

SYSTEMC KERNEL EXTENSIONS
FOR HETEROGENEOUS SYSTEM MODELING

SystemC Kernel Extensions
for Heterogeneous System
Modeling
A Framework for Multi-MoC Modeling
& Simulation

by

Hiren D. Patel
Virginia Polytechnic and State University,
Blacksburg, VA, U.S.A.

and

Sandeep K. Shukla
Virginia Polytechnic and State University,
Blacksburg, VA, U.S.A.

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-8088-3
Print ISBN: 1-4020-8087-5

©2005 Springer Science + Business Media, Inc.

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Dordrecht

To my parents

Maya D. Patel
and

Dhanji K. Patel

Hiren D. Patel

To my friends

Tushar Saxena,
Arush Saxena

and their families

Sandeep K. Shukla

Contents

Dedication v
List of Figures xi
List of Tables xiii
Foreword xv
Preface xix
Acknowledgments xxxi

1. INTRODUCTION 1
1 Motivation 1
2 System Level Design Languages and Frameworks 2
3 Our Approach to Heterogeneous Modeling in SystemC 8
4 Main Contributions of this Book 10

2. BACKGROUND MATERIAL 13
1 System Level Modeling and Simulation Methods 13
2 Models of Computation and Heterogeneous Modeling at

System Level 14
3 Ptolemy II: A Heterogeneous Modeling and Simulation

Framework 15
4 SystemC: Language and Framework 19
5 Implemented Models of Computation 21

3. SYSTEMC DISCRETE-EVENT KERNEL 31
1 DE Simulation Semantics 31
2 Implementation Specifics 33
3 Discrete-Event Simulation Kernel 34
4 Example: DE Kernel 37

viii

4. FEW WORDS ABOUT IMPLEMENTATION CLASS
HIERARCHY 45
1 MoC Specific Ports and Channels 48
2 Integration of Kernels 53

5. SYNCHRONOUS DATA FLOW KERNEL IN SYSTEMC 55
1 SDF MoC 55
2 SDF Data Structure 57
3 Scheduling of SDF 61
4 SDF Modeling Guidelines 72
5 SDF Kernel in SystemC 79
6 SDF Specific Examples 88
7 Pure SDF Examples 89

6. COMMUNICATING SEQUENTIAL
PROCESSES KERNEL IN SYSTEMC 93
1 Implementation Details 95
2 CSP Scheduling and Simulation 106
3 Example of CSP Model in SystemC 109
4 Modeling Guidelines for CSP Models in SystemC 116
5 Example of Producer/Consumer 117
6 Integrating CSP & DE kernels 119

7. FINITE STATE MACHINE KERNEL
IN SYSTEMC 125
1 Implementation Details 127
2 Example of Traffic Light Controller Model using FSM

Kernel in SystemC 129

8. SYSTEMC KERNEL APPLICATION
PROTOCOL INTERFACE (API) 133
1 System Level Design Languages and Frameworks 133

9. HETEROGENEOUS EXAMPLES 139
1 Model using SDF kernel 139
2 Model using CSP and FSM kernels 142
3 Model using FSM, SDF and DE kernels 146
4 Model using CSP, FSM, SDF and DE kernels 147

Contents ix

10. EPILOGUE 151

References 155

Appendices 161
A QuickThreads in SystemC 161

1 QuickThreads 161
2 QuickThread Client package in SystemC 162

B Autoconf and Automake 171

List of Figures

1.1 Productivity Gap [16] 2
1.2 Possible Mistakes occurred versus Modeling Fidelity 3
1.3 FIR model with Designer Guidelines [45, 23] 6
1.4 FIR model with our SDF kernel 7
1.5 Example of Digital Analyzer using Models of Com-

putation [32] 8
2.1 Design Cycle 14
2.2 Composite Actors for Eye Model in Ptolemy II [3] 16
2.3 Image Processing Example 21
2.4 Dining Philosopher Problem 24
2.5 CSP Implementation of Dining Philosopher 25
2.6 FSM Implementation of a Parity Checker 29
2.7 FSM implementation of the Footman 30
3.1 Discrete-Event Kernel Simulation Semantics 31
3.2 Discrete-Event FIR Block Diagram 39
4.1 General Implementation Class Hierarchy 45
4.2 CSP Implementation Class Hierarchy 47
4.3 FSM Implementation Class Hierarchy 48
4.4 sc moc port Implementation Class Hierarchy 49
4.5 sc moc channel Implementation Class Hierarchy 51
4.6 Graph-like Representation for SDF, FSM, CSP 53
5.1 Example of a Synchronous Data Flow Graph [53]. 56
5.2 SDF Class Diagram 58
5.3 Synchronous Data Flow Block. 61
5.4 Example of a cyclic Synchronous Data Flow Graph [53]. 69

xii

5.5 FIR Example of a Synchronous Data Flow Graph
[53]. 72

5.6 Results from Experiments 90
5.7 FFT Block Diagram 90
5.8 Sobel Block Diagram 91
6.1 CSP Rendez-vous Communication 95
6.2 CSP Implementation Class Hierarchy 96
6.3 Simple CSP model 97
6.4 Implementation of a Simple CSP Model 100
6.5 Class diagram for CSPchannel 104
6.6 CSP Implementation of Dining Philosopher 110
6.7 Producer/Consumer Example in CSP 117
6.8 Example of DE kernel invocation in CSP 123
7.1 FSM Traffic Light Example [4] 126
7.2 FSM Traffic Light Controller Example [4] 126
8.1 Class Diagram for sc domains 134
9.1 Image Converter Diagram 140
9.2 Converter Results 141
9.3 FSM implementation of the Footman 142
9.4 Dining Philosopher Model with FSM footman 143
9.5 Heterogeneous Example using FSM, SDF and DE

Models 146
9.6 Truly Heterogeneous Dining Philosopher Model 147
A.1 Class Diagram for some of the Coroutine classes 163

List of Tables

2.1 State Table for Parity Checker 30
4.1 Some Member functions of class sc moc port 49
5.1 Results from Diophantine Solver 64
5.2 Solution steps for example using Completion procedure 68
6.1 Member function for class CSPchannel 104
6.2 Few Important Member Functions of CSP Simula-

tion class CSPnodelist 106
7.1 Example of map<...> data structure 127
7.2 Some Member functions of class FSMReceiver 128
8.1 Few Member Functions of class sc domains 136
9.1 Profiling Results for Converter Model 141

Foreword

“Entia non sunt multiplicanda praeter necessitatem”
(No more things should be presumed to exist than are absolutely

necessary) William Occam, Quodlibeta, c. 1324, V, Q.i

“There never were in the world two opinions alike, no more than two
hairs or two grains; the most universal quality is diversity”

Montaigne, 1533-1592

We have seen a rapid growth of interest in the use of SystemC for
system level modeling since the language first emerged in the late 1990’s.
As the language has evolved through several generations of capability,
designers and researchers in a wide variety of systems and semiconductor
design houses, and in many academic institutions, have built models of
systems or partial systems and explored the capabilities and limitations
of SystemC as a base on which to build system-level models. Many
of these models have been used as part of the specification and design
of systems which have subsequently been put into production; in these
cases, we can justifiably conclude that SystemC-based models have seen
“tape-outs” even though the language has been used for answering early,
high-level, system modeling and configuration questions, rather than as
the language of detailed implementation.

Another key role that has been played by the SystemC community has
been to experiment with many concepts of system level modeling using
SystemC as a base. These experiments have included adding mixed-
signal, continuous-time model solving to the discrete time concepts of
SystemC; developing various notions for transaction-level modeling at
intermediate abstraction levels between untimed functional models and
time, signal and pin-accurate RTL models; connecting SystemC to net-
work simulators; developing synthesis capabilities; and many other ex-

xvi

periments. Some of these have contributed ideas directly to the evolution
of SystemC which is being carried out by working groups under the aus-
pices of the Open SystemC Initiative (OSCI); others have been research
projects whose results and code have been freely shared with others in
the SystemC community.

It has been important to recognize that the official development of
SystemC within OSCI and in the future as part of the IEEE (when
the language donation process from OSCI to IEEE has been concluded,
sometime in 2004), is but one stream of language development and evo-
lution. One of the key virtues of using an open source or community
source model with SystemC has been in making the source code of the
reference class libraries and simulator kernel available to the community
for experimentation. This allows academic researchers, system design-
ers, and the commercial EDA tools industry all great latitude in seek-
ing ways to optimize SystemC for particular purposes, use models and
design domains. Whether or not the resulting work is put back into
SystemC, it all serves to grow the community and knowledge base of ef-
fective methods for carrying out system level design and using SystemC.
Some improvements may remain the domain of proprietary in-house or
commercial EDA tools; some may remain applicable to narrow groups
of researchers and developers in a very particular design niche. And
some may influence the future evolution of the language. Since the be-
ginning, the reference SystemC implementation has been intended to be
just that- a reference, for use, experiment and to provoke thought; not to
be “the last word” in efficient implementation (although it has exceeded
all reasonable expectations for quality, efficiency and usefulness).

In this sense, SystemC has thrown down a challenge to the community
at large to seek methods to optimize it for particular uses and for system-
level modeling in the widest sense. It is thus extremely gratifying to
see that Hiren Patel and Sandeep Shukla, of the FERMAT Research
Lab, Center for Embedded Systems for Critical Applications, Virginia
Polytechnic Institute and State University, have risen to that challenge.

This new book, SystemC Kernel Extensions for Heterogeneous System
Modeling, is based on the very recent research work by Mr. Patel and
Professor Shukla into improving the efficiency and heterogeneity of Sys-
temC for system level design involving multiple models of computation
(MoC). It marks a major step forward in looking at extensions to the
basic SystemC modeling constructs and kernel to handle more complex
multi-domain modeling issues in an efficient manner. Although it is quite
possible, as discussed by the authors, to build multiple domain system
models using the basic discrete event model of computation supported
by the reference SystemC implementation from OSCI, this is far from

FOREWORD xvii

efficient for systems such as synchronous data flow that can be statically
scheduled. Finding, implementing, and sharing improved methods and
algorithms within the context of the SystemC community is an excellent
way of meeting the challenge laid down by the reference simulator. This
monograph is a concise summary of how that challenge has been met
by the authors. It will thus be of interest to anyone wanting to extend
SystemC for more efficient multi-domain simulation, or commercial or
internal tools groups wanting to build domain-specific SystemC based
simulators that have improved performance.

In their introduction, the authors give an overview of system-level
design, system level modeling, models of computation, and their ap-
proach to heterogeneous modeling and the major contributions of their
research. This introduction is a useful and quick summary of the thrust
of the research, and serves to motivate the goals of the work as a whole.

This is followed by two key chapters that flesh out the details behind
system level modeling approaches and give an analysis of the SystemC
discrete-event kernel. They review both multi-domain system modeling
examples such as Ptolemy II, to illustrate the notions of multiple models
of computation, and discuss the details of the SystemC modeling and
simulation approach.

The next several chapters are the heart of the research, covering three
different domain models and their implementation by strategic modi-
fications to the SystemC discrete event kernel to allow multiple MoC
domains. These include synchronous data flow, Hoare’s communicating
sequential processes (CSPs), and finite state machines. Each of these
modified kernels is described using extensive examples of implementa-
tion code, discussed in detail in each chapter. Where there is insufficient
room to publish the complete code, and for the convenience of the read-
ers and experimenters, reference is given to the FERMAT lab web site,
where the full source listings have been made available.

The remaining chapters cover diverse topics: an API to the modified
simulation kernel; several heterogeneous system model examples, build-
ing towards one which involves CSP, FSM, SDF and DE kernels, and
measured efficiency results which indicate a baseline of speedup possible
through using such methods which provides a floor for what is achievable
in optimizing domain-specific SystemC. It is notable that those MoCs
that are amenable to static scheduling, such as SDF, show by far the
greatest speedup, as one would expect.

Finally, two appendices provide a discussion of the QuickThreads
coroutine execution model in the SystemC kernel, and notes on configur-
ing and building the multiple kernel models. A useful set of references to

xviii

various standard sources on languages, SystemC modeling, and models
of computation, provides ample pointers to further reading.

In summary, this monograph is a useful step forward in devising,
proving and documenting SystemC simulation kernel enhancements for
multi-domain system modeling. We hope that this response to the chal-
lenges posed by SystemC will be answered by other researchers who can
take this kind of work forward to even greater efficiencies, and that the
contributions which the authors plan to make to the SystemC language
committees will have a positive impact on the future evolution of Sys-
temC.

Grant Edmund Martin, Chief Scientist
Tensilica, Inc.
Santa Clara, California, April 2004

Preface

We believe that one important step towards mitigating the current
productivity crisis in the semi-conductor industry can be achieved by
raising the level of abstraction at which designers encode their concep-
tual designs into models. The current practice of using the structured
RTL as the language of design entry will not allow us to cope with the
rising complexity of designs. In fact, it is quite clear for some time, as
stated by many industry experts explicitly in many forums, that time
for higher abstraction level above RTL has already come. A decade or
so ago, we have moved abstraction level from schematics to RTL, and in
the meantime, continual improvement in technology faithful to Moore’s
law, has increased the design complexity orders of magnitude higher. It
is time for another move. However, to achieve this, we need languages
and frameworks which help us make our design entry at higher abstrac-
tion level, and in the appropriate models of computation. From the
year 1999 onwards, SystemC and other C++ based languages emerged
with the promise of higher abstraction level, but did not hold onto their
promise to our disappointment. The SystemC reference implementations
for SystemC versions 0.9 and 1.0 were completely based on discrete-event
simulation semantics a la VHDL. SystemC 2.0 introduced the notion of
events, channels, and interfaces which looked like an improvement over
1.0, however, it really did not provide the infrastructure for heterogeneity
that we felt was needed for truly heterogeneous system modeling. At the
same time, Ptolemy II [25] inspired our imagination and desire to have
a SystemC based framework similar to Ptolemy II, but fundamentally
distinct because the scope and target of our desirable system is differ-
ent from that of Ptolemy II, which is mainly concerned with embedded
software system synthesis from actor-oriented modeling. Moreover, the
industry traction of SystemC and the hopes placed in SystemC as a
language of choice for system-level-modeling can only be sustained by

xx

adding capabilities to SystemC to make it useful, rather than replacing
it with Ptolemy II or other frameworks. Of course, a lot of concepts can
be borrowed from Ptolemy II to achieve this goal.

This book is a result of an almost two year endeavor on our part to
understand how SystemC can be made useful for system level modeling
at higher levels of abstraction. Making it a truly heterogeneous model-
ing language and platform, for hardware/software co-design as well as
complex embedded hardware designs has been our focus in the work
reported in this book. Towards this aim, we first implemented a sepa-
rate kernel adjoined to the simulation kernel of the SystemC reference
implementation, so that Synchronous Data Flow (SDF) [25] models can
be modeled and simulated with the new kernel. This kernel can co-
exist with the reference kernel since the rest of the components of the
system not conforming to SDF semantics continue to be modeled and
simulated by the reference kernel. The reference kernel is based on the
Discrete-Event (DE) simulation semantics, making it hard to model and
efficiently simulate SDF. This implementation and subsequent experi-
ments showed significant improvements in simulation speed for models
which are most naturally modeled in SDF style. This is because the
computation in SDF models are statically schedulable, as opposed to
dynamic scheduling needed on a DE kernel. Encouraged by these re-
sults, we undertook the project of extending this multi-kernel SystemC
prototype towards more heterogeneity, resulting in prototype kernels for
Communicating Sequential Processes (CSP) [28], and Finite State Ma-
chine (FSM) models of computation. The choice of extending in these
two domains is obvious from the perspective of embedded systems mod-
eling, since these two are the most commonly occurring models of com-
putation in a hardware-software system rich in concurrency, and control
path dominated components. The challenging part has been the inte-
gration of models which are simulated by distinct kernels.

Before we proceed further introducing the details of this book, we
must make a disclaimer. Our current implementation which will be made
available on our website [36] is certainly not industry strength, and we
do not have the resources to make it so. All the programming done
for this project is implemented by a single person, who is also tasked
with writing thesis, papers, present this work at conferences, and take
doctoral level classes. However, the reason for publication of this book is
not to claim a full-fledged extension of SystemC with full heterogeneous
capabilities. The reasons for spending an enormous number of hours
on writing this book, despite lack of resources, and lack of industrial
funding are summarized below.

PREFACE xxi

At this point in time, we think that we have charted a pathway for
extending SystemC towards true heterogeneity. We have successfully
demonstrated how to add heterogeneity for directly designing distinct
computational models appropriate for different components of a system,
and how they can co-exist and co-simulate. We decided to share the sta-
tus of this experiment and our findings with the rest of the EDA commu-
nity with the hope that it would convince some readers to take up this
momentum towards heterogeneous and hierarchical modeling framework
based on SystemC, and develop it into a robust industry strength tool.
This, we believe will make a difference in whether SystemC is adopted
as a language of choice for System Level Modeling in the near future.

We expect this book to serve more as a convincing argument to per-
suade other researchers in the field to look into this paradigm, rather
than as a prescription for solving the problem of system level modeling
in its entirety.

Having made our disclaimer as to the robustness of our software, we
nevertheless would urge the readers to download and experiment with
our alternative kernels. We expect the readers to find deficiencies as well
as to create wishlists of characteristics that one would like to have in
a heterogeneous modeling framework. Such experiments are absolutely
necessary steps towards a goal of eventually having a robust environment
and language for system level modeling with heterogeneity and hierarchy
as prime features.

In the rest of this preface we would like to answer some questions on
the terminology that we often find confuse the students and engineers,
due to varying usage in a variety of distinct contexts. The rest of the
sections in this preface provide the readers with basic understanding
of terms such as Models of Computation, heterogeneous and hierarchi-
cal modeling, and also discuss the desirable characteristics of modeling
frameworks, namely fidelity, expressiveness and robustness.

What are Models of Computation?
The term Model of Computation (MoC) is a frequently used term

in the Computer Science literature, in enough diverse contexts so as
to confuse the readers. As a result, it is important that we clarify the
context in which we use the term throughout this book, and also draw the
reader’s attention to the other alternative usages of this term. Of course,
contextual variety does not mean the term is overloaded with distinct
interpretations. The invariant in all of its usage archaic or modern, is
that it refers to a formalized or idealized notion of computing rules.

Going back centuries, Euclid’s algorithm for finding the greatest com-
mon divisor of two numbers can be idealized to a pencil and paper model

xxii

of computation. There, the only steps allowed were multiplication fol-
lowed by subtraction, followed by comparison and repetitions of this
sequence of steps until a termination condition is reached.

In the early history of computing, Charles Babbage [33] used mechani-
cal gears to compute arithmetic, and hence his mechanical computer can
be idealized by a model of arithmetic operations, where each primitive
step of arithmetic is mapped to a manipulative action of mechanical
gears and such. Early electronic computing machines, such as ENIAC
[70], had a model of computation, where each action by the computer
needed to be mapped to a physical wiring, which were models of pro-
grams in such early computers.

However, with the progress of computing and computer engineering,
the complexity of computing systems has risen by orders of magnitude.
At the same time, our ability to abstract out the essence of a compu-
tational system, leaving out the inessential coincidental mechanistic or
other details has improved. We are able to formalize, often axiomatize
the actions allowable by a computing process, and call it a model of
computation.

Models of computation that allowed mathematicians to answer diffi-
cult questions posed by David Hilbert at the dawn of the 20th century,
include Church’s Lambda-Calculus [9], Post machine [67], and Turing
Machine [66]. These provided universal models of computation that
could express any computational step possible in the realm of computa-
tion, albeit, not always in the most efficient manner. With the advent
of Scott-Rabin [58] automata theory, several restricted models of com-
putation, such as finite state automata emerged. Understanding of their
inexpressiveness and its gradual enhancement by adding more features
to these models become apparent in the Chomsky hierarchy [8].

The von Neumann model of computation which promoted the idea of
stored program computers (and is equivalent to Universal Turing Ma-
chine model) is now the most commonly used model for sequential com-
putation. With the advances in computing, as we started exploiting
overlapping sequential computations in the form of concurrency, and
parallel computation in the form of parallelism, newer models of compu-
tations were necessitated. Communicating Sequential Processes (CSP)
[28] invented by Tony Hoare, or Calculus of Concurrent Systems (CCS)
[43] invented by Robin Milner, and other process algebraic models of
computation paved the way for expressing concurrent and/or parallel
computational models.

Computer scientists often distinguish between a denotational model
and operational model of computation. A denotational model expresses
a functional view over all possible states of the computation, whereas

PREFACE xxiii

an operational model spells out the steps of computation in an idealized
model. However, which one of these two is more appropriate to idealize
a computing system or a process depends on the intended applications
of such an exercise.

Depending on the reason for abstracting a computing process into a
model of computation, one can come up with different types of models.
Researchers with focus on complexity theory, invented various models
of Turing machine with resource bounds [29, 50] (e.g., Polynomial Time
Deterministic Turing Machine vs. Polynomial Space bounded Turing
Machine). When the major focus of the abstraction is to understand
the parallel complexity, PRAM [31], and other idealized parallel ma-
chine models are proposed. The language theorists concentrate more on
semantic aspects of computing and computational expressibility than
on complexity issues. These gave rise to other classes of models of com-
putation which include typed lambda calculus, process calculi, higher
order calculi such as higher order lambda calculus [57] for sequential
programming models, pi-calculus for concurrent programming models
[59] etc.

Interestingly, for sequential models of computation, often expressive-
ness can be tied to complexity of computation, as can be found in the
descriptive complexity theory. It can be shown that if a computational
task is expressible by a certain formal logic, then the time or space
complexity of that task can be precisely figured out. For example, all
problems that can be stated in the existentially quantified second-order
logic are in the complexity class NP [50]. However, in this book we do
not delve into such complexity vs. expressiveness issues.

Other pragmatic models of computation were created by alternative
ideas of computation, such as neural networks, DNA computing, molec-
ular computing, quantum computing etc. These are also not our concern
as far as the context and topic of this book is concerned.

Given this history of the term Model of Computation or MoC, the
realm of discussion on these models remained confined in the domain
of theoretical computer science until system designers of embedded sys-
tems, of system-on-chip, or of highly distributed heterogeneous systems
started looking at the problem of abstraction, expressibility, and ease of
modeling and simulation of highly diverse set of computational elements
within a single system.

The most popular classification and comparison of models of compu-
tation in embedded system design context arose in the context of the
Ptolemy and Ptolemy II projects [25] at the University of California at
Berkeley. In a seminar paper by Lee and Vincentelli, a framework [39]
of tagged signal models for comparison of various models of computa-

xxiv

tion was proposed. Ptolemy project has been built around this notion
of a variety of models of computation, which include various sequential
models of computation such as FSM, Discrete-Time, Continuous Time
models, as well as models of interaction and communicating entities,
such as CSP, interaction models etc. Ptolemy II undoubtedly popu-
larized the idea of viewing a complex embedded system as a collection
of models which may belong to distinct models of computation (called
domains in Ptolemy), and the idea of creating a framework in which
efficient co-simulation of models from distinct domains is possible.

Another important work in the usage of Models of Computation in
abstracting functionalities of complex heterogeneous system was done
in the context of ForSyDe [15, 32] project in Sweden by Axel Jantsch
and his group. We distinguished this work from the Ptolemy group’s
work as a difference between a denotational view vs. operational view
of models of computation. Of course, such distinction have not been
made earlier, but to avoid confusion among the readers as to the use of
these two different classification of models of computation, we provide a
structure to the different systems of classification.

A denotational view looks at a model of computation as a set of
process constructors, and process composition operators, and provides
denotational semantics to the constructors and operators. In [32] Axel
Jantsch builds a classification based on the information abstraction per-
spective. The main models of computation in this view are

1 Untimed Model of Computation: where the timing information
is abstracted so that no knowledge of time taken for computation or
communication between computing processes is assumed. Since this
MoC makes no assumption on time, the process constructors in this
MoC can be used to construct processes which contain information
on computation carried out and data to be transferred, without any
regard to how much time it takes to carry them out.

2 Synchronous Model of Computation: where the timing infor-
mation is abstracted to cycles of computation. This model has two
distinct subdomains. The first one assumes perfect synchrony, and
thereby assumes that computation and communication happens in
zero time, and hence the only way time passes is through evalua-
tion cycles. The computation in perfect synchrony assumption is
expressed in terms of invariants between current value of a variable
and its value in the next evaluation cycle. So a computation in this
model is always a fixed point evaluation for enforcing the invariants.
This model is the exact model used by Synchronous Programming
paradigm used in Esterel, SIGNAL, Lustre and other synchronous

PREFACE xxv

languages. The other subdomain is that of clocked synchronous
model of computation, where the presence of a global clock enforces
the boundaries of evaluation cycles, and therefore, the computation
must take place within clock boundaries. This model of computation
is suitable for digital hardware.

3 Timed Model of Computation: where timing information is not
abstracted away. Exact timings of all computation and communica-
tions are modeled. This is the least abstract model of computation,
and hence allows us to model a computing process to its minute de-
tails in terms of time taken to carry out any step.

This denotational classification abstracts out (i) all operational de-
tails as to how a computation step is carried out, (ii) how communica-
tion takes place between processes within the models (communication is
abstracted to function calls and function applications), and (iii) timing
information to various degrees.

The operational view of a classification however, classifies models of
computation on how the computation takes place in terms of operational
idiosyncrasies, as well as the way the communication takes place between
processes within the same model of computation. The Ptolemy approach
to classification of MoCs is exactly operational in that sense. From
our perspective, this operational classification is quite orthogonal to the
denotational classification.

Let us consider some examples of various MoCs or domains in Ptolemy
II, which should clarify the distinction and orthogonality mentioned
above.

Some of these domains are:

Continuous-Time: In this MoC, the computation process per-
forms analytical computation on continuous domains of real-numbers,
through solving differential or integral equations or other analytical
function computation. The communication between components per-
forming other continuous-time computation is usually through vari-
able sharing or through function calls.

Finite State Machine: In this MoC, the computation is encapsu-
lated in states, and state changes allow a different mode of computa-
tion to get activated. This is useful in describing control systems, or
finite state control for hybrid computations.

Communicating Sequential Processes: In this MoC, the distinc-
tion with respect to other domains arise not from the way computa-
tion is carried out, but rather from the communication mechanism

xxvi

between processes within the same domain. The processes within the
domain communicate via rendez-vous protocol, and the communica-
tion is synchronous.

Discrete Event Simulation: In this domain, the computation is
carried out in cycles, and each cycle consists of fixpoint computation
for a selected subset of variables, which constitute the so called ‘com-
binational’ part of the system and this fixpointing is done through
cycles known as ‘delta cycles’. The communication in this domain is
not specifically distinguished.

As one can see from the listing of these MoCs and their brief descrip-
tions, these are classified according to their computational and com-
munication characteristics from an operational perspective. One can
also see the orthogonality, for example, by observing that the Commu-
nicating Sequential Processes can be untimed or timed, or even clock
synchronous, as long as the rendez-vous protocol is maintained in the
inter-process communication. Similarly the Finite State Machine can be
timed, untimed, or clocked synchronous.

Frameworks for Expressing Models of Computation
In the light of our discussion on classification of models of computa-

tions (MoCs), we consider various frameworks that allow designers to
build models of working systems (such as an embedded software/hard-
ware system, or a system-on-chip). Such frameworks should facilitate
modeling various components of such systems in MoC domains that are
most appropriate for the level of details and the operational charac-
teristics of the components. For example, if a system-on-chip design
for a digital camera consists of a DSP processor, a microcontroller, and
Analog-Digital and Digital-Analog converters, and some glue logics, each
of these components may be suitable for modeling in different MoC do-
mains. For example, the DSP component may be best modeled with a
Synchronous Data Flow [52, 56, 54, 55] model, while the microcontroller
may be modeled with precise clock accurate discrete-event computation
models. We call a framework that allows such multi-MoC modeling and
simulation, a multi-MoC framework.

Needless to say Ptolemy II [25] is such a multi-MoC framework, and
so is ForSyDe [15]. Although each of these frameworks have their own
degree of fidelity in such modeling. The fidelity of a multi-MoC frame-
work can be defined as the degree of accuracy to which a theoretical
model of computation can be modeled in the framework.

The multi-MoC framework in Ptolemy II requires the user to build
the components in Java, using some characteristics of the target MoC

PREFACE xxvii

domain, and then placing the components in the appropriate domain
under the control of a domain director, which schedules and guides the
simulation of these components, and helps the components communicate
according to domain specific communication rules. In ForSyDe, the com-
ponents are built using functional programming language Haskell, suit-
able for the denotational mode of expressing the computational structure
of the components. Recently, the same denotational MoC framework has
been implemented [1] in another functional programming language SML.
The facilities of multi-MoC modeling provided by these frameworks are
designed in a way, so that the multi-MoC designs can be faithfully mod-
eled and simulated. However, as the frameworks vary in the granularity
of the MoC domains supported, one can imagine that the fidelity of the
framework varies. For example, in Ptolemy II, an SDF model is un-
timed, and if a DSP application needs to compute over multiple cycles,
it is less direct to model such a behavior in the SDF domain of Ptolemy
II. Similarly, in the ForSyDe or similar denotational framework, if one
wants to model rendez-vous style communication paradigm, it is usually
not a part of the MoC classification in such frameworks. As a result,
one has to approximate it by indirect means.

Another aspect of such frameworks is expressiveness. When a model-
ing framework does not impose particular structures or specific process
constructors and combinators for modeling specific models of compu-
tation, but rather provides the user with the full expressiveness of a
programming language to model systems according to the user’s own
modeling style and structure, the expressiveness is high. However, if the
framework does not allow the user to make use of all possible ways that a
standard programming language permits, but rather imposes structural
and stylistic restrictions through process constructors and combinators,
then such a framework has lower expressiveness than standard program-
ming language. However, this lower expressiveness usually is matched
with high fidelity, because according to this notion of expressiveness, a
low expressiveness in a framework implies that it provides the user with
strict structures and guidelines to faithfully reflect an intended theoret-
ical model of computation, hence has high fidelity.

The question then arises as to what the compromises between high fi-
delity/lower expressiveness and low fidelity/high expressiveness are. The
lower expressiveness often helps model designers to be structured and
hence the modeling exercise is less prone to modeling errors. The higher
expressiveness accompanied by full power of a standard programming
language such as Java/C++, tends to lead users to be too creative in
their model building exercise which may be a source of many errors. It

xxviii

is our opinion that low expressiveness/high fidelity is the desired quality
of a good modeling and simulation framework.

The term ‘low expressiveness’ may mislead readers to think that such
frameworks are not capable of achieving much. But since we pair ‘high
fidelity’ with low expressiveness, we insist that such frameworks can
provide structures for modeling most common models of computation
needed for an application domain. For example, Ptolemy II (if restricted
only to use the existing MoCs, and not full expressive power of Java) is
a low expressive/high fidelity framework for embedded software. How-
ever, ForSyDe in our view is low expressive/high fidelity for creating
models with the purpose of abstraction and formal verification, but not
necessarily for hardware/software co-design.

SystemC, as it is implemented in its reference implementation has a
very low fidelity, because the only MoC that can be directly mapped to
the current SystemC framework is the Discrete-Event MoC. The other
MoCs needs to be indirectly mapped onto this particular MoC whose
semantics is suited for digital hardware simulation, and it is based very
much on VHDL simulation semantics. However, if SystemC is extended
with specific MoC structures and simulation facilities, it has the possibil-
ity of becoming a very high fidelity modeling framework for simulation,
and synthesis of embedded hardware/software systems.

Another important metric to compare different frameworks is the sim-
ulation efficiency of complex models in the framework. It turns out that
this metric is again closely tied to the fidelity and expressiveness issue.
If a framework is structured to support multi-MoC modeling and sim-
ulation, it can be appropriately curtailed for simulation efficiency by
exploiting the MoC specific characteristics. For example, consider the
current reference implementation of SystemC with single discrete-event
MoC kernel. Whenever an SDF model is simulated on such a kernel, the
static scheduling possibility of SDF models goes unexploited and hence
simulation efficiency is much less, compared to an extended framework
based on SystemC, where SDF specific structures, and simulation kernels
are available. Therefore, fidelity plays an important role in determining
the efficiency of simulation of models in a framework.

Heterogeneous and Hierarchical Modeling and multi-
MoC Frameworks

Today’s embedded systems, and system-on-chip architectures are het-
erogeneous in nature. The different components, hardware as well as
software, are best modeled by different models of computation. Systems
that interact with analog domains such as sensor systems are best mod-
eled at least at the interfaces with a continuous time MoC, while a DSP

PREFACE xxix

component may be modeled better with an SDF MoC, and a software
component interacting with them may be best modeled with an untimed
state machine model.

As a result, any framework for modeling such complex systems re-
quires to have high fidelity, as per our discussion in the previous section.
So the need for heterogeneity and support for multi-MoC modeling and
simulation are unquestionable.

We however, feel that another important aspect of such modeling
frameworks which is often ignored by designers is the ability to express
hierarchy. This must be accompanied with a simulation facility that does
not require to flatten the hierarchy into one large model while simulating
a hierarchical model. In this book we do not get into the hierarchical
modeling, since the main focus of this book is on heterogeneous mod-
eling framework based on SystemC. Nevertheless, it is imperative to
talk about hierarchy in brief, because in many of the design decisions
we make, we keep the goal of extending the framework for hierarchy in
mind.

Often times, hierarchy is thought of as synonymous to structural hier-
archy where structural models belonging to the same MoC are embedded
within each other. Such hierarchy can be modeled in most hardware de-
scription languages such as VHDL, Verilog etc. We, however, mean a
less trivial hierarchy, which is behavioral hierarchy. When a model in a
certain MoC can contain another model belonging to a different MoC
domain, inside itself, and such nesting is possible to arbitrary depth,
that provides true behavioral hierarchy. Such nesting should not break
the model’s semantics, nor should it break the simulation capability. In
real systems, for example, a finite state machine, each state may actu-
ally require to carry out a computation which is best expressed with an
SDF. It is also possible that a CSP module may require an FSM em-
bedded inside it. Support of such embedding are there in Ptolemy II.
We believe that a truly heterogeneous model of computation based on
SystemC needs to provide this facility in order to be successfully used
in designing a full fledged hardware/software system.

Epilogue to this Preface
At this point, we hope our long preface has been able to convince

some readers that the task we undertook is important but it is arduous.
What we provide in this book is not claimed to be a complete solution,
but a step towards the right direction, in our opinion. We would request
the reader to read the rest of the book with this in mind. We understand
that the multi-kernel SystemC we present here is not SystemC, because
by definition SystemC is what the current standard specifies. At the

xxx

time of writing this preface, the latest version of reference implemen-
tation and standard specification was SystemC-2.0.1, and the language
reference manual for this version is available at the OSCI website [49].
Therefore, we caution the readers that our multi-MoC SystemC is not
official SystemC, nor can it be called SystemC. It is a modeling frame-
work built on top of standard SystemC, and so far, we have not made
any efforts to feed it back to the SystemC standards committee. How-
ever, we will be interested in doing so, if this book convinces enough
readers about the need for extending SystemC in the ways we prescribe
here. We would like to hear directly from readers, and encourage them
to email one of the authors their opinions, questions and comments.

Hiren D. Patel

Sandeep K. Shukla

Acknowledgments

We would like to thank Sankar Basu and Helen Gill from the National
Science Foundation for their encouragement and support for building
the FERMAT lab under the NSF CAREER award CCR-0237947 which
served as the home for the project work reported in this book. A part of
the support for this work also came from an NSF NGS grant 0204028.
The graduate studies of Hiren D. Patel is also supported by an SRC
grant from the SRC Integrated Systems Program. Thanks are due to
Professor Rajesh Gupta from the University of California at San Diego
whose continuous encouragement and collaboration helped us along the
way in this project.

We would also like to thank Mark Jong from Kluwer Academic
Publishers for working with us and helping to ensure a fast turnaround
time for the book. We also thank Cindy Zitter from Kluwer, for all her
timely help with administrative issues.

We are grateful to Grant E. Martin, Chief Scientist, Tensilica, for
encouraging the project with his foreword for the book, and providing
us with feedback as and when we requested.

The students of FERMAT Lab at Virginia Tech, especially Deepak
Abraham Mathaikutty, Debayan Bhaduri, Syed Suhaib and Nicholas
Uebel have helped the project in different ways. The graduate students
of Computer Synthesis class at Virginia Tech in the Spring of 2003, and
Spring of 2004 had to endure some of this research material in the course,
and we thank them for their enthusiasm about this research.

We thank Edward A. Lee and Stephen Neundorffer from the Ptolemy
II group at the University of California at Berkeley for their inputs on
many occasions on the idea of heterogeneous modeling in SystemC. We
also thank the Ptolemy II project as being a source of guidance for
various nomenclatures and examples used in this project.

de h

xxxii

We are also grateful to John Sanguinetti and Andy Goodrich from
FORTE Design Systems for expressing their interest and faith in this
work.

Last but not the least, we thank our families and friends for being
patient at our involvement in this project and our inability to spend
more time with them during the hectic period of completing the book.

Chapter 1

INTRODUCTION

1. Motivation

The technological advances experienced in the last decade has initi-
ated an increasing trend towards IP-integration based System-on-Chip
(SoC) design. Much of the driving force for these technological advances
is the increasing miniaturization of integrated circuits. Due to the eco-
nomics of these technologies where electronic components are fabricated
onto a piece of silicon, the cost and size have exponentially reduced
while increasing the performance of these components. Dating back to
the early 1960s where two-transistor chips depicted leading edge tech-
nology, design engineers might have had difficulty envisioning the 100
million transistor chip mark that was achieved in 2001 [7]. Moore’s
law indicates that this progress is expected to continue up to twenty
more years from today [44]. The ability to miniaturize systems onto a
single chip promotes the design of more complex and often heteroge-
neous systems in both form and function [12]. For example, systems are
becoming increasingly dependent on the concept of hardware and soft-
ware co-design where hardware and software components are designed
together such that once the hardware is fabricated onto a piece of sili-
con, the co-designed software is guaranteed to work correctly. On the
other hand, a single chip can also perform multiple functions, for ex-
ample network processors handle regular processor functionality as well
as network protocol functionality. Consequently, the gap between the
product complexity and the engineering effort needed for its realization
is increasing drastically, commonly known as the productivity gap, as
shown in Figure 1. Many factors contribute to the productivity gap

2

such as the lack of design methodologies, modeling frameworks & tools,
hardware & software co-design environments and so on. Due to the hin-
dering productivity gap, industries experience an unaffordable increase
in design time making it difficult to meet the time-to-market. In our ef-
forts to manage complex designs while reducing the productivity gap, we
specifically address modeling and simulation frameworks that are gener-
ally crucial in the design cycle. In particular, we attempt at raising the
level of abstraction to achieve closure of this productivity gap. In this
effort, we build on the modeling and simulation framework of SystemC
[49].

Figure 1.1. Productivity Gap [16]

2. System Level Design Languages and
Frameworks

System Level Design Languages (SLDL) provide users with a col-
lection of libraries of data types, kernels, and components accessible
through either graphical or programmatic means to model systems and
simulate the system behavior. A modeling framework provides a way
to create a representation of models for simulation, and a simulation
framework is a collection of core libraries that simulates a model.

In the past few years, we have seen the introduction of many SLDLs
and frameworks such as SystemC, SpecC, SystemVerilog [49, 63, 65] etc.,
to manage the issue of complex designs. There also is an effort to lift
the abstraction level in the hardware description languages, exemplified
in the efforts to standardize SystemVerilog [65]. Another Java-based

Introduction 3

system modeling framework developed by U. C. Berkeley is Ptolemy II
[25]. The success of any of these languages/frameworks is predicated
upon their successful adoption as a standard design entry language by
the industry and the resulting closure of the productivity and verification
gaps.

SystemC [49] is poised as one of the strong contenders for such a lan-
guage. SystemC is an open-source SLDL that has a C++ based modeling
environment. SystemC’s advantage is that it has free simulation libraries
to support the modeling framework. This provides designers with the
ability to construct models of their systems and simulate them in a very
VHDL and Verilog [69, 68] like manner. SystemC’s framework is based
on a simulation kernel which is essentially a scheduler. This kernel is
responsible for simulating the model with a particular behavior. The
current SystemC has a Discrete-Event based kernel that is very simi-
lar to the event-based VHDL simulator. However, the strive to attain
a higher level of abstraction for closure of the productivity gap, while
keeping the Discrete-Event (DE) simulation semantics are highly contra-
dictory goals. In fact, most system models for SoCs are heterogeneous in
nature, and encompass multiple Models of Computation (MoC) [37, 23]
in its different components.

P
o

s
s

ib
le

 M
o

d
e

lin
g

 M
is

ta
k

e
s

Modeling Fidelity

SystemC.
DE + C++ for all other MoCs

SystemC.
DE + SDF + C++ for all other

MoCs

SystemC.
DE + SDF + FSM + C++ for all

other MoCs

SystemC.
DE + SDF + FSM + CSP +

C++ for all other MoCs

Figure 1.2. Possible Mistakes occurred versus Modeling Fidelity

4

Figure 1.2 displays the difficulty in being able to express MoC specific
behaviors versus the possible modeling errors made by designers . Users
restricted to DE semantics of SystemC lack in facilities to model other
MoCs distinct from DE, requiring user-level manipulations for correct
behavior of these MoCs. Due to these manipulations, designers may
suffer from an increased number of modeling errors to achieve correct
operation of a model. Hence, Figure 1.2 shows that SystemC with its DE
kernel and functionality of C++ provides the most modeling expressive-
ness but also indicates more possible modeling mistakes. Conversely, the
modeling expressiveness is significantly reduced when employing MoC-
specific kernels for SystemC, but the possible errors made are also re-
duced.

