
Taxonomies
for the Development

and Verification of

Digital Systems

Edited by
Brian Bailey, Grant Martin and Thomas Anderson

Taxonomies for the
Development and
Verification of
Digital Systems

Edited by
Brian Bailey
Grant Martin
Thomas Anderson

Taxonomies for the
Development and
Verification of
Digital Systems

Springer -

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN 0-387-24019-5 e-ISBN 0-387-24021-7 Printed on acid-free paper.

O 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if the are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11329473

Table of Contents

Abbreviations and Acronyms ... xi
Contributors ... xv
Preface .. xix
Chapter 1 Introduction ... 1

1.1 What is a Taxonomy? .. 1
1.2 About this Collection of Taxonomies 1
1.3 The History of the Taxonomies ... 2

1.3.1 Early Model Taxonomy Work .. 2
1.3.2 First Model Taxonomy Industrial Effort 3
1.3.3 Work within the VSIA .. 4
1.3.4 Extension into other Areas ... 4
1.3.5 Latest Revisions .. 5 . .

1.4 Taxonomy Organization .. 5
1.4.1 Use of this Book ... 6

Chapter 2 Model Taxonomy .. 9
2.1 Introduction ... 9

2.1 . 1 Taxonomy Definition ... 9
2.1.1.1 Temporal Resolution Axis ... 12
2.1.1.2 Data Resolution Axis ... 13
2.1.1.3 Functional Resolution Axis .. 14
2.1.1.4 Structural Resolution Axis .. 15
2.1.1.5 Software Programming Resolution Axis 16

2.1.2 InternalIExternal (Interface) Concept 1 7
2.1.3 Note on Structure/Behavior/Interface Concepts 19
2.1.4 Additional Attributes .. 21
2.1.5 Vocabulary ... 21

2.2 General Modeling Concepts .. 22
2.2.1 Primary Model Classes ... 23

2.2.1 . 1 Functional Model ... 24
2.2.1.2 Behavioral Model .. 25
2.2.1.3 Structural Model .. 26
2.2.1.4 Interface Model ... 27
2.2.1.5 System-Level Interfaces ... -28

2.2.2 Specialized Model Classes ... 30
2.2.2.1 Performance Model ... 30
2.2.2.2 Mixed-Level Model ... 3 1

vi Contents

2.2.3 Computation Model Classes ... 32
2.2.3.1 Dataflow Graph Model .. 32
2.2.3.2 Other Computational Models .. 33

2.3 Other System Models .. 35
2.3.1 Executable Specification ... -35
2.3.2 Mathematical-Equation Model ... 36
2.3.3 Algorithm Model .. 37

2.4 Architecture Models .. 38
2.4.1 Token-Based Performance Model .. 38
2.4.2 Abstract-Behavioral Model .. 39

.................................. 2.4.3 Dataflow Graph (DFG) Task Primitive 41
2.4.3.1 Instruction-Set Architecture (ISA) Model 41

.. 2.5 Hardware Models 42
2.5.1 Detailed Behavioral Model ... 42
2.5.2 Register-Transfer-Level (RTL) Model 43
2.5.3 Logic-Level Model ... 44
2.5.4 Cell-Level Model .. 45

2.6 Switch-Level Model .. 46
2.6.1 Circuit-Level Model ... 46

2.7 Implementation-Level Performance Models 47
2.7.1 Basic Delay Model .. -47
2.7.2 Timing Analysis Model .. 48

.. 2.7.3 Power Model 48
2.7.4 Peripheral-Interconnect Model ... 49

... 2.8 Software Models 49
... 2.8.1 Requirements Modeling 50

... 2.8.2 Pseudo-Code 50
2.8.3 High-Level Language (HLL) .. 50

.. 2.8.4 Assembly Code 1
2.8.5 Microcode .. -51

.. 2.8.6 Object Code 52
.. 2.9 Supporting Terms 52

2.9.1 Abstraction Level and Hierarchy .. 52
.. 2.9.1.1 Abstraction Level 52

2.9.1.2 Hierarchy ... 53
2.9.2 Design Object Classes .. 54

2.9.2.1 System ... 54
.. 2.9.2.2 Component, Module 55

... 2.9.2.3 Architecture 56
.. 2.9.2.4 Structure 57

2.9.2.5 Hardware ... 57
2.9.2.6 Software ... 57

Contents vii

2.9.2.7 Firmware .. 57
.. 2.9.3 Information Classes 58

2.9.3.1 Application Data .. 58
2.9.3.2 Control Data .. 58

2.9.4 Design Process Terms .. 58
2.9.4.1 Synthesis .. 58
2.9.4.2 Simulation .. 58
2.9.4.3 Emulation .. 59

... 2.9.4.4 Interface-Based Design 59
... 2.9.4.5 Top-Down Design 59

2.9.4.6 Prototype ... 60
... 2.9.4.7 Physical Prototype 60

... 2.9.4.8 Virtual Prototype 61
.. 2.9.4.9 Virtual Prototyping 61

... 2.9.5 Design-Tool Terms 62
.. 2.9.5.1 Model -62

... 2.9.5.2 Emulator -62
.. 2.9.5.3 Simulator -62

..................................... 2.9.6 Verification and Test-Related Terms 62
.. 2.9.6.1 Testbench -62

.. 2.9.6.2 Test Vector 62
.. 2.9.6.3 Functional Test 63
.. 2.9.6.4 Operational Test 63

2.9.6.5 Boundary Scan ... 63
... 2.9.6.6 Signature Analysis 63

.. 2.9.7 Requirements and Specifications 63
.. 2.9.7.1 Specification 63

.................................. 2.9.7.2 Executable Specification (E-Spec) 64
........................... 2.9.7.3 Requirement Specification (Req-Spec) 64

.......... 2.9.7.4 Executable-Requirement Specification (ER-Spec) 64
................................ 2.9.7.5 Design Specification (Design-Spec) 64

................... 2.9.7.6 Executable Design Specification (ED-Spec) 64
... 2.9.8 Reusability and Interoperability 65

2.9.8.1 Reusability ... 65
... 2.9.8.2 Model Interoperability 65

... 2.9.9 Interface-Related Terms 65
.. 2.9.9.1 General Interface Terms 65

... Chapter 3 Functional Verification Taxonomy 69
... 3.1 Introduction 69

.. 3.1.1 Classifications of Verification 69
.. 3.1.2 Definitions 70

... 3.2 Intent Verification 71

viii Contents

... 3.2.1 Dynamic Verification 1
3.2.1.1 Deterministic Simulation ... 71
3.2.1.2 Random Pattern Simulation ... 72

.. 3.2.1.3 Hardware Acceleration 72
.. 3.2.1.4 Hardware Modeling -73

3.2.1.5 Monitors .. 73
3.2.1.6 Protocol Checkers .. 73
3.2.1.7 Expected Results Checkers .. 73

3.2.2 Static Functional Verification ... 74
.. 3.2.3 Formal Verification 74

3.2.3.1 PropertyIModel Checking ... -74
3.2.3.2 Theorem Proving .. -75

.................................... 3.2.4 Dynamic-Formal Hybrid Verification 76
3.2.4.1 Symbolic Simulation ... 76
3.2.4.2 Dynamic Formal Verification .. 76

... 3 L4.3 Formal Coverage 77
3.2.4.4 Formal Constraint-Driven Stimulus Generation 77

....................................... 3.2.5 HardwareISoftware Co-Verification 77
3.2.6 Emulation ... 78
3.2.7 Physical Prototyping ... 79

.. 3.2.7.1 Emulation Systems 79
3.2.7.2 Reconfigurable Prototyping System 80

....................................... 3 L7.3 Application-Specific Prototype 80
... 3.2.8 Virtual Prototyping 80
.. 3.2.9 Verification Metrics 81

... 3.2.9.1 Hardware Code Coverage -81
... 3 L9.2 Functional Coverage -82

.. 3.2.10 Definitions 82
... 3.3 Equivalence Verification 87

3.3.1 Dynamic Verification ... 87
3.3.1.1 Deterministic Simulation ... 87

.. 3.3.1.2 Expected Results Checkers 87
... 3.3.1.3 Golden Model Checkers -88

.. 3.3.1.4 Regression Testing 88
3.3.1.5 Verification Test Suite Migration 88

.. 3.3.2 Formal Equivalence Checking 90
....................................... 3.3.2.1 Boolean Equivalence Checking 90

................................... 3.3.2.2 Sequential Equivalence Checking 90
.. 3.3.3 Physical Verification 91

.. 3.3.4 Definitions 92
3.4 VC Verification ... 93

... 3.5 Integration Verification 94

Contents ix

.. 3.6 Functional Verification Mapping 94
... 3.7 Summary 96

... Chapter 4 Platform-Based Design 103

... 4.1 Platform-Based Design 1 0 3
4.1.1 Introduction .. 105

... 4.1.2 Background and History105
.................................. 4.1.3 Platform-Based Development System 106

... 4.2 Platform Taxonomies 1 0 8
4.2.1 Platform Object Complexity ... 108

... 4.2.1.1 Complexity Levels 1 0 8
... 4.2.1.2 Interfaces 111

4.2.2 Platform Specification Approaches 113
............ 4.2.2.1 Technology-Driven (Bottom-Up) Specification 114
.......... 4.2.2.2 Architecture-Driven (Middle-Out) Specification 115

............. 4.2.2.3 Application-Driven (Top-Down) Specification 116
.................................. 4.2.2.4 Platform Specification Attributes 116

............ 4.2.2.5 Metrics for Platform Specification Approaches 125
..... 4.2.2.6 Alignment with Platform Specification Approaches 127

............... 4.2.2.7 On The Evolution of Platform Specifications 129
.. 4.3 Definitions 1 31

... Chapter 5 Hardware-dependent Software 135
.. 5.1 Introduction 1 35

.. 5.1.1 Purpose of this Chapter 135
... 5.1.2 Intended Audience 1 3 6

... 5.2 HdS Terms and Abbreviations 1 3 6
... 5.2.1 Basic HdS Definitions 1 3 7

........................... 5.2.1.1 HdS (Hardware-dependent Software) 137
.............................. 5.2.1.2 HAL (Hardware Abstraction Layer) 138

5.2.2 HdS Terms .. 139
... 5.3 HdS Taxonomy Axes 1 4 7

.. 5.3.1 Introduction 1 4 7
... 5.3.2 Life Cycle Axis 148

... 5.3.2.1 System Development 148
..................... 5.3.2.2 Software and Hardware Co-Development 148

.. 5.3.2.3 Debug and Optimization 148
... 5.3.2.4 Use 149

.. 5.3.2.5 Retargeting 149
.............................. 5.3.2.6 Variant or Derivative Development 149

... 5.3.2.7 Reuse 149
.. 5.3.3 Run-Time and Real-Time Axis 149

... 5.3.3.1 Run Time 149
... 5.3.3.2 Real-Time 1 5 0

x Contents

5.3.3.3 Communication Mechanism .. 150
.. 5.3.4 Hardware Architecture Axis 1 5 1

.. 5.3.4.1 Architecture Synopsis 151
5.3.4.2 0 s Requirements ... 156

............ 5.3.4.3 Architecture of Software Defined by Hardware 157
.. 5.3.4.4 Multiprocessor Architectures 159

... 5.3.5 Software Layering Axis 161
... 5.3.5.1 Basic model 161

.................. 5.3.5.2 Layers Included in the Layered API Model 163
......... 5.3.5.3 Control, Data, Hardware, and Software Layering 164

.. 5.3.5.4 HdS API 165
... 5.3.5.5 Device Drivers 167

.. 5.4 Conclusion 167
... References 1 6 9

.. Index 1 7 3

ABBREVIATIONS AND ACRONYMS

ADC
ALU
API

ASIC
ASP
BCA
BSP
CBR
CC
CISC
CPU
DAC

DAT
DDR
DEDI
DFG
DFT
DFV
DMA
DRAM
DRC
DRL
DSP
DUT
D W
DWG
EDA
EDIF
EEPROM

EI A
EJTAG
EPROM
ERC

Analog-to-Digital Converter
Arithmetic-Logic Unit
Application Programmers Interface
(or Application Programming Interface)
Application-Specific Integrated Circuit
Application-Specific Platform
Bus-Cycle Accurate
Board Support Package
Constant Bit Rate
Cycle-Callable
Complex Instruction Set Computer
Central Processing Unit
Digital-to-Analog Converter
(or Design Automation Conference)
Dynamic-Address Translation
Double Data Rate
Data Exchange and Dispatcher Interface
DataFlow Graph
Design For Test (or Testability)
Design For Verification
Direct Memory Access
Dynamic Random-Access Memory
Design Rules Check (or Checker)
Dynamically Reconfigurable Logic
Digital Signal Processor (or Processing)
Design Under Test
Design Under Verification
Development Working Group
Electronic Design Automation
Electronic Design Interchange Format
Electrically Erasable and Programmable Read-only
Memory
Electronic Industries Alliance
Extended JTAG (Joint Test Action Group)
Erasable Programmable Read-only Memory
Electrical Rules Check

xii Abbreviation and Acronyms

ESAPS

ESA
ESI
ESW
FIFO
FFT
FPGA
FPU
FSM
FTP
FXP
GPP
GPRS
GPS
GUI
HAL
HDL
HDVL
HdS
HLL
HTTP
HVL
HW
IC
ICE
I10
IOCTL
IP
IS A
ISR
ISS
JT AG
LVS
MCM
MMI
MMU
MOC
MPEG
NMI
OFLT
OMT

Engineering Software Architectures, Processes and
Platforms for System-families
European Space Agency
European Software Institute
Embedded SoftWare
First In First Out
Fast Fourier Transform
Field Programmable Gate Array
Floating-Point Unit
Finite State Machine
File Transfer Protocol
Functional XML Parser or Fixed Point
General-Purpose Processor
General Packet Radio System
Global Positioning System
Graphical User Interface
Hardware Abstraction Layer
Hardware Description Language
Hardware Design and Verification Language
Hardware-dependent Software
High-Level Language
HyperText Transfer Protocol
Hardware Verification Language
Hardware
Integrated Circuit
In-Circuit Emulator (or Emulation)
InputDutput
I 0 ConTroL
Internet Protocol (or Intellectual Property)
Instruction-Set Architecture
Interrupt Service Routine
Instruction-Set Simulator
Joint Test Action Group
Layout versus Schematic
Multi-Chip Module
Man-Machine Interface
Memory Management Unit
Model of Computation (or Model of Concurrency)
Moving-Picture Experts Group
Non-Maskable Interrupt
OFf-Line Test
Object Modeling Technique

Abbreviation and Acronyms xiii

0s
OSCI
PBA
PCB
PBD
PBDS
PDA
PLA
POSIX
PPP
PROM
PSoC
PV
PVT
RAM
RASSP
RISC
RMA
ROM
RTL
RTOS
RTTI
RTWG
SDF
SEI
SLD
SLIP
s o c
SRAM
SW
TF

TLB
TLM
UART
UML
UMTS
UTF
VBR
VC
VCI
VHDL

Operating System
Open SystemC Initiative
Printed Board Assembly
Printed Circuit Board
Platform-Based Design
Platform-Based Design System
Personal Digital Assistant
Programmable Logic Array
Portable Operating System Interface
Point-to-Point Protocol
Programmable Read-only Memory
Programmable System-on-Chip
Programmers View
Programmers View with Timing
Random Access Memory
Rapid Prototyping of Application Specific Signal Processors
Reduced Instruction-Set Computer
Rate Monotonic Analysis
Read-only Memory
Register Transfer Level
Real-Time Operating System
Run-Time Type Information
RASSP Terminology Working Group
Synchronous DataFlow
Software Engineering Institute
System-Level Design
Serial Line Interface Protocol
System-on-Chip
Static Random-Access Memory
Software
Technology Foundation
or Timed Functional
Translation Look-aside Buffer
Transaction-Level Modeling (or Model)
Universal Asynchronous ReceiverITransmitter
Unified Modeling Language
Universal Mobile Telecommunications System
Untimed Functional
Variable Bit Rate
Virtual Component
Virtual Component Interface
VHSIC Hardware Description Language

xiv Abbreviation and Acronyms

VHSIC
VLIW
VM
VSI
VSIA
VoIP
VoP
XML
WCET

Very High Speed Integrated Circuit
Very Long Instruction Word
Virtual Memory
Virtual Socket Interchange
Virtual Socket Interface Alliance
Voice over Internet Protocol
Voice over Packet
Extensible Markup Language
Worst-case Execution Time

CONTRIBUTORS

The editors would like to apologize to anyone who contributed to this
work, but whose name is not in the following lists.

RASSP Taxonomy Working Group

Carl Hein
Dr. Vijay Madisetti
Arnold Bard
Robert Klenke
Mark Pettigrew
Dr. Geoffrey Frank
Randy Harr

VSIA Contributors

Major Contributors:
Bob Altizer
Tom Anderson
Wael Badawy
Brian Bailey
Robin Bhagat
Neil Bryan
Steve Burchfiel
Ramesh Chandra
Larry Cooke
Mark Genoe
M M Kamal Hashmi
Anssi Haverinen
Lisa Hsu
Yaron Kashai

Other Contributors:
Chris Adenyi-Jones
Bert Aerts
Jeff Barkley
Mike Bartley
Shay Ben-Chorin
Robert Birch

Todd Carpenter
Allan Anderson
J.P. Letellier
Dr. Greg Peterson
Dr. Perry Alexander
Anthony Gadient
Paul Kalutkiewicz

Chris Lennard
Srinivas Madaboosi
Roel Marichal
Grant Martin
Mehdi Mohtashemi
Carlos Oliver-Yebenes
Stephen Olsen
Peter Paterson
Frank Pospiech
Richard Raimi
Mandayam Srivas
Colin Tattersall
Jim Tobias
Kumar Venkatramani

Ted Lehr
Adriana Maggiore
Daniel Martin
Jean Mermet
Dennis Mitchler
Richard O'Connor

xvi Contributors

Sherri Bishop
Thomas Borgstrom
Mark Buchanan
Annette Bunker
Jean-Paul Calvez
David Courtright
Gjalt de Jong
Bryan Dickman
John Emmitt
Pierangelo Garino
Olivier Giaume
Dave Goldberg
John Goodenough
Martin Gregory
Lisa M. Guerra
Mariella Guerricchio
Michael Hale
Thomas Harms
Takashi Hasegawa
Frank Hellwig
Merrill Hunt
Takahide Inoue
Mike Kaskowitz
Holger Keding
Peter Klapproth
Klaus Kronlof
Joachim Kunkel
Kun-Bin Lee

Mukund Patel
Michael Payer
C.Y. Pei
Carl Pertry
Mark Peryer
Ian Phillips
Andrew Piziali
Sreeni Rao
Fabio Ricciato
G. David Roberts
Larry Rosenberg
Jeff Russell
Heinz-Josef Schlebusch
Sandeep Shukla
Juha-Pekka Soininen
Richard Stolzman
Ji-Suhn Suh
Kari Tiensyrja
Lee Todd
Maura Turolla
Ivo Vanderweerd
Antonio Varriale
Ralph von Vignau
Glenn Vinogradov
Janet Wedgwood
John Wilson
Parviz Yousefpour
Frits Zandveld

Companies and Organizations Represented by Contributors:

0-In Design Automation
Alcatel
Analog Devices
ARM
ARPA
BASYS Consulting
Beach Solutions
BOPS
Cadence Design Systems
Easics

Nortel
PalmChip
Philips Semiconductors
Qualis Design
Rockwell
RTI Center for System Eng.
SCRA
SES
SIPAC
Sonics

Contributors xvii

ECSI
Fuj itsu
Elixent
Georgia Inst. of Technology
Honeywell
Hewlett Packard
IBM
Infineon
Intel
IRESTE, University of Nantes
Lockheed Martin
Mentor Graphics Corp.
Metamorfos Systems
MIT Lincoln Labs
Motorola
National Semiconductor
Naval Research Labs
NCTU

Sony
ST Microelectronics
STARC
Symbios Logic
Synopsys
Telecom Italia Lab
Toshiba
TransEDA
University of Calgary
University of Cincinnati
University of Tennessee
University of Texas, Austin
US Army
Verisity Design
Verplex
Virginia Tech University
VSIA
VTT Electronics

PREFACE

Yesterday's boards have become today's "Systems-on-Chips," consisting
of specific architectures with embedded software components that can
cooperate with dedicated co-processors. Due to the costly integration,
processing and testing phases of the design cycle of such system chips, the
modeling of the complete system or of specific aspects/components at
various levels of abstraction is key. Moreover, high-level models allow us to
specify and verify the system requirements, to analyze, explore, compare,
and select different components of the system, and to explore several
architectural choices. An essential element for efficient design practice is the
capability to extensively re-use existing blocks or functions.

The goal of system, or high-level, models is to allow the user to evaluate
and select the various components that are to be used for the System-on-
Chip (SoC). Evaluation within the system environment, trade-off analysis,
and subsequent decisions on items such as bandwidth, function, code size
and performance can be determined within this environment in the context
of the overall SoC specification.

However, meeting these system design challenges requires the
unambiguous transfer of design information and communication about
modeling modes between developers and providers. To address the need for
conventions in modeling and terminology, this book is a collection of four
taxonomies that were developed in a number of stages. This effort has
included the work by a number of organizations, such as the Open SystemC
Initiative (OSCI). Prior to this effort, the participating companies of the
Virtual Socket Interface Alliance (VSIA) System Level Design (SLD)
Development Working Group established several of the underlying
taxonomies, of which the modeling taxonomy was based on the earlier Rapid
Prototyping of Application Specific Signal Processors (RASSP) taxonomy
and terminology efforts.

The modeling taxonomy contains an extended definition of a precision
scale for the taxonomy, together with an elaborated classification of the
different models used in design, implementation and verification at all
levels, which are classified in system, architecture, hardware and software
specific models. Most recently, multiple taxonomies covering different
aspects of the design and verification process have been brought together
and unified so that this single collection can cover a much larger portion of
the whole space.

xx Preface

The underlying idea is that the design community, which includes system
designers, software developers, product engineers, and hardware and
verification design teams, will agree on a common acceptable nomenclature
and classification of models, tools and techniques in use.

Where conflicting meanings exist in the different communities involved,
the taxonomies in this collection endeavor to either choose the most
common meaning or to synthesize an enveloping definition. Where this
process is incomplete or impractical, all the relevant definitions and their
context will be given, along with a recommended context-free default
meaning.

CHAPTER 1 INTRODUCTION

1.1 What is a Taxonomy?

The word taxonomy comes from the Greek taxis, meaning arrangement
or division, and nomos, meaning law. Thus taxonomy is the science of
classification according to a pre-determined system. The Webster online
dictionary [WEB] defines taxonomy as:

A systematic arrangement of objects or concepts showing the
relations between them, especially one including a hierarchical
arrangement of types in which categories of objects are classiJed as
subtypes of more abstract categories, starting@om one or a small
number of top categories, and descending to more spec* types
through an arbitrary number of levels.

Perhaps the most famous taxonomy is that created by the Swedish
scientist Carl Linnaeus, who managed to create a classification for all living
things. That classification, first published in 1735, is still in use today
although with numerous modifications. In 1966, Flynn created a taxonomy
for computer architectures that categorizes computers based on their streams
of information. Many variants of this have since been created.

1.2 About this Collection of Taxonomies

Differing terminology has created confusion among Electronic Design
Automation (EDA) tool vendors, component providers, semiconductor
companies, and system houses. Some organizations use many common
modeling terms with divergent meanings, while others use different words to
describe the same type of models. Without a common language, the
complete IC design community cannot effectively communicate, and the
evaluation, selection, and validation of models and designs will be
incompatible, and more difficult than necessary.

2 Chapter 1

1.3 The History of the Taxonomies

Taxonomies such as the ones in this book do not just get created by a
single group of people; instead they evolve over time, with each group
adding a further level of refinement or understanding about the problem. At
the same time, the industry moves on and what may have worked in the past
needs to be updated to address new situations or emerging technologies.
These taxonomies are no different and have already been through a number
of significant stages of development and levels of refinement. The
production of this book is just one of those stages, and will no doubt not be
the last. With its publication, these taxonomies will become available to a
much wider audience than in the past, and that is likely to lead to the
identification of any number of possible problems, suggestions for
improvement, refinements and corrections.

As designers and developers use these taxonomies, the editors expect that
the definitions may be found inadequate in some respects, or not fully in line
with evolving design practice. We encourage feedback in order to improve
the taxonomy definitions. For the latest updates to this document, and
discussion about any of the definitions given in any of the four taxonomies,
the reader should go to the www.edataxonomy.com Web site.

1.3.1 Early Model Taxonomy Work

In the academic community, a number of model definition approaches
were proposed and considered for use in the original formation of the
precursors for the modeling taxonomy. Three of those model definition
approaches (shown in Table 1-1) were examined and compared, feature for
feature. The RASSP taxonomy (RTWG) is also shown in Table 1-1; it
became the basis for the second stage of development of this taxonomy-the
VSIA effort.

The Ecker and Madisetti spaces share two axes of comparison, while
their remaining axes do not directly correspond. Both have an axis for time
resolution and a second axis representing the resolution of data values in a
model.

Ecker calls the second axis "Value," while Madisetti calls it "Format."
The Y-chart's "Functional Representation" axis expresses some information
that is similar to the value-format axes. However, the Y-chart's Functional-
Representation axis does not exactly correspond to the value-format axes
because it contains information about functionality as well.

The third axis of the Ecker cube is similar to the "Structural
Representation" axis of the Y-chart but has no corresponding axis in the
Madisetti case. (The latter situation arises intentionally.)

Introduction 3

None of the remaining axes of the taxonomies directly correspond. The
Y-chart seems limited to only the logic level. None of the taxonomies
appeared to have directly addressed the hardwarelsoftware co-design aspect.

Axes

Table 1-1 Comparison of Prior and RASSP Taxonomy Concepts

1.3.2 First Model Taxonomy Industrial Effort

The concept of a model taxonomy for the industry was initiated by
efforts of the RASSP Terminology Working Group (RTWG), which was
formed on January 10, 1995, at the RASSP Principal Investigators meeting
in Atlanta, Georgia, to address modeling and terminology challenges. The
core working group consisted of members representing the two prime
contractors, a technology base developer, the educator facilitator, and the
government.

The RTWG's mission was to develop a systematic basis for defining
model types and to use this basis for concisely and unambiguously defining
a terminology that describes the models that are used within a RASSP design
process. One crucial requirement for the basic taxonomy was that it must be
useful for selecting, using, and building appropriate interoperable models for
specific roles in a RASSP design process. Models are used for several
purposes, which include specifying or documenting design solutions and
testing and simulating proposed designs. The terminology was based on the
commonly documented and applied vocabulary in the digital electronic
design and modeling industry at that time, and it drew heavily from related
earlier and ongoing efforts by the EIA, ESA, and the U.S. Army and Navy,
and from the annals of related literature from the Design Automation
Conference (DAC), VHDL International User's Forum, and text books.

Previous efforts focused on narrower domains than RASSP. RASSP
spanned many domains, including parallel processing; multi-board and
multi-chassis systems; software; digital signal processing; and application

4 Chapter 1

functions, with strong interaction with other domains such as analog,
mechanical, physical, and RF.

1.3.3 Work within the VSIA

The System-Level Design Development Working Group (SLD DWG) of
the VSIA modified and augmented the previously defined terminology sets,
broadened parochial definitions, distinguished overlapping definitions,
equated close synonyms, removed inapplicable terms, added needed or
missing terms, clarified poorly defined or misunderstood terms, and
suggested new terms as replacements or synonyms to outdated terms. When
appropriate existing definitions were not available for significant terms used
within the VSIA community, the SLD DWG attempted to create them. At
different places the definitions were illustrated by concrete examples.

Compared with the RASSP document, this taxonomy and model
classification proposal was further elaborated by the working group by
adding more appropriate details on the different precision scales, and by
providing more concrete examples for each possible precision. In addition,
several additional models were added, such as computational, architectural,
and software models. Some of these extensions were adopted by the RTWG
during the active period of work. Two major revisions of this taxonomy
were released to the public through VSIA.

1.3.4 Extension into other Areas

The launch of the VSI model taxonomy document was highly successful
and for most months was the most downloaded document from the VSIA
web site. For quite a few months it exceeded the number for all of the other
documents combined. Based on this success, other groups that were started
within the VSIA took, as their first goal, the production of similar documents
for their particular spaces. This served to ensure that all of the working
group members had a consistent language when talking about the follow-on
documents and standards, and served as a learning process to uncover places
of contention in the industry. Three other working groups produced these
documents-the Functional Verification DWG, the Platform-Based Design
DWG, and the Hardware-dependent Software DWG. Perhaps the most
contentious of these was the document that came out of the Platform-Based
Design working group, as it showed the enormous range of opinions and
definitions for platforms in the community. All four of the VSIA-developed
taxonomies are contained within this collection.

Introduction 5

1.3.5 Latest Revisions

This book provides another chapter in the life of the taxonomies. Since
the time of the last major revision to the model taxonomy, a number of new
organizations have emerged that have added new terms, modified the
boundaries set for certain abstractions, and defined completely new levels of
abstraction. This revision considers the current state of the efforts within the
Open SystemC Initiative's (OSCI) Transaction Level Modeling (TLM)
group. While this group had not completed its standard at the time of this
book's publication, and contains two rather different ways that the standard
could evolve, both of these sets of models have been included as they
provide concrete illustrations of a number of the model types.

In the earlier forms of the modeling taxonomy, little attention had been
paid to the variety of models of computation that are used as the basis behind
many of the models described in the taxonomy. A more encompassing
description of these has been added, based on classifications and analysis
approaches of Axel Jantsch, KTH, Sweden.

Significant updates have been made in all four taxonomies to reflect
evolution in the industry since original publication, to incorporate recent
work, and to better unify style and organization.

Given VSIA's focus on design reuse, the original taxonomies were
largely developed from the perspective of a Virtual Component (VC), a
design block intended for reuse in multiple chips. Since most of the
terminology and model definitions in the taxonomies are applicable to any
design, most references to VCs have been removed in this book. However,
there are a number of cases in which the distinction between a reusable
design block and the entire chip in which it is integrated are important, and
in these cases the term has been retained.

1.4 Taxonomy Organization

This taxonomy collection is composed of four primary sections, each one
dealing with a specific aspect of the design and verification process. The
four sections are:

Model taxonomy: this section of the collection defines the core of
the model taxonomy. It provides a definition for each of the
commonly used levels of abstraction and provides examples of how
these are used within the industry.
Functional Verification Taxonomy: this section deals with one of
the biggest challenges in electronic system development-verifying

6 Chapter 1

the functionality of a reusable design in different chips, in different
physical implementations, and in different development
environments. There are a number of tools, techniques, and
methodologies used to accomplish the functional verification of the
component and the system. This section of the collection is intended
to provide a classification of the various verification technologies
and uniform definitions of terms used in these technologies.
Hardware-dependent Software: this section deals with software,
which plays an increasing role in SoC design. Therefore, reusability
considerations must now address software layers as well as
hardware. At the lowest level, a software layer interacts directly with
the interface offered by the SoC's hardware platform. This software
layer is defined to hide hardware specifics from the upper layers of
software. Hardware-dependent software (HdS) can be viewed from
the perspective of a software platform, hardware platform, or SoC
design life cycle.
Platform-Based Design: this section contains the latest
understanding regarding this newly emerging area. It attempts to
define the key concepts of platform-based design and their
meanings, and the attributes by which platforms can be classified. Its
scope is all platform-related development at any level within an
SoC.

In addition, other sections of the document provide definitions for the
standard vocabulary used within the industry.

1.4.1 Use of this Book

This collection of taxonomies is intended to be of use to a wide audience.
First, model developers, whether third-party or within large companies, can
begin by re-classifying the various models provided with their components
into the categories offered by the model taxonomy, and can refer to this book
for explanations. Model integrators can then begin to request models
according to the taxonomy definitions. EDA suppliers and design-
methodology developers at semiconductor and systems companies can begin
factoring these model types into their tools and methods. They can also use
the taxonomy to clarify which types of models fit into their design flows,
and how.

We also hope that evolution in design practices for components and
component integration into SoCs will help identify which model types are
critical to the methodologies, and which models may only be peripheral to
them. This will help reduce the number of models requested and required to
permit efficient design, and also clarify their characteristics along the

Introduction 7

resolution axes. Keeping the number of model types to a minimum will be a
significant help in the evolution of the electronics industry toward a reuse-
oriented mindset by reducing the overhead required to produce a complete
reusable design package.

The final uses of this book could be for educational purposes, and in
industry standards efforts based on these model types. In this domain, the
clarifications offered by the taxonomies and the definitions of models should
help in teaching and using a better common language, which will assist in
education, and help standards groups make quicker progress. Experience in
system-level design across industry, university, and government groups
indicates that a large part of the initial time involved in their activities is
spent trying to agree on language, definitions, and model types. This book
should reduce the time spent coming to a consensus on these terms.

CHAPTER 2 MODEL TAXONOMY

2.1 Introduction

A modeling taxonomy provides a means to categorize models according
to a set of attributes. The attributes should be useful in distinguishing models
intended for distinctly different purposes. The taxonomy is used to establish
formal definitions that are concise and unambiguous for the various model
types. Descriptions and definitions for many of the terms used in this
document are provided in Section 2.9, "Supporting Terms" of this chapter.

2.1.1 Taxonomy Definition

This taxonomy represents the model attributes that are relevant to
designers and model users. It consists of a common set of attributes to
independently describe a model's internal and external resolution. This
taxonomy is based on terminology readily understood and used by designers.

The axes explicitly characterize a model's relative resolution of details
for important model details. The taxonomy axes, shown in Figure 2.1,
identify four model characteristics:

Temporal detail
Data value detail
Functional detail
Structural detail

The temporal and data axes are clearly orthogonal to each other, and to
the other two axes. In contrast, the relationship of the functional and
structural axes is not totally orthogonal, but it is useful to consider these two
aspects of a model through the different attribute filters even though they
may be connected in some ways.

Distinguishing between the internal and external views is important in
selecting, using, and building models because it enables clarity and
precision. Previous terminologies often mixed attributes, as viewed from
inside a model, with similar attributes, as viewed from the model's interface
boundary.

10 Chapter 2

Internal resolution references how a model describes the timing of
events, functions, values, and structures of the elements that are
contained within the boundaries of the modeled device.
External resolution describes how a model describes the interface of
the modeled device to other devices. The external aspects refer to
the input/output (UO) details at the boundary of the modeled device.
The external details relate to how the model describes a device's
interaction with devices to which it connects. External details may
include timing and functional aspects, commonly referred to as
protocols, as well as port structure and signal values. All of these
aspects may be abstracted to various levels in a model.

Because each aspect is specified from both an internal and external
viewpoint, the taxonomy effectively contains eight attributes describing a
model's descriptive level-internal attributes: temporal, value, structure, and
function resolution; and external attributes: temporal, value, structure, and
function resolution. The resolution of an axis defines the expected precision
of the models at various points on the axis-the model itself would define its
accuracy at that resolution or precision. These three terms, as used with
respect to the axes and models, can be used in similar, confusable ways, but
the recommendation is that accuracy is used for models, and precision or
resolution is used for axis-related measures.

