than a Hubble time expressed in terms of the triaxiality index T.
In the SC model T remains remarkably constant at the initial value T � 0:9 for long time. In
the CM model T starts from this value and decreases approaching the zero value in a time

scale of about one Hubble time when an almost oblate spheroidal equilibrium configuration is
established.
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SAT and HORT. On the rotation number plane these types of orbits occupy
different loci, so they can be easily recognized, e.g. all the tube orbits are
plotted along their characteristic resonant lines. At low energy levels only box
and HORT orbits are present. As the energy increases the other types of tube
orbits appear in the sequence ILAT, SAT, OLAT.

Among the chaotic orbits in this model, many of them are weakly or
partially chaotic. Part of them resemble box orbits, but another part is
trapped along resonant lines. More strongly chaotic orbits have small
probability of being trapped along resonant lines.

In spite of the noise of the potential in a self-consistent run of the SC
model, the number of particles occupying the various types of orbits is
remarkably constant. This is obtained by a dynamical equilibrium estab-
lished between the orbits that escape from a resonant line and the orbits that
are trapped in this resonant line.

Comparing the distribution of the orbits of the real particles on the
rotation number plane with the orbits of test particles, we conclude that
extensive stable regions of phase space remain empty, i.e. they are not
occupied by real particles of the system. This effect is due to the self-con-
sistency of the system. Self-consistent equilibrium imposes serious limitations
on the distribution of the real particles. These limitations are more severe
than the limitations imposed by the stability of the orbits. Thus, finding
stable orbits in a given galactic potential does not guarantee the existence of
mass there and finding unstable regions does not guarantee the lack of mass
there. This remark underlines the significance of the self-consistent models in
studying galactic structures.

The empty stable regions are more pronounced in the low energy or-
bits, where chaos is weak and the chaotic orbits are rare. As the binding
energies increase the orbits of real particles are in a better agreement with
the orbits of test particles. In high binding energies real particles tend to
occupy most the available phase space, either by ordered or by chaotic
orbits.

The CM model is initially unstable. It presents a secular evolution due to
the large amount of mass in chaotic motion produced by the central mass.
This is initially about 80%. Most of this mass (about 55%) is characterized
by Lyapunov times L�1

cuj < 100Thmr, i.e. less than one Hubble time, and it has
initially an anisotropic spatial distribution forming the bar of the system.
Due to the diffusion of these orbits, the initially bar-like equipotential sur-
faces are gradually deformed approaching oblate spheroidal shapes with their
flatness along the x axis. As we have seen, by representing the orbits on the
rotation number plane at various successive snapshots, during this defor-
mation of the system, chaotic orbits are gradually converted to ordered orbits
mainly of SAT type.
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The secular evolution of the CM model ceases and equilibrium is estab-
lished,when the remainingnumberof chaotic orbits is nomore efficient to cause
any considerable changes on the system, either because it is isotropically dis-
tributed, or because the rate of orbits that pass near the center is small.

The oblate spheroidal equilibrium configuration, established by the end of
the secular evolution, is supported mainly by SAT orbits preserving the
component of their angular momentum along the shortest axis. The orbital
structure of this system is remarkably simpler than the orbital structure of a
triaxial configuration.
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Abstract. We study the chaotic motions in the field of two fixed black holes M1, M2 by
calculating (a) the asymptotic curves from the main unstable periodic orbits, (b) the asymp-

totic orbits, with particular emphasis on the homoclinic and heteroclinic orbits, and (c) the
basins of attraction of the two black holes. The orbits falling on M1 and M2 form fractal sets.
The asymptotic curves consist of many arcs, separated by gaps. Every gap contains orbits

falling on a black hole. The sizes of various arcs decrease as the mass of M1 increases. The
basins of attraction of the black holes M1, M2 consist of large compact regions and of thin
filaments. The relative area of the basin M2 tends to 100% as M1 fi 0, and it decreases as M1

increases. The total area of the basins is found analytically, while the relative area of the basin

M2 is given by an empirical formula. Further empirical formulae give the exponential decrease
of the number of asymptotic orbits that have not yet reached a black hole after n iterations.

Key words: Chaotic motion, two fixed black holes problem

1. Introduction

The problem of two fixed black holes refers to the motions of particles of
infinitesimal mass (time-like geodesics) and photons (null geodesics) in the
field of two fixed centresM1 andM2. It is known that the classical problem of
two fixed centres is integrable (Charlier, 1902; Deprit, 1960), while the rela-
tivistic problem is chaotic (Contopoulos, 1990, 1991); namely the motions of
photons are completely chaotic, while the motions of particles are chaotic to
a large degree.

If we use a coordinate system x–z (Figure 1) where the black holes of
masses M1, M2 are placed at the points z ¼ ±1 the potential at the point P is

V ¼ � M1

r1
þM2

r2
þ 1

� 

ð1Þ

Then the Lagrangian in prolate spheroidal coordinate, where

x ¼ sinhw sin h cosu; y ¼ sinhw sin h sinu; z ¼ coshw cos h ð2Þ
is

2L ¼ _t2

V 2
� V2½Qð _w2 þ _h2Þ þ sinh2 w sin2 h _/2� ¼ d1 ð3Þ
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(Chandrasekhar, 1989), where d1 ¼ 0 for photons and d1 ¼ 1 for particles,
and

Q ¼ cosh2 w� cos2 h > 0 ð4Þ
while the dots represent derivatives with respect to an affine parameter. From
this Lagrangian we derive the energy E and the angular momentum Lz

integrals.
From now on we consider orbits on a meridian plane and take Lz ¼ 0.
In the case of particles the energy E is given by the equation

E2 ¼ Qð _w2 þ _h2Þ þ V�2: ð5Þ
If the energy is of the elliptic type we have 0<E<1 and the particles

cannot escape to infinity. Then there are some simple periodic orbits around
one or the other black hole. These orbits intersect perpendicularly the z-axis.

In Figure 2 we give the characteristics of these periodic orbits, i.e., the
values of z for various values of M1, assuming that M2 ¼ 1 and the energy E
is fixed (in Figure 2, E ¼ �0.5). We see that for 0<M1<M1max»1.3258 there
are two closed orbits of period 1 around M1 that we call a (inner) and a¢
(outer) (in our previous papers we called both of them a¢). The orbits a
and a¢ join at a maximum M1 and near this point the orbits a¢ are stable
(Contopoulos, 1991).

Figure 1. The position of a particle P in the coordinate system x–z.
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For M1 > 0.9061 there are two orbits around M2 that we call b (inner)
and b¢ (outer). These orbits join at a minimum M1 and near this point the
orbits b¢ are stable. Orbits of types b and b¢ do not exist for values ofM1 close
to zero. However for larger values of the energy E there are orbits of this type
for smaller M1 and when Efi1 the orbits of types b, b¢ approach the limit
M1 fi 0.

The orbits a, a¢, b, b¢ can be described in the opposite direction and then
they are called �a, �a0, �b, and �b0. There is also a simple orbit like an arc of
hyperbola (orbit h) that is described in both directions.

The inner orbits a, �a or b, �b are very important, because any nonperiodic
orbit crossing them inwards falls into the black holes M1, M2, respectively.

It is remarkable that in the classical case there are no simple periodic
orbits around one black hole, i.e., satellite orbits closing after only one
rotation around M1, or M2. This fact was established only relatively recently
(Contopoulos, 1990).

One way to establish the existence of chaos in a dynamical system is by
studying the homoclinic and heteroclinic intersections of the asymptotic
curves from the unstable periodic orbits. On a surface of section (z, _z) for
x ¼ 0 such intersections represent doubly asymptotic orbits. Another phe-
nomenon related to chaos is the fractal structure of the basins of attraction of
the orbits falling into the black holesM1 andM2. In this case many orbits fall

Figure 2. The characteristics of the periodic orbits a, a¢, h, b and b¢ for an energy E ¼ �0.5.
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into the black holes and there are no Poincaré surfaces of section. Thus, the
problem of two fixed black holes has certain properties of dissipative systems.

In the present paper we study the asymptotic curves of the periodic orbits
a, b, a¢, with emphasis on the homoclinic and heteroclinic orbits.

Our study extends the results of a previous paper of ours on the same
subject (Contopoulos and Harsoula, 2004).

In Section 2 we find the forms of the asymptotic curves and in Section 3 we
study the forms of the asymptotic orbits. The asymptotic orbits falling into
the black holes M1 and M2 form sets with a fractal structure. Then in Section
4 we find the basins of attraction of the black holes M1 and M2 for various
values of M1 (with M2 ¼ 1) and in Section 5 we formulate our conclusions.

2. Asymptotic Curves

The asymptotic curves (z, _z) (for x ¼ 0, _x>0) of the periodic orbit O (of
type a) are shown in Figure 3 for M1 ¼ M2 ¼ 1. There are two unstable
asymptotic curves U, UU and two stable asymptotic curves S, SS that
intersect with the U, UU curves at the homoclinic points H1, H2, and further

Figure 3. Parts of the asymptotic curves U, UU (unstable) and S, SS (stable) from the

unstable periodic orbit O”a for M1 ¼ M2 ¼ 1 and E ¼ �0.5. These unstable asymptotic curves
intersect the stable asymptotic curves at the homoclinic points H1, H2 and other points not
marked in this figure. The periodic orbits a¢, b and b¢ are also given.
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points not shown in Figure 3. The curves S, SS are symmetric to the curves
U, UU with respect to the axis _z ¼ 0.

There is no symmetry with respect to the centre (0,0). The arc (1) of U
intersects its symmetric arc S above it, but the arc (3) of U is completely
above the _z ¼ 0 axis and does not intersect its symmetric arc S below it.
However, if we continue the asymptotic curve U of Figure 3 we find, in
the case M1 ¼ M2 ¼ 1, further arcs close to the arcs (1), (2), (3) that
intersect the symmetric arcs S at further homoclinic points. In particular
there are homoclinic points close to b and b¢, not marked in Figure 3.

We see that the asymptotic curves pass through the black holes M1 and
M2 with velocities _z ¼ ±0.71. In the Appendix of paper I we have shown
that these values of _z are equal to _z ¼ ±E.

In Figures 4a, 5 and 6 we give one asymptotic curve U from the point O
for M1 ¼ 1.1 (Figure 4a), M1 ¼ 1.2 (Figure 5) and M1 ¼ 1.24 (Figure 6),
while M2 ¼ 1 in all cases. In Figure 4b we give both curves U and S for
M1 ¼ 1.1.

The asymptotic curve U of Figure 4a starts at the point O upwards and to
the right. This curve consists of the 4th images of points starting close to O at
distances m · 10)8 along the asymptotic direction from O with m between 0
and 20,000.

The asymptotic curve consists of several arcs reaching one or two black
holes, i.e., the points M�

1 ;M
þ
1 ;M

�
2 ;M

þ
2 . The numbers in Figure 4a give the

values of m at the 4th iterations of the points m · 10)8.
The first arc (1) starts at O and reaches the point M�

1 (point 207). Then
the orbits with m ¼ 208–279 do not have a 4th intersection with the
surface of section x ¼ 0 ( _x > 0). Thus we have a gap in the initial con-
ditions consisting of orbits that fall into a black hole before a 4th inter-
section with the surface of section. Then follows the arc (2) starting at Mþ

1

with m ¼ 280 and terminating at M�
1 with m ¼ 340. Further on we have a

gap between m ¼ 341 and m ¼ 412, an arc (3) from Mþ
2 to the same point

Mþ
2 with m ¼ 413 up to m ¼ 2054, and so on.
The successive arcs start at a black hole, M1 or M2, and terminate at

the same, or the other black hole. Between any two arcs there are gaps,
i.e., intervals of values of m without a 4th intersection.

In particular we notice that the arc (5) is a little below the arc (1).
While the arc (1) is described clockwise, the arc (5) is described coun-
terclockwise. It starts at M�

1 and returns again to M�
1 . The point marked

2423 is on the arc (5) very close to the original point O.
The various iterations of an initial point m · 10)8 are at distances

km · 10)8, k2m · 10)8, . . . , where k is the largest eigenvalue of the
unstable orbit O.
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Figure 4. (a) Part of the asymptotic curve U from O(”a), giving the 4th iterations of points

along the unstable asymptotic curve U from O at distances m · 10)8, where m varies from
m ¼ 0 up to m ¼ 20,000 for M1 ¼ 1.1, M2 ¼ 1, E ¼ �0.5. This curve consists of 11 successive
arcs. The orbits a¢, b and b¢ are close but not exactly on the asymptotic curves from O. (b) the

arcs (1), (2), (3) and the corresponding arcs of the stable asymptotic curve S intersect at the
homoclinic points H1, H2, H3, H4.

G. CONTOPOULOS AND M. HARSOULA194



In the case M1 ¼ 1.1 we have k ¼ 32.33. Thus a point marked m in Fig-
ure 4a (4th iteration) is marked m3 ¼ km at its 3rd iteration, m5 ¼ m/k at its
5th iteration, etc. Therefore the figure giving the 3rd, 5th etc. iterations is the
same as Figure 4a, and only the numbers denoting particular points are
different.

If we increase m beyond m ¼ 20,000 we find further arcs. But if the dis-
tances m · 10)8 become larger than 2 · 10)4 we have better accuracy if we
start closer to O, at distances m/k or m/k2, etc. and take the 5th, or 6th etc.
iterations of the initial points.

In Figure 4b we see the first 3 arcs of the unstable asymptotic curve U
from O and the corresponding 3 arcs of the stable curve S. The arc (3) of U
intersects its symmetric arc S, in contrast with Figure 3 for M1 ¼ 1, and with
similar figures with M1<1.

As we increase M1 the loops that we see in Figure 4a become shorter
(Figures 5 and 6). For Example, the arc (3) in Figure 4a reaches the point
m ¼ 1160 and returns along a curve very close to the curve from m ¼ 413 to
m ¼ 1180, reaching Mþ

2 at m ¼ 2054.
In the case M1 ¼ 1.2 (Figure 5) this arc is much shorter, and in the case

M1 ¼ 1.24 the arc (3) does not exist at all. In this last case the arcs (2) and (4)
of Figures 4a and 5 join and form a thin loop fromMþ

1 to the same pointMþ
1

without reaching the point M2
).

Figure 5. As in Figure 4 for M1 ¼ 1.2, M2 ¼ 1, E ¼ �0.5.
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For a little larger value of M1 even this loop (2)–(4) does not exist. For
Example, in Figure 7 the arc (1) does not reach the point M�

1 from the right,
but joins the arc (5) and forms a lobe fromH1 toH�

1 . The pointsH1,H
�
1 ,H1¢,

are homoclinic points, i.e., intersections of the unstable (U) and stable (S)
asymptotic curves from O. At the point H1 the curve U goes outwards from
S, while at H�

1 the U curve goes inwards. The point H
0
1 is the first image of

H1. Beyond the point H
0
1 the curve U goes to a minimum _z on the left and

below the boundaries of the figure. Then it returns close to O forming a
number of oscillations.

When M1 ¼ 1.325 (Figure 8) the lobe from H1 to H�
1 is much smaller. In

this case between O and H1 there is an island of stability around the stable
periodic orbit a¢. This island consists of invariant curves closing around the
point a¢ and is surrounded by four smaller islands. Outside the islands there is
chaos around a¢ and also inside the lobes. A further discussion of the islands
of stability for various values of M1 is given by Contopoulos (1991).

The periodic orbits a and a¢ join for a value of M1 between M1 ¼ 1.325
and M1 ¼ 1.326 (Figure 2) and for M1 ¼ 1.326 these periodic orbits do not
exist any more. Then the whole set of asymptotic orbits disappears.

Figure 6. As in Figure 4 for M1 ¼ 1.24, M2 ¼ 1, E ¼ �0.5. In this case the arc (3) does not
exist and the arcs (2) and (4) are joined.
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Figure 7. Parts of the asymptotic curves U and S from O for M1 ¼ 1.322, M2 ¼ 1, E ¼ �0.5
close to O. The orbit a¢ is unstable.

Figure 8. As in Figure 7 for M1 ¼ 1.325, M2 ¼ 1, E ¼ �0.5. The periodic orbit a¢ is now
stable, and it is surrounded by closed invariant curves. Further out there are four small
islands. The scattered points belong to a single chaotic orbit outside the islands.
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The orbits in the region of the gap m ¼ 208–279 are shown in Figure 9.
These orbits start close to the periodic orbit a, above M1, with x ¼ 0 and
_x > 0. All of them make three complete rotations clockwise around M1 and
then they deviate from each other. The orbits with a little smaller m than
m ¼ 208 have a 4th intersection with the z-axis a little above M1, and they
have _z < 0. The orbit m ¼ 208 does not have a 4th intersection. In fact all
the orbits m ¼ 208–279 reach the black hole M1 from the left without
intersecting the z-axis a 4th time. On the other hand the orbits with a little
larger m than m ¼ 279 have again 4th intersections with the z-axis, and
_z>0.

If we now take a surface of section (z, _z) with x ¼ )0.001 ( _x > 0), all the
orbits of the gap have 4th intersections with this surface of section at points
intermediate between M�

1 and Mþ
1 (Figure 10). Thus the surface of section

x ¼ )0.001 does not indicate a gap in this case. Nevertheless these orbits do
not have a 5th intersection with the surface (z, _z) (x ¼ )0.001, _x > 0) there-
fore this surface is not a Poincaré surface of section. Furthermore some gaps
are not eliminated by using a surface of section x ¼ )0.001, because there are
orbits reaching the black hole without a 4th intersection with any of the
surfaces x ¼ 0 or x ¼ )0.001.

Figure 9. Asymptotic orbits in the plane (x,z). The orbits with m between m ¼ 208 and
m ¼ 279 do not have a 4th intersection with the z-axis before falling on M1. The orbits
m ¼ 207 and m ¼ 341 have a 4th intersection close to M1, the first above it and the second

below it.
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In the case M1 ¼ 1.325 all the oscillations of the asymptotic curve U on
the right of O (Figure 8) are contained in the small extension of the curve U
in Figure 10 beyond O. On the other hand the orbits on the almost vertical
curve fromM1 do not have a 4th intersection with the x ¼ 0 axis, but they do
have such an intersection with the x ¼ )0.001 axis. Nevertheless in the case
M1 ¼ 1.325 there are no orbits coming close to Mþ

1 , but the set of orbits
reaches a maximum _z, belowMþ

1 (z ¼ 1, _z ¼ 0.71), and then it continues with
smaller values of _z.

The asymptotic curves of the periodic orbit a¢ (Figure 11), when this is
unstable, are very close to the asymptotic curves of the orbit a (Figure 4b).
However, the orbit a¢ is inverse hyperbolic, i.e., it has k < 0, and successive
iterates of an initial point on an asymptotic curve alternate on both sides of a¢.

The asymptotic curves of the orbit b have also a similar overall form with
the asymptotic curves of the orbit a of Figure 4a, except that the various arcs
are described with a different sequence. Thus when M1 becomes equal to
M1 ¼ 1.324 the asymptotic curve of the orbit b (Figure 12) has a very similar
form, as the asymptotic curve of Figure 4a that starts from the orbit a. Only
the sequence of arcs in Figure 11 is different from that of the asymptotic

Figure 10. Part of the asymptotic curve U from O for M1 ¼ 1.325, on the surface of section

x ¼ )0.001. On the right of O there are details very similar to Figure 8, but they are not
distinguished in this scale. The lowest point is very close to the point M�

1 of Figures 3–6 that
appears for x ¼ 0.

CHAOTIC MOTIONS 199



curve from a. The asymptotic curves of the orbit b¢, when this is unstable, are
also very similar.

3. Asymptotic, Homoclinic and Heteroclinic Orbits

The asymptotic curves start at the unstable periodic point O along two
eigendirections, one unstable (U) and the other stable (S).

Further away these curves deviate from straight lines. An orbit starting at
a point of an asymptotic curve is asymptotic to the periodic orbit O in the
past, for t ! �1 (in the case U), or in the future, for t ! þ1 (in the case S).