We have therefore chosen the term ‘fidelity’ as a qualifying attribute
for modeling frameworks. Restricting SystemC users to use only im-
plemented MoC-specific structures and styles disallows users to use any
feature afforded by free usage of C++, but such restricted framework
offers higher fidelity. Fidelity here refers to the capability of the frame-
work to faithfully model a theoretical MoC. It is necessary to think
about simulation semantics of such a language away from the semantics
of pure Discrete-Event based hardware models and instead the semantics
should provide a way to express and simulate other Models of Computa-
tion. The inspiration of such a system is drawn upon the success of the
Ptolemy II framework in specification and simulation of heterogeneous
embedded software systems [25]. However, since SystemC is targeted
to be the language of choice for semiconductor manufacturers as well
as system designers, as opposed to Ptolemy II, its goals are more am-
bitious. Our focus is in developing an extension to the SystemC kernel
to propose our extended SystemC as a possible heterogeneous SLDL.
We demonstrate the approach by showing language extensions to Sys-
temC for Synchronous Data Flow (SDF), Communicating Sequential
Processes (CSP) and Finite State Machine (FSM) MoCs. A common
use of SDF is in Digital Signal Processing (DSP) applications that re-
quire stream-based data models. CSP is used for exploring concurrency
in models, and FSMs are used for controllers in hardware designs. Be-
sides the primary objective of providing designers with a better structure
in expressing these MoCs, the secondary objective is to gain simulation
efficiency through modeling systems natural to their behavior.

2.1 Simulation Kernel and MoC
The responsibility of a simulation model is to capture the behavior of

a system being modeled and the simulation kernel’s responsibility is to
simulate the correct behavior for that system. In essence, the Model of

Introduction 5

Computation dictates the behavior which is realized by the simulation
kernel. An MoC is a description mechanism that defines a set of rules to
mimic a particular behavior [39, 37]. The described behavior is selected
based on how suitable it is for the system. Most MoCs describe how
computation proceeds and the manner in which information is transferred
between other communicating components as well as with other MoCs.
For more detailed discussion on MoCs, readers are referred to the preface
of this book and [32, 25].

2.2 System Level Modeling and Simulation
For most design methodologies, simulation is the foremost stage in

the validation cycle of a system, where designers can check for functional
correctness, sufficient and appropriate communication interactions, and
overall correctness of the conceptualization of the system. This stage is
very important from which the entire product idea or concept is modeled
and a working prototype of the system is produced. Not only does this
suggest that the concept can be realized, but the process of designing
simulation models also refines the design. Two major issues that need
consideration when selecting an SLDL for modeling and simulation are
modeling fidelity and simulation efficiency, respectively.

An SLDL’s modeling fidelity refers to the constructs, language and
design guidelines that facilitate in completely describing a system with
various parts of the system expressed with the most appropriate MoCs.
Some SLDLs make it difficult to construct particular models due to the
lack of fidelity in the language. For example, SystemC is well suited
for Discrete-Event based models but not necessarily for Synchronous
Data Flow (SDF) models. [23, 45] suggest extra designer guidelines that
are followed to construct Synchronous Data Flow models in SystemC.
These guidelines are required because the SDF model is built with an
underlying DE kernel, increasing the difficulty in expressing these types
of models. This does not imply that designs other than DE-based sys-
tems cannot be modeled in SystemC, but indicates that expressing such
models is more involved, requiring designer guidelines [23, 45].

Simulation efficiency is measured by the time taken to simulate a
particular model. This is also a major issue because there are models
that can take up to hours of execution time. For example, a PowerPC
750 architecture in SystemC [42] takes several hours to process certain
testbenches [61]. With increased modeling fidelity through the addition
of MoC kernels in SystemC, models for better simulation efficiency can
be created.

Choosing the appropriate SLDL requires modeling frameworks to be
appropriately matched to allow for meaningful designs. The simulation

6

framework also has to be matched to allow for correct and efficient val-
idation of the system via simulation. The frameworks must provide
sufficient behavior to represent the system under investigation and must
also provide a natural modeling paradigm to ease designer involvement
in construction of the model. Consequently, most industries develop pro-
prietary modeling and simulation frameworks specific for their purpose,
within which their product is modeled, simulated and validated. This
makes simulation efficiency a gating factor in reducing the productivity
gap. The proprietary solutions often lead to incompatibility when vari-
ous parts of a model are reusable components purchased or imported as
soft-IPs. Standardization of modeling languages and frameworks allevi-
ate such interoperability issues.

To make the readers aware of the distinction between modeling guide-
line versus enforced modeling framework, we present a pictorial exam-
ple of how SDF models are implemented in [23, 45] (Figure 1.3) using
SystemC’s DE kernel. This example shows a Finite Impulse Response
(FIR) model with sc fifo channels and each process is of SC THREAD()
type. This model employs the existing SystemC Discrete-Event kernel
and requires handshaking between the Stimulus and FIR, and, FIR and
Display blocks. The handshaking dictates which blocks execute, allow-
ing the Stimulus block to prepare sufficient data for the FIR to perform
its calculation followed by a handshake communication with the Display
block.

Stimulus FIR Display

SC_THREAD

sc_fifo channels

Dynamic
Scheduling

Figure 1.3. FIR model with Designer Guidelines [45, 23]

The same example with our SDF kernel is shown in Figure 1.4. This
model uses SDFports specifically created for this MoC for data pass-
ing instead of sc fifos and no synchronization is required since static
scheduling is used. The model with the SDF kernel abandons any need
for handshaking communication between the blocks and uses a schedul-
ing algorithm at initialization time to determine the execution schedule
of the blocks.

Introduction 7

Stimulus FIR Display

SC_METHOD

SDF channels

Static Scheduling

SDF ports

Figure 1.4. FIR model with our SDF kernel

We provide further explanation about these modeling examples in
Chapters 3 and 5.

2.3 Simulation Efficiency Versus Fidelity of MoCs
It is conceivable that there can be large, detailed models that take

enormous amounts of time for simulation [61]. We measure simulation
performance in terms of the amount of time taken to simulate a model
from start to end. We believe that matching components to models with
the most appropriate MoC enhances simulation efficiency.

An MoC describes the underlying behavior of a system on top of
which a model following that particular behavior is simulated. The sys-
tems expected behavior must be modeled appropriately by the modeling
framework, otherwise an unnatural modeling scheme has to be used to
impose the behavior and the simulation efficiency will almost always suf-
fer. When we describe a simulation framework supporting the Model of
Computation, we particularly refer to kernel-support for that MoC. Our
motivation involves modeling and simulating SDF, CSP, FSM and other
MoC designs in SystemC by introducing distinct simulation kernels for
each MoC. Although meant to be a system level language, the current
SystemC simulation kernel uses only a non-deterministic DE [39, 37, 49]
kernel, which does not explicitly simulate SDF, CSP or FSM models in
the way that they could be simulated more efficiently and easily.

In other words, current SystemC is very well suited for designs at the
register transfer level of abstraction, similar to VHDL or Verilog models.
However, since SystemC is also planned as a language at higher levels
of abstraction, notably at the system level, such Discrete-Event based
simulation is not the most efficient. An SoC design might consist of
DSP cores, microprocessor models, bus models etc. Each of these may
be most naturally expressible in their appropriate MoCs. To simulate
such a model the kernel must support each of the MoCs interlaced in the

8

user model. This allows designers to put together heterogeneous mod-
els without worrying about the target simulation kernel and discovering
methodologies to enforce other MoCs onto a single MoC kernel. Figure
1.5 shows an example of a digital analyzer [32] that employs two MoCs,
one being an untimed Data Flow MoC and the other being a timed
model based on the DE MoC. The Controller IP and Analyzer IP could
be possibly obtained from different sources requiring the interfaces to
allow for communication between the two. Support for modeling these
IPs requires the simulation framework to provide the underlying MoCs,
otherwise programmatic alterations are required to the original IPs for
conformity. Again, it is crucial for modeling frameworks to allow de-
signers to express their models in a simple and natural fashion. This
can be achieved by implementing MoC-specific kernels for the model-
ing framework along with sufficient designer guidelines in constructing
models.

Button Control

Filter

Distortion
Control

Analyzer

Interface Interface

Data Flow MOC

Discrete-Event MOC

4096

4096 4096

1

1

1

1

1 1

1

1

1

1

Controller IP

Analyzer IP

Figure 1.5. Example of Digital Analyzer using Models of Computation [32]

3. Our Approach to Heterogeneous Modeling in
SystemC

Heterogeneous modeling in SystemC has been attempted before, but
has only been attained by using designer guidelines [23, 45]. One of the
first attempts at designer guidelines for heterogeneous modeling is pro-
vided in [23]. We find these guideline based approaches to be quite unsat-
isfactory. In [23] the authors model SDF systems using SC THREAD()
processes and blocking read and write sc fifo channels. This scheme uses
dynamic scheduling at runtime as opposed to possible static scheduling
of SDF models. They accommodate an SDF model with the underlying

Introduction 9

DE kernel. We argue that this is not an efficient method of implementing
SDF in SystemC nor is it natural. The adder example they present [23]
uses blocking sc fifo type channels that generate events on every block-
ing read and write resulting in an increase in the number of delta cycles.
Furthermore, the use of SC THREAD() introduces context-switching
overhead further reducing the simulation efficiency [20]. Although [23]
promotes that tools may be designed to exploit static scheduling al-
gorithms to make efficient SDF simulation in systems, no solution or
change in the kernel was provided. They only hint at some source level
transformation techniques in enabling SDF systems with the underlying
DE reference implementation kernel.

Another effort in modeling Data Flow systems in SystemC was done
in [45], where they provide an Orthogonal Frequency Division Multiplex
(OFDM) example as an SDF model. However, this model does not ex-
ploit the SDF Model of Computation either since this example also uses
blocking read and write resulting in dynamic scheduling. Once again this
approach defeats the purpose of modeling SDF systems because once
recognized as SDF, they should be statically scheduled. These models
presented in [23, 45] can be converted such that there is no need for
SC THREAD() or SC CTHREAD() processes, communication signals
to pass control, and most importantly dynamic scheduling. We present
an extension of SystemC in which an SDF kernel interoperable [14] with
the existing DE kernel can eliminate the need for dynamic scheduling
and designer guidelines specific for SDF models. Similar extensions are
also prototyped for CSP and FSM Models of Computation.

3.1 Why SystemC?
In addition, the preset C++ language infrastructure and object- ori-

ented nature of C++ used to define SystemC extends usability further
than any existing hardware description language (HDL) at present. Sys-
temC provides embedded system designers with a freely available mod-
eling and simulation environment requiring only a C++ compiler. We
have undertaken the task of building a SystemC simulation kernel that
is interoperable with the existing simulation kernel of the reference im-
plementation, but which employs different simulation kernel functions
depending on which part of the design is being simulated. In this book,
we focus on building the simulation kernel appropriate for the SDF [37,
39, 25], CSP [27] and FSM models.

Once kernel specific MoCs are developed, they can be used as stand-
alone for a specific system and even in unison to build heterogeneous
models. Communication between different kernels could either be event-
driven or cycle-driven depending on the choice of the implementer. Event-

10

driven communication describes a system based on message passing in
the form of events, where events trigger specific kernels to execute. As
an example, our SDF kernel executes only when an event from the DE
kernel is received. On the other hand cycle-driven refers to a system
whereby for a number of cycles one particular kernel is executed fol-
lowed by another.

Our goal is not to provide a complete solution, but to illustrate one
way of extending SystemC. We hope this would convince the SystemC
community to build industry strength tools that support heterogeneous
modeling environments. However, the standardization of SystemC lan-
guage is still underway, but as for the kernel specifications and imple-
mentations, SystemC only provides the Discrete-Event simulation ker-
nel. We build upon the current SystemC standard in laying a foundation
for an open source multi-domain modeling framework based on the C++
programming language which has the following advantages:

The open-source nature of SystemC allows alterations to the original
source.

Object- oriented approach allows modular and object- oriented design
of SystemC and its extensions to support the SDF kernel.

C++ is a well accepted and commonly used language by industry
and academics, hence making this implementation more valuable to
users.

4. Main Contributions of this Book
We extend the existing SystemC modeling and simulation framework

by implementing a number of MoC-specific kernels, such as SDF, CSP
and FSM. Our kernels are interoperable with SystemC’s DE kernel al-
lowing designers to model and simulate heterogeneous models made from
a collection of DE and SDF models or other combinations correspond-
ing to different parts of a system. By extending the simulation kernel,
we also improve the modeling fidelity of SystemC to naturally construct
models for SDF, CSP and FSM. Furthermore, we increase the simulation
efficiency of SDF and DE-SDF models in SystemC. We do not bench-
mark for the other kernels, but we believe they will also show similar
improvements.

Synchronous Data Flow MoC is by no means a new idea on its own
and extensive work has been done in that area. [5] shows work on
scheduling SDFs, buffer size minimization and other code optimization
techniques. We employ techniques presented in that work, such as their
scheduling algorithm for SDFs. However, the focus of [5] pertains to

Introduction 11

synthesis of embedded C code from SDF specifications. This allows their
SDF representations to be abstract, expressing only the nodes, their
connections, and token values. This is unlike the interaction we have to
consider when investigating the simulation kernel for SystemC. We need
to manipulate the kernel upon computing the schedules requiring us to
discuss the Data Flow theory and scheduling mechanisms. Our aim is
not in just providing evidence to show that changes made in the kernel to
accommodate different MoCs improves simulation efficiency, instead, we
aim at introducing a heterogeneous modeling and simulation framework
in SystemC that does also result in simulation efficiency.

Hoare’s [27] Communicating Sequential Processes is an MoC for mod-
eling concurrent systems with a rendez-vous style synchronization be-
tween processes. Rendez-vous occurs between two processes ready to
communicate. Otherwise, the process attempting the communication
suspends itself and can only be resumed once the process receiving the
transfer of data from that process is ready to communicate. We imple-
ment the CSP kernel with SystemC’s coroutine packages used to create
thread processes. CSP processes in our CSP kernel are SystemC thread
processes with a different scheduling mechanism suitable for CSP mod-
eling.

Most hardware systems have controllers modeled as FSMs. The cur-
rent SystemC can model FSMs using standard switch statements, but
the FSM kernel provides a direct method of invoking different states.
Combining SDF, CSP and FSM MoCs to create heterogeneous models
shows the usefulness of our multi-MoC SystemC framework. The fa-
mous Dining Philosophers problem has an elegant solution that can be
modeled in CSP. Furthermore, a deadlock avoidance technique can be
added using an FSM controller as a footman assigning seats. We discuss
this model in further detail in Chapter 9.

Further improvements in synthesis tools such as Cynthesizer and Co-
centric SystemC Compiler [17, 64] will provide designers with the capa-
bility of effective high level synthesis. We hope to initiate the process
by which SystemC can fulfill its purpose of being a high level and multi-
domain modeling framework for industry use. We plan on distributing
our prototype implementation that introduces heterogeneity in SystemC
to the SystemC community via a freely downloadable distribution [36].

Chapter 2

BACKGROUND MATERIAL

1. System Level Modeling and Simulation
Methods

Numerous system level modeling and simulation frameworks are devel-
oped for specific purposes and systems. Examples of recently introduced
system level modeling languages are SpecC, SystemC, SystemVerilog,
etc. [63, 49, 65]. Among the other frameworks for system level mod-
eling, Ptolemy II [25] is the most well known. Another breed of sys-
tem level modeling frameworks consists of Opnet, and NS-2 which are
network oriented modeling and simulation frameworks [48, 46]. These
system level design languages and frameworks are usually application-
specific. For example, tools like NS-2 and Opnet are predominantly
used to create network models and simulate network protocols whereas
VHDL [69] for RTL designs and SystemC for RTL designs and system
level designs. Likewise, Ptolemy II is designed to model heterogeneous
embedded systems with a specific focus on embedded software synthesis.

Some of these allow designers to create models either through graphi-
cal interfaces such as in Ptolemy and Opnet [48], or programmatic means
as in SystemC or VHDL [49, 69]. Since these languages are application-
specific, their expressiveness is limited to the particular targeted sys-
tems. The simulation frameworks for these languages also differ in their
implementations where some are event-driven (such as Ptolemy II and
SystemC) and others are cycle-based. SystemC being a library of C++
classes, promotes object based programming and in turn promotes ob-
ject (or module) based modeling. This allows models to maintain a much
higher level of abstraction than simply RTL models making it appropri-
ate for system level designs. Current Verilog [68] on the other hand does

14

not allow flexibility in creating an object oriented design and limits itself
to mainly RTL and block level models.

Design Space
Exploration

Model at
System Level

Simulation
Hardware /
Software

Partitioning
Synthesis

Layout
Routing

Concept Definition Phase

Design Phase

Implementation Phase

Testing and Correction Phase

Software
Coding

Figure 2.1. Design Cycle

Figure 2.1 shows that simulation is an important stage in the design
cycle of a system. The purpose of simulation is validation of the system
such that design errors are captured early in the design cycle. Ample
time is spent in this design phase making simulation efficiency a gating
factor in reaching the time-to-market goals.

2. Models of Computation and Heterogeneous
Modeling at System Level

We suggest that an emphasis on improving simulation efficiency with-
out providing kernel-support for different MoCs is not possible through
mapping of their behaviors onto a specific kernel for a simulation frame-
work. Currently, models which are best represented with different MoCs
can be modeled and simulated in SystemC with a single Discrete-Event
kernel, by mapping any Model of Computation onto this kernel. How-
ever, the cost is paid in the simulation efficiency. One can see this from
the examples in [23, 45] for the SDF MoC. The lack of fidelity in cur-
rent SystemC for MoCs other than Discrete-Event, makes it difficult to
model these MoCs. Modeling at a higher level of abstraction requires
the kernel to accommodate the “abstracted system” rather than having
the designer to force the abstracted system on to the DE kernel. In
this sense, SystemC is not yet a heterogeneous modeling and simulation
framework, lacking the expressiveness to simulate MoCs other than the
DE MoC. Our focus is on providing design ease through better fidelity
and simulation efficiency in SystemC.

Background Material 15

Having a brief understanding of the need for Models Of Computa-
tions as appropriate and suitable descriptions of systems, it is necessary
to understand how the evolution of MoCs impacts design projects. The
accepted practice in system design, guides the construction of the hard-
ware parts first leaving the software components to be designed later
[37]. Several design iterations are needed during the software design
stage. Hence, design methodologies to create hardware and software
components that are correct by construction and aid in reducing design
time are sought. Recent efforts to address this challenge are devoted
to hardware & software co-design resulting to the design terminology
coined “function-architecture co-design” [37], where they argue that the
key problem is not of hardware & software co-design but of

“the sequence consisting of specifying what the system is intended to
do with no bias towards implementation, of the initial functional design,
its analysis to determine whether the functional design satisfied the spec-
ification, the mapping of this design to a candidate architecture, and the
subsequent performance evaluation” [37].

We understand the problem as the lack of fidelity in the frameworks
and languages to express different Models of Computation for different
parts of a large system. With multiple MoCs, designers can model sys-
tems more natural to the specific function. For example, DSP applica-
tions work on a stream passing which is akin to token flow paradigm that
is well suited for a Data Flow (DF) MoC or sometimes a more special-
ized DF called the Synchronous Data Flow. A token is an encapsulation
of data being transferred through the system. Providing any System
Level Design Language with enough fidelity to express different MoCs
accurately relaxes the modeling paradigm and having kernel-support for
MoCs, simulation performance also increases.

3. Ptolemy II: A Heterogeneous Modeling and
Simulation Framework

A specific framework that does encompass the “function-architecture
co-design” principle is Ptolemy II [25]. Ptolemy II is an open-source
and Java-based design language. Ptolemy’s major focus is on embedded
systems, in particular on systems that employ mixed technologies such
as hardware and software, analog and digital, etc.

The models are constructed with different MoCs dictating the behav-
ior of different parts of a system [6]. Ptolemy II introduces directors
that encapsulate the behavior of the MoCs and simulate the model ac-
cording to it. Behavior of these MoCs efficiently handle concurrency

16

and timing since these are integral requirements for embedded systems
that need simultaneous and concurrent operations. Every director pro-
vides a notion of a domain in Ptolemy II. To mention a few of them,
Ptolemy II has DE and SDF directors that can impart the Discrete-
Event and Synchronous Data Flow behaviors respectively to the models
in their domains. A component-based design approach is used where
models are constructed as a collection of interacting components called
actors. Figure 2.2 shows a diagram depicting the actor component and
also displaying the interaction of a collection of components. Actors in

(a) IIR (b) Pick Dynamics

Figure 2.2. Composite Actors for Eye Model in Ptolemy II [3]

Ptolemy II can communicate with each other and execute concurrently.
These actors require a medium of communication to other actors intro-
ducing the idea of channels. Channels pass data from ports of one actor
to the connected ports of another actor (or sometimes to itself). Us-
ing channels implies that actors can not necessarily interfere with each
other since they can only interact with other actors through the chan-
nels. Figure 2.2 shows actors, ports and other elements of composite
actors in a Ptolemy model. These are two of the sub-models of a larger
model for the biological feedback system modeling the functions of an
Eye [3]. Ptolemy II also supports hierarchical actors that can contain
actors within itself and connect to other actors through external ports.

Ptolemy II supports Models of Computation as their underlying be-
havior descriptors for their directors. Since Ptolemy II is geared towards
embedded systems, the MoCs in Ptolemy II are particular to embedded
software synthesis. A brief definition of some of the MoCs are presented

Background Material 17

below taken from [6]. For a full list of MoCs implemented as domains in
Ptolemy II, please refer to [6].

3.1 Component Interaction (CI)
The basis of the Component Interaction (CI) domain follows the con-

struct for a data-driven or demand-driven application. An example of
data-driven application is an airport departure and arrival display where
information about flight departures, arrivals, delays, times, number, etc.
are displayed for the public. Whenever a status changes of a particular
flight, changes are made on the main server raising an event signaling
the displays to perform a refresh or update.

Demand-driven computation on the other hand refers to the more
common web-browsing environment where an HTTP request to a server
acts as the demand resulting in an event on the server for a web-
page. This event causes computation to return the requested webpage
(given sufficient privilege for access) to the client requesting the webpage
through a network protocol such as TCP.

3.2 Communicating Sequential Processes (CSP)
In the CSP domain, actors are concurrently executing processes. The

communication between two or more CSP actors is carried out by atomic
and instantaneous actions called rendez-vous [6, 27]. If a process is ready
to communicate with another process, then the ready-to-communicate
process is stalled until the other process is ready to communicate. Once
the processes are both ready the communication occurs simultaneously
in one non-interruptible quantum, hence atomic.

3.3 Continuous Time (CT)
As the name suggests, in the Continuous Time (CT) domain, the

interaction between actors is via continuous-time signals. The actors
specify either linear or nonlinear algebraic/differential equations between
their inputs and outputs. The director finds a fixed point in terms of a
set of continuous-time functions that satisfy the equations.

3.4 Discrete-Events (DE)
In the Discrete Event (DE) domain, actors communicate through

events on a real time line. An event occurs on a time stamp and contains
a value. The actors can either fire functions in response to an event or
react to these events. This is a common and popular domain used in
specifying digital hardware. Ptolemy provides deterministic semantics

18

to simultaneous events by analyzing the graph for data dependence to
discover the order of execution for simultaneous events.

3.5 Finite-State Machine (FSM)
The FSM domain differs from the actor-oriented concept in Ptolemy

II in that the entities in the domain are represented by states and not ac-
tors. The communication occurs through transitions between the states.
Furthermore, the transitions can have guard conditions that dictate
when the transition from one state to the other can occur. This do-
main is usually useful for specifying control state machines.

3.6 Process Networks (PN)
In the Process Network domain, processes communicate via message

passing through channels that buffer the messages. This implies that the
receiver does not have to be ready to receive for the sender to send, unlike
the CSP domain. The buffers are assumed to be of infinite size. The PN
MoC defines the arcs as a sequence of tokens and the entities as function
blocks that map the input to the output through a certain function. This
domain encapsulates the semantics of Kahn Process Networks [34].

3.7 Data Flow (DF)
DF domain is a special case of Process Networks where the atomic

actors are triggered when input data is available. Otherwise data is
queued.

3.8 Synchronous Data Flow (SDF)
The Synchronous Data Flow (SDF) domain, operates on streams of

data very suitable for DSP applications. SDF is a sub-class of DF except
that the actor’s consumption and production rates dictate the execution
of the model. The actors are only fired when they receive the number
of tokens defined as their consumption rate and expunge similarly only
the number of tokens specified by the production rate. Moreover, static
scheduling of the actors is performed to determine the schedule in which
to execute the actors.

Ptolemy II’s open source nature allows experienced Java programmers
to add their own directors as desired. However, the domains that are
implemented provide a sufficient base for the targeted embedded systems
that Ptolemy is designed for. Having the ability to create personalized
MoCs provides a very extensible and flexible modeling and simulation
framework. Furthermore, Java is a purely object oriented programming
language with a large volume of Graphical User Interface (GUI) libraries.

Background Material 19

Although SystemC does not have a mature GUI for system level mod-
eling besides the efforts in Cocentric System Studio [64], we show in this
book that SystemC can also be extended to support MoCs through ap-
propriate kernel development.

4. SystemC: Language and Framework
SystemC is also an open-source initiative [49] that provides a program-

matic modeling framework and a Discrete-Event based simulation frame-
work. In SystemC, the notion of a component or an actor a la Ptolemy
is simply an object module constructed by the macro SC MODULE(...)
[Listing 2.1, Line 3]. This module must be of a process type that is de-
fined in its constructor SC CTOR(...) [Listing 2.1, Line 11]. An example
of the source is in Listing 2.1.

Listing 2.1. SC MODULE example

1#include <systemc . h>
2

3SC MODULE(module example) {
4

5 /∗ Signa l s and Port dec larac t ions ∗/
6 s c i n c l k c l o c k i n ;
7

8 s c i n <bool> happy port ;
9 s out<bool> sad por t ;

10

11 SC CTOR(module example) {
12 /∗ Can have the fo l l ow ing processes ∗/
13 // SC CTHREAD(. . .)
14 // SC THREAD(. . .)
15 // SC METHOD(. . .)
16 SC THREAD(entry) {
17 /∗ Sen s i t i v i t y L i s t ∗/
18 s e n s i t i v e << c l o c k i n . pos () ;
19 } ; /∗ END SC THREAD ∗/
20 }/∗ END SC CTOR ∗/
21

22 void entry () ;
23 } ; /∗ END SC MODULE ∗/

Options for the type of processes that can be used in SystemC are:

SC METHOD(...): SC METHOD() processes execute from start to
end and are triggered by their sensitivity list.

SC THREAD(...): SC THREAD() processes are light-weight threads
created via the quick-thread package for C++ [35]. These processes
are usually programmed as an infinite loop with suspension points
using wait(...) statements. SC THREAD()s are spawned once and
continue to execute based on the infinite loop and suspension points.

20

SC CTHREAD(...): SC CTHREAD() are derived from
SC THREAD() processes with the addition that the SC CTHREAD()
resumes execution after a suspension point at least every chosen clock
pulse. The constructs wait(...) and wait until(...) can be used to
suspend a process. wait until(...) provides a mechanism for dynamic
sensitivity in SystemC. However, SC CTHREAD() and wait until(...)
will be deprecated in the newer version of SystemC.

The SC CTOR(...) calls the constructor for that module that can
create a module of the above three types. The sensitivity list dictates
when the module is to execute upon events on signals/channels. Every
primitive signal and channel generates events to indicate that the par-
ticular signal/channel has been updated. When events occur on signals
or channels on the sensitivity list, the process is expected to fire. In
the case of SC CTHREAD() processes, it is necessary to define a clock
edge on which the thread will execute. A user can define more than one
kind of process and bind it with its appropriate entry function [Listing
2.1, Line 22]. [Listing 2.1, Line 16] binds entry to a SC THREAD()
process. This means that one instance of SC MODULE(...) can contain
more than one entry functions of varying process types. These entry
functions behave according to the process bound with it.

Every SC MODULE(...) can have port declarations such as happy port
and sad port [Listing 2.1, Line 8 - 9]. Channels/signals are used to
connect one module to another via these ports. Input ports such as
sc in<...> receive input from the signals and output ports sc out<...>
transmit data onto the signals. The ports like the signals are of template
type allowing for types to vary. The main top-level module has to create
signals using the sc signal<...> declaration and these must be connected
with the corresponding module ports. During the evolution of SystemC,
design alterations in terms of functionality, semantics and syntax are ex-
pected. For starters, the newer version of SystemC expects deprecating
the SC CTHREAD() process entirely, along with wait until() function
calls. We are aware of these expected changes, but specifically adhere
to the SystemC standards set by version 2.0.1.

SystemC does not provide a graphical user interface from which one
can construct models, though SystemC Cocentric Studio [64] is an at-
tempt at performing this. When comparing to Ptolemy II, a module can
be related to an actor, the channels as signals or channels in SystemC,
and directors as the SystemC kernel. Since SystemC extends the C++
language using classes, macros and such C++ methodologies, almost any
functionality can be added to SystemC models allowing construction of
most MoCs. However, at this point, this comparison is only valid when

Background Material 21

referring to a particular MoC, the Discrete-Event MoC. This is simply
because SystemC kernel does not support any other MoC in their ker-
nel other than the Discrete-Event Model of Computation. The main
element that defines this MoC is the commonly used Evaluate-Update
paradigm that will be discussed in the next chapter. Nonetheless, this
brief explanation of SystemC should provide the reader enough insight
into the basic modeling framework employed particular to the DE MoC.
We continue to explain in detail the Discrete-Event kernel in Chapter 3.

5. Implemented Models of Computation
In this book, we present an avenue through which SystemC can be

made a multi-domain heterogeneous modeling and simulation framework
by introducing the Synchronous Data Flow (SDF), Communicating Se-
quential Processes (CSP) and Finite State Machine (FSM) Models of
Computation kernels in SystemC. Please note that our implementation
is a reference implementation. An industry strength design of heteroge-
neous kernels which support behavioral hierarchy is beyond our current
scope. In the following subsections we briefly describe with illustrative
examples each MoC we have implemented, namely SDF, CSP and FSM.

5.1 Synchronous Data Flow in SystemC
We present an example of a simple SDF model for an image encoder

from [24]. The block diagram is shown in Figure 2.3. This image pro-
cessing example takes in an image matrix and partitions it into four
by two matrices that are then run through a vector quantizer which is
then reassembled in the end into a compressed image. This procedure
is repeated until the source matrix is empty.

Figure 2.3. Image Processing Example

This example in Figure 2.3 is suitable for the SDF paradigm because
each function block should only execute when it has enough inputs on
its arcs. This is an ideal situation for static scheduling of the model.
Current SystemC DE kernel does not allow static scheduling of a system
like Figure 2.3. However, modeling or designer guidelines can be used
to model such a system. This enforces an SDF-like system onto a DE
kernel reducing the simulation efficiency of the model.

22

Sacrificing simulation efficiency by using designer guidelines might
be an overstatement in that many designers are not aware or concerned
about the simulation degradation incurred when simulating models which
are not naturally a candidate for the Discrete-Event MoC implemented
in SystemC’s kernel. However, there has been some discussion and work
in providing designer guidelines using the existing expressiveness in Sys-
temC. For SDF, [23, 45] suggest guidelines that they term the golden
recipe describing the use of SC THREAD() processes with a communi-
cation medium of sc fifo channels. Since these channels are used with
SC THREAD() processes, the channels must use blocking read() and
write() functions to retrieve and put tokens onto the channels. They go
on to describe mechanisms for stopping simulation that involve:

Simulating the model for a finite amount of time using sc start(n)
where n is a time unit other than -1. This method has a constraint
in that there must exist at least one timed model for the simulation
to terminate.

Return from SC THREAD() processes stalling the simulation due to
the lack of events for the kernel to process.

Use the sc stop() function call to terminate the simulation when a
certain sentinel value is reached.

Here, we elaborate on the golden recipe by using the adder example
in [23] to illustrate their inadequacy.

Listing 2.2. adder example

1 template <class T> SC MODULE(DF Adder) {
2

3 s c f i f o i n <T> input1 , input2 ;
4 s c f i f o o u t <T> output ;
5

6 void proce s s () {
7 while (1) {
8 output . wr i t e (input1 . read () + input2 . read ()) ;
9 }/∗ END WHILE ∗/

10 }/∗ END PROCESS ∗/
11

12 SC CTOR(DF Adder) {
13 SC THREAD(proce s s) ;
14 }/∗ END SC CTOR ∗/
15 }

Notice that in this example there are no wait() calls even though
this is a SC THREAD() process. Interestingly, this does not breach the
modeling paradigm due to the use of sc fifo channels [Listing 2.2, Line
3 - 4]. Synchronization need not be explicit in SDF models when using

Background Material 23

SC THREAD() processes due to the blocking read() and write() func-
tion calls. These blocking functions generate events for the SystemC DE
kernel that need to be updated. This also means that the simulation re-
quires no notion of a clock and completes using delta cycles. A delta
cycle is a small step of time within the simulation time that does not
advance the simulation time. This imposes a partial order of simulta-
neous actions [23]. However, these guidelines in [23, 45] are inadequate
for a heterogeneous simulation framework. In [23] they model SDF sys-
tems using SC THREAD() processes and blocking read and write sc fifo
channels [Listing 2.1, Line 8]. This scheme uses dynamic scheduling at
runtime opposed to the conventional static scheduling of SDF models.
They accommodate an SDF model with the underlying SystemC’s DE
kernel. We argue that this is not an efficient method of implementing
SDF in SystemC nor is it natural. They also acknowledge the deficiency
in simulation using this approach due to the increase in the number of
delta cycles incurred by blocking read() and write() function calls. Fur-
thermore, the use of SC THREAD() introduces context-switching over-
head further reducing the simulation efficiency [20]. Context-switching
overhead refers to the cost of saving the state of the process and re-
establishing when the process is to be executed again. Although [23]
promotes that tools may be designed to exploit static scheduling algo-
rithms to make efficient SDF simulation in systems, no solution or change
in the kernel was provided. They only speculate some source level trans-
formation techniques to model SDF systems with the underlying DE
reference implementation kernel which we believe to be inadequate for
design of complex systems.

We believe that these models presented in [23, 45] can be converted
such that there is no need for SC THREAD() or SC CTHREAD() pro-
cesses, communication signals to pass control, and most importantly
dynamic scheduling. We present a novel concept of an SDF simulation
kernel in SystemC, interoperable with the existing DE kernel eliminating
the need for dynamic scheduling specific for SDF models. We present
the SDF paradigm in further detail in Chapter 5.

5.2 Communicating Sequential Processes in
SystemC

To illustrate the “Communicating Sequential Processes” MoC, we take
the classical Dining Philosopher’s problem cited in [27]. The problem
is defined as follows: there are five philosophers PHIL0, PHIL1, PHIL2,
PHIL3, and PHIL4, there is one dining room in which all of them can
eat, and each one has their own separate room in which they spend most
of their time thinking. In the dining room there is a round table with

24

five chairs assigned to each individual philosopher and five forks down
on the table. In the middle of the table is a big spaghetti bowl that is
replenished continuously (so there is no shortage of spaghetti).

PHIL0

PHIL1

PHIL2
PHIL3

PHIL4

Figure 2.4. Dining Philosopher Problem

The duty of the philosophers is to spend most of their time thinking,
but when hungry they were to enter the dining room, sit on their des-
ignated chair, pick up their left fork then pick up their right fork and
begin eating. Since a philosopher requires two forks to eat the spaghetti,
another philosopher requesting for a fork that is unavailable must simply
wait until it is put down. Once done eating, the right fork is dropped,
then the left and then the philosophers go back to their respective rooms
to think. This classical example is tackled using threading and mutexes
many times, however our approach is to allow SystemC to model such
an example. Figure 2.4 displays the seating assignments of the philoso-
phers. It also shows the dining room with the spaghetti bowl, the forks,
and the assigned chairs. Though it may seem awkward to propose that
inanimate objects have behavior, the forks in the Dining Philosopher
model are processes along with the philosophers themselves. Therefore,
there are a total of ten processes. The forks have distinct behaviors or
realizing whether they are down on the table or whether they are not and
the philosophers exhibit the behavior of thinking, picking up the left fork
followed by the right, eating, then standing up to leave to think again.
Figure 2.5 shows the processes with their communicating channels. We

Background Material 25

return to this example later once we establish the design methodology
for CSP in SystemC along with the details of the implementation.

PHIL0

PHIL1

PHIL2PHIL3

PHIL4

toRight1

toLeft2

to
R

ig
ht

2

to
Le

ft
5

toRight5

toLeft1

Fork0

Fork1

Fork2

Fork3

Fork4

Figure 2.5. CSP Implementation of Dining Philosopher

We detail the CSP Model of Computation further in Chapter 6 as well
as integration details to allow invocation of the reference implementation
kernel through a CSP process.

Dining Philosopher Example in CSP Notation
In order to provide clarity to this recurring example, we present the

Dining Philosophers solution in the CSP [28] notation. CSP is repre-
sented as a process algebra, and hence each process is a term in the
algebra. Here we informally describe the operators of CSP and refer the
readers to [28] for a detailed syntax and semantics of CSP.

In CSP, a sequential process can be described with a sequencing op-
erator. This operator prefixes an atomic action a to a process term b.
The new process constructed represents a process that engages in action
a first, and then like process P . For example

Q = a → P

means that process Q executes action a and then behaves like a process
represented by the process term P .

One can also represent non-deterministic choice between two behav-
iors with a choice operator written as |. For example

Q = a → P | b → R

26

is used to represent a process Q, which behaves in two different ways
based on which atomic action it can engage in, a or b. If it can engage in
a first, then it executes action a first, and then behave like the process
represented by the process term P , else it engages in b and then behaves
like the process represented by the process term R. If both a and b
are possible actions that it can engage in, then it non-deterministically
chooses one of the two behavioral courses. One can naturally extend
the choice operator from binary to n-ary, so a process can have more
than two non-deterministic choices and courses of actions. Often times
if the action set is indexed, for example if a[i] such that i = 0..n, and
the behaviors following action a[i] is describable by a process term also
indexed by i, say P [i], then a compact representation of the choice is
written as

Q =|i=0..n (a[i] → P [i])

Although the original CSP has no direct syntax to describe priority
among the possible choices, later on variants of CSP have been proposed
to encode priority among the choices. Priority can be partially ordered in
general, but for our purposes we assume total order on the list of choices
in terms of priority. So we will use a → on top of the choice operator

|, and write it as
→
| to denote prioritized choice with the direction of

priority being decreasing from left to right in the term description.
To represent indefinite repetition of a sequential behavior, often writ-

ten with loops in standard programming notation, CSP allows use of
recursive definitions of process terms. For example

Q = a → Q

is used to represent a process which indefinitely repeats the action a.
One can have a combination of choice and recursion to encode a process
which goes on engaging in a sequence of actions until a certain action
happens, when it can change its behavior. For example,

P = a → Q | b → P

represents a process that can either engage in an indefinitely long se-
quence of action b, or if it can engage in action a, then it changes its
behavior according to process described by the term Q.

Given that we are now able to represent sequential processes with the
above described notations, we can describe parallel composition with
rendez-vous synchronizations. The parallel operator is denoted by ||,
and the synchronization alphabet accompanying the parallel operator
notation. However, to avoid complicated notation, we will specifically
mention the synchronization actions separately rather than burdening

Background Material 27

the parallel composition operator. Let us assume that process P engages
in actions in the set α(P) = {a, b, c}, and process Q engages in actions in
the set α(Q) = {a, b, d, e}, then the parallelly composed process P || Q
must synchronize on the action set α(P) ∩ α(Q) = {a, b}. This means
that whenever process P will come to a point when it is ready to engage
in action a, process Q must be ready to engage in action a, and they
would execute action a together. If Q is not ready for engaging in action
a, at the time P is ready to do so, P must get suspended until Q executes
further and gets ready to engage in this synchronization action. This is
what is known as rendez-vous synchronization. For example,

P = a → c → b → P,

and
Q = d → a → e → d → b → Q,

when parallely composed into P || Q, then P has to remain suspended
until Q finishes its independent action d, and then they can execute the
synchronous action a together, after which P can do its independent
action c while Q does its sequence of e and d, before the two of them
synchronize again on b.

Given this background, we are ready to describe the Dining Philoso-
pher solution based on [28], which are attributed to E. W. Dijkstra and
C. Scholten.

As per the figure shown, we have 5 philosopher CSP threads, and 5
fork CSP threads. The philosopher processes are called PHILi where
i = 0..4, and the fork processes are denoted as FORKi where i = 0..4.
Due to the symmetric nature of the processes, we will describe the ith
process only. The action alphabet of PHILi is given as

α(PHILi) = {thinki, requestseati, getforki
i−1, getforki

i+1, eati,

dropforki
i−1, dropforki

i+1, relinquishseati}.
Similarly for the fork processes

α(FORKj) = {getforkj−1
j , getforkj+1

j , dropforkj−1
j ,

dropforkj+1
j }.

Note that i−1, j−1, i+1, j−1 are modulo 5 increment and decrement
operations. Which means when i = 4, i + 1 = 0, similarly, when i =
0, i− 1 = 4 etc. Now we can write down the CSP process describing the
behavior of the philosopher number i as follows:

PHILi = thinki → requestseati → getforki
i−1 → getforki

i+1 → eati

→ dropforki
i−1 → dropforki

i+1 → relinquishseati → PHILi.