This set of eight attributes does not address the hardware or software co-
design aspect of a model, because it does not describe how a hardware
model appears to software. Therefore, the set is augmented with a ninth axis
(shown at the bottom of Figure 2.1). This axis can either represent the level
of software programmability of a hardware model or the abstraction level of
a software component in terms of the complementary hardware model that
will interpret it. This axis is not orthogonal to the temporal, data, functional,
and structural axes, but is intended to make clear, in classical software
notations, the level of the model in its software aspect. Thus, it is an
aggregate property that reflects, to some extent, characteristics defined along
the temporal, data, functional, and structural axes. Within this model
taxonomy, the software programming resolution is clearly an approximation.
For a full definition of the relationship between hardware and software, it is
advised that you follow the definitions given in Chapter 5, "Hardware-
dependent Software."

Model Taxonomy 1 1

IResolutim d EXTERNAL (lntetface) Details
InTemsof:

Tenporal Wsolutiar

Data Resolutian

Figure 2.1 Taxonomy Axes

Although Sections 2.1 through 2.7 of this chapter define the vocabulary
terms graphically to show their applicable coverage, a convenient method
for specifying a particular model's information content is to use the
InternalIExternal (temporal, value, function, structure) notation.

For example, the content of a particular RTL model could be specified
as:

Internal(temporal=Gate Propagation, data=Bit,
function =Digital Logic, structure =register),

External(temporal=Clock Accurate, data=Bit,
function=Digital Logic, structure=I/O Pins),

S W-Program(Programming-Level=Assembly-Code)

For contrast, an example of a particular algorithm model could be
specified as:

Internal(temporal=System Token, data= Value,
function =Algorithmic, structure =none),

External(tempora1 =none, data= Value,

12 Chapter 2

finction =none, structure =none),
SW-Program(Programming-Level=none)

2.1.1.1 Temporal Resolution Axis

The temporal resolution axis represents the degree of accuracy of events
that are modeled along a time scale, or in time. There are several levels of
precision implied on this axis:

Partially ordered event accurate: at this level of precision, events
have a complete or partial ordering relationship in terms of their
starting and finishing, without specifLing precisely when those
events start and finish in terms of any temporal units. Thus, the
precedence of events is indicated. This level of precision is common
in dataflow analysis. The partial ordering means that independent
threads of event occurrence may only be ordered within the thread
and not have any ordering relationship between the threads.
System event accurate: at this level, start and end times of major
system functions are indicated in some units that may represent
thousands or millions of "clock" cycles.
Token cycle accurate: (also may be called data cycle) at this level,
which especially applies in periodic and dataflow kinds of systems,
precision of events is defined in terms of the regular progress of data
and control tokens that "flow" from one functional processing unit
to the next. For example, an image processing system may process,
in a regular way, X frames of image data per second, and the
periodic processing of image frames (tokens) defines a periodic
"clock" interval: frame 1, frame 2, frame 3, and so on.
Instruction cycle accurate: at this level, events are specified in
terms of the processing of an instruction stream or transaction. This
is more precise than the token cycle, in that several operations may
be required to process one data token.
Cycle-approximate accurate: at this level, approximate cycle
counts are available for each operation, transaction or message that
is processed, in terms of a system "clock." For example, a processor
model may not completely model every aspect of the processing of
an instruction stream such as the modeling of pipelining and cache
effects. This means that cycle counts produced and accumulated
may not be completely accurate, and thus the use of the term "cycle-
approximate."
Cycle-accurate: at this level, accurate cycle counts are available for
each operation, transaction or message that is processed, in terms of
a regular system clock. Events occurring during the processing of

Model Taxonomy 13

such operations are indicated with exact precision as to which clock
cycle they occur in.
Gate propagation accurate: at this level, event starting and ending
times are defined in terms of precise time units within clock cycles-
for example, nanoseconds (ns) or picoseconds (ps)-not just on clock
cycle edges or boundaries. The accuracy of these event timings
depends on the degree of accuracy of the circuit level and the
interconnect models used to predict them.

The concept of the "delta" cycle, which enables instantaneous
concurrency, exists for all levels of abstraction. This is sometimes referred to
as a zero-time sequence. Delta-cycles are particularly used in discrete event
simulators such as HDL simulators although also used in many other
simulation models and tools.

2.1.1.2 Data Resolution Axis

The data resolution axis represents the precision with which the formats
of values are specified in a model. The contents of a register could be
described at these levels of resolution, from high to low:

Binary (for example, Obl 1 1)
Signed integer (for example, -1)
Enumerated (for example, blue)

Note that resolution is analogous to precision, as distinguished from
accuracy. Each representation is equally accurate; however, the first case
resolves the value closer to the form actually contained in the target device.
The more abstract the representation of a value, the fewer implementation
details are resolved.

The different precision items on this axis are as follows:

Token: The token precision level is the highest abstraction level for
data representation, containing no implementation (structure, size,
values, and so on) details at all. The amount of information it
contains is completely unspecified.
Property: An example of a property precision is an enumeration:
you decide that the datum "color" will have the properties "red,"
"blue" and "green". You may do this via an enumeration (which
gives you some ordering properties), or you can do it in some other
way (such as a string plus some object methods). This data format
includes user-specified data formats based on previously defined or
standard data formats (at a lower abstraction level).
Value: At the value level, there are no implementation details.
Although the value may be an integer or real, the details as to how

14 Chapter 2

this is represented, such as fixed point floating point, are not
described at this level.
Format (Processor-Like): A more detailed data precision level is
the processor-like data format, for example, a "big-endian" or "little-
endian" formatting of addressing the actual byte orders. This level
includes such format concepts as whether a value is fixed-point or
floating-point (with fixed mantissa and exponent), and so on.
Bit Logical: Here, the final representation can be used on a bit-by-
bit basis. For each bit, its logical value may include binary and
multi-valued representations. More details can be added in the
possible values that each bit can represent (such as 1, 0, X, Z, and
so on).

A composite is a representation that is formed by a combination of types.

2.1.1.3 Functional Resolution Axis

The functional resolution axis represents the level of detail with which a
model describes the functionality of a component or system. A digital filter
component could be represented by these levels of resolution, from high to
low:

Mathematical Relationships: At this level of abstraction, the
functionality is represented as a set of mathematical equations,
without sequencing, except for that defined by the rules of
precedence for arithmetic equations.
Algorithmic Processes: At this level, the selection of the algorithm
will be made, such as a bubble-sort procedure. There are currently
no details on the way this algorithm will be implemented. The
algorithmic precision includes sequencing, since the ordering of
operations and control flow is a key criterion for selection. The
algorithm may be expressed in a number of ways, including
decomposition into major functional portions linked in a network
(for example, a dataflow diagram, or a process network). However,
the structure of this decomposition does not necessarily imply
anything about the implementation of a function: its implementation
may be done in a completely different way. Any algorithmic
decomposition here may be purely for convenience in defining the
function.
Digital Logic/Boolean Operation: At this level, the functionality
will be specified at the level of Boolean operators (AND, OR, NOT,
and so on). Thus the structural content and resolution of this type of
model would probably be high.

Model Taxonomy 15

2.1.1.4 Structural Resolution Axis

The structural resolution axis represents the level of detail with which a
model describes how a component is constructed from its constituent parts.
An integrated circuit could be represented at these levels of resolution, from
high to low:

No Implementation Information:
o No structural information-one large block

Some Implementation Information:
o Connection of large blocks, such as an ALU and register

files
o Connection of computer networks

Full Implementation Information:
o Connection of simple units, such as logic gates
o Connection of composite units, such as flip-flops
o Connection of more complex units, such as registers and

multipliers; at this level the block diagram has been further
expanded into basic operators such as adders, multipliers,
shifters, and so on, or even into more detailed granularity
such as logic gates

Structural resolution is not limited to the physical implementation of
integrated circuits described in the previous examples. As in the definition, a
model can be built out of constituent parts in non-physical ways. A design
block that is implemented entirely as software is built out of sub-components
such as procedures and processes linked in complex networks.

A dataflow function, implemented by mapping to dedicated hardware
blocks, may have a one-to-one relationship between a functional
decomposition and the basic implementation structures that realize each
function.

The concept of black-box and gray-box models has some similarities to
the structural resolution axis. A black-box model hides all the internal
structure within the component. This is identical to the resolution level "no
implementation information" on the structural resolution axis. A gray-box
model is more complex. Some of the internal structure within the component
is exposed, but the model hides most of the detail of combinational logic.
Thus, a gray-box model contains all sequential devices, and represents
combinational logic between sequential device pairs by timing arcs. This is a
more complex version of structure than is contained on the current structural
resolution axis; thus, these concepts are not completely unified.

16 Chapter 2

2.1.1.5 Software Programming Resolution Axis

The software programming resolution axis is the granularity level of
software instructions that the model of a hardware component interprets in
executing target software. For instance, a network-performance model only
interprets instructions on the level of dataflow primitives, such as matrix
invert, vector multiply, or Fourier transform. Such primitives represent
hundreds of lines of source code, but are interpreted as a single instruction in
terms of a time-delay by a network performance model. An instruction-set-
architecture (ISA) model interprets individual assembly (or object code)
instructions. In this sense, the ISA model is programmable at a much finer
granularity, or higher precision, than the network-performance model.

At the lowest extreme, a model of a microcode programmable processor
is programmable at an even lower level of granularity than the ISA model
because it allows control of individual register and multiplexer structures
within the device during execution of an assembly-level instruction.
Software design components or non-programmable models are at the
opposite extreme because neither interprets programmable instructions.

The software programming resolution axis in Figure 2.1 represents the
granularity of software instructions that the model of a hardware component
interprets in executing target software. In Chapter 5, "Hardware-dependent
Software," a complete taxonomy of software utilizing multiple axes is
defined. The view in Figure 2.1 is a simplification of the complete taxonomy
and, thus, should only be used as an approximate guide. A programmable
device could be represented at these levels of resolution, from high to low:

Major Modes: At the highest precision level, the software is
specified in terms of major working modes, such as searching,
tracking, initialization, and so on.
DSP Primitive block-oriented: At this level, the software is
expressed as a block or function call and its parameters, for
example, an FFT with parameters a, b, and c specified as FFT(a,b,c).
High-Level Language: The software is specified at this precision
level in terms of high-level language statements. Examples of such
languages are C, C++, ADA, and Java.
Assembly Code: A more detailed level is the assembly code level,
which is a symbolic language that can be translated later into
microcode and object code. Assembly code is usually the result of
the usage of a compiler, but it can also be written manually.
Microcode: The assembly code can be translated in even lower level
of instructions, called microcode instructions, which are a
representation of an set of control signals that are active on a given
clock cycle, as well as the next micro-instruction to be executed.

Model Taxonomy 17

Object Code: The lowest level of precision contains the translation
into binary code.

2.1.2 Internal/External (Interface) Concept

To better understand the internallexternal concept, consider two views of
an integrated circuit chip.

When viewed fiom outside, or externally, we observe only the structure
and behavior of the pins (for example, how many pins there are, and what
values they have when driven with various stimuli). But we cannot observe
any details about how the chip is implemented inside the package, or
internally, as in Figure 2.2.

Figure 2.2 IC-Chip Package

In contrast, we can imagine seeing an internal view if we were to pop the
lid off the IC package as shown in Figure 2.3.

Figure 2.3 IC-Chip Internals

Notice that now we can see some detail about how the chip's insides, or
internals, are implemented.

The external structure and behavior is the structure and behavior of the
externally observable features, which in this case is the structure of the
externally viewable ports or pins. Like the internal design, the external
properties of a component can be viewed at many different levels of
abstraction.

For example, Figure 2.4 depicts an abstract model of the external pins
(interface) of a chip. The external implementation detail is resolved as two

18 Chapter 2

signals (Data and Control) that are of an abstract type, integer. They are
abstract because they do not reveal the bit-level implementation detail.

I I
D a t a Control

I
C Ik

Figure 2.4 IC-Chip External Pins

A less abstract model of the external interface of the component could
show the actual bit-level implementation detail of the signal ports, as shown
in Figure 2.5.

Data Control

Figure 2.5 Signal Ports

This more detailed view shows the hand-shaking lines and the data port
resolved as individual pins at the bit level.

The internavexternal partition concept simplifies the design process. A
traditional method for managing complexity in a system is to use divide-and-
conquer methods. In this approach, a system is divided by partitioning it into
separate components. These components can, in turn, be further subdivided.
This leads to the familiar hierarchical models used in most design
methodologies.

However, this partitioning will not help the design task if, at each level of
hierarchy, the designer has to consider each component's internal detail and
its sub-components. What is needed is to be able to consider only a
component's externally visible specification and not its internal detail. Most
methodologies and languages try to do this by having separate structures for
the interface and the body of a component. Users of a component only need
to see its interface. Thus, an interface specification or interface model is the
description of the externally visible part of a component.

Model Taxonomy 19

2.1.3 Note on Structure/Behavior/Interface Concepts

Another way of depicting the view of a model is shown in Figure 2.6
through Figure 2.9. These diagrams distinguish:

Interface model (no internal details)
Behavioral model (internal details described behaviorally)
Structural model (internal structure described)

Figure 2.6 depicts an interface model. Notice that it contains details about
the interface, or external ports, but contains no information about the internal
implementation. Some level of external structure and data values can be
observed, as well as some level of port function and timing response to
interface activities. For example, the interface model can specify the data
exchange and communication protocol, as implied in Figure 2.7.

I

Figure 2.6 External Interface

Figure 2.7 Internal Interface

In contrast, Figure 2.8 depicts a behavioral model of the same
component. Notice that this model contains information about the internal
data values, functions, states, and timing aspects of the component, but no
information about how the internal structure is implemented. Therefore, the
internal view is said to be represented behaviorally.

20 Chapter 2

Figure 2.8 Behavioral Model

In contrast to this model, Figure 2.9 depicts a model that describes the
internal structure of the component to some level of detail. Remember that
structure is inter-connection information. Notice that this diagram shows a
decomposition into internal blocks. Because it shows how the blocks are
connected to each other, at some level of abstraction, it is called a structural
model, or internal structure.

'I'
Figure 2.9 Internal Behavioral Model

The internal blocks of a structural model can either be described
behaviorally, or can themselves be further decomposed structurally. If
behaviorally described blocks exist at the bottom (leaf level) of a structural
hierarchy, then the model can be simulated. Note that the behavior of such a
composite model is provided by the underlying behavioral blocks, not
completely by the structure. The structural descriptions merely provide the
means for combining separate behavioral pieces. A different behavior would
be exhibited if the underlying behaviors were changed.

If behavioral blocks do not exist at the bottom (leaf level) of a structural
hierarchy, then the model is a purely structural model. No behavior can be
inferred if the behaviors of the underlying blocks of a structural model are
unknown.

The level of abstraction of the internal view depends on the level of
implementation details. The structure could be described abstractly as the
interconnection of high-level blocks, or concretely as the interconnection of
logic gates. Independently, the timing and functional abstraction can be
described for the high-level blocks abstractly as coarse events or concretely

Model Taxonomy 2 1

as specific times. They can be described for the gate-level model abstractly
as the stable per-clock Boolean values, or all switching transitions can be
resolved to picoseconds (intra-clock events) and signal levels.

2.1.4 Additional Attributes

In addition to the precision axes described earlier, the inclusion of
additional attributes could be considered. For instance, the temporal
resolution and data resolution axes could specify an accuracy aspect as a
percent tolerance and whether a model describes actual, minimum, typical,
or maximum values. A completeness aspect could also be considered that
would specify the portion of functionality or particular functions that the
model describes or excludes from the model. The accuracy and
completeness aspects would accompany the axes in the same way that the
internallexternal aspect does.

2.1.5 Vocabulary

Words represent concepts and allow us to share and communicate ideas.
Unambiguous communication requires not only that we have a common
mapping of words to concepts, but that we have the right set of words to
accurately describe the concepts we are dealing with. Developing, agreeing
to, and using a concise common terminology are therefore vital to achieving
the goals of this book.

The development of an efficient vocabulary, which assigns a minimal set
of words to the appropriate concepts, is an orthogonalization process. The
process develops a set of terms that represent all of the concepts to be
distinguished. Separate words are selected for distinct concepts. Words for
classes of concepts are selected to represent useful generalizations.

In defining the vocabulary terms, attempts were made to defer to the
general English meaning of words as defined by the Webster's New
Collegiate Dictionary [WEB] so that outsiders and newcomers may be more
likely to rapidly understand and adopt the terminology.

Some terms may have multiple meanings (due to historic or domain
overloading) that can be differentiated by context. We try to recognize and
define each of these terms.

To avoid the problem of vague or circular definitions, a heavy emphasis
was placed on providing examples to accompany the definitions. These
examples should provide a level of understanding and concreteness to any
discussions regarding the terms. The examples also tend to associate the
terms to their intended uses and domains. To reduce the tendency of

22 Chapter 2

examples to limit or over-constrain the definitions, a range of typical and
extreme cases are given and identified wherever possible.

To further avoid ambiguous definitions, attempts were made to eliminate
definitions based purely on relative terms, such as "high," or "abstract,"
since their interpretation would be subject to one's point-of-view or
experience. Instead, definitions should be based on absolute, concise, and
testable statements, with special emphasis on differentiating related terms
(such as "software/hardware/firmware").

Reaching the much-needed consensus on terminology requires
compromise from everyone. The original contributors to this work and
editors of this book have made a conscious attempt to borrow heavily (and
somewhat evenly) from everything written by the community. All terms
relative to the taxonomy axes described in this section are described in the
following sections of this chapter. Although some terms may span a range of
abstraction levels, a given model instance describes information at one
specific level within the span. The remaining Sections 2.2 through 2.8 list
the vocabulary terms and their definitions.

Model resolves information at a specific level

Model resolves information at one of the - levels spanned

Model optionally resolves information at one - of the levels spanned

Model optionally resolves partial information
0 at one of the levels spanned, for example,

control but not data values or functionality

x Model does not contain information on this
attribute

Figure 2.10 Symbol Key

2.2 General Modeling Concepts

The following sections contain definitions of concepts that are pervasive
across many types and levels of models. The modeling concepts are divided
into three groups:

Primary Model Classes:
o Functional Model

Model Taxonomy 23

o Behavioral Model
o Structural Model
o Interface Model

Specialized Model Classes:
o Performance Model
o Hybrid (Mixed-Level) Model

Computational Model Classes:
o Dataflow-Graph Model
o Other Models

2.2.1 Primary Model Classes

All models can be described in terms of one or more of the three primary
aspects-behavioral, functional and structural-combined with an interface
model.

Pure functional models are timeless algorithmic models. Behavioral
models add time to the function, and structural models build up models from
other models. Interface models exist to separate the specification of internal
function in a model from the specification of its externally visible part, such
as the communications protocol it uses.

The primary model classes are not specific to hardware or software, and
they can be used for either. They can also be used for the system level
(unmapped to hardware or software).

A functional or behavioral model may be composed of a number of
smaller functional or behavioral models linked together in a network (for
example, a dataflow decomposition, a process network, or multiple threads
in a programming language). However, this "structural" decomposition of
such models need not imply anything about the implementation of that
function or behavior in the physical or software domains.

Recently the Open SystemC Initiative (OSCI) has been working on a set
of model definitions that all operate at what they call the transaction level
[DON 041, [DONBR 041. They define the transaction level as being any
abstraction above the RTL model but they do not provide any guidance as to
whether a transaction is an atomic entity in terms of the data being
transferred or not. It thus describes a concept rather than anything specific.
At the same time, they have defined a specific kind of transaction called a
transfer, which implies a level of timing accuracy for the transaction. While
these are not very useful definitions by themselves, they are identifying a
number of modeling stages which allow a flow to be defined starting with a
high-level functional model, and refining this in a number of intermediate
models down to a specific implementation.

24 Chapter 2

Perhaps more importantly, SystemC provides for explicit separation of
the function and interface, allowing each of them to be refined somewhat
independently of the other. For many model definitions, they have not
separated these concepts when they provided names to the various models,
and this could create conhsion when the abstraction level of the model
internals and its interface do not match.

In the following definitions for model types, the corresponding models
identified by the SystemC Transaction Level Modeling (TLM) group will be
identified. It should be noted that this group has not yet finished its work
and, within the group, there is some level of disagreement on the model
levels that should be defined. In addition, some of the models under
consideration do try to tie together the abstraction of the model and some
specifics about the communications supported by the model. While this
creates very highly specific types of models, direct applications for these
models can be defined.

2.2.1.1 Functional Model

Internal External
Temporal : : :w: : :

Data Value
-

Functional
Structural -- --C____=>-,

SW Programming Level -4--<+

Figure 2.1 1 A Model without Timing

A functional model describes the function of a system or component
without describing a specific implementation. A functional model can exist
at any level of abstraction, depending on the precision of implementation
details. For example, a functional model can abstractly describe a signal-
processing algorithm, or it can be a less abstract model that describes the
function of an ALU for accomplishing the algorithm. The precision of
internal and external data values depends on the model's abstraction level.
The functional model does not specify any timing other than that implied by
dependencies in the function. So, for example, a functional model expressed
as a series of input-output relationships with no intermediate steps has no
temporal specification information at all.

A functional model can also be more narrowly defined in the
mathematical sense. That is, a functional model can be described in terms of
mathematical functions, which define mappings from a subset of the set of

Model Taxonomy 25

interface variables (the input domain) onto another subset of the set of
interface variables (the output domain). A partial functional model is one in
which the union of these two subsets of interface variables is not equivalent
to the complete set. If the two subsets are disjoint, then the first are pure
"inputs" and the second are pure "outputs" of the functional model. Models
that include time in either domain are more general and fall into the
behavioral model definition provided in the next section.

In the SystemC TLM world this is identified as the untimed functional
(UTF) model. The SystemC TLM definitions have also provided some hints
on the external view of the model, by stating that communications occurs in
the form of message passing and is point to point in nature. Communications
is usually blocking, although there may be a FIFO of arbitrary depth placed
in the communications channel.

Another variation of this model is the programmers view (PV) model. It
shares the same key characteristics as the UTF model, but it does define that
the functional objects that are exposed by the interfaces be modeled at a bit-
true level. These models are intended to allow embedded software
developers to verify their code on a model of the target platform. This is
shown in Figure 2.12.

Internal External
Temporal - -
Data-Value
Functional
Structural -
SW-Programming Level

Figure 2.12 SystemC Programmers View model

2.2.1.2 Behavioral Model

Internal External
Temporal
Data-Value
Functional
Structural - -
SW-Programming Level -

-- - -

Figure 2.13 A Model with Timing

26 Chapter 2

A behavioral model describes the function and timing of a component
without describing a specific implementation. A behavioral model can exist
at any level of abstraction. Abstraction depends on the precision of
implementation details. For example, a behavioral model can describe the
bulk time and functionality of a processor that executes an abstract
algorithm, or it can be a model of the processor at the less abstract
instruction-set level. The precision of internal and external data values
depends on the model's abstraction level.

The SystemC TLM presents a modification to the behavioral model,
called the programmers view with timing (PVT). While internally the same
as a behavioral model, the characteristics of its interface are closely defined.
Time details are provided along with bit-true data types, but the structure of
the interface may still be abstract. They also define another close variant of
this which is called the transaction layer (or timed functional model). The
only difference between these two models is that the timed functional model
has a looser definition for timing, allowing for estimated delays. Figure 2.14
shows the composite of these two models.

Internal External
Temporal
Data-Value
Functional
Structural
SW-Programming Level

1

Figure 2.14 SystemC Programmers View with Timing

2.2.1.3 Structural Model

Temporal +-+ -
Data Value --,+ -
Functional +-+

Figure 2.15 Structural Model

A structural model represents a component or system in terms of the
interconnections of its constituent components. These components can be

Model Taxonomy 27

structural, functional, or behavioral. So the hierarchy can reflect, for
example, the organization of a set of software modules, the physical
organization of a specific implementation, or the communication topology of
a set of concurrent processes. A structural model that describes the physical
structure of a specific implementation specifies the components and their
topological interconnections. Simulation of a structural model requires all
the models in the lowest (leaf-level) branches of the hierarchy to be
behavioral or functional models. Therefore, the effective temporal, data
value, and functional resolutions depend on the leaf-level models. A
structural model can exist at any level of abstraction. Structural resolution
depends on the granularity of the structural blocks.

For a set of software modules (objects, threads or tasks), the linkage
model (such as the nature of the interconnections) is fundamental to the
behavior or function of the resulting sub-system. Similarly, for a set of
hardware structures, the linkage model (such as a communications network)
is of fundamental importance to deriving the overall system behavior or
function.

2.2.1.4 Interface Model

Internal External
Temporal .-x-. -
Data Value --M-
Functional -- --C >
Structural -- -
SW Programming Level +-------+

Figure 2.16 Interface Model

An interface model is a component model that describes the operation of
a component with respect to its surrounding environment at some level or
levels of abstraction.

The terms "bus functional" and "interface behavior" have also been used
to refer to an interface model. The more general "interface model" name is
preferred to the anachronistic bus functional term because bus functional
models usually represent lower levels of abstraction and hence are a subset
of interface models.

Interface models provide or capture information only on the external axes
of any of the model types defined in this taxonomy. Therefore, any of the
model types in this taxonomy can have an interface model.

28 Chapter 2

In an interface model, some level of external structure and data values
may be observed, as well as a level of function and timing response to
interface activities. That is, the interface model can specify the data
exchange, dependencies and communication protocol of the component's
externally visible features.

In interface models, the external connective points (such as ports or
parameters), functional constraints, and timing details of the interface are
provided to show how the component exchanges information with its
environment. An interface model contains no details about the internal
structure of the component, function, data values, or timing, other than what
is necessary to accurately model the external interface behavior. External
data values are usually not modeled (except for constraints) unless they
represent control information. An interface model may describe a
component's interface details at any level of abstraction, such as message
tokens or bit accurate.

A complete interface model for a component would provide a useful
black-box specification for that component, since it would specify the data
types and communication protocols used by the interface at multiple levels
of abstraction. All that would be missing are the data values and the
constraints.

Even though a component may have many internal models of different
types, it may be conceived as having a single interface (external model)--
albeit at many different levels of abstraction and possibly along different
axes, as defined in this taxonomy. As an example of this approach, rather
than stating "this is an interface model for the behavioral-level model of
component X," we state "this interface model for component X contains the
behavioral level."

The rationale for such a multi-level interface model is that an interface
specification at a lower level of abstraction for a component must conform to
all interface specifications at higher levels of abstraction along the same axis
of description. The lower level of abstraction may have more detail, but it
should not go beyond the design space delimited by the higher level
specifications. As all the levels must be consistent with each other in this
way, it is useful to provide the different levels in a single interface model.

2.2.1.5 System-Level Interfaces

The possibly multi-level nature of interfaces, as described in the last
section, can lead to interesting juxtapositions of models. For example, it is
possible to have a component model at one level of abstraction that is
actually used by the system at a different level of abstraction, with the
translation between the levels being provided by the interface model. This

Model Taxonomy 29

means the internal level of abstraction of a component can be different from
the external level of abstraction that is used by the system via that
component's interface.

Since all components must have some sort of interface model at some
level of abstraction, even if it is a rudimentary model, we can make some
useful definitions while specifying requirements on components and their
interfaces at system level.

So, as in Figure 2.17, an interface model would sit between the internal
model and the environment.

The levels of abstraction
available to the external

External world from a component
interface may be different

Interface to (or a superset o f) the
level of abstraction of the
component itsew

I
Component Interface

Figure 2.17 System-Level Interfaces

Components for which there may, or may not, be a realization are termed
virtual components (VCs) and their interfaces termed virtual component
interfaces (VCIs). All components are defined with an interface to the
external world. See Section 2.9.9.1, "General Interface Terms." In all places
where components are mentioned, the references can equally apply to virtual
components, and vice versa.

This particular interface is responsible for the transfer of information
from the internal abstractions of the component to information in a form
compatible with the abstractions in the external world to which the
component interfaces. The models of these worlds might be at quite different
levels of abstractions along, say, the protocol and data axes. For example,
the internal world of a component may be at a "general system level" using
named values and loose timing whereas the external world interface may
require signal and port specifications and behaviors with additional timing
detail and at bit-accurate level.

The block that performs the translation from the internal world to the
external world is the component interface. The interface translation may
come in several differing flavors, depending upon the application (for

30 Chapter 2

example, hardware component-to-peripheral bus, hardware component-to-
system bus, and software component-to-system bus).

The multi-level definition of the component interface permits the nesting
of interface abstractions, as depicted in Figure 2.18.

External
World
Interface

I , 1 Component Interface

Figure 2.18 Nesting of Interface Abstractions

This nesting of abstractions manifests itself as a hierarchy of interface
layers. Depending upon the specific component type and interface, these
layers may be fully specified in terms of predefined properties. In other
cases, arbitrary interface hierarchy may be permitted as long as
specifications for relating the levels of the abstraction hierarchy is given

2.2.2 Specialized Model Classes

The following model classes describe models intended for specific -
purposes that are not unique to a particular level of abstraction.

2.2.2.1 Performance Model

Internal External
Temporal 4-+ -
Data Value -.... -
Functional -- -
Structural --. -
SW Programming Level +-+

Figure 2.19 Performance Model

Model Taxonomy 3 1

Performance is a collection of the measures of quality of a design that
relate to the timeliness of the system in reacting to stimuli. Measures
associated with performance include response time, throughput, and
utilization. A performance model may be written at any level of abstraction.
In general, a performance model may describe the time required to perform
simple tasks such as memory access of a single CPU. However, in the
context of component reuse, the typical abstraction level for performance
models is most often at the multiprocessor network level. For clarity, such a
model is called a token-basedperformance model. (See Section 2.4.1 .)

Although performance models here are described solely in terms of
design timing or delay, there are other attributes that are often lumped
together with timing attributes as aspects of "performance models." These
can include, for example, power consumption, design cost, reliability,
maintainability, and other system-level attributes. In general, almost any
measurable quantity can give rise to a performance model for a component.
Although Section 2.7 discusses a number of "implementation-level
performance models" that include power models, this more general use of
the term "performance" is not universal, and can cause considerable
confusion if used generically without qualification. Therefore, we
recommend that the unqualified term "performance" generally be taken to
refer to timing or delay characteristics; and that use of "performance" to
represent power, cost, and so on, always be qualified in some fashion. Of
course, it is always best to make the use of any term unambiguous.

2.2.2.2 Mixed-Level Model

Internal External
Temporal *-F -
Data Value +(M -
Functional .-(F -C__=>--

Structural -
SW Programming Level *--

Figure 2.20 Mixed-Level Model

A mixed-level model is a combination of models of differing abstraction
levels or descriptive paradigms. Such a model is sometimes called a hybrid
model. However, this taxonomy prefers the term "mixed-level" over the
term "hybrid" because the former is more specific.

32 Chapter 2

2.2.3 Computation Model Classes

In this section, a number of models that are computational in nature will
be introduced. Computation models can be the underlying engine for several
different abstraction models. It should be noted that different classes of
computation models are often referred to in the literature and common use as
"models of computation."

2.2.3.1 Dataflow Graph Model

Internal External
Temporal +-M-.
Data Value

-
Functional
Structural .- -
SW Programming Level

Figure 2.21 Dataflow Graph Model

A dataflow graph (DFG) model describes an application algorithm in
terms of the inherent data dependencies of its mathematical operations. The
DFG is a directed graph containing nodes that represent mathematical
transformations and arcs that span between nodes and represent their data
dependencies and queues. The graph conveys the potential concurrencies
within an algorithm, which facilitates parallelization and a mapping to
arbitrary architectures. The DFG is an architecture-independent description
of the algorithm. It does not presume or preclude potential concurrency or
parallelization strategies. The DFG can be a formal notation that supports
analytical methods for decomposition, aggregation, analysis, and
transformation. The DFG nodes usually correspond to DSP primitives such
as FFT, vector multiply, convolve, or correlate. The DFG graph can be
executed by itself in a data-value-true mode without being mapped to a
specific architecture, though it cannot resolve temporal details without co-
simulation with an architecture-performance model.

The primary purposes of a dataflow graph are to express algorithms in a
form that allows convenient parallelization and to study and select optimal
parallelization or execution strategies through various methods involving the
aggregation, decomposition, mapping, and scheduling of tasks onto
processor elements.

Model Taxonomy 33

A DFG is a directed graph with actors at the nodes. The arcs represent
the flow of data, and behave conceptually as FIFO queues. DFGs are
characterized by the fact that they do not over-specify an algorithm by
unnecessary sequencing constraints between the operators in the graph.
DFGs specify partial, relative orders by indicating only data dependencies.
Such a model is well suited to exploit maximal parallelism and to reuse or
share different hardware resources or processing units in time. Therefore,
compilers for partitioning on pipelined or parallel processors often rely
heavily on dataflow analysis.

Synchronous dataflow graphs are special cases of DFGs, because the
number of tokens consumed or produced by a given actor when it fires is
fixed and known at compile time. In order to express data-dependent
iteration, conditionals, and recursion, a more general DFG model is needed
(dynamic dataflow).

2.2.3.2 Other Computational Models

Other potential candidates for computational models include the
following: Petri nets, discrete events, process networks, reactive models,
communicating sequential processes, and hierarchical communicating FSMs.

We will give a brief summary of models of computation based on the
taxonomy developed and published by Axel Jantsch [JANTSCH].

Jantsch defines a "model of computation" or "model of concurrency"
(MOC) as those modeling aspects that are relevant for the communication,
synchronization, and relative timing of concurrent processes [JANTSCH, p.
41. His taxonomy of systems and models includes important system
properties such as:

State-less and state-full systems
Time-varying and time-invariant systems
System-state: continuous state and time; discrete state and time.
Linear and nonlinear systems
Deterministic, stochastic and nondeterministic systems
Events
Time-driven and event-driven systems

He uses these properties to define a set of different system models and a
taxonomy to classify them. For example, he suggests that in control theory,
state-full, time-invariant, linear, continuous-state, continuous-time systems
are studied. In electrical engineering, analog designers work with nonlinear,
continuous-time, continuous-state systems. Software engineers work with
discrete-state, discrete-time systems.

34 Chapter 2

His taxonomy then concentrates mostly on state-full, time-invariant,
nonlinear, discrete-state, discrete-time systems. He then presents a meta-
model, called "Rugby," that links hierarchy, abstraction, and domains (time,
data, computation and communications) together.

The behavioral models discussed by Jantsch fall primarily into two
categories - finite state machines (FSMs), and Petri nets. FSMs come in a
multitude of types: nondeterministic, nondeterministic with epsilon-moves,
FSMs with outputs (Moore machines, where output events are emitted with a
state, and Mealy machines, where output events are emitted with a
transition), and FSM extensions including push-down automata, FSM with
datapath, Hare1 statecharts, and co-design finite state machines.

Petri nets are introduced as a formalism that allows certain analyses not
possible with FSMs. Indeed, if a design problem can be formulated as a Petri
net, a number of powerful results can be obtained using formal techniques.

The next MOC discussed by Jantsch is the untimed MOC. This is based
on notions of processes and signals, where signals consist of sequences of
events. Jantsch uses event sequences including absent events for timed event
sequences, in contrast to the tagged signal model of Lee and Sangiovanni-
Vincentelli [LEE 981. Processes are related to functions on events via
process constructors which are higher-order functions that return processes.
The constructors include maps (no internal state), scan (internal state and a
next-state function), Moore (output is function of state) and Mealy (output is
function of state and current input). A series of properties and analysis then
yields a formal mathematical definition of the untimed MOC, and a set of
techniques to allow untimed MOC models to be combined and analyzed. In
a rigorous fashion, dataflow models such as synchronous dataflow (SDF),
and variants such as Boolean and cyclo-static dataflow can then be built on
top of the untimed MOC.

The Synchronous MOC divides time into slots and come in two flavors
in Jantsch's analysis: perfectly synchronous and clocked synchronous.
Synchronous MOCs are the basis for several research languages in the
control-oriented domain (StateCharts, Esterel, Argos) and dataflow-oriented
domain (Signal and Lustre).