The successive iterates of an orbit in U are either all on the same side of
O (regular hyperbolic point), or alternatively on both sides of O (inverse
hyperbolic point). In the present case the orbits a and b are regular hyper-
bolic, while the orbits a¢ and b¢ are inverse hyperbolic.

The intersections of the asymptotic curves U and S are homoclinic points,
like the points H1, H2, of Figure 3 and the points H3, H4 of Figure 4b. The
corresponding orbits are asymptotic to the same orbit both in the past
(t ! �1) and in the future (t ! þ1).

Figure 11. Parts of the unstable and stable asymptotic curves U and S from the periodic orbit

a¢ for M1 ¼ 1.1.
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The intersection of the unstable asymptotic curve U with the stable
asymptotic curve S¢ of a different periodic orbit are heteroclinic points and
the corresponding orbits are heteroclinic orbits, approaching O for t ! �1,
and a different periodic orbit for t ! þ1. Similarly we have heteroclinic
intersections between S and an unstable curve U¢ of a different orbit. On the
other hand the curve U cannot intersect itself or another unstable curve U¢,
and the same applies to S and S¢.

The forms of the asymptotic orbits starting on the curve U are of two
basic types, those falling on the black hole M1 (type I orbits), and those
falling on the black hole M2 (type II orbits). Such orbits are shown in
Figure 13. In this figure we give some asymptotic orbits with m corre-
sponding to points on the arc (2) of Figure 4a. These orbits are given for
initial distances m · 10)8 with Dm ¼ 10 from m ¼ 280 to m ¼ 340. The first
four orbits fall into M1 and the last three into M2. However close to m ¼ 310
there are many (infinite) transitions of type I and type II orbits. The details of
these transitions are discussed by Contopoulos and Harsoula (2004). Here we
give the main conclusions of this study.

Figure 12. Parts of the asymptotic curve of the orbit b for M1 ¼ 1.4. If M1P1.326 (M2 ¼ 1,
E�0.5) there are no orbits a and a¢ and no corresponding asymptotic curves. However the

asymptotic curves of b are similar to the asymptotic curves of a for smaller values of M1

(Figures 3–6).

CHAOTIC MOTIONS 201



1. The sets of types I and II are fractal consisting of infinite subsets. Every
subset is limited by homoclinic or heteroclinic orbits.

2. Near every homoclinic and heteroclinic orbit there are infinite further
homoclinic and heteroclinic orbits and infinite subsets of type I and II orbits.

3. All the orbits of the arc (2) with m < m*»307.643390 are of type I (they
fall intoM1) and all the orbits of this arc with m > m**»314.384627 are of
type II (they fall into M2).

In particular the orbit with m ¼ m* (Figure 14) is a heteroclinic orbit
joining the orbit a (for t ! �1) to the orbit �a (for t ! þ1), i.e., the same
orbit described in the opposite direction (for this reason the orbit �a is
considered as different form a). The orbit m ¼ m* after infinite rotations
clockwise reaches a minimum x at a point with _z ¼ 0, therefore it retraces its
path in the opposite direction, reaching the orbit �a after infinite rotations
counterclockwise.

If we decrease m all the orbits fall into M1, as m decreases until m ¼ 75.
The interval 75 < m < m* contains not only orbits of the upper part of the
arc (2) of Figure 4a but also all the orbits of the gap between the arcs (1) and

Figure 13. Some asymptotic orbits corresponding to points m on the arc (2) of Figure 4. These

orbits fall either on M1 (if m O 300), or on M2 (if m P 320). But close to m ¼ 310 there are
infinite sets of orbits falling into M1 and M2.
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(2), and many orbits of the arc (1). On the other hand orbits with m < 75 are
both of type I and II.

In an analogous way the orbit with m ¼ 314.384628 (Figure 15) is very
close to the orbit m ¼ m** which is heteroclinic between the orbit a (for
t ! �1) and the orbit �b (for t ! þ1). The orbits with m>m**, up to
m ¼ 559.1297 fall into the black hole M2. These orbits fall not only in the
lower part of the arc (2) of Figure 4a, but also in the gap between the arcs (2)
and (3) and in a part of the arc (3).

The orbit m ¼ 559.1297 is close to a heteroclinic orbit m*** between the
orbits a and b. But beyond m*** there are orbits of both types I and II.

Besides the above heteroclinic orbits there are infinite more heteroclinic
and homoclinic orbits. An orbit very close to a homoclinic orbit, from a to
a, is shown in Figure 16. This orbit starts with infinite clockwise rotations
around M1, reaches a minimum x with _z < 0, then a maximum x with
_z > 0, and then makes infinite clockwise rotations around M1 reaching
finally again asymptotically the orbit a. A heteroclinic orbit from a to �a0 is
shown in Figure 17. Similar heteroclinic orbits exist also between a and �a0,
�b, b0 and �b0.

Figure 14. All the asymptotic orbits from m ¼ 75 to m ¼ m* ¼ 307.643390 fall into M1.
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Further details about the homoclinic and heteroclinic orbits and the
fractal structure of the sets of orbits I and II are given by Contopoulos and
Harsoula (2004).

4. Basins of Attraction

The basins of attraction of two and three black holes and their fractal
structure were considered by Dettmann et al. (1994, 1995). In the present
paper we consider the basins of attraction for various values of the mass M1

and their relations with the asymptotic manifolds discussed in the previous
sections. If we calculate all orbits with M1 ¼ 1.1, M2 ¼ 1 and E ¼ �0.5 and
initial conditions on the surface of section (z, _z) (with x ¼ 0 and _x>0)we find
(Figure 18) large sets falling directly intoM1 andM2 without any intersection
with the surface of section (black and gray respectively) and smaller sets that
fall into M1, or M2, after 1, or 2, or more intersections. These sets consist of
large compact regions and of thin filaments. A few filaments can be seen in
Figure 18.

These filaments form fractal sets. They correspond to the sets Dm of values
of m along the unstable asymptotic curve from the orbit a that are terminated

Figure 15. All the asymptotic orbits from m ¼ m** ¼ 314.384627. . . to m*** ¼ 559.1297. . . fall
into M2.
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by homoclinic or heteroclinic orbits and fall into M1, or M2. Figures 18–21
are calculated by taking initial conditions on the surface of section at a grid
of points with sizes Dz ¼ 10)2 and d _z ¼ 0:8 · 10)2. If we compare Figure 18
with Figure 4a we see two filaments passing through the central part of the
arc (2), namely in the region between the first heteroclinic point m ¼ m* and
the last heteroclinic point m ¼ m** in this region. More detailed figures of the
central part of Figure 18 show many more filaments that are limited by the
homoclinic and heteroclinic points along the arc (2).

The upper part of the arc (2) of Figure 4a, i.e., with m < m*, does not
contain any homoclinic or heteroclinic orbits. These orbits are in the black
region of Figure 18, therefore they escape immediately into the black hole M1.

In fact the points on the arc (2) are the 4th iterates of points close to O along
the asymptotic curve U at distances m · 10)8, and the starting orbits in this
part of the arc (2) do not have a 5th intersection with the surface of section, but
fall into M1 after the 4th intersection. In the same way at the points of the
lower part of the arc (2), with m>m**, start orbits that fall directly into the
black hole M2 without a 5th intersection with the surface of section.

Two more regions with many (infinite) filaments of orbits escaping to
M1 and M2 form loops in the upper right part and in the lower left part

Figure 16. A homoclinic orbit starting asymptotically close to the periodic orbit a (as
t ! �1) and reaching again asymptotically the same orbit a (as t ! 1).
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of Figure 18. These loops surround a compact gray region on the upper
right (type II orbits) and a compact black region on the lower left (type I
orbits). The loops contain filaments with orbits falling into either M1 or
M2, after one or more iterations. The limits of the filaments falling into
M1 and M2 pass through the homoclinic and heteroclinic points along the
asymptotic curves U and S of Figure 4b.

As M1 increases the area covered by orbits on the surface of section
increases (see Appendix A), while the points M�

1 , Mþ
1 , M

�
2 , Mþ

2 , remain
the same. Examples are shown in Figures 19 and 20. We see that, as M1

increases the black regions increase, therefore more orbits fall into M1

than into M2. In particular the gray upper right region becomes smaller
and for M1 P 1.326 it does not reach the axis _z ¼ 0. This corresponds to
the fact that for M1 P 1.326 the periodic orbits a, a¢ and their asymptotic
curves with the corresponding homoclinic and heteroclinic intersections
disappear.

On the other hand the black region on the lower left side becomes
larger as M1 increases. This region intersects the _z ¼ 0 axis and just
outside it are the periodic points b and b¢, with their asymptotic curves
and their homoclinic and heteroclinic intersections.

Figure 17. A heteroclinic orbit between a and a¢. This orbit starts asymptotically from the
orbit a for t ! �1 and terminates asymptotically on the orbit a¢ for t ! 1.
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As M1 decreases below M1 ¼ 1 the total area on the surface of section
decreases and the black regions (orbits falling into M1) decrease (Figures 21
and 22). When M1 fi 0 there are no points falling on M1 and the black
region vanishes.

The total area covered by the orbits (permissible area) on the surface of
section (z, _z) (with x ¼ 0, E ¼ �0.5 and _x > 0) is given analytically in
Appendix A and in Figure 23. This area is equal to about 4.2 units for
M1 ¼ 0 and increases with M1. For relatively large M1 the area increases
almost linearly with M1. The boundary of this permissible area is also
calculated in Appendix A. For small M1 there is a broad peak around
z ¼ )1 and a narrow peak around z ¼ 1. For larger M1 the peak around
z ¼ 1 is broader and for M1 ¼ 1 it is equal to the peak around z ¼ )1.
For M1>M2 the peak around z=1 becomes even broader and the peak
around z ¼ )1 becomes narrower (Figures 19–20).

The proportion of the orbits falling on M2 is the gray area of figures
like Figures 18–22, divided by the total area on the surface of section
(Figure 24).

Figure 18. Basins of attraction of the black holesM1 (black) andM2 (gray) forM1 ¼ M2 ¼ 1,
E ¼ �0.5.
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If M1 fi 0 this proportion goes to 1. However if M1 is exactly equal to
zero only a set of orbits of measure zero fall into M2.

For small M1 most of the permissible area is filled with orbits falling into
M2 (Figures 21 and 22). In particular the black region close to M�

2 (that
contains orbits falling into M1) is very small, and the black region on the
right of the line M�

1 M
þ
2 is thinner than in the case M1 ¼ 1 (compare Figures

21 and 18). As M1 tends to zero both these black regions tend to disappear
(Figure 22).

On the other hand as M1 increases the black regions increase
(Figures 18–20), while the gray regions become relatively smaller.

The total per cent proportion P of the gray regions as a function ofM1 can
be given approximately by the formula (Figure 24)

logP ¼ 1:9656� 0:2546M1 ð6Þ
Most orbits of the black and gray regions fall immediately into the

black holes M1 and M2 respectively, i.e., without any intersection with the
surface of section (z, _z) (x ¼ 0, _x > 0). However a small proportion of

Figure 19. As in Figure 18 for M1 ¼ 1.3, M2 ¼ 1, E ¼ �0.5.
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orbits have one, two, or more intersections with the surface of section (z, _z)
before falling into M1 or M2. Finally a very small proportion of orbits are
trapped around stable periodic orbits (when such orbits exist) and never fall
into M1 or M2. An example of such trapped orbits, that form islands of
stability and never fall into M1 or M2, is shown in Figure 8. Such orbits
have been discussed by Contopoulos (1991). These orbits may define closed
invariant curves around stable periodic orbits, or be chaotic, but without
ever reaching either black hole.

In order to study further how various orbits fall into the black holes we
have calculated the proportion of orbits, along the asymptotic curve from
O(”a) that have n intersections with the surface of section before falling
into one of the black holes, where n ¼ 1,2,3 etc. In Figure 25 we give the
logarithm of the proportion of orbits remaining after n intersections as a
function of n, for various values of M1. We find approximately

Figure 20. As in Figure 18 for M1 ¼ 2, M2 ¼ 1, E ¼ �0.5. In this case the orbits a, a¢ do
not exist. Nevertheless, the basins of attraction of M1, M2 are similar to those of Figures 18

and 19.
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ln p ¼ a� bn ð7Þ
i.e., the proportion p is decreasing exponentially with n for constant values
of M1, M2, E. The slope of the rate of decrease b is near b ¼ 2 for M1 ¼ 1
but increases for smaller M1 and decreases for larger M1 (see Table I and
Figure 25). The last values of M1 are close to the limiting value M1max,
beyond which the periodic orbit a ceases to exist. In these cases the
remaining orbits along the asymptotic curve decrease rather slowly as n
increases, and more slowly as M1 approaches the limiting value M1max. It
seems that b tends to zero, as M1 tends to M1max.

For M1 close to M1max the eigenvalue of the periodic orbit k decreases
abruptly and tends to 1 as M1 fi M1max. The eigenvalue k of the orbit a
as a function of M1 is given in Figure 26 and in Table I. If k ) 1 is small
positive the orbits starting close to O along the unstable asymptotic curve
from O deviate only slowly from the periodic orbit O, i.e., the orbits
require a long time before they fall on the closest black hole (which is
M1). This explains why the value of b is smaller in this case.

Figure 21. As in Figure 18 for M1 ¼ 0.3, M2 ¼ 1, E ¼ �0.5.
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5. Conclusions

1. In the case of two fixed black holes most of the chaotic orbits (but not all)
fall into the black holes M1 (orbits of type I), or M2 (orbits of type II). These
two sets of orbits are fractal, consisting of infinite subsets limited by
homoclinic and heteroclinic orbits.
2. The homoclinic and heteroclinic points on a surface of section (z, _z) (with
x ¼ 0, _x > 0) are intersections of the asymptotic curves of the main unstable
periodic orbits a, a¢, �a, �a0 (around M1), h (hyperbolic-like) and b, b¢, �b, �b0

(around M2). These asymptotic curves pass through the black holes M1

(z ¼ 1) and M2 (z ¼ )1) with velocities _z ¼ �E (points M�
1 ;M

�
2 ) or _z ¼ þE

(points Mþ
1 ;M

þ
2 ).

3. The asymptotic curves consist of several separate arcs, like (1), (2), (3), . . .
that terminate at one or two black holes. Between two successive arcs there
are gaps containing orbits that fall into the black holes M1 or M2.
4. If we increase M1, keeping M2 ¼ 1 and E ¼ �0.5, we find that various arcs
become shorter, and may not reach one, or the other black hole.

Figure 22. As in Figure 18 for M1 ¼ 0.01, M2 ¼ 1, E ¼ �0.5.
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Figure 23. The total area on the surface of section (z, _z) (with x ¼ 0, E ¼ �0.5 and _x > 0) as a

function of M1.

Figure 24. The logarithm of the percent proportion of the area of orbits falling on the black
hole M2.
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5. If we use a slightly different surface of section (x ¼ )0.001) most (but not
all) of the gaps disappear. Nevertheless, the orbits falling into the black holes
do not have higher order intersections with the surfaces of section, therefore
these surfaces are not Poincaré type surfaces of section.
6. As M1 reaches a maximum value M1max (»1.3255 in the present case) the
orbits a and a¢ join and for larger M1 they disappear. For M1 slightly smaller
then M1max the orbit a¢ is stable, and is surrounded by islands of stability.
7. The asymptotic curves of the orbits a¢, b, b¢ are very similar to those of
orbit a.
8. The basins of attraction of the two black holes consist of large compact
regions and of thin filaments forming fractal sets. The set of permissible
orbits can be calculated analytically. It increases with M1, almost linearly for
large values of M1.
9. The relative sizes of the set of orbits falling intoM1 increases, and the set of
orbits falling into M2 decreases as M1 increases. If M1 decreases and tends to
zero, this set also decreases and tends to zero. The relative size of the set M2

as a function of M1 decreases almost exponentially.

Figure 25. The logarithm of the proportion p of orbits starting along the asymptotic curve
from O that remain after n intersections with the surface of section (before falling into a black

hole). The curves ln p versus n for various values of M1 are approximately straight lines with
slopes b marked (Table I).
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10. Finally we calculate the proportion p of orbits along an asymptotic curve
that remains after n ¼ 1,2,3, . . . intersections with the surface of section,
before the orbits fall on a black hole. For fixed M1, M2 and E this proportion
decreases exponentially with n (ln p ¼ a ) bn). The slope b decreases as M1

increases, and tends to zero as M1 tends to M1max. This is explained by the
fact that the eigenvalue k of the orbit a decreases and tends to 1 as M1 fi
M1max.
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TABLE I

M1 0.5 1.0 1.3 1.31 1.32 1.322 1.325

b 3.25 2.08 1.86 1.49 0.90 0.34 0.13
k 44.98 36.43 13.71 11.23 7.58 6.48 3.79

Figure 26. The eigenvalue k of the orbits O(”a) as a function of M1.
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APPENDIX A. Limiting Curves on the Surface of Section

The intersections of the orbits by the surface of section x ¼ 0 are inside a
limiting curve that is found as follows:

From Equation (2) we find that when x ¼ 0 we have either h ¼ 0, or w ¼ 0.
In the first case we find from Equations (1)–(5):

V ¼ � M1

jz� 1j þ
M2

jzþ 1j þ 1

� 

; ðA:1Þ

Q _w2 ¼ sinh2 w � _w2 ¼ _z2; ðA:2Þ
and

E2O _z2 þ V�2: ðA:3Þ
Thus the limiting curve is

_z2 ¼ E2 � V�2: ðA:4Þ
Such curves are the boundaries of Figures 18–22.

In the second case

Q _h2 ¼ sin2 h � _h2 ¼ _z2 ðA:5Þ
and we derive the same equation (A.4) for the limiting curve.

This curve goes through the points M�
1 ;M

þ
1 ;M

�
2 ;M

þ
2 , where V ¼ )1 and

_z ¼ �E. When z ¼ 0 we find

0 < _z2 ¼ E2 � 1

ð1þM1 þM2Þ2
< E2: ðA:6Þ

The minimum value of | _z| between z ¼ )1 and z ¼ 1 occurs when |V| is
minimum. This occurs for

z ¼
ffiffiffiffiffiffiffi
M2

p � ffiffiffiffiffiffiffi
M1

p� �ffiffiffiffiffiffiffi
M2

p þ ffiffiffiffiffiffiffi
M1

p ðA:7Þ

i.e., at a negative z if M1>M2 and at a positive z if M1<M2. This is seen in
Figures 19–22.

When _z ¼ 0 we find z ¼ zmax>1 and z ¼ zmin<)1.
In the first case

M1

zmax � 1
þ M2

zmax þ 1
¼ 1

E
� 1 ¼ e: ðA:8Þ

Solving this equation we find

zmax ¼ lþ ðlþ 1Þ2 � 2M2

e

� 
1=2
; ðA:9Þ

CHAOTIC MOTIONS 215



where

l ¼ M1 þM2

2e
: ðA:10Þ

In the second case

M1

1� zmin
� M2

1þ zmin
¼ e: ðA:11Þ

Solving this equation we find

zmin ¼ �l� ðl� 1Þ2 þ 2M2

e

� 
1=2
: ðA:12Þ

If M1>M2 we have zmax>|zmin| and if M1<M2 we have |zmin|>zmax.
In the particular case of Figure 16 where M1 ¼ M2 ¼ 1, E ¼ �0.5 ¼ 1/�2

we have e ¼ �2)1 ¼ 0.414, l ¼ 1/e ¼ �2+1 ¼ 2.414 and zmax ¼ |zmin|
¼ l+(l2+1)1/2 ¼ 5.027.
If M1fi0 we have the same e, but l ¼ 1/2e ¼ E=2ð1� EÞ ¼1.207 and

zmax ¼ 2l)1 ¼ 2E� 1=1� E ¼1.414, while zmin ¼ )2l)1 ¼ �1=1� E ¼
)3.414. On the other hand if M1 is large we have l » M1/2e and
zmax » 2l » M1/e while zmin » )2l » )zmax.