28

Similarly, behavior of the process describing the fork number j is given
as

FORKj = getforkj−1
j → dropforkj−1

j → FORKj

→
| getforkj+1

j →
dropforkj+1

j → FORKj

Note that in this particular solution, FORKj prioritizes between the
philosopher at its left and the one at its right, so that the solution is
tenable to the case when the number of philosophers is even as well.

So the dining philosopher system can now be written as

DP =||i=4
i=0 (PHILi || FORKi)

where ||i=4
i=0 is an obvious indexed form of the parallel composition oper-

ator.
Unfortunately as explained in [28], this solution can deadlock when

all the philosophers decide to ask for the fork on their left at the same
time. This necessitates an arbitrator, and a solution is given in the form
of a footman, invented by C. S. Scholten. In our examples, we use this
footman based solution to illustrate a finite state machine control of the
dining philosopher system. Here we describe in CSP notation, how the
footman works. Basically, the footman is the one who receives request
for a seat by a hungry philosopher, and if the number of philosophers
eating at that time is less than four, only then it grants such a request.
This avoids the deadlock scenario described above. We describe the CSP
notational form of the footman following [28] with a mutually recursive
definition. Let us denote the footman as FOOTS

n for n = 0..4, such that
FOOTS

n denotes the behavior of the footman when n philosophers are
seated and the set S contains the indices of those who are seated. The al-
phabet of FOOTS

n is given by ∪i=4
i=0{requestseati, relinquishseati}, and

hence those are the actions of PHILi which needs to synchronize with
the footman. Now we describe the CSP terms for the FOOTS

n as follows:

FOOT
{}
0 =|i=4

i=0 (requestseati → FOOT
{i}
1)

FOOT
{i}
1 = (|j �=i (requestseatj → FOOT

{i,j}
2))

| (relinquishi → FOOT0)

FOOT
{i,j}
2 = (|k �=i,j (requestseatk → FOOT

{i,j,k}
3))

| (|l∈{i,j} (relinquishl → FOOT
{i,j}−{l}
1))

FOOT
{i,j,k}
3 = (|l �=i,j,k (requestseatl → FOOT

{i,j,k,l}
4))

| (|x∈{i,j,k} (relinquishx → FOOT
{i,j,k}−{x}
2))

Background Material 29

FOOT
{i,j,k,l}
4 =|x∈{i,j,k,l} (relinquishx → FOOT

{i,j,k,l}−{x}
3)

So with the footman the dining philosopher system is now described
as

DP = FOOT
{}
0 || (||i=4

i=0 (PHILi || FORKi))
We will show in later chapters that each PHILi can contain compu-
tations which are more involved rather than being just atomic actions
as shown here. In fact, the computations involved may actually require
computation in another MoC. The footman can be also implemented
in FSM MoC, rather than keeping it a CSP process. Such examples
are provided in this book to create a running example of multi-MoC
modeling while keeping it simple.

5.3 Finite State Machine in SystemC
The Finite State Machine (FSM) model in SystemC is inherent to

the modeling constructs of SystemC. The existing SystemC can effec-
tively construct FSM models. Some designers may argue that given a
Discrete-Event simulation kernel, there is no need to add a Finite State
Machine (FSM) kernel for SystemC. However, with the vision of a truly
heterogeneous and hierarchical modeling environment in SystemC, the
need for such an inclusion is important. We categorize the FSM Model
of Computation as a specialized Discrete-Event (DE) Model of Compu-
tation that provides the designer additional modeling fidelity. A simple
example of an FSM is an even/odd parity checker as shown in Figure
2.6.

Odd
0

Even
1

1
0

0

1

Figure 2.6. FSM Implementation of a Parity Checker

A parity checker receives a sequence of bits as inputs and if the number
of 1’s received is even then the output is 1, otherwise 0. The state
transition table is shown in Table 2.1.

Based on the initial state and the input bit, the next state of the
FSM is determined. Pictorially, this can be represented in a graph form

30

Table 2.1. State Table for Parity Checker

Present State Input Next State/Output

0 0 0
0 1 1
1 0 1
1 1 0

shown in Figure 2.6. The transitions from even to odd only occur when
the input is 1, but if the input is 0 then the FSM remains in its same
state satisfying the parity bit checker. We elaborate our implementation
of the FSM kernel in SystemC in Chapter 7.

Note that formally an FSM could be either a Mealy style FSM or
a Moore style FSM. In the example of the parity checker, output is
determined by the current state of the machine, and hence it is a Moore
style FSM. We often need Mealy style FSMs as well. In the current
version of the FSM kernel we have not made any distinction of the two,
and our FSM structure can support both.

We end this section with the example of the footman discussed in the
previous section as a Moore style FSM.

state0 state1 state2 state3

if seatsTaken < 4 if seatsTaken < 4 if seatsTaken < 4

seatsTaken >= 4 seatsTaken >= 4 seatsTaken >= 4

state4

if seatsTaken < 4

seatsTaken >= 4 seatsTaken >= 4

if seatsTaken < 4

Figure 2.7. FSM implementation of the Footman

Figure 2.7 shows five states where the initial state is state0. A re-
questseat from a philosopher results in the FSM taking a transition to
state1 and allowing the philosopher to seat at the table. This continues
through state2 and state3. Once the FSM takes the transition to state4,
four seats have already been taken and no more philosophers will sit to
eat. Hence, all other requestseat will result in returning back to the same
state4. After one of the philosophers is done eating, the FSM takes the
transition back to state0. For details on the workings of the footman,
we refer to the reader to the earlier section discussing the CSP Dining
Philosophers example.

Chapter 3

SYSTEMC DISCRETE-EVENT KERNEL

1. DE Simulation Semantics
Modification of the existing SystemC Discrete-Event (DE) kernel re-

quires study of the reference implementation source code. This section
provides an implementation overview of the Discrete-Event kernel in
SystemC. We provide code fragments as well as pseudo-code to identify
some aspects of the source code with the assumption that the reader has
basic application-level design knowledge of SystemC. For details on the
QuickThread [35] implementation in SystemC refer to Appendix A.

Delta Events

Initialization
Stage

Evaluate
Stage

Update
Stage

Update Events

Progress
Time

Ready-to-run processes

notify(SC_ZERO
_TIME);

// delayed
notification

notify();
// immediate
notification

notify(n);
// timed

notification

Figure 3.1. Discrete-Event Kernel Simulation Semantics

32

Figure 1 shows a pictorial representation of SystemC’s simulation ker-
nel. Current implementation of the DE kernel in SystemC follows the
Evaluate-Update paradigm to simulate a model. Before introducing sim-
ulation semantics of the SystemC DE kernel, we familiarize the reader
with some terminology. There are three types of SystemC processes:
SC METHOD(), SC THREAD() and SC CTHREAD(). When any of
these processes are ready-to-run, they are pushed onto their respective
runnable queues. Processes become ready-to-run when events are gen-
erated on the signals/channels sensitive to the particular process, with
the exception of processes during initialization. During initialization
all processes are made ready-to-run unless specifically specified with
dont initialize(). Events on signals/channels call the request update()
function that notifies the kernel that an update is required on the sig-
nal or channel. The Update phase invokes the update() function on all
pending events.

The semantics of the SystemC kernel as described in the SystemC
Language Reference Manual (LRM) [49] contains the following:

1 Initialization
Initialization is the first stage the SystemC kernel enters upon start-
ing the simulation. In this stage, every SystemC process executes
once unless the process is specified with a dont initialize(). This
prevents the kernel from making the process ready-to-run during ini-
tialization. SC METHOD() processes execute once until completion,
and SC THREAD() processes execute until a wait(...) statement is
reached at which the respective process suspends itself. The order of
execution for these processes is unspecified.

2 Evaluate Phase
This stage executes processes that are ready-to-run, until there are
no runnable processes on the runnable queues. If the process is an
SC THREAD() or SC CTHREAD(), then these processes execute
until a wait(...) or wait until(...) are encountered, and if the process
is an SC METHOD(), then it is executed until completion. Once
again, the order in which the processes are selected is unspecified
in the standard. Immediate event notifications may occur from the
execution of a process causing additional processes to be ready-to-
run during the same Evaluate phase. During the execution of these
processes, the signals/channels may invoke a request update() that
schedules the signals/channels for pending calls to the update() func-
tion during the Update phase.

3 Repeat of Evaluate Phase for ready-to-run processes
The processes that become ready-to-run during the Evaluate phase

SystemC Discrete-Event Kernel 33

require being evaluated, looping back through the Evaluate phase.
Hence, referring back to stage 2 for any other process that is ready-
to-run.

4 Update Phase
This stage services all pending calls scheduled during the Evaluate
phase by the request update() function. The update() function is
called on the signals/channels requesting an update. This update()
may cause other processes to become ready-to-run.

5 Check delta-delayed notifications
If there are any pending delta-delayed notifications, determine which
processes are to be executed and return to stage 2.

6 Check timed notifications
Check if there are any remaining timed event notifications. If there
are none, then the simulation has completed.

7 Advance of Simulation time
Otherwise, advance the simulation time to the earliest next pending
timed event notification.

8 Iterate
The processes that become ready-to-run due to the pending notifica-
tions at the current time, have to be identified and processed through
the Evaluate phase by returning to stage 2.

1.1 Delta Cycles and Delta Delays
From the simulation semantics, it is clear that the notion of delta cy-

cles and delta delays are used in SystemC. Delta-cycles are small steps in
simulation time that do not advance the simulation time, commonly used
for interpreting zero-delay semantics. Processing a delta cycle executes
actions scheduled at the current simulation time using the Evaluate-
Update paradigm without advancing the simulation time. Delta-delays
schedule a process to execute in the following delta cycles, but once
again the simulation time is not advanced. The notion of delta cycles
is essential in performing simultaneous actions and in reality provides a
partial order for these actions.

2. Implementation Specifics
The original DE kernel is a queue-based implementation where the

primary data-structure used is a queue. Most of the code fragments are
extracted from the sc simcontext.cpp file present in the kernel source
directory.

34

The simulation starts once the sc start(...) function is called from the
modeler’s program code. This executes the kernel by proceeding through
the initialization phase where several flags are set and coroutine packages
are prepared for use. Then, all SC METHOD() and SC THREAD()
processes are made runnable. The runnable queues and process lists are
merely lists of pointer handles. The SC METHOD(), SC THREAD(),
and SC CTHREAD() vector lists display the lists used to store pointers
to the processes in Listing 3.1. The
m delta events is the list that holds the address of the events generated
as delta events. The type for the lists used in the kernel are typedefed
as shown in Listing 3.1.

Listing 3.1. Process vector lists

1 typedef s c pvector <sc method handle > sc method vec ;
2 typedef s c pvector <s c thread hand le > s c th r ead ve c ;
3 typedef s c pvector <s c c thread hand le > s c c th r e ad ve c ;
4

5 s c pvector <s c even t ∗> m de l ta event s ;

Using these typedef types, three lists are instantiated for the corre-
sponding SC METHOD(), SC THREAD(), and SC CTHREAD() pro-
cesses as private members of the class sc process table, whereas
m delta events is simply an sc pvector<...> list.

We first present the pseudo-code for the simulation kernel followed by
explanation of the functions and structures present. The pseudo-code is
shown in Listing 3.2.

3. Discrete-Event Simulation Kernel
There is pseudo-code made available in the SystemC Functional Spec-

ifications for further reference [49]. However, the pseudo-code in Listing
3.2 depicts the program outline for the DE kernel using the Evaluate-
Update paradigm as interpreted from the source code. The pseudo-
code is marked with the stages that correspond to the above mentioned
Evaluate-Update paradigm using the C++ comment format to provide
better separation for each of the stages.

The first step during initialization is initializing the flags and vari-
ables that are used in the simulation, after which the QuickThread pack-
ages are prepared [35]. This is followed by making all SC METHOD()s,
SC THREAD()s and SC CTHREAD()s ready-to-run such that the sim-
ulation can begin executing them [Listing 3.2, Line 10 - 11]. The crunch()
function is called once from within the initialization stage to process the
Evaluate-Update stages [Listing 3.2, Line 31]. The order in which the

SystemC Discrete-Event Kernel 35

Listing 3.2. Discrete Event Kernel

1 void s c s imcontext : : i n i t i a l i z e (bool no crunch) {
2

3 // stage 1
4 // begin UPDATE phase
5 perform update on p r im i t i v e channel r e g i s t r i e s ;
6

7 i n i t i a l i z e thread package ;
8 prepare a l l thread and cthread p ro c e s s e s for s imu la t i on ;
9

10 make a l l method proce s s runnable ;
11 make a l l thread proce s s runnable ;
12

13 proce s s de l t a n o t i f i c a t i o n s ;
14 // run the DELTA cyc l e s
15 run crunch () ;
16 }
17

18 void s c s imcontext : : s imulate (const s c t ime& durat ion) {
19 // stage 1
20 i n i t i a l i z e (true) ;
21 do {
22 do {
23 run crunch () ;
24 // stage 6 and 7
25 proce s s timed n o t i f i c a t i o n s ;
26 } un t i l no timed n o t i f i c a t i o n s or runnable p r o c e s s e s ;
27 // stage 8
28 } un t i l durat ion s p e c i f i e d for s imu la t i on
29 }
30

31 void s c s imcontext : : crunch () {
32

33 // stage 2
34 // EVALUATE phase
35 while (true) {
36 execute a l l method p ro c e s s e s in method vec l i s t ;
37 execute a l l c/ thread p ro c e s s e s in thread vec l i s t ;
38

39 // stage 3
40 break when no more p r o c e s s e s to run ;
41 }
42 // stage 4
43 // UPDATE PHASE
44 update p r im i t i v e channel r e g i s t r i e s ;
45

46 // stage 5
47 proce s s de l t a n o t i f i c a t i o n s ;
48 } // End

processes are executed is unspecified to model the nature of real hard-
ware. The processes can be withheld from being executed during the
initialization stage if a dont initialize() function call is invoked in the
constructor of the object. This will cause the kernel to not schedule
that process for execution during initialization.

The crunch() function first begins with the Evaluate phase where
all SC METHOD(), SC THREAD() and SC CTHREAD() processes are
executed with respect to their sensitivity lists. Execution of processes

36

can ready other processes to execute, request update() on signals, chan-
nels and events signifying that those entities require updates. Once there
are no more processes to execute, the Update phase begins. This is where
the perform update() function is called to perform the updates. All delta
events generated are stored in a list called m delta events, which is a list
of pointers to events of type sc event. These delta events are then all
processed that in-turn result to pending notifications. This might ready
more processes to execute which causes the repetition of the Evaluate-
Update paradigm until the end of simulation. The end of simulation is
realized when there are no timed notifications remaining or an sc stop()
is encountered, but if there are pending timed notifications, then the
scheduler advances the current simulation time to the earliest pending
timed notification and continues to iterate through the Evaluate-Update
phases until all timed notifications have been processed.

The simulate(...) function [Listing 3.2, Line 18] calls the initializa-
tion function and the crunch(...) function for the execution of Evaluate-
Update on processes for the duration of the simulation. The sc start(...)
function call to begin the SystemC simulation calls this simulate(...)
function. This overloaded function sc start(...) can take in the param-
eter for the duration the simulation is to execute. This value is passed
onto the kernel as the variable. initialize(...) readies the simulation for
execution and processes the crunch() once. This is where the processes
are executed once during initialization.

The crunch(...) function is responsible for executing the processes
through the Evaluate-Update paradigm. It is repeatedly called from
simulate() for the duration of the simulation or if an sc stop() statement
is invoked from the modeler’s code. The sc stop() function terminates
the simulation at that instance. The Evaluate phase in the crunch()
function performs the task of executing the runnable SC METHOD()
processes first, after which the SC THREAD()s and SC CTHREAD()s
are executed. The runnable queues are popped to retrieve the process
handles through which the member function execute() is invoked. Pro-
cess handles are pushed onto the runnable queues through events on the
primitive channels. A check for sc stop() is made to ensure that the pro-
grammer has not invoked the termination of simulation. This concludes
the Evaluate phase and begins the Update phase where the primitive
channels are updated using the perform update() function call. This is
when all the signals and events that called the request update() function
are updated. The signals, channels and event values are updated accord-
ing to the designer specification. For events, this is an important aspect
to understand because there can be immediate, SC ZERO TIME, and
timed notifications on events. Their respective calls are notify(), no-

SystemC Discrete-Event Kernel 37

tify(SC ZERO TIME) and notify(n, sc time unit) where n can be an
integer and sc time unit is simply a unit of time such as SC NS. Im-
mediate notification results in the event being updated immediately in
the same delta cycle, SC ZERO TIME notification means the event is
updated in the next delta cycle, and timed notifications are updated
after n units of time. Accordingly, the delta events are processed until
no delta events are left to be processed causing the simulation time to
advance to the next pending timed notification and repeating this until
the end of simulation.

4. Example: DE Kernel
In effort to clarify the Discrete-Event kernel, we provide an example

that exercises some of the properties such as immediate and delayed
notification as well as the scheduling of all processes.

Listing 3.3 displays the primary entry functions and SC METHOD()
and SC THREAD() definitions. We provide a brief description of the
processes in this example and how they should function according to the
simple program.

P1 meth is an SC METHOD() process that updates the local variable
called temp with the value read from signal s2 [Listing 3.3, Line 23].
This value is incremented and written to signal s1 after which an event
is scheduled on event e2 after 2 nanoseconds (ns). The signal s1 gets
updated during the current delta cycle’s Update phase. The value is
ready on that signal at the end of that delta cycle. That completes the
execution of the SC METHOD(). However, P1 meth will only fire when
there is a change in signal s2 due to the sensitivity list definition. This
process is declared as dont initialize(), defining that this process should
not be executed during initialization phase.

The remaining processes are all of SC THREAD() types. P4 thrd
and P5 thrd are straightforward in that they wait on events e1 and e2
respectively [Listing 3.3, Line 46 & 53]. Upon receiving an event the
remaining of the code segment is executed until the wait(...) statement
is encountered again. At a wait statement, the executing process sus-
pends allowing other processes to execute. The sole purpose of these two
SC THREAD()s is to print to the screen when the event is notified along
with helper functions in identifying the changes on signals. P3 thrd is
similar in that it waits for events except in this case it waits for either
event to be notified.

P2 thrd has an internal counter called local counter that initializes
the s2 signal with -1 during the initialization stage and increments from
there on to write to the same signal [Listing 3.3, Line 29]. After the
increment is done, an immediate notification is sent on event e1. This

38

Listing 3.3. Discrete-Event Simulation Example

1SC MODULE(DE KERNEL) {
2 s c i n <bool> ck ; sc out<int > s1 ; // ports
3 s c s i g n a l <int > s2 ; // s i gna l s
4 s c even t e1 , e2 , // events
5 void P1 meth () ; void P3 thrd () ; void P2 thrd () ;
6 void P4 thrd () ; void P5 thrd () ; // funct ions
7

8 SC CTOR(DE KERNEL) {
9 SC THREAD(P5 thrd) ;

10 SC THREAD(P4 thrd) ;
11 SC THREAD(P3 thrd) ;
12 s e n s i t i v e << ck . pos () ;
13 SC THREAD(P2 thrd) ;
14 s e n s i t i v e << ck . pos () ;
15 SC METHOD(P1 meth) ;
16 d o n t i n i t i a l i z e () ;
17 s e n s i t i v e << s2 ;
18 }/∗ END DE KERNEL C TOR∗/
19

20 private :
21 int temp ;
22

23 void DE KERNEL : : P1 meth () {
24 temp = s2 . read () ;
25 s1 . wr i t e (temp+1) ;
26 e2 . n o t i f y (2 ,SC NS) ;
27 }/∗ END P1 meth ∗/
28

29 void DE KERNEL : : P2 thrd () {
30 int l o c a l c o un t e r = −1;
31 while (true) {
32 s2 . wr i t e (l o c a l c o un t e r) ;
33 ++lo c a l c o un t e r ;
34 e1 . n o t i f y () ; //immediate
35 wait () ;
36 }/∗ END WHILE ∗/
37 }/∗ END P2 thrd ∗/
38

39 void DE KERNEL : : P3 thrd () {
40 while (true) {
41 wait (e1 | e2) ;
42 cout << ” sc t ime stamp : : \ t ” << sc t ime stamp () <<

endl ;
43 }/∗ END WHILE ∗/
44 }/∗ END P3 thrd ∗/
45

46 void DE KERNEL : : P4 thrd () {
47 while (true) {
48 wait (e1) ;
49 cout << sc t ime stamp () << ” \ t event 1 t r i g g e r e d ” << endl ;
50 }/∗ END WHILE ∗/
51 }/∗ END P4 thrd ∗/
52

53 void DE KERNEL : : P5 thrd () {
54 while (true) {
55 wait (e2) ;
56 cout << sc t ime stamp () << ” \ t event 2 t r i g g e r e d ” << endl

;
57 }/∗ END WHILE ∗/
58 }/∗ END P5 thrd ∗/

SystemC Discrete-Event Kernel 39

indicates processes that are waiting on wait(e1) to resume and continue
execution. We do not present wait(SC ZERO TIME) but that can be
understood as a notification in the following delta cycle instead of the
same one.

This simple program inspired by [2] illustrates the basic workings of
the SystemC DE kernel with respect to events, signals, sensitivities and
processes, while introducing some of the basic functions of the HDL. To
prepare for the following chapters, we provide another example that will
be carried onto the next chapter for further explanation. We choose the
FIR model from the SystemC distribution [49].

4.1 Finite Impulse Response Example

Listing 3.4. stimulus.h

1SC MODULE(st imulus) {
2

3 sc out<bool> r e s e t ;
4 sc out<bool> i n pu t va l i d ;
5 sc out<int > sample ;
6 s c i n <bool> CLK;
7

8 s c i n t <8> send va lue1 ;
9 unsigned cy c l e ;

10

11 SC CTOR(st imulus)
12 {
13 SC METHOD(entry) ;
14 d o n t i n i t i a l i z e () ;
15 s e n s i t i v e p o s (CLK) ;
16 send va lue1 = 0 ;
17 cy c l e = 0;
18 }
19 void entry () ;
20 } ;

This example is a three-staged module example at a higher level of
abstraction than an RTL model. The FIR model is separated into three
functional blocks as shown in Figure 3.2. The input block generates
inputs for the FIR, the FIR block performs the Finite Impulse Response
and the output block simply sends it to the standard output.

Figure 3.2. Discrete-Event FIR Block Diagram

40

Listing 3.5. stimulus.cpp

1 void s t imulus : : entry () {
2

3 cy c l e++;
4 // sending some rese t va lues
5 i f (cyc le <4) {
6 r e s e t . wr i t e (true) ;
7 i n pu t va l i d . wr i t e (fa l se) ;
8 } else {
9 r e s e t . wr i t e (fa l se) ;

10 i n pu t va l i d . wr i t e (fa l se) ;
11 // sending normal mode va lues
12 i f (c y c l e%10==0) {
13 i n pu t va l i d . wr i t e (true) ;
14 sample . wr i t e ((int) send va lue1) ;
15 send va lue1++;
16 } ;
17 }
18 }

Listing 3.6. fir.h

1SC MODULE(f i r) {
2

3 s c i n <bool> r e s e t ;
4 s c i n <bool> i n pu t va l i d ;
5 s c i n <int > sample ;
6 sc out<bool> output data ready ;
7 sc out<int > r e s u l t ;
8 s c i n c l k CLK;
9

10 s c i n t <9> c o e f s [1 6] ;
11

12 SC CTOR(f i r)
13 {
14 SC CTHREAD(entry , CLK. pos ()) ;
15 watching (r e s e t . de layed () == true) ;
16 #inc lude ” f i r c o n s t . h”
17 }
18

19 void entry () ;
20 } ;

Here we describe the DE code and in Chapter 5 we compare it with the
corresponding SDF FIR model. Listing 3.4 and 3.5 present the Stimulus
block from Figure 3.2, where both the SC MODULE() declaration and
the entry() function are displayed. The Stimulus block as can be seen
from Listing 3.5 has a reset state for four cycles after which every ten
cycles an incremented send value1 is sent out on the sample port [Listing
3.5, Line 5 - 15]. Note that the Stimulus block has four ports, clock input
port, output port for the sample, input valid output port to indicate to
the next block (FIR block) that a sample has been generated, and an
output reset port to perform reset on all the modules. Also note that this

SystemC Discrete-Event Kernel 41

functional block is an SC METHOD() process sensitive to the positive
edge of the clock [Listing 3.4, Line 3 - 6].

Similarly, the FIR block shows input ports accepting the sample and
input valid signals from the Stimulus block [Listing 3.6, Line 5 & 4].
A clock input port is instantiated because this is an SC CTHREAD()
process. In addition, this FIR block needs to have control signals sent to
the Display block and therefore has the output data ready output port
to signal the Display block that the computed FIR value is present on
the result output signal [Listing 3.6, Line 6 & 7].

The Display block simply has input ports that accept the data sent
from the FIR block and the control signal allowing the Display block

Listing 3.7. fir.cpp

1#include <systemc . h>
2#include ” f i r . h”
3

4 void f i r : : entry () {
5

6 s c i n t <8> sample tmp ;
7 s c i n t <17> pro ;
8 s c i n t <19> acc ;
9 s c i n t <8> s h i f t [1 6] ;

10

11 // re se t watching
12 /∗ t h i s would be an unro l l ed loop ∗/
13 for (int i =0; i <=15; i++)
14 s h i f t [i] = 0 ;
15 r e s u l t . wr i t e (0) ;
16 output data ready . wr i t e (fa l se) ;
17 wait () ;
18

19 // main f unc t i ona l i t y
20 while (1) {
21 output data ready . wr i t e (fa l se) ;
22 wa i t un t i l (i npu t va l i d . de layed () == true) ;
23 sample tmp = sample . read () ;
24 acc = sample tmp∗ c o e f s [0] ;
25

26 for (int i =14; i >=0; i−−) {
27 /∗ t h i s would be an unro l l ed loop ∗/
28 pro = s h i f t [i]∗ c o e f s [i +1] ;
29 acc += pro ;
30 } ;
31

32 for (int i =14; i >=0; i−−) {
33 /∗ t h i s would be an unro l l ed loop ∗/
34 s h i f t [i +1] = s h i f t [i] ;
35 } ;
36

37 s h i f t [0] = sample tmp ;
38 // wri te output va lues
39 r e s u l t . wr i t e ((int) acc) ;
40 output data ready . wr i t e (true) ;
41 wait () ;
42 } ;
43 }

42

Listing 3.8. display.h

1SC MODULE(d i sp l ay) {
2

3 s c i n <bool> output data ready ;
4 s c i n <int > r e s u l t ;
5

6 int i , tmp1 ;
7

8 SC CTOR(d i sp l ay)
9 {

10 SC METHOD(entry) ;
11 d o n t i n i t i a l i z e () ;
12 s e n s i t i v e p o s (output data ready) ;
13 i = 0 ;
14 }
15

16 void entry () ;
17 } ;

to execute. This is an SC METHOD() process that is sensitive to the
output data ready signal that it accepts from FIR [Listing 3.8, Line 3].
Note that we have inserted a counter i in Display that we use to ter-
minate the simulation via sc stop() once a certain number of outputs
are computed. We could have simply inserted the number of cycles in
the sc start(n) function call but decided against it in order to maintain
consistency between DE FIR and Synchronous Data Flow FIR mod-
els. Listing 3.10 describes the instantiation of the modules and their
connections via signals.

The DE kernel begins preparing each module for execution during
initialization. Notice that the Stimulus and Display block declaration
have a dont initialize() which makes the kernel realize that these modules
are to be skipped for execution during initialization. The FIR block will
be fired during initialization, but the watching(...) [Listing 3.6, Line

Listing 3.9. display.cpp

1#include <systemc . h>
2#include ” d i sp l ay . h”
3

4 void d i sp l ay : : entry () {
5

6 // Reading Data when va l i d i f high
7 tmp1 = r e s u l t . read () ;
8 cout << tmp1 << endl ;
9 i++;

10 i f (i == 5000000) {
11 s c s t op () ;
12 } ;
13 }
14 // EOF

SystemC Discrete-Event Kernel 43

Listing 3.10. FIR main.cpp

1#include <systemc . h>
2#include ” st imulus . h”
3#include ” d i sp l ay . h”
4#include ” f i r . h”
5#include ” s d f i n c l u d e s . h”
6#include ” s d f s t r u c t u r e . h”
7 int sc main (int argc , char ∗ argv []) {
8 s c c l o c k c l ock ;
9 s c s i g n a l <bool> r e s e t ;

10 s c s i g n a l <bool> i n pu t va l i d ;
11 s c s i g n a l <int > sample ;
12 s c s i g n a l <bool> output data ready ;
13 s c s i g n a l <int > r e s u l t ;
14

15 s t imulus s t imulus1 (” s t imu lu s b l o ck ”) ;
16 s t imulus1 . r e s e t (r e s e t) ;
17 s t imulus1 . i npu t va l i d (i npu t va l i d) ;
18 s t imulus1 . sample (sample) ;
19 s t imulus1 .CLK(c lock . s i g n a l ()) ;
20

21 f i r f i r 1 (” process body ”) ;
22 f i r 1 . r e s e t (r e s e t) ;
23 f i r 1 . i npu t va l i d (i npu t va l i d) ;
24 f i r 1 . sample (sample) ;
25 f i r 1 . output data ready (output data ready) ;
26 f i r 1 . r e s u l t (r e s u l t) ;
27 f i r 1 .CLK(c lock) ;
28

29 d i sp l ay d i sp l ay1 (” d i sp l ay ”) ;
30 d i sp l ay1 . output data ready (output data ready) ;
31 d i sp l ay1 . r e s u l t (r e s u l t) ;
32

33 s c s t a r t (c lock , −1) ;
34 return 0 ;
35 }

15] statement forces the module to only proceed execution once the
condition inside watching(...) is satisfied, which in this case is reset
being true. This mechanism ensures that the reset waits until four clock
cycles are complete as shown in Listing 3.4 before the FIR block is
executed. Dynamic scheduling is performed on this system with the
help of control signals that direct the flow of tokens from the Stimulus
to FIR and finally to the Display block.

Chapter 4

FEW WORDS ABOUT IMPLEMENTATION
CLASS HIERARCHY

baseReceiver

___Receiver ___node11___kernel

1 1..*

1

*

___element

Figure 4.1. General Implementation Class Hierarchy

This chapter informs the reader about the organization of our ker-
nel implementation. During the development process of alternative ker-
nels for SystemC, several implementation hierarchies and data structures
were investigated. In this book we did not make an effort to unify them.
This book presents a snapshot of the current status of the project so
that other interested developers can use the concepts and ideas to de-

46

velop their own multi-MoC kernels. Once the reader goes through the
Synchronous Data Flow, Communicating Sequential Processes and Fi-
nite State Machine chapters, a distinct difference in class hierarchy with
the SystemC kernel development can be noticed. We expect further
gradual changes in implementation hierarchy in the future as we im-
prove our SystemC kernel implementations. Nonetheless, we propose a
hierarchy that allows for an extensible design for multi-MoC modeling.
We simply lay a foundation that can support this, but do not currently
employ it to its maximum potential.

In general, the class hierarchy resembles the class diagram shown in
Figure 4.1. Some of the terminology used in Figure 4.1 are borrowed
from [25]. It is not necessary to strictly conform to this class hierarchy,
because some implementations do not require such a class structure and
some require more encapsulation. The terminology used are as follows:

Kernel: A class that allows for creation and simulation of multiple in-
stances of a model represented by a specific MoC.

Node: A representation of a specific function block that exhibits behav-
ior specified by the MoC. For example, a CSPnode is a representation
for a CSP process by encapsulating an instance of CSPReceiver.

Receiver: An encapsulation class to separate the data structure of an
MoC from its communication with the designer and MoC-specific
nodes. The common functionalities can be derived from a baseRe-
ceiver class.

baseReceiver: A class that encapsulates common functionalities and
data structures employed by a receiver. Examples are queues that
are used in DE and CSP MoCs as runnable lists and graph structures
as used in representing an SDF and CSP model.

Element: Embedded deepest of all classes in terms of class hierarchy,
an element class defines a structure that aids in creating the main
data structure used to construct a model for an MoC.

This class hierarchy is only to provide minimal organization in devel-
oping the additional kernels and classes for encapsulation and function-
ality. Additional classes if required, should be added for better object
oriented programming practices.

The CSP kernel class diagram in Figure 4.2 illustrates the CSP ker-
nel implementation loosely employing the general implementation class
hierarchy.

A CSP model is best represented as a graph. This graph is represented
in CSPReceiver by a list-based data structure using Standard Template

Few words about Implementation Class Hierarchy 47

baseReceiver

CSPReceiver CSPnode
11

CSPkernel

1

*

1

*

CSPelement

3

3

CSPnodelist2

*

sc_domains

1

*

sc_thread_process

1

1

1

1

Figure 4.2. CSP Implementation Class Hierarchy

Library (STL) vector class. This list contains pointers to CSPelement.
The CSPelement class provides the CSPReceiver with information about
which nodes are connected via channels and the data to be transferred
on each channel. CSPchannel inherits from CSPelement as shown later
in this chapter, because in essence they exhibit the exact same behavior.
A CSPnode has one instance of a CSPReceiver and contains a pointer
to the SystemC thread class sc thread process. The modeler creates an
instance of CSPnode within an SC MODULE(...) to distinguish that
module as a CSP module. An additional class called CSPnodelist holds
pointers to CSPnodes and this class contains member functions that
simulates the CSP MoC.

The FSM implementation hierarchy is simple where class FSMRe-
ceiver once again is a derived class from baseReceiver. However, the
data structure present in this receiver uses a map<...> STL structure.
This structure contains a string key field that holds the name of the
state and a pointer to class sc method handle. FSMnode class is not

48

baseReceiver

FSMReceiver FSMkernel1*

1

*

sc_method_process sc_domains

1

*

Figure 4.3. FSM Implementation Class Hierarchy

presented in Figure 4.3 because FSM transitions are explicitly defined
within the state or entry function of that module. Hence, there is no
need for communication between states other than signaling the FSM
with the next state to carry out FSM simulation, which is done within
the entry function of the process.

The sc domains class in both Figure 4.2 and Figure 4.3 is a toplevel
encapsulation class that implements the Application Protocol Interface
(API). The purpose of sc domains is to allow different kernels to interact
with each other. Another use of the API is to allow for multiple models
of the same MoC, for example three SDF models to function in the
same model. Additional information regarding the API is discussed in
Chapter 8.

1. MoC Specific Ports and Channels
MoC-specific ports and channels are needed due to the differences in

communication protocols of the new kernels and the Discrete-Event ker-
nel in SystemC. For example, SDF channels do not require the channels
to generate events when pushing data onto a channel. Furthermore, the
CSP rendez-vous semantics require its own event and event handling
mechanism because the channels themselves play an important role in

Few words about Implementation Class Hierarchy 49

sc_moc_port<T>

SDFport<T> CSPport<T> FSMport<T>

Figure 4.4. sc moc port Implementation Class Hierarchy

Table 4.1. Some Member functions of class sc moc port

Member Function Purpose

operator() Overloaded operator for binding a sc moc channel to
a port.

getport() Returns a pointer to the channel bound to this port.

push(...) Inserts a value onto the channel

pop(...) Returns the first value on the channel

the suspension and resumption of processes rather than simply providing
a medium through which data is transferred.

MoC-Specific Ports
Figure 4.4 describes a class hierarchy for ports that accommodates multi-
ple MoC communication. Basic functionality of the ports is implemented
in sc moc port class and specializations are implemented in the derived
classes. All the derived port classes are also polymorphic by making
them template classes.

Listing 4.1 shows the class declaration and definition for sc moc port.
The private data member of this class is a pointer to an sc moc channel
object called port. This variable addresses the channel that is bound to
this port. The roles of the member functions are shown in Table 4.1.
Most of the generic roles of the port are implemented in the base class.
If there is a need to add specific functionality for a particular port or
channel then it can be added to the derived class.

50

Listing 4.1. class sc moc port

1 template <class T> class sc moc port
2 {
3 private :
4 sc moc channel<T> ∗ port ;
5 void bind (sc moc channel<T> ∗ p) ;
6

7 public :
8 sc moc port<T>() ;
9 ˜ sc moc port<T>() ;

10 sc moc port (sc moc channel<T> ∗ p) ;
11

12 void operator () (sc moc channel<T> ∗ port) { bind (port) ; } ;
13 void operator () (sc moc channel<T> & port) { bind(&port) ; } ;
14 T ∗ getpor t () ;
15

16 // Vector push/pop funct ions
17 void push (T p) ;
18 void push (T ∗ p) ;
19 T pop () ;
20

21 void pr in t () { i f (port != NULL) { port−>pr in t () ; } } ;
22 } ;
23

24 template <class T >
25 sc moc port<T> : : s c moc port () {
26 port = NULL;
27 } ;
28

29 template <class T >
30 sc moc port<T> : :˜ sc moc port () { } ;
31

32 template <class T >
33 sc moc port<T> : : s c moc port (sc moc channel<T> ∗ p) { port = p

; } ;
34

35 template < class T >
36 void sc moc port<T> : : bind (sc moc channel<T> ∗ p) { port = p

; } ;
37

38 template < class T>
39 T ∗ sc moc port<T> : : g e tpor t () { return port ; } ;
40

41 template < class T>
42 void sc moc port<T> : : push (T p) { port−>push (p) ; } ;
43 template < class T>
44 void sc moc port<T> : : push (T ∗ p) { port−>push (p) ; } ;
45

46 template < class T>
47 T sc moc port<T> : : pop () { return (port−>pop ()) ; } ;

MoC-Specific Channels
Similarly, channels for the these MoC-specific ports follow a hierarchy
displayed in Figure 4.5. The base class is sc moc channel from which the
SDFchannel, CSPchannel and FSMchannel are all derived. Basic func-
tions of a channel are implemented in the base class sc moc channel and
MoC-specific channel implementations are contained in their respective
derived class. The SDFchannel and FSMchannel are used to transport

Few words about Implementation Class Hierarchy 51

sc_moc_channel<T>

SDFchannel<T> FSMchannel<T>

-value

CSPchannel<T>

Figure 4.5. sc moc channel Implementation Class Hierarchy

data from one node to another. However, a CSPchannel plays an inte-
gral role in the rendez-vous communication, which requires additional
implementation details to the channel. Figure 4.5 shows a data member
value in CSPchannel that holds the value to be transferred once rendez-
vous synchronization occurs. This value is of templated type allowing for
all values of different types to be transferred. This is an example where
specialization of an MoC-specific channel is done. Nonetheless, note that
these MoC-specific channels and ports have no relation with sc channel
or sc port and MoC-specific channels and ports are implemented using
C++ data types.

Listing 4.2 displays the declaration and definition of the class
sc moc channel. A list data structure is used to preserve the tokens
pushed onto a channel. We use the vector class from STL. The push(...)
member function inserts a value into the list and pop() returns the first
value in the list. Note that both sc moc port and sc moc channel are
template classes allowing for any type of data to be transferred through
these ports and channels.

Note about SDF Ports and Channels
In Chapter 5, SDF ports and channels are not presented. However,
the implementation does have SDF ports and SDF channels similar to
FSM ports and FSM channels in Chapter 7. Class SDFport derives
from sc moc port without any need for specialization since its purpose
is to only transfer data and the SDFchannel is a derived class from
sc moc channel. They are both templated classes as shown in Figure

52

Listing 4.2. class sc moc channel

1 template <class T>
2 class sc moc channel {
3 private :
4 vector<T> ∗ mainQ ;
5

6 public :
7 sc moc channel<T >() ; // constructor
8 ˜ sc moc channel<T>() ; // des t ruc tor
9

10 // Vector push/pop funct ions
11 void push (T p) ;
12 void push (T ∗ p) ;
13 T pop () ;
14

15 } ;
16

17 template <class T >
18 sc moc channel<T> : : sc moc channel () { mainQ = new vector<T>() ;

} ;
19

20 template <class T >
21 sc moc channel<T> : :˜ sc moc channel () { delete mainQ ; } ;
22

23 template < class T>
24 void sc moc channel<T> : : push (T p) { mainQ−>push back (p) ; } ;
25

26 template < class T>
27 void sc moc channel<T> : : push (T ∗ p) { mainQ−>push back (∗p) ; } ;
28

29 template < class T>
30 T sc moc channel<T> : : pop () {
31 T newT = mainQ−>f r on t () ;
32 mainQ−>e ra s e (mainQ−>begin ()) ;
33 return (newT) ;
34 }

4.4 and Figure 4.5. We provide SDF examples that employ the SDF
ports and channels at our website [36].

baseReceiver class
baseReceiver currently only holds the receiver type, indicating whether
an FSMReceiver or CSPReceiver has been derived. However, the usage
of this base class can extend to encompass common data structures and
helper functions. One such use of the baseReceiver can be to allow for
implementation of the data structure required to represent MoCs that
require a graph construction. We consider a graph like structure for SDF,
FSM and CSP and currently we employ individual representations for
each kernel shown in Figure 4.6. However, our current implementation
does not unify the idea of representing commonly used data structures
in the baseReceiver class and leave it aside as future work.