The timed MOC, which again is based on the notions of process
constructors, is a generalization of the synchronous MOC, and encompasses
discrete event models using delta-delays, which are the basis for most
discrete event simulators such as HDL simulators (Verilog, VHDL,
SystemVerilog) and other examples such as SystemC 2.0.

Important in Jantsch's MOC framework is a set of formalisms allowing
interfaces between MOCs to be constructed and analyzed. This includes
different domains of the same MOC, and interfaces between different
computational models. This is based on a set of interface processes (insertion

Model Taxonomy 35

and stripping) which act between the timed, synchronous and untimed
MOCs to allow the filtering out, or insertion of, appropriate timing
information, such as to permit the composition of models to still produce
meaningful results. This is not yet susceptible to a systematic and rigorous
formalism but is based on a number of practical solutions. Practical
approaches using the notion of interfacing MOCs include Ptolemy,
composite signal flow and trace algebra-based approaches.

Jantsch concludes his MOC treatment with a consideration of tightly-
coupled process networks, and nondeterminism in dataflow networks and
process algebras such as Hoare's Communicating Sequential Processes and
Milner's Calculus of Communicating Systems.

Although Jantsch's framework is not complete, in that it does not
encompass every MOC, it is quite comprehensive and applies a formal
mathematical rigor to the issues of MOC definition, analysis and interaction.
It is interesting to note that such models in general cannot fit into the
taxonomy axes as discussed previously except in the most general way (such
as the interface notion of time) because in general "events" and the signals
that they build up as interfaces can be at multiple levels of abstraction.

2.3 Other System Models

The following sections define terms used to abstractly describe models of
digital electronic systems, such as digital signal processing (DSP) systems or
control systems. The abstraction does not include any information about any
hardware or software structure for implementing the system. The models in
Section 2.2, "General Modeling Concepts" can also be implementation-
neutral, and hence are classified as possible "system models."

2.3.1 Executable Specification

Internal External
Temporal 4-+

Data Value +-*
Functional 4-F-

Structural --
SW Programming Level .+-*

Figure 2.22 Executable Specification

36 Chapter 2

A specification has traditionally been a static description of a component
and its characteristics, in multiple dimensions, on paper or an electronic
equivalent (for example, a data sheet in paper or electronic form).
Specifications in the past have not been executable, but the electronics
design world is beginning to move to an executable format. The introduction
of modeling languages, such as SystemC, has enabled the industry to create
higher-level models that are interchangeable and that support the notions of
the separation of function and interface.

An executable speciJication is a behavioral description of a component or
system object that reflects the particular function and timing of the intended
design as seen from the object's interface when executed in a computer
simulation. The executable specification may also describe the electrical or
physical aspects including the power, cost, size, fit, and weight of the
intended design. Denotational items such as power are normally considered
factual (derived) items to be checked but not executed. Executable
specifications describe the behavior of an object at the highest level of
abstraction that still provides the proper data transformations. (Correct data
in yields correct data out; defined bad data in has the speci$ed output
results.) Executable specifications may describe an object at an arbitrary
abstraction level such as a multiprocessor system, architecture, or hardware
or software component level.

The primary purpose of an executable specification is for testing that the
specified behavior of a design entity satisfies the system requirements when
integrated with other components of the system, and for testing whether an
implementation of the entity is consistent with the specified behavior.

2.3.2 Mathematical-Equation Model

Internal External
Temporal *-w : : :

Data Value
- -

Functional -
Structural .-- -
SW Programming Level --w-

Figure 2.23 Mathematical-Equation Model

The mathematical-equation model describes the functional relationship of
input to output data values. A mathematical-equation model is a purely
algebraic expression of the function the target system is to provide. The

Model Taxonomy 37

mathematical model is differentiated from an algorithm description in that a
mathematical model does not imply a specific sequence of operations to
implement the function. Examples of mathematical descriptions for system
functions include:

and

These functions represent well defined mathematical relationships, but do
not indicate methods for their computation, for which there are many, such
as look-up table, Newton's method, or Taylor-series expansion.

The primary purpose of a mathematical-equation model is to test that the
mathematical equations and parameters developed to solve a design
challenge do satisfy a system's numerical performance requirements.

2.3.3 Algorithm Model

Internal External
Temporal- -
Data Value
Functional
Structural
SW Program

Figure 2.24 Algorithm Model

The algorithm level of abstraction describes a procedure for
implementing a function as a specific sequence of arithmetic operations,
conditions, and loops. An algorithmic description is less abstract than a
purely mathematical description because it provides more detailed
information for implementing the function(s). An algorithm model
transforms actual data. Examples of algorithms include quick-sort, Givens
triangularization, Cholesky matrix decomposition, bisection method,
Cooley-Tukey FFT, and Winograd FFT.

The primary purpose of an algorithm model is to test how well an
algorithm designed to implement a mathematical task satisfies the system
numerical performance requirements. Algorithm models are also used for
determining the numerical effects of finite precision and the parameters of
floating or fixed formats.

3 8 Chapter 2

In the analoglmixed-signal community this is called an algorithmic-level
model.

2.4 Architecture Models

The following sections define terms used to describe some abstract
models of a system's hardware and software architecture. As such, these
models describe only the basic structure of the application and the hardware
to which the structure can be mapped. Details that are not relevant to the
architecture design process are relegated to the detailed hardware and
software models.

2.4.1 Token-Based Performance Model

Internal External
Temporal
Data Value --- M

Functional -a- -
Structural --- -
SW Programming Level .--

Figure 2.25 Token-Rased Performance Model

The token-based performance model is a performance model of a
system's architecture. (See Section 2.2.2.1, "Performance Model.")
Measures associated with performance include response time, throughput of
the system, and the utilization of the system resources. Typically, the
token-based performance model resolves the time for a system to perform
major system functions. Data values are not modeled, except for control
information. The structure of the system is described down to at least the
major node level. The internal structure of the switches, processor elements,
shared memories, and 110 units are not usually described in a token-based
performance model. The primary purpose of a token-based performance
model is to determine the sufficiency of the following system properties in
meeting the system processing throughput and latency requirements: the
number and type of elements, the size of memories and buffers, the network
topology (bus, ring, mesh, cube, tree, or custom configuration), network
bandwidths and protocols, application partitioning, mapping, scheduling of
tasks onto processor elements, and flow control scheme.

Model Taxonomy 39

Token-based models may also be used at functional or behavioral levels
(for example, to investigate communication densities), although their most
common use is at the architectural level in evaluating different architectural
patterns.

2.4.2 Abstract-Behavioral Model

Internal External
Temporal
Data Value
Functional
Structural .-- -
SW Programming Level .i-+

Figure 2.26 Abstract-Behavioral Model

Abstract-behavioral models encompass a wide range of modeling
abstraction levels on the temporal, data and functional axes-from composite-
passing abstract performance levels to detailed data-accurate and fine-
grained temporal and functional models. The "detailed behavioral model"
described in Section 2.5.1 differs from the lower abstraction end of this
model primarily in that its interface is usually hardware-component specific.

An abstract-behavioral model can model a system application on which
the performance effects of the particular system architecture chosen to
implement that application have been annotated using abstract performance
models.

This behavioral model is expressed at a token-passing level, but data
values within the tokens are both modeled and functionally processed (in
contrast to the token-based performance model). In other words, the system
application behavior is accurately modeled and the tokens represent real data
passing between system functions as well as control messages.

An abstract-behavioral model's interface is modeled abstractly. The
model does not resolve the interface ports to their pin structure. For instance,
a microprocessor's memory interface may be described as a single port
having a complex data type, as opposed to specifying the constituent control
lines, and address and data buses and their bit-widths. See Section 2.2.1.2,
"Behavioral Model."

40 Chapter 2

MicroProcessor

Figure 2.27 Memory Interface

The abstract-behavioral models are used to annotate performance effects
onto the system-application functional blocks and inter-block
communications mechanisms. Thus, they model estimates of functional
processing time for blocks, inter-block communications protocol delays,
contention for shared resources such as processors (microprocessors,
controllers and DSPs), and shared communications resources such as buses
and associated memories. The internal structures of processors, dedicated
hardware blocks, and detailed wiring-level models for buses are not usually
described in this level of modeling. However, communications protocols
between blocks may be described at both a high-level, complete token
transfer, and at a finer level of granularity, in which tokens are broken up
into a sequence of generic communications and bus transactions.

The usual primary purposes of a behavioral, composite-passing, abstract-
performance model are to determine the suitability of an architecture as a
base on which to map a set of intended application behaviors. Thus the
number and power of processors, dedicated hardware units, communications
buses and protocols, sizes of memories and their number and distribution are
all questions that may be answered at this "architectural trade-off" level. In
addition, the evaluation of abstract models of third-party IP blocks may be
carried out using this kind of model, to determine what best meets system
requirements.

Other purposes for this model type are:

To establish and verify the joint functional and timing requirements
for the components, to ensure that collectively they are consistent
with the overall system requirements
To verify the numerical correctness of the hardwarelsoftware
mapping as modeled by the performance model
To facilitate reuse of the system design when implementation is
changed for the components or interfaces
To produce test-vectors for use in the detailed design of the
components and to aid in system integration, diagnosis, and testing
To help visualize the operation of complex systems for
understanding its characteristics for optimizing the design,
especially at the board level prior to making detailed decisions about

Model Taxonomy 4 1

the exact nature of component interfaces-to accomplish top-down
design
To document the intended operation of the system implementation

This kind of model is common where design above RTL is practiced and
is usually ambiguously called a "high-level model." However, the term
abstract-behavioral model should now be used. This is sometimes called a
system evaluation model or behavioral model when additions of
analog-performance characteristics are made in addition to timing.

2.4.3 Dataflow Graph (DFG) Task Primitive

1 sw Programming Level I
Figure 2.28 Dataflow Graph (DFG) Task Primitive

Software at the task-primitive level expresses the application in terms of
its building-block functions. These functions may ultimately be implemented
in hardware or software. They are usually expressed in a graphical form.

2.4.3.1 Instruction-Set Architecture (ISA) Model

Internal External
Temporal
Data Value

-
-+mk---

Functional -
Structural --- -
SW Programming Level e-

Figure 2.29 Instruction-Set Architecture (ISA) Model

An ISA model describes the function of the complete instruction set
recognized by a given programmable processor, along with (and operating
on) the processor's externally known register set and memory or input-
output (110) space. An ISA model of a processor will execute any machine
program for that processor and give the same results as the physical
machine, as long as the initial states (and simulated 110) are the same on the
ISA model simulation as they are on the real processor. Such a processor
model with no external ports is classed as an ISA model. If the processor

42 Chapter 2

model has external 110 ports, then it would be classified as a behavioral
model.

Data transformations of ISA models are bit-true, in terms of word length
and bit values as observable in the internal registers and memory states. Port
buffer registers, if modeled, are also bit-true. The temporal resolution of an
ISA model is at the instruction cycle. Instruction cycles may span multiple
clock cycles. An ISA model contains no, or relatively little, internal
structural implementation information. It may contain enough details about
the processor internal pipeline and other internal structures in order that it
can give correct instruction-accurate level results. It is also possible that ISA
models can be written to be cycle accurate and yet still perform with
sufficient speed for SW development and debugging. At the time of
publication, it is clear that ISA models, otherwise known as instruction-set
simulators (ISSs), exist at both instruction-accurate and cycle-accurate
levels. Sometimes this is accomplished with the same core model and
different external interface wrappers.

The primary purposes of ISA models are for efficient development of
uniprocessor resident software prior to hardware realization, optimization
and design of application-specific instruction sets and register architectures,
documenting the functionality of the processor's instruction set, and
measuring software routine run-times, to increase the accuracy of the more
abstract models.

2.5 Hardware Models

This section defines terms used to describe the various types of hardware
models. These models are used to describe the hardware at specific levels of
abstraction.

2.5.1 Detailed Behavioral Model

Internal External
Temporal
Data Value
Functional
Structural
SW Programming Level d-+

Figure 2.30 Detailed Behavioral Model

Model Taxonomy 43

The detailed behavioral model is a behavioral model that describes the
component's interface explicitly at the pin level. It exhibits all the
documented timing and functionality of the modeled component, without
specifying internal implementation structure. This type of model has
traditionally been called a "full-functional model" and is therefore a
synonym. However, the newer term is preferred for its better accuracy and
consistency to the definitions of the related models.

Figure 2.3 1 Detailed Behavioral Model Interface

-

MicroProcessor

-

The primary purpose of a detailed behavioral model is to develop and
comprehensively test the structure, timing, and function of component
interfaces. It also helps examine the detailed interactions between hardware
and software (drivers), and provides timing values that are used to replace
initial estimates in the higher-level models to increase their accuracy. In the
analogtmixed signal world, this is called a "functional/timing digital
simulation model."

In the system TLM world this is the model that corresponds to the cycle-
callable (CC) model, alternatively called the "bus-cycle-accurate transfer
layer (BCA-TLM)." It provides an accurate view of the interface of a block
without placing any constraints on the internal implementation. This makes
it useful for the verification of the detailed interactions between hardware

- r-en

20
w w-en
b a-bus

4
32 w d-bus

-Clock

and software systems.

2.5.2 Register-Transfer-Level (RTL) Model

Internal External
Temporal - : :

Data Value -
Functional -
Structural -
SW Programming Level : : : -

Figure 2.32 Register-Transfer-Level (KTL) Model

44 Chapter 2

An RTL model describes a system in terms of registers, combinational
circuitry, low-level buses, and control circuits, usually implemented as
FSMs. Some internal structural implementation information is implied by
the register transformations, but this information is not explicitly described.

The primary purpose of RTL models is for developing and testing the
internal architecture and control logic within an IC component so that the
design satisfies the required functionality and timing constraints of the IC.
The RTL model is also used for specifying the design in a process-neutral
format that can be targeted to specific technologies or process lines through
automatic synthesis. It is often used for generating detailed test vectors,
gathering timing measurements to increase the accuracy of more abstract
models, and investigating interactions with closely connected components. It
unambiguously documents the design solution.

2.5.3 Logic-Level Model

Internal External
Temporal
Data Value
Functional
Structural ---t----t-

SW Programming Level

Figure 2.33 Logic-Level Model

A logic-level model describes a component in terms of equivalent
Boolean logic functions and simple memory devices such as flip-flops. The
logic-level model does not describe the exact implementation in logic gates.
The logic expressions can be transformed or reduced into functionally
equivalent forms prior to target implementation in logic blocks.

The primary purpose of logic models is to develop logical expressions for
reduction into logic gates, and to test that these expressions implement the
required functionality, usually for a portion of an IC component. They also
support re-use of a detailed design by documenting the logic in a fairly
process-neutral format that can be targeted to specific technologies or
process lines through automatic synthesis.

Model Taxonomy 45

2.5.4 Cell-Level Model

Internal External
Temporal .r;79.. -
Data Value --I-I-I-- -
Functional *-- w
Structural - : -
SW Programming Level : : : -

Figure 2.34 Cell-Level Model

A cell-level model describes the function, timing, and structure of a
component in terms of the structural interconnection of Boolean logic
blocks. The Boolean logic behavior blocks implement simple Boolean
functions such as NAND, NOR, NOT, AND, OR, and XOR. A cell-level
model describes the actual structure and versions of cells that are assembled
to implement the target component.

The primary purpose of a cell-level model is to document the particular
implementation of an IC component in terms of the interconnection of
elements from a specific logic-family library, for fault-grading and
production of operational test-vectors, to determine the precise timing
response of the circuit to stimuli to increase the accuracy of more abstract
models, to test that the design meets all timing and functionality
requirements, and to optimize the cell-level implementation of the logical
design.

Since these logic-family libraries are most often digital standard cell
libraries, or the equivalent for gate arrays, structured ASICs or
programmable logic, we refer to this model as a cell-level model rather than
the more common, but less precise, "gate-level model." Often, a standard
cell maps into a complex Boolean function or a combination of several
functions (such as AND-OR-INVERT).

46 Chapter 2

2.6 Switch-Level Model

Internal External
Temporal -
Data Value
Functional
Structural
SW Program

Figure 2.35 Switch-Level Model

A switch-level model describes the interconnection of the transistors
composing a logic circuit. The transistors are modeled as simple, voltage-
controlled, on-off switches.

The primary purpose of a switch-level model is to efficiently determine
the response of a portion of an IC, usually a gate or set of gates, to increase
the accuracy of more abstract models. This determination is more efficient
though coarser than circuit-level models.

2.6.1 Circuit-Level Model

Internal External
Temporal 4 : : : : : t L

Data Value --@-- -
Functional --8- -
Structural - -
SW Programming Level -@ : ; : : :

Figure 2.36 Circuit-Level Model

A circuit-level model describes the operation of a circuit in terms of the
voltage-current behaviors of resistor, capacitor, inductor, and semiconductor
circuit components and their interconnection.

The primary purpose of a circuit model is to determine the response of a
portion of an IC, usually a gate or set of gates, to optimize its design
according to its requirements. It can accurately determine the design's
minimum and maximum propagation, switching times, and loading and
driving capabilities in terms of transistor and conductor properties and

Model Taxonomy 47

configurations, which increase the accuracy of more abstract switch-and
gate-level models.

2.7 Implementation-Level Performance Models

These models define data required for timing and power-driven
implementation and verification of an SoC design incorporating
Components. The models complement many of the models in Section 2.5,
"Hardware Models," and support design phases of logic synthesis, static
timing analysis, and power analysis.

2.7.1 Basic Delay Model

Internal External
Temporal --w--
Data Value .---c----c~----c----c- --4#e--
Functional --- -
Structural --- -
SW Programming Level 4-

Figure 2.37 Basic Delay Model

The basic delay model defines the timing specification of the component.
It is required for delay calculation, and is the basis for the "timing analysis
model" described in Section 2.7.2. The basic delay model includes path
delays associated with timing arcs; signal slew rates for output signals; and
timing checks, associated with timing arcs. The delay calculation model
should include the dependence of signal delays and slews on the
environment of the component, given an appropriate implementation
technology.

48 Chapter 2

2.7.2 Timing Analysis Model

Internal External
Temporal - -
Data Value .IU-- F
Functional - = - -
Structural -- -
SW Programming Level 4->

Figure 2.38 Timing Analysis Model

The timing analysis model describes the static timing characteristics of
the component, including interface and timing arc attributes that are not
included in the "basic delay model" described in Section 2.7.1, but are
necessary for static-timing analysis. The model includes state-dependent
timing and modes of operation; insertion delay and skew of clock networks
within the block; multiple operating conditions; design properties; multi-
cycle and false paths; the parasitics of peripheral interconnect (for use at
circuit level), and physical connection points (for use at circuit level).

2.7.3 Power Model

Internal External
Temporal . . . c- . . . - -
Data Value --- -
Functional . = = - -
Structural 4-1- -
SW Programming Level +-p

Figure 2.39 Power Model

The power model defines the power specification of a component. This
may depend on one or many atomic power models, which contain no
hierarchy and no dependencies on other power models. A power model
should be able to represent both dynamic and static power. Power models
may be provided with various levels of transparency and accuracy, such as
black-box or gray-box requirements, RTL source, cell-level netlist, and
circuit-level (transistor) netlist.

Model Taxonomy 49

Note that the axis system described earlier proves less useful in
describing power models, since there is nowhere to indicate the power
values that such models generate. This would generally be true of many
other attributes of a system such as size, cost, reliability, and so on.
However, there is in most cases a connection between the ability to estimate
these attributes and the resolution of the model used to predict them.

2.7.4 Peripheral-Interconnect Model

Internal External
Temporal *-w : : :

Data Value --- -++++-- -
Functional .-- -
Structural +-* -
SW Programming Level 7-

Figure 2.40 Peripheral-Interconnect Model

A peripheral-interconnect model represents an interface interconnection
network "shell" around an internal component-delay model. It specifies
interconnect RCs (resistances and capacitances) between physical VO ports
and the internal gates of a component. This provides a separation of
peripheral interconnect RCs from the component intrinsic delays. Thus,
delay calculation at the next level can be performed using actual
interconnect rather than an inaccurate approximation of loading and
interconnect.

Note that the axis system described earlier proves less useful in
describing peripheral-interconnect models, since there is nowhere to indicate
the RC values such models generate.

2.8 Software Models

The following sections define the forms of software and the levels of
abstraction in the software hierarchy. For a more detailed discussion of the
concepts associated with software and the connection between the hardware
and software components of a system, the reader should also refer to Chapter
5, "Hardware-dependent Software."

50 Chapter 2

2.8.1 Requirements Modeling

1 sw Programming Level I
Figure 2.41 Requirements Modeling

Requirements or specijkation modeling is done at the very high level for
a system or for software. Examples of models at this level are those
generated using object-oriented analysis in schemes such as OMT (Object
Modeling Technique) and UML (the Unified Modeling Language).

2.8.2 Pseudo-Code

1 SW Programming Level I
Figure 2.42 Pseudo-Code

Pseudo-code is a simplified or abstracted code form that is used as an
intermediate step toward preparation of standard high-level-language code.
Some UML models, such as state diagrams annotated with the Action
Semantics language, can be thought of as pseudo-code, and tools may be
able to use this code to generate executable code in standard languages such
as C, C++, or Java.

2.8.3 High-Level Language (HLL)

SW Programming Level .=-a..

Figure 2.43 High-Level Language

High-level-language software is a machine-independent (retargetable)
form of software that conforms to a standard language grammar and syntax.
It is characterized by text-based arbitrary symbolic variable names and
control constructs, and uses algebraic expression statements. Examples
include many languages in use over the years, including FORTRAN,
COBOL, C, Ada, C++, Java, and others.

Model Taxonomy 5 1

2.8.4 Assembly Code

SW Programming Level - : ;a ; ; ; .
Figure 2.44 Assembly Code

Assembly code is mnemonic-based object code. For more information,
see Section 2.8.6, "Object Code." Assembly code tends to be text-based, but
with limited expression syntax, usually restricted to a set of explicit
operators and register names. Operators tend to be simple arithmetic and
logic operations. Each line typically specifies one operation per instruction
cycle. Data variables are usually related to specific memory addresses. Very
Long Instruction Word (VLIW) machines or multi-issue (multi-operation)
machines may have assembly formats in which multiple operations that are
executed in one instruction cycle are specified on one line of assembly,
separated by standard delimiters (such as ";"). This is not to be confused
with microcode, as discussed in the next section, in which the control
instructions control the various portions of the machine micro-architecture at
a fine-grained level; multi-operation assembly instructions are at a higher
abstraction level.

2.8.5 Microcode

1 SW Programming Level I
Figure 2.45 Microcode

Microcode consists of machine-executable control instructions that
individually control phases of execution and internal processor structures. It
is much like assembly code, but instead of specifj4ng one operation per
instruction cycle as in assembly code, microcode specifies the settings for
several units, such as buses, multiplexers, and function units for each clock
cycle to accomplish the type of operation typically specified by a single
assembly instruction. Several microcode instructions typically compose a
traditional assembly instruction in a microcode-based architecture. Each
assembly-level instruction is typically decomposed into a microcode routine
which is a set of microcode instructions. See Section 2.9.2.7, "Firmware."

5 2 Chapter 2

Microcoded machines have gone into and out of fashion over the past
years, but should not be confused in general with multi-operation, multi-
issue machines such as VLIW processors.

2.8.6 Object Code

1 SW Programming Level e: : : : : . I

Figure 2.46 Object Code

Object code consists of machine-executable control instructions. There is
usually no symbolic representation in object code. The code is expressed
directly in the form acceptable by the digital logic on the processor, usually
as numeric ones and zeros. Object code is composed of the strings of ones
and zeros that are used directly by the hardware, whether it is coming from
ROM, RAM, or direct input. HLL compilers, assemblers at the assembly
level and microcode-generation systems all produce object code. Object
code is also called machine code.

2.9 Supporting Terms

The following sections list a collection of terms and their definitions that
support the definitions in the previous sections. These terms tend to be more
general than the previous model-specific terms, yet clear interpretations of
these terms are not often found within our context. The previous definitions
rely on an unambiguous understanding of their meanings.

2.9.1 Abstraction Level and Hierarchy

2.9.1.1 Abstraction Level

The abstraction level is an indication of the degree of detail specified
about how a function is to be implemented. Abstraction is inversely related
to the resolution of detail. If there is much detail, or high resolution, the
abstraction is said to be low. More implementation details become
constrained as the abstraction level is lowered.

The abstraction levels form a hierarchy. A design at a given abstraction
level is described in terms of a set of constituent items and their inter-
relationships, which in turn can be decomposed into their constituent parts at
a lower level of abstraction.

Model Taxonomy 5 3

For example, consider the function:

c = a convolved with b

This function is more abstract than the following:

c = id$(dft(a) * dft(b));

The second function shows more information about how to compute (or
implement) the function. The function could have been implemented in other
ways (such as c = S ai+k * bn-k), so the second equation provides details
that are not contained in first equation.

An even lower level of abstraction for the example would be an
implementation of the equation in the form of a multiplier or accumulator
with an FSM controller. This description provides more constraining
information about the implementation, since the second equation could have
been implemented and described in other ways, such as a software-
programmed computer.

A still lower abstraction level would be a logic-gate netlist for the FSM
and multiplier or accumulator. For example, it would resolve more details
about how to implement the adder function, and therefore it would constrain
the implementation further.

An even lower abstraction level would be the polygon layout for the
logic, since more details would be resolved and constrained.

It should be evident that many intermediate levels of abstraction were
skipped in this example.

It should be noted that abstraction level does not indicate accuracy.
Abstraction and accuracy should be distinguished in the same sense that
precision is different from accuracy. For example, an abstract-behavioral
model of a deterministic processing element could describe the execution of
a given function as consuming 100.288 microseconds, while a much less
abstract RTL model would concur with exactly the time in terms of 100288
1-nanosecond (1 GHz) clock cycles. Thus, both models can be equally
accurate but differ in abstraction.

2.9.1.2 Hierarchy

Hierarchy is a multi-level classification system that supports aggregation
and decomposition. A node at a given level of the hierarchy can be
represented by the set of its descendant nodes (and their inter-relationships)
on the next lower level.

54 Chapter 2

The important hierarchies include the functional or logical hierarchy and
the physical hierarchy. Often there is a correspondence between these
hierarchies, but not always.

A functional hierarchy decomposes a system according to its functional
parts, such as receiver, product detector, convolver, multiplier or
accumulator, register or multiplexer, and logic gate.

A physical hierarchy may decompose a system according to its physical
structure, such as racks, frames, chassis, boards, modules, chips, cells, gates,
and transistors.

The functional-to-physical-structure mapping tends to shift with model
year as integration levels increase.

2.9.2 Design Object Classes

2.9.2.1 System

A system is any composition of parts that performs a function or set of
functions. The boundaries of a system usually follow the structural
implementation, but may also cross physical boundaries. For instance, a
memory system XYZ might share boards P, Q, R, and S with other systems.
Systems are typically hierarchical in that a system may be composed of sub-
system component~. A system is characterized by the interrelations and
behaviors of its components.

Examples of systems are:
1. Digital signal processing system, which is composed of sub-

systems such as:

o 110 system
o Network communication system
o Local and distributed operating systems
o Run-time command processing and control systems
o Processor clusters, or multi-node board systems
o Power supply system

2. Multi-node, processor-board system, composed of sub-systems
such as:

o Processor-element subsystems
o Shared memory system
o Scan-chain control system

3. Processing element system (analogous to a CPU system),
composed of sub-systems such as:

Model Taxonomy 55

o Local memory system
o Local node operating system
o Processor unit sub-system
o Inter-PE communication system
o Run-time, node-control system

To make the term system clear, it is recommended that the appropriate
qualifier be stated before its use, such as "CPU memory system," "radar
system," "DSP system," and so on.

Most systems are components of larger systems. The terms "system" and
"componenty' can therefore be used to refer to the same item, but from
different viewpoints. It is best to use the former term when speaking of the
item and its constituent parts, and the latter term when speaking of the item
as a constituent of a larger system.

2.9.2.2 Component, Module

A component or module is any part of a design that may be instantiated
one or more times and combined with other components to form a system or
module. A functional component of a system implements a specified
function. A hardware component of a system may be a (populated) chassis,
board, IC, macro-cell, connector, and so on. A software component or
module may be a collection of routines, such as an operating system, or
library, as well as a single routine.

Often, the word "component" has been used to specifically designate an
IC chip, as in a board component, which indicates a specific structural
partitioning. However, since terms such as "IC-chip" adequately describe
such devices, it is preferable to not confine the usage of the word component
to that single structural level.

Similarly, the word "module" has often been used to designate a multi-
chip substrate that is a board component such as the multi-chip module
(MCM). However, the word module has also been used to designate larger
systems such as the Lunar Module and other non-hardware items such as
software code modules. Therefore, the synonyms component and module are
used in a recursive and hierarchical terminology that may correspond to
either the functional or structural implementation.

Every complex component is itself a system. The terms "system" and
"component" (or "module") can therefore be used to refer to the same item,
but from different viewpoints. Use the former when speaking of the item and
its constituent parts, and the latter when speaking of the item as a constituent
of the larger system.

56 Chapter 2

2.9.2.3 Architecture

Following the work being done by the IEEE Architecture Working
Group of the Software Engineering Standards Committee [IEEE 14711, an
architecture is:

"the highest-level conception of a system in its environment. "

In particular, the standard comments:

"An architecture is a property or concept of a system, not merely its
structure ... any system has an architecture, whether or not it is
documented ... The phrase 'highest-level' is used to indicate that an
architecture abstracts away from details of design, implementation and
operation of that system to focus on the system's 'unifiing or coherent
form' ... architecture is not a property of the system alone, but that the
system's environment is a consideration in the system 's architecture."

However, in the context of this book, we use the following three
definitions:

In the context of software, architecture is the configuration of all
software routines and services for meeting a system's objective. For
example, application, operating system, and communication
protocols can describe layers of a software architecture.
In the context of hardware, architecture is the configuration of all
physical elements for meeting a system's objective.
In the context of systems, architecture is the collection and
relationship of the system's constituent hardware and software
components. For example, a multiprocessor system's architecture
would include the hardware network architecture and the software
architecture in the form of distributed and local operating systems,
and application and control routines.

An additional concept, related to architecture, that we propose is called a
Jirnctional-to-physical architecture mapping, which is a "mapping" between
a functional model of a system and an architecture that implements the
functions implied by the functional model. Such a mapping explicitly ties
together the main structural components of the system, in both the hardware
and software senses, and the functions that are associated with each of them.
This mapping should deal with the required communications between
functions, and the components in the architecture that are used to realize this
communication (for example, in the hardware domain, buses; in the software
domain, messaging routines; between hardware and software, memory-
mapped 110). In some contexts, the combination of the architecture of a
system-as defined earlier-the functional model of the system, and the

Model Taxonomy 57

mapping between the two, along with associated implementation constraints,
is called an architecture.

2.9.2.4 Structure

The following description draws on the IEEE 1471 work and suggestions
by JP Calvez:

Structure is something arranged in a deJnite pattern of organization, the
organization of parts as dominated by the general character of the whole
and the aggregate of elements of an entity in their relationships to each
other. Traditionally in electronics and software, 'Structure is the
components and organization of physically identijiable things, whether
hardware entities or software objects such as modules, or both. "

2.9.2.5 Hardware

Hardware is a physical component or system implementation of
functions. It is especially the intrinsic functional aspects of physical systems
that are not electronically modifiable (software-configurable or
programmable hardware is simply a software selection of intrinsic hardware
functionality). Modification of intrinsic hardware functionality usually does
not occur after construction and cannot be changed without physical
alteration, since it requires mechanical alteration of circuits. In other words,
the intrinsic hardware functionality is set, unless physically altered.
Hardware is not intended to change over the unit's life-cycle without
physical alteration.

2.9.2.6 Software

Software comprises the electronically modifiable aspects of a system's
behavior. This refers especially to aspects that are intended to be changeable
multiple times over a unit's life-cycle. Software is often the set of
electronically modifiable instruction sequences that are interpreted by
hardware and thereby control the operation of the hardware.

2.9.2.7 Firmware

Firmware is a set of electronically modifiable aspects of a system's
behavior that is not intended to be altered often, if at all, during a unit's life-
cycle. Traditionally, the term has applied to software that is "hard-wired"
and cannot be easily changed during the unit life-cycle, but this definition
may be too narrow for modern technologies where data can be downloaded
and FPGAs reprogrammed while the unit is running.

58 Chapter 2

2.9.3 Information Classes

It is often useful to distinguish between two major types of information
that are present in a system: application data and control data. Several other
terms depend on distinct definitions for the terms that follow.

2.9.3.1 Application Data

Application data information that is the object of computation or
communication, that does not affect, determine, or change the sequence of
subsequent operations.

Because decisions as to what to include in a model often pertain to
portions of the design defined as control or data, an orthogonal classification
must be made to distinguish between control versus data. The challenge in
making this classification is that data is control to some and control is data to
others; it is "view" specific. For example, all the "signals" used to control a
protocol to transfer data over a bus may be viewed as control by a bus
designer. But another designer may view any clocked input as data for a
synchronous design.

2.9.3.2 Control Data

Control data includes information that affects, determines, or changes
subsequent events or operations.

2.9.4 Design Process Terms

2.9.4.1 Synthesis

Design synthesis is the process of creating a representation of a system at
a lower level of design abstraction from a higher-level (more abstract)
representation. The synthesized representation should have the same
function as the higher-level representation. Synthesis literally means the
combining of constituent entities to form a whole unit. In system design,
synthesis refers to the process of finding a set of elements and a way of
combining them, such that when so combined to form a system, the system
meets its requirements. Synthesis may be automated or done manually, but
the term is usually used in reference to an automatic process.

2.9.4.2 Simulation

Simulation is the process of applying stimuli to a model and producing
the corresponding responses from the model (when those responses would

Model Taxonomy 59

occur), in such a way that the responses match the "real-life" expected
responses from the system which the model purports to represent.

2.9.4.3 Emulation

Emulation performs the same function as simulation except that a
surrogate design is automatically implemented from the design model and
programmed into a reprogrammable infrastructure, such as a number of
interconnected FPGAs. This emulation model should behave in a
functionally identical manner to the model, and to the actual real-life system
which the model intends to represent

2.9.4.4 Interface-Based Design

Interface-based design [BAI 001 is a design flow that moves design from
an interconnected set of communicating processes with clearly defined and
separately captured interface protocols (usually intended to test conceptual
behavior) to interconnected realized components in the final system. At this
design point, interactions conform to the interface specifications captured at
all the levels of abstraction.

At the higher levels of abstraction, the set of operations or tasks required
to perform an application are initially linked by "ideal" channels through
which information is sent and received as needed, without concern for
conflicting resource requests or synchronization. At this stage, the
architectural design may be concerned only with functionality or with
communication protocols.

As this design is refined, common communication resources are
specified, control protocols administered, and sharing of functional units
identified. The common issues associated with system design become
visible, and the design moves from that of the ideal to the real.

The separate specification of the interfaces allows the design process to
proceed fully and concurrently with the minimum of design interference
between teams working on separate components.

2.9.4.5 Top-Down Design

Top-down design refers to the flow of design-driving requirements from
the abstract function (high-level or top) to the specific implementation (low-
level details or bottom). It is the process whereby requirements are
developed for the components of a given level of the design-abstraction
hierarchy that are used to drive the design and selection of components in
the lower levels. In contrast, bottom-up design refers to the process of pre-

60 Chapter 2

selecting certain components, and then partitioning the remaining
requirements accordingly.