The area of initial conditions on the surface of section (z, _z) is

A ¼ 2

Z zmin

zmax

_z dz; ðA:13Þ

where _z is given from Equation (A.4), while V has the following expres-
sions

If z > 1; V ¼ V1 ¼ � M1

z� 1
þ M2

zþ 1
þ 1

� 

; ðA:14Þ

If 1 > z > �1; V ¼ V2 ¼ � M1

1� z
þ M2

1þ z
þ 1

� 

; ðA:15Þ

and if � 1 > z; V ¼ V3 ¼ � M1

1� z
� M2

1þ z
þ 1

� 

: ðA:16Þ

Then using the package of Mathematica we find the area as a function of
M1, M2 and e. The values of A as a function of M1 for M2 ¼ 1 and e ¼ �2)1
are given in Figure 23.

The boundary of this area can also be calculated from Equation (A.4). For
M1 ¼ 0 this boundary is symmetric around an axis z ¼ )1. When M1 is small
there is a narrow peak around z ¼ 1 reaching _z ¼ E ¼ p

0:5 (Figure 22),
while for larger M1 this peak is broader (Figures 18–21).
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Abstract. We reexamine the classical virial theorem for bounded orbits of arbitrary autono-
mous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms

of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A
discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic
maps. A weak and a strong form of the virial theorem are proven for both flows and maps.

While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for
both regular and chaotic orbits, the convergence is very rapid for the former and extremely
slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The
results are applied to several problems of current physical interest, including the Hénon–Heiles

system, weak chaos in the standard map, and a 4D Froeschlé map.

Key words: chaos, Hamiltonian systems, symplectic maps, virial theorem

1. Introduction

Virial theorems (Clausius, 1850) are useful throughout the physical sciences,
with important applications in statistical mechanics (Pathria, 1996), astro-
physics, magnetohydrodynamics, quantum mechanics (Atkins, 1983), and
many other fields. For example, in fluid models of galactic dynamics (Binney
and Tremaine, 1987) a tensor virial theorem (Parker, 1954) has been derived
and shown to yield important connections between the observed kinetic
energy of a stellar system and its median radius. Shafranov (1966) has em-
ployed a magnetic virial theorem to prove that a plasma cannot be stably
confined without the action of external forces. We present here a new kind of
virial appropriate to symplectic maps modeled after ‘‘natural’’ Hamiltonian
flows (Arnold, 1989). Symplectic maps are widely used to describe physical
systems such as particle accelerators (Dragt, 1979), plasma wave heating
(Howard et al., 1986), microwave ionization of Rydberg atoms (Blümel and
Reinhardt, 1997), and many problems in celestial mechanics (Murray and
Dermott, 1999).

We begin by revisiting the classical virial theorem for bounded orbits of
natural Hamiltonian flows. A weak and a strong form of the virial theorem

Celestial Mechanics and Dynamical Astronomy (2005) 92:219–241
DOI 10.1007/s10569-005-2578-2 � Springer 2005



are proven and an asymptotic invariant function of the coordinates is
obtained. For periodic orbits the relevant integrals are finite and offer a
means of numerically determining the action variables. The existence of the
time averages for both regular and chaotic orbits is assured by the Birkhoff
Ergodic Theorem (Birkhoff, 1931; Robinson, 1998). Even though the virial
integrals are extremely slow to converge for chaotic orbits, the running time-
averages agree and, with the help of energy conservation, lead to an
asymptotically invariant function of the coordinates alone. The results are
applied to regular and chaotic orbits in the Hénon–Heiles system, for which
an asymptotically invariant polynomial is found.

Next we define a discrete virial for natural symplectic maps and derive a
discrete virial theorem which applies to all invariant circles, periodic orbits,
and bounded chaotic orbits. The results are applied to a class of polynomial
maps (Dullin and Meiss, 2000), the standard map (Lichtenberg and
Lieberman, 1992), and a 4D Froeschlé Map (Froeschlé, 1984). In all cases
dramatic differences in the convergence of the time averages of the kinetic
energy are found between regular and chaotic orbits. For example, 1010

iterations of chaotic orbits are typically required to demonstrate convergence!
This suggests that intermediate-time variations in momentum might offer an
effective means of detecting chaotic motion. A new and simple measure of
chaoticity is proposed and applied to the Hénon–Heiles flow and several 2D
symplectic maps. Finally we suggest some generalizations to nonnatural
systems. We expect that the theorem will find many such applications.

2. Natural Flows

We begin by briefly reviewing the classical virial theorem (Goldstein et al.,
1989) in a form appropriate to a Hamiltonian flow, described by

H ¼ Tðq; pÞ þUðqÞ; ð1Þ
where q and p are canonical coordinates in Rn. If the kinetic energy T is a
positive definite quadratic form, i.e. T ¼ 1=2pTBp, where BðqÞ is a positive
definite, nondegenerate mass matrix, the flow is called ‘‘natural’’ (Arnold,
1989). The potential energy U is assumed to be smooth and to possess at least
one local minimum, ensuring the existence of bounded orbits. Define

G ¼ pTq ð2Þ
so that

_G ¼
Xn
1

ðpi@piH� qi@qiHÞ ¼ 2T� qTrH: ð3Þ

Now integrate both sides from t ¼ 0 to t ¼ s and divide by s:
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2

s

Z s

0

T dt� 1

s

Z s

0

qTrH dt ¼ GðsÞ � Gð0Þ
s

: ð4Þ

If the motion is periodic of period s, the RHS vanishes. Otherwise, since the
motion is assumed bounded, the RHS tends to zero as s ! 1, giving the
classical virial theorem,

2
�
T
� ¼ DX

i

qi@qiH
E
¼ hqTrHi; ð5Þ

where h f i denotes the orbital time average of f and r the spatial gradient.
The expression hqTrH i is the classical virial of Clausius (Clausius, 1850).
If T is independent of q, then energy conservation, hT i þ hUi ¼ E, may be
used to derive a condition involving only coordinates, which takes on an
especially simple form in R2:

hr � ðqUÞi ¼ 2E: ð6Þ
As we shall see, this relation converges rapidly for both regular and chaotic
orbits. We call such quantities ‘‘asymptotic invariants.’’ In the important case
of central forces (5) reduces to 2hTi ¼ hr@rUi. For power law potentials,
U ¼ U0r

m, widely used as a paradigm for the classical virial theorem, (5)
reduces to 2hTi ¼ mhUi ¼ 2m=ðmþ 2Þ E. These results readily generalize to
a collection of particles in Rn, a starting point for the kinetic theory of
nonideal gases (Pathria, 1996).

A stronger form of the virial theorem may be derived for each component
via (no sum on k)

Gk ¼ pkqk: ð7Þ
Proceeding as above gives

2hTki ¼ hqk@qkHi; ð8Þ
which may be summed to obtain the weak form (5).

As an example consider the Hénon–Heiles system (Hénon and Heiles,
1964)

H ¼ 1

2
ðp2x þ p2yÞ þUðx; yÞ ð9Þ

with U ¼ 1=2ðx2 þ y2Þ þ x2y� 1=3 y3. The strong form of the virial theorem
then implies

h p2xi ¼ hxUxi ¼ hx2 þ 2x2yi; hp2yi ¼ hyUyi ¼ hy2 þ x2y� y3i; ð10Þ
while the coordinate form (6) becomes

hPðx; yÞi ¼ h2x2 þ 2y2 þ 5x2y� 5

3
y3i ¼ 2E: ð11Þ

In order to apply these results let us examine a typical Poincaré section
(py; yÞ with x ¼ 0 and px > 0, with energy E ¼ 0:125, as depicted in Figure 1.
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Choose one orbit at y0 ¼ 0:4 in the regular region and a second at y0 ¼ �0:17
in the large chaotic zone. Figure 2 compares the time evolution of the partial
sums hp2xi and hxUxi, while Figure 3 shows the polynomial (6) for each orbit.
For the regular orbit, the virial sums rapidly converge to the same value,
whereas for the chaotic orbit the same sums vary wildly over the time range
considered. The asymptotic invariant polynomial Pðx; yÞ, however, converges
rapidly to 2E in both cases; the only apparent difference between the regular
and chaotic orbits is the somewhat larger oscillations in the latter case. The
convergence of the virial integrals for chaotic orbits is complicated by
‘‘sticky’’ regions, where an orbit can spend long times exploring ‘‘islands
around islands’’ (Meiss, 1994). It is difficult to demonstrate convergence
numerically for flows, owing to the extremely long integration times required.
This regime is better explored using discrete mappings, which are discussed in
the following sections.

For periodic orbits (4) is exact and yields a formula for the action integral
Jx ¼ 1=2p

H
px dx, so that one can obtain a good numerical value by inte-

grating over a sufficiently long time. In general, when the motion is not
periodic, there is still the possibility of regular quasiperiodic motion (Arnold,
1989). The existence of the time averages for almost all initial conditions is
guaranteed by the Birkhoff Ergodic Theorem (Birkhoff, 1931; Robinson,
1998). However, the convergence rates differ greatly, very rapidly for regular
orbits but extremely slowly for chaotic orbits.

Figure 1. Poincaré section for Hénon–Heiles system for E ¼ 0:125.
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Henon-Heiles: Partial Sums for E = 0.125, y0 = -0.17
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Figure 2. Time-dependent running averages of hp2xi and hxUxi for regular orbit (a) and

chaotic orbit (b) for Hénon–Heiles system with E ¼ 0:125. The individual sums are virtually
identical in each case.
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(a)

(b)

Figure 3. Averaged polynomial hPðx; yÞiðtÞ ¼ h2ðx2 þ y2Þ þ 5ðx2y� y3=3Þi for regular orbit
(a) and chaotic orbit (b) for Hénon–Heiles system for E ¼ 0:125.
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For example, regular motion in the Hénon–Heiles system is two-frequency
quasiperiodic, so that one may Fourier expand

p2x ¼
X
j;k2Z

ajkðJÞeiðjx1tþkx2tÞ; ð12Þ

where x1ðJÞ and x2ðJÞ are constant frequencies and J ¼ ðJ1; J2Þ are the
conserved (albeit unknown) actions. It follows that, in the absence of
resonances:

hp2xi ¼ a00ðJÞ: ð13Þ
Hence, for regular orbits, for which the actions J exist, the time average of p2x
tends to a constant. For chaotic orbits, on the other hand, such an expansion
does not exist and hp2xi wanders erratically for moderate times, as seen in
Figure 2(b). Of course, convergence eventually obtains, although this is dif-
ficult to demonstrate numerically.

The dramatic difference in the time variations of hp2xi suggests that they
might serve as a useful indicator of chaotic motion. We shall return to this
possibility in Section 5, afterwe have derived a virial theorem for discretemaps.

3. Natural Maps

The class of symplectic maps analogous to natural Hamiltonian flows are
called natural maps (Howard and Dullin, 2001) and may be generated by the
Hamiltonian generating function

Fðqk; pkþ1Þ ¼ qTkpkþ1 þHðpkþ1; qkÞ; ð14Þ
where q; p 2 Rn and Hðq; pÞ is given by (1). It follows that pk ¼ @F=@qk and
qkþ1 ¼ @F=@pkþ1 which lead to the radial twist map (Lichtenberg and
Lieberman, 1992),

pkþ1 ¼ pk �rUðqkÞ;
qkþ1 ¼ qk þ B�1pkþ1:

ð15Þ

Physically, this map corresponds to a ‘‘kicked nonlinear oscillator,’’ wherein
a particle is subject to an infinite periodic string of impulsive kicks of strength
given by rU (Lichtenberg and Lieberman, 1992). Even though the total
energy is not conserved, we may nevertheless define local and averaged
kinetic and potential energies and discover useful relationships among them.

Thus, analogous to (2) let us define (no sum on k)

Gk ¼ pTkqk ð16Þ
and analogous to _G,

Gkþ1 � Gk ¼ pTkþ1ðqkþ1 � qkÞ þ ðpkþ1 � pkÞTqk: ð17Þ
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Time integration becomes a sum over N points of an orbit, so that, using the
mapping (15),

1

N

XN
1

½pTkþ1B
�1pkþ1 � qTkrHðqkÞ� ¼

1

N
½GNþ1 � G1�: ð18Þ

By analogy with the continuous case we shall call the sum
P

qTkrH the
discrete virial. For a periodic orbit of length N;GNþ1 ¼ G1 and the RHS
vanishes. Otherwise, assuming that Gk remains bounded for all k we can
make the RHS as small as we please for large enough N. Defining the ‘dis-
crete kinetic energy,’ Tk ¼ 1=2 pTkB

�1pk, we obtain the discrete virial theorem
(weak form)

2hT i ¼ hqTrU i; ð19Þ
where we have assumed constant mass matrix B. As in the continuous case a
strong form of the discrete may be derived by using Gi

k ¼ pikq
i
k to obtain

2hTii ¼ hqi@iU i: ð20Þ
Just as for the continuous case, these simple statements express a statis-

tical balance between kinetic and potential energies, which becomes espe-
cially simple for power law potentials. The essential fact is that the LHS
depends solely on p and the RHS solely on q. For rotational orbits,
unbounded in q, G diverges but its average remains finite, so that the theorem
generalizes to

hGi ¼ 2hT i � hqTrU i: ð21Þ
As for continuous flows, convergence of the virial sums is assured almost
everywhere by the Birkhoff Ergodic Theorem, with vast differences in con-
vergence rates for regular and chaotic orbits. Note that in contrast to natural
flows, there is no conserved energy for a natural map, only a locally conserved
two-form (Howard and Dullin, 2001). Thus we do not obtain an asymptotic
invariant analogous to (6). Note also that (21) holds for chaotic as well as for
regular orbits, provided only that they are bounded in both p and q. The most
immediate application is to periodic orbits, giving exact new relations among
the intermediate points, as we now illustrate by means of a few examples.

4. Examples

Power Law Map. Consider the 2D map defined by the power law potential,
U ¼ U0q

m. It easily follows that 2hTi ¼ mhUi, or

lim
N!1

1

N

XN
1

p2k ¼ mU0 lim
N!1

1

N

XN
i

qmk : ð22Þ
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For even m 6¼ 2 this elementary polynomial map (Dullin and Meiss, 2000)
has a fixed point at the origin, which is marginally stable (parabolic) for
all U0. In fact, it is easily shown that all power maps of the same degree
m 6¼ 2 are scale equivalent: if U0 7! ~U0 just scale q ¼ a~q; p ¼ a~p, with
a ¼ ð ~U0=U0Þ1=ðm�2Þ. Thus without loss of generality we can take mU0 ¼ 1,
M ¼ m� 1 and write

p0 ¼ p� qM;

q0 ¼ qþ p0:
ð23Þ

For m ¼ 2 one obtains a one-parameter linear map. Figure 4(a) depicts the
power law map for m ¼ 4. The unbounded chaotic region surrounding the

Figure 4. (a) Power-law map and (b) convergence of partial sums for m ¼ 4, for initial
conditions qi ¼ 0; pi ¼ 0:25. The solid curve is h p2i and the dashed curve hq4i.
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central island is generated by overlap of the 6- and 8-fold Birkhoff chains.
There is also a very thin separatrix layer surrounding the 10-fold Birkhoff
chain. Figure 4(b) illustrates the rapid convergence of the partial sums for
a typical librational invariant circle. We have also verified (22) for a pair
of coupled power maps based on the potential Uðx; yÞ ¼ 1

4 ðx4 þ y4Þ�
1
2 hx

2y2.
Modified Power Law Map. We can create a larger bounded chaotic region

by adding a term of lower degree to the power law map

p0 ¼ p� qM þ �qM�2;

q0 ¼ qþ p0:
ð24Þ

Figure 5 depicts this map for M ¼ 3; � ¼ 0:31, showing a bounded chaotic
separatrix layer emanating from the hyperbolic point at the origin. The
partial sums (22) become hp2i ¼ hq4i � �hq2i. Figure 6(a) illustrates the
convergence of the partial sums for an invariant circle near the right-hand
elliptic fixed point. The behavior is more complicated in the chaotic zone. As
Figure 6(b) shows, the partial sums agree after a few hundred steps, but do
not seem to converge to a constant, even after 5000 steps (Figure 6(c)).
Nevertheless, convergence is assured by the Birkhoff Ergodic Theorem, but
only after very long times. To demonstrate convergence, we have integrated
the same chaotic orbit for 1011 steps. The results are shown logarithmically in
Figure 6(d). The reason for this delayed convergence is thought to be the
sticky regions near the boundary of the available space, involving ‘‘islands
around islands’’ (Meiss, 1994).

Figure 5. Modified power map for m ¼ 4; e ¼ 0:31.
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Standard Map. Next consider the standard map (Lichtenberg and
Lieberman, 1992), with U ¼ �K cos q, shown in Figure 7(a) for K ¼ 0:95.
The virial theorem yields

lim
N!1

1

N

XN
1

p2k ¼ K lim
N!1

1

N

XN
1

qk sin qk: ð25Þ

We have verified this result for a librational invariant circle and the eightfold
Birkhoff chain in Figure 7(a). Figure 7(b) illustrates the rapid convergence of
the two partial sums in (25) for the invariant circle; the finite-sum version was
found to hold exactly for the island chain. As another check consider the
period-two orbits which appear for K > 4 (see Figure 4.3 of Lichtenberg and
Lieberman, 1992), which satisfy q1 ¼ �q2; p1 ¼ �p2, so that (25) reduces to
p21 ¼ Kq1 sin q1. But p1 ¼ 2q1, which gives the known result 4q1 ¼ K sin q1,
thus confirming (25).

Froeschlé Map. As an example of a 4D natural map, consider the Sym-
metric Froeschlé Map (Froeschlé, 1984; Howard and Dullin, 2001) for which
Uðx; yÞ ¼ �K1 cos x� K2 cos y� h cosðxþ yÞ, so that

(a) (b)

(c) (d)

Figure 6. Convergence of partial sums for modified power map (a) regular orbit, (b) chaotic
orbit (short time), (c) chaotic orbit (intermediate time), (d) chaotic orbit (long time log plot).
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pxkþ1
¼ pxk � K1 sin xk � h sinðxk þ ykÞ

pykþ1
¼ pyk � K2 sin yk � h sinðxk þ ykÞ

xkþ1 ¼ xk þ pxkþ1

ykþ1 ¼ yk þ pykþ1

9>>>>=
>>>>;
mod 2p: ð26Þ

Figure 7. (a) Standard map for K ¼ 0:95 and (b) partial sums for invariant librational circle.
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The strong form of the virial theorem then reads

lim
N!1

1

N

XN
1

p2xk ¼ lim
N!1

1

N

XN
1

½K1xk sin xk þ hxk sinðxk þ ykÞ�; ð27Þ

lim
N!1

1

N

XN
1

p2yk ¼ lim
N!1

1

N

XN
1

½K2yk sin yk þ hyk sinðxk þ ykÞ�: ð28Þ

Figure 8 depicts a regular orbit with K1 ¼ K2 ¼ 2 and h ¼ 0:0825 and
initial conditions x0 ¼ 0; y0 ¼ 0; px0 ¼ p=4; py0 ¼ 0. This invariant set
maps into three disjoint curves on an invariant 2-torus. As in the 2D
examples, the virial sums converge rapidly to the same value, as seen in
Figure 9(a) for the x-component. For K ¼ 1 and h ¼ 1:205 we obtain the
chaotic orbit depicted in Figure 10, whose virial sums also agree but converge
much more slowly, as seen in Figure 9(b). In addition, plotting h p2xi and h p2yi
together provides a vivid description of orbital trapping into resonances. For
example, Figure 9(c) shows that these averages converge to the same value
for a regular orbit trapped in the 1 : 1 resonance after about 1000 steps.

