










Preface

Applications of physics can be found in a wider and wider range of disciplines in the sci-
ences and engineering. It is therefore more and more important for students, practitioners,
researchers, and teachers to have ready access to the facts and formulas of physics.

Compiled by professional scientists, engineers, and lecturers who are experts in the day-
to-day use of physics, this Handbook covers topics from classical mechanics to elementary
particles, electric circuits to error analysis.

This handbook provides a veritable toolbox for everyday use in problem solving, home-
work, examinations, and practical applications of physics, it provides quick and easy access
to a wealth of information including not only the fundamental formulas of physics but also
a wide variety of experimental methods used in practice.

Each chapter contains
➤ all the important concepts, formulas, rules and theorems
▲ numerous examples and practical applications
■ suggestions for problem solving, hints, and cross references

M measurement techniques and important sources of errors
as well as numerous tables of standard values and material properties.

Access to information is direct and swift through the user-friendly layout, structured
table of contents, and extensive index. Concepts and formulas are treated and presented
in a uniform manner throughout: for each physical quantity defined in the Handbook, its
characteristics, related quantities, measurement techniques, important formulas, SI-units,
transformations, range of applicability, important relationships and laws, are all given a
unified and compact presentation.

This Handbook is based on the third German edition of the Taschenbuch der Physik
published by Verlag Harri Deutsch. Please send suggestions and comments to the Physics
Editorial Department, Springer Verlag, 175 Fifth Avenue, New York, NY 10010.

Walter Benenson, East Lansing, MI
John Harris, New Haven, CT
Horst Stocker, Frankfurt, Germany
Holger Lutz, Friedberg, Germany

v



Contents

Preface v

Contributors xxiii

Part I Mechanics 1

1 Kinematics 3
1.1 Description of motion . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Reference systems . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Length, area, volume . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.5 Mechanical systems . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Motion in one dimension . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Simple motion in one dimension . . . . . . . . . . . . . . . 19

1.3 Motion in several dimensions . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Velocity vector . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Acceleration vector . . . . . . . . . . . . . . . . . . . . . . 25
1.3.3 Free-fall and projectile motion . . . . . . . . . . . . . . . . . 28

1.4 Rotational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.1 Angular velocity . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.2 Angular acceleration . . . . . . . . . . . . . . . . . . . . . . 33
1.4.3 Orbital velocity . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Dynamics 37
2.1 Fundamental laws of dynamics . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Mass and momentum . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Newton’s laws . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.3 Orbital angular momentum . . . . . . . . . . . . . . . . . . 48
2.1.4 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.5 The fundamental law of rotational dynamics . . . . . . . . . 52

vii



viii Contents

2.2 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.1 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.2 Spring torsion forces . . . . . . . . . . . . . . . . . . . . . 54
2.2.3 Frictional forces . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Inertial forces in rotating reference systems . . . . . . . . . . . . . . . 59
2.3.1 Centripetal and centrifugal forces . . . . . . . . . . . . . . . 60
2.3.2 Coriolis force . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Work and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4.3 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.4 Potential energy . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.5 Frictional work . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6 Collision processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.1 Elastic straight-line central collisions . . . . . . . . . . . . . 74
2.6.2 Elastic off-center central collisions . . . . . . . . . . . . . . 76
2.6.3 Elastic non-central collision with a body at rest . . . . . . . . 76
2.6.4 Inelastic collisions . . . . . . . . . . . . . . . . . . . . . . . 78

2.7 Rockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.7.1 Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.7.2 Rocket equation . . . . . . . . . . . . . . . . . . . . . . . . 81

2.8 Systems of point masses . . . . . . . . . . . . . . . . . . . . . . . . 82
2.8.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . 82
2.8.2 Momentum conservation law . . . . . . . . . . . . . . . . . 84
2.8.3 Angular momentum conservation law . . . . . . . . . . . . . 85
2.8.4 Energy conservation law . . . . . . . . . . . . . . . . . . . . 86

2.9 Lagrange’s and Hamilton’s equations . . . . . . . . . . . . . . . . . . 86
2.9.1 Lagrange’s equations and Hamilton’s principle . . . . . . . . 86
2.9.2 Hamilton’s equations . . . . . . . . . . . . . . . . . . . . . 89

3 Rigid bodies 93
3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.1 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1.2 Center of mass . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.1.3 Basic kinematic quantities . . . . . . . . . . . . . . . . . . . 96

3.2 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.1 Force vectors . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.2 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.3 Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.4 Equilibrium conditions of statics . . . . . . . . . . . . . . . 103
3.2.5 Technical mechanics . . . . . . . . . . . . . . . . . . . . . . 104
3.2.6 Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4 Moment of inertia and angular momentum . . . . . . . . . . . . . . . 111

3.4.1 Moment of inertia . . . . . . . . . . . . . . . . . . . . . . . 111
3.4.2 Angular momentum . . . . . . . . . . . . . . . . . . . . . . 116

3.5 Work, energy and power . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5.1 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5.2 Torsional potential energy . . . . . . . . . . . . . . . . . . . 120



Contents ix

3.6 Theory of the gyroscope . . . . . . . . . . . . . . . . . . . . . . . . 121
3.6.1 Tensor of inertia . . . . . . . . . . . . . . . . . . . . . . . . 121
3.6.2 Nutation and precession . . . . . . . . . . . . . . . . . . . . 124
3.6.3 Applications of gyroscopes . . . . . . . . . . . . . . . . . . 127

4 Gravitation and the theory of relativity 129
4.1 Gravitational field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.1.1 Law of gravitation . . . . . . . . . . . . . . . . . . . . . . . 129
4.1.2 Planetary motion . . . . . . . . . . . . . . . . . . . . . . . 131
4.1.3 Planetary system . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2 Special theory of relativity . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.1 Principle of relativity . . . . . . . . . . . . . . . . . . . . . 137
4.2.2 Lorentz transformation . . . . . . . . . . . . . . . . . . . . 140
4.2.3 Relativistic effects . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.4 Relativistic dynamics . . . . . . . . . . . . . . . . . . . . . 145

4.3 General theory of relativity and cosmology . . . . . . . . . . . . . . . 148
4.3.1 Stars and galaxies . . . . . . . . . . . . . . . . . . . . . . . 150

5 Mechanics of continuous media 153
5.1 Theory of elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1.2 Elastic deformation . . . . . . . . . . . . . . . . . . . . . . 156
5.1.3 Plastic deformation . . . . . . . . . . . . . . . . . . . . . . 167

5.2 Hydrostatics, aerostatics . . . . . . . . . . . . . . . . . . . . . . . . 171
5.2.1 Liquids and gases . . . . . . . . . . . . . . . . . . . . . . . 172
5.2.2 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.2.3 Buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.2.4 Cohesion, adhesion, surface tension . . . . . . . . . . . . . . 183

5.3 Hydrodynamics, aerodynamics . . . . . . . . . . . . . . . . . . . . . 186
5.3.1 Flow field . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.3.2 Basic equations of ideal flow . . . . . . . . . . . . . . . . . 187
5.3.3 Real flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.3.4 Turbulent flow . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.3.5 Scaling laws . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.3.6 Flow with density variation . . . . . . . . . . . . . . . . . . 209

6 Nonlinear dynamics, chaos and fractals 211
6.1 Dynamical systems and chaos . . . . . . . . . . . . . . . . . . . . . 212

6.1.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . 212
6.1.2 Conservative systems . . . . . . . . . . . . . . . . . . . . . 217
6.1.3 Dissipative systems . . . . . . . . . . . . . . . . . . . . . . 219

6.2 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.2.1 Logistic mapping . . . . . . . . . . . . . . . . . . . . . . . 222
6.2.2 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.3 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Formula symbols used in mechanics 229

7 Tables on mechanics 231
7.1 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.1.1 Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.1.2 Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.1.3 Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



x Contents

7.2 Elastic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.3 Dynamical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.3.1 Coefficients of friction . . . . . . . . . . . . . . . . . . . . . 243
7.3.2 Compressibility . . . . . . . . . . . . . . . . . . . . . . . . 244
7.3.3 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.3.4 Flow resistance . . . . . . . . . . . . . . . . . . . . . . . . 250
7.3.5 Surface tension . . . . . . . . . . . . . . . . . . . . . . . . 251

Part II Vibrations and Waves 253

8 Vibrations 255
8.1 Free undamped vibrations . . . . . . . . . . . . . . . . . . . . . . . 257

8.1.1 Mass on a spring . . . . . . . . . . . . . . . . . . . . . . . . 258
8.1.2 Standard pendulum . . . . . . . . . . . . . . . . . . . . . . 260
8.1.3 Physical pendulum . . . . . . . . . . . . . . . . . . . . . . 263
8.1.4 Torsional vibration . . . . . . . . . . . . . . . . . . . . . . 265
8.1.5 Liquid pendulum . . . . . . . . . . . . . . . . . . . . . . . 266
8.1.6 Electric circuit . . . . . . . . . . . . . . . . . . . . . . . . . 267

8.2 Damped vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.2.1 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.2.2 Damped electric oscillator circuit . . . . . . . . . . . . . . . 273

8.3 Forced vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.4 Superposition of vibrations . . . . . . . . . . . . . . . . . . . . . . . 277

8.4.1 Superposition of vibrations of equal frequency . . . . . . . . 277
8.4.2 Superposition of vibrations of different frequencies . . . . . . 279
8.4.3 Superposition of vibrations in different

directions and with different frequencies . . . . . . . . . . . 280
8.4.4 Fourier analysis, decomposition into harmonics . . . . . . . . 282

8.5 Coupled vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

9 Waves 287
9.1 Basic features of waves . . . . . . . . . . . . . . . . . . . . . . . . . 287
9.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.3 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

9.3.1 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
9.3.2 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.3.3 Standing waves . . . . . . . . . . . . . . . . . . . . . . . . 296
9.3.4 Waves with different frequencies . . . . . . . . . . . . . . . 299

9.4 Doppler effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.4.1 Mach waves and Mach shock waves . . . . . . . . . . . . . . 302

9.5 Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
9.6 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

9.6.1 Phase relations . . . . . . . . . . . . . . . . . . . . . . . . . 304
9.7 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
9.8 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

9.8.1 Diffraction by a slit . . . . . . . . . . . . . . . . . . . . . . 306
9.8.2 Diffraction by a grating . . . . . . . . . . . . . . . . . . . . 307

9.9 Modulation of waves . . . . . . . . . . . . . . . . . . . . . . . . . . 308
9.10 Surface waves and gravity waves . . . . . . . . . . . . . . . . . . . . 309



Contents xi

10 Acoustics 311
10.1 Sound waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

10.1.1 Sound velocity . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.1.2 Parameters of sound . . . . . . . . . . . . . . . . . . . . . . 313
10.1.3 Relative quantities . . . . . . . . . . . . . . . . . . . . . . . 317

10.2 Sources and receivers of sound . . . . . . . . . . . . . . . . . . . . . 319
10.2.1 Mechanical sound emitters . . . . . . . . . . . . . . . . . . 319
10.2.2 Electro-acoustic transducers . . . . . . . . . . . . . . . . . . 321
10.2.3 Sound absorption . . . . . . . . . . . . . . . . . . . . . . . 324
10.2.4 Sound attenuation . . . . . . . . . . . . . . . . . . . . . . . 327
10.2.5 Flow noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

10.3 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
10.4 Physiological acoustics and hearing . . . . . . . . . . . . . . . . . . . 329

10.4.1 Perception of sound . . . . . . . . . . . . . . . . . . . . . . 330
10.4.2 Evaluated sound levels . . . . . . . . . . . . . . . . . . . . 331

10.5 Musical acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

11 Optics 335
11.1 Geometric optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

11.1.1 Optical imaging—fundamental concepts . . . . . . . . . . . 338
11.1.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
11.1.3 Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

11.2 Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11.2.1 Thick lenses . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11.2.2 Thin lenses . . . . . . . . . . . . . . . . . . . . . . . . . . 364

11.3 Lens systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
11.3.1 Lenses with diaphragms . . . . . . . . . . . . . . . . . . . . 365
11.3.2 Image defects . . . . . . . . . . . . . . . . . . . . . . . . . 366

11.4 Optical instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
11.4.1 Pinhole camera . . . . . . . . . . . . . . . . . . . . . . . . 369
11.4.2 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
11.4.3 Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
11.4.4 Eye and optical instruments . . . . . . . . . . . . . . . . . . 372

11.5 Wave optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
11.5.1 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
11.5.2 Diffraction and limitation of resolution . . . . . . . . . . . . 377
11.5.3 Refraction in the wave picture . . . . . . . . . . . . . . . . . 379
11.5.4 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . 380
11.5.5 Diffractive optical elements . . . . . . . . . . . . . . . . . . 384
11.5.6 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.5.7 Spectroscopic apparatus . . . . . . . . . . . . . . . . . . . . 390
11.5.8 Polarization of light . . . . . . . . . . . . . . . . . . . . . . 391

11.6 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
11.6.1 Photometric quantities . . . . . . . . . . . . . . . . . . . . . 396
11.6.2 Photometric quantities . . . . . . . . . . . . . . . . . . . . . 403

Symbols used in formulae on vibrations, waves, acoustics and optics 407

12 Tables on vibrations, waves, acoustics and optics 409
12.1 Tables on vibrations and acoustics . . . . . . . . . . . . . . . . . . . 409
12.2 Tables on optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414



xii Contents

Part III Electricity 419

13 Charges and currents 421
13.1 Electric charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

13.1.1 Coulomb’s law . . . . . . . . . . . . . . . . . . . . . . . . 423
13.2 Electric charge density . . . . . . . . . . . . . . . . . . . . . . . . . 424
13.3 Electric current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

13.3.1 Ampere’s law . . . . . . . . . . . . . . . . . . . . . . . . . 428
13.4 Electric current density . . . . . . . . . . . . . . . . . . . . . . . . . 428

13.4.1 Electric current flow field . . . . . . . . . . . . . . . . . . . 430
13.5 Electric resistance and conductance . . . . . . . . . . . . . . . . . . . 431

13.5.1 Electric resistance . . . . . . . . . . . . . . . . . . . . . . . 431
13.5.2 Electric conductance . . . . . . . . . . . . . . . . . . . . . . 432
13.5.3 Resistivity and conductivity . . . . . . . . . . . . . . . . . . 432
13.5.4 Mobility of charge carriers . . . . . . . . . . . . . . . . . . 433
13.5.5 Temperature dependence of the resistance . . . . . . . . . . . 434
13.5.6 Variable resistors . . . . . . . . . . . . . . . . . . . . . . . 435
13.5.7 Connection of resistors . . . . . . . . . . . . . . . . . . . . 436

14 Electric and magnetic fields 439
14.1 Electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
14.2 Electrostatic induction . . . . . . . . . . . . . . . . . . . . . . . . . 440

14.2.1 Electric field lines . . . . . . . . . . . . . . . . . . . . . . . 441
14.2.2 Electric field strength of point charges . . . . . . . . . . . . . 444

14.3 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
14.4 Electric voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
14.5 Electric potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

14.5.1 Equipotential surfaces . . . . . . . . . . . . . . . . . . . . . 448
14.5.2 Field strength and potential of various charge distributions . . 448
14.5.3 Electric flux . . . . . . . . . . . . . . . . . . . . . . . . . . 451
14.5.4 Electric displacement in a vacuum . . . . . . . . . . . . . . . 453

14.6 Electric polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 454
14.6.1 Dielectric . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

14.7 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
14.7.1 Parallel-plate capacitor . . . . . . . . . . . . . . . . . . . . 458
14.7.2 Parallel connection of capacitors . . . . . . . . . . . . . . . 458
14.7.3 Series connection of capacitors . . . . . . . . . . . . . . . . 459
14.7.4 Capacitance of simple arrangements of conductors . . . . . . 459

14.8 Energy and energy density of the electric field . . . . . . . . . . . . . 460
14.9 Electric field at interfaces . . . . . . . . . . . . . . . . . . . . . . . . 461
14.10 Magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
14.11 Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

14.11.1 Magnetic field lines . . . . . . . . . . . . . . . . . . . . . . 463
14.12 Magnetic flux density . . . . . . . . . . . . . . . . . . . . . . . . . . 465
14.13 Magnetic flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
14.14 Magnetic field strength . . . . . . . . . . . . . . . . . . . . . . . . . 469
14.15 Magnetic potential difference and magnetic circuits . . . . . . . . . . 470

14.15.1 Ampere’s law . . . . . . . . . . . . . . . . . . . . . . . . . 472
14.15.2 Biot-Savart’s law . . . . . . . . . . . . . . . . . . . . . . . 474
14.15.3 Magnetic field of a rectilinear conductor . . . . . . . . . . . 476
14.15.4 Magnetic fields of various current distributions . . . . . . . . 477



Contents xiii

14.16 Matter in magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . 478
14.16.1 Diamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . 480
14.16.2 Paramagnetism . . . . . . . . . . . . . . . . . . . . . . . . 480
14.16.3 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . 481
14.16.4 Antiferromagnetism . . . . . . . . . . . . . . . . . . . . . . 483
14.16.5 Ferrimagnetism . . . . . . . . . . . . . . . . . . . . . . . . 484

14.17 Magnetic fields at interfaces . . . . . . . . . . . . . . . . . . . . . . 484
14.18 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

14.18.1 Faraday’s law of induction . . . . . . . . . . . . . . . . . . . 486
14.18.2 Transformer induction . . . . . . . . . . . . . . . . . . . . . 487

14.19 Self-induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
14.19.1 Inductances of geometric arrangements of conductors . . . . . 490
14.19.2 Magnetic conductance . . . . . . . . . . . . . . . . . . . . . 491

14.20 Mutual induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
14.20.1 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 493

14.21 Energy and energy density of the magnetic field . . . . . . . . . . . . 494
14.22 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . 496

14.22.1 Displacement current . . . . . . . . . . . . . . . . . . . . . 497
14.22.2 Electromagnetic waves . . . . . . . . . . . . . . . . . . . . 498
14.22.3 Poynting vector . . . . . . . . . . . . . . . . . . . . . . . . 500

15 Applications in electrical engineering 501
15.1 Direct-current circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 502

15.1.1 Kirchhoff’s laws for direct-current circuit . . . . . . . . . . . 503
15.1.2 Resistors in a direct-current circuit . . . . . . . . . . . . . . 503
15.1.3 Real voltage source . . . . . . . . . . . . . . . . . . . . . . 505
15.1.4 Power and energy in the direct-current circuit . . . . . . . . . 507
15.1.5 Matching for power transfer . . . . . . . . . . . . . . . . . . 508
15.1.6 Measurement of current and voltage . . . . . . . . . . . . . . 509
15.1.7 Resistance measurement by means of the

compensation method . . . . . . . . . . . . . . . . . . . . . 510
15.1.8 Charging and discharging of capacitors . . . . . . . . . . . . 511
15.1.9 Switching the current on and off in a RL-circuit . . . . . . . 513

15.2 Alternating-current circuit . . . . . . . . . . . . . . . . . . . . . . . 514
15.2.1 Alternating quantities . . . . . . . . . . . . . . . . . . . . . 514
15.2.2 Representation of sinusoidal quantities in a phasor diagram . . 517
15.2.3 Calculation rules for phasor quantities . . . . . . . . . . . . . 519
15.2.4 Basics of alternating-current engineering . . . . . . . . . . . 522
15.2.5 Basic components in the alternating-current circuit . . . . . . 529
15.2.6 Series connection of resistor and capacitor . . . . . . . . . . 534
15.2.7 Parallel connection of a resistor and a capacitor . . . . . . . . 535
15.2.8 Parallel connection of a resistor and an inductor . . . . . . . . 536
15.2.9 Series connection of a resistor and an inductor . . . . . . . . 536
15.2.10 Series-resonant circuit . . . . . . . . . . . . . . . . . . . . . 538
15.2.11 Parallel-resonant circuit . . . . . . . . . . . . . . . . . . . . 539
15.2.12 Equivalence of series and parallel connections . . . . . . . . 541
15.2.13 Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . 542

15.3 Electric machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
15.3.1 Fundamental functional principle . . . . . . . . . . . . . . . 544
15.3.2 Direct-current machine . . . . . . . . . . . . . . . . . . . . 545
15.3.3 Three-phase machine . . . . . . . . . . . . . . . . . . . . . 547



xiv Contents

16 Current conduction in liquids, gases and vacuum 551
16.1 Electrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

16.1.1 Amount of substance . . . . . . . . . . . . . . . . . . . . . 551
16.1.2 Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
16.1.3 Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
16.1.4 Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . 552
16.1.5 Galvanic cells . . . . . . . . . . . . . . . . . . . . . . . . . 557
16.1.6 Electrokinetic effects . . . . . . . . . . . . . . . . . . . . . 560

16.2 Current conduction in gases . . . . . . . . . . . . . . . . . . . . . . . 560
16.2.1 Non-self-sustained discharge . . . . . . . . . . . . . . . . . 560
16.2.2 Self-sustained gaseous discharge . . . . . . . . . . . . . . . 563

16.3 Electron emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
16.3.1 Thermo-ionic emission . . . . . . . . . . . . . . . . . . . . 565
16.3.2 Photo emission . . . . . . . . . . . . . . . . . . . . . . . . 565
16.3.3 Field emission . . . . . . . . . . . . . . . . . . . . . . . . . 566
16.3.4 Secondary electron emission . . . . . . . . . . . . . . . . . 567

16.4 Vacuum tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
16.4.1 Vacuum-tube diode . . . . . . . . . . . . . . . . . . . . . . 568
16.4.2 Vacuum-tube triode . . . . . . . . . . . . . . . . . . . . . . 568
16.4.3 Tetrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
16.4.4 Cathode rays . . . . . . . . . . . . . . . . . . . . . . . . . . 571
16.4.5 Channel rays . . . . . . . . . . . . . . . . . . . . . . . . . . 571

17 Plasma physics 573
17.1 Properties of a plasma . . . . . . . . . . . . . . . . . . . . . . . . . 573

17.1.1 Plasma parameters . . . . . . . . . . . . . . . . . . . . . . . 573
17.1.2 Plasma radiation . . . . . . . . . . . . . . . . . . . . . . . . 580
17.1.3 Plasmas in magnetic fields . . . . . . . . . . . . . . . . . . . 581
17.1.4 Plasma waves . . . . . . . . . . . . . . . . . . . . . . . . . 583

17.2 Generation of plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 586
17.2.1 Thermal generation of plasma . . . . . . . . . . . . . . . . . 586
17.2.2 Generation of plasma by compression . . . . . . . . . . . . . 586

17.3 Energy production with plasmas . . . . . . . . . . . . . . . . . . . . 588
17.3.1 MHD generator . . . . . . . . . . . . . . . . . . . . . . . . 588
17.3.2 Nuclear fusion reactors . . . . . . . . . . . . . . . . . . . . 589
17.3.3 Fusion with magnetic confinement . . . . . . . . . . . . . . 590
17.3.4 Fusion with inertial confinement . . . . . . . . . . . . . . . 591

Symbols used in formulae on electricity and plasma physics 593

18 Tables on electricity 595
18.1 Metals and alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

18.1.1 Specific electric resistance . . . . . . . . . . . . . . . . . . . 595
18.1.2 Electrochemical potential series . . . . . . . . . . . . . . . . 598

18.2 Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
18.3 Practical tables of electric engineering . . . . . . . . . . . . . . . . . 606
18.4 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
18.5 Ferromagnetic properties . . . . . . . . . . . . . . . . . . . . . . . . 614

18.5.1 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . . 617
18.6 Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
18.7 Antiferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
18.8 Ion mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620



Contents xv

Part IV Thermodynamics 621

19 Equilibrium and state variables 623
19.1 Systems, phases and equilibrium . . . . . . . . . . . . . . . . . . . . 623

19.1.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
19.1.2 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
19.1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 625

19.2 State variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
19.2.1 State property definitions . . . . . . . . . . . . . . . . . . . 627
19.2.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 629
19.2.3 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
19.2.4 Particle number, amount of substance and Avogadro number . 637
19.2.5 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

19.3 Thermodynamic potentials . . . . . . . . . . . . . . . . . . . . . . . 641
19.3.1 Principle of maximum entropy—principle of

minimum energy . . . . . . . . . . . . . . . . . . . . . . . 641
19.3.2 Internal energy as a potential . . . . . . . . . . . . . . . . . 641
19.3.3 Entropy as a thermodynamic potential . . . . . . . . . . . . . 642
19.3.4 Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . 643
19.3.5 Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
19.3.6 Free enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . 647
19.3.7 Maxwell relations . . . . . . . . . . . . . . . . . . . . . . . 648
19.3.8 Thermodynamic stability . . . . . . . . . . . . . . . . . . . 649

19.4 Ideal gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
19.4.1 Boyle-Mariotte law . . . . . . . . . . . . . . . . . . . . . . 651
19.4.2 Law of Gay-Lussac . . . . . . . . . . . . . . . . . . . . . . 651
19.4.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . 652

19.5 Kinetic theory of the ideal gas . . . . . . . . . . . . . . . . . . . . . 653
19.5.1 Pressure and temperature . . . . . . . . . . . . . . . . . . . 653
19.5.2 Maxwell–Boltzmann distribution . . . . . . . . . . . . . . . 655
19.5.3 Degrees of freedom . . . . . . . . . . . . . . . . . . . . . . 657
19.5.4 Equipartition law . . . . . . . . . . . . . . . . . . . . . . . 657
19.5.5 Transport processes . . . . . . . . . . . . . . . . . . . . . . 658

19.6 Equations of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
19.6.1 Equation of state of the ideal gas . . . . . . . . . . . . . . . 661
19.6.2 Equation of state of real gases . . . . . . . . . . . . . . . . . 665
19.6.3 Equation of states for liquids and solids . . . . . . . . . . . . 671

20 Heat, conversion of energy and changes of state 675
20.1 Energy forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

20.1.1 Energy units . . . . . . . . . . . . . . . . . . . . . . . . . . 675
20.1.2 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
20.1.3 Chemical potential . . . . . . . . . . . . . . . . . . . . . . . 677
20.1.4 Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

20.2 Energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
20.2.1 Conversion of equivalent energies into heat . . . . . . . . . . 679
20.2.2 Conversion of heat into other forms of energy . . . . . . . . . 683
20.2.3 Exergy and anergy . . . . . . . . . . . . . . . . . . . . . . . 683

20.3 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
20.3.1 Total heat capacity . . . . . . . . . . . . . . . . . . . . . . . 684
20.3.2 Molar heat capacity . . . . . . . . . . . . . . . . . . . . . . 686
20.3.3 Specific heat capacity . . . . . . . . . . . . . . . . . . . . . 687



xvi Contents

20.4 Changes of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
20.4.1 Reversible and irreversible processes . . . . . . . . . . . . . 691
20.4.2 Isothermal processes . . . . . . . . . . . . . . . . . . . . . . 692
20.4.3 Isobaric processes . . . . . . . . . . . . . . . . . . . . . . . 693
20.4.4 Isochoric processes . . . . . . . . . . . . . . . . . . . . . . 694
20.4.5 Adiabatic (isentropic) processes . . . . . . . . . . . . . . . . 695
20.4.6 Equilibrium states . . . . . . . . . . . . . . . . . . . . . . . 697

20.5 Laws of thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . 698
20.5.1 Zeroth law of thermodynamics . . . . . . . . . . . . . . . . 698
20.5.2 First law of thermodynamics . . . . . . . . . . . . . . . . . 698
20.5.3 Second law of thermodynamics . . . . . . . . . . . . . . . . 701
20.5.4 Third law of thermodynamics . . . . . . . . . . . . . . . . . 702

20.6 Carnot cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
20.6.1 Principle and application . . . . . . . . . . . . . . . . . . . 702
20.6.2 Reduced heat . . . . . . . . . . . . . . . . . . . . . . . . . 705

20.7 Thermodynamic machines . . . . . . . . . . . . . . . . . . . . . . . 706
20.7.1 Right-handed and left-handed processes . . . . . . . . . . . . 706
20.7.2 Heat pump and refrigerator . . . . . . . . . . . . . . . . . . 707
20.7.3 Stirling cycle . . . . . . . . . . . . . . . . . . . . . . . . . 708
20.7.4 Steam engine . . . . . . . . . . . . . . . . . . . . . . . . . 709
20.7.5 Open systems . . . . . . . . . . . . . . . . . . . . . . . . . 710
20.7.6 Otto and Diesel engines . . . . . . . . . . . . . . . . . . . . 711
20.7.7 Gas turbines . . . . . . . . . . . . . . . . . . . . . . . . . . 713

20.8 Gas liquefaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
20.8.1 Generation of low temperatures . . . . . . . . . . . . . . . . 714
20.8.2 Joule–Thomson effect . . . . . . . . . . . . . . . . . . . . . 715

21 Phase transitions, reactions and equalizing of heat 717
21.1 Phase and state of aggregation . . . . . . . . . . . . . . . . . . . . . 717

21.1.1 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
21.1.2 Aggregation states . . . . . . . . . . . . . . . . . . . . . . . 717
21.1.3 Conversions of aggregation states . . . . . . . . . . . . . . . 718
21.1.4 Vapor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

21.2 Order of phase transitions . . . . . . . . . . . . . . . . . . . . . . . . 720
21.2.1 First-order phase transition . . . . . . . . . . . . . . . . . . 720
21.2.2 Second-order phase transition . . . . . . . . . . . . . . . . . 721
21.2.3 Lambda transitions . . . . . . . . . . . . . . . . . . . . . . 722
21.2.4 Phase-coexistence region . . . . . . . . . . . . . . . . . . . 722
21.2.5 Critical indices . . . . . . . . . . . . . . . . . . . . . . . . 723

21.3 Phase transition and Van der Waals gas . . . . . . . . . . . . . . . . . 724
21.3.1 Phase equilibrium . . . . . . . . . . . . . . . . . . . . . . . 724
21.3.2 Maxwell construction . . . . . . . . . . . . . . . . . . . . . 724
21.3.3 Delayed boiling and delayed condensation . . . . . . . . . . 726
21.3.4 Theorem of corresponding states . . . . . . . . . . . . . . . 727

21.4 Examples of phase transitions . . . . . . . . . . . . . . . . . . . . . . 727
21.4.1 Magnetic phase transitions . . . . . . . . . . . . . . . . . . 727
21.4.2 Order–disorder phase transitions . . . . . . . . . . . . . . . 728
21.4.3 Change in the crystal structure . . . . . . . . . . . . . . . . . 729
21.4.4 Liquid crystals . . . . . . . . . . . . . . . . . . . . . . . . . 730
21.4.5 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . 730
21.4.6 Superfluidity . . . . . . . . . . . . . . . . . . . . . . . . . . 731



Contents xvii

21.5 Multicomponent gases . . . . . . . . . . . . . . . . . . . . . . . . . 731
21.5.1 Partial pressure and Dalton’s law . . . . . . . . . . . . . . . 732
21.5.2 Euler equation and Gibbs–Duhem relation . . . . . . . . . . 733

21.6 Multiphase systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
21.6.1 Phase equilibrium . . . . . . . . . . . . . . . . . . . . . . . 734
21.6.2 Gibbs phase rule . . . . . . . . . . . . . . . . . . . . . . . . 734
21.6.3 Clausius–Clapeyron equation . . . . . . . . . . . . . . . . . 735

21.7 Vapor pressure of solutions . . . . . . . . . . . . . . . . . . . . . . . 736
21.7.1 Raoult’s law . . . . . . . . . . . . . . . . . . . . . . . . . . 736
21.7.2 Boiling-point elevation and freezing-point depression . . . . . 736
21.7.3 Henry–Dalton law . . . . . . . . . . . . . . . . . . . . . . . 738
21.7.4 Steam–air mixtures (humid air) . . . . . . . . . . . . . . . . 738

21.8 Chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
21.8.1 Stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . 743
21.8.2 Phase rule for chemical reactions . . . . . . . . . . . . . . . 744
21.8.3 Law of mass action . . . . . . . . . . . . . . . . . . . . . . 744
21.8.4 pH-value and solubility product . . . . . . . . . . . . . . . . 746

21.9 Equalization of temperature . . . . . . . . . . . . . . . . . . . . . . . 748
21.9.1 Mixing temperature of two systems . . . . . . . . . . . . . . 748
21.9.2 Reversible and irreversible processes . . . . . . . . . . . . . 749

21.10 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
21.10.1 Heat flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
21.10.2 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 751
21.10.3 Heat conduction . . . . . . . . . . . . . . . . . . . . . . . . 753
21.10.4 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . 757
21.10.5 Heat transmission . . . . . . . . . . . . . . . . . . . . . . . 759
21.10.6 Heat radiation . . . . . . . . . . . . . . . . . . . . . . . . . 764
21.10.7 Deposition of radiation . . . . . . . . . . . . . . . . . . . . 764

21.11 Transport of heat and mass . . . . . . . . . . . . . . . . . . . . . . . 766
21.11.1 Fourier’s law . . . . . . . . . . . . . . . . . . . . . . . . . . 766
21.11.2 Continuity equation . . . . . . . . . . . . . . . . . . . . . . 766
21.11.3 Heat conduction equation . . . . . . . . . . . . . . . . . . . 767
21.11.4 Fick’s law and diffusion equation . . . . . . . . . . . . . . . 768
21.11.5 Solution of the equation of heat conduction and diffusion . . . 769

Formula symbols used in thermodynamics 771

22 Tables on thermodynamics 775
22.1 Characteristic temperatures . . . . . . . . . . . . . . . . . . . . . . . 775

22.1.1 Units and calibration points . . . . . . . . . . . . . . . . . . 775
22.1.2 Melting and boiling points . . . . . . . . . . . . . . . . . . . 777
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Imke Krüger-Wiedorn, Naturwissenschaftliche-Technische Akademie Isny

Christiane Lesny, Universität Frankfurt

Monika Lutz, Fachhochschule Gießen-Friedberg

Raffaele Mattiello, Universität Frankfurt

Jörg Müller, University of Tennessee, Knoxville

Jürgen Müller, Denton Vacuum, Inc., and APD Cryogenics, Inc. Frankfurt

Gottfried Munzenberg, Universität Gießen and GSI Darmstadt

xxiii



xxiv Contributors

Helmut Oeschler, Technische Hochschule Darmstadt

Roland Reif, ehem. Technische Hochschule Dresden

Joachim Reinhardt, Universität Frankfurt

Hans-Georg Reusch, Universität Munster and IBM Wissenschaftliches Zentrum
Heidelberg

Matthias Rosenstock, Universität Frankfurt
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Bernd Schürmann, Siemens, AG, München

Astrid Steidl, Naturwissenschaftliche-Technische Akademie, Isny

Jürgen Theis, Hoeschst, AG, Höchst
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Part I
Mechanics



1
Kinematics

Kinematics, the theory of the motion of bodies. Kinematics deals with the mathematical
description of motion without considering the applied forces. The quantities position,
path, time, velocity and acceleration play central roles.

1.1 Description of motion

Motion, the change of the position of a body during a time interval. To describe the motion,
numerical values (coordinates) are assigned to the position of the body in a coordinate
system. The time variation of the coordinates characterizes the motion.

Uniform motion exists if the body moves equal distances in equal time intervals. Op-
posite: non-uniform motion.

1.1.1 Reference systems
1. Dimension of spaces

Dimension of a space, the number of numerical values that are needed to determine the
position of a body in this space.
■ A straight line is one-dimensional, since one numerical value is needed to fix the

position; an area is two-dimensional with two numerical values, and ordinary space
is three-dimensional, since three numerical values are needed to fix the position.

■ Any point on Earth can be determined by specifying its longitude and latitude. The
dimension of Earth’s surface is 2.

■ The space in which we are moving is three-dimensional. Motion in a plane is two-
dimensional. Motion along a rail is one-dimensional. Additional generalizations are
a point, which has zero dimensions, and the four-dimensional space-time continuum
(Minkowski space), the coordinates of which are the three space coordinates and one
time coordinate.
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4 1. Kinematics

➤ For constraints (e.g., guided motion along rail or on a plane), the space dimension is
restricted.

2. Coordinate systems

Coordinate systems are used for the mathematical description of motion. They attach nu-
merical values to the positions of a body. A motion can thereby be described as a mathe-
matical function that gives the space coordinates of the body at any time.

There are various kinds of coordinate systems (�ei : unit vector along i-direction):

a) Affine coordinate system, in the two-dimensional case, two straight lines passing
through a point O (enclosed angle arbitrary) are the coordinate axes (Fig. 1.1); in the three-
dimensional case, the coordinate axes are three different non-coplanar straight lines that
pass through the coordinate origin O. The coordinates ξ, η, ζ of a point in space are ob-
tained as projections parallel to the three coordinate planes that are spanned by any two
coordinate axes onto the coordinate axes.

b) Cartesian coordinate system, special case of the affine coordinate system, consists
of respectively perpendicular straight coordinate axes. The coordinates x, y, z of a space
point P are the orthogonal projections of the position of P onto these axes (Fig. 1.2).

Line element: d�r = dx �ex + dy �ey + dz �ez .

Areal element in the x, y–plane: dA = dx dy.
Volume element: dV = dx dy dz.

Figure 1.1: Affine coordinates in the plane,
coordinates of the point P : ξ1, η1.

Figure 1.2: Cartesian coordinates in
three-dimensional space, coordinates of the
point P : x, y, z.

Right-handed system, special order of coordinate axes of a Cartesian coordinate system
in three-dimensional (3D) space: The x-, y- and z-axes in a right-handed system point as
thumb, forefinger and middle finger of the right hand (Fig. 1.3).

c) Polar coordinate system in the plane, Polar coordinates are the distance r from
the origin and the angle ϕ between the position vector and a reference direction (positive
x-axis) (Fig. 1.4).

Line element: d�r = dr �er + r dϕ �eϕ.
Areal element: dA = r dr dϕ.

d) Spherical coordinate system, generalization of the polar coordinates to 3D space.
Spherical coordinates are the distance r from origin, the angle ϑ of the position vector
relative to the z-axis, and the angle ϕ between the projection of the position vector onto the
x-y-plane and the positive x-axis (Fig. 1.5).
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Right-handed system     Left-handed system

Figure 1.3: Right- and left-handed systems. Figure 1.4: Polar coordinates in the plane.
Coordinates of the point P : r, ϕ.

Line element: d�r = dr �er + r dϑ �eϑ + r sinϑ dϕ �eϕ.
Volume element: dV = r2 sinϑ dr dϑ dϕ.
Spherical angle element: d	 = sinϑ dϑ dϕ.

e) Cylindrical coordinate system, mixing of Cartesian and polar coordinates in 3D
space. Cylindrical coordinates are the projection (z) of the position vector �r onto the z-
axis, and the polar coordinates (ρ, ϕ) in the plane perpendicular to the z-axis, i.e., the
length ρ of the perpendicular to the z-axis, and the angle between this perpendicular and
the positive x-axis (Fig. 1.6).

Line element: d�r = dρ �eρ + ρ dφ �eφ + dz �ez .

Volume element: dV = ρ dρ dφ dz.

Figure 1.5: Spherical coordinates. Figure 1.6: Cylindrical coordinates.

3. Reference system

A reference system consists of a system of coordinates relative to which the position of
the mechanical system is given, and a clock indicating the time. The relation between the
reference system and physical processes is established by assignment, i.e., by specification
of reference points, reference directions, or both.
■ For a Cartesian coordinate system in two dimensions (2D), one has to specify the

origin and the orientation of the x-axis. In three dimensions, the orientation of the
y-axis must also be specified. Alternatively, one can specify two or three reference
points.
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▲ There is no absolute reference system. Any motion is a relative motion, i.e., it de-
pends on the selected reference system. The definition of an absolute motion without
specifying a reference system has no physical meaning. The specification of the ref-
erence system is absolutely necessary for describing any motion.

➤ Any given motion can be described in many different reference systems. The appro-
priate choice of the reference system is often a prerequisite for a simple treatment of
the motion.

4. Position vector and position function

Position vector, �r, vector from the coordinate origin to the space point (x, y, z). The posi-
tion vector is written as a column vector with the spatial coordinates as components:

�r =
⎛
⎝ x

y
z

⎞
⎠ .

Position function, �r(t) =
⎛
⎝ x(t)

y(t)
z(t)

⎞
⎠, specifies the position of a body at any time t . The

motion is definitely and completely described by the position function.

5. Path

Path, the set of all space points (positions) that are traversed by the moving body.
■ The path of a point mass that is fixed on a rotating wheel of radius R at the distance

a < R from the rotation axis, is a circle. If the wheel rolls on a flat surface, the point
moves on a shortened cycloid (Fig. 1.7).

Figure 1.7: Shortened cycloid as superposition of rotation and translation.

6. Trajectory

Trajectory, representation of the path as function �r(p) of a parameter p, which may be for
instance the elapsed time t or the path length s. With increasing parameter value, the point
mass runs along the path in the positive direction (Fig. 1.8).
➤ Without knowledge of the time-dependent position function, the velocity of the point

mass cannot be determined from the path alone.

a) Example: Circular motion of a point mass. Motion of a point mass on a circle of
radius R in the x, y-plane of the 3D space. Parametrization of the trajectory by the rotation
angle ϕ as function of time t :
• in spherical coordinates: r = R, ϑ = π/2, ϕ = ϕ(t),
• in Cartesian coordinates: x(t) = R ·cos ϕ(t), y(t) = R ·sinϕ(t), z(t) = 0 (Fig. 1.9).
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Figure 1.8: Trajectory �r(t). Figure 1.9: Motion on a circle of radius R.
Element of rotation angle: 
ϕ, element of
arc length: 
s = R ·
ϕ.

b) Example: Point on rolling wheel. The trajectory of a point at the distance a < R
from the axis of a wheel (radius R) that rolls to the right with constant velocity is a short-
ened cycloid. The parameter representation of a shortened cycloid in Cartesian coordinates
in terms of the rolling angle φ(t) (Fig. 1.10) reads:

x(t) = vt − a sinφ(t),

y(t) = R − a cosφ(t).

Figure 1.10: Parameter
representation of the motion
on a shortened cycloid
by the rolling angle φ as
function of time t .

7. Degrees of freedom

of a mechanical system, number of independent quantities that are needed to specify the
position of a system definitely.
■ A point mass in 3D space has three translational degrees of freedom (displacements

in three independent directions x, y, z). A free system of N mass points in 3D space
has 3 · N degrees of freedom.

If the motion within a system of N mass points is restricted by inner or external constraints,
so that there are k auxiliary conditions between the coordinates �r1, �r2, . . . , �rN ,

gα(�r1, �r2, . . . , �rN , t) = 0, α = 1, 2, . . . , k ,

there remain only f = 3 · N − k degrees of freedom with the system.
■ For a point mass that can move only in the x, y-plane (condition: z = 0), there remain

two degrees of freedom. The point mass has only one degree of freedom if the motion
is restricted to the x-axis (conditions: y = 0, z = 0).
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A system of two mass points that are rigidly connected by a bar of length l has
f = 6 − 1 = 5 degrees of freedom (condition: (�r1 − �r2)

2 = l2, �r1, �r2: position
vectors of the mass points).

A rigid body has six degrees of freedom: three translational and three rotational. If
a rigid body is fixed in one point (gyroscope), there remain three degrees of freedom
of rotation. A rigid body that can only rotate about a fixed axis is a physical pendulum
with only one rotational degree of freedom.

A non-rigid continuous mass distribution (continuum model of a deformable body)
has infinitely many degrees of freedom.

1.1.2 Time
1. Definition and measurement of time

Time, t , for quantification of processes varying with time.
Periodic (recurring) processes in nature are used to fix the time unit.
Time period, time interval, 
t , the time distance of two events.

M Time measurement by means of clocks is based on periodic (pendulum, torsion vibra-
tion) or steady (formerly used: burning of a candle, water clock) processes in nature.
The pendulum has the advantage that its period T depends only on its length l (and
the local gravitational acceleration g): T = 2π

√
l/g. Mechanical watches use the

periodic torsional motion of the balance spring with the energy provided by a spiral
spring. Modern methods employ electric circuits in which the frequency is stabilized
by the resonance frequency of a quartz crystal, or by atomic processes.

Stopwatch, for measuring time intervals, often connected to mechanical or electric
devices for start and stop (switch, light barrier).

Typical precisions of clocks range from minutes per day for mechanical clocks,
over several tenths of seconds per day for quartz clocks, to 10−14 (one second in
several million years) for atomic clocks.

2. Time units

Second, s, SI (International System of Units) unit of time. One of the basic units of the
SI, defined as 9,192,631,770 periods of the electromagnetic radiation from the transition
between the hyperfine structure levels of the ground state of Cesium 133 (relative accuracy:
10−14). Originally defined as the fraction 86400−1 of a mean solar day, subdivided into
24 hours, each hour comprising 60 minutes, and each minute comprising 60 seconds. The
length of a day is not sufficiently constant to serve as a reference.

[t] = s = second

Additional units:

1 minute (min) = 60 s
1 hour (h) = 60 min = 3600 s
1 day (d) = 24 h = 1440 min = 86400 s
1 year (a) = 365.2425 d.

➤ The time standard is accessible by special radio broadcasts.
➤ The Gregorian year has 365.2425 days and differs by 0.0003 days from the tropical

year.
Time is further divided into weeks (7 days each) and months (28 to 31 days) (Gregorian
calendar).
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3. Calendar

Calendar, serves for further division of larger time periods. The calendar systems are re-
lated to the lunar cycle of ca. 28 days and to the solar cycle of ca. 365 1

4 days. Since these
cycles are not commensurate with each other, intercalary days must be included.

Most of the world uses the Gregorian calendar, which was substituted for the former
Julian calendar in 1582, at which time the intercalary rule was modified for full century
years. Since then, the first day of spring falls on March 20 or 21.
➤ The Julian calendar was in use in eastern European countries until the October Rev-

olution (1917) in Russia. It differed from the Gregorian one by about three weeks.
Intercalary day, inserted at the end of February in all years divisible by 4. Exception: full
century years that are not divisible by 400 (2000 is leap year, 1900 is not).

Calendar week, subdivision of the year into 52 or 53 weeks. The first calendar week of
a year is the week that includes the first Thursday of the year.
➤ The first weekday of the civil week is Monday, however it is Sunday according to

Christian tradition.
Gregorian calendar years are numbered consecutively by a date. Years before the year 1 are
denoted by “B.C.” (before Christ) or B.C.E. (before the Common Era to Jews, Buddhists,
and Muslims).
➤ There is no year Zero. The year 1 B.C. is directly followed by the year 1 A.D., or

C.E. (Common Era)
➤ Julian numbering of days: time scale in astronomy.
Other calendar systems: Other calendar systems presently used are the calendar (luni-
solar calendar, a mixture of solar and lunar calendar) that involves years and leap months
of different lengths; years are counted beginning with 7 October 3761 B.C. (“creation of
the world”) and the year begins in September/October; the year 5759 began in 1998), and
the Moslem calendar (purely lunar calendar with leap month; years are counted beginning
with the flight of Mohammed from Mecca on July 16, 622 A.D.; the Moslem year 1419
began in the year 1998 of the Gregorian calendar).

1.1.3 Length, area, volume
1. Length

Length, l, the distance (shortest connecting line) between two points in space.
Meter, m, SI unit of length. One of the basic units of the SI, defined as the distance

traveled by light in vacuum during 1/299792458 of a second (relative accuracy: 10−14).
The meter was originally defined as the 40-millionth fraction of the circumference of earth
and is represented by a primary standard made of platinum-iridium that is deposited in
the Bureau International des Poids et Mesures in Paris.

[l] = m = meter.

Additional units see Tab. 33.0/3.

2. Length measurement

Length measurement was originally carried out by defining and copying the unit of length
(e.g., primary meter, tape measure, yardstick, screw gauge, micrometer screw, often with a
nonius scale for more accurate reading).

Interferometer: for precise optical measurement of length (see p. 383) in which the
wavelength of monochromatic light is used as scale.
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Sonar: for acoustical distance measurement by time-of-flight measurement of ultra-
sound for ships; used for distance measurements with some cameras.

Radar: for distance measurement by means of time-of-flight measurement of electro-
magnetic waves reflected by the object.

Lengths can be measured with a relative precision as good as 10−14. Using micrometer
screws, one can reach precisions in the range of 10−6 m.

Triangulation, a geometric procedure for surveying. The remaining two edges of a tri-
angle can be evaluated if one edge and two angles are given. Starting from a known basis
length, arbitrary distances can be measured by consecutive measurements of angles, using
a theodolite.

Parallax, the difference of orientation for an object when it is seen from two different
points (Fig. 1.11). Applied to distance measurement.

Figure 1.11: Parallax � for eyes separated by a distance l and the object at a distance d:
tan� = l/d or � ≈ l/d for d � l.

3. Area and volume

Area A and volume V are quantities that are derived from length measurement.
Square meter, m2, SI unit of area. A square meter is the area of a square with edge

length of 1 m.

[A] = m2 = square meter.

Cubic meter, m3, SI unit of volume. A cubic meter is the volume of a cube with edge
length 1 m.

[V ] = m3 = cubic meter.

M Areas can be measured by subdivision into simple geometric figures (rectangles, tri-
angles), the edges and angles of which are measured (e.g., by triangulation), and then
calculated. Direct area measurement can be undertaken by counting the enclosed
squares on a measuring grid.

Analogously, the volume of hollow spaces can be evaluated by filling them with
geometric bodies (cubes, pyramids, . . . ).

For the measurement of the volume of fluids, one uses standard vessels with known
volume. The volume of solids can be determined by submerging them in a fluid (see
p. 182).

For a known density ρ of a homogeneous body, the volume V can be determined
from the mass m, V = m

ρ .
➤ Decimal prefixes for area and volume units:

The decimal prefix refers only to the length unit, not to the area or volume unit:

1 cubic centimeter = 1 cm3 = (1 cm)3 =
(

1 · 10−2 m
)3 = 1 · 10−6 m3.
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1.1.4 Angle
1. Definition of angle

Angle, φ, a measure of the divergence between two straight lines in a plane. An angle
is formed by two straight lines (sides) at their intersection point (vertex.) It is measured
by marking on both straight lines a distance (radius) from the vertex, and determining the
length of the arc of the circle connecting the endpoints of the two distances (Fig. 1.12).

angle and arc 1

φ = l

r

Symbol Unit Quantity

φ rad angle
l m length of circular arc
r m radius

Figure 1.12: Determination
of the angle φ between
the straight lines g1 and
g2 by measurement of the
arc length l and radius r ,
l = r · φ. S: vertex

2. Angle units

a) Radian, rad, SI unit of plane angle. 1 rad is the angle for which the length of the
circular arc connecting the endpoints of the sides just coincides with the length of a side.
A full circle corresponds to the angle 2π rad.
➤ Radian (and degree) are supplementary SI units, i.e., they have unit dimensionality.

1 rad = 1 m/1 m.

b) Degree, ◦, also an accepted unit for measurement of angles. A degree is defined as
1/360 of the angle of a complete circle. Conversion:

1 rad = 360◦
2π

= 57.3◦,

1◦ = 2π

360◦ = 0.0175 rad.

Subdivisions are:

1 degree (◦) = 60 arc minutes (′) = 3600 arc seconds (′′).

c) Gon (formerly new degree), a common unit in surveying: 1 gon, 1/100 of a right
angle.

1 gon = 0.9◦ = 0.0157 rad

1◦ = 1.11 gon

1 rad = 63.7 gon
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M Measurement of angles: Measurement of angles is performed directly by means of
an angle scale, or by measuring the chord of an angle and converting if the radius
is known. When determining distances by triangulation, the theodolite (see p. 10) is
used for angle measurement.

3. Solid angle

Solid angle, 	, is determined by the area of a unit sphere that is cut out by a cone with the
vertex in the center of the sphere (Fig. 1.13).

solid angle

	 = A

r2

Symbol Unit Quantity

	 sr solid angle
A m2 area cut out by cone
r m radius of sphere

Figure 1.13: Determination
of the solid angle 	 by
measuring area A and radius
r (	 = A/r2).

Steradian, sr, SI unit of the solid angle.
1 steradian is the solid angle that cuts out a surface area of 1 m2 on a sphere of radius
1 m (Fig. 1.14). This surface can be arbitrarily shaped and can also consist of disconnected
parts.
▲ The full spherical angle is 4π sr.
➤ Radian and steradian are dimensionless.

Figure 1.14: Definition of
the angular units radian
(rad) (a) and steradian (sr)
(b). The (curved) area of the
spherical segment A is given
by A = 2π R · h.

1.1.5 Mechanical systems
1. Point mass

Point mass, idealization of a body as a mathematical point with vanishing extension, but
finite mass. A point mass has no rotational degrees of freedom. When treating the motion
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of a body, the model of point mass can be used if it is sufficient under the given physical
conditions to study only the motion of the center of gravity of the body, without taking the
spatial distribution of its mass into account.
➤ In the mathematical description of motion without rotation, every rigid body can be

replaced by a point mass located in the center of gravity of the rigid body (see p. 94).
■ For the description of planetary motion in the solar system, it often suffices to con-

sider the planets as points, since their extensions are very small compared with the
typical distances between sun and planets.

2. System of point masses

System consisting of N individual point masses 1, 2, . . . , N . Its motion can be described
by specifying the position vectors �r1, �r2, . . . , �rN as a function of the time t : �ri (t), i =
1, 2, . . . N (Fig. 1.15a).

3. Forces in a system of point masses

a) Internal forces, forces acting between the particles of the system. Internal forces are
in general two-body forces (pair forces) that depend on the distances (and possibly the
velocities) of only two particles.

b) External forces, forces acting from the outside on the system. External forces origi-
nate from bodies that do not belong to the system.

c) Constraint reactions or reaction forces (external forces) result from constraining
the system. The interaction between the system and the constraint is represented by reac-
tions that act perpendicularly to the enforced path. Constraint reactions restrict the motion
of the system.
■ Guided motion: Mass on string fixed at one end, mass on an inclined plane, point

mass on a straight rail, bullet in a gun barrel.

4. Free and closed systems

Free point mass, free system of point masses, a point mass or a system of point masses
can react to the applied forces without constraints.

Closed system, a system that is not subject to external forces.

5. Rigid body

Rigid body, a body the material constituents of which are always the same distances from
each other, hence rigidly connected to each other. For the distances of all points i, j of the
rigid body: |�ri (t)− �r j (t)| = ri j = const. (Fig. 1.15b).

Figure 1.15: Mechanical systems. (a): system of N point masses, (b): rigid body.



14 1. Kinematics

6. Motion of rigid bodies

Any motion of a rigid body can be decomposed in two kinds of motion (Fig. 1.16):

a) Translation, all points of the body travel the same distance in the same direction; the
body is shifted in a parallel fashion. The motion of the body can be described by the motion
of a representative point of the body.

b) Rotation, when all points of the body rotate about a common axis. Any point on the
body keeps its distance from the rotation axis and moves along a circular path.

Figure 1.16: Translation and rotation of a rigid body. (a): translation, (b): rotation, (c):
translation and rotation.

7. Deformable body

A deformable body can change its shape under the influence of forces. Described by
• many discrete point masses that are connected by forces, or
• a continuum model according to which the body occupies the space completely.

1.2 Motion in one dimension

We now consider motion along a straight-line path. The distance x of the body from a fixed
point on the axis of motion is used as the coordinate. The sign of x indicates on which side
of the axis the body is located. The choice of the positive x-axis is made by convention.

Position-time graph, graphical representation of the motion (position function x(t))
of a point mass in two dimensions. The horizontal axis shows the time t , the vertical axis
the position x (coordinate).

1.2.1 Velocity
Velocity, a quantity that characterizes the motion of a point mass at any time point. One
distinguishes between the mean velocity v̄x and the instantaneous velocity vx .

1.2.1.1 Mean velocity

1. Definition of mean velocity

Mean velocity, v̄x , over a time interval 
t �= 0, gives the ratio of the path element 
x
traveled during this time interval and the time 
t needed (Fig. 1.17).
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mean velocity = path element
time interval

LT−1

v̄x = x2 − x1

t2 − t1

= x(t1 +
t)− x(t1)

(t1 +
t)− t1

= 
x


t

Symbol Unit Quantity

v̄x m/s mean velocity
x1, x2 m position at time t1, t2, resp.
x(t) m position function
t1, t2 s initial and final time point

x m path element traveled

t s time interval

Figure 1.17: Mean velocity
v̄x of one-dimensional
motion in a position vs. time
graph.

2. Velocity unit

Meter per second, ms−1, the SI unit of velocity.
1 m/s is the velocity of a body that travels one meter in one second.
■ A body that travels a distance of 100 m in one minute has the mean velocity

v̄x = 
x


t
= 100 m

60 s
= 1.67 m/s.

3. Measurement of velocity

Velocity measurement can be performed by time-of-flight measurement over a section of
known length. Often it is done by converting the translational motion into a rotational one.

Speedometer, for measuring speeds of cars. The rotational motion of the wheels is trans-
ferred by a shaft into the measuring device where the pointer is moved by the centrifugal
force arising by this rotation (centrifugal force tachometer).

In the eddy-current speedometer, the rotational motion is transferred to a magnet
mounted in an aluminum drum on which the pointer is fixed, eddy currents create a torque
that is balanced by a spring.

Electric speedometers are based on a pulse generator that yields pulse sequences of
higher or lower frequency corresponding to the rotation velocity.

Velocity measurement by Doppler effect (see p. 300) is possible using radar (automo-
biles, airplanes, astronomy).
➤ The velocity v̄x can have a positive or a negative sign, corresponding to motion in

either the positive or negative coordinate direction.
➤ The mean velocity depends in general on the time interval of measurement 
t . Ex-

ception: motion with constant velocity.
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1.2.1.2 Instantaneous velocity

1. Definition of instantaneous velocity

Instantaneous velocity, limit of the mean velocity for time intervals approaching zero.

instantaneous velocity LT−1

vx (t) = lim

t→0


x


t
= d

dt
x(t) = dx(t)

dt
= ẋ(t)

Symbol Unit Quantity

vx (t) m/s instantaneous
velocity

x(t) m position at
time t


t s time interval

x m path element

The function x(t) represents the position coordinate x of the point at any time t . In the
position-time graph, the instantaneous velocity vx (t) is the slope of the tangent of x(t) at
the point t (Fig. 1.18).

The following cases must be distinguished (the time interval 
t is always positive):

vx > 0: 
x > 0 and hence x(t + 
t) > x(t). The body moves along the positive
coordinate axis, i.e., the x-t curve increases: the derivative of the curve x(t)
is positive.

vx = 0: 
x = 0 and hence x(t + 
t) = x(t), the distance 
x is constant (zero).
In this coordinate system the body is at rest (possibly only briefly), i.e., vx
is the horizontal tangent to the x vs. t curve, and the derivative of the curve
x(t) vanishes.

vx < 0: 
x < 0 and hence x(t + 
t) < x(t). The body moves along the negative
coordinate axis, i.e., the x-t curve decreases, the derivative of the curve x(t)
is negative.

2. Velocity vs. time graph

Velocity vs. time graph, graphical representation of the instantaneous velocity vx (t) as
function of time t . To determine the position function x(t) for a given velocity curve vx (t),
the motion is subdivided into small intervals 
t (Fig. 1.19). If the interval from t1 to t2 is
subdivided in N intervals of length 
t = (t2 − t1)/N , ti is the beginning of the i th time
interval and v̄x (ti ) the mean velocity in this interval, then

x(t2) = x(t1)+ lim

t→0

N−1∑
i=1

v̄x (ti ) ·
t = x(t1)+
∫ t2

t1
vx (t) dt.

path = definite integral of the velocity over the time L

x(t) = x(t1)+
∫ t

t1
v(τ) dτ

x(t2) = x(t1)+
∫ t2

t1
v(t) dt

Symbol Unit Quantity

x(t) m curve of motion
v(t) m/s velocity curve
t1, t2 s beginning and ending

time points
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Figure 1.18: Instantaneous velocity vx at
time t1 of one-dimensional motion in a
position vs. time graph.

Figure 1.19: Velocity vs. time graph
of one-dimensional motion. āx : mean
acceleration, ax : instantaneous acceleration
at time t1.

1.2.2 Acceleration
Acceleration, the description of non-uniform motion (motion in which the velocity varies).
The acceleration, as well as the velocity, can be positive or negative.
➤ Both an increase (positive acceleration) and a decrease of velocity (deceleration, as

result of a deceleration process, negative acceleration) are called acceleration.

1. Mean acceleration,

āx , change of velocity during a time interval divided by the length of the time interval:

acceleration = change of velocity
time interval

LT−2

āx = 
vx


t
= vx2 − vx1

t2 − t1

Symbol Unit Quantity

āx m/s2 mean acceleration

vx m/s velocity change

t s time interval
vx1, vx2 m/s initial and final velocity
t1, t2 s initial and final time

Meter per second squared, m/s2, SI unit of acceleration. 1 m/s2 is the acceleration of a
body that increases its velocity by 1 m/s per second.
If the mean acceleration and initial velocity are given, the final velocity reads

vx2 = vx1 + āx ·
t.

The time needed to change from the velocity vx1 to the velocity vx2 for given mean accel-
eration is


t = vx2 − vx1

āx
.

2. Instantaneous acceleration

Instantaneous acceleration, limit of the mean acceleration for very small time intervals
(
t → 0).
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instantaneous acceleration LT−2

ax (t) = lim

t→0


vx


t
= dvx

dt
= d

dt
vx (t)

Symbol Unit Quantity


t s time interval

vx m/s velocity change
ax (t) m/s2 acceleration
vx (t) m/s velocity

The instantaneous acceleration ax (t) is the first derivative of the velocity function vx (t),
and hence the second derivative of the position function x(t):

ax (t) = dvx (t)

dt
= v̇x (t) = d

dt

dx(t)

dt
= d2x(t)

dt2
= ẍ(t).

Graphically, it represents the slope of the tangent in the velocity-time diagram (Fig. 1.20).
The following cases are to be distinguished:

ax > 0: 
vx > 0 and hence vx2 > vx1. For vx1 > 0 the body moves with increasing
velocity, i.e., in the v vs. t graph the curve is rising.

ax = 0: 
vx = 0 and hence vx2 = vx1. The body does not change its velocity
(possibly only briefly).

ax < 0: 
vx < 0 and hence vx2 < vx1. For vx1 > 0 the body moves with decreasing
velocity.

Parabola

Straight line

Figure 1.20: Graphs for position vs. time, velocity vs. time, and acceleration vs. time.
Starting from the origin, the body is first uniformly accelerated, then moves with constant
velocity, and thereafter is uniformly decelerated to rest.

3. Determination of velocity from acceleration

If the acceleration is given as function of time ax (t), the velocity is determined by integra-
tion:

velocity = integral of acceleration over time LT−1

vx (t) = vx (t1)+
∫ t

t1
a(τ ) dτ

vx (t2) = vx (t1)+
∫ t2

t1
ax (t) dt

Symbol Unit Quantity

vx (t) m/s velocity curve
ax (t) m/s2 acceleration curve
t1, t2 s initial and final times
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➤ If a body has velocity v1x < 0 and undergoes a positive acceleration ax > 0, the
velocity decreases in absolute value.

1.2.3 Simple motion in one dimension
Here we discuss uniform and uniformly accelerated motion as the simplest forms of motion
and discuss their physical description.
➤ For motion in one dimension, one can omit the index x and the vector arrow over the

symbols for velocity v and acceleration a. One should note, however, that v and a
can take positive and negative values and thus are components of vectors.

1. Uniform motion

Uniform motion, a motion in which the body does not change its velocity, v̄x = vx =
const. (Fig. 1.21).

laws of uniform motion

x(t) = x0 + vx t

vx (t) = vx = v0

ax (t) = 0

Symbol Unit Quantity

x(t) m position at time t
x0 m initial position (t = 0)
vx m/s uniform velocity
v0 m/s initial velocity
t s time

Figure 1.21: Uniform
motion.

▲ Uniform motion arises if no force acts on the body.
➤ The curve of motion x(t) is the integral of the velocity curve vx (t) = const. and is

given by

x(t) = x0 +
∫ t

0
vx (t

′) dt ′ = x0 + v0t.

Clearly, vx (t) is a straight line, and the integral corresponds to the area below the
straight between the points 0 and t on the time axis.

2. Uniformly accelerated motion

Uniformly accelerated motion, a motion with constant acceleration. Then āx = ax = a
and

vx (t) = at + v0,

if v0 is the initial velocity (Fig. 1.22).
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Figure 1.22: Uniformly accelerated motion.

It follows by integration that

x(t) =
∫ t

0
vx (t

′) dt ′ + x0 =
∫ t

0
(at ′ + v0) dt ′ + x0 = a

2
t2 + v0t + x0.

This result can also be read from the velocity vs. time graph: the area below the curve is
composed of a rectangle of area v0 · t and a triangle of area at2/2 (height at and basis t)
(Fig. 1.23).

Figure 1.23: Graphs for uniformly accelerated motion.

uniformly accelerated motion

x(t) = a

2
t2 + v0t + x0

vx (t) = at + v0

ax (t) = a = const.

Symbol Unit Quantity

x(t) m position at time t
vx (t) m/s velocity
t s time
ax , a m/s2 acceleration
v0 m/s initial velocity
x0 m initial position

▲ A uniformly accelerated motion results if a constant force acts upon the body.
By rearrangement, one gets:



1.2 Motion in one dimension 21

• Initial and final velocity v0 and vx (t) given, function of motion x(t) wanted:

x(t) = v0 + vx (t)

2
t + x0.

• Initial velocity v0 and position function x(t) given, x0 = 0, final velocity vx (t)
wanted:

vx (t) =
√
v2

0 + 2ax(t).

• Special case: start from rest (v0 = 0, x0 = 0):

vx (t) = at = √2ax(t), x(t) = vx (t)t

2
= at2

2
.

3. Deceleration

Uniform deceleration (see Fig. 1.24) is a special case of uniformly accelerated motion.
During deceleration, the velocity and acceleration have opposite signs, hence the magni-
tude of the velocity is reduced, for example, until the instantaneous velocity reaches zero.
The braking distance needed sB to bring an object to rest can be determined from the ini-
tial velocity and the deceleration. The initial velocity can be determined when the braking
distance sB and deceleration are known.

uniform deceleration

tB = |v0|
|a| = −

v0

a

sB =
v2

0
2|a|

v0 =
√

2|a|sB

Symbol Unit Quantity

sB m braking distance
tB s braking time
|v0| m/s magnitude of initial velocity
|a| m/s2 braking deceleration

Figure 1.24: Velocity
vs. time and position vs.
time graphs for a uniform
deceleration process. xB :
braking distance, tB : braking
time.

➤ Consideration of a deceleration process as a uniformly decelerated motion is an ide-
alization. Braking is in general a non-uniform process.

■ For an automobile, one can assume a deceleration of about |a| = 4 m/s2. For a
velocity of 50 km/h = 13.9 m/s, there results a braking distance of

sB =
v2

0
2|a| =

(13.9 m/s)2

2 · 4 m/s2
= 24 m.
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➤ For automobiles, the following estimate of the braking distance holds:

sB ≈
( v0

10 km/h

)2
m+ 3 · v0

10 km/h
m.

Here a response time of the driver of ca. 1 s is included.

1.3 Motion in several dimensions

Motion in several dimensions is usually represented in vector notation.

1. Trajectory in three-dimensional space

To fix the position of a point in 3D space, three coordinates must be specified. In a Cartesian
coordinate system, these are referred to as the position vector, which has components x ,
y and z:

�r(t) =
⎛
⎝ x(t)

y(t)
z(t)

⎞
⎠ .

The vector function �r(t) describes the trajectory of a point or body in space (Fig. 1.25).
The components of the position vector specify the x-, y- and z-coordinate of the point at
time t .

Figure 1.25: Trajectory in
three dimensions.

2. Tangent and normal

Tangent to a curve at a point M , a straight line touching the curve at this point. Ana-
lytically, it results from taking the derivative of the curve with respect to the time at this
point. Hence, it represents the velocity vector of a point mass. The positive direction of
the tangent points along the instantaneous direction of motion. The normal to a curve at a
point M is a straight line perpendicular to the tangent in this point. It is orthogonal to the
instantaneous direction of motion (Fig. 1.26).
■ The tangent to a circle is orthogonal to the radius vector. The normal is parallel to the

radius vector.
➤ In 3D space there is more than one normal to a given point of the space curve. All

normals through the tangential point form the normal plane. The osculating plane
is the limit position of a plane through M and two neighboring points on the curve as
the two points tend towards M .
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Normal
plane

Tangent
plane

Trajectory

Figure 1.26: Tangent and
normal plane of a trajectory.
The tangent lies in the
osculating plane, which is
perpendicular to the normal
plane.

1.3.1 Velocity vector
Velocity vector, �v, specifies direction and magnitude of the velocity of the point mass.

1. Mean velocity

Mean velocity �v, in a time interval 
t , defined by (Fig. 1.27)

�v = �r(t2)− �r(t1)
t2 − t1

= 
�r

t
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝


x


t


y


t


z


t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, 
�r =

⎛
⎝ 
x

y

z

⎞
⎠ .

Figure 1.27: Mean velocity
�̄v.

2. Instantaneous velocity

Instantaneous velocity is obtained by taking the limit as 
t → 0 (Fig. 1.28):

instantaneous velocity LT−1

�v(t) = lim

t→0

�r(t +
t)− �r(t)

t

= d�r
dt
= �̇r(t) =

⎛
⎝ ẋ(t)

ẏ(t)
ż(t)

⎞
⎠

Symbol Unit Quantity

�v(t) m/s velocity vector

t s time interval
t s time
�r(t) m trajectory
ẋ , ẏ, ż m/s velocity components
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Figure 1.28: Instantaneous
velocity �v(t).

The components of the velocity vector �v are the derivatives of the coordinate functions
x(t), y(t) and z(t) with respect to time. They specify its projections onto the x-, y- and
z-axes:

vx = ẋ, vy = ẏ, vz = ż.

3. Properties of the velocity vector

The magnitude of the velocity vector, v, represents the path distance traveled per unit time.
▲ The velocity vector �v points along the direction of motion.
➤ The velocity vector �v(t) depends on the change of the position vector, d�r = �v dt .

It is possible for the orientation of the position vector to change while its magnitude
remains constant (circular motion). The variation of the distance from the origin in
vector notation is found by means of the product and chain rules of differentiation to
be:

d|�r|
dt
= d
√
�r 2

dt
= �r · �v|�r| .

In particular, the distance remains constant if �r · �v = 0, i.e., if the velocity vector is
perpendicular to the radius vector. A motion for which the distance from the origin
or another fixed point remains unchanged is a circular motion.

Tangent unit vector, �etan, a vector of unit length that points along the positive tangent to
a curve. The velocity can then be written as

�v = v �etan, �etan = �v
v
.

4. Example: Circular motion in a plane

A circular motion in the x–y-plane with constant angular velocity (ϕ(t) = ωt), and ω =
dϕ

dt
is given by the position vector (Fig. 1.29)

�r(t) =
⎛
⎝ x(t)

y(t)
z(t)

⎞
⎠ =

⎛
⎝ r cosωt

r sinωt
0

⎞
⎠ .

Unit of angular velocity: [ω] = rad/s.
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Figure 1.29: Circular
motion. The magnitude of
the velocity is denoted by v.

Hence, the velocity vector �v is

�v(t) = �̇r(t) =
⎛
⎝ ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝ −rω sinωt

rω cosωt
0

⎞
⎠ .

Its magnitude is |�v(t)| =
√

ẋ2 + ẏ2 + ż2 = rω.

1.3.2 Acceleration vector
1. Acceleration vector

Acceleration vector, �a, the time derivative of the velocity vector; it specifies the change
of velocity per unit time (Fig. 1.30). As in the case of velocity, one can introduce a mean
acceleration vector �a over a time interval 
t ,

�a(t) = �v(t +
t)− �v(t)

t

,

and an instantaneous acceleration vector by the limit 
t → 0:

�a(t) =
⎛
⎝ ax (t)

ay(t)
az(t)

⎞
⎠ = lim


t→0

�v(t +
t)− �v(t)

t

= d�v(t)
dt
=
⎛
⎝ v̇x (t)
v̇y(t)
v̇z(t)

⎞
⎠ =

⎛
⎝ ẍ(t)

ÿ(t)
z̈(t)

⎞
⎠ .

Figure 1.30: Acceleration
vector.

The components of the acceleration vector are the second derivatives of the coordinate
functions with respect to time:

ax = ẍ, ay = ÿ, az = z̈.
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2. Example: Acceleration vector for circular motion

For circular motion with constant angular velocity ω, the acceleration vector is

�a(t) = d

dt

⎛
⎝ −rω sinωt

rω cosωt
0

⎞
⎠ =

⎛
⎝ −rω2 cosωt
−rω2 sinωt

0

⎞
⎠ = −ω2�r(t).

Acceleration vector and radius vector are antiparallel, the acceleration vector points to the
center.

The magnitude of the acceleration is

|�a(t)| =
√

ẍ2 + ÿ2 + z̈2 = rω2
√

cos2 ωt + sin2 ωt + 0 = rω2.

3. Tangential and normal acceleration

Tangential acceleration, �atan and normal acceleration, �anorm, the projections of the
acceleration vector onto the tangent and the normal perpendicular to it, respectively
(Fig. 1.31):

�a = �atan + �anorm.

According to the product rule of differentiation:

�a = d(v �etan)

dt
= dv

dt
�etan + v d�etan

dt
.

The first term is the tangential acceleration,

�atan = dv

dt
�etan, atan = v̇.

Figure 1.31: Tangential
and normal acceleration
�atan, �anorm.

▲ The magnitude of the tangential component of the acceleration is the change of mag-
nitude of the velocity with time.

The second term is the normal acceleration,

�anorm = v d�etan

dt
.
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➤ Since the magnitude |�etan| of the tangent unit vector invariably remains equal to unity,

d

dt
(�etan)

2 = 2�etan · d�etan

dt
= 0.

The time derivative of the tangent unit vector is orthogonal to the tangent unit vector.
The second term represents the normal component of the acceleration. The plane
defined by �etan and d�etan/dt is the osculating plane of the trajectory.

4. Example: Circular motion

For a circular motion with constant angular velocity,

�a(t) =
⎛
⎝ −rω2 cosωt
−rω2 sinωt

0

⎞
⎠ = −ω2�r(t),

i.e., the acceleration vector is antiparallel to the radius vector and thus to the normal vector,
and points towards the center. Hence, the tangential component vanishes,

�atan(t) = 0,

and the normal component is

anorm(t) = rω2 = v
2

r
,

where v = rω was inserted.

5. Curvature of trajectory and acceleration

The normal component of the acceleration vector is related to the curvature of the trajec-
tory.

Radius of curvature, R, in a point of a trajectory, the radius of a circle that has the same
curvature as the trajectory at this point.
▲ The normal component of the acceleration vector is

anorm = v
2

R
,

R being the radius of curvature of the trajectory.

Figure 1.32: Non-
uniform circular motion,
�etan = �eϕ, �enorm = �er .
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➤ A straight line has a radius of curvature R = ∞. The normal acceleration vanishes
for motion along a straight line.

➤ For a non-uniform circular motion (Fig. 1.32) both the normal acceleration (centri-
petal acceleration) ar and the tangential acceleration aϕ differ from zero:

�v(t) = r ϕ̇ �eϕ, �a(t) = ar �er + aϕ �eϕ,
ar = −r ϕ̇2 = −r ω2, aϕ = r ϕ̈ = r ω̇.

6. Position, velocity and acceleration vectors in different coordinate systems

a) Cartesian coordinates:

�r(t) = x(t) �ex + y(t) �ey + z(t) �ez

�v(t) = ẋ(t) �ex + ẏ(t) �ey + ż(t) �ez

�a(t) = ẍ(t) �ex + ÿ(t) �ey + z̈(t) �ez

b) Polar coordinates:

�r(t) = r �er

�̇er = ϕ̇ �eϕ, �̇eϕ = −ϕ̇ �er

�v(t) = ṙ �er + r ϕ̇ �eϕ
�a(t) = (r̈ − r ϕ̇2) �er + (r ϕ̈ + 2 ṙ ϕ̇) �eϕ

c) Spherical coordinates:

�r(t) = r �er

�̇er = ϑ̇ �eϑ + sinϑ ϕ̇ �eϕ, �̇eϑ = ϕ̇ cosϑ �eϕ − ϑ̇ �er , �̇eϕ = −ϕ̇ cosϑ �eϑ − sinϑ ϕ̇ �er

�v(t) = ṙ �er + r ϑ̇ �eϑ + r sinϑ ϕ̇ �eϕ
�a(t) = (r̈ − r ϑ̇2 − r sin2 ϑ ϕ̇2) �er + (r ϑ̈ + 2 ṙ ϑ̇ − r sinϑ cosϑ ϕ̇2) �eϑ

+(r sinϑ ϕ̈ + 2 sinϑ ṙ ϕ̇ + 2 r cosϑ ϑ̇ ϕ̇) �eϕ

d) Cylindrical coordinates:

�r(t) = ρ �eρ + z �ez

�̇eρ = φ̇ �eφ, �̇eφ = −φ̇ �eρ, �̇ez = 0

�v(t) = ρ̇ �eρ + ρ φ̇ �eφ + ż �ez

�a(t) = (ρ̈ − ρ φ̇2) �eρ + (ρ φ̈ + 2 ρ̇ φ̇ )�eφ + z̈ �ez

1.3.3 Free-fall and projectile motion
Free-fall, projectile motion, refer respectively to one- and two-dimensional motion under
the influence of Earth’s gravitation. Such motion is described by the trajectory
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�r(t) =
(

x(t)
y(t)

)

and the velocity vector

�̇r(t) =
(
vx (t)
vy(t)

)
.

The x-coordinate represents the horizontal distance from origin, the y-coordinate the
height. In any case, the acceleration vector is the vector of gravitational acceleration �g,

�̈r(t) = �g =
(

0
−g

)
.

➤ The assumption of constant acceleration is only justified as long as the air friction
is negligible, and the height of fall is small compared with the distance from Earth’s
center, so that the gravitational acceleration varies negligibly during the motion.

1. Free-fall

Let the body initially be at rest and move under the influence of gravity from a height
h0 downwards. If one ignores air friction, or assumes motion in vacuum, the motion is
described by the position on the y-axis (instantaneous height) y(t), the velocity of fall
v(t) = vy(t), and the initial height h0:

x(t) = 0, y(t) = h0 − gt2

2
,

vx (t) = 0, vy(t) = −gt.

Fall time tF and impact velocity v(tF ) are given by

tF =
√

2h0

g
, v(tF ) = −

√
2h0g.

2. Vertical projectile motion upwards

The body is initially at height h0 and gets a velocity v0 upwards:

x(t) = 0, y(t) = h0 + v0t − gt2

2
,

vx (t) = 0, vy(t) = v0 − gt.

The maximum height H is reached at time TH when the velocity vy(t) reaches zero
(Fig. 1.33):

H = h0 +
v2

0
2g
, TH = v0

g
, T = flight time.
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Figure 1.33: Vertical projectile motion upwards.

3. Inclined projectile motion

At the beginning, the body has not only a velocity component in y-direction (height), but
also a component along the x-direction (horizontal). The horizontal motion is uniform
because it is not affected by the gravitational force. Let the motion begin at x = y = 0; it
is then described by

x(t) = vx0t, y(t) = vy0t − gt2

2
,

vx (t) = vx0, vy(t) = vy0 − gt.

The components of the initial velocity are specified by the launch angle α (Fig. 1.34):

�v0 =
(
vx0
vy0

)
=
(
v0 cos α
v0 sinα

)
.

For h0 = 0, the time of ascension until the peak of flight TH, and the flight time T until
the impact, are given by

TH = T

2
, T = 2vy0

g
= 2v0 sinα

g
.

The body has the same velocity at impact as at launch.
The trajectory of the inclined projectile motion is a parabola,

y(x) = x tanα − g

2v2
0 cos2 α

x2.

Figure 1.34: Inclined
projectile motion upwards.
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Projectile motion height H and projectile motion range L are given by

H =
v2

y0

2g
= v

2
0 sin2 α

2g
, L = 2v2

0 sinα cos α

g
= v

2
0 sin 2α

g
.

➤ The maximum range

(
dL

dα
= 0

)
is reached for an angle α of 45◦. It amounts to

Lmax =
v2

0
g
.

4. Real projectile motion

Actually, the trajectory of a projectile is modified by air friction. The velocity of fall cannot
increase unlimitedly, but tends to a limit value vmax at which the friction force of air equals
the gravitational force:

vmax =
√

2mg

ρcW A

(m mass of body, ρ density of air, cW air-resistance coefficient, A cross-sectional area of
the body).

The trajectory of real projectile motion must be determined by solving a differential
equation.

1.4 Rotational motion

Rotational motion, motion of a body in which the mutual distances between all points,
and to a fixed rotation axis, remain constant. It is characterized by a rotation angle ϕ(t)
that specifies the position of the body at any time t .

Rotation, spatially periodic rotational motion in which the system performs full turns.
Circular motion, the motion of a mass point on a trajectory in a constant distance from

a fixed rotation axis. It is the simplest example of rotational motion (Fig. 1.35).
The quantities angle, angular velocity and angular acceleration, needed for a description

of rotational motion, correspond to the position, velocity and acceleration of translational
motion, respectively.

S

Figure 1.35: Circular motion
of a point mass. Rotation
angle: ϕ, path: s = rϕ.



32 1. Kinematics

1.4.1 Angular velocity
1. Definition of angular velocity

Angular velocity, �ω, a vector pointing along the rotation axis. Its magnitude gives the
change of the rotation angle of a body per unit time, the orientation specifies the sense of
rotation (Fig. 1.36). As in the case of the velocity of translational motion, one can introduce
the mean angular velocity over the time interval 
t ,

| �̄ω| = 
ϕ

t
,

and in the limit 
t → 0 the instantaneous angular velocity:

angular velocity = element of rotation angle
time interval

T−1

| �ω| = lim

t→0


ϕ


t
= dϕ

dt
= ϕ̇

Symbol Unit Quantity

�ω rad/s angular velocity
ϕ rad rotation angle

ϕ rad element of rotation angle

t s time interval

Figure 1.36: Angular velocity of circular motion.

2. Unit of angular velocity

Radian per second, rad/s, SI unit of angular velocity.
1 rad/s is the angular velocity of a body that changes its rotation angle in one second by
one radian (≈ 57.3◦).
■ Earth rotates once about its axis every 24 h. The angular velocity is

ω = 2π rad

24 h
= 2π rad

86400 s
≈ 7.27 · 10−5 rad/s.

3. Rotational frequency and period

Rotational frequency, n, number of turns per unit time. The relation to the angular veloc-
ity is

ω = 2πn, n = ω

2π
.
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The rotational frequency can be given in r.p.s. (revolutions per second) or r.p.m. (revolu-
tions per minute).

Period, T , the time for one revolution:

ω = 2π

T
, T = 1

n
= 2π

ω
.

■ The period of Earth’s rotation is T = 24 h. Its rotational frequency is

n = 1

T
= 1

24 h
= 1.157 · 10−5 s−1.

4. Right-hand rule

Right-hand rule specifies the orientation of the angular velocity vector �ω for a given sense
of rotation (left or right rotation):
▲ The angular-velocity vector �ω is by definition oriented as follows: the thumb of the

right hand indicates the orientation of �ω when the bent fingers indicate the sense of
rotation (Fig. 1.37).

➤ Looking along the vector of angular velocity, the rotation is to the right, and thus
clockwise.

Figure 1.37: Relative
orientation of angular
velocity �ω, radius vector
�r and orbital velocity �v
according to the right-hand
rule.

➤ By convention, angular velocity, radius vector and orbital velocity are oriented with
respect to each other just as thumb, forefinger and middle finger of the right hand.

➤ When using the left hand, the orientation of angular velocity would be just the oppo-
site.

■ Because the Earth rotates eastwards, the angular velocity vector points from the south
pole to the north pole.

5. Angular velocity as axial vector

Angular velocity is an axial vector, i.e., under a point reflection at the origin (inversion),
�r → −�r, it does not change its direction, contrary to a polar vector (like the velocity
vector, or the acceleration vector):

�r→−�r : �v→−�v, �ω→ �ω.

➤ The vector product of two polar vectors is an axial vector. The vector product of a
polar and an axial vector is a polar vector.

1.4.2 Angular acceleration
Angular acceleration, �α, change of angular velocity per unit time, an axial vector quantity.
If the rotation axis remains fixed, the angular acceleration points parallel or antiparallel to



34 1. Kinematics

the angular velocity. As in the case of acceleration in translational motion, one introduces
the mean angular acceleration over the time interval 
t ,

�̄α = 
 �ω

t
,

and by the limit 
t → 0 the instantaneous angular acceleration:

angular acceleration = change of angular velocity
time interval

T−2

�α = lim

t→0


 �ω

t
= d �ω

dt

Symbol Unit Quantity

�α rad/s2 angular acceleration
�ω(t) rad/s angular velocity

 �ω rad/s change of angular velocity

t s time interval

Radian per square second, rad/s2, SI unit of angular acceleration.
1 rad/s2 is the angular acceleration if the angular velocity changes by 1 rad/s per second.
➤ If the rotation axis is fixed in space during the motion, the angular acceleration points

along the rotation axis. The angular acceleration results only in an increase (angular
acceleration and angular velocity parallel) or decrease of the rotational speed, or an
inversion of the sense of rotation (angular acceleration and angular velocity antipar-
allel). In general, the angular acceleration expresses both the change of the rotational
speed and also the change of orientation of the rotation axis.

1.4.3 Orbital velocity
1. Definition of orbital velocity

Orbital velocity, tangential velocity, �v, of a point mass on a circular orbit, the vector
product of angular velocity �ω and the position vector �r (Fig. 1.38):

orbital velocity = angular velocity × position vector LT−1

�v = d�r
dt
= �ω × �r

Symbol Unit Quantity

�v m/s orbital velocity
�r m position vector
�ω rad/s angular velocity

Figure 1.38: Orbital velocity
�v as vector product of
angular velocity �ω and
position vector �r.
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▲ For circular motion, the orbital velocity vector is perpendicular to the position vector
and perpendicular to the angular velocity vector if the rotation axis passes through
the origin.

2. Decomposition of the orbital velocity vector

The vector �r can be decomposed into two components: �r‖ parallel to the angular velocity
(rotation axis) �ω and �r⊥ orthogonal to it. Then �ω × �r‖ = 0, and therefore

�v = �ω × �r = �ω × �r⊥.

Hence, for the orbital velocity, only the perpendicular distance of the point mass from
the rotation axis is relevant.

The magnitude of the orbital velocity is given by

|�v| = | �ω| |�r⊥| = | �ω| |�r| sinα,

where α is the angle between the rotation axis and the position vector. The orbital velocity
is proportional to the angular velocity and to the perpendicular distance from the rotation
axis.

In particular, for the circumferential speed of a wheel of radius R:

v = Rω = 2π Rn = 2π R

T
,

where n is the rotational frequency and T the period of rotation.

3. Example: Orbital velocity of Earth

Earth has a radius R of 6380 km. The circumferential speed at the equator is

v = ωR = 2π rad

24 h
· 6380 km = 464 m/s = 1670 km/h.

The orbital velocity of a point at a latitude of 45◦, that has a perpendicular distance to
Earth’s axis at

R⊥ = R/
√

2,

is v = 1670/
√

2 km/h = 1180 km/h.
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Dynamics

Dynamics, the theory of the motion caused by forces. Dynamics describes how bodies
move under the action of external forces. Unlike kinematics, it is concerned with the causes
of the motion of a body. The concepts mass and force are introduced for the description of
the dynamics of the motion.

2.1 Fundamental laws of dynamics

Forces are the cause of the change of the state of motion of bodies. Newton’s laws establish
a relation between the forces and the kinematical quantities velocity and acceleration.

2.1.1 Mass and momentum

2.1.1.1 Mass

1. Inertial and gravitational mass

Inertial mass, the resistance of a body to a change of motion.
Gravitational mass, the strength of attraction on one body by another due to the gravi-

tational force (e.g., in the gravitation field of earth).
▲ Inertial and gravitational masses of a body are equal.
➤ This equivalence is an empirical fact that has been established by high-precision ex-

periments. This equality is a basic postulate of the general theory of relativity.
Mass, m, elementary property ascribed to a body. Point masses have this property only;

extended bodies (rigid bodies) are also characterized by their moments of inertia (see
p. 111). The moment of inertia of a rigid body depends on the distribution of its mass and
on the choice of the rotation axis.

2. Unit of mass

Kilogram, kg, SI unit of mass. One of the seven basic quantities of the SI.
1 kg is defined as the mass of the primary kilogram, a platinum-iridium cylinder stored
in Paris. The relative accuracy of the mass standard is 10−9.

[m] = kg = kilogram.

37
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3. Measurement of mass

A mass can be measured by weighing, i.e., by comparison of the weight of the body with
that of a body of known mass (balance according to the rule of levers, balance scale with
movable counterweight). Weighing is one measurement that can be carried out with high
accuracy by simple means.

The spring balance measures the weight of a body directly by the extension of a spring
(dynamometer).

The mass of atomic particles can be measured by its inertia, e.g., by deflection in an
electric field, magnetic field (mass spectrometer, mass spectrograph), or both.
➤ Mass and weight are different qualities. The weight depends on the acting gravita-

tional force. A body of mass 1 kg has on the moon the mass of 1 kg, but it weighs
only 1/6 of what it weighs on earth (see p. 53).

4. Density,

ρ, ratio of mass to volume of a homogeneous body:

density = mass
volume

ML−3

ρ = m

V

Symbol Unit Quantity

ρ kg/m3 density
m kg mass
V m3 volume

5. Unit of density

Kilogram per cubic meter, SI unit of density.
One kilogram per cubic meter is the density of a homogeneous body having a volume of
one cubic meter and a mass of one kilogram.

[ρ] = kg/m3.

➤ The density is sometimes given in kilograms per cubic decimeter (kg/dm3), or in
grams per cubic centimeter (g/cm3):

1 kg/dm3 = 1 g/cm3 = 103 kg/m3.

Water has a density of about 1 g/cm3 at 20 ◦C, and metals have densities three (alu-
minum) to twenty (platinum) times that. Gasoline has a density of about 0.7 g/cm3

(see Tab. 7.1).
➤ Density depends on the temperature of the body (volume expansion coefficient),

and, particularly for gases, also on the pressure.
M The density of solids can be measured with a Mohr’s balance which uses the buoy-

ancy force of the body in a fluid (see p. 180).

6. Density of inhomogeneous bodies

In an inhomogeneous body with a continuous mass distribution, the density varies with the
spatial coordinate �r, ρ = ρ(�r). Assume the body to be decomposed into volume elements

V in which the density is approximately constant. The mass in the volume element 
V
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at the point �r is 
m (Fig. 2.1). For the density in the volume element 
V : ρ = 
m/
V .
For a continuous mass distribution, one gets for the density at the point �r:

ρ(�r) = lim

V→0


m


V
= dm

dV
, dm = ρ(�r) · dV .

The total mass m of the body is given by a volume integral,

m =
∫

dm =
∫
ρ(�r) dV .

Figure 2.1: Density ρ(�r)
of an inhomogeneous body
with a continuous mass
distribution.

2.1.1.2 Momentum

1. Definition of momentum

Momentum, the quantity of motion of a body that is given by the product of its mass and
velocity. The momentum is, like the velocity, a vector quantity; its orientation coincides
with the direction of motion of the body. It specifies the state of motion of a body relative
to a reference system.

momentum = mass · velocity MLT−1

�p = m�v
Symbol Unit Quantity

�p kg m/s momentum of body
m kg mass of body
�v m/s velocity of body

2. Unit of momentum

Kilogram meter per second, kg m/s, SI unit of momentum.
One kilogram meter per second is the momentum of a body with a 1 kg mass that moves
with the velocity of 1 m/s.

[p] = kg m

s
= Ns, N = Newton = kgm/s2 (see p. 41).

■ A body of 10 kg mass that moves with 3 m/s has a momentum of

p = mv = 10 kg · 3 m/s = 30 Ns.

A body with twice the mass (20 kg) has twice the momentum at the same velocity:

p = mv = 20 kg · 3 m/s = 60 Ns.
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2.1.2 Newton’s laws
Newton’s laws establish a relation between force (for definition see p. 41) and change of
momentum. Newton’s first law expresses the principle of inertia, the second, the principle
of action and the third, the principle of action and reaction.

2.1.2.1 Inertia (Newton’s first law)

1. Newton’s first law

(Galileo’s principle of inertia), describes the inertial power or the inertia of bodies:

Newton’s first law: A body that is not under external forces
does not change its momentum.

�F = 0 �⇒ �p = const.

m = const. �⇒ �v = const.

Symbol Unit Quantity

�F N external force
�p kg m/s momentum
m kg mass
�v m/s velocity

➤ Newton’s first law holds even in the case of mass m that is not constant, e.g., for a
rocket (recoil propulsion). The conclusion m = const. �⇒ �v = const., then, no
longer holds.

The notion of constant velocity is always relative to a special reference system.
■ A passenger sitting on a transatlantic flight moves with constant velocity v = 0

relative to the plane, but on a curve relative to a point on Earth’s surface. Relative to a
point outside of the Earth, one must add the Earth’s rotation, and relative to the Sun,
the rotation of the Earth about the Sun. The Sun in turn moves relative to the center
of the Milky Way, which again moves relative to other galaxies.

2. Inertial systems,

reference systems in which Newton’s first law holds. A reference system that moves uni-
formly on a straight line relative to an inertial system is also an inertial system (Fig. 2.2).
Hence, there are arbitrarily many inertial systems in which the laws of physics hold in
identical form (see p. 137).
■ A body that moves free of forces on a horizontal frictionless rail maintains a constant

velocity. This is an idealized case, since neither the friction with the rail nor the air
friction can be completely excluded. Motion in space far from large bodies comes
closer to the idealization.

Figure 2.2: Relative motion
of two inertial systems K
and K ′ with relative velocity
�v0. �r0(t): position vector of
the coordinate origin of K ′
in K at time t .
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2.1.2.2 Fundamental law of dynamics (Newton’s second law)
Newton’s second law (action principle), describes how the state of motion of a body is
changed by forces (for definition, see the next section) acting on it (Fig. 2.3):

Newton’s second law: If a force acts upon a body,
then the resulting change of momentum is
proportional to the acting force. The change of
momentum points along the direction of the force.

MLT−2

d�p
dt
= d(m�v)

dt
= �F

Symbol Unit Quantity

�v m/s instantaneous velocity
�p kg m/s momentum
�F N force
m kg mass

If the mass of the body can be considered constant during the dynamical process, then:

m�a = �F,

where �a is the acceleration, �a = d�v
dt

, with the SI unit

[�a] = ms−2.

Figure 2.3: Force �F
and momentum change
�p(t +
t)− �p(t).

▲ Newton’s second law is the fundamental law of dynamics.
■ If a force acts on a body with twice the mass of another body, then it gets only half

of the acceleration.
➤ Newton’s second law holds even when the mass of the body varies during the motion

(as with a rocket). Corresponding to the product rule of differentiation it then has the
form

d�p
dt
= dm

dt
�v+ m

d�v
dt
= �F.

➤ If one considers length, time and mass to be the fundamental quantities of motion
(as in the SI), Newton’s second law leads to the unit of force. If, however, length,
time and force were adopted as fundamental quantities, Newton’s second law would
define the mass.

2.1.2.3 Force

1. Definition of force

In the SI, the definition of force is based on Newton’s second law:
Force, the product of mass of a body, and of its acceleration caused by the force.

The force is a vector quantity and points along the acceleration. It is thus defined by the
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table below:

force = mass · acceleration MLT−2

�F = m�a
Symbol Unit Quantity

�F N applied force
m kg mass
�a m/s2 resulting acceleration

2. Unit of force

Newton, N, the SI unit of force:
1 newton is the force that accelerates a mass of 1 kg by 1 m/s2.

[F] = N = newton = kg m/s2.

Non-SI units are:

1 kilopond (kp) = 9.80665 N,

1 Dyne (dyne) = 10 µN.

Mass, the proportionality factor of force and acceleration: The more mass a body has,
the less it is accelerated by a force applied to it. This allows the determination of the mass
as the ratio of applied force and resulting acceleration,

m = |�F||�a| .

3. Impulse of a force,

the product �F
t . The impulse of a force gives the change 
�p = �p2 − �p1 of momentum
(Fig. 2.4).

impulse of force = force · time interval for constant force MLT−1


�p = m(�v(t +
t)− �v(t)) = �F
t

Symbol Unit Quantity


�p kg m/s change of momentum

t s time interval
�v m/s velocity
�F N acting force

Figure 2.4: One-dimensional
motion. The impulse of a
force is the area below the
curve F(t) in a graph of
force vs. time.
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➤ If the force is not constant over the time interval 
t , the integral form must be used:


�p =
t2∫

t1

�F dt.

2.1.2.4 Reaction principle (Newton’s third law)
Newton’s third law (reaction principle), states that, for each force �F acting on a body

1, there exists a second force �F′ acting on another body 2 that has equal magnitude, but
opposite direction (Fig. 2.5):

�F = − �F′, action = reaction.

Newton’s third law: Two bodies exert
forces equal in magnitude and
opposite in direction on each other.

MLT−2

�F = − �F′
Symbol Unit Quantity

�F N force of 2 on 1
�F′ N force of 1 on 2

Reaction

Action

Figure 2.5: The principle of
action and reaction.

■ Two people on a frictionless surface hold the ends of a rope. If one pulls on the rope
and moves forward, the second also moves, but in the opposite direction.

➤ Although the forces F and F ′ are equal in magnitude, the body with the larger mass
receives less acceleration than the body with the smaller mass.

2.1.2.5 Inertial forces

1. Definition of inertial forces

Inertial forces, virtual forces felt by an observer in a reference system that carries out an
accelerated motion relative to an inertial system (Fig. 2.6). Contrary to the abovementioned

Figure 2.6: Inertial force in a reference system K ′ that is uniformly accelerated with
respect to the reference system K .
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forces, inertial forces are not a cause, but a consequence, of accelerated motion. In the case
of accelerated translational motion of a reference system, the inertial forces point in a
direction that is opposite to the acceleration vector.

The inertial force in accelerated
translational motion of the reference
system has the opposite orientation, but
the same magnitude, as the force that
causes the acceleration of the reference
system.

MLT−2

�FT = −m�a
Symbol Unit Quantity

�FT N inertial force
m kg mass
�a m/s2 acceleration

2. Examples of inertial forces

■ A point mass m is at rest in the reference system K (�F = 0). A second reference
system K ′ is moving in the x, y-plane relative to K with velocity �v and constant
acceleration �a = d�v/dt �= 0 in the direction of the vector �e. Under the influence of
the inertial force �FT = −m�a, one observes in K ′ an accelerated motion of the point

mass that is antiparallel to the displacement vector �d(t) = −−→OO′.
■ A body of mass 1 kg is in a car that is being accelerated by 3 m/s2. A measurement

taken in the car yields a virtual force of

FT = −ma = −1 kg · 3 m/s2 = −3 N.

This is the magnitude of force needed to accelerate the body by 3 m/s2.

3. Inertial forces in rotational motion

Other inertial forces arise in rotational motion (see p. 31).
■ An observer on a rotating disk feels a radial acceleration towards the outside. This

virtual force is called the centrifugal force.

2.1.2.6 Principle of d’Alembert
Dynamical equilibrium exists if the sum of the applied force �F and the opposite inertial
force �FT vanishes (d’Alembert’s principle).

Body in dynamical equilibrium

�F+ �FT = 0

�F− m�a = 0

Symbol Unit Quantity

�F N acting force
�FT N inertial force
�a m/s2 acceleration

➤ Unlike static equilibrium, the existence of dynamical equilibrium does not mean that
the body does not change its state of motion. The appearance of inertial forces just
implies that an acceleration is taking place.

➤ This rule allows a calculation of the motion of a body under the conditions that forces
and inertial forces mutually compensate. Dynamical processes are thereby reduced
to static-equilibrium problems.
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2.1.2.7 Composition of forces

1. Resulting force,

�FR , replaces two forces �F1 and �F2 acting on a point mass by a single force �FR . Forces are
added as vectors according to the force parallelogram (Fig. 2.7).

resulting force = vector sum of individual forces MLT−2

�FR = �F1 + �F2

FRx = F1 cosα1 + F2 cosα2

FRy = F1 sinα1 + F2 sinα2

FR =
√

F2
1 + F2

2 + 2 F1 F2 cosϕ

α = arctan
F1 sinα1 + F2 sinα2

F1 cosα1 + F2 cosα2

Symbol Unit Quantity

�FR N resulting force
�F1, �F2 N force vectors
FRx , FRy N components of

resulting force
ϕ rad angle between

�F1 and �F2
α1 rad angle between �F1

and x-axis
α2 rad angle between �F2

and x-axis
α rad angle between �FR

and x-axis

Figure 2.7: Adding forces.
The force parallelogram.

2. Force polygon

By repeating this process, arbitrarily many forces acting at the same point can be replaced
by a single resulting force:
▲ �FR = �F1 + �F2 + �F3 + · · · .
This can be represented graphically by a force polygon (force diagram). The force arrows
are lined up by parallel shifts (conserving magnitude and orientation). The resulting vector
is the force arrow from the beginning of the first force arrow to the end of the last one
(Fig. 2.8).

Figure 2.8: Force polygon.
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3. Addition of components

The resulting force can also be calculated by summing components (see p. 1115):

�FR =
⎛
⎝ FRx

FRy
FRz

⎞
⎠ = �F1 + �F2 =

⎛
⎝ F1x + F2x

F1y + F2y
F1z + F2z

⎞
⎠ .

➤ If two vectors point in the same direction (ϕ = 0), then

|�FR | = |�F1 + �F2| = |�F1| + |�F2|.

If they point in opposite direction (ϕ = π ), then

|�FR | = |�F1 + �F2| = |�F1| − |�F2|.

If the forces are perpendicular (ϕ = π/2), then

|�FR | = |�F1 + �F2| =
√
|�F1|2 + |�F2|2.

2.1.2.8 Decomposition of forces

1. General decomposition of forces

The decomposition of a force �F into two forces �F1, �F2 pointing in given directions is
accomplished by means of the scalar product using the force parallelogram.

decomposition of a force

F1 = F
sin(α2 − α)
sin(α2 − α1)

F2 = F
sin(α − α1)

sin(α2 − α1)

α1 = α − arccos
F2 + F2

1 − F2
2

2 F F1

α2 = α + arccos
F2 + F2

2 − F2
1

2 F F2

Symbol Unit Quantity

�F N given force
�F1, �F2 N force vectors

α rad angle between �F
and x-axis

α1 rad angle between �F1
and x-axis

α2 rad angle between �F2
and x-axis

2. Tangential and normal force

The decomposition of a force in the special case of two perpendicular directions can also
be accomplished by means of the scalar product (Fig. 2.9):

The component F1 of the force �F along the orientation given by the unit vector �e1 is the
scalar product of �F and the unit vector �e1:

Fx = �F · �e1 = F cosα, α: angle between �F and �e1.

The component F2 of �F along the orientation 2 perpendicular to orientation 1, �e1 · �e2 = 0,
is given by

F2 = �F · �e2 = F cos(
π

2
− α) = F sinα.
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Figure 2.9: Decomposition
of a force �F into two
perpendicular components
�F1 and �F2.

Tangential force, force acting along the tangent to the trajectory. The tangential force
causes a pure orbital acceleration (tangential acceleration), since it changes the magnitude
v of the velocity, but not the direction, of �v:

�Ftan = m · v · �etan.

Normal force, force acting along the principal normal to the trajectory. The normal force
causes a pure normal acceleration that does not affect the magnitude of the velocity, but
changes only the orientation of �v:

�Fnorm = m · v
2

R
· �enorm,

R: radius of curvature of the trajectory, �enorm: unit vector along the principal normal.

3. Centripetal force

In uniform circular motion with radius of curvature R, the tangential force vanishes. The
normal force is called the centripetal force

�Fr = −m
v2

R
�er .

It causes a uniform acceleration towards the center of the circle (centripetal acceleration).
The centripetal force is a central force.

4. Application of decomposing a force

The force on a body is decomposed into components along and pependicular to the restraint
when a body is supported in a definite manner. The support (fixed bearing, rail, supporting
plane) provides a counterforce (guiding force, constraint reaction, reaction force) which,
without consideration of friction, just equals the force acting in this direction. The guiding
force is perpendicular to the curve or plane in space to which the mass is constrained.

5. Application to inclined planes

Inclined plane: One needs the components of the weight �FG perpendicular (normal force
�FN ) and parallel to the inclined plane (force along the �FH ). The force along the slope
accelerates the body while the normal force is counteracted by the plane (Fig. 2.10).

One finds:

force along the slope: FH = FG sinα = mg sinα,
normal force: FN = FG cosα = mg cosα.

α is the angle of inclination of the plane with respect to the horizontal.
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Figure 2.10: Inclined plane.
Decomposition of the
weight �FG into normal force
�FN and force along the
slope �FH .

■ A body of m = 2 kg glides down on a plane with α = 30◦ inclination. The force
along the slope is

FH = F sinα = mg sinα = 2 kg · 9.81 m/s2 · 0.5 = 9.81 N.

The corresponding acceleration is

a = FH

m
= 4.91 m/s2 = 1

2
g,

i.e., half the gravitational acceleration. For an angle of α = 45◦, the reduction factor
is 1/
√

2 ≈ 0.707, for α = 60◦,
√

3/2 ≈ 0.866. The fraction of the weight that is
counteracted by the plane (the normal force) is

√
3/2, 1/

√
2 and 1/2, respectively.

➤ For an inclination of 45◦, the force along the slope and the normal force are equal:

FH = FN = 1√
2

FG ≈ 0.707 FG .

➤ The tangent of α gives the ratio of height difference and horizontal distance; it is
called the slope.

■ In order to overcome gravity, a train of mass 1000 t on a rise of h/ l = 1 : 150 needs
a force of

FH = FG sinα = mg
h

l
= 106 kg · 9.81 m/s2 · 1

150
= 65.4 kN.

2.1.3 Orbital angular momentum
1. Definition of orbital angular momentum

Angular momentum, orbital angular momentum, �l, the vector product of the position
vector �r and the momentum �p = m�v, �v is the velocity of the point mass (Fig. 2.11).

Figure 2.11: Orbital angular
momentum �l of a point mass
m.

Radial momentum, �pr , component of the momentum �p of a point mass in the direction
of the position vector �r:
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�pr = (�p · �er ) �er , �er : unit vector in �r-direction.

The component of �p that lies in the plane spanned by �r and �p and points perpendicular to
the radial momentum is given by the vector −�er × (�er × �p). This component of �p that is
perpendicular to the position vector enters the orbital angular momentum.

orbital angular momentum = position vector × momentum ML2T−1

�l = �r× �p = m�r× �v
l = r · m · v · sinα

Symbol Unit Quantity

�l kg m2/s angular momentum
�r m position vector
�p kg m/s momentum
�v m/s orbital velocity
m kg mass
α rad angle between �r and �p

Kilogram times meters squared per second, kg m2/s, SI unit of the angular momen-
tum.

2. Properties of orbital angular momentum

➤ The orbital angular momentum of a point mass is a vector that is perpendicular to the
direction of motion of the mass point, and perpendicular to the position vector. Its
magnitude is given by l = r · p · sinα, with α being the angle between the position
and momentum vectors, respectively.

➤ The orbital angular momentum depends on the choice of the reference point.
➤ The orbital angular momentum vanishes if the momentum vector has no component

perpendicular to the position vector. Motion along a straight line through the coordi-
nate origin as reference point corresponds to zero orbital angular momentum.

■ For circular motion, the orbital velocity �v is the vector product of angular velocity �ω
and position vector �r, �v = �ω × �r. Hence, the angular momentum of circular motion
is

�l = m�r× ( �ω × �r) = mr2 �ω = J · �ω.

The quantity J = mr2 is denoted as the moment of inertia of a mass point.
➤ The angular momentum of a circular motion points along the angular velocity vector.

Hence, it is perpendicular to the trajectory plane.