Few words about Implementation Class Hierarchy 53

A=green
B=red

A=yellow
B=red

A=red
B=green

A=red
B=yellow

S0

S1

S2

S3

A := yellow

A := red
B := green

A := green
B := red

B := yellow

No change No change

T0

T
1

T2 T3

T4

T5

(a) FSM Traffic Light Controller

PHIL0

PHIL1

PHIL2
PHIL3

PHIL4

(b) CSP Dining Philosopher

(c) SDF FIR

Figure 4.6. Graph-like Representation for SDF, FSM, CSP

2. Integration of Kernels
Kernel integration is a challenging task especially for kernels based on

MoCs that exhibit different simulation semantics other than the existing
DE scheduler semantics of SystemC. The MoC implementation chapters
discuss the addition of a particular MoC in SystemC and documenta-
tion is provided describing the integration of these different MoCs. MoCs
such as SDF and FSM are easy to integrate with the reference imple-
mentation and themselves, whereas CSP requires an understanding of
QuickThreads [35] and the coroutine packages in SystemC. Integration of
the SDF and FSM kernels are relatively straightforward, requiring minor
additions to the existing source with the usage of Autoconf/Automake
[21, 22]. In Appendix B we describe a method of adding newly created
classes to the SystemC distribution using Autoconf/Automake. This
approach is used for all MoC integration. However, the CSP kernel
integration is non-trivial, which we describe in detail in Chapter 6.

Chapter 5

SYNCHRONOUS DATA FLOW KERNEL IN
SYSTEMC

1. SDF MoC

This chapter describes our implementation of the Synchronous Data
Flow (SDF) kernel in SystemC. We present code fragments for the SDF
data structure, scheduling algorithms, kernel manipulations and designer
guidelines for modeling using the SDF kernel along with an example.

The SDF MoC is a subset of the Data Flow paradigm [32]. This
paradigm dictates that a program is divided into blocks and arcs, repre-
senting functionality and data paths, respectively. The program is rep-
resented as a directed graph connecting the function blocks with data
arcs. From [53], Figure 5.1 shows an example of an SDF graph (SDFG).
An SDF model imposes further constraints by defining the block to be
invoked only when there is sufficient input samples available to carry out
the computation by the function block, and blocks with no data input
arcs can be scheduled for execution at any time.

In Figure 5.1, the numbers at the head and tail of the arcs represent
the production rate of the block and consumption rate of the block
respectively, and the numbers in the middle represent an identification
number for the arc that we call arc labels. An invoked block consumes
a fixed number of data samples on each input data arc and similarly
expunges a fixed number of data samples on each of the output data
arcs. Input and output data rates of each data arc for a block are
known prior to the invocation of the block and behave as infinite FIFO
queues. Please note that we interchangeably use function blocks, blocks
and nodes for referring to blocks of code as symbolized in Figure 5.1 by
A, B, C, D, E, F and G.

56

1

A
1

B

C
D

E

F
2

5

4

3

6

7

2

2

1 2

2

3

1

1

3

1

1

1
1

Figure 5.1. Example of a Synchronous Data Flow Graph [53].

Solution to static scheduling and execution of an executable schedule
for SDF models in SystemC requires solutions to intermediary problems.
The problems encountered are as follows:

1 Designing an appropriate data structure to contain information for
an SDFG.

2 Constructing executable schedules for the SDFGs. In this problem,
there are two sub-problems. They are:

(a) Computing the number of times each SDF block has to be fired
that we refer to as the repetition vector.

(b) Finding the order in which the SDF nodes are be executed, which
we term firing order.

3 Designing a mechanism for heterogeneous execution of existing Discre
te-Event (DE) and SDF kernel.

We define repetition vector and firing order based on [5]. By repetition
vector we mean the number of times each function block in the SDFG is
to be fired. However, a particular order is needed in which the function
blocks in the SDFG are to be fired, that we refer to as the firing order.
Constructing a firing order requires a valid repetition vector. A valid
executable schedule refers to a correctly computed repetition vector and
firing order. The directed nature of the graph and the production and
consumption rates provide an algorithm with which the firing order is
computed.

Synchronous Data Flow Kernel in SystemC 57

Problem 2a is discussed in [38] where Lee et al. describe a method
whereby static scheduling of these function blocks is computed during
compile time rather than runtime. We employ a modification of this
technique in our SDF kernel for SystemC explained later in this chapter.
The method utilizes the predefined consumption and production rates
to construct a set of homogeneous system of linear Diophantine [11]
equations. Solution to Problem 2b uses a scheduling algorithm from [5]
that computes a firing order given that there exists a valid repetition
vector and the SDFG is consistent. A consistent SDFG is a correctly
constructed SDF model whose executable schedule can be computed.

We choose certain implementation guidelines to adhere to as closely
as possible when implementing the SDF kernel.

1.1 General Implementation Guidelines
Implementation of the SDF kernel in SystemC is an addition to the

existing classes of SystemC. Our efforts in isolating the SDF kernel from
the existing SystemC kernel definitions introduces copying existing infor-
mation into the SDF data structure. For example, the process name that
is used to distinguish processes is accessible from the SDF data structure
as well as existing SystemC process classes. The general guidelines we
follow are:

Retain all SystemC version 2.0.1 functionality
Current functionality that is provided with the stable release of Sys-
temC 2.0.1 should be intact after the alterations related to the intro-
duction of the SDF kernel.

SDF Data structure creation
All SDF graph structure representation is performed internal to the
kernel, hiding the information about the data structure, solver, schedul-
ing algorithms from the designer.

Minimize designer access
A separate SDF data structure is created to encapsulate the func-
tionalities and behavior of the SDF. The modeler must only access
this structure via member functions.

2. SDF Data Structure
Representing the SDF graph (SDFG) needs construction of a data

structure to encapsulate information about the graph, such as the pro-
duction and consumption rates, the manner in which the blocks are con-
nected and so on. In this section, we describe the SDF data structure
in detail with figures and code snippets. The majority of our imple-

58

mentation uses dynamically linked lists (vector<...>) provided in the
Standard Template Library (STL) [13]. Figure 5.2 shows the SDF data
structure. A toplevel list called sdf domain of type vector<sdf graph*>
is instantiated that holds the address of every SDF model in the sys-
tem. This allows multiple SDF models to interact with each other along
with the DE models. Furthermore, each sdf graph as shown in Listing
5.1 contains a vector list of pointers to edges which is the second vector
shown in the Figure 5.2. Each edge object stores information about an
SDF function block whose structure we present later in this section.

+sdf_crunch() : void
+sdf_simulate() : void
+sdf_create_schedule() : void

+prefix
-result : int*
-num_arcs : int
-num_nodes : int
-sdflist : vector<edges*>
-sdf_schedule : vector<edges*>

sdf_graph

-sdf_domain : vector<sdf_graph*>

sc_domains

+setname() : void
+set_prod() : void
+set_cons() : void

edges
2*

-delay : int
-cons_rate : int
-arc_name : int
-from_ptr : edges*

«struct»
in_edges

1

*

1

*

1
*

-delay : int
-prod_rate : int
-arc_name : int
-to_ptr : edges*

«struct»
out_edges

1

1

1

1

schedule

Figure 5.2. SDF Class Diagram

The toplevel class is defined as sdf graph as shown in Listing 5.1. This
is the class that holds information pertaining to a single Synchronous
Data Flow Graph (SDFG). The SDFG encapsulates the following in-
formation: the number of blocks and arcs in the SDF, access to the
executable schedule via sdf schedule, the repetition vector through re-
sult, a string to identify the toplevel SDF by prefix, and a list of the
SDF blocks represented by sdflist [Listing 5.1, Line 6 - 13].

All SDF blocks are inserted into the vector<edges*> sdflist list. This
introduces the edges class that encapsulates the incoming and the out-
going arcs of that particular SDF block, an integer valued name for con-

Synchronous Data Flow Kernel in SystemC 59

Listing 5.1. class sdf graph

1 class sd f g raph {
2 public :
3 sd f g raph () ; // Constructor & des t ruc tor
4 ˜ sd f g raph () ;
5

6 vector < edges∗> s d f l i s t ; // SDF block l i s t
7 vector < edges∗> s d f s c h edu l e ; // executab l e schedule
8 int ∗ r e s u l t ;
9

10 int num nodes ; // Number of b locks
11 int num arcs ; // Number of arcs
12

13 s t r i n g p r e f i x ; // Store the name of the SDFG
14 } ;

structing the repetition vector and text based names for comparisons.
We typedef this class to SDFnode.

Our implementation uses process names for comparison since the
SystemC standard requires each object to contain a unique identify-
ing name. When storing the process name either in sdf graph class or
edges class shown in Listing 5.3, we add a dot character followed by the
name of the process.

Listing 5.2. Example showing name()

1SC MODULE(t e s t) {
2

3 // port dec lara t ions
4

5 void entry1 () {name () ; } ;
6 void entry2 () {name () ; } ;
7

8 SC CTOR(t e s t) {
9 name () ;

10 SC METHOD(entry1) ; // f i r s t entry funct ion
11 SC THREAD(entry2) ; // second entry funct ion
12 // s e n s i t i v i t y l i s t
13 } ;
14 } ;

This is necessary to allow multiple process entry functions to be ex-
ecuted when the particular process is found. For clarification, Listing
5.2 presents an example showing SystemC’s process naming convention.
From Listing 5.2, it can be noticed that there are two entry functions
entry1() and entry2(). Returning the name() function from within any
of these functions concatenates the process name, and entry function
name with a dot character in between. So, calling the name() function
from entry1() will return “test.entry1”; calling the same from entry2()
will return “test.entry2” and from the constructor will return “test”.

60

Hence, a process name is a unique identifier describing the hierarchy of
an entry function, for example “test.entry1”. We require both these pro-
cesses to execute for the process name “test” and to avoid much string
parsing we use the substring matching function strstr(...). However, this
will also match a process name other than this module that might have
an entry function with a name with “test”. All processes with a prefix
“test.” belong to the module “test”. Therefore, the unique process name
is constructed by adding the dot character after the process name and
searching for that substring.

Listing 5.3. class edges

1 class edges {
2

3 public :
4 vector<out edges > out ;
5 vector<in edges > in ;
6

7 // constructor / des t ruc tor
8 edges () ;
9 ˜ edges () ;

10

11 // member funct ions
12 void set name (s t r i n g name , vector<edges∗> & in) ; // se t

name
13 void s e t p rod (sc method ∗ to ptr , int prod) ; // se t

production rate
14 void s e t c on s (sc method ∗ f rom ptr , int cons) ; // se t

consumption rate
15

16 // va r i a b l e s tha t w i l l remain pub l i c at the moment
17 s t r i n g name ;
18 int mapped name ;
19 } ;

The edges class encapsulates the incoming edges to an SDF block
and outgoing edges from an SDF block. Lists vector<out edges> out
and vector<in edges> in as shown in [Listing 5.3, Line 4 & 5] where
out edges and in edges are of C type structs as displayed in Listing 5.4
show the data structure used to store the outgoing arcs and incoming
arcs respectively. Every edge object stores the process name as a string
name and a corresponding integer value as mapped name used in creat-
ing the topology matrices for the repetition vectors.

structs out edges and in edges are synonymous to arcs on an SDFG.
The in edges are incoming arcs to a block and out edges are arcs that
leave a block [Listing 5.4, Line 1 & 8]. Each arc has an arc label with the
integer variable arc name, their respective production and consumption
rates and a pointer of type edges either to another SDF block or from
an SDF block, depending on whether it is an incoming or outgoing arc.

Synchronous Data Flow Kernel in SystemC 61

Listing 5.4. struct out edges & in edges

1 struct out edges {
2 int prod rate ; // production rate
3 int arc name ; // arc l a b e l
4 edges ∗ t o p t r ; // pointer to next b lock
5 int delay ; // delay on t h i s arc
6 } ;
7

8 struct i n edge s {
9 int con s r a t e ;

10 int arc name ;
11 edges ∗ f rom ptr ;
12 int delay ;
13 } ;

The struct and class definitions in Listing 5.4 allow us to define an SDF
block shown in Figure 5.3.

string name;
int mappedname;

vector<out_edges> out; vector<in_edges> in;

edges block_name;

Figure 5.3. Synchronous Data Flow Block.

This representation of an SDF block is instantiated from within an
SC MODULE(). This makes an SC MODULE() to be of type SDF
method process. This means that one SDF block can only be represented
by one SC MODULE().

We continue to explain the modeling style needed when modeling with
the SDF kernel later in this chapter. We also describe the function calls
that are required to create an SDF model. We present the prerequisites
for the SDF kernel such as the linear Diophantine equation solver, creat-
ing a repetition vector from the solver and using it to construct a firing
order yielding an executable schedule based on algorithms in [5, 11].

3. Scheduling of SDF
3.1 Repetition vector: Linear Diophantine

Equations
The first issue of creating an executable schedule is discussed in [38]

where Lee et al. describe a method whereby static scheduling of these

62

function blocks can be computed during compile time rather than run
time. The method utilizes the predefined consumption and production
rates to construct a set of linear Diophantine [11] homogeneous system
of equations and represent it in the form of a topology matrix Γ. It was
shown in [38] that in order to have a solution, Γ must be of rank s − 1
where s is the number of blocks in the SDFG. Solution to this system of
equations results in a repetition vector for the SDFG. An algorithm used
to compute Hilbert’s basis [11] solves linear Diophantine equations using
the Completion procedure [11, 51] to provide an integer-valued Hilbert’s
basis. However, the fact that the rank is s − 1 shows that for SDFs the
Hilbert’s basis is uni-dimensional and contains only one basis element
[38].

Solving linear Diophantine equations is crucial in obtaining a valid
repetition vector for any SDF graph. A tidy mechanism using the pro-
duction and consumption rates to construct 2-variable equations and
solving this system of equations results in the repetition vector. The
equations have 2-variables because an arc can only be connected to two
blocks. Though this may seem as a simple problem, the simplicity of the
problem is challenged with the possibility of the solution of Diophantine
equations coming from a real-valued set. This real-valued set of solu-
tions for the Diophantine equations is unacceptable for the purpose of
SDF since the number of firings of the blocks require being integral val-
ues. Not only do the values have to be integers, but they also have to
be non-negative and non-zero, since a strongly connected SDFG can not
have a block that is never fired. These systems of equations in math-
ematics are referred to as linear Diophantine equations and we discuss
an algorithmic approach via the Completion procedure with an added
heuristic to create the repetition vector as presented in [11].

We begin by defining a system of equations parameterized by −→a =
{ai|i = 1...m}, −→

b = {bj |j = 1...n} and {c, m, n ∈ � such that the
general form for an inhomogeneous linear Diophantine equation is:

a1 x1 + ... + amxm − b1y1 − ... − bnyn = c (5.1)

and for a homogeneous Diophantine equation is:

a1 x1 + ... + amxm − b1y1 − ... − bnyn = 0 (5.2)

where only integer valued solutions for −→x and −→y are allowed. Con-
tinuing with the example from Figure 5.1, the arc going from block A to
block B via arc label 1 results in Equation 5.3, where u, v, w, x, y and

Synchronous Data Flow Kernel in SystemC 63

z represent the number of times blocks A, B, C, D, E, F, and G have
to be fired respectively. We refer to the producing block as the block
providing the arc with a token and the consuming block as the block
accepting the token from the same arc. For arc label 1, the consuming
and producing blocks are block B and block A respectively. Therefore,
for every arc, the equation is constructed by multiplying the required
number of firings of the producing block with the production rate sub-
tracted by the multiplication of the required number of firings of the
consuming block with the consumption rate and setting this to be equal
to 0.

1u − 2v + 0w + 0x + 0y + 0z = 0 (5.3)

For the entire SDFG shown in Figure 5.1, the system of equations is
described in Equations 5.4. Note that this is a homogeneous system of
equations in which the total number of tokens inserted into the system
equals the total number of tokens consumed. Our SDF scheduling im-
plementation requires only homogeneous linear Diophantine equations,
hence limiting our discussion to only homogeneous Diophantine equa-
tions.

1u − 2v + 0w + 0x + 0y + 0z = 0 (5.4)
1u + 0v − 2w + 0x + 0y + 0z = 0
0u + 1v + 0w + 0x − 1y + 0z = 0
0u − 1v + 0w + 1x + 0y + 0z = 0
0u + 0v + 2w − 2x + 0y + 0z = 0
0u + 0v + 3w + 0x + 0y − 1z = 0
0u + 0v + 0w + 0x + 3y − 1z = 0

This system of equations as you notice are only 2-variable equations
yielding the topology matrix Γ as:

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 -2 0 0 0 0
1 0 -2 0 0 0
0 1 0 0 -1 0
0 -1 0 1 0 0
0 0 2 -2 0 0
0 0 3 0 0 -1
0 0 0 0 3 -1

⎞
⎟⎟⎟⎟⎟⎟⎠

Solving for −→
X in Γ−→X = 0 yields the repetition vector for the SDFG

in Figure 5.1. A linear Diophantine equation solver [51] solves these

64

topology matrices for system of equations such as in Equations 5.4. The
results from the solver for Equations 5.4 are shown in Table 5.1.

Table 5.1. Results from Diophantine Solver

A=u B=v C=w D=x E=y F=z

2 1 1 1 1 3

Notice that this methodology of creating a repetition vector is spe-
cific for acyclic SDF graphs. We discuss SDF graphs with cycles and
producing repetition vectors for them later in this chapter.

3.2 Linear Diophantine Equation Solver
The problem of solving a system of equations for non-zero, minimal

integer-valued solutions was addressed by many mathematicians such as
Huet in 1978 [30], Fortenbacher in 1983 [18], Guckenbiehl & Herold in
1985 [26] etc. Of these, A. Fortenbacher and M. Clausen [11] introduce
a lexicographic algorithm, which they called the Completion procedure
algorithm. We limit our discussion to the Completion procedure algo-
rithm since the labelled digraph approach they discussed is simply an
extension of the same concept using labelled digraphs to visualize the
problem.

Beginning with some notation, take the general form of a linear in-
homogeneous Diophantine equation in Equation 5.1 where S(a, b, c) is
the set of all nonnegative integer solutions and rewrite it such that the
solution set (−→ξ ,−→η) ∈ �m+n satisfies the inhomogeneous Diophantine
equation Σiaiξi - Σjbjηj = c for {i, j} ∈ �. Evaluation of the left-hand
side of the Diophantine equation is termed as the defect at a certain
point from the set of (−→ξ , −→η) ∈ �m+n [11]. So, the defect of (−→ξ , −→η) is
evaluated by d((−→ξ ,−→η)) := Σiaiξi - Σjbjηj where a solution to the equa-
tion yields d((−→ξ ,−→η)) = c. For homogeneous Diophantine equations the
equations are similar except that c = 0.

The Completion algorithm provided by Fortenbacher and Clausen [11]
begins by creating three sets P, M and Q representing the set of pro-
posals, the set of minimal solutions and a temporary set, respectively, as
shown in Algorithm 5.1. A proposal is the first minimum guess by the al-
gorithm for computing Hilbert’s basis. The initialization of P starts with
the minimal proposals that are used through the completion procedure.
The other two sets M and Q are initially empty sets. The algorithm be-
gins by selecting a proposal P1 and during the Completion procedure it

Synchronous Data Flow Kernel in SystemC 65

increments this proposal according to the defect of that proposal. For a
proposal p = (−→ξ ,−→η), if d(p) < 0 then −→

ξ is incremented, and if d(p) > 0
then −→η is incremented. If d(p) = 0 then a minimal solution is found and
this is added to M . A test for minimality is performed and proposals
that are not minimal with respect to the computed solution are removed
from P . Once there are no more proposals the algorithm terminates. A
Pascal implementation was provided in the paper that was converted to
a C implementation by Dmitrii Pasechnik [51]. We further converted
the C implementation to a C++ implementation

Algorithm 5.1: Completion procedure [11]

{Initialization}
P1 := (e1,

−→
0), ..., (em,

−→
0)

M1 := NULL
Q1 := NULL
{Completion step}
Qk+1 := {p + (

−→
0 , ej)|p ∈ Pk, d(p) > 0, 1 ≤ j ≤ n}

∪{p + (e1,
−→
0)|p ∈ Pk, d(p) < 0, 1 ≤ i ≤ m}

Mk+1 := {p ∈ Qk+1|d(p) = 0}
Pk+1 := {p ∈ Qk+1\ Mk+1| p minimal in p ∪ ⋃k

i=1 Mi}
{ Termination }
Pk = NULL?
M :=

⋃k
i=1 Mi

For our implementation, we employ the same algorithm to solve Dio-
phantine equations with an added heuristic specific for SDFGs. We work
through the running example presented in Figure 5.1 to show the added
heuristic. Let us first explain why there is a need for a heuristic. Fig-
ure 5.1 contains seven equations and six unknowns, over-constraining
the system of equations, but Algorithm 5.1 does not explicitly handle
more than one equation. Hence, there has to be a way in which all
equations can be considered at once on which the Completion procedure
is performed. One may speculate an approach where all the equations
are added and the defect of the sum of all equations is used to perform
the algorithm. However, this is incorrect since the defect of the sum of
the equations can be zero without guaranteeing that the defect for the
individual equations being zero. This case is demonstrated in Step 3 in
Table 5.2. This occurs because the set of solutions when considering the
sum of all equations is larger than the set of solutions of the system of
equations as described in seven equations, which can be confirmed by
taking the rank of the matrices that the corresponding equations yield.
Hence, we provide a heuristic that ensures a correct solution for the
system of equations.

66

Algorithm 5.2: Completion procedure with Heuristic

Given m simultaneous 2 variable homogeneous Diophantine equations on a set of
n variables, this algorithm finds a solution if one exists.
Let E = {(eq1, eq2, ..., eqm)} be the equation set.
Let P be an n tuple of positive integers initially P := {−→1 }
Let x1, x2, ..., xn be a set of variables.
Let eqj ≡ a1

jxlj − a2
jxkj = 0 where (j = 1, 2, ..., m) and a1

j , a2
j are coefficients of

the jth equation eqj where V ARS(eqj) = {xl, xk}
Let rhs(eqj) = a1

jxlj − a2
jxkj which is a function of {xl, xk}

Let INDICES(eqj) = {lj , kj}
Let dj be the defect of eqj evaluated at (α, β) such that dj = d(eqj , α, β) =
(rhs(eqj))|xlj

�→α,xkj
�→β where for any function over two variables u, v, f(u, v)|u �→a,v �→b =

f(a, b)
D = {d(eqj , plj , pkj) | V ARS(eqj) = {lj , kj}} {So D is an m tuple of m integers
called the defect vector}
MAXINDEX(D) = j where j = min{r | d(eqr, plr , pkr) ≥ d(eqn, pln , pkn) ∀ n ∈
{1, 2, ..., m} and {ln, kn} = INDICES(eqn)}
{Repeat until defect vector D is all zeros or the maximum proposal in P is less then
or equal to the lowest-common multiple of all the coefficients in all equations}
while ((D! =

−→
0)

∧
(max(−→p) ≤ (lcm(r=1,2),(j=1..m)(a

r
j))) do

j = MAXINDEX(D)
if (dj < 0) then

Let x be the lth variable and
(x, y) = V ARS(eqj)
for all eqi ∈ E do

if (x ∈ {V ARS(eqi)}) then
Re-evaluate di with [pl �→ pl + 1]

end if
end for
Update pl ∈ P with [pl �→ pl + 1]

else
if (dj > 0) then

Let y be the kth variable and
(x, y) = V ARS(eqj)
for all eqi ∈ E do

if (y ∈ {V ARS(eqi)}) then
Re-evaluate di with [pk �→ pk + 1]

end if
end for
Update pk ∈ P with [pk �→ pk + 1]

end if
end if

end while

The heuristic we implement ensures that before processing the defect
of the proposal, the proposal is a vector of ones. By doing this, we in-
dicate that every function block in the SDFG has to fire at least once.

Synchronous Data Flow Kernel in SystemC 67

After having done that, we begin the Completion procedure by calculat-
ing the defect of each individual equation in the system of equations and
recording these values in a defect vector D. Taking the maximum defect
from D defined as dj for that jth equation, if dj > 0 then the correct
variable for j is incremented and if dj < 0, then the appropriate variable
for the j is incremented for the jth equation. However, updating the
defect dj for that equation is not sufficient because there might be other
occurrences of that variable in other equations whose values also require
being updated. Therefore, we update all occurrences of the variable in
all equations and recompute the defect for each equation. We perform
this by checking if the updated variable exists in the set of variables
for every equation extracted by the VARS() sub-procedure and if that
is true, that equation is re-evaluated. The algorithm repeats until the
defect vector D = −→0 terminating the algorithm. The algorithm also
terminates when the lowest-common multiple of all the coefficients is
reached without making the defect vector D = −→0 [11]. This is because
none of the proposal values can be larger than the lowest-common mul-
tiple of all the coefficients[11]. For Figure 5.1, the linear Diophantine
equations are as follows: u − 2v = 0, u − 2w = 0, v − y = 0, v + x =
0, 2w − 2x = 0, 3w − z = 0, 3y − z = 0,−u − z = 0 and the repetition
vector from these equations is shown in Table 5.1

To further clarify how the algorithm functions, we walk through the
example in Figure 5.1 and compute the repetition vector. We define
the proposal vector P as −→p = (u, v, w, x, y, z) where the elements of −→p
represent the number of firings for that particular block. Similarly, we
define a defect vector −→

d = (eq1, eq2, eq3, eq4, eq5, eq6, eq7) where eqn is
the nth equation in the system of equations. The system of equations
are restated below:

eq1 = 1u − 2v + 0w + 0x + 0y + 0z = 0
eq2 = 1u + 0v − 2w + 0x + 0y + 0z = 0
eq3 = 0u + 1v + 0w + 0x − 1y + 0z = 0
eq4 = 0u − 1v + 0w + 1x + 0y + 0z = 0
eq5 = 0u + 0v + 2w − 2x + 0y + 0z = 0
eq6 = 0u + 0v + 3w + 0x + 0y − 1z = 0
eq7 = 0u + 0v + 0w + 0x + 3y − 1z = 0

and steps in processing this system of equations with Algorithm 5.2
are shown in Table 5.2.

In Table 5.2, the proposal vector begins as a vector of all ones with
its computed defect. The next equations to consider are the ones with

68

Table 5.2. Solution steps for example using Completion procedure

Step −→p −→
d

1 (1, 1, 1, 1, 1, 1, 1) (-1, -1, 0, 0, 0, 2, 2)
2 (1, 1, 1, 1, 1, 1, 2) (-1, -1, 0, 0, 0, 1, 1)
3 (1, 1, 1, 1, 1, 1, 3) (-1, -1, 0, 0, 0, 0, 0)
4 (2, 1, 1, 1, 1, 1, 3) (0, 0, 0, 0, 0, 0, 0, 0)

the highest individual defect. We perform the Completion procedure on
equations with the highest defect, that are eq6 & eq7, and increment z
twice, to reduce the defect of eq6 &eq7 to zero. Then, we reduce the neg-
ative defects for eq1 & eq2, that we compensate by incrementing v. This
results in defect vector being all zeros completing the completion proce-
dure and giving a repetition vector. Though this example is strictly for
acyclic SDFGs, we use the same algorithm in solving cyclic SDFGs. We
present our discussion and algorithms for creating executable schedules
for cyclic SDF graphs in the next section.

3.3 Firing Order: repetition vectors for
non-trivial cyclic SDF graphs

Most DSP systems have feedback loops and since the SDF MoC is
used for DSP, we expect occurrences of loops in SDFGs. These feedback
loops are represented as cycles in an SDFG and it is necessary for our
SDF kernel to be able to efficiently handle these types of cycles. In this
section we explain how cycles affect the repetition vector and discuss the
firing order produced by the algorithm developed in [5].

We previously described the algorithm used in creating a repetition
vector and we employ the same algorithm in calculating the repetition
vector for cyclical SDFGs. However, the order in which these blocks
have to be fired needs to be computed. The firing order is important
because the SDF paradigm requires a specific order in which the function
blocks are executed. SystemC’s DE kernel schedules its processes in an
unspecified manner, so it could schedule block F from Figure 5.4 as the
first block for execution, which is incorrect for the SDF model. The
repetition vector only describes the number of times F needs to be fired
and not in which order F is fired. Until the proper firing order is found
the system would deadlock due to F not having enough input on the
incoming arcs from blocks C and E. We can see that blocks C and E
have to be fired before F can be fired to correctly execute the SDFG.

For acyclic graphs as shown in Figure 5.4, one can use a topological
sorting via Depth-First Search (DFS) algorithm to compute the firing
order. However, in the presence of a cycle, a topological ordering does

Synchronous Data Flow Kernel in SystemC 69

Figure 5.4. Example of a cyclic Synchronous Data Flow Graph [53].

not exist. Since, our goal is to obtain the firing order regardless of the
SDFG containing cycles or not we employ another algorithm in con-
structing the firing order.

Bhattacharyya, Murthy and Lee in [5] developed scheduling algo-
rithms for SDF of which one scheduling algorithm determines the fir-
ing order of non-trivial (cyclic or acyclic) SDFGs. However, before we
present scheduling Algorithm 5.3, we discuss the delay terminology for
an SDFG shown in Figure 5.4. Note the production rate at the head
of the arcs, consumption rate at the tail of the arcs (marked by the
arrow head), arc label or name in the middle of the arc and a newly
introduced delay(α) = γ where α is an arc label and γ is the delay on
that arc. delay [5] represents the number of tokens the designer has to
inject initially into arc α for the SDF model to execute. The concept
of delay is necessary when considering cyclical SDFGs. This is because
of the additional constraint set by the SDF paradigm that every block
only executes when it has sufficient input tokens on its input arcs, thus
a cycle as indicated by arc label 8 in Figure 5.1 without the delay causes
the SDFG to deadlock. Hence, no blocks can be fired. The delay acts as
an initial token on that arc to allow simulation to begin. We introduce
the concept of delay on all arcs, except we omit displaying the delays
that are zero, like on arc label 1 and 2 and so on.

Scheduling Algorithm 5.3 creates a firing order by using the repetition
vector from the Hilbert’s solver. If the firing order is valid then the SDF

70

kernel executes the SDF processes in the correct sequence for the correct
number of times. The simulation terminates if either the repetition vector
is invalid or the SDFG is inconsistent. An SDFG is inconsistent when
the number of times every block scheduled in the firing order is not
reflected by the number of times the block is supposed to be scheduled
for execution as per the repetition vector.

Algorithm 5.3: Construct Valid Schedule Algorithm [5]
Require:

Let ready to be a queue of function block names
Let queued and scheduled to be vectors of non-negative integers indexed by the
function blocks in SDFG
Let S be a schedule and initialize S to null schedule
Let state be a vector representing the number of tokens on each edge indexed by
the edges
Let rep be a vector showing results from the Diophantine equation solver computed
by Algorithm 5.2 (repetition vector indexed by the function block names)

for all function blocks in SDFG do
for each incoming edge α do

store delay on α to state(α)
end for

for each outgoing edge β do
store delay on β to state(β)

end for
end for
for each function block N in SDFG do

save rep for N in temporary variable temp rep
for each incoming edge α do

set del cons equal to 	delay(α)/cons rate(α)

temp rep = min(temp rep, del cons)

end for
if temp rep > 0 then

store temp rep in queued(N)
store 0 in scheduled(N)

end if
end for

while ready is not empty do
pop function block N from ready
add queued(N) invocations to S
increment scheduled(N) by value of queued(N)
store temp n to queued(N)
set queued(N) value to 0
for each incoming edge α of function block N do

set state for α is decremented by (temp n × cons rate on (α))
end for

Synchronous Data Flow Kernel in SystemC 71

for each outgoing edge β of function block N do
set state for β is incremented by (n × prod rate on (β))

end for
for each ougoing edge α of function block N do

to node is the function block pointed by α
temp r = subtract rep for to node by scheduled(to node)

end for
for each incoming edge γ of to node(α) do

set del cons to 	state value for γ / cons rate on γ

end for
if (temp r > queued(to node)) then

push to node to ready
set queued(to node) to temp r

end if
end while
for each function block N in SDFG do

if (scheduled vector for N �= to rep for N) then
Error::Inconsistent Graph
Exit

end if
end for
S contains schedule

In Algorithm 5.3, state is a vector that initially contains the delays
on each of the arcs in the SDFG and is indexed by the arc names labelled
α or β. During execution, state denotes the number of tokens on each
arc. Similarly, queued and scheduled are vectors indexed by function
block name N for the purpose of storing the number of times the block
is scheduled and the number of times a block has to be scheduled to
be fired is queued, respectively. rep is a temporary pointer to point to
the repetition vector and ready holds the blocks that can be fired. The
algorithm iteratively determines whether the SDFG is consistent and if
so, results in an executable schedule.

The initialization begins by first traversing through all the function
blocks in the SDFG and setting up the state vector with its correspond-
ing delay for all the arcs on every block. Once this is done, every block
is again traversed and for every incoming arc, the minimum between the
repetition vector for that block and the delay(α)/cons rate(α) is sought.
If this minimum is larger than zero, then this block needs to be sched-
uled and added to ready since that means it has sufficient tokens on the
incoming arcs to fire at least once. This initialization also distinguishes
the blocks that are connected in cycles with sufficient delay values and
schedules them. Scheduling of the remaining blocks is performed in a
similar fashion with slight variation.

72

If the SDFG is consistent, the first block from ready is popped and
appended to the schedule for the number of times the block is to be
invoked. For all the incoming edges of this block the delay for this arc is
recalculated. For the outgoing edges a similar calculation is done except
this time the state for the arc is incremented by the production rate
multiplied by temp n. Basically, the algorithm looks at all the outgoing
edges and the blocks pointed by these outgoing edges and proceeds to
traverse focusing on all blocks pointed by the outgoing edges of the block
just popped of the ready. Finally, a check for inconsistency is performed
where the number of times each block is scheduled has to be equivalent
to the number of times it is supposed to be fired from the repetition
vector. The algorithm concludes with the correct schedule in S for a
consistent SDFG.

This scheduling algorithm yields the schedule in the correct firing
order with the number of times it is to be fired. The kernel will fire ac-
cording to this schedule. Acyclic and cyclic SDFGs are handled correctly
by this algorithm. The final executable schedule is stored in sdf schedule
accessible to the kernel for execution.

4. SDF Modeling Guidelines

Stimulus

FIR

Display

1

1 1

1

11

3

1

delay(3) = 1

2

Figure 5.5. FIR Example of a Synchronous Data Flow Graph [53].

Efforts in reducing difficulty of modeling other MoCs have been a
key consideration in implementing the SDF kernel. Though, we believe
that we have reduced the level of difficulty in designing SDF models in
SystemC by increasing the modeling fidelity, we also provide guidelines in
creating SDF models. A simple example with full source code segments
demonstrates the style. We use the FIR example from Figure 5.5 to
compare the FIR example provided with the SystemC 2.0.1 distribution
modeled with the DE kernel (that has already been shown in Chapter

Synchronous Data Flow Kernel in SystemC 73

3) with the converted model using the SDF kernel. We edit the source
code to remove some std :: cout statements to make the output from
DE FIR example to match the output of the SDF FIR model, but the
functionality of the FIR in DE and SDF remains the same. fir const.h
is not included in the listings since it is a list of constants that will be
available in the full source prints at [36].

Listing 5.5. stimulus.h

1#include <queue>
2 extern sd f g raph sd f1 ;
3 using namespace std ;
4

5SC MODULE(st imulus) {
6 edges s t imu lus edge ;
7 s c i n t <8> send va lue1 ;
8 SC CTOR(st imulus) {
9 s t imu lus edge . set name (name () , sd f1 . s d f l i s t) ;

10 SC METHOD(entry) ;
11 send va lue1 = 0 ;
12 }
13 void entry () ;
14 } ;

Notice in Listing 5.5 that the Stimulus block has no input or output
ports along or control signal ports. This refers to declarations of ports
using sc in<...> or sc out<...>. These are no longer required in an SDF
model because static scheduling does not require control signals and our
method of data passing is through STL queue<...> structures. We do
not strictly enforce their removal and if the designer pleases to use Sys-
temC channels and ports for data paths then that can also be employed.
However, the SDF kernel statically schedules the SDF blocks for execu-
tion at compile time, hence there is no need for one block to signal to
the following block when data is ready to be passed on, obviating the
need for control signals. For data paths, using signals and channels in
SystemC generate events reducing simulation efficiency. Our advised ap-
proach is to use queue<...> STL queues to transfer data within the SDF
model instead of using SystemC. Only the data that has to be passed
from one block to another requires an instantiation of a queue such as
the extern queue<int> stimulusQ [Listing 5.6, Line 6]. Instantiation
of stimulus edge object is crucial in defining this SC MODULE() as an
SDF method process [Listing 5.5, Line 5 & 6]. This object is used to
pass the name of the SC MODULE() and the SDFG which this block
belongs to as shown in [Listing 5.5, Line 9].

The queues used in the FIR model are stimulusQ and firQ, where stim-
ulusQ connects the Stimulus block to the FIR block and firQ connects
from the FIR block to the Display [Listing 5.8, Line 4 & 5]. However,

74

Listing 5.6. stimulus.cpp

1#include <systemc . h>
2#include ” st imulus . h”
3#include <queue>
4

5 using namespace std ;
6 extern queue<int > stimulusQ ;
7

8 void s t imulus : : entry () {
9 stimulusQ . push (send va lue1) ;

10 send va lue1++;
11 }

instantiation of these queues has to be done in a particular manner.
Since every arc connects two blocks implies that two blocks must have
the same queue visible to them. So, stimulusQ should be accessible by
the Stimulus block as well as the FIR block. The easiest approach is
to instantiate these queues globally in the toplevel file and make them
extern keyword when a block needs to refer to the queue<...>s (if in a
different file). With this method all the files must be a part of one com-
pilation since extern informs the compiler that the particular variable
(in this case queue<...>) is instantiated in some other file external to
the current scope. Furthermore, memory is not allocated when extern
keyword is encountered because the compiler assumes that the variables
with extern keyword have been properly defined elsewhere.

Listing 5.7. fir.h

1#include <queue>
2 extern sd f g raph sd f1 ;
3 using namespace std ;
4

5SC MODULE(f i r) {
6 s c i n t <9> c o e f s [1 6] ;
7 s c i n t <8> sample tmp ;
8 s c i n t <17> pro ;
9 s c i n t <19> acc ;

10 s c i n t <8> s h i f t [1 6] ;
11 edges f i r e d g e ;
12 SC CTOR(f i r) {
13 f i r e d g e . set name (name () /∗”process body”∗/ , sd f1 . s d f l i s t)

;
14 SC METHOD(entry) ;
15 #inc lude ” f i r c o n s t . h”
16 for (int i = 0 ; i < 15 ; i++) {
17 s h i f t [i] = 0 ;
18 }
19 void entry ()
20 } ;

Synchronous Data Flow Kernel in SystemC 75

Every SDF block (SDF SC MODULE()) must also have access to the
SDFG that it is to be inserted in. This means the sdf graph object that is
instantiated globally must be available to the SC MODULE()s such as in
[Listing 5.7, Line 2]. However, the integral part of the SC MODULE()
declaration is the instantiation of the edges object as shown in [List-
ing 5.7, Line 11]. This object is accessed by the SDF kernel in deter-
mining certain characteristics during scheduling. These characteristics
are set by member functions available in the edges class. One of the
first member functions encountered in the SC MODULE() declaration
is the set name(...) [Listing 5.7, Line 13] function that is responsible
for providing the edges object with the module name and the storage
list of SDF method processes. The name() function from within the
SC MODULE() returns the name of the current module. In [Listing 5.7,
Line 13] sdf1.sdflist is the list where the addresses of the SC METHOD()
processes are stored for access by the SDF kernel. Apart from those alter-
ations, the structure of an SC MODULE() is similar to regular SystemC
processes.

Listing 5.8. fir.cpp

1#include <systemc . h>
2#include ” f i r . h”
3

4 extern queue<int > stimulusQ ;
5 extern queue<int > f i rQ ;
6

7 void f i r : : entry () {
8 sample tmp = stimulusQ . f r on t () ; stimulusQ . pop () ;
9 acc = sample tmp∗ c o e f s [0] ;

10 for (int i =14; i >=0; i−−) {
11 pro = s h i f t [i]∗ c o e f s [i +1] ;
12 acc += pro ;
13 }
14 for (int i =14; i >=0; i−−) {
15 s h i f t [i +1] = s h i f t [i] ;
16 }
17 s h i f t [0] = sample tmp ;
18 f i rQ . push ((int) acc) ;
19 }

Note that the functions used to insert data onto the queue<...>s are
STL functions push() and pop() [Listing 5.8, Line 8 & 18]. There is also
no check for the number of tokens ready to be received by each block.
Naturally, this is not required since we are statically scheduling the SDF
blocks for an appropriate number of times according to their consump-
tion and production rates. However, this burdens the designer with the
responsibility of carefully inserting sufficient tokens on the queue<...>s
to ensure the simulation does not attempt at using invalid data.

76

Listing 5.9. display.h

1#include <queue>
2 extern sd f g raph sd f1 ;
3 using namespace std ;
4

5SC MODULE(d i sp l ay) {
6 int i , tmp1 ;
7 edges d i sp l ay edge ;
8 SC CTOR(d i sp l ay)
9 { d i sp l ay edge . set name (name () /∗” d i sp lay ”∗/ , sd f1 . s d f l i s t) ;

10 SC METHOD(entry) ;
11 i = 0 ;
12 }
13 void entry () ;
14 } ;

Listing 5.10. display.cpp

1#include <systemc . h>
2#include ” d i sp l ay . h”
3 extern queue<int > f i rQ ;
4 void d i sp l ay : : entry () {
5 tmp1 = f i rQ . f r on t () ; f i rQ . pop () ;
6 cout << tmp1 << endl ;
7 i++;
8 i f (i == 5000000) {
9 s c s t op () ;

10 } ;
11 }
12 // EOF

The SDF kernel requires the modeler to specify the terminating value
as in the DE kernel example. This is similar to the termination situa-
tions posed in [23]. However, we define a period of SDF as a complete
execution of the SDF. In this example since there is a cycle, every period
is an execution of the SDF model. We halt the execution after a specified
number of samples using the sc stop() [Listing 5.10, Line 9] which tells
the kernel that the modeler has requested termination of the simulation.