5. A New Chaos Indicator?

There are several competing methods for an efficient detector of chaoticity.
The traditional method is to calculate the maximum Lyapunov exponent

Figure 8. The x–y projection of regular orbit for Froeschlé map for K ¼ 2; h ¼ 0:0825.
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(a)

(b)

(c)

Figure 9. Virial sums (27) for Froeschlé map for (a) K ¼ 2; h ¼ 0:0825, (b) K ¼ 1; h ¼ 1:205;
(c) convergence of hp2xi and hp2yi for regular orbit in 1 : 1 resonance.
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(Wolf et al., 1985), now largely superseded by Laskar’s frequency map
method (Laskar et al., 1992; Laskar, 1993), fast Lyapunov indicators (Lega
and Froeschlé, 1997), and most recently, relative Lyapunov indicators
(Sándor et al., 2000). In addition there is the twist method (Contopoulos and
Voglis, 1997), the SALI method of Skokos (2001), and the ‘‘0–1’’ method of
Gottwald and Melbourne (2004).

We have seen that the behavior of the time average of p2i is radically
different for regular and chaotic motion, for both natural flows and natural
maps. Let us now consider how these differences might be quantified into a
useful tool for distinguishing between regular and chaotic orbits. In order to
be competitive with other methods, one must be able to decide within a few
thousand steps for discrete maps, for which most of the published results have
been carried out. In particular, much attention has been given to instances of
so-called weak chaos (Zaslavskii et al., 1992; Laskar et al., 1992), where the
Lyapunov exponents are small and difficult to distinguish from those for
regular orbits, which rigorously tend to zero. We shall focus on two well-
known cases of weak chaos, both for separatrix layers of the standard map.

First consider the standard map for K ¼ �0:3, which places the main
hyperbolic point at the origin. Figure 11(a) shows the very thin separatrix
layer, where the Lyapunov exponents are known to be small. Enlarging this
region reveals the presence of considerable complexity, with myriad small
islands embedded in a chaotic sea, as seen in Figure 11(b). Plotting time

Figure 10. The x–y projection of chaotic orbit for Froeschlé map for K ¼ 1; h ¼ 1:205.
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histories of hp2i for several initial conditions along the q ¼ 0 axis gives the
curves plotted in Figure 12(a). Note that all curves suffer an initial transient
phase (due to the DG=t term in (4)). After this, the curves corresponding to
regular orbits become extremely flat after �1000 iterations, while the curves
corresponding to chaotic orbits have not yet converged. We propose to utilize
these variations as a measure of chaoticity via a quantity we call ‘‘meander,’’

Figure 11. (a) Standard map for K ¼ �0:3 : (a) full-size and (b) enlarged separatrix layer.
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Figure 12. (a) Time histories with K ¼ �0:3 of hp2i for several orbits in separatrix layer near

the origin, (b) Meander scan along q ¼ 0 line.
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DðNÞ ¼ hp2maxi � hp2mini
hp2maxi þ hp2mini

; ð29Þ

where pmax;min are the maximum and minimum values of p over a specified
interval, typically the first 10000 steps, excluding the first few hundred steps
to avoid the initial transient. No windowing is currently used in this calcu-
lation. Figure 12(b) shows D for a number of initial conditions along the
p-axis in Figure 11(b), with Dp ¼ 0:002, clearly revealing the phase space
islands near p ¼ 0:013 and 0:02. The amount of complexity revealed by such
a scan of course depends on the fineness of the mesh employed.

Next we consider the standard map for K ¼ 1:4, which offers more
complexity than Laskar’s choice of K ¼ 1:3. Figure 13(a) shows the separa-
trix layer surrounding the 6-fold Birkoff chain, and blown up in Figure 13(b).
Several small islands are visible along the p-axis. Can the meander test find
them all? Figure 14 depicts time histories of hp2i along the q ¼ 0 line again
illustrating the large differences between regular and chaotic orbits. The
corresponding meander profile along this line reveals well-defined flat por-
tions at the visible islands as well as several more which were not seen in
Figure 13. These examples demonstrate that the meander method is an effi-
cient ‘‘island finder,’’ usually requiring fewer than 10000 iterations for each
orbit. For strong chaos many fewer iterations are required, typically 100
steps to avoid the initial transient and about 500 steps to distinguish regular
from chaotic orbits.

6. Discussion

We have revisited the classical virial theorem for bounded single-particle
orbits generalized to natural Hamiltonian flows and natural symplectic maps
of arbitrary dimension. For natural flows of the form H ¼ TþU, where the
kinetic energy T is positive definite, a strong and a weak form of the virial
theorem were derived, which together with the conserved total energy yield
an asymptotic invariant depending on the coordinates alone. Essential dif-
ferences were found between regular and chaotic orbits. For chaotic orbits
the time-averaged virial integrals converge extremely slowly, with large
variations for moderate times (thousands of steps for discrete maps). Nev-
ertheless, the two relevant averages vary together so that their differences
converge to zero, behavior that might be described as co-asymptotic. We also
found an asymptotically invariant function of the coordinates which con-
verges equally rapidly for chaotic and regular orbits. The results were well
verified numerically for the Hénon–Heiles system. Next we derived a strong
and a weak virial theorem for natural symplectic maps, both of which closely
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resemble those for flows. However, since there is no conserved energy for
symplectic maps, no analog of the asymptotic invariant was found. Again,
significant differences were found between regular and chaotic orbits, the

Figure 13. Separatrix layer for Birkhoff chain in standard map for K ¼ 1:4 (a) full size and
(b) enlarged.
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virial sums for chaotic orbits converging vastly slower than those for regular
orbits. The resulting discrete virial theorem has been verified for several
mappings of current interest, including a generalized Hénon map and weak

Figure 14. (a) Time histories with K ¼ 1:4 of hp2i for several orbits in separatrix layer near the
origin, (b) Meander scan along q ¼ 0 line.

J. E. HOWARD238



chaos in the standard map. For periodic orbits of discrete maps the virial
sums are finite and may be used to predict their locations in phase space.

The erratic behavior of the virial integrals and sums for chaotic orbits
suggest a sensitive test for chaoticity, especially in thin chaotic layers where
traditional tools such as Lyapunov exponents can converge very slowly. This
behavior was quantified in a quantity we call meander, which measures the
deviation of hp2i from its running time average. We have applied this tech-
nique to a typical instance of weak chaos in a separatrix layer of the standard
map. The results show the DðNÞ method to be superior to the Lyapunov
exponents and comparable to Laskar’s frequency method and fast Lyapunov
indicators. Whether our method is competitive with recent methods such as
relative Lyapunov indicators remains to be shown. Perhaps the principal
advantage of DðNÞ is that it is so simple and easy to program.

The results presented in this paper leave considerable scope for future
work. More examples should be studied, both continuous and discrete. The
convergence of the virial integrals should be determined quantitatively by
some sort of variance function similar to the meander (29). Meiss’ (1994)
studies of long time behavior should be extended to other mappings having
less symmetry than the standard map. Detailed comparisons should be made
with the standard chaos detectors to determine under what circumstances the
meander method would be suitable. For example, 4D mappings such as the
Froeschlé map might be amenable to this approach. We also plan to try out
more refined methods of gauging the variations in the virial sums.

Other types of virial theorems are also worth exploring in a canonical
framework. For example, starting with the function Gij ¼ qipj will produce
tensor virials similar to those of Parker (1954), for maps as well as flows.
Magnetic virials for velocity dependent potentials could be constructed for
axisymmetric systems via an effective potential of the form (Howard, 1999)

Ue ¼ Uðq; zÞ þ ðp/ �WÞ2
2q2

; ð30Þ
where Wðq; zÞ is the magnetic stream function.

Further generalizations are possible. For example, virial theorems exist for
nonnatural Hamiltonian flows and symplectic maps where kinetic and
potential energies do not exist. So long as an invariant measure exists, con-
vergence of the resulting virial sums is guaranteed by the Birkhoff Ergodic
Theorem. Thus, we have derived and numerically verified a virial theorem for
the symplectic version of the Hénon map ðx; yÞ 7! ðy� kþ x2;�xÞ (Hénon,
1969). Beyond these examples, virial theorems have been derived for non-
conservative flows, where an invariant measure does not necessarily exist, so
that convergence of the virial averages is not rigorously known. We have also
obtained an analogous theorem for nonsymplectic discrete maps (such as the
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generalized Hénon map), and are presently investigating the results for
specific models.

Appendix A: Asymptotic Invariants and Hypervirial Theorems

The orbital time averages discussed in this paper are only valid for large time
(with the exception of periodic orbits) and may be described as asymptotic
invariants,

hfðp; qÞi ¼ constþOð1=tÞ: ðA:1Þ
In general an unlimited number of such invariants may be constructed for 1D
natural flows by differentiating the function

Gðp; qÞ ¼ pmqn; ðA:2Þ
which leads to the hypervirial theorem

mhpm�1qnUqi ¼ nhpmþ1qn�1i ðA:3Þ
provided of course that the two integrals converge. Using energy conserva-
tion then leads to the asymptotic invariant

hqnUqi þ 2nhqn�1Ui
2nhqn�1i ¼ E; ðA:4Þ

which holds for chaotic and regular orbits alike. More generally one may
obtain (if one wishes) larger classes of invariants by working with an arbi-
trary differentiable function G ¼ fðp; qÞ.
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Abstract. We detect and measure diffusion along resonances in a quasi-integrable symplectic
map for different values of the perturbation parameter. As in a previously studied Hamiltonian

case (Lega et al., 2003) results agree with the prediction of the Nekhoroshev theorem. More-
over, for values of the perturbation parameter slightly below the critical value of the transition
between Nekhoroshev and Chirikov regime we have also found a diffusion of some orbits along

macroscopic portions of the phase space. Such a diffusion follows in a spectacular way the
peculiar structure of resonant lines.

Key words: Global diffusion, Quasi-integrable Dynamical Systems

1. Introduction

In order to highlight the possibility of a drift of the actions along a resonance
in an Hamiltonian quasi-integrable system. Arnold (1964) built an ad hoc
model showing the existence of a very slow diffusion. This kind of diffusion is
very difficult to detect numerically.

Within the framework of Nekhoroshev’s (1977) theorem, one expects an
exponentially slow drift of the actions along resonant lines. Moreover, the
speed of the diffusion decreases as the order of the resonance increases
(Morbidelli and Giorgilli, 1995; Giorgilli and Morbidelli, 1997).

In a previous work (Lega et al., 2003), using a time dependent Hamiltonian
system with two degrees of freedom, we have provided numerical evidence for
the existence of diffusive orbits along resonances as well as numerical estimate
of the diffusion coefficient as a function of the perturbing parameter. The
decreasing of the diffusion coefficient with the perturbing parameter is
stronger than a power law, typical of Chirikov (1979) diffusion, and is com-
patible with an exponential law as expected in the Nekhoroshev regime.

In this paper, we perform the same kind of numerical experiments on a
quasi-integrable symplectic mapping T of dimension four with a non inte-
grable part analogous to that of the Hamiltonian used in Lega et al. (2003).
Initial conditions were taken in the chaotic zone of a selected resonance. Such
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orbits were chosen using the fast Lyapunov indicator (FLI, Froeschlé and
Lega, 2000), which allows to have a detailed knowledge of the topology of
the resonances.

The use of the FLI allows to determine (Guzzo et al., 2002) both for
slightly perturbed Hamiltonian systems and for weakly coupled symplectic
mappings, the critical value of the perturbing parameter that corresponds to
the transition from a Chirikov regime to the Nekhoroshev one. Therefore,
chaotic initial conditions were taken for values of the coupling parameter still
in the Nekhoroshev regime but relatively close to such a critical value.

The same procedure is applied in the present paper to the detection of the
diffusion in the mapping T. The results obtained for the mapping are both
qualitatively and quantitatively similar to those obtained for the Hamiltonian
system in agreement with recent proofs of the Nekhoroshev theorem for
nearly integrable symplectic maps (Kuksin and Pöschel, 1994; Guzzo, 2004).
Moreover, thanks to the rapid computation of the mapping, which allows to
explore much longer integration times with respect to the Hamiltonian sys-
tem we have observed that Arnold’s diffusion is relevant for global diffusion
(Guzzo et al., 2005). More precisely, for a suitable choice of the perturbation
parameter we show that a global diffusion occurs along the peculiar set of
resonances forming the Arnold’s web.

The paper is organized as follows. We recall in Section 2 the definition of
the FLI and we give an application to the symplectic 4 dimensional map. We
provide in Section 3 the evidence of the diffusion along resonant lines. The
numerical estimate of the diffusion coefficient will be given in Section 4.
Section 5 is devoted to the phenomenon of global Arnold’s diffusion. Con-
clusions are provided in Section 6.

2. The FLI Revisited

When computing the Lyapunov characteristics indicators (LCI), the attention
is focused on the length of time necessary to get a reliable value of their limit,
but very little importance is given to the first part of the computation. In fact,
this part is considered as a kind of transitory regime depending, among other
factors, on the choice of an initial vector of the tangent manifold.

Already Froeschlé et al. (1997) have remarked that the intermediate value
of the LCI (which was called FLI), taken at equal times for chaotic (even
slow chaotic) and ordered motion, allows to distinguish between them. It
turns out that the FLI allows also to distinguish among ordered motions of
different origins, like resonant and non-resonant motions (Guzzo et al.,
2002), despite the fact that in both cases the largest LCI tends to zero when
time goes to infinity.
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2.1. DEFINITION OF THE FLI

Given a mapping M from Rn to Rn an initial condition ~xð0Þ 2 Rn, and an
initial vector ~vð0Þ 2 Rn of norm 1 (we remark that in this particular case the
manifold and the tangent manifold are both Rn), let us define the FLI
function Fð~xð0Þ;~vð0Þ; sÞ; s belonging to Zþ, as:

Fð~xð0Þ;~vð0Þ; sÞ ¼ sup
0<tOs

log k~vðtÞk ð1Þ

where vðtÞ is given by the system:

~xðtþ 1Þ ¼ M~xðtÞ
~vðtþ 1Þ ¼ @M

@~x ð~xðtÞÞ~vðtÞ
�

ð2Þ

Let us remark that this definition has replaced, since Froeschlé et al.(2000),
the first one given in Froeschlé et al. (1997). With the actual definition we
could get rid of unnecessary complications and the introduction of the su-
premum of the norm has the same advantage of an averaging procedure
easier to handle. Moreover the present definition is especially suited to the
analysis of the neighborhood of a periodic orbit (Froeschlé and Lega, 2005).

2.2. A FOUR DIMENSIONAL MAP AS A MODEL PROBLEM

In previous papers (Froeschlé et al., 2000; Guzzo et al., 2002; Lega et al.,
2003) we used the FLI to describe the geometry of the resonances of the
Hamiltonian system:

H ¼ I21
2
þ I22

2
þ I3 þ �

1

cosð/1Þ þ cosð/2Þ þ cosð/3Þ þ 4
ð3Þ

where I1; I2; I3 2 R and /1;/2;/3 2 T are canonically conjugate and � is a
small parameter.

In this paper we use the FLI for the same kind of studies, for a symplectic
mapping obtained through the leap-frog discretization (which ensures the
symplecticity of the mapping) of the equations of motion of Equation (3):

T ¼

xjþ1 ¼ xj � �
sinðxjþyjÞ

ðcosðxjþyjÞþcosðzjþtjÞþ4Þ2

yjþ1 ¼ yj þ xj ðmod2pÞ
zjþ1 ¼ zj � �

sinðzjþtjÞ
ðcosðxjþyjÞþcosðzjþtjÞþ4Þ2

tjþ1 ¼ zj þ tj ðmod2pÞ

8>>>>><
>>>>>:

ð4Þ
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We still have a quasi-integrable system with the usual advantage of map-
pings: we can integrate for times longer than in the continuous case and this
fact is crucial when dealing with the diffusion for small values of �.

Figure 1 shows the variation of the FLI with time for three different kinds
of orbits of T (indicated by arrows in Figure 2) with � ¼ 0:6. The upper
curve, with initial conditions in a chaotic zone in Figure 2: ðx ¼ 2:07;
y ¼ 0; z ¼ 2:1; t ¼ 0Þ shows an exponential increase of the FLI with time. The
intermediate curve corresponds to a regular invariant torus of initial condi-
tions ðx ¼ 1:8; y ¼ 0; z ¼ 1:2; t ¼ 0Þ and the lowest one corresponds to a
regular resonant curve of initial conditions ðx ¼ 1:67; y ¼ 0; z ¼ 0:91; t ¼ 0Þ:
Although the largest Lyapunov exponent of the two regular curves above is
zero, the FLI, as shown in Figure l, distinguishes between resonant and non
resonant regular motions. More precisely, although the two curves exhibit
essentially the same behavior they are parallel but distinct. At the origin of
the different values of the FLI for regular non resonant and resonant motion
there is the differential rotation which is not the same for the two dynamics.
The FLI behavior has been extensively studied both numerically and ana-
lytically in (Guzzo et al., 2002).

Figure 2 shows, at s ¼ 1000; the FLI for a grid of 500 � 500 initial
conditions regularly spaced on x; z: The other initial conditions are
y ¼ 0; t ¼ 0; and the initial vector is ~vð0Þ ¼ ð0:5ð ffiffiffi

3
p � 1Þ; 1; 1; 1Þ: The FLI is

reported with a grey scale: the dark strips correspond to regular resonant

Figure 1. Variation of the FLI as a function of time for three orbits of the standard map T with

� ¼ 0:6: The upper curve is for a chaotic orbit with initial conditions (x = 2.07, y= 0, z=2.1 ,
t=0) the middle one is for a regular non resonant orbit with (x = 1.8, y=0, z=1.2, t=0) and
the lowest one is for a regular resonant orbit with (x = 1.67, y = 0, z = 0.91, t = 0).
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motions while the white lines represent both chaotic resonant motions or the
vicinity of a separatrix. The orbits having an FLI value of about logðsÞ
constitute the background of KAM tori. Let us remark that for the Hamil-
tonian of Equation (3), when � ¼ 0 the frequencies are strictly equal to the
actions, therefore the FLI charts are nothing but frequencies charts, which
display a very well detailed Arnold’s web.

As far as the mapping is concerned, the same occurs when considering the
variables xðjÞ and zðjÞ which are the frequencies of the unperturbed mapping
Tð� ¼ 0Þ: Again, the FLI chart in the plane r–z (Figure 2) shows very clearly
the Arnold’s web.

3. Diffusion Along Resonances: Qualitative Aspects

For the four dimensional symplectic mapping T we have computed the FLI
charts for different values of the perturbing parameter and we have selected a
low order resonance. In order to compare the results obtained in the case of
the Hamiltonian system of Equation 3 we have considered the same unper-
turbed resonance x = 2z.

Figure 2. Geography of resonances in the plane x� z for the mapping T with � ¼ 0:6: The
computation has been done for a set of 500 � 500 initial conditions regularly spaced on x; z:
The other initial conditions are y ¼ 0; t ¼ 0; and the initial vector is~v ¼ ð0:5ð ffiffiffi

3
p � 1Þ; 1; 1; 1; Þ:

The grey scale ranges from black ðFLIO2Þ to white ðFLIP4Þ.
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Using the method of the FLI charts described in Froeschlé et al. (2000)
and in Guzzo et al. (2002) we found that the critical perturbation parameter
for the transition between the Nekhoroshev and the Chirikov regime is in the
interval 0:8<�<1:

Starting from an upper bound of � ¼ 0:7, we have looked for diffusive
orbits in the Nekhoroshev regime.

Figure 3 shows the FLI charts of the actions space for successive zoom
around x ¼ 1:7, z ¼ 0:8 for different values of �. In these pictures the region
between the two white lines is the resonant strip approximated by
x� 2z<

ffiffi
�

p
, and the two white lines correspond to its hyperbolic border

where diffusion is confined. These charts provide us the possibility of
choosing initial conditions in the hyperbolic border. Then, we can also follow
the evolution of the corresponding orbits on the FLI charts by plotting the
points which intersect the double section r ¼ jyj þ jtjO0:005: Let us remark,
that in such a way we minimize all projection effects and fast quasi-periodic
movements. What remains is a very slow drift along the border of the
resonance.