An example of a top-down design process is one that consists of the
following steps:

1. A behavioral level model is partitioned into sub-modules.
2. Interfaces between sub-modules are defined.
3. Resources and requirements for each component module are defined.
4. The process verifies that the partitioned form is equivalent in timing

and function to the unpartitioned behavioral model.
5. Steps 1-4 are repeated recursively for each sub-module, until suffi-

cient detail is resolved for physical construction, loading, and
operating the system.

During a recursion of steps 1-4, if the verification fails due to an
unobtainable requirement, the critical issue is passed upward for reallocation
of the requirements. Then the recursion begins again.

Top-down design has in the past been interpreted by some designers
literally, as a prescribed and rigid time order of abstraction focus, such that
the abstract design would be completed prior to the detailed design in
sequence. That interpretation should be avoided because it does not apply to
realistic design situations in which top levels could specify unattainable
requirements for the lower sub-modules. The preferable interpretation is that
multiple levels of the design process are active concurrently, but the flow of
requirements is from top to bottom, with feedback on how well the
requirements can be met flowing from bottom to top.

2.9.4.6 Prototype

A prototype is a preliminary working example or model of a product,
component, or system. It is often abstract or lacking in some details from the
final version. Two classes of prototypes are used in design processes:
physical prototypes and virtual prototypes.

The purpose of a prototype is for testing, exploration, demonstration,
validation, and as a design aid. It is used for testing design concepts and
exploring design alternatives. Prototypes are also used to demonstrate design
solutions or validate design features.

2.9.4.7 Physical Prototype

A physical prototype is a physical model of a product, component, or
system. The traditional prototype is a physical prototype, as opposed to a
virtual prototype. See Section 2.9.4.8, "Virtual Prototype."

Examples of physical prototypes are: bread boards, mock-ups, and brass
boards. Physical prototypes are characterized by fabrication times that

Model Taxonomy 61

typically require weeks to months and take days or weeks to modify.
Construction usually involves detailed design, layout, board or integrated-
circuit fabrication, ordering, and mounting using solder or wire-wrap.
Additionally, programmable systems or parts require detailed target-software
design of drivers and operating system, or programming PLAs, FPGAs, and
PROMS.

2.9.4.8 Virtual Prototype

A virtual prototype is a computer-simulation, or emulation model of a
final product, component, or system. Unlike the other modeling terms that
distinguish models based on their characteristics, the term virtual prototype
does not refer to any particular model characteristic but rather it refers to the
role of the model within a design process. A virtual prototype refers to the
role of:

Exploring design alternatives
Demonstrating design concepts
Testing for requirements satisfaction and correctness

For more information see Section 2.9.4.6, "Prototype," and Section
2.9.4.7, "Physical Prototype."

Virtual prototypes can be constructed at any level of abstraction and may
include a mixture of levels. Several virtual prototypes of a system under
design may exist as long as each fulfils the role of a prototype. To be useful
in a larger system design, a virtual-prototype model should define the
interfaces of the component or system under design.

In contrast to a physical prototype, which requires detailed hardware and
software design, a virtual prototype can be configured more quickly and
cost-effectively, can be more abstract, and can be invoked earlier in the
design process. A distinction is that a virtual prototype, being a computer
simulation or emulation, provides greater non-invasive observability of
internal states than is normally practical from physical prototypes.

2.9.4.9 Virtual Prototyping

Virtual prototyping is the activity of configuring (constructing) and using
(simulating) a computer software-based model of a product, system, or
component to explore, test, demonstrate, or validate the design, its concept,
or design features, alternatives, or choices. Specifically, this means using the
virtual-prototype model as if it were an example of the final (physical)
product. For more information see 2.9.4.6, "Prototype" and 2.9.4.8, "Virtual
Prototype"

62 Chapter 2

2.9.5 Design-Tool Terms

2.9.5.1 Model

A model is the description of a function, system, or component that when
executed (usually upon a simulator or emulator), replicates the operation of
the intended function on applied stimuli.

2.9.5.2 Emulator

An emulator is a hardware device that mimics the electrical behavior at
the interfaces of a component, or identified points within a component for
in-circuit operation or as a faster means of performing a simulation.

2.9.5.3 Simulator

A simulator is a software utility for executing models within a computer.
In the case of an HDL simulator, the simulator manages the passage of
simulated time and creates the illusion of concurrent model and process
execution. The simulator also provides user-interactive or batch-
development capabilities such as execution control, which includes break-
points, stepping, running, stopping, and continuing; tracing and examining
model states; and setting model states.

2.9.6 Verification and Test-Related Terms

For additional terms related to the verification of systems, the reader
should also see Chapter 3, "Functional Verification Taxonomy."

2.9.6.1 Testbench

A testbench is a model or collection of models or data files that applies
stimuli to a device under test (DUT), or a device under verification (DUV),
compares the DUTYs response with an expected response, and reports any
differences observed during simulation.

2.9.6.2 Test Vector

A test vector is a set of values for all the external input ports (stimuli) and
expected values for the output ports of a module under test.

Model Taxonomy 63

2.9.6.3 Functional Test

A jimctional test performs tests for the required function of a unit.
Functional tests are independent of the implementation of the unit under test.
Functional tests do not require implementation knowledge, but test for
design errors and correctness. As such, functional tests do not check for
physical hardware faults in the manufactured system. For instance, the
functional test of a multiplier unit could be 4 * 7 = 28. Such tests check that
the unit would perform multiplication and handle corner conditions such as
four-quadrant signage.

2.9.6.4 Operational Test

An operational test performs tests for the proper operation of a unit. This
test is implementation dependent, since it checks for hardware faults such as
stuck-at, open, and short. It tests for physical faults in manufactured systems.

2.9.6.5 Boundary Scan

A boundary scan is a structured test technique for testing digital circuits.
It consists of embedding shift registers at every pin (110) of a component so
as to control and observe each and every pin independent of the internal
logic of the component. Though designers have previously built scan cells in
their own ways, IEEE has standardized a test architecture for boundary scan
[IEEE 1 1491.

2.9.6.6 Signature Analysis

Signature analysis is the testing of digital circuits by applying stimuli (a
set of inputs) and measuring the response of the circuit (called the test
result). The result is compared against an expected pattern (called the
signature) and fault analysis based on the stimuli (also called a test vector).
The response is called signature analysis.

2.9.7 Requirements and Specifications

2.9.7.1 Specification

A specifcation is any written document or executable program that
explicitly states the quantities and functionalities either needed or provided
by a system or component. The former class is called requirements
specifcations while the latter are called design specifzcations. Many other
types of specifications exist, such as manufacturing specifications,
maintenance specifications, and test specifications.

64 Chapter 2

2.9.7.2 Executable Specification (E-Spec)

Traditionally, specifications are a collection of statements written as
human-readable documents. The automated form of such statements
implemented as executable programming models are known as E-Specs.
Executable versions of requirements and design specifications, called ER-
Specs and ED-Specs respectively, interact to test a design relative to its
requirements.

2.9.7.3 Requirement Specification (Req-Spec)

A requirement specification states the necessary and sufficient qualities,
quantities, and functions that a system or component must exhibit.
Requirements may be expressed in terms of functions, specific values,
allowable ranges, or inequalities such as maximums and minimums.
Requirement specifications include both electrical behavior of function and
timing as seen from the interface, and physical constraints of power, cost,
size, fit, and weight.

2.9.7.4 Executable-Requirement Specification (ER-Spec)

Executable versions of Req-Specs are called ER-Specs. They test for
requirement compliance by applying tests to candidate systems. In this role,
an ER-Spec forms a testbench.

2.9.7.5 Design Specification (Design-Spec)

A design specification is the statement of a design solution. The Design-
Spec states the requirements for each the system's constituent components
and how to configure them as well as the resultant performance,
functionality, and other pertinent quantities that characterize the system as
designed. The components may be architectural blocks, hardware elements,
software elements, or combinations.

2.9.7.6 Executable Design Specification (ED-Spec)

Executable versions of Design-Specs are called ED-Specs. They are used
to interact with ER-Specs for automatic requirements testing. An ED-Spec
model represents the component or system, while the ER-Spec forms a
testbench.

Model Taxonomy 65

2.9.8 Reusability and Interoperability

2.9.8.1 Reusability

Reusability is the degree to which a module, component, or system may
be used again in other instances for which it may or may not have been
specifically intended. Reuse occurs across several dimensions, such as life-
cycle phases, at the packaging levels, and across model-years. Reuse occurs
at various distinct levels, such as:

Reuse of components (hardware parts) or modules (software object-
code), also called direct implementation
Reuse of hardware logic or software source-code recast in new
technology or integrated with other logic or code
Reuse of architecture through re-implementation of functional block
concept with new partitioning, integration, or technologies

2.9.8.2 Model Interoperability

Model interoperability designates the degree to which one model may be
connected to other models and function properly, with a modicum of effort.
Model interoperability requires agreement in interface structure, data format,
timing, protocol, and the information content and semantics of exchanged
signals.

2.9.9 Interface-Related Terms

2.9.9.1 General Interface Terms

The following set of terms is expected to be common to all component
interfaces:

Interface - An interface to a component is the sum of all
communication-both implicit and explicit-between that component and
everything in its environment. It may include not only the static types and
sizes of ports, but also the definition of the entire protocol necessary to
communicate with a specific instantiation of the component. The interface
may define a protocol at many levels of abstraction. These levels must be
consistent with each other so that the capabilities of the communication
protocol observed at one level of abstraction hold at all levels of abstraction
below that. An interface to a virtual component consists of a set of channels
and the protocols defined on these channels. The point at which a channel
connects to a component is known as aport.

66 Chapter 2

Interface Abstraction Layers/Levels - These are the differing levels of
protocol specification that may accompany an interface description.
Depending upon the type of interface, certain properties suitable for the
description of each layer may be specified. Levels of abstraction on
interfaces may be used for:

Data (for example, from enumeration to bit mask)
Communication (for example, from point-to-point to bus
communication or from transaction level to messages to cells)
Resource (for example, infinite buffer and non blocking to fixed
register and blocking)
Time (for example, dataflow to serial processes to clocked)

Virtual Component Interface (VCI) - The VCI is the interface of a
Virtual Component. It encompasses all the interface abstraction layers from
the most abstract layer down to the lowest specified level

Channel - The connectivity mechanism between any two components.
Each channel has associated attributes along with its behavior. A channel
may be specified at multiple levels of abstraction.

Ports - A port is a connectable point on the component through which
information may travel. A port may have specified attributes and constraints
that can range from the direction and size of the port to the definition of the
behavioral principle of the port (such as blocking-read) to the specification
of the protocol in which the port performs a role.

Protocol - The specification of the communications etiquette. A protocol
may include the specification of the control lines and their behavior and
relationship to data, the specification of the data types and their values (if
necessary), communication timing, state (if implied by the communication
semantics), and so on.

Behavioral Blocks - The behavioral entities that correspond to
components stripped of their interface protocols are referred to as
"behavioral blocks."

Protocol Blocks - The specification of how a set of transport objects and
their data combine and cooperate to perform a higher-level task. They can be
thought of as "pattern mappings" from one layer of abstraction to another.

Atomic - Defines a property on an interface action. An atomic action
either completes fully or not at all. An atomic action that completes fully
does so without the possibility of interruption or interference. If an atomic
action does not complete fully (that is, it is abandoned) then the state of the
system must be as if the action had never started. This is sometimes called
run to completion.

Datum - A datum is a primitive object that is based on a set of primitive
data types (such as "integer," "string," "character," and so on). Data may be

Model Taxonomy 67

transmitted through interface ports by transport objects such as messages and
be acted upon by behavior objects such as protocol blocks.

Cell - A cell is a grouping of zero or more datums (data). Cells may be
passed and used like data.

Packet - A packet is a transport object consisting of a group of cells
transferred across the component interface.

Operation - An operation is a specialized transport object consisting of a
pair of packets, which are usually transferred in different directions, for
example, a request packet and a response packet.

Packet Chain - A packet chain is a non-atomic specialized transport
object consisting of a set of logically connected packets transferred in the
same direction across a component Interface. The chain of packets is
connected because no intervening packets are allowed on the same channel.

Message - A message is an atomic transport object that transfers zero or
more cells or data in the same direction to or from a port.

Transaction - A transaction is a non-atomic transport object that
consists of a set of messages or packet chains across ports and along
channels.

Attribute - These are some classifications by which the behaviors of
objects can be more specifically defined. For example, a basic transaction
may be a read and an attribute on that read could be blocking.

CHAPTER 3 FUNCTIONAL VERIFICATION

TAXONOMY

3.1 Introduction

This section is intended to provide a classification of the various
functional verification technologies and uniform definitions of terms used in
these technologies.

The intended audience for this section includes design and verification
engineers involved in the creation of virtual components (VCs) as well as
those engineers who are integrating VCs and verifying SoC designs
containing VCs.

3.1.1 Classifications of Verification

A framework for classifying functional verification technologies and
methodologies into a logical structure is shown in Table 3-1. It defines four
broad categories of verification:

VC Verification Integration Verification

Intent Verification X X

Equivalence Verification X X
Table 3-1 Verification Classification

This section of the taxonomy is organized into these four main categories
and includes a detailed description of tools and techniques to implement
each type of verification.

Intent Verification. The purpose of this activity is to verify that the
designer's intended functionality has been correctly captured in the
design. Typically this is done at the highest level of abstraction. The
end result establishes a "golden model" that can be used as a

70 Chapter 3

reference for the more detailed design views created throughout the
design process.
Equivalence Verification. The purpose of this activity is to verify
that the functionality of the various design levels created through the
design process matches the functionality of the "golden model."
VC Verification. This is the process of verifying the functionality
of a virtual component, that is, unit test.
Integration Verification. This is the process of verifying a system-
on-chip (SoC) design that contains one or more VCs, that is, system-
level test of the SoC.

Clearly there is a large overlap between the techniques and tools used for
each of these four tasks. VC verification and integration verification use the
same or similar processes. However, the models and sources of verification
test suites may be significantly different. For VC verification, it is critical to
verify the detailed functionality of the logic internal to the VC to ensure that
the VC was implemented correctly. Integration verification is focused on the
interconnection of VCs and their interaction, which can be achieved with
models that accurately model the VC interface but approximate the internal
functionality.

This document focuses on verifLing that a design matches its intended
functional behavior as captured in specifications. It does not address high-
level issues of validation, such as whether the specification properly captures
customer, system-level intent.

3.1.2 Definitions

Term Definition

Equivalence Verification or Process of determining whether two designs
Checking (which could be of differing levels of abstraction

or format) match in terms of functionality;
equivalence checking is often performed
statically using formal methods

Integration Verification Process of verifling the functionality of a
system-on-chip (SoC) design that contains one
or more virtual components

Intent Verification Process of determining whether a design fulfills
a specification of its behavior

Provider Functional Verification performed by the VC provider

Functional Verzjkation Taxonomy 7 1

Term Definition

Verification
VC Verification Process of verifying the functionality of a virtual

component, for example, unit test of that
component

Table 3-2 Verification Definitions

3.2 Intent Verification

The following sections give the tools and techniques that are appropriate
for intent verification.

3.2.1 Dynamic Verification

Dynamic verifzcation involves exercise of a model or models of a design,
or a hardware implementation of the design, with a set of stimuli. The
following dynamic verification tools and techniques are applicable to intent
verification.

3.2.1.1 Deterministic Simulation

Simulation is the process of applying stimuli to a model and producing
the corresponding responses from that model. In deterministic simulation,
the stimulus is specified explicitly and an expected response from the model
can be predicted and checked. There are two types of simulators: event
based and cycle based.

Event-based software simulators operate by taking events, one at a time,
and propagating them through a design until a steady state condition is
achieved. The design models include the concept of intra-cycle timing as
well as functionality. Any change in input stimulus is identified as an event
and will be propagated through each stage in the design. A design element
may be evaluated several times in a single cycle of each clock due to the
different arrival times of the inputs and due to the feedback of signals from
downstream design elements. While this provides a highly accurate
simulation environment, the speed of execution is dependent upon the size of
the design and can be relatively slow for large designs.

Cycle-based simulators take a different approach. Cycle-based simulators
have no notion of intra-cycle timing and evaluate the logic between state
elements and/or ports in a single shot. Since each logic element is evaluated
only once per cycle, this approach significantly reduces the execution time.
The simpler model used by a cycle-based simulator (no timing, fewer logic

72 Chapter 3

states, and so forth) can lead to restrictions on the types of circuits that these
simulators can handle. For example, circuits that rely on intra-cycle timing
or propagation of unknown values for proper simulation may not work with
a cycle-based approach.

3.2.1.2 Random Pattern Simulation

In directed random verification, random address, data, and control values
are driven onto a bus or set of signals, and one or more bus protocol
checkers verify that bus protocol violations do not occur as a result of these
operations. This verification approach is well suited to bus verification,
although random patterns may be useful for simulation of other design
structures.

The verification test suites are directed, in that the cycles generated are
not purely random but are created to stress the design in specific ways. The
pattern generators can be set to create specific transaction types, such as
read, write, and read-modify-write in a pseudo-random sequence, but with
specific distributions; for example, 20 percent read, 30 percent write, 50
percent read-modify-write. Similarly, data and address fields can be
generated in a random sequence, but within specified limits or using a
limited set of discrete values. Of course the sequences have to all be valid
functions.

These types of verification tests verify corner conditions and sequential
or data-dependent situations that are difficult to identify with deterministic
simulation. With this methodology, any algorithmic errors are identified and
fixed early in the design cycle.

In non-directed simulation, the inputs of a design are driven directly from
a random pattern generator and the outputs are checked for any invalid
operations. This approach is used most often to verify data-path and
arithmetic elements, or to verify small blocks that can accept any random
input sequence.

3.2.1.3 Hardware Acceleration

Hardware acceleration is the mapping of some or all of the components
in a software simulation into a hardware platform specifically designed for
speed up of certain simulation operations. Most commonly, the verification
testbench remains running in software while the design being verified is run
in the hardware accelerator. Some types of accelerators can also run
behavioral code, in which cycle-by-cycle behavior is not fully specified. In
this case, it may be possible to run an entire deterministic or random pattern
simulation entirely in hardware.

Functional Verzjkation Taxonomy 73

3.2.1.4 Hardware Modeling

Sometimes software simulation models of some design components are
unavailable, or are insufficiently accurate. One approach to this dilemma is
to run a silicon component in a hardware modeler, connected to the software
simulator. A hardware modeler receives inputs from the simulator, applies
the input to the component and runs one more cycle, then captures outputs of
the component and sends them back to the simulator.

3.2.1.5 Monitors

Monitors are probes that watch signals in the design. The probes can be
used for various purposes, for example:

Protocol verification: ensuring that the interface signals obey the
protocol defined for the interface
Performance verification: ensuring that the interface signals obey the
performance targets defined for the design (in terms of cycle counts
rather than intra-cycle measures or time intervals)
Recording functional coverage data
Monitors may be split into two types:
Interface monitors that only monitor design interface signals
Internal monitors that only monitor signals internal to the design

Monitors for a VC should be usable at both the VC verification level and
at the SoC level (to ensure that the VC is working correctly within the VC
integrator's system).

3.2.1.6 Protocol Checkers

Protocol checkers are elements that monitor the transactions on an
interface and check for any invalid operations. If an invalid operation is
detected in the simulation, it is flagged as an error. These checkers can be
embedded in the verification testbench and not be part of the design. For this
application, the checkers are active only during simulations. The checkers
may also be embedded in the design, where they can actively check for
violations not only in the simulation but also during the normal operation of
an actual physical device. Checkers embedded in the design should be
synthesizable to gates.

3.2.1.7 Expected Results Checkers

An expected results checker is part of the system verification testbench
that checks the results of a simulation against a previously specified,
expected response file. If discrepancies occur, they will be flagged.

74 Chapter 3

3.2.2 Static Functional Verification

Staticfinctional verifzcation exploits formal mathematical techniques to
verify a design without the use of verification test suites. There is no
industry consensus on the verification approaches included under the static
functional verification label. Some consider static functional verification to
be a subset of formal verification; others consider them equivalent. Because
of this lack of consensus, this document does not consider static functional
verification as a distinct technique.

3.2.3 Formal Verification

Formal verification uses mathematical techniques to verify functional
aspects of a design. Since formal verification techniques rely on
mathematical analysis of the design, verification test suites are not required.
The scope of formal verification includes equivalence checking, which is
covered in Section 3.3.2. The following formal verification tools and
techniques are applicable to intent verification:

3.2.3.1 PropertyIModel Checking

Propertyhodel checking uses formal mathematical techniques to verify
functional properties of designs. A model checker explores the entire state
space of a design under all possible input conditions, finding bugs that can
be difficult to catch through simulation. When a model checker reports a
property to be true, a designer can be 100 percent sure that the report is
accurate. Model checking does not require any verification testbench setup.
The properties to be verified are specified in the form of queries using a
specification language. When the model-checking tool finds an error, the
tool generates a complete trace from an initial state to the state where the
specified behavior or property failed.

For many designs, only certain input conditions are allowed and therefore
only a subset of the entire state space is legal. In this case, a model checker
must provide some mechanism by which the designer can specify the
allowable input sequences. These are usually specified using a constraint
language that describes the bounds for legal input behavior.

Model checking is usually more effective for verifying control-intensive
designs than datapath-intensive designs. Systems containing datapaths
typically have very large and deep state spaces; verification of properties on
such systems can be expensive in memory and processor time. However,
property-specific reductions can be used to analyze only that part of the

Functional Verijkation Taxonomy 75

circuit relevant to the property and design abstraction, which can extend the
range of model-checking applications.

Model checkers usually verifl properties that a particular condition is
always true, can eventually become true, or is never true, under all possible
legal input sequences and legal states. Such a property is an assertion about
the design, and quite often, is useful in simulation as well as in model
checking. Depending upon the mechanism used, it may be possible to use
the assertions from simulation directly as properties for model checking.

Usually, assertions state that a particular condition must always be true;
if that condition is ever violated in simulation, then the user is notified.
When the condition is specified in terms of something that must never
happen, this is sometimes called a checker. The checker "fires" when the
specified condition is violated, and the simulation user is notified.

3.2.3.2 Theorem Proving

Verification systems based on theorem proving techniques typically
support a specification language based on a chosen kind of formal logic and
a set of strategies in the form of commands to mechanically construct a
proof of an assertion in the logic. Theorem proving systems widely vary in
the kind of formal logic they support and in the level automation they
provide for constructing the proof. Most theorem proving systems support a
form of universal, general-purpose logic, although there are systems that are
customized for specialized or restricted types of logic.

Formal verification of a hardware design, using a verification system
based on theorem proving techniques, typically consists of first describing
the design model (M) and the property (P) to be verified in the
logic/specification language supported by the verification system. The
property is verified by constructing a proof of a correctness assertion that M
implies P for all possible input conditions. Successful completion of a proof
of the correctness criterion guarantees that the property is true of the design
for all possible input conditions.

A number of theorem proving systems have been used to perform
successful verification of large realistic designs, such as floating point units
and complex pipeline control.

As in model checking, verification by theorem proving does not require
any verification testbench creation, but requires the formulation of properties
to be proved. Unlike model checking, verification by theorem proving is not
limited by the size of the inputs or the design state space. Hence, theorem
proving is better suited for functional verification of datapath-oriented
designs and higher level applications, such as floating point and pipeline
control hazard verification. Theorem proving techniques can be used for

76 Chapter 3

property checking, as well as equivalence checking between two models of a
design. For checking equivalence between two models, an appropriate
assertion relating the two models must be written and proven after
describing the two models in the language of the verification system.

The main drawback of verification by theorem proving is that it is not as
automatic as model checking, since the user has to construct the proof
interactively using the commands of the theorem prover. Another
disadvantage is that in the event of a failure to construct a proof, the prover
does not automatically construct a counter example trace. The user has to
diagnose the cause of the failure by manually analyzing the failed state of
the proof.

3.2.4 Dynamic-Formal Hybrid Verification

Some techniques link simulation and formal verification in order to take
advantage of the thoroughness of formal techniques while handling larger
designs and a wider range of design styles.

3.2.4.1 Symbolic Simulation

Although general purpose theorem proving is too interactive to be widely
applicable, certain components of theorem proving systems, such as
automatic procedures for deciding restricted types of logic, can be used to
build stand-alone verification tools. Symbolic simulation, which supports
design simulation over symbolic inputs denoting a set of inputs, is one such
technology. A symbolic simulation tool uses symbolic values whenever
possible, reverting to traditional simulation when required by design size or
complexity.

3.2.4.2 Dynamic Formal Verification

Dynamic formal veriJication uses formal, mathematical methods to
amplify or expand design behavior exercised in simulation. Like model
checking, it targets assertions by considering a wide range of behaviors that
conform to any input constraints. It does not necessarily start from the reset
state and consider all possible behaviors for all time. Instead, it starts from a
series of states already reached in simulation and explores a range of
behavior around that state, usually bounded by sequential depth (the number
of clocks). For example, dynamic formal verification may consider all
possible five-cycle sequences of legal input changes and associated state
transitions from each state in a simulation trace. This technique is optimized
for finding ways to violate assertions; it is unlikely to prove that assertions
can never be violated.

Functional Verifzcation Taxonomy 77

3.2.4.3 Formal Coverage

Formal coverage, sometimes called semi-formal verzfzcation, refers to
the use of static or dynamic formal methods to improve coverage results as
measured by some appropriate metric. Usually, this is accomplished by
placing assertions on points not covered in the existing simulation tests, and
then targeting these assertions with formal methods. For example, an
assertion could be placed inside a basic block in RTL to improve line
coverage, or on a state machine to improve arc coverage.

Formal coverage is an emerging verification methodology that is neither
widely employed nor directly supported by many formal verification tools.

3.2.4.4 Formal Constraint-Driven Stimulus Generation

Formal constraint-driven stimulus generation is the utilization of formal
methods to generate targeted tests that satisfy a given set of constraints. A
set of constraints restricts the behavior of a subset of the design input signals
over time. The constraints are expressed in a formal specification language
(for example, temporal logic). Given the constraints, a stimulus generation
tool that uses formal techniques calculates a sequence of stimulus for the
design that satisfies the constraints. Depending on the level of integration
between the generation tool and the simulator, the stimulus can be directly
applied to the design or saved in a format suitable for simulation.

This is an emerging verification methodology that is neither widely
employed nor directly supported by many formal verification tools.

3.2.5 Hardwarelsoftware Co-Verification

In the hardware-software co-verijkation methodology, the verification
of both the system hardware and software occurs simultaneously. Traditional
system design flows occur serially, where the hardware is first fabricated and
the system software is then written and debugged on the hardware. With co-
verification, the software is executed on the hardware simulation platform
while the hardware is being developed, and both hardware and software are
debugged in parallel.

Although the creation of the proper co-verification environment can
require significant time and expertise, the rewards from using co-verification
can be significant. Co-verification allows for many system-level bugs and
issues to be uncovered and corrected before the SoC is actually fabricated.
Running simulations with the actual processor and firmware code models the
system much more accurately and allows for more extensive verification
than with simple bus-model transactions used in older design flows.
Software is also debugged and verified during the simulations, which allows

78 Chapter 3

system bring-up and development to occur at an accelerated pace when the
chip is actually fabricated. Ultimately, co-verification improves the entire
product development flow by resolving problems and issues much earlier in
the design cycle, saving both time and money.

3.2.6 Emulation

Emulators are specially designed hardware and software systems that are
typically built from some type of re-configured logic, often field-
programmable gate arrays (FPGAs). These systems are programmed to take
on the behavior of the target design and can emulate its functionality, even to
the degree of having the emulated design connected directly to the rest of the
system in which the design is intended to operate. Since these systems are
hardware-based, they can provide circuit simulation speeds that approach the
end design target speed. This contrasts with the kilohertz and down to tens of
hertz cycle times for software -based simulators. This performance
difference of multiple orders of magnitude allows emulation technologies to
take on large verification tasks that would take months or even years on a
software simulator. Examples of these verification tasks would include
applications with very large data sets such as video streams, or with millions
of lines of software such as booting up entire operating systems. SoCs with
embedded processors often need emulation or prototyping technology to
verify the complex functionality of the software running on the embedded
processor in conjunction with the surrounding logic prior to committing the
design to silicon. As such, these emulation systems are often the common
design view between the hardware and software teams in a concurrent
design process.

There are many different architectures employed by these emulation
systems to provide flexibility, controllability, visibility, and performance.
The architectures include arrays of interconnected FPGAs, arrays of custom
processors, systems with programmable crossbar switches and
programmable bus interface systems. These different architectures provide a
range of trade-offs in terms of design capacity, performance, and best-suited
design topologies. All of them are intended to work in conjunction with, and
to complement, a verification methodology that includes other technologies
such as software simulators, timing verifiers, formal verifiers, and logic
analyzers.

An emulated design can be viewed in some ways as a prototype with
limited accuracy, although it is built from a generic hardware platform.
Emulators usually support a high degree of observability into the internal
nodes of the design, allowing designs to be debugged in a manner closer to
simulation than to actual physical prototypes. In fact, emulators are

Functional VeriJication Taxonomy 79

sometimes used for simulation purposes, since a software simulator can
communicate with an emulator in essentially the same manner as with a
hardware simulation accelerator.

Although emulators can sometimes approach the speed of the end design,
in some cases their usefulness is limited unless they can run at full speed and
connect into the same system as the final design. In addition, the cost of an
emulation system usually restricts the number of systems on a project, and
this in turn limits the number of engineers who can run emulation at the
same time.

3.2.7 Physical Prototyping

A physical prototype is a hardware design representation of the target
design. This model of the design will operate at "close to" the target
platform performance, enabling the following:

Development and debugging of application and system software
before availability of the SoC device
System-level performance testing
A high-performance platform simulation for the target design, which
enables exhaustive test cycles
A hardware platform and software environment to support hardware
and software co-verification
A logic analyzer interface for test cases
Marketing demonstration of the target design

Typically the physical prototype operates within an order of magnitude
of the target system speed and is capable of executing at a much higher
speed than the software simulators. This means the full software suite can be
loaded on the physical prototype and exercised with a system-level
verification test suite.

The different approaches for physical prototyping have different
characteristics in terms of the amount of design that can be prototyped, the
operating speed, and the time to perform changes. The following methods
can be used to create a reusable hard prototype for an SoC design:

3.2.7.1 Emulation Systems

This approach adopts an emulation system as defined in Section 3.2.6 as
the physical prototyping system.

80 Chapter 3

3.2.7.2 Reconfigurable Prototyping System

This approach maps the VC building blocks of the target design, such as
microprocessors, memories, digital signal processors (DSPs), application-
specific integrated circuit (ASIC) cores, and VO interfaces, to off-the-shelf
components, bonded-out silicon, non-volatile FPGAs, or in-circuit emulator
(ICE) systems. These system components are mounted on daughter boards
and plugged into a motherboard that contains custom programmable
interconnect devices that can model the connectivity.

3.2.7.3 Application-Specific Prototype

Application-speciJc prototyping involves developing a complete design
that leverages commercially available components and has limited expansion
capability. For example, a complete system can be created by
interconnecting the Board Support Packages (BSPs) for the target processors
and DSPs contained in the design and incorporating the necessary additional
components (memories, FPGAs and core devices) to complete the design.

3.2.8 Virtual Prototyping

A virtual prototype is a computer simulation model of a product,
component, or system. Unlike the other modeling terms that distinguish
models based on their characteristics, the term virtual prototype does not
refer to any particular model characteristic, but rather refers to the role of the
model within a design process. Specifically, a virtual prototype supports the
following tasks:

Exploring design alternatives
Demonstrating design concepts
Testing for requirements satisfaction and correctness

Virtual prototypes can be constructed at any level of abstraction and may
include a mixture of levels. Several virtual prototypes of a system under
design may exist as long as each fulfills one or more of the roles of a
prototype. To be useful in a larger system design, a virtual prototype model
should define the interfaces of that component or system under design.

In contrast to a physical prototype, which requires detailed hardware and
software design, a virtual prototype can be configured quickly and more cost
effectively, can be more abstract, and can be invoked earlier in the design
process. A distinction is that a virtual prototype, being a computer
simulation, provides greater, non-invasion, observability of internal states
than is normally practical for a physical prototype. The main drawback of a
virtual prototype is that the operating speed is generally much closer to that

Functional Verijkation Taxonomy 8 1

of a simulation than to that of a physical prototype, limiting the amount of
verification that can be run in reasonable time.

3.2.9 Verification Metrics

The tools and techniques in the following sections may be applied to
gauge the completeness of the verification being performed on a design.

3.2.9.1 Hardware Code Coverage

Coverage metrics for verification test suites can be assessed in simulation
by using hardware code coverage analysis tools. Code coverage analysis
provides the capability to assess some aspects of the functional coverage that
a particular verification test suite achieves when applied to a specific design.
The analysis tools provide the following:

A value for the percentage coverage of each attribute being assessed
A list of unexercised or partially exercised areas of the design

Code coverage analysis is typically performed on the RTL view of the
design and assesses the following types of coverage:

Statement coverage: Shows how many times each statement was
executed.
Toggle coverage: Shows which bits of the signals in the design have
toggled.
FSM arc coverage: Shows how many transitions of the Finite State
Machine (FSM) were processed; can be treated as part of path
coverage.
Visited state coverage: Shows how many states of the Finite State
Machine were entered during simulation.
Triggering coverage: Shows whether each process has been
uniquely triggered by each of the signals in its sensitivity list.
Branch coverage: Shows which "case" or "if. ..else" branches were
executed.
Expression coverage: Shows how well a Boolean expression in an
"if' condition or assignment has been exercised.
Path coverage: Shows which routes through sequential "if. ..elsew
and "case" constructs have been exercised.
Signal coverage: Shows how well state signals or ROM addresses
have been exercised.

82 Chapter 3

3.2.9.2 Functional Coverage

Functional coverage is a user-defined metric that reflects the degree to
which functional features have been exercised during the verification
process. Functional features are either architectural features visible to the
user, or major micro-architectural features. Typically, such features cannot
be derived automatically from the implementation, and therefore require
some specification in the verification testbench.

Functional coverage data is generally the cross-combination between
some temporal behavior (for instance, a bus transaction) and some data (such
as the transaction source, target and priority). Additional functional coverage
information can be obtained by cross-referencing functional coverage points.
An example would be the correlation between transactions on two ports of a
device, or the correlation between instructions and interrupts in a processor.

Unlike code coverage, functional coverage metrics need to be defined by
the developer. A good definition relates closely to the verification plan and
covers all major features in the design. Consequently, functional coverage is
a much more demanding metric than code coverage. Experience has shown a
close correlation between functional coverage and a bugslweek metric.

Functional coverage analysis is typically performed on the RTL view of
the design, although some aspects may be assessed at lower-level or higher-
level views.