The toplevel SC METHOD() process labelled toplevel in [Listing 5.12,
Line 2] constructs the SDF graph encapsulating that entire SDF model
inside it. The choice of the toplevel process can be of any SystemC type.
The entry function has to be manipulated according to the process type
since they continue to follow SystemC semantics. The construction of
this module is straightforward whereby pointers to each of the SDF
methods are member variables and are initialized to their correspond-
ing objects in the constructor. The important step is in constructing the
SDFG within the constructor (SC CTOR()) since the constructor is only
invoked once per instantiation of the object. The functions set prod(...)
and set cons(...) set the arcs on the SDFG. Every SC MODULE() de-

Synchronous Data Flow Kernel in SystemC 77

Listing 5.11. main.cpp

1#include <systemc . h>
2#include ” st imulus . h”
3#include ” d i sp l ay . h”
4#include ” f i r . h”
5 sd f g raph sd f1 ;
6 queue < int > stimulusQ ;
7 queue < int > f i rQ ;
8 // General METHOD process to v e r i f y proper execution of ordinary

DE METHODs
9SC MODULE(foo) {

10 s c i n c l k c l ock ;
11 void message () {
12 cout << sc t ime stamp () << ” foo with n e x t t r i g g e r executed

” << endl ;
13 n e x t t r i g g e r (2 , SC NS) ;
14 }
15 SC CTOR(foo) {
16 SC METHOD(message) {
17 s e n s i t i v e << c l o ck . pos () ;
18 } ;
19 }
20 } ;
21 // General CTHREAD process to v e r i f y proper execution of

ordinary DE THREADs
22SC MODULE(foo c th r ead) {
23 sc out<bool> data sd f ;
24 s c i n c l k c l ock ;
25 void msg () {
26 bool b= fa l se ;
27 while (1) {
28 cout << sc t ime stamp () << ” CTHREAD executed ” << endl ;
29 wait (3) ;
30 cout << ” In s t r u c t SDF to f i r e ” << endl ;
31 i f (b == true)
32 b = fa l se ;
33 else
34 b = true ;
35 data sd f . wr i t e (b) ;
36 }
37 }
38 SC CTOR(foo c th r ead) {
39 SC CTHREAD(msg , c l o ck . pos ()) {
40 s e n s i t i v e << c l o ck . pos () ;
41 } ;
42 }
43 } ;

fines an SDF block that requires the arcs being set. The arguments of
these set functions are: the address of the edges object instantiated in a
module that it is pointed to or from, the production or consumption rate
depending on which function is called and the delay. We also enforce
a global instantiation of sdf graph [Listing 5.11, Line 5] type object for
every SDFG that is present in the model. Using the schedule class and
the add sdf graph(...), the SDFG is added into a list that is visible by the
overlaying SDF kernel [Listing 5.12, Line 23]. In addition, this toplevel
process must have an entry function that calls sdf trigger() [Listing 5.12,

78

Listing 5.12. toplevel and main()

1 // Top Level METHOD encapsu lat ing the SDFG
2SC MODULE(t op l e v e l) {
3 s c i n <bool> data ;
4 f i r ∗ f i r 1 ; // (” process body ∗”) ;
5 d i sp l ay ∗ d i sp l ay1 ; // (” d i sp l ay ”) ;
6 s t imulus ∗ s t imulus1 ; //(” s t imu lus b l ock ”) ;
7 void en t r y sd f () {
8 s d f t r i g g e r (name ()) ;
9 }

10 SC CTOR(t op l e v e l) {
11 SC METHOD(en t r y sd f)
12 s e n s i t i v e << data ;
13

14 f i r 1 = new f i r (” process body ∗”) ;
15 d i sp l ay1 = new d i sp l ay (” d i sp l ay ”) ;
16 s t imulus1 = new s t imulus (” s t imulus ”) ;
17 st imulus1−>s t imu lus edge . s e t p rod (& f i r 1 −>f i r e d g e , 1 , 0) ;
18 f i r 1 −>f i r e d g e . s e t c on s (&st imulus1−>s t imulus edge , 1 , 0) ;
19 f i r 1 −>f i r e d g e . s e t p rod (&disp lay1−>d i sp lay edge , 1 , 0) ;
20 disp lay1−>d i sp l ay edge . s e t c on s (& f i r 1 −>f i r e d g e , 1 , 0) ;
21 disp lay1−>d i sp l ay edge . s e t p rod (&stimulus1−>s t imulus edge

, 1 , 1) ;
22 st imulus1−>s t imu lus edge . s e t c on s (&disp lay1−>d i sp lay edge

, 1 , 1) ;
23 schedu le : : add sd f graph (name () , & sd f1) ;
24 }
25 } ;
26

27 int sc main (int argc , char ∗ argv []) {
28 s c c l o c k c l ock ;
29 s c s i g n a l <bool> data ;
30 t o p l e v e l t o p l e v e l (” t o p l e v e l ∗ sd f ∗”) ;
31 t o p l e v e l . data (data) ;
32 foo foobar (” foobar ”) ;
33 foobar . c l o ck (c l o ck) ;
34 f o o c th r ead f o o c (” foo C”) ;
35 f o o c . c l o ck (c l o ck) ;
36 f o o c . da ta sd f (data) ;
37 s c s t a r t (−1) ;
38 return 0 ;
39 }

Line 8] signalling the kernel to process all the SDF methods correspond-
ing to this toplevel SDF module. These guidelines enable the modeler
to allow for heterogeneity in the models since the toplevel process can
be sensitive to any signal that is to fire the SDF. The SC CTHREAD()
[Listing 5.11, Line 39] partakes in this particular role where every three
cycles the SDF model is triggered through the signal data. However, the
designer has to be careful during multi-MoC modeling due to the trans-
fer of data from the DE blocks to the SDF blocks. This is because there
is no functionality in the SDF kernel or for that matter even the DE ker-
nel that verifies that data on an STL queue<...> path is available before
triggering the SDF method process. This has to be carefully handled by
the designer. These style guides for SDF are natural to the paradigm

Synchronous Data Flow Kernel in SystemC 79

and we believe that this brief explanation of modeling in SDF provides
sufficient exposure in using this SDF kernel along with the existing DE
kernel.

4.1 Summary of Designer Guidelines for SDF
implementation

The designer must remember the following when constructing an SDF
model:

To represent each SC MODULE() as a single SDF function block as
in Listing 5.5.

Ensure that each process type is of SC METHOD() process [Listing
5.5, Line 10].

The module must have access to the instance of sdf graph that it is
to be inserted in [Listing 5.7, Line 2].

An object of edges is instantiated as a member of the SC MODULE()
and the set name() function is called with the correct arguments
[Listing 5.7, Line 11 & 13].

The instance of sdf graph is added into the SDFG kernel list by calling
the static add sdf graph() function from schedule class as in [Listing
5.12, Line 23].

Set delay values appropriately for the input and output samples on
the queue<...> channels for every arc [Listing 5.12, Line 22].

Introduce a sc clock object to support the timed DE MoC [Listing
5.12, Line 28].

Ensure that the entire SDFG is encapsulated in a toplevel process of
any type [Listing 5.12, Line 2 - 39].

Toplevel process must have an entry function that calls sdf trigger()
ensuring that when this process is fired, its corresponding SDF pro-
cesses are also executed [Listing 5.12, Line 8].

5. SDF Kernel in SystemC
We implement the SDF kernel and update the DE kernel function

calls through the use of our API discussed in Chapter 8. We limit our
alterations to the original source, but some change in original source code
is unavoidable. Our approach for kernel implementation is in a particular
manner where the SDF kernel exists within the Discrete-Event kernel.

80

Listing 5.13. split processes() function from API class

1 void sc domains : : s p l i t p r o c e s s e s () {
2 s c p r o c e s s t a b l e ∗ m proce s s tab l e = de kerne l−>

g e t p r o c e s s t a b l e () ;
3 const sc method vec& method vec = m proces s tab le−>method vec

() ;
4 i f (sdf domain . s i z e () != 0) {
5 for (int sd f g raphs = 0 ; sd f g raphs < (signed) sdf domain .

s i z e () ; sd f g raphs++) {
6 // Extract the address of SDFG
7 sd f g raph ∗ p ro c e s s s d f g r aph = sdf domain [sd f g raphs] ;
8 sd f ∗ p r o c e s s s d f = & proce s s sd f g raph−>s d f l i s t ;
9 for (int i = 0 ; i < method vec . s i z e () ; i ++) {

10 sc method handle p method h ;
11 sc method handle method h = method vec [i] ;
12 i f (method h−>d o i n i t i a l i z e ()) {
13 s t r i n g m name = method h−>name () ;
14 bool found name = fa l se ;
15 for (int j = 0 ; j < (signed) p r o c e s s sd f−>s i z e () ; j++)

{
16 edges ∗ edge pt r = (∗ p r o c e s s s d f) [j] ;
17 i f (s t r s t r (method h−>name () , edge ptr−>name . c s t r ())

!= NULL) {
18 found name = true ;
19 p method h = method h ;
20 }/∗ END IF ∗/
21 }/∗ END FOR ∗/
22 // Check to see i f the name of the current process i s

in the SDF l i s t and route
23 // according ly to the correct METHODs l i s t .
24 i f (found name == true) {
25 proce s s sd f g raph−>sd f method handles . push back (

p method h) ;
26 found name = fa l se ;
27 }
28 else {
29 // This must be a DE process − w i l l be inser t ed

i t s e l f
30 }/∗ END IF−ELSE ∗/
31 }/∗ END IF ∗/
32 }/∗ END FOR ∗/
33 // remove the method handles added to SDF l i s t from DE

l i s t
34 for (int k = 0 ; k < (signed) p roc e s s sd f g raph−>

sd f method handles . s i z e () ; k++) {
35 sc method handle del method h = proce s s sd f g raph−>

sd f method handles [k] ;
36 m proces s tab le−>remove (del method h)−>name () ;
37 }/∗ END FOR ∗/
38 }
39 } else {
40 schedu le : : err msg (”NO SDF GRAPHS TO SPLIT PROCESS” , ”WW”) ;
41 }/∗ END IF−ELSE ∗/
42 }/∗ END sp l i t p r o c e s s e s ∗/

This implies that execution of SDF processes is performed from the DE
kernel making the DE kernel the parent kernel supporting the offspring
SDF kernel. We employ the parent-offspring terminology to suggest
that SystemC is an event-driven modeling and simulation framework
through which we establish the SDF kernel. However, this does not

Synchronous Data Flow Kernel in SystemC 81

mean that a DE model can not be present within an SDF model, though
careful programming is required in ensuring the DE block is contained
within one SDF block. For the future extension we are working on a
more generic design for hierarchical kernels through an evolved API.
Algorithm 5.4 displays the altered DE. The noticeable change in the
kernel is the separation of initialization roles. We find it necessary to
separate what we consider two distinct initialization roles as:

Preparing model for simulation in terms of instantiating objects, set-
ting flags, etc.

Pushing processes (all types) onto the runnable queues and executing
crunch() (see Chapter 3) once.

If there are manipulations required to the runnable process lists prior
to inserting all the processes onto the runnable queues for execution dur-
ing initialization, then the separation in initialization is necessary. For
example, for the SDF kernel we require the processes that are SDF meth-
ods to be separated and not available to be pushed onto the runnable
queues. This separation is performed using the split processes() in the
API class as shown in Figure 5.13, that identifies SDF methods and re-
moves them from the list that holds all SC METHOD() processes. This
is not possible if the original initialization function for the DE kernel is
unchanged because it makes all processes runnable during initialization.
We are fully aware of the implications of this implementation in that it
departs from the SystemC standard. However, the SystemC standard
does not dictate how a Synchronous Data Flow kernel or programming
paradigm is to behave, hence we feel comfortable in implementing such
changes as long as the DE kernel concurs with SystemC standards. An-
other difference of the standard is allowing the designer to specify the
order of execution of processes through an overloaded sc start(...) func-
tion call. If the user has prior knowledge of a certain order in which
the system, especially in the case of DE and SDF heterogeneous models,
then the user should have flexibility in allowing for definition of order
instead of using control signals to force order. The limitations of the Sys-
temC standard will progressively become apparent once more MoCs are
implemented resulting in more dissonance between SystemC standards
and the goal of a heterogeneous modeling and simulation framework.

In addition to the separation of SC METHOD() processes, the
crunch() function that executes all the processes is slightly altered in
execution of the processes. If a modeler specifies the order in which to
fire the processes, then this order needs to be followed by the kernel.
This requires popping all the processes from its respective runnable list

82

and storing them separately onto a temporary queue. These processes
are then selected from this temporary queue and executed according
to an order if it is specified, after which the remaining processes are
executed. The need for this is to enable support for signal updates
and next trigger() to function correctly. When a process is sensitive to
a signal and an event occurs on the signal, then this process can be
ready-to-run causing it to be pushed onto the runnable list. If there
is no ordering specified by the designer then the processes are popped
regularly without requiring a temporary queue.

Likewise, the simulate() function suffered some alterations to incor-
porate one period of execution in a cycle. The simulate() function uses a
clock count variable to monitor the edges of the clock. This is necessary
to enforce the SDF graph is executed once every cycle. To understand
the need for it to execute once every cycle, we have to understand how
an sc clock object is instantiated. A clock has a positive and a neg-
ative edge and for the kernel the sc clock creates two SC METHOD()
processes one with a positive edge and the second with a negative edge.
These are then processed like normal SC METHOD() processes, causing
the crunch() function to be invoked twice. Therefore, the clock count
variable ensures that the SDF execution is only invoked once per cycle
as per definition of a period. However, there is an interesting problem
that this might result in when modeling in SDF. If there is to be a stand-
alone SDF model, then there has to be an instance of sc clock even if it
is not connected to any ports in the SDF model. This is essential for the
SDF graph to function correctly. We envision the SDF to be executed
alongside with DE modules, hence it does not seem unnatural to expect
this condition.

5.1 Specifying Execution Order for Processes
Providing the kernel with an execution order has to be carefully used

by the modeler. This is because the semantics that belong to each pro-
cess category (SC METHOD(), SC THREAD(), SC CTHREAD()) are
still followed. Hence, the blocks that trigger the SDF also adhere to the
semantics, which can complicate execution when specifying order. Sup-
pose an SC CTHREAD()’s responsibility is to fire an SDF block and
these are the only two blocks in the system such that they are called
CTHREAD1 and SDF1. If the modeler specified the execution order
as “SDF1 CTHREAD1” then the correct behavior will involve an ex-
ecution of SDF1 followed by CTHREAD1 and then again SDF1. As
expected, with flexibility comes complexity, but we believe allowing this
kind of flexibility is necessary for modeler who understand how their
model works.

Synchronous Data Flow Kernel in SystemC 83

5.2 SDF Kernel

The pseudo-code for the algorithm employed in altering the DE kernel
to accept the SDF kernel is shown below.

Algorithm 5.4: DE Kernel and SDF Kernel
{classes edges, sdf graph, schedule and sc domains are already defined}

void de initialize1()
perform update on primitive channel registries;
prepare all THREADs and CTHREADs for simulation;
{ END initialize1()}

void de initialize2()
push METHOD handle onto regular DE METHOD runnable list;
push all THREADs onto THREAD runnable list;
process delta notifications;
execute crunch() to perform Evaluate-Update once.
{ END initialize2()}

void simulate()
initialize1();
if (clock count mod 2 == 0) then

set run sdf to true;
end if
execute crunch() until no timed notifications or runnable processes;
increment clock count;
{ END simulate()}

void crunch()
while (true) do

if (there is a user specified order) then
pop all methods and threads off runnable list and store into temporary
while (parsed user specified order is valid) do

find process handle in temporary lists and execute;
end while

else
execute all remaining processes in the temporary lists;

end if
{ Evaluate Phase }
execute all THREAD/CTHREAD processes;
break when no processes left to execute;

end while
{ Update Phase}
update primitive channel registries;
increment delta counter;
process delta notifications;
{ END crunch()}

84

SDF initialization is responsible for constructing an executable sched-
ule for all SDFGs in the system. If any of the SDFGs is inconsistent then
the simulation stops immediately, flagging that the simulation cannot be
performed. This involves creating the input matrices for the Diophan-
tine solver and creating an executable SDF schedule. A user calling the
sc start(...) function invokes the global function that in turn uses an
instance of sc domains that begins the initialization process of both the
DE and SDF kernels as shown in Listing 5.14. init domain(...) initial-
izes the domains that exist in SystemC (SDF and DE so far) and then
begins the simulation of the DE kernel (since SDF is written such that
it is within the DE kernel). The sdf trigger(...) global function is to
be only called from the entry function of the toplevel SDF encapsulat-
ing the entire SDF model. This ensures execution of all SDF method
processes specific for that SDFG.

Listing 5.14. Global functions

1 void s c s t a r t (const s c t ime& duration , s t r i n g in)
2 {
3 model . i n i t doma ins (duration , in) ;
4 model . de kerne l−>s imulate (durat ion) ;
5 }/∗ END sc s t a r t ∗/
6

7 in l ine void s d f t r i g g e r (s t r i n g topname) {
8

9 i f (model . sdf domain . s i z e () > 0) {
10 // SDFG ex i s t s
11 model . s d f t r i g g e r (topname) ;
12 }/∗ END IF ∗/
13 else {
14 schedu le : : err msg (”No SDFGs in cur rent model , ensure

add sd f graph () c a l l e d ” , ”EE”) ;
15 return ;
16 }/∗ END IF−ELSE ∗/
17 }/∗ END sd f t r i g g e r ∗/

The API class sc domains described in Chapter 8 has function dec-
larations to initialize the DE and SDF kernels implemented at the API
level to invoke their respective DE or SDF functions. The
init domains(...) function shown in Listing 5.15 is responsible for ini-
tializing all the existing domains in SystemC. This function sets the user
order string if specified then prepares the simulation in terms of instan-
tiating objects and setting the simulation flags, splits the processes as
explained earlier and readies the runnable queues. Followed by initial-
ization of the SDF, which traverses through all SDFGs present in the
system and creates an executable schedule for each one if one can be
computed. Given that all conditions are satisfied and simulation is not
halted during the scheduling process, the simulation begins.

Synchronous Data Flow Kernel in SystemC 85

Listing 5.15. init domain() in sc domains

1 // i n i t i a l the domains
2 void sc domains : : i n i t doma ins (const s c t ime & duration , s t r i n g

in) {
3

4 i f (in . s i z e () > 0)
5 use r i nput (in) ;
6

7 // i n i t i a l i z e the s imulat ion f l a g s
8 i n i t d e () ;
9 // s p l i t the processes for every SDFG

10 s p l i t p r o c e s s e s () ;
11 // i n i t i a l i z e the runnable l i s t s
12 model . de kerne l−>d e i n i t i a l i z e 2 () ;
13 // i n i t i a l i z e SDF for execut ion
14 i n i t s d f () ;
15 }

Listing 5.16. sdf trigger() and find sdf graph() in sc domains

1 void sc domains : : s d f t r i g g e r (s t r i n g topname) {
2

3 s t r i n g sdfname = topname+” . ” ;
4 sd f g raph ∗ r un th i s ;
5

6 for (int sd f g raphs = 0 ; sd f g raphs < (signed) model .
sdf domain . s i z e () ; sd f g raphs++) {

7 // pointer to a par t i cu l a r SDF graph
8 sd f g raph ∗ p ro c e s s s d f g r aph = model . sdf domain [sd f g raphs

] ;
9 i f (strcmp (proc e s s sd f g raph−>p r e f i x . c s t r () , sdfname . c s t r

())==0) {
10 r un th i s = p ro c e s s s d f g r aph ;
11 i f (run sd f == true){
12 // execute the SDF METHODs
13 run th i s−>s d f s imu l a t e (sdfname) ;
14 run sd f = fa l se ;
15 }/∗ END IF ∗/
16 }/∗ END IF ∗/
17 }/∗ END FOR ∗/
18 }/∗ END sd f t r i g g e r ∗/
19

20 sd f g raph ∗ sc domains : : f i nd sd f g r aph (s t r i n g s d f p r e f i x) {
21

22 for (int sd f g raphs = 0 ; sd f g raphs < (signed) model .
sdf domain . s i z e () ; sd f g raphs++) {

23 // pointer to a par t i cu l a r SDF graph
24 sd f g raph ∗ p ro c e s s s d f g r aph = model . sdf domain [sd f g raphs

] ;
25 i f (strcmp (proc e s s sd f g raph−>p r e f i x . c s t r () , s d f p r e f i x .

c s t r ())==0) {
26 return (p r o c e s s s d f g r aph) ;
27 }/∗ END IF ∗/
28 }/∗ END FOR ∗/
29 return NULL;
30 }/∗ END f ind sd f g raph ∗/

Listing 5.16 shows the definition of sdf trigger() that calls the
sdf simulate() function responsible for finding the appropriate SDFG

86

(with the helper function find sdf graph(...) and executing the SDF
processes corresponding to that SDFG.

The creation of the schedules is encapsulated in the
sdf create schedule(...) function that constructs the topology matrix for
the Diophantine equations solver, returns the solution from the solver
and creates an executable schedule if one exists as demonstrated in List-
ing 5.17.

Listing 5.17. SDF initialization function

1 void sd f g raph : : s d f c r e a t e s c h e du l e () {
2

3 // Repeat for a l l the SDF graphs that are modelled
4 // Extract the address of f i r s t SDF
5 sd f g raph ∗ p ro c e s s s d f g r aph = this ;
6 int ∗ input matr ix = schedu le : : c r e a t e s ch edu l e (

p r o c e s s s d f g r aph) ;
7

8 i f (input matr ix != NULL) {
9 hbs (p roc e s s sd f g raph−>num arcs , p ro c e s s sd f g raph−>

num nodes , input matr ix ,& proce s s sd f g raph−>r e s u l t) ;
10

11 i f (p roc e s s sd f g raph−>r e s u l t != NULL) {
12 // Stored the address of the schedule in the r e s u l t l i s t .
13 }
14 else {
15 schedu le : : err msg (”The r e s u l t schedu le i s i n v a l i d . Halt

s imu la t i on ” , ”EE”) ;
16 // Attempt at clean up for Matrix Input
17 f r e e (input matr ix) ;
18 // Exit s imulat ion
19 e x i t (1) ;
20 }/∗ END IF−ELSE ∗/
21 f r e e (input matr ix) ;
22 }/∗ END IF ∗/
23 else {
24 schedu le : : err msg (” Input Matrix f o r SDF i s i n v a l i d . Halt

s imu la t i on ” , ”EE”) ;
25 e x i t (1) ;
26 }/∗ END IF−ELSE ∗/
27 schedu le : : c o n s t r u c t v a l i d s c h edu l e (∗ p ro c e s s s d f g r aph) ;
28 }/∗ END sd f c r ea t e s chedu l e ∗/

The compilation of SystemC requires passing a compiler flag
SDF KERNEL ENABLE ; hence the #ifndef s with that variable. The
first stage is in creating a matrix representation that can be the input for
the linear Diophantine equation solver. This is performed by traversing
through all SDFGs that might exist in the system and passing a pointer
to the SDFG as an argument to the create schedule(...) function that
creates the topology matrix. If the pointer to the topology matrix called
input matrix is valid (not NULL) then it is passed to the Diophantine
equation solver via the hbs(...) call, which depending on whether there
exists a solution returns a pointer with the result or returns NULL.
The address of the matrix with the result is stored in that SDFG’s re-

Synchronous Data Flow Kernel in SystemC 87

sult data member. Once the result is calculated it is checked whether
it is not NULL and if it is then the simulation exits, otherwise the
simulation proceeds by executing the construct valid schedule(...) func-
tion. Remember that the schedule class is a purely static class with all
its member functions being static hence all function calls precede with
schedule::. If at any point during the schedule construction either of the
input to the Diophantine solver, or the result or even the scheduling for
firing order finds inconsistencies then the simulation exits. The method
of exit might not be the safest exit using the exit(1) function and an im-
provement might involve creating a better cleanup and exit mechanism
or perhaps the use of sc stop().

Upon construction of the SDF execution schedules the simulation be-
gins. When a toplevel SDF process is identified, the user is required to
invoke sdf trigger() from its entry function leading to a brief discussion
of that function shown in Listing 5.18. The underlying function called
from within sdf trigger is sdf crunch() that actually executes the SDF
processes as shown in Listing 5.18. This function traverses through the
SDF method processes stored in this particular SDFG and executes them
in the order created by the scheduling algorithm. It must be noted that
these SDF processes are not pushed onto the runnable queues restricting
their functionality by not allowing a safe usage of next trigger() or the
sensitivity lists.

The sdf simulate(...) function simply calls the sdf crunch(...) func-
tion as in Listing 5.19. The full source with changes in the original
kernel to incorporate the SDF kernel is available at [36]. We have only
discussed the main functions that are used to invoke the SDF kernel and
point out to the reader to the few changes made to the original DE ker-
nel to accommodate the SDF kernel. To summarize, we list the changes
made to the existing kernel:

Separation of initialization roles to allow for separation of processes.

Splitting of SC METHOD() processes. Not all SC METHOD() pro-
cesses are made runnable since we remove SDF block methods from
the method process list.

Specifying user order handles processes of all types. If a user order
is specified then a temporary queue is used to pop the runnable lists,
find the appropriate processes and execute them.

Addition of a clock counter to invoke the SDF execution only once
per cycle when the toplevel entry function is fired.

We believe these to be moderate changes given that we implement a
completely new kernel working alongside with the DE kernel and accept

88

Listing 5.18. SDF crunch function

1 void sd f g raph : : sd f c runch (s t r i n g s d f p r e f i x) {
2

3 sc method handle method h ;
4 #i f d e f SDF KERNEL ENABLE
5 /∗ Executes only the SDF methods that have been i n i t i a l i z e d .

Ordinary DE based
6 METHODs w i l l be executed l a t e r .
7 ∗/
8 sd f g raph ∗ p r o c e s s t h i s s d f g r a ph = this ; // f ind sd f g raph (

s d f p r e f i x) ;
9

10 i f (p r o c e s s t h i s s d f g r a ph != NULL) {
11 // pointer to par t i cu l a r edges ∗ l i s t
12 sd f ∗ p r o c e s s s d f = & pr o c e s s t h i s s d f g r aph −>s d f s c h edu l e ;
13

14 // t raverse through a l l the scheduled nodes in that
pa r t i cu l a r order

15 for (int j = 0 ; j < (signed) p r o c e s s sd f−>s i z e () ; j++) {
16 edges ∗ edg ptr = (∗ p r o c e s s s d f) [j] ;
17 for (int i = 0 ; i < (signed) p r o c e s s t h i s s d f g r aph −>

sd f method handles . s i z e () ; i++) { //
asd fasd fas fdasd fasd

18 method h = p ro c e s s t h i s s d f g r aph −>sd f method handles [i
] ;

19 i f (s t r s t r (method h−>name () , edg ptr−>name . c s t r ())) {
20 try {
21 method h−>execute () ;
22 }
23 catch (const s c ex c ep t i on & ex) {
24 cout << ”\n” << ex . what () << endl ;
25 return ;
26 }
27 }/∗ END IF ∗/
28 }/∗ END FOR ∗/
29 }/∗ END FOR ∗/
30 }
31 else {
32 schedu le : : err msg (”SDF Graph not found ” , ”EE”) ;
33 }/∗ END IF−ELSE ∗/
34 #end i f
35 }/∗ END sdf crunch ∗/

Listing 5.19. SDF simulate function

1 void s c s imcontext : : s imulate (const s c t ime& durat ion) {
2 // Execute for a period (one execut ion of SDF)
3 sd f c runch (p r e f i x) ;
4 }

that there can be better conceivable methods of implementing this as
the C++ language allows an infinite number of implementations.

6. SDF Specific Examples
Experimentation of the SDF kernel has been an incremental process

beginning with pure SDF models followed by heterogeneous models. To

Synchronous Data Flow Kernel in SystemC 89

evaluate the efficiency enhancement by our SDF kernel we set out to
experiment with a few models that are amenable to SDF style modeling.
In this section, we show the results of simulating the same models for
three distinct modeling styles and different sample sizes of data. The
first set of experiments are pure SDF models for the Finite Impulse
Response (FIR), Fast Fourier Transform (FFT), and the Sobel edge
detection algorithm [47]. The second set involves creating a combination
of Discrete-Event and Synchronous Data Flow models shown in Chapter
9. In [62] around 50% or more improvement in simulation efficiency over
threaded models have been reported. Our aim has been to improve upon
those results reported in [62], which we call “Non-Threaded” models.
Furthermore, we aspire in betterment of the modeling paradigm for SDF-
like systems.

7. Pure SDF Examples
Three systems are modeled using the SDF kernel and the SDF mod-

eling style. They are Finite Impulse Response Filter (FIR), Fast Fourier
Transform (FFT), and a Sobel edge detection system. The same sys-
tems are modeled with the original standard SystemC DE kernel and
the data is shown in Figures 5.6. These experiments are executed on a
Linux 2.4.18 platform with an Intel� Pentium� IV CPU 2.00GHz pro-
cessor, 512KB cache size, and 512MB of RAM. The first two are taken
from SystemC examples distribution.

We already discussed the FIR model in earlier chapters allowing us to
move on to the next example, which is the FFT model. The FFT model
is also a three-staged model with a Source block, FFT block and a Sink
block having the responsibilities of creating the input, performing FFT
on the input, and displaying the result, respectively. Figure 5.7 shows
the block diagram describing this model.

The third example chosen is the Sobel example [53, 62]. This example
is a five-staged model shown in Figure 5.8. The Input block simply reads
the matrix from an input file and pushes the values into the data path
queue. This queue is an input to the CleanEdges block that clears
the edges of the matrix and pushes the values through the Channel
block to the Sobel operator block. This Sobel block performs the Sobel
computations and pushes the results to the Output block completing the
entire edge detection example.

We construct these three models with the following underlying sce-
narios:

Discrete-Event kernel using SC THREAD()/ SC CTHREAD() pro-
cesses for modeling.

90

(a) FIR (b) FFT

(c) Sobel

(Black = Original DE models, Dark Gray = Non-Threaded models,
White = SDF models)

Figure 5.6. Results from Experiments

Figure 5.7. FFT Block Diagram

Discrete-Event kernel with the non-threaded models (transformed us-
ing the transformation technique specified in [62]).

Synchronous Data Flow implementation using the implemented SDF
kernel.

Synchronous Data Flow Kernel in SystemC 91

Input CleanEdges Channel Sobel OutputInput CleanEdges Channel Sobel Output

Figure 5.8. Sobel Block Diagram

The graphs in Figure 5.6 present results from these three scenarios.
They show that every model demonstrates significant improvement in
the amount of simulation time over the original model and the non-
threaded model. The three bars on each chart refer to the time taken
in seconds for the entire model to be executed in their respective mod-
eling scenarios. The leftmost bar being the original, middle bar being
non-threaded are modeled using the DE kernel and the rightmost bar
using the SDF kernel. The bar charts show that increasing the num-
ber of sample size will still preserve the efficiency presented by the set
of collected data. The FIR and FFT yielded approximately 75% im-
provement in simulation time compared to the original model and the
Sobel yielded a 53% improvement in simulation time. Comparing re-
sults from the SDF kernel to the non-threaded models, the FIR, FFT
and Sobel, showed 70%, 57% and 47% improvement in simulation time
respectively. All results show better performance with the SDF kernel
than both the original and non-threaded models. We conducted an in-
vestigation on the relative lower improvement for the Sobel model and
understand that the Input block in Sobel is only executed once to read
in the entire matrix of values. However, when this is altered to se-
lect segments of the matrix then the performance reflects the FIR and
FFT model results. This indicates that simulation efficiency depends
on the number of invocations of the blocks required to perform certain
functions. The Sobel model using the DE kernel required a lot more
invocations when collecting segments of the matrix increasing the sig-
nal communication and data passing. Future experimentation proposes
comparison with different matrix segment sizes for this edge detection
algorithm. The percentage improvement over the non-threaded model
in [62] is also consistent with the Sobel edge detection yielding a lower
improvement and for the same reason.

Chapter 6

COMMUNICATING SEQUENTIAL
PROCESSES KERNEL IN SYSTEMC

Any multi-MoC framework designed to model and simulate embed-
ded systems, or any other complex system composed of concurrently
executing components which are communicating intermittently, needs
to implement some MoCs that are geared for specific communicating
process models. Current SystemC reference implementation lets the
user create concurrently executing modules using SC THREAD() or
SC CTHREAD() constructs. Modules that have such threads in them
communicate via channels which are usually of the sc fifo, sc mutex and
other predefined channel types and their derivatives. These channels
have blocking and non-blocking read/write interfaces that the threads
can call to block themselves or attempt communication with other threads.
These thread constructs also can synchronize with clock signals, or
events using wait() or wait until() function calls directly, or through
read/write calls on one of the channel types. Clearly, such threading
mechanisms and structures are provided with the Discrete-Event (DE)
kernel in mind. What if one wants to model software components which
are not necessarily synchronized with a global clock when they suspend
or do not need to synchronize with events that are created at the DE
kernel level? Often, designers want to model a software system without
the notion of clock based synchronization, and later on refine the model
to introduce clocks. For such untimed models of concurrent components,
designers would much prefer a different MoC than the clock-based DE
MoC.

In [28], Communicating Sequential Processes (CSP) is introduced as
a model of computation for concurrency that originally dates back to
1978 [27]. In this MoC, sequential processes are combined with process
combinators to form a concurrent system of communicating components.

94

The protocol for communication in such an MoC is fully synchronous as
opposed to data flow networks. For example, in data flow networks,
buffers in the channels connecting two computing entities are assumed,
and, based on buffer size, the computations proceed asynchronous to
each other, leaving the communicable data at the buffers for the other
components to pick up as and when ready. Of course, in real implemen-
tations buffers are of limited size and hence often times requires process
blockings. In CSP, the communication happens through a rendez-vous
mechanism [27]. This necessitates synchronization at the data commu-
nication points between the processes, as buffering is not allowed on the
channels, and the communicating processes both need to be ready to
communicate for communication to take place. If one of the two com-
municating processes is not ready, the other blocks until both are ready.
This imposes a structure and semantics that is amenable to trace the-
ory, and in later work to failure-divergence semantics. Such theoretical
underpinnings make this MoC quite useful for formal analysis, and in
recent times formal verification and static analysis tools for CSP models
have appeared [40].

CSP provides a convenient MoC for creating a system model which
consists of components that need to communicate with each other and
their communication is based on synchronous rendez-vous, rather than
buffered asynchronous communication. Refining such models with a
clocked synchronous model later on is easier than refining a fully asyn-
chronous model. Moreover, the models built can be formally analyzed
for deadlock and livelock kind of problems more easily. We therefore
picked CSP MoC as one of the first concurrency related MoC for our
extension of SystemC.

Rendez-vous Communication
Implementation of the Communicating Sequential Processes Model

of Computation requires understanding of rendez-vous communication
protocol. Every node or block in a CSP model is a thread-like pro-
cess that continuously executes unless suspended due to communication.
The rendez-vous communication protocol dictates that communication
between processes only occurs when both the processes are ready to com-
municate. If either of the processes is not ready to communicate then
it suspends until its corresponding process is ready to communicate, at
which it is resumed for the transfer of data.

Figure 6.1 illustrates how the rendez-vous protocol works. T1 and T2
are threads that communicate through the channel labelled C1. T1 and
T2 are both runnable and have no specific order in which they are exe-
cuted. Let us consider process point 1, where T1 attempts to put a value

Communicating Sequential Processes Kernel in SystemC 95

T1 T2
CSP channel

Threads

put(…)

put(…)

get(…)

get(…)

Point 1

Point 2

Point 3

Point 4

T
im

e
p

ro
gre

ss

Figure 6.1. CSP Rendez-vous Communication

on the channel C1. However, process T2 is not ready to communicate,
causing T1 to suspend when the put(...) function within T1 is invoked.
When process T2 reaches point 2 where it invokes the get(...) function
to receive data from C1, T1 is resumed and data is transferred. In this
case T2 receives the data once T1 resumes its execution. Similarly, once
T2 reaches its second invocation of get(...) it suspends itself since T1 is
not ready to communicate. When T1 reaches its invocation of put(...),
the rendez-vous is established and communication proceeds. CSP chan-
nels used to transfer data are unidirectional. That means if the channel
is going from T1 to T2, then T1 can only invoke put(...) on the channel
and T2 can only invoke get(...) on the same channel.

1. Implementation Details
We present some design considerations in this section followed by the

data structure employed for CSP and implementation details.

1.1 Design Considerations and Issues
Careful thought must be given to the inclusion of a CSP kernel in

SystemC. This is necessary because CSP is an MoC disjoint from con-
ventional hardware models. Though CSP is more generally considered

96

a software MoC, it is an effective MoC when targeting models for con-
currency. Clearly, the semantics of CSP are different from the semantics
of a Discrete-Event MoC. This implies that, unlike the SDF implemen-
tation in SystemC where we targeted for the simulation semantics to
remain exactly the same as the DE semantics, in CSP we want them to
be completely distinct. Therefore, the Evaluate-Update paradigm is not
employed in the implementation.

1.2 Data Structure

baseReceiver

CSPReceiver CSPnode
11

CSPkernel

1

*

1

*

CSPelement

3

3

CSPnodelist2

*

sc_domains

1

*

sc_thread_process

1

1

1

1

Figure 6.2. CSP Implementation Class Hierarchy

Chapter 4 familiarizes the reader with general implementation class
hierarchies that present a minimal organization structure followed by the
CSP kernel. This section describes implementation of the class hierarchy
shown in Figure 6.2.

A baseReceiver class preserves basic information about the receiver
that inherits from the baseReceiver. This class presently only holds the
type of the inheriting receiver, but this can be extended to encompass

Communicating Sequential Processes Kernel in SystemC 97

Listing 6.1. class baseReceiver

1 class baseRece iver {
2 private :
3 rece iverType type ;
4

5 protected :
6 rece iverType getType () ;
7 void setType (rece iverType t) ;
8 void setCSP () ;
9

10 public :
11 baseRece iver () ;
12 ˜ baseRece iver () ;
13

14 } ;

common functionality as described in Chapter 4. Listing 6.1 shows the
baseReceiver class with an enumerated receiverType data type. Variable
type is set via the derived class, identifying the derived class as a CSP
receiver by the use of setCSP() function.

CSPnode 2

CSPnode 4CSPnode 1

CSPnode 3

Figure 6.3. Simple CSP model

CSP models require a data structure that represents a graph, which
we call a CSP graph (CSPG). The CSPelement class is responsible for
encapsulating information used to construct this CSPG. Figure 6.3 shows
an example of a CSPG. The graph representation is implemented by a
list of pointers to objects of type CSPelement, which is discussed later
in this section. However, for the purpose of creating this CSPG, each
object of CSPelement contains a pointer to the CSPnodes that this
CSPelement is connected to and from.

From Listing 6.2 toNode and fromNode point to the objects of type
CSPnode (defined later in this section) distinguishing the direction of
the communication as well. There are two Boolean flags called putcalled
and getcalled that store the state of the channel. The putcalled Boolean
value is set to true if a corresponding CSPnode connected to this chan-
nel invokes the put(...) function call. Similarly, getcalled is set when the

98

Listing 6.2. class CSPelement

1 class sc module ;
2 class CSPnode ;
3

4 class CSPelement {
5

6 private :
7 CSPnode ∗ me;
8 CSPnode ∗ toNode ;
9 CSPnode ∗ fromNode ;

10 stat ic int id ;
11 bool put ca l l ed ;
12 bool g e t c a l l e d ;
13 c sp event ∗ ev ; // s tore the event tha t t h i s element i s

going to be t r i g g e r ed on
14

15 public :
16

17 CSPelement () ;
18 ˜CSPelement () ;
19

20 CSPelement (CSPnode ∗ from , CSPnode ∗ to , int id) ;
21 CSPelement (CSPnode ∗ from , CSPnode ∗ to) ;
22 void s e t i d (int i) ;
23 void s e t t o (CSPnode ∗ to) ;
24 void set f rom (CSPnode ∗ from) ;
25 int ge t id () ;
26

27 bool getput () ;
28 bool ge tge t () ;
29 void se tput (bool p) ;
30 void s e t g e t (bool g) ;
31

32 void s e t ev (c sp event ∗ e) ;
33 c sp event ∗ getev () ;
34 void c l e a r e v () ;
35

36 CSPnode∗ getme () ;
37 void setme (CSPnode ∗ m) ;
38

39 CSPnode∗ get to () ;
40 CSPnode∗ getfrom () ;
41 CSPnode∗ get r e sume ptr (CSPnode ∗ mysel f) ;
42 CSPnode∗ ge t su spend pt r (CSPnode∗ mysel f) ;
43 s t r i n g ∗ getmyname (CSPnode ∗ mysel f) ;
44

45 //over loaded operators
46 bool operator==(const CSPelement & a) ;
47 bool amIfrom (CSPnode ∗ from) ;
48

49 friend ostream& operator << (ostream& os , CSPelement & p) ;
//output

50 } ;

get(...) function is invoked by its corresponding CSP process. Another
Boolean variable typedefed to csp event represents whether there exists
an event on the channel. If an event exists then one of the processes con-
nected to this channel was suspended. SystemC events are not used for

Communicating Sequential Processes Kernel in SystemC 99

csp event, but regular bool data types. This avoids the use of SystemC’s
DE semantics and events.