We have taken a set of 100 initial conditions corresponding to orbits of the
FLI charts having FLI values larger than 1:5 logðsÞ, i.e., to chaotic orbits at
the border of the resonance, far from the more stable crossing with other
resonances. We have plotted on the FLI charts all the points in the double
section described above. We remark that such points will appear on both side
of the resonance (in fact the two white lines are connected by an hyperbolic
region in the 4 dimensional phase space).

We show for � ¼ 0:6; the evolution of the 100 orbits up to j ¼ 6� 106

Figure 3 (top, left) and up to j ¼ 3� 108 Figure 3(top, right). The diffusion
along the resonance appears clearly, although the higher order resonances
intersecting the main one become evident, and consequently the region of
diffusion extends a little also on the direction transversal to the resonance.

When decreasing the perturbation, � ¼ 0:2; the diffusion along the resonant
line is more clear. In Figure 3 (middle) we have plotted again the intersections
of the 100 orbits with the double section r on the FLI chart after respectively
j ¼ 3� 108 (middle. left) and j ¼ 2� 1010 (middle, right). The phenomenon
still appears very clearly even for � ¼ 0:07; Figure 3 (bottom). i.e., an order of
magnitude lower than the threshold of transition between the two regimes. We
have observed the phenomenon down to � ¼ 0:03.

4. Diffusion Along Resonances: Quantitative Aspects

In order to measure the diffusion coefficient we have considered the phe-
nomenon as if it was a Brownian motion, since we do not have yet an analytic
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Figure 3. Diffusion along the resonant line x ¼ 2z of the mapping T for � ¼ 0:6 (top), � ¼ 0:2
(middle), � ¼ 0:07 (bottom) for a set of 100 initial conditions taken in the chaotic border of the
resonance. The figure in the middle and in the bottom correspond to the zone of the phase space
contained in the square plotted respectively in the figure at top, left and in the figure at middle,

left. The black points are the intersections of the orbits with the double section jyj þ jtjO 0:005:
The number of iterations on the set of orbits are respectively: j ¼ 6� 106(top, left).
j ¼ 3 � 108 (top, right). 3 � 108 (middle, left). 2 � 1010 (middle, right). 2� 109 (bottom,

left). 2:5 � 1010 (bottom, right). The grey scale ranges from black to white.
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model for a diffusion like the one we observed. We look therefore for a linear
increase with time of the mean square distance from the initial conditions.
We are aware that this is a very crude assumption and that for systems like
the standard map diffusion can be anomalous for very high values of the
perturbation parameter Zaslavski and Edelman (2000), where no invariant
curves remain. Instead, our computations concern quasi-integrable cases.
This is a very interesting problem which goes behind the purpose of the
present paper, mostly because we are submitted to computational limitations:
we can’t take a very large number of initial conditions which would require
very long CPU times.

Notwithstanding these difficulties, we observed indeed an averaged linear
increase with time of the mean squared distance from the initial conditions.
Moreover, in order to reduce the contributions due to fast motion, we have
only taken into account the points on the double section. More precisely,
denoting with xið0Þ and zið0Þ; i ¼ 1; . . . ;N the initial conditions of a set of N
orbits, with xiðjÞ and ziðjÞ the corresponding values at time j, and choosing a
fraction t� of the total integration time, we considered the quantity:

Sðnt�Þ ¼ 1

Mn

X
i:ðjyiðjÞjþjtiðjÞjÞ<0:005

½ðziðjÞ � 2xiðjÞÞ � ðzið0Þ � 2xið0ÞÞ�2 ð5Þ

where Mn is the number of points on the double section for j in the interval
ðn� 1Þt�O jO nt�: We observe (Figure 4) a linear increase with time of S and
we estimate the diffusion coefficient D as the slope of the regression line.

Figure 4. Evolution of the quantity �Sðnt�Þ (see text) with t� ¼ 5� 108, for 100 orbits of the
mapping T with � ¼ 0:05: The slope of the regression line gives the diffusion coefficient
D ¼ 5� 10�20:
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Following Zaslavski and Edelman (2001), we could have diffusion, more
precisely anomalous diffusion, driven by orbits with zero Lyapunov expo-
nent. Moreover, since the initial conditions were chosen using the FLI
computed on a relatively short time we have checked the chaotic character of
some of the selected orbits by computing the largest Lyapunov exponent.
More precisely, we computed the Lyapunov indicators. i.e. the truncated
values of the Lyapunov exponents which are defined by a limit for time going
to infinity.

Figure 5 shows the evolution with time of the largest Lyapunov indi-
cator of three orbits for � ¼ 0:05: The orbits have been chosen considering
the FLI distribution of the 100 initial conditions: the first one has the
lowest FLI (6.00), the second has an FLI in the middle of the distribution
(6.75) while the third has the largest FLI value (16.58). We recall that the
FLI chart for � ¼ 0:05 was computed on s ¼ 104 iterations and that the
orbits are considered chaotic when they have FLIP 1:5 log s; i.e., FLIP 6 in
the considered case. For the three-test orbits the largest Lyapunov indicator
is small but positive (Figure 5) ensuring that we are following very weak
chaotic motions. This kind of test comforts our confidence in using FLI
method for distinguishing the dynamical character of the orbits on times
which may be even some order of magnitude shorter than the time needed
for the Lyapunov indicators to stop to decrease and to stabilize at a
positive value.

Figure 5. Evolution of the largest Lyapunov indicator with time for three orbits of the
standard map T with � ¼ 0:05: The initial conditions are x ¼ 1:67209489949749 y ¼ 0:
z ¼ 0:809297781072027 t ¼ 0ðFLI ¼ 6:0Þ; x ¼ 1:67192854271357 y ¼ 0: z ¼ 0:809236608877722
t ¼ 0:ðFLI ¼ 6:75Þ; x ¼ 1:67203944723618 y ¼ 0: z ¼ 0:809286279229481 t ¼ 0:ðFLI ¼ 16:58Þ:
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The estimates of lnðDÞ versus lnð1=�Þ are reported in Figure 6. We have
defined three sets of data, performing a local regression for each of them of
the form lnðDÞ ¼ aþm lnð1=�Þ; and found three different slopes. The first set
contains the values of D for lnð1=�ÞO 0:92; the second for
1:17O lnð1=�ÞO 2:28 and the third for lnð1=�ÞP 2:43; and the corresponding
slopes are respectively m1 ¼ �4:2; m2 ¼ �8:5 and m3 ¼ �13:3: Such changes
of slope comfort the expected exponential decrease of D, as for the
Hamiltonian case reported in (Lega et al., 2003).

It would be natural at this point to check if the exponential upper bound
D< exp�ð1=�Þb expected from Nekhoroshev theorem can be seen from our
data, and in particular if one can obtain a numerical estimation of b.
Indeed, an exponential fit of our data would give the value b ¼ 0:28
(Figure 6) with apparently very good correlation coefficient of about 0.99.
However, how much this computation is meaningful is a delicate matter:
the apparently good correlation coefficient is due mainly to the small
interval in � used for the exponential fit (Figure 6): there are not theoretical
predictions to compare to the detected value: numerical studies (Benettin
and Fassó, 1999) have shown that the exponential upper bounds found by
perturbation theories are indeed only upper bounds, while the true ex-
change of energy among the different degrees of freedom with respect to a
perturbing parameter typically follows more complicated functional laws.
For these reasons, we think it is necessary in the future to perform more
numerical studies of the problem.

Figure 6. The logarithm of diffusion coefficient is plotted as a function of lnð1=�Þ: The change
of slope of the three power law fits is in agreement with the expected exponential decrease of
D.

CLAUDE FROESCHLÉ ET AL.252



5. Global Diffusion

In the previous sections we have clearly showed the phenomenon of Arnold’s
diffusion occurring along a resonant line. It is clearly a phenomenon of local
diffusion. When dealing with global diffusion we immediately think to the
well known Chirikov’s diffusion, due to the overlapping of resonances. Is it
the only mechanism for global diffusion? At this purpose we have repeated
the previous experiments for a given value of the perturbation parameter,
close to the transition to the Chirikov regime, on a very long interval of time.
We have considered twenty initial conditions in the vicinity of the point
ðx; zÞ ¼ ð1:71; 0:81Þ for the symplectic map. Then, we computed numerically
the map up to 1011 iterations.

The results are reported in Figure 7. Figure 7a shows only the location
of initial conditions (inside the circles), on the FLI map of the action plane
ðx; zÞ, Figure 7a shows that we are in the Nekhoroshev regime since the
resonances do not overlap and the majority of the orbits, i.e. dark grey
and black zones in the FLI-chart, are regular. In Figure 7b we plotted as
black dots all points of the orbits which have returned after some time on
the section jyj þ jtjO 0:005: We observe that the orbits filled a macroscopic
region of the action plane whose structure is clearly that of the Arnold
web (Guzzo et al., 2005). The orbits have moved along the single reso-
nances, and avoided the center of the main resonance crossings, in
agreement with the theoretical results which predict longer stability times
for motions in these regions. The larger resonances (which correspond to
the smaller orders) are practically all visited, while this is not the case for
the thiner ones (which correspond to the higher orders). This is in agree-
ment with the theoretical results of (Morbidelli and Giorgilli, 1995;
Giorgilli and Morbidelli, 1997), which predict that the speed of diffusion
on each resonance becomes smaller for resonances of high order. There-
fore, the possibility of visiting all possible resonances is necessarily limited
by finite computational time.

The described diffusion phenomenon is very different from Chirikov dif-
fusion which is illustrated in Figure 7c, where the overlapping of resonances
appears clearly since, except for the large strip of regular resonant zones
corresponding to x ¼ 0 and to z ¼ 0, almost all regular orbits have disap-
peared. In the FLI-chart we observe a large white sea with small dark grey or
black islands. In this case the diffusion for 20 initial conditions located in the
circle of Figure 7c occurs in the same macroscopic region of Figure 7b of the
phase space in a much shorter time scales (only 2·107 iterations) and without
apparent peculiar topological properties of the stochastic region, i.e. the
whole chaotic sea is densely visited.
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6. Conclusion

By using a sensitive tool, the FLI, to detect the geography of resonances, we
have been able to choose and follow orbits which exhibit diffusive behavior
along resonant lines on a 4 dimensional symplectic map. We do not have an
analytic model for such a diffusion, thus we make the hypothesis that it
behaves as a Brownian motion. Under this hypothesis we measured a

Figure 7. Panels (a) and (c) correspond to the FLI map of the action plane ðx; zÞ for the map
T for � ¼ 0:6ðaÞ and � ¼ 1:7: The white region correspond to the chaotic part of the Arnold

web. We marked with a circle the location of the twenty initial conditions chosen in the vicinity
of the point ðx; zÞ ¼ ð1:71; 0:81Þ: In panels (b) and (d) we marked with a black dot all points of
the twenty orbits which have returned after some time on the section jyj þ jtj<0:005: We

consider 1011 iterations for panel (b) and 2 � 107 iterations for panel (d).
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diffusion coefficient and showed that the dependence of the diffusion coeffi-
cient on the perturbing parameter does not follow a power law, and in the
explored range is in agreement with the exponential decay predicted by
Nekhoroshev theory. Results agree with those previously obtained for an
Hamiltonian system (Lega et al., 2003). Moreover, we have shown that the
phenomenon of Arnold’s diffusion may also play an important role in the
long-term evolution of quasi-integrable systems. More precisely the orbits
can diffuse in a macroscopic portion of the phase space following in a
spectacular way the peculiar structure of resonant lines.
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Froeschlé, C., Lega, E. and Gonczi, R.: 1997, ‘Fast Lyapunov indicators. Application to

asteroidal motion’, Celest. Mech. Dyn. Astron. 67, 41–62.
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Guzzo, M., Lega E. and Froeschlé, C.: 2005, ‘First numerical evidence of global Arnold

diffusion in quasi-integrable systems’, DCDSB, in press.
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Abstract. With the standard map model, we study the stickiness effect of invariant tori,
particularly the role of hyperbolic sets in this effect. The diffusion of orbits originated from the
neighborhoods of hyperbolic points, periodic islands and torus is studied. We find that they

possess similar diffusion rules, but the diffusion of orbits originated from the neighborhood of
a torus is faster than that originated near a hyperbolic set. The numerical results show that an
orbit in the neighborhood of a torus spends most of time around hyperbolic invariant sets. We

also calculate the areas of islands with different periods. The decay of areas with the periods
obeys a power law, and the absolute values of the exponents increase monotonously with the
perturbation parameter. According to the results obtained, we conclude that the stickiness

effect of tori is caused mainly by the hyperbolic invariant sets near the tori, and the diffusion
speed becomes larger when orbits diffuse away from the torus.

Key words: hyperbolic invariant sets, invariant tori, stickiness effect

1. Introduction

Hamiltonian systems are conservative dynamical systems which are
encountered in various areas. The phase space of a nearly integrable Ham-
iltonian system typically consists of regular and chaotic regions. The study of
orbital diffusion in the phase space is the basis of many topics in Hamiltonian
dynamics. A chaotic orbit initialized close to a KAM torus will wander for a
long time before it finally leaves the vicinity of the torus. Since Karney (1983)
first uses the term ‘‘sticky’’ to describe such effect around islands, this phe-
nomenon was then called the ‘‘stickiness effect’’ of invariant tori. The study
of stickiness effect has now been extended to include all kinds of effects which
slow down the diffusion. These effects may come from different invariant sets
such as invariant tori (Lai et al., 1992; Perry and Wiggins, 1994; Sun and Fu,
1999), island-chains (Karney, 1983; Chirikov and Shepelyansky, 1984; Sun
et al., 2002) and Cantori (Meiss and Ott, 1985; Contopoulos et al., 1997). We
call this extended concept the ‘‘generalized stickiness effect’’. Moreover, it is
also known that hyperbolic invariant sets possess the stickiness effect too
(Froeschlé and Lega, 1998; Contopoulos et al., 1999; Zhou et al., 2002).
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Zhou et al. (2002) suggested that the hyperbolic invariant sets is essential to
the stickiness effect. In this paper we will clarify and confirm numerically this
conclusion with the standard map model.

2. Model

We take the standard map T as the model,

T :
xnþ1 ¼ xn þ ynþ1

ynþ1 ¼ yn � k
2p sinð2pxnÞ

(
ðmod 1Þ; ð1Þ

where k is the perturbation parameter. Figure 1 is the diagram of map T with
k ¼ 1.

We choose an island from the period-5 island-chain (indicated by the
arrow in Figure 1) as the chief torus to analyze. The center of the chief torus
is at ðx0; y0Þ¼ ð0:2476544; 0:6638289Þ. Figure 2 is the enlargement of the
chief torus, around which come out islands and hyperbolic invariant sets with
different orders due to the self-similarity. In the following sections, we will
investigate the stickiness effect of the chief torus as well as of the periodic
islands and the hyperbolic invariant sets near it. The role of the hyperbolic
invariant sets in the generalized stickiness effect will be discussed in detail.

Figure 1. Phase diagram of map T with k ¼ 1:0.

Y-S SUN, L-Y ZHOU AND J-L ZHOU258



3. Numerical Results

3.1. STICKINESS EFFECT OF HYPERBOLIC INVARIANT SETS

From Figure 3 we can see that in the vicinity of the chief torus, there is an
island-chain with 23 periodic islands and a hyperbolic invariant set consisting
of 23 periodic hyperbolic fixed points as predicted by the Poincaré-Birkhoff
fixed point theorem. We investigate the stickiness effect of this hyperbolic
invariant set.

To study the stickiness effect of the hyperbolic invariant set, we
trace an orbit with an initial point ðx; yÞ ¼ ð0:2972650; 0:6591000Þ, which
is very close to one of the period-23 hyperbolic fixed points
ðxh; yhÞ ¼ ð0:2972704; 0:6590667Þ. Figure 4 shows the diffusion process of the
orbit. Because the orbit diffuses to a secondary island-chain (or a secondary
hyperbolic invariant set) when the iterative number n � 3� 105, we trace the
orbit up to n ¼ 2� 105 iterations, before that the orbit diffuses around the
hyperbolic invariant set. Since the orbit is very close to the ‘‘boundary’’ of the
chief torus, we can calculate the distribution of points on the orbit along the
‘‘boundary’’, which can be approximatively defined as the possible outermost
curve l of the chief torus. Every point near l can be projected to l, so that gets
a reference coordinate from the projection on l. In such a way we can see
where the orbit is ‘‘stuck’’ during its diffusion.

Figure 2. Enlargement of one island (called the chief torus in the paper) from the period-5

island-chain.
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In Figure 5 we show the distribution of orbit points with respect to the
length of l, and the positions of the 23 hyperbolic fixed points are marked
too. The outstanding feature of Figure 5 is that every peak evidently corre-
sponds just to one of the positions of the period-23 hyperbolic fixed points
(hyperbolic invariant set). The distribution of points on other orbits starting
from points not very close to the hyperbolic fixed point, but lying between
two neighboring hyperbolic fixed points in the same hyperbolic invariant set,
are found to have very similar distribution to the one in Figure 5. We
repeated the same calculation around a higher-order island (one of the 23
islands around the chief torus), and obtained the same results as above.

Now it should be stressed that an orbit spreads in fact in a 2-dimensional
zone, so that the density of orbit points in the sticky zone should be counted
in definite areas rather than along a curve. However, from a practical
view, there is no straightforward method to define such areas, in which
higher-order islands are embedded as holes and around them there are sec-
ondary hyperbolic invariant sets related with the stickiness effects of the

Figure 3. Diagram of the period-23 secondary islands around the chief torus.
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higher-order islands. On the other hand, the sticky zone occupied by an orbit
shown in Figure 4 as an example shows a little thinner width around the
hyperbolic points than around the rest of the zone, and in fact, from Figure 4
we can see that the orbit points near the hyperbolic fixed point are denser
than in the zones far from it. Therefore, even if the sticky zone is considered
roughly as a uniformly wide strip around the chief torus, the distribution
along a curve in Figure 5 would reflect approximately the distribution of
orbit points in the sticky area near the chief torus.

It is well known that there are many different unstable periodic orbits in a
chaotic region. In Figure 5 the match between the positions of the out-
standing peaks and the hyperbolic fixed points reveals that this hyperbolic
invariant set is much more important than others in this region. It also
implies that such orbits spend more time around this hyperbolic invariant set
than elsewhere, therefore the hyperbolic invariant set plays an important role

(a) (b)

(d)(c)

Figure 4. Diffusion of an orbit around a hyperbolic invariant fixed point. a, b, c and d are the
snapshots of the orbit up to 5� 104, 2� 105, 3� 105 and 6� 105 iterations, respectively.
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in the stickiness effects. Moreover, an orbit on the ‘‘outermost’’ invariant
curve also has a similar accumulation of points (the distribution is very
similar to Figure 5). Since this invariant curve is very close to the hyperbolic
set located among the island-chain, this accumulation can be explained by the
continuous dependence of the density of orbits on the initial conditions.

We note the peaks in Figure 5 have different heights. With the eigenvalues
and eigenvectors of the mapping on the hyperbolic points, it may be given an
explanation. By iterating 115 (¼ 5� 23) times of the tangent map of (1), we get
the matrix of the corresponding tangent map and then calculate the eigen-
values and eigenvectors of this matrix. The results show that for a hyperbolic
point corresponding to a higher peak, the angle between eigenvectors (standing
for directions of stable and unstable manifold at this point) is relatively bigger,
and the eigenvalue corresponding to the unstable direction has a smaller value.
While on a lower peak, the angle is smaller and the eigenvalue is bigger. For
instance, the eigenvalues and eigenvectors of the sixth (counting from left to
right, indicated by an arrow in Figure 5) hyperbolic points, which has a lower
peak, are k1 ¼ 20:1326; v1 ¼ ð1:00000;�1:23649� 10�4ÞT; k2 ¼ 4:96707�
10�2; v2 ¼ ð0:998415; 5:62761� 10�2ÞT. The angle between v1 and v2 is
a ¼ 3�:23345. In comparison, for the 11th point in Figure 5, which possesses
a higher peak, we have k01 ¼ 3:84879; v01 ¼ ð�0:687897;�0:725808ÞT;

Figure 5. Distribution of points on orbit. The crosses inside circles correspond to the positions
of the 23 hyperbolic fixed points.
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k02 ¼ 0:259822; v02 ¼ ð�0:841136; 0:540823ÞT; and a0 ¼ 79�:2758. The same
phenomena appear in the case of other hyperbolic points. In the case of a lower
peak, the orbit spreads quickly due to the bigger eigenvalue k1 in the unstable
direction and occupies a wide region along the invariant curve. While in the
case with a higher peak, orbit diffuses along the unstable direction in a rela-
tively smaller speed (k01 < k1), and the points of an orbit focus in a relatively
narrower region (a0 > a). Consequently, the peaks have different heights.