3.2.10 Definitions

Term Definition

Application-Specific A prototype design built from commercially
Prototype available components
Assertion Monitors Monitors to check that properties of the design

hold during dynamic simulation; also called
assertion checkers

Assertion or Property A statement of design intent that can be checked
in dynamic simulation and formal verification

Behavioral Model Model that exhibits some or all of the
hnctionality of the artifact being modeled but is
not written to be taken through a design flow
and therefore may not be synthesizable)

Branch Coverage Measures which branches were executed, for
example, "case" or "if. ..elsey' branches

Functional VeriJication Taxonomy 83

Term Definition

Code Coverage Coverage metrics defined in terms of syntax of
the design and measured during dynamic
simulation of the design, including statement
coverage, toggling of variables, finite state
machine transition and state visitation coverage,
if-else branch coverage, conditional statement
coverage (metrics on the ways that a condition
can become true), paths through if-else and case
statements and general signal coverage

Compliance Tests Tests provided to demonstrate that a design
complies to some agreed standard (such as the
AMBA bus specification protocol)

Constraint Rules defining relationships between signals
within a design; they can be combinatorial or
sequentialltemporal and can be used in pseudo-
random generation and formal methods, for
example

Coverage Monitors Monitors that checks that certain events occur in
the design during dynamic simulation

Cycle-Based A simulation in which each element of a design
is evaluated only once per clock cycle; can be
contrasted to event-based simulation

Directed or Deterministic Simulation in which the stimulus is specified
Simulation explicitly, as is the expected response of the

design model; can be contrasted with random or
pseudo-random simulation

Driver The part of the testbench that drives values onto
the signals of the design being verified; it is
considered good testbench design style that they
only drive interface signal

Dynamic Formal Verification Techniques which use simulation results as the
starting point for formal techniques, typically
exploring only a portion of a state space and are
therefore less exhaustive than model checking

Dynamic Verification Execution of a model or models of a design with
a set of stimulus

84 Chapter 3

Term Definition

Emulation Specially designed hardware and software
systems, using some re-configurable hardware,
such as FPGAs, that can simulate a hardware
design faster than conventional workstation or
PC-based simulators

Event-Based Simulation A simulation in which events (changes of input
valuations, which may occur multiple times
during a clock cycle) are propagated through a
design until a steady state condition results; can
be contrasted to cycle-based simulation.

Expected Results Checkers A means for checking the results of a simulation
against a previously specified, correct response

Expression Coverage Measures how well a boolean expression has
been exercised, for example, the boolean
expression used in an "if' condition

Formal Constraint-Driven The use of formal methods to generate targeted
Stimulus Generation tests that satisfy a set of constraints

Formal Coverage or Semi- The use of static or dynamic formal methods to
Formal Verification improve coverage results as measured by some

appropriate metric

Formal Verification The use of mathematical techniques and
formalisms to verify aspects of a design,
spanning both intent and equivalence
verification; such techniques are often called
static because they do not involve execution of
the design and can be contrasted to dynamic
verification

FSM Arc Coverage Shows how many transitions of a Finite State
Machine (FSM) were executed

Functional Coverage Coverage metrics, generally related to behavior
that changes over time and sequences of events
such as tracking of bus interactions; these need
to be individually defined by people
knowledgeable about the design and its intent

Hardware Acceleration A system for mapping all components of a
software simulation onto a hardware platform
that is specifically designed to speed up the
simulation process

Functional VeriJcation Tmonomy 85

Term Definition

Hardware Modeling A system in which a simulator receives input
ffom and sends output to a hardware component

HardwareISoftware Co- A system in which the hardware and the
Verification software portions of a design are executed and

verified in parallel

Input Constraint A constraint on input signals

Model Checking or Property A formal verification technique for checking the
Checking entire state space of a design for violations of

properties, for example, specifications of
behavior

Monitor Monitors are probes that observes signals in the
design during dynamic simulation

Path Coverage Shows which routes through sequential
"if. ..else" and "case" constructs have been
exercised

Physical Prototyping A hardware representation of a design (often
created using FPGAs) that operates at speeds
close to, but not necessarily as fast as, the
ultimate design to be built

Protocol Checkers A means for checking behavior of an interface
and determining if violations of defined,
acceptable behavior have occurred

Pseudo-Random Simulation A dynamic simulation technique where the
design is stimulated with pseudo-random inputs
by the user exercising some control over the
random stimulus generation; can be contrasted
with directed and random simulation

Random or Non-Directed A dynamic simulation technique where the
Simulation design is stimulated with random inputs; can be

contrasted to directed and pseudo-random
simulation.

Reconfigurable A system in which the VCs of an SoC design are
PrototypingSystem created in off-the-shelf components, bonded-out

silicon, FPGAs or in-circuit emulator systems

Register Transfer Language A programming language representation of a

(RTL) design in which some, but not all of the design
structure is explicitly represented, such as the
Verilog and VHDL languages

86 Chapter 3

Term Definition

Signal Coverage Shows how well state signals have been
exercised

Statement Coverage Shows how many times a statement in the RTL
was executed

Static Functional Verification Exploitation of formal mathematical techniques
to verify a design without the use of verification
test suites; there is no industry consensus on the
verification approaches included under this term

Symbolic Simulation Simulation in which some or all inputs are
symbolic variables, and functions of these
variables are propagated through a design

System-on-Chip (SoC) A single piece of silicon containing multiple
VCs to ~erform a certain defined function

Testbench The overall system for applying stimulus to a
design and monitoring the design for correct
responses and functional coverage

Theorem Proving A formal verification technique in which a
specification is expressed in a formal logic and
proof strategies are utilized to construct a proof
that a design obeys the specification

Toggle Coverage Shows which bits of the signals in the design
have toggled

Triggering Coverage Shows whether each process has been uniquely
triggered by each of the signals in its sensitivity
list

Verification Metrics Techniques for measuring the effectiveness of
verification procedures on a design; these
include code coverage metrics, functional
coverage metrics and bug-tracking metrics

Virtual Prototyping A simulation model of a component or an entire
system, useful for exploring design alternatives
and testing for correctness

Visited State Coverage Shows how many states of a Finite State
Machine (FS M) were entered during simulation

Table 3-3 Intent Verification Definitions

Functional Verijkation Taxonomy 87

3.3 Equivalence Verification

As a design progresses through the development process, abstract models
of the design are refined with greater levels of functional detail. Each of
these functional views should be verified against the original design intent.
This verification is called equivalence veriJication. For SoCs with both
hardware and embedded software content, both the hardware and software
are refined and require equivalence verification. Software refinement
consists of code optimizations for either performance or code size. These
optimizations may be realized by modification of parameters in a code
generation tool, through manual optimizations at the language level, or by
the replacement of critical code portions with assembly level optimizations.
Each of these refinements must be revalidated on an appropriate model of
the hardware. The functional verification mapping table in Section 3.6 shows
different options for hardware models that may be used for software
equivalence verification.

The following tools and techniques are appropriate for hardware
equivalence checking.

3.3.1 Dynamic Verification

The following dynamic verification tools and techniques are applicable to
equivalence verification:

3.3.1.1 Deterministic Simulation

As described in Section 3.2.1.1, deterministic simulation is the process
of applying explicitly specified stimuli to a model, producing the
corresponding responses from that model, and comparing the simulated and
expected responses. Once a verification testbench and verification test suite
have been developed for an RTL model, the same set of verification tests can
be simulated using a gate-level netlist for the same design to check whether
the results are the same. In some cases, it may also be possible to run the
same verification tests in simulation on higher-level (such as, behavioral) or
lower-level (such as, switch) models of the same design.

3.3.1.2 Expected Results Checkers

Expected results checkers check the results of a simulation against a
previously specified, expected response file. The checker flags any
mismatches that occur.

88 Chapter 3

3.3.1.3 Golden Model Checkers

Golden model checkers monitor the responses of two models of the
design, compare the responses to the input stimuli and flag any
discrepancies. One model is the "golden" or trusted model and the other is
the unproven design being verified. Generally, the comparison does not
involve any formal verification techniques; the responses of the two models
are simply compared upon any change.

3.3.1.4 Regression Testing

Running regression tests on a design generally implies two attributes of
the verification environment. The first is an automated verification setup in
which all required electronic design automation (EDA) tools, verification
testbenches and results analysis can be run in batch mode. This process
makes it possible for the regression tests to run in the background on
compute servers with minimal human intervention.

The second feature of a true regression test is that its success or failure
can also be determined in batch mode. This makes it possible for an engineer
to determine the regression results simply by examining a log file. Success
or failure is usually determined by comparing the regression test results with
a set of golden results from a prior regression run. Therefore, regressions can
be viewed as a form of equivalence checking.

Regression tests are most often used with deterministic simulation and
also with random pattern simulation, when the random behavior is identical
from run to run. However, most types of functional verification can also be
run in regression, including formal and semi-formal verification.
Regressions are most commonly used to verify that a design change does not
cause any existing verification tests to fail. Regression test suites tend to
grow incrementally as new verification tests and the design itself evolves.

3.3.1.5 Verification Test Suite Migration

Applying a system level verification test suite to other views of the
design requires the ability to migrate or transpose the suite into a format
suitable for application to RTL and netlist views of the design. The basic
approach to migrating a verification test suite from one level of the design to
the next is as follows:

Translate the stimulus from the upper level to a format suitable for
application at the next lower level.
The verification test suites can be applied to both versions of the
design and the results compared at points of divergence between the
designs.

Functional Verijkation Taxonomy 89

A new version of the verification test suite can be extracted from the
lower level model that contains the additional level of detail
provided by the model.

The following paragraphs describe how migration between levels may be
achieved. To ease the migration of verification test suites from the functional
level to lower levels, certain restrictions are applied to the functional
verification test suite:

The verification test suite should use bit true representations for
data. While data values in "C" have no concept of bus width,
hardware implementations of these functions will have a fixed bus
width. Modeling at the functional level using bit true representations
will ensure convergence of results.
The same arguments apply to the use of fixed-and floating-point
representations. Fixed-point implementation should be used for
functional modeling. This will aid in the alignment of the functional
model and hardware implementation.

Functional to RTL Migration

The system level functional design is usually written in "C" or behavioral
hardware description language (HDL) and the associated verification test
suite is token-based or block-based. A token in this instance is a data block
of arbitrary size. The functional model has no concept of time or clocks and
the verification test suite is applied by an event scheduler. Typically the
results of this verification test suite will be written to an external memory
and the success or failure of the verification test will be determined by the
memory contents on completion of the verification test.

To migrate this verification test to an RTL level model, the tokens must
be translated into pin-and bus-level cycles with the associated clocks. The
results are checked by comparing the external memory contents created by
running the functional test on the functional model with the "migrated" test
run on the RTL. Once they match, at the points of disagreement between
these models, a new verification test suite can be created by capturing the
cycle by cycle behavior of the RTL model. This cycle by cycle behavior may
be captured at the 110s of the design or may include internal state traces.
This new verification test suite may then be used for comparing the RTL to
lower design abstractions.

RTL to Netlist Migration

The register transfer level (RTL) to netlist migration is achieved by
transforming the verification test suite created from the RTL model into a

90 Chapter 3

format suitable for application to the netlist level. The bus-based RTL
verification test suite is translated into a bit and pin accurate stimulus. This
stimulus can then be applied to the netlist model and the results compared
with the RTL response at the points of disagreement. In this case the points
of divergence are the VO pins and internal state elements. These comparison
points are sampled at the end of each cycle. Once these points have been
verified as matching, a more detailed verification test suite can be created by
capturing the switching times within a cycle for the output transitions.

3.3.2 Formal Equivalence Checking

Formal equivalency checking tools verifjr that two views of a design are
functionally equivalent as viewed at the 110 boundaries and on a cycle-by-
cycle basis. Formal equivalency checking is usually applied to RTL and gate
level netlists of a design, and in some cases, can be applied to high-level or
lower-level models as well.

There are several advantages offered by formal equivalency checking
over simulation. Formal equivalency checking provides complete
equivalency checking as opposed to simulation, which verifies equivalency
only to the extent that the verification test suite exercises the design. It can
execute in a fraction of the time that an exhaustive simulation would run. It
helps automate the verification and debug of errors. Equivalence checkers
usually provide detailed "counter-examples" that demonstrate the
mismatches down to individual logic cones.

3.3.2.1 Boolean Equivalence Checking

Most tools for equivalence checking are Boolean equivalence checkers,
which means they check combinational logic. With such tools, name
mappings are made between memory elements (flip-flops, latches, and so
forth) in each of the two design formats being compared, usually
automatically. When the mapping has been determined, the tool then checks
that the combinational logic function at the input to each pair of name
mapped memory elements is equivalent. This means that for each possible
combination of inputs, the combinational logic outputs, which are the inputs
to the memory elements, are the same.

3.3.2.2 Sequential Equivalence Checking

It could be the case that two designs have different numbers of, or
different arrangements of, memory elements, but are still equivalent in the
sense of producing the same input-output streams, given some alignment of
initial states between the two machines. This is termed sequential

Functional VeriJcation Tmonomy 9 1

equivalence. An example would be two implementations of a finite state
machine, where one implementation is fully encoded, such as, using 3
latches to encode 8 states, and the other is one-hot, such as, using 8 latches
to encode 8 states, and yet both machines have the same output, starting
from initial states, for the same input streams.

Sequential equivalence checking presents a much harder problem to
solve than Boolean equivalence checking. Therefore, there have been few
tools available for this task. Many Boolean equivalence checkers do have
some support for sequential equivalence checking, allowing small finite state
machines to be checked (usually, the user must supply, by hand, a mapping
of assumed equivalent state assignments, which limits this to only small
machines) or simple movements of certain combinational logic devices
across memory element boundaries to be checked. But, the general,
sequential equivalence checking of large designs remains an unsolved
problem, from a practical point of view.

3.3.3 Physical Verification

Physical verijkation is the process of checking the geometric design
database to ensure that the physical implementation is a correct
representation of the original logic design. Physical verification consists of
three distinct checks: Electrical Rules Checks (ERC), Design Rules Checks
(DRC) and Layout Versus Schematic Checks (LVS). The standard geometric
database format is GDSII-Stream. The GDSII-Stream database for a design
contains a polygon representation of the circuit, separated into the different
design layers for the target process.

ERC refers to the procedure of checking the geometric database for
electrical design rule violations. These electrical design rules are process
specific and include checks for unused outputs, floating inputs, and loading
violations. Connectivity violations, such as open and shorts, are also
checked.

DRC refers to the procedure of checking the geometric database against
the process design rules. These rules are gathered in a DRC rules file and
include checks such as layer-to-layer spacing, trace widths on a specific
layer, layer-to-layer overlaps, and so on.

LVS refers to the procedure of checking the geometric database against a
"golden" netlist. The LVS tool constructs a netlist by extracting polygons
and building devices from the physical layout. This extracted netlist is then
compared to the "golden" netlist. All devices and interconnect must match
exactly. Physical verification is performed on the geometric database prior to
release for mask generation and fabrication.

92 Chapter 3

Additional forms of physical verification that affect timing, such as
signal integrity, crosstalk, metal migration, and noise, fall outside the scope
of the present document and its focus on functional verification.

3.3.4 Definitions

Term Definition

Behavioral Model Model that exhibits some or all of the
functionality of the artifact being modeled but is
not written to be taken through a design flow
and therefore may not be synthesizable)

Boolean or Structural A formal equivalency check in which pairings of
Equivalence Checking inputs, outputs and memory elements are first

determined for each of two design versions, and
then the combinational cone of logic at the
inputs to each memory element or output of a
pair is proven equivalent, meaning it is proven
that the same truth table is implemented

Formal Equivalence Checking The application of formal methods to
equivalence verification; Boolean/structural and
sequential equivalence are two examples of
formal equivalence checking

Functional to RTL Test Suite A means for translating a test suite for an
Migration abstract behavioral model of a design into a test

suite suitable for the RTL level

Golden Model Checkers Simulation monitors that check the responses of
two models of a design, one of which is
considered the reference or "golden" model

Physical Verification The process of checking the geometric design
database to ensure that the physical
implementation is a correct representation of the
original logic design, consisting of three distinct
checks: Electrical Rules Checks (ERC), Design
Rules Checks (DRC) and Layout Versus
Schematic Checks (LVS)

Functional VeriJcation Taxonomy 93

Term Definition

Regression Testing Techniques for running large numbers of
"verifications" (such as tests and property
checks) in batch mode, with minimal human
intervention, with results analyzed in batch
mode and passlfail outcomes reported in an
automatic way

RTL to Netlist Test Suite A means for translating a test suite that operated
Migration on the RTL level to one that operates on the

netlist level of a design
Sequential Equivalence Formal equivalency checking techniques that
Checking require mapping of inputs and outputs but do not

rely on mapping of memory elements in one
design to another, but rather prove, given a set
of initial states for each of the designs, that
designs with different numbers of, or different
arrangements of, memory elements produce the
same output streams given the same input
streams

Stub Model A particular type of behavioral model that only
models the interface signals to allow
connectivity to be tested. Outputs may be
assigned values in the stub model

Verification Test Suite A means for translating a test suite that operated
Migration on one design level (for example, gate netlist) to

another level such as RTL
Table 3-4 Equivalence Verification Definitions

3.4 VC Verification

VC verification encompasses both intent verification and equivalence
verification. Intent verification may be done at any level. However, it should
be noted that the higher the level of abstraction applied, the more efficient
will be the resulting verification. Today, intent verification is typically done
at the RTL level, since RTL is the highest level of abstraction handled by
many tools (model checking, equivalence checkers, code coverage, and so
forth) used in the design process.

Equivalence verification, as a minimum, must validate that the lowest
level of design decomposition (GDSII-Stream, netlist, and so forth) is

94 Chapter 3

verified against the golden model (previously verified during the intent
verification phase). Typically many, if not all, intermediate design
abstractions will be verified.

3.5 Integration Verification

Integration verijkation encompasses both intent verification and
equivalence checking and is aimed at verifying an SoC that incorporates one
or more VCs. Since the intent is to verify the integrated SoC and not the
individual components, "gray box" models can be used for the verification.
These accurately model the VC's interfaces, but not the internal function.
While integration verification does not seek to duplicate the VC verification
executed by the VC provider, the integrator may want to review the VC
verification plan to qualiwcertifl the VC.

Since the integration verification may stimulate the VC in ways not
anticipated by the VC provider, verification with a "white-box" model that
has full internal functionality has the potential to detect errors in the VC
itself.

3.6 Functional Verification Mapping

Table 3-5 maps the various functional verification models and
technologies against the different verification steps. For intent verification,
deterministic simulation, random pattern simulation, protocol checking, and
expected results checking are grouped together under simulation. Similarly,
for equivalence checking, deterministic simulation, expected results
checkers, golden model checkers, and verification test suite migration are
grouped together under simulation.

In this table, the models associated with a specific verification
technology may be used either directly or indirectly. An example of the
direct use of a model is simulation where the functional/behavioral/RTL
models are directly used by the simulator. An example of indirect use is in
physical prototyping where a functional model is used to define the required
functionality of the prototype and is then mapped into physical devices with
equivalent functionality.

Functional VeriJication Taxonomy 95

Verification Step Verification Technology Models

Hardware Intent Simulation Functional

Behavioral

RTL

Emulation RTL

Model Checking RTL

Theorem Proving RTL

Physical Prototype Behavioral

RTL

Logic

Virtual Prototype Functional

Software Intent

Code Coverage RTL

HardwareISoftware Co- Behavioral
Verification

RTL

Emulation RTL

Physical Prototype Behavioral

RTL

Hardware Equivalence Simulation

Logic

Behavioral

RTL

Logic

Gate

Switch

Circuit

Emulation RTL

Equivalence Checking RTL

Gate

Table 3-5 Functional Verification Mapping

96 Chapter 3

3.7 Summary

Functional verification is a complex topic that is further complicated by
the fact that many tools and models are used for multiple tasks within a
verification process. Table 3-6 summarizes the definitions provided in this
taxonomy to provide a common language for verification models, tools, and
techniques.

Term Definition

Application-Specific A prototype design built from commercially
Prototype available components

Assertion monitors Monitors to check that properties of the design
hold during dynamic simulation; also called
assertion checkers

Assertion or property A statement of design intent that can be checked
in dynamic simulation and formal verification

Behavioral Model Model that exhibits some or all of the
functionality of the artifact being modeled but is
not written to be taken through a design flow
and therefore may not be synthesizable)

Boolean or Structural A formal equivalency check in which pairings of
Equivalence Checking inputs, outputs and memory elements are first

determined for each of two design versions, and
then the combinational cone of logic at the
inputs to each memory element or output of a
pair is proven equivalent, meaning it is proven
that the same truth table is implemented

Branch Coverage Measures which branches were executed, for
example, "case" or "if. ..elsen branches

Bus functional model or BFM Used to provide simplified bus agent models for
verifying designs that attach to buses (such as
the AMBA bus)

Functional VeriJcation Taxonomy 97

Term Definition

Code Coverage Coverage metrics defined in terms of syntax of
the design and measured during dynamic
simulation of the design, including statement
coverage, toggling of variables, finite state
machine transition and state visitation coverage,
if-else branch coverage, conditional statement
coverage (metrics on the ways that a condition
can become true), paths through if-else and case
statements and general signal coverage

Compliance tests Tests provided to demonstrate that a design
complies to some agreed standard (such as the
AMBA bus specification protocol)

Constraint Rules defining relationships between signals
within a design; they can be combinatorial or
sequentiaVtempora1 and can be used in pseudo-
random generation and formal methods, for
example

Coverage monitors Monitors that checks that certain events occur in
the design during dynamic simulation

Cycle-Based Simulation A simulation in which each element of a design
is evaluated only once per clock cycle; can be
contrasted to event-based simulation

Directed or Deterministic Simulation in which the stimulus is specified
Simulation explicitly, as is the expected response of the

design model; can be contrasted with random or
pseudo-random simulation

Driver The part of the testbench that drives values onto
the signals of the design being verified; it is
considered good testbench design style that they
only drive interface signals

Dynamic Formal Verification Techniques which use simulation results as the
starting point for formal techniques, typically
exploring only a portion of a state space and are
therefore less exhaustive than model checking

Dynamic Verification Execution of a model or models of a design with
a set of stimulus

98 Chapter 3

Term Definition
Emulation Specially designed hardware and software

systems, using some re-configurable hardware,
such as FPGAs, that can simulate a hardware
design faster than conventional workstation or
PC-based simulators

Equivalence Verification or Process of determining whether two designs
Checking (which could be of differing levels of abstraction

or format) match in terms of functionality;
equivalence checking is often performed
statically using formal methods

Event-Based Simulation A simulation in which events (changes of input
valuations, which may occur multiple times
during a clock cycle) are propagated through a
design until a steady state condition results; can
be contrasted to cvcle-based simulation.

Expected Results Checkers A means for checking the results of a simulation
against a previously specified, correct response

Expression Coverage Measures how well a boolean expression has
been exercised, for example, the boolean
expression used in an "if' condition

Formal Constraint-Driven The use of formal methods to generate targeted
Stimulus Generation tests that satisfy a set of constraints

Formal Coverage or Semi- The use of static or dynamic formal methods to
Formal Verification improve coverage results as measured by some

appropriate metric

Formal Equivalence Checking The application of formal methods to
equivalence verification; Boolean/structural and
sequential equivalence are two examples of
formal equivalence checking

Formal Verification The use of mathematical techniques and
formalisms to verify aspects of a design,
spanning both intent and equivalence
verification; such techniques are often called
static because they do not involve execution of
the design and can be contrasted to dynamic
verification

FSM Arc Coverage Shows how many transitions of a Finite State
Machine (FSM) were executed

Functional Verijkation Taxonomy 99

Term Definition

Functional Coverage Coverage metrics, generally related to behavior
that changes over time and sequences of events
such as tracking of bus interactions; these need
to be individually defined by people
knowledgeable about the design and its intent

Functional to RTL Test Suite A means for translating a test suite for an
Migration abstract behavioral model of a design into a test

suite suitable for the RTL level

Golden Model Checkers Simulation monitors that check the responses of
two models of a design, one of which is
considered the reference or "golden" model

Hardware Acceleration A system for mapping all components of a
software simulation onto a hardware platform
that is specifically designed to speed up the
simulation process

Hardware Modeling A system in which a simulator receives input
from and sends output to a hardware component

Hardwarelsoftware Co- A system in which the hardware and the
Verification software portions of a design are executed and

verified in parallel

Input constraint A constraint on input signals

Integration Verification Process of verifying the functionality of a
system-on-chip (SoC) design that contains one
or more virtual comDonents

Intent Verification Process of determining whether a design fulfills
a specification of its behavior

Model Checking or Property A formal verification technique for checking the
Checking entire state space of a design for violations of

properties, for example, specifications of
behavior

Monitor Monitors are probes that observes signals in the
design during dynamic simulation

Path Coverage Shows which routes through sequential
"if. ..else9' and "case" constructs have been
exercised

100 Chapter 3

Term Definition

Physical Prototyping A hardware representation of a design (often
created using FPGAs) that operates at speeds
close to, but not necessarily as fast as, the
ultimate design to be built

Physical Verification The process of checking the geometric design
database to ensure that the physical
implementation is a correct representation of the
original logic design, consisting of three distinct
checks: Electrical Rules Checks (ERC), Design
Rules Checks (DRC) and Layout Versus
Schematic Checks (LVS)

Protocol Checkers A means for checking behavior of an interface
and determining if violations of defined,
acceptable behavior have occurred

Provider Functional Verification performed by the VC provider
Verification

Pseudo-random Simulation A dynamic simulation technique where the
design is stimulated with pseudo-random inputs
by the user exercising some control over the
random stimulus generation; can be contrasted
with directed and random simulation

Random or Non-Directed A dynamic simulation technique where the
Simulation design is stimulated with random inputs; can be

contrasted to directed and pseudo-random
simulation.

Reconfigurable Prototyping A system in which the VCs of an SoC design are
System created in off-the-shelf components, bonded-out

silicon, FPGAs or in-circuit emulator systems

Register Transfer Language A programming language representation of a

(RTL) design in which some, but not all of the design
structure is explicitly represented, such as the
Verilog and VHDL languages

Regression Testing Techniques for running large numbers of
"verifications" (such as tests and property
checks) in batch mode, with minimal human
intervention, with results analyzed in batch
mode and passlfail outcomes reported in an
automatic way

Functional Verfzcation Taxonomy 10 1

Term Definition

RTL to Netlist Test Suite A means for translating a test suite that operated
Migration on the RTL level to one that operates on the

netlist level of a design

Sequential Equivalence Formal equivalency checking techniques that
Checking require mapping of inputs and outputs but do not

rely on mapping of memory elements in one
design to another, but rather prove, given a set
of initial states for each of the designs, that
designs with different numbers of, or different
arrangements of, memory elements produce the
same output streams given the same input
streams

Signal Coverage Shows how well state signals have been
exercised

Statement Coverage Shows how many times a statement in the RTL
was executed

Static Functional Verification Exploitation of formal mathematical techniques
to verify a design without the use of verification
test suites; there is no industry consensus on the
verification approaches included under this term

Stub model A particular type of behavioral model that only
models the interface signals to allow
connectivity to be tested. Outputs may be
assigned values in the stub model

Symbolic Simulation Simulation in which some or all inputs are
symbolic variables, and functions of these
variables are propagated through a design

System-on-Chip (SoC) A single piece of silicon containing multiple
VCs to perform a certain defined h c t i o n

Testbench The overall system for applying stimulus to a
design and monitoring the design for correct
responses and functional coverage

Theorem Proving A formal verification technique in which a
specification is expressed in a formal logic and
proof strategies are utilized to construct a proof
that a design obeys the specification

Toggle Coverage Shows which bits of the signals in the design
have toggled

102 Chapter 3

Term Definition

Triggering Coverage Shows whether each process has been uniquely
triggered by each of the signals in its sensitivity
list

VC Verification Process of verifying the functionality of a virtual
component, for example, unit test of that
component

Verification Metrics Techniques for measuring the effectiveness of
verification procedures on a design; these
include code coverage metrics, hnctional
coverage metrics and bug-tracking metrics

Verification Test Suite A means for translating a test suite that operated
Migration on one design level (for example, gate netlist) to

another level such as RTL

Virtual Prototyping A simulation model of a component or an entire
system, useful for exploring design alternatives
and testing for correctness

Visited State Coverage Shows how many states of a Finite State
Machine (FSM) were entered during simulation

Table 3-6 Summary of Definitions

CHAPTER 4 PLATFORM-BASED DESIGN

4.1 Platform-Based Design

Migration from boards and boxes to Systems-on-Chips (SoCs),
consisting of embedded software and a variety of computing and other
hardware components, is now a common practice. Indeed, many new
designs are conceived of as SoC based products from scratch. Due to the
costly design, integration, processing, and testing phases in the SoC life
cycle, the industry is interested in any development approach that may lead
to greater efficiency and lower costs. One such approach is platform-based
design (PBD), where integrated and verified platforms serve as the basis for
families of derivative products.

Differentiating or
Variable Features

000000
000

- o u
Derivative #3

I 0

0

Derivative #I
(Platform) -

Derivative #2

Figure 4.1 The PBD Process

Figure 4.1 shows the basic PBD process: common features supporting
multiple higher-level products are aggregated into a platform, then integrated

104 Chapter 4

with product, application, or domain-specific features (often described as
"differentiating IP" or "variable features") to form one or more derivative
products. Depending on the developer's needs, a product family of multiple
derivatives can either be developed simultaneously, or derivatives can
succeed each other over time. A platform may be a "black box," in that it is
characterized by its external interfaces; its internal contents cannot be
changed by its user, though some attributes may be configurable. Unlike
some design approaches, in PBD each product is a derivative of the
platform, not the reconstruction of an earlier product. Also, PBD can be used
at any level of abstraction or construction in building a system.

Modeling of the complete system or of specific aspects and components
at various levels of abstraction has been addressed in earlier chapters of this
book. High-level models allow us to specify and verify system requirements;
to analyze, explore, compare, and select different components of a system;
and to explore several architectural choices. An essential element of efficient
design practice is the ability to apply principles of system-level design to
identify, scope, and design platforms based on reusable entities called
Virtual Components (VCs). VCs are design or verification objects, including
hardware, software, verification, and model components, and subsystems
consisting of some or all of these, specifically encapsulated for reuse in a
coordinated, managed form. VCs can also be hierarchical and inclusive: a
subsystem is itself a VC, once it has been encapsulated for reuse.

It should be noted that the platform concept is applicable at higher levels
of system than just SoC. Indeed, platforms have been used at the board and
subsystem levels in many branches of electronics design for many years.
From one perspective, a computing "platform" such as the IBM 360 or the
PC platform (as discussed in [SAN 01 and 021) has acted like this both for
various hardware-software derivatives and as a delivery vehicle for
software-based applications. Thus, for a virtual component, one can think of
"component" or design blocks. However, in this chapter we will use the term
VC and virtual component-but the reader may keep in mind the wider use of
these concepts.

The goal of this chapter is to assist the design community of system
designers and integrators, software developers, and hardware design teams-
both the SoC builder and the design team integrating an SoC into a higher
level product-to evaluate and define platform features and architectures, and
sets of variable or differentiating VCs, to use in construction of a family of
related, platform-based products. The taxonomy and concepts contained
herein have been based on a consensus that developed on the meanings of
common PBD-related terms and classifications acceptable to the appropriate
design community. The PBD approach is fully scalable, meaning it applies
in essentially the same way to development of both SoC-based systems and

Platform-Based Design 105

the SoC itself. During the process of developing these concepts, if
conflicting meanings existed in the different communities involved, the most
common definitions were chosen, or an enveloping definition was created

4.1.1 Introduction

As technology advances, the business pressure to design large SoCs in a
short time increases. Design reuse is a prevalent method for improving
design efficiency of large SoCs. In many cases, reused blocks are internally
developed. However, even with the rapid advances in fabrication technology
and design tools, few companies can dedicate the resources necessary to
design and maintain all of the blocks required to offer the customer a total
system solution.

Consequently, it has become critical for companies to both increase their
access to a variety of intellectual property (IP) blocks, both hardware and
software, and to make more efficient use of them, to meet their time-to-
market and business objectives. By doing so, each company can focus their
limited design resources on areas where they provide maximum value, while
using industry-wide design expertise to produce IP to satisfy their needs.

The goal of accelerating design reuse of IP has been achieved by
addressing the challenges of design in a divide-and-conquer approach,
breaking down the entire design reuse problem into component pieces and
attacking and resolving each individually in a pragmatic, market-driven
approach. Platform-based design extends this approach by identifying
common hardware and software features that can be reused in many
products within a product line or product family, and aggregating them into
a platform. The platform is thus an integrated subsystem or VC that can be
reused as the basis for multiple derivative products, the product family
members.

4.1.2 Background and History

A crucial requirement for this taxonomy is that it be useful for
characterizing, selecting, using, and building integratable platforms in an
SoC design process. The terminology is based on the commonly documented
and applied vocabulary in the digital electronic design and modeling
industry, and it draws heavily from related previous and ongoing efforts by
many groups and individuals.

Effective use of product platforms and product families in technology
industries has been discussed in many places. Some of the best general
discussions are those by Meyer and Lehnerd [MEY 971; Gawer and
Cusumano [GAW 021, and the classic work by Davidow [DAV 861. In the

106 Chapter 4

specific area of SoC platforms, the recent books by Chang, Cooke, Hunt,
Martin, McNelly, and Todd [CHA 991 and by Martin and Chang [MAR 031,
and papers and presentations by Sangiovanni-Vincentelli [SAN 0 1, 021,
Ferrari [SAN 991, and Keutzer et al. [KEU 001, are key. We also look to the
work done in the Software Product Lines research community, particularly
the US-based Software Engineering Institute (SEI) Software Product Line
Practice initiative [SEIPLP], and the European Software Institute (ESI)
ESAPS [ESAPS] and CAFE [CAFE] programs, as well as work done at
Truescope Technologies [TRUE], and at the Fraunhofer Institute.

With the participation of researchers from several companies, these
programs have made numerous contributions to the body of knowledge of
product families and product lines, system architecting, development of
common platforms and variable differentiating features, and the construction
of multiple variant or derivative products within a product family.

4.1.3 Platform-Based Development System

A complete approach to PBD involves more than just specification of
platform hardware and software features and VCs. To be usable, a platform-
based development system (PBDS) must include complete support for
business, tool, and support practices in addition to its defined features and
components. Table 4-1 shows the properties of a complete PBDS (the list
shown here is extensive, but not complete or exhaustive). The PBDS
described here is provided by platform developers for their customers, the
platform integrators, to use.

Platform-Based Design 107

Business and Economics
Product line business plan
Product line roadmap
Platform economic scoping
Platform requirements
Product linelplatform life cycle plan
Investment and amortization plan
IP licensing and royalties

Development and Integration
Tools

Platform-based design and verification flow
Application and system engineering support
Software development tools and environ-
ments
Application domain reference implemen-
tations and designs

Components and Features
Platform architecture specification
Compatible IPNCs (hardware, software,
etc.)
Interface specifications
System-level models
Platform characterization
Standards references

Support Practices
Program management
Integrator and platform/IP developer
relationships
Training and documentation
Web presence
Changetfix management
Promotion and marketing

Table 4-1 Complete Platform-Based Development System (PBDS) Properties

Key to the PBDS are business plans and economic models built to
analyze opportunities, costs, and returns from a platform and its derivative
products. Investment in a platform, whether built or bought, must be
amortized over all the derivatives to be built on it. This can result in
significant cost savings and increased return on investment for a family of
derivatives based on a common platform, where reuse is maximized, versus
traditional "silo" products built one at a time with little or no reuse.
Traditional single product business plans are inadequate for multi-product
families.

Business plans must also consider platform evolution. Once a platform
scope is defined and its architecture specified, it can evolve to support future
generations of products (higher or lower performance, new technology
implementation, additional or enhanced features, and so on). Effective
platform evolution takes place in the context of the product family or
derivative product set the platform supports. New generations of platforms
that succeed or co-exist with prior generations may be planned in a product
line roadmap, or evolution can be driven by unpredictable changes in
markets, customer demand, or underlying technologies. But in either case, to
have maximum benefit any platform architecture changes must be done with
full understanding of the impact they will have on business, tool, technology,
and support constituents of the PBDS.

108 Chapter 4

PBDS development tools work in a product design flow that focuses
more on integration and reuse of the platform, and related differentiating IP
and VCs, and less on detailed design of all components. Selection,
integration, configuration, and verification of products based on platforms
and compatible IP is the primary challenge.