3. Moment of inertia of a point mass

For circular motion, the product of the mass m and the square of the perpendicular distance
r from the rotation axis.

moment of inertia of a point mass ML2

J = m · r2

Symbol Unit Quantity

J kg m2 moment of inertia
m kg mass
r m distance from the rotation axis

➤ In rotational motion, the moment of inertia J and the angular momentum �l = J · �ω
correspond to the mass m and the momentum �p = m · �v of the translational motion.
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2.1.4 Torque
1. Definition of torque

Torque, moment of a force, the vector product of the position vector �r and the force �F
acting at the point �r (Fig. 2.12).

torque = position vector × force ML2T−2

�τ = �r× �F
τ = r · F · sinα

Symbol Unit Quantity

�� Nm torque
�r m position vector
�F N force
α rad angle between the position and

force vectors

tt

Figure 2.12: Torque �τ of a
force �F.

Newton meter, the SI unit of the torque:
1 newton meter is the torque created by a force of 1 N that acts perpendicular to the position
vector at a distance of 1 m from the center of rotation.

[�τ ] = newton meter = Nm = N ·m.

2. Properties of torque

▲ The torque vector is perpendicular to the plane A, which contains the position vector
�r and the force �F. The magnitude of the torque is the product of the distance of the
point of application of the force from the reference point (coordinate origin) and the
force component acting perpendicular to the position vector of the point at which the
force is applied.

➤ The torque has its maximum value when �r and �F are perpendicular to each other
(sinα = 1). Since the component of the force orthogonal to the position vector is the
only one that contributes to the torque, a force pointing radially inwards or outwards
relative to the force center, �F ∼ �r, yields no torque. Such forces are called central
forces. A motion that results from the action of a central force is called central mo-
tion.

▲ If one doubles the distance from the reference point to the point of application of a
constant force, the torque also doubles. Application: wrench.

■ A force of F = 5 N acts at a distance of d = 20 cm from the rotation axis on a
wrench. The torque is

τ = F · d = 5 N · 20 cm = 1 Nm.
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3. Resulting torque

If several forces �Fi , i = 1, 2, . . . act on a body, the individual torques
�τi = �ri × �Fi can be summed as vectors to form the resulting torque vector.

composition of torques ML2T−2

�τR = �τ1 + �τ2 + · · ·
Symbol Unit Quantity

�τR Nm resulting torque
�τ1, �τ2, . . . Nm individual torques

➤ For two opposite forces of equal magnitude (couple), �F2 = −�F1, the resulting force
vanishes, �F1 + �F2 = 0. The resulting torque �τR , however, does not vanish if the
forces act at different points (Fig. 2.13):

�τR = �r1 × �F1 + �r2 × �F2 = (�r1 − �r2)× �F1.

Figure 2.13: Torque of a
couple (perpendicular to the
plane including �r1 − �r2 and
�F1, �F2).

4. Torque: change of angular momentum with time

The variation of the angular momentum �l = �r × �p of the orbital motion of a point mass
with time, according to the product rule of differentiation, is given by

d�l
dt
= d(�r× �p)

dt
= d�r

dt
× m�v+ �r× d�p

dt
.

The first term on the right side vanishes, since d�r/dt = �v and the vector product of parallel
vectors equals zero. According to Newton’s second law, the change of momentum d�p/dt
can be substituted for the force �F.
▲ The variation of the angular momentum with time equals the torque of the applied

force (see Fig. 2.14).

change of angular momentum = torque ML2T−2

d�l
dt
= �r× �F = �τ

Symbol Unit Quantity

�l kg m2/s angular momentum
�r m position vector
�F N acting force
�τ Nm produced torque
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t  . D t

Figure 2.14: Torque �τ
and change of angular
momentum 
�l. The
magnitude of the angular
velocity and the orientation
of the rotation axis are
changed.

➤ If the torque points parallel or antiparallel to the orbital angular momentum, only
the magnitude of the orbital angular momentum changes while the orientation of
the orbital plane remains fixed in space. If the torque is not parallel or antiparallel
to the orbital angular momentum, the orientation of the angular velocity vector also
changes, i.e., the orbital plane is tilted.

➤ If the point mass moves under the action of a central force that points along the
position vector ±�r, the torque vanishes. The orbital angular momentum is then a
conserved quantity of motion, both in magnitude and orientation.

➤ The gravitational force is a central force. Kepler’s second law (area rule) for planetary
motion of elliptic trajectories around the Sun follows from the conservation of orbital
angular momentum.

2.1.5 The fundamental law of rotational dynamics
For the rotational motion of a body with orbital angular momentum �L = J · �ω and a
moment of inertia J that is constant in time, dJ /dt = 0, one has

d�L
dt
= J

d �ω
dt
= J �α = �τ .

▲ The angular acceleration �α = �̇ω is proportional to the torque �τ of the force. The
moment of inertia J enters as proportionality factor.

1. The fundamental law of rotational dynamics

This law governs all rotational motion:

torque = moment of inertia · angular acceleration ML2T−2

�τ = J · d�L
dt
= J · �α

Symbol Unit Quantity

�� N m torque
J kg m2 moment of inertia
�α rad/s2 angular acceleration
�L kg m2/s angular momentum

By integration, one obtains

∫ t2

t1
�τ dt = 
�L.
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▲ The impulse of a torque (time integral over the torque) equals the change of angular
momentum.

2. Comparison of translational and rotational motion

translation rotation

position �r angle ϕ

path element d�r angle element dϕ

velocity �v = d�r
dt

angular velocity �ω = dϕ

dt

acceleration �a = d�v
dt
= d2�r

dt2
angular acceleration �α = d �ω

dt
= d2�eω

dt2

mass m moment of inertia J = m r2

momentum �p = m �v angular momentum �L = J �ω
force �F = m �a = �̇p torque �τ = J �α = �̇L

kinetic energy Ekin = 1

2
mv2 kinetic energy Ekin = 1

2
Jω2

work dW = �F d�r work dW = �τ d�eω
power P = �F �v power P = �τ �ω

uniform motion

a = 0 ω̇ = 0
v = v0 = const. ω = ω0 = const.

x = v0t + x0 ϕ = ω0t + ϕ0

uniformly accelerated motion

a = a0 = const. ω̇ = ω̇0 = const
v = a0t + v0 ω = ω̇0t + ω0

x = a0

2
t2 + v0t + x0 ϕ = ω̇0

2
t2 + ω0t + ϕ0

2.2 Forces

Several kinds of forces are characterized below.

2.2.1 Weight
1. Definition of weight

Weight, the attractive force (gravitation) of Earth that affects all bodies. It is proportional
to the mass of the body.

The proportionality constant is the acceleration of gravity g that, at a given point, is
identical for all bodies independent of their mass.
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weight = mass · acceleration of gravity MLT−2

FG = mg

Symbol Unit Quantity

FG N weight
m kg mass of body
g m/s2 acceleration of gravity

➤ The mass of bodies applicable here is the gravitational mass. It always equals the
inertial mass. This statement has been experimentally demonstrated and serves as a
postulate of the general theory of relativity.

The acceleration acting on a body of mass m in a gravitational field, according to the
fundamental law of dynamics, is

a = FG

m
= g.

■ In a vacuum, a steel ball and a feather fall with equal velocity. The difference in their
velocities in air is caused by the greater air resistance of the feather as compared to
its smaller weight.

2. Acceleration of gravity

■ A body of mass 1 kg at Earth’s surface experiences a force FG = 1 kg · 9.81 m/s2 =
9.81 N. Its acceleration is

a = FG

m
= 9.81 N

1 kg
= 9.81 m/s2.

A body with twice the mass (2 kg) experiences twice the force 19.62 N, its accelera-
tion due to gravity, however, is again 19.62 N/2 kg = 9.81 m/s2.

➤ The acceleration of gravity is position-dependent. It depends on the height above sea
level, on the latitude (due to the rotation and oblateness of Earth), and to a small
extent on density fluctuations of Earth’s crust. The standard acceleration of gravity
is 9.80665 m/s2.

The acceleration of gravity is different on every planet in the solar system.
▲ At a given position, all bodies experience the same gravitational acceleration.

2.2.2 Spring torsion forces
1. Hooke’s law

Because of its elasticity, a stretched spring exerts a restoring force that, according to
Hooke’s law, is proportional to its elongation. The proportionality constant is called spring
constant (Fig. 2.15).

Hooke’s law: force ∼ elongation MLT−2

Fx = −k x

Symbol Unit Quantity

Fx N spring force
k N/m spring constant
x m elongation from rest position
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Figure 2.15: Spring forces.

➤ Hooke’s law holds only approximately, and only for small elongations from the rest
position. For larger elongations nonlinearities arise, i.e., the force no longer increases
linearly with the elongation; if it is extended enough, the spring breaks.

■ A weight of mass m = 1 kg hangs on a spring with spring constant k = 100 N/m.
The elongation d of the spring is

d = |Fx |
k
= mg

k
= 1 kg · 9.81 m/s2

100 N/m
= 0.0981 m = 9.81 cm.

2. Properties of springs

The following types of springs exist:
• tension springs produce a compressional force under elongation,
• compression springs produce an expansion force under compression,
• torsion springs oppose an external torque by the production of a counter torque.

If several springs are connected, the set can be replaced by a single equivalent spring
with a resulting spring constant. Any network of springs can be decomposed into com-
binations of parallel and serial connections of springs:

Parallel connections of springs: the individual spring constants are added (Fig. 2.16),

kres = k1 + k2 + · · · .

Serial connections of springs: the reciprocal values of the individual springs are added
(Fig. 2.17),

1

kres
= 1

k1
+ 1

k2
+ · · · .

Figure 2.16: Parallel connection of springs. Figure 2.17: Serial connection of springs.

M Springs are used for the measurement of forces (dynamometer). The spring is fixed
at one end, and the force to be measured is applied at the other end. The elongation
or compression of the spring is then proportional to the acting force. The calibration
can be achieved by means of a body of known mass, and hence known weight.
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2.2.3 Frictional forces
Frictional force, force which acts to oppose the motion of a body and arises when it is in
contact with another body, or moving through a fluid (or gas). Frictional forces act parallel
to the plane of contact.

Friction between solids, friction arising at the contact surface of solids.
➤ The friction between solids is approximately independent of the extent of the contact

surface and the relative velocity.
➤ Frictional forces in viscous fluids or gases depend on the velocity of the moving body.

There are three types of friction between solids: static friction, sliding friction and
rolling friction.

2.2.3.1 Static friction

1. Definition of static friction

Static friction, rest friction, a force caused by the coarseness of the contact surfaces. It
appears as a resistance to motion. Static friction occurs only if the body is at rest with
respect to the contact surface. If a force acts on the body, motion begins only when this
force exceeds the static-frictional force FH. The static-frictional force is proportional to
the normal force that presses one body against the other:

FH ≤ FH,max = µ0 FN .

The proportionality constant µ0 that specifies the maximum value of the static-frictional
force is called coefficient of static friction (Fig. 2.18).

Figure 2.18: Static friction.

2. Properties of static friction

➤ Static friction is independent of the area of the contact surface.
➤ The coefficient of static friction depends on the surface material of the two bodies,

and on their surface structure (coarseness) (see Tab. 7.3/3).
M The coefficient of static friction for the materials can be determined by setting a body

of mass m of one material onto an inclined plane of the other material and increasing
the angle of inclination α until the body just starts moving. The body begins to move
when the force along the slope F = mg sinα exceeds the force of static friction FH,
F = FH,max. The angle at which it happens is called static-friction angle ϕ. For the
static-friction angle,

F = mg sinϕ = FH,max = µ0 FN = µ0mg cos ϕ.

The coefficient of static friction is

µ0 = tan ϕ.
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▲ The coefficient of static friction µ0 equals the tangent of the static-friction angle ϕ.

2.2.3.2 Sliding friction
Sliding friction arises when a body moves on the contact surface. The sliding-frictional
force points opposite to the velocity of the body, its magnitude is proportional to the mag-
nitude of the normal force (Fig. 2.19).

sliding-frictional force MLT−2

FGR = µFN

Symbol Unit Quantity

FGR N sliding-frictional force
µ 1 coefficient of sliding friction
FN N normal force

The proportionality factor µ is called coefficient of sliding friction (see Tab. 7.3/2).

Figure 2.19: Solid friction. Static and sliding friction.

The coefficient of sliding friction is in general lower than the maximum value of the
coefficient of static friction (see Tab. 7.3/3).
■ A metal block of 10 kg slides on a wood surface. The coefficient of static friction for

metal on wood is µ0 ≈ 0.5, the coefficient of sliding friction is µ ≈ 0.4. To put the
resting block into motion, a force that exceeds the static friction must be applied:

FH,max = µ0 FN = µ0mg = 0.5 · 10 kg · 9.81 m/s2 = 49 N.

As soon as the metal block moves, only the sliding friction acts:

FGR = µFN = µmg = 0.4 · 10 kg · 9.81 m/s2 = 39 N.

2.2.3.3 Rolling friction

1. Definition of rolling friction

Rolling friction arises when a body (e.g., a wheel) on a plane does not slide, but rolls. In
a rolling motion, any point on the circumference line of the wheel (radius R) moves just
as fast relative to the wheel center as the wheel moves forward as a whole (Fig. 2.20):

Rω = v.
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The velocity of a point on the circumference at the contact point with the floor equals zero
because the circumference velocity Rω originating in the circular motion is just compen-
sated by the linear motion v of the wheel. Rolling friction occurs because of the deforma-
tion of the wheel and support. A frictional force �FR that acts at the wheel’s circumference
and points opposite to the compressional force acting on the wheel axis causes the support
force to act not at the point P1 (the instantaneous rotation axis), but rather at the point P2.
The support force is the resultant of the normal force �FN and the force �FR. The wheel
rolls uniformly if the sum of normal force, support force, and compressional force van-
ishes (Fig. 2.21). The torque of the compressional force with respect to the instantaneous
rotation axis through the point P1 is

τ = R · FR, R : radius of the wheel.

R
R

Figure 2.20: Rolling motion. The distance
s traversed by the axis equals the length of
the unwound circumference: s = Rα.

Figure 2.21: Rolling friction.

2. Coefficient of rolling friction,

f , expresses the proportionality between the support force FN and the torque τ created by
the frictional force:

τ = f · FN.

It follows that

FR = f

R
FN.

The rolling friction depends on the load, the wheel diameter, and the material of both wheel
and support.
➤ The rolling-frictional force decreases as the wheel diameter increases.
➤ The coefficient of rolling friction has the dimension of a length. It is velocity-

dependent. For steel on steel, it is between 0.01 cm at 4 m/s and 0.05 cm at 30 m/s
(see Tab. 7.3/1).

2.2.3.4 Rope friction

1. Definition of rope friction

Rope friction, frictional force between rope (also belt or tape) and roller (pulley). During
the lifting, the force F2 compensates both for the load F1 and for the frictional force FGR =
F2 − F1 (Fig. 2.22).
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rope friction MLT−2

FGR = F1
(
eµ0α − 1

)
= F2

(
1− e−µ0α

)

Symbol Unit Quantity

FGR N sliding frictional force
F1 N load
F2 N compressional force
e 1 Euler number = 2.7183. . .
µ0 1 coefficient of static friction
α rad angle made by the rope

Figure 2.22: Lifting of a
load F1 by the force F2. The
rope friction depends on the
angle α.

➤ When pulling a load up, F1 is the load, F2 is the lifting force. When lowering a load,
F2 is the load, F1 is the lowering force:

Flift = eµαFload,

Flower = e−µαFload.

➤ These formulas hold if the cylinder is at rest and the rope moves with uniform veloc-
ity, or if the rope is at rest and the cylinder rotates with uniform velocity.

2. Properties of rope friction

➤ In rope friction, the coefficient of sliding friction depends on the velocity of the rope
and on the radius of the pulley radius.

▲ The rope is at rest if the compressional force is too small to lift the load, or too large
to let it down:

Fload e−µα < F < Floadeµα.

▲ If the rope does not move when lifting a load F1 by the force F2, then:

F2/F1 ≤ eµ0α,

where µ0 is the coefficient of static friction. For technical applications (traction belt)
in which no sliding between rope and support occurs, one has correspondingly to
apply the coefficient of static friction.

➤ For friction coefficients see Tab. 7.3/2 to Tab. 7.3/3.

2.3 Inertial forces in rotating reference systems

Inertial forces arise both in translational and rotational motions. The rotation is described
as the circular motion of a point mass, and then the resulting inertial forces are deter-
mined. Circular motion is not a uniform straight-line motion, but involves acceleration,
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and hence must result from a force. The acceleration does not necessarily lead to an in-
crease of velocity, but rather to a change of its direction.

Equation of motion of a point mass with mass m in a non-inertial coordinate system
that moves with acceleration �a0 and rotates with the angular velocity �ω:

m �̈r = �F− m �a0 − m �ω × ( �ω × �r)− m �̇ω × �r− 2m �ω × �̇r.

Centrifugal force: �Fc = −m �ω × ( �ω × �r).
Coriolis force: �FC = −2m �ω × �̇r.

2.3.1 Centripetal and centrifugal forces
The acceleration �a of a point mass at the position �r that moves with angular velocity �ω on
a circular orbit is

�a = d�v
dt
= d

dt
( �ω × �r).

Differentiation of the vector product according to the chain rule yields

�a = d �ω
dt
× �r+ �ω × d�r

dt
.

acceleration under rotation LT−2

�a = �α × �r+ �ω × ( �ω × �r)

Symbol Unit Quantity

�a m/s2 acceleration
�α rad/s2 angular acceleration
�r m distance from center
�ω rad/s angular velocity

The first term describes the contribution of the angular acceleration �α to the acceleration.
The second term represents the central acceleration created by the force that keeps the body
on its circular path.

1. Centripetal force

Centripetal acceleration, ar , the radial acceleration in the motion of a point mass on a
circular path. It points towards the center of the circle and has magnitude

ar = |�ω × ( �ω × �r)| = ω2 · r · sinϑ,

where ϑ specifies the angle between the position vector and the rotation axis. If �r is per-
pendicular to the rotation axis,

ar = ω2 · r,

with r the perpendicular distance of the body from the rotation axis.
According to Newton’s second law, the central acceleration is caused by a force:
Centripetal force, �Fr , force that causes the central acceleration, and hence keeps the

body on the circular path:
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centripetal force MLT−2

Fr = m · ar = m · ω2 · r

= m · v
2

r

Symbol Unit Quantity

Fr N centripetal force
m kg mass
ar m/s2 central acceleration
ω rad/s angular velocity
r m distance from rotation axis
v m/s velocity

In vector notation, the centripetal force is given by

�Fr = −Fr �er = m �ω × ( �ω × �r).

The centripetal force points towards the center of the circle. Because of inertia, an observer
rotating with the mass feels, however, a force that points outwards.

2. Centrifugal force

Centrifugal force, �Fc, force felt by an observer moving on a circular path. It points from
the center outwards, and its magnitude equals that of the centripetal force (Fig. 2.23):

�Fc = Fr �er = −m �ω × ( �ω × �r).

➤ The centrifugal force is an inertial force, i.e., it arises only in the accelerated reference
system and is felt only by an observer in such a system.

■ A car with mass m = 800 kg moving on a curve with radius of curvature r = 10 m
with the speed v = 30 km/h experiences a centrifugal force

Fc = mv2

r
≈ 5.5 kN.

This force can be offset by banking the curved road. To take a curve without any
frictional force, one needs a banked curve with a slope α of

tanα = Fc

FG
= v

2/r

g
≈ 0.7 �⇒ α ≈ 35◦

(FG gravitational force, g acceleration of gravity).
M Centrifugal-force governor, two pendulums mounted on an axis. When the axis

rotates, the pendulums are pushed outwards by the centrifugal force. The force can
be used for controling the rate of rotation.

c Figure 2.23: Centrifugal
force. As viewed in the
rotating coordinate system,
circular motion is a balance
between the centrifugal
force �Fc and the centripetal
force �Fr that keeps the body
on the circular path.
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2.3.2 Coriolis force
1. Definition of Coriolis force

Coriolis force �FC , force felt by an observer who moves on a rotating coordinate system
inwards or outwards from the axis. It acts perpendicular to the direction of motion of the
observer and perpendicular to the rotation axis. The physical origin of the Coriolis force
lies in the higher orbital velocity of the points that are farther from the rotation axis.

In vector notation, the Coriolis force can be written:

Coriolis force MLT−2

�FC = −2m �ω × �v

Symbol Unit Quantity

�FC N Coriolis force
m kg mass
�ω rad/s angular velocity of rotation
�v m/s velocity of mass in the rotating system

2. Body on rotating bar

When a mass moves away from the center of rotation, its moment of inertia J = mr2

increases continuously. This increase produces torque even if the angular velocity ω is
constant (Fig. 2.24):

M = dL

dt
= ω · dJ

dt
,

= ω · m d

dt
(r2) = 2m · ω · r · vr .

This torque must be supplied by the driving unit to maintain a constant rate of rotation.
Hence, the mass experiences a force of magnitude

FC = 2m · ω · vr .

Figure 2.24: Orientation of the Coriolis force on a body that moves outwards on a rotating
bar.

3. Coriolis force: examples

The trajectory of a body that moves uniformly in an inertial system appears as curved when
projected onto a rotating system, for example a rotating disk (Fig. 2.25).
■ If a body on Earth’s surface moves north, then, because of the Earth’s rotation �ω, it

experiences a Coriolis force that drives it east on the Northern Hemisphere, west on
the Southern Hemisphere. The obvious reason for the contrary deflections is: on the
Northern Hemisphere, the body moving north runs into regions with continuously
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decreasing circumferential velocity of Earth, thus gets ahead of Earth’s rotation due
to its inertia. On the Southern Hemisphere, on the contrary, when moving north, the
body runs into regions with continuously increasing circumferential velocity, and
thus falls behind Earth’s rotation (Fig. 2.26).

Figure 2.25: The trajectory of a body that
moves uniformly in an inertial system
appears as a spiral if seen from a rotating
disk.

Figure 2.26: Coriolis force �FC on the
Earth surface. A body moving on the
Northern Hemisphere with velocity �v
north is deflected east (on the Southern
Hemisphere, west). �ω: angular velocity of
Earth’s rotation.

2.4 Work and energy

The concepts work and energy are fundamental for the description of physical processes.
Energy is a conserved quantity. It occurs in various forms that can be converted into each
other.

2.4.1 Work
1. Definition of work

Work, a force �F that displaces a body along the path element d�r performs work:

dW = �F(�r, t) · d�r = F(�r, t) cosα dr,

where α is the angle between the force and the path element (Fig. 2.27).

Figure 2.27: Work along the path from �r1 to �r2.
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work = force · path ML2T−2

dW = �F · d�r
= |�F| |d�r| cosα

Symbol Unit Quantity

dW J = Nm work
�F N force
d�r m path element
α rad angle between force

and path element

2. Unit of work

Joule, the SI unit of work: 1 joule is the work performed when a body is displaced by a
force of 1 N over a distance of 1 m.

[W ] = joule = J = N ·m = kg m2

s2

For additional units, see Tab. 33.0/3 and 33.0/5. Non-SI units:

1 kilopondmeter (kpm) = 9.80665 J

1 erg = 10−7 J

1 electron volt (eV) = 1.602 · 10−19 J

3. Properties of work

➤ The sign of the work depends on the relative direction of the motion and the force.
dW > 0: The displacement has a component along the direction of force

(cosα > 0).

dW < 0: The displacement has a component opposite to the direction of force
(cosα < 0).

■ A body is displaced by a force F = 10 N by s = 20 cm along the direction of force.
The work performed is in this case

W = Fs = 10 N · 0.2 m = 2 J.

If the body is displaced twice that distance, s = 40 cm, along the direction of force,
twice the amount of work is performed:

W = Fs = 10 N · 0.4 m = 4 J.

The work would also be twice as large if twice the amount of the force acts along the
original direction.

➤ If the force does not act along the direction of motion of the body, only the force
component along the motion (i.e., the projection of the force vector onto the direction
of motion) contributes to the work. A force acting perpendicular to the path element
performs no mechanical work (cosα = 0). The amount of work has its maximum
value when the body is displaced parallel to the force (cosα = 1).

➤ Constraint forces do not perform work, since they are perpendicular to the path.
■ A body moves on a rail. A force acts on it with an angle of 45◦. The component of

the force along the direction of motion is F cos 45◦ = 1√
2

F .
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4. Work as integral

The total work performed along the path from �r1 to �r2 is the path integral over the force.

work = integral of force along the path ML2T−2

W =
�r2∫
�r1

�F(�r) · d�r

Symbol Unit Quantity

W J = Nm work
�F(�r) N force vector at position �r
�r m position vector
�r1 m initial position
�r2 m final position

Here �r runs over all points on the path from �r1 to �r2.
➤ For a one-dimensional motion, the work is obtained as the area below the curve F(x)

(Fig. 2.28),

W =
x2∫

x1

F(x) dx .

Figure 2.28: One-
dimensional motion. Work
is the area below the curve
F(x).

2.4.2 Energy
1. Definition and properties of energy

Energy, a quantity characterizing the state (position, state of motion, temperature, defor-
mation, etc.) of a body. The energy increases when work is performed on the body, it
decreases when work is performed by the body. The work thereby causes a change of the
state of the body (displacement, acceleration, increase of temperature, change of shape,
etc.).
▲ Energy measures how much work was put into the body, or was performed by it.

Energy has the same SI unit as work: the joule.
➤ Energy is a quantity that depends on the choice of the system of reference. It can be

specified only with respect to the reference system.
■ If a locomotive pulls a train up a mountain, then it increases its potential energy. If

the train rolls down again, this energy can be released as heat of friction (by braking),
or converted into energy of motion (kinetic energy).

There are various forms of energy that can be converted into each other.
■ Electrical or chemical energy is converted by the locomotive into kinetic and potential

energy of the train, which can in turn be converted to heat by braking. Heat is also a
form of energy.
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2. Energy conservation

Energy cannot be destroyed in physical processes, but various kinds of energy can be con-
verted into each other.

Law of energy conservation: In a closed system, the total
energy remains constant in all physical processes. Energy
can only be converted into different forms, or be exchanged
between partial systems.

ML2T−2

∑
Ei = Epot + Ekin + · · · = const.

Symbol Unit Quantity

Ei J energy of kind i
Epot J potential energy
Ekin J kinetic energy
. . . J other kinds of energy

3. Energy as state parameter

Energy is a property of a definite state of a system (e.g., of the position and the velocity in a
gravitational field). The energy difference between two states must be put into the system
if it changes from a state of lower energy to a state of higher energy.
▲ The zero of energy can be fixed arbitrarily, since only energy differences affect phys-

ical processes. One can thus add an arbitrary constant energy to the energy of every
system without affecting the physical content.

Besides the mechanical energy forms, energy can be stored in electromagnetic fields.
Heat is also an energy form. Energy of motion can be transformed into heat by friction.
Heat engines convert heat into mechanical energy (steam engine, see p. 709).

2.4.3 Kinetic energy
1. Definition of kinetic energy

Work done during acceleration, the work performed on accelerating a mass m with the
acceleration �a against the inertial force �FT = −m�a, dW ′B = −m�a d�r.

Kinetic energy, energy of motion, the energy of motion supplied to the body by the
work done during acceleration. It can be released, e.g., by braking as heat of friction:

dWB = −dW ′B = −�FT d�r = m
d�v
dt
�v dt = m v dv = d

(m

2
v2
)
.

work done during acceleration ML2T−2

dWB = m�a · d�r

WB = 1

2
m
(
v2 − v2

0

)
Symbol Unit Quantity

WB J work done during acceleration
m kg mass of body
�a m/s2 acceleration
d�r m path element
v m/s final velocity
v0 m/s initial velocity

The work done during acceleration depends on, besides the mass m, only the initial velocity
v0 and the final velocity v.
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Kinetic energy of a point mass of mass m, the quantity

Ekin = 1

2
mv2.

It specifies the work done during acceleration that was needed to accelerate the mass point
from rest (v0 = 0) to its instantaneous velocity v.

2. Kinetic energy and reference system

➤ The kinetic energy depends on the state of motion of the body, and thus on the ref-
erence system. This expresses the arbitrariness of the choice of the zero of energy. A
body with the velocity �v has in one reference system the kinetic energy

Ekin = 1

2
mv2.

In another reference system that moves uniformly with the velocity �v0 relative to the
first one, its kinetic energy is

E ′kin =
1

2
m(v′)2 = 1

2
m
(
v2 + 2�v�v0 + v2

0

)
.

■ A body of mass 5 kg at 2 m height above the floor has a potential energy of 98.1 J
(see below). If it falls, the potential energy is converted into kinetic energy. When
it reaches the floor, the total potential energy is transformed into kinetic energy. Its
velocity is then

v =
√

2Ekin

m
=
√

2 · 98.1 J

5 kg
= 6.26 m/s.

2.4.4 Potential energy
Generally, the energy that depends only on the position of the body, but not on its velocity,
is referred to as potential energy.

2.4.4.1 Lifting against the gravitational force

1. Lifting and potential energy

Work done in lifting in the gravitational field, the work performed in lifting a body against
the constant gravitational force FG = mg.

work done in lifting ML2T−2

WH = FG
h = mg
h

Symbol Unit Quantity

WH J work done in lifting
FG N gravitational force
m kg mass of lifted body
g m/s2 free acceleration of gravity

(9.81 m/s2)

h m height difference
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Potential energy, position energy, energy supplied to a body by work done in lifting. It
depends on the position of the body (Fig. 2.29).
➤ This formula holds only if the gravitational force can be considered constant.

Figure 2.29: Work done in lifting.

2. Properties of potential energy

Potential energy, the quantity

Epot = mgh.

The height h is measured from an arbitrarily chosen zero height.
➤ The potential energy depends on the selected zero height, but the difference of the po-

tential energy between two points, and hence the work done in lifting, is independent
of the choice of the zero height.

■ A body of 5 kg mass is lifted 2 m. The work done in lifting is

WH = mgh = 5 kg · 9.81 m/s2 · 2 m = 98.1 J.

If it is lifted to twice the height, or if the mass is twice as large, twice the amount of
work must be done.

➤ A similar type of work is done when an electric charge is moved against the force of
an electric field (see p. 447).

2.4.4.2 Work of deformation and tension energy of a spring

1. Work of deformation,

the work performed on deforming a body. The work of deformation occurs when a spring is
stretched by the length x against the restoring force (spring force) Fx = −k x (Fig. 2.30).

The spring force is not constant, unlike the gravitational force (in a restricted height
interval), but is instead proportional to the elongation x for small spring displacements.
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Figure 2.30: Work of deformation and tension energy of a spring.

The work done by an external force F = −Fx in stretching the spring is therefore

WF =
∫ xmax

xmin
F dx =

∫ xmax

xmin
kx dx,

if the spring is extended from xmin to xmax. One finds:

work of deformation ML2T−2

WF = 1

2
k(x2

max − x2
min)

Symbol Unit Quantity

WF J work of deformation
k N/m spring constant
xmin m initial elongation from rest position
xmax m final elongation from rest position

2. Tension energy,

the potential energy of an elastically deformed body, represents the work of deformation
stored in the body. It depends on the state of deformation of the body, and is released when
the body takes its original form again.

Tension energy EF of a spring, the quantity

EF = 1

2
kx2.

It represents the work that was needed to deform the spring from the stress-free state (x =
0) up to the elongation x .
➤ Part of the work of deformation is always converted to heat by friction. Hence, the

sum of kinetic and potential energy is only approximately conserved; the vibration is
damped.

3. Example: Vibration of a spring

In the vibration of a spring, kinetic and potential energy are converted into each other
during each cycle of the motion. When friction is neglected, the total energy E is

E = Ekin + Epot = 1

2
mv2 + 1

2
kx2 = const.
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Hence, the velocity of the mass m at a given elongation x is

v =
√

2E

m
− k

m
x2.

The maximum elongation xmax is reached when v = 0:

xmax =
√

2E

k
.

At the maximum elongation, the total energy is stored as potential energy. For x = 0,
however, the total energy is kinetic energy:

E = 1

2
mv2

max,

vmax the velocity at x = 0.

2.4.5 Frictional work
Frictional work, the work performed against the frictional force. The work supplied is
transformed into heat.
➤ The energy converted into heat by frictional work cannot be completely converted

back into mechanical energy by a heat engine.
For sliding friction, the frictional force FR is approximately constant and proportional

to the normal force (support force) of the body. It acts opposite to the direction of motion.
For similar surfaces of the moving body, the friction force does not depend on the area of
the support surface.

sliding-frictional work ML2T−2

dWR = FR dx

= µFN dx

Symbol Unit Quantity

dWR J frictional work
FR N sliding-frictional force
dx m path element
µ 1 coefficient of sliding friction
FN N normal force

Sliding friction on dry surfaces is to a first approximation independent of the velocity. For
gas and liquid friction, the frictional force is velocity-dependent (see p. 198).

2.5 Power

Power, P , work done per unit time. It is useful for the characterization of machines.

power = work
time

ML2T−3

P = 
W


t

Symbol Unit Quantity

P W power

W J completed work

t s needed time
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Watt, W, SI unit of power.
1 watt is the power of a machine that performs 1 joule of work per second.

[P] = watt =W = J

s
= kg ·m2

s3
.

For additional units, see Tab. 33.0/3.
Non-SI unit:

1 horsepower (HP) = 735.4988 W

➤ If the power is time-dependent, the instantaneous power is

P = dW

dt
.

■ An engine does work of 600 kJ per minute. Its power is

P = 
W


t
= 600 kJ

60 s
= 10 kW.

➤ In colloquial language, the term power often connotes the work done. In physics and
engineering, however, power denotes the work delivered in a physical system per unit
time.

2.5.1 Efficiency
Efficiency, η, the ratio of work released in an energy conversion (effective power) to
the input work (nominal power). Since machines in general do work continuously, the
efficiency is usually defined as ratio of output power to input power:

efficiency = useful work
input work

= output power
input power

1

η = Pout

Pin

= Pin − Ploss

Pin

= 1− Ploss

Pin

Symbol Unit Quantity

η 1 efficiency
Pout W output power
Pin W input power
Ploss W lost power

The efficiency has the dimension 1; it is often given as a percentage.
■ The output shaft of a gear unit provides a power of 40 kW. The needed input power

on the drive shaft is 50 kW. The efficiency is

η = 40 kW

50 kW
= 0.8 = 80 %.

20 % of the input energy is lost as friction heat.
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▲ An efficiency of η = 1 corresponds to a perfectly (loss free) working machine.
▲ Because of energy conservation and the inevitable losses, the efficiency is always less

than unity,

η < 1.

Total efficiency of serially connected machines, obtained by multiplication of the indi-
vidual efficiencies:

ηtot = η1 · η2 · · · · .

The total efficiency lies therefore between zero and unity; it cannot be larger than the
efficiency of any single machine.

2.6 Collision processes

Collisions, short-term interactions between two or more moving bodies that represent a
closed system. Collisions are characterized by very large forces of short range. For the
description of collisions precise knowledge of the interaction force is not needed; it suffices
to calculate the exchange of energy and momentum between the particles.

1. Kinematic relations for two-body collisions

Two-body collisions, the collision of two bodies in which large forces of short range act
over a short time interval. During the collision, energy and momentum are transfered be-
tween the collision partners; hence, the velocity, direction of motion and internal energy
of the bodies may change. Outside of the interaction region, the collision partners move
force-free (straight-line uniform motion).

Kinematic relations for two-body collisions:
Collision partners: A, B

Mass of collision partners: m A, m B

Velocities before collision: �vA, �vB

Velocities after collision: �uA, �uB

Momenta before collision: �pA = m A �vA, �pB = m B �vB

Momenta after collision: �pA
′ = m A �uA, �pB

′ = m B �uB

Kinetic energy before collision: Ekin = m A

2
v2

A +
m B

2
v2

B

Kinetic energy after collision: E ′kin =
m A

2
u2

A +
m B

2
u2

B

Change of internal energy of the collision partners: 
W

2. Energy and momentum conservation

Momentum conservation:

m A �vA + m B �vB = m A �uA + m B �uB .

Energy conservation:

Ekin = E ′kin +
W.
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W > 0 (E ′kin < Ekin): Endothermal collision. Kinetic energy is converted into in-
ternal energy of the collision partners (excitation of collision
partners).


W < 0 (E ′kin > Ekin): Exothermal collision. Intrinsic energy of the collision part-
ners is converted into kinetic energy (de-excitation of collision
partners).

According to conservation or non-conservation of mechanical energy, the collisions are
classified as elastic or inelastic, respectively.

3. Elastic collision,

total mechanical energy and total momentum are conserved (Fig. 2.31):


W = 0, Ekin = E ′kin.

Figure 2.31: Elastic collisions. (a): central collision, (b): non-central collision.

■ The collision of two billiard balls is elastic to a very good approximation.
■ In atomic physics, collisions between electrons arise due to the Coulomb interaction.

If the emission of electromagnetic waves is neglected, the collisions are elastic.

4. Inelastic collision,

during the collision process, a part of the mechanical energy is converted into other forms
of energy (heat, deformation energy). The total energy is conserved only if, not only the
kinetic energy of the collision partners is taken into account, but also the change of their
intrinsic excitation energy 
W (Fig. 2.32).

Figure 2.32: Inelastic collisions. (a): partly inelastic collision, (b): totally inelastic collision.
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■ The bounce of a tennis ball on the floor is connected with an energy loss (friction),
and hence is inelastic. The ball possesses a smaller magnitude of velocity just after
the bounce than it did just before.

Totally inelastic collision, a collision in which both of the colliding bodies have the
same velocity after the collision, i.e., they stick together.
■ Two snowballs collide totally inelastically and stick together. The lost energy is spent

in the deformation of the balls.

5. Collision geometry

For motion in several dimensions, one distinguishes collisions by their geometry.
Straight-line collision, the centers of gravity of the colliding bodies move along their

connecting lines before and after the collision. One coordinate (distance of centers of grav-
ity) is sufficient to describe the collision.

Non-central collision, the centers of gravity of the colliding bodies move in different
directions.

Collision normal, the direction of force transfer during the collision. The collision nor-
mal points perpendicular to the collision plane, the contact plane of the two bodies.

For rigid bodies one distinguishes collisions by the torque:
Central collision, the collision normal at the moment of collision points parallel to the

connecting line of the centers of gravity. There is no torque (sinφ = 0, φ: angle between
lever arm and orientation of force) (Fig. 2.33 (a)).

Off-center collision, the collision normal does not point along the connecting line of
the centers of gravity, hence there is a torque. The bodies begin to rotate (Fig. 2.33 (b)).
➤ For point masses, there are only central collisions, since only extended bodies can

rotate.

Figure 2.33: Central (a) and off-center collision (b) of rigid bodies.

2.6.1 Elastic straight-line central collisions
Let two bodies of mass m A and m B move in common along a straight path that coincides
with the x-axis. The total energy and the total momentum along the path orientation are
conserved quantities (Fig. 2.34).
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Figure 2.34: Elastic
straight-line central
collision.

Hence,

1

2
m Av

2
A +

1

2
m Bv

2
B =

1

2
m Au2

A +
1

2
m Bu2

B ,

m AvA + m BvB = m Au A + m BuB .

Sorting the terms by their correspondence to the bodies A and B yields

m A(v
2
A − u2

A) = m B(u
2
B − v2

B),

m A(vA + u A)(vA − u A) = m B(uB + vB)(uB − vB),

m A(vA − u A) = m B(uB − vB).

Division of the last two equations yields

vA + u A = uB + vB .

This equation can be solved for uB and inserted into the momentum conservation law:

uB = vA + u A − vB .

There remains only one unknown quantity in the momentum equation, the velocity u A .
Similarly, one finds the velocity of body B after the collision:

u A = m A − m B

m A + m B
vA + 2m B

m A + m B
vB , uB = 2m A

m A + m B
vA + m B − m A

m A + m B
vB .

1. Collision of two bodies with equal masses

If both bodies have equal mass, then

u A = vB , uB = vA.

The colliding bodies exchange their velocities.

2. Collision between a heavy and a light body

Let body A be very much heavier than body B: m A � m B . Then approximately

u A ≈ vA, uB ≈ 2vA − vB .

The heavy body A remains almost unaffected. The relative velocity of the second body
after the collision is just the negative of the relative velocity before the collision:

uB − u A ≈ −(vB − vA).

Thus, the light body is reflected by the heavy body.
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2.6.2 Elastic off-center central collisions
Momentum is exchanged only along the collision normal (y-axis); the components of the
momenta perpendicular to the collision normal (x-axis) before and after the collision are
equal (Fig. 2.35):

m AvAx = m Au Ax ,

m BvBx = m BuBx .

Momentum conservation along the collision normal:

m AvAy + m BvBy = m Au Ay + m BuBy .

Energy conservation:

m A

2

(
v2

Ax + v2
Ay

)
+ m B

2

(
v2

Bx + v2
By

)
= m A

2

(
u2

Ax + u2
Ay

)
+ m B

2

(
u2

Bx + u2
By

)
.

Velocity components after the collision:

u Ax = vAx , uBx = vBx ,

u Ay = m A − m B

m A + m B
vAy + 2m B

m A + m B
vBy,

uBy = 2m A

m A + m B
vAy + m B − m A

m A + m B
vBy .

Figure 2.35: Elastic
off-center central collision.

2.6.3 Elastic non-central collision with a body at rest
Body A with momentum �pA = m A�vA collides with body B at rest (�pB = 0). After the
collision body A moves with the momentum �pA

′ = m A�uA, and body B has the recoil
momentum �pB

′ = m B �uB (Fig. 2.36). The collision process is not completely fixed by the
energy and momentum conservation laws: there are only 4 equations for calculating the 6
components of the final momenta. The end points of �pA

′ lie on the momentum sphere
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with the radius pA · m B

m A + m B
, where the center of this sphere divides the momentum �pA

according to the ratio of masses (Fig. 2.37),(
�pA
′ − m A

m A + m B
�pA

)2
=
(

m B

m A + m B
�pA

)2
.

There is rotational symmetry about the �pA-axis, and hence the collision process is charac-
terized by the polar scattering angle ϑ .

Figure 2.36: Elastic collision
of the body A with a body B
at rest.

One can distinguish the following cases.
m A > m B : There exists a maximum scattering angle ϑmax, sinϑmax = m B/m A.

Possible scattering angles lie in the interval 0 ≤ ϑ ≤ ϑmax.

m A = m B : The scattering angle lies in the interval 0 ≤ ϑ ≤ π . The momenta after
the collision always include the angle π/2 (Thales’ law).

m A < m B : All scattering angles between 0 and π are allowed: 0 ≤ ϑ ≤ π .
➤ In an inelastic collision, the radius of the momentum sphere changes while the center

remains in place. The radius increases (decreases) for 
W < 0 (
W > 0).
➤ As the radius of the momentum sphere vanishes, the inelastic collision approaches a

totally inelastic collision.

Figure 2.37: Momentum sphere (m = m A + m B ). (a): m A > m B , (b): m A = m B , (c):
m A < m B .

■ A body collides with a wall that is parallel to the y-direction. The direction of the
collision is perpendicular to the wall, so that only the x-component of its momentum
is changed. The process corresponds to an elastic collision with a very heavy body,

p′x = −px .

The reflection law of the elastic collision follows from this example.
▲ If a body collides elastically with a fixed wall, its reflection angle ε′ equals the inci-

dence angle ε, and the magnitude of the momentum remains unchanged. The direc-
tions of motion before and after the collision are coplanar (Fig. 2.38).
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Figure 2.38: Reflection law
for elastic collision on a
wall. ε: angle of incidence,
ε′: angle of reflection.

2.6.4 Inelastic collisions
In inelastic collisions, part of the energy of motion is lost. It is used for permanent defor-
mation of the collision partners and is converted into deformation heat.

2.6.4.1 Partly inelastic collisions
Energy loss
W , lies between the energy loss in a totally inelastic collision as a maximum
value and zero:

0 < 
W <
m Am B

2(m A + m B)
(vA − vB)

2.

How large this fraction is depends on the inelastic deformability of the collision partners.

2.6.4.2 Totally inelastic collision
After the collision ua = ub = u. From the law of momentum conservation, it follows that

m A · vA + m B · vB = (m A + m B)u,

and therefore

u = m AvA + m BvB

m A + m B
.

Kinetic energy before and after the collision:

Ekin = 1

2
m Av

2
A +

1

2
m Bv

2
B ,

E ′kin =
1

2
(m A + m B)u

2 = 1

2

(m AvA + m BvB)
2

m A + m B
.

Energy loss 
W = Ekin − E ′kin in a totally inelastic collision:


W = m A · m B

2(m A + m B)
(vA − vB)

2.

If a body collides with a another at rest (vB = 0), the ratio of kinetic energies before and
after the collision depends only on the masses:

E ′kin
Ekin

= m A

m A + m B
≤ 1.
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The ratio of energy loss to initial kinetic energy Ekin(t0) is in this case (vB = 0):


W

Ekin(t0)
= m B

m A + m B
≤ 1.

Equal masses m A = m B : half of the kinetic energy Ekin is lost. In macroscopic colli-
sion processes, this amount is converted into deformation and heat energy of the collision
partners.

2.7 Rockets

Recoil principle, follows from the law of momentum conservation, applied to rocket
propulsion. Unlike propulsion based on friction, rockets also work in a vacuum.
➤ Rockets are used for transportation into space and serve as carriers of payloads such

as satellites (for information transmission, Earth and meteorological observation, re-
search) and manned spaceships. Their significance on Earth is limited. Projectiles
with jet propulsion are not rockets, since they do not carry their recoil mass (reaction
mass), but rather suck it in as air.

2.7.1 Thrust
Rocket, continuously expels hot gases produced by combustion of the fuel by means of
an oxidizer, also carried. The hot gases are emitted in the backward direction and push
the rocket forward by their recoil (Fig. 2.39). The rocket mass therefore decreases during
acceleration. Unlike the jet engine, that sucks in air and expels it in backward direction, a
rocket can also be used in a vacuum.

Figure 2.39: Rocket.

1. Acceleration of a rocket

To calculate the acceleration of the rocket, we consider a small time interval 
t , in which
a mass 
m A is ejected by the rocket with velocity �vA , whereby the velocity of the rocket
increases from �v to �v + 
�v. For the momentum balance, the momentum 
m A�vA of the
ejected gas must be taken into account. The change of momentum of the system rocket
plus ejected gas during this interval is


�p = [(m −
m A)(�v+
�v)+
m A�vA] − m�v,
= m
�v+
m A[�vA − (�v+
�v)].

Introducing the escape velocity

�v0 = �vA − �v



80 2. Dynamics

of the ejected gas relative to the rocket, and neglecting the product of two small terms,

m A ·
�v ≈ 0, the momentum conservation law (in the absence of external forces) reads:


�p = m
�v−
m A�v0 = 0.

2. Recoil

The momentum difference is called recoil. A recoil arises always when one body pushes
another body away. It expresses Newton’s third law (action = reaction).

After division by 
t and letting 
t → 0, one finds

d�p
dt
= lim

t→0


�p

t
= m

d�v
dt
− dm

dt
�v0 = 0.

3. Equation for rocket thrust

rocket thrust MLT−2

�Fthrust = dm(t)

dt
�v0 = ṁ �v0

Symbol Unit Quantity

�Fthrust N thrust
t s time
m(t) kg mass at time t
ṁ kg/s mass flow
�v0 m/s escape velocity

If an additional external force Fa acts (e.g., Earth’s gravitation), it enters on the right side

of the equation for
d�p
dt

in place of the zero. One writes:

m
d�v
dt
= dm

dt
�v0 + Fa = ṁ �v0 + Fa

and calls the first term on the right side the thrust �Fthrust. The acceleration of the rocket �a
is obtained in the case of external forces �Fa (gravitation, friction) given by:

�a = d�v
dt
= 1

m(t)
(�Fthrust + �Fa).

■ A Saturn-V rocket has an initial mass m0 = 2.95 · 106 kg, a burning time of the first
stage of tB = 130 s, and an empty mass at the end of burning of the first stage of
mempty = 1.0 · 106 kg. The mass flow is

ṁ = m0 − mempty

tB
= 2.95 · 106 kg− 1.0 · 106 kg

130 s
= 1.50 · 104 kg/s.

For an escape velocity of v0 = 2220 m/s, the thrust is

Fthrust = ṁv0 = 1.50 · 104 kg/s · 2220 m/s = 3.3 · 107 N.
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2.7.2 Rocket equation
1. Final velocity and maximum altitude of a rocket

To calculate the final velocity of the rocket, the rocket acceleration must be integrated over
time. This is relatively simple if the escape velocity v0 and the mass flow ṁ during the
burning time tB are constant. For the mass at time t then: m(t) = m0 − ṁt, where m0 is
the original mass of the rocket. If one includes as external force only a gravitational force
with constant gravitational acceleration, Fa = m(t)g, the rocket acceleration is

a(t) = ṁ

m0 − ṁt
v0 − g.

By integration over the time, one finds for the velocity v at time t :

v(t) = v0 ln

(
m0

m0 − ṁt

)
− gt.

An additional integration yields the height h at the time t :

h(t) = v0(m0 − ṁt)

ṁ

[
m0

m0 − ṁt
− 1− ln

(
m0

m0 − ṁt

)]
− 1

2
gt2.

2. Form of rocket equation

At the end of the burning, the final velocity and height are:

rocket equation

vB = v0 ln

(
m0

mempty

)
− gtB

hB =
v0 mempty

ṁ

×
[

m0

mempty
− 1− ln

(
m0

mempty

)]

− 1

2
gt2

B

mempty = m0 − ṁtB

Symbol Unit Quantity

vB m/s velocity at burning
closure

hB m height at burning
closure

v0 m/s escape velocity
m0 kg initial mass
mempty kg mass at burning

closure
ṁ kg/s mass flow
g m/s2 free acceleration of

gravity
tB s burning time

3. Properties of the rocket equation

➤ This equation holds only under the assumption of a constant free-fall acceleration,
i.e., if the rocket moves close to the Earth’s surface. Air friction is also ignored.

➤ The final velocity and height that can be reached depend only on the escape velocity
and the logarithm of the ratio m0/mempty of start mass m0 to empty mass mempty.
Hence, the payload of a rocket is typically only 10 % of the initial mass.

➤ The chemical energy stored in a chemical fuel is not sufficient to lift the fuel into an
orbit around Earth. However, a majority of the burnt fuel is released on Earth (or in
the atmosphere) after transferring its energy to the rocket. Only due to this fact can
rockets with chemical fuels work at all.
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■ For the first stage of a Saturn-V rocket characterized above, the final velocity is

vB = v0 ln

(
m0

mempty

)
− gtB ,

= 2.22 · 103 m/s ln

(
2.95 · 106 kg

1.0 · 106 kg

)
− 9.81 m/s2 · 130 s,

= 1 126 m/s.

The height of the first stage at the end of burning is hB = 45.6 km.

2.8 Systems of point masses

System of point masses, system consisting of N individual point masses (particles)
1, . . . , N , their motion is described by specifying their position vectors �r1, . . . , �rN as func-
tion of time t : �ri (t), i = 1, . . . , N .

Center of gravity, center of mass, point in a system of point masses (Fig. 2.40), the
position vector �R of which is calculated from the masses mi and the position vectors �ri
according to

�R = 1

M

N∑
i=1

mi �ri , M =
N∑

i=1

mi .

Figure 2.40: Center of mass
S of a system of two point
masses m1,m2.

2.8.1 Equations of motion
1. Forces in particle systems

Internal forces, forces acting between the particles of the system. Internal forces are in
general a sum of two-body forces �Fik that depend on the positions (and possibly the veloc-
ities) of the pairs of particles (i, k).

According to Newton’s third law (reaction principle), the force �Fik acting on the point
mass i owing to the point mass k is opposite in direction and equal in magnitude to the
force �Fki acting on the point mass k owing to the point mass i .

External forces, forces acting from outside the system. The external force �Fext
i on the

point mass i does not depend on the coordinates of the other point masses (Fig. 2.41).

�Fik = �Fik(�ri , �rk ), �Fik = −�Fki , �Fext
i = �Fext

i (�ri )
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Figure 2.41: Internal and external forces in a system of point masses. The internal forces
�Fik = −�Fki cancel each other.

Constraint forces, reaction forces, originate from the support of the system. Constraint
forces restrict the motion of the system.

Free system of point masses, a system of point masses that can follow the applied
forces without constraints.

Closed system, a system of point masses free of external forces.

2. Dynamical law for systems of point masses

dynamical law for systems of point masses

mi �̈ri = �Fi , i = 1, . . . , N

�Fi =
N∑

k �=i=1

�Fki + �Fext
i

�Fext =
N∑

i=1

�Fext
i

Symbol Unit Quantity

mi kg mass of point mass i
�ri m position vector of point mass i
�Fi N force on point mass i
�Fik N two-body force between i and k
�Fext N total external force
�Fext

i N external force on mass point i

The equations of motion of a system of point masses consist of a system of coupled differ-
ential equations of second order in time for the position vectors of the point masses. The
equations are coupled through the spatial dependence of the forces. The general solution
of the system involves 6N free parameters that must be determined in such a way that the
given initial conditions for the positions and velocities of the point masses are fulfilled.

3. Momentum, angular momentum and energy of systems of mass points

Total momentum of the system:

�p =
N∑

i=1

�pi =
N∑

i=1

mi �̇ri .

Total angular momentum of the system:

�l =
N∑

i=1

�li =
N∑

i=1

mi (�ri × �pi ).
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Total energy of the system:

E = Ekin + Epot, Ekin =
N∑

i=1

mi

2
�̇r2

i , Epot =
N∑

i<k=1

Uik (|�ri − �rk |)+
N∑

i=1

Uext
i (�ri ).

➤ The potential energy of the system is the sum of the potential energies owing to the
internal and the external forces. The potential Uik of the internal force �Fik can only
depend on the distance rik = |�ri − �rk | of the particles i, k to fulfil �Fik = −�Fki . The
total potential of the internal forces is obtained by summing over all pairs (i, k). The
potential Uext

i of the external force �Fext
i depends only on the position of the particle.

2.8.2 Momentum conservation law
Because of the fundamental law of dynamics, the change of the total momentum �p of the
system per unit time equals the sum of applied forces. According to the reaction principle,
the internal forces cancel each other, and therefore only the external forces contribute to
the change of the total momentum.

1. Momentum conservation law

change of the total momentum per unit time
= sum of external forces

MLT−2

d�p
dt
= �Fext

Symbol Unit Quantity

�p Ns total momentum
�Fext N external force

Momentum conservation law: If no external forces are applied, the total momentum is
conserved.

The total momentum of a system of point masses
that is free of external forces is constant.

MLT−1

�p =∑i �pi = const.

Symbol Unit Quantity

�p Ns total momentum
�pi Ns momentum of point mass i

2. Center-of-mass law

The center-of-mass law corresponds to the momentum conservation law of the N -particle
system:
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The center of mass of a system of point masses moves as if the total mass
were rigidly connected to the center-of-mass, and were affected
by the vector sum of the external forces.

M �̈R = �Fext

�R = 1

M

N∑
i=1

mi �ri , M =
N∑

i=1

mi

Symbol Unit Quantity

mi kg mass of point mass i
�ri m position vector point

mass i
M kg total mass
�R m position vector

center-of-mass
�Fext N external forces

2.8.3 Angular momentum conservation law
The time variation of the total angular momentum �l of a system of point masses is given by

d�l
dt
=

N∑
i=1

(�ri × �Fi ) =
N∑

i=1

(�ri × �Fext
i ) =

N∑
i=1

��ext
i .

The vector ��ext
i is the torque exerted by the external force �Fext

i on the point mass i .
The internal forces do not change the total angular momentum because they act along

the connecting lines of the point masses (Fig. 2.42):

�ri × �Fki + �rk × �Fik = (�ri − �rk )× �Fki = 0.

The time rate of change of the total angular momentum equals the sum of the torques of
the external forces.

Figure 2.42: Vanishing
torque of internal forces.

The total angular momentum of the system of point masses is conserved if the external
forces vanish.

angular momentum conservation law: In a closed system of
point masses, the total angular momentum is conserved.

ML2T−1

�l =
N∑

i=1

�li = const.

Symbol Unit Quantity

�l kg m2/s total angular momentum
�li kg m2/s angular momentum of point mass i
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2.8.4 Energy conservation law
Conservative forces, forces that can be represented by a potential. Necessary and sufficient
condition for the existence of a potential of the force �F: rot �F = 0. A conservative force
does no work along a closed path: ∮

�F d�r = 0.

Dissipative forces, forces having no potential.
Decomposition of the force �Fi on the particle i into its conservative and dissipative part:

�Fi = �Fi,cons + �Fi,diss.

The change of the total energy of a system of point masses with time equals the power of
the dissipative forces:

dE

dt
= d

dt
(Ekin + Epot) =

N∑
i=1

�Fi,diss · �̇ri .

▲ For dissipative forces, the work for motion from position �r1 to position �r2 depends
on the actual path between initial and final points.

➤ Frictional forces that are proportional to the velocity cause the system to release
mechanical energy to the environment. Friction forces are dissipative forces. When
moving a body from �r1 to �r2, the frictional work increases with the length of the
selected path.

■ Damped vibration of a single point mass:
Equation of motion: m ẍ + k x + µ ẋ = 0.

Energy: E = Ekin + Epot, Ekin = m

2
ẋ2, Epot = k

2
x2.

Energy change:
d

dt
E = d

dt

(
m

2
ẋ2 + k

2
x2
)
= −µ ẋ2 < 0.

The sum of kinetic and potential energy of the pendulum decreases continuously
because of the friction term (µ > 0).

The total energy of the system of point masses is conserved if the dissipative forces
vanish.

law of energy conservation: The total energy of a system
of point masses is conserved if no dissipative forces arise.

ML2T−2

E = Ekin + Epot = const.

Symbol Unit Quantity

E J total energy
Ekin J total kinetic energy
Epot J total potential energy

2.9 Lagrange’s and Hamilton’s equations

2.9.1 Lagrange’s equations and Hamilton’s principle
1. Generalized mechanical quantities

Generalized coordinates, qk , coordinates that are optimally adapted to the given mechan-
ical system. Generalized coordinates can have different physical meanings (length, angle,
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etc.). The number of generalized coordinates equals the number of degrees of freedom of
the system.

qk (t), k = 1, . . . , f, f : number of degrees of freedom

■ Generalized coordinates for
pendulum: angle ϕ of elongation from rest position.
point mass on a spherical surface: spherical coordinates θ, ϕ.

Generalized velocities, q̇k , first derivative of the generalized coordinates qk with respect
to time,

q̇k (t), k = 1, . . . , f, f : number of degrees of freedom.

Generalized forces, Qk , defined by the expressions

Qk =
3N∑
i=1

Fi
∂xi

∂qk
, k = 1, . . . , f.

xi , i = 1, . . . , 3N are the Cartesion coordinates of a system of N mass points.

2. Lagrange’s function,

difference between the kinetic energy Ekin = T and the potential energy Epot = V as
functions of the generalized coordinates qk and generalized velocities q̇k ,

L(qk , q̇k , t) = T (qk , q̇k )− V (qk , t).

➤ The Lagrange function has the dimension of energy.
■ Lagrange function of simple mechanical systems:

Free point mass: L = T = m

2
�̇r 2 = m

2
(ẋ2 + ẏ2 + ż2).

Point mass in potential field V (�r): L = m

2
�̇r 2 − V (�r).

Spring vibration, spring constant k: L = m

2
ẋ2 − k

2
x2.

Pendulum, pendulum length l: L = m

2
l2ϕ̇2 + mgl cosϕ.

Physical pendulum: L = J

2
ϕ̇2 + mgl cosϕ.

Distance from rotation axis to center of mass l, moment of inertia J .

3. Lagrange’s equations,

system of f differential equations of second order with respect to time for determining the
generalized coordinates qk as functions of time:

d

dt

∂L

∂q̇k
− ∂L

∂qk
= 0, k = 1, . . . , f .

Constraint forces or auxiliary conditions no longer appear in the Lagrange equations. The
solutions involve 2 f integration constants.
▲ The Lagrange equations and Newton’s second law are equivalent formulations of

mechanics.
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4. Examples of Lagrange’s formalism

■ One-dimensional motion of a point mass in potential V (x), Cartesian coordinate x :
Generalized coordinate: q = x . Generalized velocity: q̇ = ẋ .

Lagrange function: L = T − V = m

2
ẋ2 − V (x).

Lagrange equation:

∂L

∂q̇
= m ẋ,

d

dt

∂L

∂q̇
= m ẍ,

∂L

∂q
= ∂V

∂x
, mẍ + ∂V

∂x
= 0.

Because −∂V/∂x = Fx , Newton’s equations of motion follow from the Lagrange
equation m ẍ = Fx for the motion of a point mass under the influence of the force
Fx .

■ Motion in a central-symmetric potential V (r):
Generalized coordinates: r, ϑ. Generalized velocities: ṙ, ϑ̇ .

Lagrange function: L = T − V = m

2
(ṙ2 + r2 ϑ̇2)− V (r).

Lagrange equations:

∂L

∂ ṙ
= m ṙ,

d

dt

∂L

∂ ṙ
= m r̈,

∂L

∂r
= m r ϑ̇2 − ∂V

∂r
,

∂L

∂ϑ̇
= m r2 ϑ̇,

∂L

∂ϑ
= 0.

Equations of motion:

m r̈ = m r ϑ̇2 − ∂V

∂r
= m r ϑ̇2 + F(r),

d

dt
(m r2 ϑ̇) = 0.

F(r) is the magnitude of the applied central force. The last equation implies the
conservation of angular momentum l = m r2 ϑ̇ .

5. Virtual displacement,

instantaneous infinitesimal displacement δ�r of a point mass, taking into account the re-
stricting auxiliary conditions for the motion, without change in the time variable:

�r −→ �r+ δ�r for δt = 0.

Virtual displacements are imaginary displacements that need not correspond to the actual
course of the trajectory.
➤ When using generalized coordinates, virtual displacements may be made arbitrarily,

without taking into account auxiliary conditions.
➤ The virtual displacement of a system of N point masses is composed of the virtual

displacements of every individual point mass, δ�ri , i = 1, . . . , N .
Virtual trajectory, trajectory q̂k (t), between two fixed points qk (t1), qk (t2), that differs

infinitesimally from the actual trajectory qk (t) by combining the virtual displacements δqk
at a fixed time t (δt = 0) (Fig. 2.43),

q̂k (t) = qk (t)+ δqk (t).
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Figure 2.43: Virtual
trajectories q̂k (t). qk (t):
actual trajectory.

6. Action function and Hamiltonian principle

Action function, action integral W , integral of the Lagrange function L(qk , q̇k , t) over
time,

W =
∫ t2

t1
L(qk (t), q̇k (t), t) dt.

➤ The action function has the dimension energy times time.
Principle of minimum action, Hamilton’s principle, the trajectory of a mechanical

system as a function of time is distinguished from all other virtual trajectories by the fact
that the action integral takes an extremum value (usually a minimum):

W =
∫ t2

t1
L(qk (t), q̇k (t), t) dt = extremum.

➤ Hamilton’s principle does not depend on the choice of coordinates. An extremum
principle is equivalent to the equations of motions of Newton or Lagrange.

➤ Extremum principles in other branches of physics: Fermat’s principle of the shortest
path in optics; Ritz’s method for approximate calculation of energy eigenvalues in
quantum mechanics.

2.9.2 Hamilton’s equations
1. Generalized momentum,

pk , defined as the derivative of the Lagrange function L = T − V with respect to the
generalized velocity q̇k :

pk = ∂L

∂q̇k
, k = 1, . . . , f, f : number of degrees of freedom.

➤ The quantities qk and pk introduced this way are called canonically conjugate.
■ In circular motion, the rotation angle ϕ is the generalized coordinate. The canonically

conjugate momentum is the angular momentum l.

2. Hamiltonian

H , is obtained if one eliminates the generalized velocities q̇k from the theoretical descrip-
tion and uses instead the canonically conjugate momenta pk :

H (qk , pk , t) =
f∑

k=1

q̇k pk − L(qk , q̇k , t).
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➤ The Hamiltonian depends on the generalized coordinates, the canonically conjugate
momenta, and possibly on the time. If the Hamiltonian is time-independent, it repre-
sents the total energy (sum of kinetic energy and potential energy). The total energy
is a conserved quantity (or “integral”) of the motion:

∂H

∂t
= dH

dt
= 0, H = T + V = E = const.

3. Legendre transformation

The transition from the Lagrange function L(qk , q̇k ) to the Hamilton function H (qk , pk )

is called a Legendre transformation.
A function f (x, y) of the two variables x, y can be transformed into an equivalent func-

tion h that depends on the variables x and p = ∂ f/∂y, by

h(x, p) = f (x, y)− y p.

Because of

∂h

∂y
= ∂ f

∂y
− p = 0,

the function h depends on x and p, but no longer on y.
The Legendre transformation is often applied in thermodynamics to transform state vari-

ables into other state variables. For instance, one obtains the free energy F as function of
temperature T by replacing in the intrinsic energy E(S, . . .) the entropy variable S by the
temperature variable T = ∂U/∂S:

F(T, . . .) = U(S, . . .)− T S.

4. Hamilton’s equations

Time derivative of the generalized coordinates and momenta,

q̇k = ∂H

∂pk
, ṗk = − ∂H

∂qk
, k = 1, . . . , f, f : number of degrees of freedom.

Hamilton’s equations are a system of 2 f differential equations of first order with respect
to time. The solutions contain 2 f integration constants that can be freely chosen (e.g., the
initial values of the coordinates and momenta). Hamilton’s equations are equivalent to the
Lagrange equations.
■ One-dimensional harmonic oscillator:

Lagrange function: L = m

2
ẋ2 − k

2
x2.

Generalized momentum: p = ∂L

∂ ẋ
= m ẋ .

Hamiltonian: H = p ẋ − L = p2

2m
+ k

2
x2 = T (t)+ V (t)

= E = const.

Hamilton equations: ẋ = ∂H

∂p
= p

m
, ṗ = −∂H

∂x
= −kx .

These equations lead to Newton’s equation of motion, mẍ = −kx .
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5. Phase space

Cyclic coordinate, generalized coordinate that does not enter the Lagrange function:

∂L

∂ϕ
= 0 �⇒ d

dt

∂L

∂ϕ̇
= d

dt
pϕ = 0.

▲ The conjugate momentum that corresponds to a cyclic coordinate is an integral of the
motion.

Configuration space, f -dimensional space of the generalized coordinates qk . Trajec-
tory in configuration space: qk (t), k = 1, . . . , f.

Phase space, abstract space with 2 f dimensions; the coordinates are the generalized
coordinates qk and the canonically conjugate momenta pk . Trajectory of the system in
phase space: (qk (t), pk (t)), k = 1, . . . , f.
➤ For conservative systems, every trajectory in phase space is characterized by a def-

inite value of the Hamiltonian (total energy). Spatially periodic motions correspond
to closed trajectories in phase space.

■ In phase space, a one-dimensional harmonic oscillator makes an ellipse that is charac-

terized by the energy E = m

2
A2ω2 (A: amplitude, ω: angular frequency) (Fig. 2.44).

Figure 2.44: Trajectory of a
harmonic oscillator in phase
space.



3
Rigid bodies

Rigid body, a body the constituents of which always keep the same distances between each
other, i.e., are rigidly bound to each other. One may imagine the rigid body as composed
of point masses (Fig. 3.1). The distances between all pairs of point masses i, j of the rigid
body:

|�ri (t)− �r j (t)| = ri j = const.

A rigid body cannot be deformed.

Figure 3.1: Rigid body. Figure 3.2: Density ρ(�r) of an inhomoge-
neous rigid body with a continuous mass
distribution.

3.1 Kinematics

3.1.1 Density
Density ρ of a homogeneous body, the ratio of its mass m to its volume V ,

ρ = m

V
.

93
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In an inhomogeneous body with a continuous mass distribution, the density varies with the
spatial coordinate �r (Fig. 3.2). One imagines the body to consist of volume elements 
V
with approximately constant density. The mass in the volume element
V at the point �r is

m. The density in the volume element 
V is given by: ρ = 
m/
V . For a continuous
mass distribution, the density at point �r is obtained by

ρ(�r) = lim

V→0


m


V
= dm

dV
, dm = ρ(�r) · dV .

The total mass m of the body is given by the volume integral:

m =
∫

dm =
∫
ρ(�r) dV .

3.1.2 Center of mass
1. Definition of the center of mass

Center of mass, center of gravity, a point at which all of the force from the weights of
all elements of the body can be considered to act. The action of gravity on a rigid body can
be represented by a single force of magnitude

FG = mg

that acts on the center of mass, m being the total mass of the body.
▲ For a symmetric body of homogeneous density, the center of mass lies on the sym-

metry axis.
To keep a body in equilibrium, one can
• support the body at the center of mass;
• support the body at several points in such a way that the resultant of the supporting

forces lies at the center of mass.
▲ A rigid body under the action of its weight is in equilibrium if it is supported at the

center of mass.
➤ The weight then has no torque with respect to the center of mass of the body.

2. Center-of-mass coordinates

The position vector �R of the center of mass is given by:

center-of-mass coordinates L

�R =
∑

i �ri 
mi

m

m =∑i 
mi

Symbol Unit Quantity

�R m position vector of center of mass
�ri m coordinate of element i

mi kg mass of element i
m kg total mass

Integral form for a continuous mass distribution:

�R =
∫ �r dm∫

dm
=

∫
V
�r ρ(�r) dV∫

V
ρ(�r) dV

,

ρ(�r): density of the body, dV : volume element.
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For a homogeneous body (ρ = const.),

�R = 1

V

∫
V

�r dV .

3. Determination of the center of mass

M Graphical determination of the center of mass of an area: the area to be consid-
ered is divided into parts with known areas and centers of mass. One then attaches
a force to the center of mass of each partial area having a magnitude proportional to
the size of the partial area and pointing in an arbitrary identical direction. One then
determines the resultant of all of these forces. The procedure is then repeated with
another arbitrarily fixed orientation of the partial forces. The intersection point of the
lines of action of the two resultants obtained this way is the center of mass.

Experimental determination of the center of mass of a plate (Fig. 3.3):

Figure 3.3: Determination of
the center of mass of a plate.

• The plate is successively suspended at various points P1, P2, . . . that do not lie on
the same line, and in each case the line along which gravity acts is determined. The
intersection point of the various lines so determined is the center of mass S.

➤ The center of mass of a body can lie outside of the body volume.

4. Center-of-mass rule

The motion of the center of mass is not affected by internal forces of the body. The center
of mass moves as a point particle that carries the total mass of the entire body and is under
the action of the resultant of all external forces.
■ Let two bodies with masses m1 = 1 kg and m2 = 3 kg be connected by a bar

of length l = 2 m. The mass of the bar is negligible. If the coordinate system is
chosen so that the first body lies at the origin, and the second one on the x-axis, the
coordinates are

�r1 =
(

0
0

)
, �r2 =

(
l
0

)
.

The center of mass then has the coordinates

�R = m1�r1 + m2�r2

m1 + m2
=
(

1.5 m
0

)
,

i.e., it is at a distance 1.5 m away from body 1, and thus 0.5 m away from body 2.
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3.1.3 Basic kinematic quantities
1. Coordinate systems

Space-fixed coordinate system, K ′, coordinate system with the origin fixed in space and
with space-fixed directions for the axes. Unit vectors along the axes: �ex

′, �ey
′, �ez

′.
Body-fixed coordinate system, K , an arbitrary point S (reference point) on the rigid

body is selected as the coordinate origin. The coordinate axes are fixed to the body. Unit
vectors along the axes: �ex (t), �ey(t), �ez(t). These unit vectors along the axes in general vary
with time, as seen from the space-fixed coordinate system (Fig. 3.4).
➤ One may select the center of mass of the rigid body as the origin of the body-fixed

coordinate system. For a gyroscope one uses the support point as the coordinate origin
(Fig. 3.5).

Figure 3.4: Body-fixed (K ) and space-fixed coordinate systems (K ′).

Meaning of symbols in Fig. 3.4:
�ri
′ : position vector of point i in the space-fixed reference system K ′,
�ri : position vector of point i in the body-fixed reference system K ,
�rS : position vector of the reference point in the space-fixed reference system K ′,
�vS : translational velocity of the reference point,
�vi
′ : velocity of point i in the space-fixed reference system K ′,

�vi : velocity of point i in the body-fixed reference system K ,
�ω : angular-velocity vector for rotations about an axis through the reference point.

Figure 3.5: Shift of the
reference point of the
body-fixed coordinate
system by �d from S to S′.
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2. Relations between basic kinematic quantities

The quantities in the reference systems K and K ′ are related as follows.
position vector: �ri

′(t) = �rS(t)+ �ri (t) ,
velocity: �vi

′(t) = �vS(t)+ �ω × �ri (t) ,
acceleration: �ai

′(t) = �aS(t)− ω̇ × �ri (t)− 2 �ω × �̇ri (t)− �ω × ( �ω × �ri ) .
➤ The translational velocity �vS depends on the choice of the reference point S for the

body-fixed coordinate system. The angular velocity �ω is independent of the choice
of this reference point, i.e., body-fixed coordinate systems that refer to different ref-
erence points rotate with the same magnitude of angular velocity about axes that are
parallel to each other.

3. General motion of a rigid body,

composed of the translation of the reference point S with velocity �vS(t), and of a rotation
with angular velocity �ω(t) about an axis through S. Both the orientation of the rotation axis
and the magnitude of the angular velocity can vary with time.

Fixed axis, axis fixed in the rigid body by external bearings.
Free axis, axis in the rigid body that does not change its orientation as long as there is

no torque acting. A free axis is not stabilized by external bearings.
➤ For any rigid body, one can find three free axes that are perpendicular to each other.

The axes with the largest and the smallest moment of inertia are always free axes.
The third free axis points perpendicularly to the two previously specific axes.

➤ The principal axes of inertia of a rigid body are free axes.

4. Example: Motion of a dumbbell

The motion of a dumbbell can be decomposed into the rotation of the two masses about
the center of mass, and the translational motion of the center of mass. If �ω is the angular
velocity of rotation and �v the translational velocity, �R describes a translation of the center
of mass:

�R(t) = �R0 + �vt

(�R0: position of the center of mass at time t = 0). The relative coordinates 
�ri = �ri − �R
describe a rotation:


�r1(t) = l1

(
cosωt
sinωt

)
, 
�r2(t) = −l2

(
cosωt
sinωt

)
,

l1 and l2 being the (constant) distance of each of the bodies from the center of mass; �l1, �l2
denote the vectors from the center of mass to the two dumbbell masses. The entire motion
is then described by the equations

�r1(t) = �R(t)+
�r1(t) = �R0 + �vt + l1

(
cosωt
sinωt

)
,

�r2(t) = �R(t)+
�r2(t) = �R0 + �vt − l2

(
cosωt
sinωt

)
.

3.2 Statics

Statics, theory of the equilibrium of forces on a rigid body. It serves in particular for
evaluating forces that arise in trusses, bearings and beams (architectural statics).
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3.2.1 Force vectors
1. Force vector and point of application

Forces acting on a rigid body are represented by force vectors. These differ from ordinary
vectors because they also involve a point of application that specifies at what point the
force acts.

Force vector, characterized by its magnitude (length), its direction (action line) and its
point of application. The force vector is visualized by an arrow beginning at the point of
application and pointing along the line of action; its length specifies the magnitude of the
force (Fig. 3.6).
▲ A force acting on a rigid body can be arbitrarily shifted along its action line.

(Fig. 3.7).

Figure 3.6: Force vector �F with the
action point P , the line of action g, the
components �Fx , �Fy and the magnitude

F =
√

F2
x + F2

y .

Figure 3.7: Shift of a force along its line of
action g from P1 to P2.

2. Composition of plane forces

Plane system of forces, set of forces that all lie within a plane.
Resulting force, replaces two plane forces �F1 and �F2 at the same point of application

by a single force �FR . This is done by means of the parallelogram of forces (see p. 45).
Here the second force vector is shifted parallel to the end of the first one. The connection
line from the point of application of the first force vector to the end point of the second
represents the resulting force �FR (Fig. 3.8).

Figure 3.8: Parallelogram
of forces. Addition of the
forces �F1 and �F2 to form the
resulting force �FR .

The magnitude of the resulting force is obtained by the cosine rule:



3.2 Statics 99

resulting force = vector sum of individual forces MLT−2

�FR = �F1 + �F2

|�FR | =
√
|�F1|2 + |�F2|2 + 2|�F1| |�F2| cosϕ

Symbol Unit Quantity

�FR N resulting force
�F1, �F2 N force vectors
ϕ rad angle between

�F1 and �F2

3. Polygon of forces

By repeating this procedure, arbitrarily many forces that act on the same point can be
replaced by a single resulting force:
▲ �FR = �F1 + �F2 + �F3 + · · ·
This can be represented graphically by a polygon of forces (see p. 45): The force arrows
are aligned by parallel shifting (i.e., keeping the magnitude and orientation fixed). The
resultant is the force arrow from the beginning of the first to the end of the last force arrow
(Fig. 2.8).
➤ The resulting force can also be evaluated by adding the components of the individual

forces:

�FR =
⎛
⎝ FRx

FRy
FRz

⎞
⎠ = �F1 + �F2 =

⎛
⎝ F1x + F2x

F1y + F2y
F1z + F2z

⎞
⎠ .

4. Parallel or opposite forces

If two vectors point in the same direction (ϕ = 0), then

|�FR | = |�F1 + �F2| = |�F1| + |�F2| .

If they point in opposite directions (ϕ = π ), then

|�FR | = |�F1 + �F2| = ||�F1| − |�F2|| .

If the forces are perpendicular to each other (ϕ = π/2), then

|�FR | = |�F1 + �F2| =
√
|�F1|2 + |�F2|2 .

To add two forces acting on two different points of a rigid body, shift them to the inter-
section point of their lines of action and add them there according to the parallelogram of
forces (Fig. 3.9).

Figure 3.9: Addition of
plane forces acting on a
rigid body.
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Figure 3.10: Addition of
plane parallel forces on a
rigid body.

If two forces point in the same direction, but along parallel lines of action with a finite
perpendicular distance between them, there is no intersection point. One therefore adds
to the forces �F1 und �F2 opposite auxiliary forces �Fa and −�Fa with the same line of ac-
tion. The auxiliary vectors cancel when added, but allow the shift of the actual forces to a
common point of application (Fig. 3.10).

3.2.2 Torque
1. Torque of an applied force

Torque, the product of the magnitude of the applied force and the length of the lever arm
to a reference point where the body is mounted rotatably (center of rotation). Similar to
a force that can cause a translational motion, a torque can put a freely movable rigid body
into a rotational motion about the center of mass (rotation, see p. 31) (Fig. 3.11).

t

Figure 3.11: Torque �τ of the
force �F with respect to the
center of rotation P .

magnitude of torque ML2T−2

τ = F · d
Symbol Unit Quantity

τ Nm magnitude of torque
F N applied force
d m lever arm

Newtonmeter, Nm, SI unit of the torque. 1 Nm is the torque about the center of rotation
generated by a force of 1 N on a lever arm of 1 m.

1 Nm = 1 N · 1 m

➤ The lever arm is the vertical distance of the line of action of the force from the center
of rotation.

➤ If the point of application of the force is given, the lever arm is

d = r sinα ,

where �r is the vector from the center of rotation to the point of application of the
force, and α is the angle between �r and the force vector �F.
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2. Properties of the torque

The torque is a vector pointing along the direction of the rotation that the torque would
create:

�τ = �r× �F , |�τ | = |�r| |�F| sinα = d |�F| .
The vector product

�τ = �r× �F
is also denoted the moment of the force �F.
■ A force of F = 5 N acts in a distance of d = 20 cm on a screw. The applied torque is

τ = F · d = 5 N · 20 cm = 1 Nm.

➤ If the line of action of the force passes through the center of rotation, the lever arm
equals zero and the torque vanishes.

▲ If one doubles the lever arm and keeps the force constant, the torque also doubles.
Application: wrench.

3. Resulting torque

The torques produced by the forces �F1, �F2, . . . , �Fn can be combined to form a resulting
moment �τR (Fig. 3.12),

�τR =
n∑

i=1

�ri × �Fi ,

where �ri is the position vector of the point of application of the force �Fi .

t
t

t

Figure 3.12: Addition of
torques. The forces �F1, �F2
form a plane set of forces.
The moments �τ1, �τ2 are
perpendicular to the plane.

addition of torques ML2T−2

�τR = �τ1 + �τ2 + · · ·
Symbol Unit Quantity

�τR Nm resulting torque
�τ1, �τ2, . . . Nm torques

3.2.3 Couples
1. Couple and torque of a couple

Couple, two antiparallel forces of equal magnitude, �F1, �F2 = −�F1, that act on different
points of the rigid body so that their lines of action do not coincide. A couple cannot be
reduced to a single force.

For a couple, the resulting force vanishes, �F1 + �F2 = 0, hence the translational state of
the rigid body is not changed by a couple. The resulting torque, however, does not vanish.
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Figure 3.13: Torque of
a couple (�F1, �F2). d:
perpendicular distance of the
lines of action of the forces.

Torque of a couple depends only on the forces and the distance vector between the point
of applications (Fig. 3.13):

�τ = (�r1 − �r2)× �F1 , τ = F1 · d , d : distance of the lines of action.

A couple can cause a rotation of the body. The sense of rotation is fixed by the definition
of the vector product so that �r1 − �r2, �F1 and �τ form a right-handed system. The torque of
a couple is independent of the reference point. Unlike shifting a force vector off its line of
action, the balance of torques remains unaffected when shifting a couple in its plane on the
rigid body.
▲ A couple can be moved within its plane without changing its static influence on the

rigid body. The vector of the torque of a couple is a free vector.

2. Reduction of a plane-force system

Every plane-force system acting on a rigid body can be reduced to a resulting single force
and a couple. The point of application of the resultant can be freely chosen (Fig. 3.15).

Parallel shift of a force, a force �F can be shifted parallel to its line of action from the
point of application P to the action point P ′ if one introduces a couple �F,−�F (Fig. 3.14).

Figure 3.14: Parallel shift of
a force �F by introducing the
shift moment �τ1 = �r1 × �F.

Shift moment, �τ1, compensates the change of the torque of force �F due to the shift,
�τ1 = �r1 × �F.

Figure 3.15: Reduction of a
plane-force system �F1, �F2 to
a single resultant force �FR
and two couples (�F1,−�F′1)

and (�F2,−�F′2). The torques
of these can be combined to
form a single torque.
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3.2.4 Equilibrium conditions of statics
A body is at rest if the following conditions are fulfilled (Fig. 3.16):

The resultant of all applied forces vanishes. The sum of all torques vanishes.
The first rule guarantees that the body is not put into a translational motion;
the second rule guarantees that it does not perform a rotation.

�FR = �F1 + �F2 + · · · = 0

�τR = �τ1 + �τ2 + · · · = 0

Figure 3.16: Equilibrium of a rigid body. S: center of mass.

➤ In component notation, these two vector equations correspond to the following six
equations:

F1x + F2x + · · · =
∑

i Fi x = 0 τ1x + τ2x + · · · =
∑

i τi x = 0

F1y + F2y + · · · =
∑

i Fiy = 0 τ1y + τ2y + · · · =
∑

i τiy = 0

F1z + F2z + · · · =
∑

i Fiz = 0 τ1z + τ2z + · · · =
∑

i τi z = 0

➤ If all forces act on the same point, the equilibrium condition reduces to

�F1 + �F2 + · · · = 0 ,

since the sum of the torques then also vanishes. If all forces are coplanar, the compo-
nent equation for the coordinate perpendicular to the plane can be omitted.

Forces with lines of action intersecting at one point are in equilibrium if the force diagram
forms a closed polygon.

The law of levers follows from the second rule: If two forces F1 and F2 act on a rigid
body at the distances d1 and d2 from the center of rotation and are in equilibrium,

F1 : F2 = d2 : d1 .

1. Static stability

A body standing on a surface gets a support force that balances its weight. The support
force is the resultant of forces applied where the body rests on the support. Hence, it can act
only between the edges, i.e., the extremum points where the body is still being supported.
▲ A body is stable if the vertical line from the center of mass intersects the support

plane within the edges (Fig. 3.17).
➤ If a support is added to the body as shown in the figure, the edge is shifted to the

point of application of the bearing.
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Stable Unstable

Figure 3.17: Tilting of a
body. The body remains
stable as long as a vertical
line from the center of mass
S intersects the support
area between the extremum
supporting points. Broken
line: possible location of a
support for stabilization.

A body is more stable if
• the horizontal distance of the center of mass from the edges is larger, i.e., the center

of mass is closer to the middle;
• the center of mass is lower;
• the weight of the body is larger.
Tilting moment, the torque needed to tilt the body over:

tilting moment = distance from edge · weight force ML2T−2

τ = d · mg

Symbol Unit Quantity

τ Nm tilting moment
d m horizontal distance of center of mass

from the edge
mg N weight force

2. Spatial statics

Spatial statics, composition and resolution of forces in 3D space, where the lines of action
in general do not intersect each other in space and are not parallel to each other. The
addition of the forces and moments leads to a resulting force �F and a resulting moment ��.
The resulting moment can be represented by a couple �F1, �F2, which can be shifted until
the force �F1 coincides with the point of application of �F. The addition of �F and �F1 yields
a single force �Fres. There remain two forces �F2 = −�F1 and �Fres that cannot be further
simplified.

3.2.5 Technical mechanics

3.2.5.1 Bearing reactions
Bearing, a point where a rigid body in static equilibrium under applied forces (e.g. weight)
is supported.

Bearing reaction, force acting from the bearing on the body. It originates from the
forces acting on the supported body (in general, the weight) that must be offset according
to the equilibrium condition of statics.

1. Various types of bearings

One distinguishes:
Roller bearings, which support only loads perpendicular to the bearing (for example, a

plate supported by a beam);
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Thrust bearings and Journal bearings, which provide lateral and axial support, re-
spectively, but permit rotations (for example, an axle for a rotating shaft);

Clamps, which prevent both displacements and rotations, thus supporting both forces
and moments (for example, in a vice).
▲ At points where the body is not supported, no internal forces or moments may appear.

2. Connections between rigid bodies,

transfer of forces from one body to another.
One distinguishes (see Fig. 3.18):
• Socket, transmits longitudinal forces only;
• Joint, transmits forces along and perpendicular to the beam, but permits rotations;
• Hinge, transmits forces and moments parallel to the axis;
• Rigid connection, transmits all forces and moments.

Socket bar Joint Rigid connection

F
F

F
t

Figure 3.18: Connections.

3.2.5.2 Trusses
Truss, construction for compensation and distribution of forces, in particular in buildings.
A truss consists of straight beams or rods that are flexibly joined or clamped at their
junctions. They transfer external forces, that in general are applied only at junctions, along
the beam orientation.

Plane truss, truss with beams and all forces in a plane (Fig. 3.19). One has to calcu-
late the forces on all beams if the external forces and the bearings are given. To have a
determinate system:

plane truss

2K = S + 3

Symbol Unit Quantity

K 1 number of junctions
S 1 number of rods

➤ For the forces acting on beams, see p. 153.

Figure 3.19: Plane truss.
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3.2.6 Machines
▲ Golden rule of mechanics: A smaller force must be compensated by a longer path

(energy conservation).

3.2.6.1 Lever

1. Kinds of levers

Lever, a rigid body that is supported at one point, or can rotate about a fixed axis. Two
forces �F1 (force) and �F2 (load), the lines of action of which have perpendicular distances
d1 and d2 from the center of rotation, generate the torques �τ1, τ1 = d1 · F1 and �τ2, τ2 =
d2 · F2 . The lever is in equilibrium if the total torque �τ = �τ1 + �τ2 vanishes,

�τ = �τ1 + �τ2 = 0 .

Lever arm, perpendicular distance of the center of rotation from the line of action of a
force acting on the lever.
Straight lever, a rod that can rotate about a point bearing.
One-armed straight lever, load and force act on the same side, as seen from the center of
rotation.
Two-armed straight lever, load and force act on different sides of the center of rotation.
Bent lever, the lever arms include an angle (Fig. 3.20).

Figure 3.20: Lever. (a): Two-armed straight lever, (b): one-armed straight lever, (c): bent
lever.

Levers are applied to lift or shift loads or to reach a balance of forces.

2. Law of levers

law of levers: In equilibrium, the ratio of forces is the inverse
of the ratio of the lever arms

ML2T−2

�τ1 = −�τ2
F1d1 = F2d2

F1 : F2 = d2 : d1

Symbol Unit Quantity

F1 N applied force to keep the equilibrium
F2 N load
�τ Nm torque
d1 m force arm
d2 m load arm
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➤ The law of levers holds also for bent levers.
■ Scale, for measuring an unknown weight. The scale can be brought to balance either

by changing or shifting the counterweight (bridge scale).
Wheelbarrow, one-armed lever, force arm is longer than load arm.
Catapult, the load arm is longer than the force arm, hence one can accelerate an

object over a long path.
Pressure lever (nutcracker), two joined one-armed levers with the force arm

longer than the load arm—for amplifying forces, as in scissors or pliers.

3.2.6.2 Wedges and screws

1. Wedge,

transforms the force �F of hammer blows into two forces �FN ,1, �FN ,2 (normal forces) act-
ing perpendicular to the sides of the wedge (Fig. 3.21). According to the law of vector
decomposition,

FN ,1 = FN ,2 = F

2 sinα
,

where α is the inclination angle (half of the wedge angle) of the surface with respect to the
applied force.

2. Screw

analogous to an inclined plane wound around a cylinder. A screw is characterized by its
pitch h (distance between subsequent screw turns) and its mean thread radius r . If an
external force F1 acts at a distance R from the screw axis, the point of application moves
over a distance b = 2π R each turn of the screw, and the screw moves forward by the
amount h (Fig. 3.22). Hence, for the driving force F2 exerted by the screw,

F2 = F1
2π R

h
.

2

Figure 3.21: Wedge. Figure 3.22: Screw.

Friction for screws, in contrast to the driving force exploited in drilling, screws are used
for clamping one body to another. The forward driving force now acts as a support force
that causes a correspondingly large friction force. This acts against the rotation and pre-
vents the screw from loosening. The frictional force is about the same whether the screw is
being driven forward or backward. For a tension force F2 and a friction coefficient µ, the
opposing force on a lever of length R is

F1 = F2
µh

2π R
.



108 3. Rigid bodies

3.2.6.3 Pulleys

1. Pulley,

combined with ropes, chains, gears or V-belts for transmission and amplification of
forces. In general, a device consisting of one or several (possibly different diameters) pul-
leys guiding a rope. An external force F1 pulls at the rope, while the load (with the weight
F2) is fixed either at the other end of the rope or at the axis of one of the rollers. If the rollers
of the device have different diameter (gear) or some of them are free rollers (pulley), the
same torque causes different forces. To analyse this problem, one determines which force
F1 is needed according to the law of levers (equality of torques) to compensate the weight
F2.

2. Types of pulleys

Fixed pulley (Fig. 3.23), guides a rope. The force is transmitted and its magnitude remains
unchanged. One pulls at one end of the rope, the other end carries the load. Static balance
holds when

F1 = F2 .

Free pulley (Fig. 3.24), the rope is fixed at one end, the load is carried by the pulley. If one
pulls the rope a distance d , the pulley—and thus the load—moves d/2. According to the
law of levers, the equilibrium condition now reads

F2 = F1

2
.

Figure 3.23: Fixed pulley. Figure 3.24: Free pulley. Figure 3.25: System of
pulleys.

Systems of pulleys (Fig. 3.25), contains two groups of pulleys, with 2n pulleys in total
which guide the rope. For static equilibrium

F2 = F1

2n
.

n is the number of pulleys in each group, or the number of ropes that move in the middle
of the pulley parallel at one side (with the same direction of motion).
➤ The diameter of the pulleys does not enter into the equation.

3. Gears,

devices for transmission and conversion of forces, in particular for converting torques. A
gear is driven by a torque τ1 on a drive shaft with rotation velocity ω1 and transmits
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another torque τ2 with another rotation velocity ω2 on the driven end. In an ideal gear
without friction, energy is conserved:

P1 = P2 ⇐⇒ τ1ω1 = τ2ω2 ,

(P1, P2: powers, τ1, τ2: torques, ω1, ω2: angular velocities). Real gears lose energy to
friction. The heat produced must be dissipated by cooling mechanisms. The losses can be
reduced by lubrication.

4. Belt drives,

two pulleys are tightly coupled by a belt. Since the belt exerts the same force F on both
pulleys (Fig. 3.26), the ratio of the torques is given by

τ1

τ2
= Fr1

Fr2
= r1

r2
.

Let v be the velocity of the belt. The angular velocities of the pulleys are given by

ω1

ω2
= v/r1

v/r2
= r2

r1
.

▲ The torques are proportional to the radii, the angular frequencies are inversely pro-
portional to the radii.

■ V-belts in engines. Electric drives by small electric motors with low torque, but high
rate of rotation. Chain gear for bicycles.

5. Gearboxes,

transmission of the force is not by a belt, but through direct contact of the gears. In partic-
ular: toothed gears. The efficiency is higher and the construction is more compact, but the
requirements on the material are more stringent (Fig. 3.27).
■ Drive shafts of engines for vehicles. Machine tools. Clocks.

Figure 3.26: Belt drive. Figure 3.27: Toothed gear.

6. Multistage gears,

result from the chaining of several simple gears. Used in particular as transmissions for
automobiles, since the internal combustion engine works efficiently over only a small range
of rotational frequency: By shifting the tooth wheels, one can select any of various combi-
nations of gear ratios and thus produce a variety of ratios between the rotation speed of the
crankshaft and the drive shaft. In modern transmissions, all gear wheels are spinning simul-
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taneously and are connected as needed to the crankshaft. In a synchronized transmission,
an additional friction coupling brings the gear and the crankshaft to the same rotational
speed.

7. Automatic gears,

change automatically depending on the rate of rotation. One either uses conventional
switch gears that are changed automatically by central force governors, or planetary gears.
In the latter device, the planetary wheels run freely between a tooth wheel tightly connected
to the drive shaft, and a gear rim. If the gear rim is fixed, the planetary wheels perform a
rotation that is used as the driving gear. If the gear rim is free, however, it is driven instead
of the planetary gear. Shifting gears is simply achieved by braking the gear rim.

8. Continuous gear,

can be realized by hydraulics (liquid gears). The transmission of the force works by the
viscous flow of a light oil: At low rotation rates it rotates almost freely, at higher turns the
friction increases and thus the coupling becomes tighter. Application in automobiles with
automatic transmissions.

Continuous mechanical gears, use cone-shaped pulleys: the drive radius, and thus the
transmission, can be varied by changing the position of the V-belt depending on the torque.

9. Differential gears,

serve to distribute torque. These are gears in which the rotational speed and moment of the
drive shafts are not uniquely determined. Torques are delivered to the shafts depending on
the resistance in each of the shafts. Usually realized as a cone-gear differential in which
four conical gears engage each other in a circle.
➤ In a broader sense, gears include screw gears (for transforming rotational motion into

translation or vice versa) and hydraulic presses (see p. 173).

10. Crank mechanism,

for conversion of a (periodic) translational motion into a rotation and vice versa (e.g.,
driving a shaft with a piston). A connecting rod of length l is connected at one end to a
rotating shaft by a joint at a distance r from the rotation axis. The other end slides on a rail
back and forth between two end points (Fig. 3.28). The relation between rotation angle α
and path s on the rail, both being measured from the upper end point, is

s = r

(
1+ λ

2
sin2 α − cosα

)
, for λ2 << 1

with a connection-rod ratio λ:

λ = r

l
.

Rail

s

l
α

Figure 3.28: Crank
mechanism.
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3.3 Dynamics

Dynamics of rigid bodies, describes the motion of rigid bodies under the action of forces.
The mechanical behavior of the rigid body follows from six differential equations that
cover the translational motion of the center of mass �R under the action of the force �F and
the time variation of the angular momentum �L by the torque ��:

m �̈R = �F , d�L
dt
= �� .

3.4 Moment of inertia and angular momentum

The concepts of torque, angular momentum and moment of inertia involved in the descrip-
tion of rotational motions are the analogs to the concepts of force, (linear) momentum and
mass for linear motions. They are related to each other by the fundamental law of dynamics
for rotational motion.
■ The simplest form of a rotation is the circular motion of a point mass about a fixed

axis (Fig. 3.29).

v = ω × r

Figure 3.29: Circular motion
of a point mass m with
the orbital velocity �v and
angular velocity �ω. The
rotation axis and the sense
of rotation are specified by
the vector �ω.

We now consider rotation about fixed axes. The theory of the top deals with the de-
scription of rotations about movable axes.

The rotation of a rigid body about a fixed axis can be described by analogy to linear
motion. The angle φ, which describes the position of the body at a given time, is analogous
to the coordinate x .

3.4.1 Moment of inertia
The moment of inertia describes the angular acceleration produced by an applied torque.
It depends on the shape and mass distribution of the body, and on the orientation of the
rotation axis. The moment of inertia plays the same role for rotation as the mass does for a
translational motion; it describes the resistance of a body to a change of its state of motion
(here: angular velocity).

1. Moment of inertia with respect to an axis

Moment of inertia, JX with respect to an axis X , the proportionality constant between the
torque τX about the axis X and the resulting angular acceleration αX of rotation about the
axis:
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torque = moment of inertia · angular acceleration ML2T−2

τX = JX · αX

Symbol Unit Quantity

τX Nm torque
JX kg m2 moment of inertia
αX rad/s2 angular acceleration

Kilogram times meter squared, kg m2, SI unit of moment of inertia:
1 kilogram times 1 meter squared is the moment of inertia of a body that is given an angular
acceleration of 1 rad/s2 when a torque of 1 Nm is applied to it.
➤ This formula is analogous to presenting the force as “mass times acceleration”.
➤ All quantities refer to the rotation axis X . The moment of inertia of a body depends

on the choice of axis.
To calculate the moment of inertia of a rigid body, it is resolved into mass elements that
move at a fixed distance from the rotation axis.

2. Moment of inertia of a point mass,

that moves with the angular velocity �ω along a circular orbit with radius r (Fig. 3.30(a)),
follows from the fundamental law of dynamics:

�τ = �r× �F = �r× m
d�v
dt
, �v = �ω × �r , |�τ | = r · mr

dω

dt
= mr2α .

One finds:

moment of inertia of a point mass ML2

JX = m · r2

Symbol Unit Quantity

JX kg m2 moment of inertia with respect to axis X
m kg mass
r m distance from rotation axis X

▲ The moment of inertia of a point mass is the product of the mass m and the square of
its perpendicular distance r from the rotation axis.

3. Moment of inertia of a rigid body,

obtained by resolving the body into mass elements 
m and summing up (Fig. 3.30(b)):

moment of inertia of a rigid body ML2

JX =
N∑

i=1


mi r2
i =

∫ ∫ ∫
r2 dm

dm = ρ dV

Symbol Unit Quantity

JX kg m2 moment of inertia
with respect to
the axis X


mi kg i th mass element
ρ kg/m3 density
dV m3 volume element
ri m distance of element i

from rotation axis X



3.4 Moment of inertia and angular momentum 113

▲ The moment of inertia of a body depends on the choice of rotation axis.
➤ The moment of inertia of a rigid body is a tensor quantity (see p. 121).

Point mass

Body with mass m,
volume V

of m

R
ot

at
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n 
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Figure 3.30: Moment of inertia. (a): point mass on a circular orbit, (b): rigid body.

4. Moment of inertia of planar bodies

Equatorial moments of inertia (Fig. 3.31(a)):

Jx =
∫

y2 dA , Jy =
∫

x2 dA , dA = dx dy .

Polar moment of inertia (Fig. 3.31(b)):

Jp =
∫

r2 dA , r2 = x2 + y2 , dA = dx dy .

Area element

Figure 3.31: Plane moments of inertia. (a): equatorial, (b): polar.

Relation between equatorial and polar moments of inertia: Jp = Jx + Jy .

3.4.1.1 Steiner’s rule
Steiner’s rule establishes a relation between the moment of inertia with respect to an
axis X S through the center of mass, and the moment about an arbitrary parallel axis X
(Fig. 3.32):
▲ Steiner’s rule: The moment of inertia of a body with respect to an arbitrary axis X a

distance rS from the center of mass S:
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Steiner’s rule ML2

JX = mr2
S + JS

Symbol Unit Quantity

JX kg m2 moment of inertia relative to axis X
m kg mass of body
rS m distance of the axis X from center

of mass S
JS kg m2 moment of inertia relative to an

axis through the center
of mass parallel to axis X

➤ The rotation of a body about an arbitrary axis can thus be interpreted as a rotation
about a center-of-mass axis parallel to the selected rotation axis (moment of inertia
JS), in addition to a rotation of the center of mass about the selected axis (moment
of inertia mr2

S) in which the total mass is thought to be concentrated in the center of
mass.

Figure 3.32: Steiner’s rule.

3.4.1.2 Moments of inertia of geometrical bodies

type rotation axis moment

thin rod
(length l)

1

12
ml2

1

3
ml2

plate
(edge lengths a, b, c)

1

12
m(a2 + b2)

1

12
ma2

thin circular disk
(radius r )

1

2
mr2

1

4
mr2
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type rotation axis moment

thin circular ring
(radius r )

mr2

1

2
mr2

cuboid
(edge lengths a, b, c)

1

12
m(a2 + b2)

1

12
m(4a2 + b2)

circular cylinder
(radius r , height h)

1

2
mr2

1

12
m(h2 + 3r2)

circular cone
(radius r , height h)

3

10
mr2

3

80
m(h2 + 4r2)

sphere
(radius r )

2

5
mr2

7

5
mr2

hollow sphere
(inner radius ri , outer radius ra)

2

5
m

r5
a − r5

i

r3
a − r3

i

m
7r5

a + 5r2
ar3

i − 2r5
i

5(r3
a − r3

i )

ellipsoid
(half axes a, b, c)

1

5
m(a2 + b2)
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3.4.2 Angular momentum
Similar to the momentum in the case of translational motion, one introduces an angular
momentum for rotations of a rigid body about a fixed axis. Angular momentum is a vector
quantity that points along the rotation axis.

1. Definition of the angular momentum of rigid bodies

Angular momentum, �L, the product of the moment of inertia JX relative to the rotation
axis X and the angular velocity �ω:

angular momentum = moment of inertia · angular velocity ML2T−1

�L = JX · �ω
Symbol Unit Quantity

�L kg m2/s angular momentum
JX kg m2 moment of inertia
�ω rad/s angular velocity

Kilogram times meters squared per second, SI unit of angular momentum.
1 kg m2/s is the angular momentum of a body with moment of inertia 1 kg m2 that rotates
with angular velocity 1 rad/s.
➤ This definition is the analog to the definition of (linear) momentum = mass times

velocity.

2. Fundamental law of dynamics for rotational motion

For rotational motions: the torque equals the change of the angular momentum per unit
time.

change of angular momentum per unit time = torque ML2T−2

d�L
dt
= �r× �F = ��

Symbol Unit Quantity

�L kg m2/s angular momentum
�r m distance from center of rotation
�F N acting force
�� Nm acting torque

➤ If the torque points parallel or antiparallel to the angular momentum, only the magni-
tude of the angular momentum (and thus the angular velocity) changes. If the torque
and the angular velocity are not parallel or antiparallel, for a freely movable rigid
body the orientation of the angular momentum—and thus the instantaneous rotation
axis—also changes.

3. Angular momentum as a conserved quantity

▲ The angular momentum is an integral of motion if the torque vanishes:
τ = 0, L = const. (Fig. 3.33).

■ Two masses of 1 kg each rotate at the ends of a rod of length 100 cm about the center
with a rate of rotation of 2/s. The moment of inertia is

J = J1 + J2 = 2 · 1 kg · (50 cm)2 = 0.5 kg m2 .

The angular momentum of the system is

L = Jω = 0.5 kg m2 4π rad/s = 6.28 kg m2/s .
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Figure 3.33: On conservation of angular momentum. The vertical component of the angular
momentum is a conserved quantity. This quantity vanishes in the figure on the left. When
he changes the axis of the rotating wheel, the person standing on the rotary table is put into
rotation; the corresponding angular momentum just compensates the change in the angular
momentum of the wheel.

When the distance of the masses from the rotation center is cut in half to 25 cm, the
angular momentum is conserved while the moment of inertia reduces to

J ′ = J ′1 + J ′2 = 2 · 1 kg · (25 cm)2 = 0.125 kg m2 = J/4.

To keep the angular momentum unchanged, the angular velocity now must be

ω′ = L

J ′ =
6.28 kgm2/s

0.125 kg m2
= 50.27 rad/s = 4ω

i.e., 8 rotations per second, or four times the initial rate of rotation.

3.4.2.1 Equilibrium for rotational motion
Similar to the equilibrium condition for translational motion,

∑
i
�Fi = 0, there exists an

equilibrium condition for rotational motion:
▲ A body rotates uniformly (special case: remains at rest) if the sum of all acting torques

vanishes:

static equilibrium for rotations ML2T−2

∑
i �τi =

∑
i (�ri × �Fi ) = 0

➤ When the position vectors of the applied forces, �ri , are represented as the sum of the
center-of-mass vector, �RS , and the distance vector of the i th point of application from
the center of mass, 
�ri ,

�ri = �RS +
�ri ,

the equilibrium condition reads∑
i

(�ri × �Fi ) = �RS ×
∑

i

�Fi +
∑

i

(
�ri × �Fi ) .

If the sum of the external forces vanishes,
∑

i
�Fi = 0, the equilibrium condition

simplifies to ∑
i

(�ri × �Fi ) =
∑

i

(
�ri × �Fi ) .

Hence, it is sufficient that the sum of the torques with respect to the center of mass
vanish.



118 3. Rigid bodies

3.5 Work, energy and power

If a force �F acts on the point �r of a rigid body, during a rotation by the angle element 
φ
(rotation axis X ) it does work


W = �F ·
�r = F sinα r 
φ = Ft r 
φ,

where 
r = r
φ is the distance traveled by the particle during the rotation by the angle

φ. The angle enclosed by �r and �F is α, so that �Ft is the component of the force in the
direction of rotation (tangential component) (Fig. 3.34). Since the torque with respect to
the rotation axis X is given by τX = Ft r :

work = torque · angle element ML2T−2


W = τX ·
φ
Symbol Unit Quantity


W J work done
τX Nm torque with respect to axis X

φ rad angle element

Rotation axis X

Figure 3.34: Work in
rotation.

The mean power exerted by the applied torque in the time interval 
t is

P̄ = τX

φ


t
= τX ω̄,

where ω̄ is the mean angular velocity.
➤ Only the component of the torque along the rotation axis contributes to the work done.

The perpendicular component causes only a change in orientation of the rotation axis,
and does not contribute to the work.

The torque τX denotes the component along the rotation axis X , i.e., along �ω. In vector
notation therefore:

power = torque · angular velocity ML2T−3

P = �τ · �ω
Symbol Unit Quantity

P W instantaneous power
�� Nm torque vector
�ω rad/s angular velocity
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3.5.1 Kinetic energy
1. Kinetic energy of a rigid body

If the origin of the body-fixed coordinate system is established at the center of mass S, the
kinetic energy of a rigid body is the sum of the kinetic energy of translation of the center
of mass with velocity �v and the kinetic energy of rotational motion with angular velocity
�ω about an axis X S through the center of mass:

Ekin = m

2
v2 +

3∑
i,k=1

Jik ωi ωk , i, k = x, y, z .

m: total mass, Jik : components of the tensor of inertia Ĵ , ωi : components of the angular
velocity vector �ω.

In matrix notation,

Ekin = 1

2
( ωx ωy ωz )

⎛
⎜⎝ Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

⎞
⎟⎠
⎛
⎝ ωx
ωy
ωz

⎞
⎠ = 1

2
�ωT Ĵ �ω .

�ωT is the (row) vector transposed to the column vector �ω.
In the system of principal axes,

Ekin = 1

2
(J 2

x ω
2
x + J 2

yω
2
y + J 2

z ω
2
z ) .

2. Kinetic energy for a fixed rotation axis

Kinetic energy of a rigid body rotating about a fixed axis X :

rotation energy ML2T−2

Erot = 1

2
JX · ω2

Symbol Unit Quantity

Erot J rotation energy
JX kg m2 moment of inertia
ω rad/s angular velocity

The kinetic energy of rotational motion is proportional to the square of the angular velocity.