Other than general set and get functions for the private members of
this class, the important member function is the overloaded equals op-
erator. The implementation of this overloaded operator compares the
fromNode and toNode to verify that the CSPelement objects on both
sides of the equals operator have the same addresses for the fromNode
and toNode. If they do, then a particular channel or CSPelement that
connects two CSPnodes is found. The responsibility of CSPelement is
exactly the same as that of a channel. This is a result of adhering to the
general implementation hierarchy, where the CSP channels are effectively
represented by CSPelement objects. Hence, we inherit CSPelement in
CSPchannel, which is discussed later. This is the mechanism that we em-
ploy in searching for the channels through which communication occurs.
However, this imposes a limitation that there can only be a maximum
of two channels between the two same CSPnodes. This gives rise to a
problem that if there exists two channels in the same direction between
the two same nodes, then according to the equals operator, they will be
indistinguishable. Thus, we limit the users to only one channel in the
same direction between two CSPnodes. We justify this implementation
in the following manner:

By allowing for a templatized data transfer communication that can
transfer a data type defined by the user. This allows the user to pass
in different values through the communication channel through the
user defined data type.

A single CSPchannel can result to multiple suspension points with
multiple calls to get(...) or put(...).

Figure 6.3 shows a simple CSP model with four CSP processes that are
connected via channels. The analogous representation of this simple CSP
model using our data structure is shown in Figure 6.4, which shows how
objects of CSPelement are used to construct a CSPG. The list holding
the CSPelements is the CSPReceiver. CSPReceiver objects are data
members of a CSPnode that are composed with CSPelement objects.

Figure 6.4 shows four CSPnodes and their respective CSPelements
for the purpose of providing a connection between two CSP processes.
The gray box displays objects of CSPReceiver. The role of the receiver
is simply to encapsulate the CSPelements as shown in Figure 6.4. A
simple data structure is employed to represent the CSPG. We employ
C++ STL vector<...> class to store the addresses of every CSPelement
inserted in the CSPG and iterate through the list to find the appropriate

100

CSPnode 2

CSPnode 4

CSPnode 1

CSPnode 3

CSPelement
CSPnode 1 points to CSPnode 2

CSPReceiver

1 2

1 3

3 4

CSPReceiver

4 2

3 4

CSPReceiver

4 2

1 2

CSPReceiver

1 3

1 2

CSPReceiver

Figure 6.4. Implementation of a Simple CSP Model

channel for communication when required. Every CSPnode has its own
CSPReceiver object that contains the CSPelements that address that
particular CSP process. Listing 6.3 displays the class definition describ-
ing the elementlst as the container of the CSPelement addresses along
with a private helper function that is used to traverse through the list
and identify the requested channel.

We discuss some of the important member functions from this class
and their input and output arguments.

put(...):
Inputs:

A pointer to the CSPelement to identify what channel it is to be
passed on to.

The CSPnode that is responsible for sending this token.

Outputs:

Communicating Sequential Processes Kernel in SystemC 101

Listing 6.3. class CSPReceiver

1 class CSPReceiver : public baseRece iver {
2

3 private :
4 vector<CSPelement∗> e l ement l s t ;
5 int id ;
6

7 // pr i va te he lper funct ions
8 CSPelement ∗ f indElement (CSPelement ∗ e) ;
9

10 public :
11 CSPReceiver () ;
12 ˜CSPReceiver () ;
13

14 // overloaded Constructors
15 CSPReceiver (CSPnode ∗ fromNode , CSPnode ∗ toNode) ;
16

17 // funct ions
18 void get (CSPelement ∗ e , CSPnode ∗ me) ;
19 void put (CSPelement ∗ e , CSPnode ∗ me) ;
20

21 void push into (CSPelement ∗ e) ;
22 friend ostream& operator<<(ostream& os , CSPReceiver & p) ;
23

24 // event f inder s
25 c sp event ∗ getevent (CSPelement ∗ e l) ;
26 void s e t event (CSPelement ∗ e l , c sp event ∗ ev) ;
27

28 void suspendProc (CSPelement ∗ e , CSPnode ∗ me) ;
29 void resumeProc (CSPelement ∗ e , CSPnode ∗ me) ;
30 } ;

The process suspends if a get(...) has not been called on the
channel.

get(...):

Inputs:

A pointer to the CSPelement that a token is to be received from.

The address of the CSPnode making the get(...) invocation.

Outputs:

If a put(...) has been called the suspended process that called the
put(...) is scheduled for execution (resumption).

suspendProc(...): Suspends the currently executing thread.

Inputs:

A pointer to the CSPelement that requires suspension due to
rendez-vous protocols.

102

A pointer to the CSPnode that is to be suspended.

Outputs:

The CSPnode currently executing suspends itself.

resumeProc(...): Resumes a particular thread for execution.
Inputs:

A pointer to the CSPelement that is to be resumed due to rendez-
vous protocols.
A pointer to the CSPnode that is to be resumed.

Outputs:

The CSPnode is scheduled for resumption.

It may seem redundant to supply these functions with the owner of the
call, where the owner is the process invoking the member function. How-
ever, this is necessary because every CSPnode contains all the CSPele-
ments that addresses that process, either as a fromNode or a toNode.
Furthermore, the direction is preserved when inserting the address of the
CSPelement objects in their respective receiver lists. This is to allow the
process to know whether it is the calling process or the called process.

To avoid a convoluted written explanation, let us consider Figure
6.3 where the direction of the communication is from CSPnode 1 and
towards CSPnode 3. Our implementation adds a pointer in CSPnode
1’s receiver and the same pointer in CSPnode 3’s receiver pointing to an
object of CSPelement whose fromNode points to CSPnode 1 and toNode
is CSPnode 3. For the purpose of the CSPnode knowing the direction of
communication, it is necessary to compare the process’s pointer to both
the fromNode and toNode to realize the direction of communication.

Listing 6.4 defines the CSPnode class that encapsulates the CSPRe-
ceiver as shown in Figure 6.4. Other important private members of
this class are sc thread and my thread list. sc thread holds a pointer
to SystemC’s sc thread process object and my thread list is a pointer to
an object that contains a list of CSPnodes in a model. These private
data members are used during the simulation of the CSP model. The
remainder of the member functions are mandatory set(...) and get(...)
functions.

A CSP channel implemented as a class called CSPchannel inherits
from base class sc moc channel, but CSPchannels must also support
rendez-vous communication as well as the capability to transfer data.
For this reason, the CSPchannel is specialized. Listing 6.5 shows the
definition of this class.

Communicating Sequential Processes Kernel in SystemC 103

Listing 6.4. class CSPnode

1 class CSPnodel ist ;
2 class CSPnode {
3

4 private :
5 CSPReceiver ∗ cspbox ; // one CSPnode has one rece i ver
6 int c sp id ;
7 ProcInfo ∗ proce s s ;
8 s c th r ead hand l e s c th r ead ;
9 CSPnodel ist ∗ my th r ead l i s t ;

10

11 // he lper funct ions
12 int ge t id () ;
13

14 public :
15 CSPnode () ;
16 ˜CSPnode () ;
17

18 // Set up Process Information
19 void se tprocaddr (void ∗ a) ;
20 void setprocname (s t r i n g ∗ n) ;
21 void setprocname (const s t r i n g & n) ;
22 void ∗ getprocaddr () ;
23 s t r i n g ∗ getprocname () ;
24

25 // setup the l i n k between two or more nodes
26 void po i n t s t o (CSPnode∗ to) ;
27 void po i n t s t o (CSPnode ∗ to , CSPelement ∗ e l) ;
28 void po i n t s t o (CSPnode & to , CSPelement & e l) ;
29

30 //member funct ions
31 bool send () ;
32 bool send (CSPelement ∗ sendTo) ;
33 void send (CSPelement & sendTo) ;
34 void get (CSPelement ∗ getFrom) ;
35 void get (CSPelement & getFrom) ;
36 bool suspend () ;
37 void portbind (CSPelement ∗ e) ;
38

39 // se t which CSPnodelist i t be longs to
40 void s e t my th r e ad l i s t (CSPnodel ist ∗ my l i s t) ;
41 CSPnodel ist ∗ g e t my th r e ad l i s t () ;
42

43 void pr in t () ;
44

45 void setnodeev (CSPelement ∗ thisNode , c sp event ∗ e) ;
46 c sp event ∗ getnodeev (CSPelement ∗ getFrom) ;
47

48 // a f t e r execut ion reschedu le immediately
49 void r e s chedu l e () ;
50

51 void setmodule (s c th r ead hand l e mod) ;
52 s c th r ead hand l e getmodule () ;
53 } ;

Notice from Figure 6.5 that multiple inheritance is used to define
CSPchannel. Inheritance from sc moc channel and CSPelement pro-
vides functionality and data structure available in both these base classes.
From an object oriented programming sense, the CSPelement actually
defines a channel between two CSP processes. Thus, the relationships of

104

Listing 6.5. class CSPchannel

1 template <class T> class CSPchannel :
2 public CSPelement , public sc moc channel<T>
3 {
4 public :
5

6 CSPchannel<T>() {} ;
7 ˜CSPchannel<T>() {} ;
8

9 void push (T & val , CSPnode & node) ;
10 T get (CSPnode & node) ;
11 } ;
12

13 template <class T>
14 void CSPchannel<T> : : push (T & val , CSPnode & node) {
15 sc moc channel<T> : : push (va l) ;
16 node . send ((CSPelement ∗) this) ;
17

18 } ;
19

20 template <class T>
21 T CSPchannel<T> : : get (CSPnode & node) {
22 node . get ((CSPelement ∗) this) ;
23 return (sc moc channel<T> : : pop ()) ;
24 } ;

CSPelement

-value

CSPchannel<T>

sc_moc_channel<T>

Figure 6.5. Class diagram for CSPchannel

CSPchannel is one of an “is a” with both sc moc channel and CSPele-
ment. The member functions in CSPchannel are shown in Table 6.1.

Table 6.1. Member function for class CSPchannel

Member Function Purpose

push(...) Attempts to send a token on the channel

get(...) Attempts to receive a token from the channel

Communicating Sequential Processes Kernel in SystemC 105

It follows that there is a need to specialize the CSPport class such
as to support this specialized CSPchannel. Using the sc moc port base
class data structure, CSPport appropriately calls member functions of
CSPchannel when a value is to be inserted or extracted. Listing 6.6
displays the class definition for CSPport. The implementation of the
CSPport class serves the basic purpose of allowing two CSPnodes vis-
ibility of the CSPchannel that connects them. We have implemented
overloaded () operators to allow CSP port binding. However, we do not
perform any checks for port binding errors.

Listing 6.6. class CSPport

1 template <class T> class CSPport : public sc moc port<T> {
2 public :
3 CSPport<T>() {} ;
4 ˜CSPport<T>() {} ; CSPelement & read () ;
5 void push (T & p , CSPnode & node) ;
6 T get (CSPnode & node) ;
7

8 } ;
9

10 template <class T >
11 void CSPport<T> : : push (T & p , CSPnode & node)
12 {
13 CSPchannel<T> ∗ castchn = static cast < CSPchannel<T> ∗ > (port

) ;
14 i f (port != NULL) {
15 castchn−>push (p , node) ;
16 }
17 } ;
18

19 template <class T >
20T CSPport<T> : : get (CSPnode & node) {
21 CSPchannel<T> ∗ castchn = static cast < CSPchannel<T> ∗ > (port

) ;
22 return (castchn−>get (node)) ;
23 } ;

The CSPnodelist class shown in Listing 6.7 can be considered to be the
class that defines the CSP simulator object in SystemC. Hence, an object
of CSPnodelist performs the simulation for CSP. The private members
are simply two vector<...> lists where nodelist is the list of pointers to
all the CSPnodes and runlist is a list of the runnable CSP processes.
Though the runlist is of type vector<...> we have implemented a queue
with it. This behavior is necessary to correctly simulate a CSP model.
Other private members are pointers to the coroutine packages used to
implement QuickThreads [35] in SystemC. m cor identifies the executing
simulation context’s coroutine whereas m cor pkg is a pointer to a file
static instance of the coroutine package through which blocking and re-
sumption of thread processes can be performed. For further details about
QuickThread implementation in SystemC please refer to Appendix A.

106

Coroutine is SystemC’s implementation of the QuickThread core pack-
age as the client package.

Some of the important member functions are listed below:

void push runnable(CSPnode & c) The CSPnode is pushed onto
the runlist such that it can be executed.

CSPnode * pop runnable() Retrieves the top runnable thread.

void next thread() Selects the next CSP process to execute.

void sc csp switch thread(CSPnode * c) Used in blocking the cur-
rently executing thread and resuming execution of the thread identi-
fied by the pointer c.

sc cor* next cor() Retrieves a pointer to the next thread coroutine
to be executed.

Implementation details of these classes are not presented, but we di-
rect the reader to refer to implementation details available at our website
[36]. This brief introduction of the CSP data structure allows us to pro-
ceed to describing how the CSP scheduling and simulation is performed.
For some readers it may be necessary to refer to Appendix A where we
describe the coroutine package for SystemC based on [35].

2. CSP Scheduling and Simulation

Table 6.2. Few Important Member Functions of CSP Simulation class CSPnodelist

Method / Variable name Maintained by
CSP Kernel QuickThread Package

runlist � -

nodelist � -

m cor pkg � �
m cor � �
push(...) � -

push runnable(...) � -

sc switch switch thread(...) � -

pop runnable(...) � -

next cor(...) � -

run csp(...) � -

Simulation of a CSP model uses a simple queue based data structure
that contains pointers to all the CSPnodes. This queue is constructed
by using C macros that work similar to the existing SC THREAD()
macros. We introduce the macro SC CSP THREAD() that takes three

Communicating Sequential Processes Kernel in SystemC 107

Listing 6.7. class CSPnodelist

1 class CSPnodel ist {
2

3 private :
4 vector<CSPnode∗ > ∗ r u n l i s t ;
5 vector<CSPnode∗ > ∗ nod e l i s t ;
6

7 public :
8 CSPnodel ist () ;
9 ˜CSPnodel ist () ;

10

11 void push runnable (CSPnode & c) ;
12 void push (CSPnode & c) ;
13

14 void next thread () ;
15

16 CSPnode ∗ pop runnable () ;
17 void removefront () ;
18

19 // s i z e s of l i s t s
20 int n o d e l i s t s i z e () ;
21 int r unnab l e s i z e () ;
22

23 void c s p t r i g g e r () ;
24 void runcsp (CSPnodel ist & c) ;
25 s c co r pkg ∗ cor pkg ()
26 { return m cor pkg ; }
27 s c c o r ∗ next co r () ;
28

29 vector<CSPnode∗> ∗ g e t n od e l i s t () ;
30 vector<CSPnode∗> ∗ g e t r u n l i s t () ;
31 void i n i t () ;
32 void c l ean () ;
33 void i n i t i a l i z e (bool nocrunch) ;
34

35 void s c c s p sw i t ch th r e ad (CSPnode ∗ c) ;
36 void p r i n t r u n l i s t () ;
37

38 void push top runnable (CSPnode & node) ;
39

40 private :
41 s c co r pkg ∗ m cor pkg ; // the simcontext ’ s

corout ine package
42 s c c o r ∗ m cor ; // the simcontext ’ s

coroutine
43

44 } ;

arguments: the entry function, the CSPnode object specific for that
SC CSP THREAD() and the CSPnodelist to which it will be added.
This macro calls a helper function that registers this CSP thread process
by inserting it in the CSPnodelist that is passed as an argument.

Invoking the function runcsp(...), initializes the coroutine package and
the current simulation context is stored in the variable main cor. The
simulation of the CSP model starts by calling the sc csp start(...) func-
tion. Table 6.2 shows a listing of some important functions and vari-
ables and whether the CSP kernel or the QuickThread package manages

108

them. The variable m cor pkg is a pointer to the file static instance of
the coroutine package. This interface for the coroutine package is better
explained in Appendix A. All thread processes require being prepared
for simulation. The role of this preparation is to allocate every thread
its own stack space as required by the QuickThread package. After this
preparation, the first process is popped from the top of the runlist using
pop runnable(...) and executed. The thread continues to execute until
it is either blocked by executing another thread process or it terminates.
This continues until there are no more processes on the runlist.

Listing 6.8. class csp trigger() function

1 void CSPnodel ist : : c s p t r i g g e r () {
2 while (true) {
3 s c th r ead hand l e thread h = pop runnable ()−>getmodule () ;
4 removefront () ;
5 while (thread h != 0 && ! thread h−>r eady to run ()) {
6 thread h = pop runnable ()−>getmodule () ;
7 removefront () ;
8 }
9 i f (thread h != 0) {

10 m cor pkg−>y i e l d (thread h−>m cor) ;
11 }
12

13 i f (r unnab l e s i z e () == 0) {
14 // no more runnable processes
15 break ;
16 }
17 } ;
18 }

We present the function csp trigger() in Listing 6.8 that is responsi-
ble for performing the simulation. The pop runnable() function extracts
the topmost pointer to a CSPnode that has an sc thread handle as a
private member, which is retrieved by invoking the getmodule() mem-
ber function. The m cor pkg→yield(thread h→m cor) function invokes
a function implemented in the sc cor qt class. This yield(...) function
is responsible for calling a helper function to switch out the currently
executing process, saving it on its own stack and introducing the new
process for execution. The process coroutine is sent by the thread→m cor
argument. A check is done if the runnable queue is empty and then the
simulation is terminated. However, most CSP processes are suspended
during their execution, which requires brief understanding of how block-
ing is performed using QuickThreads. For most readers it will suffice to
explain that when a process suspends via the suspendProc(...) function,
the state of the current process is saved and a helper function called
next cor() is invoked. The next cor() returns a pointer of type sc cor
which is the coroutine for the next thread to execute.

Communicating Sequential Processes Kernel in SystemC 109

Listing 6.9. function next cor() function

1 s c c o r ∗ CSPnodel ist : : n ex t co r ()
2 {
3 s c th r ead hand l e thread h = pop runnable ()−>getmodule () ;
4 removefront () ;
5 while (thread h != 0 && ! thread h−>r eady to run ()) {
6 thread h = pop runnable ()−>getmodule () ;
7 removefront () ;
8 }
9 i f (thread h != 0) {

10 return (thread h−>m cor) ;
11 } else
12 return m cor ;
13 }

Implementation of the next cor() function is similar to the csp trigger()
function. This is because once a CSP process is suspended, the next pro-
cess must continue to execute. So, next cor() implements a similar func-
tionality as csp trigger() with the exception of calling yield(...) on the
process to execute, and the coroutine is returned instead. Furthermore,
if there are no more processes on the runlist, then the main coroutine
of the simulation is returned by returning m cor as shown in Listing
A.11. Therefore, the suspension of processes is in essence performed
by yielding to another process, where QuickThreads serve their purpose
by making it relatively simple for blocking of thread processes. Like-
wise, resumption of the threads is simple as well. Using the coroutine
package, resumption is done by rescheduling the process for execution.
Therefore, when resumeProc(...) is invoked, the address of the process
to be resumed is inserted into the runlist queue. Once the top of the
queue reaches this process, the thread is resumed for execution. During
modeling, non-deterministic behavior is introduced by randomization in
the user constructed models. According to this implementation, CSP
models have the potential for executing infinitely such as the Dining
Philosopher problem. We visit the implementation of this example us-
ing our CSP kernel for SystemC.

3. Example of CSP Model in SystemC
Early in Chapter 2, we introduced the Dining Philosopher problem.

A schematic of the way it can be implemented is shown in Figure 6.6.
In this section, we revisit this example and provide the reader with
modeling guidelines along with code fragments to describe how it is
modeled using our kernel. However, during our earlier discussion, we did
not present the possibility of deadlock. A deadlock occurs in the Dining
Philosopher problem when for instance every philosopher feels hungry

110

PHIL0

PHIL1

PHIL2PHIL3

PHIL4

toRight1

toLeft2

to
R

ig
ht

2

to
Le

ft
5

toRight5

toLeft1

Fork0

Fork1

Fork2

Fork3

Fork4

Figure 6.6. CSP Implementation of Dining Philosopher

and picks up the fork to their left. That prevents any of the philosophers
eating since two forks are required to eat causing the model to deadlock.
We use a simple deadlock avoidance technique where we have a footman
that takes the philosophers to their respective seats and, if there are four
philosophers at the table, asks the fifth philosopher to wait and seats
him only after one is done eating. This is a rudimentary solution, but
for our purpose it is sufficient.

We begin by describing the module declaration of a philosopher in
Listing 6.10. The original implementation that we borrow is available
at [60]. That implementation is a pure C++ based implementation that
we modify to make a CSP SystemC example. Each philosopher has a
unique id and an object of ProcInfo. This ProcInfo class is implemented
as a debug class to hold the address of the process and the name of the
process purely for the reasons of output and debugging. The full source
description will have the implementation of this class, though we do not
describe it since it is not directly relevant to the implementation of the
CSP kernel in SystemC. There is an instantiation of a CSPnode called
csp through which we enable our member function invocations for CSP
and two CSPports, toRight and toLeft. The toRight connects to the
CSPchannel that connects the philosopher to the fork on its right and
toLeft to the one on its left. There are several intermediate functions
defined in this module along with the main entry function. The entry
function is called soln() that is bound to a CSP process through the
SC CSP THREAD() macro.

Communicating Sequential Processes Kernel in SystemC 111

Listing 6.10. Philosopher Module Declaration

1SC MODULE(PHIL) {
2

3 int id ;
4 int s t ;
5 s t r i n g s t r i d ;
6 int timeToLive ;
7

8 CSPnode csp ;
9 CSPport<int > toRight ;

10 CSPport<int > toLe f t ;
11

12 int ∗ drop ;
13 int ∗ pick ;
14 ProcInfo proc ;
15

16 void askSeat (int id) ;
17 void ge t f o rk () ;
18 void dropfork () ;
19 void so ln () ;
20 int g e t s t a t e () ;
21 void pr in t () ;
22

23 // footman required for deadlock f r ee so lu t i on
24 bool reqSeat () ;
25

26 SC CTOR(PHIL) {
27 s t = −1;
28 SC CSP THREAD(soln , DP, csp) {
29 } ;
30 } ;
31 } ;

We begin describing the implementation of the PHIL class by dis-
playing the entry function soln() as shown in Listing 6.11. Many print
statements are inserted to view the status of each of the philosophers
and the forks. This is handled by the print states() function. However,
the core functionality of the entry function begins by invoking getfork().
Listing 6.12 shows the implementation of this function. The state[x]
array is global and simply holds the state value for every philosopher,
which is updated immediately to allow the print states() to output the
updated values. The philosopher requests a fork on either the left or
right of himself by calling the get(...) member function on the port. If
the fork is available to be picked up and has been recognized by the
CSPchannel then the philosopher process will continue execution and
request the other fork. However, if the fork is not ready to be picked up,
this process will suspend.

Once the philosopher has both the forks in hand, soln() goes to its
eating state where we simply output EATING and wait for a random
amount of time defined by functions from [60]. After the eating state,

112

Listing 6.11. function soln()

1 void PHIL : : s o ln () {
2 int durat ion = timeToLive ;
3 int eatCount = 0 ;
4 int totalHungryTime = 0;
5 int becameHungryTime ;
6 int startTime = msecond () ;
7

8 while (1) { // (msecond () − startTime < duration ∗ 1000) {
9

10 i f ((reqSeat () == true) && ((s t a t e [id] != 0) | | (s t a t e [id
] != 6))) {

11 becameHungryTime = msecond () ;
12 p r i n t s t a t e s () ;
13 cout << ” PICKING UP FORKS ” << endl ;
14 ge t f o rk () ;
15 cout << ” DONE PICKING UP FORKS ” << endl ;
16 p r i n t s t a t e s () ;
17 totalHungryTime += (msecond () − becameHungryTime) ;
18 eatCount++;
19 cout << ” EATING ” endl ;
20 s t a t e [id] = 3 ;
21 us l e ep (1000L ∗ random int (MeanEatTime)) ;
22 cout << ” DONE EATING ” << endl ;
23 p r i n t s t a t e s () ;
24 cout << ” DROPPING FORKS ” << endl ;
25 dropfork () ;
26 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
27 cout << ” DONE DROPPING FORKS ” << endl ;
28 p r i n t s t a t e s () ;
29 cout << ” THINKING ” << endl ;
30 s t a t e [id] = 6 ;
31 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
32 s t a t e [id] = 0 ;
33 p r i n t s t a t e s () ;
34 −−space ;
35 csp . r e s chedu l e () ;
36 } else {
37 cout << ” STANDING ” << endl ;
38 csp . r e s chedu l e () ;
39 }
40 }
41 s t a t e [id] = 7 ;
42 totalNumberOfMealsServed += eatCount ;
43 totalTimeSpentWaiting += (totalHungryTime / 1 0 0 0 . 0) ;
44 cout << ”Total meals served = ” << totalNumberOfMealsServed

<< ”\n” ;
45 cout << ”Average hungry time = ” <<
46 (totalTimeSpentWaiting / totalNumberOfMealsServed) << ”\n”

;
47 } ;

the philosopher enters the state where he attempts to drop the forks by
calling dropfork() described in Listing 6.13.

Dropping of the forks is modeled by sending a value on the channel
which is performed via the push(...) on the port. If the push(...) is
invoked without the corresponding CSP node at the end of the channel
ready to accept the token, the process will suspend. Returning back to
the entry function, after the forks have been dropped there is a random

Communicating Sequential Processes Kernel in SystemC 113

Listing 6.12. function getfork()

1 void PHIL : : g e t f o rk () {
2 i f (numPhil % 2) {
3 // even−numbered phi losophers pick l e f t then r i g h t
4 s t a t e [id] = 1 ;
5 p r i n t s t a t e s () ;
6 toLe f t . get (csp) ;
7

8 s t a t e [id] = 2 ;
9 p r i n t s t a t e s () ;

10 toRight . get (csp) ;
11 }
12 else {
13 // odd−numbered phi losopher ; pick r i g h t then l e f t
14 s t a t e [id] = 2 ;
15 p r i n t s t a t e s () ;
16 toRight . get (csp) ;
17

18 s t a t e [id] = 1 ;
19 toLe f t . get (csp) ;
20 p r i n t s t a t e s () ;
21 }
22 } ;

Listing 6.13. function dropfork()

1 void PHIL : : dropfork () {
2 // drop l e f t f i r s t , then r i g h t not tha t i t matters
3 s t a t e [id] = 4 ;
4 p r i n t s t a t e s () ;
5 toLe f t . push (∗drop , csp) ;
6 s t a t e [id] = 5 ;
7 p r i n t s t a t e s () ;
8 toRight . push (∗drop , csp) ;
9 } ;

usleep(...) that suspends execution for microsecond intervals. This com-
pletes the eating process for the philosopher such that he returns to his
thinking state followed by a random valued usleep(...). According to the
queue based implementation, once the process completes its first itera-
tion of the entry function, it must be rescheduled so that the process
address is added onto the runlist. We provide the reschedule() function
that the user must invoke to reinsert the CSP process address into the
runlist.

For the behavior of the fork, we define the module as shown in Listing
6.14. The FORK module also has an id to differentiate the different
forks on the table, an integer valued variable queryFork that represents
the state of the fork where 1 means that the fork is down and -1 means
the fork is not down. There is an instance of a CSPnode object called
csp and two CSPports called fromRight and fromLeft. The fromLeft port
connects to a CSPchannel coming from the toRight port of a philosopher

114

Listing 6.14. Module FORK

1SC MODULE(FORK) {
2 int id ;
3 int queryFork ;
4 CSPnode csp ;
5 CSPport<int > fromRight ;
6 CSPport<int > f romLeft ;
7 int ∗ drop ;
8 int ∗ pick ;
9

10 ProcInfo proc ;
11

12 void reqFork () ;
13 void addressFork () ;
14

15 SC CTOR(FORK) {
16 queryFork = 1;
17 SC CSP THREAD(addressFork , DP, csp) ;
18 } ;
19 } ;

and the fromRight connects to the neighboring philosopher’s toLeft. The
entry function addressfork() is described next.

The addressFork() function dictates the fork’s behavior. This behav-
ior is dependent on the state of the philosophers. Listing 6.15 shows
that there are four cases that have implementation for the fork. Cases 1
and 2 only occur when the fork is down on the table and cases 4 and 5
only occur when the fork is not available on the table. We implemented
a function that gets the ids of the philosophers that surround the fork.
We use simple tricks with the id of the forks and philosophers to locate
the neighbors as shown in Listing 6.16. Our heuristic for finding the
neighbors involves looking to the left of the fork and then the right of
the fork. We identify each fork with a corresponding id as well. Based on
this id we locate the ids of the neighboring philosophers with sufficient
cases to ensure that ids of forks with id 4 and 0 perform an appropriate
wrap around to complete the circular setup as shown in Figure 6.6. The
addressFork() function checks the state of the neighbors and accordingly
either gives itself (the fork) to the philosopher or requests itself back,
otherwise it simply does nothing. We list the functionality of the fork
as follows:

Case 1: The philosopher to the right has requested a fork so the fork
gives itself through the put(...) function to the philosopher on the
right.

Case 2: The philosopher to the left has requested this fork, so the fork
gives itself to the requesting philosopher since the fork is still down
for Cases 1 and 2.

Communicating Sequential Processes Kernel in SystemC 115

Listing 6.15. addressfork() member function

1 void FORK: : addressFork () {
2 while (true) {
3 // Get my neighbors
4 int ∗ nbors = get my neighbors (id) ;
5 bool resched = fa l se ;
6 for (int i =0 ; i < 2 ; i++) {
7 cout << ”PHIL ” << nbors [i]+1 << ” FORK ” << id +1 ;
8 switch (s t a t e [nbors [i]]) {
9 case 1 : {

10 // Guy asks on h i s Lef t so Send Right
11 i f ((i != 0) && (queryFork ==1)) {
12 queryFork = −1;
13 f o r k s [id] = queryFork ;
14 s t a t e [nbors [i]] = 8 ;
15 p r i n t s t a t e s () ;
16 fromRight . push (∗ pick , csp) ;
17 }
18 break ;
19 }
20 case 2 : {
21 // Guy asks on h i s Right so Send Lef t
22 i f ((i != 1) && (queryFork ==1)) {
23 queryFork = −1;
24 f o r k s [id] = queryFork ;
25 s t a t e [nbors [i]] = 9 ;
26 p r i n t s t a t e s () ;
27 f romLeft . push (∗ pick , csp) ;
28 }
29 break ;
30 }
31 case 4 : {
32 i f ((i != 0) && (queryFork !=1)) {
33 queryFork = 1;
34 f o r k s [id] = queryFork ;
35 p r i n t s t a t e s () ;
36 fromRight . get (csp) ;
37 }
38 break ;
39 }
40 case 5 : {
41 i f ((i != 1)&& (queryFork !=1)) {
42 queryFork = 1;
43 f o r k s [id] = queryFork ;
44 p r i n t s t a t e s () ;
45 f romLeft . get (csp) ;
46 }
47 break ;
48 }
49 default : {
50 break ;
51 } ;
52 } ;
53 cout << ”\ t ” ;
54 } ;
55 csp . r e s chedu l e () ;
56 delete nbors ;
57 } // END WHILE
58

59 } ;

116

Listing 6.16. get my neighbors function

1 int ∗ get my neighbors (int id) {
2 int ∗ nbors = new int [2] ;
3

4 i f ((id != 0) && (id != 4)) {
5 nbors [0] = id ;
6 nbors [1] = id +1;
7 } else {
8 i f (id == 0) {
9 nbors [0] = 0 ;

10 nbors [1] = id + 1;
11

12 } else {
13 i f (id == 4) {
14 nbors [0] = id ;
15 nbors [1] = 0 ;
16 } ;
17 }
18 }
19 cout << ” −−−−==== PHIL ” << nbors [0]+1 << ” FORK ” << id

+ 1 << ” PHIL ” << nbors [1]+1 << ” ====−−−−” << endl ;
20

21 return nbors ;
22 } ;

Case 4: The fork was given to the philosopher on the right so request
the fork back from the philosopher.

Case 5: The fork was given to the philosopher on the left so this is
requested back.

This model of the Dining Philosopher executes infinitely unless the
conditions are un-commented in the soln() function [Listing 6.11, Line
8] which causes the while() loop to execute for a limited number of
executions and terminates, causing the philosophers to in essence, die
(perhaps die from over eating).

4. Modeling Guidelines for CSP Models in
SystemC

There are some basic modeling guidelines that the implementation
of the CSP kernel in SystemC imposes. A modeler should follow a
particular scheme in constructing such models. To better understand
these construction rules we present some basic modeling guidelines as
follows:

1 Only use CSPchannels for unidirectional communication as per CSP
specifications.

Communicating Sequential Processes Kernel in SystemC 117

2 Every SC MODULE() can have multiple CSP processes initialized
as long as there is no multiplicity in the communication channels
between the same two CSP processes.

3 The current version of the CSP kernel requires instantiation of a
CSPnodelist that is accessible by all modules so the use of the key-
word extern may be required if separate files are used for creating
models.

4 The simulation can be initialized by calling the member function
runcsp(...) of the CSPnodelist object.

5 Simulation begins by invoking sc csp start(...).

6 It may be necessary to update global variables such as the state[x]
array in the Dining Philosopher problem to allow interpretation of
immediate behaviors and responses.

7 Non-deterministic behavior may require the use of randomization
functions.

5. Example of Producer/Consumer
A trivial example using CSP is the Producer/Consumer model. This

model is simple and has two processes, a Producer, a Consumer and
one channel between them. The communication direction between the
processes goes from the Producer to the Consumer. This example is
similar to the simple fifo example in the SystemC distribution. The
differences are that the processes are CSP processes and instead of an
sc fifo channel between the processes, there is a CSPchannel.

Producer Consumer

Figure 6.7. Producer/Consumer Example in CSP

Listing 6.17 shows the module declaration for the PRODUCER class.
Notice an instance of CSPnode and a CSPport. The production pointer
holds the string that the Producer sends to the Consumer one char-
acter at a time [Listing 6.17, Line 5]. In [Listing 6.17, Line 12], the
at(...) member function from the string class returns a character at the
location defined by the argument and stores it in a variable ch. This
character is pushed onto the channel by invoking the push(...) member

118

function on the port that connects the two CSP processes. An instance
of CSPnodelist labelled as DP is accessible by both the PRODUCER
and CONSUMER objects.

The if construct repeatedly sends the same string by the Producer
when the sz string location counter is equal to the number of characters
in the string. This makes the model run infinitely. The constructor of
PRODUCER module sets the production pointer to a string and invokes
the SC CSP THREAD() macro for registering this process as a CSP
process.

Listing 6.17. PRODUCER module declaration

1SC MODULE(PRODUCER) {
2

3 CSPnode csp ;
4 CSPport<char> toConsumer ;
5 s t r i n g ∗ product ion ;
6 ProcInfo proc ;
7

8 void sendChar () {
9 int sz = 0 ;

10 while (1)
11 {
12 char ch = production−>at (sz) ;
13 ++sz ;
14 toConsumer . push (ch , csp) ;
15 //csp . send ((token)&ch , toConsumer . read ()) ;
16 // al low for i n f i n i t e execut ion
17 i f (sz == (signed) production−>s i z e ())
18 sz = 0 ;
19 csp . r e s chedu l e () ;
20 }
21 } ;
22

23 SC CTOR(PRODUCER) {
24 product ion = new s t r i n g () ;
25 ∗product ion = ”This i s a t e s t s t r i n g f o r Produced/Consumer

example :] ” ;
26 SC CSP THREAD(sendChar , DP, csp) ;
27 } ;
28 } ;

The Consumer process shown in Listing 6.18 again has an instance
of CSPnode and CSPport. The Consumer accepts a character from the
channel and prints it out. The constructor is straightforward where
SC CSP THREAD() macro registers the CONSUMER class as a CSP
process.

The driver program for this model is presented in Listing 6.19. The
channel that connects the Producer and Consumer is ptoc. This channel
is bound with the processes’ respective ports. The direction of the chan-
nel is set by using the points to(...) member function from the CSPnode
class. runcsp(...) prepares the CSP simulation for execution, and a
global function sc csp start(...) triggers this CSP model.

Communicating Sequential Processes Kernel in SystemC 119

Listing 6.18. CONSUMER module declaration

1SC MODULE(CONSUMER) {
2 CSPnode csp ; // CSP node
3 CSPport<char> fromProducer ;
4 ProcInfo proc ;
5

6 void getChar () {
7 while (1)
8 {
9 char ch ;

10 ch = fromProducer . get (csp) ; //(char ∗) csp . ge t (fromProducer .
read ()) ;

11 cout << ”<<<<<<<<<< Received ” << ch << endl ;
12 csp . r e s chedu l e () ;
13 }
14 } ;
15

16 SC CTOR(CONSUMER) {
17 SC CSP THREAD(getChar , DP, csp) ;
18 } ;
19 } ;

Listing 6.19. Driver program for Producer/Consumer Example

1 int sc main (int argc , char ∗ argv []) {
2 CSPchannel<char> ptoc ; // Channel from Producer to Consumer
3 PRODUCER p(”Producer”) ; // Producer Instance
4 p . toConsumer (ptoc) ; // Bind Producer
5 p . csp . setprocname (”Producer”) ; //Debug information
6

7 CONSUMER c (”Consumer”) ; // Consumer Instance
8 c . fromProducer (ptoc) ; // Bind Consumer
9 c . csp . setprocname (”Consumer”) ; //Debug information

10

11 p . csp . p o i n t s t o (c . csp , ptoc) ; // Set d i r ec t i on of channel
12

13 DP. runcsp (DP) ; // Prepare CSP for execut ion
14 s c c s p s t a r t (”” ,&DP) ; // Star t s imulat ion
15 return 0 ;
16 } ;

6. Integrating CSP & DE kernels
An understanding of QuickThreads and their implementation in Sys-

temC as coroutine packages is required for integrating these two MoCs.
We advise the reader to read Appendix A for a better understanding of
QuickThreads and coroutine packages in SystemC.

Appendix A explains the workings of the reference kernel for the Sys-
temC scheduler with focus on the coroutine packages. We briefly reit-
erate how SystemC manages its coroutines and thread processes. Our
interest is primarily in thread processes because CSP processes are also
thread processes that we want to schedule differently and separate from
the DE kernel. The SystemC scheduler initializes thread processes by

120

creating stack space along with initializing the stack with the appropriate
function and its arguments. After thread initialization, the threads are
executed by invoking the yield(...) function from the sc cor pkg that
switches out the current executing process and prepares the new pro-
cess (passed via the argument of the function) to execute. Suspension
functions such as wait(...) perform this switch to allow other runnable
processes to execute. The QuickThread package uses preswitch for con-
text switching that allows for this implementation. A function called
next cor(...) is used to determine the next thread to execute. Once the
runnable queues are empty, the control is returned to the main coroutine
identified by the main cor coroutine. This main coroutine can also be
suspended, which is what happens when a new thread process is sched-
uled for execution. It is also resumed after no more thread processes are
runnable.

Listing 6.20. Overloaded Constructor and helper function in sc cor pkg qt

1 s c c o r pkg q t : : s c c o r pkg q t (CSPnodel ist ∗ simc)
2 : s c c o r pkg (simc)
3 {
4 i f (++ ins tance count == 1) {
5 // i n i t i a l i z e the current coroutine
6 a s s e r t (c u r r c o r == 0) ;
7 cu r r c o r = &main cor ;
8

9 }
10

11 s c c o r ∗
12 s c c o r pkg q t : : get demain ()
13 {
14 return cu r r c o r ;
15 }

Different semantics for Discrete-Event based simulation and CSP sim-
ulation justifies the need for separation of these two kernels. However,
SystemC reference implementation treats the sc simcontext class as the
toplevel scheduler class with the main coroutine and coroutine package
accessible only through an instance of sc simcontext. For isolation, we
included functionality in the CSP encapsulation to have pointers to the
coroutine package and the main coroutine. We also implemented a CSP-
specific next cor() function along with several other thread core functions
discussed earlier. The CSP kernel as a stand-alone kernel works with-
out any concerns. However, we encounter an interesting problem when
invoking the DE kernel to execute a DE model. As we know, SystemC
is designed as a single scheduler simulation framework, which means the
coroutine package is created from the sc simcontext class in the initial-
ize(...) function. When trying to invoke initialize(...) while in a CSP

Communicating Sequential Processes Kernel in SystemC 121

simulation, the loss of process stack space is experienced. This is due
to a singleton pattern used in creating SystemC’s DE scheduler. Hence,
only one instance of the coroutine package must exist and given that we
attempt to invoke the DE kernel from within the CSP kernel, the DE
kernel must address the coroutine package created in the CSP kernel
instance. This requires a couple of changes in the the coroutine package
files and the sc simcontext class. We first discuss the changes we made
in the coroutine packages.