3.2. STICKINESS EFFECT OF TORI

In order to clarify further the role of hyperbolic invariant sets in the sticki-
ness effect of tori, we discuss the diffusion of orbits in the vicinity of tori. We
define a ‘‘neighboring zone’’ of the torus, and if an orbit diffuses away from
this zone, we regard it as ‘‘escaped’’. To do this, we first calculate the length L
of the boundary curve l of the chief torus and the area A surrounded by it.
Then we define the neighboring zone around the chief torus by expanding the
curve l outwards a width D ¼ ðA=10LÞ, i.e., the area of the neighboring zone
is taken as A=10, where A ¼ 1:8341447� 10�3, L ¼ 0:2221069. As soon as
the distance of an orbit to the chief torus is larger than 2D, we regard it as
escaped.

3.2.1. Diffusion of orbits near the chief torus

We take 20,000 initial points spread uniformly in the neighboring zone
of the chief torus, Pij

0: ðri0 þ ðj=20ÞD; hi0 ¼ ð2p=1000ÞiÞ, i ¼ 1; 2; . . . ; 1000; j ¼
1; 2; :::; 20, where ðri0; hi0Þ are the polar coordinates of the points Pi

0 on l. Then
we choose 2000 points Pk

c ¼ ðrkc ; hkcÞ, k ¼ 1; 2; . . . ; 2000 spread uniformly on l
as the standard points. After n iterations of the map T, a point Pij

m

(m ¼ ðn=5Þ, noting the period 5) on the orbit initialized from point Pij
0 is

regarded as escaped, if the distance d ¼ minðPk
c ;P

ij
mÞ > 2D, where

1OkO2000. We regard an orbit as never escaped if it is not escaped before
n ¼ 1:15� 107. In the same way we take another 20,000 initial points near
one of the 23 periodic hyperbolic fixed points ðxh; yhÞ ¼ ð0:2972704;
0:6590667Þ. The selected initial points are all in a segment of the above
mentioned neighboring zone with angle coordinates from h1 ¼ 6:1851 to
h2 ¼ 6:1903. Interpretatively, this fixed point and its two neighboring fixed
points respectively have angle coordinates of h ¼ 6:1875, 6:1478 and 6:2337.
With the above definitions, we illustrate in Figure 6 the variations of the
surviving orbit number with time (iteration number) for both cases. From
Figure 6 we see the two curves are very similar, but for the orbits starting
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near the hyperbolic fixed point, the diffusion is slower than those started
from the vicinity of the chief torus.

Two different quantities can quantify the stickiness effect: the exponent of
the power law of orbit diffusion and the average time of orbit escape.
According to the results shown by Ding et al. (1990), the surviving number N
of orbits starting from a mixed region in the phase space of a Hamiltonian
system will decrease in a power law with respect to time T: N � T�z, where z
is a positive number depending on the dimension D of the system. When
D ¼ 2, z ¼ 1:2 � 1:5. In our cases, we find that each curve in Figure 6 can be
divided into several segments, which can be linearly fitted with different
slopes. Particularly, when log½Time� 2 ½3:6; 4:4� both of the two curves can be
well fitted by lines with slopes of �1.5, that is, the exponent here is z ¼ 1:5.
Besides, there are segments with smaller z, and we also find z ¼ 3 when
log½Time� > 6:4, which is consistent with the result in Chirikov and Shepe-
lyansky (1999). Despite these interesting details, in this paper we focus mainly
on the similar profiles of the two varying curves, therefore here we report the
average exponents over the whole time range from 0 to 107, which are
z1 ¼ 0:6756 and z2 ¼ 0:6028 respectively for both cases with starting points
near the chief torus and the hyperbolic sets as mentioned above. The small

Figure 6. Diffusion of orbits started closed to the chief torus and close to the hyperbolic fixed

point. The total number of points that have not escaped at time T is denoted by NðTÞ and the
number of points that will never escape is denoted by NðSÞ. Dots and squares stand for the
cases close to the chief torus and close to the hyperbolic fixed points, respectively. The dashed

lines are the linear fittings.
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values of z1; z2 are due to the existence of segments with flat slope. The
average times of escape �T ¼ ð1=N0Þ

RN0

0 T dN are also numerically calculated
and they are �T1 ¼ 4815 and �T2 ¼ 18677 (iteration times) for the cases of
torus and hyperbolic set, respectively.

Both the exponent z and the average time of escape �T imply that, the
orbits with initial points in the vicinity of the chief torus, will diffuse faster
than those started near the hyperbolic invariant set. These results also imply
the hyperbolic invariant sets will play a major role in slowing down the
diffusion of orbits near the torus, or in the stickiness effect of tori.

3.2.2. Diffusion of orbits near the islands

The phase space of map T possesses the self-similarity structure and an orbit
may diffuse around islands of different orders on its way of escaping. In this
section, we study the orbital diffusion near one of the above mentioned 23
periodic islands around the chief torus with center at ðx; yÞ ¼
ð0:2972144; 0:6599696Þ. The neighboring zone and the escape criteria are
the same as that in last subsection, but the A and L are now
A ¼ 2:8499899� 10�7, L ¼ 3:0598743� 10�3. With the same way of taking
initial points, we follow the evolution of 20,000 orbits starting from the

Figure 7. Diffusion of orbits started close to the chief torus and close to the island in the
vicinity of the chief torus. Dots denote the case close to the chief torus, and squares denote the
case close to the island.
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neighboring zone of this island. Figure 7 displays the diffusion of orbits near
the island and near the chief torus as a comparison. The similarity between
the profiles of the two curves in Figure 7 implies the similar sources of the
stickiness effects in these two cases. Combined with Figure 6 we may argue
once again that the stickiness effect of island is also caused mainly by the
hyperbolic invariant set near it. By the way, Figure 7 does not mean that the
diffusion speed of orbits near island is slower than that near the chief torus,
because the definitions of the escaping zone of chief torus and island are only
similar, but not the same.

3.3. SIZE OF ISLANDS

Froeschlé and Lega (1998) studied the variations of sizes of Fibonacci
islands with the distance to the chief torus. Efthymiopoulos et al. (1997)
discussed the variations of islands sizes with perturbation parameter. In
this paper we measure the size of different islands including the chief torus
in the phase space, then investigate the variations of islands’ area with
respect to the periods of island-chains and to the system perturbation
parameter k. With these results we can understand further the orbital
diffusion in phase space and the role of hyperbolic invariant sets in the
stickiness effect of tori. Here the area of an island is approximated by the
summation of areas of 2000 triangles inside the ‘‘outermost’’ invariant
curve surrounding the island.

We compute the areas of islands of different periods (the chief torus is a
period-5 island) in the main (island) sequences (island-chain sequence sur-
rounding the central island) for k ¼ 0:90; 0:95; 1:00; 1:05 and 1:10, respec-
tively. The results are shown in Figure 8, in which each square denotes the
total area of an island-chain of a definite period. From Figure 8 we can find
that the decay of island area with respect to the period obeys roughly a power
law, and the absolute values of the slopes of fitting lines increase monoton-
ically with k. This means that the decay rate of the area for island sequences
increases with the perturbation parameter k (Figure 9).

As well known, the self-similarity property indicates that there are sec-
ondary islands around an island in the main sequence, and then higher order
islands around this secondary islands, and so on. To study the area of such
‘‘islands around islands’’, we select the most outstanding secondary island
chain around an island, and successively repeat such selecting to higher and
higher order. We call such an island sequence ‘‘hierarchical (island)
sequence’’. Taking k ¼ 1:0, we compute the areas of islands in several hier-
archical sequences starting respectively from islands with periods of 4, 16 and
29 in the main sequence. The numerical results displayed in Figure 10 show
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Figure 8. Variations of area of islands in the main island sequence with respect to the period of
island. The linear fit of the data is indicated by both a line and a linear function. (a), (b), (c),
(d) and (e) are the situations of k ¼ 0:90; 0:95; 1:00; 1:05 and 1:10, respectively. The numbers

above the squares in (c) denote the periods of corresponding islands.
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the decay of the area of islands in the hierarchical sequence possesses a power
law too, but compared with the case for main sequence, the absolute values
of the slopes q of fitting lines are smaller. This implies the decay of areas in
the hierarchical sequences is slower than that in the main sequence.

Efthymiopoulos et al. (1999) found that the sizes A of islands with odd
and even ‘‘multiplicities’’ (periods) P in a sequence approaching to a cantorus
decrease following the same power law A ¼ CP�2:75 but with different con-
stants C. In this paper, we investigate the relations between the areas and the
periods of islands in the main and the hierarchical island sequences,
respectively. They are all proved to be power laws with different exponents.
The variations of such exponents with respect to parameter k are also studied
and we found that the exponents are the same for island sequences with even
and odd periods provided the parameters k are the same.

Now we try to estimate the upper bound of the total area of islands in
phase space. As indicated above, the variation of island area with period
possesses roughly a power law, i.e. log APðkÞ ¼ qðkÞ log Pþ CðkÞ, where
APðkÞ is the total area of period-P islands for a given k, qðkÞ the slope and
A1ðkÞ ¼ 10CðkÞ the area of the central island (period-1 island). According
to the result in Figure 9, we have qðkÞ ¼ 0:546� 3:04k and APðkÞ ¼
P0:546�3:04kA1ðkÞ, P 2 fNg, while fNg is the set of period of islands in the
main sequence for k 2 ½0:90; 1:10�. Based on these we obtain the total area of
islands in the main island sequence

Figure 9. Variation of slopes q of fitting lines in Figure 9 with the perturbation parameter k.
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AðkÞ ¼
X

P2fNg
APðkÞO

X
P2½1;1Þ

APðkÞ ¼ A1ðkÞ
X

P2½1;1Þ
PqðkÞ: ð2Þ

We know that series
P1

n¼1ð1=nsÞ is convergent if s > 1, and the sum is called
Riemann function fðsÞ. After elementary calculus, we get

fðsÞ < 1� s� 2�sð1þ sÞ
1� s

¼ 1� 2�sð1þ sÞ
1� s

: ð3Þ
Thus we have

AðkÞ < A1ðkÞ½1� 2qðkÞð1� qðkÞÞ
1þ qðkÞ � ¼ UðkÞ; k 2 ½0:90; 1:10�: ð4Þ

Generally the area of central island decreases as k increases in a long term for
large variation of k, but the varying is not smooth. It can even increase
temporarily (Efthymiopoulos et al., 1997), as happening to occur in the
present case. However we take the average CðkÞ for the five values of k,
CðkÞ ¼ �0:502.

Substituting qðkÞ ¼ 0:546� 3:04k and A1ðkÞ ¼ 10�0:502, we finally get an
upper bound UðkÞ of the total area of islands in the main island sequence.
Because the total area of higher-order islands in the hierarchical island se-
quences is much smaller than that in the main island sequence, UðkÞ is
roughly an upper bound of the total area of islands in phase space. Calcu-

Figure 10. Variations of area of island in the hierarchical island sequences with the period of

islands, and the corresponding fitting lines. The filled squares, circles and triangles represent
the situations in the sequence starting from the period-4, 16, and 29 islands in the main
sequence. q is the slope of the fitting line.
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lating of Equation (4) shows UðkÞ ¼ 0:500; 0:469; 0:445; 0:426; and 0:410
when k ¼ 0:90; 0:95; 1:00; 1:05; and 1:10, respectively.

If there were more values of island area for large variation of k, and if we
could get a better expressions on qðkÞ and CðkÞ, we would have a better
estimation of the upper bound of the total area of islands in phase space for
given k.

On the other hand, the whole phase space in our model consists of islands
and other invariant sets. If the total area of islands is smaller than 1:0, the
residue of them must have a positive measure. This may also imply the
importance of hyperbolic sets in the orbital diffusion. Although the above
calculation is only a coarse estimate, we hope it can give some valuable hints.

4. Conclusions

From the above results, we conclude that:

(1) An orbit started close to tori will spend most of time near the hyperbolic
invariant sets surrounding the tori, before escaping from the vicinity.
This is reasonable because of the following fact: according to the char-
acter of the hyperbolic invariant set, an orbit would spend very long time
in approaching to (leaving from) a hyperbolic fixed point along the stable
(unstable) manifold.

(2) The orbits started close to tori and those started close to hyperbolic
invariant sets obey the same diffusion rules, but in the latter case the
orbits diffuse slower than that in the former case.

(3) For the orbits initially close to the chief torus and orbits initially close to
the secondary island, respectively, they possess the similar diffusion rule.
This is consistent with the character of self-similarity structure of phase
space.

(4) The decay of island area with period in both the case of main island
sequence and hierarchical island sequence obeys roughly a power law,
and in the former case the absolute values of the slope of fitting line
increase monotonously with k. From these results it seems that when an
orbit diffuses outwards from the chief torus more and more, the proba-
bility of its encounter with the islands should be smaller and smaller, and
this could be a reason for the gradually faster diffusion of an orbits
farther from the chief torus. Moreover, the speed of diffusion increases
with k, coinciding with the above conclusions.

Finally, we conclude that the stickiness effect of tori is indeed caused
mainly by the hyperbolic invariant sets in the vicinity of tori. According to
the Poincaré-Birkhoff fixed point theorem, between the islands in
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an island-chain, there exist the hyperbolic invariant sets. And cantori are
known to consist of hyperbolic invariant sets too. Therefore, when the orbits
diffuse through island-chain and cantori, the corresponding hyperbolic
invariant sets would slow down the speed of diffusion. So we can conclude
also that the generalized stickiness effect is caused mainly by the hyperbolic
invariant sets.
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STELLAR-PLANETARY RELATIONS: ATMOSPHERIC STABILITY
AS A PREREQUISITE FOR PLANETARY HABITABILITY
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Abstract. The region around a star where a life-supporting biosphere can evolve is the
so-called Habitable Zone (HZ). The current definition of the HZ is based only on the
mass-luminosity relation of the star and climatological and meteorological considerations
of Earth-like planets, but neglects atmospheric loss processes due to the interaction with
the stellar radiation and particle environment. From the knowledge of the planets in the
Solar System, we know that planets can only evolve into a habitable world if they have
a stable orbit around its host star and if they keep the atmosphere and water inven-
tory during: (i) the period of heavy bombardment by asteroids and comets and (ii) dur-
ing the host stars’ active X-ray and extreme ultraviolet (XUV) and stellar wind periods.
Impacts play a minor role for planets with the size and mass like Earth, while high
XUV fluxes and strong stellar winds during the active periods of the young host star
can destroy the atmospheres and water inventories. We show that XUV produced temper-
atures in the upper atmospheres of Earth-like planets can lead to hydrodynamic “blow
off”, resulting in the total loss of the planets water inventory and atmosphere, even if
their orbits lie inside the HZ. Further, our study indicates that Earth-like planets inside
the HZ of low mass stars may not develop an atmosphere, because at orbital distances
closer than 0.3 AU, their atmospheres are highly affected by strong stellar winds and coro-
nal mass ejections (CME’s). Our study suggests that planetary magnetospheres will not
protect the atmosphere of such planets, because the strong stellar wind of the young
star can compress the magnetopause to the atmospheric obstacle. Moreover, planets inside
close-in HZ’s are tidally locked, therefore, their magnetic moments are weaker than those
of an Earth-like planet at 1 AU. Our results indicate that Earth-like planets in orbits of
low mass stars may not develop stable biospheres. From this point of view, a HZ, where
higher life forms like on Earth may evolve is possibly restricted to higher mass K stars
and G stars.

Key words: Atmospheric erosion, Atmospheric XUV heating, Stellar radiation, Stellar
wind, Water loss
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1. Introduction

An important requirement for the evolution of a biosphere is the orbital
long-term stability of a terrestrial planet moving in the Habitable Zone
(HZ) of its host star (Dvorak et al., 2003; Menou and Tabachnik, 2003).
The circumstellar HZ was defined and delimited by Kasting et al. (1993)
based on the consideration of a planet with the size and mass compara-
ble to Earth, containing large H2O and CO2 reservoirs, at an orbital dis-
tance where the atmospheric CO2 is able to sustain stable liquid H2O at the
planetary surface. If the planet orbit is below a critical distance, the planet
would experience a so-called runaway greenhouse effect: the vaporized H2O
starts to increase the surface warming and thus enhance the evaporation in
a positive feedback (Kasting, 1988).

This results in a H2O-rich atmosphere that keeps the surface tempera-
ture at high level, in which H2O vapor reaches the high altitudes of the
atmosphere, where it is photolyzed. Within a period of the order of 10–
100 Myr, the planet loses the hydrogen to space and becomes dry. At the
outer border of the HZ, an increase of the CO2 pressure results in a sur-
face cooling more than heating, due to enhanced Rayleigh back-scattering
of the incoming stellar radiation to space. With this definition, the HZ only
depends on the luminosity of the star and the surface temperature which is
assumed to be stabilized above 0◦ Celsius through the carbon-silicate cycle.

The range of the HZ is slightly larger for planets that are larger than
Earth and for exoplanets, which have higher N2 partial pressures. The HZ
moves to greater orbital distances with time because the star’s luminosity
increases as it ages. The HZ of F-type stars is larger and may reach orbi-
tal distances between 1 and 2.5 AU, while the HZ of K and M dwarf stars
is smaller and occurs closer to the star.

Recently, Menou and Tabachnik (2003) investigated 85 detected exo-
planetary systems concerning the possibility of harboring “hypothetical”
terrestrial planets in the HZ of their host stars. For the global statistics
they classified these systems according to the remaining habitable test bod-
ies after an integration time of one Myr and found that about 25% of the
investigated systems have a high probability of hosting terrestrial planets in
their HZ. These systems are mostly those with relatively close giant planets
moving on nearly circular orbits. Another 25% may allow additional terres-
trial planets, but the probability is not very high. The remaining 50% are
very unlikely for hosting additional planets, due to the strong perturbations
of the giant planets in these systems.

The current simplified definition of the HZ and the estimation of its
inner and outer boundaries (Kasting et al., 1993) are useful but several
uncertainties still need to be discussed. Indeed, if a planet has a stable orbit
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within the HZ, this condition is far from being sufficient that an Earth-like
biosphere may develop. The HZ of low mass K stars and M stars are in
orbital distances, where the planets are tidally locked, which can result in
hostile climate effects, where the whole atmosphere can snow out on the
planets nightside (Joshi, 2003). Furthermore, due to the slow rotation tid-
ally locked Earth-like planets shall have weak magnetic dynamos resulting
in weak intrinsic magnetic moments and magnetospheres which can not
protect the planet from atmospheric erosion processes by the stellar wind
(Griessmeier et al., 2004). Because planets inside the HZ of M and the
majority of K stars are tidally locked, plate tectonics may not develop and
super-volcanoes like on Venus (big hot spot volcanoes) may frustrate life
periodically or destroy the long-time habitability of the planet (Courtillot,
2002).

However, we will focus in this work only on problems related to aer-
onomy and long-time stability of planetary atmospheres, which can affect
the atmospheres of terrestrial planets inside stable orbits of close-in HZ’s
of low mass stars. The HZ of low mass stars (late K and M: the large
majority of stars) are exposed to strong X-ray and extreme ultraviolet
(XUV) irradiation (λ: 1–1000 Å) and with a high probability, to strong stel-
lar winds as well (e.g. Wood et al., 2002; Lammer et al., 2003a,b). We show
that this radiation and particle exposure can make the atmosphere of an
Earth-size planet unstable, can destroy the planets water inventory and may
also limit the range of the currently defined HZ.