3. Kinetic energy of a point mass

For a point mass moving on a circular orbit of radius r , the kinetic energy is

Erot = 1

2
m · v2 = 1

2
(m · r2)ω2 = 1

2
J · ω2 ,

J being the moment of inertia of the point mass (see p. 111).
➤ According to Steiner’s rule, the moment of inertia with respect to any axis X with a

perpendicular distance rS from the center of mass is

JX = m · r2
S + JS ,
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where JS is the moment of inertia about an axis parallel to X through the center of
mass. Hence, one obtains for the rotation energy

Erot = 1

2
JS · ω2 + 1

2
mr2

S · ω2 .

The first term 1
2 · JS · ω2 represents the kinetic energy of rotation about the axis

through the center of mass; the second term 1
2 ·m · (rS ·ω)2 = 1

2 mv2 gives the kinetic
energy of the circular motion of the center of mass about the actual rotation axis of
the system.

Steiner’s rule allows a separation of the motion into a motion of the center of mass
about the rotation axis and a rotation of the body about a center-of-mass axis. For a
rigid body, both rotations have the same angular velocity ω.

The general motion of a rigid body is a translation of the center of mass with a super-
imposed rotation about an axis through the center of mass. The total kinetic energy can
therefore be separated into the translation energy 1

2 mv2
S of the center of mass, and the

rotation energy 1
2 JS · ω2:

Etotal = Ekin + Erot = 1

2
mv2

S +
1

2
JSω

2 .

4. Potential energy of a rigid body,

energy of position of the center of mass,

Epot = m g hS ,

with m: total mass, g: acceleration of gravity, hS : height of the center of mass above the
reference level.

5. Energy conservation

In the absence of friction, the law of energy conservation holds provided the rotational
energy is included. The sum of kinetic energy of translation, kinetic energy of rotation, and
potential energy are constant if no dissipative forces are present:
▲ Law of energy conservation:

Ekin + Erot + Epot = const.

3.5.2 Torsional potential energy
Potential energy arises in rotations of spiral springs. When twisting the axis through the
angle φ, a restoring torque τ is generated:

Hooke’s law for spiral springs ML2T−2

τ = κ · φ
Symbol Unit Quantity

τ Nm torque
κ Nm torsional constant
φ rad twist angle from rest position

The quantity κ , the torsional constant, corresponds to the spring constant k of linear
springs.
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The potential energy of a spiral spring is thus

Wpot = 1

2
κ · φ2 .

Similar to the case of a linear spring ( k
2 x2) the potential energy is proportional to the square

of the twist angle φ.

3.6 Theory of the gyroscope

Gyroscope, a rotating rigid body that is kept fixed at one point. The rotation axis, and thus
the orientation of the angular velocity �ω, of the gyroscope vary with time (Fig. 3.35).

According to the fundamental law of dynamics for rotational motion,

d�L
dt
= ��,

the motion of the gyroscope results from the total applied torque ��. In this equation, the
angular momentum �L is a freely varying vector quantity.

Figure 3.35: Gyroscope. To guarantee free rotation of the gyroscope axis, bearings (car-
danic suspensions) with very low friction are used.

Bearing moment, the torque needed to keep the rotation axis in a definite orientation or
plane. The bearing force results from the suppression of the motion of a free gyroscope, as
discussed below.

3.6.1 Tensor of inertia
1. Definition of the tensor of inertia

Tensor of inertia, Ĵ , a tensor of second rank that establishes the relation between the
angular velocity �ω of a body and its angular momentum �L:

tensor of inertia ML2

�L = Ĵ · �ω
Symbol Unit Quantity

�L kg m2/s angular momentum
Ĵ kg m2 tensor of inertia
�ω rad/s angular velocity
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The tensor of inertia has the same dimension as the moment of inertia; it differs from the
latter quantity in that it is not related to a definite axis.

2. Inertia tensor in matrix notation

The inertia tensor can be represented in matrix notation:

Ĵ =
⎛
⎝ Jxx Jxy Jxz

Jyx Jyy Jyz
Jzx Jzy Jzz

⎞
⎠ .

The inertia tensor is a real symmetric tensor:

Jxy = J∗xy , Jxz = J∗xz , Jyz = J∗yz ,

Jxy = Jyx , Jxz = Jzx , Jyz = Jzy .

It can be characterized by only six independent elements.
In component representation, the relation between angular momentum and angular ve-

locity is given by

Lx = Jxxωx + Jxyωy + Jxzωz ,

L y = Jyxωx + Jyyωy + Jyzωz ,

Lz = Jzxωx + Jzyωy + Jzzωz .

In compact notation:

Li = Ji jω j , i, j = 1, 2, 3 ,

where i, j = 1, 2, 3 stands for the x-, y- and z-direction, and the summation runs over the
second index j (Einstein sum convention).

3. Calculation of the inertia tensor

To calculate the inertia tensor of an extended body, one starts with the inertia tensor of a
point mass 
m, which has the form

Ĵ = 
m

⎛
⎝ y2 + z2 −xy −xz

−yx x2 + z2 −yz
−zx −zy x2 + y2

⎞
⎠ ,

where x , y and z are the Cartesian coordinates of the point mass. The diagonal components
(moments of inertia) involve the perpendicular distance from the corresponding axis, e.g.,

Jxx = 
m · r2
x = 
m(y2 + z2) .

rx is the perpendicular distance of the x-axis. The off-diagonal elements are called the
products of inertia.

The inertia tensor of an extended body is obtained by dividing the body into small mass
elements 
mi and summing or integrating:

Ĵ =
∑

i

Ĵi =
∑

i


mi

⎛
⎜⎝ y2

i + z2
i −xi yi −xi zi

−yi xi x2
i + z2

i −yi zi
−zi xi −zi yi x2

i + y2
i

⎞
⎟⎠ ,

xi , yi and zi being the coordinates of the i th element.
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For the components of the inertia tensor:

Jkl =
∑

i


mi

(
r2
i δkl − xik xil

)
.

Kronecker symbol: δkl = 1 for k = l, otherwise zero. For a given coordinate system, the
components of the inertia tensor are given by the mass distribution of the body.
➤ The summation over the mass elements 
mi can be written as an integral,

Jkl =
∫ ∫ ∫ (

r2 δkl − xk xl

)
dm .

4. Example: Inertia tensor of a cube

Inertia tensor of a cube with edge length a and mass m. The homogeneous mass density
is given by ρ0, dm = ρ0 dV = ρ0dx dy dz, m = ρ0V . We take the lower left corner as a
reference point (coordinate origin), i.e., the integration limits in the volume integral are 0
and a for all directions:

J11 = ρ0

∫ a

0

∫ a

0

∫ a

0
(x2 + y2) dx dy dz = 2

3
ma2 ,

J12 = −ρ0

∫ a

0

∫ a

0

∫ a

0
xy dx dy dz = −1

4
ma2 .

One obtains:

Ĵ = ma2

⎛
⎝ 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3

⎞
⎠ .

5. System of principal axes

The form of the inertia tensor depends on the choice of coordinate system. However, one
can always find a system of principal axes in which the tensor has a diagonal form:

Ĵ =
⎛
⎝ Jx 0 0

0 Jy 0
0 0 Jz

⎞
⎠ .

The axes of such a coordinate system are called principal axes. Jx , Jy and Jz specify the
moments of inertia relative to the principal axes (principal moments of inertia).

6. Types of gyroscopes

One distinguishes:

Asymmetric gyroscope: Jx �= Jy �= Jz .

Symmetric gyroscope: Jx = Jy �= Jz or
Jy = Jz �= Jx or
Jx = Jz �= Jy .

Spherical gyroscope: Jx = Jy = Jz .
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➤ For bodies with axes of symmetry, these axes coincide with the principal axes.
■ For a sphere, any axis through its center is a principal axis.

For a cube, the principal axes are perpendicular to the lateral faces.
For a long cylinder, one principal axis points along the cylinder axis (smaller moment
of inertia), the two other principal axes are perpendicular to the first one and pass
through the cylinder center (larger moments of inertia).

In the system of principal axes:

Lx = Jx ωx , L y = Jy ωy , Lz = Jz ωz .

Therefore, the angular-momentum and angular-velocity vectors are collinear if they are
parallel to a principal axis. If this is not the case, then the two vectors can have different
orientations, with the deviation depending on the differences between the principal mo-
ments of inertia Jx , Jy and Jz .
▲ The angular velocity �ω and angular momentum �L are parallel only for rotation about

a principal axis.
▲ A unilaterally suspended gyroscope always orients itself in such a way that it rotates

about the principal axis with the largest moment of inertia (Fig. 3.36).

Figure 3.36: Unilaterally suspended gyroscopes orient themselves along a principal axis.

3.6.2 Nutation and precession
Symmetry axis, geometrically prominent symmetry axis of a symmetrical gyroscope.

Instantaneous-rotation axis, direction of the angular velocity.

3.6.2.1 Nutation
Nutation, nodding motion, the motion of a gyroscope that is free of external forces. It
arises if the principal axis moments are not all equal and the rotation is not about a principal
axis.

1. Force-free symmetric gyroscope

Motion of a force-free symmetric gyroscope (Jx = Jy �= Jz ):
Since no forces, and hence no torques, are acting, the angular-momentum vector has a

fixed orientation in space, �L = const. The instantaneous-rotation axis, and thus the angular-
velocity vector �ω and the angular-momentum vector include a fixed angle, the value of
which results from the inertia tensor. The vector �ω rotates with constant angular velocity
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Angular-momentum
vector

Angular-momentum
vector

Instantaneous-
rotation axis

Symmetry axis

Body coneSpace cone

Nutation
cone

Figure 3.37: Axes of a force-free symmetric gyroscope (Jx = Jy �= Jz). The angular-
momentum vector �L is space-fixed, the symmetry axis moves on the nutation cone about
the direction of the angular momentum. The angular-velocity vector �ω (instantaneous-
rotation axis) moves on the space cone (herpolhode) about the angular-momentum vector.
The relative orientation of the axes is determined by the condition that the body cone (pol-
hode) rolls with its outer surface (Jx > Jz ) (a) or with its inner surface (Jx < Jz ) (b) on
the space cone.

about the angular-momentum vector, forming a circular cone, the space cone (herpolhode)
that is space-fixed with the angular-momentum vector as symmetry axis (Fig. 3.37).

2. Body cone

The figure axis must not coincide with the rotation axis, but can include a fixed angle with
it, and thus with the angular-velocity vector. As a result, another circular cone arises, the
body cone (polhode), which has the symmetry axis as the central axis and rolls with its
outer surface (Jx > Jz) or with its inner surface on the space cone (Jx < Jy). The two
cones touch each other just along the instantaneous-rotation axis. Thus, the motion can be
described by the rolling of two cones on each other; the cone tips lie in the support point
of the gyroscope, and the symmetry axis moves on the nutation cone about the angular-
momentum axis.
➤ A rotating body supported at its center of mass is a force-free gyroscope, since the

total torque resulting from the weight vanishes.
➤ Because of friction effects, the gyroscope always orients itself along a principal axis.

Therefore, nutation is observed only by pushing the gyroscope so that the angular-
momentum vector moves away from the principal axis of inertia for a short time.

➤ For a non-symmetric gyroscope, the space cone, symmetry cone and nutation cone
are not circular cones. The surfaces may not even be closed.

3.6.2.2 Precession
Gravity gyroscope, gyroscope with support point not coinciding with the center of mass,
so that its weight introduces a torque on it.
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1. Precession,

the motion of a gyroscope under an external torque acting perpendicular to the angular
momentum. The angular momentum changes its orientation, but not its magnitude. (A
torque parallel to the angular momentum would only change the magnitude, but not the
orientation.)

The change of the angular momentum follows from the fundamental law of dynamics
for rotational motion. The angular momentum vector,

�τ = �r× ��,

points perpendicular to �r, and thus to the rotation axis. As a consequence, the change in the
angular momentum 
�L = �τ
t is perpendicular to the angular momentum �L, which leads
to a rotation of the angular-momentum axis. The rotation proceeds in a plane perpendicular
to the applied force (Fig. 3.38).

τ

L

FG

Figure 3.38: Precession
of a rotating disk under
the influence of Earth’s
gravitation �FG . The rotation
axis specified by the angular
momentum �L begins to
rotate in the horizontal
plane.

2. Precession velocity

The angular velocity of precession ωp = 
φ


t
can be found by expressing the rotation

angle 
φ of the angular-momentum axis by the change 
L of the angular momentum,


φ = 
L

L
= τ

L

t ,

and from that calculating the angular velocity ωp (of rotation of the angular momentum,
not that of the gyroscope):

precession velocity T−1

ωp = τ

L
= τ

Jω

Symbol Unit Quantity

ωp rad/s precession velocity
τ Nm torque
L kg m2/s angular momentum
J kg m2 moment of inertia
ω rad/s rotation velocity of the gyroscope

3. Precession rate

Instead of the precession velocity, one often adopts the precession rate f p . The precession
rate indicates how often the gyroscope axis rotates about the vertical per unit time:

f p = ωp

2π
= τ

2π Jω
.



3.6 Theory of the gyroscope 127

It becomes large when the applied torque τ increases, or the moment of inertia J of the
gyroscope or its rotation velocity ω decreases.

4. Rotation direction

The direction of rotation of the gyroscope axis about the vertical depends on a number of
factors.
▲ A gyroscope tends to adapt the orientation of its angular-momentum vector on the

shortest path along the direction of an applied torque.
➤ The rotation of the gyroscope is assumed to occur about a principal axis. J is the

moment of inertia relative to this axis. If this is not true, precession and nutation
interact with each other.

■ Non-symmetrically suspended gyroscope, a gyroscope that is suspended only on
one side of its horizontal-rotation axis. The weight does not act at the point of sus-
pension, but provides a torque. The rotation axis does not turn downwards, but rotates
in the horizontal plane.

3.6.2.3 Gyroscope moments
Gyroscope moment, the torque created by the bearing forces that must be compensated
by the bearing of a tightly supported gyroscope if the rotation axis rotates. One finds:

gyroscope moment ML2T−2

�τ = �L× �ωp

Symbol Unit Quantity

�τ Nm gyroscope moment
�L kg m2/s angular momentum
�ωp rad/s enforced precession velocity

■ The horizontal rotation axis of a rotating disk rotates about the vertical. �ωp points
vertically, �L horizontally. The bearings are under a force that tends to rotate the
angular-momentum axis in the vertical direction. This force must be compensated
by the bearings.

Bicycle, the wheels act as stabilizing gyroscopes. To make the bicycle fall over, a torque
must act that rotates the orientation of the angular-momentum vector of the wheels; the
faster the wheels rotate, the stronger must be the torque.

An additional stabilization stems from the precession torque at the front wheel that arises
if the wheel turns sideways in a curve (rotation about the longitudinal axis). The resultant
torque turns the front wheel in the curve’s direction.

3.6.3 Applications of gyroscopes
1. Gyrocompass,

a gyroscope with a rotation axis freely movable in the horizontal plane, but with the vertical
axis fixed by the suspension. The gyroscope thereby carries out a forced rotation with the
Earth’s rotation ωE and tries to align its angular momentum parallel to it. The angular
velocity of the Earth points permanently north, hence the gyrocompass always aligns to
the north. In this way, it may supplement, or substitute for, a magnetic compass.
➤ The main problem with the gyrocompass is due to the slowness of the Earth’s rotation,

which makes the effect very small and difficult to protect against perturbations. One
uses a gyroscope with a very large rate of rotation and as low a bearing friction as
possible (e.g., in a liquid).



128 3. Rigid bodies

➤ On a moving ship there is another torque due to the motion along a meridian, which
causes a deviation of the gyrocompass. Airplanes may move even faster than the local
rotation velocity of the Earth, and hence the gyrocompass cannot be used.

➤ In the vicinity of the poles, the gyrocompass fails, just as the magnetic compass does,
since the rotation axis of Earth points nearly normally to the surface, and hence the
torque projected on the horizontal plane becomes very small.

2. Gyroscope horizon,

to determine the horizon position in an airplane, based on angular momentum conservation.
A gyroscope is set into rotation on the ground. When low friction air bearings and cardanic
suspensions are used, it keeps its original orientation.

3. Gyroscope pendulum,

improvement of the gyroscope horizon, where the gyroscope is brought to a slow preces-
sion. One exploits the fact that the precession always occurs about the vertical direction.
The gyroscope pendulum is distinguished from the conventional plumbline or pendulum
by its very low oscillation frequency, hence it does not respond to short-term accelerations
in curved flight.

4. Rate gyroscope

For measuring the rate of turning of a vehicle by means of the moments of the gyroscopic
motion induced by the turning. The gyroscopic moments are measured at the bearings with
springs. The elongation of the spring at the top is proportional to the rotational velocity.



4
Gravitation and the theory of relativity

4.1 Gravitational field

4.1.1 Law of gravitation
1. Gravitation

The property of bodies to interact with each other through their masses is called gravita-
tion. The electric force between bodies depends on the charge but not the mass. For the
gravitational force only the mass enters, and the force is always attractive as opposed to the
electric force, which depends on the sign of the charge. The gravitational force is always
attractive and described by the universal law of gravitation:

law of gravitation MLT−2

Fg = G
m1m2

r2
12

Symbol Unit Quantity

Fg N gravitational force
G N m2/kg2 gravitational constant
m1, m2 kg masses of bodies
r12 m center-of-mass separation of the bodies

2. Properties of the gravitational force

The gravitational force always points towards the other body (Fig. 4.1). In vector notation:
The force acting on the body 2 is

�Fg,2 = −G
m1m2

r2
12

�r12

|�r12| ,

where �r12 represents the vector from the center of mass of body 1 to the center of mass of
body 2. Potential theory states that, for the calculation of the gravitational force between

129



130 4. Gravitation and the theory of relativity

Figure 4.1: Gravitational force. The force acting on the body m2 points opposite to the
displacement vector from m1 to m2.

extended spherical homogeneous mass distributions, the bodies can be considered points,
with the masses concentrated at the corresponding centers of mass.
➤ The expression �r/|�r| (vector divided by its magnitude) represents the unit vector

along the vector �r. The force acting on the body 2 points from body 2 to body 1
(notice the minus sign in the formula).

▲ The gravitational force is always an attractive force.
➤ The gravitational constant G is a natural constant. Its value is

G = 6.67259 · 10−11 Nm2/kg2 .

➤ The formula gives both the magnitude of the force exerted by body 1 on body 2, and
vice versa (2 on 1). The gravitational force always points towards the attracting body.

▲ The gravitational force between two bodies is proportional to the mass of each body
and inversely proportional to the square of the distance between them.

Notice the similarity of this expression to Coulomb’s law (see the section on Electricity).
However, masses always attract each other, whereas the force between charges with the
same sign is repulsive. The gravitational field strength is introduced by analogy to the
electric field strength.

3. Gravitational field strength,

�Eg , a vector quantity which, for any point �r in space, gives the force per unit mass that acts
on a body due to gravitation:

�Eg = −G
M

r2

�r
|�r| .

The gravitational field �EG depends only on the mass M of the attracting body, which is
located at the coordinate origin and is considered to be the source of the gravitational field.
The force on a test particle of mass m is �F = m �Eg . It points towards the attracting body
and determines the acceleration of the test particle.

4. Gravitational potential,

�, potential of the gravitational field, describes the work in the gravitational field.

gravitational potential L2T−2

� = −G
M

r

Symbol Unit Quantity

� J/kg = Nm/kg potential of gravitational field
G N m2/kg2 gravitational constant
M kg mass of the gravitating body
r m distance between the test body

and gravitating body
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The gravitational force �F is calculated from the potential � of the gravitational field as

�Fg(�r) = −m grad�(r) .

➤ The potential of the gravitational force is V (r) = m�(r), �Fg = −grad V (r) .
The potential energy of a test particle of mass m at the point �r in the gravitational field of
a body of mass M is

Epot(�r) = m�(�r) .
The work needed to move a test particle of mass m from point �r1 to point �r2 against the
gravitational force equals the difference of the potential energies at the points �r2 and �r1:

W12 = −
�r2∫
�r1

�Fg d�r = Epot(�r2)− Epot(�r1) = Gm M

(
1

r1
− 1

r2

)
.

5. Attraction to Earth,

weight, the force exerted by Earth on a body at Earth’s surface due to gravitation. It is
specified by the law of gravitation, the mass and radius of Earth, and the mass of the test
particle.

Acceleration of gravity g, nearly constant acceleration due to the attractive force of
Earth that acts on all falling bodies: g = 9.80665 m/s2 for mean sea level at about 45◦
geographical latitude.
➤ The acceleration of gravity is not the same everywhere on Earth’s surface. It depends

on the geographic latitude, as a result of the non-spherical shape of Earth, and the
centrifugal force of Earth’s rotation, and also depends on the height at which the
measurement is made. Lastly, density fluctuations in Earth’s crust lead to concentra-
tions of mass that may modify both the magnitude and direction of Earth’s attraction.
The latter effect is exploited in searching for raw-material deposits.

➤ According to the law of gravitation, the ratio of the acceleration of gravity gr at a
distance r > R from Earth’s center, and g on the Earth’s surface is

gr

g
= R2

r2
, R : Earth’s radius.

➤ The hypothesis of a “fifth force,” represented by a Yukawa term, with a strength
parameter α and range parameter λ, as an additional term to the potential energy of
the gravitational field,

V (r) = −G
Mm

r
(1+ αe−r/λ) ,

leads to an effective gravitational constant that depends on the distance r of the test
particle from the gravitating mass M . This hypothesis has not be verified by experi-
ment.

4.1.2 Planetary motion
Besides Earth’s attraction, gravitation also manifests itself in the motion of the planets.
Planetary motion was described empirically in 1609 by Johannes Kepler, as formulated in
Kepler’s laws. These laws can be derived from the law of gravitation and Newton’s laws.
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1. Kepler’s first law

All planets move in elliptic orbits, with the Sun at one focal point.
➤ An ellipse is described by specifying its major semi-axis and either its minor semi-

axis or its eccentricity. In our solar system, the planetary orbits are very close to
circles.

Ecliptic, the plane of the Earth’s orbit. It serves as an astronomical reference frame. Per-
ihelion, the point of Earth’s orbit with the minimum distance to the Sun. Aphelion, the
point of the Earth’s orbit with maximum distance to the Sun.
➤ The seasons on Earth are not caused by the difference of the distances to the Sun

at the perihelion or aphelion, but by the inclination of Earth’s equator with respect
to the ecliptic. This inclination implies that sometimes the northern hemisphere is
turned more towards the Sun, and at other times more away from the Sun.

2. Kepler’s second law

A radius vector drawn from the Sun to a planet covers equal areas in equal time intervals
(Fig. 4.2).

Aphelion

Perihelion

Figure 4.2: Kepler’s second law. F : The focal point of the ellipse. The shadowed regions
around rmin and rmax are of equal area.

➤ This statement follows from the conservation of angular momentum �l = �r × �p: The
areal element dA covered in the time interval dt is given by 2·dA = |�r × d�r|, hence
2m·dA/dt = |�r × �p| = |�l|. If the angular momentum is a conserved quantity, |�l| =
const., the area dA covered per time interval dt is the same for all sections of the
orbit. In particular, it follows that the orbital velocity at the perihelion, vP , is higher
than at the aphelion, vA, since l/m = rminvP = rmaxvA �⇒ vP > vA.

3. Kepler’s third law

The squares of the periods T1 and T2 of two planets are related as the cubes of the major
semi-axes a1 and a2 of their orbits:

T 2
1 : T 2

2 = a3
1 : a3

2 ,
T 2

a3
= const .

➤ Kepler’s laws describe the planetary motion caused by the gravitational attraction by
the Sun. They do not take the mutual attraction between the planets into account.

➤ According to the general theory of relativity deviations from the
1

r2
-law arise near the

Sun, as is manifested by the slow precession of the elliptic orbit of Mercury (rosette
curve).

▲ Parabolas and hyperbolas are also possible orbits of celestial bodies. They pass, how-
ever, only once in the vicinity of the central stellar body; afterwards the celestial body
leaves the planetary system (example: some comets).
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4.1.3 Planetary system

4.1.3.1 Sun and planets

1. The Sun,

the central star of the solar system which consists of nine planets and the smaller celestial
bodies (satellites, comets, asteroids). The nine planets of the solar system are partly earth-
like in size and composition (Mercury, Venus, Mars), and partly much larger gaseous giants
(Jupiter, Saturn, Uranus, Neptune).

Data on the Sun

radius 696,000 km = 109 Earth radii
mass 1.99 · 1030 kg = 332,000 Earth masses
mean density 1,410 kg/m3

acceleration of gravity 273.7 m/s2 = 27.9 times that on Earth

2. Planets and solar system

Planet, a non-self-luminous celestial body. Unlike fixed stars, planets are made visible by
light reflected from them. Under the influence of the gravitational force of a central star
the planets move in elliptic orbits around them. A star may have several planets revolving
around it in different orbits (planetary system).

The solar system contains nine planets.
➤ It is not yet clear whether additional planets besides those currently known exist in the

solar system. Since the sun light reflected by a possible further planet would be too
small to be measured with present technology, one tries to determine the existence
of additional planets via their gravitational force on other planets and the resulting
distortions of their orbits.

➤ Indications of planets outside our solar system have been observed.

Basic data for planets of the solar system:

Major semi-axis Period of Diameter Mass Rotational
Planet of orbit (106 km) revolution (a) (km) (in Earth masses) period

Mercury 57.9 0.241 4,840 0.053 59 d
Venus 108.2 0.615 12,400 0.815 243 d
Earth 149.6 1.000 12,756 1.000 23 h 56 min
Mars 227.9 1.881 6,800 0.107 24 h 37 min
Jupiter 778 11.862 142,800 318.00 9 h 50 min
Saturn 1,427 29.458 120,800 95.22 10 h 14 min
Uranus 2,870 84.015 47,600 14.55 10 h 49 min
Neptune 4,496 164.79 44,600 17.23 15 h 40 min
Pluto 5,946 247.7 5,850 ca. 0.1 unknown
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3. Basic data for Earth

Data on Earth

equator radius 6378.163 km = RE
polar radius 6356.777 km = RP
flattening 0.003356 = (RE − RP )/RE
mass 5.977 · 1024 kg
mean density 5517.0 kg/m3

acceleration of gravity 9.80665 m/s2

escape velocity 11.19 km/s

Escape velocity (parabolic velocity): The minimum velocity of a planet needed to leave the
gravitational field of the central body.
➤ The rotation period of Earth is not exactly 24 hours, but is about 4 minutes less. These

4 minutes correspond to the angular distance the Earth travels in one day in its orbit
around the Sun.

4. Titius-Bode relation

The radii an of the planetary orbits follow a geometrical series approximately:

an ≈ aEarth kn , k ≈ 1.85 ,

(nEarth = 0, nVenus = −1, nMercury = −2, nMars = 1, nJupiter = 3, nSaturn = 4, . . . ).
➤ The missing value n = 2 corresponds to the belt of asteroids between Mars and

Jupiter.
➤ The origin of this relation is presumed to lie in the mutual perturbations of the planets

and the resulting conditions for stable orbits.

5. Astronomical unit,

AE, the mean distance Earth–Sun,

1AE = 149.6 · 106 km .

Pluto, the outermost known planet, is about 40 AE distant from the Sun; Mercury, the
innermost, ca. 0.4 AE. Hence, the solar system is very much smaller than the distance to
the nearest star (Proxima Centauri, 4.3 ly ≈ 272,265 AE).

Light year, ly, the distance traversed by light in one year:

1 ly = 9.4605 · 1012 km = 63,240 AE .

Parsec, pc (parallax second), the distance at which the radius of Earth’s orbit around
the Sun is observed to subtend an angle of 1 arc second:

1 pc = 3.262 ly = 30.857 · 1012 km .

6. Measurement of astronomical quantities

M Parallax, the virtual displacement of a star (e.g., with respect to other, more remote
stars) in the sky in the course of one year, due to the motion of Earth on its orbit. The
nearer a star, the larger its parallax.

Parallax range finding, measurement of the distance to a star by comparison of
photographs taken in the course of one year. A star at a distance of 1 pc performs a
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parallax motion of 1 arc second. The method is applicable up to about 100 ly. For
larger distances, indirect methods (luminosity, Doppler shift, . . . ) are used.

7. Moon,

stellar body orbiting a planet. The diameter of Earth’s moon is about one fourth of Earth’s
diameter. Many planets, in particular the larger planets Jupiter, Saturn and Uranus, have
several moons with nearly the dimension of planets. The rings of Saturn, which consist of
rocks and dust orbiting the planet, resemble moons.

Data on Earth’s Moon

diameter 3476.0 km = 27 % of Earth’s diameter
mass 7.350 · 1022 kg = 1.2 % of Earth’s mass
mean density 3 342 kg/m3 = 61 % of Earth’s density
acceleration of gravity 1.620 m/s2 = 16.6 % of g on Earth
escape velocity 2.37 km/s

8. Planet rotation

Planets (and moons) rotate about their own axes; Earth once in 24 hours, Earth’s Moon
once per month (ca. 28 days). Hence, Earth’s Moon always turns the same face towards
Earth; the other half of its surface remains permanently out of sight of Earth.

Equator, great circle in the plane of rotation of the planet. The inclination of this equa-
torial plane against the orbital plane determines the length of the day in the course of the
year and is responsible for the occurrence of seasons.

9. Asteroids and comets

Asteroids, small planets, significantly smaller than any of the nine planets. Most of the
asteroids are found in an asteroid belt between Mars and Jupiter. Their diameters range
from a few kilometers up to 740 km (Ceres).

Comet, an object on a hyperbolic or highly eccentric elliptic orbit. The hyperbolic orbit
approaches the Sun (or Earth) only once, the elliptic orbit in periodic intervals that may
reach 200 years. The most famous comet is Halley’s comet with a period of 76 years.
When comets are remote from the Sun (i.e., not within the orbits of the nine planets) they
are not observable. Comets typically have sizes between 1 km and 100 km. Frozen gases
on the surface of the comets evaporate when they approach the Sun and become visible as
a comet tail.

Meteor, a luminous phenomenon caused by meteorites that enter Earth’s atmosphere
and burn out due to the air friction. Their often metallic residues sometimes reach Earth’s
surface.

4.1.3.2 Satellites
Satellite, a body moving on an orbit in the gravitational field of another body, in general
a planet. Originally, the term referred to moons; nowadays artificial satellites are also
included.
▲ For satellites, Kepler’s first law may be modified as follows: satellites move along

conic sections, i.e., on circular, elliptic, parabolic or hyperbolic curves, depending on
the satellite’s initial velocity.

Satellites on parabolic and hyperbolic orbits escape the gravitational field of the central
object.
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1. First critical velocity

Circular orbit velocity, vK , first critical velocity, the velocity that a body must have
to move on a circular orbit near Earth’s surface. It is the minimum velocity of a satellite
to avoid impact on the surface of Earth. The circular orbit velocity follows from the bal-
ance between the centrifugal force and the gravitational force of Earth that provides the
centripetal force to maintain the circular motion.

2. Second critical velocity

Parabolic orbit velocity, vP , second critical velocity or escape velocity, the minimum
velocity that a body must have to leave the gravitational field of Earth. The body then
moves on a parabolic orbit arbitrarily far away from Earth.

For Earth, the critical velocities are (Fig. 4.3):

critical velocities LT−1

vK =
√

G M

R
= 7912 m/s

vP =
√

2 vK =
√

2G M

R

= 11190 m/s

Symbol Unit Quantity

vK m/s circular orbit velocity
vP m/s parabolic orbit velocity
G N m2/kg2 gravitational constant
M kg Earth’s mass
R m Earth’s radius

➤ For velocities vK < v < vP , elliptic orbits result. Hyperbolic orbits arise for v > vP .

Earth

Hyperbola
Ellipse

Parabola

Circle

c

Figure 4.3: Satellite orbits. �Fc: centrifugal force, �FG : weight (centripetal force), R: Earth’s
radius, vK : first critical velocity, vP : second critical velocity.

3. Third critical velocity

Third critical velocity, the minimum velocity that a body on Earth must have to leave the
solar system. It follows from the same formula as the second critical velocity, but now the
Sun’s mass and the distance from the Sun have to be inserted:

v =
√

2G MSun

rSun−Earth
= 42.1 km/s .

➤ Using the relation g = G M/R2, vK and vP can also be expressed in terms of the
acceleration of gravity g at Earth’s surface.
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4.2 Special theory of relativity

1. Special theory of relativity,

developed by Albert Einstein (1905) to explain phenomena in motion at velocities near the
speed of light.

The central concept of the special theory of relativity is the postulate that the laws of
physics are the same in any uniformly moving reference frame, and the postulate of the
constancy of the speed of light in vacuum in all inertial systems. This postulate leads
to a new definition of the concepts of time and space in the framework of a space–time
continuum.

2. General theory of relativity,

extension of the special theory of relativity, also developed by Einstein (1916), that also
includes arbitrarily accelerated reference frames in the relativity principle.
■ The general theory of relativity leads to an equal treatment of gravitation and iner-

tial forces by means of a curved space–time continuum, and constitutes the basis of
modern cosmology.

3. Relativistic effects

Differences between the ordinary, non-relativistic physics and the special or general the-
ory of relativity become important only for velocities close to the speed of light, and for
motions in the vicinity of extremely massive objects, respectively. They are in general not
observable in everyday life.
■ Physical applications of the theory of relativity are found in elementary-particle

physics (particle accelerators), in atomic physics, and in astronomy and astronau-
tics. Because of the increasing sensitivity of precision measurements, relativistic ef-
fects may also be demonstrated using highly sensitive instruments in macroscopic
processes on Earth (time dilatation in airplanes).

4.2.1 Principle of relativity
1. Inertial system,

a frame in which Newton’s laws hold, in particular the law of inertia. In such a frame, a
body that is free of forces remains in its state of motion. Therefore, inertial systems are
those frames that move with uniform speed relative to each other.
➤ The velocity of a system cannot be specified without reference to a system relative to

which the velocity is being measured. Hence, an inertial system cannot be defined as
a system that moves with uniform velocity without referring to another frame that is
also an inertial system.

▲ A system that moves with uniform velocity v = const. relative to an inertial system
is also an inertial system.

Event, an incident that is fixed in a coordinate system by specifying its time coordinate
t and its spatial coordinate x . Therefore, any physical event in a given reference frame is
assigned to a coordinate (x, t) in the space–time continuum.

2. Galilean transformation,

transformation of the coordinates when changing from one inertial system to another in-
ertial system without accounting for the special theory of relativity. Let x and x ′ denote
the space coordinate, t and t ′ the time coordinate in the two frames, respectively. If the
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coordinate origins of both systems coincide at time t = 0, and their relative motion is in
the x-direction with velocity v (Fig. 4.4), the Galilean transformation is then:

Galilean transformation

x ′ = x − vt

t ′ = t

Symbol Unit Quantity

x , x ′ m space coordinates
t , t ′ s time coordinates
v m/s relative velocity of the reference frames

The second relation, t ′ = t , says that the time measurement (motion of a watch, pendu-
lum motion, etc.) does not depend on the velocity of the spatial motion of the chronometer.

v

Figure 4.4: Galilean transformation. The coordinate origin O ′ of the frame S′ moves rel-
ative to the coordinate origin O of the frame S on a straight line and uniformly with the
velocity �v along the x-axis. Trajectory in S: �r(t) = �r ′(t) + �vt . For both frames, the same
time scale is assumed.

➤ A system S′ is denoted as a moving frame if it moves relative to the frame S of the
observer with the velocity �v �= 0. And vice versa, for an observer who is at rest in S′,
the frame S is moving with the velocity −�v.

3. Trajectory,

x(t), characterizes the motion of a body m in a given frame. Its trajectory in S:

�r(t) = �r ′(t)+ �vt .

■ According to the Galilean transformation, the trajectory in a frame S′ that moves with
velocity v along the x-direction is given by

x ′(t ′) = x ′(t) = x(t)− vt .

■ A body moving uniformly with velocity u has the trajectory

x(t) = x0 + ut , x0 : coordinate at time t = 0 .

In a coordinate system moving with the velocity v the trajectory is given by

x ′(t) = x(t)− vt = x0 + ut − vt = x0 + (u − v)t.
Under a Galilean transformation, the velocity u′ in the moving frame S′ is thus obtained

by subtracting the original velocity u of the body and the relative velocity v of the moving
system S′:

u′ = u − v , u = u′ + v .
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4. Relativity principle in classical, non-relativistic mechanics

The laws of classical mechanics have the same form in any inertial system.
■ Transformation of Newton’s second law:

Observer in S: �F = m �̈r .
Observer in S′: �̇r = �̇r ′ + �v , �̇v = 0 ,

�̈r = �̈r ′ , �F′ = m �̈r ′ .
The force law has the same mathematical form for both observers.

5. Maxwell’s equations,

describe the propagation of electromagnetic waves, do not follow this relativity principle:
▲ Electromagnetic waves (light) propagate in vacuum with the speed

c = 2.997 924 58 · 108 m/s.

If this velocity were to transform according to the Galilean transformation, the above
value would be valid only in a unique, and hence distinguished, reference frame. This
contradicts experimental experience.

For the propagation of sound in gases, the sound velocity quoted in the literature holds for
the reference frame in which the gas is at rest. A very rapidly moving source of sound may
actually be faster than the sound emitted by the source, and in this way it may generate a
shock wave.

This leads to the question of whether a source moving faster than the speed of light can
pass the light emitted by itself.

6. Ether hypothesis,

analogy between light and sound propagation. According to this hypothesis, electromag-
netic waves are carried by a medium called the ether. The reference frame in which the
ether is at rest would constitute an absolute coordinate system.
■ The value of the speed of light would then hold just in the reference frame in which

the ether is at rest.
M In particular, the existence of an ether would imply that electromagnetic waves in a

moving reference system propagate (analogous to sound propagation) with distinct
velocities forward (i.e., direction of motion of the source) and sideways. This hy-
pothesis was tested for the first time in the Michelson-Morley experiment (1887)
by means of a Michelson interferometer. Here one observes with an interference
setup whether the speed of light changes because of Earth’s motion. The moving sys-
tem in which the experiment was performed is Earth itself on its path around the Sun.
The experiment proves that light propagates with equal velocity c along Earth’s orbit
and in the perpendicular direction, disproving the ether hypothesis.

7. Special relativity principle

All inertial systems are equivalent. In a vacuum, light propagates in any inertial system and
in all directions with the same speed: the speed of light in vacuum c.
➤ Contrary to the ether hypothesis (which presupposes an absolute motion), according

to the relativity principle there exists only relative motion in the selected reference
frame; hence, the term theory of relativity.
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4.2.2 Lorentz transformation
1. Introduction of the Lorentz transformation

The validity of the relativity principle is maintained only if the Galilean transformation is
replaced by another transformation, the Lorentz transformation. Let the coordinates of
an event in 3D space relative to a reference frame S be given by x , y, z and the time t . The
coordinates x ′, y′, z′, t ′ of the same event in a coordinate system S′ that moves uniformly
with the speed v along the x-axis relative to the first system, are (Fig. 4.5):

Lorentz transformation

x ′ = x − vt√
1− v2/c2

y′ = y

z′ = z

t ′ =

(
t − v

c2
x

)
√

1− v2/c2

Symbol Unit Quantity

x , y, z m space coordinates in frame S
t s time coordinate in frame S
x ′, y′, z′ m space coordinates in frame S′
t ′ s time coordinate in frame S′
v m/s relative velocity of S′ against S
c m/s speed of light

Figure 4.5: Lorentz transformation in the Minkowski graph. Besides the axes (x, ct),
(x ′, ct ′) of the two frames, the world line (= trajectory in Minkowski space) of a light
pulse emitted at (x = x0, t = 0) is plotted. The scale on the axes of system S′ may be
determined by recognizing that the light pulse propagates in both systems with the speed
of light c.

➤ The inverse of the Lorentz transformation is obtained by changing the sign of veloc-
ity. The frame S moves with velocity −v relative to the frame S′.

x = x ′ + vt ′√
1− v2/c2

, t =

(
t ′ + v

c2
x ′
)

√
1− v2/c2

.
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2. Relativistic factor,

γ , characteristic parameter of the Lorentz transformation:

γ = 1√
1− v

2

c2

.

For velocities much below the speed of light,

v � c �⇒ γ ≈ 1 .

▲ For v � c, the Lorentz transformation becomes the Galilean transformation.
■ This guarantees that the Lorentz transformation does not contradict common experi-

ence, since relativistic effects become measurable only for large speeds beyond our
everyday range of experience.

3. Minkowski diagram and world point,

serve for visualization of the Lorentz transformation. The position x and on the abscissa
the time t (or ct) are plotted on the ordinate, so that to any event a world point (t ,x) may
be assigned in the graph (Fig. 4.6).

Figure 4.6: Lorentz transformation in a Minkowski diagram. The axes x , ct and x ′, ct ′ of

the two frames, and the hyperbolas ct = ±
√

x2 ± R2 are plotted.

World line, the trajectory of a particle in a Minkowski diagram. For convenience, the
units on the axes are taken so that a motion with the speed of light, x(t) = ct , appears
as a straight line with a slope of 45◦, and therefore the distance is plotted in light seconds
(ls) and the time in seconds. A light second is the distance passed by light in 1 second:
1 ls ≈ 3 · 108 m.
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When making a Lorentz transformation, the coordinate axes of the moving frame are
plotted in a Minkowski diagram. The coordinates of the origin (t ′ = 0, x ′ = 0) are
(t = 0, x = 0), i.e., the origins of both coordinate systems lie at the same world point.
The x ′-axis of the frame S′ is given by

t ′ = 0 �⇒ γ

(
t − v

c2
x

)
= 0 �⇒ t = v

c2
x .

This corresponds to a straight line enclosing the angle ϕ with the x-axis, with

tanϕ = v
c
.

Correspondingly, one gets the same value, although counted in the opposite direction, for
the angle between the ct ′-axis and the ct-axis. Finally, the scales on the axes of frame S′
have to be wider by the factor γ (> 1) than in the frame S (see p. 145).
➤ For an observer in the system S′, the system S moves with the speed −v.

4. Comparison with the Galilean transformation

The most radical change in the Lorentz transformation as compared with the Galilean
transformation is the statement that the time coordinate cannot be the same in both systems.
This follows directly from the postulate of the constancy of the speed of light, and this
consequence cannot be avoided.
■ Two events that occur simultaneously at distinct space points in one reference frame

are not simultaneous in another reference frame. This relativity of simultaneity is a
general phenomenon and is connected with the fact that the information on an event
cannot propagate faster than the speed of light from one space point to another one.

▲ The largest propagation velocity of a physical phenomenon is the speed of light.
The relativistic factor γ is not defined for the velocity v = c (division by zero), and be-
comes imaginary for velocities v > c. Therefore, a massive body cannot reach a velocity
v ≥ c in vacuum. This experience is expressed by the addition theorem of velocities.

5. Tachyons,

hypothetical particles that move at or faster than the speed of light, but cannot go below it.
M Tachyons would emit light in vacuum. Radiation arises if a massive particle moves

in an optical medium with refractive index n faster than cgr = c/n (c: vacuum speed
of light, cgr : group velocity).

4.2.2.1 Addition of velocities

1. Addition of velocities under Lorentz transformation

Let a body move with the velocity �u′ in a reference frame S′ that has a relative velocity �v
against the frame S. The velocity �u of the body relative to the frame S does not follow by
simple vector addition of �u′ and �v. According to the Lorentz transformation, it is given by
the
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addition theorem of velocities

ux = u′x + v
1+ v

c2
u′x

uy =
u′y

γ

(
1+ v

c2
u′x
)

uz = u′z
γ

(
1+ v

c2
u′x
)

Symbol Unit Quantity

ux , uy , uz m/s velocity in S
u′x , u′y , u′z m/s velocity in S′
v m/s relative velocity of S′

along the x-axis of S
c m/s speed of light
γ 1 relativistic factor

➤ Inversion by changing the sign of the relative velocity, v→−v.

2. Derivation of the addition theorem

The above expressions are obtained if the uniform motion of a particle in a moving coor-
dinate frame S′,

x ′ = u′x t, y′ = u′y t, z′ = u′z t ,

undergoes a Lorentz transformation, and one then considers the resulting expressions for
x(t), y(t) and z(t) in the (rest) frame S of the observer. For this purpose, it is suitable to
consider the distance (dx , dy, dz) passed during a short time dt . According to the differen-
tiation rules,

dx = γ dx ′ + γ vdt ′, dy = dy′, dz = dz′, dt = γ dt ′ + v

c2
dx ′ .

In the moving frame S′, another time interval dt ′ elapses as compared with the interval in
the rest system S.

Velocity in the frame S:

ux = dx

dt
= γ dx ′ + γ vdt ′

γ dt ′ + γ v
c2

dx ′
=

dx ′
dt ′ + v

1+ v

c2

dx ′
dt ′

.

Similarly, one finds the velocities uy and uz .

3. Conclusions from the addition theorem

▲ For low velocities v � c, the relativistic addition of velocities reduces to the ordinary,
non-relativistic vector addition of velocities, u = u′ + v.

▲ For velocities close to the speed of light, one finds, however, u < u′ + v, i.e., the
velocity is smaller than the simple vector sum.

In particular, for u′x ≈ c and v ≈ c, the relativistic addition theorem leads to

ux = u′x + v
1+ v

c2
u′x
≈ c + c

1+ c

c2
c
≈ c .

▲ The velocity of a body cannot exceed the speed of light.
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4.2.3 Relativistic effects
Relativistic effects, effects predicted by means of the Lorentz transformation.

4.2.3.1 Length contraction

1. Distance in the moving system

The distance between two points on the x ′-axis in the frame S′ is given by

l ′ = x ′2 − x ′1.

In the frame S, the length l is measured by determining the coordinates of the initial point
and the endpoint x1, x2 at the same time t , l = x2 − x1. The Lorentz transformation then
yields

x ′1 = γ (x1 − vt) , x ′2 = γ (x2 − vt) ,

or

l = 1

γ
l ′ .

In the frame S the length of the same distance appears to be shortened by the factor 1/γ .

2. Length contraction

The length of a distance in a moving frame appears to an observer in his own rest frame to
be contracted by the factor

1

γ
=
√

1− v
2

c2
.

➤ The relativity principle leads to the seeming paradox that, for an observer in the frame
S′, the length of a distance in the frame S appears also to be contracted: l ′ = (1/γ )l.
This paradox is resolved by the relativity of simultaneity of the measurement in both
systems.

4.2.3.2 Time dilatation

1. Time interval in a moving system

If in the moving frame S′ two events occur at the positions x ′1 and x ′2 at the times t ′1 and
t ′2, the time distance 
t between the events in the rest frame S is given by


t = t2 − t1 = γ
[(

t ′2 +
vx ′2
c2

)
−
(

t ′1 +
vx ′1
c2

)]
,

= γ (
t ′ + v

c2
(x ′2 − x ′1)) .

If both events happen in the moving frame S′ at the same position (x ′2 = x ′1), then


t = γ 
t ′ .
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2. Time dilation

The time between two events in a moving frame appears to an observer in the rest frame
to be increased by the factor

γ = 1√
1− v

2

c2

.

➤ This statement holds also for an observer in the frame S′: 
t ′ = γ 
t . The time
interval in the other frame appears to any observer to be increased.

It further follows that two events that occur simultaneously (
t ′ = 0) in a moving frame
do not appear as simultaneous events in a rest frame if the events do not occur at the same
position:


t = γ v
c2
(x ′2 − x ′1) .

3. Example: Cosmic radiation

Upon entering Earth’s atmosphere, the primary cosmic radiation generates (by collisions
with air molecules) a hard secondary radiation that consists of energetic particles. Muons
created at a height of about 30 km have a lifetime of 2 · 10−6 s in their rest frame. At a
velocity of v = 0.9995 c (γ ≈ 32), these fast muons could (without relativistic effects)
traverse a distance of only≈ 600 m. Hence, they would not be observed at Earth’s surface.
When taking the time dilatation into account, a lifetime of 32 · 2 · 10−6 s ≈ 6 · 10−5 s
results. This time interval is sufficiently long to let the particles traverse the path from
where they were created to Earth’s surface. Hence, the muons created by cosmic radiation
can be detected in laboratories on the ground.

4.2.4 Relativistic dynamics
Relativistic dynamics, generalization of dynamics for velocities that are not small com-
pared with the speed of light. It takes the relativistic increase of mass into account and
leads to the concept of the equivalence of mass and energy.

4.2.4.1 Relativistic increase of mass

1. Increase of mass

Because of the addition theorem of velocities, the law of momentum conservation, �p = m�v,
can hold in relativistic dynamics only if the mass becomes velocity-dependent (Fig. 4.7).

relativistic increase of mass M

m(v) = m0√
1− v

2

c2

= γm0

Symbol Unit Quantity

m(v) kg mass at velocity v
m0 kg rest mass
v m/s velocity of the body
c m/s speed of light
γ 1 relativistic factor
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Figure 4.7: Relativistic
increase of mass.

➤ The relativistic mass may become arbitrarily large as the velocity of the body ap-
proaches the speed of light. Therefore, it is impossible to accelerate a body by a force
or by collisions to the speed of light, since this would require an infinite expense of
energy.

2. Relativistic momentum,

�p = m(v)�v = m0�v√
1− v

2

c2

= γm0�v .

When this expression is inserted into the momentum-balance equation, the law of momen-
tum conservation, and all relations derived from it, continue to hold without modification.

3. Relativistic force

For the relativistic force:

�F = d�p
dt
= d

dt

⎛
⎜⎜⎜⎜⎝

m0�v√
1− v

2

c2

⎞
⎟⎟⎟⎟⎠ .

There is a distinction made between forces acting parallel or perpendicular to the motion.
Let �v be parallel to the x-axis,

Fx = m0ax(
1− v 2/c2

)3/2 = m0γ
3ax ,

Fy = m0ay√
1− v 2/c2

= m0γ ay ,

Fz = m0az√
1− v 2/c2

= m0γ az .

�a is the acceleration vector.
▲ To accelerate a body farther along its direction of motion, a force increased by a

factor γ 3 is required as compared with the non-relativistic case. For an acceleration
perpendicular to the motion, the corresponding factor is only γ .
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4.2.4.2 Relativistic kinetic energy

1. Relativistic work,

the work performed on accelerating a body,


W = F
s = m0γ
3a
s = m0γ

3 
v


t
v
t = m0γ

3v
v ,

F acting force, 
s distance covered, 
v velocity increase, 
t time interval.
For acceleration from rest, u = 0, up to a velocity u = v the integration yields

W =
v∫

0

m0u(
1− u2

c2

)3/2
du = m0c2

(
1√

1− v2/c2
− 1

)
,

the expression for the relativistic kinetic energy.

2. Relativistic kinetic energy

relativistic kinetic energy ML2T−2

Ekin = m0c2

⎡
⎢⎢⎢⎢⎣

1√
1− v

2

c2

− 1

⎤
⎥⎥⎥⎥⎦

= m0c2(γ − 1)

Symbol Unit Quantity

Ekin J kinetic energy
m0 kg rest mass
v m/s velocity
c m/s speed of light
γ 1 relativistic factor

➤ In the non-relativistic case,

γ = 1√
1− v

2

c2

≈ 1+ 1

2

v2

c2
, Ekin ≈ m0

2
v2 .

This is the non-relativistic expression for the kinetic energy.

3. Equivalence of mass and energy

Since the zero level of energy can be set arbitrarily, one assigns to any body a relativistic
total energy E = mc2, with a velocity-dependent mass m = γm0 .

▲ Equivalence of mass and energy:
A body with mass m has relativistic total energy E ,

E = mc2 .

A body at rest has rest energy (mass energy)

E0 = m0c2 .

■ The mass energy can be released only by converting it to another form of energy.
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Application of the theory of relativity to elementary particles (relativistic quantum field
theory) leads to just such processes.

If particles and antiparticles closely approach each other, the mass energy 2m0c2 of
both particles may be converted to other kinds of energy, in particular to electromagnetic
radiation (pair annihilation). Conversely, particle-antiparticle pairs may be created from
radiation energy (pair creation).

4. Energy-momentum relation for relativistic particles

energy-momentum relation

E2

c2
= p2 + m2

0 c2

Symbol Unit Quantity

E J relativistic total energy
p kg m/s momentum
m0 kg rest mass
c m/s speed of light

where for E the relativistic total energy mc2 has to be inserted.

5. Center-of-mass energy,

Ecm (cm = center of mass), in a collision of two particles the total energy of both particles,
measured in the center-of-mass system is

Ecm =
√

m2
1 c4 + m2

2 c4 + 2E1 E2

(
1− v1

c

v2

c

)
cos θ

(E1, E2, relativistic energy of the particles 1 and 2 in an arbitrary system; v1, v2, their
velocities in this system; θ , angle between the particles). If the particle 2 is at rest in the
laboratory system, then

Ecm =
√

m2
1 c4 + m2

2 c4 + 2E1lab m2 c2 .

The center-of-mass energy characterizes the total energy available in collisions of elemen-
tary particles. The velocity in the center-of-mass system is

�vcm

c
= �p1lab c

E1lab + m2 c2

(�p1lab—momentum in the laboratory system). The relativistic factor is

γcm = E1lab + m2c2

Ecm
.

➤ In thermodynamics, the variables pressure and entropy are invariant against Lorentz
transformations, whereas the temperature and the amount of heat depend on the state
of motion of the system.

4.3 General theory of relativity and cosmology

General theory of relativity, extension of the special theory of relativity to arbitrary (non-
inertial) systems. It deals in particular with gravitation, using the mathematical tool of a
curved four-dimensional space-time continuum.
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1. General relativity principle

An inertial system in a gravitational field is equivalent to a reference frame in a gravitation-
free space that is uniformly accelerated (relative to an inertial frame). This means that an
observer cannot distinguish by any experiment which of the systems he is in.
■ An astronaut in a falling elevator, slowed only by air friction, falls with 5/6 of the

gravitational acceleration at Earth’s surface. He feels only the remaining sixth part
of the gravitational force and may therefore believe to be on the Moon, where the
weight force is only 1/6 of that on Earth.

Curvature of space, arises as a consequence of the presence of masses and manifests itself
by the gravitational force.

2. Test of the general theory of relativity (GTR)

• Light deflection in the gravitational field of the Sun. A beam of light from a remote
star that passes close to the surface of the Sun is deflected by the space curvature by an
angle of 1.75′′. The star then seems to change its position relative to neighboring stars.
The phenomenon can be demonstrated during a solar eclipse. Light is also deflected
according to Newton’s theory, but only by half of the value predicted by GTR. Light
deflection is thus no test of the GTR on its own, but the precise experimental value is
such a test.

• Rotation of the apse line (the line connecting aphelion and perihelion) of the inner
planets, due to a modification of Newton’s law of gravitation in strong gravitational
fields. After accounting for the influence of the other planets, GTR has predicted
for Mercury an excessive rotation of 43′′ per century, which has been confirmed by
experiment.

• Red shift of star light. According to GTR, light is affected by gravitation. The energy
spent by the light to leave the gravitational field of a star causes a reduction of the
radiation energy, i.e., a shift of the spectral lines towards the long-wave (infra-red)
region. The red-shift of spectral lines is also predicted by Newton’s theory (combined
with the quantum-mechanical rule E = h · f ).

Black hole, a star with a very strong gravitational field, so that light cannot leave the
space region.

3. Properties of the universe

GTR predicts that the universe is either infinite or finite, depending on the total mass of
the universe. A finite universe can be compared with the surface of a sphere: it has no
boundary, but nevertheless is finite.

Hubble effect, proof of the expansion of the universe. The spectra of very remote stars
show a shift to the infra-red, the radiating objects thus move away from the observer. This
Hubble shift (cosmologic red-shift) is to be interpreted only by imperfect analogy to the
optical Doppler effect.

Hubble constant H specifies the increase of expansion velocity:

H = 50 to 100 km/s per Mpc

(1 Mpc = 1 Megaparsec = 3.26 Mill. light years). In a curved space, any observer may
believe that all other points move away from him (like the points of the surface of a balloon
being blown up).

It depends on the mass available in the universe whether the universe reaches a maximum
extension and then collapses (closed universe), or whether it continues to expand (open
universe). The majority of the mass of the universe seems to exist as dark matter, invisible
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to all types of telescopes and other devices. The investigation of the rotation of galaxies
suggests that galaxies are enclosed by halos of dark matter.

Big bang, hypothesis that the universe developed ca. 1–2·1010 years ago from one point
(singularity) of extremely high energy density. It then quickly expanded, and was cooled
by that expansion.

3-Kelvin-background radiation, the observed strongly cooled, nearly isotropic thermal
radiation in the universe, the remainder of the radiation from the first seconds after the big
bang.

4.3.1 Stars and galaxies
1. Stars and their classification

Star, self-luminous stellar object. A star releases energy by a nuclear-fusion process that
proceeds at very high temperature (≈ 106 K) in its interior.

Classification:
Stars are classified according to the wavelengths (colors) of the emitted light, and by

their magnitude. The typical distances between stars in galaxies are light years, the dis-
tances between galaxies are millions of light years. About 5,000 to 10,000 stars are visible
to the naked eye, with a small telescope, 100,000. In total, about 10 billion individual stars
are accessible by astronomic instruments.

2. Star catalogs

Stars are classified according to Sky maps (star catalogs). The brightest stars have proper
names from Arabic or Greek. Most of the stars visible with an unaided eye are denoted
according to the sky mapping of Bayer (1603); the names consist of a Greek letter spec-
ifying the luminosity of the star in its constellation, and the name of the constellation. If
the Greek alphabet is not sufficient, the name continues with Latin letters and numbers.
Weaker stars are classified by catalog numbers.
■ The brightest star in the constellation Cassiopeia:

Proper name Schedir
Bayer’s Name α Cassiopeiae (short: α Cas)
Bonn sky mapping BD +55◦139

3. Stellar brightnesses and spectral classes

Stellar brightness, specifies the apparent brightness of a star. Originally from 1m to 6m

(m, magnitudo, Latin for size), today it ranges from the brightness of the Sun, −27m, to
the weakest recordable stars, 23m. Smaller (more negative) numbers mean brighter stars;
each class is 100.4 = 2.512 times brighter than the next following class.

stellar brightness example

−27m Sun
−13m full Moon
−11m half Moon
−5m to −1m close planets
up to −2m brightest stars (Sirius, Vega)
+6m observation limit of eye
+14m Pluto
+23m photographic observation limit
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Spectral class, classifies the type of spectrum of the light emitted by a star.
Spectrum of the light from a star, consists of broad emission bands, overlayed by ab-

sorption lines. Spectral classes are denoted by a Latin capital letter and a number.
■ The Sun has the spectral type G 2.
▲ The spectral class of a star is closely related to its surface temperature.

4. Galaxy,

disk- or spiral-shaped ensemble (diameter 30,000 parsec) of stars. Milky Way, spiral-
shaped galaxy with a total mass of about 200 billion Sun masses, the Sun being located in
one spiral arm. The Milky Way is visible in the sky as a dim band of light. It is surrounded
by spherical stellar clusters. Galaxies are combined into nebula groups and nebula clus-
ters (with diameters of several million light years).

4.3.1.1 Star evolution

1. Energy source of the stars

Stars get their energy from nuclear-fusion processes that take place in the star interior at
several million degrees Celsius. In these reactions, hydrogen fuses to helium, catalyzed by
carbon and nitrogen (Bethe-Weizsaecker cycle or carbon-nitrogen cycle). This “hydro-
gen burning” proceeds relatively slowly.
■ The Sun has consumed only about 3 parts per thousand of its mass over the 4.5 billion

years of its existence. In stars with larger mass the energy conversion proceeds very
much faster.

When the hydrogen is burned, the energy production in the star decreases. As a conse-
quence, the star contracts since the gravitational force dominates. During the contraction
process, the pressure and temperature in the central region increase, so that higher-mass
fusion processes up to carbon become feasible. The total energy production again rises
steeply, and the contraction due to gravitation is stopped. Ultimately, a red giant star de-
velops: the star explodes and reaches temperatures of up to 1 billion degrees Celsius in its
interior.
■ The Sun will reach this stage probably in 3.5 billion years. Stars with large mass

finally become unstable after consuming their fuel and first form pulsating stars, later
novae and supernovae, and finally white dwarfs, neutron stars or black holes.

2. Special states of stars

Double star, a system of two stars rotating about each other due to gravitation.
Variable stars, stars with varying brightness. Periodic variables arise by shadowing of

double stars, or by periodic instabilities of the fusion process.
Novae (exploding variable stars), stars which have an explosively expanding gas shell

and grow in brightness within about one day by 7 to 10 stellar magnitudes, and then fade
away again over months or years. Thereby, only a minor part of the star mass is expelled.
Several novae occur periodically. In our Milky Way system, 166 novae have been observed
so far.

Supernovae, explosive final stages in the evolution of massive stars. Supernovae occur
much more rarely than novae but reach increases of brightness of up to 20 stellar mag-
nitudes (increase of brightness by a factor 108). About 7 to 10 supernova explosions are
supposed to have happened in the Milky Way system in the past two millennia; several of
them have been recorded by ancient historians. After a supernova, the remnants of the star
are mostly only expanding gas shells (gas nebulae), and possibly white dwarves.
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Pulsar, radio source with periodically varying intensity. The periods are in the range
of milliseconds to seconds. The pulse length is about 5 % of the period. Pulsars are most
likely rapidly rotating neutron stars with extraordinarily strong magnetic fields.

Neutron star, remnants of a star after the supernova stage. Stars release the major part
of their energy in a supernova and then collapse so strongly under their own gravitational
force that they no longer consist of common matter (atomic nuclei + electron shells). They
now consist of tightly packed neutrons, after absorption of the shell electrons by the nuclear
protons (see p. 885). Neutron stars have masses of the order of the Sun’s mass. Typical
radii are ca. 10 km, densities ca. 3 · 1017 kg/m3 (density of nuclear matter). The radio
radiation arises from plasma clouds accelerated in the gravitational field; the periodicity
arises because of the rotation of the system. During a further contraction of a neutron star
of sufficient mass, a black hole may arise.
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Mechanics of continuous media

5.1 Theory of elasticity

The theory of elasticity deals with the effects of external, in general static, forces on the
shape of rigid bodies.

Elastic deformation, a reversible deformation process in which the body returns to its
original shape after the removal of the external force.

Plastic deformation, an irreversible deformation process in which the deformation of
the body persists after the removal of the external force.

5.1.1 Stress
1. Definition and properties of stress

Stresses, internal forces within a body. The stresses existing within a body are described by
decomposing the body into small volume elements onto which these forces act (Fig. 5.1).
The stresses produce deformations of shape of the volume elements.

Stress, S, the quotient of the applied force and cross-sectional area element upon which
the force is acting.

Normal stress, σ , acts perpendicular to the area element.
Shear stress, τ , acts parallel to the area.

Figure 5.1: Decomposition
of the force 
�F acting on
the area 
A into a normal
component 
�Fn and two
perpendicular tangential
components 
�Ft1, 
�Ft2.
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stress ML−1T−2

�S = 
�F

A

�σ = 
�Fn


A

�τ = 
�Ft


A

Symbol Unit Quantity

�S N/m2 stress vector
�σ N/m2 normal-stress vector
�τ N/m2 shear-stress vector

A m2 area element

�F N acting force

�Fn N normal component of �F

�Ft N tangential component of �F

Newton per square meter, N/m2, SI unit of stress:
1 N/m2 is the stress on an area of 1 m2 if a force of 1 N is acting on it.
➤ The typical order of magnitude of stress is MN/m2 = N/mm2.
➤ For a pressure load, the stress has a negative sign.
➤ It is assumed that the cross-section does not change under deformation.
■ A load of m =1 kg is fixed to a wire of diameter d = 1 mm. The stress on the wire is

S = F

A
= mg

π(d/2)2
= 1 kg · 9.81 m/s2

π · (0.5 mm)2
= 12.5 N/mm2 = 12.5 MN/m2 .

2. Stress tensor,

τ̂ , describes the state of stress of a small cubic element of the body. The state of stress can
be described in general by specifying nine quantities. For any face of the cube, three force
components must be given (Fig. 5.2). If the cube is sufficiently small, the forces acting on
opposite sides are equal, so that the state of stress may be described by the elements τi j of
the stress tensor:

τ̂ =
⎛
⎝ τxx = σx τxy τxz

τyx τyy = σy τyz
τzx τzy τzz = σz

⎞
⎠ .

■ The first index of the components of the stress tensor characterizes the area; the sec-
ond index specifies the direction of force. For instance, the element τxy gives the
force acting in y-direction onto the lateral area element with the normal perpendicu-
lar to the x-axis.

Figure 5.2: Components of
the stress tensor.
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The diagonal elements are the normal stresses (components of stress along the surface nor-
mal), the off-diagonal elements represent the shear stresses or tangential stresses (com-
ponents of stress perpendicular to the surface normal). The stress tensor is symmetric:

τxy = τyx , τxz = τzx , τyz = τzy .

τ̂ therefore contains only six independent quantities: three normal stresses and three shear
stresses.

5.1.1.1 Tension, bending, shear, torsion
The following definitions describe elementary types of loads.

Tension or compression, arise if the shear stresses vanish, and the force acts uniformly
on the body. The body responds with strain and transverse strain (Fig. 5.3 and Fig. 5.4).
Isotropic pressure (hydrostatic pressure), an equal pressure acts on all faces of the body
(Fig. 5.5).

Figure 5.3: Strain. Figure 5.4: Transverse strain.

Shear, occurs when the forces act parallel to the surface of the body. The body responds
with a deformation that is also called shear. The angles between the edges of the body
change (Fig. 5.6). Bending, the shear stresses vanish, but the pressure or the tension acts
non-uniformly and causes a non-uniform deformation of the body; some parts of the body
undergo a tensile load, others a compressional load (Fig. 5.7).

Figure 5.5: Isotropic compression. Figure 5.6: Shear. Shear angle γ .

Figure 5.7: Bending.
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Torsion, as in the case of shear only forces parallel to the surfaces of the body occur.
They point, however, in different directions at different positions and hence generate a
torque. This leads to a twist of the body axes.

Practical examples of load can be a mixture of these elementary examples.

5.1.2 Elastic deformation
Elastic deformation is described as the change in the geometry of a body under the action
of external forces.

Method of finite elements: To describe the deformation of a body, one considers a
small cubic element of the body and the deformation generated by the applied stress. The
deformation of an extended body may then be calculated by summing the deformations of
the elements.

Basically, there are two kinds of deformation of a cube:
Strain, ε, the length of one or several edges of the cube is changed, but a right angle is

maintained:

ε = 
l

l
,

where l is the original length, and 
l is the change of length.
➤ Compressions are negative strains.

Shear, γ , a change of one or several angles of the cube without changing the edge
lengths. Shear denotes the deviation of the corresponding angle from a right angle (in rad).

In practice, the following four cases arise:
• strain
• transverse strain
• isotropic compression
• shear

5.1.2.1 Strain

1. Properties of strain

Strain, due to an external tensile force; the body is stretched along the direction of the
applied force, or contracts due to an external compression force. In the elastic region, the
change of length follows Hooke’s law, it is proportional to the applied stress (Fig. 5.8):

stress = elasticity modulus · strain ( Hooke’s law ) ML−1T−2

ε = 1

E
σ

σ = Eε

Symbol Unit Quantity

ε 1 strain
E N/m2 elasticity modulus
σ N/m2 normal stress

2. Elastic modulus and coefficient of linear extension

Elastic modulus, Young’s modulus, E , gives the required stress σ per unit strain (frac-
tional change of length ε = 
l/ l). E is a quantity which depends on the material. SI unit
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Tension

StrainCompression

Pressure

Figure 5.8: Hooke’s law.
The strain ε is proportional
to the stress σ .

of E :

[E] = N

m2
.

The elastic modulus is usually given in units of N/mm2 = MN/m2 or GN/m2.
Coefficient of linear extension α, the reciprocal value of the elastic modulus, gives the

resulting strain per unit applied stress,

α = 1

E
.

SI unit of the coefficient of linear extension α:

[α] = m2

N
.

➤ Hooke’s law holds only approximately for small strains. For higher strains, the rela-
tion between normal stress and strain is nonlinear. The elastic modulus is a parameter
that also depends on the temperature. Typical values are in the range of 104 and 105

N/mm2 (see Tab. 7.2).
■ The elastic modulus of gold is 81000 N/mm2. In order to compress a cube of gold of

edge length
l = 10 cm by 1% of its edge length (ε = −0.001), a stress of

σ = Eε = −81 · 109 N/m2 · 0.001 = −81 N/mm2

has to be applied, i.e., the mass that must be placed on its face is

m = F

g
= A · σ

g
= l2σ

g
= 82.6 · 103 kg = 82.6 t .

In general, the strain ε of a cubic element of a body is a function ε(σ ) of the normal stress
σ applied.

Elasticity modulus for a given normal stress, the change dσ of the normal stress re-
quired for a change of strain by dε:

E(σ ) = dσ

dε
.

Hence, the elasticity modulus is the derivative of the function σ(ε), or graphically, the
slope of the curve of normal stress in the graph of stress versus strain.
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5.1.2.2 Transverse strain

1. Definition of transverse strain

Transverse strain, the change of edge length of a cube perpendicular to the acting force.
▲ A tensile force stretches a body and makes it thinner.

Fractional change of thickness, (transverse strain) εq , proportional to the strain and
to the normal stress:

transverse strain, transverse contraction 1

εq = 
d

d

= −ν · ε = − 1

µ
ε

= − ν
E
σ = − 1

µE
σ

Symbol Unit Quantity

d m thickness

d m change of thickness
εq 1 transverse strain
ε 1 strain
ν 1 coefficient of transverse strain
µ 1 Poisson number
E N/m2 elasticity modulus
σ N/m2 normal stress

Coefficient of transverse strain, ν, proportionality factor between strain and transverse
strain.

2. Poisson number,

Poisson coefficient, µ, reciprocal value of the coefficient of transverse strain ν, gives the
ratio of fractional change of thickness 
d/d and the fractional change of length 
l/ l:

µ = 1

ν
= −
d/d


l/ l
.

➤ The negative sign between εq and ε expresses the experimental fact that the diameter
of a cylindrical wire is reduced under tension while its length increases.

➤ Typical values of the coefficient of transverse strain: ν ≈ 0.3 to 0.4, µ ≈ 2 to 3.
■ In the example given above of a cube of gold with the edge length l = 10 cm, which

is compressed by a mass of 82.6 t by 1% (ε = −0.001), the cube becomes wider by

εq = −νε = 0.42 · 0.001 = 0.42%.

3. Change of volume

Due to strain and transverse strain, the volume of a rod with a square cross-section is
altered:


V = V ′ − V = (d +
d)2(l +
l)− d2l .

V , V ′ volume without and with stress, respectively,
V change of volume, l, d length and
diameter of the rod without stress, 
l change of length (along orientation of tension), 
d
change of diameter (perpendicular to orientation of tension). For small changes, the terms
quadratic in 
d and 
l may be ignored:


V = d2
l + 2d · l
d .
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The fractional change of volume is


V

V
= 
l

l
+ 2


d

d
= ε(1− 2ν) .

➤ For ν = 0.5 the volume does not change, for ν < 0.5 it increases. Values of ν > 0.5
would mean a decrease of the volume under an applied tensile stress, a situation that
does not occur physically.

■ The cube of gold of 10 cm edge length changes its volume by


V

V
= ε(1− 2ν) = −0.001(1− 2 · 0.42) = −0.16%,

in absolute numbers:


V = −0.00016 · V = −0.00016 · 1000 cm3 = 0.16 cm3 .

4. Strain tensor,

ε̂, determines the general state of strain of the body if a point mass at a position �r =
(x1, x2, x3) is shifted due to the strain by the displacement vector �s(�r) to �r+ �s(�r):

dxi → dxi + dsi = dxi +
3∑

k=1

∂si

∂xk
dxk .

The components of the strain tensor ε̂ are expressed as the partial derivatives of the com-
ponents of the displacement vector �s with respect to the coordinates xi , i = 1, 2, 3:

ε̂ = 1

2

⎛
⎝ ε1 γ12 γ13
γ21 ε2 γ23
γ31 γ32 ε3

⎞
⎠ , εi = 2

∂si

∂xi
, γik = γki = ∂sk

∂xi
+ ∂si

∂xk
.

The strain tensor is a symmetric tensor.

5.1.2.3 Isotropic compression

1. Properties of isotropic compression

Isotropic compression, the volume change of a body under a compression force acting
with equal magnitude from any side, unlike strain and transverse strain, where the force
acts only in one direction.

The fractional change of volume is


V

V
= 3ε(1− 2ν) ,

where the factor 3 takes into account that three normal stresses are acting instead of one.
The stress is written as

σ = −
p ,

where 
p denotes the pressure load, and using ε = σ/E , then

−
p = 
V

V

E

3(1− 2ν)
.
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By analogy to the elasticity modulus, one defines:

pressure = bulk modulus · fractional change of volume ML−1T−2

−
p = K

V

V

Symbol Unit Quantity


p Pa = N/m2 pressure
K N/m2 bulk modulus

V m3 change of volume
V m3 volume of the body

2. Bulk modulus,

K , gives the pressure required per fractional change of volume.
Customary unit for K : N/mm2 = MN/m2 or GN/m2.

➤ Typical values of the bulk modulus are between 100 and 200 GN/m2,
(ice: K ≈ 10 GN/m2, lead: K ≈ 44 GN/m2; see Tab. 7.3/2).

■ Copper has a bulk modulus of 126,000 N/mm2. Under atmospheric pressure (about
105 Pa), the volume of a block of copper changes by


V

V
= −
p

K
= 7.9 · 10−7 = 0.000079 % .

Hence, the volume of a block of copper of 1 m3 changes by about 0.8 cm3.
Bulk modulus K and elasticity modulus E are related by the coefficient of transverse

strain:

K = E

3(1− 2ν)
.

In thermodynamics, when describing fluids and gases, it is customary to use the reciprocal
value of the bulk modulus K , the compressibility κ .

3. Compressibility,

κ , the reciprocal value of the bulk modulus (see Tab. 7.3/4):

κ = 1

K
= 
V/V

−
p
.

For gases

κ = A

V (p + pT )
.

A increases with temperature and is characteristic for the particular gas, volume V , external
pressure p, Van der Waals pressure pT . For the ideal gas A = 1 and pT = 0.

5.1.2.4 Bending of a rod (beam)

1. Definition of bending

Bending, occurs if a pointwise supported or mounted component of construction is under
load away from the supporting (pivoting) points. Here we consider only the case of a beam
that is assumed to be oriented along the z-axis and to have constant cross-section (x, y).
Let the loading force act perpendicular to the z-axis.
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Cases of load in bending:
• cantilever beams, one end is tightly mounted (tangent horizontal), point load applied

at the free end, or continuous load distributed along the z-axis;
• simple beams, tightly mounted at both ends, pointwise or continuous load;
• one end is tightly mounted, the other end is supported;
• both ends are supported.
In one part of the cross-section of the beam, there is a compression load, in the other part
there is a tension load. Both regions are separated by the neutral axis that passes through
the center of mass of the beam cross-section (see Fig. 5.9).

Load

Compression

Tension

Neutral axis
Neutral
axis

Figure 5.9: Schematic illustration of bending, compression and tension load distribution
in a beam supported at both ends. The neutral axis passes through the center of mass
S of the perpendicular cross-section. ld , lz : distances between the outermost axes of the
compression and tension regions and the neutral axis, respectively. (a): longitudinal cross-
section, (b): perpendicular cross-section.

2. Bending moment,

Mb , the product of force F and force arm l. For a cantilevered beam of length l tightly
mounted at one end and loaded at the free end, the force arm is measured from the free end
to the point of attachment. The bending moment on a cross-sectional area perpendicular
to the beam axis z is zero at the free end; the maximum value arises at the fixed end,
Mb,max = F · l.

For a beam fixed at one end loaded by several point loads (or by a continuous load),
the bending moment on a selected cross-sectional area is the sum (or the integral) over the
bending moments of the individual forces.

For a beam that is freely supported or tightly mounted at both ends and loaded by a
single load, the maximum bending moment occurs at the load point.

For a beam that is supported or tightly mounted at both ends and supporting a constant
continuous load (or by a sum of equidistant and equal point loads), the maximum bending
moment occurs at the midpoint of the beam.

bending moment ML2T−2

Mb =
∑

i Fi · li
Symbol Unit Quantity

Mb Nm bending moment
Fi N i th acting force
li m i th force arm

If several forces are applied, then the bending moments must be added. Right-handed mo-
ments (clockwise) and left-handed moments enter the sum with opposite signs.

Plane area moment of inertia, J , characterizes the shape and magnitude of the cross-
sectional area of the beam (see Fig. 5.9 (b)).
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Axial plane area moment of inertia Ja , with respect to the neutral axis:

Jx =
∫

y2 dA, Jy =
∫

x2 dA, dA area element.

Polar area moment of inertia Jp , with respect to the center of mass:

Jp =
∫

r2 dA =
∫
(x2 + y2) dA = Jx + Jy .

Resistive moment, Wb:

Wx,tens = Jx

etens
, Wx,press = Jx

epress
,

where etens, epress are the distances between the outermost axes of the tension and pressure
regions of the beam cross-section and the neutral axis, respectively (see Fig. 5.9).

The maximum bending stress is given by

σb = Mb

Wb
.

3. Deflection,

determined by the geometry of the support system, and by the ratio

F

E Ja

of the applied force F and the product of the elasticity modulus E and the axial plane
area moment of inertia Ja of the perpendicular beam cross-section. The axial plane area
moments for a circular cross-section of diameter d and for a rectangular cross-section
(width b and height h) are:

Ja,circle = π

64
d4 ≈ 0.049 d4 , Ja,rectangle = bh3

12
≈ 0.083 bh3 .

The maximum load of a beam with rectangular cross-section is proportional to the width
and to the third power of the height, but inversely proportional to the beam length.

4. Examples: bending moments and deflections for typical cases of load

• Cantilever beam, point load F at the free end (Fig. 5.10 (a)):

FA = F, s = l3

3

F

E Ja
, Mb,max = l F.

• Cantilever beam, uniform load, sum F (Fig. 5.10 (b)):

FA = F, s = l3

8

F

E Ja
, Mb,max = l

2
F.

• Simple beam, point load F , asymmetrical (Fig. 5.10 (c)):

FA = b

l
F, a + b = l, FB = a

l
F

s = a2b2

3l

F

E Ja
, Mb,max = ab

l
F.
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• Simple beam, uniform load, sum F (Fig. 5.10 (d)):

FA = FB = F/2, s ≈ l3

77

F

E Ja
, Mb,max = l

8
F.

Figure 5.10: Bending contours (statically determined) of a beam. (a) point load, for a can-
tilever beam, (b) uniform load, for a cantilever beam, (c) point load, for a simple beam
supported at both ends, (d) uniform load, for a simple beam supported at both ends.

5. Example: steel girder

A steel girder (elasticity modulus 200 GN/m2) with a square cross-section of edge length
10 cm and a length of 2 m carries a load of 1000 kg mass. The plane area moment of inertia
Ja is

Ja = Ja,rectangle = 0.083 · (0.1 m) · (0.1 m)3 = 8.3 · 10−6 m4 .

One obtains

F

E Ja
= 5.9 · 10−3 m−2 .

For various cases of load, the deflections and normal stresses are as follows.

cantilever,
uniform s = l3

8

F

E Ja
= 5.9 mm Mb = l

2
F = 9810 Nm

simple,
uniform s = l3

77

F

E Ja
= 0.6 mm Mb = l

8
F = 2450 Nm

cantilever,
load at the end s = l3

3

F

E Ja
= 16 mm Mb = l F = 19620 Nm

simple,
load in the middle

s = (l/2)
2(l/2)2

3l

F

E Ja= 1 mm
Mb = (l/2)(l/2)l

F = 4900 Nm
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• If the length of a girder is doubled, the deflection increases by a factor of eight, and
the maximum normal stress increases by a factor of two.

• When the lengths of the sides of the cross-sectional area are halved, the area moment
of inertia decreases by a factor of one sixteenth, hence the deflection increases by a
factor of sixteen.

6. Bending stress,

σb , the stress generated in bending, quotient of bending moment Mb and resistive moment
Wb:

σb = Mb

Wb
, Wb,circle = πd3

32
= 0.098 d3, Wb,rectangle = bh2

6
= 0.167 bh2 .

■ For the preceding example (steel girder), one finds

Wb = 1.67 · 10−4 m3 .

Hence, the maximum stresses are:

cantilever, uniform load σb = 59 N/mm2 ,

simple, uniform load σb = 15 N/mm2 ,

cantilever, load at the end σb = 118 N/mm2 ,

simple, load in the middle σb = 3 N/mm2 .

The tensile strength of steel varies over the range of 400 to 1200 N/mm2. When
the edge length of the cross-section is halved, the resistive moment decreases to one
eighth, and the stress increases by a factor of eight.

5.1.2.5 Shear

1. Properties of shear

Shear, deformation of a body in which the right angles in a small cubical element change
by the shear angle γ . Shear occurs if forces act parallel to a face of the cube.
▲ For small shear strains, the shear angle is proportional to the shear stress τ .

shear stress = shear modulus · shear angle ML−1T−2

τ = Gγ

Symbol Unit Quantity

τ N/m2 shear stress
G N/m2 shear modulus
γ rad shear angle

2. Shear modulus,

G, proportionality factor that gives the required shear stress per unit of shear angle.
SI unit of G:

[G] = N

m2
= 1 Pa .
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In general, the required shear stress τ is a function of the desired shear angle γ , and gen-
erally one defines the shear modulus by

G = dτ

dγ
.

▲ Shear modulus G and elasticity modulus E are connected by the coefficient of trans-
verse strain ν:

G = E

2(1+ ν) .

Since 0 ≤ ν ≤ 0.5, it follows that

E

3
≤ G ≤ E

2
.

➤ In anisotropic materials that behave differently in different directions, a different
modulus must be used for each different spatial direction.

5.1.2.6 Torsion

1. Torsion and torsion stress

Torsion, shear stresses act along different orientations so that there is a torque on the body.
Torsion stress, K , the ratio of applied torque τt to resistive moment Wt under torsion

of the body:

K = τt

Wt
, [K ] = N

m2
.

▲ The resistive moment Wt depends on the geometry of the body.
■ For a circular cross-section of diameter d:

Wt = π

16
d3 = 0.196 d3, [Wt ] = m3 .

In the torsion of rods cross-sections are twisted by a torsion angle φ that depends on the
position along the axis.

2. Twisting,

ψ , for a body that is a right circular cylinder, the torsion angle φ per unit length, ψ = φ/ l,
or ψ = dφ/dl. The twisting is proportional to the torque τt , but inversely proportional to
the shear modulus G (Fig. 5.11):

twisting L−1

ψ = dφ

dl
= Wt

G Jp
K = τt

G Jp

Symbol Unit Quantity

ψ rad/m twisting
φ rad torsion angle
l m length of the body
Wt m3 resistive moment
Jp m4 polar area moment
G N/m2 shear modulus
K N/m2 torsion stress
τt Nm torque
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Figure 5.11: Torsion of
a cylindrical rod, radius
R, length l, torsion angle
φ. Deflection s at the
circumference of the end
face: s = R · φ = l · β.

3. Polar area moment of inertia,

Jp , the area moment of the cross-section with respect to its center of mass:

Jp =
∫

r2 dA , r2 = x2 + y2 , dA = dx dy .

■ For a circular cross-section of diameter d:

Jp = π

32
· d4 = 0.098 d4, [Jp] = m4 .

For a circular ring with outer radius R1 and the inner radius R2:

Jp = π2
(

R4
1 − R4

2

)
.

➤ If the body does not have a circular cross-section, one has to replace the polar area
moment Jp in the formula by the torsion moment Jt (Jt ≤ Jp).

5.1.2.7 Energy and work in deformations

1. Work of deformation

In an elastic deformation of a body, work is performed. If one considers only the strain ε,
according to the definition of work, one obtains:


W = F
l = σ A · l
ε = Vσ
ε .

In integral notation:

work of deformation ML2T−2

W = V
∫
σ(ε) dε

Symbol Unit Quantity

W J performed work
V m3 volume of the body

ε 1 change of strain
σ N/m2 normal stress
A m2 area
l m extension of the body

l m change of length

σ(ε) is the normal stress applied in the deformation process. The integral ranges from the
original value of the strain to the final one.
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For a pressure load σ < 0 a compression (
ε < 0) results. The work done is


W = −Vσ
ε > 0 .

Work is performed both in compression and expansion of a body.

2. Energy conservation law in elastic deformations

If a deformation is perfectly elastic, the work done to deform the body is released when
the body relaxes.
➤ There are no perfectly elastic deformations. Part of the work expended is always lost

as dissipated heat, for reasons discussed in thermodynamics.
■ In order to compress the cube of gold treated above with edge length 10 cm by 1%,

the work


W = Vσ
ε = 1000 cm3 · (−810 N/mm2) · (−0.001) = 810 J

is performed.

5.1.3 Plastic deformation
1. Properties of plastic deformation

Plastic deformation, the deformation is maintained partly or completely after the force is
removed. Therefore, the work expended for deformation cannot be gained back completely.

This is expressed by the hysteresis curve of plastic deformation: the applied stress σ
is plotted against the resulting strain ε for a load process with alternating tension and
pressure phases (Fig. 5.12). Stress-strain diagram (σ -ε diagram): In a perfectly elastic
deformation, the same curve is followed in the strain phase and in the compression phase.
Plastic deformations are characterized by the occurrence of hysteresis, i.e., of two distinct
branches of the curve traversed in different directions. Even for a vanishing stress σ , a
residual strain ε1 or a residual compression ε2 persists.

2. Energy loss in plastic deformation

The work done in this process is proportional to the area enclosed by both curves:

energy lost in plastic deformation ML2T−2

W = V
∮
σ dε

Symbol Unit Quantity

W J energy lost
V m3 volume
σ N/m2 normal stress
ε 1 strain

➤ Plastic deformations play an important role in materials processing (pressing, rolling,
bending, etc.).

5.1.3.1 Regions in tensile load
The behavior of materials under a tensile load is determined by specially designed ma-
chines and plotted in a stress-strain diagram (Fig. 5.13).
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Figure 5.12: Hysteresis
curve in plastic deformation.
Dashed curve: first
deformation. Shadowed
area: energy loss in plastic
deformation.

1. Regions in tensile load

The following regions may be distinguished:

a) elastic region, the strain follows Hooke’s law and the deformation disappears com-
pletely if the stress is no longer acting;

b) plastic-elastic region, the deformation does not disappear completely after the decay
of the stress, but Hooke’s law still holds;

c) plastic region, the deformation is also maintained to a large extent without stress.
Usually, the stress-strain curve becomes flat in this region. For large strains, the stress
required decreases, since the internal structure of the body has already been altered signif-
icantly under the strain.

d) Break point, the strain at which the body undergoes rupture.

Tension

Strain

Break point

Tensile strength

Compression

Elastic region

Proportional limit

Elastic limit

Yield strength

 Plastic elastic
region

Plastic region

Pressure

Figure 5.13: Stress-strain
diagram.

2. Parameters and properties of tensile loads

M The stress-strain diagram is determined by machine according to the ISO standard
under fixed external conditions, such as temperature. A defined test course (speed of
tension etc.) is followed.

➤ All material constants depend on the detailed composition of the material (in partic-
ular for alloys).

a) Hooke’s straight line, tangent to the stress-strain curve at the origin. Its slope is the
elastic modulus E of the body for small strains.

The transition points between the regions of the stress-strain graph are described by
critical stresses:

b) Yield point, Rp , or yield strength, σ f , stress at which a certain deformation persists
as a plastic deformation. It is customary to take the 0.2 %-yield point Rp 0.2 obtained when
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plotting a parallel to Hooke’s straight line that intersects the abscissa at εr = 0.2 %. The
intersection point between this straight line and the stress-strain curve gives the yield point.

c) Tensile strength, Rm , or rupture stress, σB , the maximum stress occuring in the
stress-strain diagram. If higher stress is applied to a body, the break point is reached, i.e.,
the body fractures.
➤ Typical values for metals are 10 to 20 N/mm2; for ordinary steels, values of 400 to

1200 N/mm2 may be reached. Special steels reach values up to 4500 N/mm2.

d) Yield strength (flow limit), the point beyond which the tensile force no longer in-
creases even for an additional extension. Some materials exhibit a non-monotonic transi-
tion between elastic and plastic or nonelastic region, i.e., at the end of the plastic region
the stress decreases first and then increases again. In this case, one distinguishes an upper
and lower tensile yield point corresponding to the local minima of the stress-strain curve.

e) Break point, εB , the value of strain where the body fractures.
➤ Typical values for the fracture strain are 0.02 (copper) through 0.45 (V2A steel) to

0.5 (aluminum and gold).
➤ Unlike elastic deformations, in plastic deformations there are no (or only very small)

changes of volume. Correspondingly, the coefficient of transverse strain is ν = 0.5.

5.1.3.2 Buckling

1. Buckling and buckling stress

Buckling, occurs when a rod under compressive stress moves sideways at its center
(Fig. 5.14).

Figure 5.14: Buckling of a
rod by a force �F. Due to the
deformation of the rod, the
compressive stress becomes
a bending stress under which
the rod gives way much
more easily.

Buckling occurs if the applied compressive stress σ exceeds the buckling stress σk .
Euler formula for buckling stress:

buckling stress: Euler formula ML−1T−2

σk = π2 E

λ2

Symbol Unit Quantity

σk N/m2 buckling stress
E N/m2 elasticity modulus
λ 1 thinness ratio

➤ Safety factors of 5 to 10 must be included in the design of machine components.
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2. Thinness and safety factor

Thinness ratio, λ, describes the thinness of a rod:

λ = l

√
A

Ja

(l length of rod, A cross-sectional area, Ja plane area moment of inertia).
■ A circular rod of diameter 1 cm and length 1 m has a plane area moment

Ja = π

64
· d4 = 0.049 · (1 cm)4 = 490 mm4,

and hence a thinness ratio

λ = 1 m ·
√

79 mm2

490 mm4
= 400 .

For an elasticity modulus of 200 GN/m2, one obtains a buckling stress

σk = π2 200 GN/m2

4002
= 12.3 MN/m2 .

This corresponds to a maximum load

F = σk · A = 975 N .

With a corresponding safety factor of 8, the rod can be loaded with 12 kg.
Safety factor, in structural design the ratio of a stress limit value (yield stress, rupture
stress, buckling stress) and the actual stress.

5.1.3.3 Hardness

1. Definition of hardness

Hardness, the resistance of a body to the indentation of a small test body into its surface.
In such a process, high stresses occur at a point on the body, which may lead to a local
deformation.

The hardness of a material is determined by standardized methods of measurement and
denoted by a number. All methods of measurement are based on a standardized indenter
that is pressed with a certain force during a certain time into the surface (Fig. 5.15). From
the applied force, the geometry of the indenter, and the deformation, the hardness number
may be determined (see Tab. 7.2).
➤ The indenter must have a higher hardness than the specimen to be tested in order not

to become deformed itself.

2. Brinell hardness,

H B, the indenter is a sphere. The Brinell hardness is the ratio of the applied force F and
the area of indentation A, multiplied by a factor 0.102:

H B = 0.102
F

A
.

The factor 0.102 converts the SI unit N into the old unit kgf and guarantees that the old
hardness values may also be used unchanged in SI.
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Indenter

Depth of
indentationSpecimen

Figure 5.15: Measurement
of hardness. One measures
the depth of indentation (i.e.,
the area of indentation) of a
prescribed indenter pressed
with a fixed force �F for a
certain time into a specimen.

➤ Since spherical surfaces do not penetrate easily into hard materials, this method can
be applied to soft materials only.

➤ The hardness values are meaningful only if the diameter of the indentation is between
0.2 and 0.7 times the diameter of the test sphere.

3. Vickers hardness,

H V , the indenter is a diamond pyramid with a square base. Again, the ratio of the acting
force and the surface of indentation is given when the latter quantity may be determined
simply from the diagonal d of the square area of indentation:

H V = 0.102
F

A
= 0.189

F

d2
.

➤ The Brinell hardness and the Vickers hardness have about the same numerical value.
However, the Vickers method can also be applied to hard materials and therefore
serves in general as a reference method.

➤ The relation between the Vickers hardness and the tensile strength Rm of steel:

Rm ≈ 3.38 H V .

4. Rockwell hardness,

H R, with a standardized indenter (Rockwell-B: steel sphere of diameter 1.59 mm,
Rockwell-C: diamond cone, vertex angle 120◦) the depth of indentation is measured for
a given force (Rockwell-B: 883 N, Rockwell-C: 1373 N). Each 2 µm depth of indenta-
tion corresponds to a unit of hardness. For a better comparison, an initial force of 98 N is
introduced in both methods. Rockwell-B is used for moderately hard materials, Rockwell-
C applies to very hard materials (hardened steels). The Rockwell method allows for an
automatized hardness test, but is less precise.
➤ In some ranges, the hardness values obtained with different methods are similar.

5.2 Hydrostatics, aerostatics

Hydrostatics (aerostatics), the theory of the properties of liquids (and gases) at rest, in
contrast to hydrodynamics (aerodynamics) dealing with the flow of liquids (and gases). In
this context, one introduces the concepts of pressure and buoyancy as the forces of liquids
on the bodies immersed.
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5.2.1 Liquids and gases
Liquid, state of matter characterized by the mobility of molecules. Liquids may take
an arbitrary shape, but there still are appreciable forces (cohesion forces) between the
molecules, manifesting themselves in a low compressibility and surface tension.

Gas, a state of matter in which only weak, short-range forces act in collisions between
molecules. Gases are characterized by a high compressibility (see thermodynamics) and
by a lack of surface tension and cohesion. The flow of gases may also be described by
hydrodynamics, but the high compressibility and the resulting density fluctuations must be
taken into account.

5.2.2 Pressure
1. Definition of pressure

Pressure, force per unit area acting normally to a surface element within a fluid. Due to
the high mobility of the molecules of the fluid, the force acting at one position propagates
immediately and isotropically with the same magnitude through the entire volume of the
fluid. Within a fluid at rest, the normal force exerted on a small test surface (e.g., part
of the wall of the vessel or of the surface of a submerged body) has the same magnitude
everywhere and is independent of the orientation of the test surface (isotropic pressure,
Fig. 5.16). This holds only if the pressure due to gravity (see p. 174) can be ignored. Shear
stresses do not exist in fluids.

pressure = force
area

ML−1T−2

p = FN

A

Symbol Unit Quantity

p Pa pressure
FN N applied normal force
A m2 area

Figure 5.16: Isotropic
pressure acts uniformly and
isotropically; the direction
of force is shown by arrows.

2. SI unit of pressure,

Pascal, Pa, SI unit of pressure.
1 pascal is the pressure exerted by a force of 1 N on an area of 1 m2.

[p] = Pa = pascal = N/m2

➤ Pressure is not a vector quantity. It acts in any direction with the same magnitude.
➤ Attention! The same symbol, p, is used for pressure and for linear momentum.
Atmospheric pressure, at sea level about 1 bar = 105 Pa.
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3. Measurement of pressure

M Autoclave, pressure vessel for generating very high pressure (1000–10000 bar).

Vacuum pump, generates very low pressure (presently down to 10−11 bar). Pres-
sure is determined by measuring the force acting on a known area: in a manometer
by springs, in an aneroid barometer by the deformation of an evacuated metal box,
in Bourdon’s tube by the deformation of a tube directly transmitted to a pointer.
Mercury barometer, measures the pressure by comparing the unknown pressure to
the known pressure due to gravity of a liquid column. Modern methods use piezo-
electric elements (see chapter on electrotechnics) in which the force applied to a
crystal generates an electric voltage.

5.2.2.1 Piston pressure

1. Definition of piston pressure

Piston pressure, the pressure generated within a liquid by pressing a movable piston into
a cylinder in the liquid container (Fig. 5.17). In static equilibrium the pressure p of the
liquid just compensates the external forces F1 and F2. Therefore,

F1 = A1 p , F2 = A2 p ,

and hence

p = F1

A1
= F2

A2
,

F1

F2
= A1

A2
.

▲ The piston pressure is the same throughout the fluid.

2. Hydraulic press,

a device to amplify forces. A small external force F1 acts on a small area A1. At the large
area A2, a large force

F2 = A2

A1
F1

is produced.
➤ From energy conservation, it follows that the piston stroke at the larger area is lower

by a factor A1/A2 than the stroke at the smaller area. The same follows from the
property of incompressibility of the medium.

Figure 5.17: Piston pressure
in a hydraulic press.

3. Hydraulics,

application of the piston principle to transmit and amplify forces in technological settings.
Typical applications are the hydraulic brake, the hydraulic lift, and the pressure transducer.
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A particular advantage is the possibility of changing the direction of a force without using
mechanical elements such as levers or rollers.

Unlike liquids, gases are highly compressible. The compressional work done in com-
pressing a gas volume is stored as internal energy (see thermodynamics) in the gas and
may be released at any position and at any time. Compressed gases (compressed air) serve
as energy-storage devices, and are used in machine controls (pneumatics).

5.2.2.2 Pressure due to gravity in liquids

1. Definition of the pressure due to gravity

Pressure due to gravity, the pressure generated within a liquid by its own weight. It results
from the force exerted by a liquid column of height h and volume V = h A on its base area
A:

gravity pressure ML−1T−2

p = ρV g

A
= hρg

Symbol Unit Quantity

p Pa gravity pressure
ρ kg/m3 density of liquid
V m3 volume of liquid column
A m2 base area of liquid column
h m height of liquid column
g m/s2 gravitational acceleration = 9.81 m/s2

■ A water column 10 m high generates a pressure of

p = hρg = 10 m · 1000 kg/m3 · 9.81 m/s2 = 9.81 · 104 Pa

on the base area. A mercury column (density 13600 kg/m3) producing the same
pressure has a height of

h = p

ρg
= 9.81 · 104 Pa

13600 kg/m3 · 9.81 m/s2
= 735 mm .

The pressure due to gravity in a liquid depends on the depth. Hence, the isotropic pressure
in the liquid is the same only at a given level because it depends on depth (Fig. 5.18).

p

p

Figure 5.18: Pressure due to gravity in a liquid. pext: external pressure.
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2. Hydrostatic paradox,

the pressure at the bottom of a vessel depends only on the density of the liquid and the
height of the liquid column, but not on the shape of the vessel, and hence not on the quantity
of liquid (Fig. 5.19).

Figure 5.19: Hydrostatic paradox. For equal height h of the column, the pressure on the
base area A is independent of the shape of the vessels 1, 2, 3.

3. Manometer

M Mercury gauge, device for pressure measurement by comparison with the pressure
due to gravity of a mercury column. On one side of the gauge, there is p, the pres-
sure to be measured, and ρgh1 (ρ density, g acceleration of gravity, h1 height), the
pressure due to gravity; and at the other side, there is the pressure due to gravity of
the liquid column ρgh2, and a reference pressure p0. In equilibrium,

p − p0 = ρg(h2 − h1) .

Hence, the difference in pressure is proportional to the difference of heights. The
heavier the liquid, the greater the measurable pressure. That is why mercury is used
to measure air pressure. In its simplest form, the gauge consists of a glass tube closed
at the upper end with the lower end submerged in mercury. The reference pressure,
i.e., the pressure in the cavity at the upper end, is the vapor pressure of mercury which
is very low (vacuum). The corresponding device designed for measurements of the
atmospheric pressure is called a barometer. Fig. 5.20 shows the barometer according
to Torricelli.

4. Connected vessels

In connected tubes, the liquid rises to equal height in each vessel if the same external
pressure acts everywhere (Fig. 5.21). Capillary forces are ignored.

M A manometer based on connected vessels is used for measurements of small pressure
differences.

Figure 5.20: Simplest form of manometer:
barometer to measure the atmospheric
pressure, as invented by Torricelli. The
height of the liquid in the glass tube is
proportional to the atmospheric pressure.

Figure 5.21: Connected vessels.
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5.2.2.3 Compressibility

1. Definition of compressibility

Compressibility, the change of a volume of liquid due to a change in pressure. It is defined
as the ratio of the fractional change of volume to the change of pressure:

compressibility M−1LT2

κ = 
V

V
p

Symbol Unit Quantity

κ 1/Pa = m2/N compressibility

V m3 decrease of volume
V m3 original volume

p Pa increase of pressure

Typical compressibility values are in the range of 10−9 1/Pa (see Tab. 7.3/9).
■ Under standard conditions (temperature 0 ◦C and pressure 101.325 kPa), water has

compressibility 0.5 · 10−9 1/Pa. Under atmospheric pressure of 105 Pa, the volume
of 1 m3 water changes by


V = κV
p = 0.5 · 10−9 1/Pa · 1 m3 · 105 Pa = 0.5 · 10−4 m3 = 50 cm3 .

2. Coefficient of volume expansion,

γ , describes the expansion of a liquid as the temperature increases. The fractional ex-
pansion of a volume of liquid is proportional to the increase of temperature if it is small
compared with the original temperature.

coefficient of volume expansion 1


V

V
= γ
θ

Symbol Unit Quantity


V/V 1 fractional change of volume
γ 1/K coefficient of volume expansion

θ K change of temperature

The coefficient of volume expansion has units 1/K. It depends on the temperature of the
material, and usually the temperature is given. θ0 = 0 ◦C.
➤ The coefficient of volume expansion of water at 20 ◦C is γ = 0.18 ·10−3 1/K. Other

liquids reach a multiple of this value. For ideal gases at this temperature,

γ = 1

θ0
= 3.4 · 10−3 1/K .

5.2.2.4 Pressure due to gravity in gases

1. Calculation of pressure due to gravity in gases

In the calculation of the pressure due to gravity in gases, one must take into account the
compressibility of the gas. The density ρ of a gas at pressure p is given by

ρ = ρ0
p

p0
,
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where ρ0 denotes the density at a reference pressure p0. The change of pressure 
p for a
change of height 
h above the base area of the gas column is


p = −
mg

A
= −ρg
h .

(A cross-sectional area of the gas column, 
m mass within the layer 
h, g gravitational
acceleration.) This expression may be rewritten as

∫ p1

p0

dp

p
= −

∫ h1

0

ρ0g

p0
dh

(p0 pressure at the bottom, p1 pressure at height h1). Integration with p = p1, h = h1
gives

ln

(
p

p0

)
= −ρ0g

p0
h .

2. Barometric equation

The barometric equation (Fig. 5.22) from the preceding expression:

barometric equation

p = p0e−Ch

C = ρ0g

p0

Symbol Unit Quantity

p Pa pressure at height h
h m height
C 1/m constant
p0 Pa pressure at ground level
ρ0 kg/m3 density at ground level
g m/s2 acceleration of gravity

The pressure in a column of gas (in particular, in the atmosphere of Earth) decreases
exponentially with height. The constant C for air has the value

C = 0.1256/km

for a pressure of p0 = 101.3 kPa at ground level and a temperature of 0 ◦C.
▲ For each ca. 8 m increase of altitude near ground level, the air pressure decreases by

100 Pa = 1 mbar.

Figure 5.22: Solution of the
barometric equation.
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3. International barometric equation

The decrease of temperature with increasing altitude is not taken into account in the baro-
metric equation. Inclusion of this variation of temperature leads to the International baro-
metric equation:

p =
(

1− 0.00651/m · h
288

)5.255
· 101.325 kPa .

This equation is valid up to an altitude of 11 km. The density of air is given by

ρ =
(

1− 0.00651/m · h
288

)4.255
· 1.2255

kg

m3
.

4. Standard atmosphere

The atmospheric pressure fluctuates by about 10 %, depending on the weather and temper-
ature.

Standard pressure and standard density of air at sea level and for 15 ◦C are

p0 = 101.325 kPa , ρ0 = 1.293 kg/m3

(previously: 760 Torr, 1 atm = physical atmosphere). This is the ISO standard atmo-
sphere.

5.2.2.5 Pumps
Pumps, machines to transport liquids and gases.

1. Types of pumps

a) Piston pump, a piston moving back and forth in a tube. In one stroke the material to
be pumped is drawn in through a suction valve, in the reverse stroke it is expelled through
a pressure valve. Used for engines (Fig. 5.23).

Input valve

Output valve

Figure 5.23: Principle of the
piston pump. The moving
piston alternatively draws
fluid from one region and
pushes it through an outlet
into another.

b) Diaphragm pump, a membrane is used instead of a piston (e.g., for corrosive liquids,
fuel pumps).

c) Vane pump, one or several vanes placed in a cylinder are moved back and forth, in-
stead of the piston; the pressure valves are incorporated into the vanes, the suction valves
are mounted in the inlet pipe.

d) Gear pump, meshing gears press the liquid from one side to the other (frequently as
a pump for lubricants).
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e) Rotary pump, also turbine or centrifugal pump, liquid enters the central region and
is caught by rotating vanes, accelerated and pressed outward by the centrifugal force (high
throughput water pumps driven by an electric motor such as a turbo-pump) (Fig. 5.24).

f) Water-jet pump, a jet of water flowing through a nozzle transports air outward (see
suction effects of flowing fluids).

g) Vapor-ejector pump, an escaping jet of vapor transports water.

h) Diffusion pump, to generate high vacuum. A material such as oil or mercury is va-
porized in the forevacuum. It rises, thereby conveying gas molecules to be pumped off
via diffusion into the vapor beam; after condensation on the cooled walls, it is fed back
(mercury diffusion pump) (Fig. 5.25).

i) Molecular pump, a turbine pump drives gas molecules into regions of higher pressure
because of the friction in the collisions of particles with a rotating disk.

j) Getter pump, for ultra-high vacuum, based on the adsorption of residual gas
molecules on a working substance (getter).

Heater

Pumping agent

Cold surface

From vessel
to be
evacuated

Figure 5.24: Rotary pump. The inlet pipe is
connected axially.

Figure 5.25: Diffusion pump.

2. Properties and parameters of pumps

Pumping height, H , the maximum height up to which a liquid can be conveyed by a
pump. This quantity is determined by the available pump pressure that can compensate the
pressure of a water column of this height. The parameter H also limits the flow velocity
that may be achieved in a pipeline; the pumping height is correlated with the pumping flow,
depending on the detailed design.

Pumping flow, Q, volume flow, the volume of liquid conveyed per unit time. It depends
on the dimensions of the pump, and on the flow velocity achieved.

Characteristic curve of a pump, a plot of the pumping height versus the pumping flow.
In general, the characteristic curve turns down at higher pumping flow.

Pumping capacity, PQ , pumping power, the work per unit time that can be done by the
pump against gravity, the product of gravitational force per volume ρg, volume flow Q and
pumping height H :

PQ = gρH Q .

Efficiency of a pump, the ratio of the pumping capacity achieved PQ to the mechanical
power supplied P0:

η = PQ

P0
.
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3. Suction pumps and pressure pumps

Suction pumps, exploit the atmospheric pressure by generating a subpressure region (e.g.,
by volume expansion due to moving a piston). The suction effect then arises due to the
pressure difference between atmospheric pressure and the subpressure value. Hence, the
maximum pumping pressure is the atmospheric pressure, and the maximum suction height
for water is about 10 m.

Pressure pumps operate directly in the medium, independent of the atmospheric pres-
sure.

4. Turbines

Turbine, the inverse of a pump. In a turbine, the energy of flow is converted into mechani-
cal energy (rotational energy) (e.g., to operate generators). In contrast to the piston engine,
this does not happen by moving a piston, rather a shaft is driven directly by the flow.

Water wheel, oldest device to convert flow energy into mechanical energy. The water
wheel may be driven by water falling onto the vanes, or by water flowing below the wheel
and carrying the vanes along. Efficiency 80 to 85 %. The power for the former case is given
by:

P = gρQh

(g acceleration of gravity, ρ density of liquid, Q volume flow, h height of fall).

a) Water turbine, hydraulic engine that obtains energy from a water flow. In the water
jet turbine, a jet of water hits vanes fixed to runners. In the Kaplan turbine and the
Francis turbine, the water flows from outside through guiding vanes onto the moving
vanes, releasing kinetic energy when moving inward, and is discharged near the wheel
axle. Power: up to 250 MW.

b) Steam turbine, for production of energy in thermal power stations. First, the steam
is expanded in fixed guide wheels (which can not occur in water turbines because of the
incompressibility of water) and thereby accelerated to high velocity; then it drives one or
several moving vanes. The various types are characterized by the relation between velocity
and pressure in the turbine.

c) Gas turbine, driven by the combustable gases: combination of a proper turbine driven
by hot combustion waste gases and a compressor preceding the combustion that presses air
into the combustion chamber. Application for airplanes as turboprop engine involving a
propeller on the shaft, and jet engine without the propeller; also for automobile generators,
occasionally for land-based vehicles. The advantages are simple construction with few
moving units, low weight per unit of power, high rate of rotation (up to 20 000 rev/min),
an efficiency up to 35 % for multi-stage devices and cheap fuel.