This chapter does not discuss all the attributes of the PBDS as shown in
Table 4- 1, but refers to elements of it throughout.

4.2 Platform Taxonomies

A taxonomy provides a means to categorize platforms according to a set
of attributes. The attributes should be useful in distinguishing platforms
intended for distinctly different purposes, including (if possible) different
application domains and different levels of abstraction or implementation.
The taxonomy establishes formal definitions that are concise and
unambiguous for the various platform types. The taxonomy relies on the
notions of orthogonality and separation of concerns, which represent an
active thread in many research communities, conferences, magazines, and
journals Descriptions and definitions for many of the terms used in this
chapter are provided in Section 4.3, "Definitions."

The platform taxonomy represents attributes that are relevant to both
platform designer-providers and platform consumer-integrators. Two sets of
attributes are identified: those for the deliverable platform object, and those
for the approach used to specify it. The Platform Object Complexity
describes all the constituents of a deliverable "platform object" at a
particular integration level as the combination of PBDS elements described
in Table 4-1: its components and features, business and economic plans,
development and integration environment, and support practices. The
Platform Specification Approach describes types of platform specification
processes. The platform development team will choose the most appropriate
specification approach based on their business and technology philosophy,
by which they will quickly converge on the desired platform specification
and complexity.

4.2.1 Platform Object Complexity

4.2.1.1 Complexity Levels

We define Platform Object Complexity as a set of complexity levels,
shown in Tables 4-2 through 4-4, covering stages of integration between
simple IP blocks used in block-based design, and complete, physical SoC

Platform-Based Design 109

devices ready for delivery and integration into a customer's higher-level
product. Each complexity level describes deliverables in each of the major
segments of the complete PBDS specification described earlier: components
and features; business and economics; development and integration tools;
and support practices. Each complexity level limits the number of attributes
that are required to transfer between a platform provider and its integrator-
user. A platform at a given complexity level can be considered as a virtual
component by a platform integrator working at a higher level.

Complexity addresses topology and architecture, how the components
making up a platform object are connected, and how they appear at the
platform "surface," its external interface. As the number of components in a
platform rises, the topological diversity and intricacy of the platform's
organization increases. Each complexity level is a function of the integration
effort, types of components, and deliverables. In our platform object
taxonomy, a platform is specified by the complexity level of each of its
major constituents, the hardware and software elements, business plans and
models, integration tools, and support practices.

The lowest complexity level, "Set of Blocks," is not really a platform at
all, but the result of traditional block-based design, where individual blocks
or pieces of integratable IP are linked to create a usable device. ,The next
level, "Core Platform," is a true platform at the sub-SoC level, integrating
computing capability, some peripherals, and some software, not necessarily
tailored for a particular application domain. Core platforms are used where
the product specification process identifies an economic value at this lower
level of integration, either as a component of a higher-level platform or of a
customer's product. Core platforms may exist as a set of integratable soft
models without any tangible implementation.

The highest complexity level, "SoC Platform,," is a complete, fully
integrated and physically deliverable device, which may be in the form of a
traditional single package, a flip-chip, multiple modules, or even a hard
macro specifying fixed geometry and specific semiconductor technology.
SoC platforms are defined when the product specification process identifies
economic value at this level of integration. They may be derivatives of core
platforms, by integrating domain specific functionality, design tool, and
support with a lower level core platform.

1 10 Chapter 4

Complexity Level: Set of Blocks
A simple set of Virtual Components or functional IP blocks usable in traditional block-

I
Table 4-2 Platform Object Coml

based design. (Not really a piatform at all)

verification. All documentation,

Com~onents/Features:
HW Features:
Processor and limited
peripherals with point-
to-point connections;
no bus.
SW Features: Few to
none; may include
register map, driver.

and communication 1 and

Business/Economics:
Manufacturing
oriented information
only (for example,
die-area costing in
specific silicon
technologies).

libraries. I not pre-clustered

elements are
provided along with
block-based IP

I in any particular

characterization
data only.
Components are

I fashibn.
xity Levels: Set of Blocks

Complexity: Core Platform
A platform emphasizing computational capability, not necessarily application domain or
market specific. For use in building higher-level SoCs (SoCs are core platform derivatives),
or domain-specific products. Core platforms are defined at the required level of detail
determined by the select
Com~onents/~eatures:
HW Features
(examples):
1) Single master
processor or simple
controller; single bus;
(2) Single bus with
multiple processor or
controllers;
(3) Multiple
processors or
controllers andlor
multiple busses.
SW Features: Platform
initialization and
startup code; RTOS
kernel; basic on-chip
peripheral drivers.

Table 4-:

I specification approach (see Section 4.2.2).
Business/Economics: Development Tools:
Complete domain HW Support
and economic (examples):
scoping analysis (1) Bus control
showing economic timing and protocol;
impact of building (2) Bus control
and using the specific timing and protocol,
set of common arbitration;
features in the Core (3) Bus definition,
platform, including timing, and
the on-chip variable protocols,
features to be arbitration,
integrated with it to synchronization.
form higher level SW Support:
systems. Functional,

behavioral, and
verification models
for the platform;
compilers,
debuggers,
emulators, and so
on.

Support:
Not necessarily
application
domain-specific.
Core platform
architectural
specification;
platform-
specific design
support and
reference
implementations
; application
engineering;
training; change
management;
customer
feedback.

Platform-Based Design 1 1 1

Complexity: SoC Platform
A packaged, physically deliverable device. SoC derivatives are higher-level systems
produced by integrating the SoC with off-chip hardware and software. Includes all
components and features of a Core Platform, plus domain-specif c peripherals and/or
differentiating HWISW
Components/Features:
HW Features: Includes
all specified hardware
features (computing,
memory, 110, and
peripherals, and so
on); presented as
packaged device, flip-
chip, module set, or
hard macro.
SW Features: Includes
all specified embedded
software features
(RTOS, drivers, APIs,
external functions, and
off-chip interface
controllers
programming models,
and so on); presented
as ROMIfirmware or
downloadable ROM
image.

SUDDO~~:
Likely targeted

. .

to a specific
application
domain or
market segment.
SoC platform
architectural
specification;
domain-specific
design support
and reference
designs;
application
engineering;
training; change
management;
customer
relations and
feedback.

nctionality.
Business/Economics:
Complete domain
and economic
scoping analysis
showing economic
impact of building
and using the specific
set of common
features in the SoC
platform, including
the Core Platform
and variable features
integrated with it to
form the SoC, and
the off-chip variable
features to be
integrated with the
SoC to form higher
level systems.

Table 4-4 Platform Object Complexity Levels: SoC Platform

Development Tools:
Integration-oriented
design flow
including system
models for the SoC,
kernels, and clusters
of appropriate IP
components,
including physical
interconnect, 110,
timing,
characterization,
programming
model, APIs,
parameterization,
verification, and so
on.

Acknowledging the pragmatic mindset of many in the SoC community,
we expect to see fully functional platforms offered at all complexity levels
with fully specified component and feature attributes, but whose other PBDS
constituents-business plans, development and integration tools, and support
may not be as fully formed.

4.2.1.2 Interfaces

There are two basic interfaces in PBD, as shown in Figure 4.2: the
platform interface between the traditional IC design and platform object
creation, and the derivative interface between the platform object and

f > f \
~ e c h n o l o ~ ~
Component

\ J \ J
Figure 4.2 PBD-Related Interfaces

Platform
Interface

Derivative
Interface

Architecture
Platform

Application
Derivative

1 12 Chapter 4

derivative creation. Depending on the specific methodology, each of these
interfaces has a wide range of variation. (Note that while we have shown two
interfaces in this example at the SoC level, an end product may have many
such layers between integration platforms. Further research may define more
such layers in the SoC space.)

Platform Interface

This has as little as a traditional ASIC vendor offering with complex IP
libraries, to as much as reference designs and frameworks for compatible IP.
Finished designs or platforms can be constructed from the information,
which crosses this interface.

Derivative Interface

This has as little as a basic platform model, along with the information
available at the platform interface, to as much as a complete platform with
well defined hardware, software and application interfaces from which
derivative designs can be created.

In the technology-driven case the vendor supplies all the components,
ideally in an easily integratable form. In this case, the designer sees only the
platform interface. The vendor deals only with the designer through the
platform interface. The designer has the components from which to build a
platform or a finished design, but must integrate and verify the design in the
traditional (such as, ASIC) manner.

In the architecture-driven case the derivative designer sees both the
platform interface and the derivative interface, since the platform is being
supplied by one vendor and the technology is being supplied by another. In
the ideal case the components are compatible with the platform and the
implementation path has been verified. But the derivative designers still
must define their application interfaces, integrate and verifL their design in a
traditional ASIC manner, ideally with less effort given the level of
integration and verification framework that comes with the platform.

In the application-driven case the derivative interface has all of the
interfaces necessary to easily tailor the platform to meet the derivative
design requirements. In this case the platform interface is hidden from the
derivative designer. The effort to integrate and verify the final derivative
design should be limited to plugging the custom components into the
existing framework and environment and verifying them at the application
interface. In the ideal case the platform provider can also easily create the
platform and all the necessary interfaces for the derivative designer from the
components and tools available to him. In this case the derivative designer
specifies the platform and then creates the derivative design. This latter case

Platform-Based Design 1 13

is quite likely even if the platform is custom-made for the derivative
designer because the derivative designer only cares about his differentiating
IP or variable functionality, not the common features and components of the
platform.

Detailed specifications for the interface requirements can be created, but
the items beyond the traditional block-based design requirements are largely
conditional, based on both the type of methodology, and the underlying
technology. For example, an application-driven approach for an FPGA-
based platform may require no hardware development, while a technology-
driven approach for a standard cell-based platform may require considerable
hardware development.

4.2.2 Platform Specification Approaches

We have identified three basic approaches to platform specification:
technology-driven (bottom-up); architecture-driven (middle-out); and
application-driven (top-down). Product family planners and platform
architects will use one of these approaches to specifj their desired platform
and its integration environment, within the context of their business goals,
overall product family strategy, technology capability, and other constraints.
The product of the specification process will be a platform at an appropriate
level of complexity, as defined in Section 4.2.1. The remainder of this
section provides a short description of each approach, followed by a detailed
listing of distinguishing attributes we have identified.

1 14 Chapter 4

4.2.2.1 Technology-Driven (Bottom-Up) Specification

Figure 4.3 Technology-Driven Platform Specification

Technology-driven platforms use a bottom-up approach to platform
specification, based on traditional design methods (standard cell, full
custom, library-oriented, and so on) with the latest and potentially highest
performance (and costliest) semiconductor technology processes. They are
agnostic with respect to applications, though applications with higher
performance andlor integration needs will likely be the first users of newest
technology-driven platforms (including 130 nm node, 90 nm node and
predictions for future nodes such as 65 and 45 nm.). Examples include Intel
processors and platform FPGAs wanting to offer much greater integration.

At this level, all the hardware, software and communication elements are
provided along with the block-based IP libraries. Architecture reference
models are provided but the components are not pre-clustered in any
particular fashion. This is viewed as a bottom-up platform methodology in
that specific derivatives are created up from the component level using the
architectures provided as a reference only.

Platform-Based Design 1 15

4.2.2.2 Architecture-Driven (Middle-Out) Specification

Figure 4.4 Architecture-Driven Platform Specification

Architecture-driven platforms use a middle-out approach to platform
specification; a system level approach with restrictions derived from the
relevant technology foundation (the family of existing cores, core support
packages, memory structures, and on-chip communications standards). They
have loose coupling to both applications and technologies, primarily driven
by new architectural paradigms, though provided in consideration of both
technology (such as, power, size and speed) and applications (such as, RTOS
support and memory hierarchies).

At this level, specific kernels including diagnostic shells, RTOS
software, processors, and communication structures are included in a pre-
verified, architecture. These architectures have attributes that are targeted to
specific market segments. System models for these kernels and clusters of
appropriate IP components are identified along with methods for integrating
them with the kernels into specific derivative designs. This is viewed as a
middle-out platform methodology in that a pre-defined kernel containing the
basic architecture already exists, and is used along with pre-verified
component IP to create a derivative.

1 16 Chapter 4

4.2.2.3 Application-Driven (Top-Down) Specification

Figure 4.5 Application-Driven Platform Specification

Application-driven platforms use a top-down approach to platform
specification, using system-level design methods and focusing on the
functional requirements of family of products (set of derivatives) to be built
on the platform. At this level there is a top-down, product family roadmap-
driven process for creating a platform and the derivative products based
upon it. They are agnostic with respect to the fundamental software and
semiconductor technologies used to build the SoC, though the underlying
technology must offer suitable application "performance plateaus," that is,
enough performance to meet application requirements.

The development team uses the roadmap to drive creation of an
appropriate platform (the set of common IP or features), including
application interfaces, and application oriented implementation /verification
flows, from the component libraries, platform frameworks, meta-methods
and meta-applications interfaces. Product developers integrate the platform
with other IP (the differentiating or variable features) to produce the desired
platform derivatives, the product family members.

4.2.2.4 Platform Specification Attributes

Attributes of the three platform specification approaches identified in the
PBD taxonomy are summarized in Tables 4-5 through 4-1 1, and platform
development teams should use these attributes to determine which
specification approach is most appropriate for them.

Platform-Based Design 1 1 7

Attribute
Approach
Platform
architecture.

Table 4-:

Technology Driven
Bottom-Up
Implied, but not fully
specified, by library
components.

Incorporation of
embedded processors
brings a lot of
architecture
"baggage" (on-chip
communications,
memories, some
peripherals, basic
SW development
tools, and so on) that
begin to "nucleate" a
specific architecture.

'latform Specification

Implied by the
technology
foundation (TF),
though minimal
implied restrictions
to remainder of
system.

Should allow
optimal integration
in market-targeted
platform.

pproach Attributes: A

Application Driven
Top-Down
Explicitly built into
the platform,
though can be
parameterized.

The user
(integrator) may
not be concerned
with what is inside
the platform's API
and/or standard bus
boundary. Need
sufficient
observability and
controllability for
derivative product
validation.
~itecture

1 18 Chapter 4

Technology Driven

May be ad hoc or
just for initial
product based on the
platform.

May be based on a
general technology
roadmap, that is,
process geometry
node or number of
gates per die
expected.

Only first
application, not a
complete set of
derivatives, may be
well known.

First application may
be known and is
platform driver.
Derivatives could be
application
platforms; may be
product-level
sequential entities

High. Public offering
of a platform product
easier, as it's not tied
to specific
application.
Compare more
generic platform
offerings.

Architecture Driven

Depends upon
flexibility and
scalability of the TF.

Roadmap will be
defined both by
target markets (such
as, wireless), as well
as suitability of the
TF to support current
architectural styles
(such as, most
dominant OS in
market, and so on).

A "market-targeted
platform" or an
application-specific
platform (ASP) can
be derivatives of a
TF.
A TF can form a
kernel in both a
bottom-up or top-
down flow. Having a
defined TF makes is
possible to work out
how many different
variants can be
added to it.
High. The more
simply defined the
boundaries of the TF
is, the more "add-
ons" can be
integrated, and the
easier it is to market.
A TF may be defined
as: 'the absolute
minimum HW
support required for
OS porting on a core,
providing a standard
OS driver-API and
bus interface'. This
implies that memory

ADDlication Driven
Top-down
Well-defined
product family
roadmap precedes
platform design.

Roadmap should be
well thought out
over medium to
long term (2-3+
years), with many
derivative products
based on the
platform, and
planned platform
evolution.
Initial family of
derivatives well
defined (part of the
overall product line
strategy).

Multiple
derivatives can be
created
simultaneously and
in parallel from a
single defined
platform.

Low. Platform
design and
capabilities are
strongly tied to the
defined product
line (set of
derivatives).

The platform is
likely to be kept as
an internal use
entity, or shared
with 'favorite'
customers, such as,
TI OMAP with
Nokia and others.

Platform-Based Design 1 19

Attribute

Table

Attribute
Approach
Platform designer's
driving question.

Platform is agnostic
with respect to

Technology Driven 1 Architecture Driven 1 Application Driven

-6 Platform Specific

Technology Driven
Bottom-up
"What can I put in
the platform that's
cool?"
Statistically, how can
I provide the greatest
number of customers
with what they need?
"What customers
need" is not totally
dissimilar to the top-
down approach (that
is, the common
features of the
product family), but
tends to be raw
feature-oriented,
independent of well
thought out
applications. Also,
"How can I fill my
new fab most
effectivelv?"
Applications.
Applications with
higher performance
andlor integration
needs will likely be
the first users of
newest technology-
driven platforms,
such as, 130 nm
node and predictions
for future. Example:
Intel processors or

maps, and so on are
not set, providing
greater freedom to
the customer. The
more flexibility
provided for
interfacing to the TF,
the simpler to adopt.
(See ~ o t e 1 .) -

n Approach Attributes:

Architecture Driven
Middle-out
"What HWISW
support do I require
to facilitate our TF?"

Loose coupling to
both applications,
technologies.
Primarily driven by
new architectural
paradigms, though
provided in
consideration of both
technology (such as,
power, size, and
speed) and
applications (such as,

"Internal" means
partners within the
entire product chain
(to end user),
whether inside or
outside the SOC
provider's
company.

Application Driven
Top-down
"What do I need to
put in the platform
to support my
product line?"

Platform contains
just enough to
support product
family, and no
more. Economic
scoping models and
management of
feature sets are on a
par with traditional
"engineering" point
of view.

Technologies.

Underlying
technology must
offer suitable
application
"performance
plateaus," that is,
enough
performance to
meet application
requirements. (See

120 Chapter 4

Attribute r
I

Table

integration. I
Component and I Technology I System and product

Technology Driven
Platform FPGAs
wanting to offer
much greater

levels, plus middle-
out IP integration.

reation

Architecture Driven
RTOS support and
memory hierarchies).

interconnect levels.

Attribute
Approach
Platform stability.
(See "platform
change trigger.")

Application Driven
Note 2.)

foundation
exploration; capacity
to replace TF and
evaluate
performance at a
level with sufficient
accuracy.

Platform change
trigger.

.7 Platform Specification Approach Attributes:

Technology Driven
Bottom-up
Volatile.

New platforms
developed as new
technology becomes
available.

Capability
breakthrough or
planned evolution in
key technology.

Example: Change
from 130nm to 90nm
process node.

I

Table 4-8 Platform Specification

Architecture Driven I Application Driven

High stability, based
on the technology
foundation.

Technology
foundation (TF)
change.

Platform
enhancements or
new platforms
developed as part
of overall product
line roadmap.
Product line need,
driven by feature
set evolution, or
new standards.

computing cores. with GPRS; 2.5G

gproach Attributes: Alterations

Platform-Based Design 12 1

Attribute
Approach
Platform creator's
design method.

Platform customer1
integrator's design/
development
method

Derivative
methodology.

Technology Driven
Bottom-up
Traditional design
(standard cell, full
custom, library-
oriented, and so on).

Traditional, seeking
optimization.
Integrator may want
to tweak platform
internals to optimize
the product into
which it is going.
(See Note 3.)

Traditional library
oriented design;
typically hardware
with some software.

Architecture Driven
Middle-out
System level
approach with
restrictions derived
from the technology
foundation.
Reuse without
rework of the TF.

Strong focus on
optimization of
H W/S W components
around the TF; TF
must be provided
with a configurable
and extensible
verification and
validation (V&V)
harness. Ability to
configure hardware
subsystem provided
external to TF.
Ability to easily
integrate IP from
compatible libraries
(HW and ESW). TF
must be provided
with an 0s port.
HWISW
architectural
exploration and IP
integration.

Application Driven
TOR-down
System-level
design.

Reuse without
rework of the SOC
or core platform.

Strong emphasis on
product-level
integration using
the platform. The
platform itself may
be configurable at
run time or design
time, but not
changeable.
Platform must be
provided with a
configurable and
extensible V&V
harness.

Application
specific interfaces
for system
augmentation;
typically software
with some
hardware.

Set of selectable IP
common to the
market-target of the
platform likely to
be provided as a
library for
derivative product
desigtdassembly.

122 Chapter 4

Attribute
Verification and
validation (V&V)
support for
platform-based
products.

Table 4-9 Pla

Attribute
Approach
Platform delivery
form (hard-firm-
soft).

NOTE: SoC-level
platforms will be
delivered as die,
modules, packaged
devices, or hard
macros.
Degree to which
information is
hidden; "black
boxiness." (See
Note 4.)

Technology Driven
Traditional bottom-
up design
verification of entire
platform-based
design.

-
--

u

)rm Specification Approach Attributes: Creatio

Architecture Driven
Reusable,
configurable, and
extendable
verification IP
harness.
Verification IP
communicate
through standard
interface. SoC
structure, such as
memory-map,
inherited by V&V
environment from a
single source.

Technology Driven
Bottom-up
Chip, hard or soft.
May be provided
hard with
configurable
sections.

Low.

User may want lots
of visibility to
platform internals -
may want to
optimize
implementation for
performance and
integration. (See
Note 2).

Application Driven
Verification IP
harness and
system-level
verification.

Methodology

Most likely
provided soft with
a reference
methodology
adaptable to
different
technologies.

Architecture Driven
Middle-out
Chip or soft.

Application Driven
Top-down
Chip or soft.

Degree to which
information is
partially visible;
"gray boxiness" (that
is, V&V support
needed).

Medium.

User may not care
what's inside the
platform boundary.
As long as useful
and effective V&V
controllability is
available for SOC
platform, derivative
product TTM
concerns are
paramount and
drive reuse without
rework.

High.

Platform-Based Design 123

Convergence
(Motorola)

Table 4-10 Platform Specification Approach Attributes: Delivery

Attribute
Real-World
Examples of this
Platform Type

Attribute
Approach
Available software
components.

Platform customer1
integrator's
involvement in
platform
development.

Technology Driven
Xilinx Virtex I1 Pro

Customer.

("Levels" means all
integration levels:
for SoCs.)

Architecture Driven
ARM Integrator

ARM PrimeXsysTM

Table 4-1 1 I

Application Driven
OMAP (TI)
Nexperia (Philips)
Innovative

Technology Driven I Architecture Driven
Bottom-up I Middle-out
Hardware abstraction I Hardware-dependent
layer (HAL). Software (HdS).
Example: Drivers. Example: Drivers,

HdS-compliant API,
OS abstraction layer,
and so on.

I

Loosely coupled; I May be involved in
feature-based,
performance
specification
oriented.

Closer to a "standard
product."

the development,
though not
compulsory.

Depends upon
whether foundation
IP is developed in a
"collaborative"
specification
environment.

I

Internal or external I Internal to a systems-
at all levels. company, or

external.

May be at least two
levels (corelsub-SOC TF fundamentally
and SOC boundary), ensures support for
or just one (SOC efficient integration
boundary only) of complex IP

Application Driven
Top-down
Application
software.

Example: MPEG-4,
MP3,OS
abstraction layer,
and so on.

Strongly coupled;
top-to-bottom
architecture
consistency with
customer's
application.

Closer to a "custom
product." Example:
Ericsson and Nokia
involvement with
TI for wireless.

Internal (vertically
integrated
companies);
selected external
partners.

Used by partners
within the entire
platform-based
product food chain.

124 Chapter 4

Notes to Tables 4-5 through 4-1 1 :

1. A good analogy with the architecture-driven or technology foundation
(TF) approach is the PC, which has a well defined TF, but also an ample
degree of flexibility. For example, if one wanted a PC to be a video-
conferencing system, one must add the hardware (webcam, modem, and
so on) and the software necessary to customize it. Different TFs (such as
Pentium 4, Pentium 3, Athlon, Celeron, Power PC; Linux, Windows and
Mac OS X) have different degrees of freedom and are more or less
restrictive when adding peripheral hardware and software. Having a
defined TF, one can work out how many different variants can be added
to it.

2. Arguably, SOC platforms for 2G wireless standards were not possible
until process nodes around 250nm to 350nm offered enough
performance-power tradeoff and integration, while 3G demands a 180nm
to 13Onm node.

3. ModifLing the internal details of a platform tends to invalidate the
concept. For example, a technology-driven platform consisting of cell
libraries and generators usually does not allow modification of the basic
cell libraries; rather, new cells may be added for specific design needs.
Thus the basic cell libraries may represent the invariant or configurable-
only part of a technology-driven platform. An essential characteristic of
the platform is isolation between application development and platform
implementation detail.

4. Configuring or customizing of a platform through a specified design-time
or run-time parameterization or other configuration process is acceptable,
but user manipulation of the platform internals (for example, in search of
"optimization") is not. Thus a highly configurable processor (such as
Tensilica T1050 or LX) may be part of a platform post-configuration, but
the process of optimizing a processor configuration for a specific
application lies outside of the processes of platform-based derivative
design, and instead can be part of the platform creation process.

Platform-Based Design 125

4.2.2.5 Metrics for Platform Specification Approaches

Functionality

Application t
System t

Structure

Specific

Market

Figure 4.6 The Platform Metric

There is a relationship between the level of detail needed for a set of
platform-based products, as measured in three metrics: functional
abstraction, structural creation, and market alignment, and the approach that
should be used to specify the platform. Figure 4.6 shows successive levels of
detail from none (at the origin) up to highly detailed levels of organization
on each metric. The remainder of this section gives a short description of
each metric and its relationship to the different specification approaches.

Functionality

Figure 4.7 Functionality Metric Resolution

The lowest level of functional detail deals with simple, unmanaged
collections of components: processors, memory, 110 translators, and
compute engines. These may be combined into complex aggregations, but
the functionality focus remains primarily with the performance of the
individual components and limited, non-application specific interactions
between them. Structural and high-level models are provided for the
components. At intermediate level of functional detail are descriptions of

126 Chapter 4

components and the communication between them as the basis for a system,
and the beginning of functionality management. Mid-level models exist,
complete with sufficient diagnostics, and interfaces to perform system level
functional verification, with strong linkage to component properties and
some linkage to applications. The highest level of functional detail deals
with fully managed sets of features and interfaces for the target applications
themselves, driven by the platform user's interests and concerns. This can
include very high-level models, coupled with interfaces and examples that
ease the application development.

Structure

Library 6
Frame @&

Library Library Library

Figure 4.8 Structure Metric Resolution

At the lowest level of structural detail, the platform consists of a library
of interconnectable, reusable components. The library will likely include
market, architectural, and system-level information, but is still organized by
components. At the next level the structural detail also includes frameworks
for the common components or features that will cross multiple components.
The framework includes platform-specific information, both with respect to
the common components, and kernel architectures for the platforms. Some
of this information includes verification suites, diagnostic shells, and
parameters for general implementation tool suites. At the top level the
structural detail includes both component libraries and platform frameworks,
but has an additional layer of meta-data such as product family-level meta-
applications interfaces, attributes, and meta-flows used in specifling and
constructing platforms.

Platform-Based Design 127

Market

Figure 4.9 Market Metric Resolution

At the lowest level the market detail and derivative product mix is not
well defined; it is merely a statistical composite of the market for the
platform. At the next level the market segments are identified, as are the
common elements within the segments. At the highest level a specific set of
derivatives of the platform are identified, and the common elements of their
specifications defines the platform.

4.2.2.6 Alignment with Platform Specification Approaches

The different approaches to platform specification can be viewed as
concentric shells defined by the level of detail in the platform space whose
dimensions are functionality, specification, and markets. In Figure 4.10, we
see how these metrics for a set of axes create a "platform approach space."
We recommend that every product development program consider its
market, functionality, and structural detail, then adopt the platform
specification process defined by the shell with which it most closely aligns.

128 Chapter 4

Application Driven
Functionality

4 - (top-down)

Block based

chitecture Driven

Figure 4.10 Platform Specification Approach Space

Block-Based (No Platform)

This level assumes the availability of a reusable IP library, and existing
general tool flows for implementation around a block based methodology.
No architecture or platform is implied at this level.

Technology-Driven Approach

At this level all the hardware, software and communication elements are
provided along with block-based IP libraries. Architectural reference models
are provided but the components are not pre-clustered in any particular
fashion, and with little detail. We view this as a "bottom-up" platform
specification approach in that specific derivatives are created up from the
component level using the architectures provided as a reference only.

Technology Foundation/Architecture-Driven Approach

At this level specific kernels including diagnostic shells, RTOS software,
processors, and communication structures are included in a pre-verified,
architecture. These architectures have attributes that are targeted to specific
market segments, and moderate levels of detail in all metrics. System models
for these kernels and clusters of appropriate IP components are identified
along with indications of how they can be integrated with the kernels into
specific derivative designs. This is viewed as a middle-out platform
methodology in that a pre-defined kernel containing the basic architecture
already exists, and is used along with pre-verified component IP to create a
derivative.

Platform-Based Design 129

Application-Driven Approach

At this level there is a top-down, product family roadmap-driven process
for creating a platform and the derivative products based upon it, and high
levels of detail in each metric. The development team uses the roadmap to
drive creation of an appropriate platform (the set of common IP or features),
including application interfaces, and application oriented implementation
and verification flows, from the component libraries, platform frameworks,
meta-methods and meta-applications interfaces. Product developers integrate
the platform with other IP (the differentiating or variable features) to
produce the desired platform derivatives, the product family members.

4.2.2.7 On The Evolution of Platform Specifications

While the three concepts of technology-driven, architecture-driven, and
application-driven platforms are distinct approaches to platform
specification, the concentric, ever larger shells imply the possibility of a
progression. The rest of this section will discuss the requirements for moving
from one level to the next. Figure 4.1 1 shows how a platform specification at
the segment-system-framework level (architecture-driven) in the platform
space might evolve to the segment-application-application (application-
driven) level.

Functionality +

J
Market

Figure 4.1 1 Evolution in Platform Space

130 Chapter 4

Block-based design assumes a library of qualified reusable IP and
general design flows that support the integration of reusable IP into a wide
variety of end user designs.

Evolution from block-based design toward technology-driven platform
specification is the process of providing clusters or groups of IP that have
been further verified to work together in a wide variety of combinations, and
for which the existing reusable IP libraries have been extended, to include
software IP, RTOS modules, diagnostics, and reference architectures for the
clusters. High-level component models are typically provided at this level as
well, but full system models as references are not generally provided.

As a platform specification approach evolves from technology-driven
towards architecture-driven, the level of detail increases and kernel
architectures complete with system models are added to a second level of the
library. The component IP will have distinct and defined relationships to the
kernel architectures added to their other attributes in the library. Integrated
diagnostic and software application strategies are identified and market
segment descriptions for each of the platforms are added to the database. At
another level, the technology-driven, a basic IP library has additional
information while, at the architectural-driven level, the database is more
platform-centric. Specific options for the general tool flows and
implementation are tied to the specific platforms. Typically a technology-
driven platform provides all available options to the component IP, which
are limited to viable options within each specific architecture at the
architecture-driven level.

Finally, moving from architectural-driven to application-driven platform
specification involves considerable detail about the functionality, market,
and structure of the product family using the platform, and the addition of
top down methodologies for creation of platforms, along with application
interfaces and preconfigured application oriented implementation and
verification cockpits. These interfaces presume full very high-level system
modeling at the application level, which in turn is calibrated to specific
architectural system level models. Of course, in order to efficiently create
top down platforms, it is necessary to create meta-application interfaces, and
configurable implementation and verification cockpits that are easily
configured for specific applications. These application-oriented interfaces
allow the creation of derivatives from the application perspective without the
need for detailed knowledge of the underlying architecture. In short, this
layer views the platform as a solution to a specific product roadmap, as
opposed to general market segments, and the data base of a completed
platform would reflect the proposed roadmap as part of the market data with
respect to the platform

Platform-Based Design 13 1

4.3 Definitions

barket.
Integration Iln the SoC context, a library of virtual components and an architectural

Platform.

Platform-Based
Design

An integrated and managed set of common features, upon which a set of
products or product family can be built. A platform is a virtual component
(W .
From Meyer & Lehnerd [MEY 971:
A set of subsystems and interfaces that form a common structure from which
a stream of derivative products can be efficiently developed and produced.
An integration oriented design approach emphasizing systematic reuse, for
developing complex products based upon platforms and compatible hardware
and software VCs, intended to reduce development risks, costs, and time to

Platform organization, company or individual that offers and supports platforms I

'Platform.

.. .

rovider. kor others to use in their designs.
latform khe taxonomy is defined by a series of matrices containing levels of platform

framework, consisting of a set of integrated and pre-qualified software and
hardware virtual components (VCs), models, EDA and software tools,
libraries and methodology, to support rapid product development through
architectural exploration, integration and verification.
Within the VSIA, the scope of the integration platform is bounded to the SoC.
From Chang, et. al. [CHA 991:
Hardware architecture, embedded software architecture, design
methodologies (authoring and integration) design guidelines and modeling
standards, VC characterization and support, and design verification
(hardwarelsoftware, hardware prototype), focusing on a particular target
application.

Table 4-12 Basic Definitions

lcomponents may be thought of as just components.
echnology phe family of cores, core support packages (local HW support for OS ports

raxonomy.

Jirtual
:omponents

types, characteristics of platforms, application areas of platforms, p l i t f~rm
tools, design styles and other properties necessary to describe the platforms.
With respect to platforms, virtual components are hnctional blocks of
hardware or software that can be assembled to create a platform, platforms
themselves, or differentiating IP features or blocks integrated with a platform
to form a higher-level platform or product. In other contexts, virtual

contains lower-level platforms and/or virtual components. While platform-
based design is applicable at many levels of integration within a finished
product, our scope will be limited to platform-based products at the SoC
level and below. SoCs, which themselves may be built on lower level
platforms, will serve as platforms for higher-level products.

:oundation

Jierarchy

'latform Levels.

on a core), memory structures, and on-chip communication standards used in
platform assembly and platform-based design flows.
An ordered list of platforms, for an application or a view, in which the lower-
level platforms are the sub-platforms that make up the higher-level platform.
The lowest level of the hierarchy is a virtual component (or component)
An implied level of abstraction, such as a higher-level platform, is one that

132 Chapter 4

deliverable platform at some level of abstraction, comprised of an
tegrated, defined set of components and features, and business plans,

ldevelopment tools, and support practices.
latform-Based bhe complete development environment that enables a platform customer-

ser to integrate a platform and variable IP into a higher-level derivative
roduct. PBDS constituents are components and features, business plans,

Platform
Complexity

bvolution. lextension (such as, adding functionality, incorporating additional modules or

development tools, and support practices.
Describe all the constituents of a deliverable platform object at a particular
integration level as the combination of PBDS elements: its components and

Levels.

Platform
Specification
Approach.
Platform

I Iplatforms, enhancing performance, and so on), or by migration (such as,

features, business and economic plans, development and integration
environment, and support practices.
A type of platform specification process chosen by the platform developmen
team, based on their business and technology philosophy, by which they will
quickly converge on the desired platform specification and complexity.
The notion that a particular type of platform is improved over time by

hanging the basic computing complex, being manufactured with new
technology, and so on). Successive generations of platforms

b a y be defined as part of a product family strategy; each platform is fully

ecause of isolation between the platform internals and its supported

I Ithem. The target application domain typically defines the platform type,

lview seen by the platform integrator.
ode1 IA platform model is an abstraction or several abstractions of the platform

Derivative

Isolation

can be used by hardware, firmware, and soilware developers to create
roducts. The model is a black box that exposes the functionality that is
ecessary for the developer to do hislher job. The EDA tools and soilware

which remains the same throughout the evolution of the platform.
A specific instance of a product or design based on a particular platform.
One member of a product family based on a particular platform.
The distinction between the internal features and construction of a platform
and its external characteristics, as known from its interface, which permits
the internals of a platform to evolve while keeping consistent the external

Viewpoint

tools needed to use the model must be delivered with the model by the
platform provider.
A pattern or template from which one can develop individual views by
establishing purposes and audience for a view and the techniques for its
creation and analysis. A viewpoint specifies conventions for constructing a

View

Formal Platform

view.
A representation of a whole system from the perspective of a related set of
concerns.
Architectural descriptions contain the information about the platform from

Architectural
Descriptions

Architecture

the perspective of all the stakeholders, identifying all their concerns, and
addressing those concerns via architectural viewpoints. Architectural
descriptions are defined by the functional and collateral virtual components
of platforms.
A collection of architectural descriptions from which describes the platform.