We review the latest results on observations of the evolution of the radi-
ation environment of solar-like stars in Section 1. In Section 2, we present
the effects of thermospheric heating on an Earth-like planet due to XUV
radiation and discuss the implications for an evolving biosphere. In Section
3, we describe observational evidence of strong mass loss of young solar-
like G and K-type stars and use empirical correlations of stellar mass loss
rates with X-ray surface flux values to estimate the stellar winds of young
stars. The obtained stellar wind fluxes are used in Section 4 for the estima-
tion of atmospheric erosion on Earth-size exoplanets in orbits of close-in
HZ’s. Further, we discuss the effects of coronal mass ejection1 (CME) from
the host stars on the atmospheric environments of hypothetical Earth-like
planets in orbital distances � 0.1 AU and discuss the implications for the
search of habitable terrestrial exoplanets.

1Coronal mass ejections or CME’s are huge bubbles of gas threaded with magnetic
field lines that are ejected from the Sun over the course of several hours.
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2. The XUV Radiation Environment of Solar-like Stars

Because the escape of atmospheric constituents in planetary atmospheres
depends on the evolution of the stellar XUV radiation (λ�1000 Å), which
affects the thermosphere2 and exosphere3 temperature, the evolution of
planetary atmospheres must be understood within the context of the evolv-
ing stellar energy and particle fluxes.

The relevant wavelengths for the heating of upper atmospheres of plan-
ets are the ionizing ones less than 1000 Å (e.g. Bauer and Lammer,
2004; Lammer et al., 2004), which contain only a small fraction of the
stellar spectral power. The wavelength range with an energy flux of �
2 erg cm−2 s−1 represents the predominant XUV heat source for the upper
atmosphere of an Earth-like planet.

Astrophysical observations, obtained with the ASCA, ROSAT, EUVE,
FUSE and IUE satellites, show that coronal XUV emissions of young
main-sequence G-type stars are about 100–1000 times stronger than those
of the 4.5 Gyr old Sun. The resulting relative XUV fluxes yield an excellent
correlation between the emitted flux and stellar age. In the 1000–1 Å inter-
val, the fluxes follow a power-law (Lammer et al., 2003a,b; Ribas et al.,
2005), which is valid for solar like G-type stars of ages between 0.1–7 Gyr.
One finds fluxes of about six times the present XUV flux about 3.5 Gyr
ago, and about 100 the present XUV flux 100 Myr after a G-type star
arrived on the Zero-Age-Main-Sequence (ZAMS). The total X-ray flux of
stars with different age and rotation period shows also a decreasing behav-
ior with time (Guedel et al., 1997).

For an initial estimation of the evolution of XUV irradiances on stars
with lower masses like K and M stars one can use as a proxy indicator, the
ratio of the X-ray luminosity LX to the bolometric luminosity Lbol. This
ratio is highest for the more active stars with the shortest rotation periods
and decrease monotonically with decreasing level of chromospheric activity
(Pizzolato et al., 2003).

With the same underlying physical mechanism responsible for XUV
emissions and a supposedly similar spectral energy distribution, it is rea-
sonable to assume that stars with similar values of log(LX/Lbol) will also
have similar log(LXUV/Lbol) (i.e., 1 Å< λ < 1000 Å).

2Thermosphere: the region in the upper atmosphere where the stellar XUV radiation
is absorbed and in part used for atmospheric heating (Bauer and Lammer, 2004).

3Exosphere: the outermost atmospheric layer where no collisions between atmospheric
particles take place and light atoms with energies higher than the escape energy can be
lost thermally from the planet (Bauer and Lammer, 2004).
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Recent studies of K type stars show that they stay at saturated emission
levels of about 100 times the present solar XUV flux for a little longer time
and then also decrease following a power–law relationship of a very simi-
lar slope. Interestingly, M0–M5 stars seem to have saturated emission lev-
els up to 1 Gyr and possibly longer and then decrease in an analogous way
to G and K stars (Ribas et al., 2005). These preliminary results indicate
that early K stars and early M-type stars may have XUV irradiances that
are about 3–4 times and about 10–100 times higher, respectively, than solar-
type stars of the same age. More accurate investigations are currently being
carried out with an extended sample and a large variety of observational
data (Ribas et al., 2005).

3. Atmospheric Blow off Due to XUV Heating

The critical phase if a water-bearing terrestrial planet, at a dynamically sta-
ble orbit inside the HZ, can evolve a biosphere, is its survival during the
early period of the high XUV flux of the young host star. As discussed
before, the energy budget of the upper atmosphere of Earth-like planets is
primarily governed by the heating of the gas due to the absorbtion of the
XUV radiation by the atmospheric species, by heat transport due to con-
duction and convection and by heat loss due to emissions in the infrared
(IR) (e.g. Bauer and Lammer, 2004).

One can summarize the important heating and cooling processes in the
upper atmosphere of the Earth due to the N2, O2, and O photo-ionization,
photo-dissociation of O2 and O3 molecules, chemical heating in exothermic
reactions with O and O3 and neutral gas heat conduction (e.g. Gordiets
et al., 1982). Radiative loss by IR occurs when atmospheric constituents
are present which have transition levels in the IR. This is the case for
atomic oxygen in the terrestrial atmosphere and NO, CO, CO2, OH, O3,
etc. in other planetary atmospheres.

The effective heat production QXUV in the upper atmosphere of an
Earth-like planet is balanced by the divergence of a conductive heat flux in
the thermosphere due to the incoming XUV radiation and the heat energy
LIR lost by emitted IR radiation per unit volume

ρcv

[
∂T

∂t
+ �vn · �∇T

]
+p �∇ · �vn − �∇ · (Kn

�∇T )=QXUV −LIR, (1)

where ρ is the atmospheric mass density, cv the corresponding specific heat at
constant volume, �vn the velocity and p the pressure of the neutral atmosphere
and Kn is the thermal conductivity. A simplification in the one-dimensional
case (vertical variability z only) can be applied in the following form
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ρcp

(
∂T

∂t
+vnz

∂T

∂z

)
− ∂

∂z

(
Kn(T )

∂T

∂z

)
=QXUV −LIR. (2)

For the calculation of temperature profiles as function of various stellar
XUV radiation fluxes, we use the thermospheric model of Gordiets et al.
(1982) and solve the time-dependent 1D equations of continuity, hydro-
static and heat balance simultaneously in the height region above the base
of the thermosphere up to the exosphere level.

When a large amount of XUV energy is deposited at the top of an
atmosphere, heated atoms can overcome the planetary gravity field and a
planetary wind consisting of the heated atoms develops. By assuming a
progressive increase of stellar XUV flux from present features (Sun = 1
XUV) to 10 or even 100 times the present XUV flux, the following con-
ditions shown in Figure 1 occur:

Figure 1. Illustration of the rise of exobase level and temperature in Earth’s present ther-
mosphere and exosphere for various XUV levels times the present Sun-value (1 Sun). If
the exosphere temperature reaches about 5000 K (6 XUV: 3.5 Gyr ago), diffusive or even
energy-limited escape for hydrogen atoms originates. 100 time higher XUV fluxes can even
remove heavy gases like O, C and N atoms with a very high efficiency from an Earth-like
planet.
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First step: the upper atmospheric temperature increases, with a subse-
quent increase of the altitude of the exobase4 (see Figure 1).

Second step: at a certain level of the XUV flux, there is no (quasi) static
solution anymore and atmospheric blow off occurs.

If IR cooling of the thermosphere can not balance the incoming stellar
XUV energy anymore, the excess thermal energy is directly converted into
kinetic energy and hydrodynamic escape occurs. Jeans escape occurs when
only a very small fraction of atoms, in the energetic wing of the velocity
Maxwellian distribution, are lost to space (in quasi steady state), hydrody-
namic diffusion-limited or energy-limited escape5 results in a rapid deple-
tion of the full distribution, which cannot be re-populated over sufficiently
short time-scales. The critical temperature for H atoms on an Earth-mass
planet is about 5000 K. One can see from Figure 1 that the temperature
would have been overcome during the first Gyr, indicating that the early
Earth had a different atmosphere than today. Our calculation indicates
that only dense Venus-like CO2 atmospheres can protect the atmospheres
of young Earth-like exoplanets from atmospheric evaporation and survival
of their water inventories during active XUV periods of their host stars
because of strong IR cooling. However, long-time XUV radiation fluxes in
the order of about 50–100 times the present value can dramatically affect
the water inventory of a terrestrial exoplanet and possible even the stability
of its whole atmosphere.

The latter problem may occur on a terrestrial H2O-rich planet inside
the HZ of a low mass M or K star, where there is observational evidence
that their XUV energy fluxes stay active over longer time periods. First,
the CO2 may prevent extreme hydrodynamic escape conditions like on early
Earth due to its heavy mass and good IR cooling capabilities, but after
the CO2 is removed from the atmosphere like on Earth due to chemical
weathering in a humid wet environment (Franck et al., 2002), N2 like on
present Earth may become the dominant constituent in the atmosphere,
so that the upper atmosphere is heated like in Figure 1 and large escape

4Exobase: atmospheric level where the mean free path of the main atmospheric spe-
cies is similar to the scale height H = (kT /mg) of the gas, with k the Boltzmann constant,
T the exospheric temperature, g the gravitational acceleration and m is the mass of the
atmospheric species.

5Hydrodynamic escape: diffusion-limited escape means that all atoms especially the
light ones, which diffuse through the surrounding heavy gas up to the upper atmosphere
can escape from the planet. Energy-limited escape occurs if only one species (i.e., hydro-
gen) is available in large amounts in the upper atmosphere so that it can escape as
a planetary wind as observed at the giant hydrogen-rich exoplanet HD 209458 b (e.g.
Lammer et al., 2003b).
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rates develop, which evaporate the planets H2O inventory (e.g. Chassefiere,
1997a; Lammer et al., 2003b; Bauer and Lammer, 2004).

Parallel to chemical weathering and removal of CO2 from the planets
atmosphere a CO2 atmosphere can also be eroded by the interaction of the
stellar wind plasma of the young star.

4. Stellar Wind Evolution of Solar-like Stars

The temporal evolution of the stellar wind velocity can be derived from
lunar and meteorite fossil records (Newkirk, 1980). For the estimation of
the early stellar wind density, one can use the mass loss estimations pro-
vided by Wood et al. (2002), which are IR from Hubble Space Telescope
high–resolution spectroscopic observations of the H Lyman-α feature of
several near–by main–sequence G and K stars.

Wood et al. (2002) found from their observations that the mass loss
dM/dt of solar-like G and K stars is proportional to their observed X-ray
surface flux, which is correlated to the rotation periods Prot of the stars.
The product of the mass loss and the stellar wind velocity vsw can be deter-
mined by (Griessmeier et al., 2004; Lammer et al., 2004)

dM

dt
vsw ∝P −3.34±0.67

rot . (3)

By using the temporal behavior of the stellar wind from Newkirk (1980)
as vsw = v0(1 + t/tc)

−0.4, the time behavior of the stellar wind density can
be found as nsw = n0(1 + t/tc)

−1.54±0.47. The time constant is tc = 2.56 ×
107 year. The proportionality constants n0 and v0 can be derived for pres-
ent–day conditions at 1 AU. For distances other than 1 AU, the constants
can be evaluated with a r−2 dependence.

Nevertheless it should be noted that Newkirk (1980) pointed out that a
lower initial rotation rate in this model would give slightly lower values for
the early solar/stellar wind velocities and vice versa, which is not consid-
ered in this work. Therefore, more active young solar-like G and K stars
with X-ray surface fluxes larger than 106 erg cm−2 s−1 must be studied dur-
ing the near future (Linsky and Wood, 2004).

5. Atmospheric Loss Induced by Stellar Wind and CME Events

The boundary between the stellar wind and the planetary magnetosphere,
which protects an atmosphere from stellar wind erosion processes is called
the magnetopause. The precise location and shape of the magnetopause
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are determined mainly by the stellar wind parameters, which depend on
the orbital distance from the host star and the planetary magnetic field
strength.

Planets in orbits close to their host star are subject to strong tidal dis-
sipation, leading to tidal locking on a very short timescale. For tidally
locked planets the rotation period is equal to the orbital period, therefore,
a fast rotation of the planet is not possible. All common scaling laws for
the planetary magnetic moment yield a magnetic moment rapidly decreas-
ing with decreasing rotation rate (Griessmeier et al., 2004). Due to the
reduced internal magnetic moment the pressure balance is shifted closer to
the planet until the planetary atmosphere acts as an obstacle (Figure 2). In
this case, the atmosphere is subject to various non-thermal loss processes.
Moreover, the magnetic and flare activity of young stars is much higher
than at a 4.5 Gyr old star like our Sun, therefore, it is reasonable to assume
that more CME’s occur at these stars. These CME’s reach close-in exopla-
nets at orbital distances <0.1 and affect strongly their magnetospheres and
atmospheres. Scaling laws from the observation of CME’s for the spatial
evolution of the maximum and minimum density nmax = 7.1 × r−2.99 cm−3

Figure 2. Compression of the magnetopause with and without tidal locking (Magnetic
field strength is similar than on Earth) at orbital distances of 0.03 and 0.1 AU in units
of the planetary radii Rp.
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and nmin = 4.88 × r−2.31 cm−3, respectively, and the bulk velocity is about
500 km/s (Kodachenko et al., 2005). For example the planetary magnetic
field compression of a Jupiter-class exoplanet due to the interaction with
a CME is shown in Figure 3. We use a rough estimation for the calcu-
lation of the temporal evolution of an unprotected planetary atmosphere
due to mass loss estimations caused by photo-ionization, electron impact
ionization and charge exchange from the upper atmosphere into the stel-
lar wind plasma flow around the planetary obstacle for the changing solar
wind parameters (Michel, 1971; Bauer, 1983).

For preliminary mass loss estimations we use the model of Michel
(1971) and Bauer (1983), which assumed that the solar wind interaction is
confined to the scale height H of the atmospheric gas and the mass loss
is produced by the ionization of the neutral gas above the planetary obsta-
cle corresponding to the compressed magnetopause/ionopause distance. By
applying momentum balance considerations between the stellar wind and

Figure 3. Compression of the magnetopause of a Jupiter-class exoplanet due to a CME
for orbital distances of 0.05 and 0.1 AU. Note that the Earth magnetic moment is less
than 10−4 times the Jupiter magnetic moment, and therefore the atmosphere of terrestrial
planets, which are hit by a CME at this orbital distances will be eroded or destroyed.
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Figure 4. Atmospheric loss rates for Earth-like exoplanets with low magnetic moments due
to tidal locking as a function of the orbital distance in bar during 1 Gyr (solid line, right
axis) and in kg/s (dashed line, left axis).

the photo-ions and steady-state conditions (Bauer, 1983) the atmospheric
mass loss rate dMa/dt due to the solar wind interaction is given as

dMa

dt
≈−2KρswvswR2

ip, (4)

where K ≈ 0.3 is a so-called mass loading limit6 (Michel, 1971; Bauer,
1983), and the subscript “sw” indicates stellar wind conditions. The esti-
mated loss rates for Earth-like planets as function of orbital distance are
shown in Figure 4 for low magnetic moments due to tidal locking. One can
see that atmospheres of more than about 500 bar can be removed within
1 Gyr for close-in orbits of 0.03 AU. At orbits of 0.1 AU, the atmospheric
loss is in the range of several bars during 1 Gyr. The loss rate per sec-
ond is about 500 kg/s for planets orbiting at 0.1 AU, more than 5000 kg/s
at 0.05 AU and less than 5 kg/s at 0.5 AU. For comparison, the present
loss rate at Venus is about 1 kg/s (Bauer, 1983). A recent study by Lam-
mer et al. (2005) applied a more complex numerical test particle model to

6Mass loading limit: Only a fraction of about 1/3 of the atmospheric species, which
are affected by the stellar wind plasma flow will be ionized and picked up.
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Earth-like exoplanets-CME interaction in close-in HZ’s. They found that a
combination of weak magnetic moments, high XUV fluxes and extended
upper atmospheres can result in loss rates up to 100 of bars even at 0.2
AU, which is much higher than the estimates obtained from equation (4)
and shown in Figure 4.

6. Conclusion

Our study suggests that exoplanets orbiting inside close-in HZ’s of M and
low mass K stars may not develop Earth-like biospheres, because these
planets may lose their atmospheres and water inventories due to the long-
time activity in high XUV radiation, strong stellar winds and CME’s of
their host stars. Moreover, exoplanets inside the HZ of these stars are tid-
ally locked so that their magnetic dynamos and the resulting magneto-
spheres will be weaker than the magnetosphere of Earth at 1 AU. From this
point of view we suggest that higher mass K and G stars should be consid-
ered as good primary stellar candidates for the search of “hypothetically”
habitable planets in future terrestrial planet finding missions like Darwin
(ESA) and TPF-C (NASA). Thus, dynamical stability with further restric-
tions on the orbit of a planet is the requirement of a stable atmosphere, the
result of our investigation has also an impact on studies, which are under-
way to produce catalogues of hypothetical planetary systems where terres-
trial exoplanets can have stable dynamical orbits but can also keep their
atmospheres and surface water inventories.
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Abstract. In this paper, we estimate the likelihood to find habitable Earth-like planets on sta-
ble orbits for the extrasolar planetary systems ε Eridani, 55 Cancri, 47 Ursae Majoris, and ρ

Coronae Borealis and provide a new tool to assess habitability of extrasolar planetary systems.
For determining the habitable zone in these systems an integrated system approach is used
taking into account a variety of climatological, biogeochemical, and geodynamical processes.
Habitability is linked to the photosynthetic activity on the planetary surface. We find that
habitability strongly depends on the age of the stellar system and the characteristics of the
Earth-like planet. In particular the portion of land/ocean coverages plays an important role.
In general, a high percentage of ocean area significantly increases the probability for habit-
ability of planets on stable orbits in extrasolar planetary systems. We show that the systems ε

Eridani and 55 Cancri are most promising to find dynamic habitable Earth-like planets, while
the system ρ Coronae Borealis is most unpromising.

Key words: extrasolar planets, geodynamics, habitable zone, orbital stability, planetary climate.

1. Introduction

The search for extrasolar Earth-like planets is one of the main goals of
present research. More than 150 extrasolar giant planets are known to
orbit around Sun-like stars including several multiple-planet systems. These
giant planets, with hydrogen and helium as the main constituents, have
atmospheres too turbulent to permit the emergence of life and have no
underlying solid surfaces or oceans that could support a biosphere. The
distribution of masses of all known exoplanets lets scientists suppose that
there must be a multitude of planets with lower masses (Marcy et al.,
2003). The existence of Earth-type planets around stars other than the Sun
is strongly implied by various observational findings including (1) the steep
rise of the mass distribution of planets with decreasing mass, which implies
that more small planets form than giant ones; (2) the detection of pro-
toplanetary disks (with masses between 10 and 100 times that of Jupiter)



288 BLOH ET AL.

around many solar-type stars younger than ∼3 Myr; and (3) the discov-
ery of “debris disks” around middle-aged stars, the presumed analogs of
the Kuiper Belt and zodiacal dust (Marcy and Butler, 2000 and references
therein).