5.2.3 Buoyancy
1. Buoyant force

Buoyancy, a force directed in a direction opposite to Earth’s attraction and acting on all
bodies submerged in a liquid (or gas). Buoyancy results from the difference in pressure on
the upper and lower face of the body (Fig. 5.26). If the upper face of the body with an area
A is at the depth h1, and the lower face (of the same area) at the depth h2, then

FA = F2 − F1 = A (p2 − p1) = A ρFl g (h2 − h1)
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–

p

p

Figure 5.26: Buoyancy. The
lateral forces �F3 cancel
each other; the force �F2
(below) exceeds the force
�F1 (above).

(ρFl density of the liquid, p1, p2 pressure at h1 and h2, F1, F2 force at the upper and lower
face of the body, FA buoyant force, g gravitational acceleration). The quantity A(h2− h1)

is the volume V of liquid displaced by the body. Hence:

buoyant force MLT−2

FA = ρFl g V

= mdisp g = FG,disp

= ρFl

ρK
FG

Symbol Unit Quantity

FA N buoyant force
ρFl kg/m3 density of liquid
g m/s2 gravit. acceleration (9.81 m/s2)
V m3 volume of the body
mdisp kg displaced mass of liquid
FG,disp N weight force of mdisp
ρK kg/m3 density of the body
FG N weight force of the body

➤ The density stands for the mean density of the entire body, i.e., total mass divided by
total volume.

2. Principle of Archimedes and properties of buoyancy

Principle of Archimedes, the buoyant force experienced by a body submerged in a liquid
equals the weight of the displaced quantity of liquid.
➤ This rule holds also for partly submerged bodies.
There are three kinds of buoyant forces:

FA < FG : The body sinks when its density is larger than the density of the liquid;
FA = FG : The body remains suspended when its density equals the density of the

liquid;
FA > FG : The body floats and is only partly submerged when its density is less than

the density of the liquid.
■ The density of iron is 7.8 times that of water. An iron body experiences a buoyant

force

FA = ρ

ρbody
FG = 1

7.8
FG = 0.13FG ,

i.e., 13 % of its weight. The effective weight of iron is only 87 % of its true weight
when submerged in water.

The effective weight of a submerged body is the real weight minus the buoyancy:

Feff = FG − FA =
(

1− ρFl

ρK

)
FG .
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A body in air also experiences a buoyant force corresponding to the weight of the displaced
air.

3. Balloon

flying object kept in the air by the buoyant force. The force is generated by filling the
balloon with a gas having a density lower than that of the atmosphere (heated air, helium;
in the past, hydrogen).

4. Measurement of densities by means of Mohr’s balance

Buoyancy may be employed to measure the density of a solid ρK . One measures the force
required to balance a scale when the body is suspended while submerged in a liquid, FFl ,
and in the air, FG (Mohr’s balance, Fig. 5.27). The difference equals the difference of the
buoyant forces,

FG − FFl = FA,Fl − FA,air = (ρFl − ρair)V g ≈ ρFl V g

(FA,Fl buoyant force in the liquid, FA,air buoyant force in the air, ρFl density of the
liquid, ρair density of air, V volume of the body, g gravitational acceleration). In general,
the density of the air may be ignored compared to the density of the liquid. If both sides
are divided by

FG = ρK V g = mg ,

(m mass of the body) then

ρK = ρFl

1− FFl

mg

.

➤ Measurement of density in this manner is only feasible if the body does not float,
i.e., its density is greater than that of the liquid.

If the density of the body is less than that of the liquid, an auxiliary weight may be added
to the body. The force in the liquid FFl is then replaced by the difference FH − FFl of the
force for the auxiliary weight alone, FH , and together with the body, FFl :

ρK = ρFl

1− FH − FFl

mg

.

Counterweight

Body Figure 5.27: Measurement
of the density using Mohr’s
balance.

Conversely, the density of the liquid may be determined using a body of known density.
By rearranging the above formula, one has

ρFl = ρK

(
1− FFl

mg

)
.
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By submerging the same body in two liquids of different densities ρ1 and ρ2, one can
determine the ratio of the densities from the measured balancing forces FFl,1 and FFl,2:

ρ1

ρ2
=

1− FFl,1

mg

1− FFl,2

mg

.

5. Determination of density from submersion depth

Another method to determine the density of a liquid is based on the submergence of a
floating body. Let A be the (constant) cross-sectional area, H the height of the floating
body, and h the submersion depth, the balance of force is

0 = FA − FG = h AρFl g − H AρK g .

From there,

ρFl = H

h
ρK .

The density of a floating body may also be determined by

ρK = h

H
ρFl .

5.2.4 Cohesion, adhesion, surface tension
1. Cohesion,

the property of liquids and solids to link up and form non-disrupting filaments and layers. It
arises because of attractive forces between the molecules. The attractive forces arise from
the charge distribution (polarization) within the molecules and the resulting electrostatic
attraction (see Van der Waals forces, p. 666). The cohesive forces in gases are much
weaker than in liquids and have a noticeable effect only near the boiling temperature.
■ Siphon (Fig. 5.28). As soon as the liquid exceeds the highest point of the tube, it is

pulled down into the other half of the tube by gravity. Cohesion prevents the liquid
filament from breaking. Such phenomena do not occur for gases; rather, the density
of the gas varies according to the barometric formula.

Figure 5.28: Siphon. The
fluid is extracted from a
vessel by the cohesive
forces and the gravitational
pressure.

2. Surface tension,

force on the surface of a liquid caused by the molecular forces within the liquid (Fig. 5.29).
In the interior of the liquid, cohesive forces act isotropically with the same magnitude,
since any molecule is surrounded in any direction by other molecules in the same way. At
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Figure 5.29: Surface
tension. The cohesive forces
compensate each other only
in the interior of the liquid.

the surface, however, a resultant cohesive force arises towards the interior, which must be
compensated by a pressure within the liquid.

Surface energy, the potential energy resulting from the surface tension.
The surface tension opposes an increase in the surface area. In order to enlarge the

surface by an amount 
A, an amount of work 
W is required. The ratio of the work 
W
to the surface increase 
A is called the surface tension σ :

surface tension MT−2

σ = 
W


A

Symbol Unit Quantity

σ J/m2=kg/s2=N/m surface tension

W J work performed

A m2 surface gained

➤ Typical values for the surface tension are 0.02 N/m for hydrocarbons, 0.07 N/m for
strongly polarized molecules such as water or glycerine, and the extreme case of
mercury 0.49 N/m. The surface tension depends on the temperature of the material.
It can be very sensitive to contamination by certain substances (detergents).

3. Measurement of surface tension

M Surface tension is measured by a wire frame of length d (Fig. 5.30) submerged in a
liquid and pulled out by an amount 
s, thereby forming a thin liquid film of surface

A = 2d 
s. If the frame is pulled out of the liquid with a force F , the work done
to generate the liquid film is 
W = F 
s. Therefore,

σ = 
W


A
= F 
s

2d 
s
= F

2d
.

Figure 5.30: Measurement
of surface tension. A liquid
film is drawn with a wire
frame, and the force �F is
measured.

4. Specific properties of surface tension

Surface tension represents a force per unit length of the boundary line.
▲ The force Fσ acting due to the surface tension on a boundary line of length l is

Fσ = lσ .

➤ A system always tends to approach the state of lowest potential energy. For this rea-
son, the surface of a liquid is always a minimum surface.

■ The body with the minimum surface for a given volume is the sphere. If no other
forces are present, a drop of liquid takes a spherical shape. Special case: soap-bubble.
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5.2.4.1 Capillarity

1. Adhesion,

denotes the attractive forces between the molecules of two distinct materials, unlike co-
hesion, which is between molecules of the same material. Adhesion may occur between
solid, liquid, or gaseous materials. In particular, in the contact of a liquid (drop) and a solid
(supporting surface) the following cases must be distinguished, depending on the ratio of
strengths of cohesive and adhesive forces (Fig. 5.31):
• the adhesive forces dominate: the liquid spreads over the entire supporting surface

(perfect wetting),
• the cohesive forces dominate: the liquid contracts into drop-like objects (no wetting).
Rim angle, φ, the angle between the liquid surface and the supporting surface at the contact
point. For wetting liquids, 0 ≤ φ ≤ π/2. For a non-wetting liquid, π/2 < φ ≤ π .

Figure 5.31: Contact of a liquid drop with a solid support area. (a): wetting, rim angle
φ < π/2, (b): no wetting, rim angle φ > π/2.

2. Capillary action,

the phenomenon of the rising of a liquid in a thin tube (capillary) (Fig. 5.32). It is caused
by the surface tension at the boundary line of the liquid, and the resulting force is Fσ =
σ l = σ · 2πr (l: circumference). This force is compensated by the weight of the liquid
column FG = mg = ρ · h · πr2 (m mass of the liquid column). From FG = Fσ , one
obtains:

capillary elevation height (capillary ascension) L

h = 2σ

gρr

Symbol Unit Quantity

h m elevation height
σ N/m surface tension
ρ kg/m3 density of fluid
g m/s2 gravitational acceleration
r m inner radius of capillary

Figure 5.32: Capillarity. (a): capillary ascension, (b): capillary depression.
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■ In a capillary of inner diameter 1 mm, water (surface tension 0.07 N/m, density
1000 kg/m3) ascends to

h = 2σ

gρr
= 2 · 0.07 N/m

9.81 m/s2 · 1000 kg/m3 · 0.5 mm
= 29 mm .

➤ For a given substance, the elevation depends only on the radius of the capillary.
➤ The surface tension of the liquid may be determined from the capillary ascension

(depression).
Wetting energy, Ewetting, a measure of adhesion strength. The wetting energy is released
in wetting a surface of area A. It may be calculated from the wetting angle φ and the surface
tension σ :

Ewetting = Aσ(1+ cosφ) .

5.3 Hydrodynamics, aerodynamics

Fluid mechanics, theory of flow in liquids (hydrodynamics) and gases (aerodynamics).
It describes the transport of matter due to differences in pressure and external forces, taking
into account the internal friction. Again, gases differ from liquids by their high compress-
ibility. If, however, the flow velocity is significantly below (by about one third) the velocity
of sound, gases behave practically like incompressible fluids.

The central concept of flow mechanics is the flow field.

5.3.1 Flow field
1. Definition of the flow field

At a given instant, every particle of a flowing fluid has a velocity defined by magnitude
and direction. The basic assumption of hydrodynamics is that the mean velocity of the
particles over a small volume is nearly constant. One therefore may assign to any point
in the fluid a mean velocity �v of the mass particles in a small volume element around
this point. The velocity distribution in space and time arising in this way is called the
velocity field �v(x, y, z, t). Analogously, one introduces the pressure field p(x, y, z, t),
the temperature field T (x, y, z, t) and the density field ρ(x, y, z, t).
➤ This description holds only in the local thermodynamical equilibrium (see p. 691).

Only then may the pressure and the temperature be defined meaningfully, and a re-
lation to the density may be established via the equation of state. Flow that is not
in local thermodynamic equilibrium is described by the kinetic theory (transport
theory).

2. Properties of the velocity field

The velocity field is a vector field; its value �v(x, y, z, t) gives the mean velocity
of the particles that at the instant t are within a small volume element around the
position (x, y, z). One distinguishes between time-independent (stationary) and time-
dependent (non-stationary) flow, and also between space-dependent (non-uniform) and
space-independent (uniform) flow. For stationary flows:

�v = �v(x, y, z) ,
∂�v
∂t
= 0 .
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Streamlines and pathlines serve for visualization of the flow field (Fig. 5.34). Stream-
lines follow the velocity vectors in a given instant, i.e., a tangent to a streamline gives the
direction of flow at this point (Fig. 5.33). The streamlines must be distinguished from the
pathlines, which describe the real motion of the material particles over a certain period.
▲ For steady flows, streamlines and pathlines coincide.
The mathematical description of flow is done with the tools of vector analysis.

Streamline

Figure 5.33: Streamline.
The velocity vector �v(�r)
corresponds to the tangent to
the streamline at the point �r.

3. Examples of streamline plots

In a streamline plot, the finite density of lines n (n: number of streamlines intersecting a
unit area) characterizes the flow velocity: n ∼ |�v|.

Stream tube, tube-like space region. The boundary lines of the tube coincide with
streamlines (Fig. 5.35). In stationary flow, the liquid does not cross the boundary of the
stream tube (Fig. 5.36).

Figure 5.34: Flow field around a plate. Figure 5.35: Velocity field. Streamlines in a
stream tube with the cross-sectional areas A
and A′.

n, v large

n, v small

Figure 5.36: Streamline
density n in a tube of
variable cross-section.

5.3.2 Basic equations of ideal flow
Ideal liquid, liquid that is incompressible and does not exhibit friction. In an ideal liquid,
no vortices can occur, rot �v = 0. As the name suggests, this idealization cannot be realized
physically.

Ideal flow, an incompressible flow without frictional forces.
➤ Ideal gases are gases with a compressibility that follows the law of ideal gases. The

flow of real gases is not ideal flow.
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5.3.2.1 Continuity equation

1. Setting up the continuity equation

Continuity equation, expresses the conservation of mass. One considers (Fig. 5.37) a
tube with the cross-sectional area A through which a liquid is flowing. The mass 
m of
all particles passing the area A in a time interval 
t is given by the product of area, time
interval, density ρ and velocity �v of the liquid:


m = ρ v A
t .

At another position along the tube, where the cross-section is A′ and the velocity is �v′, the
same mass must pass the area per unit time because there is assumed to be no sources or
sinks for the material. Then

ρvA = ρ′v′A′ .

Incompressible liquid: ρ = ρ′, and therefore:

continuity equation for incompressible fluids L3T−1

vA = v′A′
Symbol Unit Quantity

v, v′ m/s velocities
A, A′ m2 cross-sectional areas

Figure 5.37: Flow in a tube of varying cross-section A.

▲ The smaller the cross-sectional area of a tube, the higher the velocity of the liquid
passing through it.

Volume flux, volume flow, Q = vA, [Q] = m3/s. Volume of liquid that passes a tube of
cross-sectional area A per unit time.

Current density, mass current density, the vector �j = ρ �v.
➤ An analogous equation holds for the conservation of the electric charge for electric

currents in electrodynamics. Generally, a continuity equation expresses the conserva-
tion of a physical quantity.

2. Continuity equation in differential form

▲ The volume of liquid flowing into a small cube fixed in space equals the volume
flowing out of this cube in the same time interval.

The differential formulation of the continuity equation follows from this statement: The
volume flow Qin,x through the face of a cuboid perpendicular to the x-direction is

Qin,x = vx (x) ·
y ·
z ,
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x ,
y and
z denote the edge lengths of the cuboid. The volume flow through the oppo-
site face is

Qout,x = vx (x +
x) ·
y ·
z .

According to Taylor’s theorem,

vx (x +
x) ≈ vx (x)+ ∂vx (x)

∂x

x .

The same treatment for the y- and z-direction yields the excess of the volume flow through
the cuboid,


Q =
(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
·
x ·
y ·
z .

The quantity in parentheses is the divergence of the vector field �v:

div �v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
.

The differential formulation of the continuity equation reads:

continuity equation in differential form LT−1

div �v = 0
Symbol Unit Quantity

�v m/s velocity field

3. Velocity potential, Laplace and Poisson equations

The continuity equation may be solved by the introduction of a velocity or flow potential
�. The velocity potential is a scalar field. The streamlines are trajectories orthogonal to the
equipotential surfaces � = const. The gradient of � is a vector field that, at any position,
points along the steepest slope of�. The gradient of the velocity potential� is the velocity
field �v:

grad� =
(
∂�

∂x
,
∂�

∂y
,
∂�

∂z

)
= �v .

After inserting �, the continuity equation reads(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
� = 0 .

The equation is called Laplace’s equation. If on the right-hand side of the equation a finite
source density q appears instead of zero, one has Poisson’s equation:(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
� = −4πq .

Laplace operator, 
, scalar product of the del or nabla operator �∇ with itself, sum over
all partial second derivatives,


 = �∇ · �∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.
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An extensive body of analytical and numerical tools exists for the solution of Laplace’s
equation under given boundary conditions (boundary-value problem).

4. Helmholtz condition

A flow can only then be represented by a potential � if it is irrotational or vortex-free,
i.e., if no closed streamlines occur. For a steady flow field, this means that no particle in
the liquid follows a closed path. The vortex property of the flow field may be expressed in
vector analysis in terms of the curl, rot �v of the velocity field,

rot �v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂vz

∂y
− ∂vy

∂z

∂vx

∂z
− ∂vz

∂x

∂vy

∂x
− ∂vx

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

If the curl vanishes everywhere, the flow is irrotational,

rot �v = 0.

This is the Helmholtz condition.

5. Sources and sinks

Source or sink, region of space where streamlines begin (source) or terminate (sink). The
number of streamlines entering through a surface enclosing the source (sink) differs from
the number of streamlines leaving the volume through this surface. For the divergence of
the velocity field (Fig. 5.38):

div �v = q , q : source density, q > 0 : source, q < 0 : sink .

Figure 5.38: Divergence of the velocity field. (a): source-free flow, (b): source q > 0, (c):
sink q < 0.

5.3.2.2 Euler’s equation
Euler’s equation, describes incompressible, non-viscous flow. It expresses Newton’s sec-
ond law:

ρ ·
((�v · grad

) �v+ ∂�v
∂t

)
≡ ρ · d�v

dt
= �F− grad p .
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On the right-hand side of the equation appear the force per unit volume �F acting on the
liquid, for example, the gravitational force, and the gradient of the pressure along which
the pressure force acts. The left-hand side represents the total of the velocity field with
respect to time,

d�v
dt
= (�v · grad

) �v+ ∂�v
∂t
.

It represents the change of the velocity of a small volume element in a reference frame
moving with the liquid. Hence, the left-hand side of the equation is the acceleration, and
the right-hand side corresponds to the applied forces:
• the external force per unit volume �F,
• the pressure force per unit volume along the pressure gradient −grad p.
➤ For a viscous flow, Euler’s equation is extended to the Navier-Stokes equation (see

p. 200).

5.3.2.3 Bernoulli’s law

1. Bernoulli’s law,

establishes a relation between the cross-sectional area of a tube and the pressure in the
tube. One distinguishes:
• static pressure, which acts with equal magnitude perpendicular and parallel to the

flow direction;
• pressure due to gravity (geodesic pressure), which corresponds to the hydrostatic

pressure in a liquid column;
• dynamic pressure, which occurs because of the flow. The dynamic pressure depends

on the flow velocity.
➤ In a flowing liquid, the pressure is not the same in different directions, it is not

isotropic. The static pressure is just the isotropic component of the total pressure.
▲ Bernoulli’s law:

In steady flow, the sum of static and dynamic pressure is constant.

2. Derivation of Bernoulli’s equation

Bernoulli’s law follows from energy conservation. If a volume
V of a liquid has a kinetic
energy 1

2ρ
V v2 (ρ density, v velocity) at a point where the tube cross-section is A, and the

kinetic energy 1
2ρ
V v′2 at another point where the cross-section is A′, then the difference


Wkin = 1

2
ρ
V (v′2 − v2) ,

must originate from the pressure difference and the difference of the potential energies

Vρg(h − h′) (h, h′ are the corresponding heights).

Pressure energy, Wp , the work to be expended to force the volume 
V at a pressure p
into the tube,

Wp = p A
s = p
V .

Then:


Wkin = 
V (p − p′)+
Vρg(h − h′) ,

and therefore:
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Bernoulli’s equation ML−1T−2

p + 1

2
ρv2 + ρgh = const.

Symbol Unit Quantity

p Pa static pressure
ρ kg/m3 density
v m/s flow velocity
g m/s2 gravitational acceleration
h m height

The first term is the static pressure, the second and third are the dynamic pressure and the
pressure due to gravity (Fig. 5.39).
➤ Bernoulli’s equation holds for steady, non-viscous flow, and is therefore an idealiza-

tion.

Figure 5.39: On Bernoulli’s equation.

3. Methods of measurement based on Bernoulli’s law

Flow nozzle, constriction of a pipe along the flow direction to increase the flow veloc-
ity. Basic tool to convert pressure energy into kinetic energy. Application in turbines, jet
nozzles.

Diffuser, channel extension. Inverse of nozzle: kinetic energy of the flowing liquid is
converted to pressure energy. Application in flow-type pumps.

The continuity equation and Bernoulli’s equation form the basis of several methods of
pressure measurement (Fig. 5.40):

M Static-pressure tube, for measurements of static pressure. The pressure is probed at
an opening in the pipe and measured by a manometer.

M Pitot tube, for measurements of static and dynamic pressure. The pressure arises at
the mouth of a tube in a direction opposite to the flow direction.

M Prandtl’s impact tube, combines the Pitot tube and the static pressure tube for mea-
surements of the dynamic pressure as the difference between the total and static pres-
sure. For known density ρ of the liquid, one can evaluate the flow velocity v from the
dynamic pressure pS , v = √2pS/ρ .

4. Venturi tube,

(nozzle device), for measuring the volume flow Q according to the Venturi principle (see
p. 195). The difference between the static pressure before and in a nozzle constriction is
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Static pressure Static and
dynamic pressure

Dynamic
pressure

Figure 5.40: Methods for pressure measurements based on Bernoulli’s law. (a): static-
pressure tube, (b): Pitot tube (static pressure and dynamic pressure), (c): Prandtl’s impact
tube (dynamic pressure).

measured. The faster the liquid flows, the smaller the static pressure (Fig. 5.41):

Q = A1 ·
√

1

(A1/A2)
2 − 1

·
√

2
p

ρ
,

= A1 ·
√

1

(A1/A2)
2 − 1

·√2g
h

(A1 cross-section of tube, A2 constricted cross-section, 
p pressure difference, ρ density
of fluid, g acceleration of gravity, 
h difference of heights in the ascension tube).

Figure 5.41: Venturi tube for measuring volume flow according to the Bernoulli equation.

➤ In real, viscous flows the friction must be taken into account. In practice, one applies
correction factors determined by a calibration.

5.3.2.4 Torricelli’s effluent formula

1. Effluent velocity

The effluent velocity of a liquid through a small aperture on the surface of a vessel under
the influence of the weight is obtained from Bernoulli’s equation. If one compares a small
volume of liquid at an arbitrary point in the vessel (height h1, at rest) with another volume
at the effluent aperture (height h2, velocity v), with atmospheric pressure p0, one gets

ρgh1 + p0 = ρgh2 + ρ2 v
2 + p0 ,

and therefore:
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effluent velocity ∼ √
height LT−1

v = √2gh

Symbol Unit Quantity

v m/s effluent velocity
g m/s2 gravitational acceleration
h m height of liquid column above the

effluent aperture

2. Torricelli’s effluent law

The effluent velocity in a liquid column of height h above the effluent aperture equals the
velocity of free fall of a body from the height h (Fig. 5.42).

The horizontal distance L of the jet from the outlet of the vessel at the depth h2 below
the aperture is

L = 2
√

h1 · h2 .

Figure 5.42: Torricelli’s effluent law. The effluent velocity v depends on the height h1 of
the liquid column above the aperture.

For an aperture in the bottom of the vessel follows an effluent velocity of

v = √2gh .

If an additional pressure pext acts on the surface of the liquid, the effluent velocity is

v =
√

2

(
gh + pext

ρ

)
.

3. Effluent velocity

By the same consideration, one may find the effluent velocity from a pipe in which an
overpressure p (compared with the exterior) exists:

effluent velocity LT−1

v =
√

2p

ρ

Symbol Unit Quantity

v m/s effluent velocity
p Pa overpressure
ρ kg/m3 density
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➤ In the considerations above, the friction within the liquid (see viscosity, p. 198) has
been ignored. Friction may be taken into account by multiplying the velocity by a
velocity coefficient φ (water: φ ≈ 0.97). Moreover, a constriction of the jet arises
when the liquid leaves the exit aperture; the effect may be taken into account by
the coefficient of contraction α (sharp-edged exit: α ≈ 0.61). The product of both
corrections is called coefficient of discharge µ, µ = φ α. In order to take the friction
and the influence of the exit aperture into account, the values for the effluent velocity
v and the distance L calculated with the above formulae must be multiplied by the
coefficient of discharge µ.

4. Dam,

effluent of a liquid over the top edge of a container, e.g., over locks in rivers (Fig. 5.43).
The volume flow Q is

Q = 2κ

3
· h · b ·√2gh

(h height of flow over dam, b lateral width, g gravitational acceleration). The coefficient of
contraction κ may be determined according to Swiss standards, as follows:

κ = 0.615 ·
(

1+ 1

1.6+ 1000 h

)(
1+ 0.5

h2

H2

)
, h in m .

The expression holds for fall height H − h ≥ 0.3 m, level H ≥ 2h and height of flow
h = 0.025 m . . . 0.8 m.

Figure 5.43: Dam flow of
liquid over an edge.

5.3.2.5 Suction effects
According to Bernoulli’s law, the static pressure in a flowing fluid is smaller than the static
pressure in the liquid at rest. This causes suction effects in flows:
▲ Venturi principle, by reducing the cross-sectional area of a pipe and the resulting

acceleration of the flow, the static pressure in the tube may fall below the atmospheric
pressure in the vicinity; hence, another liquid may be sucked in.

a) Water-jet pump, suction of a gas by a liquid (Fig. 5.44). The liquid (water, mer-
cury) flowing at high speed through a nozzle leads to a reduction of the static pressure,
which causes suction of the gas from the vessel to be evacuated. Mercury-vapor diffusion
pumps of this design are used in vacuum technology; such pumps reach pressure values of
1 Pa = 10−5 bar. The pressure that can be reached is limited by the vapor pressure of the
liquid.

b) Sprayer, for suction of a liquid into an air flow (Fig. 5.45). The top of the sprayer
capillary is placed into an air flow. Owing to the reduced static pressure, as compared with
the pressure on the liquid in the vessel, the liquid is sucked in.
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W
ater

Vessel to be
evacuated

Air

Figure 5.44: Water-jet pump. Figure 5.45: Sprayer.

c) Hydrodynamic paradox: A liquid or gas flowing out of a tube may attract a plate
placed on the tube exit (Fig. 5.46). This happens if the effluent velocity becomes so large
that the external pressure exceeds the remaining static pressure in the liquid flowing be-
tween the tube exit and the plate. For the same reason, two vehicles moving closely side
by side are attracted to each other.

Figure 5.46: Hydrodynamic
paradox. A plate is sucked
in by a jet emerging from a
pipe.

5.3.2.6 Buoyancy in flow around bodies

1. Buoyancy

Buoyancy on a body immersed in a flow, arises according to Bernoulli’s law if the flow
velocity at different faces of the body have different magnitudes. At the face with the higher
velocity, there is an underpressure, on the other side, an overpressure.

Magnus effect (Fig. 5.47), a cylinder rotating in a flowing liquid experiences a force
perpendicular to the flow. Owing to the rotation, the flow on one side of the cylinder is
diminished, on the other side it is increased. The net effect is a difference of static pressures,
and thus a sideward acceleration.

Figure 5.47: Magnus effect.

2. Buoyant force

Wing, a body in a flow formed in such a way that the speed of flow on the upper side is
higher than that on the lower side. Because of the resulting pressure difference, the body
experiences a dynamic buoyant force:
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dynamic buoyant force MLT−2

FA = cA
ρ

2
Av2

Symbol Unit Quantity

FA N dynamic buoyant force
cA 1 buoyancy coefficient
ρ kg/m3 density of liquid
v m/s flow velocity
A m2 max. projected area

The buoyant force is proportional to the square of the flow velocity (cf. frictional force)
and to a typical area extension. The latter quantity corresponds to the largest area when
projecting the wing onto an arbitrary plane (length times width) (Fig. 5.48).

res
Under-
Pressure

Over-
Pressure

Figure 5.48: Dynamic
buoyant force �FA in flow
around a wing. Buoyant
force �FA and drag force
�FW of the wing sum to the
resulting force �Fres.

➤ The buoyancy coefficient is determined in an aerodynamic tunnel. Typical values
vary between 0.02 and 0.05.

➤ In calculations for airplanes, the drag force FW must also be taken into account,

FW = cw
ρ

2
Av2 , cw : drag coefficient.

The resulting force Fres points upwards and backwards. Its action point is called
center of pressure. It may be determined in an aerodynamic tunnel from the torque
on the wing, which depends on the angle of attack. The backward component of the
force is compensated by the propelling force of the engines.

5.3.3 Real flow
Real flow differs from ideal flow by the presence of friction. One distinguishes:
• laminar flow, which differs from the flow of an ideal liquid mainly by a modified

speed,
• turbulent flow, which is no longer stationary and where, at a fixed space point, both

the orientation and the velocity of a flowing liquid vary at random.

5.3.3.1 Internal friction
Internal friction, friction originating from cohesion forces between molecules of liquids
or gases. The kinetic energy of the fluid is dissipated by friction, which manifests itself as
an increase in temperature.

1. Laminar flow,

a flow in which individual films of liquid of finite thickness slide over each other, without
notable mixing between the layers, as e.g., in the flow between two parallel plates moving
with respect to each other (Fig. 5.49).
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Figure 5.49: Layers of liquid in laminar flow between two plates moving with respect to
each other.

The liquid moves in the same direction over the entire volume considered, but the in-
dividual layers move with different velocities. Frictional forces arise in this sliding and
cause a uniform decrease of velocity across the flow profile (Fig. 5.50). The opposite is
turbulent flow.

Figure 5.50: Velocity profile
in laminar flow between two
parallel plates moving with
respect to each other.

Velocity gradient, dv/dx , the difference of velocities of two neighboring layers, re-
ferred to the thickness of a layer. A plot of the velocity of a layer versus its position shows
the velocity profile v(x); the first derivative dv/dx of the profile represents the velocity
gradient.

2. Newtonian viscosity,

describes the strength of the frictional force between neighboring layers of a laminar flow.
The force acting on such a layer is proportional to the area of the layer, and to the velocity
gradient with respect to the neighboring layers:

Newtonian viscosity MLT−2

FR = ηA
dv

dx

Symbol Unit Quantity

FR N frictional force
η Pa · s = N · s/m2 dynamic viscosity
A m2 area of layer
dv/dx 1/s velocity gradient

The proportionality constant η is called dynamic viscosity, or simply viscosity. The unit
of viscosity is Pascal second (Pa · s). The higher the viscosity of a liquid, the greater the
force required to move the layers against each other. A typical order of magnitude for η is
10−5 Pa · s for gases, 10−3 Pa · s for water and between 0.1 and 0.01 Pa · s (depending on
temperature) for lubricating oils.

M The viscosity manifests itself directly when one pulls a plate out of a narrow vessel. If
the distance between the plate and the wall of the vessel is sufficiently small, viscosity
shows up as a braking force.
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Non-SI unit: Poise (named after the physicist Poiseuille)

1 Poise = 0.1 Pa · s .

3. Fluidity and kinematic viscosity

Fluidity, φ, the reciprocal value of dynamic viscosity:

φ = 1

η
, [φ] = m2

Ns
.

Kinematic viscosity, ν, the ratio of dynamic viscosity η and density ρ of the liquid:

ν = η

ρ
, [ν] = m2

s
.

Obsolete unit:

1 Stokes = 1 St = 10−4 m2/s.

Typical orders of magnitude of the kinematic viscosity are 10−6 m2/s for water,
10−4 m2/s for air, and from 1 to several hundred m2/s for motor oils.

Although the dynamic viscosity gives the force acting on a layer of liquid, the kinematic
viscosity takes into account the density of the liquid, and hence the mass 
m = ρ
V =
ρ A
x of the layer of liquid. The kinematic viscosity specifies the acceleration:

a = FR


m
= FR

ρA
x
= ν 
v

(
x)2

(a acceleration, 
m mass of layer, FR frictional force, A area, 
x thickness of layer, ν
kinematic viscosity, 
v velocity difference).
➤ The viscosity is a constant that depends on the material; it is strongly temperature-

and pressure-dependent. The dependence on the temperature is described approxi-
mately by

η = A eb/T

with material-dependent constants A and b; hence, it decreases with increasing tem-
perature. The viscosity and its temperature dependence is of particular importance
for lubricants.

The dynamic viscosity of gases is much lower than that of liquids (air 1.7 ·
10−5 Pa · s, water 1.8 · 10−3 Pa · s for 0 ◦C).

The viscosity of solutions and mixtures of fluids is strongly dependent on the con-
centration.

➤ Non-Newtonian materials, materials for which the Newtonian viscosity is not valid
and/or the deformation of which is not plastic. Such materials are polymeric ma-
terials (liquid plastics) and dispersions (liquids containing solids or other liquids
suspended as small spheres; also denoted suspension or colloid, depending on their
dimension).
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5.3.3.2 Navier-Stokes equation

1. Equation of motion of real flow

The continuity equation also holds for real flow. Euler’s equation is extended to the Navier-
Stokes equation:

ρ ·
((�v · grad

) �v+ ∂�v
∂t

)
= ρ · d�v

dt
= �F− grad p + η ·
�v .

The left-hand side represents the substantial derivative of the velocity field. Besides the
external force per unit volume, �F, and the pressure force per unit volume −grad p, the
right-hand side contains an additional force term

η ·
�v = η ·
(
∂2�v
∂x2
+ ∂

2�v
∂y2
+ ∂

2�v
∂z2

)
.

It depends on the curvature of the velocity distribution and gives the frictional force. 

denotes the Laplace operator.

The Navier-Stokes equation is the basic equation of the hydrodynamics of viscous liq-
uids. Together with the continuity equation, it describes any flow of an incompressible
liquid, in particular turbulent flow. There are efficient numerical algorithms for solving the
equation.

2. Special cases of real flow

The following special cases can be distinguished.
• Flow with negligible friction: η ≈ 0. The Navier-Stokes equation then reduces to the

Euler equation (see p. 733).
• Steady flow: the time derivative vanishes.
• Sluggish flow for very high viscosity: η → ∞. The left-hand side of the Navier-

Stokes equation may be ignored; the flow is determined by the balance of pressure
gradient and friction.

• Rotational flow in turbulences. Instead of solving the equations directly, one ex-
presses the change of the vortex strength in a volume element by the energy dissi-
pation due to friction. In this way, turbulent flow may be described efficiently.

5.3.3.3 Laminar flow in a tube

1. Modelling of laminar flow in a tube

The laminar flow in a cylindrical pipe of inner radius R may be imagined as being com-
posed of many hollow cylinders of thickness 
r in which liquid flows with equal speed.
The outermost hollow cylinder adheres to the wall, and is at rest. The velocity of the other
hollow cylinders results from the balance of the frictional forces FR (described by New-
ton’s viscosity formula) and the pressure force Fp . If one considers a hollow cylinder of
radius r symmetric to the axis of the tube of length l, the pressure force acting on the
cross-sectional area A is

Fp = p A = πpr2 .

The opposing frictional force

FR = −ηA

v


r
= −η2πrl


v


r
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in the equilibrium state equals the pressure force. Hence, the velocity gradient is


v


r
= − pr

2ηl
.

The velocity gradient increases with increasing pressure, and decreases with increasing
velocity and increasing tube length. It increases linearly with the distance from the tube
axis.

2. Derivation of the Hagen-Poiseuille law

One goes from the difference quotient 
v/
r to the differential quotient dv/dr and sepa-
rates the resulting differential equation. One obtains

r dr = −2ηl

p
dv .

Integration yields

r2 = −4ηl

p
v + C ,

with an integration constant C . The latter is specified by the requirement that at the wall
(r = R) the velocity vanishes, v = 0; hence C = R2. Rewriting yields the law for laminar
flow in a tube:

Hagen-Poiseuille law LT−1

v(r) = p

4ηl
(R2 − r2)

Symbol Unit Quantity

v(r) m/s velocity profile
r m distance from tube axis
p Pa pressure
η Pa s dynamic viscosity
l m length of tube
R m inner radius of tube

The velocity profile is a parabola (Fig. 5.51). The maximum velocity v0 = v(0) occurs at
the tube axis; it is proportional to the pressure and to the square of the radius (and hence
to the tube cross-section), and inversely proportional to the viscosity and the length of the
tube.

r

Figure 5.51: Law of
Hagen-Poiseuille. Velocity
profile of laminar flow in a
tube.
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3. Properties of laminar flow in a tube

The decrease of pressure p between the ends of the tube is proportional to the tube length
l, the flow velocity v0 on the axis and to the viscosity η, and inversely proportional to the
tube cross-section:

p = 4ηl

R2
v0 .

The volume flow 
V/
t , i.e., the volume 
V of liquid passing the tube per unit time

t , is obtained by integration of the velocity profile v(r) over the tube cross-section:


V


t
= π R4

8ηl
p .

➤ Hence, it is easier to increase the volume flow by enlarging the cross-section of the
tube than by increasing the pressure.

➤ For a given volume flow, the decrease of pressure is

p = 8ηl

π R4


V


t
.

M The viscosity may be measured in a way related to the relation between pressure and
volume flow. One measures the time required for a definite quantity of liquid to flow
through the opening of a funnel. The pressure results from the density of the liquid
and the height of the liquid column above the funnel.

5.3.3.4 Flow around a sphere
A similar consideration yields the force acting on a sphere submerged in a laminar flow of
liquid:

Stokes’ law of friction MLT−2

FR = 6πηrv

Symbol Unit Quantity

FR N frictional force
η Pa s dynamic viscosity
r m radius of sphere
v m/s flow velocity

The Stokes frictional force is thus proportional to the radius of the sphere (not to the
cross-sectional area), to the flow velocity and to the dynamic viscosity of the liquid.

M Höppler’s sphere viscosimeter, for measurements of the dynamic viscosity η based
on Stokes’ law, by determining the sinking speed v of a sphere of radius r . The
sinking speed follows from the balance between the friction force FR and the weight
force FG reduced by the buoyant force FA:

FR = 6πηrv = FG − FA = 4

3
πr3(ρK − ρFl )

(ρK density of sphere, ρFl density of liquid). The sinking velocity is

v = 2gr2(ρK − ρFl )

9η
,
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and for the dynamic viscosity one obtains

η = 2gr2(ρK − ρFl )

9v
.

5.3.3.5 Bernoulli’s equation
For real flow with friction, Bernoulli’s law must be modified.
▲ Law of Bernoulli:

The sums of static and dynamic pressure, measured at two distinct positions of a
tube, differ by the magnitude of the pressure decrease calculated according to the
Hagen-Poiseuille law.(

p1 + 1

2
ρv2

1 + ρgh1

)
−
(

p2 + 1

2
ρv2

2 + ρgh2

)
= 
p ,

where p1, p2 is the pressure, v1, v2 the velocity of the liquid, and h1, h2 the height at
the two points of measurement; 
p denotes the pressure decrease. The latter quantity is
positive if the first point of measurement lies upstream of the second one.

Lost head, hV , the height by which the point of inflow has to be lifted to compensate
the friction:

hV = 
p

ρg
.

It is determined by the coefficient of tube friction ρ.

5.3.4 Turbulent flow
1. Characterization of turbulent flow

Turbulent flow, a flow characterized by random variation in direction and speed at a fixed
space point. It is no longer stationary. But when measuring over a period much longer than
a period typical for the turbulent changes, one obtains a mean velocity distribution. If the
distribution is time-independent, turbulent flow is treated like steady flow, and one tries to
include the effects of turbulence by appropriate coefficients of friction.

2. Formation of vortices,

arises because of friction in the detachment of liquid layers. If an ideal liquid flows
around a sphere the pressure takes the maximum value where the surface is perpendic-
ular to the flow (“in front” and “backward”) since the speed vanishes there; the pressure
takes the lowest value (and the speed the highest value) where the spherical surface is par-
allel to the flow (“above” and “below”). Hence, liquid particles flowing around the sphere
are first decelerated (dynamic pressure), then accelerated (according to Bernoulli’s princi-
ple) and finally decelerated to again fit into the normal flow. The latter deceleration of the
liquid elements is enforced by friction, so that the particles come to rest before reaching the
symmetry axis. Hence, vortices are generated that occur pairwise because of conservation
of angular momentum.

3. Reynolds number,

a nondimensional quantity, specifies the role of vortex formation. For higher Reynolds
numbers, vortices develop spontaneously from small perturbations (Fig. 5.52). Turbulent
flows are an example of nonlinear dynamics (see p. 211) of an extended system.
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Figure 5.52: Transition from laminar flow to turbulent flow. Formation of vortices from a
small perturbation.

Additional energy is drawn from the flowing liquid by the friction between the particles
of the liquid in a vortex, which is represented by an additional frictional force.
▲ The frictional force in turbulent flow is larger than that in laminar flow.

5.3.4.1 Drag coefficient

1. Drag force

In turbulent flow, there are two drag forces acting on a body (Fig. 5.53):
• surface-friction drag, FR , the force between the liquid and the surface of the body,

described by the friction law of laminar flow;
• pressure drag, FD , the difference of pressure onto the front and the back of a body,

acting additionally in turbulent flow. The pressure difference originates in the forma-
tion of vortices at the back of the body. In the vortices, the liquid is moving very
rapidly, hence the static pressure there is smaller than at the front face, according to
Bernoulli’s equation.

Both components added yield the drag force, �FW ,

�FW = �FR + �FD .

Figure 5.53: Drag in the flow around bodies. (a): frictional force in laminar flow, (b): drag
in turbulent flow around a plate, (c): friction and pressure drag in the flow around a sphere.

2. Drag coefficient,

characterizes the magnitude of the drag force:



5.3 Hydrodynamics, aerodynamics 205

drag force MLT−2

FW = cw
ρ

2
Av2

Symbol Unit Quantity

FW N drag force
cw 1 drag coefficient
ρ kg/m3 density of liquid
A m2 cross-sectional area of the body
v m/s flow velocity

The drag coefficient is a dimensionless quantity. It depends significantly on the shape of
the body.
▲ The drag force is proportional to the cross-sectional area of the body and to the square

of the velocity.
➤ Typical values for the drag coefficient vary between 0.055 (streamlined body) and 1.1

up to 1.3 (plate).
M The drag coefficient is measured directly in an aerodynamic tunnel. The measure-

ments may be taken with models scaled down in size using scaling laws.

3. Streamlined body,

a drop-like body with the lowest possible drag coefficient. The pressure decrease along a
streamlined body proceeds so smoothly that no vortices are formed; this is achieved by a
properly designed tail.
➤ The drag force on a body in the atmosphere is largely caused by vortex formation.

One therefore tries to suppress vortices as far as possible by designing slots or guide
vanes, and by keeping the flow laminar.

The power P needed for moving a body in a turbulent flow is (due to P = FW v) equal to

P = cw
ρ

2
Av3 .

■ When doubling the velocity, the power must be raised by a factor of eight.

4. Wind load

on buildings, by pressure or suction (ripping off of roofs). Beaufort degrees (see
Tab. 33.0/6).
■ The air pressure in the interior of a house in a strong wind is higher than the pressure

above the roof (see p. 191).
▲ The wind pressure pw increases with the square of the wind velocity:

pw = cpv
2 , [pw] = Pa = pascal .

The proportionality factor has the dimension kg/m3. Typical numerical values are cp = 1.0
kg/m3.

Typical dynamic wind loads on buildings

height above ground wind velocity/(m/s) dynamic pressure/(kPa)

up to 8 m 30 0.5
8 to 20 m 36 0.8
20 to 100 m 42 1.1
beyond 100 m 46 1.3
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5.3.5 Scaling laws
1. Types of scaling

Scaling laws, set up a relation between fluid-mechanical properties of scaled-down models
and those of the original bodies. The model must fulfill the following two conditions.
• Geometric similarity: The model must be a length-preserving, scaled-down repre-

sentation of the original, both in the geometric measures and in the surface properties.
• Hydrodynamic similarity: Density, viscosity, velocity of the fluid and drag force in

the model experiment must be in a certain ratio to those of the original situation.

2. Reynolds number,

Re, describes the hydrodynamic similarity.

Reynolds number 1

Re = Lρv

η
= Lv

ν

Symbol Unit Quantity

Re 1 Reynolds number
L m characteristic length
ρ kg/m3 density of liquid
v m/s flow velocity
η Pa s dynamic viscosity
ν m2/s kinematic viscosity

The Reynolds number is a dimensionless quantity. L denotes a typical extension in the
geometry considered, e.g., the diameter of a sphere or the edge length of a cube. The
Reynolds number is a measure for the ratio of the inertial force of a volume of liquid to
the drag force acting on it. The behavior of the flow is determined by the interplay of both
quantities. The Reynolds number depends on the temperature.
▲ Similarity laws:

The drag coefficients of geometrically similar bodies coincide if the Reynolds num-
bers for both cases coincide.

➤ This law is the foundation for the measurement of drag coefficients for models in
aerodynamic tunnels.

▲ In order to get hydrodynamic similarity in scaling-down the model, either the veloc-
ity must be increased in a proportional relation, or the kinematic viscosity must be
decreased correspondingly. The latter may be achieved by diminishing the dynamic
viscosity, or by increasing the density.

3. Critical Reynolds number,

Recrit, gives a criterion for the transition from laminar flow to turbulent flow. If the
Reynolds number of a flow exceeds the critical Reynolds number, Re > Recrit, the flow
becomes turbulent (Fig. 5.54).
➤ The critical Reynolds number depends sensitively on the geometry of the flow. For a

smooth pipe, it varies between 1000 and 2500. The transition from laminar flow to
turbulent flow does not happen suddenly; it also depends on the presence of distur-
bances in the flow.

In particular, turbulence occurs only beyond a certain minimum velocity. Therefore, in
the flow around a body, the vortices arise at its backside where the streamlines join again
and the liquid thereby is accelerated, both in radial and axial direction. Laminar boundary
layer, generated in the flow around a body submerged in a real liquid. In the boundary
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Figure 5.54: Formation of vortices and transition to turbulent flow for increasing Reynolds
number.

layer, the flow velocity is low because of the friction at the surface of the body. In this
situation, the Reynolds number is below the critical Reynolds number. The formation of
vortices starts only beyond the boundary layer (Fig. 5.55).

Laminar boundary Turbulent boundary

Acceleration Deceleration

Figure 5.55: Laminar and turbulent boundary layers.

Froude number, Fr, another similarity number that takes into account the influence of
gravitation: Dynamical similarity requires the same ratio of inertial force and gravitational
force. The Froude number is of importance for the description of surface waves (e.g., in
the flow around the hull of a ship):

Fr = v√
Lg

(v flow velocity, L characteristic length, g gravitational acceleration). Ideally, in a model
investigation, both the Froude numbers and the Reynolds numbers for model and original
should coincide. This is, however, impossible because of their different dependences on L .
In the investigation of flow in pipes, where the Earth’s attraction has only a minor influence
on the internal motion of a liquid, one uses the Reynolds number. In studies of the flow
around a ship’s hull, where the influence of surface waves is more important, or in effluent
or jet problems, one uses the Froude number.

5.3.5.1 Tube friction

1. Law of tube friction,

the proportionality between the lost head and the length l of the tube:

hV = λ l

d

v2

2g

(d diameter, l length of the tube, v velocity of flow, g gravitational acceleration). The
proportionality constant λ is called coefficient of tube friction.
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For smooth tubes, the coefficient of tube friction may be determined by empirical for-
mulas holding for various ranges of Reynolds numbers:
• laminar flow: Re < Recrit ,

λ = 64

Re
.

• Blasius formula: Recrit ≤ Re ≤ 105,

λ = 0.3164
4√Re

• Nikuradse formula: 105 ≤ Re ≤ 108 ,

λ = 0.0032+ 0.221

Re0.237

• Kirschmer-Prandtl-Kármán formula: Re > Recrit ,

1

λ
=
(

2 · log

√
λ · Re

2.51

)2

.

The equation is a transcendental equation which must be solved numerically or graph-
ically.

2. Roughness

For tubes with a rough surface, the coefficient of tube friction depends on the mean height
of roughness k. This quantity specifies the typical size of elevations on the surface:

type of tube height of roughness k

plastic tubes ≈ 0.007 mm
steel tubes 0.05 mm
rusted steel tubes 0.15 mm to 4 mm
cast iron tubes 0.1 mm to 0.6 mm
concrete channels 1 mm to 3 mm
built channels 3 mm to 5 mm

➤ Whether a given tube is smooth or rough depends on the relative roughness

krel = k

d

(d tube diameter) of the tube, and on the Reynolds number. For

Re · k

d
> 1300

the tube is rough, for values up to 65 it is smooth, with a mixed region in between.
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5.3.6 Flow with density variation
Flow with density variation, occurs in gases. For liquids, the density variation is almost
always negligible. The prevailing phenomena are the propagation of small density varia-
tions (sound) and large density variations (shock waves). Density variations have also to
be taken into consideration for flows at high velocity (nozzles), and for atmospheric flow
(meteorology).

The equation of motions for flow of compressible media employ the equation of state of
the medium, which relates pressure, density, and temperature.

1. Sound,

the propagation of small pressure variations. It proceeds by sound waves (see p. 311) that
propagate with a constant sound velocity c, which is dependent on the medium, the tem-
perature and the pressure. For an ideal gas, the sound velocity is given by

c = √κRT/M

(κ isentropic coefficient of gas, R universal gas constant, T temperature, M molar mass).
▲ In a homogeneous gas at rest, the propagation of sound proceeds via spherical waves

emerging from the source and propagating uniformly (isotropically) with the velocity
of sound.

If the source of sound moves relative to the observer, the motion of the source is superim-
posed on the propagation of the sound waves.

2. Mach cone,

propagation of sound from a source moving with a velocity vq above the sound velocity c.
The source of sound escapes from the sound waves emitted, vq t > ct . Hence, the spherical
waves emitted at different times superimpose in such a manner that a cone-shaped wave
front arises, with a maximum of pressure increase on the cone surface (Fig. 5.56). An
observer passed by this wave front registers a supersonic boom.

Figure 5.56: Mach cone. A
source of sound moves at
supersonic velocity vq > c.
α: Mach angle.

Mach angle, α, half the apex angle of the Mach cone:

sinα = c

vq
= 1

M

(vq velocity of the source of sound, c sound velocity, M Mach number). The Mach number
M gives the velocity of the source of sound in units of the sound velocity.

3. Shock wave,

(compression shock), large discontinuous change of pressure that propagates with super-
sonic velocity. The pressure jump in such a wave is localized within distances of few
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molecular mean free-paths (in the range of micrometers). Continuous waves of large am-
plitudes are transformed into shock waves, since the sound propagates more rapidly in
regions of high pressure (high temperature) than in regions of low pressure. Therefore, the
continuous rise at the beginning of the wave is overtaken by the crest.
➤ Shock waves arise in detonations.



6
Nonlinear dynamics, chaos and fractals

Nonlinear dynamics, deals with the complex phenomena caused by nonlinear terms in the
equations of motion, in particular with deterministic chaos.

1. Example: Oscillators and vibrations with nonlinear damping.

Oscillators with nonlinear damping, applied force, or both. Oscillators of this kind display
a broad spectrum of resonances that vary with the amplitude (amplitude dependence of
the resonance frequency) and possibly show self-excitation.

Vibrations in mechanical elements are approximately linear only for small amplitudes.
For large displacements, distortions arise in the vibrations which, in extreme situations,
may result in unexpected material breaks.

Electronic components almost always display some nonlinear characteristics. Hence,
electronic amplifiers distort the input information at large modulation range (distortion).

2. Example: Forces between planets.

The forces between the planets depend nonlinearly on the coordinates (via the distances,
which involve square roots). In the two-body case, the equations of motion can still be
solved. For the multi-body problem, however, no general solution exists even for simple
two-body forces.

In the planetary system, the attraction between Sun and planets dominates by orders of
magnitude, but the mutual attraction between the planets causes perturbations of the orbits.
Nonlinear dynamics investigates the stability of planetary orbits against these perturbation
terms.

3. Turbulences

Turbulences in fluids and gases are examples of extended nonlinear processes. They typ-
ically occur only if a certain critical parameter (here the Reynolds number, see p. 206)
becomes large enough (bifurcation).

Turbulences in the atmosphere govern the weather. They illustrate the sensitive depen-
dence of the dynamical evolution on the initial conditions. Some turbulences (many
100 km diameter) are predictable only if the initial conditions are known exactly. Such
systems are deterministic, but nevertheless not predictable (deterministic chaos).

211
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4. Stadium billiards

A billiards is a space region bounded by reflecting walls where particles move freely
otherwise. If the walls are curved (stadium billiards), the trajectory of a particle in general
depends sensitively on the initial conditions. One then cannot predict whether, or when, the
particle leaves the billards space through an opening (Fig. 6.1).

Figure 6.1: Rectangular and stadium billiards. In stadium billiards, the two originally close
trajectories diverge more and more.

6.1 Dynamical systems and chaos

Dynamics generally deals with the time evolution of systems. The concept of a dynamical
system plays a leading role. One distinguishes between conservative (energy-conserving)
systems and dissipative (energy-losing) systems. Conservative systems serve for inves-
tigations of integrability, dissipative systems for studies of the long-time behavior, the
existence of attractors, and the sensitive dependence on the initial conditions that leads
to strange attractors and to deterministic chaos.

6.1.1 Dynamical systems
1. Dynamical system,

abstract method of description of a (physical, chemical, economical, ecological, . . .) pro-
cess. The state of a dynamical system is represented by a number of variables that describe
the physical situation and are subject to a time evolution.

2. Examples of dynamical systems

■ A mathematical pendulum (see p. 260) is described by its displacement from the rest
position. The variable is the angle θ of displacement. The time evolution is deter-
mined by the differential equation of the pendulum:

d2θ

dt2
= −ω2 sin θ ,

ω = √g/ l is the angular frequency of the vibration for small displacements, l the
pendulum length, g the gravitation acceleration. The nonlinearity (anharmonicity)
in this simple system consists of the appearance of higher powers of θ in the series
expansion of the sine function.

■ Other examples of dynamical systems: the motion of bodies in classical mechanics,
the flow of currents in electric circuits, the course of chemical reactions, the evolution
of economic variables, the population growth in biology.
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3. Counter-example to the dynamical system

Contrast: thermodynamical equilibrium, which is considered in thermodynamics (see
p. 626). It does not describe the time evolution, but gives information on the steady state
of the system, depending on the environmental conditions. Kinetic theory establishes the
connection between the dynamical system (molecular motion) and the criteria for equilib-
rium.

4. Deterministic system,

a system in which the time evolution can be determined for all future from the knowledge
of the present (and possibly the past).
■ Any classical mechanical system is deterministic; the motion is determined by New-

ton’s equations of motion. It suffices to know positions and momenta at some instant
to fix the time evolution of the system for all time.

Stochastic systems, which are affected by influences of which only probability
distributions are known, are non-deterministic: gas molecules in thermodynamics,
kinetic theory, Brownian motion, also quantum systems and models in economy and
biology, where stochastic terms (noise) simulate random variations.

5. Continuous system,

a system the variables of which are changing continuously so that, to any real value of time
t , a state of the system can be assigned. Its time evolution may be described by a system of
differential equations that state how rapidly any variable is changing for a given state of
the system.
■ The motion of bodies in classical mechanics and the behavior of electric circuits are

described by continuous variables (positions, currents).

6. Discrete system,

a system the variables of which change from one time step tn to the next one tn+1, without
employing any state of the system between these instants of time. Its time evolution is
determined by a mapping that specifies the values of the variables at the instant tn+1 if
their values at the moment tn and possibly at other, previous instants of time tn−1, tn−2, . . .

are given.
■ Discrete systems occur in mathematical models, e.g., in modelling economical data

(gross national product in different years) and in the description of continuous sys-
tems in terms of Poincaré cuts (see p. 216).

7. Linear system and superposition principle

Linear system, a system in which cause and effect are proportional to each other; it there-
fore can be represented by a linear equation.
■ Harmonic oscillator: the restoring force is proportional to the elongation x ,

ẍ = −ω2 x ,

ω is the angular frequency of the vibration.
▲ Superposition principle:

If two solutions x1(t) and x2(t) of a linear system are known, then the linear super-
position or linear combination

x(t) = α x1(t)+ β x2(t)

with arbitrary coefficients α, β is also a solution of the systems.
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In particular, the properties of the system at larger values of the variables may be derived
by scaling.
■ The resonance frequency of a harmonic oscillator does not depend on the amplitude.
■ The harmonic oscillator has two elementary solutions, e.g., the sine and cosine vibra-

tion that differ only in the phase. By linear combination of the elementary solutions,
a solution with arbitrary amplitude and phase may be constructed.

Because of the superposition principle, it is sufficient to know only a few fundamental
solutions of the equations for a linear system.

8. Nonlinear system

Cause and effect are not proportional to each other, the system cannot be described by a
linear equation.
■ Nonlinear restoring forces and/or damping cause the properties of an oscillator to

vary with the amplitude. Such oscillators can exhibit a large number of resonances
with frequencies depending on the amplitude of the excitation.

■ Mathematical pendulum: For large elongations, the restoring force does not increase
proportional to the angle, but only to the sine of the angle (i.e., it is weaker than in
the linear case). At small elongations, the system carries out oscillations about the
rest position; at large elongations, loops may occur.

6.1.1.1 Space of states and phase space

1. Configuration space,

the space spanned by the space variables of a physical system.
▲ The time evolution of a dynamical system is represented by specifying a trajectory

in configuration space, i.e., to any time point t a point x(t) in the configuration space
is assigned.

a) Examples for trajectories
■ Trajectory of a point mass in classical mechanics; the configuration space is the three-

dimensional space in which the motion happens.
■ Fibonacci sequence, as a dynamical system, defined by the prescription

xn = xn−1 + xn−2

with the initial conditions x0 = x1 = 1. The configuration space is the real axis, the
trajectory is the sequence (x0, x1, x2, . . .).

M x-t graph, used to represent the motion of a system in two dimensions. On the verti-
cal axis one or several variables are represented, on the horizontal axis time is plotted.

b) Example: Mathematical pendulum θ, t . The x-t graph of a mathematical pendu-
lum at small amplitudes is a sine function (Fig. 6.2).

Figure 6.2: θ -t graph of
the pendulum. For small
amplitudes the pendulum
vibrates harmonically, for
larger amplitudes both
shape and frequency of the
vibration are altered.
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2. Space of states

In order to calculate the further evolution of a system, it is in general not sufficient to know
only the present state of the system; the present rates of change (time derivatives) of the
variables are also needed.
■ In the case of the mathematical pendulum, the displacement and the velocity must

both be known.
Space of states, the space spanned by all quantities that must be known at one moment t
to calculate the further time evolution. Every point in the space of states uniquely charac-
terizes the present and future states of the system.

a) Examples of spaces of states
■ In order to predict the additional members of the Fibonacci sequence, the present

number xn and the preceding number xn−1 must be known. Every point in the space
of states is thus represented by two numbers.

■ The space of states for a system of classical mechanics is the phase space (see p. 91)
spanned by the space variables and the related momentum variables.
The phase space of the mathematical pendulum is spanned by the variable θ and its
time derivative θ̇ .

b) Trajectory in phase space
➤ The concept of phase space is also often used for other systems; it then denotes the

space of states.
Trajectory in phase space, the motion of a system in time through the phase space: any
instant of time corresponds to a point in phase space (Fig. 6.3).

Figure 6.3: Phase-space
trajectories of the harmonic
oscillator (ellipse, periodic
motion) and of the damped
pendulum (spiral).

M x-y graph, represents the motion of a system in phase space: each axis corresponds
to a phase-space coordinate.

c) Example: Mathematical pendulum. For small elongations, the phase-space trajec-
tory is an ellipse (Fig. 6.4).

d) Properties of phase-space trajectories
▲ Closed phase-space trajectories represent periodic motions.
In a deterministic system, the position of the system in phase space at any instant of time
determines the future course of the trajectory, i.e., the entire future evolution of the system.
▲ Phase-space trajectories cannot intersect each other.
Otherwise, at the intersection point of two trajectories which path the system would follow
would be undetermined.
➤ Singularity, a point in phase space into which many trajectories converge and the

system remains, or which is reached only asymptotically. At such points the system
loses information on the trajectory.
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Figure 6.4: Phase-space trajectories of the mathematical pendulum. For small amplitudes
�, the trajectory corresponds to that of the ideal (harmonic) oscillator, at larger elongations
distortions arise, lastly loops occur.

3. Poincaré cut

a) Definition of the Poincaré cut: A simple way to visualize the behavior of a system
is the Poincaré cut. Here, not the full phase space, but only a subspace (hypersurface) is
considered. It is spanned by n−1 phase-space coordinates. Whenever all other phase-space
coordinates take previously fixed values, the actual value of the phase-space coordinate just
considered is marked by a point.

Poincaré cut, a subspace of phase space defined by the prescription that a phase-space
coordinate takes a certain value. One then considers the intersection points of the cut with
the phase-space trajectories.
➤ This procedure must be distinguished from a phase-space projection where the val-

ues of the phase-space coordinates considered are continuously plotted. In the cut,
however, the system is considered only at those times when the selected phase-space
coordinate takes a certain value.

b) Example: Poincaré cut of an anharmonic oscillator. The variable according to
which the cut is made is the phase sinωt = 0 of the external excitation. Technically, this
can be achieved by means of a stroboscope. Fig. 6.5 shows the corresponding phase-space
trajectory.

Figure 6.5: Poincaré cut of
an anharmonic oscillator
(Duffing oscillator).

c) Example: Pendulum. In the case of a pendulum, one can use the zero line θ = 0 of
the displacement as Poincaré cut. Every trajectory intersects this line at two distinct points:
once when the pendulum moves from the left to the right (θ̇ > 0), and once in the opposite
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direction (θ̇ < 0). The Poincaré cut is a straight line on which θ̇ is plotted and these two
points are marked.

Alternatively, one can take the zero line of the velocity θ̇ = 0 as a cut. One then plots
the value of θ when θ̇ equals zero. This just happens for the points ±θmax, the maximum
elongations.

d) Properties of the Poincaré cut
▲ Any point on a Poincaré cut corresponds to exactly one point in phase space.
➤ Contrast: in a projection the coordinate projected out can no longer be reconstructed.
Therefore, a point on a Poincaré cut completely determines the trajectory passing it, and
hence also the next intersection point of the trajectory with the Poincaré cut.

4. Poincaré mapping,

attaches to any point on the Poincaré cut the corresponding next following intersection
point of the phase-space trajectory (Fig. 6.6). The mapping allows the reduction of the dy-
namics of the system to the question of at which point the phase-space trajectory intersects
the Poincaré cut the next time.
▲ Poincaré mapping reduces a continuous dynamical system to a discrete dynamical

system.
The Poincaré cut allows a classification of periodic systems:
• Periodic or quasiperiodic phase-space trajectory, intersects the Poincaré cut only in

a finite number of points that are arranged on a curve.
• Chaotic phase-space trajectory, intersects the Poincaré cut at infinitely many, irregu-

larly distributed points.

Figure 6.6: Visualization of the trajectory in phase space by a Poincaré mapping
(schematic). One considers the sequence of points x = (q, p) where the trajectory crosses
the p, q plane vertically from up to down. (a): Poincaré mapping xn → xn+1. (b): pe-
riodic trajectory. (c): regular trajectory. The intersection points lie on an invariant curve.
(d): chaotic trajectory. The intersection points are irregularly distributed over the plane.

6.1.2 Conservative systems
Conservative system, a system the energy of which does not change with time. Such a
system is characterized by the existence of an energy function that assigns an energy
value to any point in phase space. The system then moves on the equipotential surfaces of
this function.
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■ Mechanical systems without friction represent conservative systems, as do electric
circuits without resistances.

The motion of planets, taking into account the gravitational attraction of the planets
to the Sun and to each other, is an example of a nonlinear conservative system. The
two-body problem (Sun+ one planet) may still be solved analytically, but the multi-
body problem (Sun+ several planets) can no longer be solved.

6.1.2.1 Liouville’s theorem
The behavior of conservative systems in phase space is characterized by Liouville’s the-
orem. One considers trajectories in phase space starting from several closely neighboring
points.
➤ The phase space includes both the position variables and the linear momenta. Vicinity

of points in phase space therefore means: similar positions and similar velocities.
▲ Theorem of Liouville:

The magnitude of an area occupied by an ensemble in phase space does not change
in the course of the time evolution of the system (Fig. 6.7).

Figure 6.7: Theorem of
Liouville: The size of a
phase-space element of an
ensemble does not change
in the time evolution. The
hatched areas have equal
magnitude.

➤ Consider e.g., a square area in phase space. Liouville’s theorem states that the points
of this square during the time evolution of the system continue to cover an area of the
same magnitude. Nothing is stated about the shape of this area. It may be an extended
rectangle, may have a fully irregular form, or may represent a fractal (see p. 227).

Liouville’s theorem represents a strong constraint on the dynamics of a conservative
system.

6.1.2.2 Integrability

1. Example: Conservative system–harmonic oscillator.

Classical examples of a conservative system are the harmonic oscillator (see p. 90) and
systems of coupled harmonic oscillators. Their solution is always a quasi-periodic motion,
i.e., a motion that may be represented by a superposition of harmonic vibrations of various
frequencies:

x(t) = c1 sin(ω1t + φ1)+ c2 sin(ω2t + φ2)+ · · ·

(c1, c2, . . . constants, ω1, ω2, . . . vibration angular frequencies, φ1, φ2, . . . phases).
■ Coupled pendula may be described by a superposition of fundamental modes:

x1(t) = A sin

(
ω1 + ω2

2
t

)
cos

(
ω1 − ω2

2
t

)
,

x2(t) = A sin

(
ω1 − ω2

2
t

)
cos

(
ω1 + ω2

2
t

)
.
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If one adopts the difference and the sum of x1 and x2 as variables z1 and z2 then:

z1(t) = x1(t)− x2(t) = A1 sin(ω1t + φ1) ,

z2(t) = x1(t)+ x2(t) = A2 sin(ω2t + φ2) .

2. Integration of dynamical systems

To integrate the equation of motion of a given dynamical system, one tries to find such co-
ordinates in which the system carries out harmonic vibrations. The question arises whether
any conservative system may be reduced by an appropriate coordinate transformation to
one or several coupled harmonic oscillators.

a) Integrable system, a system that, for an appropriate choice of variables, may be writ-
ten as a superposition of harmonic oscillators. It is characterized by the existence of con-
stants of motion (integrals of motion,) i.e., quantities that do not change during the time
evolution (as the energy and the vibration angular frequencies ωi ). Knowledge of all con-
stants of motion completely characterizes the motion, except for specification of the phases
φi .
■ All linear systems are integrable.

The two-body problem (motion of a planet about the Sun) is integrable.

b) Non-integrable system, a system the motion of which is neither periodic nor quasi-
periodic. Therefore, the system cannot be represented by a harmonic oscillator by means
of a coordinate transformation.

Non-integrable systems may exhibit periodic behavior in one part of their phase space
while behaving irregularly in another part. In particular, they show a sensitive dependence
on the initial conditions, and thus chaotic behavior (see p. 221).
■ The multi-body problem (orbits of two or more planets around the Sun) is not inte-

grable. There are always certain stable orbits; other orbits are unstable and lead to the
escape of the planet from its orbit, to a breakdown of the system, or both.

6.1.3 Dissipative systems
1. Definition of a dissipative system

Dissipative system, a system that loses energy in the course of its time evolution.
■ A classical pendulum with damping, an electric circuit with resistance.
Liouville’s theorem does not hold for dissipative systems.
▲ In a dissipative system, the size of the area in phase space covered by an ensemble

decreases during the time evolution of the system.
Dissipative systems are characterized by the existence of attractors and limit cycles that
govern the long-term behavior.

2. Fixed point and limit cycle

Fixed point, a point at which the system remains and no longer changes after reaching it.
It may be the endpoint of one or several phase-space trajectories, or an isolated point.

Limit cycle, a periodic motion reached by the system, after the transients (transient
oscillations) faded away. A system that has a limit cycle will reach this cycle after a suf-
ficiently long time for a large variety of initial conditions, and will not leave it. The infor-
mation on the initial conditions is then largely lost.
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➤ Because of Liouville’s theorem, such behavior is not possible for conservative sys-
tems.

3. Attractors

Fixed points and limit cycles are the simplest examples of attractors.
Attractor, a region in phase space that cannot be left by the system, having once reached

it.
Attraction pool of an attractor, all those points in phase-space trajectories that run into

the attractor.
A dissipative system can be described in terms of the knowledge of its attractors and

their attraction pools. The problem of nonlinear dynamics of dissipative systems is to find
and characterize the attractors that determine the long-term behavior of the system.

6.1.3.1 Strange attractors, deterministic chaos
The simplest attractors are point attractors (the system reaches a definite state and remains
there) and limit cycles (the system reaches a periodic motion). Knowledge of these attrac-
tors allows a complete statement on the behavior of the system after sufficiently long time.
Other attractors exist, however, that allow only for a statement on what part of phase space
the system will be found. They are characterized by the fact that the actual motion of the
system is predictable only if the initial conditions are exactly known. Any uncertainty in
the initial conditions amplifies in such a way that, after some time, nothing can be stated
about the state of the system.

1. Sensitive dependence on the initial conditions,

a very small change in the initial conditions causes the system to reach a completely dif-
ferent state after sufficiently long time.
■ Bernoulli mapping, an iterative mapping according to the prescription:

xn+1 =
{

2xn, if xn from the interval [0; 0.5] ,
2xn − 1, if xn from the interval [0.5; 1] .

The real numbers xn lie between zero and unity. If the initial value x0 is not known
precisely, one cannot predict whether a value xn lies in the upper or lower half of the
interval.

If x0 is written in the binary system, x0 = 0.b1b2b3 . . . , with binary digits bi = 0
or 1, the Bernoulli mapping simply shifts the point to the right, i.e., x1 = 0.b2b3b4 . . .

etc. If b2 = 0, this number lies in the lower half of the interval. An irrational number
has infinitely many, apparently random, binary digits bi , hence the system behaves
predictably only if the initial condition is known with complete accuracy.

2. Ergodicity,

the property of a motion in which, after some sufficiently long time, the trajectory ap-
proaches any given point of phase space with arbitrary precision. An ergodic motion covers
the entire phase volume.

3. Lyapunov exponent,

λ, specifies the speed of increase of a small perturbation

| f (x +
x, t)− f (x, t)| = 
x e−λt ,

for sufficiently long time t and sufficiently small distances 
x .



6.2 Bifurcations 221

4. Example: Duffing oscillator.

Duffing oscillator, a nonlinear oscillator that is represented by the equation of motion

mẍ = −D1x − D2x2 − D3x3 − bẋ + F sinωt.

D1 is the spring constant of the linear component of the system, while D2 and D3 describe
nonlinear modifications of the spring force that manifest themselves at large elongations
(Fig. 6.8). b represents a (linear) friction force. The nonlinear behavior of the system may
be simulated with these four constants.

The term F sinωt describes a periodic external force of amplitude F and angular fre-
quency ω that excites the oscillator.

Figure 6.8: Duffing oscillator with specific choice of parameters. The vibration differs
significantly from the harmonic form, the phase-space trajectory is deformed. The behavior
nevertheless remains regular.

5. Chaotic system,

a system that displays a sensitive dependence on the initial conditions, but nevertheless
covers only a restricted phase-space region.
➤ A sensitive dependence on the initial conditions may occur also in linear systems,

e.g., for exponentially diverging trajectories. A chaotic system has the additional fea-
ture that its motion remains confined to a finite region of phase space.

6. Deterministic chaos,

the initial conditions being uncertain, the behavior of the system cannot be predicted for
a long time, although it behaves strictly deterministically. The system is deterministic, but
not predictable.

7. Strange attractor,

an attractor on which the system depends sensitively on the initial conditions. The system
moves into the attractor, but its motion on the attractor is chaotic (Fig. 6.9).

6.2 Bifurcations

External parameter, a quantity characterizing bulk properties of the system. The param-
eter is set from outside, i.e., by the researcher.
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Figure 6.9: Duffing oscillator in the chaotic region. The x-t-diagram shows an irregular
reversal behavior near the zero line. The phase-space trajectory covers an area, it remains
in a strange attractor.

■ The masses of bodies in the multi-body problem, the spring constant and the damping
of an oscillator. Parameters may in particular determine the degree of nonlinearity,
e.g., by varying the characteristic of a spring in an oscillator.

The theory of chaos, among other questions, deals with which parameters lead to a chaotic
system.

6.2.1 Logistic mapping
1. Definition of logistic mapping

Logistic mapping, a discrete dynamical system with a variable x that is determined by the
mapping

xn+1 = r xn (1− xn).

xn, xn+1 are values of the variable in successive steps, r is a parameter. The logistic map-
ping is one of the simplest examples of a nonlinear discrete dynamical system.

2. Graph of logistic mapping

Fig. 6.10 shows the xn–xn+1-graph of the logistic mapping. On the horizontal axis the
value xn is plotted, on the vertical axis the corresponding subsequent value.

The xn–xn+1-graph may serve for visualization of the dynamics of the logistic map-
ping. One starts at a given point xn on the horizontal axis, then moves up vertically to
the curve, and from there to the left, where one finds the subsequent value xn+1. From
there, one again moves back horizontally to the plotted diagonal, and then vertically down-
wards until again reaching the horizontal axis, but now in the point xn+1. Then one starts
again.

When skipping the paths passed twice, it suffices to go vertically from the diagonal to
the curve, and horizontally back to the diagonal again.
➤ The configuration space of the logistic mapping is the real axis along which the vari-

able x is plotted. Since no further information than the actual value of x is needed to
get the future values, the space of states is the real axis as well.

Fig. 6.10 shows several iterations for various values of the parameter r .
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Figure 6.10: Iteration steps of the logistic equation at various values of the parameter r that
determines the steepness of the parabola.

3. Properties of logistic mapping at various parameter values r

• Attractive fixed point as attractor. The system runs from most initial conditions to-
wards a fixed point x obeying

x = r x (1− x) �⇒ xn+1 = xn = x .

• For larger values of the parameter r , which determines the slope of the parabola, a
limit cycle of period 2 occurs. After the transients have died out the system jumps
back and forth between two values.

• If the steepness of the parabola is still increased, a limit cycle of period 4 arises:
period doubling. After four steps, the system reaches the initial state.

• For even higher r , one finds limit cycles with longer and longer periods
(8, 16, 32, . . .). The distances between the various values rn where the next higher
period sets in become shorter and shorter.

• Starting from a certain critical value r∞, this period becomes infinite, hence the sys-
tem becomes aperiodic.

4. Trajectory of logistic mapping

The trajectory of the logistic mapping consists of all points xn that are reached, starting
from an initial value x0. If one omits the transients by starting to mark e.g., from the
100th iteration, then the trajectory consists only of the fixed point itself (and possibly of
its nearest neighborhood). For the limit cycle of period 2, it consists of two points (the
two values taken by x), for the limit cycle of period n it consists of n distinct points. In
the aperiodic region finally infinitely many points arise, and an entire section of the axis is
blackened.
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5. Bifurcation diagram of logistic mapping

From these trajectories, one gets the bifurcation diagram.
Bifurcation diagram, a diagram on the horizontal axis of which the parameter r is

plotted, and on the vertical axis the values xn as trajectory: For any value of r , one takes
all values of xn that result from a certain initial value at this r , where again the transients
are omitted (Fig. 6.11).

It
er

at
io

n

Control parameter

Figure 6.11: Bifurcation diagram of the logistic equation (schematically): For every value
of the control parameter r , those x are blackened that correspond to any value xn which
arises at this parameter value (transients are not shown).

• r < r1: The system has a fixed point, for any r only one point is blackened. The
bifurcation diagram shows only a single branch.

• r1 < r < r2: The system is in a periodic limit cycle, only two points are blackened.
On the bifurcation diagram, two branches arise.

• For further increasing parameter value r , there appear increasingly higher periods,
and correspondingly many branches of the curve.

• Lastly, the dynamics become aperiodic, entire regions are blackened.
Hence, in the bifurcation diagram one sees on the left one curve that, at a certain value of r ,
bifurcates in each case into two branches. With increasing value of the control parameter,
the bifurcations succeed more and more rapidly until at some critical value r∞ the curve is
split into infinitely many branches.

6. Bifurcation,

(Latin: branching), in general a qualitative change in the behavior of a system (here: tran-
sition from a fixed point to a period 2, then to period 4, etc., lastly to an aperiodic motion)
for a small variation of a continuous parameter (here: r ).

The particular role of the logistic mapping is due to the fact that the Poincaré map-
pings (see p. 217) of many dynamical systems have a similar structure and pass the same
sequence of bifurcations. These systems are said to approach chaotic motion in the Feigen-
baum scenario.
▲ Systems approaching chaos in the Feigenbaum scenario are characterized by a se-

quence of period doublings until chaos is reached.
➤ There are still other routes to chaos; not all systems follow the Feigenbaum scenario.
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6.2.2 Universality
Universality, originates from the evidence that the Poincaré mappings of many systems
have a form similar to that of the logistic mapping, so that these systems also pass through
a sequence of period doublings.

In 1979 Feigenbaum succeeded in deriving universal properties of these systems:
▲ If rn denotes the value of the parameter r at the nth period doubling and r∞ its value

where chaotic motion is reached, the distances r∞ − rn form a geometric series:

r∞ − rn = C δ−n

(first Feigenbaum law). C is a constant depending on the system, but the number δ
is universal: it has the same value for all systems following this scenario:

δ = 4.669201 . . . , first Feigenbaum constant.

The parameter values for which period doubling arises are thus connected by a simple
relation that can be experimentally verified. Hence, chaotic motion does not mean at all
that no statements on properties of the motion can be made.
➤ Two more Feigenbaum laws describe additional universal properties, in particular the

position of the attractor elements xn .

6.3 Fractals

1. Fractal dimension

D of a set, is determined by a scale for surveying the set. On a straight line the scale is a
segment of fixed length l, on a plane the scale is a square with the side l, in space a cube
of edge length l. One then counts how many times the scale is needed to cover the set
completely. If the scale is reduced in size, this number N (l) increases in a D-dimensional
space with the power D:

N (l)

N (l0)
∼
(

l0
l

)D

(l0 original scale, l new scale).
■ When halving the side length of the unit square in 2D space, one needs 22 = 4 of

the smaller squares to cover the same area. In three dimensions, one correspondingly
needs 23 = 8 times as many cubes.

2. Objects with broken fractal dimension

There are objects for which the number of required scales does not increase with an integer
number D, but rather increases with a fractional number as exponent.

a) Cantor set, a subset of the interval between 0 and 1 in one dimension. One removes
the middle third part of the interval; from the remaining two thirds, one again removes the
medium third, etc. When covering this set with a scale, one finds for its dimension D:

D = ln 2

ln 3
≈ 0.63 .

Thus, when halving the size of the scale, one needs only ca. 20.63 ≈ 1.55 times more scales
than before.



226 6. Nonlinear dynamics, chaos and fractals

b) Coast line: If one measures the coast length of a country on a low-resolution map,
one finds a lower value than when using a high-resolution map, which shows more of the
inlets and bays.

c) Koch curve and Koch’s snowflake. Koch curve, obtained by the following con-
struction principle: A section of length l is subdivided into three parts of equal lengths.
The medium third is then replaced by two straight sections of equal length l/3 that enclose
an angle of 60◦ (Fig. 6.12). The procedure is then repeated for each of the four straight
sections, and so on. The dimension of the resulting Koch curve is

D = ln 4

ln 3
≈ 1.262 .

Figure 6.12: First step of
constructing a Koch curve.

Koch’s snowflake, evolves from an equilateral triangle by dissolving its sides into Koch
curves. In each iteration step, the circumference of the figure increases by the factor 4/3;
the area, however, remains finite (Fig. 6.13).

Figure 6.13: The first four steps of constructing a Koch snowflake.

d) Sierpinski triangle, results from an equilateral triangle by successive removal of the
corresponding, by the (linear) factor 2 reduced triangles that join the side-midpoints of the
triangles from the preceding iteration step. In each iteration step, the area decreases by the
factor 3/4 (Fig. 6.14). The dimension of the Sierpinski triangle is

D = ln 3

ln 2
≈ 1.585 .

Figure 6.14: First steps of constructing the Sierpinski triangle. For convenience of repre-
sentation, the scale varies.



6.3 Fractals 227

3. Fractal,

object with a fractal dimension, in contrast to objects such as straight lines, areas, volumes
that have integer dimensions.

Self-similarity, the property that a fractal set in the lateral magnification looks like the
original set.
■ In the Cantor set, each third of an interval looks like the interval itself (Fig. 6.15).

Figure 6.15: Cantor set.

▲ All known strange attractors are fractals.
➤ The set of all points in phase space that belong to the attractor has a fractal dimension.

This is the fundamental link between nonlinear dynamics and fractal geometry.
Other fractal sets arise if one considers for which values of its parameters a system displays
chaotic behavior.

4. Mandelbrot set,

best known fractal object: the set of all pointsµ of the complex plane obeying the constraint
that the iterated mapping

z → z2 − µ

(starting at z0 = 0) shall not diverge towards infinity. This set (“apple manikin,” Fig. 6.16)
is self-similar and is constrained by a fractal curve.

Figure 6.16: Mandelbrot set.



Formula symbols used in mechanics

symbol unit designation

α rad/s2 angular acceleration
α l extension number
γ l relativistic factor
ε l extension
η l efficiency
η Pa s dynamical viscosity
κ 1/Pa compressibility
µ l coefficient of sliding

friction
µ l Poisson coefficient
µ0 l coefficient of static

friction
ν l transverse-extension

number
ν m2/s kinematic viscosity
ρ kg/m3 density
σ N/m2 normal tension
σ N/m surface tension
τ Nm torque
τ N/m2 shear stress
� J/kg gravitational potential
φ rad angle
φ m2/(Ns) fluidity
ω rad/s angular velocity
A m2 area
a m/s2 acceleration
c m/s speed of light
ca l coefficient of

buoyancy
cw l air-resistance

coefficient
Dm Nm directing moment
d m distance, lever arm
E J energy
E N/m2 elasticity modulus
�e l unit vector
e l Euler’s number
�F N force

symbol unit designation

f l/s frequency
f m coefficient of

rolling friction
Fr l Froude number
G N m2/kg2 gravitation constant
G N/m2 shear modulus
g m/s2 acceleration of gravity
H B l Brinell hardness
H R l Rockwell hardness
H V l Vickers hardness
h, H m height
J m4 areal moment of inertia
Ĵ kg m2 tensor of inertia
J kg m2 moment of inertia
K N/m2 compression modulus
k N/m spring constant
�L kg m2/s angular momentum
�l kg m2/s orbital angular

momentum
l m length
m kg mass
P W power
p Pa pressure
�p, p kg m/s momentum
Q m3/s volume flow
Re l Reynolds number
r m radius
�r m position vector
�r(t) m spatial function
S N/m2 tension
s m path
t s time

t s time interval
V m3 volume
W J work
v m/s velocity
x, y, z m spatial coordinate
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7
Tables on mechanics

7.1 Density

7.1.1 Solids
The density of solids is given at a temperature 293.15 K = 20 ◦C.

7.1/1 Simple metals

Density
Material ρ (103 kg/m3)

aluminum Al 2.707
antimony Sb 6.684
arsenic As 5.727
barium Ba 3.510
beryllium Be 1.850
bismuth Bi 9.800
cadmium Cd 8.648
calcium Ca 1.540
cesium Cs 1.878
cerium (cub.) Ce 6.657
cerium (hex.) 6.757
chromium Cr 7.190
cobalt Co 8.830
copper Cu 8.954
dysprosium Dy 8.550
erbium Er 9.006
europium Eu 5.243
gallium Ga 5.904

Density
Material ρ (103 kg/m3)

gadolinium Gd 7.900
germanium Ge 5.350
gold Au 19.320
hafnium Hf 13.300
holmium Ho 8.795
indium In 7.28
iridium Ir 22.420
iron Fe 7.897
lanthanum La 6.145
lead Pb 11.373
lithium Li 0.530
lutetium Lu 9.840
magnesium Mg 1.746
manganese Mn 7.210
mercury (fluid) Hg 13.546
molybdenum Mo 10.200
neodymium Nd 7.004
neptunium Np 20.45

(continued)
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7.1/1 Simple metals (continued)

Density
Material ρ (103 kg/m3)

nickel Ni 8.906
niobium Nb 8.570
osmium Os 22.480
palladium Pd 12.080
platinum Pt 21.450
plutonium Pu 19.84
polonium Po 9.320
potassium K 0.851
praseodymium Pr 6.773
protactinium Pa 15.37
radium Ra 5.500
rhenium Re 20.530
rhodium Rh 2.400
rubidium Rb 1.520
ruthenium Ru 12.300
samarium Sm 7.520
scandium Sc 2.989
selenium Se 4.81
silver Ag 10.500
sodium Na 0.971
strontium Sr 2.630

Density
Material ρ (103 kg/m3)

tantalum Ta 16.690
tantalum

(powder) 14.401
tellurium Te 6.250
tellurium

(amorphous) 6.00
terbium Tb 8.229
thallium Tl 11.860
thorium Th 11.7
thulium Tm 9.321
tin (grey) Sn 5.75
tin (white) 7.304
titanium Ti 4.540
tungsten W 19.350
uranium U 18.700
vanadium V 5.960
ytterbium Yb 6.965
yttrium Y 4.469
zinc Zn 7.144
zirconium Zr 6.520

7.1.1.1 Metallic alloys
7.1/2 Construction materials

Material Composition ρ (103kg/m3)

aluminum alloys

dural Al (0.5 % Cu) 2.787
aluminum bronze * 2.7
AlCuMg * 2.8
AlMg 5 % Mg 2.6
cast aluminum(Si) 12 % Si 2.65

copper alloys

delta metal 56 % Cu, 40 % Zn, 2 % Fe, 1 % Pb 8.6
brass (rolled) 30 % Zn 8.522
cast brass * 8.4
phosphorus bronze 4.5 % Sn, 0.2 % P 8.91
bronze 25 % Sn 8.666
manganine 12 % Mn, 2 % Ni 8.5
new silver 15 % Ni, 22 % Zn 8.618

(continued)
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7.1/2 Construction materials (continued)

Material Composition ρ (103kg/m3)

iron alloys

cast iron Fe+0.4 % C 7.272
invar 36 % Ni 8.7

Steel

0.5 % C 7.833
1.0 % C 7.801
1.5 % C 7.753

St304, St316, St347 8.0
St410, St414 7.7
chromium steel 3 % Cr 7.7
tombac 6 . . . 20 % Sn 8.7 . . . 8.9

nickel alloys

chromium nickel steel 24 % Fe, 16 % Cr 8.250
chromium nickel V 20 % Cr 8.410
monel 32 % Cu, 1 % Mn 8.9

7.1/3 Electric materials

Material Composition ρ/(103kg/m3)

resistance alloys

manganin 86 % Cu, 12 % Mn, 2 % Ni 8.5
isabellin 70 % Cu, 10 % Mn, 20 % Ni 8.0
constantan 55 % Cu, 1 % Mn, 44 % Ni 8.8
nickelin 67 % Cu, 3 % Mn, 30 % Ni 8.8

contact materials

silver bronze 1. . .7 % Ag, 0.2 % Cd, remainder Cu 8.9 . . . 9.2
hard silver 3. . .4 % Cu, remainder Ag 10.4
silver-cadmium 5. . .20 % Cd, remainder Ag 10.1

7.1/4 Magnetic materials

Material Composition ρ/(103kg/m3)

trafoperm steel with 2.5. . .4.5 % Si 7.57 . . . 7.7
permenorm steel with 36. . .40 % Ni 8.15
mu metal Ni-Fe alloy with ≈ 50 % Ni 8.6
AlNiCo 9/5 11. . .13 % Al, <5 % Co, <1 % Ti, 6.8

2. . .4 % Cu, 21. . .28 % Ni, remainder Fe
AlNiCo 18/9 6. . .8 % Al, 24. . .34 % Co, 5. . .8 % Ti, 7.2

3. . .6 % Cu, 13. . .19 % Ni, remainder Fe
SECo 112/110 rare earth-cobalt alloy 8.1
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7.1.1.2 Non-metals
7.1/5 Ferrites

Material Composition ρ/(103kg/m3)

SIFERRITE DB 15 % BaO, 85 % Fe2O3 5
SIFERRITE DS 16 % SrO, 84 % Fe2O3 4.4 . . . 4.6
MAGNETOFLEX 35 52 % Co, 13 % V, 35 % Fe 8.1
SIFERRITE U 60 iron oxides, Ba,Co 4.8
SIFERRITE K iron oxides, Ni, Zn 4.2 . . . 4.4
SIFERRITE M iron oxides, Ni, Mn, Zn 4.5 . . . 4.6
SIFERRITE N iron oxides, Ni, Mn, Zn 4.7 . . . 4.8

7.1/6 Glass

Material ρ/(103kg/m3) Material ρ/(103kg/m3)

aluminum silicate glass 2.53 bottle glass 2.6
barite crown glass 2.90 flint glass (light) 2.5 . . . 3.2

(bright; optical) flint glass (heavy) 3.5 . . . 5.9
barite crown glass 3.56 glass fiber (textiles) 2.46

(dark; optical) glass fiber 2.53
lead glass 2.89 (fiber glass)
boron silicate glass 2.23 quartz glass 2.2
window glass 2.48

7.1/7 Ceramics

Material ρ/(103kg/m3) Material ρ/(103kg/m3)

porcelain 2.3 . . . 2.6 steatite 2.7
rutile 3.7 barium titanate 5
corund 3.8 Al2O3 3.9
ZrO2 5.5 SiC 3.2
Si3N4 3.2 diamond (sintered) 3.5
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7.1/8 Synthetics

Material Composition ρ/(103kg/m3)

thermosets

phenoplasts phenole aldehyde 1.27 . . . 1.35
bacelite phenole aldehyde with wood powder 1.35 . . . 1.45
bacelite phenole aldehyde with asbestos 1.7 . . . 2.1

amino plasts aniline 1.2 . . . 1.25
urea with wood powder 1.45 . . . 1.5
melamine with wood powder 1.45 . . . 1.55
melamine with asbestos 1.7 . . . 2.0

polyester resins with glass texture 1.7 . . . 1.9

thermoplasts

cellulose derivates cellulose A, soft 1.32
cellulose acetate A, medium 1.33
cellulose acetate A, hard 1.34
cellulose acetobutyrate 1.20
cellulose nitrate 1.38
ethyl cellulose 1.14
benzyl cellulose 1.22

ethylene derivates high-pressure polyethylene 0.92
low-pressure polyethylene 0.94
polypropylene 0.90 . . . 0.91
polystyrole 1.05
styrole/butadien mix polymeres 1.06
styrole/acryl nitril 1.08
polyacryl acid ester 1.18
polyvinyl chloride (PVC) 1.38

polycarbonate 1.2

proteins polyurethane 1.21
synthetic horn 1.35
polyamide (ultramide A) 1.15
polyamide (rilsan) 1.04
polyamide (vestamide) 1.02

fluorine carbonates polychlorine trifluorine ethylene 2.1 . . . 2.2
(teflon) polytetrafluorine ethylene 2.2

silicones silicone rubber 1.2 . . . 2.3
silicone resin 1.65

elastomers

neoprene polychlorine butadiene 1.24
buna S butadiene/styrol mix polymeres 1.2
perbunan butadiene/acrylnitril mix polymeres 1.2
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7.1/9 Semiconductors

Material ρ/(103kg/m3)

elemental Ge 5.32
semiconductors Si 2.33

Se 4.79
Te 6.24

AIIBIV ZnS 4.09
ZnSe 5.26
ZnTe 5.70
CdS 4.84
CdSe 5.74
CdTe 5.86
HgSe 8.26
HgTe 8.20

AIVBIV SiC 3.22

Material ρ/(103kg/m3)

AIVBVI PbS 7.50
PbSe 8.15
PbTe 8.16

AIIIBV BN 2.25
BP 2.97
AlP 2.38
AlAs 3.79
AlSb 4.26
GaP 4.13
GaAs 5.32
GaSb 5.60
InP 4.78
InAs 5.66
InSb 5.77

7.1/10 Building materials

Remark: One distinguishes between packed density ρR and true density ρ. The packed
density is defined by ρR = mass/total volume. The true density takes the pore volume into
account and is defined as follows: ρ = mass/volume of solid material. The table lists the
packed density.

Material ρ/(103kg/m3)

bricks

full bricks 1.0 . . . 2.2
clinkers 1.6 . . . 2.2
air bricks 0.8 . . . 2.0
gas concrete bricks 0.5 . . . 0.8
fireclay bricks 0.8 . . . 2.1
earthenware 2.0 . . . 2.5

wood 15 weight-% moist

spruce, fir 0.43 . . . 0.49
pine 0.48 . . . 0.56
larch 0.55 . . . 0.63
oak 0.63 . . . 0.72
beech 0.66 . . . 0.76

Material ρ/(103kg/m3)

natural stones

granites, syenites 2.6 . . . 2.8
basalt, diabas 2.9 . . . 3.9
marble, diorite 2.6 . . . 2.8
sandstone 2.6 . . . 2.7
pumice stone 0.2 . . . 1.3
shale 2.6 . . . 2.7
plaster stone 2.0 . . . 2.2
asbestos 2.5 . . . 2.6
quartz 2.65
limestone 2.4 . . . 2.8
grey wacke 2.6 . . . 2.7
gneiss 2.6 . . . 2.9
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7.1/11 Bulk goods

Remark: The table gives the bulk density for loose accumulations. It is defined as mass per
unit volume, including the heap pores and the pores in the individual grains.

Bulk goods ρ/(103kg/m3) Bulk goods ρ/(103kg/m3)

cotton wool (air-dried) 0.080 sand 1.2 . . . 1.6
peas 0.700 snow (fresh) 0.08 . . . 0.19
hay 0.050 snow (old) 0.2 . . . 0.4
lime 0.500 cement 0.9 . . . 1.2
potatoes 0.670 gravel 1.8
maize 0.750 polystyrol 0.015

7.1.2 Fluids
The density is temperature-dependent because of expansion. The table below lists the den-
sities for the temperature 293.15 K = 20 ◦C. The density of the same phase at any other

temperature T can be calculated from the relation ρT = ρ

1+ γ (T − 293.15 K)
.

7.1/12 Fluids under normal conditions

Material ρ/(103kg/m3)

acetone 0.792

alcohols

pentanol 0.814
ethyl alcohol 0.789
butyl alcohol 0.810
glycerol 1.260
isobutyl alcohol 0.801
isopropyl alcohol 0.785
methyl alcohol 0.793
propyl alcohol 0.804

bromine ethane 1.430
ethyl acetate 0.901
iodine ethane 1.933
petrol (vehicle) 0.68 . . . 0.72
petrol (airplane) 0.72
benzene 0.921
trichlorine methane 0.879
chlorine benzene 1.066
di-ethyl ether 0.714
fluorine benzene 1.024
glycerol 1.26
kerosene 0.82
xylene 0.88
sea water 1.01 . . . 1.05
milk 1.03

Material ρ/(103kg/m3)

sodium hydroxide (40 %) 1.43
pentane 0.626

acids
acetic acid 1.049
nitric acid (50 %) 1.31
nitric acid (100 %) 1.502
hydrochloric acid (40 %) 1.195
sulphuric acid (50 %) 1.40
sulphuric acid (100 %) 1.834

oils

petroleum 0.73 . . . 0.94
heating oil 0.95 . . . 1.08
lubricating oil 0.90 . . . 0.92
olive oil 0.91
paraffin oil 0.87 . . . 0.88
cooking oil 0.87
silicon oil 0.76
turpentine 0.86
transformer oil 0.87
vaseline oil 0.8

toluene 0.867
tetrachlorine methane 1.595
water 1.003
heavy water 1.1
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7.1/13 Density of several metals in the liquid state

Material T/(◦C) ρ/(103kg/m3)

660 2.380
Al 900 2.315

1100 2.261

300 10.03
Bi 600 9.66

962 9.20

Fe 1530 7.23

1100 17.24
Au 1200 17.12

1300 17.00

K 64 0.82

Hg 100 12.875

Material T/(◦C) ρ/(103kg/m3)

100 0.928
Na 400 0.854

700 0.780

409 6.834
Sb 574 6.729

704 6.640

400 10.51
Pb 600 10.27

1000 9.81

960.5 9.30
Ag 1092 9.20

1300 9.00

7.1.3 Gases
The density of gases is strongly temperature-dependent. This dependence is nonlinear for
a real gas.

The table lists the density ρ0 for T0 = 273.15 K (and normal pressure p0 = 1.0132 ·
105 Pa). If the gases behave as ideal gases, one can calculate the density ρ for other values
of pressure or temperature according to ρ = ρ0 · (p/p0) · (T0/T ).

Gas ρ0/(kg/m3) Gas ρ0/(kg/m3)

ethane 1.355 krypton∗) 3.68
ethylene 1.2611 coal gas ≈ 0.58
ammonia 0.7708 air, dry 1.2928
argon∗) 1.783 methane 0.7167
acetylene 1.1715 neon∗) 0.900
butane 2.70 ozone 2.14
isobutane 2.67 propane 2.01
chlorine 3.17 radon∗) 9.73
hydrogen chloride 1.639 oxygen∗) 1.429
frigene 5.51 sulphur carbonide 3.40
blast-furnace gas 1.28 sulphur dioxide 2.931
helium∗) 0.1785 hydrogene sulphide 1.54
carbon dioxide∗) 1.9768 nitrogen ∗) 1.2504
carbon monoxide∗) 1.2502 hydrogen∗) 0.08988
xenon∗) 5.85

∗) These gases behave like ideal gases in the temperature region T < 1000 K
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7.2 Elastic properties

The following table presents the following quantities: the elasticity modulus E , the shear
modulus G, and the transversal-extension number ν, the yield stress σ f , the rupture stress
σB and the Brinell hardness HB. All these quantities are strongly dependent on the pre-
history of the material under consideration. They are therefore to be considered only as
approximate values.

7.2/1 Elastic properties

Material E/(1010Pa) G/(1010Pa) ν

Ag (annealed) 8.05 2.59 0.38 . . . 0.407
Al (annealed) 6.85 2.45 0.359 . . . 0.369
Au (cast) 8.06 2.91 0.422
Bi (cast) 3.19 1.2 0.33
Cd (cast) 4.99 1.92 0.3
Co (annealed) 19.6 . . . 20.6 — 0.34
Cu (rolled) 11.2 4.15 0.358 . . . 0.378
Cr 27.9 11.5 —
Fe (cast) 10 . . . 13 3.5 . . . 5.3 0.23 . . . 0.31
Fe (welded) 21 7.7 0.28
In 5.2 — —
Ir 5.2 — 0.44
Mg (cast) 15.6 0.35 0.31
Mn 15.7 — —
Mo (cast) 30900 11810 0.324
Nb (annealed) 15.6 3.8 0.38
Ni (annealed) 20.2 7.7 0.300
Os 55.5 — —
Pb (cast) 1.62 0.562 0.446
Pd (cast) 11.3 5.11 0.393
Pt (annealed) 14.7 6.09 0.387
Rh (annealed) 27.5 — 0.32
Ru (annealed) 42.2 — —
Sb 7.8 — 0.33
Sn (cast) 12.7 1.8 0.33
Ta (annealed) 18.3 6.9 0.39
Ti 11.6 4.4 —
U 16.6 8.3 0.21
V (annealed) 14.8 — —
W (annealed) 34.2 . . . 40 8.8 . . . 21.5 —
Zn (cast) 4.06 . . . 5.86 1.64 . . . 4.78 0.33
Zr 7.4 — —
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7.2/2 Critical stresses∗)

Material σf/(107Pa) σB/(107Pa) HB/(107Pa)

Ag (annealed) — 13.5 20.6
Al (annealed) 5.63 . . . 6.44 8.96 . . . 10.75 18.4
Au (cast) — 12.4 18.9
Bi — — 7
Ca — 6.0 41.6
Cd — 6.3 19.6
Co (annealed) — 48.6 129.1
Cr (annealed) — 8 68.8
Cu (rolled) 6.85 20 . . . 25 52
Fe (cast) — 1.84 . . . 22.5 —
In 3.0 5.05 0.98
Ir — 22 212
La — 13 40
Mg (cast) 11.2 29.4 4.4
Mo (cast) 29.4 30.8 134
Nb (annealed) — 32.2 . . . 40.6 73.5
Ni (annealed) 20.5 34.5 . . . 56.1 90 . . . 120
Os — — 348.7
Pb (cast) 0.49 . . . 0.98 1.47 . . . 1.76 3.75 . . . 4.18
Pd (cast) — 18.2 31
Pt (annealed) — 14.0 29.9
Rh (annealed) — 55 54
Ru (annealed) — — 179.5
Sn (cast) — 2.94 . . . 3.92 29.2 . . . 44.1
Ta (annealed) — 31 . . . 44.7 44.1 . . . 122.4
Ti (annealed) 7.5 29.6 102.8
U — 38.6 —
V (annealed) 52.5 56.5 74.2
W (annealed) 10.8 69.9 . . . 80.9 196 . . . 245
Zn (cast) 1.17 1.47 . . . 2.4 4.8 . . . 5.2
Zr 11.3 24.7 33.3

7.2/3 Wires∗)

Material E/ σB/

(GPa) (GPa)

steel 196 3.4
Be 290 1.52
W 400 2.75

7.2/4 Whiskers∗)

Material E/ σB/

(GPa) (GPa)

graphite 980 20.5
Al2O3 410 1.08 . . . 17.6
BeO 410 19
SiC 450 3.05
B4C 450 9.8

∗) Instead of the yield stress σ f , one often quotes the conventional tensile strength Rp ,
instead of the fracture stress σB the yield strength Rm .
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7.2/5 Steel

The elasticity modulus E = (195 . . . 206) GPa, the shear modulus G = (79 . . . 89) GPa
and the Poisson number ν = 0.23 . . . 0.31 are close to each other for all types of steel. The
various steels differ in the fracture stress σB (or tension resistance Rm ), in the yield stress
σf (or yield limit Rp) and the hardness (for example, the Brinell hardness HB).

Composition
Steel sort (example) σB/(108Pa) σf/(108Pa) HB/(108Pa)

mass steel ≈ 0.25 % C ≈ 4.7 2.5 ≈ 13

spring steel ≈ 0.47% C, 14 12.2 41
≈ 1.65 % Si,
≈ 0.65 % Mn

rail steel 0.55 % C, ≈ 7.5 ≈ 4 20
0.2 % Si,
0.8 % Mn

piano-string wire 0.9 % C, ≤ 36 — —
0.15 % Si,
0.4 % Mn

silver steel 0.9 % C, 9 4.5 25
0.33 % Si,
0.4 % Mn,
0.1 % W

file steel 1.3 % C, 6 — 17
0.25 % Si,
0.35 % Mn

V2A-steel < 0.1 % C, ≈ 6.5 > 2.7 ≈ 16.5
0.4 % Si,
0.3 % Mn,
18 % Cr,
8 % Ni

transformer sheets 0.07 % C, ≤ 12 — —
3.7 % Si,
0.2 % Mn

cast steel 0.1 % C, 3.8 1.8 11
0.3 % Si,
0.4 % Mn

hard metal 6 % C, — — 160
88 % W,
6 % Co
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7.2/6 Ceramic materials

σbB is the fracture stress for a bending load, E is the elastic modulus.

Material Chemical formula σbB/(MPa) E/(GPa)

aluminum oxide Al2O3 400 400
zirconium oxide ZrO2 600 240
silicon carbide SiC 440 440
silicon nitride Si3N4 700 210
diamond (sintered) — 300 900

7.2/7 Synthetic materials

σB is the fracture stress (or tension resistance Rm ).
σdB is the fracture stress for a pressure load and σbB the corresponding stress for a bending
load. δ denotes the fracture extension in percent.

Material E/GPa σB/MPa σdB/MPa σbB/MPa HB/GPa δ/%

polyamides 1.5 . . . 3.2 60 . . . 90 93 . . . 98 93 . . . 98 147 . . . 176 6 . . . 12
glass-fiber 10 . . . 18 120 . . . 220 108 122 . . . 147 274 . . . 294 4 . . . 6

strengthened

polycarbonates 2 . . . 3.5 55 . . . 75 78 . . . 88 78 147 . . . 157 5 . . . 7
glass-fiber 3.5 . . . 9.5 70 . . . 140 130 171 . . . 219 — 2 . . . 5

strengthened

polystyrol 3 . . . 3.6 45 . . . 65 98 98 137 . . . 147 2 . . . 4
glass-fiber 5 . . . 10 96 . . . 117 103 . . . 130 — 3

strengthened

polyethylene HD 0.4 . . . 1.5 20 . . . 35 24.5 21.6 44 . . . 57 12 . . . 20
polyethylene LD 0.15 . . . 0.6 8 . . . 20 12.3 11.8 . . . 16.7 — 8 . . . 11

polypropylene 0.65 . . . 1.4 18 . . . 38 59 78 61.7 10 . . . 20
glass-fiber 2.5 . . . 6 40 . . . 75 48 69 — 7 . . . 70

strengthened

polyvinyl 2.9 . . . 3.6 50 . . . 80 — — — 3 . . . 4
chloride
(hard)

polyvinyl 0.45 . . . 0.6 15 . . . 30 — — — 50 . . . 300
chloride
(soft)

polytetrafluorene 0.45 . . . 0.75 9 . . . 12 — — — 250 . . . 500
ethylene

7.2/8 Fiber materials

Material σB/(MPa) δ/% Material σB/(MPa) δ/%

acetate silk 176 . . . 215 25 glass 2100 —
bamboo 345 — silk 410 —
viscose 265 . . . 440 15 . . . 24 wool 156 . . . 172 —
nylon 490 . . . 635 15 . . . 35 SiO2 1380 . . . 1480 —
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7.3 Dynamical properties

7.3.1 Coefficients of friction
Sliding friction and static friction are strongly dependent on the adhesive properties of
the surface of individual materials. Therefore, the data on coefficients of friction fluctuate
within certain boundaries. The data quoted in the subsequent tables are to be understood as
approximate guide values. Many values are mean values. For more accurate purposes, the
coefficient of friction must be determined experimentally in each case.

7.3/1 Rolling friction

on f/(cm)
Material Material

rubber asphalt 0.10
rubber concrete 0.15
wood wood 0.5 . . . 0.8
steel steel (hardened) 0.005 . . . 0.01
steel steel (soft) 0.05

7.3/2 Coefficient of sliding friction

Coefficient of sliding friction µ
on lubricated with

Material Material dry H2O grease

bronze 0.20 0.10 0.06
bronze grey cast 0.18 0.08

steel 0.18 0.07

oak oak=∗ 0.20 . . . 0.40 0.10 0.05 . . . 0.15
oak⊥∗ 0.15 . . . 0.35 0.08 0.04 . . . 0.12

grey- grey cast 0.31 0.1
cast copper 0.25

wood 0.35 0.25

asphalt 0.5 0.3 0.2
rubber concrete 0.6 0.5 0.3

grey cast 0.4 . . . 0.5

leather oak 0.4
belt metal 0.28 0.25 0.12

oak 0.2 . . . 0.5 0.26 0.02 . . . 0.1
ice 0.014
steel 0.1 . . . 0.3 0.02 . . . 0.08

steel brake lining 0.5 . . . 0.6
polyethylene 0.4 . . . 0.5
teflon 0.03 . . . 0.05
polyamide 0.3 . . . 0.5 0.1
hostaflon 0.35 . . . 0.45

(continued)
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7.3/2 Coefficient of sliding friction (continued)

Coefficient of sliding friction µ
on lubricated with

Material Material dry H2O grease

polyethylene polyethylene 0.5 . . . 0.7

teflon teflon 0.035 . . . 0.055

polyamide polyamide 0.4 . . . 0.5

∗ = motion along grain, ⊥ motion perpendicular to grain.

7.3/3 Coefficient of static friction

Static friction µ0
on lubricated with

Material Material dry H2O grease

bronze bronze 0.11
steel 0.19 0.10

oak oak=∗ 0.40 . . . 0.60 0.18
oak⊥∗ 0.50

grey cast grey cast 0.16

hemp rope wood 0.5

leather oak 0.5
belt metal 0.6 0.25 0.62

oak 0.5 . . . 0.6 0.11
steel ice 0.03

steel 0.15 . . . 0.3 0.1

∗ = motion along grain, ⊥ motion perpendicular to grain.