Platform-Based Design 133

group of products sharing a common, managed set of features that satisfy
ecific needs of a selected market or mission area, and that are developed

Platform
API Platform

rom Meyer & Lehnerd [MEY 971:
and address related

A layer of abstraction of a complex device or system that provides the basis
the design process. This typically is a programmer's model of the system or
device.

barket applications.
omain area of knowledge or activity characterized by a set of concepts and

Table 4-13 Higher-level Definitions

lterminology understood by practitioners in that area.
omain h a l y s i s h process for capturing and representing information about applications in a

I Idomain, specifically identifying common characteristics and reasons for
bariability.

conomies of khe condition wherein fewer inputs such as effort and time are needed to
roduce a greater variety of outputs. Economies of scope occur when it is

to combine two or more products in one production system (that
them as part of a platform-based product family) than to produce

. A core asset may be an architecture, a hardware or software

stems (that is, a product family), typically the components and their
the use of components mus
ty among the systems

Icomponent.
chitecture hhe preferred definition, from IEEE-1471 :

The fundamental organization of a system embodied in its components, thei~
relationships to each other, and to the environment, and the principles
guiding its design and evolution.
Examples of other definitions:

134 Chapter 4

rom Clements & Northrop [CLE 021 :
'he structure or structures of a system, which consists of hardware and
3ftware components, the externally visible properties of those components,
nd the relationships among them.
rom Section 2.9.2.3:

In the context of software, architecture is the configuration of al
software routines and services for meeting a system's objective
For example, application, operating system, and communicatio~
protocols can describe layers of a software architecture.
In the context of hardware, architecture is the configuration of al
physical elements for meeting a system's objective.
In the context of systems, architecture is the collection ant
relationship of the system's constituent hardware and softwan
components. For example, a multiprocessor system's architecturl
would include the hardware network architecture and the softwar

~chitecture nctions implied by the functional model (a functional model will have an
lapping implementation). Such a mappint

components of the system, in botk
functions that are associated with

unctional-to-
hysical

his mapping should deal with the required communications between
nctions, and the components in the architecture that are used to realize this

ommunication (for example, in the hardware domain, buses; in the softwarc E

architecture in the form of distributed and local operating systems
and application and control routines.

A "mapping" between a functional model of a system and a specific
hardware andlor software implementation architecture that implements the

messaging routines; between hardware and software, memory-
apped 110). In some contexts, the combination of the architecture of a

the functional model of the system, and the mapping between the
wo, along with associated implementation constraints, is called an

Table 4-14 Product Family Definitions

CHAPTER 5 HARDWARE-DEPENDENT

SOFTWARE

5.1 Introduction

This chapter expands the scope of models and definitions into the world
of embedded systems. Recognizing the increasing complexity of modern
SoCs, which incorporate both hardware and software IP, the productivity
gap is not solvable by only looking at hardware IP portability. Issues such as
exposing SoC functionality using a software API; the portability of software
running on evolving hardware platforms; and the increasing issue of SoC
verification and validation, lead to a requirement to clearly define the
interfaces between a hardware platform and any software layers that run
applications using that hardware platform. The software layers that use these
interfaces are collectively known as "hardware-dependent software" (HdS).

This chapter explores the following objectives:

To what extent can a dedicated software layer be defined so that it
efficiently hides hardware platform specifics from application
software?
How can we enable software portability across various hardware
platforms?
How can we allow cost-effective integration of software IP from
different vendors into overall solutions?

5.1.1 Purpose of this Chapter

To fix the definition of terms that are important in the HdS context
To clarify the subject, considering its different aspects, such as
hardware and software platform views, and its relation to different
HdS design-cycle phases

136 Chapter 5

To classify the relationship and interactions between hardware and
software
To help hardware, EDA, and s o h a r e engineers understand the
terminology of other experts in relation to HdS

5.1.2 Intended Audience

Since HdS constitutes the border zone between hardware blocks (ASICs,
FPGAs, processors, printed circuit boards, and peripherals) and the functions
implemented in software which sit on top of these hardware platforms, there
are several different users who will find this chapter useful:

HdS designers and engineers: This chapter offers a vocabulary in the
HdS domain and provides a means of unambiguous communication.
It facilitates the definition of other related topics, such as the HdS
Application Programmers Interface (API). (See Section 5.3.5.4.)
Hardware designers and software engineers: For them, this chapter
is mainly a tool for understanding the specifics of HdS, and to make
efficient use of the HdS concept in their respective domains.
System architects, integrators, and testers: As primary users of the
HdS API, they need to understand the different aspects (life cycle,
hardware platform, and runtime) of the HdS concept.
EDAJIP Developers: As tool and IP developers explore and
automate functions for both hardware and software design and
development, this chapter provides a structure for common
understanding across the users and the developers of these
automated functions.

The introduction and correct understanding of the HdS concept assists
the following:

SoC providers that offer highly portable IP as virtual components.
RTOS and software companies that support a growing variety of
hardware platforms with a reasonable development effort
System houses that efficiently integrate complex products by
incorporating best-in-class IP into working solutions, because they
can concentrate on functional rather than implementation aspects.

5.2 HdS Terms and Abbreviations

This section gives definitions for a basic HdS-related terminology. First,
it defines the meaning and the purpose of the two basic concepts of
hardware-dependent software and of the hardware abstraction layer (HAL).

Then, it gives a list of abbreviations used in the HdS context. It concludes
with a list of HdS-related terms with their meaning in the context of this
subject.

5.2.1 Basic HdS Definitions

For a list of common acronyms, the reader should consult the
"Abbreviations and Acronyms" section at the front of this book.

5.2.1.1 HdS (Hardware-dependent Software)

All software that directly depends on the underlying hardware belongs to
HdS. The following software items are examples:

Hardware drivers and the HAL
Boot strategy, and boot loader
Built-in tests (basic level, offline tests, system maintenance tests)
Hardware-dependent parts of communication stacks
Algorithms implemented in software on DSPs

HdS shields the hardware from upper-layer application software.
Communication with the hardware takes place using a stable API, the HdS
API. HdS contains all software that is needed to validate, verify and test, and
to bring up the underlying hardware platform. HdS retains portability across
various simulation and target environments.

Figure 5.1 illustrates the relationship of the hardware-dependent software
to the hardware design, software development, and manufacturing activities
required to produce a product. Furthermore, the bridge between the hardware
and software is the software layer closest to the hardware, the Hardware-
dependent Software (HdS). On this abstraction level, the HdS is the border
zone specifLing the platform-dependent mapping between hardware and
software resources.

From a test strategy perspective for both development and
manufacturing, the HdS architecture must be set up as a basic general
framework of the test software and platform. The HdS architecture needs to
include methods for test initiation, parameter-passing, and the processing
and reporting of anomalies and exceptions.

138 Chapter 5

HdS Process: Links to other disciplines
Split HW I HdS 1 SW
Processor Platform

HW Testability System Test
Boot strategy

Manufacture

ASlClPBA Validation
Co-designlCo-verification

Operating System
HW Drivers
Tools
Program Languages

Figure 5.1 The Relationship of HdS to Design, Development, and Manufacturing

5.2.1.2 HAL (Hardware Abstraction Layer)

The HAL is a software layer that interfaces to the underlying hardware.
This layer shields access to hardware functions through simplified or
standard interfaces that isolate the hardware complexity from the software
developer. The HAL consists of three sub-layers: the access shielding,
register shielding and functional shielding layers. The access shielding layer
contains the mapping between the variable names and the addresses of the
memory locations; macros enable the use of the HAL in simulations. The
register shielding layer enables access to the memory locations using read
and write functions. The functional shielding layer allows higher layers to
use a device, without knowing all the details of the device implementation.

Hardware-dependent Software 13 9

5.2.2 HdS Terms

Term
Boot
Bootstrap

Code Re-
Entrancy

Constant Bit Rate

Context Switch

Data-Driven
Scheduling
Deadlock

Debug Port

Deterministic

Definition
Short for Bootstrap.
The minimal set of software routines necessary to
initialize the hardware to a known stable state.
The ability for code to be interrupted and reinitiated
with new data without destroying the interrupted
execution, such that upon completing the interrupting
task, the previous task can be continued to
completion. Unlike task switching, re-entrant code
may not imply complete storing of state.
An 110 port that transfers data at a constant rate. For
example, with analog-to-digital converters and digital-
to-analog converters, they convert data at a specific
constant rate.
The computing process of storing and restoring the
state of a CPU (the context), such that multiple
processes can share a single CPU resource. Also
called process switching or task switching.
The ability to schedule a task in response to the
availability of data. See Scheduling Models.
Two or more tasks that require information or triggers
from each other before proceeding. Deadlocks usually
halt the operation of systems until timeouts restore
o~eration.
A port used to debug the board without requiring any
application running on the hardware. Normally
implemented as a JTAG port.
Real-time implementation is deterministic if it
minimizes the time to react to an incoming event such
as an asynchronous interrupt, and to schedule an
appropriate task that is associated with the incoming
event. A deterministic system responds within a
guaranteed time, not necessarily the fastest time. For
example, an RTOS task-switch or an interrupt
response is guaranteed as the worst possible case.

140 Chapter 5

Term
Device Driver

DMA Channel

Embedded
System

Embedded
Software

Event

Firmware

Fixed Instruction-
Set Processors

--

FLASH
HAL

InputIOutput
Control

Definition
A software module that shields the details of a
particular hardware element (device) and provides a
programming interface. For example, a task that
handles the protocol of an 110 device or DMA channel
to perform the requested transaction.
A device with a device address that handles the
detailed bus protocol for a transaction between an I10
device and memory, without the intermediate
intervention of the processor.
A system designed for a specific purpose, generally
fixed at the time of manufacture. Typical embedded
systems include: cell phones, internet routers,
satellites, GPS units, and automotive engine
controllers.
Software specifically designed to run on an embedded
system. This includes both application and system-
level software.
1. A method used for task synchronization.
2. An action that causes a state change in the system
being modeled. When used in the context of event
driven models, events are triggers or transactions that
cause the execution of the appropriate tasks to handle
them.
Embedded software that is stored as machine code
within a ROM.
Processors without user definable instructions. For
example, all instructions are known and are described
in the user manuals for the processor.
Electrically erasable, programmable ROM.
Hardware Abstraction Layer. A functional HdS layer
that shields the actual access to memory locations and
allows software clients to use a device, or hardware
platform, without requiring in-depth knowledge of the
device.
Device driver function.

computer's CPU should be able to understand and
execute, or the set of all commands implemented by a
particular CPU design. Also called an instruction-set

Term
Instruction-Set

Definition
A specification detailing the commands that a

central processing unit (CPU) that it is in need of

Interface Timing
architecture (ISA).
The relationship and temporal order of the signals

Interrupt Service
Latency

Interrupt Service

Communication
Kernel Space

The time it takes to respond to an interrupt. That is the
elapsed time from the interrupt request to when the
system is available for the next interrupt request.
A software routine that responds to interrupts and

Routine
Intertask

schedules the appropriate device driver.
-

The transfer of data and control between two or more

Load

-

tasks.
The CPU has different operating levels to disallow

Lockout

operation at the lower levels. The operating system
utilizes the CPU features to allow independent
operation of programs and protection against
unauthorized access to resources. Under Linux, the
kernel executes in the highest level (kernel space),
where everything is allowed, whereas applications
execute in the lowest level (user space), where the
process regulates direct access to hardware and

remote data storages.
Method of task synchronization. The prevention of
access to a resource while another task has non-shared
use of the resource.

unauthorized access to memory.
Part of the HdS Control Layer and Function Control
Layer. Any software routines which are responsible
for copying software code to a target processor in
order to be ready for execution. Load is possible from
local memory devices, or (using data links) from

142 Chapter 5

Term I Definition
Memory
Management

Microcoded
Instruction-Set

The method of (or hardware dedicated to) managing
computer memory and optimizing its use. This might
include techniques such as arranging used and free
memory to speed access or to maximize available
storage space through dynamic address translation.
Additionally, the memory manager protects memory
from illegal access and produces an exception error if

Message Queues
packets of data. This is a mechanism used to handle
inter-task data communication and synchronization.
Either fixed or variable length size of queues can be
used to hold messages among tasks. Typically,
message queues eliminate the temporal interlock
between the task sending the messages and the task
receiving the messages, until the queue overflows.
Processor instructions that internally are implemented
by groups of lower level instructions. These
instructions are typically broad, multi-field

an illegal access is attempted.
Queues that are used to store and retrieve multiple

Platform
Multiprocessor

Multitasking

Multithreading

instructions where all fields are executed in parallel.
An embedded platform that contains more than one
Microprocessor or DSP.
A technique used in an operating system for sharing a
single processor between several independent jobs.
Sharing a single CPU between multiple tasks (or
threads) in a way designed to minimize the time
required to switch threads. Multithreading differs from
multitasking in that threads share more of their
environment with each other than do tasks. Threads
may be distinguished only by the value of their . .

I counters and stack pointers, while sharing a

Mutex
single address space and set of global variables.
A mutual exclusion (mutex) object that is created so
that multiple program threads can take turns sharing
the same resource, such as access to a file.

Hardware-dependent Software 143

Term
Netlist

Off-Line Test

PLA-coded
Engines

Page Fault

Pipes

Polling

Portability

Pre-Emptive
Scheduling

Priority

Definition
A description of hardware that consists of blocks and
the signals between them. It is a list of all the
components and their interconnections that is typically
described in a standard format, such as EDIF
(Electronic Design Interchange Format), or the
structural constructs of an HDL (Hardware
Description Language).
1. A set of HdS functions to allow test segments to
run, which are dedicated to testing ASIC, SoC, board,
or system level.
2. Test segments that perform the tests.
Processors whose control is performed by cycling
through a state diagram encoded into a PLA.
Typically, the PLA controls a state register and the
data path, and in turn is controlled by the state
register, data, and control information from the data
path.
A fault that occurs in a virtual memory system when a
portion or page of virtual memory is not resident in
real memory at the time it is required to be accessed
by the processor. This then triggers a page fetch
operation.
The buffers that can be written to by one process and
read by another.
The continuous checking of other programs or devices
by one program or device to see what state they are in,
usually to see whether they are still connected or want
to communicate.
1. The ability to transfer the software from one
hardware pl&form to another while preserving its
functionality.
2. A property of software that can be ported and made
to run on a new platform and compiled with a new
compiler.
Scheduling model. The scheduler can interrupt and
suspend or (swap out) the currently running task in
order to start or continue running (swap in) another
task.
The level of importance of an event or task.

144 Chapter 5

Term
Protocol

Rate Monotonic
Analysis (RMA)

Real Time

Queue

Scheduling
Models

Definition
The rules of temporal ordering of signals to
synchronize the transfer of information between
asynchronous events or tasks. An interrupt request is
part of the protocol of the transfer of data between an
110 device and a processor. Semaphores are a specific
protocol for the transfer of information between two
independently scheduled tasks.
A collection of quantitative methods and algorithms
that allow engineers to specify, understand, analyze,
and predict the timing behavior and throughput
requirements of real-time software systems, thus
improving their dependability and ability to evolve.
RMA is based on assumptions regarding software task
expected execution times, and computes limits on
processor loading.
A system is said to be real time if it has critical timing
requirements that must be met in order for the
application to be successful.
A first-in, first-out memory, used as a transport
medium.
Different algorithms used to schedule events within a
system, including the following:

Priority based: each task is assigned a priority
and the task with the highest priority is
scheduled.
FIFO based: tasks are executed in the order in
which they are ready to run.
Round Robin: tasks are executed for a specific
quantum of time or time slice, at which point
they are placed at the back of the run queue
and the next ready task in the round-robin
queue is selected.
Fair Share: an algorithm that takes into
account how long a task has been blocked.
The longer a task has been blocked, the more
weight is given to this task, and, when it is
readied, it is more likely to run.

It is common to have combinations of these
scheduling algorithms in order to have a system that is
both real-time and responsive.

Hardware-dependent Software 145

Term
Semaphores

Shared Memory
Shielding Layer

Sockets

Software
Layering

Stack

Starvation

Synchronization

Definition
The method for restricting access to shared resources
(such as storage) in a multiprocessing environment. A
specific protocol for transferring data between two
inde~endentlv scheduled tasks.
Memory that is accessible by two or more processors.
A software layer that hides the hardware access and
functionality through simplified or standard interfaces
that isolate the hardware complexity from the software
developer. The HAL consists of three sub-layers: the
access shielding, register shielding and functional
shielding layers. The access shielding layer contains
the mapping between the variable names and the
addresses of the memory locations; macros enable the
use of the HAL in simulations. The register shielding
layer enables access to the memory locations using
read and write functions. The functional shielding
layer allows higher layers to use a device without
knowing all the details of the device implementation.
A Unix mechanism for creating a virtual connection
between processes, both locally and on other
networked svstems.
The layered software architecture recommended by
VSIA, and others, to create a method for software
reuse. This is one of the HdS taxonomy axes.
A data structure for storing items which are accessed
in last-in, first-out order. The most common use of
stacks is to store subroutine arguments and return
addresses. The stack resides iimemory and is
accessed by a stack-pointer.
Occurs when a task does not meet its real-time
requirements because the task is either not getting
enough processor time to complete its intended
operation, due to other tasks taking priority, or the
task does not have the data necessary to complete its
intended operation.
Temporally aligning the transfer of information
between two or more tasks or blocks of hardware. The
concurrence of events with respect to time.

146 Chapter 5

Term
Task

Task-Switching
Latency

Thread

Timeout

Timer

Trigger

Definition
An independent thread of execution that may
synchronize or communicate with other tasks. An
independently scheduled software module that
performs a specific function.
The time it takes to transfer control from one task to
another independently scheduled task. The elapsed
time from the halt of execution of one task to the
continued execution of another task. This typically
involves saving the state of the first task and re-
establishing the state of the next task before
transferring control.
A sequence of instructions or data pertaining to a
specific task. An instruction thread is a sequence of
instructions whose external interlocks have been
resolved. A data thread is a sequence of data that is
transferred from a task or location to another task or
location with its order preserved regardless of the
method of transfer. Threads also refer to multiple
instruction streams which can be mapped to a single
or group of processors by a multiple-threading
operation system; these threads often share a single
global memory space.
An interrupt whose priority is higher than the current
event in a process that was issued at some defined
interval of time after the start of the event. A timeout
typically initiates some action to cancel the last event,
&ereby-eliminating any potential deadlock.
A clock that interrupts the process at known periodic
intervals. A set of functions that announce each clock
tick to the OS, set and obtain the current date and
time, and send events to calling tasks at or after the
time interval.
A specific signal that initiates an event and triggers an
action. In hardware, it is typically a single control
signal that initiates a hardware operation such as
capturing or sending data. It is automatically fired
when a specific operation occurs.

Hardware-dependent Software 147

Term
User Space

Variable Bit RZ

Watchdog Timer

Definition
The CPU may have different operating levels to
disallow certain operations at certain levels. The
operating system utilizes CPU features to allow
independent operation of programs and protection
against unauthorized access to resources. Under
Linux, the kernel executes in the highest level (kernel
space), where everything is allowed, whereas
applications execute in the lowest level (user space),
where the process regulates direct access to hardware
and unauthorized access to memory.
1. Information that is represented in a digital form by
clusters of bits (rather than a constant stream of bits)
is said to have a variable bit-rate. Most data
applications generate VBR traffic.
2. An I/O port that receives or sends data at different
rates. Most networks transfer packets of information
at variable rates based on demand.
A device that performs a specific operation after a
certain period of time if something goes wrong with
an electronic system and the system does not recover
on its own.

Table 5-1 HdS Terminology

5.3 HdS Taxonomy Axes

5.3.1 Introduction

Taxonomy axes are a mechanism to allow classification, analysis and
differentiation between different models, objects or types of things. This
chapter presents several, more or less orthogonal, axes that encompass
different requirements and aspects for the representation and roles of
hardware-dependent software. The axes of the HdS taxonomy are the
following:

Life cycle axis
Run-time and real-time axis
Hardware architecture axis
Software layering axis

These axes are described in detail in the following sections.

148 Chapter 5

5.3.2 Life Cycle Axis

The life cycle axis defines the role and existence of HdS in relation to the
life cycle of a product. The purpose of this axis is to define discrete phases in
software's life cycle, with requirements for certain input and output
deliverables. The life cycle covers not only software development, but also
its use and reuse until the software is no longer used.

5.3.2.1 System Development

This is the system-level modeling and validation of functionality that will
become software and hardware. The software exists as models,
specifications, and interfaces, but not yet as production code.

Inputs: Requirement specification
Outputs: Executable specifications, performance models, DSP

algorithms, protocols

5.3.2.2 Software and Hardware Co-Development

This is the process of implementing and verifLing specified functionality
with software and hardware. The software comes into existence in source-
code format. Software code is either functional code to be incorporated into
the final product, or software to test and bring up the underlying hardware
platform.

Inputs: Requirement specifications, executable models, hardware
descriptions

Outputs: Implemented software, documentation
Tools: OS simulator, ISS models of processors, netlist, RTL or

behavioral models of hardware, hardware emulation, fast
prototypes, code generators

5.3.2.3 Debug and Optimization

This consists of debug or optimization of software on selected hardware
platforms, either virtual or real. Debug of hardware with either functional, or
test software. The software exists in source code and executable formats.
The software passes through one or several transformations, either manually
by the designer or by tools (code generators and code optimizers). The result
is machine code that is ready to be delivered with the product.

Inputs: Software code
Outputs: Clean software code
Tools: Debuggers, code optimizers, code generators

Hardware-dependent Software 149

5.3.2.4 Use

This consists of running the actual product code. The software exists in
machine-executable format.

Inputs: Machine code
Outputs: None

5.3.2.5 Retargeting

This is the process of redesigning software to run on a different processor
or hardware platform. The phase may need to visit all of the previous phases
of the life cycle.

Inputs: Original software
Outputs: Original software running on a new platform, thus

incorporating required platform-dependent changes

5.3.2.6 Variant or Derivative Development

This consists of developing a new product by removing features from or
adding features to an existing product, or by improving performance. It
includes redesigning hardware to execute a different software suite.

The phase may need to visit all the previous phases of the life cycle.

5.3.2.7 Reuse

This entails reusing parts of existing products to create a new product.

Inputs: Parts of existing products
Outputs: Parts adhering to reuse guidelines and standards

5.3.3 Run-Time and Real-Time Axis

The run-time and real-time axis presents distinct modes of HdS in
embedded systems, in the function of state of execution. The run-time
phases require the existence of various software modules or certain platform
support. Real-time phases add temporal restraints and requirements to the
execution.

5.3.3.1 Run Time

The run-time axis presents the software operating environment and
requirements from the perspective of sequencing and state machines.

Boot
o Software load

150 Chapter 5

o Hardware load (FPGA code, nano-code, DRL)
o Software modules: boot code, boot loader
o Platform support: flash controller, hard disk drive controller,

and so on
Configure

o Software modules: Initialization code
Execute
Reload

o Morphing code
o Reconfigurable hardware
o Caching Load segments of code from FLASH
o On-target monitor or debug channel

5.3.3.2 Real-Time

The real-time axis presents the software operating environment and
requirements from an execution real-time perspective (not a state
perspective). Even the software layers, which do not directly communicate
with hardware, may depend on hardware for scheduling or timing.

Scheduling models
Pre-emptive scheduling
Data driven scheduling
Real-time, non-real-time
Interface timing characteristics
Constant bit-rate port (ADC, DAC)
Variable bit-rate port (MPEG)
Packet port (Ethernet)
Real-time debug access
Sequence of operations
Trigger conditions and states

5.3.3.3 Communication Mechanism

The intent is to list abstract communication mechanisms, such as register-
mapped, message-based mechanisms, and to describe how they appear in
HdS. Operating systems have a number of possible inter-task
communication mechanisms. If tasks reside on different hosts, the abstract
communication must pass through a physical communication medium, with
mapping from abstract to physical to abstract in software adaptation layers.
In fact, this situation may also occur with software-hardware
communication, when the software task is provided with an abstract
communication interface to hardware.

Hardware-dependent Software 15 1

A good example for this kind of mapping is the link handler. The link
handler can make tasks running on different hosts seem like they are running
on the same host (from a communication point of view). The link handler of
the sending host takes a message (signal) sent from task A, and then maps it,
for example, to copy data to a shared RAM and to an interrupt. The link
handler of the receiving host is invoked at the interrupt to copy the data from
the shared RAM, and to recreate the message and send it to task B.

Software can also send a message to a hardware block. In this case, the
process is similar, but without re-creating the message on the receiving end.

The thickness of the adaptation layer (link handler, device driver, and so
on) depends on the abstraction and complexity of the software
communication mechanism.

Communication mechanisms are listed here in a rough order of
complexity:

Address mapped: Maps directly to hardware bus transfers
Packet based: Maps to routing and buffer copying
Message based: Maps to buffer copies (address mapped) and
hardware synchronization

5.3.4 Hardware Architecture Axis

Hardware architecture presents different aspects of the hardware
platform, seen from the software point of view. (This is a link to platform-
based design.) The hardware-dependent software hides or abstracts the
hardware.

5.3.4.1 Architecture Synopsis

From a software perspective, hardware appears to perform a specific
function. However, from a hardware perspective, the function may consist of
a variety of programmable elements. The degree of programmability appears
to form a continuum from pure hardware to full processor-related
instructions.

For simplicity, we have selected a set of points from programmable logic
(FPGAs) to traditional processors, as shown in Figure 5.2. The figure
indicates that SoCs could contain arrays of small compute engines of
differing types. As one moves from software toward hardware,
improvements in performance can be obtained by building specific functions
into firmware, by programming at a lower, finer-grained levels of hardware
operations, thus eliminating the unnecessary movement of data that occurs in
standard processor code. Alternatively, one can add instruction extensions to
tailor a general-purpose ISA to specific applications. These instruction

152 Chapter 5

extensions may be implemented as special purpose hardware, but still made
available to software developers via standard C compilers. Conversely,
programmable solutions often run at slower clock frequencies than custom-
designed processors because the lower-level operations are more
programmable.

While the following four levels of processors can exist separately, it is
also common to have multiple levels within one processor, as shown in
Figure 5.2. Such processors could be considered composite processors. Still,
when mapping the composite processor onto the existing levels, it is typical
to refer to the processor at the level to which users have the most access. For
example, a processor with microcode that is not accessible to the
programmer is considered an instruction code-level processor, whereas a
processor with microcode that is directly accessible and modifiable by the
programmer, particularly if all but the most instructions are available in
microcode, is considered a microcoded engine. Similar examples can also be
drawn for the other levels.

To elaborate on this idea further, we articulate that the instruction-set
processor (for example, GPP) is based on published instruction sets. Below
this layer, another classification is called out and named microcode
processors, on which instruction sets can be built. Some processors can use
both the microcode and the instruction sets. While these can be called out at
the lowest level that they employ, for example, the microcode, the
suggestion is to classify them under a new term called composite, which
includes more than one of the classifications. A processor could certainly be
built from these composites. The extensible processor based on a standard
instruction set sits in between these four categories.

Hardware-dependent Software 1 5 3

I Instruction Set Based
SinalelMulti vrocessors

Micro-coded enaines GRANULARITY, 1
PROGRAMARIIJTY

PLA coded Enaines

XECllTION SPEED

Figure 5.2 Architecture Synopsis

Programmable Logic Code

Programmable logic code consists of two large blocks of memory; one
for bit-selection of the programmable functions, and one for bit-selection of
the wire segments between the functions. In traditional FPGAs, the functions
are defined by the contents of small single-bit wide memories, and the
interconnects are traditionally defined by a sparse matrix where only the
actual wire segment connections are set. It is sparse because most
configurations use less than 5% of the available connections in the FPGA. In
Figure 5.2, some of the elements could be hardwired datapath elements that
require much less memory to define the encoded functions. In addition, the
data could be routed on a bus-wide basis, which would also require less
memory for the encoded wire-segment connections.

The program is usually completely loaded into the two blocks of memory
before the execution of the function can begin. Typically this is done serially
at power up. In these cases, the resulting programmable logic code is
indistinguishable from hardware.

The high-level language for this code is typically RTL, which is
synthesized, placed, and routed, and then converted into the loadable blocks
of memory described previously.

Control characteristics:
o Use wired control and data-path elements
o Hide functional logic

Data characteristics: Signal level

154 Chapter 5

OS requirements: None

PLA Code

A PLA-coded engine typically includes some memory, datapath
elements, and a PLA. A PLA is a matrix of AND and OR functions driven
by external data and control lines, which, in turn, drives feedback registers,
the controls for the data-path elements, memory, and outputs.

A PLA has a bit matrix memory for its AND and OR planes, and is
typically loaded in the same manner as the programmable logic code. The
matrix is sparse because all inputs connect to all outputs on each plane,
which is usually not the case with the actual logic. Still, it is usually less
sparse than programmable logic code because the routing information is both
limited and combined with the functional description.

High-level languages typically describe state machines defined by sets of
Boolean equations. These are converted into the AND and OR functions
within the PLA, given the physical locations of the signals. The registers
contain the current state and other Boolean data.

Control characteristics:
o Usually single cycle operation
o Usually state machine logic
o Architecture specific

Data characteristics:
o Protocol aware
o Single-word operation
o Architecture specific

OS requirements: Simple loop waiting

Microcode

Microcoded processors typically have wide microcode instructions,
where all the decoded fields (with the exception of memory addresses) for
the entire datapath subsystem are available in the microcode instruction.
Unlike PLA or programmable logic, the code is essentially sequential, where
the processor executes one instruction per cycle. Unlike RISC code, many
parallel operations may be executed by one microcode instruction.

Typically, microcode has minimal stalls or locks on its execution by the
processor, and is never executed out of order.

Control characteristics:
o Usually decoded instructions
o Usually single-cycle operation
o Usually architecture specific

Hardware-dependent Software 1 5 5

Data characteristics:
o Usually word-level transfer
o Usually protocol hidden
o Single-word operations
o Architecture specific

OS requirements: Simple scheduling and loading

Instruction-Set Code

RISC or CISC is the instruction code for most processors today.
Traditionally, RISC code was designed to execute at a rate of one instruction
per cycle. However, current processors (such as VLIW, superscalar) may
execute multiple instructions at a time, and may even execute them out of
order, as long as the resulting register contents are correct at the end of the
software operations. The instructions, while simple, are highly encoded,
requiring only as many bits as necessary to define the memory locations and
operations to be performed.

Control characteristics:
o Single or multiple instructions
o Usually encoded instructions
o Usually multi-cycle operation
o Hides Architecture and processor function

Data characteristics:
o Packet burst
o Protocol hidden
o Multi-word operation
o Hides architecture

OS requirements:
o Loading, scheduling, and interrupt handling
o Varies depending on memory

It is important to note here that software engineers may not see the
previously described classification as clearly as hardware engineers. In the
software world, it may be more natural to describe the classification as
processor instructions (which break down into either general-purpose
instructions or application-specific instructions), and at a layer below as
single-or multi-cycle operations. In this context, it is important to point out
that in the software world, there are architectures known to augment
instructions (application specific or generic) with hardware functions having
the ability to load and execute functions. In some cases, this is called
microcode; in other cases it is not.

1 56 Chapter 5

5.3.4.2 OS Requirements

The level of OS requirements is determined by the complexity of the
system and the problem being addressed. The following sections give a
simple taxonomy of the processor capabilities and the corresponding OS
requirements. While some increasing level of hardware capability in an
MMU is required for each of these memory levels, the amount of OS support
varies, depending on the capabilities of the MMU. For example,
implementing virtual memory and protected memory is best done by using
an MMU. It is also possible to build systems without interrupts. In such
cases, a simple polling process checks the status of all 110 locations, and
then processes the status before going back to the polling.

Simple Memory Mapping

In this case, the processor accesses devices using specific memory
addresses.

Protected Memory

With protected memory, an internal interrupt puts the processor into
protected memory. The OS must now include a separate initiator of tasks,
and the tasks must request initiation of 110 operations and new tasks through
the operating system.

Secondary Memo ry

If the tasks reside outside main memory, a loader must also be added to
the OS to be able to initiate non-memory-resident tasks.

Virtual Memory

A virtual memory system requires an additional function in the OS to
manage the virtual memory space. Typically, a virtual-memory system
includes a dynamic-address translation (DAT) mechanism to provide the
actual physical address when given the virtual address. This is usually done
in hardware. The management of the DAT and the available virtual memory
space is usually performed in a virtual-memory management subsystem of
the 0s.

Hardware-dependent Software 1 5 7

Bank-switched Memory

Some processors have limited address space that is smaller than required
by the application. In such cases, the memory is arranged in banks that are
equal to or smaller than the inherent address range. The system then uses
some sort of redirection mechanism to switch to the proper bank as needed.

Interrupts

None

A simple polling scheme is usually used in systems without interrupts.

External Interrupts

In this case, the OS should have an interrupt-handling subsection and
drivers to handle the interrupts. A simple loop can be used in place of a
scheduler, but tasks must be initiated in response to an interrupt. Conversely,
a more complex scheduler can be used, but this is limited to operating during
interrupts.

Internal Interrupts

In this case, the processor can interrupt itself when error conditions,
traps, or exceptions occur within the task being executed. Additionally, in a
multi-tasking environment, the OS could have a scheduler to correctly
schedule the next task.

Real-time Clock

With a real time clock, the scheduler may not only initiate tasks, but can
also stall them when a higher priority task must be executed. The OS updates
the task list, and schedules the highest priority task on every time tick. With
a real-time clock and the appropriate RTOS, independent tasks can be
scheduled to execute at periodic or specific times as needed by the system.

5.3.4.3 Architecture of Software Defined by Hardware

CPU Subsvstem

The CPU subsystem contains the processor core, bus interface, floating-
point unit, debug support, and peripherals. The processor core contains
registers, memory addressing, cache, exceptions, and interrupts. The
software sets up the CPU subsystem at boot time.

158 Chapter 5

CPU Registers

Different processors have their own sets of registers. The software sets
up these registers as indicated by each processor's specification.

Address Space

The address space can be either a physical address space or a virtual
address space. If the processor supports a Memory Management Unit
(MMU), the virtual address can be translated into a physical address using
techniques like the translation look-aside buffer (TLB). Alternatively,
conversions from physical to virtual, from virtual to physical, and from one
type of bit addressing to another (such as 32-bit to 64-bit, or 8-bit to 16-bit)
are typically handled in software.

Cache Organization

Each processor may have several on-chip caches for instruction and data.
Cache sizes are configurable. The software sets up cache memory, and can
disable or enable the cache when needed. Caches may be organized into
levels of different capacities and access times (Ll, L2 and L3 caches are
now common) in order to mask long off-chip memory access latencies. In
addition, multiple data caches may make sense for DSP style processors or
processors with DSP oriented functions which want efficient X-Y memories.