Even if it seems today beyond the technical feasibility to detect Earth-
mass planets we can apply computer models to investigate known exoplan-
etary systems to determine whether they could host Earth-like planets with
surface conditions sufficient for the emergence and maintenance of life on
a stable orbit. Such a configuration is described as dynamically habitable.
Jones et al. (2001) have investigated the dynamical habitability of known
exoplanetary systems. They used the boundaries of the habitable zone (HZ)
originating from Kasting et al. (1993). The inner boundary is defined as the
maximum distance from the star where a runaway greenhouse effect would
lead to the evaporation of all the surface water, and the outer boundary as
the maximum distance at which a cloud-free CO2 atmosphere could main-
tain a surface temperature above 0◦C. To test the intersection of stable
orbits and the HZ, putative Earth-mass planets were launched into var-
ious orbits in the HZ and a symplectic integrator was used to calculate
the celestial evolution of the extrasolar planetary system. In this paper,
we adopt a somewhat different definition of HZ already used by Franck
et al. (1999, 2000a, b). Here habitability (i.e., presence of liquid water at all
times) does not just depend on the parameters of the central star, but also
on the properties of the planet itself. In particular, habitability is linked
to the photosynthetic activity of the planet, which in turn depends on the
planetary atmospheric CO2 concentration, and is thus strongly influenced
by planetary geodynamics. This leads to additional spatial and temporal
limitations of habitability, as the stellar HZ (defined for a specific type of
planet) becomes narrower with time due to the persistent decrease of the
planetary atmospheric CO2 concentration.

2. Habitability of Extrasolar Planetary Systems

Hart (1978,1979) calculated the evolution of the atmosphere of a terres-
trial planet over geologic time by varying its distance from the Sun. In his
approach, the HZ is the region within which an Earth-like planet might
enjoy moderate surface temperatures needed for advanced life forms. He
found that the HZ ([Rinner,Router]) between runaway greenhouse and run-
away glaciation is surprisingly narrow for G2 stars like our Sun: Rinner =
0.958 AU, Router = 1.004 AU. A main drawback of these calculations is the
neglect of the negative feedback between atmospheric CO2 content and
mean global surface temperature discovered later by Walker et al. (1981).
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The implementation of this feedback by Kasting et al. (1988) provided
an almost constant inner boundary (Rinner = 0.95 AU) but a remarkable
extension of the outer boundary near Martian distance (Router = 1.5 AU).
Later Kasting et al. (1993) and Kasting (1997) recalculated the present HZ
boundaries as Rinner = 0.95 AU and Router = 1.37 AU. Kasting et al. (1993)
defined the HZ of an Earth-like planet as the region where liquid water
is present at the surface. According to this definition the inner boundary
of the HZ is determined by the loss of water via photolysis and hydrogen
escape. The outer boundary of the HZ is determined by the condensation
of CO2 crystals out of the atmosphere that attenuate the incident sunlight
by Rayleigh scattering. The critical CO2 partial pressure for the onset of
this effect is about 5–6 bar (Kasting, personal communication, 1999). On
the other hand, the effects of CO2 clouds have been challenged by For-
get and Pierrehumbert (1997). The CO2 clouds have the additional effect
of reflecting the outgoing thermal radiation back to the surface. The result
for the HZ as a function of central star mass for a zero-age main sequence
star is shown in Figure 1.

Figure 1. The habitable zone of a zero age main sequence star as a function of the stellar
mass from Kasting et al., (1993).
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In our calculation of the HZ we are following an integrated system
approach. On Earth, the carbonate-silicate cycle is the crucial element for
a long-term homeostasis under increasing solar luminosity. In most stud-
ies (see, e.g., Caldeira and Kasting, 1992), the cycling of carbon is related
to the present tectonic activities and to the present continental area as a
snapshot of the Earth’s evolution. On the other hand, on geological time-
scales the deeper parts of the Earth are considerable sinks and sources for
carbon. In addition, the tectonic activity and the continental area change
noticeably. Therefore, we favour the so-called geodynamical models that
take into account both the growth of continental area and the decline in
the spreading rate (Franck et al., 2000a). Our numerical model couples the
stellar luminosity, L, the silicate-rock weathering rate, Fwr, and the global
energy balance to allow estimates of the partial pressure of atmospheric
and soil carbon dioxide, Patm and Psoil, respectively, the mean global sur-
face temperature, Tsurf , and the biological productivity, �, as a function of
time, t (Figure 2). The main point is the persistent balance between the
CO2 sink in the atmosphere-ocean system and the metamorphic (plate-tec-
tonic) sources. This is expressed with the help of dimensionless quantities
(Berner et al., 1983, Kasting, 1984)

fwr ·fA =fsr, (1)

where fwr ≡ Fwr/Fwr,0 is the weathering rate normalised by the present
value, fA ≡Ac/Ac,0 is the continental area normalised by the present value,
and fsr ≡ S/S0 is the spreading rate normalised by the present value.
Equation (1) can be rearranged by introducing the geophysical forcing ratio
GFR (Volk, 1987):

fwr = fsr

fA

=: GFR. (2)

With the help of Equation (2), we can calculate the normalised weather-
ing rate from geodynamics based on the continental growth model and
the spreading rate (Franck et al., 2000a). The continental area can be pre-
scribed by several scenarios, e.g. delayed growth, linear growth or constant
area. The spreading rate is determined with the help of the boundary layer
theory of whole mantle convection (Turcotte and Schubert, 1982). On the
other hand, the weathering rate, fwr, depends directly on the surface tem-
perature and the CO2 partial pressure (Walker et al., 1981):

fwr =fwr(Tsurf , Patm). (3)

The connection between the stellar parameters and the planetary climate
can be formulated by using a radiation balance equation (Williams, 1998)
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Figure 2. Box model of the integrated system approach (Franck et al., 2000a). The arrows
indicate the different forcings (dotted lines) and feedback mechanisms (solid lines).

L

4πR2
[1−α(Tsurf , Patm)]=4IR(Tsurf , Patm). (4)

Here α denotes the planetary albedo, IR the outgoing infrared flux, and R

the distance from the central star. The evolution of the surface temperature
and the CO2 partial pressure can be derived by solving Equations (2)–(4)
simultaneously.

In our model, biological productivity is considered to be solely a func-
tion of the surface temperature and the CO2 partial pressure in the atmo-
sphere

�

�max
=
(

1−
(

Tsurf −50◦C
50◦C

)2
)(

Patm −Pmin

P1/2 + (Patm −Pmin)

)
. (5)

Here �max denotes the maximum biological productivity, which is assumed
to amount to twice the present value �0 (Volk, 1987). P1/2 + Pmin is the
value at which the pressure-dependent factor is equal to 1/2, and Pmin
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is fixed at 10−5 bar, the presumed minimum value for C4-photosynthesis
(Pearcy and Ehleringer, 1984; Larcher 1995). The evolution of the bio-
sphere and its adaption to even lower CO2 partial pressures are not taken
into account in our model. For a given Patm, Equation (5) yields maxi-
mum productivity at Tsurf =50◦C and zero productivity for Tsurf �0◦C and
Tsurf � 100◦C. There exist hyperthermophilic life forms with a temperature
tolerance well above 100◦C. In general, these are chemoautotrophic organ-
isms not included in this study. At this point we should emphasise that all
calculations are done for a planet with Earth mass and size, and an Earth-
like radioactive heating rate in its interior.

The HZ around an extrasolar planetary system is defined as the spa-
tial domain where the planetary surface temperature stays between 0◦C and
100◦C and where the atmospheric CO2 partial pressure is higher than 10−5

bar to allow photosynthesis. This is equivalent to a non-vanishing biologi-
cal productivity, �>0, i.e.,

HZ :={R |�(Patm(R, t), Tsurf (R, t))>0}. (6)

According to the definition in Equation (6) the boundaries of the HZ
are determined by the surface temperature extrema, Tsurf = 0◦C ∨Tsurf =
100◦C, or by the minimum CO2 partial pressure, Patm =10−5 bar. Therefore,
the specific parameterisation of the biological productivity (Equation (5))
plays a minor role in the calculation of the HZ. In the approach by
Kasting et al. (1993) the HZ is limited only by climatic constraints invoked
by the luminosity of the central star, while our method relies on additional
constraints. First, habitability is linked to the photosynthetic activity of the
planet (Equation (6)) and second, habitability is strongly affected by the
planetary geodynamics. In principle, this leads to additional spatial and
temporal limitations of habitability. To present the results of our modelling
approach we have delineated the HZ for an Earth-like extrasolar planet at
a given but arbitrary distance R in the stellar mass-time plane (Figure 3).
For this particular case a linear continental growth model was applied, i.e.
fA ≡fA(t)= t/(4.6 Gyr). A detailed discussion about the influence of con-
tinental growth models can be found in Franck et al. (2000a). The quali-
tative behaviour does not depend on the choice of a specific scenario. In
general, the HZ is limited by the following effects:

1. Stellar lifetime on the main sequence τH decreases strongly with mass.
Using simple scaling laws (Kippenhahn and Weigert, 1990), we esti-
mated the central hydrogen burning period and got τH < 0.8 Gyr for
M > 2.2 M�. Therefore there is no point in considering central stars
with masses larger than 2.2 M� because an Earth-like planet may need
approximately 0.8 Gyr of habitable conditions for the development of
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Figure 3. Shape of the HZ (grey shaded) in the mass-time plane for an Earth-like planet
at distance R = 2 AU from the central star. The potential overall domain for accommo-
dating the HZ for planets at some arbitrary distance is limited by a number of factors
that are independent of R: (I) Minimum time for biosphere development (τH < 0.8 Gyr
excluded); (II) Central-star life time on the main sequence (t >τH excluded); (III) Geody-
namics of the Earth-like planet (t > tmax excluded); (IV) Tidal locking of the planet (non-
trivial sub-domain excluded). The excluded realms are marked by light grey shading in
case of the first three factors, and by grey hatching for the tidal-locking effect. Picture is
taken from Franck et al., (2000b).

life (Hart, 1978, 1979). Quite recently, evidence for liquid water at the
Earth’s surface already at 0.2 Gyr after formation has been found (Wilde
et al., 2002). Because liquid water is a necessary condition for life, this
is the lower limit for the origin of life (Bada, 2004). If we perform cal-
culations with τH < 0.2 Gyr, we obtain qualitatively similar results, but
the upper bound of central star masses is shifted to 3.4 M�.

2. When a star leaves the main sequence to turn into a red giant, there
clearly remains no HZ for an Earth-like planet. This limitation is rel-
evant for stellar masses in the range between 1.1 and 2.2 M�.

3. In the stellar mass range between 0.6 and 1.1 M� the maximum life
span of the biosphere is determined exclusively by planetary geody-
namics, which is independent (in a first approximation, but see limiting
effect 4) of R. So we obtain the limitation t < tmax.

4. There have been discussions about the habitability of tidally locked
planets. We take this complication into account and indicate the domain
where an Earth-like planet on a circular orbit experiences tidal lock-



294 BLOH ET AL.

ing. That domain consists of the set of (M, t) couples which generate
an outer HZ boundary below the tidal-locking radius. This limitation is
relevant for M <0.6 M�. As an illustration we depict the HZ for R =2
AU in Figure 3.

3. Orbital Stability

Planetary habitability requires orbital stability of the Earth-type planet
over a biologically significant length of times in the HZ. The analysis of
orbital stability of (hypothetical) terrestrial planets in extrasolar planetary
systems has to take into account the effects of the giant planet(s) in those
systems. In many cases the giant planets restrict the orbital stability of
the terrestrial planet to a small or very small orbital domain or prevent
orbital stability completely. There exists a variety of papers discussing the
orbital stability of (hypothetical) terrestrial planets in extrasolar planetary
systems, which is strongly influenced by the masses, orbital positions and
eccentricities of Jupiter-size planets in such systems. Jones et al., (2001)
analysed the stability of orbits of terrestrial planets in several known extra-
solar planetary systems. They used a mixed-variable symplectic integrator
by Chambers (1999) over a time scale of ≈109 years, while Pilat-Lohinger
and Dvorak (2002) used a Lie-series method (e.g., Hanslmeier and Dvorak,
1984) for the calculation of the orbits of an Earth-like planet. The stability
can be determined by checking for close encounter or using the maximum
eccentricity method. If the eccentricity of the Earth-like planet reaches a
critical threshold the orbit is temporarily leaving the habitable zone. Never-
theless, Williams and Pollard (2002) investigated Earth-like worlds on high
eccentric orbits with excursions beyond the HZ. Such planets can remain
habitable only in the case of sufficient high atmospheric density. In a first
approximation planets with such orbits are excluded from habitability. If
the Earth-like planet approaches three Hill radii of the giant planet severe
orbital perturbations of the terrestrial planet occur. The Hill radius RH is
defined as

RH =
( m

3M

)1/3
a, (7)

where m is the mass of the giant planet, M the central star mass and a is
the semimajor axis.

Another method to assess the stability of planetary systems is the indi-
cator Mean Exponential Growth of Nearby Orbits (MEGNO) applied by
Goździewski (2002) to extrasolar planetary systems. The stability is deter-
mined by calculating the Lyapunov exponents of nearby orbits. It is based
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on the same ideas as the method of Lyapunov Characteristic Numbers
(LCN). In contrast to LCN which requires integration over long evolution-
ary time the MEGNO method is very fast.

In our study we are using results taken from Jones and Sleep (2003).
They calculated extensively the stability of orbits for the systems 47 Ursae
Majoris (47 UMa), ε Eridani (ε Eri), ρ Coronae Borealis (ρ CrB), Gliese
876 and ν Andromeda and found that the first three systems can in prin-
ciple host habitable Earth-like planets on stable orbits. The HZ has been
determined by using results from Kasting et al. (1993). Additionally we are
using our results from a previous paper (von Bloh et al., 2003) for the sys-
tem 55 Cancri (55 Cnc). In Table I the luminosity, stellar age and range of
stable orbits for terrestrial planets of the four extrasolar planetary systems
under investigation (ε Eri, 55 Cnc, 47 UMa, and ρ CrB) are provided. For
the stellar age of ρ CrB we use a value from Noyes et al., (1997), and for
47 UMa from Cuntz et al. (2003).

4. Results and Discussion

The HZ for a fixed central star luminosity of L ≡ 1 L� is calculated as a
function of the age of the stellar system. For the investigation of an Earth-
like planet under the external forcing, we adopt a model planet with a pre-
scribed continental area. The fraction of continental area to the total plan-
etary surface is varied between 0.1 and 0.9. According to Franck et al.
(2000a, Table I) a constant continental area yields the maximum life span
of the biosphere. Therefore, we have chosen this scenario in order to get the

TABLE I

Stellar parameters (luminosity, age) and range of orbital stability of
an Earth-like planet in the extrasolar planetary systems ε Eri, 55 Cnc,
47 UMa, and ρ CrB. The sources of data are denoted by footnotes.

System Luminosity Age Orbital stability
(solar units) (Gyr) (AU)

ε Eri 0.28b 1b R <0.59b

55 Cnc 0.69a 4.5a R >0.72a

47 UMa 1.55c 6.3c R <1.25c

ρ CrB 1.61b 10d R >0.80b

a von Bloh et al. (2003)
b Jones and Sleep (2003)
c Cuntz et al. (2003) and Franck et al. (2003)
d Noyes et al. (1996)
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Figure 4. The HZ around an central star for a luminosity of L= 1L�. The grey shaded
areas indicate the extent of the HZ for different relative continental areas. The vertical
bars indicate the permissible orbital range as constraint by the stellar age and the orbi-
tal stability limit for the systems ε Eri, 55 Cnc, 47 UMa, and ρ CrB. The limits R′ are
rescaled to 1L�, R′ =R

√
L�/L.

most optimistic estimation of habitability of an extrasolar planetary sys-
tem. The HZ is calculated by combining the Equations (5) and (6) with
the solutions for Tsurf and Patm from Equations (2) to (4).

In Figure 4 the grey shaded areas indicate the HZs for different constant
continental areas of the Earth-like planet. While the inner limit of the HZ
does not change significantly with age, the outer limit shows a non trivial
behaviour. Up to a critical age the outer limit is constant and is determined
by the maximum CO2 atmospheric pressure (5 bar). Beyond this critical
point the outer boundary moves inward due to geodynamic effects. At this
point the source of carbon released into the atmosphere is too low to pre-
vent the planet from freezing. An ultimate life span tmax of the Earth-like
planet is determined by the coincidence of the outer and inner boundary.
For a planet older than this ultimate life span, t > tmax, no habitability can
be found. The critical age and the ultimate time span is an decreasing func-
tion of the relative continental area of the Earth-like planet. It is obvious
that an almost completely ocean-covered planet (“water world”) has the
highest likelihood of being habitable (Franck et al., 2003).

The intervals of orbital stability (see Table I) for the four extrasolar
planetary systems are plotted as vertical bars in Figure 4. For compari-
son they are rescaled to a luminosity of 1 L�, R′ =R

√
L�/L. The range of

dynamical habitability can be easily derived by the intersection of the verti-
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cal bars with the HZ for a certain relative continental area. The likelihood
that an Earth-like planet is both on a stable orbit and also within the HZ
can be quantitatively estimated from the width of the intersection of the
HZ and the range of stable orbits (Ostable):


R =max(HZ ∩Ostable)−min(HZ ∩Ostable). (8)

The widths 
R of these intersections are shown in Figure 5 for the
four extrasolar planetary systems as a function of the relative continental
area. We find that the system 55 Cnc and ε Eri are most promising for
finding Earth-like planets in the HZ on stable orbits. While for the sys-
tem ρ CrB the habitability is strongly reduced by its high age, dynamical
constraints are limiting the width for the system 47 UMa. The likelihood
of finding Earth-like planets in 55 Cnc is only slightly lower than in our
solar system (dashed line in Figure 5). In particular the likelihood of find-
ing dynamic habitable planets in the system ε Eri is almost independent
of the continental area. In general, we can state that finding an Earth-like
habitable extrasolar planet is the more promising the younger the system
and the lower its land coverage on its surface. Younger systems like ε Eri
tend to be more geodynamically active and therefore contain more carbon
dioxide in the planetary atmosphere. This leads to a stronger greenhouse
effect and a broader HZ. As a consequence, habitability is maintained at
larger distances from the stars, i.e., regions of lower stellar flux densities,
as also pointed out by Forget and Pierrehumbert (1997), Mischna et al.,

Figure 5. Widths 
R (Equation (8)) of the orbital range both warranting habitability and
orbital stability for the four extrasolar planetary systems (ε Eri, 55 Cnc, 47 UMa, ρ CrB)
as a function of relative continental area. The dashed line denotes the result for the solar
system.
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(2000) and others in their studies on the early Martian climate. Planets
with a relative high percentage of land coverage show a stronger weather-
ing and therefore an enhanced removal of carbon dioxide from the atmo-
sphere. This leads to a weaker greenhouse effect and habitability ceases at
smaller ages.

5. Conclusions

We studied the principle possibility of Earth-like habitable planets in the
systems ε Eri, 55 Cnc, 47 UMa, and ρ CrB under the condition that these
planets have successfully formed and are orbitally stable. In particular, we
considered Earth-like planets with different ratios of land/ocean coverages.
This study is based on the integrated system approach, which describes the
photosynthetic biomass production under geodynamic conditions. We show
that the likelihood to find a habitable Earth-like planet on a stable orbit
around a central star in general depends critically on the percentage of the
planetary land/ocean coverage. This is explicitly true for the system 55 Cnc
where an almost completely ocean-covered planet (“water world") has the
highest likelihood of being both habitable and orbitally stable. On the other
hand, for relatively young systems like ε Eri, the habitability is only lim-
ited by dynamical constraints. The reason is that planets with increased
land coverage show a stronger weathering and therefore increased removal
of carbon dioxide from the atmosphere thus limiting habitability. Relatively
young planets have a high geodynamic activity increasing the amount of
carbon dioxide in the atmosphere by emissions at mid-ocean ridges. In con-
trast to Jones and Sleep (2003) the likelihood to find a habitable Earth-like
planet in ρ CrB is rather low. The high age of ≈ 10 Gyr strongly reduces
the width of the HZ. For an Earth-like planet covered with more than 30%
continental area habitability vanishes.

Our integrated system approach provides an easy to use method to
determine the dynamic habitability for virtual Earth-like planets of newly
discovered extrasolar planetary systems. Once the luminosity, the stellar age
and the range of stability are known one can directly derive the likelihood
of finding a habitable Earth twin using the HZ diagram (Figure 4). In this
way we offer a new tool to choose potential targets for future space mis-
sions (e.g., TPF, Darwin).
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