7.3.2 Compressibility
The compressibility of a material is expressed by its compression modulus

κ =
(

1

V

)(

V


p

)
.


V is the change of volume under a change of pressure
p. The compression modulus is
dependent both on the temperature and on the pressure. For gases:

κ = A

V (p + pT )
.

A is a function increasing with temperature, p the external pressure, and pT the Van der
Waals pressure at temperature T .
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7.3.2.1 Gases
The following tables give the compressibility of several gases as deviations from the be-

havior of an ideal gas, expressed by the quantity κ + 1

p
.

7.3/4 Helium

pressure/(MPa)

(
1

V


V


p
+ 1

p

)
/(103 Pa−1)

−253 ◦C −208 ◦C −183 ◦C −150 ◦C −100 ◦C −50 ◦C 0 ◦C 50 ◦C

0 – 0.1 0 10.34 8.97 6.57 4.67 3.62 2.47 2.1
0.1 – 1 −0.74 8.88 7.09 5.56 4.13 3.21 2.57 2.17
1 – 5 22.2 9.43 7.12 5.56 4.1 3.19 2.55 2.16
5 – 10 29.6 9.29 7.21 5.51 4.07 3.14 2.49 2.12

7.3/5 Nitrogen

pressure/(MPa)

(
1

V


V


p
+ 1

p

)
/(103Pa−1)

−130 ◦C −100 ◦C −50 ◦C 0 ◦C 50 ◦C 100 ◦C 200 ◦C 400 ◦C

0 – 0.1 −33.1 −17.9 −6.65 −2.47 0 1.08 1.71 1.80
0.1 – 1 −36.4 −18.5 −6.96 −2.14 0 1.12 1.96 2.11
1 – 2 −43 −18.9 −6.66 −1.84 0.21 1.22 2.04 2.11
2 – 4 −60.7 −20.7 −6.09 −2.1 0.5 1.4 2.08 2.12
4 – 6 −83.1 −20.7 −5.17 0 0.872 1.62 1.56 2.15
6 – 8 — −17.4 −3.93 −0.05 1.22 1.84 2.84 2.17
8 – 10 — −8.67 −2.29 0.7 1.58 2.07 2.33 2.17
10 – 20 — — 2.87 2.41 2.59 2.29 2.69 2.29
20 – 40 — — 6.73 4.36 3.83 3.15 2.85 2.17
40 – 60 — — 5.94 5.15 3.95 3.41 2.72 2.03
60 – 80 — — 4.7 4.7 3.53 3.12 2.54 1.93

80 – 100 — — 3.78 3.43 3.07 2.78 2.34 1.81

7.3/6 Hydrogen

pressure/(MPa)

(
1

V


V


p
+ 1

p

)
/(103 Pa−1)

−208 ◦C −183 ◦C −150 ◦C −50 ◦C 0 ◦C 50 ◦C 100 ◦C 200 ◦C

0 – 0.1 −33.2 −4.49 1.09 3.11 3.63 2.96 2.92 2.53
0.1 – 1 −15 −3 1.7 3.28 3.28 3.06 2.82 2.48
1 – 2 −15.2 −1.96 2.07 7.14 3.29 3.08 2.81 2.51
2 – 4 −11.7 −0.28 2.76 1.63 3.38 3.10 2.77 2.47
4 – 6 −0.93 1.96 3.52 3.72 3.45 3.09 2.74 2.45
6 – 8 6.87 4.24 4.31 3.96 3.51 3.12 2.71 2.46
8 – 10 — 6.41 10.2 4.51 3.58 3.1 2.7 2.45
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7.3/7 Methane

pressure/(MPa)

(
1

V


V


p
+ 1

p

)
/(103 Pa−1)

−70 ◦C −50 ◦C −25 ◦C 0 ◦C 25 ◦C 50 ◦C 100 ◦C
0 – 0.1 −29.9 −23.6 −16.8 −11.8 −9.03 −5.83 −2.88
0.1 – 2 −35.2 −25.1 −17.3 −12.2 −8.75 −6.32 −3.36
2 – 4 −51.8 −30.1 −18.7 −12.5 −8.56 −6.05 −2.94

4 – 6.1 −107 −40.8 −20.6 −12.8 −8.36 −5.75 −2.60
6.1 – 8.1 −67.4 −46.2 −21.0 −12.3 −7.88 −4.97 −2.06
8.1 – 10.1 23.0 −29.0 −113 −10.8 −6.54 −4.15 −1.51

10.1 – 12.1 30.5 0.60 84.0 −8.32 −5.36 −3.27 −2.09
12.1 – 14.1 26.4 11.7 −3.38 −4.93 −3.27 −2.13 1.94
14.1 – 16.2 25.1 16.6 3.80 −0.99 −1.38 −0.95 −0.19
16.2 – 18.2 22.2 −17.2 7.83 1.99 0.27 0.24 0.47
18.2 – 20.2 20.4 50.6 9.55 4.91 2.47 1.66 1.33
20.2 – 30.4 16.0 14.1 10.8 7.66 5.32 3.91 2.72
30.4 – 40.5 11.7 10.8 9.51 8.15 6.59 5.45 3.92
40.5 – 50.6 9.18 8.64 7.88 6.99 6.27 5.54 4.32
50.6 – 60.8 7.48 7.19 6.72 6.20 5.70 5.11 4.15
60.8 – 81.1 5.93 5.74 5.44 3.22 4.77 4.49 3.86
81.1 – 101.3 4.63 4.47 4.29 8.9 4.05 3.73 3.35

7.3/8 Nitrogen monoxide

pressure/(MPa)

(
1

V


V


p
+ 1

p

)
/(103 Pa−1)

−70 ◦C −50 ◦C −25 ◦C 0 ◦C 25 ◦C 50 ◦C 100 ◦C 150 ◦C

0 – 0.1 −6.64 −6.04 −5.43 −3.45 0 0 0 0
0.1 – 2.5 −11.4 −6.66 −3.19 −2.27 −0.94 −0.35 1.2 2.64
2.5 – 5 −11.3 −7.31 −3.79 −2.01 0.17 1.29 1.5
5 – 7.5 −9.75 −6.05 −3.18 −1.21 0 0.83 1.56 1.99
7.5 – 10 −5.38 −3.5 −0.92 −0.20 0.18 1.16 1.55 2.09
10 – 15 0.64 0.54 0.80 1.51 2.16 1.96 2.29 2.35
15 – 20 6.77 4.75 4.02 2.76 2.64 2.95 2.71 2.65
20 – 30 9 6.67 5.53 4.54 3.99 3.63 3.26 2.99
30 – 40 8.34 7.82 6.02 5.41 4.65 4.19 3.49 3
40 – 61 6.69 6.17 5.53 5.03 4.45 4.09 3.51 3.11
61 – 81 5.09 4.85 4.51 4.18 4.98 3.63 3.16 2.86

81 – 101 4.08 1.15 3.71 3.51 2.32 3.09 2.82 2.58
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7.3/9 Carbon dioxide

pressure/(MPa)

(
1

V


V


p
+ 1

p

)
/(103 Pa−1)

0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C 50 ◦C 60 ◦C 80 ◦C

0 – 5 −160 −158 −44.9 −35.7 −30.0 −25.3 −21.8 −16.9
5 – 7.5 73.4 68.2 −230 −221 −61.8 −41 −30.9 −20.5

7.5 – 10 54.5 52.5 47.3 30 −132 −47.3 −24.6
10 – 15 36.9 36.3 34.5 29.9 19.6 −15.6 −30.3 −24.3
15 – 20 26.1 25.6 24.6 23.6 21.3 17.4 11.1 −3.09
20 – 30 18.3 17.8 17.4 17 16 14.8 13.2 8.85
30 – 40 12.9 12.7 12.4 12 11.7 11.3 10.8 9.38
40 – 50 15.1 9.8 9.64 9.43 9.09 8.9 8.66 7.97
50 – 60 2.85 7.95 7.84 7.79 7.68 7.42 7.16 6.79
60 – 71 6.82 6.81 6.65 6.57 6.46 6.34 6.22 5.9
71 – 81 5.85 5.84 5.83 5.73 5.64 5.52 5.43 5.15
81 – 91 5.2 5.13 5.02 5.93 4.88 4.82 4.75 4.58
91 – 101 4.58 4.47 4.42 4.25 4.25 4.23 4.12 4.01

7.3.2.2 Liquids and solids
7.3/10 Temperature dependence of compressibility

κ /MPa−1

T/ tetrachlorine trichlorine ethyl methyl
◦C acetone methane benzene methane alcohol alcohol water

0 82 89.8 80.9 86.6 98.7 107 50
10 110 97 87 91.8 104 114 47.8
20 125 103.5 94.5 100 111 121.5 45.8
30 133.4 112.8 102 109 118.5 129.5 44.6
40 150 122 110 118.5 126.5 138.5 44.1
50 160 132.6 118.5 129.5 136 147.6 44

7.3/11 Compressibility of
fluids under
normal conditions

Material κ/(MPa−1)

olive oil 63
paraffin oil 62.67
mercury 4
kerosene 69.6

7.3/12 Compressibility of solids at 0 ◦C

Material κ/(MPa−1) Material κ/(MPa−1)

Al 1.38 Si 0.324
Au 0.617 Mo 0.47
Cd 2.13 Cu 0.74
Fe 0.597 Pl 0.385
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7.3.3 Viscosity
7.3/13 Viscosity of fluids at normal pressure and 20 ◦C

Material η/(µPa · s) Material η/(µPa · s)
acetone 330 terpentine 1490
ethyl alcohol 1192 o-xylene 807
methyl alcohol 591 m-xylene 615
benzene 649 p-xylene 643
carbon disulfide 367 mercury 1550
ether 234 kerosene 1460
glycerol 141.2 · 104 toluene 585
nitric acid 1770 pitch 3 · 1013

sulphuric acid 22 · 103 heavy water 1260

7.3/14 Viscosity of cryogenic fluids at saturation pressure

hydrogen nitrogen oxygen argon
T /K η/(µPa · s) T /K η/(µPa · s) T /K η/(µPa · s) T /K η/(µPa · s)
15 217 60 60 5800 85 2720
16 197 70 2200 70 3580 90 2300
17 178 80 1410 80 2500 95 1970
18 161 90 1040 90 1890 100 1970
19 147 100 850 100 1520 105 1540
20 134 110 760 110 1280 110 1410

7.3/15 Viscosity of water dissolutions of glycerol in (mPa · s) at normal pressure

glycerol temperature /◦C
(mass %) 0 20 40 60 80 100

20 2.44 1.76 1.07 0.731 0.635 . . .

40 8.25 3.72 2.07 1.3 0.918 0.668
60 29.9 10.8 5.08 2.85 1.84 1.28
80 255 60.1 20.8 9.42 5.13 3.18
90 1,310 219 60.0 22.5 11.0 6.00
95 3,690 523 121 39.9 17.5 9.08

100 12,070 1412 284 81.3 31.9 14.8

7.3/16 Viscosity of water at various temperatures

T/◦C η/(µPa · s) T/◦C η/(µPa · s)
0 1793 60 469

10 1309 70 406
20 1006 80 357
30 800 90 315
40 657 100 284
50 550
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7.3/17 Viscosity vs temperature at normal pressure

water air

1,5

1,0

0,5
0,2

0 20 40 60 80 100

η/(mPa · s)

T/°C

0

η/(µ Pa · s)

T/°C

30

20

100 200 300 400 500

7.3/18 Viscosity of gases at normal pressure and 20 ◦C

Material η/(Pa · s) Material η/(µPa · s)
air 18.1 chlorine 14.7
ammonia 10.8 methane 12
carbon monoxide 18.4 nitrogen monoxide 18.6
carbon dioxide 16 nitrogen 18.4
hydrogen 9.5 oxygen 20.9
hydrogen sulphide 13 sulphur dioxyde 13.8

7.3/19 Viscosity of gases at normal pressure and T0 = 273.15 K

Material η/(µPa · s) Material η/(µPa · s) Material η/(µPa · s) Material η/(µPa · s)
N2 16.65 C5H10 6.65 CO2 13.67 C3H6 7.84
NO 18.00 C4H10 6.89 C2H6 12.23 C3H7OH 7.15
NH 9.35 C5H12 6.38 C2H4 8.55 H2S 11.79
Ar 20.85 C3H7OH 7.20 C3H6O2 6.85 CS2 9.20
H2 8.40 C3H4 8.08 C2H2 9.55 SH4 10.76
H2O 8.83 C5H10 6.65 C6H6 6.93 C5H10 6.39
(vapor) CH3Br 12.32 Br2 13.90 CCl4 9.06
air 17.08 CH2Cl2 9.16 C3H10 6.82 C2N2 9.33
He 18.60 CH3OH 8.70 C4H10 6.90 HCN 6.72
O2 19.10 CH3Cl 10.84 HBr 17.10 C6H12 6.53
Kr 23.30 NOCl 9.89 HI 17.00 C3H6 8.08
Xe 21.10 CO 11.32 HCl 13.20 Cl2 12.45
CH4 10.28 C5H10 6.23 PH3 10.72 CHCl3 9.33
Ne 29.75 C3H8 7.50 C6H14 6.00 C4H8O2 9.60
SO2 11.58 C5H10O2 7.40 (CH3)2O 8.70 C2H5OH 7.75
CO 16.62 (CH5)2O 6.80 C2H5Cl 9.11

7.3/20 Temperature correction factor

For gases, the dependence of viscosity on the absolute temperature can be represented by
the formula

η = ηT0

√
T

T0

1+ C
T0

1+ C
T

.

The temperature correction factor C is only weakly temperature-dependent.
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7.3/20 Temperature correction factor (continued)

Material C/◦C ϑ/◦C Material C/◦C ϑ/◦C Material C/◦C ϑ/◦C

N2 103.9 25 – 280 (C2H5)2O 404 122 – 309 C3H6 312.6 20 – 120
NO 128 20 – 250 C5H10 368 20 – 120 C3H7OH 515.6 122 – 273
NH 503 20 – 300 C4H10 368 20 – 120 SO2 306 300 – 825
Ar 142 20 – 827 C3H7OH 459.9 119 – 308 H2S 331 0 – 100
C2H2 198.2 20 – 120 I2 568 106 – 523 CS2 499.5 114 – 310
C3H6O2 541.5 119 – 306 HI 390 0 – 100 C4H4S 467 20 – 245
C6H6 447.5 130 – 313 O2 126.6 20 – 280 PH3 290 0 – 100
Br2 533 190 – 600 125 15 – 630 CO2 254 25 – 280
HBr 375 0 – 100 Kr 188 0 – 100 213 300 – 824
C3H10 377.4 20 – 120 Xe 252 0 – 100 CO 101.2 22 – 277
air 106.8 20 – 280 CH4 162 20 – 500 CCl4 335 128 – 315

111 16 – 825 CH3Br 276 20 – 120 365.4 128 – 315
H2 73 20 – 200 CH3OH 486.9 111 – 312 Cl2 351 20 – 250

86 100 – 200 CH2Cl2 425 22 – 309 HCl 360 0 – 250
105 200 – 250 CH3Cl 441 20 – 308 CHCl3 373 121 – 308
234 713 – 822 H3AS 300 0 – 100 C2H2 330 0 – 100

water vapor 673 100 – 350 Ne 61 20 – 100 HCN 901 20 – 330
He 83 100 – 200 C5H10 382.8 122 – 306 C3H6 372 20 – 120

95 200 – 250 C3H8 278 20 – 250 C6H12 350.9 122 – 306
173 682 – 815 290 25 – 280 C2H6 252 20 – 250

C2H4 225 20 – 250 C4H8O2 504 128 – 314

7.3.4 Flow resistance
7.3/21 Resistance coefficient

Body shape cW Body shape cW

1.1

2R2r
R : r = 2 1.22

b

a a : b = 1
a : b = 4
a : b = 10
a : b = 18

1.1
1.19
1.29
1.4

l

d
l : d = 2
l : d = 5
l : d = 10
l : d = 20

0.2
0.06
0.083
0.094

without
bottom
(parachute)

1.33 with bottom 1.17

without
bottom

0.34 with bottom 0.4

Re < 2 · 105

Re = 106
0.45
0.13

a

with bottom
α = 60◦
α = 30◦

0.51
0.34

(continued)
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7.3/21 Resistance coefficient (continued)

Body shape cW Body shape cW

l
d

Re > 105

l : d = 1.8
Re < 4, 5 · 105

l : d = 0.75
Re > 5.5 · 105

l : d = 0.45

0.1

0.6

0.2

d h

Re ≈ 8 · 104

h : d = 1
l : d = 2
l : d = 5
l : d = 10

0.63
0.68
0.74
0.82

d

l

Re ≈ 5 · 105

l : d = 30 0.78
d

l

Re ≈ 106

l : d = 5
l : d = 8
l : d = 18

0.08
0.1
0.2

0.4
...

0.55

0.3
...

0.4

0.23 0.6
...

0.7

7.3.5 Surface tension
7.3/22 Surface tension of fluids and dissolutions

σ/ σ/

Fluid (10−3Nm−1) Fluid (10−3Nm−1)

acetone 23.7 olive oil 33
ethyl alcohol 22.3 paraffin oil 26
methyl alcohol
aniline
benzol
chloroform
glycerine
mercury

22.6
43
28.9
27.2
64

475

terpentine 27

water

water at 5 ◦C 74.92
water at 10 ◦C 74.22
water at 20 ◦C 72.75
water at 30 ◦C 71.18

Dissolutions

sulphuric acid (conc.) 55 nitric acid 41

Per 1 weight-% the following value must be added to that of pure water

calcium chloride 0.29 KOH 0.32
copper sulphate 0.11 sodium chloride 0.28
potassium chloride 0.19 NaOH 0.5



Part II
Vibrations and Waves

Vibration, a change of the state of a system periodic in time (oscillator) and occurring
when
• a system is displaced from its mechanical, electrical or thermal equilibrium by an

external perturbation, and
• forces arise that drive the system back towards equilibrium.
Vibrations occur in almost all physical systems.

Wave (see p. 287), change of the state of a system periodic in space and time and occur-
ring when
• a system consists of subsystems that all are oscillatory,
• the subsystems may interact with each other, hence, energy may be transferred from

one subsystem to another neighboring subsystem, and
• at least one of the subsystems is driven from its mechanical, electrical or thermal

equilibrium by an external perturbation.
Energy is transfered from one subsystem to other subsystems without any mass transport
being involved.
■ Sound consists of density waves which occur in media. Light consists of electromag-

netic waves within a certain frequency interval.
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Vibrations

1. Periodic processes,

processes or configurations that repeat regularly. If a process repeats continously in fixed
time intervals, then it is called periodic in time. If a spatial configuration repeats in fixed
space intervals, then this arrangement is called spatially periodic.

2. Period,

period, T , the smallest time interval for the repetition of phenomena that are periodic in
time:

u(t + T ) = u(t) .

The SI unit of period is the second s. The period is determined by the system parameters.
Frequency, f , the number of repetitions per second of a phenomenon that is periodic in

time, f = 1/T .
Hertz, Hz, SI unit of frequency. 1 Hz = 1/s.

■ The frequency 1 Hz means that a process repeats itself once per second. In North
America the line voltage has a frequency of 60 Hz; it changes its direction 120 times
per second.

3. Oscillator,

oscillator, a system in which vibrations may occur.
■ A pendulum is a mechanical oscillator, e.g., a mass hanging on a string. An oscillator

circuit is an example of an electrical oscillator.
Equilibrium position, the state of a system capable of oscillation before it experiences an
external perturbation, i.e., the mechanical, electrical or thermal equilibrium state.

4. Harmonic vibration,

a periodic process in which the change of state is described by a sine or cosine function
(Fig. 8.1). These functions differ by a phase shift of π/2 radians.

255
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harmonic vibration

u(t) = A cos (2π f t + φ)

= A sin
(

2π f t + φ + π
2

)
Symbol Unit Quantity

u state of system
A amplitude
f Hz frequency
t s time
φ rad phase shift

Figure 8.1: Harmonic
vibration.

Here u(t) describes the state of the system at time t . The physical meaning of u depends
on the system under consideration (linear or angular coordinate, stress, electric or magnetic
field strength, etc.).
■ For a mass on a spring, u(t) is the displacement, and for an oscillator circuit u may

be the electric voltage, current or charge. The dimension of u depends on the system
considered.

5. Phase and amplitude

Phase, phase angle, argument of the sine or cosine function, 2π f t + φ, specifies the
instantaneous state of vibration.

Phase constant, initial phase, φ, value of the phase at t = 0, describes the state of the
system at the initial instant.

Amplitude A, maximum value of the function u(t).

6. Frequency, angular frequency and period

angular frequency = 2π · frequency T−1

ω = 2π f

Symbol Unit Quantity

f Hz frequency
ω rad/s angular frequency

The harmonic vibration has the form

u(t) = A cos (ωt + φ) .
The relation between period, frequency and angular frequency is:

period = reciprocal value of frequency T

T = 1/ f = 2π/ω

Symbol Unit Quantity

T s period
f Hz frequency
ω rad/s angular frequency
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➤ There are always frictional forces in nature. Therefore, bodies come to rest if the
energy lost by friction is not compensated by a supply of energy from outside. For
this reason, no process is exactly described by a harmonic vibration that continues to
infinity.

➤ The sine function describes a vibration that also occurred throughout the past (t →
−∞). In nature an oscillation begins only if an oscillatory system is supplied with
energy, e.g., when an impulse force is applied to a pendulum. The state of the system
at which the vibration starts is the same state to which the system returns when the
energy initially supplied has been dissipated by friction.

Natural frequency, frequency depending only on the system parameters; an oscillator
vibrates with this frequency in the absence of external forces (free vibration).

7. Types of vibrations

Vibrations are subdivided into:
• Free vibrations, the vibration is excited once and proceeds without further exter-

nal influence. The frequency is constant and is uniquely determined by the system
parameters.

• Damped vibrations, friction is present. The oscillator continually loses energy.
• Forced vibrations, the oscillator is driven by an external periodic force. If the oscil-

lator vibrates at the frequency of the external force, the vibrating system is called a
resonator.

Combination of the last two cases: forced damped vibrations. A periodic external force
drives a damped oscillator; the vibration does not decay since the external excitation per-
manently supplies energy to the oscillator.

Vibration Free Forced

Undamped no friction no friction
no external excitation external excitation
energy constant energy supply

resonance catastrophe

Damped friction friction
no external excitation external excitation
energy loss energy supply and energy loss

resonance

■ An antenna transmitting radio waves is an example of a forced electromagnetic vi-
bration in which energy is lost due to release of electromagnetic energy.

8.1 Free undamped vibrations

Free undamped vibration, vibration without external excitation and without friction, is
exactly described by a harmonic time dependence. Amplitude and frequency are time-
independent.
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8.1.1 Mass on a spring
1. Definition of mass on a spring

Spring and mass system, mass on a spring, a body fixed to a cylindrical helical spring.
Oscillator, name of the body fixed to the spring.

■ Cart attached to a spring fixed at one end, moving without friction on a horizontal
plane (Fig. 8.2).

Equilibrium
position

Figure 8.2: Mass on a spring. Restoring force �F and velocity �v.

Equilibrium position: top figure, the spring is relaxed.
Perturbation: external force compresses (or stretches) the spring by the length x ; the

system leaves the mechanical equilibrium position.
Displacement, x , specifies how much the system is shifted out of equilibrium, i.e., how

much the spring is compressed or stretched.
➤ The description of the system is simplest if the origin of the coordinate frame is the

rest position of the mass. In the following, the coordinate frame is always chosen in
this way.

2. Restoring force

Restoring force, force driving the system back towards the equilibrium position.
Linear force law, Hooke’s law, the restoring force is proportional to the displacement

and points towards the rest position, the essential condition for harmonic vibrations:

restoring force = −spring constant · displacement MLT−2

F = −kx

Symbol Unit Quantity

F kg m/s2 restoring force
k kg/s2 spring constant
x m displacement

➤ The spring force is proportional to the displacement only within certain limits. Hence,
the following equations are valid only within these limits.
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If the cart is released at a point displaced from the equilibrium position, it is accelerated by
the restoring force. Due to its inertia, it rolls beyond the equilibrium point and compresses
or stretches the spring. Again the spring force acts on the cart, but now in the opposite
direction.

3. Equation of motion of the mass on a spring

Equation of motion, follows with the formulation for the restoring force and Newton’s
equation, F = ma = mẍ ,

equation of motion and solution of the spring-mass system

ẍ = − k

m
x

x(t) = A cos(ωt + φ)
ẋ(t) = −Aω sin(ωt + φ)
ẍ(t) = −Aω2 cos(ωt + φ)

ω =
√

k

m
, f = 1

2π

√
k

m

T = 2π

√
m

k

Symbol Unit Quantity

x m displacement
ẋ m/s velocity
ẍ m/s2 acceleration
k kg/s2 spring constant
m kg mass of oscillator
t s time
A m amplitude
ω rad/s angular frequency
f Hz frequency
φ rad phase constant
T s period

Fig. 8.3 illustrates the time evolution of the quantities x(t), ẋ(t) and ẍ(t).

Figure 8.3: Displacement
x(t), velocity v = ẋ(t) and
acceleration a = ẍ(t) of a
mass on a spring.

➤ The vibrating body reaches its maximum velocity |vmax| = Aω when passing
through the equilibrium position. The acceleration takes its maximum values at the
turning points, |amax| = Aω2.

The experimental setup shown in Fig. 8.2 corresponds to a horizontally vibrating oscillator.
For a hanging oscillator, one has to take into account that in the equilibrium state the spring
is already pre-stretched by gravity. The origin of the coordinate frame should coincide with
the balance point of the spring under gravity for the solution to take the form above.

4. Energy of the mass and spring system

The energy of the mass and spring system is the sum of the kinetic and potential energies
(Fig. 8.4):
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• Kinetic energy Ekin, the energy of motion of the oscillator.
• Potential energy Epot, deformation energy stored in the stretched or compressed

spring.

energy of the mass and spring system ML2T−2

Ekin(t) = mẋ2

2
= m A2ω2 sin2(ωt + φ)

2

Epot(t) = kx2

2
= m A2ω2 cos2(ωt + φ)

2

Ekin(t) + Epot(t) = m A2ω2

2

= k A2

2
= const.

Symbol Unit Quantity

Wkin J kinetic energy
Wpot J potential energy
m kg mass of oscillator
x m displacement
A m amplitude
ω rad/s angular frequency
t s time
φ rad phase constant
k kg/s2 spring constant

k

k

k

Figure 8.4: Kinetic energy
Ekin(t), potential energy
Epot(t) and total energy E
of the mass on a spring.

Both the kinetic and the potential energy of the system are time-dependent. The total
energy is constant; for a given spring constant, it is determined by the square of the ampli-
tude.

8.1.2 Standard pendulum
Standard pendulum, a body hanging freely on a string in a gravitational field. The body
is displaced and then released. Let the coordinate origin lie on a vertical line with the
suspension point of the pendulum.

1. Mathematical pendulum and quantities of description

Mathematical pendulum, idealized standard pendulum with the following assumptions:
• non-stretchable string of negligible mass
• frictionless suspension of the pendulum
• point-like mass of the pendulum body
The description of motion involves the length of the cord l, the mass m of the pendulum,
and the angle of displacement α(t) between the vertical and the displaced pendulum at the
time t or the horizontal displacement x(t) of the pendulum body at the instant t :

x(t) = l sinα(t) .
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Restoring force, F , accelerates the pendulum towards the rest position (Fig. 8.5):

restoring force of the standard pendulum MLT−2

F = −mg sinα

Symbol Unit Quantity

F N restoring force
m kg mass of pendulum body
g m/s2 gravitational acceleration
α rad angle of displacement

Equilibrium point

Figure 8.5: Standard
pendulum of length l. α:
angle of displacement, x :
horizontal displacement,
�FG : weight force,
FG = mg, �F: restoring
force, F = mg sinα, �F′:
force along the string of
pendulum.

2. Linearization of the equation of motion

The equation of motion can be linearized by restricting it to small displacements α, by
approximating sinα with the angle α itself:

equation of motion of the linearized mathematical pendulum

x = lα

v = ẋ = lα̇

a = v̇ = lα̈

F = ma = mlα̈ = −mgα

α̈ = −g

l
α

Symbol Unit Quantity

F N force
m kg mass
l m length of cord
x m horizontal displacement
v m/s velocity
a m/s2 acceleration
α rad elongation angle
α̇ rad/s angular velocity
α̈ rad/s2 angular acceleration
g m/s2 acceleration of gravity

➤ An approximation that replaces the sine function by the first term of the series ex-
pansion is made in the description of many oscillations. Only then can the problem
in general be solved analytically.

➤ When approximating x ≈ lα, note that the unit of the angle α is rad and not degree.
■ 3◦ corresponds to 3◦ · (2π/360◦) = 0.052 rad. For a cord length of 0.5 m, the

horizontal displacement x ≈ lα = 0.5 m · 0.052 rad = 0.026 m.
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3. Solution of the linearized equation of motion of the mathematical pendulum

vibration solution of the linearized mathematical pendulum

x(t) = A cos(ωt + φ)

ω =
√

g

l

f = 1

2π

√
g

l

T = 2π

√
l

g

Symbol Unit Quantity

x(t) m displacement
t s time
A m amplitude, maximum displacement
l m cord length
ω rad/s angular frequency
g m/s2 acceleration of gravity
f Hz frequency
φ rad phase constant
T s period

▲ For small displacements, the period of the standard pendulum depends on the string
length and the gravitational acceleration; it is independent of the mass and the vibra-
tion amplitude.

➤ For larger displacements of the pendulum, the period T must be multiplied by cor-
rection factors (see Tab. 12.1/1).

➤ All harmonic systems that carry out free vibrations obey a differential equation of the
form ẍ = −ω2x . The constant ω2 is determined by the system parameters.

8.1.2.1 Vibration and circular motion
▲ Periodic motion is closely related to circular motion: the parallel projection of circular

motion yields a harmonic space-time function.
If a radius vector of length R rotating with constant angular velocity ω in the x-y plane
needs a time T for one revolution, the projection of the radius vector onto the y-axis (x-
axis) displays a sine (cosine) dependence on time t ,

y(t) = R sin(ωt + φ), ω = 2π

T
,

x(t) = R cos(ωt + φ), ω = 2π

T
.

Here φ is the angle between the radius vector and the x-axis at the instant t = 0 (Fig. 8.6).

Figure 8.6: Parallel projection of a circular motion onto the y-axis.
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It is often convenient to represent vibrations or rotations by a complex radius vector
(Fig. 8.7):

x(t)+ jy(t) = R(cos(ωt + φ)+ j sin(ωt + φ)) = Re j(ωt+φ) ( j2 = −1) .

Real part

Imaginary
part

Figure 8.7: Complex
representation of the circular
motion of a radius vector.

Conversely, one often adopts a complex formulation for the solution of the equation of
motion of an oscillator. This is possible because the real part and the imaginary part, if
taken separately, are independent solutions to a linear differential equation.

8.1.3 Physical pendulum
1. Definition of the physical pendulum

Physical pendulum, gravitational pendulum, a rigid body that, under the action of grav-
ity, carries out rotational motions about a fixed axis A, which does not pass the center of
mass of the body.
■ Rod pendulum: A hanging rod with a pivot at the upper end (Fig. 8.8).

The torque �M and the angular momentum �L of the pendulum are normal to the plane of
vibration.

Equilibrium

Figure 8.8: Physical
pendulum. S: center of
gravity, �FG : weight force.

2. Equation of motion of the physical pendulum

Equation of motion: according to the basic law of rotational motion, the torque of the
weight with respect to the rotation axis A equals the product of the moment of inertia JA
and the angular acceleration α̈.
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angular momentum and torque about the axis A

L = JA α̇

τ = L̇ = JA α̈

τ = −lmg sinα

Symbol Unit Quantity

L Nm s angular momentum
τ Nm torque
l m distance axis–center of gravity
m kg mass of pendulum
g m/s2 acceleration of gravity
α rad angle of displacement
JA kg m2 moment of inertia about axis A

For small angles α (sinα ≈ α):

equation of motion for the physical pendulum

α̈ = − lmg

JA
α

α(t) = αmax cos(ωt + φ)

ω =
√

mgl

JA

f = 1

2π

√
mgl

JA

T = 2π

√
JA

mgl

Symbol Unit Quantity

α rad angle of displacement
α̈ rad/s2 angular acceleration
l m distance axis–center of gravity
m kg mass of pendulum
g m/s2 gravitational acceleration
JA kg m2 moment of inertia of pendulum

about axis A
αmax rad maximum amplitude
ω rad/s angular frequency
f Hz frequency
t s time
φ rad phase constant
T s period

M Moments of inertia JA of arbitrary rigid bodies may be determined by measuring
m, l and T and using the above equation.

3. Reduced pendulum length

of a physical pendulum, the string length of an equivalent mathematical pendulum with the
same period as that of the physical pendulum.

reduced pendulum length L

l ′ = JA

ml

Symbol Unit Quantity

l m distance axis–center of gravity
l ′ m reduced pendulum length
m kg mass of physical pendulum
JA kg m2 moment of inertia of pendulum about axis A

➤ According to Steiner’s law, the moment of inertia JA for rotation about the axis A
can be replaced by

JA = JS + ml2 .
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JS is the moment of inertia for rotation about an axis parallel to the axis A and
passing through the center of gravity S. One may replace the moment of inertia JA
in the expression for the reduced pendulum length by the moment of inertia JS about
the center of gravity:

l ′ = JS

ml
+ l .

4. Example: Homogeneous rod pendulum

The center of gravity of a homogeneous rod pendulum of mass m and length L lies half
way down the rod, l = L/2. The moment of inertia of the rod with respect to a rotation
axis through one end point is

JA = 1

3
mL2 .

For the reduced pendulum length l ′, one finds

l ′ = 1

3
mL2 2

mL
= 2

3
L .

The moment of inertia of the rod with respect to the rotation axis through the center of
gravity is

JS = 1

12
mL2 .

One obtains the same value for the reduced pendulum length:

l ′ = L

6
+ L

2
= 2

3
L .

8.1.4 Torsional vibration
1. Definition of torsional vibration

Torsion (see p. 165), the twisting of a body, causes a torque τ proportional but opposite to
the torque producing the torsion. For small torsion angles α, τ = −D∗α.

Torsional constant, D∗, proportionality factor between τ and α.
Torsional vibration, rotary vibration, results if a body is twisted by external torques,

i.e., is driven out of its mechanical equilibrium and then vibrates about a longitudinal axis
(Fig. 8.9).

Torsional oscillator, system performing torsional vibrations.

Figure 8.9: Rotary or
torsional vibration. A disk
of mass m is suspended by a
metal strip, which is twisted.
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2. Equation of motion of torsional vibration

Equation of motion, follows from Newton’s law τ = JAα̈ (τ torque, α̈ angular accelera-
tion):

equation of motion and solution for torsional vibration

α̈ = −D∗
JA
α

α(t) = αmax cos(ωt + φ)

ω =
√

D∗
JA

f = 1

2π

√
D∗
JA

T = 2π

√
JA

D∗

Symbol Unit Quantity

α rad torsional angle

α̈ rad/s2 angular acceleration
D∗ Nm/rad torsional constant

JA kg m2 moment of inertia
αmax rad amplitude
ω rad/s angular frequency
f Hz frequency
t s time
φ rad phase constant
T s period

3. Kinetic and potential energy of the torsional pendulum

Ekin = 1

2
JA · α̇2 , Epot = 1

2
D∗ α2 .

M The Moment of inertia may be determined by measuring the period, using the rela-
tion

JA = −D∗ α
α̈
= T 2

4π2
D∗ .

The torsional constant D∗ may be determined by measuring the torsional angle α and
the corresponding torque τ , or by measuring the period T of torsional vibration of a
body of known moment of inertia (e.g., circular disk about center).

8.1.5 Liquid pendulum
1. Definition of liquid pendulum

Liquid pendulum, a liquid column in a U-shaped pipe out of equilibrium and vibrating
about the rest (equilibrium) position (Fig. 8.10). In the rest position, the columns in both
legs have equal height.

Figure 8.10: Liquid
pendulum. The weight of
the excessive liquid volume
in one leg of the U-shaped
pipe (shadowed) provides
the restoring force.
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Restoring force, results from the weight of the excess liquid column. If the levels are
displaced by ±y from the rest position, one has a:

restoring force for liquid pendulum MLT−2

F = −2y Aρg

Symbol Unit Quantity

F N restoring force
y m displacement of liquid column
A m2 cross-sectional area of pipe
ρ kg/m3 density of liquid
g m/s2 acceleration of gravity

2. Equation of motion of the liquid pendulum

equation of motion and solution for the liquid pendulum

m ÿ = −2Aρgy

y(t) = B cos(ωt + φ)

ω =
√

2Aρg

m
=
√

2g

l

f = 1

2π

√
2g

l

T = 2π
√

l
2g

m = l Aρ

Symbol Unit Quantity

y m displacement
ÿ m/s2 acceleration
m kg mass of liquid
A m2 cross-sectional area
ρ kg/m3 density of liquid
g m/s2 gravitational acceleration
B m amplitude
ω rad/s angular frequency
f Hz frequency
φ rad phase constant
t s time
T s period
l m length of liquid column

➤ The quantity m is the total mass of liquid in both legs, i.e., m = l Aρ, where l is the
total length of the liquid column. The quantity y then describes the motion of the
level in one leg, while the level in the other leg is given by −y.

8.1.6 Electric circuit
Oscillator circuit, a combination of inductor and capacitor connected to a circuit
(Fig. 8.11).

V

Figure 8.11: Parallel
oscillator circuit with
inductor (inductance L)
and capacitor (capacity C).
Vext: voltage applied by the
switch S for exciting the
initial state.
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The displacement out of the rest position of a pendulum here corresponds to charging
a capacitor by an external voltage Vext. In the initial state (maximum electrostatic energy,
analogous to the potential energy), the capacitor voltage takes the maximum value; no cur-
rent flows through the inductor. When discharging the capacitor, the current generates a
magnetic field in the inductor (analogous to the kinetic energy). If the capacitor is dis-
charged (analogous to the zero passage of a pendulum; maximum magnetic energy), the
magnetic field decreases, thereby inducing a current that charges the capacitor, but with
reversed voltage. In the time evolution, the total energy of the system oscillates back and
forth between the capacitor and the inductor. The restoring force, which corresponds to the
gravitational force on a pendulum, is inversely proportional to the capacitance.

Oscillation equation: Since the circuit is closed, the voltages of the inductor VL and the
capacitor VC must sum to zero:

undamped electric oscillator circuit

0 = VL + VC

VL = L İ

VC = Q/C

I = Q̇

0 = L Q̈ + Q

C

Q(t) = A cos(ωt + φ)

ω =
√

1

LC

f = 1

2π

√
1

LC

T = 2π
√

LC

Symbol Unit Quantity

Q C charge of capacitor

VL V voltage at inductor

VC V voltage at capacitor

t s time

A C amplitude, max. charge of capacitor

ω rad/s angular frequency

f Hz frequency

φ rad phase constant

L Vs/A inductivity of inductor

C As/V capacity

T s period

I A current

Electrostatic energy Eel and magnetic energy Emagn of oscillator circuit:

Eel = 1

2C
Q2 = 1

2
CV 2

C , Emagn = 1

2
L I 2 .

➤ The oscillator circuit is an important basic element in electrical engineering. It is
used, for example, to generate electromagnetic oscillations in transmitter antennas.

8.2 Damped vibrations

Damped vibration, the energy of the oscillator does not remain constant, but is released
into the environment.
■ Mechanical oscillators lose energy by friction because of coupling to the environ-

ment. Frictional forces oppose the motion of the oscillator. Hence, after some time
the oscillation ceases (Fig. 8.12).

■ A pendulum can never pivot perfectly without friction. The bearing is heated by fric-
tion, and a fraction of the energy leaves the system as heat.



8.2 Damped vibrations 269

Oscillation equation with additional friction force FR:

oscillation equation with friction MLT−2

mẍ = F = −kx + FR

Symbol Unit Quantity

F N total force
m kg mass
x m displacement
ẍ m/s2 acceleration
k kg/s2 restoring-force constant
FR N frictional force

Figure 8.12: Damped
vibration. Pendulum in an
oil bath.

8.2.1 Friction
The form of the oscillation equation depends on the type of friction (see p. 56). The equa-
tion of motion may be solved analytically for only a few types of friction.

8.2.1.1 Sliding friction and rolling friction

1. Coulomb friction

Coulomb friction, solid friction, FR , friction independent of the magnitude of the velocity
and opposite to its direction (see p. 56). For motion along the x-direction,

FR = −sgn(vx )µFN ,

where sgn(x) is +1 if x > 0, −1 if x < 0, and 0 if x = 0.
Normal force, FN , force with which the body is pressed onto the supporting surface. If

no other forces than gravity act on the body, FN is the normal component of the weight
FG = mg.

Oscillation equation:

mẍ + kx + sgn(vx )µFN = 0 .

2. Properties of the solution of the oscillation equation for sliding friction

• The frequency (and hence the period) remains constant and equals that of the un-
damped oscillation.

• The amplitude decreases linearly with time.
• The oscillation may terminate at a displacement different from zero.
• The period is finite.
• The vibration amplitude decreases per period T by 4x0. The amplitudes form an

arithmetic series.
• The rest position alternates each half period between x0 and −x0.
• The vibration comes to rest if the displacement is smaller than x0 after a half vibra-

tion.



270 8. Vibrations

The solution cannot be given in closed form (i.e., analytically) as a function of time, but
only for a certain time interval. For instance (Fig. 8.13):

vibration with sliding friction L

x(t) = −(
x − x0) · sin
(
ωt + π

2

)
− x0

for 0 ≤ t ≤ T

2

x(t) = −(
x − 3x0) · sin
(
ωt + π

2

)
+ x0

for
T

2
≤ t ≤ T

x0 = µFN

k

Symbol Unit Quantity

x m displacement

x m initial displacement
x0 m final displacement
ω rad/s angular frequency
t s time
T s period
k kg/s2 force constant
FN N normal force
µ 1 friction coefficient

x0 is the displacement for which the restoring force equals the frictional force. Hence, the
system has to be displaced by more than x0 to initiate the oscillation.

Figure 8.13: Damped
vibration for velocity-
independent friction. The
maximum displacement
decreases linearly with the
time.

8.2.1.2 Viscous friction

1. Oscillation equation for viscous friction

Viscous friction, Stokes’ friction, proportional to the magnitude of velocity and opposed
to it:

FR = −bv = −bẋ .

Damping constant, damping coefficient, b, proportionality constant between the
viscous-friction force and the velocity.

Oscillation equation:

oscillation equation for viscous friction MLT−2

mẍ + bẋ + kx = 0

Symbol Unit Quantity

m kg mass
x m displacement
ẋ m/s velocity
ẍ m/s2 acceleration
k kg/s2 force constant
b kg/s damping constant
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2. Solution of the oscillation equation for viscous friction

vibration for viscous friction

x(t) = Ae−δt e
±j
√
ω2

0 − δ2 t

= Ae−δt e±jω0

√
1− D2 t

δ = b

2m

D = δ

ω0
= b

2mω0

ω0 =
√

k

m

Symbol Unit Quantity

x m displacement

A m initial amplitude

ω0 1/s angular frequency

t s time

δ 1/s decay constant

D 1 degree of damping

b kg/s damping constant

m kg mass

The eigenfrequency of the undamped vibration is determined by the mass of the oscilla-
tor m and the restoring force constant k:

ω0 =
√

k/m .

Dissipation factor, d , twice the value of the degree of damping:

d = 2 D = b/
√

mk .

Quality factor, Q, reciprocal value of the dissipation factor d :

Q = 1

d
=
√

mk

b
.

3. Damped torsional vibration with viscous friction

damped torsional vibration with viscous friction

JA α̈ + b α̇ + D∗ α = 0

Symbol Unit Quantity

α rad torsional angle
b kg m2/s friction constant
JA kg m2 moment of inertia, axis A
D∗ kg m2/s2 angular restoring-force

coefficient

4. Cases of degrees of damping

Case distinction with respect to the degree of damping D (Fig. 8.14):
• Underdamped case, D < 1 (ω0 > δ), weak damping:

ω′ =
√
ω2

0 − δ2 = ω0

√
1− D2 , ω′ < ω0 real ,

x(t) = Ae−δt cos

(√
ω2

0 − δ2 t + φ
)
.
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The angular frequency ω′ of the damped vibration is smaller than the angular fre-
quency ω0 of the undamped vibration. The vibration amplitude decreases exponen-
tially, the period remains constant. The envelope of the oscillation curve x(t) is an
exponential function.

• Overdamped case, D > 1 (ω0 < δ):

Damping frequency: ω′ = j
√
δ2 − ω2

0, ω′ imaginary.

x(t) = A1e
(−δ +

√
δ2 − ω2

0)t + A2e
(−δ −

√
δ2 − ω2

0)t .

Here the system no longer oscillates. When driven out of the rest position, the system
returns exponentially to equilibrium, but slower than in the critical damping limit.

• Critical Damping, D = 1 (ω0 = δ):

ω′ = ω0 = δ, x(t) = (A1 + A2t)e−δt .

The solutions in the overdamped and critical cases are not vibrations in the proper
sense because, after a displacement away from the rest position, the system does not
pass through the rest position again.

Figure 8.14: Damped vibration. (a): underdamped, (b): overdamped, (c): critical damping.

M The case of aperiodic motion is important for practice, since in this case, after a
disturbance of the system, the equilibrium state is reached most rapidly. Measuring
and indicating instruments are adjusted in this manner, for example, the ballistic
galvanometer.
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5. Characteristic quantities of vibrations with viscous damping

characteristic quantities of vibration with viscous damping

ω0 =
√

k

m

ω′ =
√

k

m
−
(

b

2m

)2

δ = b

2m

D = δ

ω0
= b

2

1√
mk

d = 2D = 2δ

ω0
= b√

mk

Q = 1

d
= 1

2D

� = ln(x(t)/x(t + T )) = δT

Symbol Unit Quantity

D 1 degree of damping

δ 1/s decay coefficient

ω0 1/s angular frequency of
undamped vibration

ω′ 1/s angular frequency of
damped vibration

d 1 dissipation factor

Q 1 quality factor

b kg/s damping constant

� 1 logarithmic decrement

m kg mass

k kg/s2 force constant

Logarithmic decrement, �, logarithm of the ratio of two amplitudes separated by one
period,

� = ln

(
x(t)

x(t + T )

)
= δT .

8.2.1.3 Newton friction
The friction force FR proposed by Newton is proportional to the square of the velocity,

FR = −b v2 .

This type of friction arises in viscous media if the body moves at a speed below a certain
limit that depends on the viscosity of the medium. A nonlinear differential equation in x
arises that in general cannot be solved analytically:

mẍ + kx + bẋ2 = 0 .

8.2.2 Damped electric oscillator circuit
1. Damped electric oscillator circuit,

contains, besides capacitor C and inductor L , an ohmic resistor R (Fig. 8.15).

Figure 8.15: Damped
electric oscillator circuit
with capacitor C , inductor L
and ohmic resistor R.
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damped electric oscillator circuit

0 = VL + VC + VR

VL = L İ

VC = Q/C

VR = R I

I = Q̇

0 = L Q̈ + R Q̇ + Q

C

ω0 =
√

1

LC

ω′ =
√

1

LC
−
(

R

2L

)2

δ = R

2L

D = δ

ω0
= R

2

√
C

L

Symbol Unit Quantity

Q C charge of capacitor

VL V voltage at inductor

VC V voltage at capacitor

VR V voltage at resistor

I A current

t s time

R 	 resistance

L Vs/A inductance

C As/V capacitance

ω0 rad/s angular frequency of
undamped vibration

ω′ rad/s angular frequency of
damped vibration

δ 1/s decay constant

D 1 degree of damping

2. Analogies between mechanical and electromagnetic damped vibrations

Characteristics mechanical vibration electromagnetic vibration

oscillation equation m ẍ + b ẋ + k x = 0 L Ï + R İ + 1

C
I = 0

undamped angular frequency ω0

√
k

m

√
1

LC

damped angular frequency ω′
√

k

m
−
(

b

2m

)2
√

1

LC
−
(

R

2L

)2

decay constant δ
b

2m

R

2L

degree of damping D = δ/ω0
b

2

√
1

mk

R

2

√
C

L

quality factor Q

√
mk

b

1

R

√
L

C

m: mass, L: inductance, k: restoring-force coefficient (spring etc.), C : capacitance, b: damping con-
stant, R: ohmic resistance.
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8.3 Forced vibrations

1. Definition of a forced vibration

Forced vibration, vibration under the influence of an external force Fext on the oscillator.
After a transient oscillation, the vibrator follows the frequency imposed by the external
force.

Oscillation equation for Fext = B cos(ωextt) and viscous friction:

oscillation equation for a forced damped vibration

F = mẍ

= −kx − bẋ + B cos(ωextt)

x(t) = A(ωext) sin(ωextt + φ(ωext))

A(ωext) = B√
(mω2

ext − k)2 + b2ω2
ext

φ(ωext) = arctan
−bωext

k − mω2
ext

Symbol Unit Quantity

F N force
m kg mass of oscillator
ẍ m/s2 acceleration
x m displacement
A m amplitude
k kg/s2 force constant
b kg/s damping constant
B N exciting amplitude
ωext rad/s exciting angular

frequency
φext rad phase shift
t s time

2. Properties of the solution

The solution is a superposition of the general solution to the homogeneous equation (with-
out the inhomogeneity Fext; this corresponds to free damped vibrations with the angular
frequency ω0 =

√
k/m), and a particular solution to the inhomogeneous equation; it is a

sine function with angular frequency ωext and amplitude and phase that depend on ωext.
▲ The amplitude of the vibration is proportional to the maximum value of the driving

force and depends on its frequency. For large frequencies, the amplitude approaches
zero, independent of the friction, A→ 0 for ωext →∞ (see Fig. 8.16).

k

Figure 8.16: Forced
vibration. Normalized

amplitude
A(ωres)

B/k
as a

function of ωext/ω0 for
various degrees of damping
D.
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Resonance frequency, ωres, angular frequency of the external excitation at which the
resulting amplitude reaches the maximum value. It is obtained from the minimum of the
denominator of A(ωext) for positive values of ωext.

Resonance amplitude, Amax, amplitude of the vibration at the resonance frequency. It
follows from the substitution of ωres for ωext in A(ωext).

Phase shift, φ, phase difference between response and excitation of the oscillator (see
Fig. 8.17).

–

– Figure 8.17: Forced
vibration. Phase shift φ as
function of ωext/ω0 for
various degrees of damping
D.

▲ For ωext = ω0 one finds φ = −π/2.
This property may also be used to define the resonance.

3. Resonance in forced vibrations

characteristic quantities of the resonance

ωres =
√

k

m
− b2

4m2

= ω0

√
1− 2D2

Amax = B

b

√
k

m
−
(

b

2m

)2

= B

2k D
√

1− D2

φ = arctan

(
−2δωext

ω2
0 − ω2

ext

)

D = b

2mω0

ω0 =
√

k

m

δ = b

2m

Symbol Unit Quantity

ωres rad/s resonance angular frequency

A resonance amplitude

B excitation amplitude

k kg/s2 restoring-force coefficient

m kg mass

b kg/s damping constant

δ 1/s decay coefficient

D 1 degree of damping

ω0 rad/s angular frequency of
free vibration

▲ The maximum of the resonance is shifted towards lower frequencies (see Fig. 8.16)
with increased damping of the vibration.
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4. Characteristics of the resonance

a) Resonance selectivity, value of the renormalized amplitude curve at the resonance
frequency, renormalized resonance amplitude (Fig. 8.18),

A(ωres)

B/k
= Amax

B/k
.

b) Half-width, width of the resonance, region of excitation angular frequency 
ωext
between the angular frequencies with amplitude Amax/

√
2 (Fig. 8.18),


ωext/ω0 ,

c) Resonance catastrophy, arises for vanishing friction, b = 0, in the limit ωext → ω0:
the vibration amplitude tends to infinity.

k

k

k Figure 8.18: Forced
vibration. Half-width

ωext/ω0 and resonance

selectivity
Amax

B/k
.

➤ In technical applications, resonances are often highly undesirable because they may
lead to damage to the oscillating system at large amplitudes. To prevent the occur-
rence of resonances, a device must work at frequencies far below the resonance fre-
quency, or the resonance frequency must be crossed rapidly for the machine to work
above ω0. Moreover, in the construction of bridges and buildings in earthquake re-
gions, resonances must be eliminated as far as possible, or need to be damped suffi-
ciently.

8.4 Superposition of vibrations

Superposition law, holds because of the linearity of the equations of motion for har-
monic vibrations:
▲ Harmonic vibrations can be superposed without influencing each other.
If a system carries out several vibrations simultaneously, then the corresponding oscillation
equation may be solved for each vibration separately. The instantaneous displacement of
the oscillator is obtained as the sum of the displacements of the individual oscillations.

8.4.1 Superposition of vibrations of equal frequency
From the two harmonic vibrations

x1(t) = A1 cos(ωt + φ1) , x2(t) = A2 cos(ωt + φ2) , 
φ = φ1 − φ2



278 8. Vibrations

and, with the addition theorems for trigonometric functions, one obtains a resulting har-
monic vibration with the same frequency as that of the original vibrations (Fig. 8.19):

superposition of vibrations of equal frequency

x1(t) = A1 cos(ωt + φ1)

x2(t) = A2 cos(ωt + φ2)


φ = φ1 − φ2

x1+2(t) = x1(t)+ x2(t)

= A1+2 cos(ωt + φ1+2)

A1+2 =
√

A2
1 + A2

2 + 2A1 A2 cos
φ

tanφ1+2 = A1 sinφ1 + A2 sinφ2

A1 cosφ1 + A2 cosφ2

Symbol Unit Quantity

x1(t), x2(t) vibrations 1, 2
x1+2(t) resulting vibration
A1, A2 amplitudes 1, 2
A1+2 resulting amplitude
ω rad/s angular frequency
t s time
φ1, φ2 rad phase constants 1, 2

φ rad phase difference
φ1+2 rad resulting phase

constant

Figure 8.19: Superposition
of vibrations x1(t), x2(t)
of equal frequency ω and
the phase difference 
φ for
special values of A1/A2 and

φ.

Maximum enhancement: 
φ = 0, A1+2 = A1 + A2.

Superposition of vibrations of equal amplitude (A1 = A2 = A):

A1+2 = 2A cos(
φ/2) φ1+2 = φ1 − φ2

2
.

• Maximum enhancement: 
φ = 0, A1+2 = 2A.
• Cancellation: 
φ = π, A1+2 = 0 (Fig. 8.20).

Figure 8.20: Superposition of vibrations x1(t), x2(t) of equal frequency ω.
(a): maximum enhancement (
φ = 0), (b): cancellation (
φ = π ).
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8.4.2 Superposition of vibrations of
different frequencies

Vibrations:

x1(t) = A1 cos(ω1t + φ1) , x2(t) = A2 cos(ω2t + φ2).

With the simplifying assumption φ1 = φ2 = 0, A1 = A2 = A and with the addition
theorems for trigonometric functions:

superposition of vibrations of distinct frequencies

x1(t) = A cosω1t

x2(t) = A cosω2t

x1+2(t) = 2A cos

(
ω1 − ω2

2
t

)

× cos

(
ω1 + ω2

2
t

)

Symbol Unit Quantity

x1, x2 displacements 1, 2

x1+2 resulting displacement

A amplitude

ω1, ω2 rad/s angular frequencies 1, 2

t s time

1. Beats,

occur when the difference between the superposed frequencies is small compared with the
frequencies themselves, ω2 = ω1 + 
ω, |
ω| � ω1. The result may be interpreted as a
vibration with the angular frequency (ω1 + ω2)/2 and an amplitude that varies slowly and
periodically with the frequency |(ω1 − ω2)|/2 (Fig. 8.21).

Figure 8.21: Beat. Superposition of vibrations x1(t), x2(t) with a small difference of fre-
quencies 
ω. T1, T2: periods of the individual vibrations, TS : beat period, T1+2: period of
the resulting vibration.

2. Frequency and period of beats

Beat period, TS , defined as the time interval between two successive zero passages of the
beat amplitude, obtained from π = |(ω1 − ω2)|TS/2 as TS = 2π/|(ω1 − ω2)|,
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frequency and period of beat

fS = | f1 − f2|
1

TS
=
∣∣∣∣ 1

T1
− 1

T2

∣∣∣∣
Symbol Unit Quantity

fS s−1 beat frequency
f1, f2 s−1 frequencies of vibration 1, 2
TS s beat period
T1, T2 s periods of vibration 1, 2

■ In general, beats are unwanted in music. They arise if two sounds with fundamental
tones differing only slightly in frequency are heard simultaneously. The ear registers
the resulting sound as dissonant and recognizes the oscillating amplitude of the beats.
Beats offer a very effective way of tuning a musical instrument against a tuning fork
or standard oscillator.

3. Frequency and period in the general case

frequency and period of the resulting vibration

ω1+2 = ω1 + ω2

2

f1+2 = f1 + f2
2

T1+2 = 2π

ω1+2
= 4π

ω1 + ω2

= 2
T1T2

T1 + T2

Symbol Unit Quantity

ω1+2 rad/s angular frequency of resulting
vibration

ω1, ω2 rad/s angular frequencies of
vibrations 1, 2

f1+2 s−1 frequency of resulting
vibration

f1, f2 s−1 frequencies of vibrations 1, 2
T1, T2 s periods of vibrations 1, 2
T1+2 s period of resulting vibration

➤ For large frequency differences 
ω of the superimposed vibrations, the time evolu-
tion of the resulting vibration is in general not harmonic (Fig. 8.22).

Figure 8.22: Superposition of vibrations x1(t), x2(t) with large frequency difference 
ω.

8.4.3 Superposition of vibrations in different
directions and with different frequencies

1. Lissajous patterns

In order to describe the superposition of two vibrations in different directions (e.g., in x-
and y-direction), it is convenient to start from a representation of the individual vibrations
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in a Cartesian coordinate frame:

x(t) = Ax sin(ωx t + φx ) ,

y(t) = Ay sin(ωy t + φy) .

Representation of the resulting vibration in polar coordinates:

r(t) =
√

x(t)2 + y(t)2 , α(t) = arctan
y(t)

x(t)
,

where r is the length of the resulting vector, and α is the angle between the positive x-axis
and the vector, with counterclockwise taken as the positive direction.
The vector �r = (x(t), y(t)) describes Lissajous patterns, the shapes of which are deter-
mined by the ratio of Ax and Ay , the ratio of ωx and ωy , and the difference of phase angles

φ = φx − φy (Fig. 8.23).

and and

Figure 8.23: Lissajous patterns.

Properties: periodic structure; a curve in 2D space is traversed periodically.
■ x(t) = A cos(ωt), y(t) = A sin(ωt):

�r describes a circle.
■ x(t) = Ax cos(ωt), y(t) = Ay cos(ωt):

One obtains the equation of a straight line: y(t) = Ay

Ax
x(t).

➤ Lissajous patterns may be visualized by means of an oscilloscope by controlling the
beam displacements in x- and y-direction according to the actual frequencies and
amplitudes. Due to the finite persistence of the oscilloscope screen and the relatively
high oscilloscope frequencies available, the entire pattern can be made to appear as a
standing curve.

2. Two-dimensional harmonic oscillator

Equations of motion of the two-dimensional oscillator:

m ẍ = −kx , m ÿ = −ky , ω =
√

k

m
.

Solution:

x(t) = Ax cos(ωt + φ1) , y(t) = Ay cos(ωt + φ2) .
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The amplitudes Ax , Ay and the phase angles φ1, φ2 are determined by the initial condi-
tions.

The trajectory is obtained by eliminating the time coordinate t :

x2

A2
x
− xy

2 cos φ

Ax Ay
+ y2

A2
y
= sin2 φ , φ = φ2 − φ1 .

The trajectory is an ellipse. For φ = π/2, the principal axes coincide with the coordinate
axes:

x2

A2
x
+ y2

A2
y
= 1 .

8.4.4 Fourier analysis, decomposition into harmonics
The superposition of sine or cosine functions is an oscillatory function itself, i.e., a pe-
riodic phenomenon. Conversely, arbitrary periodic phenomena may be represented as a
superposition of pure sine and cosine oscillations. This is a statement of Fourier’s theorem.
▲ Fourier decomposition: Any periodic function may be represented by a (possibly

infinite) sum over sine and cosine functions of different frequencies and amplitudes.
The Fourier frequencies are integer multiples of a fundamental frequency.

1. Fourier series,

mathematical representation of a periodic function x(t) of period T by a superposition of
sine and cosine oscillations,

x(t) = a0

2
+
∞∑

k=1

(ak · cos(k · ωt)+ bk · sin(k · ωt)) ,

with the Fourier coefficients

ak = 2

T

∫ T

0
x(t) · cos(kωt)dt , k = 0, 1, 2, 3, . . .

and

bk = 2

T

∫ T

0
x(t) · sin(kωt)dt , k = 1, 2, 3, . . . ,

where ω = 2π/T . The Fourier amplitudes specify the weights of the individual frequency
components in the periodic function x(t).

k = 1: fundamental oscillation (first harmonic)
k = 2: first overtone (second harmonic)
k = 3: second overtone (third harmonic)

2. Fourier analysis,

investigation of the frequencies and amplitudes of the harmonic components occurring in
the decomposition of a given periodic function.

Fourier spectrum, representation of the result of a Fourier analysis by a frequency-
amplitude plot, showing the amplitudes of the Fourier terms of the sum as vertical lines
against the corresponding frequencies (Fig. 8.24).

Fourier synthesis, construction of a complex time signal out of several sine and cosine
functions of different frequencies and amplitudes.
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Figure 8.24: Fourier analysis of a periodic function.

3. Complex representation of a Fourier series

The representation of the Fourier series by complex functions reads:

x(t) =
∞∑

k=−∞
ck · e jω·k·t ,

with the coefficients

ck = 1

T

∫ T/2

−T/2
x(t) · e−jω·k·t dt , k = ...,−2,−1, 0, 1, 2, . . . .

T is the period of the analyzed signal.
➤ Relation between the coefficients an, bn and cn :

n = 0: a0 = 2c0 .

n > 0: an = cn + c−n , bn = j(cn − c−n) .
In acoustics, sound waves are analyzed by Fourier decomposition. Tones involving only
one Fourier term sound “synthetic.” The musical impression made by a sound is determined
by the type and amplitude of an admixture of additional terms.

In “synthetic” music (synthesizer), any instrument or voice may be “Fourier”-
synthesized by computer.

8.5 Coupled vibrations

1. Vibrations of coupled oscillating systems

Coupled vibrations, vibrations originating in systems consisting of several self-oscillating
subsystems that affect each other. The subsystems may exchange energy among their indi-
vidual elements.

In the following, coupling is considered for the example of two pendula connected by a
helical spring (Fig. 8.25) as an example of coupled vibrations.

Assumption:
• Both pendula have equal mass m and equal string length l, hence equal restoring

force coefficient k and period T .
• Weak coupling, the coupling between the oscillators is much weaker than the restor-

ing force of the vibrators themselves.
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Figure 8.25: Coupled pendula. (a): equal-phase vibration, (b): opposite-phase vibration.

➤ Systems with only one oscillator have one fixed frequency at which the free oscillator
vibrates. For several oscillators coupled to each other, different kinds of vibration
(vibration modes) generally arise.

2. Fundamental vibrations,

the vibration modes of a coupled system in which the oscillators do not exchange energy.
Fundamental vibrations of two coupled pendula:
• equidirectional or equal-phase vibration in which both pendula synchronously

carry out the same motion,
• opposite-directional or opposite-phase vibration, in which both pendula synchro-

nously vibrate against each other.
A displacement of only one oscillator leads to a decay of its vibration while the sec-

ond oscillator starts vibration. Then the vibration of the second oscillator fades away
and the first one again starts to vibrate. The total energy of the system is continuously
exchanged between the two pendula.

3. Equations of motion for coupled identical oscillators

equations of motion of two coupled pendula

mẍ1(t) = −kx1 − k12(x1 − x2)

mẍ2(t) = −kx2 − k12(x2 − x1)

m(ẍ1 − ẍ2) = −(k + 2k12)(x1 − x2)

m(ẍ1 + ẍ2) = −k(x1 + x2)

x1(t) = A sin

(
ωI + ωI I

2
t

)

· cos

(
ωI − ωI I

2
t

)

x2(t) = A sin

(
ωI − ωI I

2
t

)

· cos

(
ωI + ωI I

2
t

)

ωI =
√

k

m
= ω

ωI I =
√

k + 2k12

m

Symbol Unit Quantity

m kg mass of pendulum

k kg/s2 restoring-force
coefficient of
single pendulum

k12 kg/s2 restoring-force
coefficient of
coupling spring

x1,2 m displacements of
pendulum 1, 2

ẍ1,2 m/s2 accelerations of
pendulum 1, 2

A m amplitude

ωI,I I 1/s angular frequency
of fundamental
vibrations

t s time
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Here k12 is the restoring-force coefficient of the coupling spring between the pendula.
The solution given above is obtained by forming (F1 − F2)/m and (F1 + F2)/m, then
solving the equation for the new variables x1 − x2 and x1 + x2, and from there calculating
again x1 and x2.
➤ Each of the two oscillators carries out a beat-like oscillation with a time delay be-

tween them.
The fundamental vibrations are contained in the solutions x1(t) and x2(t):
• Equal-phase fundamental mode, x1(t) = x2(t):

The equations for F1 and F2 reduce to two decoupled equations for a simple
pendulum. The solution to the differential equation yields the angular frequency
ωI = ω =

√
k/m of the free vibration of the uncoupled oscillators.

• Opposite-phase fundamental mode, x1(t) = −x2(t):
The solution yields the angular frequency ωI I =

√
(k + 2k12)/m for each of the two

oscillators.

4. Angular frequencies of the fundamental modes

The angular frequency ωI of the equidirectional, or synchronous, fundamental mode
equals the angular frequency of the individual pendula ω, since the coupling is not in effect
and hence does not influence the pendulum vibration,

ωI = ω =
√

k/m.

For the opposite-directional, or antisynchronous, fundamental mode, the restoring force
differs from that without coupling. The approximate description of the vibration process
by a linear formulation for the restoring force of the individual oscillator with a modified
restoring force coefficient,

F = k′x with k′ �= k = mg

l
,

yields

ωI I =
√

k + 2k12

m
.

Hence, the restoring force of the opposite-phase fundamental mode corresponds to a restor-
ing force coefficient k′ = k + 2k12.

Beat, occurs for both pendula if the system does not perform one of the fundamental os-
cillations. Example: Only one pendulum is moved out of the rest position and then released.
It then transfers its energy completely to the other pendulum and forces it to oscillate. Then
the second pendulum transfers the energy back to the first one, and so forth.

This motion is a superposition of the two fundamental modes.
Coupling coefficient, K , of two identical self-oscillatory systems, defined as

K = ω
2
I − ω2

I I

ω2
I + ω2

I I

with the fundamental frequencies ωI and ωI I . For weak coupling K � 1, ωI ≈ ωI I .

➤ The principle of coupled oscillators is employed in the ballast tanks of ships to reduce
rolling motion at sea. The rolling motion of the ship is transfered to water in a tank at
the bottom of the ship. The flow of water is strongly damped and hence the vibrational
energy of the ship is in the end converted into heat.
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Waves

Waves, propagation of a vibrational state, periodic in space and time, in which energy is
transported without simultaneous mass transport.

Systems in which waves arise may be envisaged as being composed of infinitely many
mutually coupled oscillators. The vibrational state of the individual oscillator depends on
space and time. The energy of the system is permanently redistributed among the oscilla-
tors.

Free waves arise if no external force acts on the system, and no energy is lost (e.g., by
friction). The wave progagates because of the coupling between neighboring oscillators.

Mechanical model of a wave, e.g., by a finite number of pendula weakly coupled to
the nearest neighbors by springs. Apart from the displacement of the masses, all pendula
remain at their position, only the energy is transferred from pendulum to pendulum (see
p. 283).

Waves are described by a function of the form f (�r, t) where f represents the displace-
ment of the oscillator at the space point �r and time t .
➤ Shock waves, non-periodic waves of large amplitude that may be connected with

mass transport. The speed of propagation depends on the amplitude (nonlinear
wave). The superposition principle does not hold for shock waves.

9.1 Basic features of waves

1. Description of waves by the wave equation

Wave equation, linear partial differential equation of second order in space and time for
the function f (�r, t). The wave equation governs the propagation of the wave in space and
time:

� f (�r, t)− 1

c2

∂2 f (�r, t)
∂t2

= ∂
2 f (�r, t)
∂x2

+ ∂
2 f (�r, t)
∂y2

+ ∂
2 f (�r, t)
∂z2

− 1

c2

∂2 f (�r, t)
∂t2

= 0 .

287
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The most general solution to the wave equation is a superposition of waves propagating
with the same velocity c in any direction �ei ,

F(�r, t) =
∑

i

fi

(
t − �ei · �r

c

)
.

➤ It is in general easier to consider infinitely extended waves for the mathematical de-
scription of wave phenomena. But in nature, as a rule, only spatially confined waves
occur. This limitation manifests itself in the shape of the solutions of the wave equa-
tion, which has to be solved with the corresponding boundary conditions.

2. Phase and wave front of a wave

Phase of a wave, the argument of the solution function f , written in the form ωt−�k ·�r+φ,
a quantity which describes the vibrational state of the wave.

Wave front, normal surface, the set of points �r where f at a time t has the same phase
(Fig. 9.1).

Figure 9.1: Wave front, wave
normal �n, wave vector �k,
propagation vector �e, 
V
volume element.

➤ Since the wave is periodic in space, there are always infinitely many wave fronts.
According to the shape of the wave front one distinguishes:
• plane waves,
• cylindrical waves,
• spherical waves.
➤ Any wave front may be considered a plane in sufficiently small spatial regions 
V .
Normal, normal to the wave front.

3. Wave vector and wave number

Wave vector, �k, constant vector appearing in the solution to the wave equation. Its meaning
may be understood by considering the function f (ωt − �k · �r+ φ) for the case t = 0. Then
f has the same value for all points �r with �k · �r = const., i.e., for points �r lying on planes
perpendicular to �k. The planes of equal phase move parallel to each other with velocity
c along the direction of �k. Hence, the vector �k = k · �e represents the direction of wave
propagation (Fig. 9.1),

�k = k · �n , �n : unit vector of the normal to the wave or wave normal .

A wave propagating in the opposite direction has a wave vector −�k.

Propagation vector, �e, �̂k, wave vector normalized to 1,

�e = �̂k = �k/k .

Wave number, k, magnitude of the wave vector |�k|.
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4. Phase velocity, frequency and wavelength of waves

Phase velocity, c, the velocity of the moving wave fronts. For sound, c is the speed of
sound, for light c is the velocity of light in the corresponding medium.

Period, T , the time after which at a fixed space point the vibrational motion repeats
itself (Fig. 9.2, left).

Frequency, f , number of repetitions per second of a defined vibrational state at a fixed
space point (Fig. 9.2, right).

Angular frequency, ω, analogous to the definition for vibrations: ω = 2π f .
Wavelength, λ, distance between two successive wave fronts of equal phase, charac-

teristic quantity of spatial periodicity. The relation between wave number and wavelength
is

k = 2π

λ
, λ = 2π

k
.

Periodicity in time: ω · T = 2π , periodicity in space: k · λ = 2π .
The phase velocity (Fig. 9.3) is given by:

phase velocity LT−1

c = ω

|�k| =
λ

T
= λ f

Symbol Unit Quantity

c m/s phase velocity
ω rad/s angular frequency
�k 1/m wave vector
T s period
f Hz frequency
λ m wavelength

Figure 9.2: Frequency f and wavelength λ of a harmonic wave. c: phase velocity.

5. Phase velocity of various waves

a) Longitudinal waves in liquids:

c = √K/ρ , K compression modulus, ρ density .

b) Longitudinal waves in gases:

c = √κ p/ρ , κ isentropic exponent, p pressure, ρ density .

c) Torsional waves in rods (circular cross-section):

c = √G/ρ , G shear modulus, ρ density .
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Figure 9.3: Propagation of a
harmonic wave.

d) Transverse waves on a string:

c =
√

F

A ρ
, F tension force, A string cross section, ρ density .

e) Electromagnetic waves in a vacuum:

c = 1√
ε0 · µ0

,

ε0 electric field constant, µ0 magnetic field constant (see p. 454 and 469).

f) Electromagnetic waves in a medium:

c = 1√
εr · ε0 · µr · µ0

,

ε0 electric field constant, µ0 magnetic field constant, εr relative permittivity, µr relative
permeability.

6. Plane and spherical waves as special solutions of the wave equation

a) Plane wave, the wave fronts are planes perpendicular to the propagation vector (see
Fig. 9.4).

Figure 9.4: Wave fronts of a
plane wave.
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plane wave

f (�r, t) = A cos(ωt − �k�r+ φ)

�k2 = ω
2

c2

λ = 2π

|�k|

Symbol Unit Quantity

f (�r, t) displacement at position �r
at instant t

A amplitude
ω rad/s angular frequency
t s time
�k 1/m wave vector
�r m position
φ rad phase shift
c m/s phase velocity
λ m wavelength

b) Spherical wave, spherically symmetric solution to the wave equation. The wave
fronts are surfaces of concentric spheres around the source at r = 0 (�k · �r = kr ) (Fig. 9.5):

Figure 9.5: Wave fronts of a
spherical wave.

spherical wave

f (�r, t) = A

|�r| cos(k|�r| − ωt + φ)

Symbol Unit Quantity

f (�r, t) local displacement
A amplitude
ω rad/s angular frequency
t s time
�k 1/m wave vector
�r m position
φ rad phase shift
c m/s phase velocity
λ m wavelength

7. Complex representation of waves

Plane wave:

f (�r, t) = e−j(ωt − �k�r) .
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Spherical wave:
• outgoing from point r = 0

f (�r, t) = e−j(ωt − kr) ,

• converging to point r = 0

f (�r, t) = e−j(ωt + kr) .

8. Superposition principle and the Huygens principle

Superposition principle, linear waves overlay each other without mutual interaction. The
resulting displacement at position �r at instant t is the sum of the displacements of all
individual waves.
➤ The superposition principle does not hold for nonlinear waves (shock waves, gravity

waves).
Huygens principle, principle for constructing wave fronts in wave propagation (Fig. 9.6).
▲ Any point of a wave front serves as starting point of an elementary wave. The wave

front at a later instant is obtained as the envelope of the superposition of all elemen-
tary waves emerging from a given wave front.

▲ Elementary waves are outgoing spherical waves. The wave front of an elementary
wave emitted at instant t has after the time 
t the radius r = c · 
t . Except for the
direction of the normal to the total wave front, the elementary waves mutually cancel
each other by interference.

Figure 9.6: Propagation of
a wave front according to
the Huygens principle. (a):
plane wave, (b): spherical
wave.

9. Vector waves

Many physical quantities, e.g., magnetic or electric field strengths, are vector quantities
and are described by a vector-wave equation,

��g(�r, t)− 1

c2

∂2�g(�r, t)
∂t2

= ∂
2�g(�r, t)
∂x2

+ ∂
2�g(�r, t)
∂y2

+ ∂
2�g(�r, t)
∂z2

− 1

c2

∂2�g(�r, t)
∂t2

= 0 ,

with the vector quantity �g(�r, t). The function �g (and hence the wave equation) may be
decomposed into the Cartesian components gx (�r, t), gy(�r, t), gz(�r, t), which are the solu-
tions to the scalar-wave equations. Special solutions are given above.
■ In electrodynamics, �g stands, e.g., for the vectors of the magnetic flux density �B or

the electric field strength �E that obey vector-wave equations.
Vector wave, solution of the vector-wave equation, e.g., a plane wave,

�g(�r, t) = �A cos(ωt − �k�r+ φ) , �k2 − ω
2

c2
= 0 .
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The vector �A specifies both the wave amplitude, | �A|, and the orientation of displacement

of the oscillators, �̂A = �A/A.
➤ The vectors �g(�r, t) and �A may be decomposed into their components gx , gy , gz and

Ax , Ay , Az with respect to a Cartesian coordinate frame. These components are
solutions to the corresponding scalar-wave equation.

10. Longitudinal wave,

wave in which the propagation vector �̂k and the displacement of the individual oscillators
�A are parallel to each other (Fig. 9.7),

�A = |�A| �̂k .

■ A helical spring lying on a support plane is given an impulse along its longitudinal
axis. The induced local compression propagates along the spring; the individual sec-
tions of the spring vibrate along the spring axis, which thus defines the propagation
vector of the compression wave.

➤ Sound is an example of a longitudinal wave in which pressure variations, hence com-
pression waves, propagate through the medium.

Figure 9.7: Propagation of a longitudinal wave.

11. Transverse wave,

wave in which the oscillators vibrate perpendicularly to the wave-propagation vector,

�̂k · �A = 0 .

■ If the end of an extended rope is quickly moved up and down, crests and troughs run
along the rope. The individual sections of the rope are displaced perpendicularly to
the rope axis while the wave itself travels along the rope.

➤ Electromagnetic waves are transverse waves, with the electric- and magnetic-field
vectors pointing perpendicularly to the wave-progagation vector.

9.2 Polarization

Polarization, orientation of the wave vector �k with respect to the wave displacement vec-

tor �̂A.
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Longitudinal polarization, the wave number vector is parallel to the local wave-
displacement vector.

Transverse polarization, the wave-number vector points perpendicularly to the wave-
displacement vector.

Figure 9.8: Polarization of transverse waves. (a): linear polarization, (b): circular polariza-
tion.

Distinction between transverse waves according to the behavior of the displacement
vector:
• Linear polarization, the displacement vector �A does not change its orientation in a

plane perpendicular to �k (Fig. 9.8a).
• Elliptic polarization, the displacement vector �A rotates in the plane perpendicular to

�k. The end point of �A describes an ellipse in this plane.
• Circular polarization, the displacement vector �A rotates in the plane perpendicu-

lar to �k. The end point of �A describes a circle, special case of elliptic polarization
(Fig. 9.8b).

If �k points in z-direction of a coordinate frame, the displacement vector �A lies in the
x-y plane. The rotation of �A may be represented by a superposition of two linearly po-
larized vibrations along the x- and y-axis, respectively: x(t) = A sin(ωt − φx ) and
y(t) = B sin(ωt − φy).

9.3 Interference

Interference, notation of phenomena occurring in the superposition of waves. In the more
restricted sense interference means superposition of coherent waves.

9.3.1 Coherence
Coherent waves: Two waves are coherent if their phase difference does not vary with time.
■ A laser generates coherent monochromatic light.
An extended conventional light source can generate coherent waves through reflection of a
focused beam by a half transparent mirror.
■ Coherent waves may be generated with an extended conventional source of light by

reflection of a pencil-like ray by a semitransparent mirror, or by a plane-parallel plate.
■ Two waves without an established phase relation are called incoherent.
Wave train, a wave confined in time and space that is composed of a superposition of
infinitely many waves of different frequencies and phase shifts.

Coherence, the property of wave trains of being able to interfere. The effects resulting
from superposition can be experimentally demonstrated in the time average.
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For wave trains, interference may be detected if the waves are superimposed in the re-
gion of observation, and if the intensity maxima and minima do not permanently vary in
position.

Coherence length, l, largest path difference of two wave trains for which an interference
may just still take effect. If a wave train is generated (for light: emitted) within the time
interval τ :

coherence length L

l = cτ

Symbol Unit Quantity

l m coherence length
c m/s propagation speed
τ s time interval

9.3.2 Interference
For linear waves, the superposition principle holds.
▲ The instantaneous displacement of the resulting wave at a given spatial position is ob-

tained by adding the instantaneous displacements of all partial waves at this position
(Fig. 9.9).

1. Examples of interference

Superposition of two waves of identical amplitude A and angular frequency ω, but different
phase angles φ, propagating in the same direction. First wave:

y1(x, t) = A cos(ωt − kx + φ1) .

Second wave:

y2(x, t) = A cos(ωt − kx + φ2) .

Using the addition theorem for the cosine function, one gets for the resulting wave

yres(x, t) = y1(x, t)+ y2(x, t)

= 2A cos

(
ωt − kx + φ1 + φ2

2

)
· cos

(

φ

2

)

with the phase difference


φ = φ1 − φ2 .

2. Path difference and intensity in interference

Path difference, δ, for a given phase difference 
φ defined as follows:

path difference L

δ = 
φ
2π
λ

Symbol Unit Quantity

δ m path difference

φ rad phase difference
λ m wavelength
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Intensity, I , notation for the square of the wave amplitude.
The resulting wave described above has the intensity

I = 2A2 (1+ cos(�1 −�2)) , �1 = ω1t + φ1 , �2 = ω2t + φ2 .

If two waves of frequencies f1 and f2 are superposed, the intensity of the resulting wave
has a period T (see p. 279):

T =
∣∣∣∣ 1

f1
− 1

f2

∣∣∣∣ .
If the time of observation is essentially larger than T , only the mean value of the intensity
can be measured:

Ī = 2A2 = I1 + I2,

i.e., the interference term 2A cos(�1 −�2) drops out. The same holds in general for the
superposition of incoherent waves and of wave trains:
▲ In the superposition of incoherent waves, there is no interference; the intensities of

the individual waves simply sum.

3. Special cases of interference

• Constructive interference, enhancement, δ = nλ, n integer. Superposing waves of
equal amplitude may lead to maximum enhancement, the amplitude of the resulting
wave being then twice the amplitude of the initial waves.

• Destructive interference, cancellation, δ = (2n + 1)λ/2, n integer. The waves
cancel each other, the resulting wave has zero amplitude.

• δ = (n+1/4)λ, n integer. The resulting amplitude is
√

2A, the phase of the resulting
wave is shifted so that its zero passages are between those of the original waves.

Figure 9.9: Interference.
Superposition of two waves
y1, y2 (dashed lines) of
different frequencies and
amplitudes at a fixed time
as function of the position
x . The resulting wave y is
shown by the solid line.

9.3.3 Standing waves
Standing waves, are generated by superposition of two waves of equal frequency, ampli-
tude and phase, but with opposite directions of propagation (Fig. 9.10). The wave numbers
(�k,−�k) of both waves have the same magnitude, but are antiparallel.

Mathematical description:

y1(�r, t) = A cos(�k · �r− ωt),

y2(�r, t) = A cos(−�k · �r− ωt),

y(�r, t) = y1(�r, t)+ y2(�r, t) = −2A cos(ωt) cos(�k · �r).
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Figure 9.10: Standing wave.
Displacement y at the
positions x for different
instants of time.

▲ The minima and maxima of the standing wave are fixed in space.
Node, notation for a space-fixed minimum of a standing wave.

Antinode, notation for a space-fixed maximum of a standing wave.

9.3.3.1 Standing waves in rods tightly mounted at one end
If a density wave travels along a rod of length l, it is reflected at its ends. The end at which
the rod is attached forms a fixed end (Fig. 9.11). Standing waves arise in the rod if the
wavelength λn is:

standing wave: one free, one fixed end L

λn = 4l

2n + 1

Symbol Unit Quantity

λn m wavelength
l m rod length
n 1 number of nodes

These standing waves are called the natural vibrations of the rod. Waves of the same
type also arise for half-closed pipes. The node number n (≥ 0) corresponds to the number
of nodal points of the standing wave; the node at the fixed end is not counted.

Figure 9.11: Natural vibrations of a rod with one free and one fixed end.

Fundamental vibration, standing wave with n = 0. Its wavelength is

λ0 = 4l .

Fundamental frequency, f0, frequency of the fundamental vibration,

f0 = c

λ0
= c

4l
,

where c is the phase velocity of the density wave in the rod.
Harmonic, standing wave with a node number n different from zero.
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M A rod is excited into oscillation by giving it a transverse or longitudinal impulse. The
impulse generates a complicated excitation involving many frequencies. Vibrations
with frequencies that do not correspond to the natural vibrations of the rod decay
much more rapidly than vibrations with the natural frequencies of the rod.

9.3.3.2 Standing waves on strings
String, elastic object having a length considerably larger than its diameter.

If a string is attached at both ends, transverse waves may be excited that are reflected at
the fixed ends. For suitable values of the wavelength, there arise standing waves called the
natural vibrations of the string (Fig. 9.12).

Condition for the wavelength λn :

standing wave: two fixed ends L

λn = 2l

n + 1

Symbol Unit Quantity

λn m wavelength
l m string length
n 1 node number (≥ 0)

Figure 9.12: Natural vibrations of a string with two fixed ends.

Fundamental vibration, standing wave for the case n = 0, wavelength

λ0 = 2l .

Fundamental frequency, f0, frequency of the fundamental vibration,

f0 = c

λ0
= c

2l
,

where c is the phase velocity of the wave on the string.
The pitch (frequency of the fundamental mode) decreases with increasing diameter of

the string (e.g., piano strings).

9.3.3.3 Standing waves in Kundt’s tube

M Kundt’s tube, device to make longitudinal standing waves visible in air. It consists
of a glass tube, closed at one end by a vibrating membrane (e.g., loudspeaker), and
a movable piston that closes the other end. The bottom of the (horizontal) tube is
covered with cork powder.

The membrane excites the air column in the tube into vibration. The length of the
column may be controlled by the position of the piston. The waves are reflected at
the piston surface (fixed end), hence standing waves may arise for appropriate tube
lengths. At the positions of vibrational nodes, the cork powder remains at rest, while
it spreads perpendicular to the tube axis at the positions of antinodes.
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➤ By shifting the piston, the length of the air column may be varied, and thus the reso-
nance condition for formation of standing waves may be observed.

➤ The pressure distribution along the air column may be visualized by a similar device,
the flame tube invented by Rubens.

Resonance condition for the wavelength λn in the case of two free ends (Fig. 9.13):

standing wave: two free ends L

λn = 2l

n + 1

Symbol Unit Quantity

λn m wavelength
l m tube length
n 1 integer, non-negative

Figure 9.13: Normal vibrations in Kundt’s tube with two free ends.

Fundamental vibration, standing wave for the case n = 0, wavelength

λ0 = 2l .

Fundamental frequency, f0, frequency of the fundamental vibration,

f0 = c

λ0
= c

2l
,

where c is the phase velocity of the wave in air (sound velocity).

9.3.4 Waves with different frequencies
1. Superposition of two harmonic waves

Two harmonic waves

y1(x, t) = A cos(ω1t − k1x) ,

y2(x, t) = A cos(ω2t − k2x)

with different frequencies and wave numbers, but equal amplitude sum to form

y(x, t) = y1(x, t)+ y2(x, t) = 2A cos(ωt − kx) cos(
ωt −
kx)

with

ω = ω1 + ω2

2
, k = k1 + k2

2
, 
ω = ω1 − ω2

2
, 
k = k1 − k2

2
.
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This corresponds to a wave of angular frequency ω whose amplitude is modulated with the
frequency 
ω.

Envelope of the wave:

cos(
ωt −
kx) .

Group velocity, vgr, velocity of motion of the wave envelope,

vgr = 
ω

k
= ω1 − ω2

k1 − k2
.

2. Wave packet,

wave group, spatially confined (localized) wave that may be generated by superposition
of infinitely many harmonic waves with a continuous distribution c(�k) of wave vectors
(Fourier synthesis):

f (�r, t) =
∫

c(�k) cos(ωt − �k�r) d3�k , �k = k(ω) �e , �e : propagation vector .

The wave packet may be generated for any envelope by an appropriate choice of the distri-
bution c(�k).

Group velocity of a wave packet in a medium, vgr, defined as
dω

d�k .

group and phase velocity in one-dimensional medium LT−1

vgr = v − λdv

dλ

vgr = dω

dk

Symbol Unit Quantity

vgr m/s group velocity in medium
v m/s phase velocity in medium
λ m wavelength
k 1/m wave number
ω 1/s angular frequency

Group velocity and phase velocity differ if the propagation speed of waves in a medium
depends on the wavelength, i.e., if dispersion occurs (see p. 305).

The transport of energy (more general: information) by a wave packet proceeds with the
group velocity.

9.4 Doppler effect

Doppler effect, frequency and wavelength registered by an observer depend on the relative
speed of the source of wave and the observer.
■ The tone of a horn of a car moving towards an observer seems higher than the tone

from the car at rest.
The number of wave fronts reaching the observer within a certain time interval changes if
the source of waves moves towards or away from the observer (Fig. 9.14).
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Figure 9.14: Doppler effect.
Wave fronts of a source
moving with velocity �vq
in the rest frame of the
observers B, B ′.
λb, λ

′
b: wavelength

measured by the observer.

1. Case distinction for Doppler effect in a medium

For the Doppler effect in a medium, the relation between the frequency fq and the wave-
length λq in the rest frame of the wave source and the frequency fb and wavelength λb in
the rest frame of the observer depends on whether source, observer, or both, are moving:

Doppler effect: moving source, observer at rest

fb =
fq(

1± vq
c

)

λb =
(

c

fq

)(
1± vq

c

)

Symbol Unit Quantity

fb Hz frequency in the observer rest frame
fq Hz frequency in the source rest frame
λb m wavelength in the observer rest frame
λq m wavelength in the source rest frame
vq m/s velocity of source in medium
c m/s phase velocity in medium

➤ In the formulas given above, the plus (minus) sign holds when the source moves away
from (towards) the observer.

Doppler effect: source at rest, moving observer

fb = fq
(

1± vb

c

)

λb = c

fq

1(
1± vb

c

)

Symbol Unit Quantity

fb Hz frequency in the observer rest frame
fq Hz frequency in the source rest frame
λb m wavelength in the observer rest frame
λq m wavelength in the source rest frame
vb m/s velocity of observer in medium
c m/s phase velocity in medium

➤ In the formulas given above, the plus (minus) sign holds if the observer moves to-
wards (away from) the source.

2. Doppler effect for electromagnetic waves without dispersion,

frequency f ′ in the moving reference frame for:

a) transverse Doppler effect: observer moves with the relative velocity v with respect
to the source, perpendicular to the propagation vector of the electromagnetic wave:

f ′ = f
√

1− (v/c)2 ;
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b) longitudinal Doppler effect: observer moves with the relative velocity v with re-
spect to the source:
• source moves away from the observer,

f ′ = f

√
c − v
c + v ,

• source approaches the observer,

f ′ = f

√
c + v
c − v .

M The Doppler effect is employed in radar speed measurement, in which electromag-
netic waves are reflected, e.g., by moving cars.

9.4.1 Mach waves and Mach shock waves
Mach wave, conical wave front with the source as apex. Mach waves arise when a source
traverses a medium with a velocity vq that exceeds the propagation speed c of the waves
in the medium. The half angle of the apex α of the Mach cone may be calculated with the
Mach formula,

Mach angle α 1

sinα = c

vq

Symbol Unit Quantity

α rad half apex angle of Mach cone
c m/s sound velocity in the medium
vq m/s velocity of source in the medium

■ Supersonic bang for sound waves.
■ Čerenkov radiation for electromagnetic waves, generated by charged particles mov-

ing with a velocity v > c/n, where n > 1 is the refractive index of the material
through which the wave is passing.

Mach number M , quotient of the velocity of source vq and the sound velocity c.
■ Commercial airliners typically fly at v < 1000 km/h, M < 1. The Concorde reaches

M > 2.
Mach shock waves, arise if the sound velocity of the medium traversed by the source
depends on the density of the medium. In general, the sound velocity increases with in-
creasing density. The sound velocity is largest near the source because its motion causes
a compression of the medium. The fronts of maximum density therefore deviate from the
conical shape by a typical curvature. The Mach formula still holds in the following sense:
If the tangent to the wave front is shifted along the curved front, the tangent coincides with
the cone calculated via the Mach formula at the position of the source. The Mach shock
front then lies within this cone.

9.5 Refraction

1. Definition of refraction

Refraction, change of the direction of wave propagation at the interface of two media with
different propagation speeds.
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Refraction may be interpreted by means of Huygens’ concept of elementary waves: Any
point of the interface reached by the incident wave front serves as source of an elementary
wave with the propagation speed of the medium. The elementary waves then generate a
new wave front (Fig. 9.15).

Interface

Wave fro
nt

Wave f
ront

Figure 9.15: Refraction
in the wave picture.
ε, ε′: angles between the
propagation vectors before
and after refraction, and the
normal of the interface.

➤ Refraction can also be explained by Fermat’s principle, which says that light prop-
agation between two points proceeds along the optical path for which the minimum
transit time is required. One must take into account that the propagation speed of light
depends on the local (possibly position-dependent) refractive index of the medium
traversed. Hence, the determination of the optical path is a typical variational prob-
lem.

2. Refraction law

▲ If the propagation speed of the wave in the media is c1 and c2, respectively, then for
an incidence angle ε, the refraction angle ε′ is (Fig. 9.16):

refraction law (Snell’s law)

sin ε

sin ε′ =
c1

c2

Symbol Unit Quantity

ε rad incidence angle
ε′ rad refraction angle
c1, c2 m/s wave velocities in medium 1, 2

Figure 9.16: Refraction
law. ε: angle of incidence,
ε′: refraction angle. c1, c2:
wave velocities in medium
1, 2, respectively.

➤ The elementary waves excited at the interface also propagate back into the medium
from which the primary wave is incident. Hence, if a wave strikes an interface, it is
partly refracted and partly reflected.
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9.6 Reflection

Law of reflection (Fig. 9.17):
• The angle of incidence equals the angle of reflection.
• The reflected ray lies in the plane of incidence, which includes the incident ray and

the normal of the reflecting surface.

angle of incidence = angle of reflection

ε = εr
Symbol Unit Quantity

ε rad angle of incidence
εr rad angle of reflection

Normal

Figure 9.17: Law of
reflection. ε: angle of
incidence, εr: angle of
reflection.

9.6.1 Phase relations
1. Phase shift under reflection

The phase of the wave changes under reflection, depending on the type of reflecting inter-
face:
▲ If a wave is reflected by an interface behind which the wave velocity is higher than in

the medium before the interface, the phase of the reflected wave remains unchanged.
▲ If a wave is reflected by an interface behind which the wave velocity is lower than in

the medium before the interface, the phase of the reflected wave changes by π .
■ If light propagates in a vacuum and hits a plate of glass, the light is reflected with a

phase shift of π .

2. Phase relations for mechanical waves

• Reflection at a free end, the point where reflection occurs is free to move: no phase
shift arises.

• Reflection at a fixed end, the point where reflection occurs is less movable than the
rest of the system: a phase shift of π radians arises.

Figure 9.18: Phase shift
under reflection. (a):
reflection at a fixed end,
(b): reflection at a free end.
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■ If one end of a helical spring is tightly fixed to a rigid wall, and longitudinal or
transverse waves run along the spring, the attached end is a fixed end (reflection with
phase shift).
If the end of a helical spring is attached to a wall by a thin long cord, this is a free
end (no phase shift) (see Fig. 9.18).

9.7 Dispersion

Dispersion, dependence of the phase velocity of a wave on its wavelength:

a) normal dispersion: the phase velocity v increases with increasing wavelength λ,

dv

dλ
> 0 , vgr < v .

The group velocity vgr = v − λdv

dλ
(see p. 300) is smaller than the phase velocity v.

b) anomalous dispersion: the phase velocity v decreases with increasing wavelength
λ,

dv

dλ
< 0 , vgr > v .

The group velocity vgr = v − λdv

dλ
is larger than the phase velocity v.

c) no dispersion: the phase velocity v does not depend on the wavelength λ,

dv

dλ
= 0 , vgr = v .

The group velocity vgr equals the phase velocity v.

9.8 Diffraction

Diffraction, deviation from the straight propagation of waves. Explanation by Huygens’
elementary waves emitted from any point of an object reached by the wave.

Figure 9.19: Propagation of a plane wave of wavelength λ into the shadow region behind
a slit of width d . The diffraction effect increases with decreasing ratio of slit width to
wavelength.
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Shadow, region behind an object which in the sense of geometric optics is not accessible
to rays emitted by the source. The wave intrudes by diffraction into the geometric shadow
region behind the object (Fig. 9.19). The details of the diffraction pattern are determined
by the ratio of the wavelength to the geometric extension of the object.

9.8.1 Diffraction by a slit
1. Diffraction of a plane wave by a slit

Let a plane wave be incident perpendicularly on a long rectangular slit of width d . The
wave fronts are then parallel to the aperture plane. Any point in the plane of the slit acts as
an emitter of Huygens’ elementary waves (Fig. 9.20). On a screen far behind the aperture
plane, the intensity pattern Iα depends on the diffraction angle α, i.e., the angle through
which the wave-propagation vector is deflected:

intensity distribution for diffraction by a slit 1

Iα = I0

sin2
(
πd sinα

λ

)
(
πd sinα

λ

)2

Symbol Unit Quantity

α rad diffraction angle
Iα 1 intensity at α
I0 1 intensity at α = 0
d m slit width
λ m wavelength

Figure 9.20: Diffraction
by a slit according to the
wave picture. λ: wavelength,
d: slit width, 
: path
difference, α: diffraction
angle.

➤ This formula holds only if the distance between the screen and the aperture plane is
very large compared with the slit width.

This form of intensity distribution is explained by the fact that the elementary waves emit-
ted from different points of the slit plane have different path differences 
 that depend
on α. Therefore the elementary waves emerging from the half-slits may constructively or
destructively interfere with each other (Fig. 9.21).

Figure 9.21: Diffraction by
a slit of width d . Intensity
distribution as function of
x = πd sin(α)/λ.



9.8 Diffraction 307

2. Intensity maxima and minima in diffraction by a slit

Position of intensity minima: angles αn satisfying the condition

sinαn = ±n
λ

d
, n = 1, 2, 3, . . . .

Position of intensity maxima: angles αn satisfying the condition

sinαn = ±
(

n + 1

2

)
λ

d
, n = 1, 2, 3, . . . .

➤ The main maximum is the dominant zeroth intensity, or diffraction maximum at
αn = 0.

▲ In diffraction by a circular diaphragm of diameter d , the first interference minimum
occurs at

sinα = 1.22
λ

d
.

Because of diffraction by circular diaphragms (lens apertures, etc.), optical instru-
ments may image two distinct points only if the points subtend an angle ε,

ε ≥ 1.22
λ

d
.

This limitation is called the resolving power.

9.8.2 Diffraction by a grating
Let a plane wave be incident on a grating of slit width d and distance g between the slits.
Let the number of slits be q (Fig. 9.22).

Grating constant g, notation for the distance between the slits (“grooves”) of a ruled
grating.

The intensity distribution on a screen far behind the plane grating may be explained
by the superposition of Huygens’ elementary waves emerging from the grating grooves
(Fig. 9.23). The elementary waves generated by different grooves superpose with path
differences depending on the diffraction angle α, as follows:

intensity pattern for a diffraction grating 1

Iα = I0

sin2
(
πd sinα

λ

)
(
πd sinα

λ

)2
·

sin2
(

qπg sinα

λ

)

sin2
(
πg sinα

λ

)

Symbol Unit Quantity

α rad diffraction angle
Iα 1 intensity at α
I0 1 intensity at α = 0
d m slit width
g m grating constant
q 1 number of slits
λ m wavelength

Position of the intensity maxima at angles αn satisfying the condition

sinαn = ±n
λ

g
, n = 0, 1, 2, . . . .
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Figure 9.22: Diffraction at a
grating with grating constant g. λ:
wavelength, α: diffraction angle.

Figure 9.23: Intensity distribution for diffraction
at a double slit (grating with q = 2) as a function
of x = πg sin(α)/λ. λ: wavelength, g: grating
constant, α: diffraction angle.

9.9 Modulation of waves

Waves may be used as carriers of signals. The information is impressed on them during
their generation, and this information may be obtained upon receiving the waves.

Modulation, process of impressing information onto a wave in sending.
Demodulation, process of picking up the information when receiving the wave.
Addressing, selection of the receiver of a signal, mostly by selecting a particular fre-

quency of the carrier wave conveying the signal.
Transmitting signals by modulation of electromagnetic waves is an extremely important

technology (radio, television, cellular phones, etc.).

1. Amplitude modulation

Amplitude modulation (AM), variation of the amplitude of a high-frequency carrier
wave in the sequence of the low-frequency signal to be transmitted. Modulating signal:

A sin(	t).

The time dependence of the displacement y of an amplitude-modulated wave at a fixed
position is then

y(t) = (A +
A sin(	t)) sin(ωt) ,

where ω is the angular frequency of the carrier wave, and 	 is the angular frequency of the
signal (Fig. 9.24).
■ Amplitude modulation is employed in AM radio broadcasting for the long-wave,

medium-wave and short-wave ranges.

Figure 9.24: Amplitude
modulation. Example:
δA = 0.25 A, 	 = 0.1ω.
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2. Frequency modulation

Frequency modulation (FM), variation of the frequency of a high-frequency carrier wave
in the sequence of the low-frequency signal. Modulating signal: 
ω

	
sin(	t).

The dependence of the displacement y of a frequency-modulated wave at a fixed position
is then given by

f (t) = A sin

(
ωt − 
ω

	
cos(	t)

)
,

where ω is the angular frequency of the carrier wave,	 the angular frequency of the signal
(Fig. 9.25).

f (x)

1

0

–1

f (x )=sin(6x -3cos(x ) )

- p p x Figure 9.25: Frequency
modulation with
ω = 0.5ω
and 	 = ω/6.

■ Very-high-frequency (VHF) radio transmission, for example in television, uses fre-
quency modulation (FM) of electromagnetic waves.

Phase modulation, variation of the phase angle of a carrier wave by the signal.
➤ Phase modulation and frequency modulation are identical if the modulation is per-

formed with a sine oscillation.

3. Pulse modulation

Pulse modulation, (Fig. 9.26), variation of
• the amplitude, frequency or phase of a pulse function,
• the duration of a pulse.

Figure 9.26: Methods of pulse modulation. (a): pulse amplitude modulation, (b): pulse
frequency modulation, (c): pulse duration modulation.

9.10 Surface waves and gravity waves

Surface waves, boundary waves at the free surface of a liquid.
▲ Surface waves are neither purely longitudinal, nor purely transverse, waves.
The particles of the liquid carry out complicated ellipse-like motions. Gravity waves at the
liquid–gas boundary exhibit a dependence of the propagation velocity on the wavelength
(dispersion, Fig. 9.27):
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phase velocity of surface waves LT−1

vo =
√

gλ

2π
+ 2πσ

λρ

Symbol Unit Quantity

vo m/s phase velocity
g m/s2 gravitational acceleration
λ m wavelength
σ N/m surface tension
ρ kg/m3 density of liquid

o

0.4

0.3

0.2
0 20 40 60 80

Figure 9.27: Dispersion of
surface waves (h > 0.5 λ).
h: depth of liquid,
λ: wavelength.

The density of the liquid must be large relative to the density of the gas. The depth of
the liquid h must be larger than 0.5λ.

For low depth of liquid h < 0.5λ:

vo =
√

gh .

The following table lists various kinds of water waves:

Name Period Cause

capillary waves up to 1 s wind
ordinary gravity waves 1 . . . ≈ 12s wind
ocean swells, 0.5 . . . 5 min ordinary gravity
infra gravity waves waves, wind
tsunamis 5 min up to several hours earthquakes, wind and

changes of air pressure
tidal waves 12, 24 hours Moon, Sun
trans-tidal waves >24 h Moon, Sun, storms
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Acoustics

Acoustics, the science of vibrations and waves in elastic media. In the more narrow sense,
it deals with the audible region of frequencies between 16 Hz and 20 kHz. Physiological
and psychological aspects of hearing are also part of the field of acoustics.
■ Elastic media comprise air and water, and solid bodies such as metals, concrete and

wood.

10.1 Sound waves

Sound waves, propagation of pressure variations in elastic media.
▲ Both longitudinal waves and transverse waves occur in solid elastic media.
▲ In longitudinal waves, the particles oscillate parallel to the direction of wave propa-

gation.
▲ In gases, and to a large extent in liquids, there is no shear viscosity. Therefore, only

non-polarizable longitudinal waves arise.
Longitudinal waves propagate in elastic media as rarefaction and compression fronts.

Rarefaction front, ensemble of neighboring points with minimum pressure.
Compression front, ensemble of neighboring points with maximum pressure.

▲ There is no sound in a vacuum.

10.1.1 Sound velocity
In a three-dimensional homogeneous medium, the sound from an ideal point source prop-
agates in the form of spherical waves.

Sound velocity, c, speed of propagation of sound waves in a medium.
Meter/second, m/s, SI unit of sound velocity. The sound velocity has the value 1 m/s if

sound propagates 1 m in 1 s.
[c] = m/s.
The sound velocity depends on the properties of the medium.

➤ For large amplitudes, the sound velocity depends on the amplitude.

311
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1. Velocity of sound in gases

Velocity of sound in gases, depends on the adiabatic coefficient κ (see p. 690) and the
temperature T or the pressure p of the gas:

velocity of sound in gases LT−1

c G =
√

p · κ
ρ

= √κRs T

Symbol Unit Quantity

c G m/s velocity of sound
p Pa pressure
κ 1 adiabatic coefficient
ρ kg/m3 density of gas
T K temperature
Rs J/(K kg) specific gas constant

■ The velocity of sound of many commonly used gases is in the range of c ≈ 200 –
1300 m/s, i.e., in the range of the mean molecular velocities.

▲ The velocity of sound in gases depends strongly on the temperature.
The temperature dependence of the velocity of sound in air in the range between −20 ◦C
and 40 ◦C may be approximated linearly:

cL = (331.5+ 0.6 · T ) m/s, T in ◦C

(see Tab. 12.1/2 and 12.1/3, velocity of sound of various gases).

2. Velocity of sound in liquids

Velocity of sound in liquids, depends on the compression modulus K (see p. 160) and the
density ρ of the liquid:

velocity of sound in liquids LT−1

cFl =
√

K

ρ

Symbol Unit Quantity

cFl m/s velocity of sound
ρ kg/m3 density
K N/m2 compression modulus

■ cFl is in the range of 1100 – 2000 m/s (water at 20 ◦C: cW = 1480 m/s).
■ Sound velocities in liquids: water (20 ◦C) 1480 m/s, benzene (20 ◦C) 1330 m/s,

methyl alcohol (20 ◦C) 1156 m/s, naphta (25 ◦C) 1295 m/s, transformer oil (32.5 ◦C)
1425 m/s (see Tab. 12.1/6 and 12.1/7).

3. Velocity of sound in solids

Velocity of sound in solids, depends on the elasticity modulus E (see p. 168) and the
density ρ of the solid:

velocity of sound in solids (rods) LT−1

cSo =
√

E

ρ

Symbol Unit Quantity

cSo m/s velocity of sound
E N/m2 elasticity modulus
ρ kg/m3 density
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➤ Sound waves in solids may be longitudinal waves or transverse waves.
➤ For non-isotropic solids, the velocity of sound depends on the direction of propaga-

tion.
➤ In applications of ultrasound, the wave is transversely confined to a small region of

the body. The velocity of sound is then given by

c =
√

E(1− ν)
ρ(1+ ν)(1− 2ν)

;

ν is the coefficient of transverse contraction.
■ cSo is in the range of 1200–6000 m/s (concrete: c = 3100 m/s, iron: c = 5000 m/s).
■ Velocity of sound in solids: iron 5000 m/s, lead 1200 m/s, tin 2490 m/s, PVC (soft)

80 m/s, PVC (hard) 1700 m/s, concrete 3100 m/s, beech wood 3300 m/s, cork
500 m/s (see Tab. 12.1/9, 12.1/10, 12.1/11).

10.1.2 Parameters of sound
1. Sound pressure,

p, superposed on the static equilibrium pressure p0 (e.g., air pressure) and connected with
the compressions and rarefactions of the medium. The pressure p has a sinusoidal depen-
dence on time and space. For an excitation frequency f , the pressure p in one dimension
is given by:

harmonic sound pressure ML−1T−2

p(x, t) = p̂ cos
[
2π f

(
t − x

c

)]
ptot = p0 + p(x, t)

Symbol Unit Quantity

p Pa pressure
p0 Pa static pressure
ptot Pa total pressure
p̂ Pa pressure amplitude
f 1/s frequency
t s time
x m position
c m/s velocity of sound

Effective sound pressure, peff, analogous to the effective value of electric alternating
currents:

peff = p̂√
2
.