CPU Exceptions

Each processor has exception handling. The typical exceptions include
the following: address error, bus error, interrupt, and floating-point
exception. The software sets up exception vectors and handles each
exception properly. An Interrupt is an exception. There are two broad classes
of exceptions. Internal exceptions occur as a direct result of the instruction
stream, and include things like protection violation, undefined instructions,
and so on. External (or asynchronous) exceptions are a result of events
external to the processor, and include bus errors, timer interrupts, peripheral
interrupts, and so on.

Interrupts

Each processor supports up to three types of interrupts: non-maskable
interrupt (NMI), external interrupt, and internal interrupt. Based on the
interrupt source, software control dispatches to the appropriate interrupt
service routine (ISR).

Hardware-dependent Software 1 59

Floating-point Unit

Each processor may support floating-point operations. The software
controls the programming model of the floating-point unit.

Memory Subsystem

Memory is one of the main components in a system. There are two types
of memory: ROM and RAM.

ROM includes Programmable ROM (PROM), Erasable programmable
ROM (EPROM), and Electrically Erasable Programmable ROM
(EEPROM). These read-only memories are normally used for BIOS or boot
loaders. For many devices, ROM is also the repository of the operating
software and applications such as cell phones, Personal Digital Assistants
(PDAs), and so on.

RAM includes Static RAM (SRAM), Dynamic RAM (DRAM), double
data rate (DDR), Ferroelectric, and Magnetic RAM. These random access
memories are called memory, and are a temporary storage for program data.
From another point of view, it might be more useful to characterize the
RAM as volatile and non-volatile. In volatile memory, the data disappears
when system power is removed, and the data remains for non-volatile
memory.

Each system has different size and types of memory, and the software
configures the memory controller and checks if the memory is accessible at
boot time. If the processor supports MMU, the virtual memory is supported
using paging and segmentation. A good example for virtual memory is the
Linux operating system. The virtual memory allows the system to separate
program (virtual) addresses from actual (physical) addresses.

I10 Subsvstem

Each SoC may support peripherals for input and output. Based on the
application domains, the devices for an YO subsystem could include
examples such as Tuner, IR, IEEE1394, USB, serial port, parallel port, video
and audio coderldecoder, and many others. For the application, OS, or other
drivers to access the I 0 devices, the device-specific software (device
drivers) must be written to provide the method for accessing the device.

5.3.4.4 Multiprocessor Architectures

Multiprocessor systems require additional complexity to synchronize the
activities on several processors in the system, as well as to manage the
communications between these processors. Implementations may consist of
homogeneous processors for additional processing power of similar,

160 Chapter 5

possibly identical processes. They can also include heterogeneous processors
in which different processors are used for their specific characteristics such
as DSPs for signal processing and a RISC for network communications.
Additionally, there are interactions with the memory subsystems that affect
the method of the overall multiprocessor implementation. For example,
memory can be used for communications between processors and for
scheduling or synchronizing tasks across processors.

The intercommunication between processors consists of a physical layer
that allows processors to send messages between their domains. This may
consist of a FIFO, dual-port RAM, or some other communication
mechanism.

The following sections contain several examples of multiprocessor
architectures.

Example 1: General Description of System-message Exchange

The system architecture consists of one master processor and many slave
processors. The master processor has access to all of the memory contained
in each slave processor domain. Each slave processor can interrupt the
master and the master can interrupt the slave. At system startup, the master
processor loads each slave with its assigned program. Once the program is
loaded, the slave processor awakes from reset and requests from the master
its configuration record. It does this by using a message-exchange protocol.

The following is an example of a normal exchange:
WHOAMI -Slave #1 requests configuration from master.
RTS -Slave #1 requests to send message to slave #2.
CTS -Slave #2 acknowledges request is available for receipt

from slave # 1.
SENDM -Master moves the data between slave # 1 and slave #2.
SENDEOM -Slave #2 acknowledges successful receipt to slave #l .

The message-exchange protocol allows for each slave processor to
interrupt the master when a message is ready to send. The master reads the
header of the message to determine its destination, and then makes sure the
destination is ready to receive the message. The master then sends the
message by DMA to the appropriate processor, and then interrupts the
destination slave.

Example 2: Hardware FIFOs

This system does not interconnect its processors in a typical bus fashion.
Rather, its backplane is made of a system of FIFOs controlled by a state
machine. A slave processor ready to send data to another processor requests

Hardware-dependent Software 16 1

a FIFO from the state machine. The state machine scans the backplane
looking for messages that are queued and ready to transmit. Once a source
slave is selected, its destination slave is queried to ascertain if the FIFO can
be connected to it. If the destination slave is busy connected to a different
transmitting slave, the transaction is canceled, and the state machine
continues to scan the bus looking for messages to send. Eventually, the state
machine connects a willing transmitter with a willing receiver, and the
message is transferred without any processor intervention. Finally, each
processor is interrupted to show that the message was transmitted and
received. This allows for multiple messages to be queued, sent, and received
simultaneously, with minimal delay in the hardware and running at the speed
of the state machine, not a master-CPU running code.

Example 3: Tv~ical Shared-memorv Svstem

A loosely coupled system utilizes shared memory to pass messages
between processors sharing a common bus. This interface is treated as if it
were an Ethernet controller, and routes messages appropriately. Shared-
memory systems, where multiple CPUs have at least partial access to a
common memory pool and an ability to interrupt the CPU that is acting as an
arbitrator, can utilize TCPIIP to pass messages between CPUs. For example,
a VME card cage with six Motorola 162 VME cards can be recognized in
the system from one Ethernet port, and one can pass appropriate messages to
each of the VME cards. The VME card with the external Ethernet interface
also acts as a router for the entire system. Messages sent between card #2
and card #4 are passed through card #1 as with an Ethernet router.

5.3.5 Software Layering Axis

The software layering axis presents a layered model for embedded
software, as well as the HdS API as one of the key concepts in the HdS
domain. First, this section describes the basic model. Then, it gives
additional information about layering. The intent is to describe how software
layering aids in software reuse by abstracting the hardware to create an easy-
to-understand and standardized programmers model.

5.3.5.1 Basic model

The Basic model defines a layered architecture for the API. The
hardware abstractions and functions defined in each layer are responsible for
the following:

162 Chapter 5

Communicating with the peer HAL-API layers for each module,
core, or circuit running in the SoC
Providing services to the layer above

The objectives of layered APIs include the following:

To decompose the API into understandable objects or layers
To provide standard interfaces between hardware, drivers, APIs, and
operating systems
To provide symmetry in functions performed at each module, core,
or IP object in the SoC
To provide a means to predict behavior and control the effect of any
changes made to the API or SoC
To provide standard terminology to facilitate communications in the
community of designers, developers, managers, vendors, and users

The Hardware Application Laver

The HAL is composed of a framework that is depicted in Figure 5.4. It is
composed of the following major building blocks: access shielding, register
shielding, and functional shielding.

Access shielding shields the actual access to the hardware. This is
the layer of the software where one maps software and HdS to the
hardware platform, which may also be a (virtual) simulator for the
hardware platform, such as a VHDL simulator, a co-simulation or
co-emulation (VHDL on emulator, software on a Workstation)
environment, or an emulator giving a virtual hardware platform or a
rapid prototype. The key goal for this layer is to ensure that the
software lying above the access shielding layer (Register shielding,
functional shielding, application software, and so on) has no impact
on the (virtual) hardware platform. The user should not have to
know how the actual physical access is being performed. For
example, if one wants to read a register that is mapped in the I 0
space, the read access done by the user is transformed by this layer
to an actual I 0 access without requiring the user to understand the
peculiarities of every type of access.
Register shielding makes the software layers above it (functional
shielding, application software, and so on) independent of the
physical addresses of the registers. It also enables the superior
software layers to use only logical names for these items. This
decouples this layer from the superior software layers, and makes
them independent of physical address changes. For this purpose, a

database is used that translates the logical given names to the actual
physical addresses.
Functional shielding is an HdS layer that groups certain
functionalities in a small, limited API that is offered to the superior
software layers to respond to their needs. The goal of this layer is to
give a simpler, more abstract API to software designers of all
software lying above the functional shielding layer. Such an API is
both more abstract and easier to understand. This layer is composed
of some control code (for example, a finite state machine (FSM)),
registers, and other kinds of accesses. A basic example of an HdS
API mechanism that is part of this functional shielding layer is the
init mechanism. Such a mechanism initializes a virtual component
on an SoC into a reference mode without exposing to the user the
complex register accesses that need to be done in a certain order in
order to accomplish this.

5.3.5.2 Layers Included in the Layered API Model

Hardware Laver

The lowest layer in the HdS model is called the hardware layer. The
functions within this layer are responsible for starting, stopping, single
stepping, running, testing, and observing a physical circuit, core, or module
of the SoC. This level contains the access registers and the physical
implementation of interrupts.

Primitive Function Laver

The primitive function layer provides the lowest level of shielding,
access shielding. Register shielding is also used here. This layer is
responsible for the transfer of control or data information from the hardware
layer to the inter-API communications layer or the interface layer. This layer
provides information about the hardware for the next layer interface.

Inter-API Communications Laver

The inter-API communications layer specifies the interface, the routing,
and the communications between the cores. It provides control to ensure that
the cores, modules, or circuits do not become overburdened. One of its most
important functions is to detect hardware errors and provide a recovery
mechanism.

164 Chapter 5

Interface Access Layer

The interface access layer provides the register and functional shielding.
This layer has software-callable routines that aggregate the primitive
functions into low-level operations from which drivers, control functions,
initialization, and debug-access software functions can be created. This layer
is designed to keep the user isolated from some of the physical and
functional aspects of the hardware.

OS Laver

The OS layer is the Operating System.

Application Layer

The application layer is the user application.

5.3.5.3 Control, Data, Hardware, and Software Layering

Figure 5.3 helps bridge the software and hardware worlds with common
terminology, and shows how they fit within each other's disciplines:

Objects and classes: Using existing data formats, hiding
computational complexity
Code layer:

o Application threads
o Using existing API, hiding scheduling complexity

RTOS layer:
o Scheduler and services
o Using existing transaction interface, hiding all timing

complexity

Hardware-dependent Software 165

Control Data
or - or

Function Communication

OBJECTS
& CLASSES Merged Function

and Communication

egrated Function
d Communication

Scheduled Function
nd Communication

Separate Function

I
Figure 5.3 Control and Data Merge in Software Domains

For example, at one extreme (shown at the base of the triangle in Figure
5.3), it is common to call out the data-for example, the components being
acted upon and the control, the instructions to act on the data. However, as
one moves more into the software world (shown at the top of the triangle in
Figure 5.3), the separation between data and control is less distinct, and the
emphasis is on abstracting the data and the control associated with a single
object, or class, inside the object or the class.

While these two disciplines have different goals, it is important to
understand each other's needs because these models are trying to address
exactly this interface.

Between these extremes, there are two layers, the RTOS (Real-time
Operating System) and application code, as examples of layers that may help
bridge the gap.

In Figure 5.3, the communication lies between the data and the control
(identified by the white triangle in the middle). In the hardware world, the
communication between data and control is accomplished with signals,
while at the higher levels, these are accomplished with protocols.

5.3.5.4 HdS API

Figure 5-4 shows the relationship of the HdS as a bridge between device
drivers and the SoC. This section describes the relationships of the HdS and
HdS API to the complete SoC-based system, including the hardware and
software. It provides a view of the Hardware Abstraction Layer (HAL) as

166 Chapter 5

part of the HdS, and its relation to the hardware layer, OS layer, and
application layer.

t Application Software

I Embedded
Z SW Middleware Ir I I

HdS
....................

Offline Test

Drivers
HdSAPl

BSP BSP
Communications Hardware

OCB VCI

Functional Hardware Cores

Figure 5.4 Hardware Abstraction Layer (HAL) and HdS API

The layers introduced in Section 3.5.1 can be mapped onto hardware
space (the hardware layer), kernel space (the primitive function layer, the
inter-API communications layer, the interface access layer, and the OS
layer), and user space (the application layer). While the interface between
kernel space and user space could be standardized using the POSIX interface
[IS0 99451, there are other interesting standards. For example, VSIA has
defined the OCB (On-Chip Bus) VCI interface for standardizing hardware-
communication interfaces. Inside the kernel space, those parts that are
directly dependent on hardware register maps and hardware interrupt
structures can be separated from functional parts such as device driver logic,
offline test segments, generic boot, and loads. This separation is done using
the HdS API. All parts below the HdS API (the HAL, BSPs) carry hardware
platform-specific information, and can partially be derived from the physical
hardware structure in terms of register maps. The kernel space parts above
the HdS API implement functional logic, and are independent from
implementation details of the underlying hardware platform. Parts of the
hardware-dependent software, as defined in Section 2.1.1, cover the user
space as well. Examples include functional test segments, or test support
libraries, that serve both hardware and system tests.

Hardware-dependent Software 167

Figure 5.5 shows further relationships between these entities.

5.3.5.5 Device Drivers

Each device driver may have six standard functions for supporting OS
access to the hardware:

These functions are normally required by an OS or RTOS as an
abstraction layer to hide the details of the specific device, while allowing the
system to use a common interface for like devices. Depending on the system
architecture, a device driver may control more than one IP block or more
than one instance of a communication channel. This allows similar devices
to use a common code base with separate data objects in order to simplifL
the design through code reuse.

Figure 5.5 The Relation of the HdS API to Application Software, OS, and the SoC's
Hardware Platform

5.4 Conclusion

This chapter has presented the beginnings of a taxonomy or classification
scheme for software, software entities and hardware-dependent software in
particular. Because the worlds of hardware and software design have been
and remain relatively independent, even in the area of SoC where they have

168 Chapter 5

collided more frequently, it is important to agree on common terminology
for entities, models and classifications, and this chapter has started that
process. However, further evolution in the design of mixed HW-SW systems
and SoCs will no doubt advance the development and definitions of these
concepts.

REFERENCES

[AND 001 Tom Anderson and Robin Bhagat, "Tackling Functional Verification for Virtual
Components," Integrated System Design, November, 2000.

[AND 021 Tom Anderson, "Verification reuse enables design reuse," Electronic Engineering
Times, December 23,2002.

[AND 041 Thomas L. Anderson, "Functional Verification in the Context of Design Reuse,"
Designcon 2004 Conference Proceedings, January, 2004.

[ARM 951 J. Armstrong, "High Level Generation of VHDL Testbenches," Spring 1995 VIUF
Proceedings, 1995.

[ASH] P. J. Ashenden, J.P. Mermet, R. Seepold, editors, System-on-chip Methodologies and
Design Languages, Kluwer Academic Publishers, 200 1.

[BAI 001 B. Bailey, G. De Jong, P. Schaumont, C. Lennard, "Interface Based Design," Forum
on Design Languages Proceedings, 2000.

[BAI 051 B. Bailey, editor, The Functional Verification of Electronic Systems: an overview
from various points of view, IEC Press, 2005.

[BAY 991 J. Bayer, 0. Flege, P. Knauber, R. Laqua, D. Muthig, K Schmid, T. Widen and J.-
M. DeBaud, "PULSE: A Methodology to Develop Software Product Lines," Proceedings
of the Fifrh ACM SIGSOFT Symposium on Software Reusability (SSR99), pp. 122-1 3 1,
May, 1999.

[BLAH 851 R. Blahut, Fast Algorithms for Digital Signal Processing, Addison Wesley, 1985.
[CAFE] Concepts to Action in System-Family Engineering (CAF@, ITEA Project 00004,

http://www.esi.es/en/Projects/Cafe/cafe.html, 2004.
[CER 021 E. Cemy, S. Dudani, "Authoring Assertion IP using OpenVera Assertion

Language," Proceedings of the International Workshop on IP-Based System-on-Chip
Design, October, 2002.

[CHA 991 Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly and Lee
Todd, Surviving the SOC Revolution: A Guide to Platform-Based Design, Kluwer
Academic Publishers, 1999.

[CLE 021 Paul Clements and Linda Northrop, Software Product Lines: Practices and
Patterns, Addison-Wesley, 2002.

[DAV 861 William H. Davidow, Marketing High Technology: An Insider's View, Free Press,
1986.

[DEB 991 Jean-Marc DeBaud and Klaus Schmid, "A Systematic Approach to Derive the
Scope of Software Product Lines," Proceedings of the 1999 International Conference on
Software Engineering, pp. 34-49, 1999.

[DICT] Denis Howe, editor, Free On-line Dictionary of Computing, http:Nwww.foldoc.orgl,
2004.

[DON 041 Adam Donlin, "Transaction level modeling: flows and use models," Proceedings of
CODES+ISSS 2004, pp. 75-80,2004.

[DONBR 041 Adam Donlin, Axel Braun, and Adam Rose, "SystemC for the Design and
Modeling of Programmable Systems," Proceedings of FPL 2004, pp. 81 1-820,2004

[ECK 921 W. Ecker, and M. Hofmeister, "The Design Cube -A Model for VHDL Design flow
Representation," Proceedings of the EURO-VHDL, pp. 752-757, 1992.

[ESAPS] Engineering Software Architectures, Processes, and Platforms for System Families
(ESAPS), ITEA Project 99005, http://www.esi.es/en/Projects/esaps/esaps.html, 2004.

170 References

[FAM 941 S. Farnorzadeh, et. al., "Rapid Prototyping of Digital Systems with COTS/ASIC
Components," Proceedings of RASSP Annual Conference, August, 1994.

[FOS 031 Harry D. Foster, Adam C. Krolnik and David C. Lacey, Assertion-Based Design,
Kluwer Academic Publishers, 2003.

[FOSBEN 011 Harry Foster and Lionel Bening, Principles of Verzpable Verilog Design:
Second Edition, Kluwer Academic Publishers, 2001.

[FOSCOE 011 Harry Foster and Claudionor Coelho, "Assertions Targeting a Diverse Set of
Verification Tools," The 10th Annual International HDL Conference Proceedings, March,
2001.

[GAW 021 Annette Gawer and Michael Cusumano, Platform Leadership: How Intel,
Microsoft, and Cisco Drive Industry Innovation, Harvard Business School Press, 2002.

[HASH 991 M M Kamal Hashmi, "Virtual Component Interfaces," Forum for Design
Languages, 1999 (FDL '99), Lyon, France, 1999.

[IEEE 10761 1076-2002 IEEE Standard VHDL Language Reference Manual, IEEE,
http://standards.ieee.org/faqs/order.html, 2002.

[IEEE 11491 ll49.1-2OOl IEEE Standard Test Access Port and Boundary-Scan Architecture,
IEEE, http://standards.ieee.org/faqs/order.html, 200 1.

[IEEE 13641 1364-2001 IEEE Standard for Verilog Hardware Description Language, IEEE,
http://standards.ieee.org/faqs/order.html, 2001.

[IEEE 14711 1471-2000 IEEE Recommended Practice for Architectural Description for
Sofmare-Intensive Systems, IEEE, 2000.

[IS0 99451 ISO/IEC 9945-~2003, Information Technolog --Portable Operating System
Interface (POSIX), ISO, 2003.

[JANTSCH] Axel Jantsch, Modeling Embedded Systems and SoC's: Concurrency and Time
in Models of Computation, Morgan-Kaufmann Publishers, 2004.

[KEU 001 Kurt Keutzer, A. R. Newton, J. M. Rabaey, and Alberto Sangiovanni-Vincentelli,
"System Level Design: Orthogonalization of Concerns and Platform-Based Design," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1523-
1543, December, 2000.

[LEE 981 Lee, E.A. and A. Sangiovanni-Vincentelli, "A framework for comparing models of
computation," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, l7(l2): 121 7-1229, December, 1998.

[MADI 951 V. Madisetti, "System-Level Synthesis and Simulation VHDL: A Taxonomy and
Proposal Towards Standardization," VIUF Spring, 1995 Proceedings, 1995.

[MAR 031 Grant Martin and Henry Chang, editors, Winning the SOC Revolution:
Experiences in Real Design, Kluwer Academic Publishers, 2003.

[MER 011 Jean Mermet, Peter Ashenden and Ralf Seepold, System-on-Chip Methodologies
and Design Languages, Kluwer Academic Publishers, 2001.

[MEY 971 Marc H. Meyer and Alvin P. Lehnerd, The Power of Product Platforms: Building
Value and Cost Leadership, Free Press, 1997

[OVL] OVL Reference Manual, Accellera, http://www.verificationlib.org, June, 2003.
[PSL] Property Speczjkation Language Reference Manual Version 1.0, Accellera,

http://www.accellera.org/pslvlOl .pdf, 2003.
[RASSP 981 VHDL Modeling Terminology and Taxonomy Revision 2.4, RASSP Taxonomy

Working Group (RTWG), http://www.eda.org/rassp/index.html, February 23, 1998.
[SAN 991 A. Sangiovanni-Vincentelli and A. Ferrari, "System Design -Traditional Concepts

and New Paradigms," ICCD 99, pp. 2-12, October, 1999.
[SAN 011 Alberto Sangiovanni-Vincentelli and Grant Martin, "Platform-Based Design and

Software Design Methodology for Embedded Systems," IEEE Design & Test of
Computers, pp. 23-33, November-December, 2001.

References 1 7 1

[SAN 021 Alberto Sangiovanni-Vincentelli, DeJining platform-based design, EEdesign,
http://www.eedesign.com/features/exclusive/0EG20020204S0062, February 5,2002.

[SATH 011 Ramesh Sathianathan and Tom Anderson, "Assertion Methodologies for Verilog
Design," Integrated System Design, May, 2001.

[SEIPLP] The Software Engineering Institute Product Line Practice (PLP) Initiative,
http://www.sei.cmu.edu/productlines/index.html, 2004.

[SRS] Functional Verzfzcation Semiconductor Reuse Standard V3.0, Motorola,
http://www.motorola.com, 2003.

[SV] System Verilog 3. l a Language Reference Manual, Accellera, May, 2004.
[TI 901 "Modeling and Simulation" Texas Instruments Semiconductor Group, 1990.
[TRUE] Truescope Technologies, http://www.truescope-tech.com, 2004.
[VHDL A] Department of Defense Handbook - Documentation of Digital Electronic Systems

With VHDL, http://www.combatindex.com/mil~docs/pd~opperMIL-HDBWCI-62-MH-
2399-3957.pdf, 1996.

[VSIA AMS] Analog/Mixed-Signal VSI Extension Speczfzcation Version 1 2.2 (AMS 1 2.2),
VSIA Analog/Mixed-Signal DWG, http://www.vsi.org, February, 2001.

[VSIA FV] VC/SoC Functional VeriJication Specfication Version I (VER 21.0), VSIA
Functional Verification DWG, http://www.vsi.org, March, 2004.

[VSIA IV] Soft and Hard VC Structural, Performance and Physical Modeling Speczfzcation
Version 2.1 (I/V 1 2. I), VSIA ImplementationNerification DWG, http://www.vsi.org,
January, 200 1.

[VSIA OCB] On-Chip Bus Attributes Specifcation Version I (OCB 1 2.0), VSIA On-Chip
Bus DWG, http://www.vsi.org, September, 2001.

[VSIA SLIF] System-Level Interface Behavioral Documentation Standard Version I (SLD I
1.0), VSIA System-Level Design DWG, http://www.vsi.org, March, 2000.

[VSIA VCT] Virtual Component Transfer Specification Version 2 (VCT 1 2. I), VSIA Virtual
Component Transfer DWG, http://www.vsi.org, January, 2001.

[WAL 971 Susan Walsh Sanderson and Mustafa Uzumeri, The Innovation Imperative:
Strategies for Managing Product Models and Families, Irwin Professional Publishing,
1997.

[WEB] Webster Dictionary, http://www.webster-dictionary.net, 2004.
[WIKI 031 Wikipedia, the Free Encyclopaedia, http://www.wikipedia.org/wiki, 2003.

INDEX

Abbreviations xi
Abstract Behavioral Model 39
Abstraction Level 52
Access Shielding 162
Accuracy 10. 5 3
Acronyms xi
Address Space 15 8
Algorithm Model 3 7
API Platform 133
Application Data 58
Application Driven 129
Application Layer 164
Application-Specific Prototype ..

.. 80, 82
Architectural Models 3 8
Architecture56. 133
Architecture Platform 132
Architecture-Driven 128
Argos ... 34
Assembly Code 16. 5 1
Assertion 82
Assertion Monitors 82
Atomic 66
Attribute 67
Bank-Switched Memory 157
Basic Delay Model 47
Behavioral Block 66
Behavioral Model 19. 26. 82
Black-Box 15
Block-Based 128
Boot ... 139
Bootstrap 139
Boundary Scan 63
Branch Coverage 8 1. 82
Bus Functional Model 27
Cache 158

Calculus of Communicating
Systems 35

Cell .. 67
Cell Level Model 45
Channel 66
Checker

expected result73, 84. 87
golden model 88. 92
protocol 73. 85

Circuit Level Model 46
Code Coverage 8 1. 83

types of 81
Code Re-Entrancy 139
Common Features 133
Communicating Sequential

Processes 35
Compliance Tests 83
Component -55
Component Interface 29
Computation Model Classes 32
Concurrent Processes 33
Constant Bit-Rate 139

.................................. Constraint 83
Constraint Driven 84
Constraint Driven Generation ... 77
Context Switch 139
Control Data 58
Core Platform 109. 1 10
Coverage 81

cross 82
formal 77

Coverage Monitor 83
CPU Registers 158

...................... CPU Subsystem 157
Cross Coverage 82
Cycle-Based Simulation 83
Cycle-Callable 43

Data Resolution 13
bit logical 14
composite 14
format 1 4
property 13
token 13
value 13

Data-Driven Schedule 139
Dataflow Graph 32, 41
Datum 66
Deadlock 139
Debug port 139
Derivative 132
Derivative Interface 1 1 1, 1 12
Design Object Classes 54
Design Rules Checks 9 1
Design Specification 64
Design-Tool Terms 62
Detailed Behavioral Model 43
Deterministic 139

simulation 7 1. 87
Simulation 83

Device Driver 140. 167
Directed Simulation 83
Discrete Event 34
DMA channel 140
Domain 133
Domain Analysis 133
Driver .. 83
Dynamic Formal Verification ...

.. 76, 83
Dynamic Verification ... 7 1, 83, 87
Dynamic-Formal Hybrid

Verification 76
Ecker ... 2
Economies of Scope 133
Electrical Rules Checks 9 1
Embedded Software 140
Embedded System 140
Emulation 59, 62, 78, 79, 84
Equivalence Checking 92

boolean 90

formal 90
sequential 90

Equivalence Verification 70. 87
Essential Asset 133
Esterel 34
European Software Institute 106
Event 140
Event-Based Simulation 84
Exception 158
Executable Design Specification

... -64
Executable Specification36. 64
Executable-Requirement

Specification 64
Expected Result Checker 73. 84
Expected Results Checker 87
Expression Coverage 8 1. 84
External Interrupt 157
External Resolution 10
Finite State Machines 34
Firmware 57. 140
Fixed Instruction-Set Processor

.. 140
FLASH 140
Floating-Point Unit 159
Formal Coverage 77. 84
Formal Platform Architectural

Descriptions 132
Formal Verification74. 84
FSM .. 34

arc coverage 8 1. 84
Full Functional Model 43
Functional Coverage 82. 84
Functional Model 24
Functional Resolution 14

algorithmic process 14
.................. boolean operation 14

digital logic 14
mathematical relationship 14

Functional Shielding 163
Functional Test 63

Functional Verification Mapping
.. 94

Functional-to- Physical
Architecture Mapping 134

Gajski .. 3
Gate-Level Model 45
Gray-Box 15
HAL 138. 140
Hard Prototype

design options 80
parameters 80

Hardware 5 7
Hardware Abstraction Layer .. 136.

138. 165
Hardware Acceleration 72. 84
Hardware Application Layer ... 162
Hardware dependent Software

13 5. See HdS
Hardware Layer 163
Hardware Model 73. 85
Hardware. and Software Layering

.. 164
Hardwarelsoftware Co-

Verification 77. 85
Hardware-dependent Software 1 3 7
Harel Statecharts 34
HdS ... 137

API 165
hardware architecture axis .. 15 1
life cycle axis 148
real-time axis 149
run-time axis 149
software layering axis 16 1

HdS Taxonomy
axes 147

Hierarchy 52. 53. 131
High-Level Language16. 50
Hybrid Model 3 1
110 Subsystem 159
Information Classes 58
Input Constraint85
Input/Output 140

Instruction-Set 141
Instruction-Set Architecture 41
Instruction-Set Code 155
Instruction-Set-Architecture 16
Integrated and Managed Features

.. 133
Integration Platform 131
Integration Verification 70
Intent Verification 70, 71
Inter-API Communications Layer

.. 163
Interface 17. 65

abstraction 66
access layer 164
behavior 27
derivative 112
model 18. 19. 27
specification 18
system-level 28

.................................. timing 141
Interface-Based Design 59
Internal Interrupt 157
Internal Resolution 10
Interrupt 141. 157. 158

external 157
internal 157

.................... Interrupt Request 141
Interrupt Service 141
Interrupt Service Routine 141
Intertask Communication 141

.................................. Isolation 132
Jantsch. Axel 5. 33
Kernel Space 141

... Kuhn 3
......... Layout Versus Schematic 91

Leaf Level 20
Library 126

.. Load 141
................................. Lockout 1 4 1

................... Logic-Level Model 44
Lustre .. 34

..................................... Madisetti 2

Mathematical-Equation Mode1.36
Mealy Machines 34
Memory

bank-switched 157
cache 15 8
interface 40
I 0 .. 162
mapping 156
protected 156
secondary 1 56
shared 145, 16 1
subsystem 159
virtual 156

Memory Management 142
Memory Management Unit 15 8
Message 67
Message Queues 142
Microcode 16. 5 1. 154
Microcoded Instruction-Set 142
Mixed-Level Model 3 1
Model 19. 62. 132

abstract behavioral 39
algorithm 3 7
architectural 3 8
basic delay 47
behavioral 19. 26. 82. 92
bus functional 27
cell-level 45
circuit-level 46
classes 23
cycle-callable 43
detailed behavioral 43
detailed performance 47
functional 24

............................... gate-level 45
hardware 42
interface 18. 27
logic-level 44
mathematical-equation 36
mixed-level 3 1
performance 3 1. 3 8
peripheral interconnect 49

power 48
requirements 50
RTL 44
software 49
structural 19. 26

.. stub 93
switch-level 46

................................... system 35
timing analysis 48

Model Checker 74. 85
Model Interoperability 65
Modeling Concepts 22
Models of Computation 32
Module 55
Monitor 73. 85
Moore Machines 34
Multiprocessor 142
Multiprocessor Architecture ... 159
Multitasking 142
Multithreading 142
Mutex 142
Netlist 143
Object Code 17. 52
Off-Line Test 143
Open SystemC Initiativexix. 23
Operating System 156
Operation 67
Operational Test 63
OS Layer 164
Packet .. 67
Packet Chain 67
Page Fault 143
Path Coverage 8 1. 85
PBD ... 103

business and economics 107
components and features 107
development and integration

tools 107
support practices 107

Performance Model 31
implementation level 47
token based 31

Peripheral Interconnect Mode1 .. 49
Petri Nets 34
Physical Prototype 60. 79
Physical Verification 9 1
Pipe ... 143
PLA 143. 154
Platform 13 1

complexity levels 132
core 109
evolution 132
interface 1 1 1
levels 13 1
object 132
object complexity 108
provider 13 1
set of blocks 109
s o c 109
specification 1 13
taxonomy108. 13 1

Platform Based Design ... 103. 13 1
Platform Specification

application-driven 1 16
approach125. 1 32
architecture-driven 115
attributes 1 16
bottom-up 114

......................... evolution of 129
functionality 125
market 127
middle out 1 15
structure 126
technology driven 114
top down 116

Platform-Based Development
System 132

Polling 143
Port ... -66
Portability 143
Power Model 48 . .
Precision 1 0 53
Pre-emptive Scheduling 143
Primitive Function Layer 163

Priority 143
Product Family 133
Product Family Approach 133
Product Family Architecture ... 133
Product Line 133
Programmable Logic Code 153
Programmers View 25
Programmers View with Timing

.. 26
Property 82
Property Checker74, 85
Protected Memory 156
Protocol 66, 144
Protocol Block 66
Protocol Checker 73. 85
Prototype 60

physical 60
virtual 61

Pseudo-Code 50
Pseudo-Random Simulation 85
Ptolemy 35
Queue 144
Random Pattern 72
Random Simulation 85
RASSP xix. 3
Rate Monotonic Analysis 144
Real-Time144. 1 50
Real-Time Clock 157
Real-Time Operating System .. 165
Reconfigurable Prototype ... 80. 85
Register Shielding 162
Register Transfer Level 44. 85
Regression Test 88
Requirement Model 50
Requirement Specification 64
Resolution 10

....................................... data -13
external 10
functional 14
internal 10

................................. software 16
structural 15

temporal 12
Retargeting 149
Reusability 65
Reuse 149
RTL .. -44
RTWG ... 3
Rugby .. 3 4
Run-Time 149
Scheduling Models 144

fair share 144
FIFO based 144
priority based 144
round robin 144

Secondary Memory 15 6
Semaphores 145
Semi-Formal Verification ... 77, 84
Set of Blocks 109, 1 10
Shared Memory 145
Shielding layer 145
Signal .. 34
Signal Coverage 8 1. 86
Signature Analysis 63. 85
Simple Memory Mapping 156
Simulation 58. 62

cycle 7 1
cycle-based 83
deterministic 7 1. 87
directed 83
event-based 84
pseudo random 85
random 85
symbolic 76. 86

SoC Platform 109. 1 1 1
Socket 145
Software 5 7

assembly code 5 1
microcode 5 1
object code 52
pseudo code 5 0

Software Engineering Institute
.................................... 106. 171

Software Layering 145

Software Model 49
Software Programming

Resolution 16
Specification 63

design 64
executable 36, 64
executable design 64
executable requirement 64
requirement 64

Stack 145
Starvation 145
Statement Coverage 8 1. 86
Static Functional Verification ...

.. 7 86
Structural Model 19. 26
Structural Resolution 15
Stub Model 93
Switch Level Model 46
Symbol Key 22
Symbolic Simulation 76. 86
Synchronous Dataflow 33
Synthesis 58
System -54
SystemC 24
System-Level Interface 28
System-on-Chip 86
Task 146
Task-Switch Latency 146
Taxonomy

definition 1. 9
hardware dependent software . 6
model 5
platform based design 6
verification 5

Taxonomy Axes
................................ data value 9

functional 9
................................. structural 9
.................................. temporal 9

Technology Foundation .. 128. 13 1
Technology-Driven 128
Temporal Resolution 12

cycle-accurate 12
cycle.approximate 12
gate propagation 13
instruction accurate 12
partially ordered 12
system event 12
token cycle 12

Test Migration 88
Test Vector 62
Testbench 62, 86
Theorem Prover 75, 86
Thread 146
Timed Functional 26
Timeout 146
Timer 146
Timing Analysis Model 48
Toggle Coverage 8 1. 86
Token-Based Performance Model

.. 38
Top-Down Design 59
Transaction 67
Transaction Level Model 24
Triggering Coverage 8 1, 86

Untimed Functional 25
User Space 147
Variable Bit-Rate 147
Variable Features 133
Verification

classification 69
equivalence 70
integration70. 94
intent 69
metrics 8 1. 86
VC 70. 93

View .. 132
Viewpoint 132
Virtual Component5.29. 13 1

.......................... interface 29. 66
Virtual Memory 156
Virtual Prototype 6 1. 80. 86
Visited State Coverage 8 1. 86

............................... VSI Alliance 4
VSIA xix. 4
Watchdog Timer 147

.. Y -chart 2