Listing 6.21. Overloaded Constructor in sc cor pkg class

1 class s c co r pkg
2 {
3 public :
4 . . .
5 // overloaded constructor
6 s c co r pkg (CSPnodel ist ∗ simc)
7 : m simcsp (simc) { a s s e r t (simc != 0) ; }
8 . . .
9

10 void s e t s imc (s c s imcontext ∗ simc) { m simc = simc ; } ;
11 void s e t c s p (CSPnodel ist ∗ csp) { m simcsp = csp ; } ;
12

13 // get the s imulat ion context
14 s c s imcontext ∗ s imcontext ()
15 { return m simc ; }
16 CSPnodel ist ∗ cspcontext ()
17 { return m simcsp ;}
18 private :
19

20 s c s imcontext ∗ m simc ;
21 CSPnodel ist ∗ m simcsp ;
22 private :
23 . . .
24 } ;

Creating an instance of type sc cor pkg qt makes a check for having
one instance with the instance count and its interface class constructor
is also invoked. An object of sc cor pkg qt results in the constructor of
sc cor pkg being invoked. Hence, the overloaded constructor described in
Listing 6.20 invokes the constructor of class sc cor pkg with an argument
containing the CSPnodelist pointer. A helper function get demain()
is added to retrieve the curr cor that signifies the current executing
context. We use this to make a call-back to the process that performs the
invocation of the DE kernel. The interface also undergoes modification
to accommodate calls to the interface to extract the correct information.
Listing 6.21 displays the additions to the sc cor pkg class.

A pointer to the CSPnodelist is added as a private variable and its
respective member functions to set and get address of this pointer. These
are the changes that have to be done in the coroutine packages to allow
for a CSP model to execute using the coroutine package. At this point we

122

Listing 6.22. next cor() member function in class sc simcontext

1 s c c o r ∗ s c s imcontext : : next co r ()
2 {
3 i f (m error) {
4 return m cor ;
5 }
6 s c th r ead hand l e thread h = pop runnable thread () ;
7 while (thread h != 0 && ! thread h−>r eady to run ()) {
8 thread h = pop runnable thread () ;
9 }

10 i f (thread h != 0) {
11 return thread h−>m cor ;
12 } else {
13 return (o ldcontext) ;
14 }
15 }

only show the inclusion of one CSPnodelist (one CSP model) addressed
by the coroutine packages. However, we plan to extend this later to
support multiple CSP models using the same coroutine package.

We are considering invocations of the DE kernel through the CSP ker-
nel, which requires altering the initialization code for the sc simcontext
class. We need to point the m cor pkg private member of class
sc simcontext to the sc cor pkg pointer in the CSPnodelist class. This is
performed by invoking the cor pkg() from the CSPnodelist followed by
an invocation of get main() to retrieve the main coroutine. We introduce
a new private data member in sc simcontext called oldcontext of type
sc cor*, which we set by invoking the get demain() member function on
variable m cor pkg. We use oldcontext during the next cor() function for
class sc simcontext as shown in Listing 6.22.

Variable oldcontext is returned when there are no more runnable
threads in the system, similar to the original implementation of the
next cor() function where main cor was being returned. The purpose of
saving oldcontext is to allow the simulation to return to the coroutine
that invoked the DE kernel. Suppose a CSP process invokes a DE ker-
nel for some computation. oldcontext would then store the coroutine of
the calling CSP process. The DE simulation returns to oldcontext once
it has no more processes for execution, resuming the execution of the
calling CSP process.

We illustrate the invocation of the DE kernel from the CSP in Figure
6.8. The assigned addresses are made up and do not resemble real ad-
dresses in our simulation, but we merely present them to further clarify
the manner in which the oldcontext is used. During initialization of the
CSP model, shown by the CSP block, m cor pkg and main cor are set
to their correct addresses. Every thread process has an m cor variable

Communicating Sequential Processes Kernel in SystemC 123

A

B

c

D
DE BLOCK:

E

main_cor = 0x8100f00

m_cor_pkg = 0x8000001

main_cor = 0x8100f00

m_cor_pkg = 0x8000001

oldcontext = 0x81b0f01

m_cor = 0x81a0f01

m_cor = 0x81b0f01

m_cor = 0x81c0f01

m_cor = 0x81d0f01

CSP BLOCK

Figure 6.8. Example of DE kernel invocation in CSP

that holds the coroutine for that particular thread. At some point dur-
ing the execution of process B, a DE model is supposed to execute. This
DE model requires that the CSP kernel yield to the DE kernel to simu-
late the DE block. Hence, the initialization functions of the DE kernel
are called where the addresses of the private data members m cor pkg
and main cor are extracted from the CSP kernel and the current sim-
ulation context is saved in oldcontext. Notice that the address of the
oldcontext is the same as the m cor value of process B. According to the
next cor(...) function definition in Listing 6.22, oldcontext is returned
once there are no more threads to execute, implying that once the DE
simulation model is complete and there are events to be updated, the
scheduler returns control to oldcontext which is the calling CSP thread.
This in effect allows for DE kernel invocations from CSP as we show via
an implemented example in Chapter 9.

Chapter 7

FINITE STATE MACHINE KERNEL
IN SYSTEMC

Constructing a Finite State Machine (FSM) model in SystemC is pos-
sible with current modeling constructs of SystemC. This means that the
existing SystemC can effectively provide means of constructing an FSM
model. Some may argue that given a Discrete-Event simulation ker-
nel, there is no need to add a Finite State Machine (FSM) kernel for
SystemC. However, with the vision of a truly heterogeneous modeling
environment in SystemC, the need for such an inclusion is arguable.
Furthermore, with hierarchy in mind, the separation of an FSM kernel
may result in increased simulation efficiency.

The kernel is an encapsulation of the SC METHOD() processes along
with several member functions to describe an FSM model. In a way
it is not necessarily an alternate kernel. However, this encapsulation
serves as a step towards isolating the FSM kernel completely from the
execution of the DE kernel. At this moment every FSM block executes
in one simulation cycle as per our definition of a period for an FSM
node. This results in an untimed model of the FSM that will be ex-
tended to support timed models in further development. We envision
support for timed and untimed models for relevant Models of Computa-
tion. Unfortunately, the implementation of signals using sc event types
makes it difficult to diverge from the Evaluate-Update semantics. We
are currently investigating reconstructing sc signals such that they can
be interpreted by the MoC within which they are employed. This ex-
tends the possibility of all MoCs being either timed or untimed. The
revamp of the event management is still under investigation.

The Finite State Machine Model of Computation has the following
properties:

126

A set of states

A start state.

An input alphabet and

A transition function that maps the current state to its next state.

A

B

Figure 7.1. FSM Traffic Light Example [4]

FSMs are generally represented in the form of graphs with nodes and
transitions connecting the nodes with some conditions on the transitions.
Figure 7.1 shows a diagram of a two traffic light system and Figure 7.2
illustrates a Finite State Machine controller for this system.

A=green
B=red

A=yellow
B=red

A=red
B=green

A=red
B=yellow

S0

S1

S2

S3

A := yellow

A := red
B := green

A := green
B := red

B := yellow

No change No change

T0

T
1

T2 T3

T4

T5

Figure 7.2. FSM Traffic Light Controller Example [4]

The two traffic lights are represented by A and B and the set of states
contains S0, S1, S2 and S3. The transitions are represented by the

Finite State Machine Kernel in SystemC 127

Table 7.1. Example of map<...> data structure

Key Value

toplevel.state.state0 0xf000001

toplevel.state.state1 0xf000011

toplevel.state.state2 0xf000101

toplevel.state.state3 0xf001001

toplevel.state.state4 0xf100001

arrows and the action associated with the transition is marked in the
dotted ellipses. Suppose S0 is the initial state. Then a transition to S1
causes traffic light A to change from green to yellow and B to remain
at red. This is a simple controller example, but FSMs can be extensive
and large in size. We do not discuss the specifics of Moore and Mealey
machines since FSMs serve as pedestals to most engineering. However,
we refer the reader to [10] for additional reference and continue our
discussion to the implementation details of the FSM kernel in SystemC.

1. Implementation Details
1.1 Data Structure

The FSM kernel’s data structure implements a map<...> object from
the C++ STL. A map object is simply a list of pairs consisting of a key
and a value. FSM uses a string and a pointer to the SC METHOD()
process via the sc method process class as shown in Listing 7.1 as a
pair entry in the map<...> object. For illustration purposes Table 7.1
displays the pairs inserted in the data structure. The addresses for the
values are made up. The keys are of type string and the value is an
address to an object of type sc method handle. The key field is used
when searching this map<...> object for a particular string and if a pair
entry is found with the corresponding search string, then the value is
returned.

The FSMReceiver class once again derives from the baseReceiver class.
The baseReceiver holds the type of the receiver that is derived from it.
Besides the fsmlist private data member, there is an id and a string
type variable called currentState. This currentState variable preserves
the current state that the simulation has reached for the FSM. This may
not seem necessary in a pure FSM model. However, in heterogeneous
models, a particular state in the FSM may resume another MoC and re-
turn back to the FSM requiring the preservation of the last state that it
had executed. The member functions of class FSMReceiver are standard
functions used to insert elements into the fsmlist and retrieve a particu-

128

Listing 7.1. class FSMReceiver

1 class FSMReceiver : public baseRece iver {
2 private :
3 map<s t r i ng , sc method handle > ∗ f sm l i s t ;
4 s t r i n g id ;
5 s t r i n g cur r en tSta t e ;
6

7 public :
8 FSMReceiver (const s t r i n g & s) ;
9 ˜FSMReceiver () ;

10

11 void i n s e r t (const s t r i n g &s , sc method handle h) ;
12 sc method handle f i nd (const s t r i n g &s) ;
13 bool myid (const s t r i n g &s) ;
14

15 void s e tS t a t e (const s t r i n g & s) ;
16 s t r i n g & getSta te () ;
17

18 void f sm execute () ;
19 sc method handle r eg i s t e r f sm method (const char ∗ name ,
20 SC ENTRY FUNC entry fn ,
21 sc module ∗ module) ;
22 } ;

Table 7.2. Some Member functions of class FSMReceiver

Member Function Purpose

insert(...) Inserts a pair into fsmlist

find(...) Returns a pointer to the FSM process if the string
associated with the name of the process is found

setState(...) Set the currentState with the string argument that is
passed

getState() Returns the currentState

fsm execute() Execute the FSM model

register fsm method(...) Called from a C macro that registers a
sc method process object as an FSM process

lar sc method handle by supplying a string. The register fsm method(...)
function is invoked by the C macro defined by SC FSM METHOD(...).
Listing 7.2 shows the module construction for SC FSM METHOD(...).
Table 7.2 lists some of the important member functions of class FSM-
Receiver and their use.

The fsm execute() member function is responsible for initiating the
execution of the FSM model. The simulation begins at the initial state,
which is set by the modeler. The modeler can do this by using the set-
State(...) member function to designate one of the states as an initial
state. To schedule an FSM process to execute, the setState(...) member
function is employed. A schedule for an FSM process means chang-
ing the currentState variable to reflect the name of the next process to

Finite State Machine Kernel in SystemC 129

Listing 7.2. Macros used to register FSM processes

1 //SC FSM METHOD. . .
2#define SC FSM METHOD(func , mod)
3 f sm dec la r e method proce s s (func ## handle ,
4 #func ,
5 SC CURRENT USER MODULE,
6 func , mod)
7 // fsm declare method process
8#define f sm dec la r e method proce s s (handle , name , module tag ,

func , mod)
9 sc method handle handle ;

10 {
11 SC DECL HELPER STRUCT(module tag , func) ;
12 handle = mod−>r eg i s t e r f sm method (name ,
13 SC MAKE FUNC PTR(module tag , func) , this) ;
14 sc module : : s e n s i t i v e << handle ;
15 sc module : : s e n s i t i v e p o s << handle ;
16 sc module : : s e n s i t i v e n e g << handle ;
17 }

execute. This function sets the currentState to the argument that is
passed into that function and with the next execution of the FSM; the
process with that string name is executed. Every time fsm execute()
runs, the currentState of the FSM model is retrieved and a search is
done on the data structure. The sc method process pointer is returned
if an entry is found and then executed. The key entries in Table 7.1
are sc method process object names. The naming convention preserves
SystemC naming conventions by adding a dot between module names.
This naming convention is discussed in Chapter 5 with an example. For
the FSM kernel the FSMReceiver is the most integral class. The remain-
der of the classes implemented to support the FSM kernel are shown in
Listing 7.3. The FSMkernel class is responsible for allowing multiple
FSM models to simulate together.

Channels and ports specific for the FSM MoC are included with the
declarations shown in Listing 7.4. Since there is no specific communi-
cation functionality for the FSM MoC, the FSMport and FSMchannel
classes inherit from sc moc port and sc moc channel respectively. They
exhibit the same behavior as their base classes. The source listing for
the base classes is shown in Chapter 4.

2. Example of Traffic Light Controller Model
using FSM Kernel in SystemC

To further illustrate our FSM kernel we present an FSM traffic light
controller example. Figure 7.2 describes the state diagram of this simple
example. Listing 7.5 shows the SC MODULE(state) definition along
with its respective entry functions. The entry functions are state0,

130

Listing 7.3. FSMkernel and FSMnode class definition

1 class FSMkernel {
2

3 private :
4 vector<FSMReceiver∗> ∗ fsms ;
5

6 public :
7 FSMkernel () ;
8 ˜FSMkernel () ;
9 void i n s e r t (FSMReceiver ∗ f) ;

10 FSMReceiver ∗ f i nd f sm (const s t r i n g & id) ;
11 void fsm crunch () ;
12 } ;
13

14 class FSMnode {
15

16 private :
17 sc method handle handle ;
18 s t r i n g name ;
19

20 public :
21 FSMnode () ;
22 ˜FSMnode () ;
23 void s e t (const s t r i n g &s , sc method handle h) ;
24

25 } ;

Listing 7.4. Ports and Channels for FSM MoC

1 template <class T>
2 class FSMport : public sc moc port<T> {} ;
3 template <class T>
4 class FSMchannel : public sc moc channel<T> {} ;

state1, state2 and state3 representing the states S0, S1, S2, and S3 re-
spectively. Each of these entry functions are bound to an SC METHOD()
process via the SC FSM METHOD() macro. Registration of the entry
functions as FSM processes is performed via this macro. The constructor
of SC MODULE(...) remains the same as existing SystemC syntax with
the use of SC CTOR(...). Notice the initial state of the FSM is set within
the constructor with fsm model→setState(“toplevel.state.state0”). We
preserve the naming conventions of SystemC to target the FSM process
for execution. However, this requires knowledge of the encapsulating
process as well since the naming convention of SystemC concatenates
the names by taking the module name, adding a dot character at the
end, followed by appending the entry function name. The hierarchy
of the module is preserved by preceding with the name of the toplevel
module name as shown by toplevel.state.state0.

Two instances of light are present where A represents traffic light A
and B represents traffic light B. The colors are enumerated by enum

Finite State Machine Kernel in SystemC 131

Listing 7.5. Module Definition of ’state’ in Traffic Light Controller Model

1SC MODULE(s t a t e) {
2

3 l i g h t A;
4 l i g h t B;
5 int random ;
6

7 void s t a t e0 () {
8 random = rand () ;
9 cout << ”−−−”

<< endl ;
10 cout << ”S0 −− Random value = ” << random << endl ;
11 A = GREEN;
12 B = RED;
13 pr in tL ight (A, B) ;
14 i f (random % 2 == 0)
15 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 1 ”) ;
16 } ;
17

18 void s t a t e1 () {
19 random = rand () ;
20 cout << ”−−−”

<< endl ;
21 cout << ”S1 −− Random value = ” << random << endl ;
22 A = YELLOW;
23 B = RED;
24 pr in tL ight (A, B) ;
25 i f (random % 2 == 0)
26 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 2 ”) ;
27 } ;
28

29 void s t a t e2 () {
30 random = rand () ;
31 cout << ”−−−”

<< endl ;
32 cout << ”S2 −− Random value = ” << random << endl ;
33 A = RED;
34 B = GREEN;
35 pr in tL ight (A, B) ;
36 i f (random % 2 == 0)
37 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 3 ”) ;
38 } ;
39

40 void s t a t e3 () {
41 random = rand () ;
42 cout << ”−−−”

<< endl ;
43 cout << ”S3 −− Random value = ” << random << endl ;
44 A = RED;
45 B = YELLOW;
46 pr in tL ight (A, B) ;
47 i f (random % 2 == 0)
48 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
49 } ;
50

51 SC CTOR(s t a t e) {
52 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
53 SC FSM METHOD(state0 , fsm model) ;
54 SC FSM METHOD(state1 , fsm model) ;
55 SC FSM METHOD(state2 , fsm model) ;
56 SC FSM METHOD(state3 , fsm model) ;
57 } ;
58 } ;

132

Listing 7.6. Module Definition of top in Traffic Light Controller Model

1SC MODULE(top) {
2

3 s t a t e ∗ s1 ;
4 void entry () {
5

6 while (true) {
7 f sm t r i g g e r () ;
8 wait () ;
9 }

10 } ;
11

12 SC CTOR(top) {
13 s1 = new s t a t e (” s t a t e ”) ;
14 SC THREAD(entry) {
15 } ;
16 } ;
17 } ;
18

19

20 int main () {
21 fsm model = new FSMReceiver (” fsm1”) ;
22 f sm kerne l . i n s e r t (fsm model) ;
23

24 top tp (” t op l e v e l ”) ;
25 s c s t a r t (−1) ;
26

27 return 0 ;
28 }

light RED=1, YELLOW= 2, GREEN=3;. The values for the traffic
lights are set followed by a execution of a global function printLight(...)
that displays status of the lights. Full source is not presented, but is
available at our website [36]. The next state is set by using the set-
State(...) function call, which describes the transition presented in Fig-
ure 7.2. However, since C++ is a sequential programming language,
implementing non-determinism for transitions T0 and T5 requires the
use of randomization. A simple policy where if the randomly generated
number is not zero then the transitions T0 or T5 are traversed depending
on the current state of the FSM is implemented.

The top module is a regular SC THREAD() process with an infinite
loop and a single suspension statement. This is to allow the FSM to run
infinitely, as expected behavior of a traffic light controller. The model
progresses after every cycle due to the wait(...) statement. Similar to
the SDF MoC implementation, a call to fsm trigger(...) is mandatory to
indicate the execution of the FSM kernel. Listing 7.6 shows the module
definition for top along with definition of sc main(...).

A global object of type FSMkernel holds the fsm model that is to ex-
ecute. The simulation starts using the sc start(...) function call [Listing
7.6, Line 25].

Chapter 8

SYSTEMC KERNEL APPLICATION
PROTOCOL INTERFACE (API)

Designed to contain only one simulation kernel, SystemC does not
provide an API to tidily add an extension to the simulation kernel. Nor
are we aware of any efforts of providing an API for kernel development in
SystemC. The existing simulation kernel is specified in the sc simcontext
class along with several global function definitions such as sc start(...).
We provide an API that better incorporates multiple kernels and pro-
vides a medium through which kernels can gain access to its counterpart
kernels. Once again, our approach is in limiting the changes in the cur-
rent source by overlaying the current implementation with our API with
the introduction of a class called sc domains. The problems that we
address by adding this encapsulating API class are as follows:

1 For each implemented kernel, one should be able to execute each of
them independent of others.

2 Every implemented kernel must be able to access every other kernel
for multi-domain heterogeneous simulation.

1. System Level Design Languages and
Frameworks

Our API class that we call sc domains is shown in Listing 8.1 and a
class diagram is shown in Figure 8.

The sc domains class contains pointers to each implemented kernel.
We present two methods by which a kernel can be represented. The first
is by dynamically allocating the kernel such as in [Listing 8.1, Line 45]
for the de kernel or by having a list of multiple kernels as in [Listing
8.1, Line 22] for sdf domain. The sdf domain could have been easily

134

sc_domains

CSPkernelFSMkernel DEkernel

1

1

1

1

1

1

Figure 8.1. Class Diagram for sc domains

implemented as a pointer to a vector list, but we choose to do this to
show that this approach can also be used. Furthermore, not all kernels
require more than one instance valid in the system. For example, the DE
kernel requires only one instance of itself. However, there can be multiple
SDF or FSM models in a heterogeneous model requiring multiple SDF
graphs (SDFG) to be present in the system same applied with multiple
FSM models.

Initialization functions and its helper functions must all be member
functions of the class sc domains. An example of a helper function
is split processes() that is an SDF initialization helper function. Its
purpose is to separate SDF method processes from regular DE method
processes. Similarly, find sdf graph() is a helper function that finds a
specific SDFG in the entire model.

For a kernel designer it is important to adhere to some general guide-
lines in adding a kernel to SystemC using the API we provide. Most of
these guidelines are intuitive. They are as follows:

1 Ensure that every added kernel is encapsulated in a class such as
sdf graph. This class must give enough access to the sc domains class
to enable execution of the functions from the sc domains class.

2 Include a pointer (recommended) to an instance of a kernel type
as a data member of sc domains. If for some reason there can be
multiple instances of the kernel, such as in the case of SDF then a
list of pointers to the kernels can be used. Whether to use pointers
to kernels or object instances of kernels in implementation is up to
the kernel designer.

3 Initialization functions for the kernel must be called from function
init domains that is responsible for initializing all kernels. A kernel
designer can implement additional functions specific for their kernel

SystemC Kernel Application Protocol Interface (API) 135

Listing 8.1. API Class sc domains

1

2 class sc domains {
3

4 // pub l i c funct ions
5 public :
6 sc domains () ;
7 ˜ sc domains () ;
8

9 void i n i t d e () ;
10 void i n i t s d f () ;
11 void i n i t doma ins (const s c t ime & duration , s t r i n g in) ;
12

13 void s p l i t p r o c e s s e s () ;
14

15 sd f g raph ∗ f i n d sd f g r aph (s t r i n g s d f p r e f i x) ;
16

17 // take the input from user
18 bool use r i nput (s t r i n g in) ;
19

20 // make these pr i va te a f t e r the hack works
21 s c s imcontext ∗ s d f d e k e r n e l ; // DE kerne l
22 vector<sd f g raph ∗> sdf domain ; // SDF kerne l
23 void s d f t r i g g e r (s t r i n g topname) ;
24

25 s t r i n g u s e r o rd e r ;
26

27 // DE funct ions
28 void i n i t i a l i z eDE () ;
29 bool i sDE i n i t i a l i z e d () ;
30

31 // CSP funct ions
32 void i n i t i a l i z eCSP () ;
33 bool i sCSP i n i t i a l i z e d () ;
34

35 // FSM funct ions
36 void i n i t i a l i z eFSM () ;
37 bool i sFSMin i t i a l i z e d () ;
38

39 void c l e a n s d f (const s t r i n g & s t r) ;
40 void c l e a r d e () ;
41 DEkernel ∗ g e t d e k e r n e l () ;
42 CSPkernel ∗ g e t c s p k e r n e l () ;
43

44 private :
45 DEkernel ∗ de ke rne l ;
46 CSPkernel ∗ c sp k e rn e l ;
47 FSMkernel ∗ f sm kerne l ;
48 } ;

in sc domains, for example in sdf domain, split processes() is used to
split the runnable process list by removing the SDF method processes
except for the top-level SDF method process.

Table 8.1 displays some of the member functions in sc domains and
their purposes. A file static instance of sc domains is instantiated. The
object is called the Manager. The API class acts as a manager having
access to all models and MoCs that are currently in the system. All ker-
nel instances have access to this Manager instance through which they

136

Listing 8.2. init domains from sc domains class

1 // i n i t i a l the domains
2 void sc domains : : i n i t doma ins (const s c t ime & duration , s t r i n g

in) {
3

4 i f (in . s i z e () > 0)
5 use r i nput (in) ;
6

7 i n i t d e () ;
8 s p l i t p r o c e s s e s () ;
9 i n i t s d f () ;

10 model . s d fd e ke rne l−>d e i n i t i a l i z e 2 () ;
11 }

get access to any other kernel implemented and instantiated allowing for
interaction between them. This way the Manager object can find a par-
ticular model in a specific MoC and execute it accordingly. This setup
for sc domains exists to allow for behavioral hierarchy for the future.

Table 8.1. Few Member Functions of class sc domains

Functions Description

sdf trigger(...) Global SDF specific function to execute the
SDF graph.

init domains(...) Function that invokes all initialization mem-
ber functions for every kernel in sc domains.

split processes() SDF specific function to split SDF func-
tion block processes from regular SystemC
method processes.

init de() Create an instance of the DE kernel.

init sdf() Initialization function for SDF kernel. Tra-
verses all SDFGs and constructs an exe-
cutable schedule if one exists.

find sdf graph(...) Helper function to find a particular SDF
graph for execution.

initializeCSP() Prepare csp kernel such that instances of
CSP models can be inserted

initializeFSM() Prepare fsm kernel such that instances of
FSM models can be inserted

get de kernel() Return the pointer de kernel.

get csp kernel() Return the pointer csp kernel.

get fsm kernel() Return the pointer fsm kernel.

We provide these guidelines to simply help kernel designers in using
the introduced API and we impose no restrictions as to a particular
method of addition. This sc domains class shown in Listing 8.1 simply
encapsulates all the kernel classes requiring a certain alteration to the

SystemC Kernel Application Protocol Interface (API) 137

Listing 8.3. init sdf from sc domains class

1 void sc domains : : i n i t s d f () {
2

3 i f (sdf domain . s i z e () == 0) {
4 schedu le : : err msg (” No SDF system ” , ”WW”) ;
5 return ;
6 }
7

8 for (int sd f g raphs = 0 ; sd f g raphs < (signed) sdf domain .
s i z e () ; sd f g raphs++) {

9

10 // Extract the address of f i r s t SDF
11 sd f g raph ∗ p ro c e s s s d f g r aph = sdf domain [sd f g raphs] ;
12 // Calcu late schedule for t h i s SDFG i f one not a lready

ca l cu l a t ed
13 i f (p roc e s s sd f g raph−>r e s u l t == NULL)
14 proce s s sd f g raph−>s d f c r e a t e s c h e du l e () ;
15 }
16 }

Listing 8.4. sdf trigger() from sc domains class

1 void sc domains : : s d f t r i g g e r (s t r i n g topname) {
2 s t r i n g sdfname = topname+” . ” ;
3 sd f g raph ∗ r un th i s ;
4

5 for (int sd f g raphs = 0 ; sd f g raphs < (signed) model .
sdf domain . s i z e () ; sd f g raphs++) {

6 // pointer to a par t i cu l a r SDF graph
7

8 sd f g raph ∗ p ro c e s s s d f g r aph = model . sdf domain [sd f g raphs
] ;

9

10 i f (strcmp (proc e s s sd f g raph−>p r e f i x . c s t r () , sdfname . c s t r
())==0) {

11

12 r un th i s = p ro c e s s s d f g r aph ;
13

14 i f ((run sd f == true)){
15 // execute the SDF METHODs
16 run th i s−>s d f s imu l a t e (sdfname) ;
17 run sd f = fa l se ;
18 }/∗ END IF ∗/
19 }/∗ END IF ∗/
20 }/∗ END FOR ∗/
21 }/∗ END sd f t r i g g e r ∗/

global function calls such as sc start(...) and the introduction of MoC
specific simulation functions such as sc csp start(...). The addition of
global and member functions in existing classes are described in the
MoC’s respective chapter and the API mainly supports the exchange of
information about these multi-MoC models.

This API is not the most evolved nor is it the most robust, but it pro-
vides a mechanism and an approach to organizing and allowing kernel
designers to think and consider additional improvements in managing

138

their kernel implementation in SystemC. The API is also not fully com-
plete, for example, we do not support multiple models for the CSP MoC
as yet. Ideally, we envision the Manager object to manipulate the client
QuickThread coroutine instances as well, but these considerations are
still under investigation.

Finally, Listings 8.2, 8.3 and 8.4 show some of the API functions.

Chapter 9

HETEROGENEOUS EXAMPLES

1. Model using SDF kernel
We construct a heterogeneous example for an image converter shown

in Figure 9.1. This system begins by downloading encrypted images
that are decrypted, converted to a specific type, then encrypted again
and uploaded back to the source. This is a multi-MoC model where
the first DE block (Decryption block) is responsible for downloading
encrypted images and decrypting them. These images are passed onto
the SDF block that performs the Sobel edge detection algorithm on the
image. This is our preferred conversion type. Output from Sobel is sent
to the final DE block (Encryption block) that encrypts the converted
image and uploads it to a particular location. All DE blocks consist
of SC CTHREAD() processes and the SDF block uses SC METHOD()
processes.

We create this model using three scenarios: a pure DE implemen-
tation, a DE implementation such that the processes are non-threaded
using the transformation technique in [62] and a heterogeneous imple-
mentation using the DE and SDF kernels. The Discrete-Event model of
the Converter uses control signals to indicate which process executes next
and so on. The non-threaded model converted every SC THREAD() or
SC CTHREAD() process to an SC METHOD() using the transforma-
tion technique in [62]. The DE-SDF model is shown in Figure 9.1.

An interesting aspect about this model is the interaction between the
DE and SDF blocks. By interaction we mean the data transfer. SystemC
channels may be employed as the interaction medium between the DE
and SDF blocks, but we advise using SDFports and SDFchannels to
push the data onto the SDF toplevel. Both the blocks responsible for

140

Image Format
Converter

(.sob)

SDF

Encrypted
Image

Downloads
(.mtx)

Decryption

DE

Encryption
Upload

Encrypted
Images (.mtx)

DE

CleanEdges Channel Sobel

Figure 9.1. Image Converter Diagram

pushing data into the SDF and the SDF itself, must have access to the
SDFchannel and since MoC-specific channels and ports do not generate
SystemC events, this can be done. The block pushing data into the
SDF model can also have an SDFport that binds to an SDFchannel
that the SDF component retrieves its inputs from. A control signal can
be used to trigger the SDF toplevel process once data is ready on the
channel for the SDF to consume. This is a simple example showing how
we implement a heterogeneous model (the image Converter) using our
improved modeling and simulation framework.

Figure 9.2 shows approximately 13% improvement over the original
model. We attribute the limitation in simulation efficiency increase to
Amdahl’s law [41]. The SDF block in this Converter model serves only
a small portion of the entire system allowing for only that much im-
provement in total simulation performance. If the SDF component was
responsible for more percentage of the original model, then the sim-
ulation efficiency of that model would be significantly larger than its
counterpart (created using the DE kernel).

We profiled the Converter model. Taking an approximate percentage
of time spent for the SDF model when using the original reference im-
plementation kernel, we can see from Table 9.1 that the approximated
total running time for the SDF is approximately 14%. This particular

Heterogeneous Examples 141

Figure 9.2. Converter Results

implementation of the Converter model has sc fifo channels that gener-
ate numerous events during passing of data. Now, using Amdahl’s law
from Equation 9.1 and using 14% as the fraction of enhanced model we
can follow Equation 9.1 [41] where s is the speedup of the enhanced por-
tion. This equation implies that, if we were to enhance the simulation
of the SDF components by 2x, then we can only achieve a simulation
performance less than 0.14

2 = 7%. Therefore, if our SDF components
was either larger or if we have more SDF components in a model then
the simulation performance will improve according to the percentage of
SDF component in the model.

Overall Speedup =
1

((1 − .14) + .14/s)
(9.1)

Table 9.1. Profiling Results for Converter Model

Function % of total running time spent

cleanedges::cleanedge(void) 6.78
sobel::operate(void) 5.66
channel::latch(void) 1.18

142

2. Model using CSP and FSM kernels
We reuse the Dining Philosopher example introduced in Chapter 6 to

construct a heterogeneous model using the CSP and FSM kernels. The
model previously created was a pure CSP model, where every philoso-
pher and fork was a CSP process. We mentioned that a superficial im-
plementation of the Dining Philosopher problem can result in deadlock,
to which we presented the idea of a footman. The role of the footman
is to seat the philosophers to their designated seats and to monitor that
only four philosophers are sitting at the dining table at any time. The
implementation of the footman was done via a global function to have
immediate verification of the state of the seats occupied at the dining
table. However, we take this example further by implementing the foot-
man as a Finite State Machine controller embedded in a CSP process.

state0 state1 state2 state3

if seatsTaken < 4 if seatsTaken < 4 if seatsTaken < 4

seatsTaken >= 4 seatsTaken >= 4 seatsTaken >= 4

state4

if seatsTaken < 4

seatsTaken >= 4 seatsTaken >= 4

if seatsTaken < 4

Figure 9.3. FSM implementation of the Footman

The FSM based footman allows the seating of four philosophers, where
by each seat allocation signifies a state. A global seat counter called
seatsTaken is updated every time a philosopher is assigned a seat and
when a philosopher leaves his seat. The FSM in Figure 9.3 is combined
with the Dining Philosopher implementation to yield a heterogeneous
example shown in Figure 9.4.

Figure 9.3 presents a state machine diagram showing the functions
of the footman. The initial state is state0. The functionality of every
state is the same except for the next state transitions. Every state has
a self-loop suggesting that the control in the FSM does not transition to
another state whenever four philosophers are seated. However, if there
are seats available, then a seat is allocated and the transition to the
next state occurs. This is a simple FSM that changes the solution of
the Dining Philosopher such that it ensures that every philosopher gets
a turn to eat as well as serving as a deadlock avoidance mechanism.
The module definition is shown in Listing 9.1 where object s is the

Heterogeneous Examples 143

PHIL0

PHIL1

PHIL2PHIL3

PHIL4

toRight1

toLeft2

to
R

ig
ht

2

to
L

e f
t5

toRight5

toLeft1

Fork0

Fork1

Fork2

Fork3

Fork4

state0 state1 state2 state3

if seatsTaken < 4 if seatsTaken < 4 if seatsTaken < 4

seatsTaken >=
4

seatsTaken >=
4

seatsTaken >=
4

state4

if seatsTaken < 4

seatsTaken >=
4

seatsTaken >=
4

if seatsTaken < 4

FOOTMAN

fo
ot

m
an

footman

footman

footman

footman

Figure 9.4. Dining Philosopher Model with FSM footman

Listing 9.1. Module definition Footman FSM

1SC MODULE(s) {
2

3 int random ;
4 int ∗ g iveSeat ;
5

6 CSPnode ∗ csp ;
7 CSPport<int > ∗ f romPhil0 ;
8 CSPport<int > ∗ f romPhil1 ;
9 CSPport<int > ∗ f romPhil2 ;

10 CSPport<int > ∗ f romPhil3 ;
11 CSPport<int > ∗ f romPhil4 ;
12

13 void s t a t e0 () ;
14 void s t a t e1 () ;
15 void s t a t e2 () ;
16 void s t a t e3 () ;
17 void s t a t e4 () ;
18

19 SC CTOR(s) {
20 g iveSeat = new int () ;
21 ∗ g iveSeat =1;
22 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
23 SC FSM METHOD(state0 , fsm model) ;
24 SC FSM METHOD(state1 , fsm model) ;
25 SC FSM METHOD(state2 , fsm model) ;
26 SC FSM METHOD(state3 , fsm model) ;
27 SC FSM METHOD(state4 , fsm model) ;
28 } ;
29 } ;

state machine. This module itself has pointers to CSPnode and CSPport
types. The variables with prefix fromPhil are the ports through which
the philosophers communicate with the footman requiring the footman

144

to be encapsulated in a CSP process. Therefore, the FSM defining the
behavior of the footman is embedded in a CSP process through which
the CSPnode object and CSPchannels are tunneled. The rendez-vous
communication occurs from the toplevel process encapsulating the FSM
controller. Pointers to objects of type CSPchannel and CSPnode are
necessary for the FSM to have access to the CSPchannels that it must
communicate with and make function calls on the CSPnode object.

The implementation of the state entry functions are shown in Listing
9.2. Every state has identical implementation except for the next state
transition.

Listing 9.2. State entry functions for Footman FSM

1 void s : : s t a t e0 () {
2 i f (seatsTaken < 4) {
3 ++seatsTaken ;
4 s e a tAva i l ab l e [0] = true ;
5 fromPhil0−>push (∗ giveSeat , ∗ csp) ;
6 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 1 ”) ;
7 }
8 } ;
9

10 void s : : s t a t e1 () {
11 i f (seatsTaken < 4) {
12 ++seatsTaken ;
13 s e a tAva i l ab l e [1] = true ;
14 fromPhil1−>push (∗ giveSeat , ∗ csp) ;
15 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 2 ”) ;
16 }
17 } ;
18

19 void s : : s t a t e2 () {
20 i f (seatsTaken < 4) {
21 ++seatsTaken ;
22 s e a tAva i l ab l e [2] = true ;
23 fromPhil2−>push (∗ giveSeat , ∗ csp) ;
24 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 3 ”) ;
25 }
26 } ;
27

28 void s : : s t a t e3 () {
29 i f (seatsTaken < 4) {
30 ++seatsTaken ;
31 s e a tAva i l ab l e [3] = true ;
32 fromPhil3−>push (∗ giveSeat , ∗ csp) ;
33 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 4 ”) ;
34 }
35 } ;
36

37 void s : : s t a t e4 () {
38 i f (seatsTaken < numPhil − 1) {
39 ++seatsTaken ;
40 s e a tAva i l ab l e [4] = true ;
41 fromPhil4−>push (∗ giveSeat , ∗ csp) ;
42 fsm model−>s e tS t a t e (” t op l e v e l . s t a t e . s t a t e 0 ”) ;
43 }
44 } ;

Heterogeneous Examples 145

The seatAvailable array maintains which seat has been occupied and
a record of every philosopher to his particular seat is kept by the index of
the array. For example, seatAvailable[1] refers to the seat that belongs
to a philosopher with id one.

Listing 9.3. Toplevel CSP process for Footman

1SC MODULE(fsmtop) {
2

3 s ∗ s1 ;
4

5 CSPnode csp ;
6 CSPport<int > f romPhil0 ;
7 CSPport<int > f romPhil1 ;
8 CSPport<int > f romPhil2 ;
9 CSPport<int > f romPhil3 ;

10 CSPport<int > f romPhil4 ;
11

12 void entry () ;
13

14 SC CTOR(fsmtop) {
15 s1 = new s (” s t a t e ”) ;
16 s1−>csp = &csp ;
17 s1−>f romPhil0 = &fromPhil0 ;
18 s1−>f romPhil1 = &fromPhil1 ;
19 s1−>f romPhil2 = &fromPhil2 ;
20 s1−>f romPhil3 = &fromPhil3 ;
21 s1−>f romPhil4 = &fromPhil4 ;
22

23 SC CSP THREAD(entry , DP, csp) ;
24 } ;
25 } ;

The toplevel CSP process contained in fsmtop module is defined in
Listing 9.3. This module definition has instances of CSPnode and CSP-
ports that had pointer declarations in Listing 9.1. The constructor of
module fsmtop initialize an instance of s and appropriately assigns the
addresses of the ports in object s1.

The model with the addition of the footman CSP process is shown in
Figure 9.4. This pictorial representation of the Dining Philosopher also
shows CSPchannels from every philosopher to the footman. This addi-
tion requires alteration to the main entry function for the philosopher.
This change requests a seat from the footman before proceeding with
the getfork() function to request forks. The only addition is calling foot-
man.get(...) such that the philosopher suspends itself until the footman
process is executed and a seat is allocated. The FSM controller manages
the seat allocation and returns a value on the channel designating a seat,
resuming the suspended philosopher process.

146

DE:
Data Generator

FIR

FFT

SOBEL

SDF:

FFT

waitState

FIR

FFT

SOBEL
FSM

Controller

FSM:
Controller

Output

DE:

ready FIR SOBEL

Figure 9.5. Heterogeneous Example using FSM, SDF and DE Models

3. Model using FSM, SDF and DE kernels
Another heterogeneous example is shown in Figure 9.5. This model is

separated into DE, FSM, SDF and DE blocks as shown in the diagram.
The DE models are the data generator and the output, the SDF models
are the FIR, FFT and Sobel, and the FSM model is the controller re-
sponsible for triggering the SDF computations. The first DE block is the
data generator, which at random selects one of the three SDF models
for execution. It also uses the SystemC Verification library (SCV) [49]
for generating randomized input data for the FIR and FFT. Input for
the Sobel is read from a file. The data generator block sends a signal to
the FSM controller to execute the chosen SDF computation.

The FSM model consists of four states. The initial state is the wait-
State and the other three states fire the FIR, FFT, and Sobel SDF
models respectively. The waitState receives a signal from the data gen-
erator block and according to the signal, transition to the respective
state is taken. For example, suppose the data generator block sends a
signal to execute the FIR model, then the FSM takes a transition from
the waitState to the FIR state. The SDF model of the FIR executes
when in this state. Upon complete execution of the SDF FIR model,
control returns back to the FIR state that takes a transition back to the
waitState state. In turn, the FSM controller sends a signal back to the
data generator that the controller is ready to receive another input.

This example illustrates the use of SCV with a heterogeneous MoC
employing MoC-specific kernels. Invocations of an FSM model, DE
model and SDF models are also presented in this example. However,
due to the lack of space the source code is made available at [36].

Heterogeneous Examples 147

4. Model using CSP, FSM, SDF and DE kernels
Building on top of the example with an FSM based footman for the

Dining Philosophers problem, we construct another model that uses the
SDF and DE kernels along with the CSP and FSM. This example shows
the use of all MoCs implemented in SystemC until now. In the model
presented in Figure 9.6, we use the Sobel edge detection model as our
SDF component, the RSA encryption algorithm and the Producer/Con-
sumer FIFO example as the DE components (from SystemC distribution
examples) and the footman as the FSM controller.

PHIL0

PHIL1

PHIL2PHIL3

PHIL4

toRight1

toLeft2
to

R
ig

ht
2

to
Le

ft5

toRight5

toLeft1

Fork0

Fork1

Fork2

Fork3

Fork4

FOOTMAN

fo
o

tm
a

n

footm
an

footman

footman

footman

Producer ConsumerFIFO

DE : Solves Producer/Consumer
FIFO

DE: Solves
RSA Encryption

Algorithm

Input CleanEdges Channel Sobel Output

SDF: Solves Sobel

Figure 9.6. Truly Heterogeneous Dining Philosopher Model

The footman FSM controller is encapsulated in a CSP process but the
DE and SDF models are not. The roles of the philosophers when in the
thinking state have been slightly altered with this implementation and
they are as follows: Phil0 solves an RSA encryption algorithm, Phil1
simulates the Producer/Consumer example using the FIFO implemen-
tation, Phil2 performs the Sobel edge detection, and Phil3 and Phil4 sit
around just pretending that they are thinking. Listing 9.4 shows the
PHIL module entry function with the added invocations to the DE and
SDF kernels.