➤ In the three-dimensional case, the sound pressure decreases with increasing distance
from the source as follows (Fig. 10.1),

p̂ = p̂(r0)
r0

r
: point source,

p̂ = p̂(r0)

√
r0

r
: linear source.
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Figure 10.1: The sound pressure amplitude depends on the distance from the source.
(a): point-like source, (b): linear source. r0: reference distance from the source of sound.

2. Wavelength of sound,

wavelength of sound, λ, distance between two zero crossings of the cosine or sine curve
at the same time instant and in the same direction. The wavelength is proportional to the
reciprocal value of the frequency:

wavelength = velocity of sound/frequency L

λ = c

f

Symbol Unit Quantity

λ m wavelength of sound
c m/s velocity of sound
f Hz sound frequency

■ For an exciting frequency of f = 300 Hz, the wavelength in air is λ ≈ 1 m.

3. Sound frequencies

Frequency bands of sound:
Infrasound, sound of frequencies f < 16 Hz,
Audible sound, sound within the audible range, 16 Hz < f < 20 kHz,
Ultrasound, sound with frequencies f > 20 kHz.

■ Bats emit sound in the ultrasonic range.
■ Galton whistle, pipe of variable length. It generates sound up to the ultrasonic range

(< 30 kHz).
M Ultrasound is employed for range finding and signal transmission, as well as for ma-

terials testing, cleaning, and underwater sound ranging (sonar).
Hypersound, sound of frequencies f > 10 GHz, generated by piezoelectric excitation of
quartz crystals.

M Application of hypersound in phonon spectroscopy and molecular dynamics.
Debye frequency, upper limit of frequency for sound vibrations. The limit corresponds to
a wavelength in the range of twice the molecular distance.
■ In iron the interatomic distance is 2.9 · 10−10 m. With a sound velocity of c ≈

5 · 103 m/s, one obtains from f = c/λ a Debye frequency of ≈ 1013 Hz.

10.1.2.1 Sound displacement
Sound displacement, displacement y(x, t), displacement of the vibrating particles of the
medium from their rest position:

y(x, t) = 1

2π f

1

ρc
p̂ sin

{
2π f

(
t − x

c

)}
.
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▲ For plane waves, the phase shift of the sound displacement y with respect to the sound
pressure p is π/2.

10.1.2.2 Sound particle velocity and wave resistance

1. Sound particle velocity,

v, the velocity of the vibrating particles of the medium in a sound wave:

v(x, t) = dy(x, t)

dt
.

The space and time dependence of the sound particle velocity v(x, t) is given by

v(x, t) = p̂

ρ · c cos
[
2π f

(
t − x

c

)]
.

The amplitude of the sound particle velocity v̂ is proportional to the pressure amplitude p̂.
The inverse of the proportionality coefficient is the characteristic acoustic impedance Z :

amplitude of sound particle velocity LT−1

v̂ = 1

Z
p̂

= 1

ρ · c p̂

Symbol Unit Quantity

v̂ m/s amplitude of sound particle velocity
p̂ Pa pressure amplitude
ρ kg/m3 density
c m/s velocity of sound
Z kg/(m2s) characteristic acoustic impedance

➤ In practice, the effective value of the amplitude of sound particle velocity, veff =
v̂/
√

2, is usually given instead of the amplitude v̂ itself.

2. Acoustic radiation resistance,

Characteristic acoustic impedance, Z , characteristics of the medium with respect to wave
propagation: product of the density of the medium ρ and the velocity of sound c. The
characteristic acoustic impedances are material constants:

Z = p̂

v̂
= ρ · c .

[Z ] = kg/(m2s), SI unit of the characteristic acoustic impedance Z .
■ Characteristic acoustic impedances (in kg/(m2s)) of several media under standard

conditions (pn, Tn): air 427, water 1.4 · 106, concrete 8 · 106, glass 13 · 106, steel
39 · 106.

➤ If two media have identical characteristic acoustic impedances, no reflection occurs
at their interfaces (see p. 304).

Hearing threshold, lower limit of audibility at f = 1000 Hz, i.e., the minimum value of
sound volume that still may be registered by a human.

Reference-sound pressure peff,0, effective sound pressure at the minimum hearing
threshold, according to DIN 45630

peff,0 = 2 · 10−5 Pa .
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10.1.2.3 Energy density
Energy density of a sound wave, w, the transported sound energy 
W per volume ele-
ment 
V :

w = dW

dV
= lim

V→0


W


V
.

For a sound wave, the energy density w is proportional to the square of the amplitude of
the sound particle velocity v̂, or to the square of the amplitude of the sound pressure p̂:

energy density of a sound wave MT−2L−1

w = 1

2

p̂2

ρc2

= 1

2
v̂2 · ρ

Symbol Unit Quantity

w J/m3 energy density
p̂ Pa pressure amplitude
ρ kg/m3 density
c m/s velocity of sound
v̂ m/s amplitude of sound particle velocity

The sound energy W in the volume V is obtained by integrating the energy density w over
the volume V :

W =
∫
V

w dV .

10.1.2.4 Sound intensity and sound power

1. Sound intensity,

Sound intensity, I , the energy W of the sound wave passing through an area A per unit
time, product of the energy density w and the velocity of sound c:

sound intensity MT−3

I = 1

A

dW

dt

= w · c

Symbol Unit Quantity

I W/m2 sound intensity
w J/m3 energy density
c m/s velocity of sound
W J energy
t s time
A m2 area

Watt/square meter, W/m2, SI unit of the sound intensity I .
[I ] =W/m2.

The sound intensity, expressed by the amplitudes of sound particle velocity v̂ and sound
pressure p̂, is given by

I = 1

2
v̂ p̂ = 1

2
ρcv̂2 = 1

2

p̂2

ρc
.
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Sound intensity expressed by the effective values of sound pressure and sound particle
velocity:

I = peff · veff =
p2

eff
Z
.

■ Sound characteristics for air at 20 ◦C at a distance r = 3 m from a source of
sound that for a sound power of P = 1 · 10−3 W emits a tone of frequency
f = 440 Hz: sound intensity I = P/4πr2 = 8.85 · 10−6 W/m2, ρc = 408
kg/(m2s), sound particle velocity v̂ = √2I/(ρc) = 2.08 · 10−4 m/s, sound dis-
placement ŷ = v̂/(2π f ) = 0.75 ·10−7 m, sound pressure p̂ = √2Iρc = 0.85 ·10−2

Pa, relative pressure variation p̂/p0 = 10−7.

2. Sound power,

P , of a source of sound, sound intensity I integrated over a closed surface O about the
source:

sound power = sound intensity · area ML2T−3

P =
∮

O
I dA

Symbol Unit Quantity

P W sound power
I W/m2 sound intensity
dA m2 areal element
O m2 closed surface

Watt, W, SI unit of sound power P .
[P] =W.

■ Sound power of several sources of sound: conversation: 10−5 W, trumpet: 0.1 W,
cry: 10−3 W, organ: up to 10 W.

10.1.3 Relative quantities
1. Definition of relative quantities

In acoustics and telecommunication technology, one often uses dimensionless relative
quantities:
• factors denote ratios of linear quantities, e.g., reflection factor,
• degrees denote ratios of quadratic quantities, e.g., (degree of) efficiency,
• measures or levels denote the logarithm of ratios, e.g., transmission level, sound

pressure level.
Decibel, abbreviation dB, for dimensionless quantities M proportional to the base 10 log-
arithm of the quotient of two physical quantities X0, X1 of the same dimension.
• For ratios of linear quantities x1, x2:

M = 20 log
x1

x2
dB .

• For ratios of quadratic quantities X1, X2:

M = 10 log
X1

X2
dB .
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2. Sound-relative quantities

Sound pressure level, SPL, Lp, logarithmic scale for relative sound pressures:

Lp = 10 log
p2

eff

p2
eff,0

dB = 20 log
peff

peff,0
dB.

Reference-sound pressure:

peff,0 = 2 · 10−5 Pa .

Sound power level, Lw, logarithmic scale for relative sound power:

Lw = 10 log
P

P0
dB .

Reference-sound power:

P0 = 10−12 W .

Sound intensity level:

LI = 10 log
I

I0
dB .

Reference-sound intensity:

I0 = 10−12 W/m2 .

■ An effective sound pressure of peff = 3 · 10−3 Pa corresponds to a sound pressure
level of

Lp = 20 log
3 · 10−3 Pa

2 · 10−5 Pa
dB = 20 log (1.5 · 102) dB = 43.5 dB .

3. Addition of sound levels

The relative sound intensities of n sources of sound may be added to the relative total sound
intensity,

I

I0
=

n∑
k=1

Ik

I0
=

n∑
k=1

100.1 L I k ,

L I k : sound intensity level of the source of sound k.
The total sound level LG is given by

LG = 10 log
I

I0
dB = 10 log

(
n∑

i=1

10Li /10

)
dB .

▲ Two sound levels are not added linearly.
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■ For L1 = 70 dB and L2 = 80 dB

LG = 10 log(107 + 108) dB = 80.4 dB .

L1 = 0 dB and L2 = 0 dB yields LG = 3 dB.
■ The sound of a moving truck can completely hide the chirp of birds.
■ Two equal sources of 100 dB each have a sound level raised by only 3 dB compared

with one source: LG = 103 dB. Two equal sources of zero dB each have together
0 dB+ 0 dB = 3 dB.

▲ Sound levels are added with a sound level excess L Z and the sound level difference

L ,


L = L1 − L2 ,

successively—term by term, always starting from the higher level L1, i.e.,

LG = L1 + L Z .


L = 0 dB L Z = 3 dB


L = 3 dB L Z = 1.8 dB


L = 5 dB L Z = 1.2 dB


L = 7 dB L Z = 0.8 dB


L = 10 dB L Z = 0.4 dB


L ≥ 20 dB L Z = 0 dB

10.2 Sources and receivers of sound

Source of sound, body vibrating in a medium and periodically emitting compression and
rarefaction fronts, i.e., waves.

10.2.1 Mechanical sound emitters
1. Strings

Rods and strings, linear sources of sound.
Natural vibrations arise by exciting standing waves, with frequencies determined by the
sizes of the oscillatory object.
■ String instruments (piano, violin, guitar).
For two fixed ends, the wavelength λn of the natural vibration of a rod or a string of length
l is:

wavelength for natural string vibrations (2 ends fixed) L

λn = c

fn
= 2l

n + 1

n = 0, 1, 2, . . .

Symbol Unit Quantity

λ m wavelength
n 1 number of nodes
fn Hz frequency
c m/s velocity of sound
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The sound pitch of the string of fixed length depends on the longitudinal tension (tuning of
instruments).

Fundamental vibration (1st harmonic), f0, for n = 0 .
Overtone, higher harmonic, fn , for n > 0.
1st overtone (2nd harmonic): f1 = 2 f0 .
2nd overtone (3rd harmonic): f2 = 3 f0 .

2. Membranes

Membrane, mostly circular surfaces fixed only at the boundary, two-dimensional analog
of the string fixed at both ends.

The natural vibrations of a membrane are labeled by two integers (n,m).
■ Drum, kettledrum.
Wavelengths λm,n of the natural vibrations of a circular membrane of radius R:

wavelength of natural vibrations of a circular membrane L

λm,n = 2π Rc

Bm,n

√
ρ

σF

Symbol Unit Quantity

λ m wavelength
R m radius of membrane
c m/s velocity of sound
Bm,n 1 zeros of Bessel functions
σF N/m2 tension of membrane surface
ρ kg/m3 density of membrane

➤ σF must be measured with the membrane at rest.
Fundamental vibration: the entire membrane vibrates in phase.

Overtone: formation of nodal lines on the membrane, corresponding to the nodes of the
string. Out-of-phase oscillation of the segments of the membrane confined by the nodal
lines.

Subdivision of the shapes of vibration depending on the position of nodes:
• The nodal lines coincide with the diameters of the membrane.
• Circular nodal lines with the centers at the center of the membrane.
• Nodal lines combined out of both cases cited above.
Plate and bell, two- and three-dimensional analogs of vibrating rod. The vibrational shapes
are similar to those of the membrane.

M Chladni’s acoustic figures, patterns (analogous to Kundt’s dust figures in the sound
tube) formed if a membrane is covered with cork powder and then excited to vibra-
tion. The dust then accumulates along the nodal lines, thus visualizing the vibration
mode of the membrane.

10.2.1.1 Vibrating air columns
Siren, consists of a rotating circular disk with series of holes arranged concentrically, and a
nozzle blowing air onto the disk. Thus, a periodic release and interruption of the airstream
is generated. The periodic vibrations of air pressure are perceived as a tone. The frequency
of the tone increases with the rotational speed of the disk.

Edge-tone generator, consists of a sharp edge or a thin wire blown on by an air stream.
Vortices arise periodically at the edge and thereby generate periodic pressure variations.
The frequency f of the tone generated depends on the distance d between the nozzle

and the edge or the wire, and on the speed vS of the airflow.
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Edge-tone frequency T−1

f = γ vS

d

Symbol Unit Quantity

f Hz frequency
γ 1 proportionality constant
vS m/s flow speed
d m distance nozzle–edge

■ The propeller noise of helicopters is due to edge-tone generation.
■ Wind “whistling” is edge-tone generation at the corners of buildings, projections, etc.
If the edge or the wire is coupled to a resonator, the frequency of vortex formation is
determined by the resonant frequency of the resonator. The resonator is usually a tube in
which standing waves are generated.
■ Standing waves may be formed by blowing on a bottle top, which then “whistles.”
■ Pipes and flutes make sound with edge-tone formation.

Horns
■ Including all brass instruments.
The lips are closed, the air pressure generated by the abdominal muscles increases in the
mouth cavity until it exceeds the lip tension.The lips are opening, and air is released, and
the pressure in the mouth cavity drops. The lips are closing again because of their tension.
The process repeats periodically and leads to periodic pressure variations in the instrument.
Standing waves in the air column arise in the case of resonance, i.e., if the lip tension fits
properly to the length of the instrument.

Woodwind instruments—except for flutes and pipes—involve an elastic reed set to
vibration by the airflow and then modulates the airflow and the air pressure.

10.2.2 Electro-acoustic transducers
Sound transducer, device that converts electric energy into sound energy and vice versa.

Sound emitter, a mechanical system set into vibration by mechanical, electric or mag-
netic forces.
■ Loudspeaker, consists mostly of a sound membrane in the field of a permanent

magnet. Applying an alternating voltage causes a forced vibration of the membrane,
which then generates sound waves.

1. Electrically driven sound emitter

Electromagnetically driven emitter, metallic membrane in the field of a permanent mag-
net.
■ Loudspeaker, horn, telephone receiver (electromagnetic).

Electrodynamically driven emitter, vibrating coil with membrane.
■ Loudspeaker: the distortion factor is appreciably smaller than that for an electro-

magnetic system. A higher output power may be radiated without distortion. Higher
efficiency due to an exponential horn.

Piezoelectric sound emitter, contains a piezoelectric element. The size varies with the
applied electric voltage. When an alternating voltage is amplified, the surface vibrates and
generates sound waves. Application: mostly in the ultrasonic range.
➤ Piezoelectric crystals (quartz, Seignette salt) perform motions when the electric

charges on two layers on parallel surfaces (cut according to a preference orientation)
are varying, and vice versa.

■ Crystal tone pickup, crystal microphone, high-frequency loudspeaker.
Thermal sound generation, conversion of heat into sound energy.
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■ Spark sound waves, thermophone, singing electric arc.
Magnetostriction emitter

■ Generation of ultrasound.
Condenser microphone

2. Electro-acoustic transmission factor

for sound emitter, BS , quantity specifying the frequency range that may be transmitted
by a reversible sound transducer. For a sound generator (e.g., a loudspeaker), the electro-
acoustic transmission factor BS is the ratio of the emitted sound pressure pr at a distance
of 1 m and the voltage U applied to the transducer.

electro-acoustic transmission factor L−3TI

BS = pr

U

Symbol Unit Quantity

BS Pa/V electro-acoustic transmission-factor emitter
pr Pa sound pressure at a distance of 1 m
U V voltage

Reference transmission factor for sound sources, BS0, defined as BS0 = 0.1 Pa/V.

3. Measure of electro-acoustic transmission for a transmitter,

GS , quantity given frequently instead of the transmission factor BS , proportional to the
base 10 logarithm of the ratio of the transmission factor BS to a reference transmission
factor BS0:

measure of electro-acoustic transmission 1

GS = 20 · log
BS

BS0

Symbol Unit Quantity

GS dB electro-acoustic transmission measure
BS Pa/V electro-acoustic transmission factor
BS0 Pa/V reference transmission factor

GS is given in dB (BS0 = 0.1 Pa/V).

4. Loudspeaker sensitivity,

Ek , quantity introduced to characterize a loudspeaker, the product of the transmission
factor BS averaged over the frequency range f = 0.25 − 4 kHz, the square root of the
impedance Z of the loudspeaker, and the ratio of the distance r from the loudspeaker to a
reference distance r0 of 1 m:

characteristic loudspeaker sensitivity

Ek = BS ·
√

Z · r

r0

Symbol Unit Quantity

Ek Pa/
√

VA characteristic loudspeaker
sensitivity

BS Pa/V mean value transmission factor
Z 	 impedance
r m distance from loudspeaker
r0 m reference distance
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5. Range of loudspeakers,

r , defined as the product of the characteristic loudspeaker sensitivity Ek and the square
root of the electric power received P , divided by the desired sound pressure p:

range of loudspeakers L

r = Ek

BS ·
√

Z
· r0

= Ek ·
√

P

p
· r0

Symbol Unit Quantity

r m range
Ek Pa/

√
VA characteristic sensitivity

BS Pa/V transmission factor
Z 	 impedance
P VA appearent power
p Pa sound pressure
r0 m reference distance

10.2.2.1 Sound receivers or microphones
Sound receivers or microphones, convert sound energy into electric energy.

1. Kinds of microphones

Piezoelectric transducer, inversion of the piezoelectric sound source. It consists of a
piezoelectric element with a surface that responds to the pressure variations generated by
the incident sound wave. In the piezoelectric element, a voltage is formed that is propor-
tional to the sound pressure.
■ Application in microphones.

Piezoresistive transducer, based on the change of the resistance in a piezoelectric ele-
ment owing to pressure variations. Modulation of the current via the change of the resis-
tance.
■ Application in telephones.

Magnetostrictive transducer, consists of a ferromagnetic material that changes its
length as a function of the applied magnetic field. Hence, sound waves may be generated
by alternating magnetic fields.
■ Application in ultrasonic experiments.

Electrostatic transducer, capacitor with one plate formed as metallic membrane. Sound
causes a deformation of the membrane, and thus a variation of the capacitance and a cor-
responding variation of the electric voltage.
■ Application in condenser microphones in studios, and in hand microphones. Also

used for sound generation, mainly in headphones.
Electrodynamic transducer, sound pressure deforms a membrane. The membrane

moves a coil in the field of a permanent magnet, thereby inducing an electric current in
the coil.
■ Application in small, portable microphones and headphones.

Bio-acoustic transducer, sound energy induces biological processes. Most important
example is the human sense of hearing, which converts sound into neural currents via a
series of mechanical and chemical processes.

2. Electro-acoustic transmission factor for sound receiver,

BE , ratio of received sound pressure p to generated electric voltage V .
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electro-acoustic transmission factor L3T−1I−1

BE = V

p

Symbol Unit Quantity

BE V/Pa electro-acoustic transmission-factor receiver
p Pa received sound pressure
V V electric voltage

Reference transmission factor for acoustic sound receiver, BE0, defined as BE0 =
10 V/Pa.

3. Electro-acoustic transmission measure for sound receivers

Electro-acoustic transmission measure 1

G E = 20 · log
BE

BE0

Symbol Unit Quantity

G E 1 electro-acoustic transmission measure
receiver

BE V/Pa electro-acoustic transmission factor
BE0 V/Pa reference transmission factor receiver

4. Microphone sensitivity,

EM , analogous to loudspeaker sensitivity:

microphone sensitivity dB

EM =
√

P

p

Symbol Unit Quantity

EM
√

VA/Pa microphone sensitivity
P VA received electric power
p Pa sound pressure

5. Stereo signals

difference signal: D = L − R
sum signal: S = L + R
left-signal: S + D = L + R + L − R = 2L
right-signal: S − D = L + R − L + R = 2R

Frequencies for stereo radio:

main-signal frequency (sum, mono): fM = 30 Hz . . . 15 kHz
subcarrier frequency: fH = 38 kHz
stereo additive frequency: fS = fH ± fM
upper sideband: fSu = fH + fM = 38.03 . . . 53 kHz
lower sideband: fSl = fH − fM = 23 . . . 37.97 kHz

10.2.3 Sound absorption
1. Distortions of sound propagation,

occur by:
• sound reflection,
• sound diffraction,
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• sound refraction,
• sound interference,
• sound absorption.

2. Sound absorption,

Sound damping, energy loss in the propagation of a sound wave because of
• internal friction,
• isentropic compression,
• excitation of intrinsic degrees of freedom (like rotation of molecules) of the medium

transmitting the sound wave.
Exponential decrease of the sound intensity I by sound absorption with increasing distance
r from the source of sound according to

I (r) = I (r0) · e−α(r − r0) .

I (r0) is the sound intensity at a reference distance r0 from the source.

3. Sound-damping coefficient

α, depends on the frequency of the sound source and on absorption properties of the
medium (see Tab. 12.1/4 and 12.1/8).
[α] = m−1, SI unit of the sound-damping coefficient α.

■ Sound-damping coefficient in cm−1 for various frequencies in some liquids at
20 ◦C: water 23.28 (307 MHz), 55.3 (482 MHz), 172 (843 MHz), benzene 711.5
(307 kHz), 1150 (482 kHz), tetrahedral chlorine methane 492 (307 kHz), 1115.2
(482 kHz), 3269 (843 kHz); see Tab. 12.1/8.

Sound-absorbing material, material acting as sound insulator.
Technological realization:
• homogeneous or porous material, conversion of sound into heat by deformation of

the material or friction.
• resonators, convert sound with frequencies near the resonance frequency into heat,

due to loss of flow or frictional loss.

4. Degree of sound reflection,

ρ, ratio of reflected sound intensity to perpendicularly incident sound intensity:

degree of sound reflection 1

ρ = Ir

Ie

Symbol Unit Quantity

ρ 1 degree of sound reflection
Ie W/m2 sound intensity of incident wave
Ir W/m2 sound intensity of reflected wave

5. Degree of sound absorption,

α, [α] = 1, dimensionless quantity for the absorptivity of a body. The quantity α gives the
normalized difference of incident and reflected sound intensity:
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degree of sound absorption 1

α = Ie − Ir

Ie

Symbol Unit Quantity

α 1 degree of sound absorption
Ie W/m2 sound intensity of incident wave
Ir W/m2 sound intensity of reflected wave

➤ The degree of sound absorption α, [α] = 1, should not be confused with the sound-
damping coefficient α, [α] =1/m quoted above!

■ Degrees of sound absorption for several building materials at various frequencies:
light concrete 0.07 (125 Hz), 0.22 (500 Hz), 0.10 (2000 Hz), wooden doors 0.14
(125 Hz), 0.06 (500 Hz), 0.10 (2000 Hz), wooden panels 0.25 (125 Hz), 0.25
(500 Hz), 0.08 (2000 Hz) (see Tab. 12.1/16).

M Measurement of the degree of sound absorption by means of Kundt’s tube.

6. Sound-transmission degree,

τ , the ratio of transmitted sound intensity Id to incident sound intensity Ie,

τ = Id

Ie
= p2

d

p2
e
.

Degree of sound dissipation, δ, ratio of sound intensity absorbed in the wall Ia to incident
sound intensity Ie,

δ = Ia

Ie
= Ie − Ir − Id

Ie
= α − τ = 1− ρ − τ .

Reflection Absorption Transmission

Dissipation

Figure 10.2: Reflection,
absorption, dissipation
and transmission of sound
waves.

▲ Energy conservation holds for the sound energy at the interface of two media:

ρ + τ + δ = 1 , ρ + α = 1 .

Degree of sound reflection ρ, degree of sound absorption α, and degree of sound transmis-
sion τ for a sound wave at perpendicular incidence onto the interface may be expressed by
the characteristic sound impedance values Z1, Z2 of the two media (Fig. 10.2):

ρ =
(

Z2 − Z1

Z2 + Z1

)2
, τ = 4Z1 Z2

(Z1 + Z2)
2
, α = 1−

(
Z2 − Z1

Z2 + Z1

)2
.

Matching, the reflected wave vanishes for Z1 = Z2.
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10.2.4 Sound attenuation
Sound attenuation, hindrance of sound propagation by reflection at barriers, in particular
reflections by interfaces between media of different sound propagation properties.

Sound-reflection factor, r , dimensionless quantity, ratio of the pressure amplitude of
the reflected wave p̂r to the pressure amplitude of the incident wave p̂e.

sound-reflection factor 1

r = p̂r

p̂e

= Z2 − Z1

Z1 + Z2

Symbol Unit Quantity

r 1 sound-reflection factor
Z1, Z2 kg/(m2s) characteristic sound impedance

of medium 1, 2
p̂e kg/(ms2) pressure amplitude of incident sound
p̂r kg/(ms2) pressure amplitude of reflected sound

r = 0: no reflection, r = ±1: complete reflection.
Relation between degree of sound reflection ρ and sound-reflection factor r :

ρ = Ir

Ie
= p̂2

r

p̂2
e
= r2 .

▲ Maximum attenuation is achieved when one uses a material for reflection material
having a characteristic sound impedance differing as much as possible from that of
the medium wherein the incident wave propagates.

attenuation measure R of a wall 1

R = 10 log
Ie

Iτ

= L1 − L2

Symbol Unit Quantity

R dB attenuation measure
Ie W/m2 sound intensity in front of the wall
Iτ W/m2 sound intensity behind the wall
L1 dB sound level in front of the wall
L2 dB sound level behind the wall

Technical realization:
• Sound in air is usually attenuated by a separating wall of a material as heavy and

hard as possible.
• Sound in solids, optimum attenuation by soft sound-insulating layers with low char-

acteristic sound impedance.
• Footstep sound, sound in buildings caused by footsteps. Footstep sound propagates

through ceilings. Attenuation by a floating floor that is not put directly on the con-
crete floor, but rather on a soft intermediate layer, or by suspended ceilings.

10.2.4.1 Reverberation
Reverberation, usually an exponential decay of the sound field after switching off the
acoustic excitation.

Reverberation time, TN , time interval after which the sound energy drops by 60 dB,
i.e., to 1 ppm = 10−6 of the original value (Fig. 10.3).
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reverberation time (Sabine’s law) T

TN = 0.163
V

αA

Symbol Unit Quantity

TN s reverberation time
V m3 volume of room
A m2 absorption areas
α 1 degree of sound absorption

■ A hall of V = 500 m3 has a typical reverberation time of TN = 1 s.

Figure 10.3: Reverberation
time in the Dresden
Cathedral depending on the
frequency (determined from
records). (a): empty, (b):
occupied with 4000 persons.

10.2.5 Flow noise
Liquids generate a broad-band flow noise when flowing out of pipes, or around obstacles
and curvatures. It is caused by pressure variations in the vortex field of the flow.

Avoided by:
• encasement of the pipes,
• water sound attenuators,
• acoustic filter chains (low-pass filters) in sound attenuators of ventilation pipes or

exhausts of vehicles.
Additional flow noise corresponds to narrow-band blown tones, broad-band noise owing to
implosion of steam bubbles, and very-broad-band free-beam noise that arises in a stream
of gas flows into a gas at rest.

10.3 Ultrasound

1. Properties of ultrasound

Ultrasound, frequencies f > 20 kHz.
Hypersound, frequencies f > 10 GHz = 1010 Hz.
Wavelength of ultrasound in air at a mean velocity of sound of c ≈ 330 m/s:

λair < 1.5 cm .

Ultrasonic waves can be focused, and parallel rays may be formed that propagate along
straight lines with weak diffraction effects.

Generation of ultrasound, by magnetostriction.
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M Measurement of velocity and attenuation of ultrasound:
pulse-echo method,
reverberation method.

2. Application of ultrasound

Ultrasonic diagnostics in medicine, therapy, microsurgery.
Materials testing of solids:

determination of elastic properties.
Ultrasound in electronics and microelectronics:

ultrasonic delay line,
ultrasonic surface-wave filter,
ultrasonic microscope,
ultrasonic welding device.

Hydroacoustics:
underwater sound position finding, SONAR (sound navigation and ranging),
echo depth determination,
underwater communication.

Control of production processes by means of ultrasound:
level measuring,
hydrometry,
tracing of chemical processes,
determination of concentrations,
quality control (materials testing with a precision up to 10−4 m).

Power ultrasound in the range of ≈ 20 . . . 40 kHz:
Ultrasonic cavitation in solid surfaces:
ultrasonic drilling,
ultrasonic cleaning,
ultrasonic welding.

10.4 Physiological acoustics and hearing

Hearing, human sensory faculty that detects sound waves and analyzes loudness levels
and frequencies. Example of a bio-acoustic transducer.

External ear, flat horn collecting the sound and channeling it into the auditory canal.
Auditory canal, passage connecting the external ear and the eardrum.
Eardrum, horn-like membrane of about 0.5 cm2 area forced to vibrate by the sound

waves.
Hammer, anvil and stirrup, three auditory ossicles onto which the vibration of the

membrane is transferred. They act as a system of levers that match the distinct characteris-
tic impedances of the external ear (air) and the internal ear (essentially water).

Oval window and round window, two membranes between the middle ear and the
internal ear located behind the middle ear. The stirrup transfers the vibrations to these
membranes, which amplify the pressure variations by an additional factor of 20 up to 30.

Internal ear, bisected space behind the middle ear filled with an incompressible liquid
rich in sodium ions. Proper bio-acoustic transducer.

Cochlea, bisects the internal ear, filled with a liquid rich in potassium ions. Hence, there
is an electric potential difference between the liquids in the cochlea and in the internal ear.

Basilar membrane, membrane at the cochlea that is deformed mechanically by the
vibrations of the round and the oval window via the liquid in the internal ear.
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Capillary cells of Corti’s organ, attached to the basilar membrane. The motions of the
basilar membrane generate electric-potential variations in these cells, resulting in exciting
currents in the auditory nerve. These then give rise to a perception of sound in the brain.

10.4.1 Perception of sound
1. Frequency range of hearing

Frequency range of hearing, frequency range between 16 Hz and 20 000 Hz, the range of
vibrations and waves of elastic media that may be perceived by the human ear (Fig. 10.4).
• Frequency range of speech: ≈ 10 Hz. . . 10 kHz.
• Intelligible speech: ≈ 300 Hz. . . 3 kHz.

Figure 10.4: Curves of equal sound intensity. Emphasized: range of hearing of man.

➤ The frequency range of hearing reduces with increasing age. Moreover, entire fre-
quency regions may drop out permanently because of overload (lumping of capillar-
ies).

▲ Equal sound-intensity levels at different frequencies are perceived as having different
loudness.

2. Loudness level

Weber-Fechner law: The change of the perception of sound 
L is proportional to the
logarithm of the ratio of the sound intensities,


L ∼ log I2/I1 .

Loudness level, L S , measure of the subjective perception of sound intensity by the ear,
frequency-dependent. It is chosen in such a way that, at a sound frequency of 1 kHz, the
value of the loudness level equals the sound-pressure level:

L S = 10 log

(
I

I0

)
= 20 log

P

P0
dB .

Reference-sound intensity:

I0 = 10−12 W/m2 ,

corresponds to the hearing threshold of the ear at 1 kHz.
Phon, the unit of the loudness level L S . Phon is a dimensionless quantity.
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▲ The hearing threshold is 4 phons (corresponds to I0 = 10−12 W/m2).
The human ear has an extremely large dynamical region: the ability of hearing covers 12
orders of magnitude in intensity with displacement amplitudes between 10−11 m (1/10
of atomic radius) and 10 micrometers.
➤ Zero phon does not correspond to the frequency-dependent standard hearing

threshold!
➤ A difference of 
L S = 1 phon is just perceivable for the human ear.
▲ The pain threshold is 120 phons (corresponding to I ≈ 1 W/m2).
▲ For f = 1000 Hz the sound pressure level is equal to the loudness level,

Lp = L S for f = 1 kHz .

■ Hence, for f = 1000 Hz: sound-pressure levels of 40, 80, 120 dB correspond to
loudness levels of 40, 80, 120 phons.

▲ Sound intensities I are added, IG = I1 + I2 + I3.
▲ Sound levels are added to a sound level excess (see p. 319).

10.4.2 Evaluated sound levels
Evaluation curve A, takes into account the complex relation between the physical sound-
level spectrum and the human perception of sound.

M A frequency-dependent evaluation factor 
∗i (in dB) is added to the measured
frequency-dependent sound levels Li .

A-evaluated sound level:

L A = 10 log

(
n∑

i=1

10(Li+
∗i )/10

)
dB .

f /Hz 90 220 400 1000 3000 60000

∗i /dB −20 −10 −5 0 +2 0

Loudness, S, physiological quantity for a subjective comparison of sources of sound.
The loudness is defined in such a way that a doubling of its value corresponds to a doubling
of the subjectively perceived loudness:

S = 20.1(L S−40) sone.

Sone, dimensionless quantity, unit of loudness.
➤ A doubling of the loudness corresponds to a change of the loudness level of 
L S =

8− 10 phons.
■ The loudness of S = 1 sone corresponds to a loudness level of L S = 40 dB.

10.5 Musical acoustics

The human ear judges the sound according to the loudness and the frequency spectrum.
Sound may always be represented by superposition of sinusoidal pressure variations

with different frequencies and amplitudes (Fourier representation).
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Frequency range of music: ≈ 16 Hz – 16 kHz.
Classification of hearing impressions:
• Tone, a purely sinusoidal pressure variation, contains a single frequency (harmonic

vibration, Fig. 10.5 (a)). A pure sine oscillation cannot be generated by customary
musical instruments, but may be generated electronically.

• Sound, superposition of tones with different frequencies and amplitudes for which
the frequencies have integral ratios with respect to each other (Fig. 10.5 (b)).

• Noise, superposition of tones with a continuous spectrum of frequencies. Noise is not
a periodic vibration.

• Bang, superposition of tones with a continuous spectrum and nearly constant in-
tensities, i.e., the contributions with different frequencies all have about the same
amplitude (Fig. 10.5 (c)).

Figure 10.5: Frequency spectra (schematically). (a): tone, (b): sound, (c): bang.

1. Diatonic tone scale

Tone scale, stepwise arrangement of tones within an octave.
Sounds are classified as follows:
• Consonance: the frequency ratio of tones f2/ f1 may be expressed by integers N1,

N2 smaller than or equal to eight.
• Dissonance, if this is impossible.
➤ This definition of consonance and dissonance is a purely subjective one and corre-

sponds to the Western perception of sound.
Interval, notation for the frequency ratio of two tones.

Table of interval notations:

Frequency ratio Interval Perception

1:1 prime consonant
16:15 minor second dissonant
10:9; 9:8 major second dissonant
6:5 minor third consonant
5:4 major third consonant
4:3 quart consonant
3:2 quint consonant
8:5 minor sext consonant
5:3 major sext consonant
9:5; 16:9 minor septim dissonant
15:8 major septim dissonant
2:1 octave consonant
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▲ The octave corresponds to a frequency doubling.
■ A = 110 Hz, a = 220 Hz, a1 = 440 Hz, a2 = 880 Hz, a3 = 1760Hz.
▲ The octave is subdivided into 12 half-tones (minor seconds).
Whole tone, notation for a major second.

Concert pitch, a1, normalized to f = 440 Hz.

2. Chromatic scale

Chromatic scale: 12 half-tone steps in well-tempered (tempered) scale.
▲ Frequency ratio per half-tone interval:

1 : 12
√

2 = 1 : 1.059463 .

▲ Frequency ratio per whole-tone interval:

1 : 6
√

2 = 1 : 1.1222462 .

Pitch, designation for the frequency of a tone.
Sound intensity, designation for the intensity amplitude of a tone.
Fundamental tone: customary musical instruments do not generate pure sinusoidal

tones, but a superposition of sine waves, with a mixing ratio depending on the kind of
instruments and on their pitch. The lowest frequency of a given superposition is the tone
of the instrument. As a rule, the fundamental tone has the largest amplitude.

Overtones, the tones in a sound that have a higher frequency than the fundamental tone.
Harmonic vibrations:

fundamental vibration f1 first harmonic

first overtone f2 = 2 f1 second harmonic

second overtone f3 = 3 f1 third harmonic

Timbre of sound, designation for the mixing ratio of the amplitudes of the various tones
involved in a sound.
■ Musical instruments are distinguished by their timbres of sound.

Tonal range of an instrument, range of frequencies between the fundamental tones of
the highest and lowest pitch that can be generated by an instrument, further characteristics
of an instrument besides the timbre (Fig. 10.6).

Figure 10.6: Frequency spectra of string instruments. (a): cello, (b): violin.

■ Since the tonal range of many instruments, and also of human voices, depends
strongly on the ability of the musician, in a restrictive way, the tonal range puts a
requirement on a voice or an instrument in classical music.
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Tonal ranges of various instruments and voices:

Instrument or voice Lowest Highest
frequency (Hz) frequency (Hz)

violin 200 3000
piano 30 4000
flute 250 2500
cello 70 800
contrabass 40 300
tuba 50 400
trumpet 200 1000
organ 16 1600
bass 100 350
baritone 150 400
tenor 150 500
alto 200 800
soprano 250 1200
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Optics

Optics, the science of light, i.e., the range of wavelengths of electromagnetic radiation
that may be perceived by the human eye. This range covers the wavelengths between λ =
380 nm and λ = 780 nm (1 nm = 10−9 m). Electromagnetic radiation close to, but
outside, the visible range is also included.

Optics deals with processes that occur when light interacts with media.

1. Main characteristics of light

Propagation velocity of light, depends on the medium in which the light propagates.
Speed of light in vacuum, fundamental universal constant with the value

c = 299 792 458 m/s.

▲ In all media the speed of light is less than it is in vacuum.
■ The speed of light in water is 2.24 · 108 m/s, in glass (1.85 ± 0.25) · 108 m/s, in

diamond 1.22 · 108 m/s.
Wavelength λ and frequency f are related to the speed of propagation c as follows:

light speed = frequency · wavelength

c = f λ

k = 2π

λ

f = 1

T

ω = 2π

T
= 2π f = c k

Symbol Unit Quantity

k 1/m wave number
λ m wavelength
ω rad/s angular frequency
c m/s light speed
f 1/s frequency
T s period

335
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2. Subdivision of electromagnetic waves

Frequency f (Hz) Wavelength λ (m) Notation

> 1019 < 3 · 10−11 γ -radiation
> 1017 < 3 · 10−9 X -rays
1015 . . . 1017 3 · 10−7 . . . 3 · 10−9 ultraviolet radiation
∼ 0.5 · 1015 ∼ 6 · 10−7 visible light
1013 . . . 1014 3 · 10−5 . . . 3 · 10−6 infrared radiation
109 . . . 1013 0.3 . . . 3 · 10−5 microwaves
∼ 108 3 ultra-short radio waves
∼ 107 30 short radio waves
∼ 106 300 medium radio waves
∼ 105 3000 long radio waves

For subdivisions of the ultraviolet range, see Tab. 12.2/8.

3. Spectral colors and regions

Spectral color, sensory perception of the eye for various ranges of wavelengths of the
spectrum.

Ranges of spectral colors:

Color Frequency (1012 Hz) Wavelength (10−9 m)

violet 659. . . 769 455. . . 390

blue 610. . . 659 492. . . 455

green 520. . . 610 577. . . 492

yellow 503. . . 520 597. . . 577

orange 482. . . 503 622. . . 597

red 384. . . 482 780. . . 622

4. Theoretical models of light

Wave theory, model for optical phenomena in which light is considered a wave phe-
nomenon.

Corpuscular theory, model for optical phenomena in which light is considered to con-
sist of corpuscles (Latin word for particle) that move along straight lines in the absence of
interaction with matter.

Wave-particle duality, certain experiments can be explained only within wave theory,
other experiments only within corpuscular theory. The need for two contradictory models
to explain the phenomena in full is called wave-particle dualism.
➤ Classical wave theory fails when it tries to explain experiments in which light inter-

acts with atomic particles. Examples are the photoelectric effect (photo effect) and the
Compton effect. Nor is wave theory sufficient for the explanation of the phenomena
of heat radiation (Planck’s radiation law).

5. Subfields of optics

• Classical optics, describes the phenomena of optics with the models of classical
physics.
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• Geometric optics or ray optics, a branch of classical optics. It describes the interac-
tion of light with objects with dimensions appreciably larger than the wavelength of
light.

• Wave optics, branch of classical optics. It describes the interaction of light with ob-
jects with dimensions of the same order of magnitude as the wavelength of light.

• Quantum optics, describes optical processes by the methods of quantum mechanics.
This approach leads to a particle picture in particular when describing the interaction
of light and matter.

Electron optics, ion optics, generation of images by means of electron (ion) beams by
particle deflection in combinations of inhomogeneous electric and magnetic fields that act
analogously to the refractive components in light optics.

11.1 Geometric optics

Geometric optics or ray optics, describes the interaction of light with objects with dimen-
sions appreciably larger than the wavelength of light.
■ Interaction of light with lenses, mirrors, prisms, and apertures.
Light path, optical path length, λ, product of geometric path length l of the ray and the
refractive index n of the medium traversed by the ray,

λ = l · n .

1. Fermat’s principle,

extremum principle from which ray optics can be derived:
▲ Light propagates in such a way that the light path takes an extremum value, usually a

minimum.
Light follows the shortest path in time in traveling between two points. Since the speed
of light depends on the medium, the light path between two points in different media is not
necessarily the shortest geometric distance.

2. Properties of light rays

Fermat’s principle is based on the concept of light rays (Fig. 11.1):
• Light propagation can be described by single rays. A ray of light in a homogeneous

medium follows a straight line, similar to particle motion in a force-free space. In an
inhomogeneous medium, light rays may be curved.

• Rays are always perpendicular to the wave front of the corresponding wave.
• Rays may intersect each other and do not influence each other.
• The direction of motion of the rays may be reversed.
• The direction of a ray of light changes in general at the interface between two media

in which light propagates with different speeds.
➤ The rule that rays do not influence each other corresponds to the superposition prin-

ciple of linear wave theory.

3. Types of rays

• Bundle of rays, spatial set of light rays.
• Pencil of rays, plane set of rays. Partial set of a bundle, obtained e.g., by collimating

the bundle with a slot.
• Divergent rays, rays starting from a point (as for an outgoing spherical wave, see

Fig. 11.2 (a)).
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Figure 11.1: Wave fronts
(dashed lines) and rays
(arrows). (a): plane wave,
(b): spherical wave.

• Convergent rays, rays converging into a point (as for an incoming spherical wave,
see Fig. 11.2 (b)).

• Parallel rays, all rays point parallel to each other. This pattern corresponds to a plane
wave (see Fig. 11.2 (c)).

• Homocentric rays, generic term for diverging, converging, and parallel rays.
• Diffuse rays, the rays are randomly oriented (see Fig. 11.2 (d)), contrary to homo-

centric rays. Diffuse rays arise, e.g., by reflection of parallel rays by a rough surface.

Figure 11.2: Bundle of rays. (a): divergent bundle, (b): convergent bundle, (c): parallel
bundle of rays, (d): diffuse bundle.

11.1.1 Optical imaging—fundamental concepts
Optical image, conversion of a homocentric bundle of rays leaving an object point into
another homocentric bundle with its center at the image point.

Object point, O, source point, G, any point from which light emerges.
Image point, B, center of the bundle of rays originating from one object point.

1. Real and virtual images

Real image, bundles of rays belonging to image points converge (Fig. 11.3 (e)).
Virtual image, the bundles of rays belonging to image points are divergent; the rays

themselves do not intersect each other, but their backward extensions do.
Virtual image point, B ′, intersection point of the extended rays in virtual imaging

(Fig. 11.3 (a) – (d)).

2. Optical elements and their characteristics

Optical elements: lenses, mirrors, apertures, plates, prisms, etc. and their combinations in
functional groups.
■ Lens, eye piece, condenser and image inversion system.
Optical axis, symmetry axis of optical elements with respect to rotations, e.g., the connect-
ing line through the centers of curvature of the refracting surfaces of an optical system.

Centered system, a system for which the optical axes of all optical elements coincide.
■ The centers of curvature of all optically refracting surfaces lie on a straight line, the

optical axis.
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Figure 11.3: Optical imaging (schematically). (a) – (d): virtual image, (e): real image, (f):
imaging to infinity, (g): real imaging of a virtual object point O ′ to O′′.

3. Focal points of optical elements

Object focus, F̄ , point from which rays emerge when they are parallel to the optical axis
behind the optical system.

Image focus, F ′, point at which the rays incident parallel to the optical axis intersect.
Principal planes: To construct the image, one introduces plane surfaces at which the

change of the direction of the rays will proceed, instead of the mostly curved surfaces
of the optical elements. These auxiliary planes are perpendicular to the optical axis; their
positions have to be determined so that the image constructed with their help coincides
with the real image generated by the actual (curved) surfaces of the optical elements.
➤ The principal planes are an auxiliary concept to simplify the calculation of the imag-

ing and the graphic approximation of the leading rays in imaging. The actual change
of directions occurs, of course, at the confining surfaces of lenses, prisms or mirrors.

Principal points, intersection points of the principal planes with the optical axis.
For lenses there are two surfaces where refraction occurs. Correspondingly, two princi-

pal planes and two principal points are introduced:
• object principal point, H , principal point located closer to the object,
• image principal point, H ′, principal point located closer to the image.

4. Focal lengths and object distances

Object focal length, object-side focal length, f̄ , distance between object principal point
and object focal point.

Image focal length, image-sided focal length, f ′, distance between image principal
point and image focal point.
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➤ Frequently, only very few of the rays emerging from an object contribute to the optical
imaging, namely the rays that actually reach the image plane through the apertures
of an instrument. The smaller the angle of inclination of the rays with respect to the
optical axis, the stronger the simplifications that can be made in the calculations.

Object distance, a, distance between the normal of the object point to the optical axis, and
the object principal plane, a = H O.

Image distance, a′, distance between the normal of the image point to the optical axis,
and the image principal plane, a′ = H ′O′.

Focus-object distance, z, distance of the object plane from the object focus, z = F̄ O .
Focus-image distance, z′, distance of the image plane from the image focus, z′ = F ′O′.
Relations:

z = a − f̄ , z′ = a′ − f ′ .

Intercept distances, s̄ and s′, distance of object or image measured from the corre-
sponding lens apex.

Imaging equation, relation between the conjugated quantities (object distance, image
distance) of imaging.

Object size, y, lateral size of the object (perpendicular to optical axis).
Image size, y′, lateral size of the real image (perpendicular to optical axis).
Paraxial region, space region near the axis where the angle α between rays and optical

axis is so small that sinα and tanα can be replaced with sufficient accuracy by the angle
α. The image equations then simplify significantly.

The paraxial region cannot be defined generally; it depends on the actual accuracy re-
quired.

Gaussian optics, notation for optics in the paraxial region.
➤ Gaussian optics is also a first approximation for analysis outside the paraxial region

in order to determine the basic properties of an optical system.
In the following, we shall mainly treat centered systems in the paraxial region.

5. Sign conventions

• Direction of light from left to right.
• Use of oriented segments. Distances are measured as follows: from the reference

point towards the right (along the direction of light) as positive, towards the left as
negative.

• The y-direction upwards is positive.
• The curvature radius (lens, mirror) is positive if the center of curvature (C) lies to the

right of the apex (S), and negative if C lies to the left of S.
• Conjugated quantities (quantities corresponding to each other in the image space and

the object space) are quantities that may be imaged into each other; they get the same
letters. The quantities in the image space are labeled by an upper prime at the right.

• For quantities that occur pairwise, but are not related by imaging, the quantity on the
object side is specified by a bar, e.g., F (object side) and F ′ (image side).

• A reference leg is fixed for angle measurement. An angle is positive if the other leg
has to be turned counterclockwise to coincide with the reference leg; otherwise, it is
negative. Arrows in angles point away from the reference leg.

➤ In the subsequent figures, a reference is often made to the sign of a quantity by adding
it in brackets in front of the symbol. Hence, (−) f means that the value of f is nega-
tive.
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6. Notations in formulae and figures

■ The object size is mapped to the image size; these quantities are conjugated to each
other and yield the notations y and y′.

Symbol Meaning

C̄ , C ′ centers of curvature
S, S′ apex points
d lens thickness
n refractive index
a (also g), a′ (also b) object distance, image distance
f̄ , f ′ object focal length, image focal length
y (also G) object size
y′ (also B) image size
F̄ , F ′ object focus, image focus
H , H ′ object and image principal points
O point on the optical axis
s, s′ intercept distances (from apex)
i distance between principal planes
β′ linear magnification
�′ magnification

11.1.2 Reflection
Mirror, plane or curved surface, with a roughness small compared with the wavelength of
the incident radiation.

In order to describe the reflection of a light ray geometrically, the normal to the mirror
surface at the point hit by the ray is required (Fig. 11.4).

Perpendicular, perpendicular of incidence, the normal to the surface at the point hit
by the ray.

Angle of incidence, ε, angle between the perpendicular to the surface and the incident
ray.

Angle of reflection, εr, angle between the perpendicular to the surface and the reflected
ray.

Reflection law (see p. 304):
▲ The angle of incidence equals the angle of reflection,

ε = εr .

▲ The incident ray, the perpendicular, and the reflected ray always lie on a plane.
➤ The reflection is independent of the wavelength (color). Therefore, reflection causes

no chromatic aberration, contrary to refraction (imaging by lenses).

Perpendicular

r
r

Figure 11.4: Reflection
law. Perpendicular, angle
of incidence ε and angle of
reflection εr.
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11.1.2.1 Plane mirror
Relation between image point and object point:
▲ The virtual image point and the object point are equidistant from the mirror and lie

on the same perpendicular.
The virtual image arising for a plane mirror is erect and laterally (left-right) inverted. The
image size equals the object size (Fig. 11.5).
➤ Since the rays are only an auxiliary tool of representation, an arbitrary number of

rays may be drawn in any direction from any object point. All rays striking the mirror
yield the same virtual image point (no imaging error).

Figure 11.5: Image formation at the plane mirror. P : object point, P ′: virtual image point,
y: object, y′: image. Homocentric bundles generate the image according to the law of
reflection. Depending on the position, the eye selects a certain fraction of the rays, which
leads to the perception of a virtual image.

11.1.2.2 Concave mirror
Concave mirror, general designation for mirrors that collect parallel incident rays into a
convergent bundle (Fig. 11.6).
■ Most concave mirrors resemble a spherical dish (spherical mirror), or a rotational

paraboloid (parabolic mirror), or other rotational conics with axial symmetry.

1. Characteristics of concave mirrors

Apex, S, of a mirror, intersection point of the optical axis and the mirror surface.
Focal point of concave mirror, by definition the point where the rays incident very

close and parallel to the optical axis intersect each other.
Focal length, f̄ , distance between the focal point and the apex.

➤ For the mirror the principal planes H and H ′ coincide with the osculating plane at
the apex S.

focal length of spherical concave mirror
= half of sphere radius

L

(−) f̄ = (−)r
2

Symbol Unit Quantity

f̄ m focal length
r m radius of mirror

According to the sign convention, a concave mirror has a negative radius of curvature and
negative focal length.
▲ For spherical concave mirrors, the focal points F̄ and F ′ coincide. The image focal

length equals the object focal length,

f̄ = f ′.
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➤ Actually, the reflection does not occur at the principal plane, but at the surface of the
mirror. In the paraxial region (see p. 340), the difference may be ignored.

Figure 11.6: Spherical concave mirror. C : center, S: apex, F : focal point. (a): curvature
radius r and focal length f , (b): catacaustic line (envelope of reflected rays) and aperture
aberration.

2. Image construction for concave mirror

▲ Image construction with two preferential rays (Fig. 11.7):
Focal ray, strikes the mirror through the focal point and is reflected parallel to the

optical axis.
Parallel ray, is incident parallel to the optical axis and is reflected through the

focal point.
Rays passing the center of curvature of a spherical concave mirror (central rays) are re-
flected into themselves.

Figure 11.7: Image construction for spherical concave mirror. (a): object beyond twice the
focal length, (b): object within the focal length.

3. Imaging equation and magnification of the concave mirror

Imaging equation for the concave mirror:
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imaging equation for concave mirror L−1

1

a′ +
1

a
= 1

f ′

Symbol Unit Quantity

a m object distance
a′ m image distance
f ′ m image focal length

➤ The imaging equation immediately follows from the application of ray theorems to
image construction.

Magnification, lateral magnification, β′, of the concave mirror:

magnification = image size
object size

1

β′ = y′
y
= −a′

a

Symbol Unit Quantity

β 1 lateral magnification
y′ m image size
y m object size
a m object distance
a′ m image distance

➤ According to the sign conventions, the lateral magnification is positive (negative) if
the image is erect (inverted).

Images of the spherical concave mirror, depending on the object distance a:

lateral
object distance a image distance a′ image magnification β

−∞ < a < 2 f ′ 2 f ′ < a′ ≤ f ′ real, reduced, inverted −1 < β < 0
2 f ′ 2 f ′ real, equal size, inverted −1

2 f ′ < a < f ′ −∞ < a′ ≤ 2 f ′ real, enlarged, inverted −∞ < β < −1
f ′ < a < 0 0 < a′ <∞ virtual, enlarged, erect 1 < β <∞

4. Non-paraxial cases

• Spherical concave mirror or spherical mirror, the larger the distance of the parallel
incident rays from the optical axis, the larger is the distance of the intersection point
of the reflected rays on the optical axis from the focal point. In the sense of Gaussian
optics, this phenomenon is an imaging defect called aperture aberration (spherical
aberration) (Fig. 11.6 (b)).

The reflected rays have a continuously curved envelope surface, the catacaustic.
• Parabolic mirror, convave mirror generated by rotation of the parabola y2 = 2cx

about the x-axis (optical axis) (Fig. 11.8). The coefficient c represents the curvature
radius of the parabola at the apex point.

➤ In the sense of Gaussian optics, the parabolic mirror with parabolic coefficient c and
the spherical mirror with radius r = c are equivalent. In particular, the same imaging
equations hold.

All rays parallel to the optical axis intersect in the focal point of the parabolic
mirror, which thus has a vanishing aperture aberration. However, the imaging defects
of the parabolic mirror are very strong, even for parallel rays that are only slightly
inclined with respect to the optical axis (coma).
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Figure 11.8: Generation of a parallel
bundle of rays by a parabolic mirror.

Figure 11.9: Image construction for a
convex mirror by means of central ray and
focal ray.

11.1.2.3 Convex mirror
Convex mirror, spherical or other rotational surface reflecting at the outer side surface
(Fig. 11.9).
• Parallel incident light is diverging after reflection.
• According to the sign convention, the convex mirror has a positive radius of curvature

and a positive focal length,

(+) f = (+)r
2

.

• A convex mirror always creates virtual, reduced and erect images.

11.1.3 Refraction
Refraction (see p. 302), change of the direction of a ray when passing the interface be-
tween two media.
➤ The light does not enter the second medium entirely; a certain fraction is reflected.

11.1.3.1 Refractive index
Coefficient of refraction, refractive index n, material constant, characterizes the refrac-
tive behavior of the medium in the transition of light from vacuum into this medium.
▲ If two media border on each other, the medium with higher refractive index is said to

have higher optical density, the medium with lower refractive index is said to have
lower optical density than the corresponding other medium.

■ The coefficient of refraction for a vacuum is 1, the refractive coefficients for air, water
and diamond are 1.0003, 1.333 and 2.417, respectively. The coefficient of refractions
for glasses are in the range of 1.4 to 1.9 (e.g., quartz glass 1.46, optic boron crown
1.51, optic flint 1.61, heavy optic flint 1.76).

For additional values of refractive index see Tab. 12.2/2.
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refractive index and propagation speed 1

nmedium = cvacuum

cmedium

Symbol Unit Quantity

nmedium 1 refractive index
cvacuum m/s phase velocity in vacuum
cmedium m/s phase velocity in medium

In general, the index of refraction depends on the wavelength (see p. 305).
➤ In optical technology, one introduces the quantity n′ = cair/cmedium. The coefficient

of refractions n and n′ differ only slightly. For dry air under standard conditions,
n′ = 1 and n = 1.0003.

Angle of incidence, ε, angle between incident ray and the perpendicular. Angle of refrac-
tion, ε′, angle between refracted ray and perpendicular.

11.1.3.2 Law of refraction
Law of refraction, Snell’s law, describes the relation between the angles of incidence and
refraction (Fig. 11.10):

Snell’s law of refraction

sin ε

sin ε′ =
n2

n1
= c1

c2

Symbol Unit Quantity

ε rad angle of incidence
ε′ rad angle of refraction
n1, n2 1 refractive indices of medium 1, 2
c1, c2 m/s phase velocities of medium 1, 2

▲ The ratio of the sine of the angle of incidence and the sine of the angle of refraction
is a constant that depends only on the material properties of both media.

▲ The incident ray, the perpendicular, and the refracted ray lie in one plane; the reflected
ray lies in the same plane.

Perpendicular Perpendicular

Figure 11.10: Snell’s law of refraction. ε: angle of incidence, ε′: angle of refraction. (a):
n1 < n2, c1 > c2, refraction towards the perpendicular, (b): n1 > n2, c1 < c2, refraction
away from perpendicular.

▲ When entering the optically more dense medium (n1 < n2, c1 > c2), the light ray is
refracted towards the perpendicular; when entering an optically less dense medium
(n1 > n2, c1 < c2), the ray is refracted away from the perpendicular.

■ In a transition from air to glass, the ray is refracted towards the perpendicular. For
light of wavelength λ = 632.8 nm, the angles of incidence ε = 10◦, 30◦, 60◦, 80◦
correspond to the angles of refraction ε′ = 6.5◦, 19.0◦, 35.0◦, 40.0◦.
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Relative refractive index, notation for the ratio of the refractive indices of two media,
n = n2/n1.

11.1.3.3 Fresnel’s formulas
In reflection of light, the intensity of the reflected ray is less than that of the incident light
(except for the case of total reflection, see below):
• in reflection by metallic layers because of weak absorption in the layer (see

Fig. 11.11),
• at the interface between media of different refractive indices only a fraction of the

intensity is reflected.

1. General Fresnel formulas for the intensity of light

Fresnel’s formulas, quantitative statements on the splitting of intensity between the re-
flected and the transmitted ray under reflection, as a function of the state of polarization of
light (Fig. 11.11). These formulas follow from Maxwell’s equations of electrodynamics:

Fresnel’s formulas for intensities of light 1

R‖ = tan2(θi − θt )
tan2(θi + θt )

R⊥ = sin2(θi − θt )
sin2(θi + θt )

Symbol Unit Quantity

θi rad angle of incidence
θt rad angle of emergence
R‖ 1 reflection coefficient/fraction

with polarization ‖ incidence plane
R⊥ 1 reflection coefficient/fraction

with polarization ⊥ incidence plane

The transmitted fractions are

T‖ = 1− R‖, T⊥ = 1− R⊥

Figure 11.11: Dependence
of reflection coefficients
on state of polarization
and incidence angle for a
glass-air interface.

2. Fresnel’s formulas for perpendicular incidence of light,

specify the reflected and transmitted fraction of intensity for the incidence angle θi = 0.

R =
(

n − 1

n + 1

)2
, T = 4n

(n + 1)2
, n = n2/n1.
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➤ Because of the flatness of the curve in Fig. 11.11, it is often sufficient to adopt these
simplified formulas.

■ At any air-glass interface at least 4 % of the intensity is reflected. Therefore, lenses in
optical devices always have to be coated with antireflective material. Example: in an
objective consisting of three groups of lenses (six interfaces) without coating, about
25 % of the light intensity would be lost.

➤ For a certain angle, Brewster’s angle θB , the fraction R‖ = 0. The reflected fraction
of the unpolarized light incident at this angle is linearly polarized (see p. 293).

Brewster’s angle: tan θB = n2/n1.

11.1.3.4 Rainbow
Rainbow, atmospheric-optical phenomenon caused by the refraction and reflection of light
in water droplets. The rainbow is part of a circle with the center on the connecting line of
Sun and observer on the side opposed to the Sun. For an m-fold reflection in the droplet
interior, the deflection angle δ is

δ = 2(ε − ε′)+ m(π − 2ε′) .

Here ε is the angle of incidence and ε′ the angle of refraction on entrance of the light ray
into a water droplet (Fig. 11.12). The minimum deflection for a refractive index n is

∂δ

∂ε
= 0 , cos εmin =

√
n2 − 1

n + 2m
.

Main rainbow, has a radius of 42.5◦ and a width of 1.5◦. It arises under two-fold refraction
and single reflection of light by a drop of water. Dispersion causes color spreading with the
sequence red, orange, yellow, green, indigo and violet from inside to outside.

Secondary rainbow, has a radius of 52◦ and a width of 3◦. It arises by two-fold re-
fraction, two-fold reflection and dispersion in the water drop. The sequence of colors is
reversed from the main rainbow.
➤ Rainbow formation is connected with interference phenomena, which depend on the

size of the droplets. These interferences manifest themselves by alternating bright
and dark rings and by the irregular sequence of colors in the secondary rainbow.

Figure 11.12: Path of rays in the rainbow. (a): main rainbow, (b): secondary rainbow.
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11.1.3.5 Total reflection
Total reflection, occurs when light is incident from a medium of higher optical density,
with an angle larger than or equal to the critical angle of total reflection, onto the interface
with a medium of lower optical density.

Critical angle of total reflection, εg , the angle of incidence for which the angle of
emergence equals π/2 when the ray travels from the medium of higher optical density to
the medium of lower optical density (Fig. 11.13).

critical angle of total reflection 1

sin εg = n2

n1

Symbol Unit Quantity

εg rad critical angle of total reflection
n1, n2 1 refractive index of medium 1, 2

Critical angle of total reflection for several media; the surrounding medium is air:

Substance εg Substance εg

diamond 23◦ light crown glass 40◦
heavy flint glass 34◦ glycerol 43◦
carbon sulfide 38◦ water 49◦

Figure 11.13: Critical
angle of total reflection εg
(n1 > n2). Refraction for
ε < εg (dotted line), critical
case for ε = εg (full line),
total reflection for ε > εg
(dashed line).

Critical angles of other substances may be calculated from the tabulated refractive in-
dices (Tab. 12.2/2).
■ The refractive index of air is 1.0003, that of ice 1.310. If a ray passes through ice and

hits an interface to air, the critical angle of total reflection is

εg = arcsin
nair

nice
= arcsin

1.0003

1.310
= 0.868851 rad = 49.78◦ .

Rays hitting the interface at angles of incidence ε > 49.78◦ are totally reflected.
➤ Total reflection is used in prisms for inverting the direction of rays.
Porro prism set, set of prisms for image inversion by four-fold total reflection (Fig. 11.14).

11.1.3.6 Light wave guide
Light wave guide or pipe, arrangement of mirrors or totally reflecting interfaces that con-
fine light propagation in a definite direction (along the symmetry axis of the arrangement).
■ Tube with mirror-coated inner surface.
■ Most important application: Glass fibers for optical communication.
➤ There is a direct analogy to wave guides in microwave technology.
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Figure 11.14: Ray inversion by totally reflecting prisms. (a): deflection by π/2, (b): deflec-
tion by π , (c): Porro prism set (image inversion).

1. Operational mode of light wave guides

a) Structure and properties of light wave guides: Light wave guide, consists of a
core of refractive index n1, and a coating of refractive index n2 < n1 (Fig. 11.15).

Core

Coating

Figure 11.15: Structure of a light wave guide.

If the angle ϑ1 is small enough, the light ray is totally reflected at the interface between
core and coating and may leave the core of the light wave guide only through the end face.

Critical angle of total reflection ϑ1 at the interface between core and coating is given
by the equation

n1 sin(90◦ − ϑ1) = n2 ⇒ cosϑ1 = n2/n1.

At the entrance face, the law of refraction holds, n0 sinϑ0 = n1 sinϑ1. Both relations
combined yield the numerical aperture NA of the wave guide:

n0 sinϑ0 = n1

√
1− cos2 ϑ1 = n1

√
1− (n2/n1)

2

=
√

n2
1 − n2

2 =
√

n2
core − n2

coating = NA.

➤ Only light rays for which n0 sinϑ0 is smaller than or equal to NA will be transmitted
by the wave guide. For larger angles of incidence ϑ0 the condition of total reflection
is not fulfilled.

➤ This consideration holds only in the approximation of ray optics, i.e., for lengths of
the wave guide that are considerably larger than the wavelength of the light used. In
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the important case of the single mode wave guide, this condition is not fulfilled; here
a specification of a numeric aperture makes no sense and should be replaced by the
specification of the characteristics of the natural mode of the wave guide (e.g., 1/e
width in the Gaussian approximation).

■ The principle of the wave guide was demonstrated in 1870 by John Tyndall in London
using a water jet (core, n = 1.33) in air (coating, n = 1.00).

▲ If a wave guide is bent, the condition for total reflection is violated for a fraction of
the rays that go astray (“decouple”). The larger the difference of the refractive indices
of core and coating, the less sensitive the wave guide with respect to such losses due
to curvature.

b) Wave-optical boundary condition: If the coherence length of the light used is larger
than the thickness d of the core of the wave guide, an additional wave-optical boundary
condition has to be satisfied:
▲ After two-fold reflection at the interfaces, the wave front must constructively interfere

with its not-yet-reflected fractions (Fig. 11.16), i.e., the optical path difference must
be an integer multiple m · λ of the wavelength λ (polarization and phase shift are
ignored).

Then

n1 sinϑ1 = mλ

2d
≤ NA =

√
n2

1 − n2
2 ⇒ m ≤ 2d

λ

√
n2

1 − n2
2.

The largest integer number N to fulfill this condition is the number of allowed ray orienta-
tions. If this is fulfilled only for N = 0, it is a single-mode wave guide.

Wave
front

Figure 11.16: Quantization of propagation angles in the wave picture: The reflected fraction
has to interfere constructively with the not-yet-reflected fraction of the wave.

▲ Wave guides with a small number of allowed propagation angles, and in particular
single-mode wave guides, are quantitatively described by Maxwell’s equations with
the given boundary conditions. Instead of ray-optical propagation angles, one gets
the (natural) modes of the wave guide. These are the allowed distributions of the
electric and magnetic fields. There is a close analogy to the probability functions of
a quantum-mechanical particle in a potential well.

➤ The intensity distribution in a single-mode wave guide calculated with Maxwell’s
equations can be described in good approximation by a Gaussian curve (Fig. 11.17).

2. Application of light wave guides

■ Simplest light wave guide: pipe with mirror coating on the inner surface, with a
diameter of several millimeters. Applied to guide UV light to difficult-to-access
positions where it is needed for hardening of UV cement (dentist).

Important applications: endoscopes, alternating-sign signaling systems, fiber-optics
plates for electron-image tubes, and for reduction of the field of view of monitors (cash
dispenser), and fiber-optical sensors (see below), fibers for optical communication.
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Figure 11.17: Cross-section
and intensity distribution for
a typical single-mode fiber.
M: coating (n = 1.455), K:
core (n = 1.46).

a) Optical communication: Main field of application for glass fibers: substitute for
electric connections. Advantages:
• higher transfer capacity and lower attentuation
• very low failure rate
• insensitivity to EMI (electromagnetic interference)
➤ Since 1988 underwater cables for transatlantic (TAT-8) and transpacific (TPC-3) com-

munication are glass fibers.
Signal dispersion, important characteristics that specifies how much a signal is spread

out in time. The smaller the dispersion, the faster subsequent pulses can be sent. It is caused
by both material and mode dispersion.

Material dispersion, describes the dependence of the refractive index, and thus of the
light speed in the medium, on the wavelength.
➤ Material dispersion can not be avoided by using a monochromatic light source. Since

the energy-time uncertainty relation connects the line width and the coherence length,
a truly monochromatic source of light would imply a coherence length of∞. For data
transfer in the GHz- (or GBit/s) range one needs, however, pulses of lengths ≤ 1ns,
which correspond to wave trains of a maximum length of 20 cm (for n = 1.5), and
the corresponding frequency spread.

For this reason one tries to reduce the material dispersion of the fibers by special geometries
and materials (dispersion-shifted fiber, dispersion-flattened fiber).

Mode dispersion, arises because light rays of different propagation angles pass through
the fibers with different transit times.
▲ Mode dispersion is the most important distinguishing feature between different types

of glass fibers.
Multi-mode fibers are used exclusively for short connections, since mode dispersion
quickly reaches unacceptable values as the length increases.

Single-mode (mono-mode) fibers basically have no mode dispersion. Their transfer
capacity is limited by material dispersion. However, they require a very high effort in in-
stallation (calibration with sub-µm-accuracy) because of their small core diameter.

b) Gradient-index fibers (GRIN fibers, GI fibers), contain a core with a refractive index
that decreases continuously with increasing radius. They correspond to a series of gradient-
index lenses (rod lenses, SELFOCT M lenses) of very low diameter (Fig. 11.18).

The optical path differences take a minimum value for a radial dependence of the
refractive index as follows:

n(r) = n1(1− αr2) .

For this reason, gradient-index fibers take (with respect to their transmission capacity) an
intermediate position between multi-mode and single-mode step-index fibers.

c) Fiber-optical sensors, level-measuring sensor, a light guide that uses air as low-
refractive coating is positioned in a container (Fig. 11.19). If light is coupled in, the step in
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Figure 11.18: Gradient-index fiber as a sequence of gradient-index lenses.

the refractive index is so large for an empty container that almost no light is lost, despite
the curvature, and the ray hits a detector (photo diode) at the remote end of the core. If the
container is filled up to a level such that the core is immersed, the liquid serves as coating
material. Because of the reduced step in the refractive index, much more light is lost, and
the signal from the photo diode is changed.

Figure 11.19: Simplest
example of a fiber-optical
system: level-measuring
sensor.

By appropriate structuring of the interface (Bragg grating) between the core and the coat-
ing, the sensivity of such a sensor may be increased considerably. One may then demon-
strate, for instance, the attachment of certain molecules. Further, by using these gratings,
one may establish the length of a fiber with high precision (tension, pressure, temperature).
The measured quantities then are not the total transmission, but phase and polarization
changes, as well as absorption or reflection in very narrow ranges of wavelength.

d) Coupling of light into wave guides: Coupling efficiency, ratio of the light power
coupled in and the emitted power of the source of light.

Fig. 11.20 shows that for maximum coupling:

B = D
b

g
< d, and ϑWL < NA.

WG WG

Figure 11.20: Coupling of the light of a halogen bulb L Q into a wave guide WG.

For a light source radiating isotropically (halogen bulb, arc lamp, light diode), this con-
dition cannot be fulfilled. Moreover, the product of the size of the radiating area and the
solid angle covered by the lens is a constant of optical imaging. It follows that, in a case of
optical imaging that reduces the radiating area, the solid angle increases.
▲ For this reason, high-efficiency coupling may be achieved exclusively by lasers, since

laser light fills the minimum phase space volume.
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➤ For laser diodes, a matching to fibers with refractive index 1.5 is achieved by enlarg-
ing the radiating area and reducing the solid angle. In addition, an anamorphotic
imaging system is used to convert an elliptic beam profile into a circular one.

Estimate of the coupling efficiency:

η =
(

d · ϑW G

D · ϑL Q

)2

For a more detailed consideration, the overlap integral of the natural mode A(x, y) of the
wave guide and the complex amplitude B(x, y) of the light hitting the end face has to be
evaluated:

η =

[∫ ∫
A(x, y)B∗(x, y)dxdy

]2

∫ ∫
A(x, y)A∗(x, y)dxdy

∫ ∫
B(x, y)B∗(x, y) dx dy

.

➤ For most practical applications, the functions A(x, y) and B(x, y) may be approxi-

mated by Gauss functions exp

(
−x2

σ 2

)
.

Estimate of the order of magnitude of the coupling efficiencies of various combinations
of light sources and wave guides:

halogen bulb short-arc lamp light diode laser

wave guide 10 mm 1 1 1 1

plastic fiber 1 mm 0.001 0.01 1 1

multi-mode fiber 50µm 10−5 10−4 0.01 1

single-mode fiber 6µm 10−8 10−7 10−5 1

e) Integrated optics, wave-guide structures with definite functions such as splitting,
joining and switching of light (Fig. 11.21).

Figure 11.21: Examples of integrated optical elements: (a) brancher 1× 4, (b) star coupler
4× 4, (c) electro-optical switch.

▲ The wave guides are produced on wafers (cf. integrated circuits of microelectronics)
by lithographic methods. Basic materials are e.g., glass, lithium niobate and poly-
mers.

In addition, electrodes, heating elements, etc. may be attached.
■ Switching of light between two wave guides by varying the refractive index (by

means of electric fields or temperature).
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Discrimination between:
active components such as switches, modulators;
passive components such as star coupler, brancher, etc.

11.1.3.7 Refraction by a prism
Prism, unit formed of transparent materials, with at least two plane surfaces enclosing an
angle; the intersecting line is called refracting edge.

In the case of a triangular prism (Fig. 11.22), light strikes two interfaces. A ray is thus
refracted twice. Let the refractive index of the prism be n1, and that of the surrounding
medium, n2, where n2 < n1.

Refracting
     edge

Base

Figure 11.22: Refraction
by a triangular prism for
symmetric path of rays. δ:
vertex angle of the prism,
ε1: angle of incidence, ε′2:
angle of emergence, γ :
deflection angle.

1. Deflection angle,

γ , of the emerging ray relative to the incident ray: γ = ε1 + ε′2 − δ .

deflection angle for prism 1

γ = ε1 − δ

+ arcsin

{
sin δ

√(
n1

n2

)2
− sin2 ε1

− cos δ sin ε1

}

γmin = 2 arcsin

(
n1

n2
sin
δ

2

)
− δ

Symbol Unit Quantity

γ rad deflection angle
γmin rad minimum deflection

angle
ε1 rad angle of incidence
n1 1 refractive index,

prism
n2 1 refractive index,

medium
δ rad vertex angle,

prism

▲ The deflection angle γ takes a minimum value for a symmetric light path, ε1 =
ε′2, ε′1 = ε2.

If the dependence of the refractive index n1 on the wavelength is taken into account, the
deflection angle γ also depends on the wavelength (see p. 305): light is dispersed by the
prism into a spectrum (Fig. 11.23).

M Refractive indices may be determined by measuring the minimum deflection angle
γmin,

n2 = n1 sin(δ/2)

sin
(
γmin + δ

2

) .
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(red)

(violet)

Figure 11.23: Spectral decomposition of light by refracting prism. Q: light source, B:
diaphragm, L: lens, B ′, B ′′: images of diaphragm.

Since this method allows a determination of the refractive index with high precision,
it is appropriate to determine its frequency dependence (see p. 305).

2. Fraunhofer lines,

absorption lines in the spectrum of the Sun, caused by absorption by various elements in
the photosphere (and in few cases in Earth’s atmosphere). The strongest lines are labeled
by Latin capital letters (see Tab. 12.2/9).

Since the Fraunhofer lines arise by absorption, they appear as black lines in a spectrum
of the Sun’s light because the energy of the corresponding wavelengths is transferred to the
absorbing elements. There are several hundred Fraunhofer lines.

Abbe number, νe, quantity characterizing the dispersion of an optical material,

νe = ne − 1

nF′ − nC′
,

where ne is the refractive index at the frequency of the mercury-e-line (λ = 546.07 nm),
and n′F and n′C are the refractive indices at the cadmium lines F ′ (λ = 480.0 nm) and C ′
(λ = 643.8 nm) (see Tab. 12.2/9). The Abbe number νλ for the wavelength λ is obtained
by replacing the refractive index ne in the above formula by the corresponding value n(λ)
for the spectral line with wavelength λ.

11.1.3.8 Refraction by plane parallel glasses
▲ If a ray passes through a plane parallel glass of thickness d , the incident ray and

the outgoing ray after two-fold refraction are displaced parallel by a distance δ
(Fig. 11.24).

Figure 11.24: Lateral
displacement δ of a ray by
a plane parallel glass of
thickness d .
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∆

o'o
Figure 11.25: Axial
displacement 
 of a pencil
of rays by a plane parallel
glass.

▲ If a pencil of rays passes the plane plate, the center of the pencil is axially displaced
by 
. An observer perceives an object as displaced by the corresponding amount
(Fig. 11.25).

parallel displacement of ray by plane parallel glass

δ = d
sin(ε − ε′)

cos ε′
sin ε

sin ε′ =
n2

n1


 = d

(
1− n1

n2

)
for small ε

Symbol Unit Quantity

ε rad angle of incidence
ε′ rad angle of refraction
δ m lateral displacement of ray
d m thickness of plate
n1 1 refractive index of air
n2 1 refractive index of plate

 m displacement of vertex

In order to calculate δ, one first calculates the angle of refraction ε′ from the given angle
of incidence ε according to the law of refraction and inserts these values into the above
formula.
➤ The quantity 
 is important for inversion prisms and must be taken into account in

the construction of the image.

11.1.3.9 Refraction by spherical surfaces
Most lenses have spherical surfaces. Therefore, refraction by a spherical surface is of fun-
damental importance.

Let the spherical surface have a radius R and center C . Let the refractive index be n2
inside, and n1 outside, the sphere.

We consider an incident ray from an arbitrary point O outside the sphere to an arbitrary
point A on the surface, and trace the refracted ray to the intersection point O ′ with the
optical axis OC (Fig. 11.26).

Figure 11.26: Refraction at
the surface of a sphere of
radius R.
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Perpendicular AC , the perpendicular to the tangential plane at the point where the ray
reaches the surface.

Apex, S, intersection point of the optical axis with the spherical surface.
Intersection distances, s and s′, distances of the intersection points O and O ′ of the

incident ray and the refracted ray with the optical axis, measured from the apex S. They
are counted positively from the apex to the right, and negatively to the left.

l and l ′ are the distances of the intersection points O and O ′, respectively, from the
point A where the ray hits the spherical surface. The distance from the spherical surface is
counted negatively towards the left, and positively towards the right.

relation between the intersection distances 1

n1
s − R

l
= n2

s′ − R

l ′

Symbol Unit Quantity

n1 1 refractive index of medium
outside the sphere

n2 1 refractive index of medium
inside the sphere

R m radius of sphere
s m distance SO
s′ m distance SO ′
l m distance AO
l ′ m distance AO ′

11.2 Lenses

Lens, transparent body with two interfaces; in general, at least one of them is curved. A
lens generates an optical image.

Spherical lens, a lens bounded by two spherical surfaces.
■ Special cases: plane parallel glass, meniscus (lens with a convex and a concave side).

Other shapes of lenses: aspherical lens, cylindrical lens, Fresnel lens, correction
plate for Schmidt mirror.

In general, lenses consist of material of higher optical density than that of the surround-
ing medium (mostly air). Then:
• convergent lenses are thicker in the middle than at the edge,
• divergent lenses are thinner in the middle than at the edge.
■ Eyeglasses for near-sighted people are convex-concave divergent lenses

(Fig. 11.27 (f)).
➤ In order to minimize imaging defects, the shape and orientation of the convergent or

divergent lens has to be chosen so that the rays are refracted at both interfaces by
about the same amount.

▲ The surface with larger curvature should point in the direction of the parallel ray.

11.2.1 Thick lenses
Thick lens, lens with refractive properties in the paraxial region that may be described by
the refraction at two principal planes, the object principal plane and the image principal
plane. In this construction, the ray is assumed to propagate parallel to the optical axis
between the two principal planes.



11.2 Lenses 359

Converging                                                         Diverging

Figure 11.27: Lens shapes. (a): biconvex lens (r1 > 0, r2 < 0, f ′ > 0), (b): plane-convex
lens (r1 = ∞, r2 < 0, f ′ > 0), (c): concave-convex lens (r1 < r2 < 0, f ′ > 0), (d):
biconcave lens (r1 < 0, r2 > 0, f ′ < 0), (e): plane-concave lens (r1 = ∞, r2 > 0, f ′ <
0), (f): convex-concave lens (0 < r2 < r1, f ′ < 0). (a)–(c): convergent lenses, (d)–(e):
divergent lenses.

1. Characteristic quantities of thick lenses

Object distance, a, the distance between the object principal plane and the object.
Image distance, a′, the distance between the image principal plane and the image,

counted positively along the direction of the incident rays, negatively in the opposite direc-
tion.

Meridional section, a section through an optical system containing the optical axis and
an object point off the axis (see Fig. 11.28).

Meridional rays, rays propagating within the meridional section.
Sagittal section, plane perpendicular to the meridional section, containing the off-axis

object point and a reference ray in the meridional section. The optical axis is inclined with
respect to the sagittal section (see Fig. 11.28).

Sagittal rays, rays propagating within the sagittal section.
Focal point, F ′ or F̄ , point on the optical axis into which the rays which are incident

parallel to the optical axis are being focused.
Focal length, f̄ or f ′, the distance between the object principal point or the image

principal point and the object focal point or the image focal point.
Focal planes, planes perpendicular to the optical axis that contain the image focal point

or the object focal point, respectively.

Optical axisMeridional plane

Meridional ray

Sagittal plane

Sagittal ray

Reference ray

Figure 11.28: Meridional and sagittal planes.
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2. Special case: thick spherical lens

Spherical lens, lens consisting of a material of refractive index n, the refracting surfaces
of which are sections of spherical surfaces. Distances (such as the focal length or the object
distance) are measured from the corresponding principal plane, negatively towards the left,
and positively towards the right.
■ For the biconvex lens, the radii r1, r2 of the spheres are r1 > 0 and r2 < 0 (see

Fig. 11.27 (a)).
▲ The focal lengths f̄ and f ′, the image distance a′, and the object distance a are

measured from the corresponding nearest principal plane.
Mid-thickness, d , the distance between the apex points of a lens.
▲ The magnitudes of the two focal lengths f̄ and f ′ differ when the refractive indices

of the media on the two sides of the lens are different,

f̄

f ′ = −
n

n′ .

If the lens is surrounded on both sides by the same medium, then the image focal
length f ′ has the same magnitude as the object focal length f̄ ,

f̄ = − f ′ .

3. Lens formula for thick lenses

For thick (spherical) lenses surrounded by air, the formulae for the focal length f ′, the
distance sH of the object principal point H from the object apex S, the distance s′H ′ of the
image principal point H ′ from the image apex S′, and the distance i between the principal
planes (see Fig. 11.29) read as follows:

lens formulae for thick lens L

f ′ = nr1r2

(n − 1)
[
n(r2 − r1)+ (n − 1)d

]
sH = r1d

n(r1 − r2)− (n − 1)d

s′H ′ =
r2d

n(r1 − r2)− (n − 1)d

i = (r1 − r2 − d)(n − 1)d

n(r1 − r2)− (n − 1)d

Symbol Unit Quantity

f ′ m focal length
n 1 refractive index of lens
r1, r2 m radius of spheres 1, 2
d m mid-thickness
sH m distance SH
s′H ′ m distance S′H ′
i m distance H H ′

M For common glass lenses in air, the distance between the principal planes is about
one third of the lens thickness (distance between the apex points).

4. Construction of the image for a thick lens

Image point, to determine its position, three rays are used:
• Parallel ray, runs parallel to the optical axis from the object point to the image

principal plane, and then passes through the image focal point.
• Central ray, runs from the object point to the intersection point of the object princi-

pal plane and the optical axis (principal point), and then runs parallel to the optical
axis up to the image principal plane. Then it is continued parallel to the ray between
the object point and the object principal point.
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Object side Image side

Principal planes

sH sH'

Figure 11.29: Construction of the image for a thick converging lens with two principal
planes.

• Focal ray, a line is drawn from the object point through the object focus to the object
principal plane. Afterwards, the focal ray runs parallel to the optical axis.

These three rays originate in an object point and meet again at an image point.

5. Imaging equation and refractive power of a thick lens

The imaging equation establishes a relation between the focal length f ′, the object distance
a (O H ), and the image distance a′ (H ′O′):

imaging equation L−1

1

f ′ =
1

a′ +
1

a

Symbol Unit Quantity

f ′ m focal length
a m object distance
a′ m image distance

Another formulation:
Newton’s imaging equation, object distance and image distance with respect to the

principal planes are replaced by the corresponding quantities related to the focal points,
z = a − f , z′ = a′ − f ′:

z · z′ = f̄ f ′ ,

or with f̄ = − f ′,

z · z′ = − f ′2 .

Refractive power, B, of a lens or a system of lenses, defined by

refractive power = 1
focal length

L−1

B = 1

f ′
Symbol Unit Quantity

B 1/m refractive power
f ′ m focal length
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Principle plane

Figure 11.30: Image construction for a converging lens. (a): object outside of twice the
focal length, image reduced, inverted, real; (b): object between twice the focal length and
the focal length, image enlarged, inverted, real; (c): object within the focal length, image
enlarged, erect, virtual.

Diopters, dpt, conventional unit of refractive power. 1 dpt = 1/m.

6. Converging lens

Fig. 11.30 displays a lens with the following properties:
• Rays striking a thin converging lens parallel to the optical axis converge at the real

image focus F .
• Rays starting from the object focus point leave the lens parallel to the optical axis

(reversal of the path).
• Parallel bundles of rays within the paraxial region that make an angle with respect to

the optical axis intersect each other at a point on the focal plane.
• The image focal length f ′ is positive.
A converging lens generates various kinds of images, depending on the object distance a:
• a > f , the object position lies between the principal plane and the focus. The re-

sulting image is enlarged, virtual and erect. The magnifying glass works within this
range of object distances.

• 2 f < a < f , the object position lies between the focal length and twice the fo-
cal length. The image is real, inverted, and enlarged. The slide projector and the
overhead projector work within this range of object distances.
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• a < 2 f , the distance between the object and the principal plane is larger than twice
the focal length. The image is real, inverted, and reduced. The telescope works within
this range of object distances.

➤ The maximum possible magnification is determined by practical limits, since the
focal length of a lens cannot be reduced arbitrarily.

7. Diverging lens,

lens with the following properties (Fig. 11.31):
• Rays running parallel to the optical axis and striking a thin diverging lens are refracted

in such a way that the deflected rays seem to originate from a point, the virtual image
focus F ′.

• Rays pointing towards the focus leave the lens parallel to the optical axis (reversal of
the path of rays).

• The imaging equation is the same as that for converging lenses, but the image focal
length f ′ is negative. Hence, the refractive power of a diverging lens is negative.

Principle plane

Figure 11.31: Imaging
by a thin diverging lens.
Reduced, erect, virtual
image.

8. Bending: Several lenses of equal refractive power

Bending, notation for a series of lenses of different shape, but equal refractive power. The
concept of bending is illustrated by a calculation: If the focal length f ′ and the refractive
index n of a lens are given, then, for an arbitrarily chosen radius of curvature r1, one can
always find values of the radius of curvature r2 and the mid-thickness d to satisfy the
demands.

M The method of bending is used to minimize image defects by an appropriate choice
of the values (r1, r2, d) for given values of the focal length and the refractive index.

Two sets of bent converging and diverging lenses, each with identical focal lengths, are
illustrated by Fig. 11.32.

Figure 11.32: Bent lenses. Because of bending, the principal planes may move out of the
lens, whereas the focal length remains unchanged.
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9. Summary of properties of thick lenses

Image distance and magnification of lenses depending on the object distance:

object distance a image distance a′ image magnification β

converging lens

−∞ < a < 2 f̄ f ′ ≤ a′ < 2 f ′ real, reduced, inverted 0 < β < 1
2 f̄ < a ≤ f̄ 2 f ′ < a′ ≤ ∞ real, enlarged, inverted 1 < β <∞

f < a < 0 −∞ < a′ < 0 virtual, enlarged, erect −∞ < β < −1

diverging lens

−∞ ≤ a < 0 f ′ ≤ a′ < 0 virtual, reduced, erect −1 ≤ β < 0

11.2.2 Thin lenses
Thin lens, lens with a thickness d small compared with the radii r1 and r2, hence:

n(r2 − r1)+ (n − 1)d ≈ n(r2 − r1) , r1 − r2 − d ≈ r1 − r2 .

The lens formulae then simplify as follows:

lens formulae for thin lens L

f ′ = r1r2

(n − 1)(r2 − r1)

sH = r1d

n(r1 − r2)

s′H ′ =
r2d

n(r1 − r2)

i = n − 1

n
d

Symbol Unit Quantity

f ′ m focal length
n 1 refractive index lens
r1, r2 m radii of spheres 1, 2
d m mid-thickness
sH m distance SH
s′H ′ m distance S′H ′
i m distance H H ′

Infinitely thin lens, the thickness d is neglected.
The lens formulae then further simplify:

f ′ = r1r2

(n − 1)(r2 − r1)
, sH = s′H ′ = i = 0 .

11.3 Lens systems

Lens system, arrangement of several lenses with a common optical axis, mostly used to
correct image defects found in single lenses.
▲ An optical image may be constructed for a lens system if the positions of the principal

planes of the individual lenses and the total focus are known. If there are only two
principal planes, the construction of the image is the same as for a thick lens.
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For a system of two lenses with the focal lengths f1 and f2 (or the refractive powers B1
and B2) and the distance d between the two middle principal planes H12 and H21, the total
focal length f ′, the refractive power B and the position of the principal planes H1 and H2
of the total system are related according to (see Fig. 11.33):

calculation of the total focal length L−1

1

f ′ =
1

f ′1
+ 1

f ′2
− d

f ′1 f ′2
B = B1 + B2 − d B1 B2

H11 H1 = f ′d
f ′2

H22 H2 = − f ′d
f ′1

Symbol Unit Quantity

f ′ m total focal length
f ′1 m focal length lens 1
f ′2 m focal length lens 2
d m distance middle principal planes
B 1/m refractive power
B1, B2 1/m refractive power lens 1, 2

For the case of closely spaced principal planes (d small), the last term may be ignored. The
refractive powers of two lenses of the same material then simply sum, B = B1 + B2.
➤ Systems consisting of more than two lenses may be treated analogously, by succes-

sive reduction of two lenses to a single lens.

Figure 11.33: Construction of the image for a system of two thick lenses.

11.3.1 Lenses with diaphragms
Diaphragm, collimation of a bundle of light.

Aperture diaphragm, limit of rays generating an image.
Pupils, generally the images of diaphragms.
Entrance pupil, image of the aperture diaphragm of an optical system as seen from the

object side.
Exit pupil, image of the aperture diaphragm of an optical system as seen from the image

side.
➤ In the sense of technical optics, the eye’s pupil is an aperture diaphragm.
➤ The aperture diaphragm of an optical system must be chosen so that the exit pupil

coincides in size and position with the eye’s pupil.
➤ There are special oculars for eyeglass wearers (for microscopes, telescopes, etc.) with

the exit pupil shifted backwards.
Note:
▲ All rays passing through the entrance pupil must also pass through the exit pupil.
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■ In real lens systems, there is always at least one diaphragm, i.e., the rim of the lens.
The lens diameter specifies what fraction of rays leaving the object contributes to
image formation.

▲ The dimension of the diaphragm determines the brightness of the image.
Field diaphragm, determines the dimension of the image.
■ A real image is usually projected on a screen. The dimension and the frame of the

screen then determine the size of the image; the frame represents the field diaphragm.

11.3.2 Image defects
Image defects, or aberrations, are deviations of the rays from the ideal paths.

a) Aperture aberration, or spherical aberration, occurs when the rays strike the lens
system parallel to the optical axis, but not close to the axis. Then these rays no longer
converge at the ideal focus (Fig. 11.34 (a)).

Consequence: If paraxial rays and rays far off the axis are involved simultaneously, the
focus is broadened to a finite size.

Correction: For a converging lens, correction is achieved by combining it with a diverg-
ing lens, and vice versa. However, the correction works perfectly only for a given object
distance.

b) Astigmatism occurs in imaging of non-axial object points, since the refractive power
of a spherical surface in the meridional section differs from that in the perpendicular sagit-
tal section (Fig. 11.34 (b)).

Consequence: The image point is ovally distorted, the image is blurred.
Correction: change of the positions of the diaphragms and combination of different

shapes of lenses of different materials.
Anastigmat, optical system displaying no astigmatism.

c) Coma or asymmetry defect, occurs in imaging of a point off the optical axis where
the incident bundle of rays oblique to the optical axis is limited by a diaphragm. The image
point has an oval shape with a comet-tail distortion. The defect depends sensitively on the
position and shape of the diaphragm.

Consequence: blurred image.
Correction: appropriate positioning of the diaphragm, addition of more lenses.

d) Chromatic aberration, occurs when the light used for imaging is composed of dif-
ferent frequencies and the lens system displays dispersion, i.e., a frequency dependence of
refraction (Fig. 11.34 (c)).

Consequence: Each color converges at its own focus. The image is blurred and has
colored edges.

Correction: A converging lens is combined with a diverging lens of a material with
different dispersion behavior (e.g., crown glass and flint glass).

The correction is nearly perfect when several types of glasses and multiple-lens systems
are used.

e) Field curvature, the image of a plane object is not generated on a plane perpendicular
to the optical axis, but on a curved surface. The defect occurs in imaging of extended
objects. As a rule, the spacing between the curved surface and the plane increases with the
distance from the optical axis (Fig. 11.34 (d)).

Consequence: An image incident on a plane screen becomes more and more blurred
with increasing distance from the optical axis.
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(red)

(blue)

Figure 11.34: Image defects. (a): spherical aberration, (b): astigmatism in the propagation
of an oblique bundle through a lens, (c): chromatic aberration, (d): field curvature.

Correction: change of the position of the diaphragm, and combination of different types
of lenses of different material, or bending of the image surface (e.g., the film).

f) Distortion, occurs when the position of the diaphragm is not appropriate.
Consequence: object and image are no longer geometrically similar.
Correction: positioning of the diaphragm (or pupil) in the lens plane, bending of lenses.

g) Stray light, scattering of light by impurities in the lens material.
Consequence: the image becomes blurred.
Correction: use of cleaner types of glass.

11.3.2.1 Gradient-index lenses
Gradient-index lenses, lenses with a continuous deflection of the light rays caused by a
variation of the refractive index.

Refractive index gradients may be easily generated in gases (pressure and temperature
differences) and in liquids (temperature and concentration differences). The light is always
deflected towards the region with higher refractive index.
■ Streaks in rising warm air.
■ Streaks in heating or mixing of liquids.
■ At sunset, the Sun may still be observed although it has sunk geometrically below the

horizon. The variation of the density of the atmosphere bends the light rays, and the
Sun’s shape appears deformed.

■ Differences of pressure and temperature in the atmosphere limit the resolving power
of astronomic telescopes.
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1. Rod lenses,

cylindrical lenses the refractive index of which decreases parabolically with increasing
radial coordinate (Fig. 11.35).

Pitch, characteristic indicating how an object on the front plane appears on the back
plane:

Pitch Image on back plane

1 true-sided (corresponding to two-fold imaging by normal lenses)

0.5 laterally inverted (corresponding to single imaging)

0.25 Fourier-transformed (imaging of the object to∞)

Figure 11.35: Rod lens with
pitch = 0.5.

GRIN rod or SELFOC lenses (manufacturer names), mainly used in photocopiers,
scanners, telefax devices and in optical telecommunication.
➤ The numerical aperture specified for rod lenses refers to the center of the entrance

face, it decreases towards the cylinder surface.

2. Luneburg lens, Maxwell’s fish eye,

gradient-index lenses with special variation of the refractive index. These lenses are of
theoretical interest, since they represent the ideal solutions for two basic problems of optics.
Their index distributions are difficult to realize in particular for the three-dimensional case.

Maxwell’s fish eye, imaging of a point to a point:

n(r) = n0

1+ (r/r0)
2
, n0, r0 so that n(r) ≥ 1.

Luneburg lens, focusing of a parallel bundle to a point:

n(r) =
√

2− (r/r0)
2, r0 so that n(r) ≥ 1.

11.4 Optical instruments

Optical glass, a non-crystalline, and to a large extent homogeneous, substance free of
streaks and bubbles, obtained from the melt of an inorganic mixture. Optical glasses are
characterized by a refractive index and a dispersion formula. They have a high internal
transmission factor in the visible range of wavelengths.

Abbe number, νe, defined by

νe = ne − 1

nF′ − nC′
.
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Principal refractive index, ne, refractive index for the e-line of mercury (λ =
546.07 nm, yellowish-green).

Principal dispersion, nF′ − nC′ , difference of the refractive indices for the cadmium
lines F′ (λ = 480.0 nm, blue) and C′ (λ = 643.8 nm, red).

Crown glasses, glasses with νe > 55.
Flint glasses, glasses with νe < 55.

➤ The Abbe number νλ for the wavelength λ is obtained by replacing the refractive
index ne by the corresponding value n(λ) for the spectral line of wavelength λ.

➤ Optical glasses do not have sufficient transparency in the UV and IR ranges. In these
spectral ranges, synthetic monocrystals are used as optical components.

➤ For standard optics without high demands on precision, synthetic materials like
polystyrol (corresponding to flint glass) and polymethylmethacrylate (corresponding
to crown glass) are suitable for imaging components. Optical elements that consist of
organic glasses are inexpensive but have high thermal expansion coefficients and low
hardness.

11.4.1 Pinhole camera
Pinhole camera (camera obscura), archetype of the camera (Fig. 11.36), consisting of
• a box with a ground-glass screen as back,
• a small hole (pinhole diaphragm) or converging lens in the front side of the box.
Rays from an object incident through the pinhole or the lens generate an inverted real image
on the ground-glass screen. If rays emerging from different object points reach the same
image point, the image can become blurred.

The small opening of a pinhole camera guarantees than only rays from a small object
region may reach a given image point.

Disadvantage: the smaller the aperture, the lower the illumination of the image.

Figure 11.36: Principle of
the pinhole camera.

11.4.2 Camera
Camera and video camera, optical instruments for recording images according to the
principle of the pinhole camera.

In the camera, a converging lens is used for imaging. Modern cameras and video cameras
involve additional lenses to correct for image defects. The image in a camera is recorded by
a light-sensitive film, the image in a video camera is recorded by an electronic light sensor.
However, present-day digital cameras also use electronic light sensors (e.g., CCD’s).

The camera is normally adapted to various object distances by varying the distance be-
tween lens and film.

The linear magnification may be modified by changing the focal length:
• discontinuously: wide-angle lens, standard lens, telephoto lens;
• continuously: zoom objective.
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Iris diaphragm, diaphragm for controlling the incident luminous flux.
Relative aperture, measure of the incident quantity of light, defined as the ratio of the

diameter of the entrance pupil DEP to the focal length f of the camera.
Focal ratio, k, characteristic parameter for the incident quantity of light, frequently used

in practice, defined as the reciprocal value of the relative aperture:

focal ratio = focal length
diameter of entrance pupil

1

k = f ′
DEP

Symbol Unit Quantity

k 1 focal ratio
f ′ m focal length
DEP m diameter of entrance pupil

11.4.3 Eye
Eye, organ of man and animal for the perception of light.

1. Camera-like eye,

most powerful eye occurring in nature, to be found in vertebrates (including man) and
cephalopods (e.g., octopus). The vertebrate eye (Fig. 11.37) consists essentially of:
• sclera, the stable skin enveloping the eye;
• cornea, the transparent part of the sclera, placed in front of the crystalline lens and

therefore visible from outside, elastic, with a refractive index of n ≈ 1.38;
• crystalline lens, deformable bi-convex lens, composed of several layers of distinct

refractive indices;
• ciliary muscle, annular muscle to which the crystalline lens is fixed. A contraction

causes the crystalline lens to become more spherical, thus its refractive power in-
creases;

• pupil, circular diaphragm in front of the crystalline lens. The aperture may be varied
between 2 mm and 8 mm;

• retina, light-sensitive sensory cells that convert light signals into current variations
transmitted via the nerves to the brain.

Iris

Lens

Blind spot

Optical nerves

Optical
axis

Pupil

Cornea

Retina
Aqueous humour

Vitreous humour

Figure 11.37: Structure of the human eye.

2. Properties of the normal-vision eye

Eye at rest: ciliary muscle fully relaxed, crystalline lens maximally stretched, maximum
radii of the spherical surfaces, minimum refractive power of the lens. Rays from infinitely
remote points are focussed onto the retina.
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Reference distance of vision, aB , smallest distance to which the eye can adapt for long
times without eye strain. This distance is an average value for people with normal vision
and is fixed at aB = 25 cm.

Accommodation, adaptation of the refractive power of the crystalline lens for imaging
objects at finite distance, by contraction of the ciliary muscle. This causes a compression of
the crystalline lens perpendicular to the optical axis and thus an increase of the lens power,
i.e., a reduction of the focal length.

Adaptation, response of the eye to the external light conditions by adapting the pupil
diameter.
➤ The main contribution to the refraction is at the interface between air and the cornea.

For this reason, man does not have sharp vision under water without additional de-
vices, since the range of accommodation of the eye lens is exceeded.

➤ The eye views only real images on the retina. When using magnifying glasses or
mirrors, the virtual intermediate image becomes a real image on the retina.

Visual angle, ε, angle of vision with the vertex in the eye and the legs including the object.
Magnification v of an optical instrument, ratio of the tangent of the visual angle ε of

an object as seen with the instrument, where the distance object to eye is 25 cm (reference
distance of vision), to the tangent of the visual angle ε0 of the same object as seen by the
unaided eye.

magnification of an optical instrument 1

v = tan ε

tan ε0
≈ ε

ε0

Symbol Unit Quantity

v 1 magnification
ε rad visual angle with optical instrument
ε0 rad visual angle without optical instrument

The tangent may be replaced by the angle itself only for small angles ε and ε0.

3. Defects in vision and corrections for the human eye

The most frequent deficiencies of vision of the human eye are:
• Near-sightedness, the refractive power of the eye is too high. Infinitely distant ob-

jects are blurred because their images occur in front of the retina.
Correction: spectacles with diverging lenses reduce the total refractive power of

the system.
• Far-sightedness, the refractive power of the eye is too small for near objects. The

focus lies behind the retina.
Correction: spectacles with converging lenses increase the total refractive power.

• Age-related far-sightedness, owing to weakening of the ciliary muscle and harden-
ing of the crystalline lens, the lens can no longer be curved sufficiently to accommo-
date near objects.

• Astigmatism, the refractive power of the eye is different along the meridional section
and the sagittal section.

Correction: spectacles with lenses curved distinctly in different directions.
Reference visual range, aB , distance of 25 cm from eye at which normal-sighted persons
may view objects sharply without effort (reading distance), aB = −25 cm.

Near point, smallest distance at which the eye may still make a sharp image of an object.
It is about 10 cm for children and young persons and increases with age.
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11.4.4 Eye and optical instruments
How large an object is perceived to be depends on its visual angle, and hence on its distance
from the eye. Maximum light magnitude and simultaneous sharp imaging is achieved when
the object is at the near point. A further magnification may be achieved only by means of
optical instruments such as magnifying glasses or microscopes. If the distance to a remote
object cannot be changed essentially, e.g., when observing planets, telescopes are used.

11.4.4.1 Magnifying glass
Magnifying glass, a converging lens of at least three-fold magnification.

Reader’s lens, a converging lens of less than three-fold magnification.
Magnifying glass and reader’s lens yield virtual, erect and enlarged images (see

Fig. 11.38).

Figure 11.38: Construction
of the image for a
magnifying glass.

Standard magnification of magnifying glass, �′L , defined as lateral magnification of
the magnifying glass for the case that the object is placed in the focal plane of the magnifier,
and the eye is accommodated to an infinite distance. Then one has:

magnification, magnifying glass = −reference range of vision
focal length

1

�′L = −aB

f ′

Symbol Unit Quantity

�′L 1 standard magnification magnifying glass
aB m reference range of vision
f ′ m focal length of magnifying glass

The reference range of vision is aB = −25 cm.

11.4.4.2 Microscope

1. Construction of the microscope

Microscope, exceeds the maximum magnification that may be technically achieved by
a magnifying glass, by a suitable combination of lenses. It provides a virtual, enlarged,
inverted image of the object (see Fig. 11.39).

It consists of:
• objective lens, lens system of the type of a converging lens of very short focal length,

oriented towards the object; generates an enlarged, inverted, real intermediate image;
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Objective

Ocular

Figure 11.39: Path of rays in the microscope.

• ocular lens, lens system of the type of a converging lens, oriented towards the eye,
used like a magnifying glass for viewing the intermediate image created by the ob-
jective lens;

• illuminating device or condenser, illuminates the object viewed;
ocular, consists in most cases of
• field lens, lens at the position of the real intermediate image that deflects rays incident

from the side into the center of the ocular; the change in direction of the bundle causes
an extension of the image region without affecting the magnification;

• eye lens, converging lens enlarging the image created by the objective lens and the
field lens.

Optical tube length, l, distance F ′1 F̄2 between the neighboring focal planes of objective
and ocular lens.

2. Magnification of the microscope

The total magnification �′M of the microscope is

total magnification of microscope 1

�′M = �′Ob · �′Oc

= l

f ′Ob

aB

f ′Oc

Symbol Unit Quantity

�′M 1 total magnification of microscope
�′Ob 1 magnification of objective lens
�′Oc 1 magnification of ocular lens
f ′Ob m focal length of objective lens
f ′Oc m focal length of ocular lens
l m optical tube length
aB m distance of normal vision = 0.25 m

Near field, light at a distance from the emitting object that is smaller than one wave-
length λ.

Near-field microscope, generation of images by means of the near field in an optical
scanning microscope. A screen with a diaphragm of diameter less than λ is positioned
above the object to be scanned at a distance less than the wavelength. Light enters through
this diaphragm. If the diaphragm is moved over the entire object, and the light reflected by
the object is collimated in a conventional microscope, structures with an size less than one
wavelength may be resolved, since the signal depends on object regions smaller than one
wavelength. The optical near-field microscope can achieve resolutions below 50 nm (about
λ/10). The shape of and distances between individual molecules may be observed.

11.4.4.3 Telescope
Telescope, optical instrument to increase the visual angle of very distant objects.
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It consists essentially of:
• objective lens, lens nearest to the object;
• ocular lens, lens nearest to the eye.
Characteristic parameters of the telescope:
• visual field, object field imaged by the telescope. Specification in radians, or as a

segment at a distance of 1000 m.
• effective diameter of objective, defines the entrance pupil DEP. The quantity deter-

mines the amount of light entering the telescope, and thus limits the brightness of the
image.

• aperture ratio, ratio of the objective diameter to the focal length of the objective.
• luminosity, ratio of the objective diameter to the magnification of the telescope.
• magnification, vF . If the image is viewed with a relaxed eye, then

magnification of the telescope 1

vF = − f ′Ob
f ′Oc

= DEP

DAP

Symbol Unit Quantity

vF 1 magnification of telescope
f ′Ob m focal length of objective
f ′Oc m focal length of ocular
DEP m diameter of entrance pupil
DAP m diameter of exit pupil

The magnification corresponds to the ratio of the tangent of the aperture angles with and
without the telescope.
• twilight number, Z , measure of the twilight efficacy of the telescope,

Z = √|vF | DEP .

■ The 7× 50 binocular has a twilight number Z = √7 · 50 = 18.7.

1. Astronomical telescope

Astronomical telescope, Kepler’s telescope, yields an inverted, laterally inverted image
(see Fig. 11.40). It consists of:
• objective lens, converging lens nearest to the object, generates a real intermediate

image of the remote object in the focal plane F ′Ob;

• ocular lens, converging lens nearest to the eye, with the focal plane FOc at the posi-
tion of the image focal plane of the objective, for viewing the real intermediate image
generated by the objective as by a magnifying glass.

Objective
Ocular

Ob

Ob

Oc

Oc Oc

Oc

Figure 11.40: Path of rays in the astronomical, or Kepler, telescope.
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The magnification of Kepler’s telescope is negative. Its length L corresponds to the sum
of focal lengths of the objective and ocular lenses,

L = f ′Ob + | f̄Oc| .
Kepler’s telescope is used in astronomy.

2. Terrestrial telescope

Terrestrial telescope, astronomical telescope with an additional converging lens (erecting
lens) between objective and ocular which inverts the laterally inverted intermediate image.
The final image is erect and not laterally inverted (Fig. 11.41).

Objective Ocular

Ob

Ob Oc

Oc

Figure 11.41: Path of rays in the terrestrial telescope.

➤ The image reversal may also be achieved by an inverting prism (Porro prism system
in the prism binocular).

Mirror telescope, astronomical telescope with the objective replaced by a parabolic con-
cave mirror. Advantages over lens combinations: larger aperture angles, no chromatic aber-
ration. In Cassegrain’s version the focal length of the main mirror is extended by a convex
collector mirror. The image arises behind the main mirror and is observed through a di-
aphragm by a ocular lens (Fig. 11.42).

Schmidt mirror, mirror telescope with spherical concave mirror with focal length equal
to half the curvature radius, and a thin plate of glass with aspherical surface for correction
of the image defects for rays far off the axis. The correction plate is positioned in the center
of curvature of the concave mirror. The image arises on a spherical surface in the middle
between the correction plate and the mirror. The Schmidt telescope generates images of
large fields of stars without coma and astigmatism.

Oc

Figure 11.42: Mirror
telescope according to
Cassegrain. Oc: ocular
lens, H : parabolic concave
mirror, F : convex collector
mirror.

3. Dutch telescope

Dutch telescope, Huygens’ telescope, Galilei’s telescope, generates an erect non-laterally
inverted image (see Fig. 11.43).

It consists of:
• objective lens, converging lens nearest to the object;
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Objective Ocular

Ob

ObOc

Oc

Oc

Figure 11.43: Path of rays in the Dutch or Huygens-Galilei telescope.

• ocular lens, diverging lens nearest to the eye, whose focal plane FOc coincides with
the image focal plane F ′Ob of the objective.

There is no real intermediate image. The magnification of Galilei’s telescope is positive. Its
construction length L corresponds to the difference of the focal lengths of the objective
and ocular lenses,

L = f ′Ob − f̄Oc .

The low construction length is an advantage of Galilei’s telescope. Application: mainly in
opera glasses.

11.5 Wave optics

Wave optics, explains optical phenomena related to diffraction, interference and polariza-
tion, based on the concept that light is a transverse electromagnetic wave.

11.5.1 Scattering
Diffuse scattering, occurs when light strikes a rough surface that consists of many area
elements with different orientations. Refraction and reflection then occur in many different
directions. Due to diffuse scattering, a bundle of parallel rays becomes a bundle of diffuse
rays (stray light).

Scattering center, in Huygens’ wave picture a single point emitting spherical waves
that represent the stray light.

Rayleigh scattering, scattering of light by spherical particles the radii of which are very
small compared with the wavelength of light. The intensity of the scattered radiation in-
creases in proportion to the fourth power of the frequency, i.e., the fraction of the radiation
scattered by the particles increases with decreasing wavelength.
■ The sky appears to be blue because blue light has the shortest wavelength in the

visible range, and hence is scattered most intensely by the molecules and atoms in
the air.

Human perception of objects depends on how much light is scattered or reflected by them.
There are various approaches in computer graphics to stimulate preception (virtual reality):

Radiosity approach, method of graphical data processing with the aim of realistic
computer representation of an interior scene. For this purpose, the surfaces in the scene
are assumed to reflect diffusely because their view is then independent of the position of
the observer. Hence, there is no need to generate a fully new picture when changing the
observer’s position in a virtual-reality application.
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Ray tracing, an alternative method of representing realistic pictures in which the sur-
faces are assumed to be specular reflectors. This approach requires a new computation
of the picture for any change of the position of the observer, and thus needs much more
computational effort than the radiosity approach.

11.5.2 Diffraction and limitation of resolution
Diffraction (see p. 305), change of propagation direction of a wave striking an obstacle.
Light enters also into the geometrical shadow region of the barrier and causes diffraction
patterns on a screen by interference. The phenomenon may be explained by the concept
of Huygens’ elementary waves starting from any point of the obstacle hit by the wave and
interfering.

1. Types of diffraction

Fraunhofer diffraction, diffraction phenomenon caused by parallel light (Fig. 11.44).
Fresnel diffraction, diffraction phenomenon caused by divergent light.

Figure 11.44: Fraunhofer diffraction.

Diffraction by a slit (Fig. 11.45, Fig. 11.46):

Intensity: Iα = I0

sin2
(
πd sinα

λ

)
(
πd sinα

λ

)2
.

Intensity minima: sinαn = ± n
λ

d
, n = 1, 2, 3, . . . .

Intensity maxima: sinαn = ±
(

n + 1

2

)
λ

d
, n = 1, 2, 3, . . . .

Figure 11.45: Diffraction by a slit. λ:
wavelength, d: slit width, α: diffraction
angle.

Figure 11.46: Intensity distribution for
diffraction by a slit as a function of
x = πd sin(α)/λ.
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Diffraction by a grating (Fig. 11.47):

Intensity: Iα = I0

sin2
(
πd sinα
λ

)
(
πd sinα
λ

)2
·

sin2
(

qπg sinα

λ

)

sin2
(
πg sinα

λ

) .

Intensity maxima: sinαn = ±n
λ

g
, n = 1, 2, 3, . . . .

Figure 11.47: Diffraction
by a grating. Notations: λ:
wavelength, d: slit width, α:
diffraction angle, g: grating
constant, I0: intensity at
α = 0, q: number of grating
slits, Iα : intensity at α.

2. Diffraction by a crystal grating

Diffraction of X-rays by crystals may be interpreted as selective reflection by sets of lattice
planes that are occupied by the components of crystalline structure.

Bragg’s reflection condition, interference maxima occur when the angle of incidence
(grazing angle) ϑ satisfies the condition

2 d sinϑ = k · λ , k = 1, 2, 3, . . . .

d is the distance of the lattice planes, λ is the wavelength of the X-rays (Fig. 11.48).
The optical path difference between two rays reflected by neighboring lattice planes is

 = 2d sinϑ .

Figure 11.48: Bragg’s
reflection condition for
diffraction by a crystal
grating. d: distance of the
lattice planes, 
: optical
path difference between two
neighboring rays, ϑ : angle
of incidence.

3. Influence of diffraction on optical imaging

For any optical imaging, the outer edge of a lens or any diaphragm or aperture represents
an obstacle for electromagnetic waves. So, when a point is imaged by a telescope or other
optical device, the resulting image is not a point, as assumed in ray optics, but a diffraction
pattern. The pattern consists of a maximum of brightness (a bright disk the center corre-
sponding to the image point of ray optics) and several subsidiary maxima (Fig. 11.46).
When two closely spaced points are imaged, the two corresponding diffraction patterns
overlap. If the object points are too close to each other, the maxima of the diffraction pat-
terns are no longer perceived as being separated.

Diffractional disk, the smearing-out of an image point in an optical imaging caused by
diffraction.
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4. Resolving power,

smallest distance between two object points at which they still may be imaged by an optical
instrument as separated points.

There is no objective criterion under which conditions the two diffractional disks are
perceived as separated entities. The Rayleigh criterion is frequently used:

Rayleigh criterion: two object points are considered to be resolved when the central
diffraction maximum of the first object coincides with the first diffraction minimum of the
second object. The minimum visual angle δ between the two resolved objects is given by:

Rayleigh criterion 1

sin δ ≥ 1.22
λ

b

Symbol Unit Quantity

δ rad visual angle
λ m wavelength
b m aperture diameter

For small angles δ, the sine may be replaced by the angle in radians.
Spectral resolving power of a prism, the product of base length b and dispersion

|dn(λ)/dλ|,

λ


λ
= b ·

∣∣∣∣dn(λ)

dλ

∣∣∣∣ .
■ A prism of flint glass (|dn/dλ| = 1500 mm−1) with a base of b = 1 cm enables the

resolution of the sodium lines λD1 = 589.6 nm and λD2 = 589.0 nm. A crown glass
prism with the same base (|dn/dλ| ≈ 55 mm−1) does not attain the needed resolving
power.

Spectral resolving power of a grating, the product of the order of maximum k and the
number N of grating grooves,

λ


λ
= k · N .

■ A grating spectral apparatus with N = 105 grooves allows the separation in first
diffraction order wavelengths which differ by only 
λ = 10−5λ.

Resolving power of a microscope, defined by the minimum distance xmin between two
object points that are still perceived as separated image points,

xmin = λ

A
, A = n · sinα .

n is the refractive index of the medium in front of the objective, α is the half of the aperture
angle of the light cone emerging from an object point that is just covered by the objective
lens. The quantity A is denoted as the numerical aperture of the objective lens.

11.5.3 Refraction in the wave picture
Refraction, change of the direction of propagation of waves at the interface of two me-
dia with different wave propagation speeds. In this type of transition, the wave frequency
remains constant, but the wavelength varies.
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This phenomenon may be represented and understood in terms of Huygens’ elementary
waves (Fig. 11.49). If a wave front strikes an interface between materials with different
refractive indices at an angle different from 90◦, every point of the interface becomes
a source of Huygens’ elementary waves (spherical waves). Every elementary wave now
propagates through both half-spaces in front of and behind the interface, respectively. (The
reflected fraction is not plotted.) Since the wave front reaches different points of the in-
terface at different times, the elementary waves also arise at different times. The figure
illustrates a snapshot showing both the maxima of individual wavelets and the plane wave
fronts resulting from their interference (see p. 287).

Interface

Wave fro
nt

Wave f
ront

Figure 11.49: Refraction in
the wave picture.

11.5.4 Interference
In order to produce interference between electromagnetic waves, the waves superimposed
must be coherent (see p. 294), i.e., they must originate from the same region of a light
source. Coherent light rays may be obtained by splitting a ray with mirrors or partially
transmitting plates (beam splitter).

If the superposed waves are not coherent in space and time, the interference phenomena
are not visible, since at a fixed point cancellation and reinforcement are randomly chang-
ing.
➤ A laser generates coherent light.
For thermal sources of light, the individual surface elements emit wave trains without a
fixed phase relation. The phase differences change randomly. For such sources of light, in-
terference patterns can therefore be made visible only when the superimposed wave trains
are generated by a restricted areal element, for example with an aperture.

1. Coherence condition

In order to produce interference (see Fig. 11.50), the aperture angle α of an areal element
of a light source of extension b must satisfy the condition

n sinα � λ

2b
.

λ is the wavelength of radiation, n is the refractive index of the medium.
Coherence length, l, mean length of the individual wave trains.
Coherence time, τ , time needed for traversing the coherence length,

l = c · τ .
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Coherence in time exists if, for the half-width 
 f of a spectral line of frequency f ,

τ ≈ 1


 f
, l ≈ c


 f
.

■ Spectroscopic lamps have coherence lengths of the order of magnitude l = 1·10−1 m
for a frequency band width of 
 f =1 GHz. HeNe-lasers reach values of l = 150 m
and 
 f = 2 MHz.

Figure 11.50: On coherence
of light. Q: light source,
S, S1, S2: mirrors. (a): no
coherence at point P , (b):
coherence in time at point
P .

2. Interference in thin films

Interference in thin films occurs when
• light hits a layer with a refractive index that differs from the refractive index of the

original medium,
• a fraction of the incident light is reflected by the interface between the layer and the

surrounding medium, while another fraction enters into the layer.
In each impact of the ray with one of the two interfaces between the layer and the sur-
rounding medium, the ray is split into two parts, one being reflected, the other penetrating
into the medium behind the interface (Fig. 11.51).

Figure 11.51: Interference
at a plane-parallel plate of
thickness d .

• Ray 1 hits the interface at point A and is partly reflected, which yields the ray 1′.
• Another part penetrates at point A into the layer and is then partly reflected at point

B. Let this reflected ray leave the layer at point C , yielding the ray 1′′. This ray is
coherent with ray 1′.

The remaining rays in the figure correspond to multiple reflections within the layer, and to
the light leaving the layer at the back.

3. Path difference in interference at thin layers

For light of wavelength λ incident on a layer of thickness d and refractive index n, the
rays 1′′ and 2 have, due to the different refractive indices of the layer and the surrounding
medium (air), at the point C a path difference 
 of:
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path difference in interference at thin layers L


 = 2d

√
n2 − sin2 ε − λ

2

Symbol Unit Quantity


 m path difference
d m thickness of layer
n 1 refractive index of layer
ε rad angle of incidence
λ m wavelength

The term −λ/2 corresponds to reflection by an optically more dense medium behind the
thin layer. If the rays 1 and 2 interfere, one observes constructive interference (brightness)
or destructive interference (darkness), depending on 
.

4. Condition for constructive interference

For amplification (constructive interference):

condition for constructive interference

2d
√

n2 − sin2 ε =
(

m + 1

2

)
λ

m = 0, 1, 2, . . .

Symbol Unit Quantity

d m thickness of layer
n 1 refractive index of layer
ε rad angle of incidence
λ m wavelength

For perpendicular incidence (sin ε = 0) amplification occurs for

λ = 2dn

m + 1
2

.

5. Condition for destructive interference

For cancellation (destructive interference):

condition for destructive interference

2d
√

n2 − sin2 ε = (m + 1) λ

m = 0, 1, 2, . . .

Symbol Unit Quantity

d m thickness of layer
n 1 refractive index of layer
ε rad angle of incidence
λ m wavelength

For perpendicular incidence, cancellation occurs for

λ = 2nd

m + 1
.

The interferences observed at plane-parallel plates correspond to fixed angles of incidence
(interferences of equal inclination).
■ Oil films on water appear colored. For interference by a thin oil film a certain wave-

length (color) is most positively reinforced, depending on the varying thickness,
whereas other wavelengths interfere with varying degrees of cancellation or rein-
forcement.
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6. Antireflection coatings,

method for reducing reflection by a surface, based on thin-film interference. The surface
of a material of refractive index n1 is covered by a layer of refractive index n2 < n1. The
refractive index n2 and the thickness d of the layer are chosen so that the reflected waves
cancel each other at a chosen value of wavelength λ.

The cancellation is not limited to a single sharp wavelength, but extends over a certain
range. Hence, one may, e.g., cover the green range of the visible spectrum. Thin layers are
used for optical coating of lenses; these show weak purple reflections, since red and violet
cannot be compensated completely when the layer is set for cancellation of light in the
middle of the visible spectrum.

Fizeau fringes, equally spaced interference fringes occuring at two plane areas tilted
with respect to each other with a wedge of air in between. The observed fringes correspond
to positions at which the wedge thickness (Fig. 11.52) is (n/2)λ.

Figure 11.52: Interference
by a wedge-like layer. L:
lens, S: screen.

7. Newton’s rings,

concentric circular bright and dark Fizeau fringes arising when the layer of air is confined
by a plane area and a spherical area of curvature radius R.

Distance of the dark rings from the contact point:

rmin =
√

Rλk , k = 1, 2, 3, . . . .

Distance of the bright rings from the contact point:

rmax =
√

Rλ

(
k + 1

2

)
, k = 0, 1, 2, 3, . . . .

8. Interferometry,

branch of precision-measurement technology that exploits the interference of waves for
measurement of physical quantities.

Michelson interferometer, optical device that may be considered the basic type of an
interferometer (see Fig. 11.53). Light from a source Q is split by a partially transmitting
plate P1 into a reflected ray 2 and a transmitted ray 1, which are then reflected by two
plane mirrors S1 and S2. After an additional splitting by the plate P1, the reflected rays
are superimposed in an observation telescope F . (In order to symmetrize the path of rays,
i.e., to let both rays pass through a splitting plate the same number of times, one places
an additional plate P2 into the path of ray 2.) When combining the rays one observes
interferences of equal displacement (concentric rings). If one mirror is tilted, one obtains
interferences of equal separation (Fizeau fringes).
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If the rays traverse the geometric paths s1 and s2, respectively, neighboring interference
maxima are distinguished by a path difference of

n(s2 − s1) = k · λ ,

if the refractive index along both light paths is n. If the mirror S1 is shifted by a distance
d = λ/2 to the position S1

′, exactly one interference fringe passes the visual field of the
observer. On this basis, one may measure differences of length by means of the Michelson
interferometer with high precision.

Figure 11.53: Principle
of the Michelson
interferometer. Q: light
source, P1, P2: plates,
S1, S2: mirrors, d:
displacement of mirror S1.

11.5.5 Diffractive optical elements
Diffractive optical elements (DOE), operate on the basis of the diffraction of light waves
by fine structures. The description of their operation involves wave optics. To be contrasted
with refractive optical elements, which are described by refraction of light rays.
■ Diffraction gratings, holograms, Fresnel-zone plates are diffractive optical elements.
➤ The “classical” (geometric optics) optical elements are either refractive (lenses,

prisms) or reflective (mirrors).
➤ A more thorough consideration of refractive elements shows that diffraction effects

also occur. For example, the edge of a lens acts as an aperture at which diffraction
occurs. This diffraction effect limits the resolving power of optical instruments.

Diffraction effects become dominant when the typical structure dimension of the optical
element is of the same order of magnitude as the wavelength used.

The structural dimensions of DOE are therefore only a few micrometers (10−6 m). The
production of DOE, which are more complicated than simple diffraction gratings, has be-
come possible only since the middle of the twentieth century.

11.5.5.1 Diffraction gratings
Diffraction gratings, decompose light into its spectral components (grating spectrograph)
or deflect monochromatic radiation into one or several directions. The related formulae
may be found in the chapter on waves.
■ The compact disc is a type of reflective diffraction grating.

11.5.5.2 Fresnel-zone plate
Fresnel-zone plate, arrangement for the focusing of coherent light which uses concentric
transparent and nontransparent rings of widths which decrease with radius (Fig. 11.54).
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Radius of the transparent rings is chosen so that the path of light from neighboring
zones to the focal point differs by just one wavelength, i.e., the light interferes construc-
tively at the focus.

Mean radius r1 of the first transparent ring:

r1 =
√
( f + λ)2 − f 2 =

√
2 f λ+ λ2 ≈ √2 f λ for λ� f.

Radius rn of the nth transparent ring:

rn ≈
√

2nλ f .

Figure 11.54: Fresnel-zone plate.

Such an element is focusing, but has low light efficiency (50 % loss by the dark fringes,
and loss into higher-order diffraction patterns). Nevertheless, it is of importance for ranges
of wavelength for which there are no refracting materials for normal lenses (X-ray mi-
crosope).

11.5.5.3 Fresnel-zone lens
Fresnel-zone lens (FZL), focusing element. The surface shape corresponds to a lens from
which all superfluous glass has been removed.

A FZL is really a diffractive element. But refraction effects can be important, since it
rather covers the transition range between refractive and diffractive elements (Fig. 11.55,
Fig. 11.56).

Figure 11.55: Transition from normal lens to Fresnel-zone lens (FZL).

For incoherent light, the image quality of FZL can be poor. FZL are nevertheless applied
when the weight or thickness of the lens has to be reduced.
■ FZL are used as collimators for beacons, etc. For movable lenses with diameter of up

to one meter, the reduction of weight is of particular importance.
■ Most frequent application nowadays are the collimators for overhead projectors and

“fish eyes” for rear windows of motor vehicles.
For coherent light, the gradation is chosen so that the optical paths of neighboring zones

differ by just one wavelength and the partial waves therefore interfere constructively. With
this additional wave-optical condition, a FZL becomes a diffractive element (Fig. 11.57);
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Figure 11.56: Fresnel-zone lens, based on refraction of light rays; it is, strictly speaking,
not a diffractve optical element.

the height of the structure h is then in the µm range. In this case, one may reach the same
imaging quality as with a normal lens.

Figure 11.57: Fresnel-zone
lens in which the optical
paths differ step by step by
an integer multiple of the
wavelength. h: height of
structure.

➤ For incoherent illumination, the resolving power of a FZL is determined by the di-
ameter of the innermost zone, for coherent illumination, by the entire lens diameter.

11.5.5.4 Holograms
Hologram, optical element that stores not only an intensity distribution (as for a photo-
graph), but also the relative phase distribution.
▲ Photographic recording methods (films, TV tubes, CCDs) use only the intensity, i.e.,

the square of the magnitude of the complex amplitude; the phase information con-
tained in the wave field is lost. When coherent light is employed, the phase informa-
tion may also be recorded, but in an indirect way. For this purpose, the light emerging
from an object interferes with a reference wave. The original wave field may be ex-
tracted (Fig. 11.58) from the recorded interferogram.

Let o(x, y) = |o(x, y)|eiφ(x,y) be the complex amplitude of the light emerging from the
object, r(x, y) be the complex amplitude of the reference wave in the hologram plane
(x, y).

Without the reference wave, one records

oo∗ = |o|eiφ |o|e−iφ = |o|2.

With the reference wave, one records

(o+ r)(o+ r)∗ = oo∗ + rr∗ + or∗ + ro∗ = |o|2 + |r |2 + or∗ + ro∗ .

If this picture is illuminated again by the reference wave r , one obtains

|o+ r |2 · r = |o|2r + |r |2r + o|r |2 + o∗r2.
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Figure 11.58: Recording (left) and viewing (right) of a hologram. (S): partially transmitting
mirror, (H): hologram, (B): observer.

When a plane wave is used as the reference wave r , |r |2 = becomes const., and one
obtains the wave front o emerging originally from the object. An observer views a virtual
image of the object, by changing his position he may perceive it from different directions
of view.
• One may obtain a normal image from the reconstructed wave o.
• If a hologram is subdivided, each fraction provides an image of the entire object,

although viewed from different positions.
• A particularly fine-grained film is needed (grains of the order of magnitude of the

wavelength) for the recording of holograms, e.g., dichromate gelatine, as well as a
laser of sufficient power and coherence length.

➤ This simple description holds only for transmission holograms and coherent illumi-
nation in the reconstruction process. Reflection holograms may also be generated;
the conditions concerning the coherence of the light source in the reconstruction then
may be eased.

■ The holograms on credit cards are reflection holograms. A change of the angle of
vision is perceived only when moving one’s head horizontally. The other direction
(up-down) is used for decomposing the light into its spectral components. This may
be better recognized when the coherence length of the adopted light source is longer
(the smaller and more remote the source). Well suited are, e.g., low-voltage halogen
lamps. These reflection holograms are, however, not produced photographically, but
are computer-generated.

11.5.5.5 Computer-generated holograms
Computer-generated holograms (CGH), holograms with a structure calculated to gener-
ate a definite image, and produced by means of microstructuring technology (lithography).
Lithographic methods enable generation of units in the range of the light wavelength.
■ Holograms as antiforgery devices on credit cards, banknotes and seals.

Beam formation for material processing by a laser.
Computational basis for CGH, calculation of the propagation of light waves by Fourier
transformation.

Fraunhofer diffraction, approximate computation of diffraction patterns in the far field
(distance between diffraction object and diffraction image � wavelength of light). Huy-
gens’ principle (see p. 380): any point of a wave front may be considered a source of a
spherical wave. The propagation of the wave field is described by the superposition of these
spherical waves. The geometry of the diffraction problem is represented in Fig. 11.59.

Let the diffraction object be flat and positioned in the plane z1 = 0 and be illuminated
from the left by a plane wave u(x1, y1), e.g., a laterally extended laser beam. Let its light
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Figure 11.59: Geometry of the diffraction problem.

transmittance be described by the function O(x1, y1); for a slit diaphragm O(x1, y1) = 1
over the slit aperture and O(x1, y1) = 0 elsewhere.

Complex amplitude in the plane of the diffraction pattern:

u(x2, y2) =
∫

dx1

∫
O(x1, y1)

1

r
exp[i �k · �r] dy1.

Paraxial approximation: (x2 − x1)
2 + (y2− y1)

2 � z2
2, leads to the Fraunhofer approx-

imation. One obtains:

u(x2, y2) ≈
∫

dx1

∫
O(x1, y1) exp

[−2π i

λz2
(x2x1 + y2y1)

]
dy1.

This is a two-dimensional, complex Fourier transformation.
The diffraction pattern is determined by the square of magnitude of the amplitude,

|u|2 = uu∗:
▲ Within the range of application of the Fraunhofer approximation, the diffraction pat-

tern equals the square of magnitude of the complex Fourier transform of the diffrac-
tion object, within constant factors.

This statement is very important, since:
• The Fourier transformation may be inverted. By inverse transformation, one may

calculate the diffraction object from the diffraction pattern.
• The mathematical description by means of Fourier transformation allows the use of

corresponding theorems, in particular the convolution theorem.
• There are very efficient algorithms available for implementing the Fourier transfor-

mation on computers (FFT - fast Fourier transformation).
➤ Actually, the process is difficult, since for technical reasons pure amplitude holo-

grams (phase part of O(x1, y1) constant) or pure phase holograms (magnitude
|O(x1, y1)| constant) are usually produced, with limited resolving power. This leads
to additional boundary conditions. On the other hand, the phase in the plane of the
diffraction pattern may be freely chosen. To meet this condition, iterative algorithms
are used (e.g., Gerchberg-Saxton algorithm).

➤ Huygens’ principle is equivalent to choosing spherical waves as Green functions for
solutions of the Helmholtz equation. This approach is still treated in many textbooks
for historical reasons (Fresnel-Kirchhoff diffraction integral, Rayleigh-Sommerfeld
diffraction integral). An expansion in terms of plane waves, on the contrary, allows
a much simpler formulation and avoids superfluous approximations. Therefore, this
approach is becoming increasingly significant in modern optics (Fourier optics).
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11.5.6 Dispersion
Dispersion (see p. 305), dependence of the phase velocity on the wavelength (or fre-
quency).

Since the refractive index of a medium is defined as the ratio of the propagation speed of
a wave in a vacuum to the propagation speed in the medium, the wavelength dependence of
the refractive index is the inverse of the wavelength dependence of the propagation speed
(see p. 287).
• Normal dispersion:

dn

dλ
< 0 .

The refractive index of the medium decreases with increasing wavelength λ; the re-
fraction angle also decreases with increasing wavelength (prism spectroscopic appa-
ratus).

• Anomalous dispersion:

dn

dλ
> 0 .

The refractive index of the medium increases with increasing wavelength λ; the re-
fraction angle increases with increasing wavelength.

• No dispersion:

dn

dλ
= 0 .

Example: electromagnetic waves in a vacuum.
➤ With a few exceptions, all media occuring in nature exhibit normal or no dispersion.

Fig. 11.60 shows dispersion curves of several optical materials.
Visible white light is a superposition of electromagnetic waves of various wavelengths that
individually are perceived by an observer as distinct colors.

Normal
dispersion

Anomalous
dispersion

Figure 11.60: Dispersion of
several optical materials. (a):
Flint glass, (b): quartz, (c):
fluorite, (d): NaCl, (e): KBr .
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Spectral colors, the colors contained in white light, in the sequence of decreasing wave-
lengths: red, orange, yellow, green, blue, indigo, violet.

Spectrum, set of spectral colors, ordered by the wavelength.
Spectral decomposition, separation of the components of different wavelengths of a

radiation.
M Prisms are frequently used for spatial separation of the components of white light.

The refraction of the components with different wavelengths by the interfaces of
the prism proceeds with different refraction angles, due to the non-zero dispersion
dn(λ)/dλ. The spectral resolving power of a prism of base length b is given by

λ


λ
= b

∣∣∣∣dn(λ)

dλ

∣∣∣∣ .
Achromatic prism, special prism for which to first order only refraction, but no disper-

sion, occurs. The incident light is deflected, but not decomposed, by colors. It consists of
two prisms of flint glass and crown glass cemented together.

Dispersion cannot be compensated simultaneously over the entire spectrum without re-
ducing the refractive power of the system.

Achromat, lens system consisting of a converging and a diverging lens in which chro-
matic aberrations are compensated for two wavelengths.

Apochromat, lens system of three lenses with particular choice of glasses, for which
chromatic aberrations are compensated for three wavelengths.

11.5.7 Spectroscopic apparatus
Spectrum analysis, analysis of an emission or absorption spectrum to determine the qual-
itative and quantitative composition of substances.

Spectroscopic apparatus, optical device for spectral decomposition of polychromatic
electromagnetic radiation:

spectroscope, visual observation of a spectrum,
spectrometer, determination of the wavelength of spectral lines by comparison with a

calibrated scale of wavelengths,
spectrograph, complete registration of a spectrum by a photographic plate, and com-

parison with a calibration spectrum,
monochromator, selection of a narrow range of wavelengths out of a broad spectral

range, to generate nearly monochromatic radiation,
spectroscopic photometer, combination of a spectroscopic apparatus and a photometer

(determination of spectral material parameters).
Optical devices that generate an image of the entrance slit employ concave mirrors and

lenses.
Requirements for spectroscopic apparatus:
• high luminosity: determines the brightness of the spectrum, important for sources of

low intensity,
• high resolving power: determines the smallest wavelength difference between neigh-

boring spectral lines that may still be established by the device as separated,
• broad range of dispersion: determines the width of the wavelength range that may be

covered in a single session.
Prism spectroscope, spectral decomposition of polychromatic radiation by means of a
prism, based on the variation of the refractive index with the wavelength.

Optical grating, regular arrangement of diffracting elements (grating grooves), charac-
terized by their distance (grating constant) and their profile (Echelette grating).
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Transmission grating, consists of parallel, nontransparent scratches on a glass plate.
Reflection grating, consists of parallel grooves scratched into the surface of a glass

plate. The diffracted light may be concentrated to a large extent into one diffraction order
by appropriate shaping of the grooves.

Grating spectroscope, spectral decomposition of polychromatic radiation by means of
a grating, based on the variation of the position of intensity maxima with the wavelength.
➤ Prism spectroscopes in general have a broader range of dispersion and a lower resolv-

ing power than grating spectroscopes. Grating spectroscopes with a reflection grating
reach a higher luminosity than analogous devices that employ a transmission grating.

11.5.8 Polarization of light
1. Types of polarization

Since electromagnetic waves are transverse, light may exhibit the polarization phenomena
known from the theory of waves (see p. 293):
• Linearly polarized light, the electric field vector �E and the propagation vector of the

wave span a plane of vibration fixed in space.
• Circularly polarized light, the electrical field vector �E runs on a helical path about

the propagation vector. In the projection plane perpendicular to the propagation vec-
tor, the electric field vector �E describes a circle. When looking in the opposite direc-
tion to the propagation direction, the light is called right(left)-circularly polarized if
the field vector circulates clockwise (counterclockwise).

• Elliptically polarized light, the electric field vector �E travels on an elliptical helix
about the propagation vector. In the projection plane perpendicular to the propagation
vector the electric field vector �E describes an ellipse. When looking in a direction
opposite to the propagation direction, the light is right(left)-elliptically polarized if
the field vector circulates clockwise (counterclockwise).

2. Causes of polarization

For natural light emitted by the Sun, the electric field vector �E oscillates in a plane per-
pendicular to the propagation direction of the wave without preference for a direction of
vibration. All possible vibration directions occur in the light beam with the same statistical
weight. Natural light is unpolarized. Light is partly polarized if a specific oscillation di-
rection occurs preferably. If in the beam only a single oscillation direction occurs, then the
light is completely linearly polarized. The preferred oscillation direction is denoted as the
polarization direction. Linearly polarized light may be decomposed into two components
of equal frequency and equal propagation direction that vibrate perpendicularly to each
other. Other amplitude and phase relations lead to right- or left-circularly polarized light
(equal amplitude and phase difference π/2 of the components), or right- or left-elliptically
polarized light (phase difference (2n + 1) · π/2, n = 1, 2, . . . and different amplitudes).
▲ Two light waves polarized perpendicularly to each other cannot interfere to zero in-

tensity.

3. Polarizer,

a device that selects only the components of unpolarized light that vibrate linearly along a
given direction perpendicular to the propagation vector.

Analyzer, polarization filter positioned in such a way that its transmission direction is
perpendicular to the transmission direction of the polarizer. The analyzer then lets no light
pass unless the polarization plane of the light is rotated between polarizer and analyzer.
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If the oscillation direction of polarizer and analyzer subtend an angle φ, the analyzer lets
pass only the component that is aligned along its oscillation direction. The amplitude of
the transmitted wave is thereby reduced by the factor cosφ.

4. Optical activity,

the property of a substance to rotate the polarization plane of linearly polarized light, in
which the rotation angle depends on the thickness of the layer of the substance. One dis-
tinguishes between right-rotating and left-rotating substances. Optical activity is observed
both for isotropic and anisotropic materials.
■ Quartz is optically active. The effect may be observed when polarized light passes

the crystal along the optical axis, since then no double refraction arises.
➤ The liquid-crystal display (LCD) based on the rotation of the polarization plane by

a nematic liquid crystal.
Faraday effect, magnetorotation, optically active substances rotate the polarization di-
rection when they are penetrated by a magnetic field strength �H that is aligned parallel to
the propagation vector �k. The rotation angle α is given by

α = V l H .

l denotes the thickness of the layer transmitted, V is the Verdet constant, a material-
specific parameter that depends on the wavelength, H is the magnitude of the magnetic
field strength. The rotation angle changes sign when the magnetic field is reversed.
▲ Light reflected or refracted by a medium is partially polarized.

11.5.8.1 Polarization by reflection
Brewster’s angle, polarization angle αp , angle of incidence at which the light reflected
by a surface is completely linearly polarized perpendicular to the plane of incidence (Fig.
11.61). αp obeys the condition that the refracted ray and the reflected ray be mutually
perpendicular (Brewster’s law):

sinαp = n sin(π/2− αp) = n cosαp .

Figure 11.61: Polarization
of light by reflection and
transmission by an incidence
angle equal to Brewster’s
angle αp .

Reflection polarizers, polarizers based on Brewster’s law for generating polarized light.
■ Polarizers are also used in cameras to avoid disturbing reflections, e.g., by panes of

glass. One exploits the fact that the reflected light is partly polarized and thus may be
filtered out by a polarizer. The polarizer, strictly speaking, acts as an analyzer in this
case.
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11.5.8.2 Polarization by refraction

1. Double refraction

On entering certain crystals, a light beam is split into two fractions because of the depen-
dence of the phase velocity of electromagnetic waves on the propagation and polarization
directions (see Fig. 11.62).

Ordinary ray, obeys Snell’s law of refraction. The refractive index no for the ordinary
ray is independent of the propagation direction in the crystal.

Extraordinary ray, the refractive index nao depends on the propagation direction in the
medium.

Double refraction occurs in crystals with an anisotropic structure. Such an anisotropy
may also be generated artificially by external deformation, i.e., by mechanical load, by
applying electric voltages or electromagnetic fields. In liquids, double refraction may be
generated by flow (flow bi-refringence).

Optical axis in a crystal, preferred orientation of symmetry defined by the crystalline
structure along which the waves propagate as in an isotropic medium. Along the optical
axis no = nao, perpendicular to the optical axis |no − nao| becomes a maximum.

2. Optical crystals

Optically uniaxial crystals, crystals with one optical axis (monoclinic, triclinic or rhombic
crystals).

Optically biaxial crystals, crystals with two optical axes (tetragonal, hexagonal or
rhomboedric crystals).

Principal section, plane in the crystal containing the light ray and the optical axis.
Kinds of double refraction:
• Linear double refraction, the phase velocities of mutually perpendicular compo-

nents of linearly polarized waves differ.
• Circular double refraction, the phase velocities of opposite circularly polarized

waves differ.

Optical axis

Ordinary
     ray

Extraordinary
         ray

Figure 11.62: Double
refraction in optically
uniaxial crystals.

■ Doubly refracting crystals: Iceland spar, quartz, turmaline.
■ Refractive indices for ordinary and extraordinary ray for Iceland spar: no =

1.66, nao = 1.49.

3. Propagation of polarized rays in the crystal

The wave vector of the ordinary ray oscillates perpendicular to the principal section; the
wave vector of the extraordinary ray oscillates parallel to the principal section. The ordi-
nary ray propagates in all crystallographic orientations with the same velocity; the wave
surfaces of the elementary waves are spherical surfaces. The propagation velocity of the
extraordinary ray is dependent on the orientation; the wave surfaces of the elementary
waves are surfaces of rotationally symmetric ellipsoids. Along the optical axis, the propa-
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gation velocities of ordinary and extraordinary rays coincide; sphere and rotation ellipsoid
osculate along the optical axis (see Fig. 11.63).

Optical axis

Optical axis

Optical axis

Figure 11.63: Path of polarized rays for perpendicularly incident radiation according to
Huygens’ principle. (a): optical axis (dashed-dotted line) making an angle with respect to
the crystal plane. The extraordinary ray is not perpendicular to the incident wave front.
(b): optical axis in the crystal plane. No splitting of the rays, but different propagation
velocities for ordinary and extraordinary rays. (c): optical axis perpendicular to crystal
plane. Ordinary and extraordinary rays cannot be distinguished.

Positively uniaxial crystals: the ordinary ray propagates faster than the extraordinary
ray (Fig. 11.64). The sphere encloses the rotational ellipsoid, co ≥ cao, no ≤ nao .

Optical
axis

o ao

aoo

aoo

aoo

aoo

Figure 11.64: Wave surface
of the elementary wave.
(a): positively uniaxial
crystals, (b): negatively
uniaxial crystals.

Dichroism, the absorption maximum of the ordinary ray arises at a different wavelength
than the absorption maximum of the extraordinary ray. When illuminating the crystal by
linearly polarized light, it appears in different colors, depending on the polarization direc-
tion.

Negatively uniaxial crystals: the ordinary ray propagates slower than the extraordinary
ray. The rotational ellipsoid encloses the sphere, co ≤ cao, no ≥ nao.
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▲ Double refraction generates linearly polarized light. The polarization directions of
ordinary and extraordinary rays are perpendicular to each other.

4. Nicol prism,

polarizer for the generation of linearly polarized light by double refraction in an appro-
priately cut Iceland spar cystal cemented by special glue (n = 1.54) (Fig. 11.65). The
ordinary ray is separated by total reflection at the interface; for the ordinary ray, the glue
is an optically thinner medium. The extraordinary ray penetrates through the interface and
leaves the prism as completely linearly polarized light. The polarization direction is on the
ray plane.

By selecting an appropriate cut in the spar rhombohedron, one may achieve a situation in
which the incident beam is perpendicular to the front face of the crystal (Glan-Thompson
prism).

Figure 11.65: Generation of polarized light by a Nicol prism.

5. Photoelasticity,

application of double refraction to investigate the stresses on a loaded body. A model of
an object is produced in plexiglass, e.g., a hook loaded like a real hook. Then, depending
on the local stress, light is differently polarized at different positions on the model. This
polarization may be detected by an analyzer, hence the positions of largest strain may be
localized.

Pockels effect, in an electric field E piezoelectric crystals without center of symmetry
(potassium dihydrogen phosphate, lithium niobate) become bi-refringent. The difference
of the indices of refraction of the ordinary ray (no) and the extraordinary ray (nao) is
proportional to the applied electric field strength,

|nao − no| ∼ E .

Kerr effect, in a transverse electric field E ≈ 106 V/m an optically isotropic substance
(carbon sulfid, benzene) becomes bi-refringent. The difference of the refractive indices for
the ordinary ray (no) and the extraordinary ray (nao) is proportional to the square of the
applied electric field strength,

|nao − no| ∼ E2 .

➤ Kerr cells are used for delay-free intensity modulation of light.

11.6 Photometry

Photometry, measurement of light, measurement of the photometric quantities basic
for vision and light technology.
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Distinction:
• Objective photometry, measurement of photometric quantities by instruments that

do not take into account the specific properties of human perception of light. The
symbols for quantities measured in this manner are labeled by the index e (for ener-
getic).

• Subjective photometry, measurement of photometric quantities, taking into account
the subjective perception of the human eye, e.g., in the comparison of brightness.

The symbols for quantities measured in this manner are labeled by the index v (for
visual).

11.6.1 Photometric quantities
1. Radiant energy and energy density

Radiant energy, Qe, energy transported by electromagnetic waves.
Energy density, w, of the electromagnetic radiation, radiation energy per volume ele-

ment, given by:

energy density of electromagnetic waves MT−2L−1

w = 1

2
(�E · �D+ �H · �B)

Symbol Unit Quantity

w J/m3 energy density
�E V/m electric field strength
�D C/m2 dielectric displacement
�B T magnetic induction
�H A/m magnetic field strength

The quantity of energy within a region of space is obtained as a volume integral over the
energy density.

2. Measurement of radiant energy

The radiant energy is measured by conversion into other forms of energy, e.g.:
Thermocouple, generation of an electric voltage by irradiation. The energy is calculated

from the measured voltage. In particular, infrared radiation is measured with thermocou-
ples.

Bolometer, semiconductor or electrolytically black-coated platinum wires or platinum
foils. One measures the change of resistance due to heating by absorption of radiation.
Bolometers mainly respond to infrared radiation, i.e., heat radiation.

Semiconductor, the resistance is changed under irradiation, due to the internal photo
effect.

Photo diode, the electric current is measured during irradiation.
Photo emulsion, a surface is coated by a light-sensitive chemical. Incident light changes

the color of the layer; the radiation energy is directly converted into chemical energy.

3. Radiant power and radiant flux

Radiant power, radiant flux,�e, radiant energy transported per unit time into a region of
space by the electromagnetic wave:
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radiant power ML2T−3

�e = dQe

dt

Symbol Unit Quantity

�e W radiant power
Qe J radiant energy
t s time

The radiant power displayed by a measuring instrument for a given radiation source de-
pends on
• area of the receiver of the measuring instrument,
• distance of the receiver from the transmitter, the source of electromagnetic radiation,
• orientation of the area of receiver with respect to the transmitter,
• spectral sensitivity of the receiver.
Extended, arbitrarily shaped bodies may be considered point-like if the distance from them
is large enough. Otherwise, one considers sufficiently small area elements on the body
surface that again satisfy the point approximation. The measured quantity is then summed
over these elements.

The area of the receiver is usually a plane; it does not correspond to a spherical shell
about the transmitter. If the distance between receiver and transmitter is large enough, one
may to a good approximation insert the (mostly plane) area of the receiver for the section
of the spherical shell. It is presumed, however, that the receiver area points towards the
transmitter.

4. Photometric limiting distance,

minimum distance beyond which, according to the DIN standard, the approximation given
above may be regarded as satisfied: the distance between transmitter and receiver must
be at least 10 times the largest transverse dimension of the receiver or the transmitter,
respectively. If this condition is fulfilled, replacing the section of the spherical shell by a
plane area causes an error of less than 2 %.
▲ The radiant power received by the receiver is proportional to the solid angle corre-

sponding to its area if the radiation is homogeneously distributed over the area.

5. Radiant intensity,

Ie, proportionality factor between solid angle and radiant power:

radiant intensity = radiant power
solid angle

ML2T−3

d�e = Ie d	 Ie = d�e
d	

Symbol Unit Quantity

�e W radiant power
Ie W/sr radiant intensity
	 sr efficient solid angle

The radiant flux into the solid angle 	 is given by

�e =
∫
	

Ie d	 .
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11.6.1.1 Radiation source
For transmitters that are not point-like, the measured radiant intensity depends on
• the area of the transmitter AS ,
• the relative orientation of transmitter area to the receiver area.

1. Radiation pattern

of a light source, g(α), a function specifying the dependence of the radiant intensity on the
angle α at which the transmitter is seen:

angular dependence of radiant intensity ML2T−3

Ie(α) = Le(α)AS g(α)

Symbol Unit Quantity

Ie(α) W/sr radiant intensity
g(α) 1 radiation pattern
α rad angle between normal of

transmitter and receiver area
Le(α) W/(m2 sr) radiance
AS m2 area of transmitter

Radiance, Le, characteristic quantity for the properties of a transmitter. It depends on its
material, its surface properties and its temperature, among other qualities.

2. Lambert source,

Lambertian source, source with a radiation pattern g(α) = cos(α). A Lambert source
appears as equally bright for all observation angles α, since AS cos(α) is just the projec-
tion of the area in the direction of observation. Hence, the ratio of radiant intensity to the
effective area Aeff at the angle α is constant,

Ie(α)

Aeff
= Le(α)AS cos(α)

AS cos(α)
= Le(α) .

Most thermal light sources are approximately Lambertian.
Conditions for a Lambertian source:
• No fixed phase relations of wave fields radiated by neighboring area elements of the

transmitter.
• The material of the transmitter must be optically dense, i.e., it must be able itself to

absorb the radiation emitted by the transmitter surface.
Lambert law, the radiation pattern given above,

g(α) = cos(α) .

3. Gaussian pattern and irradiance

Gaussian pattern, radiation pattern of the form

g(α) = e−α2/γ 2
.

Here γ is a constant characterizing the radiation source. For decreasing values of γ the
distribution g becomes more narrow, i.e., the radiation is increasingly concentrated in one
direction. The Gaussian pattern is realized for a laser.
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Specific radiant emittance, Me , characteristic parameter of a transmitter, defined by:

specific radiant emittance = radiant flux
transmitter area

MT−3

Me = d�e

dAS

Symbol Unit Quantity

Me W/m2 specific radiant emittance
�e W radiant flux
AS m2 transmitter area

Irradiance, Ee, the radiant flux incident on the receiver area AE :

irradiance = radiant flux
receiver area

MT−3

Ee = d�e

dAE

Symbol Unit Quantity

Ee W/m2 irradiance
�e W radiant flux
AE m2 effective receiver area

The effective receiver area AE is obtained by projecting the actual receiver area A onto the
connecting line between transmitter and receiver,

AE = A cosβ .

β is the angle between the connecting line between transmitter and receiver and the per-
pendicular onto A.

4. Photometric inverse-square law,

gives the dependence of the irradiance Ee on the distance r from the transmitter, is valid
only for spherical symmetry, without account for reflection and absorption:

photometric inverse-square law MT−3

Ee = Ie(α)

r2
cosβ 	0

Symbol Unit Quantity

Ee W/m2 irradiance
r m distance transmitter-receiver

Irradiation, He, the energy incident per unit area in a given time interval between t1 and
t2. It is obtained by integrating the irradiance over the time:

irradiation MT−2

He =
t2∫

t1

Ee(t)dt

Symbol Unit Quantity

He J/m2 irradiation
Ee W/m2 irradiance
t s time
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11.6.1.2 Spectral quantities
Spectral filters, change the spectral energy of transmitted radiation. Their action is based
on absorption, interference, total reflection, etc., as represented by the degree of spectral
transmission as a function of the wavelength (filter curve). Filters are classified according
to the trend of the filter curve into edge filters (high-pass or low-pass filters), band-pass
filters, narrow-band or line filters.

If the radiation consists of waves of different wavelengths, the contribution of the indi-
vidual components to photometric quantities may be investigated by selecting single wave-
length regions and measuring the corresponding photometric quantity for that fraction of
the radiation.
➤ While a UV suppression filter removes UV radiation, a blue filter is transparent for

blue light only, and a red filter is transparent for red light only. This is the customary
nomenclature, as a matter of convention.

▲ The contribution of radiation from a wavelength range dλ to a photometric quantity
Xe is given by

∂Xe

∂λ
dλ .

Spectral quantity, designation for the derivative of a photometric quantity with respect to
the wavelength. Spectral quantities are specified by the index λ.
■ The derivative of the radiance with respect to the wavelength,

Le,λ = ∂ Ie

∂λ
,

is called spectral radiance.
Conversely, the radiance is calculated from the spectral radiance by integrating over the
wavelength,

Le =
∫

Le,λ dλ .

11.6.1.3 Reflection, absorption, transmission
When electromagnetic radiation hits a layer, one observes the phenomena reflection, ab-
sorption and transmission. Only a fraction of the incident radiant flux �e can be detected
behind the layer as transmitted radiant flux �t. Reflection and absorption depend on the
material of the layer, and on the wavelength λ of the radiation (Fig. 11.66).

1. Spectral reflectance and absorptance

Spectral reflectance, ρ(λ), ratio of the total reflected radiant flux�r to the incident radiant
flux �e,

ρ(λ) = �r(λ)

�e(λ)
.

The total reflected radiant flux may originate, as for a plate, by reflection at several surfaces.
The reflectance depends significantly on the surface properties of the material.
■ The reflectance of snow is 0.93, of aluminum 0.69, and of black paper 0.05.
Spectral absorbance, spectral absorptive power, α(λ), ratio of the total absorbed radiant
flux �a to the incident radiant flux �e,

α(λ) = �a(λ)

�e(λ)
.
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Reflection  Absorption Transmission

Figure 11.66: Reflection, absorption and transmission of electromagnetic radiation incident
on a plate of thickness d .

The absorptance depends weakly on the temperature T of the material, α(λ) = α(λ, T ).
Absorption law, the radiant flux in the interior of the layer decreases exponentially with

increasing penetration depth x ,

�(x) = e−a(λ) x .

Absorption coefficient, a(λ), unit: m−1, characterizes the absorbing material.

2. Mean range and transmittance

Mean range of radiation, xm , the penetration depth at which the radiant flux decreases to
the fraction 1/e of the incident radiant flux,

xm = 1

a
.

Spectral transmittance, τ(λ), ratio of the transmitted radiant flux �t to the incident radi-
ant flux �e,

τ(λ) = �t(λ)

�e(λ)
.

The transmittance is a measure for the transparency of a layer for radiation.
According to the energy law,

ρ(λ)+ α(λ)+ τ(λ) = 1 .

Spectral pure absorptance, αi (λ), the radiant flux absorbed in the layer, �in − �ex, is

not related to the incident radiant flux, but to the radiant flux �in = �e−�(1)r just behind
the entrance surface,

αi (λ) = �in(λ)−�ex(λ)

�in(λ)
.

If the reflection is negligible, then αi (λ) = α(λ).
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Spectral pure transmittance, τi (λ), ratio of the radiant flux�ex just in front of the exit
surface to the radiant flux �in just behind the entrance surface,

τi (λ) = �ex(λ)

�in(λ)
.

The radiant flux �ex subdivides in the radiant flux �(2)r reflected at the exit surface, and
the transmitted radiant flux �t.

One has

αi (λ)+ τi (λ) = 1 .

3. Black body,

a body with absorbance 1 over the entire range of wavelengths of electromagnetic radiation.
There is no material having exactly this property; nevertheless, the concept of the black
body is of central importance in the theory of heat radiation.
▲ Kirchhoff’s law: The spectral radiance Le,λ of an arbitrary body of temperature T at

wavelength λ equals the product of the absorbance of the body at this temperature and
wavelength, and the spectral radiance Lblack

e,λ of a black body at the same temperature
and wavelength.

Kirchhoff’s law ML−1T−3

Le,λ = α(λ, T ) · Lblack
e,λ

Symbol Unit Quantity

Le,λ W/(m3 sr) spectral radiance
α(λ, T ) 1 absorbance
Lblack

e,λ W/(m3 sr) spectral radiance black body

Kirchhoff’s law traces the spectral radiance of an arbitrary body back to the spectral radi-
ance of a black body Lblack

e,λ (Planck’s radiation law, Fig. 11.67):

Lblack
e,λ = 2hc2

λ5

1

ehc/λkT − 1
,

c: vacuum speed of light, h: Planck’s constant, k: Boltzmann constant.

black

hf (eV)

Figure 11.67: Spectral radiance of a black body at various temperatures versus the radiation
energy in eV ( f : frequency of radiation).
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11.6.2 Photometric quantities
Photometric quantities, are based on an evaluation of radiation by the human eye. They
describe radiation in such a way that the sensation of brightness is given, and thus they are
important for lighting engineering.
▲ A photometric quantity Y generally results by evaluation of an energetic quantity

Xe for the eye.

1. Relative and absolute sensitivity

In order to be able to describe the evaluation of an energetic quantity by an arbitrary re-
ceiver (and thus also by the eye) and to include the dependence of the sensitivity on the
wavelength λ of light, the following quantities are introduced:

relative and absolute sensitivity

s(λ) = dY

dXe
= Yλ

Xeλ

srel(λ) = s(λ)

s(λ0)

Symbol Unit Quantity

λ m arbitrarily chosen wavelength
λ0 m wavelength
s(λ) absolute spectral sensitivity
srel(λ) 1 relative spectral sensitivity
Xe energetic input quantity
Xeλ spectral energetic input quantity
Y output quantity
Yλ spectral output quantity

■ If a radiant flux d�e = �eλ · dλ hits a receiver and thereby generates the current
dJ , then�e corresponds to the energetic input quantity Xe, and J corresponds to the
output quantity Y .�eλ is the corresponding spectral energetic input quantity Xeλ, Jλ
the spectral output quantity Yλ.

Radiation may be evaluated by means of these quantities even if it consists of a super-
position of light of distinct wavelengths from an interval [λ1, λ2]. The evaluated output
quantity Y is then obtained by the convolution of the spectral energy input quantity with
the spectral sensitivity. The ratio of the output quantity obtained this way to the input quan-
tity then yields the absolute sensitivity:

absolute sensitivity

Y =
∫ λ2

λ1

Xeλ · s(λ) dλ

= s(λ0)

∫ λ2

λ1

Xeλ · srel(λ) dλ

s = Y

X

Symbol Unit Quantity

Y output quantity
λ m wavelength
λ0 m wavelength
λ1 m lower-limit wavelength
λ2 m upper-limit wavelength
Xeλ spectral energetic input quantity
s(λ) absolute spectral sensitivity
srel(λ) 1 relative spectral sensitivity
s absolute sensitivity

➤ In the definition of s, X is written instead of Xe, since the formula given above holds
also for non-energetic quantities.



404 11. Optics

Spectral degree of brightness, relative spectral sensitivity of the eye. In the evaluation,
one takes:
• for Xeλ the spectral radiant flux �eλ,
• for srel(λ) the spectral relative luminosity V (λ) for daylight vision (see Fig. 11.68),
• for s(λ0) the absolute spectral sensitivity of the eye at λ0 = 555 nm.

Figure 11.68: Spectral
luminosity of the eye for
daylight vision V (λ).

2. Luminous flux,

�, determined by integration, owing to the dependence of the spectral luminosity on the
wavelength:

definition of luminous flux J

� = V (λ0)

780 nm∫
380 nm

�eλV (λ) dλ

Symbol Unit Quantity

� lm luminous flux
V 1 spectral luminosity
λ m wavelength
�eλ cd/m spectral radiant flux

Lumen, lm, SI unit of the luminous flux �.
■ Luminous flux of several light sources: mercury lamp 125 000 lm, fluorescent lamp

2300 lm, electric-light bulb 730 lm, light diode 0.01 lm.
Luminous intensity, I , the luminous flux d� emitted by a light source into a solid angle
element d	.

Candela, cd, SI unit of the luminous intensity. The candela is a basic quantity in the SI
system (cf. kg, m, s, A), and hence cannot be expressed by other SI quantities.
▲ 1 candela is the luminous intensity of a source of radiation that emits a monochro-

matic radiation of frequency f = 540 THz (λ = 555 nm) and radiates a power of
(1/683) W/sr.

One has: 1 lm = 1 cd · sr.
➤ Formerly, the unit cd was defined through the luminance of a black body at the freez-

ing point of platinum.
Luminance, L , contribution of the surface element dA of a source of light making an angle
α with respect to the luminous intensity,

L = dI

dAS cosα
.
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Illuminance, E , defined as ratio of the element of luminous flux to the illuminated area
element,

E = d�

dA
.

Lux, lx, SI unit of illuminance, 1 lx = 1 lm/m2.
■ Illuminances: Sun (summer) 70 000 lx, Sun (winter) 5500 lx, daylight (covered sky)

1000 – 2000 lx, full Moon 0.25 lx, limit of color perception 3 lx.

Comparison of radiation-physical
and photometric quantities

radiation-physical

radiant flux �e W

radiant intensity Ie = d�e

d	
W/sr

radiance Le = dIe

dAS cosα
W/(m2sr)

irradiance Ee = d�e

dAE
W/m2

photometric

luminous flux � lm (cd·sr)

luminous intensity I = d�

d	
cd

luminance L = dI

dAS cos α
cd/m2

illuminance E = d�

dAE
lx (lm/m2)



Symbols used in formulae on vibrations,
waves, acoustics and optics

Symbol Unit Designation

α rad angular displacement
α̇ rad/s angular velocity
α̈ rad/s2 angular acceleration
δ 1/s decay constant

φ rad phase difference
λ m wavelength
� 1 logarithmic decrement
µ 1 friction coefficient
φ rad phase angle
ω rad/s angular frequency
a m/s2 acceleration
A amplitude
b kg/s damping constant
c m/s phase velocity
c m/s sound velocity
D 1 degree of damping
d 1 loss factor
f Hz frequency
F kg m/s2 restoring force
FN N normal force
FR N friction force
g m/s2 gravitational acceleration
k kg/s2 restoring force coefficient
k 1/m wave number
�k 1/m wave vector
m kg mass
Q 1 quality factor
v m/s phase velocity
vgr m/s group velocity
T s period
TS s beat period

Symbol Unit Designation

α 1 degree of sound absorption
κ 1 adiabatic exponent
ω rad/s angular velocity
BS Pa/V electro-acoustic

transmission factor
cFk m/s sound velocity

in solids
cFl m/s sound velocity

in liquids
cG m/s sound velocity

in gases
E N/m2 elasticity modulus
Ek Pa/

√
VA characteristic sensitivity

EM Pa/
√

VA loudspeaker sensitivity
GS dB electro-acoustic

transmission measure
J W/m2 sound intensity
K N/m2 compression modulus
p Pa sound pressure
P W sound power
p0 Pa static pressure
r 1 reflectance
R dB measure of attenuation
Ri J/(K kg) specific gas constant
T K temperature
T s reverberation time
v cm/s sound particle velocity
w J/m3 energy density
Z kg/(m2s) characteristic acoustic

impedance
Z 	 impedance

407
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Symbol Unit Designation

αg rad critical angle of
total reflection

β 1 linear magnification
a m object distance
a′ m image distance
aB m near limit
A(λ, T ) 1 absorptance
B 1/m refractive power
Ee W/m2 irradiance
f̄ m object focal length
f ′ m image focal length
He J/m2 irradiation
Ie W/sr radiant intensity
k 1 focal ratio
Le W/(m2 sr) radiance
Le,λ W/(m3 sr) spectral radiance

Symbol Unit Designation

Me W/m2 specific radiant emittance
� cd luminous flux
�e W radiant power
�eλ cd/m spectral radiant

flux
Qe J radiant energy
s absolute sensitivity
s(λ) absolute spectral

sensitivity
srel(λ) 1 relative spectral

sensitivity
v 1 magnification
V 1 spectral relative

luminosity
y m object size
y′ m image size



12
Tables on vibrations, waves, acoustics
and optics

12.1 Tables on vibrations and acoustics

12.1/1 Correction factors for pendulum period at large displacement

Angle (◦) Angle (rad) Correction factor

1 0.017453 1.00002
5 0.087266 1.00048
10 0.174533 1.00191
30 0.523599 1.01741
45 0.785398 1.03997

12.1/2 Sound velocity in gases

c/(ms−1) c/(ms−1)

Gas at 0 ◦C at 20 ◦C Gas at 0 ◦C at 20 ◦C
ammonia 415 428 argon 319 321
carbon dioxide 259 258 city gas 453 450
chlorine 206 — oxygen 316 324
nitrogen 334 348 hydrogen 1284 1300
helium 965 1020 ethylene 317 329
methane 430 — neon 435 453

12.1/3 Sound velocity in air

c/(ms−1)

Gas 0 ◦C 10 ◦C 20 ◦C 30 ◦C
air 332 338 344 350

409
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12.1/4 Damping coefficient for sound in gases

Gas T/(◦C) f /kHz p/MPa α/cm−1

nitrogen 19.9 598.9 0.097 0.0484
hydrogen 19.9 598.9 0.1 1.284
helium 17.5 598.9 0.099 1.061
nitrogen monoxide 16.3 598.9 0.095 0.656
carbon dioxide 18.7 304.4 0.085 2.073
oxygen 19.6 598.9 0.099 0.602

12.1/5 Sound field quantities in air at 20 ◦C

Sound pressure/ Sound particle velocity/ Sound intensity/
(Pa) (cm·s−1) (µW/cm2)

0.01 2.42 · 10−5 2.42 · 10−9

0.05 1.21 · 10−4 6.05 · 10−8

0.10 2.42 · 10−4 1.42 · 10−7

0.50 1.21 · 10−3 6.05 · 10−6

1.00 2.42 · 10−3 2.42 · 10−5

12.1/6 Sound velocity in oil and mineral-oil products

Substance T/◦C c/(ms−1) Substance T/◦C c/(ms−1)

petrol 25 1295 kerosene 34 1295
linseed oil 31.5 1772 olive oil 32.5 1381
paraffin oil 33.5 1420 pine oil 31 1468
turpentine oil 27 1280 transformer oil 32.5 1425
eucalyptus oil 29.5 1276 mustard oil 31.5 1825

12.1/7 Sound velocity in liquids at 20 ◦C

Liquid c/(ms−1) Liquid c/(ms−1)

benzene 1330 glycerol 1920
water 1480 sea water 1470
heavy water 1399 ethyl alcohol 1165
kerosene 1451 mercury 1460
aniline 1656 acetone 1192

methyl alcohol 1156
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12.1/8 Sound-damping coefficients for liquids

Liquid T/◦C f/MHz α/cm−1

acetone 20 307 25.6
20 482 56
20 843 167.7

water 20 307 23.28
20 482 55.3
20 843 172

toluene 20 307 71.9
20 482 182.4
20 843 575.6

glycerol 32.8 30 12.69
olive oil 21 1 0.0125

benzene 20 307 711.5
20 482 1150

petrol — 1 0.0096

trichloromethane 20 307 344
20 482 720.2
20 843 1748

tetrachloromethane 20 307 492
20 482 1115.2
20 843 3269

linseed oil 20.5 3.1 0.141
castor oil 21.4 15.7 5.18

12.1/9 Sound velocity in metals

Substance c/(ms−1)

aluminum 5200
lead 1200
iron 5000
iridium 4900
copper 3500
brass 3400
nickel 4973
steel 5050
zinc 2680
tin 2490
silver 3650
titanium 6070
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12.1/10 Sound velocity in synthetic materials and glasses (thin rods)

Substance c/(ms−1)

polystyrene 1800
PVC, soft 80
PVC, hard 1700
polycarbonate 1400
polyethylene 540
nylon 1800
plexiglass 1840
flint glass 3720
borate glass 4540
crown glass 5300
quartz glass 5400
porcelain 4880

12.1/11 Sound velocity in construction materials

Substance c/(ms−1)

concrete 3100
marble 3810
granite 3950
pine 3600
fir 3320
brick 3600
oak 4100
cork 500
beech 3300
brickwork 3500 . . . 4000

12.1/12 Acoustical-attenuation coefficients for building materials (mean values)
and demands for construction

Required
attenuation

Building material dB Building structure coefficient

single window 15 brickwork 50
double window (12 cm air) <30 window 25
single wooden door 20 doors 30
double door (12 cm air) <40 internal walls in apartments 40
straw mat, 5 cm 38 internal walls in schools 42
concrete wall, 10 cm 42 outer walls 48
brickwork, plastered, 12 cm 45 ceilings 52
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12.1/13 Sound attenuation in air in dB/(100 m) for standard pressure

Frequency/Hz

T/◦C Relative moisture/% 125 250 500 1000 2000 4000

10 0.09 0.19 0.35 0.82 2.6 8.8
20 0.06 0.18 0.37 0.64 1.4 4.4

30 30 0.04 0.15 0.38 0.68 1.2 3.2
50 0.03 0.10 0.33 0.75 1.3 2.5
90 0.02 0.06 0.24 0.70 1.5 2.6

10 0.08 0.15 0.38 1.21 4.0 2.5
20 0.07 0.15 0.27 0.62 1.9 6.7

20 30 0.05 0.14 0.27 0.51 1.3 4.4
50 0.04 0.12 0.28 0.50 1.0 2.8
90 0.02 0.08 0.26 0.56 0.99 2.1

10 0.07 0.19 0.61 1.9 4.5 7.0
20 0.06 0.11 0.29 0.94 3.2 9.0

10 30 0.05 0.11 0.22 0.61 2.1 7.0
50 0.04 0.11 0.20 0.41 1.2 4.2
90 0.03 0.10 0.21 0.38 0.81 2.5

10 0.10 0.30 0.89 1.8 2.3 2.6
20 0.05 0.15 0.50 1.6 3.7 5.7

0 30 0.04 0.10 0.31 1.08 3.3 7.4
50 0.04 0.08 0.19 0.60 2.1 6.7
90 0.03 0.08 0.15 0.36 1.1 4.1

12.1/14 Loudness levels in dB

lower threshold of hearing 0 typewriter 50. . .70
ticking of pocket watch 10 loud street noise 70
rustle of leaves 20 crying 80
whispering 20 loud horn 90
muted conversation 40 motorbike 70. . .100
muted radio music 40 rock music 105
tearing of paper 40 riveting hammers 110
speech 40. . .50 pain threshold 130

12.1/15 Noise injurious to health

Sound Intensity
Response level /(dB)

psychic (displeasure, irritability) > 30
vegetative (weak concentration, decreasing performance) > 65
auditory damage (damage of inner ear, incurable) > 80
mechanical damage (deafness) > 120
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12.1/16 Sound absorptance

Sound absorptance α of various building materials

α at

Material 125 Hz 500 Hz 2000 Hz

plastering on brickwork 0.02 0.02 0.03
lime plastering 0.03 0.03 0.04
lightweight concrete 0.07 0.22 0.10
rough plastering 0.03 0.03 0.07
acoustical lightweight building boards, 2.5 cm thick

at 3 cm distance 0.25 0.23 0.74
directly on massive wall 0.15 0.23 0.73

insulating plates, 2 cm thick
directly on massive wall 0.13 0.19 0.24
at 3 cm distance 0.15 0.23 0.23
at 3 cm distance and glass wool 0.33 0.44 0.37

wooden doors 0.14 0.06 0.10
parquet 0.05 0.06 0.10
plywood, 3 mm, distance 2 cm 0.07 0.22 0.10
plywood, 3 mm, directly on wall 0.07 0.05 0.10
wooden panels 0.25 0.25 0.08

12.2 Tables on optics

12.2/1 The most important fiber types for optical telecommunication

Material Plastic Glass Glass Glass

type a MM, SI MM, SI MM, GI SM, SI

core diameter 200 – 600 50, 62.5, 200, . . . 50, 62.5, 85, . . . 4 – 10
(µm)

mantle diameter 500 – 1000 125, 900 125 125
(µm)

numerical ≈ 0.5 0.15 – 0.5 0.2 – 0.3
aperture

damping 50 – 1000 (650 nm) 5 (850 nm) 5 (850 nm) 0.4 (1300 nm)
(dB/km) 0.5 (1300 nm) 0.5 (1300 nm) 0.2 (1550 nm)

transfer 1 – 10 MHz · km b 10 MHz · km 1 GHz · km 10 – 100 GHz · km c

capacity

a MM: multi-mode, SM: single-mode, SI: step index, GI: gradient index
b transfer range limited to several meters because of high damping
c by principle not limited by mode dispersion. The possible transfer capacity follows from the material
dispersion and the line width of the adopted light source. Actual transfer capacities achieved are in the
range of 10 – 50 GHz·km.
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12.2/2 Refractive indices nd at λ = 589.3 nm (yellow sodium line)

Material nd

gases at 0 ◦C and 1013 hPa

air 1.00029

nitrogen 1.00030

oxygen 1.00027

carbon dioxide 1.00045

ammonia 1.00038

hydrogen 1.00014

helium 1.000035

neon 1.000067

argon 1.000283

crypton 1.000429

xenon 1.00071

liquids at 20 ◦C

water 1.333

methanol 1.329

ethanol 1.362

acetone 1.359

glycerol 1.455

benzene 1.501

carbon disulphide 1.628

bromonaphthaline 1.658

linseed oil 1.486

cedar oil 1.505

Material nd

solid materials at 20 ◦C

diamond 2.417

saphir (Al2 O3) 1.769

lithium chloride 1.662

sodium chloride 1.544

potassium chloride 1.490

lithium fluoride 1.392

lithium bromide 1.784

lithium iodide 1.955

fluorite (CaF2) 1.434

ice (at 0 ◦C) 1.310

quartz glass 1.459

SCHOTT BK1 1.51009

SCHOTT BK7 1.51680

SCHOTT F2 1.62004

SCHOTT SF6 1.80518

SCHOTT FK3 1.46450

window glass ≈ 1.51

plexiglass (PMMA) ≈ 1.49

polystyrene (PS) ≈ 1.59

polycarbonate (PC) ≈ 1.59

several bi-refringent materials

quartz (Si O2) 1.544/1.553

Iceland spar (CaC O3) 1.658/1.486

magnesium fluoride 1.389/1.377

several infrared-transmitting materials
and semiconductors at various wavelengths

zinc sulphide (λ = 3 µm/10.6 µm) 2.27/2.19

germanium (λ = 3 µm/10.6 µm) 4.05/4.00

silicon (λ = 3 µm/10.6 µm) 3.43/3.42

gallium arsenide (λ = 3 µm/10.6 µm) 3.32/3.28
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12.2/3 The most important types of lasers

Type of laser Most important lines (nm)

helium-neon 632.8, 543, 594, 612 and others in the IR range

helium-cadmium 442, 325

argon ions 488, 514

carbon dioxide 10.6 µm

excimer (XeF, KrF, ArF) 351, 248, 193

dye tunable UV – IR

Nd:YAG 1064 (532 with frequency doubling)

semiconductors (e.g., InGaAs) tunable ca. 660 – 1550

12.2/4 Coherence lengths of several light sources

Coherence length
Light source (order of magnitude)

Sun (visible spectral range) 1 µm

light-emitting diode 20 µm

mercury lamp 0.5 mm

laser diodes mm – cm

He-Ne laser (single) 0.2 m

stabilized lasers > 100 m

12.2/5 Illuminances

Light source Illuminance /(lx)

Sun, summer time 70000
Sun, winter time 5500
daylight, overcast sky 1000 – 2000
full Moon 0.25
stars, clear/without Moon 0.001

workplace illumination 1000
living-room illumination 120
threshold of color perception 3
street illumination 1 – 16
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12.2/6 Luminous fluxes

Light source Luminous flux /(lm)

light-emitting diode 0.01
electric light bulb 60 W 730
electric light bulb 100 W 1380
fluorescent tube 2300
mercury lamp 60 W 5400
mercury lamp 100 W 125000

12.2/7 Relative luminosity

λ/nm V/1 λ/nm V/1 λ/nm V/1 λ/nm V/1

380 0 490 0.208 590 0.757 700 0.0041
390 0.0001 500 0.323 600 0.631 710 0.0021
400 0.0004 510 0.503 610 0.503 720 0.105
410 0.0012 520 0.710 620 0.381 730 0.000052
420 0.0040 530 0.862 630 0.265 740 0.000025
430 0.0116 540 0.954 640 0.175 750 0.000012
440 0.023 550 0.995 650 0.107 760 0.000006
450 0.038 555 1 660 0.061 770 0.000003
460 0.060 560 0.995 670 0.032 780 0.0000015
470 0.091 570 0.952 680 0.017
480 0.139 580 0.870 690 0.0082

12.2/8 Ultraviolet spectral range

Wavelength λ/(10−7m) Designation Effect

3.80 . . . 3.15 long-wave UV sudden pigmentation
3.15 . . . 2.80 medium-wave UV formation of erythema
2.80 . . . 2.00 short-wave UV bactericidal
< 2.00 vacuum UV ozonization

12.2/9 Fraunhofer lines

Wavelength/ Wavelength/
Designation Element (nm) Designation Element (nm)

A O2 759.3 F H 486.1
B O2 686.7 f H 434.0
C H 659.3 G Fe, Ti 430.8
D1 Na 589.6 h H 410.2
D2 Na 589.0 H Ca+ 396.8
E Ca, Fe 527.0 K Ca+ 393.3



Part III
Electricity

Electricity, deals with stationary and moving electric charges, the actions of force between
them, and the electric and magnetic fields generated by them.

There are applications of electricity in these fields:
• electrical engineering, e.g., in direct-current, alternating-current and three-phase-

current engineering, in calculations of circuits, and in the construction of generators
and motors;

• electrochemistry, e.g., in charge transport in electrolytes, and in the production of
batteries;

• electronics, e.g., in development and application of electronic components in analog
and digital electronics, and in the development of computers;

• plasma physics, e.g., in generation of light, materials processing, energy production
and formation of ion beams from ion sources;

• accelerator physics, in the transport and acceleration of ions and electrons;
• telecommunications engineering, information processing, signal processing.

Furthermore, electricity is of basic importance for the fields:
• atomic physics, and
• solid-state physics.



13
Charges and currents

Electric charges are bound to matter. Charged bodies may interact over large distances due
to their electric field. The interaction of two point charges is described by Coulomb’s law.

Electric currents occur when electric charges move. Currents may also interact over
large distances via their magnetic fields. The interaction of two thin current-carrying wires
is described by Ampere’s law.

13.1 Electric charge

Electric charge, Q, property of bodies of exerting forces on each other by electric fields.
Charge is bound to matter.

Coulomb, C, SI unit of electric charge Q. 1 coulomb is the charge transported by a
steady electric current of 1 ampere for 1 second,

[Q] = 1 C = 1 As.

1. Negative and positive charges

There are two kinds of electric charges:
Negative charges, the sinks of the electric field.

■ Electrons,
anions, negative ions, i.e., atoms that received additional electrons, negatively
charged elementary particles.

Positive charges, sources of the electric field.
■ Cations, positive ions, i.e., atoms that delivered electrons.

Holes in semiconductors, missing electrons in lattices of solids. Holes should not be
confused with positrons.

Positively charged elementary particles, like protons (H+-ions) and positrons
(the antiparticles of electrons).

▲ Like charges repel each other, unlike charges attract each other.

421
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2. Elementary charge and charge conservation

The electric charge is quantized. Charge occurs as a multiple of the elementary charge.
Elementary charge, the smallest quantity of free electric charge in nature:

elementary charge TI

e0 = 1.602 177 33 · 10−19 C
Symbol Unit Quantity

e0 C elementary charge

▲ Conservation of charge, in a closed system the total charge is conserved; the sum of
the positive and negative electric charges remains constant,∑

i

Qi = const.

■ A proton carries the charge e0, an electron the charge−e0. A uranium nucleus carries
the charge 92 e0. The unit of charge 1 C corresponds to about 6.24 · 1018 elementary
charges.

3. Conductors and insulators

Electric conductor, material in which freely movable charge carriers are present. Conduc-
tors have a low electric resistance (see p. 431).

Electric nonconductor, insulator, material containing no freely movable charge carri-
ers. Nonconductors possess a very large resistance against an electric current (see p. 431).
➤ In nonconductors, charges may be displaced distances in the atomic range by an

electric field.

4. Electrostatic induction and polarization

Electrostatic induction, the displacement of electric charges within a body when it is put
into an electric field.

Polarization, the formation of electric dipoles within a nonconductor due to the dis-
placement of charges in the molecules or atoms of the insulator.

Charge separation, arises within a conductor by electrostatic induction, hence an ex-
cess of positive charge or negative charge emerges in some regions. Altogether, the con-
ductor itself remains electrically neutral.
➤ Owing to polarization, charges may also exert forces on insulators.

5. Measurement of charges

M Charge may be measured by the force it causes, by the difference of the potential, or
by the pulse of current generated by the flow of charge.

Measurement of the voltage V between conductors for known capacitance C of
the arrangement of conductors according to

Q = CU .

Measurement of the deflection of a ballistic galvanometer caused by the pulse of
current during the flow of charge through the galvanometer.

Q =
T∫

0

I (t)dt I (t) current at time t.

The duration of the current pulse should be less than 1 % of the galvanometer period.
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M Millikan’s oil-drop experiment, measures the elementary charge. Charged oil
droplets are positioned between the horizontal plates of a capacitor. The capacitor
voltage is then varied until the gravitational force acting on the droplets is just com-
pensated by the action of the electric force field in the capacitor. The charge of the
droplet may then be determined from the capacitor voltage. This charge has always
been found to be an integral multiple of a definite minimum amount of charge: the
elementary charge.

By similar, more expensive, methods physicists have tried (unsuccessfully so far)
to demonstrate the existence of fractions of the elementary charge in free matter.

13.1.1 Coulomb’s law
1. Force between point charges

Coulomb’s law, describes the force acting between two point charges:
▲ The force �F12 between two point charges Q1 and Q2 is proportional to the product

of the charges and decreases with the square of the distance r12 between the charges.
It is a central force, i.e., the force is acting along the connecting line of the charges
(Fig. 13.1).

Figure 13.1: Coulomb’s law.
(a): charges Q1 and Q2 of
the same sign, (b): charges
q1 and q2 of opposite sign.

The force exerted by the charge Q1 on the charge Q2 is given by:

Coulomb’s law MLT−2

�F12 = 1

4πε0

Q1 Q2

r2
12

· �r12

r12

�F12 = −�F21

�r12 = �r2 − �r1

Symbol Unit Quantity

�F12, �F21 N force between the charges
Q1, Q2 C charge 1, 2
�r12 m distance vector of the charges
r12 m distance of the charges
ε0 C/(Vm) permittivity of free space

The proportionality factor contains the electric permittivity of free space:

permittivity of free space L−3T4M−1I2

ε0 = 8.854 187 82 · 10−12 C

Vm

Symbol Unit Quantity

ε0 C/(Vm) permittivity of free space
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2. Examples of Coulomb’s law

■ A charge Q = 10−5 C is repelled by another charge Q = 5 · 10−5 C at a distance
r = 1 m with a force

F = 1

4πε0

10−5 C · 5 · 10−5 C

1 m2
= 4.49 N .

■ In the classical picture of the hydrogen atom, the force exerted by the proton on the
electron is given by

�F = − 1

4πε0

e2
0

r2
· �e , F = 8.24 · 10−8 N .

Here e0 is the elementary charge (Q(proton) = e0, Q(electron) = −e0), and r =
0.529 · 10−10 m is the Bohr radius of the classical circular orbit that corresponds to
the ground state of the hydrogen atom. The unit vector �e points from the proton to
the electron. The negative sign of the force vector indicates that the Coulomb force
is attractive.

13.2 Electric charge density

Electric charge density, for describing spatial charge distributions.
The quantity Q states only that a certain amount of charge is localized in a restricted

space region. The charge density, on the contrary, specifies the amount of charge within a
small volume at any point in space, and hence yields more information than the integral.
The charge density is a scalar function of the position.

1. Electric space charge density

Electric space charge density ρ, represents the ratio of the electric charge 
Q within the
space region 
V at position �r to the size of this space region (Fig. 13.2 (a)). If the charge
density is position-dependent, the volume 
V is to be reduced until the charge within this
volume can be considered uniformly distributed. This corresponds to forming the limit:

electric charge density = charge
volume element

L−3TI

ρ(�r) = lim

V→0


Q


V
= dQ

dV

Symbol Unit Quantity

ρ C/m3 space charge density
dQ C charge within volume dV
�r m position vector
dV m3 volume element at position �r

Coulomb/meter3, SI unit of the electric space charge density ρ,

[ρ] = C/m3.

Charge density for a uniform distribution of the charge Q over the volume V :

ρ = Q

V
.
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Figure 13.2: Electric charge density. (a): space charge density ρ, (b) surface charge density
σ , (c): line charge density λ.

2. Electric surface charge density

Electric surface charge density σ , describes the charge distribution over a surface
(Fig. 13.2 (b)).

Ratio of the electric charge
Q on the area
A at position �r to the size of the area to be
diminished until the charge
Q can be regarded as uniformly distributed. This corresponds
to forming the limit:

electric surface charge density = charge
area element

L−2TI

σ(�r) = lim

A→0


Q


A
= dQ

dA

Symbol Unit Quantity

σ C/m2 surface charge density
dQ C charge on the area dA
�r m position vector
dA m2 area element at position �r

Coulomb/meter2, SI unit of the electric surface charge density,
[σ ] = C/m2.
Surface charge density for a homogeneous charge distribution on the area A:

σ = Q

A
.

3. Electric line charge density

Electric line charge density λ, describes the charge distribution along a wire-like conduc-
tor (Fig. 13.2 (c)). Ratio of the electric charge
Q on a line element
s at position �r to the
length of the line element. Here, the line element 
s is to be diminished until the charge

Q can be considered uniformly distributed. This corresponds to forming the limit:

electric line charge density = charge
line element

L−1TI

λ(�r) = lim

s→0


Q


s
= dQ

ds

Symbol Unit Quantity

λ C/m line charge density
dQ C charge along the element ds
�r m position vector
ds m line element at position �r



426 13. Charges and currents

Coulomb/meter, SI unit of the electric line charge density,

[λ] = C/m.

For a homogeneous charge distribution along the wire of length s,

λ = Q

s
.

4. Mean charge density

Mean charge density, defined by:

mean space charge density ρ̄ = Q

V
= 1

V

∫
V
ρ(�r ) dV ,

mean surface charge density σ̄ = Q

A
= 1

A

∫
A
σ(�r ) dA,

mean line charge density λ̄ = Q

s
= 1

s

∫
s
λ(�r ) ds.

Here V is the volume, not the potential difference.

13.3 Electric current

1. Electric current,

characterizes the motion of electrically charged particles within conductors. An electric
current may cause heating of matter, electrochemical processes, and magnetization.
■ A resistor in a circuit is heated by the current flowing through it.
■ In a chemical solution, materials precipitate at the electrodes due to the exchange of

charges.
■ A coil carrying a current is surrounded by a magnetic field. A piece of iron placed

into the coil is magnetized.

2. Current,

I , the quantity of charge
Q flowing through a cross-sectional area A per time interval
t
(Fig. 13.3). If the current varies during the time interval 
t , the interval is reduced until
the current can be considered as constant.

Negative pole          Positive pole

Figure 13.3: Current as a motion of carriers of charge, and the definition of the direction of
current.

Current intensity at time t of a time-dependent electric current in a conductor: the
amount of charge dQ flowing in an infinitesimally small time interval dt through a cross-
sectional area of a conductor:
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electric current = charge
unit time

I

I = lim

t→0


Q


t
= dQ

dt

Symbol Unit Quantity

I A current at time t
dQ C = As charge transported
dt s time interval

For steady charge transport,

Q = I · t .

3. SI unit of electric current,

Ampere, A, SI basis unit, SI unit of the electric current I . A current of 1 A in a conductor
means that an amount of charge 
Q = 1 C flows through a cross-sectional area of the
conductor during a time interval 
t = 1 s.

[I ] = A = C/s.

▲ Definition of the unit of current, ampere: The current I has the value 1 A when two
rectilinear, infinitely long conductors of negligibly small wire cross section arranged
parallel to each other at a distance of r = 1 m and carrying equal, time-independent
current I exert a force F = 2 · 10−7 N per 1 m of conductor length on each other
(Fig. 13.4).

Figure 13.4: Definition of
the current unit ampere.

▲ Definition of the direction of current, corresponds to the direction of motion of
positive charges. In a metallic conductor, the direction of current is opposite to the
direction of motion of the negative charge carriers, i.e., the electrons (Fig. 13.3).

In a circuit, the electrons move from the negative pole of the voltage source to the positive
pole. Thus, the direction of current points from the positive pole (+) of the voltage source
to its negative one (−).

4. Direct current,

direction and intensity I of the current are constant in time. The amount of charge 
Q
passing through a cross-sectional area during the time interval 
t is proportional to 
t :

I = 
Q


t
= const.

5. Alternating current,

direction and intensity I of the current change periodically with time.
The effects of electric currents are listed in Tab. 18.3/7 for direct current and alternating

current, respectively.
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■ If in a conductor a charge 
Q = 3 C passes a given cross-section during the time
interval 
t = 60 s, the current is

I = 
Q


t
= 3 C

60 s
= 50 mA .

6. Measurement of current

The electric current is measured by its effects:
Current balance (mechanical action of force): Conductors carrying currents exert

forces on each other by the magnetic field. This force may be compared with a weight
by means of a balance.

Hot-wire ammeter (action of heat): A wire carrying a current is heated and thereby
expands. The expansion can be measured.

Electrolysis (chemical action): The quantity of material precipitated by electrolysis per
unit time is proportional to the current. The method used to serve for definition of the unit
of current, the ampere.

Rotating-coil instrument: A current-carrying coil is deflected in a magnetic field. The
deflection increases with the increase of current in the coil.

13.3.1 Ampere’s law
Ampere’s law, current-carrying conductors generate magnetic fields by which they exert
forces on each other:
▲ The mutual force of two current-carrying conductors is proportional to the product

of the currents I1 and I2 in the conductors and to the length l of the conductor, and
inversely proportional to the distance r between the conductors (Fig. 13.4).

Ampere’s law LT−2M

F = µ0

2π

I1 I2l

r

µ0 = 4π · 10−7 Vs/(Am)

Symbol Unit Quantity

F N force
I1, I2 A current 1, 2
r m distance
l m length of conductor
µ0 Vs/(Am) free-space permeability

➤ Ampere’s law is used for the current definition of the unit of current.

13.4 Electric current density

1. Definition of electric current density

Electric current density, �J, describes the current distribution in extended conductors. The
electric current density is a vector quantity the direction of which coincides with the direc-
tion of motion of positive charge carriers. The magnitude is calculated from the current
I
passing through a cross-sectional area 
A⊥ perpendicular to the direction of motion of
the charge carriers, divided by this area (Fig. 13.5). If the current depends on the position,
then the current density J is defined by the differential.
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Figure 13.5: Definition of
the current density �J.

current density = current
area element

L−2I

J = lim

A⊥→0


I


A⊥
= dI

dA⊥

Symbol Unit Quantity

J A/m2 current density

A⊥ m2 area element

I A current through 
A⊥
dA⊥ m2 infinitesimal area element
dI A current through dA⊥

Ampere/meter2, A/m2, SI unit of the current density J . A current density of 1 A/m2

corresponds to an electric current of intensity I = 1 A passing through a perpendicular
surface A⊥ = 1 m2,

[J ] = A/m2.

2. Properties of the current density

Whereas the electric current is a measure of the quantity of charge transported through
a given cross-sectional area, the electric current density gives the direction of the charge
transport and the magnitude of the transported charge at any point in space.

If the current I through an area A⊥ is the same at any point of the area, the current
density is

J = I

A⊥
.

■ A current of I = 2 A flowing in a metallic wire of cross-sectional area A = 2.5 mm2

corresponds to a current density of

J = I

A
= 2 A

2.5 mm2
= 2 A

2.5 · 10−6 m2
= 8 · 105 A/m2 .

The current density vector �J points along the wire opposite to the direction of motion
of the electrons, i.e., along the direction of positive current.

3. Product representation of the current density

The current density is the product of the space charge density ρ and the local mean velocity
�v of the charge carriers (Fig. 13.6),

�J = ρ · �v .
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Figure 13.6: Current density
as product of charge density
ρ and velocity �v of the
charge carrier.
V = 
l · A:
volume element.

4. Current as integral over current density and area

The current is given as the product of the component of the current density J cosα perpen-
dicular to the area 
A and the area 
A,

I = J cosα ·
A .

If the current is not constant across the area 
A, then one has to use the differential form

dI = J · dA · cosα = �J · d�A .
The current through an arbitrary surface A follows by integration:

current = integral of current density over surface I

I =
∫
A

�J · d�A

Symbol Unit Quantity

I A current through total area A
�J A/m2 current density
d�A m2 infinitesimal area element
A m2 total area

The vector d�A points along the surface normal, and its magnitude is equal to the area
element dA.

5. Kirchhoff’s first law

▲ The sum of all currents passing through a closed surface vanishes because of conser-
vation of the electric charge:∮

A

�J · d�A = 0 , Kirchhoff’s first law.

13.4.1 Electric current flow field
1. Electric current flow field and stream lines

Electric flow field, specifies the electric current density at any space point.
If the electric flow field does not change with time, it is denoted as a steady-state electric

flow field. The current density is then constant in time, but may vary with the position.
In a steady-state electric flow field, the quantity of charge flowing per unit time through a
surface is constant.

Stream lines, serve for visualization of the electric current density.
The following conventions hold for stream lines:
• Stream lines correspond to the paths of motion of the positive charge carriers.
• The tangent to a stream line at a given point coincides with the orientation of the

current density vector at this point.
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2. Properties of stream lines

• The density of stream lines is a measure of the current.
• Stream lines may not intersect each other, since the direction of motion of the charge

carriers is uniquely given at any space point.
■ The stream lines in a long straight wire run parallel to the wire axis.
■ The stream lines of a point-like source of current in an extended conducting medium

run in radial direction outward. The current density decreases as the square of the
distance from the source.

■ The stream lines of a metallic cylinder in an extended conducting medium are per-
pendicular to the axis of the conductor and point radially outward.

■ The current lines within a circularly bent conductor are concentric circles in the plane
of conductor, parallel to the middle axis of the conducting loop.

13.5 Electric resistance and conductance

13.5.1 Electric resistance
1. Definition of electric resistance

Electric resistance of a conductor, determines the amount of current flow through the
conductor for a given voltage at the ends of the conductor. The resistance R is the ratio of
voltage V to current I :

resistance = voltage
current

L2T−3MI−2

R = V

I

Symbol Unit Quantity

R 	 = V/A electric resistance
V V voltage
I A current

Ohm, 	, SI unit of the electric resistance R. 1	 is the resistance of a conductor when, for
a voltage V = 1 V at its ends, a current I = 1 A flows through the conductor,

[R] = V/A.

2. Ohm’s law

In an ohmic conductor, the voltage V is proportional to the current I . The proportionality
factor is the ohmic resistance R:

voltage = resistance · current (Ohm’s law) L2T−3MI−1

V = R · I

Symbol Unit Quantity

V V voltage
R 	 = V/A electric resistance
I A current
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3. Current-voltage characteristic,

graphical representation of the relation between current and voltage.
Linear resistance, ohmic resistance, resistance with linear current-voltage characteristic

(Fig. 13.7 (a)).
Nonlinear resistance, the relation between the current through the conductor and the

voltage drop is nonlinear (Fig. 13.7 (b)).

V V

Figure 13.7: Current-voltage
characteristics. (a): linear
resistance, (b): nonlinear
resistance.

Metallic conductors at constant temperature exhibit a linear current-voltage characteris-
tic. A current flowing through a metallic conductor heats the conductor. For higher currents,
the relation between current and voltage becomes nonlinear.
■ The current-voltage characteristic of a diode is nonlinear.

13.5.2 Electric conductance
Conductance, σ , reciprocal value of the electric resistance, quotient of current I and volt-
age V :

conductance = 1
resistance

= current
voltage

L−2T3M−1I2

σ = 1

R
= I

V

Symbol Unit Quantity

σ S = A/V conductance
R 	 electric resistance
I A current
V V voltage

Siemens, S, SI unit of the conductance σ . If the electric resistance of a conductor is R =
1	, the electric conductance is σ = 1 S,

[σ ] = S = 1/	 = A/V.

13.5.3 Resistivity and conductivity
Resistivity, ρ (specific resistance), material-dependent quantity, independent of the geom-
etry of the conductor.

Conductivity, κ (specific conductance), reciprocal value of the specific resistance.

1. Resistance of a wire,

R, proportional to the length of wire l and inversely proportional to the wire cross-section
A. The proportionality constant is the specific resistance ρ (Fig. 13.8).
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V V V

Figure 13.8: Resistance of a wire depending on the cross-section A and length l.

resistance = specific resistance · length
cross-section

L2T−3MI−2

R = ρ · l

A

= 1

κ
· l

A

Symbol Unit Quantity

R 	 resistance
ρ 	m specific resistance
κ S/m conductivity
l m wire length
A m2 wire cross-section

2. SI units of the specific resistance and of the conductivity

Ohm·meter, 	m, SI unit of the specific resistance ρ,

[ρ] = 	m.

➤ Resistivity and space charge density are denoted by the same symbol ρ.
➤ The specific resistance is not related to the mass, but is rather a characteristic

material quantity, contrary to the terminology adopted in thermodynamics.
Siemens/meter, S/m, SI unit of the conductivity κ ,

[κ] = S/m.

■ Resistivity of gold 2.04 · 10−2 	 · mm2/m, of platinum-rhodium (20 %) alloy 20 ·
10−2 	 ·mm2/m, graphite 800 · 10−2 	 ·mm2/m.

The resistivity of metals is compiled in Tab. 18.1/1, of several alloys in Tab. 18.1/4 and of
several resistance alloys in Tab. 18.3/1. The resistivity of insulating substances is listed in
Tab. 18.2/5 and 18.2/6.
■ A copper wire of length l = 2 m and cross-section A = 1 mm2 has the resistivity

ρ = 0.0178 	mm2/m. The resistance of this wire is

R = ρ · l

A
= 0.0178 	mm2/m · 2 m

1 mm2
= 0.0356 	 .

13.5.4 Mobility of charge carriers
1. Mobility of charge carriers,

b, specifies the mean drift velocity v̄ of charge carriers in an electric field of field
strength E :
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mobility = mean velocity
field strength

T2M−1I

b = v̄

E

= v̄ · l
V

Symbol Unit Quantity

b m2/(Vs) mobility
v̄ m/s mean drift velocity
E V/m electric field strength
l m distance
V V voltage drop

Meter2/volt·second, m2/(Vs), SI unit of mobility b,

[b] = m2/(Vs).

For a linear resistor, the mean drift velocity is proportional to the electric field strength.
The conductivity κ is the product of the density ρ and the mobility b of the charge

carriers,

κ = ρ · b .

■ Conductivity of refined gold: 45.7 	−1m ·mm−2.
The conductivity of several contact materials is listed in Tab. 18.3/3.

2. Example of mobility of electrons

Let the voltage at the ends of a metallic wire of length 1 m be V = 5 V, and mean drift
velocity of electrons in the wire be v̄ = 50 µm/s = 5 · 10−5 m/s. The mobility of the
electrons is then

b = v̄ · l
V
= 5 · 10−5 m/s · 1 m

5 V
= 10−5 m2/Vs .

The charge density of electrons in the metal is ρ = 1.36 · 1010 C/m3. The conductivity of
the metallic wire is given by

κ = ρ · b = 1.36 · 1010 C/m3 · 10−5 m2/Vs = 1.36 · 105 S/m .

The resistivity of the wire is

ρ = 1

κ
= 7.35 · 10−6 	m .

13.5.5 Temperature dependence of the resistance
The resistivity ρ, and hence the electric resistance R, of a conductor are temperature-
dependent. In many cases, one may assume the resistance to vary linearly with temper-
ature. Then it is sufficient to give the resistance for a certain temperature (mostly room
temperature T0 = 293.15 K) and a temperature coefficient.

1. Temperature coefficient,

proportionality constant specifying the relative change of resistance
R/R for a change of
temperature by 
T = 1 K:
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resistance as function of temperature L2T−3MI−2

R(T ) = R0(1+ α
T )

ρ(T ) = ρ0(1+ α
T )

Symbol Unit Quantity

R, R0 	 resistance at temperature T, T0
ρ, ρ0 	m resistivity at temperature T, T0

T K change of temperature
α 1/K temperature coefficient

1/kelvin, SI unit of temperature coefficient,

[α] = 1/K.

2. Properties of the temperature coefficient

For many conductors, the temperature coefficient is in the range 10−3 1/K, e.g., for gold
α = 4 · 10−3 1/K.

The temperature coefficient is given for various conductors in Tab. 18.1/1, for alloys in
Tab. 18.1/4 and for resistance alloys in Tab. 18.3/1.

If the resistance varies nonlinearly with temperature, one adopts a power-series expan-
sion

R = R0 · (1+
∑

i

αi (
T )i )

and introduces a corresponding number of coefficients αi , i = 1, . . . , n in order to describe
the variation of the resistance with temperature.

Cold conductor, PTC (positive temperature coefficient), the resistance strongly in-
creases with increasing temperature, the temperature coefficient is positive. Metallic wires
are PTC. They are used as thermostats, temperature sensors and current stabilizers.

Thermistor, NTC (negative temperature coefficient), the resistance decreases with in-
creasing temperature, the temperature coefficient is negative. Semiconducting oxide ce-
ramics are NTC. They are used as temperature sensors and voltage stabilizers (Fig. 13.9).

Cold conductor

Thermistor

T

Figure 13.9: Characteristics
of a thermistor (α < 0) and
a cold conductor (α > 0). T :
temperature.

➤ The electric resistance of metals may also depend on the pressure. One then intro-
duces a pressure coefficient (1/ρ)dρ/dp, analogously to the temperature coefficient.
The pressure coefficient is given for several metals in Tab. 18.1/2.

13.5.6 Variable resistors
Variable-resistor units, change their resistance depending on external inductions.

Besides temperature-dependent and pressure-dependent resistors, the following resistor
components are available:
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• Adjustable resistor, potentiometer, changes its resistance by manual action. Lin-
early adjustable resistors are used as voltage dividers; logarithmically adjustable re-
sistors control volume.

• Photoresistor, LDR (light-dependent resistor), its resistance value depends on the
intensity of the incident light, used in exposure meters.

• Voltage-dependent resistor, VDR, varistor, the resistance value depends on the
voltage applied, used for voltage stabilization.

13.5.7 Connection of resistors
1. Series connection of n resistors

V V V

V V

tot

n

n

Figure 13.10: Series connection of resistors.

The current I is the same in all resistors. The total drop of voltage V is the sum of the
partial voltages Vi = Ri · I at the resistors Ri and may be expressed by a total resistance
Rtot (Fig. 13.10):

V = V1 + V2 + V3 + · · · + Vn ,

V = Rtot · I ,

Rtot = R1 + R2 + R3 + · · · + Rn .

The total conductance Gtot is

1

Gtot
= 1

G1
+ 1

G2
+ 1

G3
+ · · · + 1

Gn
.

2. Parallel connection of n resistors

The voltage V is the same in all branches (Fig. 13.11). The partial currents Ii = V/Ri in
the branches sum to the total current I ,

I = I1 + I2 + I3 + · · · + In ,

1

Rtot
= 1

R1
+ 1

R2
+ 1

R3
+ · · · + 1

Rn
.

The total resistance Rtot is smaller than any of the single resistance Ri . The total conduc-
tance Gtot is the sum of the individual conductance values Gi ,

Gtot = G1 + G2 + G3 + · · · + Gn .
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V V

n

n

tot

Figure 13.11: Parallel connection of resistors.

3. Potentiometer circuit,

to divide the total voltage V into smaller partial voltages (Fig. 13.12). The circuit is loaded
by an external resistor Ra . The tapped partial voltage Va is

Va = V
R2 Ra

R1 R2 + Ra(R1 + R2)
.

In the case without external load (Ra � R1 R2/(R1 + R2), i.e., the current through the
external resistor Ra may be ignored), the formula simplifies to

Va = V
R2

R1 + R2
.

V

V
Figure 13.12: Potentiometer
circuit.



14
Electric and magnetic fields

Electric fields are caused by electric charges, time-varying magnetic fields, or both.
Magnetic fields are created by permanent magnets or by currents, i.e., by moving electric

charges.
A moving electric charge is surrounded by an electric field and a magnetic field. In its

rest frame, an electric charge generates an electric field, but no magnetic field.
Electric and magnetic fields are vector fields.
Vector field, �V(�r ), a function assigning a vector to any point in space with the coordi-

nates �r = (x, y, z):

�V = �V(�r ) .

Scalar field, f (�r ), a function assigning a scalar to any point in space with the coordinates
�r = (x, y, z):

f = f (�r ) .

■ The electric field is a vector field. The electric field strength �E(�r ) exists at any point
in space �r.
The electric potential is a scalar field. A scalar, the potential ϕ(�r ), is assigned to any
point in space �r.

➤ The argument �r is often omitted although a space dependence usually occurs, as in
the case of the electric field of a point charge.

14.1 Electric field

Electric field, property of the space in the vicinity of electric charges. The electric field
is a vector field. An electric field strength may be assigned to any point in space; it is
proportional to the local force acting on electric charges.

439
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1. Electric field strength,

�E, a vector with magnitude E that specifies the strength of the electric field and the direc-
tion of acceleration of a positive test charge. The electric field strength is determined by
the force �F experienced by a test charge Q in an electric field, divided by the test charge:

electric field = force
test charge

LT−3MI−1

�F = Q �E �E = �F
Q

Symbol Unit Quantity

�E V/m electric field strength
�F N force on test charge
Q C test charge

Volt/meter, V/m, SI unit of electric field strength �E. The field strength at a point in space
�r is E = 1 V/m if a charge Q = 1 C at the position �r experiences a force F = 1 N,

[�E] = V/m = N/C .

➤ Since both positive and negative charges exist, the shielding of electric fields is pos-
sible. In contrast, the gravitational field cannot be shielded.

2. Test charge,

a charge placed into an electric field to measure its magnitude and direction. The charge
should be so small that it does not significantly disturb the original field to be measured.
In theoretical considerations, one may let the test charge be infinitesimally small although
there is a physical lower limit (the elementary charge).
■ If a test charge of magnitude Q = −10−9 C experiences a force F = 10−5 N, the

electric field strength at the position of the test charge is E = 104 V/m. The electric
field strength points opposite to the direction of the force.

3. Uniform electric field,

the field strength is constant, both in magnitude and direction, at any point in the region of
space considered. A test charge Q experiences the same force �F at any point in the region
of space:

�E = �F
Q
.

■ The electric field in a parallel-plate capacitor is uniform if the separation of the plates
is small compared with their extension except near the edges of the plates.

14.2 Electrostatic induction

1. Electric conductor,

a material containing freely movable charges.
■ Metals are conductors; the movable charges are the conduction electrons.

Salt solutions are conductors; the movable charges are the positive and negative ions.
A plasma is a conductor; the movable charges are the electrons and the positive ions.

Like charges repel each other. Therefore, uncompensated charges move in a conductor
until they have reached the largest possible mutual separation.
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▲ The electric charge of a charged conductor is located on its surface. The interior
of a metallic conductor is field-free. Otherwise, the free charge carriers would be
displaced by the field forces acting upon them.

2. Electrostatic induction,

the displacement of movable charges in a conductor when it is placed into an electric field.
■ When a metal is placed between the plates of a charged capacitor, the conduction

electrons move towards the positively charged capacitor plate. An electric field is
then built up between the remaining (positively charged) atoms and the displaced
(negatively charged) electrons. This field points opposite to the original capacitor
field. The motion of the electrons ends when these two electric fields just compensate
each other.

➤ For nonconductors, the charge separation in the atoms or molecules (formation of
electric dipoles) is referred to as polarization.

14.2.1 Electric field lines
1. Field lines,

serve for visualization of the action of force in the spatial electric field.
The following conventions are normally employed:
• The direction of the field lines at a point corresponds to the direction of the electric

field strength, i.e., to the direction of force acting on a positive charge at this point.
• Field lines emerge from a positive point charge (source), and point towards a negative

point charge (sink).
Hence:
• In electrostatics, there are no closed field lines. The electrostatic field is irrotational.
• Field lines may not intersect each other: at any point, the direction of the electric field

strength is unique.
• The greater the density of field lines, the greater the field strength.
▲ The field lines emerging from a charged metallic conductor are perpendicular to its

surface.
If there were a component of the electric field tangential to the surface of the conductor,
the charge carriers would move until a balance of forces were reached, i.e., the tangential
component of the field strength vanishes.

2. Faraday cage,

when a charge-free region in an electric field is enclosed by a metallic cover, no electric
field arises within the cover (screening).
■ During a thunderstorm, a car (acting as a Faraday cage) protects the passengers from

lightning if they are within the car and are not touching the outer metallic skin.

3. Field lines of various charge distributions

a) Point charge, charge of infinitesimally small spatial extension. Electric field lines of a
positive point charge by definition point radially outward (Fig. 14.1 (a)), electric field lines
of a negative point charge point radially inward (Fig. 14.1 (b)). The electric field about a
point charge is isotropic.

Fig. 14.1 (c) and (d) show the field lines of a system of two point charges.

b) Point charge near a conducting plate: Fig. 14.2 shows the field lines of a point
charge placed in front of a conducting plate.
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Figure 14.1: Electric field lines. (a): positive point charge, (b): negative point charge, (c):
two charges of equal magnitude and sign, (d): two charges of equal magnitude but opposite
sign.

Figure 14.2: Electric field
lines of a point charge near a
conducting plate.

c) Parallel-plate capacitor, two oppositely charged conducting parallel plates at fixed
distance. The electric field lines between the plates are parallel and perpendicular to the
surfaces of the plates, except for the edge region (Fig. 14.3 (a)). The electric field within
the parallel-plate capacitor is uniform.

Fig. 14.3 (b) shows the field lines of a spherical capacitor.

Figure 14.3: Electric field lines. (a): parallel-plate capacitor, (b): spherical capacitor.

4. Electric dipole,

two point charges+Q and−Q at a distance d . The positive charge is located at the position
�r+, the negative charge at the position �r−.
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Figure 14.4: Electric dipole.
�p: dipole moment.

Electric dipole moment, �p, product of charge Q and distance vector �d of the charges,

�p = Q(�r+ − �r−) = Q�d .

The two point charges are denoted as poles. The connecting line between the poles is the
dipole axis. The dipole moment �p is a vector along the dipole axis, which by definition
points from the negative to the positive charge (Fig. 14.4).

5. Dipole in an electric field

▲ From the outside, a dipole appears as electrically neutral.
The potential energy Epot of a dipole in an electric field �E is

Epot = −�p · �E .

In a uniform electric field �E, a torque �� acts on the dipole (Fig. 14.5 (a)),

�� = �p× �E = Q · ( �d× �E ) .

The torque turns the dipole into the direction of the electric field.
In an inhomogeneous field �E, a dipole experiences a force �F pulling it into the region
of higher field strength (Fig. 14.5 (b)),

�F =
(
�p · ∂
∂�r
)
�E .

Figure 14.5: Dipole in an electric field �E. (a): couple and torque in the uniform electric
field, (b): force acting on an electric dipole in an inhomogeneous electric field (F− > F+).

■ A water molecule H2O has a permanent electric dipole moment of 6.17·10−30 C ·m.
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Figure 14.6: (a): electric
field of a dipole, (b): electric
field of a quadrupole.

6. Electric field at large distance from the dipole

The electric field of a dipole at a large distance from the charges is indicated in Fig. 14.6
(a).

A charge distribution that exhibits no dipole moment may have a non-vanishing
quadrupole moment. The electric field of a quadrupole is indicated in Fig. 14.6 (b).

14.2.2 Electric field strength of point charges
1. Electric field strength of a point charge,

�E, a vector quantity. The magnitude gives the electric field strength of a point charge Q
at a distance r from this point charge. The field intensity points radially outward from a
positive charge, and inwards for a negative charge. It decreases in proportion to the inverse
square of the distance:

field strength ∼ charge
square of distance

LT−3MI−1

�E = Q

4πε0r2

�r
r

Symbol Unit Quantity

�E N/C = V/m electric field strength of charge Q
Q C charge generating the field
�r m distance vector
ε0 C/(Vm) permittivity of free space

■ A charge Q = 10−6 C at the distance r = 1 m generates an electric field strength

E = Q

4πε0r2
= 10−6 C

4πε0 · (1 m)2
= 8988 V/m .

The electric field vector points radially away from the point charge.

2. Electric field strength of many point charges

Electric field strength �E of N point charges at the positions �ri is obtained by superposing
the electric field strengths �Ei of all point charges:

�E(�r ) =
N∑

i=1

�Ei (�ri ) = 1

4πε0

N∑
i=1

Qi

| �r− �ri |2
�r− �ri

| �r− �ri | .

3. Electric field strength of charge distributions

Electric field strength �E of a spatial charge distribution ρ(�r ′) is obtained by integrating

�E(�r ) = 1

4πε0

∫
V ′

ρ(�r ′)
| �r− �r ′ |2

�r− �r ′
| �r− �r ′ |dV ′ .
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14.3 Force

The force on an electric test charge Q in an electric field is given by the product of the
charge Q and the electric field strength �E. The force is a vector quantity. It points along
the electric field vector for a positive charge Q, and opposite to the field for a negative
charge Q:

force = test charge · electric field strength LT−2M

�F = Q · �E
Symbol Unit Quantity

�F N force on electric charge
Q C electric charge
�E N/C = V/m electric field strength

■ A negative charge Q = −10−6 C in an electric field of strength E = 200 V/m
experiences a force

F = 10−6 C · 200 V/m = 2 · 10−4 N .

The force �F points opposite in direction to the electric field strength �E.

14.4 Electric voltage

1. Definition of voltage

Electric voltage, V , between two points A and B, the work done by the force �F = Q �E
when displacing a test charge Q along a path s from point A to point B, divided by the test
charge Q (Fig. 14.7).