148

Listing 9.4. Entry function for PHIL module

1 void PHIL : : s o ln () {
2 int durat ion = timeToLive ;
3 int eatCount = 0 ;
4 int totalHungryTime = 0;
5 int becameHungryTime ;
6 int startTime = msecond () ;
7 while (1) {
8 s e a tAva i l ab l e [id] = fa l se ;
9 int got = footman . push (csp) ;

10 i f ((s e a tAva i l ab l e [id] == true) && ((s t a t e [id] != 0) | | (
s t a t e [id] != 6))) {

11 becameHungryTime = msecond () ;
12 p r i n t s t a t e s () ;
13 ge t f o rk () ;
14 p r i n t s t a t e s () ;
15 totalHungryTime += (msecond () − becameHungryTime) ;
16 eatCount++;
17 s t a t e [id] = 3 ;
18 us l e ep (1000L ∗ random int (MeanEatTime)) ;
19 p r i n t s t a t e s () ;
20 dropfork () ;
21 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
22 p r i n t s t a t e s () ;
23 s t a t e [id] = 6 ;
24 i f (id == 1) {
25 r sa (−1) ;
26 s c d e i n i t (” r sa ”) ;
27 s c d e t r i g g e r (−1 , ” r sa ”) ;
28 }
29 i f (id == 2) {
30 top top1 (”Top1”) ;
31 s c d e i n i t (”Top1”) ;
32 s c d e t r i g g e r (−1 , ”Top1”) ;
33 }
34 i f (id == 3) {
35 t o p l e v e l sd f top (” sd f top ”) ;
36 s c d e i n i t (” sd f top ”) ;
37 s c s d f s t a r t (1 , ” sd f top ”) ;
38 } ;
39 us l e ep (1000L ∗ random int (MeanThinkTime)) ;
40 s t a t e [id] = 0 ;
41 p r i n t s t a t e s () ;
42 −−space ;
43 −−seatsTaken ;
44 csp . r e s chedu l e () ;
45

46 } else {
47 csp . r e s chedu l e () ;
48 }
49 }
50 s t a t e [id] = 7 ;
51 } ;

We compare id to allow for a specific philosopher to perform certain
tasks during their thinking phase. We mandate that every model must
be encapsulated with a toplevel process. We use SC METHOD() pro-
cesses since we want single execution of the model. Our SDF kernel is
an untimed MoC implementation, however DE examples can span for
a certain length of time. To support this we added global functions

Heterogeneous Examples 149

sc de trigger(...) and sc sdf trigger(...). Both these functions take in
the duration of the execution and the name of the toplevel process that
is to be executed. For the SDF, the duration has no effect. For the DE,
the simulation runs for the specified duration after which control returns
to the calling thread. The sc de init(...) initializes the model specified
by the argument passed into the function to be executed. This same
initializer function is used to insert the SDF model.

Chapter 10

EPILOGUE

In this epilogue, we reemphasize the importance of creating multi-
MoC extensions of SystemC one more time, and summarize some of
the contributions and goals of this book. The basic objective of this
endeavor has been to disseminate our experience in extending SystemC
with a multi-MoC kernel implementation, and the implementation itself.

One of the major advantages of SystemC over other forms of hard-
ware description languages is the full expressive power of C++ at the
designers disposal while modeling in SystemC. However, this advantage
often shows the flip side of the coin, becoming a disadvantage. The free-
dom of using any C++ construct introduces programming errors, and
often leads designers to use C++ constructs that are not synthesizable as
hardware. Moreover, the lack of structure for creating models for specific
MoCs leads to lack of fidelity. The term fidelity of a modeling frame-
work in this case refers to an informal measure of how accurately one
can model behaviors specific to an MoC using the modeling structures
and facilities available in the framework. Besides fidelity, not exploiting
the MoC specific properties of models implies less efficient simulation,
as we have shown in the case of SDF models.

When SystemC was introduced in September 1999, there were two
main selling points discussed in the industry and academia. First, Sys-
temC is a class library based on C++, and hence any standard C++
compiler can create executables from SystemC models, which implies
free simulation platform rather than expensive VHDL or Verilog sim-
ulator. Second, the flexibility of C++ allows designers to be creative,
and using C++ makes it easier for software/hardware co-simulation,
avoiding PLIs which incur lots of overhead during simulation.

152

It was quickly realized by industry practitioners that (i) using C++ by
itself is not going to provide faster simulation, and (ii) free use of C++
is more of a liability than advantage, as synthesizability becomes an
issue with arbitrary C++ constructs. In fact, if the level of abstraction
remains at the RTL level, using C++, or using the industry best HDL
simulators provide almost equivalent performance. However, if one has
to synthesize hardware from SystemC model, it is almost necessary to
remain at the RTL level of abstraction barring a few exceptions.

In 2001, SystemC-2.0 was introduced with some radical new features,
and it borrowed a lot of concepts from the SpecC language. The most no-
table of those were the idea of channels, events, and interfaces. The idea
of communication refinement, transaction level modeling, and interface
based design were motivating factors for such changes. However, trans-
action level models are difficult to synthesize from, and tools that are
commercialized since then can synthesize efficient hardware only from
very limited set of constructs. Most problematic with such evolution
of SystemC has been that heterogeneous and multi-MoC modeling does
not have a direct support in SystemC-2.x yet.

Although we have discussed this extensively throughout this book,
we would discuss this again here. Current SystemC simulation kernel
is geared towards Discrete-Event (DE) simulation semantics, incorpo-
rating delta cycles which is very appropriate to model RTL level digital
hardware, but not suitable for other Models of Computation. One can
model any other Model of Computation by programmatic innovations,
but eventually the simulation targeted kernel has the DE simulation se-
mantics. This kernel uses dynamic event scheduling, and delta events
to trigger delta cycles. For models which naturally belong to other al-
ternative MoCs and are amenable to static scheduling, or other kinds of
optimizations, when mapped to a DE kernel become inefficient in their
simulation timing. So we believe that the only way SystemC can be
made a full fledged system level design language is to enable SystemC to
handle multi-MoC modeling and simulation, and support for behavioral
hierarchy. This will allow designers to model systems which consist of
heterogeneous components, modeled in different MoCs, and are hierar-
chically described. Moreover, the simulation of such models should not
require flattening of hierarchy.

The reason why such heterogeneous modeling and simulation is im-
portant becomes clear if one looks at any embedded system or a System-
on-Chip that goes in a consumer electronics equipment today. For exam-
ple, a digital camera chip would consist of DSP, microcontrollers, A/D
and D/A converters, memory elements and so on. Such systems are
conglomerates of components best modeled in multiple MoC domains.

Epilogue 153

Embedded software or real-time light-weight operating system stacks
could also be modeled in a heterogeneous modeling framework, which is
currently difficult with SystemC.

SystemC standards body, and open SystemC initiative (OSCI) have
been working over the last few years to make changes to SystemC stan-
dards to accommodate some of these needs. SystemC-AMS or SystemC-
4.0 is slated to incorporate the libraries that will allow continuous do-
main modeling, which will facilitate the modeling of Analog and Mixed
Signal Components. We are also aware of some activities related to soft-
ware APIs for modeling embedded software in SystemC-3.0, but we are
not aware of the current status of these efforts.

However, adding more libraries is not necessarily the solution to the
problem at hand. Our belief is that once we create ways to adjoin multi-
ple MoC specific simulation kernels and modeling constructs to SystemC,
we will not only enable heterogeneous modeling, but also enable design-
ers of SystemC based tools to easily add capabilities that are planned
for SystemC-3.0 or SystemC-4.0.

We have therefore gone ahead, and created our prototype for exten-
sions of SystemC-2.0.1 that enables us to create multi-MoC models, and
allows us to exploit through the features of these enhanced kernels the
MoC specific properties of these models to obtain simulation efficiency.
In particular, in this book we have presented three MoC specific ker-
nels, SDF, CSP and FSM, which we thought were very important MoCs
for many embedded system components. Since our effort is limited by
personnel and funding, we have not been able to provide a full indus-
trial strength system, but we are putting forth a prototype-scale proof
of concept. We have implemented three kernels, created some APIs that
will allow others to add their own MoC specific kernels and function-
alities, and we have created some heterogeneous models that use these
kernels in conjunction. We have also shown efficiency gain in case of
SDF, but due to lack of resources we have not done benchmarking for
the CSP or FSM kernels, but we believe that with proper experimenta-
tion it would be easily revealed that exploiting MoC specific properties
can only enhance the simulation performance.

Our hope is that this book would be able to convince some industry
groups that multi-MoC extensions of SystemC is not only justified, it is
necessary for SystemC to become a true system level modeling language.
If our prototype can spark discussions within the SystemC community
regarding the usefulness of such extensions, and about the best ways to
implement such extensions, we would feel that our endeavor has been
amply rewarded. Our implementation specifics of the design of the ker-
nels may not be the only way or the best possible way to achieve these

154

extensions, but it is one of the many possibilities. We urge the readers
of the book to download our prototype, experiment with it, and send us
comments and feedback [36].

References

[1] D. Abraham, H. D. Patel, and S. K. Shukla, A Multi-MOC Framework for SOC
Modeling using SML, FERMAT Lab Tech Report 2004-04, 2004.

[2] Eklectic Ally, Simulation Engine Example,
Website: http://eklectically.com/home.html.

[3] J. Armstrong, Ptolemy Eye Model,
Website: http://www.ee.vt.edu/∼pushkin/ece6444/presentation armstrong.pdf.

[4] D. Berner, S. Suhaib, S. Shukla, and H. Foster, XFM: Extreme Formal Method
for Capturing Formal Specification into Abstract Models, Tech. Report 2003-08,
Virginia Tech, 2003.

[5] S. Bhattacharyya, P. Murthy, and E. Lee, Software Synthesis from Dataflow
Graphs, Kluwer Academic Publishers, 1996.

[6] Shuvra S. Bhattacharyya, Elaine Cheong, John Davis II, Mudit Goel, Christo-
pher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu, Xiaojun Liu, Lukito
Muliadi, Steve Neuendorffer, John Reekie, Neil Smyth, Jeff Tsay, Brian Vogel,
Winthrop Williams, Yuhong Xiong, Yang Zhao, and Haiyang Zheng, Heteroge-
nous Concurrent Modelling and Design in Java: Volume 2 - Ptolemy II Software
Architecture, Memorandum UCB/ERL M03/28, July 2003.

[7] S. Borkar, Design challenges of technology scaling, In IEEE Micro 19 (1999),
23–29.

[8] N. Chomsky, Three models for the description of language, IRE Transaction on
Information Theory 2 (1956), no. 3, 113–124.

[9] A. Church, The calculi of lamdba conversion, Princeton University Press, 1985.

[10] E. Clarke, O. Grumberg, and D. Peled, Model Checking, The MIT Press, 1999.

[11] M. Clausen and A. Fortenbacher, Efficient solution of linear Diophantine equa-
tions, Journal of Symbolic Computation 8 (1989), no. 1-2, 201–216.

[12] National Research Council, Embedded Everywhere, National Academy Press,
2001.

156

[13] CPPreference, Cppreference, Website: htpp://www.cppreference.com.

[14] F. Doucet, R. Gupta, M. Otsuka, P. Schaumont, and S. Shukla, Interoperability
as a design issue in c++ based modeling environments, Proceedings of the 14th
international symposium on Systems synthesis, 2001.

[15] A. Jantsch et al., The ForSyDe Project,
Website: http://www.imit.kth.se/forskningsprojekt-detalj.html?projektid=46.

[16] International Technology Roadmap for Semiconductors,
Website: http://www.itrs.net/.

[17] FORTE, Forte Design Systems, Website: http://www.forteds.com/.

[18] A. Fortenbacher, Algebraische unifikation, Master’s thesis, Universitat Karl-
sruhe, 1983.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, October 1994.

[20] P. Garg, S. K. Shukla, and R. K. Gupta, Efficient Usage of Concurrency Models
in an Object-Oriented Co-design Framework, In Proceedings of DATE ’01, 2001.

[21] GNU, Autoconf, Website: http://www.gnu.org/software/autoconf/.

[22] , Automake, Website: http://www.gnu.org/software/automake/.

[23] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design with SystemC,
Kluwer Academic Publishers, 2002.

[24] Ptolemy Group, HTVQ Block Diagram,
Website: http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII1.0/.

[25] , Ptolemy II,
Website: http://ptolemy.eecs.berkeley.edu/ptolemyII/.

[26] T. Guckenbiehl and A. Herold, Solving Linear Diophantine Equations, Tech.
Report SEKI-85-IV-KL, Universitat Kaiserslautern, 1985.

[27] C. Hoare, Communicating Sequential Processes, Communications of the ACM,
21, vol. 8, ACM Press, 1978, pp. 666–677.

[28] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[29] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, 1979.

[30] G. Huet, An algorithm to generate the basis of solutions to homogeneous linear
Diophantine equations, Information Processing Letters, April 1978, 7(3).

[31] J. Jájá, Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[32] A. Jantsch, Modeling Embedded Systems And SOC’s - Concurrency and Time
in Models of Computations, Morgan Kaufmann Publishers, 2003.

REFERENCES 157

[33] J.Walker, The Analytical Engine: The First Computer,
Website: http://www.fourmilab.ch/babbage/, 2004.

[34] G. Kahn, Coroutines and networks of parallel processes, Information Processing,
North-Holland Publishing Company, 1977.

[35] David Keppel, Tools and Techniques for Building Fast Portable Threads Pack-
ages, Tech. Report UWCSE 93-05-06, University of Washington Department of
Computer Science and Engineering, May 1993.

[36] FERMAT Research Lab., SystemC-H Website,
Website: http://fermat.ece.vt.edu/systemc-h/.

[37] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich, Mod-
els of Computation for Embedded System Design, Website: cite-
seer.nj.nec.com/lavagno98model.html, 1998.

[38] E. A. Lee and D. G. Messerschmitt, Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing, In Proceedings of IEEE Transactions on
Computers, NO. 1, vol. Vol. C-36, 1987.

[39] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli, Comparing Models of
Computation, In Proceedings of the International Conference on Computer-
Aided Design (ICCAD), IEEE Computer Society, 1996, pp. 234–241.

[40] Formal Systems (Europe) Ltd., The FDR Model Checker, Web-
site:http://www.fsel.com/, 2004.

[41] A. Michalove, Amdahl’s Law,
Website: http://home.wlu.edu/∼whaleyt/classes/parallel/topics/amdahl.html.

[42] MicroLib, PowerPC 750 Simulator,
Website: http://www.microlib.org/G3/PowerPC750.php.

[43] R. Milner, Communication and concurrency, Prentice Hall, 1989.

[44] Gordon Moore, Cramming more Components onto Integrated Circuits, 38
(1965), no. 8.

[45] B. Niemann, F. Mayer, F. Javier, R. Rubio, and M. Speitel, Refining a High Level
SystemC Model, Kluwer Academic Publishers, 2003, In SystemC: Methodologies
and Applications, Ed. W. Muller and W. Rosenstiel and J. Ruf.

[46] NS-2, Network Simulator 2,
Website: http://www.isi.edu/nsnam/ns/.

[47] Sobel operator, Sobel Operator Algorithm,
Website: http://www.visc.vt.edu/armstrong/ee5514/as4 00.pdf.

[48] OPNET, OPNET, Website: http://www.opnet.com/.

[49] OSCI, SystemC , Website: http://www.systemc.org.

[50] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

158

[51] D. Pasechnik, Linear Diophantine Equation Solver, Website:
http://www.thi.informatik.uni-frankfurt.de/∼dima/software.html.

[52] H. D. Patel, HEMLOCK: HEterogeneous ModeL Of Computation Kernel for
SystemC, Master’s thesis, Virginia Polytechnic Institute and State University,
December 2003, Website: http://fermat.ece.vt.edu/hiren/thesis.pdf.

[53] H. D. Patel and S. K. Shukla, Towards A Heterogeneous Simulation Kernel for
System Level Models: A SystemC Kernel for Synchronous Data Flow Models,
Tech. Report 2003-01, FERMAT Lab Virginia Tech., 2003.

[54] , Towards A Heterogeneous Simulation Kernel for System Level Models:
A SystemC Kernel for Synchronous Data Flow Models, Proceedings of Interna-
tional Symposium in VLSI, IEEE Computer Society Press, 2004.

[55] , Towards A Heterogeneous Simulation Kernel for System Level Models:
A SystemC Kernel for Synchronous Data Flow Models, Proceedings of Great
Lakes Symposium in VLSI, 2004.

[56] , Truly Heterogeneous Modeling with SystemC, ch. Formal Models and
Methods for System Design, Kluwer Academic Publishers, The Netherlands,
2004.

[57] B. Pierce, Types and Programming Languages, MIT Press, 2002.

[58] M. O. Rabin and D. Scott, Finite Automata and Their Decision Problems, IBM
Journal of Research 3 (1959), no. 2, 115–125.

[59] D. Sangiorgi and D. Walker, The pi-calculus: A theory of mobile processes, Cam-
bridge University Press, 2003.

[60] J. R. Senning, Solution of the Dining Philosophers Problem us-
ing Shared Memory and Semaphores, Website: http://www.math-
cs.gordon.edu/courses/cs322/projects/p2/dp/, 2000.

[61] S. Sharad, D. Bhaduri, M. Chandra, H. Patel, and S. Syed, Systematic Ab-
straction of Microprocessor RTL models to enhance Simulation Efficiency, In
Proceedings of Microprocessor Test and Verification 2003, 2003.

[62] S. Sharad and S. K. Shukla, Efficient Simulation of System Level Models via
Bisimulation Preserving Transformations, Tech. report, FERMAT Lab Virginia
Tech., 2003-07.

[63] SPECC, SpecC, Website: http://www.ics.uci.edu/specc/.

[64] Synopsys, Synopsys, Website: http://www.synopsys.com/.

[65] SystemVerilog, System Verilog, Website: http://www.systemverilog.org/.

[66] A. M. Turing, On computable numbers with an application to the entscheidungs
problem, Proceedings of London Mathematical Society 2 (1936), no. 42, 230–265.

[67] V. A. Uspensky, Post’s machine, Firebird Publications, Inc., 1983.

[68] VERILOG, Verilog, Website: http://www.verilog.com/.

REFERENCES 159

[69] VHDL, VHDL, Website: http://www.vhdl.org/.

[70] M. H. Weik, The ENIAC Story,
Website: http://ftp.arl.mil/∼mike/comphist/eniac-story.html, 1961.

Appendix A
QuickThreads in SystemC

Extension of SystemC for hierarchy and heterogeneity necessitates the understand-
ing of QuickThread packaging and implementation before alteration. Unfortunately,
the existing SystemC source does not provide much internal documentation to assist
kernel experimenters with a better understanding of SystemC’s QuickThread imple-
mentation. In this section, we explain the QuickThread implementation such that
motivated kernel developers for SystemC can quickly comprehend the specifics. We
discuss QuickThreads in general and urge readers to refer to [35]. We continue by
describing how threads in SystemC employ the QuickThread client package and how
it enforces certain syntax requirements. We expect the reader to be familiar with
basic SystemC constructs.

1. QuickThreads
QuickThread (QT) is a package core and not a standalone thread package by itself.

The difference is that a package core only provides an interface to create machine de-
pendent code for easier portability, whereas a standalone thread package provides the
user with full implementation of stack space, thread synchronization and sometimes
even scheduling. Instead, QuickThread allows users to construct non-preemptive
thread packages. The goals of the QuickThread core package are as follows:

To provide an easy API to construct user-level thread packages. These user thread
packages can be seamlessly ported to architectures supported by QuickThread.

To separate execution of threads from their allocation and scheduling.

Synchronization of threads for uni and multi processors has problems of its own
such as race conditions, violation of stack space access, need for locking, mutexes,
extra context switches and so on. We do not discuss these issues here since our focus is
in gaining some basic level understanding of QuickThreads and their implementation
with SystemC. The QT package uses preswitch as its synchronization mechanism.
This mechanism functions in the following manner:

1 Block the current executing thread.

2 Switch to the new thread’s stack and execute some clean-up code for the old
thread.

162

The immediate disadvantage of this approach is that a thread cannot context
switch to itself, because the preswitch synchronization requires a new thread to ex-
ecute some clean-up code on the old thread. Hence, a new thread must execute for
the old thread to be completely switched out. Furthermore, QuickThread does not
implement any locking, making the users implement a locking mechanism. The user
packaging of QuickThread will be referred to as the client package [35].

A QuickThread can have several states that distinguish the modes of the thread
during its lifetime and they are as follows:

Uninitialized: A thread that requires stack allocation to be performed.

Initialized: Stack allocation is performed on the thread and a function and its
arguments are initialized on the stack region.

Ready-to-run: Once initialized, the thread is ready-to-run. This is the same as a
thread that is Blocked.

Running: The thread scheduled on the processor for execution.

Blocked: The suspended thread.

A thread is created when the client code allocates stack space for the particular
thread. The stack can either grow upwards or downwards depending on the machine
architecture, which has to be handled by the client package. The client thread alloca-
tion routine passes in the address and size of the stack space to a QuickThread routine
that returns a stack pointer of the uninitialized thread. This is when the thread is
in its uninitialized state. For the client to initialize this thread, a QuickThread ini-
tialization primitive is used to initialize the stack with functions and its arguments
that will be used during the execution of the thread. This initialized thread can be
started by simply passing its stack pointer to a thread switching routine. This is the
same way a suspended thread is restarted. The context switching works by invok-
ing the QT switching primitive from the new thread’s stack and a helper function is
executed. This helper function tidies the suspension of the old thread, after which
the new thread begins its execution. A detailed description of the context switching
primitive is available at [35]. Examples of thread allocation and context switching
routines are also provided in [35].

2. QuickThread Client package in SystemC
SystemC has two coroutine packages implemented with QuickThreads. The first

is a Unix/Linux variant package and the other is a Microsoft Windows package. We
limit our discussion to only the Unix/Linux variant client package. In addition, we
only limit our discussion to some class definitions and some specific member functions
that we believe are important for the reader to attain a basic idea of the threading
coroutine package in SystemC.

Figure A.1 shows a class diagram of the classes used in packaging QuickThreads
in SystemC. The implementation of QuickThreads is performed in the sc cor qt and
sc cor pkg qt classes. The sc cor qt class implements the data structure for the stack
used in a thread. The class definition is shown in Listing A.1.

The data members of this class define the stack size through m stack size, a void
pointer to the stack with m stack and the stack pointer for the thread m sp. This
class only holds a pointer to the stack and does not create it. The creating object
is sc cor pkg qt and hence there is a pointer of that type defined by m pkg. Class
sc cor qt also inherits from an abstract class called sc cor. The only implementation

Appendix A: QuickThreads in SystemC 163

+stack_protect() : void
+sc_cor_qt()
+~sc_cor_qt()

-m_stack : void*
-m_sp : qt_t*
-m_pkg : sc_cor_pkg_qt*
-m_stack_size

sc_cor_qt

#sc_cor()
+~sc_cor()
+stack_protect() : void

sc_cor

+sc_cor_pkg()
+~sc_cor_pkg()
+create() : sc_cor*
+yield() : void
+abort() : void
+get_main() : sc_cor*
+simcontext() : sc_simcontext*

-m_simc : sc_simcontext*

sc_cor_pkg

+sc_cor_pkg_qt()
+~sc_cor_pkg_qt()
+yield() : void
+abort() : void
+get_main() : sc_cor_qt

-instance_count : static int

sc_cor_pkg_qt

1

-m_pkg1

+...()

-...

qt_t

1

-m_sp

1

+...()

-...

sc_simcontext

1

-m_simc1

Figure A.1. Class Diagram for some of the Coroutine classes

of sc cor qt are the constructor, virtual destructor and the stack protect function. The
constructor simply initializes all the data members to NULL and the destructor frees
up the memory if m stack is allocated. The stack protect member function however, is
responsible for allocating a stack region and protecting it with appropriate privilege.

The class responsible for creating the thread coroutine is sc cor pkg qt, which in-
herits from an abstract class sc cor pkg. The class definition of sc cor pkg qt is shown
in Listing A.2.

There is only one private data member in this class, which holds a static integer
variable called instance count. This variable is used to ensure that there is only one
instantiation of the sc cor pkg qt class further enforced by the file static variables
static sc cor qt main cor and static sc cor qt* curr cor. These file static variables are
instantiated in the implementation file sc cor qt.cpp. The coroutine package follows
a singleton pattern [19].

The constructor of this class shown in Listing A.3 takes in a pointer to the current
simulation context and sets it in the abstract class sc cor pkg and assigns the current
coroutine to the address of the main cor object. No other instantiations are allowed
of this class.

The create(...) function takes in the stack size, a function and an argument list
as mentioned earlier in our discussion of QuickThreads. In this function, the stack
size is set in the sc cor qt object, the stack is allocated memory and the stack pointer
is initialized along with passing of the function and arguments. At the end of the
create(...) function, the thread created is returned as a pointer to sc cor object. The
coroutine classes employ the use of keywords such as SCAST and RCAST. These are

164

Listing A.1. class sc cor qt

1 class s c c o r q t
2 : public s c c o r
3 {
4 public :
5

6 // constructor
7 s c c o r q t ()
8 : m s t a ck s i z e (0) , m stack (0) , m sp (0) , m pkg (0)
9 {}

10

11 // des t ruc tor
12 virtual ˜ s c c o r q t ()
13 { i f (m stack != 0) { delete [] (char∗) m stack ; } }
14

15 // switch s tack protec t ion on/ o f f
16 virtual void s t a c k p r o t e c t (bool enable) ;
17

18 public :
19

20 s i z e t m s ta ck s i z e ; // stack s i z e
21 void ∗ m stack ; // stack
22 q t t ∗ m sp ; // stack pointer
23

24 s c c o r pkg q t ∗ m pkg ; // the creat ing coroutine
package

25

26 private :
27

28 // d i sab l ed
29 s c c o r q t (const s c c o r q t &) ;
30 s c c o r q t & operator = (const s c c o r q t &) ;
31 } ;

defined in sc iostream.h as short forms for static cast and reinterpret cast, perhaps
simply for easier use.

The yield(...) function takes in a pointer to sc cor to indicate the next coroutine
to be executed. The current coroutine to be executed is moved to a casted pointer to
sc cor qt and the QuickThread primitive for blocking is called via the QT BLOCK(...)
function. The arguments passed to the QT blocking primitive are the helper function,
the old coroutine, and the new coroutine. The helper function saves the stack pointer
onto the old thread’s stack and resumes execution to the new thread using preswitch.

The abort(...) member function is responsible for causing the threads to terminate
(die) in a similar fashion and the get main() function returns the main coroutine for
the simulation to allow continuation of the original simulation context. We do not
discuss the abstract classes that are used to interface with the QT coroutine pack-
age and continue to discuss how SystemC threads make invocations to the functions
described in this section.

We have described some of the classes and some of the main functions of those
classes that interact with the QuickThread core package. What is relevant to most
SystemC users and more so to developers is how SystemC integrates these coroutine
packages with their simulation environment. We describe how the Discrete-Event
simulation kernel incorporates thread processes. We step through the code in giving
details on how threads are instantiated (up to the coroutine client package calls) and
how they are executed.

Appendix A: QuickThreads in SystemC 165

Listing A.2. class sc cor pkg qt

1 class s c c o r pkg q t
2 : public s c co r pkg
3 {
4 public :
5

6 // constructor
7 s c c o r pkg q t (s c s imcontext ∗ simc) ;
8

9 // des t ruc tor
10 virtual ˜ s c c o r pkg q t () ;
11

12 // create a new coroutine
13 virtual s c c o r ∗ c r ea t e (s i z e t s t a c k s i z e , s c c o r f n ∗ fn ,

void ∗ arg) ;
14

15 // y i e l d to the next corout ine
16 virtual void y i e l d (s c c o r ∗ next co r) ;
17

18 // abort the current coroutine (and resume the next
coroutine)

19 virtual void abort (s c c o r ∗ next co r) ;
20

21 // get the main coroutine
22 virtual s c c o r ∗ get main () ;
23

24 private :
25

26 stat ic int i n s tance count ;
27

28 private :
29

30 // d i sab l ed
31 s c c o r pkg q t () ;
32 s c c o r pkg q t (const s c c o r pkg q t &) ;
33 s c c o r pkg q t & operator = (const s c c o r pkg q t &) ;
34 } ;

Listing A.3. Constructor from class sc cor pkg qt

1 s c c o r pkg q t : : s c c o r pkg q t (s c s imcontext ∗ simc)
2 : s c c o r pkg (simc)
3 {
4 i f (++ ins tance count == 1) {
5 // i n i t i a l i z e the current coroutine
6 a s s e r t (c u r r c o r == 0) ;
7 cu r r c o r = &main cor ;
8 }
9 }

The initialization and execution of a thread process starts at the definition of
SC THREAD(...) that is defined in sc module.h as a C macro. This macro invokes
another macro called declare thread process(...) that accepts the sensitivity list and
actually creates the thread process itself by calling a register thread process(...) func-
tion defined in sc simcontext class. Listing A.6 shows the constructor being called for
the sc thread process class.

166

Listing A.4. create(...) member function from class sc cor pkg qt

1 s c c o r ∗
2 s c c o r pkg q t : : c r e a t e (s i z e t s t a c k s i z e , s c c o r f n ∗ fn , void ∗

arg)
3 {
4 s c c o r q t ∗ cor = new s c c o r q t ;
5 cor−>m pkg = this ;
6 cor−>m stack s i z e = s t a c k s i z e ;
7 cor−>m stack = new char [cor−>m stack s i z e] ;
8 void ∗ s to = s t a c k a l i g n (cor−>m stack , QT STKALIGN, & cor−>

m stack s i z e) ;
9 cor−>m sp = QT SP(sto , cor−>m stack s i z e − QT STKALIGN) ;

10 cor−>m sp = QT ARGS(cor−>m sp , arg , cor , (q t u s e r f t ∗) fn ,
11 s c co r q t wrappe r) ;
12 return cor ;
13 }

Listing A.5. yield(...) member function from class sc cor pkg qt

1 void
2 s c c o r pkg q t : : y i e l d (s c c o r ∗ next co r)
3 {
4 s c c o r q t ∗ new cor = SCAST<s c c o r q t ∗>(next co r) ;
5 s c c o r q t ∗ o l d c o r = cu r r c o r ;
6 cu r r c o r = new cor ;
7 QT BLOCK(s c c o r q t y i e l d h e l p , o ld cor , 0 , new cor−>m sp) ;
8 }

Listing A.6. register thread process(...) from class sc simcontext

1 s c th r ead hand l e
2 s c s imcontext : : r e g i s t e r t h r e a d p r o c e s s (const char ∗ name ,
3 SC ENTRY FUNC entry fn ,
4 sc module ∗ module)
5 {
6 s c th r ead hand l e handle = new s c t h r e ad p r o c e s s (name ,
7 ent ry fn ,
8 module) ;
9 m proces s tab le−>push back (handle) ;

10 s e t c u r r p r o c (handle) ;
11 return handle ;
12 }

As it can be seen, a thread process is an object of class sc thread process. The
constructor of sc thread process sets the default size of the stack defined by
SC DEFAULT STACK SIZE and the coroutine of that thread (a pointer to sc cor)
is initialized to NULL. The newly created thread identified by the handle is pushed
onto the process list m process table for later use. All SC THREAD() processes are
pushed onto this process table along with all other process types in SystemC.

The next use of the thread is when simulation is started by sc start(...). The
implementation of this function invokes sc get curr simcontext() which creates an
instance of sc simcontext and returns a pointer to what would be the Discrete-Event
kernel or an object of that type. The simulate(...) function is invoked to perform

Appendix A: QuickThreads in SystemC 167

the simulation. Within this function the initialization of all processes is performed.
We extract the segment responsible for thread processes only and display it in Listing
A.7.

Listing A.7. Segments of initialize(...) from sc simcontext class

1 void
2 s c s imcontext : : i n i t i a l i z e (bool no crunch)
3 {
4 // Some code here . . .
5

6 // in s t an t i a t e the corout ine package
7#ifndef WIN32
8 m cor pkg = new s c c o r pkg q t (this) ;
9#else

10 m cor pkg = new s c c o r p k g f i b e r (this) ;
11#endif
12 m cor = m cor pkg−>get main () ;
13

14 // prepare a l l thread processes for s imulat ion
15 const s c th r ead ve c & thread vec = m proces s tab le−>

thread vec () ;
16 for (int i = thread vec . s i z e () − 1 ; i >= 0; −− i) {
17 thread vec [i]−>p r epa r e f o r s imu l a t i o n () ;
18 }
19

20

21 // Some code here . . .
22

23 // make a l l thread processes runnable
24

25 s i z e = thread vec . s i z e () ;
26 for (int i = 0 ; i < s i z e ; ++ i) {
27 s c th r ead hand l e thread h = thread vec [i] ;
28 i f (thread h−>d o i n i t i a l i z e ()) {
29 push runnable thread (thread h) ;
30 }
31 }
32

33 // Some code here . . .
34

35 }

During initialize(...), the constructor of sc cor pkg qt is invoked by setting the
simulation context as the current sc simcontext object. This is followed by every
thread being prepared for simulation by calling the prepare for simulation() function
from the sc thread process class. This is when the create(...) function from the
sc cor pkg qt is invoked to create the thread, after which the returned pointer to
m cor forces a protection on the stack by invoking the stack protect(...) function on
that particular coroutine as shown in Listing A.8.

The function passed to the stack initialization is the sc thread cor fn that is re-
sponsible for calling execute() from the base class sc process b, which mainly executes
the entry function of a module. The preparation of the threads allocates stack regions
to each thread and initializes the thread stack space with the function and arguments.
Once this is done, the thread can be executed. SystemC scheduler dictates that all
processes that are not marked by dont initialize() are to be executed during initializa-
tion and hence all processes are made runnable by pushing all runnable threads on to
the runnable queue. This takes us to the function that performs the Evaluate-Update

168

Listing A.8. prepare for simulation(...) from class sc thread process

1 void
2 s c t h r e ad p r o c e s s : : p r e pa r e f o r s imu l a t i o n ()
3 {
4 m cor = simcontext ()−>cor pkg ()−>c r ea t e (m stack s i z e ,
5 s c t h r e ad co r f n , this) ;
6 m cor−>s t a c k p r o t e c t (true) ;
7 }

paradigm, crunch(). We focus mainly on the invocation of yield(...) as shown in
Listing A.9.

Listing A.9. Use of yield(...) in crunch()

1 void s c s imcontext : : crunch ()
2 {
3 // Some code here . . .
4

5 while (true) {
6

7 // EVALUATE PHASE
8

9 while (true) {
10

11 // execute method processes
12

13 // Some code here . . .
14

15 // execute (c) thread processes
16

17 s c th r ead hand l e thread h = pop runnable thread () ;
18 while (thread h != 0 && ! thread h−>r eady to run ()) {
19 thread h = pop runnable thread () ;
20 }
21

22 i f (thread h != 0) {
23 m cor pkg−>y i e l d (thread h−>m cor) ;
24 }
25

26 i f (m error) {
27 return ;
28 }
29

30 // Some code here . . .
31

32 m runnable−>t ogg l e () ;
33 }
34

35 // UPDATE PHASE
36

37 // Some code here . . .
38 }

All threads that are on the runnable lists are executed. This raises many questions
as to how the simulation proceeds from one thread to the next. For example, suppose
a thread switches to the current context and executes. Then, how does another thread
after the completion of the current executing thread get scheduled for execution. We

Appendix A: QuickThreads in SystemC 169

believe that one of the important understandings is how this simulation proceeds to
the next thread and how a wait() suspension call makes the current executing pro-
cess suspend and switch another process in for execution. The implementation is
interesting and behaves differently when there are suspension calls, when there are
none, and when the entry function for a thread does not contain an infinite loop. The
implementation provides explanation to the experienced behaviors in these circum-
stances. Let us first study the function shown in Listing A.10. sc switch thread(...)
takes in a pointer to the simulation context as an argument. This function invokes the
yield(...) function with the argument being the return object of a next cor() function
implemented in the sc simcontext class, serving the purpose of retrieving the next
runnable coroutine. This next cor() function is shown in Listing A.11.

Listing A.10. sc switch thread(...) function

1 in l ine void
2 s c sw i t ch th r ead (s c s imcontext ∗ simc)
3 {
4 simc−>cor pkg ()−>y i e l d (simc−>next co r ()) ;
5 }

Listing A.11. next cor() from class sc simcontext

1 s c c o r ∗
2 s c s imcontext : : next co r ()
3 {
4 i f (m error) {
5 return m cor ;
6 }
7

8 s c th r ead hand l e thread h = pop runnable thread () ;
9 while (thread h != 0 && ! thread h−>r eady to run ()) {

10 thread h = pop runnable thread () ;
11 }
12

13 i f (thread h != 0) {
14 return thread h−>m cor ;
15 } else {
16 return m cor ;
17 }
18 }

This next cor() function returns the coroutine to the next thread if one is available
on the runnable queues, otherwise it returns the main coroutine, m cor that returns
to the main simulation context. This implies that one thread is somewhat responsible
for invoking another thread until the simulation has no more threads to execute at
which it returns to the main coroutine.

Suspension calls such as wait(...) simply block the current executing thread by
switching to another thread using the sc switch thread(...), leaving the QuickThread
core package to be responsible for saving the state of the old thread. This is how the
main cor (main coroutine) is saved as well, when another thread process is invoked,
the current executing process is suspended. Therefore, none of these threads are
terminated in a normal execution until the end of simulation. The event notifications

170

for resumption of threads puts the thread process handle on the runnable queue so
that the main coroutine can execute the threads. The threads generally terminate
only at the end of simulation.

Suppose the user has an SC THREAD() process and no infinite loop implemented
in the entry function. Then, the thread will execute only once (depending on the
number of suspension points in the entry function) and stall. Suppose, a user has
defined an entry function with an infinite loop but no suspension points and without
the use of an sc signal or channels that generate sc events. The expected behavior
is an infinite execution of that one process once it is scheduled. The implementation
details provide some understanding as to why an infinite loop is required for a thread
process in SystemC to prevent the thread from aborting and dying. It explains why
all threads also have at least one suspension point to avoid continuous execution of
that single thread.

Our efforts in heterogeneity question the current implementation of QuickThreads
in SystemC. The concern is not with the QuickThread packaging, but more so the
client package interaction with the simulation kernel. The static instance of the
sc cor qt object makes it difficult to implement heterogeneity and hierarchy in Sys-
temC. We believe that every Model Of Computation requiring threads must be able
to cleanly communicate to the existing Discrete-Event kernel without raising con-
cerns about threading implementations. We are currently investigating this alteration.
However, we believe that this short introduction to QuickThread implementation in
SystemC is valuable for kernel designers in understanding the coroutine implementa-
tion.

Appendix B
Autoconf and Automake

Autoconf and Automake are tools provided by GNU for making scripts that config-
ure source code packages. Autoconf is responsible for creating a configuration script
with information regarding the operating system. This allows for adaptation to dif-
ferent UNIX-variant systems without much intervention from the code developers or
the user. Automake is also a GNU tool that requires Autoconf to generate the con-
figuration script which Automake utilizes to create Makefile.in files for the code
package. Detailed information on the usage and purpose of Autoconf and Automake
is available at [21, 22]. Our purpose in this section is to describe how to add additional
files to SystemC, such that the library created after compilation will incorporate the
additional classes introduced in the added files.

We explain this procedure via example. It is important to save a copy of the
directory that contains the QuickThread package. We do not elaborate on the problem
except that updating the configuration and Makefiles causes a slight disturbance with
the QuickThread package. Suppose we wish to add the CSP kernel that has all class
definitions in a file called sc csp.h and its respective implementation in sc csp.cpp.
We define our source untarred in a directory called systemc-2.0.1-H/. The following
steps are needed to add the CSP kernel to SystemC (this is specific for version 2.0.1).

1 Copy the CSP kernel source files into the kernel directory
systemc-2.0.1-H/src/systemc/kernel/

2 Edit the Makefile.am in systemc-2.0.1-H/src/systemc/kernel/ to add sc csp.h
under H FILES and sc csp.cpp under CXX FILES in a similar fashion to the existing
source.

3 Save the Makefile.am and move to systemc-2.0.1-H/src/ where the systemc.h

exists.

4 Edit the systemc.h file and #include the header file for the CSP kernel. For
example, add a line #include "systemc/kernel/sc csp.h".

5 Save systemc.h and move to systemc-2.0.1-H/.

6 Run aclocal.

7 Run autoconf. If there are problems due to version discrepancies with Autoconf
then run autoreconf -i.

172

8 Run automake

9 Begin compiling systemC-2.0.1-H as specified in the installation guidelines. Up-
dating of the Makefile.ins causes a compile error when trying to compile the
QuickThread package. To rectify this, simply remove the existing QuickThread
directory and replace it with the backup.

Users of the installation from systemc-2.0.1-H/ will have access to classes included
in sc csp.h. This is a solution to keeping most of the additional source code separate
from existing implementation, but avoid changes in original source files is a very
difficult task. Hence, we maintain the idea that the newly implemented classes must
remain detached with their data structures in a separate file and make necessary
changes to original SystemC source files.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