Figure 14.7: Displacement of a charge in an electric field. (a): displacement along a path
element 
s, (b): displacement along a broken line from A to B, (c): displacement along a
smooth path s from A to B.

If the force �F along a path element 
�s is constant, the voltage, i.e., the work 
W per
test charge Q, is

V = 
W

Q
= F
s cosα

Q
= �E ·
�s .

α is the angle between the direction of force and the direction of the path element
(Fig. 14.7).
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2. Representation of the voltage as an integral

For an arbitrary path s from point A to point B, the curve is subdivided into straight path
elements 
�si . Then the electric voltage VAB between the points A and B is obtained as
the sum over the contributions 
Vi from the individual path elements:

VAB =
∑

i


Vi =
∑

i

�E ·
�si .

As the subdivision gets more refined, the sum becomes an integral:

voltage = work
test charge

L2T−3MI−1

VAB = WAB

Q

=
B∫

A

�E · d�s

Symbol Unit Quantity

VAB V = Nm/C voltage between A and B
WAB J = Nm work done
Q C test charge
�E V/m electric field strength
d�s m path element

Volt, V, SI unit of the electric voltage V . The voltage is 1 V if work W = 1 J is done in
displacing a charge of Q = 1 C ,

[V ] = V = J/C .

▲ The integral of the electric field strength �E along a closed path s equals zero,

∮
s

�E · d�s = 0 .

This statement corresponds to energy conservation. The mesh rule, the second of
Kirchhoff’s laws, results from this principle.

3. Electric voltage between capacitor plates,

product of electric field strength E and distance d between the capacitor plates:

voltage = field strength · distance between plates L2T−3MI−1

V = Ed

Symbol Unit Quantity

V V = Nm/C electric voltage
E N/C = V/m electric field strength
d m distance of plates

The electric force between the plates is constant. The electric field �E is uniform. The elec-
tric field strength is

|�E| = V

d
.
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14.5 Electric potential

1. Definition and properties of the potential

Electric potential, ϕA, of a point A in the electric field, voltage between the point A and a
fixed reference point P . The electric potential ϕA specifies the work W ′A to be done by the

force �F′ = −Q �E in order to shift the charge Q from point P to the point A.
Usually the reference point P , where the potential is set to zero, is taken to be infinity,

ϕP = ϕ∞ = 0.
▲ The potential then depends only on the point A. Hence, the potential is a scalar func-

tion of the position.
The work W ′A defines the potential energy Epot(A) of a charge Q at the point A of the

electric field �E,

Epot(A) = Q · ϕA , Epot(∞) = 0 .

potential = work
test charge

L2T−3MI−1

ϕA =
W ′A
Q
= Epot(A)

Q

= −
A∫
∞
�E · d�s

Symbol Unit Quantity

ϕA V = Nm/C potential at point A
W ′A J = Nm work on displacing Q
Q C test charge
�E N/C = V/m electric field strength
d�s m infinitesimal path element
Epot J potential energy

2. Potential and field strength

Potential difference ϕA − ϕB , voltage between two points A and B:

ϕA − ϕB = −
A∫
∞
�E · d�s−

⎛
⎜⎝−

B∫
∞
�E · d�s

⎞
⎟⎠

=
B∫

A

�E · d�s = VAB .

The component of the electric field strength �E in x-, y-, z-direction is obtained by taking
the derivative of the potential with respect to the corresponding direction:

Ex = −dϕ

dx
, Ey = −dϕ

dy
, Ez = −dϕ

dz
.

In three dimensions, one obtains the field strength �E from the electric potential ϕ by means
of the gradient:

�E = −gradϕ = −
(
∂ϕ

∂x
�ex + ∂ϕ

∂y
�ey + ∂ϕ

∂z
�ez

)
.

�ex , �ey, �ez are unit vectors in x-, y-, z-direction.
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➤ The electric field strength is independent of the choice of the reference point.

3. Potential equation

The potential of a charge distribution ρ(�r) is given by

ϕ(�r) = 1

4πε0

∫
ρ(�r ′)
|�r− �r ′| dV ′ .

Poisson equation, potential equation, differential equation for calculating the electric
potential ϕ from the charge density ρ(�r),


ϕ =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ϕ = − ρ

ε0
.

14.5.1 Equipotential surfaces
Equipotential surfaces, surfaces of equal electric potential. Equipotential surfaces cannot
intersect or touch each other. The electric field strength is always perpendicular to the
equipotential surfaces (Fig. 14.8). Equipotential surfaces correspond to the contour lines
of maps; the direction of the steepest ascent is the normal to the contour lines.

Figure 14.8: Equipotential
surfaces ϕ = const. and
electric field strength �E of a
charge distribution.

The surfaces of conductors are equipotential surfaces. Otherwise, there would exist a
component of the electric field strength along the surface that would cause a displacement
of the charge along the conductor surface.

14.5.2 Field strength and potential of
various charge distributions

1. Point charge

The potential ϕ of a point charge in 3D space is inversely proportional to the distance r
from the charge. The electric field strength decreases as r−2:

field strength and potential of a point charge

�E = Q

4πε0

1

r2

�r
|�r|

ϕ = Q

4πε0

1

r

Symbol Unit Quantity

�E V/m field strength at position �r
ϕ V potential at position �r
Q C point charge
�r m position vector
ε0 C/(Vm) permittivity of free space
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2. Dipole

At a large distance from the dipole (|�r| � |�d|), the potential of a dipole decreases as
r−2 towards zero. For smaller distances, there are admixtures of potential fields of higher
multipolarity that decay faster with increasing distance from the dipole. Hence, at large
distance only the dipole field remains:

field strength and potential of a dipole

�E = 1

4πε0

(
3(�p · �r )�r

r5
− �p

r3

)

ϕ = 1

4πε0

�p · �r
r3

�p = Q�d
�d = �r+ − �r−

Symbol Unit Quantity

�E V/m field strength at position �r
ϕ V potential at position �r
Q C charge
�p Cm dipole moment
�r+ m position vector positive pole
�r− m position vector negative pole
�d m distance vector
ε0 C/(Vm) permittivity of free space

3. Charged hollow sphere

The electric field within a uniformly charged hollow sphere of radius R vanishes. The
electric potential is constant over this space region. The potential ϕ outside the sphere
(r > R) is inversely proportional to the distance r from the center of the sphere. The
electric field strength decreases with the distance r as r−2:

field strength and potential outside of a hollow sphere

�E = Q

4πε0

1

r2

�r
| �r |

ϕ = Q

4πε0

1

r

Symbol Unit Quantity

�E V/m field strength at distance r
ϕ V potential at distance r
Q C charge of the hollow sphere
r m distance from center
ε0 C/(Vm) permittivity of free space

4. Uniformly charged sphere

The electric field E within the sphere increases linearly with the distance r from the center
of the sphere. The potential ϕ within the sphere increases with r2:

field strength and potential within a sphere

�E = Q

4πε0

r

R3

�r
| �r |

ϕ = Q

8πε0

(
3

R
− r2

R3

)
Symbol Unit Quantity

�E V/m field strength at distance r
ϕ V potential at distance r
Q C charge of sphere
r m distance from center
R m radius of sphere
ε0 C/(Vm) permittivity of free space

The electric field strength E outside of the sphere decreases as r−2 with increasing distance
r from the center of the sphere. The potential ϕ decreases as r−1:
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field strength and potential outside of a sphere

�E = Q

4πε0

1

r2

�r
| �r |

ϕ = Q

4πε0

1

r

Symbol Unit Quantity

�E V/m field strength at distance r
ϕ V potential at distance r
Q C charge of sphere
r m distance from center
ε0 C/(Vm) permittivity of free space

5. Charged hollow cylinder

In the interior of a thin-walled hollow cylinder of radius R and constant surface charge
density σ , the electric field strength vanishes. The potential is constant in the interior. The
electric field strength E outside a long hollow cylinder decreases hyperbolically as r−1

with increasing distance r from the cylinder axis. The potential decreases logarithmically
with the distance from the axis:

field strength and potential outside of a hollow cylinder

�E = σ

ε0

R

r
�eρ

ϕ = − σ
ε0

R ln
( r

R

)

Symbol Unit Quantity

�E V/m field strength at position �r
ϕ V potential at position �r
σ C/m2 surface charge density of hollow

cylinder
R m radius of hollow cylinder
�r m position vector
ε0 C/(Vm) permittivity of free space

�eρ is a unit vector along the cylinder radius.

6. Uniformly charged cylinder

The electric field strength E in the interior of a cylinder with constant space charge density
ρ increases linearly with the distance r from the cylinder axis. The potential ϕ increases
with r2:

field strength and potential within a uniformly charged cylinder

�E = ρ

2πε0
r �eρ

ϕ = − ρ

4πε0
R2

[
1+

( r

R

)2
]

Symbol Unit Quantity

�E V/m field strength at position �r
ϕ V potential at position �r
ρ C/m3 space charge density
R m radius of cylinder
�r m position vector
ε0 C/(Vm) permittivity of free space

The electric field strength E outside of the cylinder decreases as 1/r . The potential ϕ
decreases logarithmically:
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field strength and potential outside of a uniformly charged cylinder

�E = ρ

2πε0

R2

r
�eρ

ϕ = − Q

2πε0
ln

r

R

Symbol Unit Quantity

�E V/m field strength at position �r
ϕ V potential at position �r
ρ C/m3 space charge density
R m radius of cylinder
�r m position vector
ε0 C/(Vm) permittivity of free space

�eρ is a unit vector along the cylinder radius.

7. Uniformly charged infinitely extended plate

For small distances from a plate (placed in the plane x = 0) the field is uniform: field
strength and potential are proportional to the surface charge density σ = Q/A. The po-
tential ϕ is proportional to the perpendicular distance x from the plate. The electric field
strength is constant.

field strength and potential of an extended plate

�E = ± σ

2ε0
�ex

ϕ = ∓ σ

2ε0
· x

Symbol Unit Quantity

�E V/m field strength
ϕ V potential at distance x
σ C/m2 surface charge density
x m perpendicular distance from plate
ε0 C/(Vm) permittivity of free space

�ex is a unit vector in the positive x-direction, normal to the plate. The upper (lower) sign
holds for x > 0 (x < 0), respectively.

14.5.3 Electric flux
1. Definition of the electric flux

Let a square area 
A be placed in a uniform electric field of field strength �E.
Electric flux or displacement flux, ψ , a measure of the total electric field penetrating

the area 
A. The displacement flux 
ψ is the product of the electric field strength �E, the
area 
A, and the cosine of the angle α between the field direction and the surface normal,


ψ = �E ·
�A = E ·
A · cosα .

For an arbitrary surface A in an inhomogeneous electric field �E, the area is subdivided
into plane partial areas such that the field strength over any partial area may be considered
as constant with respect to direction and magnitude. The resulting displacement fluxes are
summed (Fig. 14.9), which corresponds to integration over the surface.
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Figure 14.9: Electric flux
ψ through a surface A and
through an oriented surface
element 
�A.

flux = integral of field strength over surface L3T−3MI−1

ψ =
∫
A

�E · d�A

Symbol Unit Quantity

ψ Vm displacement flux
�E V/m electric field strength
d�A m2 oriented surface element
A m2 total surface

Volt·meter, Vm, SI unit of the displacement flux ψ . 1 Vm is the electric flux of a
uniform electric field of field strength E = 1 V/m that penetrates a plane surface A = 1 m2

placed perpendicular to the field,
[ψ] = Vm .

2. Properties of the displacement flux

The displacement flux depends on the orientation of the surface A. When permuting the
upper and lower sides of the surface, the displacement flux changes its sign.
■ A square surface of magnitude A = 1 dm2 is placed into a uniform electric field of

field strength E = 100 V/m, with the surface normal tilted by α = 30◦ relative to the
field orientation. The electric flux through the surface is

ψ = E · A · cosα = 100 V/m · 0.01 m2 · cos 30◦ = 0.866 Vm .

The displacement flux through a spherical surface A enclosing a point charge of magnitude
Q equals the displacement flux of an arbitrary charge distribution of the same total charge
Q,

ψ =
∮
A

�E · d �A = Q

4πε0r2
· 4πr2 = Q

ε0
.

For an arbitrary closed surface in the electric field:
▲ The displacement flux through a closed surface is proportional to the charge enclosed.

The proportionality factor is 1/ε0,

ψ =
∮
A

�E · d�A = Q

ε0
.

▲ If a surface A encloses a charge-free space region in an electric field, the electric
fluxes through the partial surfaces may differ from each other. The total flux, however,
vanishes, since no charges are present within the surface A.

■ The flux ψ through a spherical surface about a point charge Q = 10−6 C is

ψ = Q

ε0
= 10−6 C

8.854 · 10−12 C/(Vm)
= 1.13 · 105 Vm .
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14.5.4 Electric displacement in a vacuum
1. Charge separation by electrostatic induction

Two rectangular conducting plates of equal size and area 
A are placed near each other
congruently in a uniform electric field such that the electric field intensity is perpendicular
to the plates. If the plates are then separated and removed from the electric field, they are
found to be charged, characterized by the surface charge density σ (Fig. 14.10). Owing to
electrostatic induction, charges have been separated and shifted to a plate.

Figure 14.10: Charge separation by electrostatic induction.

2. Displacement,

�D, a vector quantity that measures the quantity of charge 
Q per area element 
A dis-
placed by electrostatic induction. The magnitude of the displacement equals the surface
charge density σ . In a vacuum, the orientation of the displacement vector coincides with
the direction of the electric field strength.

If the displaced charge 
Q is not constant over the area element 
A, e.g., for curved
surfaces or for insulators, one has to use the differential quotient:

displacement = quantity of charge
area

L−2TI

D = lim

A→0


Q


A
= dQ

dA
= σ

Symbol Unit Quantity

D C/m2 magnitude of displacement
dQ C charge on the area element dA⊥
dA m2 infinitesimal area element
σ C/m2 surface charge density

Coulomb/square meter, C/m2, SI unit of the electric displacement �D. 1 C/m2 is the
displacement if a quantity of charge Q = 1 C is shifted through an area A = 1 m2 placed
perpendicularly to the electric field lines,

[ �D] = C/m2 .

3. Properties of displacement

The displacement depends on the orientation of the area relative to the electric field. The
displaced quantity of charge is proportional to the cosine of the angle between surface
normal and electric field vector.
➤ If the surface normal is perpendicular to the electric field strength, the displacement

vanishes.
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▲ The integral of the displacement over a closed surface A equals the charge Q enclosed
by this surface, ∮

A

�D · d�A = Q .

4. Proportionality between displacement and field strength

▲ The displacement is proportional to the electric field strength of an external electric
field.

Permittivity of free space ε0, proportionality factor between the displacement and the
field strength in a vacuum. At any position in a uniform or non-uniform field:

displacement ∼ field strength L−2TI

�D = ε0 · �E
Symbol Unit Quantity

�D C/m2 displacement
ε0 C/(Vm) permittivity of free space
�E V/m electric field strength

In matter, the relation between displacement and electric field is more complicated. Then a
material-dependent quantity arises that may vary with the frequency, the temperature and
other physical quantities. In particular, the dependence of this material parameter on the
field strength of the external electric field may lead to nonlinear effects. Moreover, the
orientations of the displacement and the field strength may differ (see p. 454).
■ A uniform electric field E = 400 V/m causes a displacement

D = ε0 · E = 8.854 · 10−12 C/(Vm) · 400 V/m = 3.54 · 10−9 C/m2 .

Two metallic plates of area A = 1 cm2 are placed near each other and in a field
perpendicular to the orientation of the field strength (α = 0◦). The magnitude of the
charge of the plates is then

Q = D · A · cosα = 3.54 · 10−9 C/m2 · 10−4 m2 cos 0◦ = 3.54 · 10−13 C .

14.6 Electric polarization

1. Polarization of a dielectric

If a nonconductor is placed between the plates of a capacitor, then, for a fixed voltage, the
amount of charge on the capacitor plates, and thus the capacitance of the capacitor, may
change. This phenomenon is related to the change in the electric field between the plates.
The material inserted becomes polarized. Because of this polarization, an electric field �Epol

opposite to the original electric field �E is built up. Therefore, the electric field strength in
the capacitor is reduced.

The following types of polarization can be distinguished:
Displacement polarization, a displacement of electric charges in neutral atoms

or molecules against each other. The electric field induces electric dipole moments
(Fig. 14.11 (a)).
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Orientation polarization, the permanent dipole moments already present in the mate-
rial are aligned along the electric field (Fig. 14.11 (b)).

Figure 14.11: Polarization.
(a): displacement
polarization, (b): orientation
polarization.

On the front faces of a partial volume dV = d · dA of the dielectric between the plates
of a plate capacitor, the polarization charges ±dQpol are generated. They cause an electric
dipole moment

| d�p | = d · σp dA = σp dV .

σp is the surface charge density of the polarization charges.

2. Polarization vector

Polarization, �P, electric dipole density per unit volume in the dielectric, characterizes the
density of the polarization charges on the surface of the dielectric. The polarization �P is a
vector along the dipole moment of the polarization charges. It points from the negative to
the positive polarization charges. The magnitude of �P represents the surface density σp of
the polarization charges,

�P = d�p
dV

, | �P | = σp .

The polarization �P and the electric field �E are collinear. The field lines of the electric field
�Epol generated by the polarization charges run from the positive to the negative surface

charges of the dielectric, opposite to the field lines of the field �E (Fig. 14.12).

Figure 14.12: Polarization
of a dielectric. ±dQpol:
polarization charges, d�p:
electric dipole moment of
the polarization charges,
�Epol: electric field of the

polarization charges, �E:
original electric field.

The displacement polarization is given by

�P = nα �E ,

where n is the number per unit volume and α the electric polarizability of the atoms or
molecules in the insulator. The polarizability is a molecular parameter.
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14.6.1 Dielectric
Dielectric, insulator placed into an electric field.

1. Relative permittivity,

also relative dielectric constant, εr , a nondimensional material-dependent quantity that
specifies the decrease of the electric field strength when a material (dielectric) is placed in
an electric field,

[εr ] = 1 .

The relative permittivity of vacuum is εr = 1. The relative permittivity of air is well
approximated by unity.

For most dielectrics, εr varies in the range 1 to 100. There are dielectrics with εr up to
10 000.
■ The relative permittivity of water, cellulose and polystyrene are 81, 4.5 and 2.5, re-

spectively.

2. Permittivity,

ε, product of permittivity of free space and relative permittivity,

ε = ε0 · εr .
Coulomb/volt·meter, C/(Vm), SI unit of permittivity ε,

[ε] = C/(Vm).

Electric polarization �P in dielectric, given by

�P = (εr − 1) ε0 �E = χe ε0 �E .
Electric susceptibility χe, defined by

χe = εr − 1 .

3. Displacement in dielectric,

�D, given by the equation:

displacement = permittivity · field strength L−2TI

�D = εr ε0 �E = ε �E
�D = ε0 �E+ �P
�P = (εr − 1) ε0 �E = χeε0 �E

Symbol Unit Quantity

�D C/m2 displacement
�E V/m electric field strength
ε C/(Vm) permittivity
εr 1 relative permittivity
ε0 C/(Vm) permittivity of free space
�P C/m2 electric polarization
χe 1 electric susceptibility

■ The relative permittivity of pure water is εr = 81. If water is brought into a uniform
electric field, the electric field intensity is reduced to 1/81 of its original value due to
the polarization charges generated in the water (Fig. 14.13).
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Figure 14.13: �D and �E field in a plate capacitor partly filled by a dielectric.

■ Relative permittivity (relative dielectric constant) of several substances: helium
1.0055, sulphur 3.5, capacitor paper 4 to 6, glycerol 43, ceramics 10 to 200.

The relative permittivity (relative dielectric constant) εr of various substances is listed in
Tab. 18.2/1 and 18.2/6. For ceramics, εr is given in Tab. 18.2/2, for glasses in Tab. 18.2/3
and for polymers in Tab. 18.2/4.

Electrostriction, change of shape and volume of a dielectric in an electric field. The
phenomenon is observed in all aggregation states of matter. For solid insulators, the vari-
ation of length and volume (contractions) are in general proportional to the square of the
electric field strength,

∣∣∣∣ 
V

V

∣∣∣∣ ∼ εE2 ,


V/V relative change of volume, ε permittivity, E electric field strength.

14.7 Capacitance

Capacitance, C , of an arrangement of conductors, a scalar quantity specifying the quantity
of electric charge that may be stored by this arrangement for given voltage V between the
conductors.

Capacitor, arrangement of two conductors insulated against each other and charged to
different values of potential.

capacitance = charge
voltage

L−2T4M−1I2

C = Q

V

Symbol Unit Quantity

C F capacitance of capacitor
Q C charge of capacitor
V V applied voltage

Farad, F, SI unit of capacitance C . A capacitor has the capacitance C = 1 F if for a voltage
V = 1 V at the capacitor plates the charge Q = 1 C may be stored,

[C] = F = C/V.

➤ 1 F is a very large unit. Typical capacitance values range from 1 pF to 1 mF. Capaci-
tors with capacitances as large as 10 F are available for low voltages.
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14.7.1 Parallel-plate capacitor
1. Properties of parallel-plate capacitors

The extension of the capacitor plates must be large compared to their separation so that
edge effects may be neglected. The capacitance C is proportional to the area of the plates
A and decreases with increasing separation,

C = ε0 A

d
, εr = 1 .

➤ The capacitance of a capacitor is increased by placing a dielectric between the capac-
itor plates. The capacitance of a dielectric of permittivity ε is

C = εA

d
= ε0εr A

d
.

■ A capacitor with plates that are sheets of area A = 10 cm2 with a separation of
d = 0.1 mm has the capacitance

C = ε0 A

d
= 8.854 · 10−12 F/m · 10−3 m2

10−4 m
= 8.854 · 10−11 F ≈ 90 pF .

If there is capacitor paper of relative permittivity εr = 4 between the foils, the ca-
pacity is four times higher:

C ≈ 360 pF .

➤ Applying too high a voltage leads to breakdowns, and thus causes destruction of the
capacitor.

➤ A charged capacitor discharges after some time, since the dielectric between the ca-
pacitor plates has a finite electric resistance.

2. Applications and special types of capacitors

Application of capacitors:
• separation of direct current and alternating current; smoothing of wavy direct current,
• in time-delay circuits as component of RC units,
• storing of charges,
• tuning of oscillating circuits in radio receivers.

Special shapes of capacitors:
• Electrolytic capacitor. In applications, one has to observe the correct polarity of the

voltage. High capacitance value. Applied for storing charge, e.g., in flash units or
lasers.

• Tunable capacitors, variable-disk capacitors or trimmer capacitors. A set of
plates is fixed (stator), the second set may be moved (rotor). Variable-disk capacitors
are used for tuning of oscillator circuits.

14.7.2 Parallel connection of capacitors
Parallel connection of n capacitors, all capacitors are supplied by the same voltage, but
the capacitor surfaces sum (Fig. 14.14). The total capacitance of a parallel connection of
capacitors is thus the sum of the individual capacitances,

Ctot = C1 + C2 + · · · + Cn .
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V n

n

n

tot

Figure 14.14: Parallel connection of n capacitors.

14.7.3 Series connection of capacitors
Series connection of n capacitors, the quantity of charge is the same on all capacitor
plates (Fig. 14.15). Hence, the inverse value of the total capacitance equals the sum of the
inverse values of individual capacitances,

1

Ctot
= 1

C1
+ 1

C2
+ · · · + 1

Cn
.

V V V V

totn

n

n n

Figure 14.15: Series connection of n capacitors.

14.7.4 Capacitance of simple
arrangements of conductors

1. Cylindrical capacitor

The capacitance is proportional to the length l of the cylindrical capacitor and inversely
proportional to the logarithm of the ratio of the radii of the outer cylinder R and the inner
cylinder r (Fig. 14.16):

C = 2πε
l

ln(R/r)
.

ε ε

Figure 14.16: Cylindrical capacitor.
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ε ε

Figure 14.17: Spherical capacitor. Figure 14.18: Two-wire lines.

2. Spherical capacitor, two concentric hollow spheres

The capacitance is proportional to the product of outer and inner radius R, r and inversely
proportional to the difference between the outer and inner radius (Fig. 14.17):

C = 4πε
R · r
R − r

.

For R →∞ one gets the capacitance of a single sphere against an infinitely remote elec-
trode, C = 4πεr .

3. Two-wire lines

The capacitance is proportional to the conductor length l and inversely proportional to
the logarithm of the ratio of the separation of the conductors d to the conductor radius r
(Fig. 14.18):

C = πε l

ln(d/r)
(d � r) .

4. Two spheres of equal radius

The capacitance of two spheres of equal radius r at a distance d between the centers is
given by (Fig. 14.19)

C ≈ 2πε r

[
1+ r(d2 + dr − r2)

d(d2 − r2)

]
, d � r .

ε

Figure 14.19: Capacitor
consisting of two identical
spheres.

14.8 Energy and energy density of the electric field

1. Energy density of the electric field,

we, the electric energy 
We per volume 
V . If the energy distribution is position-
dependent, the energy density is given by

we = lim

V→0


We


V
= dWe

dV
, 
We = we ·
V .
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energy density of the electric field L−1T−2M

we = 1

2
�E · �D

Symbol Unit Quantity

we J/m3 energy density
�D C/m2 displacement
�E V/m field strength

2. Energy of the electric field,

We in the volume V , is obtained by integration of the energy density over the volume V ,

We =
∫

V
wedV = 1

2

∫
V
�E · �D dV .

The energy We of a charged parallel-plate capacitor is proportional to the square of the
voltage between the capacitor plates:

energy of parallel-plate capacitor L2T−2M

We = 1

2
CV 2

= 1

2

Q2

C

Symbol Unit Quantity

We J energy
Q C charge
C F capacitance
V V voltage

The energy We of a uniformly charged sphere is proportional to the square of the charge
Q and inversely proportional to the sphere radius R:

energy of a uniformly charged sphere L2T−2M

We = 1

4πε0

3

5

Q2

R

Symbol Unit Quantity

We J energy
Q C charge
R m radius of sphere
ε0 C/(Vm) permittivity of free space

14.9 Electric field at interfaces

When moving from a medium of permittivity ε1 to a medium of permittivity ε2, the electric
field strength and the electric displacement change at the interface.

1. Change of the electric field strength

The tangential component of the electric field strength does not change in the transition
(Fig. 14.20):

Et1 = Et2 , or
Dt1

ε1
= Dt2

ε2
.

The normal component of the electric field strength changes discontinuously.
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Normal

Figure 14.20: Electric field
strength �E at an interface
between two media.

2. Change of the electric displacement

The normal component of the electric displacement does not change in the transition
(Fig. 14.21):

Dn1 = Dn2 , or En1 · ε1 = En2 · ε2 .
The tangential component of the electric displacement changes discontinuously.

Normal

Figure 14.21: Electric
displacement �D at the
interface between two
media.

3. Angular relations of the electric fields at an interface

If α1 denotes the angle between the perpendicular (normal to interface) and the direction
of the electric field strength in the first medium, and α2 the angle between the normal and
the field strength in the second medium, the tangent values of the angles are related by the
permittivity values:

electric field at interface

tanα1

tanα2
= ε1
ε2
= εr1

εr2

Symbol Unit Quantity

α1, α2 1 angle to normal in medium 1, 2
ε1, ε2 C/(Vm) permittivity of medium 1, 2
εr1, εr2 1 relative permittivity of medium 1, 2

■ In a transition from a medium of low permittivity to a medium of higher permittivity,
the electric field strength changes its direction away from the perpendicular.

■ In a transition from a medium of high permittivity to a medium of lower permittivity,
the electric field strength changes its direction towards the perpendicular.

14.10 Magnetic field

Magnetostatics, treats magnetic fields constant in time, and magnetic phenomena caused
by permanent magnets, or by steady currents.
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The magnetic field of permanent magnets may be traced back to magnetic moments of
the atomic constituents.

Current-carrying conductors are surrounded by a magnetic field that exerts forces on
other current-carrying conductors. The magnetic field has a certain energy content.

Materials may be distinguished according to their behavior in a magnetic field.
Magnetic fields varying with time, occur when conductors carry time-dependent cur-

rents. The magnetic fields about a conductor induce a voltage in this conductor and other
conductors. The conductors are characterized by their inductance. In order to generate
magnetic fields, a certain expenditure of energy is necessary, which is stored in the fields
as magnetic field energy.

Many applications exist, e.g., in alternating-current technology, in the construction of
motors and generators, in three-phase-current technology, and in the construction of trans-
formers.
■ A simple magnetic unit to be treated in this context is the coil.

14.11 Magnetism

1. Magnets

Permanent magnets, consist of magnetic iron or other magnetic materials. They exert
forces on each other as well as on iron, nickel, cobalt and various alloys.
■ Materials for permanent magnets: AlNiCo alloys, sintered bodies such as Sr- and

Ba-ferrites, CoPt- and FePt-alloys with ordered structure.
Electromagnets, consist of current-carrying coils with an iron core.

As in the case of electric dipoles, magnets have two poles denoted
magnetic north pole, and
magnetic south pole.

▲ Any subdivision of a permanent magnet yields two magnets, both having north and
south poles.

2. Magnetic dipoles

There are no magnetic monopoles. Any elementary magnet is a magnetic dipole. The
dipole axis is the connecting line of north and south poles. The magnetic dipole moment
�m is a vector along the dipole axis and pointing to the north pole. The magnetic moment
of a body is determined by the torque on the body caused by an external magnetic field.

As in the case of electric dipoles, one finds:
▲ Like poles of two magnets repel each other, unlike poles attract each other.
Magnetic forces act over large distances even if the magnets are in a vacuum.

Magnetic field, range of the action of force of a magnet, or of a current-carrying con-
ductor, on other magnets.

14.11.1 Magnetic field lines
1. Magnetic field lines,

serve for visualization of magnetic fields, as do the electric field lines of electric fields.
Conventions:
• In the external region, the direction of magnetic field lines is defined as the direction

from the north pole to the south pole of the magnet (Fig. 14.22).
• A test magnet would align along the tangent to the field lines of a field.
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Figure 14.22: Magnetic field
of a bar magnet.

The field lines have the following features:
• The field lines are always solenoidal. There are no magnetic charges (magnetic

monopoles).
• The density of the magnetic field lines measures the magnetic flux density.
• Field lines about a current-carrying straight conductor are concentric circles. Their

orientation is given by the right-hand rule.
• In a uniform magnetic field, the field lines are parallel lines.
➤ The magnetic field may be visualized by iron filings. The iron particles align to form

chains, and thus map the magnetic field lines.

2. Geomagnetic field

The geomagnetic field displays quasi-periodic and partly aperiodic short-term fluctuations,
from seconds up to days. These are caused by processes in the ionosphere and on the Sun.
Moreover, one observes long-term polar motions. Since the magnetization of Earth’s crust
varies, the geomagnetic field may vary locally.

A compass needle aligns along the direction of the geomagnetic field tangential to
Earth’s surface. A magnet suspended in the geomagnetic field points with its north pole
towards North, and with its south pole towards South. Since unlike poles are attracting
each other, the geomagnetic south pole is close to the geographic north pole, whereas the
geomagnetic north pole is close to the geographic south pole (Fig. 14.23).

Declination, deviation of the orientation of the geomagnetic field from the North-South
axis. Magnetic field declinations in the United States vary from 20 degrees east to 20
degrees west.

Isogons, lines connecting points of equal declination on Earth’s surface.
Inclination, angle between the horizontal and the orientation of the geomagnetic field.
Isoclines, lines connecting points of equal inclination on Earth’s surface.

➤ A compass needle may also be used to determine the direction of the magnetic field
about a current distribution.

Magnetic
north pole

Magnetic
south pole

North pole

South pole
Figure 14.23: Geomagnetic
field.
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Figure 14.24: Right-hand
rule: orientation of the
magnetic field of a current.
The right hand holds the
wire, the thumb is aligned in
the direction of the current,
the remaining fingers point
along the magnetic field
lines.

3. Magnetic field of a current-carrying wire

The magnetic field lines are concentric circles about the current thread. The orientation of
the magnetic field follows from the cork-screw or right-hand rule:
▲ If the thumb points along the direction of current, the remaining fingers point along

the magnetic flux density vector, i.e., along the field lines (Fig. 14.24).

14.12 Magnetic flux density

1. Magnetic flux density,

magnetic induction, �B, a vector quantity. The magnitude B specifies the magnetic field
intensity. The orientation of the magnetic flux density may be seen from the alignment of
a test magnet: it points from the south pole of the test magnet to its north pole. A moving
charge experiences a force proportional to the magnetic flux density.

Tesla, T, SI unit of the magnetic flux density �B,

[�B] = T = Vs/m2.

M The measurement of the magnetic flux density can be reduced to the measurement of
the magnetic flux, which may be determined by an induction coil (see for measure-
ment of magnetic flux).
Hall effect (see p. 1003), a voltage VH , the Hall voltage, is generated across a
current-carrying conductor placed into a transverse magnetic field �B oriented per-
pendicular to the conductor plane. VH is proportional to the magnetic flux density Bz
(Fig. 14.25),

VH = Ix · Bz

n · e0 · d =
b

n · e0
Jx · Bz .

Figure 14.25: Hall effect.
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Ix = Jx · b · d is the current (in x-direction) passing the conductor of thickness d and
width b. Jx is the current density, n the density of charge carriers in the conductor, and
e0 the elementary charge. In Hall probes, semiconductor materials are used because
the density of charge carriers n is low, and hence the Hall voltage is high.

2. Lorentz force,

force acting on a charge moving in a magnetic field. The magnitude of force F is deter-
mined by the velocity v of the charge, the magnitude of the charge Q, the magnetic flux
density B and the angle between the velocity vector �v and the magnetic flux density �B. The
Lorentz force �F acts perpendicular to both �v and �B.

The force vector is given by the vector product:

Lorentz force LT−2M

�F = Q (�v× �B)
F = Q · v · B · sinα

Symbol Unit Quantity

�F N Lorentz force
Q C electric charge
�v m/s velocity of charge
�B T = Vs/m2 magnetic flux density
α 1 angle between �v and �B

▲ Three-fingers rule: If the thumb of the right hand points along the direction of mo-
tion of the positive charge carriers, and the forefinger points along the magnetic flux
density, then the middle finger shows the direction of the force on the charge carriers
(Fig. 14.26).

➤ Force acting on negative charges: Use the left hand!

Figure 14.26: Three-fingers
rule: the thumb points
along the direction of
motion of a positive charge,
the forefinger along the
magnetic flux density; the
force is acting along the
middle finger.

The maximum force Fmax on the charge Q results when the velocity v is perpendicular
to the magnetic flux density B,

Fmax = Q · v · B .

From the maximum force, one finds the magnetic flux density:

magnetic flux density = maximum force
charge · velocity

T−2MI−1

B = Fmax

Q · v

Symbol Unit Quantity

Fmax N maximum Lorentz force
Q C electric charge
v m/s velocity of charge
B T = Vs/m2 magnetic flux density
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3. Properties of the Lorentz force

The Lorentz force changes only the orientation of the velocity �v, but not its magnitude. In
a uniform magnetic field �B pointing perpendicular to the orbital plane, a particle of mass
m and charge Q moves on a circular orbit of radius R,

R = mv

Q B
.

The orbital radius is inversely proportional to the magnetic flux density, and proportional
to the linear particle momentum.

If the particle is moving in an additional electric field �E, the total force acting on the
charge is given by

�F = Q · �E+ Q (�v× �B) .

If the electric and magnetic fields are aligned parallel to each other, the path of the particle
becomes a helical line about the field direction, with the pitch depending on the position.

The force on a straight conductor of length l carrying a current I in the magnetic field �B
is

�F = I (�l× �B) .
�l is a vector of magnitude l along the current flow. The force �F points normally to the plane
containing �l and �B. The magnitude of the force is

F = I · l · B · sinα ,

where α is the angle enclosed by �l and �B. The force reaches the maximum value when the
current and the magnetic flux density are perpendicular.

14.13 Magnetic flux

1. Magnetic flux,

�, scalar quantity, a measure for the magnetic flux density (induction) through a surface
in a magnetic field. For a plane area in a uniform magnetic field, the magnetic flux �
equals the product of the magnetic flux density B, the area 
A and the cosine of the angle
between �B and 
�A (Fig. 14.27). If the normal to the area is perpendicular to the magnetic
flux density, the magnetic flux vanishes.

� = B ·
A · cosα = �B ·
�A .

Figure 14.27: Magnetic flux
through a surface.
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For an arbitrarily shaped surface A in a nonuniform magnetic field, the surface is subdi-
vided into plane area elements 
Ai , so that the magnetic flux density through these area
elements may be regarded as constant. The total flux � through the surface A is obtained
by summing the individual fluxes:

� =
∑

i


�i =
∑

i

�Bi ·
�Ai .

2. Flux as an integral over the flux density

For more refined subdivisions of the total surface, the magnetic flux corresponds to the
surface integral over the flux density:

flux = integral of flux density over surface ML2T−1Q−1

� =
∫
A

�B · d�A

Symbol Unit Quantity

� Wb = Vs magnetic flux
�B T = Vs/m2 magnetic flux density through A
d�A m2 infinitesimal area element
A m2 total area

Weber, Wb, SI unit of the magnetic flux �. 1 Wb is the intensity of the magnetic flux
through a surface A = 1 m2 if the magnetic flux density is B = 1 Vs/m2,

[�] = Wb = Vs .

3. Solenoidal property of the magnetic flux

The magnetic flux through a closed surface A vanishes,

� =
∮
A

�B · d�A = 0 , div �B = 0 .

The magnetic field lines are closed; there are no magnetic charges (magnetic monopoles).
This relation constitutes one of Maxwell’s equations (see p. 496).

4. Determination of the flux density

The magnitude of the magnetic flux density is obtained from the magnetic flux 
� flow-
ing through a surface 
A⊥ placed perpendicularly to the flux. If the magnetic flux is
position-dependent, 
A is reduced in size until the magnetic flux may be considered as
being uniformly distributed over the surface element. This approach corresponds to the
limit

B = lim

A⊥→0


�


A⊥
= d�

dA⊥
.

■ A magnetic flux � = 0.2 Wb passing a surface A = 6 cm2 placed perpendicularly
to the flux corresponds to a magnetic flux density of

B = �
A
= 0.2 W b

6 · 10−4 m2
= 333.3 T .
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M The magnetic flux may be measured by means of an induction coil of known number
of turns n. Placing the coil into a magnetic field B results in an induced voltage pulse∫

V dt which is proportional to the enclosed flux:

T∫
0

Vind dt = n� = n · B · A .

If the area A of the induction coil is known, the magnetic flux density may also be
determined. If the induction coil is removed from the magnetic field, a voltage pulse
of opposite polarity is induced.

14.14 Magnetic field strength

1. Magnetic field strength,

�H, vector quantity, synonymously used for magnetic field. In isotropic magnetic materials,
�H is proportional to �B:

magnetic field strength = magnetic flux density
permeability of free space

L−1I

�H = �B
µ0

Symbol Unit Quantity

H A/m magnetic field strength
B T = Vs/m2 magnetic flux density
µ0 Vs/(Am) permeability of free space

Ampere/meter, A/m, SI unit of the magnetic field strength �H,

[ �H] = A/m.

➤ Notice the units:
magnetic field strength, related to current: A/m .
electric field strength, related to voltage: V/m .

2. Permeability of free space

permeability of free space LT−2MI−2

µ0 = 4π · 10−7 Vs

Am

= 1.257 · 10−6 Vs

Am

Symbol Unit Quantity

µ0 Vs/(Am) permeability of free space

➤ One might assume that, analogously to the electric field strength �E, the magnetic
field strength �H is the fundamental field concept, and that the magnetic flux density
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�B, like the electric displacement density �D, follows from the field strength, i.e., is a
deduced quantity. One should notice, however, that electric and magnetic fields are
demonstrated through their forces on (moving) charges. The formula for this force
involves the electric field strength and the magnetic flux density, but not the magnetic
field strength.

3. Vector potential,

�A, vector quantity for calculation of the magnetic flux density �B. From the solenoidal
property of the magnetic field, it follows that the magnetic flux density may be written as
the rotation (curl) of a vector field �A,

div �B = 0 , �B = rot �A .

The vector potential �A may be calculated from the current density distribution �J(�r) as
solution of the differential equation


�A = −µ0 �J(�r),

�A = µ0

4π

∫ �J(�r ′)
| �r− �r ′ | dV ′ .

For the magnetic flux density, one finds:

�B = µ0

4π

∫ �J(�r ′)× (�r− �r ′)
| �r− �r ′ |3 dV ′ .

The potentials ϕ and �A may be determined from two coupled differential equations, if
the spatial charge density ρ and the current density �J = ρ�v are specified as functions of
position �r and time t :


�A(�r, t)− µ0ε0
∂2 �A(�r, t)
∂t2

= −µ0 �J(�r, t) , 
ϕ(�r, t)− µ0ε0
∂2ϕ(�r, t)
∂t2

= −ρ(�r, t)
ε0

.

➤ For a particle of mass m, charge Q and momentum �p = m�v in an electromagnetic
field, the Lagrange function L and Hamilton function H read

L = m

2
v2 + Q�v �A− Qϕ , H = (�p− Q �A)2

2m
+ Qϕ .

14.15 Magnetic potential difference
and magnetic circuits

1. Magnetic potential difference,

VAB , between two points A and B, the line integral of the magnetic field strength �H along
the path s:
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magnetic potential difference = integral of magnetic
field strength along path

I

VAB =
B∫

A

�H · d�s
Symbol Unit Quantity

VAB A magnetic potential
�H A/m magnetic field strength
d�s m path element

Ampere, A, SI unit of the magnetic potential difference V ,

[V ] = 1 A.

M Rogowski coil, a flexible, long, thin coil for measurements of magnetic potential
differences. The coil is placed in a magnetic field. Switching the magnetic field on
or off generates a voltage pulse in the coil proportional to the magnetic potential
difference between the end points of the coil.

2. Magnetic circuit and magnetic resistance

Magnetic circuit, the magnetic flux traverses a series of materials of different magnetic
reluctance.

Magnetic reluctance, Rm , ratio of magnetic potential difference V to magnetic flux �
in a medium:

magnetic reluctance = magnetic potential difference
magnetic flux

L−2T2M−1I2

Rm = V

�

Symbol Unit Quantity

Rm A/Wb magnetic reluctance
V A magnetic potential difference
� Wb magnetic flux

Ampere/weber, A/Wb, SI unit of the magnetic reluctance Rm ,

[Rm ] = A/Wb = A/(Vs).

3. Mesh rule and vertex rule in the magnetic circuit

Analogously to Kirchhoff’s laws for current circuits, the following relations hold for mag-
netic circuits:

Mesh rule in a magnetic circuit, the sum over all magnetic potential differences of a
mesh in a magnetic circuit equals the total current flow �,

Vtot = V1 + V2 + · · · Vn = � .

Vertex rule in a magnetic circuit, the sum over all magnetic fluxes at a vertex in a
magnetic circuit equals the total flux,

�tot = �1 +�2 + · · · +�n .

Thus, there are similar rules for series connection and parallel connection of magnetic
reluctances, as compared with electric resistors:
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4. Series connection of magnetic reluctances

The magnetic flux passes through a series of different materials with magnetic reluctance
Rm1, . . . , Rmn (Fig. 14.28). The total reluctance is

Rtot = Rm1 + · · · + Rmn .

lL

l

Figure 14.28: Total magnetic reluctance of a series connection of magnetic reluctances.
(a): iron core with pole gap, (b): equivalent circuit.

5. Parallel connection of magnetic reluctances

The magnetic flux in a magnetic circuit separates into several branches with the magnetic
reluctances Rm1, . . . , Rmn . The reciprocal values of the magnetic reluctances sum to the
reciprocal value of the total reluctance:

1

Rtot
= 1

Rm1
+ · · · + 1

Rmn
.

6. Calculation of magnetic circuits

The rules described in the paragraphs 3, 4 and 5 are applied in technology for calculating
magnetic circuits in which the magnetic flux successively passes distinct materials.
■ The total reluctance of a magnetic circuit containing an iron core with a pole gap

(Fig. 14.28) is

Rm(iron)+ Rm(polegap) = Rm(total) .

14.15.1 Ampere’s law
1. Current flow,

�, the current through a surface enclosed by a path s as line integral of the magnetic field
strength �H along the closed path s.

In order to evaluate the current flow �, the path s is subdivided into rectilinear path
elements 
s. One then calculates the product of the magnetic field component tangential
to the path element, and the length of the path element,

H ·
s · cosα = �H ·
�s .
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The orientation of the vectorial path element 
�s corresponds to the direction of the path s
that was traversed. Summing over all path elements yields the current flow∑

Hi 
si = �,

Hi being the component of �H along 
�si .
For an arbitrarily shaped path in a nonuniform magnetic field, the path is subdivided

until the path elements may be regarded as straight segments and the magnetic field along
the path element as being uniform. One then obtains Ampere’s law:
▲ The line integral of the magnetic field strength along a closed path equals the current

flow through the surface enclosed by the path:

current flow = integral of magnetic field strength along path I

� =
∮
s

�H · d�s

=
∫
A

�J · d�A

Symbol Unit Quantity

� A current flow
�H A/m magnetic field strength
d�s m infinitesimal path element
s m total path
�J A/m2 current density
d�A m2 infinitesimal surface element
A m2 surface enclosed by path s

Ampere, A, SI unit of the current flow �,

[�] = A.

2. Consequences of Ampere’s law

If the path encloses the current completely, the line integral is independent of the shape of
the path.

If the path encloses a current-carrying wire, the current flow � equals the current I
flowing in the conductor,

� = I .

If the path encloses a set of N current-carrying wires, the current flow � equals the sum of
the currents In of the individual conductors,

� =
N∑

n=1

In .

If the path encloses N turns of a coil, the current flow� equals the coil current I multiplied
by the number N of enclosed turns,

� = N · I .

If the path encloses a current distribution characterized by the current density �J, the current
flow equals the flux of the current density through the surface A enclosed by the path,

� =
∫
A

�J · d�A .
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The last statement may also be written in differential form:

rot �H = �J.

➤ Ampere’s law allows the calculation of magnetic fields generated by simple current
distributions.

14.15.2 Biot-Savart’s law
1. Biot-Savart’s law,

allows the calculation of the magnetic field strength of wire-shaped conductors of arbitrary
geometry.

The contribution of the conductor element d�s to the magnetic field strength is propor-
tional to the current I and inversely proportional to the square of the distance r . The ori-
entation of the magnetic field strength generated by the conductor element d�s is given by
the vector product of the distance vector �r and the orientation of the conductor element d�s
(Fig. 14.29).

Figure 14.29: Biot-Savart’s
law.

The total field strength is obtained by summing over all contributions of the individual
conductor elements (integral over d�s):

Biot-Savart’s law L−1I

�H =
∫
s

I d�s× �r
4πr3

Symbol Unit Quantity

�H A/m magnetic field strength
I A current through conductor
d�s m conductor element
�r m distance vector
r m magnitude of distance vector

2. Magnetic moment of a steady current density distribution,

�J(�r), defined by

�m = 1

2

∫
�r× �J(�r) dV .

The magnetic field is in first order given by

�B = µ0

4π

[
3( �m · �r)�r

r5
− �m

r3

]
.
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▲ The magnetic field of a steady current density distribution is in first order equivalent
to the electric field of an electric dipole.

3. Examples on Biot-Savart’s law

a) Closed conductor loop: In a closed conductor loop in a plane enclosing an area A,
a current I flows. In a magnetic field �B, the current loop experiences a torque ��:

�� = I (�A× �B) .

Since the magnetic moment �m is defined by �� = �m× �B, one gets for the magnetic moment
of a closed current loop

�m = I · �A .

b) Charge on a circular path: A particle of mass m and charge Q moving with a linear
momentum �p along a circular path corresponds to a circular current with the magnetic
moment,

�m = Q

2m
�l , �l = �r× �p .

The magnetic moment �m is proportional to the orbital angular momentum �l.
4. Force and energy of magnetic moments

A body with a magnetic moment �m in a uniform magnetic field �B experiences a torque ��,

�� = �m× �B .

A body with a magnetic moment �m in a nonuniform magnetic field �B experiences a force �F,

�F =
(
�m · ∂
∂�r
)
�B .

The potential energy Epot of a body with a magnetic moment �m is given by

Epot = − �m · �B .

5. Types of magnetic moments

Magnetic moment of a bar magnet, defined by the product of magnetic flux � (pole
intensity) and fictitious pole distance d ,

�m = � · �d .

The vector �d points from the south pole to the north pole.
Coulomb’s magnetic moment, defined by �mC = � �d.
Ampere’s magnetic moment, defined by �mA = �mC/µ0 = � �d/µ0. Mainly used in

atomic physics.
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14.15.3 Magnetic field of a rectilinear conductor
1. Magnetic field strength of a current-carrying conductor

The magnetic field of a rectilinear conductor is proportional to the current in the conductor
and inversely proportional to the distance from the conductor. The direction of the magnetic
field follows concentric circles about the conductor (right-hand rule, see Fig. 14.24):

magnetic field strength = current
2π · distance

L−1I

H = I

2πr

Symbol Unit Quantity

H A/m field strength at distance r from conductor
I A current through conductor
r m distance from conductor

■ A rectilinear conductor carries the current 4 A. The magnetic field at a distance of
r = 1 m is

H = 4 A

2π · 1 m
≈ 0.64 A/m .

If the distance r is doubled, one gets half the field strength, H ≈ 0.32 A/m.

2. Force acting on conductors carrying current

A magnetic field generates a force on conductors carrying current. This force is used for
the definition of the unit of current, the ampere (see Fig. 13.4).

The force F between two rectilinear parallel conductors of equal length l at distance a,
with currents I1 and I2, respectively, is given by

F = µ0
l

2πa
I1 I2 .

If both currents have the same orientation, the conductors attract each other; for opposite
current directions, they repel each other (Fig. 14.30).

Figure 14.30: Magnetic field lines and force for current-carrying rectilinear conductors. (a):
single conductor, (b): parallel double-wire conductor with parallel currents, (c): parallel
double-wire conductor, antiparallel currents.
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14.15.4 Magnetic fields of various
current distributions

Biot-Savart’s law and Ampere’s law allow a calculation of the magnetic fields of several
simple current distributions.

1. Magnetic field of a wire

The magnetic field strength H of a long rectilinear conductor of circular cross-sectional
area (radius R) carrying a current I is given by:

external region of conductor (r ≥ R)

H (r) = I

2πr

Symbol Unit Quantity

H A/m magn. field strength in external region
I A current through conductor
r m perpendicular distance from axis

internal region of conductor (r ≤ R)

H (r) = I

2π R2
r

Symbol Unit Quantity

H A/m magn. field strength in internal region
I A current through conductor
r m perpendicular distance from axis
R m radius of conductor

In the interior region, the magnetic field strength increases linearly with r up to the con-
ductor radius R, in the external region it decreases as 1/r to zero.

2. Magnetic field strength in the center of a plane circular conductor loop

The magnetic field strength at the center of a circular current loop of radius R is given by
the quotient of the current I and the loop diameter 2R:

field strength = current
2 · radius

L−1I

H = I

2R

Symbol Unit Quantity

H A/m magnetic field strength
I A circular current
R m loop radius

For a large distance r from the plane of the circular current (r � R), the field strength on
the symmetry axis is given by

H = AI

2πr3
,

where A is the area enclosed by the conductor. The formula holds for arbitrarily shaped
plane current loops because, at large distances, the detailed shape of the conductor becomes
irrelevant.



478 14. Electric and magnetic fields

3. Magnetic field of a long cylindrical coil

The magnetic field strength of a long cylindrical coil (solenoid) (R → 0, l � R) is the
product of coil current I and number of turns n, divided by the coil length l. The magnetic
field is uniform within the coil, and strongly nonuniform in the external region, where it
resembles the field of a bar magnet:

field strength = winding number · current
length

L−1I

H = nI

l

Symbol Unit Quantity

H A/m magnetic field within coil
I A coil current
l m length of coil
n 1 number of turns

4. Magnetic axial field strength of a short cylindrical coil

The magnetic field strength in the center of a short cylindrical coil (length l → 0) equals
the product of coil current I and number of turns n, divided by the coil diameter 2R, i.e.,
n times the field strength of a single circular loop:

field strength = winding number · current
2 · coil radius

L−1I

H = nI

2R

Symbol Unit Quantity

H A/m magnetic field strength
n 1 number of turns
I A coil current
R m coil radius

Magnetic field strength on the axis of a cylindrical coil of radius R and length l in the
internal region:

H = nI√
l2 + 4R2

.

14.16 Matter in magnetic fields

If matter is placed into a magnetic field of strength �H, the magnetic flux density �B is
modified due to the interaction of the magnetic field with the electrons of matter. The
change of the magnetic flux density depends on the material inserted.

1. Relative permeability,

µr , ratio of the magnetic flux density B in matter to the magnetic flux density B0 in a
vacuum at the same magnetic field strength H ,

µr = B

B0
.

µr is listed in Tab. 18.4/3 for several magnetic alloys.
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Permeability, µ, product of the permeability of free space µ0 and the relative perme-
ability µr ,

µ = µ0 · µr .

▲ For isotropic magnetic materials, the magnetic flux density �B in matter is proportional
to the magnetic field strength �H. The proportionality factor is the permeability.

magnetic flux density = permeability · magnetic field strength T−2MI−1

�B = µ �H
= µr · µ0 · �H

Symbol Unit Quantity

�B Vs/m2 magnetic flux density
µ Vs/(Am) permeability
µ0 Vs/(Am) permeability of free space
µr 1 relative permeability
�H A/m magnetic field strength

2. Magnetic susceptibility

of a material, χm , difference between the relative permeability µr of matter and the relative
permeability of a vacuum µr = 1,

χm = µr − 1 .

χm is nondimensional: [χ ] = 1.
■ Magnetic susceptibility for

diamagnetics: Cu −1 · 10−5, Bi −1.5 · 10−4, H2O −7 · 10−6;
paramagnetics: Al 2.4·10−5, O2 (gaseous) 3.6·10−3;
ferromagnetics: Fe 104, AlNiCo alloys 3, ferrites (hard) 0.3.

Tab. 18.4/1 lists the molar magnetic susceptibility for the elements, Tab. 18.4/2 the analo-
gous quantities for several inorganic compounds.

3. Magnetic polarization,

�Jm , difference of the magnetic flux density �Bm with matter and the magnetic flux density
in a vacuum �B0, given by the product of the magnetic susceptibility χm and the magnetic
flux density �B0 of the vacuum,

�Jm = �Bm − �B0 = (µr − 1) · �B0 = χm · �B0 = χmµ0 · �H .
Volt · second/meter2, Vs/m2, SI unit of the magnetic polarization,

[�J] = Vs/m2.

4. Magnetization,

�M, product of magnetic susceptibility χm and magnetic field strength �H,

�M = �Bm

µ0
− �H = (µr − 1) · �H = χm · �H .

Ampere/meter, A/m, SI unit of the magnetization �M,

[ �M] = A/m.
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For many substances, the magnetization �M is proportional to the magnetic field
strength �H.

Magnetization curves, graphic representation of the variation of the magnetic flux den-
sity B versus the magnetic field strength H .

14.16.1 Diamagnetism
Diamagnetism, property of all substances. Diamagnetic behavior can only then be ob-
served if it is not overwhelmed by the other types of magnetism.
▲ If a diamagnetic substance is placed in a nonuniform magnetic field, it feels a force

towards regions of low magnetic field strength.
Diamagnetic behavior occurs for elements with closed electron shells. If a diamagnetic
substance is placed in a magnetic field, intra-atomic currents are induced that, according to
Lenz’s rule, are opposed to the external magnetic field (see p. 485). Magnetic dipoles are
induced in the substance, with the north pole pointing to the north pole of the external field,
and the south pole pointing to the external south pole. Thus, the magnetic field is thereby
weakened and the substance feels a force out of the field.
▲ The relative permeability of diamagnetic substances is smaller than unity, the mag-

netic susceptibility is negative,

µr < 1, χm < 0 (−10−4 < χm < −10−9) .

➤ The field vectors �H and �M point opposite to each other. The density of field lines of
�B is lower in the interior of the material than in the external region.

▲ Diamagnetism is nearly independent of temperature.
■ Substances with diamagnetic behavior: Cu, Bi, Au, Ag, H2.

14.16.2 Paramagnetism
Paramagnetism, occurs if there are noncompensated magnetic moments of electrons.
This happens for atoms with only partially occupied electron shells. The originally ran-
domly oriented atomic magnetic moments are aligned by an external magnetic field
(Fig. 14.31 (a)).
▲ The relative permeability of paramagnetic substances is larger than unity, the mag-

netic susceptibility is positive,

µr > 1, χm > 0 (10−6 < χm < 10−4) .

➤ The field vectors �H and �M are parallel. The density of the field lines �B in matter is
larger than in the external region.

Curie’s law, describes the variation of the magnetic susceptibility χm with the absolute
temperature T for paramagnetic matter,

χm = C

T
.

C is a material-dependent parameter.
■ Substances with paramagnetic behavior: Al, O2, W, Pt, Sn.
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14.16.3 Ferromagnetism
1. Ferromagnetism,

generated by the alignment of the magnetization direction of the Weiss domains along
the direction of the external field. The magnetization curve of ferromagnetic substances is
nonlinear (Fig. 14.31 (b)).

Weiss domains, crystal regions of equal magnetization, extension 10µm to 1 mm,
which in the nonmagnetized state are oriented at random.

Bloch walls, transition region between the Weiss domains where the magnetization is
changing. Magnetization of a ferromagnetic substance proceeds by reversible and irre-
versible displacements of Bloch walls.
▲ The relative permeability of ferromagnetic matter depends on the magnetic field

strength and is much larger than unity, the magnetic susceptibility is positive,

µr � 1, χm > 0 .

➤ The field vectors �H and �M are parallel. The density of �B field lines in matter is larger
than in the external region.

Paramagnetism            Ferromagnetism               Antiferromagnetism        Ferrimagnetism

Figure 14.31: Structure of magnetic substances. (a): paramagnetism, random orientation of
the magnetic moments, (b): ferromagnetism, alignment of magnetic moments within Weiss
domains separated by Bloch walls, (c): antiferromagnetism, two sublattices with equal, but
oppositely oriented, magnetic moments, (d): ferrimagnetism, two sublattices with distinct
and oppositely oriented magnetic moments.

2. Hysteresis curve,

magnetization curve of ferromagnetic materials. The area enclosed by the hysteresis curve
is a measure of the magnetization energy needed to align the Weiss domains. The mag-
netization curve depends on the initial magnetic state of the ferromagnetic material. The
hysteresis curve is symmetric against reflection about the origin of the coordinate system.
This corresponds to a symmetry under inversion of the orientation of the magnetic field.

Magnetically hard material, ferromagnetic substance with a wide hysteresis curve. A
large amount of work is needed for the remagnetization (Fig. 14.32 (b)).

Magnetically soft substance, ferromagnetic material with a narrow hysteresis curve.
Only a small amount of energy is needed for the remagnetization (Fig. 14.32 (a)).
■ Magnetically hard substances are well suited for producing magnets, since they pre-

serve an imposed magnetic field for a long time against disturbance (e.g., by other
magnetic fields). Application: storage media.

Magnetically soft materials are used for transformer cores, since the flux density
is high, but the energy loss due to remagnetization is low (recorder heads).
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Figure 14.32: Hysteresis
curves. (a): magnetically soft
material, (b): magnetically
hard material.

3. Virgin curve of magnetization and saturation flux

Virgin curve of magnetization, the magnetic flux density B of the non-magnetized sub-
stance in absence of a magnetic field H vanishes. If the magnetic field strength is increased,
the virgin curve in the B-H diagram is followed (Fig. 14.33).
➤ If the material has been magnetized at least once, the virgin curve can no longer be

reproduced.

Virgin
curve

Figure 14.33: Hysteresis
curve and virgin curve.

Saturation induction, BS , the flux density at which all magnetic moments of the fer-
romagnetic material are aligned along the field direction. If the field strength is increased
beyond this point, the flux density varies linearly with the field strength.

4. Remanence and coercitive field strength

Remanence, remanence flux density, BR , the magnetic flux density remaining in the
material after switching off the external magnetic field.

Coercitive field strength, HC , a counter field that has to be applied in order to demag-
netize the ferromagnetic material. For magnetically soft matter, HC varies between 0.1
A/m and 103 A/m; for magnetically hard matter, between 103 A/m and 107 A/m.
■ Remanence and coercitive field strength for chromium steel: RB = 1.1 T, HC =

5200 A/m.
Remanence and coercitive field strength for several magnetic alloys are listed in
Tab. 18.4/3.

5. Temperature dependence of ferromagnetism

Ferromagnetism decreases with increasing temperature. The ferromagnetic substance then
becomes paramagnetic.

Curie-Weiss law, describes the temperature variation of the susceptibility χm of ferro-
magnetic substances (Fig. 14.34),

χm = C

T − TC
.

TC is the ferromagnetic Curie temperature, C is a material parameter.
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■ Ferromagnetic Curie temperatures: Fe 1042 K, Co 1400 K, Ni 631 K, Dy 87 K.
▲ Above the Curie temperature, the substance is paramagnetic.
Tab. 18.5/1, 18.5/2 and 18.5/3 list the Curie temperature for several ferromagnetic ele-
ments and for binary iron- and nickel alloys.
■ Substances with ferromagnetic behavior: Fe, Co, Ni, Gd.

Paramagnetism Ferromagnetism

Paramagnetic

Antiferromagnetism Ferrimagnetism

Paramagnetic

Figure 14.34: Temperature dependence of the magnetic susceptibility. TC : Curie tempera-
ture, TN : Néel temperature.

6. Magnetostriction,

elastic change of shape of ferromagnetic substances in magnetic fields due to displacements
and turning of the Bloch walls; both positive and negative relative changes of length may
occur.

Volume magnetostriction, change of volume, but with conservation of shape.
Joule magnetostriction, change of shape, but with volume conservation. The Joule

magnetostriction is in general much larger than the volume magnetostriction.
Inverse magnetostriction, change of magnetization by mechanical stress.

14.16.4 Antiferromagnetism
Antiferromagnetism, if there are two sublattices in a crystal, with identical magnetic mo-
ments aligned antiparallel (see Fig. 14.31 (c)).
▲ The relative permeability of antiferromagnetic substances is larger than unity,

µr > 1 .

Néel’s law, describes the temperature dependence of the susceptibility of antiferromagnetic
substances:

χm = C

T + TN
.
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Néel temperature is denoted TN . C is a material parameter.
■ Néel temperatures for several antiferromagnets: FeO 198 K, NiF2 73.2 K, CoUO4

12 K, CoO 328 K.
Tab. 18.7/1 lists the Néel temperature and the molar magnetic susceptibility for several
antiferromagnets.
■ Substances with antiferromagnetic behavior: CoO, NiCo, FeO, CoF3, FeF3.

14.16.5 Ferrimagnetism
Ferrimagnetism, occurs if in a crystal there are two sublattices with magnetic moments
of different magnitude that generate a resulting magnetic moment (Fig. 14.31 (d)). Ferro-
magnetic properties such as hysteresis and antiferromagnetic properties occur, depending
on the relative orientation of the moments of the sublattices.

Ferrites, ferrimagnetic materials, ion crystals. They are almost free of eddy currents
because of their high specific reluctance. Ferrites are ceramic materials used as coil cores
for high frequencies, e.g., as ferrite antennas.

The magnetic properties of several ferrites are listed in Tab. 18.6/1.
■ Substances with ferrimagnetic behavior: NiFe2O3, CoFe2O3, hexagonal ferrites

BaO· 6Fe2O3, PbO· Fe2O3, garnets 3Ce2O3·5Fe2O3, 3Sm2O3·5Fe2O3.

14.17 Magnetic fields at interfaces

When passing from one medium of permeability µ1 to another medium of permeability
µ2, separated by an interface that itself carries no current, both the magnetic field strength
and the flux density change at the interface.

1. Change of the magnetic field strength

The tangential component of the magnetic field strength Ht does not change in the transi-
tion,

Ht1 = Ht2 .

The normal component of the magnetic field strength changes discontinuously (Fig. 14.35).

Normal

Figure 14.35: Magnetic field
strength �H at the interface
between two media.
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2. Change of the magnetic flux density

The normal component of the magnetic flux density Bn does not change in the transition,

Bn1 = Bn2 .

The tangential component of the magnetic flux density changes discontinuously
(Fig. 14.36).

Normal

Figure 14.36: Magnetic flux
density �B at the interface
between two media.

3. Angular relations of the magnetic field strengths at the interface

Let α denote the angle between the perpendicular (normal to interface) and the orientation
of the magnetic field strength. The tangent values of the angles α1 in the first medium and
α2 in the second medium are related as the permeabilities µ1 and µ2, or as the relative
permeabilities µr1 and µr2, respectively,

tanα1

tanα2
= µ1

µ2
= µr1

µr2
.

■ In the transition from a medium of permeability µ1 to a medium of higher perme-
ability µ2,

α1 < α2 .

In the transition, the magnetic field strength bends away from the perpendicular.
In the transition from a medium of permeability µ1 to a medium of lower perme-

ability µ2,

α1 > α2 .

In the transition, the magnetic field strength bends towards the perpendicular.

14.18 Induction

Induction, generation of voltages at the ends of a conductor or a conducting loop by chang-
ing the magnetic flux through the conductor or the conducting loop.
▲ The induced voltage Vind equals the product of the time rate of change of the mag-

netic flux �, and the number n of conductors or number of turns of the conducting
loop, respectively.
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induced voltage = number of turns · change of flux
time interval

L2T−3MI−1

Vind = −n
d�

dt

Symbol Unit Quantity

Vind V induced voltage
d� Vs change of magnetic flux
dt s infinitesimal time interval
n 1 number of turns of conductor

One distinguishes:
• motional induction, and
• transformer induction.

14.18.1 Faraday’s law of induction
1. Faraday’s law, motional induction,

induction of voltages in a conductor by moving the conductor in a constant magnetic field
�B. The change of the magnetic flux is then determined by the area 
A covered by the
conductor,


� = �B ·
�A ,

and the induced voltage is:

voltage ∼ change of area
time interval

· flux density L2T−3MI−1

Vind = −n
d�A
dt
· �B

Symbol Unit Quantity

Vind V induced voltage
d�A m2 change of area
dt s infinitesimal time interval
�B Vs/m2 magnetic flux density
n 1 number of turns of conductor

■ The magnetic flux in a conducting loop in a uniform magnetic field is proportional
to the cosine of the angle α between the orientation of the magnetic field �B and the
normal to the area A (Fig. 14.37). If the conducting loop rotates with constant angular

Figure 14.37: Motional induction in a conducting loop.
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velocity ω, an alternating voltage of frequency f = ω/(2π) is generated at the ends
of the loop. The induced voltage is given by

Vind(t) = A · B · ω sinωt = v̂ind · sinωt ,

v̂ind is the amplitude of the alternating voltage.
➤ The operation of generators is based on motional induction.

2. Eddy current,

induced current in an extended conductor caused by a time-varying magnetic field. The
lines of current form closed vortices.
■ Eddy-current brake: eddy currents are generated in a conductor when it moves in

a magnetic field. In the magnetic field, a force acts on these currents that opposes
the motion of the conductor. A rotating metallic disk is slowed when a transverse
magnetic field is switched on.

3. Skin effect,

high-frequency alternating currents ( f > 107 Hz) do not flow through the entire con-
ducting cross-section, but only in a thin surface layer (current displacement). The time-
dependent magnetic field induces a voltage in the interior of the conductor that is opposite
to the applied external voltage and decreases towards the border. Hence, the current density
J increases towards the surface:

J (r, t) = Ĵ (r) cos(2π f t + φ(r)) , Ĵ = Ĵ (R) eh(r) ,

with

h(r) = − δ
2 R4

4

[
1−

( r

R

)4
]
,

φ(r) = φ(R)+ δ
2 R4

4

[
1−

( r

R

)2
]
,

δ = µ0 κ ω ,

where R denotes the conductor radius, r the distance from the conductor axis and κ the
conductivity of the conductor.

14.18.2 Transformer induction
Transformer induction, induction of voltages in a conductor by a change of the surround-
ing magnetic field. The change of the magnetic flux 
� is determined by the change of
the magnetic field 
B,


� = 
B · A cosα ,

where α is the angle between the flux density vector and the normal to the plane of the
conductor loop.
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voltage ∼ change of flux density
time interval

· area L2T−3MI−1

Vind = −n
d�B
dt
· �A

Symbol Unit Quantity

Vind V induced voltage
d�B Vs/m2 change of magnetic flux density
dt s infinitesimal time interval
�A m2 area
n 1 number of current loops

Transformer induction is applied in transformers.
■ A test coil is placed in a current-carrying coil. Switching off the current, and thus the

magnetic field, causes induction of a voltage pulse in the test coil.
Eddy-current losses, arise in transformers when the flux through the iron core changes.
The eddy-current losses are reduced if the iron core is composed of metallic strips that are
electrically isolated from each other by a varnish layer.

Switching on (off) the coil current causes high voltage peaks.
▲ Lenz’s law, the magnetic field of an induced current opposes the change of the ex-

ternal magnetic field.

14.19 Self-induction

1. Self-induction,

a change of current I in a coil of n turns causes a change of the magnetic flux through this
coil, and hence induces a voltage in the coil. The induced voltage is proportional to the
change of current per unit time.

Self-inductance, inductance, L , property of the coil, proportionality factor between
induced voltage and change of current per unit time.
▲ According to Lenz’s rule, the induced voltage opposes the applied voltage:

induced voltage = winding number · change of flux
time interval

L2T−3MI−1

vind = −L · dI

dt

Symbol Unit Quantity

vind V induced voltage
dI A change of current
dt s infinitesimal time interval
L H = Vs/A inductance

Henry, H, SI unit of the inductance L ,

[L] = H = Vs/A.

1 H is a very large unit. Usual inductances are in the range between 1µH = 10−6 H and
1 H.
▲ The inductance of a coil equals the product of the square of the number of turns n

and the magnetic conductance �m ,

L = n2 ·�m .



14.19 Self-induction 489

2. Induction flux,

ψ , through a coil, product of the magnetic flux � and the number n of turns of the coil.
The induction flux is proportional to the coil current I . The proportionality factor is the
inductance L .

induction flux = inductance · current L2T−2MI−1

ψ = L · I

= n ·�

Symbol Unit Quantity

ψ Wb = Vs induction flux
L H = Vs/A inductance of coil
I A current through coil
n 1 number of turns of coil
� Wb = Vs magnetic flux through coil

Weber, Wb, SI unit of the induction flux ψ ,

[ψ] = Wb = Vs.

3. Series connection of inductances

Series connection of inductances, the total inductance L tot of a series connection of in-
ductances equals the sum of the individual inductances L1, . . . , L N (Fig. 14.38):

L tot = L1 + L2 + · · · + L N .

tot

V V

Figure 14.38: Series connection of inductances.

4. Parallel connection of inductances

Parallel connection of inductances, the reciprocal value of the total inductance L tot of a
parallel connection of inductances equals the sum of the reciprocal values of the individual
inductances L1, . . . , L N (Fig. 14.39):

1

L tot
= 1

L1
+ 1

L2
+ · · · + 1

L N
.

V V tot

Figure 14.39: Parallel
connection of inductances.
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14.19.1 Inductances of geometric
arrangements of conductors

a) Single line (Fig. 14.40 (a)):

L = µl

2π

[
ln

(
2l

r

)
− 3

4

]
, r wire radius, l wire length, µ permeability.

b) Two-wire line, circular cross-section (Fig. 14.40 (b)):

L = µl

π

[
ln

(
d

r

)
+ 1

4

]
, r wire radius, d wire distance, l wire length.

c) Two-wire line, rectangular cross-section (Fig. 14.40 (c)):

L = µl

π

2a

a + b
, a � b, d � b

L = 2µl

π
ln

(
1+ a

a + b

)
, d � a, d � b, a, b edge lengths, l wire length,

d wire distance.

d) Ring conductor:

L = µR

[
ln

(
R

r

)
+ 1

4

]
, r conductor radius, R ring radius.

Figure 14.40: Inductances of various arrangements of conductors. (a): single line; (b): two-
wire line, circular cross-section; (c): double-wire line, rectangular cross-section; (d): ring
coil; (e): coaxial conductor; (f): cylindrical coil. r : conductor or coil radius, R: ring radius,
l: conductor or coil length, d: distance of conductors, A: coil cross-section,µ: permeability.



14.19 Self-induction 491

e) Coaxial conductor (Fig. 14.40 (e)):

L = µl

2π
ln

(
r2

r1

)
, r1 radius inner conductor, r2 radius outer conductor,

l conductor length.

f) Long cylindrical coil, ring coil l � r (Fig. 14.40 (d)):

L ≈ µ
l

An2, l cylinder length (mean ring circumference), A coil area, n turn number.

g) Short coil, one layer of windings

L = f
µ

l
An2 , f ≈ 1

1+ r/ l
l coil length, r coil radius, f coil form factor,
A coil area, n turn number.

14.19.2 Magnetic conductance
Magnetic conductance,�m , a quantity that depends on the geometry and permeability of
the magnetic circuit. The magnetic conductance of coil cores is specified by the manufac-
turer.

Henry, H, SI unit of the magnetic conductance �m ,

[�m] = H = Vs/A.

The magnetic conductance of a toroidal coil without iron is obtained from the cross-
sectional area A penetrated by the magnetic field, the mean length l of the magnetic field
lines, and the magnetic free-space permeability constant µ0,

�m = µ0 · A

l
.

The magnetic conductance of a toroidal coil with iron is obtained from the cross-sectional
area A penetrated by the magnetic flux, the mean length of the field lines, the permeability
of free space µ0 and the relative permeability µr of iron,

�m = µ0 · µr · A

l
.

Magnetic reluctance Rm , reciprocal value of the magnetic conductance,

Rm = 1

�m
.

The concept of magnetic reluctance is used in calculations of magnetic circuits.
■ A coil with an iron core of magnetic conductance �m = 5 µH carries 40 windings.

The inductance of this coil is

L = n2 ·�m = 402 · 5 · 10−6 H = 8 · 10−3 H = 8 mH .
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14.20 Mutual induction

1. Magnetic coupling

of two coils occurs if both coils are traversed by the same magnetic flux� (Fig. 14.41 and
14.42).

V

V n1

n2 V

V n1

n2

Figure 14.41: Magnetic coupling of two
coils with windings in the same direction.

Figure 14.42: Magnetic coupling of
two coils with windings in the opposite
direction.

When the magnetic flux through one of the magnetically coupled coils is changing, a
voltage pulse is induced in the other coil.

Starting from the first coil with a coil current I1 generating the magnetic flux �1, the
following notations are introduced:

Useful flux �N , the fraction of the magnetic flux that traverses the second coil:

�N = k1 ·�1.

Coupling coefficient, k1, denotes the fraction of the magnetic flux traversing the second
coil.

Stray flux, �S , the fraction of the magnetic flux that is lost:

�S = �1 −�N = (1− k1) ·�1 .

■ In a real transformer, part of the magnetic flux is lost as stray flux.

2. Mutual inductance,

M , gives the induction flux through the second coil that is caused by the current I1 in
the windings of the first coil. The mutual inductance is proportional to the product of the
number of turns n1 and n2 of the two coils, the magnetic inductance of the first coil, and
the coupling coefficient k1.

mutual inductance L2T−2MI−2

M = k1�1n1n2

Symbol Unit Quantity

M H mutual inductance
�1 H magnetic conductance
n1, n2 1 numbers of turns
k1 1 coupling coefficient
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Henry, H, SI unit of the mutual inductance M ,

[M] = H.

▲ Assuming a constant permeability, the mutual inductance of two coupled coils is
identical.

14.20.1 Transformer
1. Transformer,

converts low voltages to higher voltages, or vice versa. A transformer consists of a primary
coil and a secondary coil, both traversed by the same magnetic flux (Fig. 14.43).

Primary
winding

Secondary
winding

V
V

Figure 14.43: Transformer.

Primary winding, denotes the coil supplied by the (primary) voltage to be transformed.
Secondary winding, denotes the coil delivering the transformed (secondary) voltage.
Ideal transformer, a transformer without loss of power.
Efficiency of real transformers, better than 95 % for good transformers.

▲ If an alternating voltage is applied to the primary coil, then the magnetic flux through
this coil varies, and thereby a voltage is induced in the secondary coil.

2. Transmission ratio,

u, gives the ratio of the voltage at the primary side to the voltage at the secondary side. If
u is greater than unity, the voltage is transformed down; if u is less than unity, the voltage
is transformed up. The phase shift between the voltages is 180◦ (Lenz’s law).

For ideal transformers, the ratio of voltages is

V1

V2
= u = n1

n2
,

and the ratio of currents is

I1

I2
= n2

n1
.

▲ The ratio of the voltages at the primary coil and the secondary coil equals the recip-
rocal value of the ratio of the corresponding currents.

➤ If the voltage to be transformed contains a direct-current component, then this part is
not transmitted: the voltage induced at the secondary side is a purely alternating volt-
age. Hence, the transformer may also be used for separating the alternating-current
component from the direct-current component. This principle is used, e.g., in ampli-
fier circuits.
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3. Example: transformer

The primary coil of a transformer has n1 = 100 turns, the secondary coil has n2 = 250
turns. Let the voltage at the primary coil be V1 = 12 V. Then, the voltage at the secondary
side is

V2 = n2

n1
· V1 = 250

100
· 12 V = 30 V.

If the secondary coil is connected to a load resistance R = 300 	, the current is I2 = 0.1
A. The current in the primary coil is

I1 = n2

n1
· I2 = 250

100
· 0.1 A = 0.25 A.

14.21 Energy and energy density
of the magnetic field

1. Energy density of the magnetic field,

magnetic energy 
Wm per volume
V . If the energy is not uniformly distributed over the
volume, 
V is reduced until the energy in 
V can be considered to be spatially uniform:

wm = lim

V→0


Wm


V
= dWm

dV
.

Generally, the energy density is the integral of the field strength �H over the magnetic flux
density �B:

wm =
Bmax∫
0

�H · d�B .

If the magnetization characteristics is linear, i.e., the magnetic induction B varies linearly
with the magnetic field strength H , the energy density wm is proportional to the product
of B and H :

magnetic energy density = magnetic flux density·magnetic field strength
2 ML−1T−2

wm = 1

2
�B · �H

Symbol Unit Quantity

wm J/m3 magnetic energy density
�B Vs/m2 magnetic flux density
�H A/m magnetic field strength

The energy density is then proportional to the shadowed area in Fig. 14.44.
Hysteresis losses, the energy put in during magnetization is larger than the energy re-

leased in demagnetization. The energy difference is released as heat. The area enclosed by
the hysteresis curve is a measure of the energy loss per magnetization cycle.
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s

s

Figure 14.44: Energy density
wm of a magnetic field. (a):
linear magnetization curve,
(b): magnetization work of
a hysteresis curve, BS, HS :
saturation induction and
saturation field strength,
respectively.

2. Energy of magnetic field,

Wm , is obtained by integrating the energy density over the volume V occupied by the field.
The energy of the magnetic field in a material with linear magnetization curve is given by

Wm =
∫
V

wmdV = 1

2

∫
V

�H · �B dV .

Field energy of a coil, Wm , proportional to the square of the coil current I :

energy ∼ inductance · current2 L2T−2M

Wm = 1

2
L I 2

Symbol Unit Quantity

Wm J magnetic energy
L H inductance
I A coil current

3. Analogy between electric and magnetic quantities

Electric field Unit Magnetic field Unit

permittivity of free space permeability of free space
ε0 = 1/(µ0c2) As/(Vm) µ0 = 1/(ε0c2) Vs/(Am)

electric field strength magnetic field strength

E = −dV

ds
V/m H = dI

dl
A/m

electric voltage magnetic potential difference

VAB = −
∫ B

A
�E d�s V VAB =

∫ B
A
�H d�s A

electric current induced voltage

I = dQ

dt
A V = −n

d�

dt
V

electric charge magnetic flux
Q = ∫ I (t) dt As � = B A Vs

permittivity permeability
ε = ε0εr As/(Vm) µ = µ0µr Vs/(Am)

(continued)
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3. Analogy between electric and magnetic quantities (continued)

Electric field Unit Magnetic field Unit

relative permittivity relative permeability
εr 1 µr 1

displacement density magnetic flux density
�D = ε �E As/m2 �B = µ �H Vs/m2

electric force magnetic force
�F = Q �E N �F = Q(�v× �B) N

electric dipole moment magnetic dipole moment
�p = Q�l As m �m = � · �l Vs m

capacitance inductance

C = Q

V
F L = − V

dI/dt
H

electric energy density magnetic energy density

we = 1

2
�D�E = 1

2
ε �E2

Ws/m3 wm = 1

2
�B �H = 1

2
µ �H2

Ws/m3

electric energy magnetic energy
of a capacitor of a coil

We = 1

2
CV 2 J Wm = 1

2
L I 2 J

14.22 Maxwell’s equations

There are four Maxwell equations.
1. It follows from electrostatics that the electric field is a source field. The electric flux

through a closed surface A is equal to the charge in the enclosed volume:

Q =
∫
V

ρ dV = ε0
∮
A

�E · d�A =
∮
A

�D · d�A .

2. The fact that no magnetic monopoles have been found suggests that the magnetic
field is source-free. The total magnetic flux through a closed surface A vanishes:

∮
A

�B · d�A = 0 .

➤ This equation would need to be changed if magnetic monopoles were shown to
exist. By analogy to the electric charge, the integral over the magnetic charge
density would appear on the right-hand side.

3. It follows from the induction theorem that a change of the magnetic flux through a
conductor loop would cause a voltage at the ends of the conductor. If the ends of
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the conductor are connected, a current flows in the conductor. The induction theorem
may be written in general form as follows:

∮
s

�E · d�s = −
∫
A

d�B
dt
· d�A .

The time rate of variation of the magnetic flux density �B integrated over a surface �A
equals the line integral of the electric field strength �E along the closed path s about
this surface.

▲ Any time-varying magnetic field generates a circulating electric field
(Fig. 14.45 (b)).

4. The last of Maxwell’s equations is obtained by introducing the displacement
current:

I +
∫
A

d�D
dt
· d�A =

∫
A

(
�J+ d�D

dt

)
· d�A =

∮
s

�H · d�s .

▲ Any time-varying electric field generates a circulating magnetic field
(Fig. 14.45 (a)).

Figure 14.45: (a): time-dependent electric fields generate a circulating magnetic field, (b):
time-dependent magnetic fields generate a circulating electric field.

14.22.1 Displacement current
It follows from magnetostatics that the magnetic field is always a circulating field. The
magnetic field �H summed along a closed path s equals the current I enclosed by the path:

I =
∫
A

�J · d�A =
∮
s

�H · d�s .

The current I is the integral of the current density �J over the surface A enclosed by the
path.

1. Displacement current,

corresponds to the time rate of variation of the electric displacement density �D. In a circuit
with a capacitor, a current flows until the capacitor is charged. The current is surrounded
by a magnetic field. While the capacitor is charged, the electric field strength between the
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capacitor plates is changing. If there is a dielectric medium between the capacitor plates,
the charges in the dielectric are displaced (polarization). This displacement of charges in
turn generates a magnetic field.

Taking the displacement current into account, one arrives at the last of Maxwell’s equa-
tions:

I +
∫
A

d�D
dt
· d�A =

∫
A

(
�J+ d�D

dt

)
· d�A =

∮
s

�H · d�s .

➤ The system of Maxwell’s equations is not complete without the displacement current.

2. Maxwell’s equations in integral and differential form

Besides the integral form, the Maxwell equations may also be written in differential form.

Maxwell’s equations in differential form

meaning integral form differential form

solenoidality of magnetic field
∮

O
�B · d�A = 0 div �B = 0

displacement flux through
surface equals the enclosed
electric charge

∮
O
�D · d�A = Q div �D = ρ

Faraday’s induction law:
time-varying magnetic
fields generate an
electric field

∮
s
�E · d�s = − ∂

∂t

∫
�B · d�A rot �E = −∂ �B

∂t

Ampere’s law with Maxwell’s
supplement: time-varying
electric fields generate
a magnetic field

∮
s
�H · d�s = ∂

∂t

∫
�D · d�A+ I rot �H = ∂ �D

∂t
+ �J

14.22.2 Electromagnetic waves
From Maxwell’s equations, it follows that a conductor in which charges are oscillating
is surrounded alternating by electric and magnetic fields. The time-varying electric fields
generate magnetic fields, the time-varying magnetic fields induce electric fields.

1. Electromagnetic waves,

propagation of electric and magnetic fields in space. Electromagnetic waves are propagat-
ing solutions of Maxwell’s equations. Electromagnetic waves are transmitting energy. The
spectrum is ranging from long-wave radio waves up to light waves and γ -quanta from the
decay of atomic nuclei, or from energetic cosmic radiation (see table on p. 542).
➤ Electromagnetic waves in the range of radio waves may be generated by oscillator

circuits.

2. Wave equation and its solution

Wave equations (see p. 287) for the fields �E and �H in a vacuum (ρ = 0, �J = 0):


�E− µ0ε0
∂2 �E
∂t2
= 0 , 
 �H− µ0ε0

∂2 �H
∂t2

= 0 .
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Monochromatic solutions:
• plane wave moving along the direction �k,

�E = �E0 e−j(ωt − �k�r), �H = �H0 e−j(ωt − �k�r),
• spherical waves emerging from the point �r = 0 (upper sign) or converging to the

point �r = 0 (lower sign),

�E = �E0 e−j(ωt ∓ kr), �H = �H0 e−j(ωt ∓ kr).

The vectors �E0, �H0 specify the intensity and polarization direction of the electromagnetic
wave.

3. Speed of light in a vacuum,

c0, propagation velocity of electromagnetic waves in a vacuum, a natural constant. The
speed of light in a vacuum connects the electric free-space permittivity constant ε0 and the
magnetic free-space permeability constant µ0:

speed of light in a vacuum LT−1

c0 = 299 792 458 m/s

c0 = 1√
ε0 · µ0

Symbol Unit Quantity

c0 m/s vacuum speed of light
ε0 As/(Vm) electric free-space permittivity

constant
µ0 Vs/(Am) permeability of free space

4. Speed of light in matter,

c, propagation velocity of electromagnetic waves in matter. The electric free-space permit-
tivity constant is to be replaced by the permittivity ε = εr · ε0, and the magnetic free-space
permeability constant by the permeability µ = µr · µ0 of matter, respectively:

speed of light in matter LT−1

c = 1√
ε · µ =

1√
εr · µr

· c0

Symbol Unit Quantity

c m/s speed of light in matter
ε As/(Vm) permittivity
µ Vs/(Am) permeability
εr 1 relative permittivity
µr 1 relative permeability
c0 m/s vacuum speed of light

5. Energy law of electrodynamics

One may derive the energy law of electrodynamics from Maxwell’s equations:

∂

∂t

( �E �D+ �H�B
2

)
+ div (�E× �H) = −�J�E .

The first term on the left-hand side describes the time rate of variation of the energy density
w of the electromagnetic field,

w = we +wm =
�E �D+ �H�B

2
.
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The second term on the left-hand side is the divergence of the energy flux density �S
(Poynting vector) of the electromagnetic field,

�S = �E× �H .

The expression on the right-hand side of the equation represents the conversion of electro-
magnetic energy into other kinds of energy per unit time and unit volume.

14.22.3 Poynting vector
Poynting vector, �S, specifies magnitude and direction of the energy transport in electro-
magnetic fields. The Poynting vector at a given space point is obtained by the vector prod-
uct of the electric field strength �E and the magnetic field strength �H at this space point. The
Poynting vector has the dimension of an energy flux density.

Poynting vector = electric field strength × magnetic field strength T−3M

�S = �E× �H
Symbol Unit Quantity

�S W/m2 Poynting vector
�E V/m electric field strength
�H A/m magnetic field strength

Watt/square meter, W/m2, SI unit of the Poynting vector �S. 1 watt/square meter is the
magnitude of the Poynting vector at a space point where the electric field strength is E =
1 V/m and the magnetic field strength is H = 1 A/m and the field strength vectors are
perpendicular to each other,

[�S] =W/m2.

The energy W transported per unit time dt through a surface A is given by the integral of
the Poynting vector over the surface:

dW

dt
=
∫
A

�S · d�A .

For free electromagnetic waves:
▲ The magnitude of the Poynting vector equals half of the product of the energy density

of the electromagnetic wave and the speed of light,

S = c

2
(we + wm) , we = 1

2
�E �D , wm = 1

2
�B �H .



15
Applications in electrical engineering

1. Electric circuit,

consists of source and load, connected to each other so that an electric current may flow.
In a circuit, an electric field is generated by the source. The current flows through lines

and loads from higher potential to lower potential.
Generally, electric circuits are treated in network theory.
In network theory, the sources and loads are generalized to network elements denoted

two-terminal, four-terminal, etc., according to the number of external connection lines.
Two-terminal network, a network element with two external connections.
Active two-terminal network, a two-terminal network capable of releasing energy.
Passive two-terminal network, a two-terminal network that does not release energy.

■ An ohmic resistor is a passive two-terminal network (Fig. 15.1 (a)).
Sources of currents and voltages are active two-terminal networks.
Capacitors and inductors are mostly passive two-terminal networks. During discharg-
ing, a capacitor behaves as a source of voltage, and a coil behaves as a source of
current after the current is switched off (Fig. 15.1 (c), (b)).

V V V

Figure 15.1: Circuit symbols. (a): resistor, (b): inductor, (c): capacitor.

Two-port network, network element with four external connections, one pair of input
terminals and one pair of output terminals.

2. Voltage and current sources

Voltage sources and current sources are classified as ideal or real sources. Ideal voltage
source, supplies a voltage that is independent of the extracted current.
▲ The internal resistance of an ideal voltage source is equal to zero.

501
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Ideal current source, supplies a current that is independent of the applied voltage.
▲ The internal resistance of an ideal current source is infinite.

In general, the assumption of an ideal current source or voltage source is always an
approximation. If the finite internal resistance has to be taken into account, then real current
and voltage sources have to be used in the considerations.

Circuit symbols for ideal voltage and current sources are shown in Fig. 15.2 (a).
Direct-voltage source, supplies a voltage constant in time (direct voltage). Circuit sym-

bols are shown in Fig. 15.2 (b).
Alternating-current source, supplies a voltage varying with time (alternating volt-

age). The circuit symbol is shown in Fig. 15.2 (c).

V

Figure 15.2: Circuit
symbols. (a): ideal voltage
and current source, (b):
direct-voltage source, (c):
alternating-voltage source.

Depending on the type of source, one distinguishes direct-current circuits and
alternating-current circuits.

15.1 Direct-current circuit

1. Direct voltage and direct current

Direct voltage, electric voltage constant in time with respect to magnitude and direction.
To be distinguished from rectified alternating voltage, a voltage of time-independent

polarity, but of magnitude varying in time in a wavelike manner. Rectification is achieved
by a special circuit that usually includes diodes.

Direct current, an electric current constant in magnitude and direction.
Purely direct voltage is produced in electrochemical reactions, e.g., in accumulators and

galvanic elements.
▲ The voltage V is symbolized by an arrow pointing from the higher potential value to

the lower potential value.
▲ The current in the conductor flows from the positive pole to the negative pole of the

voltage source (definition of the current direction).
Load current definition, usual convention in electric engineering. The direction of current
and voltage are identical in the load.

Therefore, the power released in the load is positive,

PV = V · I > 0 .

Within the voltage source, the current flow is opposed to the voltage.
The power of the voltage source is therefore negative,

PQ = V · I < 0 .

2. Open-circuit voltage and terminal voltage

Open-circuit voltage, electromotive force, VQ, denotes the voltage of an ideal voltage
source.
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Terminal voltage, VC, specifies the voltage tapped at the voltage source by the external
load. It is lower than the open-circuit voltage VQ because of the finite internal resistance
of the source,

VC < VQ .

Ideal voltage source, a voltage source with a terminal voltage that is independent of the
load. Its internal resistance is equal to zero.
▲ The terminal voltage of an ideal voltage source is equal to the open-circuit voltage.

3. Network,

interconnection of electric components (Fig. 15.3) consisting of:
• branch point, a point connecting at least three feed lines,
• branch, an interconnection of components between two branch points,
• mesh, a closed chain of branches.

Branch
point

Branch

Mesh

V

Figure 15.3: Network. Mesh,
branch and branch point.

15.1.1 Kirchhoff’s laws for direct-current circuit
Kirchhoff’s laws enable the calculation of direct-current circuits.

1. Kirchhoff’s first law, or branch-point rule

▲ The sum of all currents at a branch point is equal to zero:

I1 + I2 + I3 + · · · + IN = 0 .

The currents flowing out (in) are taken to be positive (negative).
➤ The branch-point rule follows from the law of the conservation of electric charge.

2. Kirchhoff’s second law, or mesh rule

▲ The sum of all voltages around a mesh is equal to zero:

V1 + V2 + V3 + · · · + VN = 0 .

Voltages along (against) the circulation direction of the mesh are taken to have a positive
(negative) sign.
➤ The partial voltages represent the work per test charge required to move the test

charge through the corresponding sections of the mesh. The mesh rule follows from
energy conservation (see p. 446).

15.1.2 Resistors in a direct-current circuit
Kirchhoff’s laws may be used to calculate the total resistance of series connections or
parallel connections of resistors.
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1. Series connection of resistors

In a series connection of N resistors (see Fig. 15.4), each individual resistor carries the
same current I . According to the mesh rule, the voltages Vi over the individual resistors
sum to the total voltage V .

V V V

V V

tot

Figure 15.4: Series connection of resistors and equivalent circuit diagram.

▲ The total resistance of a series connection of resistors is equal to the sum of the
individual resistances.

series connection of resistors L2T−3MI−2

Rtot = R1 + R2 + · · · + RN

Symbol Unit Quantity

Rtot 	 total resistance
Ri 	 individual resistances

The N resistors Ri may be replaced by a total resistor Rtot.
Voltage divider rules

▲ The ratio of the partial voltage Vi across a single resistor to the total voltage V across
the total resistor is equal to the ratio of the single resistance Ri to the total resistance
Rtot:

Vi

V
= Ri

Rtot
.

▲ Two partial voltages Vi and V j are related to each other as the partial resistances Ri
and R j corresponding to the partial voltages:

Vi

V j
= Ri

R j
.

Voltage divider, a series connection of ohmic resistors supplied with a total voltage V . The
resistors are chosen so that the desired voltage Vi can be tapped from the resistor chain.

2. Parallel connection of resistors

In a parallel connection of N resistors (see Fig. 15.5), each of the resistors is supplied by
the same voltage V . According to the branch-point rule, the currents through the individual
resistors sum to the total current I . The N resistors Ri may be replaced by a single resistor
of total resistance Rtot.
▲ The reciprocal value of the total resistance of a parallel connection of resistors equals

the sum of the reciprocal values of the individual resistances.
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parallel connection of resistors L−2T3M−1I2

1

Rtot
= 1

R1
+ 1

R2
+ · · · + 1

RN

Gtot = G1 + G2 + · · · + G N

Symbol Unit Quantity

Rtot 	 total resistance
Ri 	 individual resistances
Gtot S total conductance
Gi S individual conductances

V V
tot

Figure 15.5: Parallel connection of resistors and equivalent circuit diagram.

Expressed in terms of conductances (reciprocal values of the resistances):
▲ The total conductance of a parallel connection of resistors is equal to the sum of

the individual conductances.
For a parallel connection of two resistors R1 and R2, the total resistance is given by

Rtot = R1 · R2

R1 + R2
.

Current division rules
▲ The ratio of the partial current Ii through a single resistor Ri to the total current I is

equal to the ratio of the conductance Gi of the single resistor to the total conductance
Gtot:

Ii

I
= Gi

Gtot
= Rtot

Ri
.

▲ Two partial currents Ii and I j are related to each other as the individual conductances
Gi and G j :

Ii

I j
= Gi

G j
= R j

Ri
.

15.1.3 Real voltage source
1. Real voltage source,

has a finite internal resistance Ri �= 0 (Fig. 15.6).
The magnitude of the current in the circuit is determined by the load resistance Ra and

the internal resistance Ri of the current source:

I = VQ

Ra + Ri
.
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V VV VQ a Q a

i

CC

Figure 15.6: Load connected to voltage source. (a): ideal voltage source, (b): real voltage
source.

▲ The terminal voltages of real voltage sources depend on the external load. The termi-
nal voltage VC is equal to the source voltage VQ multiplied by the ratio of the load
resistance Ra to the sum of load resistance and internal resistance Ri:

VC = Ra

Ra + Ri
VQ .

2. Short-circuit current and open-circuit voltage

Short-circuit current, IK, the current flowing if the external resistance Ra equals zero
(Fig. 15.7 (a)). It is given by the ratio of source voltage VQ to internal resistance Ri:

IK =
VQ

Ri
.

For a given source voltage, the short-circuit current depends only on the internal resistance
of the voltage source.

Open-circuit voltage, VL, obtained when no external load is connected to the voltage
source (Fig. 15.7 (b)). The external resistance is infinite, the current vanishes:

VL = VQ .

i

QV QV

i

LV
K

Figure 15.7: Real voltage source. (a): shorted, (b): unloaded.

M The internal resistance of a real voltage source may be determined by measuring the
short-circuit current and the open-circuit voltage if Ri is independent of the current.
Since measuring instruments have a finite resistance, both the short-circuit current
and the open-circuit voltage can be determined only approximately.
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15.1.4 Power and energy in the direct-current circuit
1. Power in the direct-current circuit

A load in a direct-current circuit supplied by a voltage V and a current I receives the
power P :

power = voltage · current L2T−3M

P = V · I

Symbol Unit Quantity

P W power
V V voltage
I A current

If R is the ohmic resistance of the load, Ohm’s law (see p. 431) yields the relations

P = R · I 2 = 1

R
· V 2 .

2. Energy in the direct-current circuit

The energy W generated or consumed in a time interval 
t is proportional to the power P
and to the length of the time interval 
t .

energy = power · time interval L2T−2M

W = P ·
t = V · I ·
t

Symbol Unit Quantity

W J energy
P W power

t s time interval
V V voltage
I A current

The energy may be expressed by Ohm’s law (see p. 431):

W = R · I 2 ·
t = 1

R
· V 2 ·
t .

In an ohmic resistance, the power is released as heat.
➤ Resistor components may be destroyed by a too-high thermal load. Therefore, in most

cases the load capacity is indicated on the resistor by a color code.
If a load is connected to a voltage source, power is extracted from the source. Part of this
source power is consumed by the load, another fraction is lost as dissipative power within
the source itself (Fig. 15.8).

i

QV
a

V

V

Q

a

Figure 15.8: The power
of a voltage source is
partly consumed by the
load (Pa), partly lost in the
finite internal resistance as
dissipative power (PV).
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3. Effective power, dissipative power and short-circuit power

Effective power, load power, Pa, the power received by the load:

Pa = Ra

(Ra + Ri)
2

V 2
Q .

Dissipative power, PV, converted by the internal resistance Ri of the voltage source:

PV = Ri

(Ra + Ri)
2

V 2
Q .

Power balance, the power of the voltage source PQ is equal to the sum of the dissipative
power PV and the effective power Pa:

PQ = Pa + PV .

Short-circuit power, PK, occurs if the external resistance Ra is equal to zero, i.e., the
terminals of the voltage source are shorted.
▲ The short-circuit power is the maximum power the voltage source can supply. The

short-circuit power is exclusively dissipative power. The consumed energy is released
as heat.

4. Efficiency,

η, the ratio of effective power Pa to the power of the voltage source PQ:

efficiency = effective power
power of voltage source

1

η = Pa

PQ

= Pa

Pa + PV

= Ra

Ra + Ri

Symbol Unit Quantity

η 1 efficiency
Pa W effective power
PQ W source power
PV W dissipative power
Ra 	 load resistance
Ri 	 internal resistance of voltage source

15.1.5 Matching for power transfer
Matching for power transfer: source and load in the direct-current circuit are chosen so
that the load receives the maximum of power from the voltage source. This happens if the
load resistance Ra equals the internal resistance Ri of the source:

Ra = Ri .

Maximum load power, Pa,max, is reached by matching for power transfer. The maximum
load power is a quarter of the short-circuit power PK:

Pa,max = 1

4

V 2
Q

Ra
= 1

4
PK .
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In the matching for load power, the efficiency is

η = Ra

2Ra
= 50 %.

15.1.6 Measurement of current and voltage

15.1.6.1 Current measurement
M Current-measuring instruments, or ammeters, are connected serially in the circuit

(series connection). In order to avoid disturbance of the current flow, the internal
resistance Ri of the instrument should be as small as possible compared with the
remaining resistances in the circuit.

Range extension: If one wished to measure a current I that is outside the range of the
measuring instrument, the range may be extended by a parallel connection of a resistor Rn,
the shunt resistor. This resistor is chosen so that the current Ii through the ammeter is still
within its range of the ammeter. The current I may be calculated from the shunt resistance
Rn and the internal resistance Ri (see p. 505):

range extension for current measurement I

I =
(

1+ Ri

Rn

)
· Ii

Symbol Unit Quantity

I A current
Ii A current through ammeter
Ri 	 internal resistance of ammeter
Rn 	 shunt resistance

15.1.6.2 Voltage measurement

M Voltage-measuring instruments, or voltmeters, are connected parallel to the two-
terminal network (parallel connection) at which the voltage has to be measured.
The internal resistance of the measuring instrument should be as high as possible
compared with the resistance of the two-terminal network.

Range extension, if one wished to measure a voltage V that is outside the range of the
voltmeter, a resistor Rn is connected to the measuring instrument (series connection). The
dropping resistor is chosen so that the voltage Vi across the voltmeter still keeps within the
designed range of the instrument. The actual voltage V can be calculated from the dropping
resistance Rn and the internal resistance Ri (see p. 504):

range extension for voltage measurement L2T−3MI−1

V =
(

1+ Rn

Ri

)
· Vi

Symbol Unit Quantity

V V voltage
Vi V voltage across voltmeter
Ri 	 internal resistance of voltmeter
Rn 	 dropping resistance

15.1.6.3 Power measurement
For power measurement as well as for resistance measurement, and for plotting
current-voltage characteristics by means of ammeters and voltmeters, the following
choices for connections exist:
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Voltage connection, the ammeter is in series with the parallel connection of voltmeter
and resistor. Since part of the current
I flows through the voltmeter, the current I through
the ammeter is higher than the current through the resistor. Therefore, voltmeters with
a high internal resistance value should be used. The voltage V is measured correctly
(Fig. 15.9).

Current connection, the voltmeter measures the voltage drop across resistor and amme-
ter. Since the ammeter has a (small) internal resistance where the voltage 
V is dropping,
the voltmeter measures a voltage V that is higher than the actual voltage across the resistor.
Therefore, ammeters with a very low internal resistance should be used. The current I is
measured correctly (Fig. 15.10).

V
V

A

V

V

V

A

Figure 15.9: Voltage connection of ammeter
and voltmeter.

Figure 15.10: Current connection of
ammeter and voltmeter.

15.1.7 Resistance measurement by means
of the compensation method

Besides the resistance measurement by ammeters and voltmeters, one can also employ
the compensation method.

Compensation method, the resistance Rx is determined by comparison with a known
resistance RN by means of a bridge circuit (Fig. 15.11).

Figure 15.11: Wheatstone’s bridge circuit. (a): circuit diagram, (b): realization by a resis-
tance wire.

M Wheatstone’s bridge: The variable resistance RN is chosen so that no current flows
through the galvanometer: a zero balancing is carried out. The bridge (G) is then
current-free (balanced).

The unknown resistance Rx then follows from the known resistance values R1, R2
and RN :
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resistance measurement by
Wheatstone’s bridge circuit

L2T−3MI−2

Rx = R1

R2
· RN

Symbol Unit Quantity

Rx 	 unknown resistance
RN 	 reference resistance
R1, R2 	 known resistances

The reference resistors are precision resistors of low tolerance that may be combined to
arbitrary resistance values.

M RN may also be chosen as fixed, and the ratio of R1 to R2 may be varied. In practice,
a resistance wire D is used. A slider is moved along the wire until the bridge becomes
current-less (balanced). Since for a uniform wire of constant thickness the resistances
R1, R2 of the intercepts are related as the corresponding lengths a, b. The unknown
resistance Rx follows from the measured lengths as

Rx = R1

R2
· RN = a

b
· RN .

➤ For a precision measurement, the value of the reference resistance RN should not
differ too much from the unknown value Rx .

15.1.8 Charging and discharging of capacitors
Voltage at a capacitor, proportional to the time integral of the charging or discharging
current I (t):

VC (t) = Q

C
= 1

C

∫
I (t)dt .

Time constant, τ , the time interval needed to reduce the capacitor voltage to 1/e ≈ 1/3 of
the original value. The time constant is the product of the capacitance C of the capacitor
and the resistance value R of the resistor through which the capacitor is being charged or
discharged:

τ = R · C .

■ A capacitor of capacitance C = 1 mF is discharged through a resistor of resistance
R = 1 k	. The time constant is

τ = 1 k	 · 1 mF = 1 s .

1. Charging of capacitor

A capacitor of capacitance C is connected to the voltage source V0 through a resistor R.
According to the mesh rule, the voltages across the resistor VR(t) and the capacitor VC (t)
sum to the voltage V0:

V0 = VC (t)+ VR(t) = 1

C

∫
I (t)dt + I (t) · R .
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From there follows the differential equation for the charging current:

dI (t)

dt
= − 1

τ
I (t) , I (0) = V0

R
= I0 .

The charging current, I (t), and the capacitor voltage, VC (t), are given by
(Fig. 15.12 (a)):

I (t) = I0 · e−t/τ , VC (t) = V0 ·
(

1− e−t/τ
)
, τ = R · C .

▲ The charging current decays exponentially from the initial value I0 = V0/R with the
time constant τ .

▲ The voltage at the capacitor increases with the same time constant τ up to the source
voltage V0.
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Figure 15.12: Charging and discharging of a capacitor. (a): circuit diagram, S: switch, (b):
time dependence of voltage and current on charging, (c): circuit diagram, switch set to
discharge, (d): time dependence of voltage and current on discharging. The time constant
is τ = R · C .

2. Discharging of capacitor

A capacitor of capacitance C is discharged through a resistor R (Fig. 15.12 (b)). According
to the mesh rule, the voltages across the capacitor VC (t) and the resistor VR(t) sum to zero:

0 = VC (t)− VR(t) = − 1

C

∫
I (t)dt − I (t) · R .

This leads to the differential equation for the discharge current:

dI (t)

dt
= − 1

τ
I (t) , I (0) = V0

R
= I0 .

The discharge current, I (t), and the capacitor voltage, VC (t), are then (Fig. 15.12 (b)):

I (t) = I0 · e−t/τ , VC (t) = V0 · e−t/τ , τ = R · C .
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▲ The discharge current decreases exponentially from the initial value I0 = V0/R to
zero, with the time constant τ .

▲ The voltage across the capacitor decreases exponentially with the same time constant
τ from the initial value V0 to zero.

15.1.9 Switching the current on and off
in a RL-circuit

The voltage across the coil is proportional to the time variation of the current through
it I (t):

VL (t) = L
dI (t)

dt
.

Time constant, τ , the time interval during which the coil current decreases to 1/e ≈ 1/3
of the initial value. The time constant is the quotient of the coil inductance L and the
resistance R of the resistor passed by the starting current or breaking current:

τ = L

R
.

■ A coil of inductance L = 100 mH is shorted through a resistor of resistance R =
10 	. The time constant is then:

τ = L

R
= 100 mH

10 	
= 0.01 s .

1. Switching the current on

A coil of inductance L in series with a resistor R is connected to a voltage source V0.
According to the mesh rule, the negative coil voltage VL (t) and the voltage across the
resistor VR(t) sum to the voltage V0:

V0 = VL (t)+ VR(t) = L
dI (t)

dt
+ R · I (t) .

From there follows the differential equation

dI (t)

dt
= − 1

τ
I (t)+ V0

L
, I (0) = 0 .

Hence, the coil current I (t) and the coil voltage VL (t) are

I (t) = I0 ·
(

1− e−t/τ
)
, VL (t) = V0 · e−t/τ , τ = L

R
.

▲ The coil current I (t) increases asymptotically with the time constant τ up to the
magnitude I0 = V0/R.

▲ The coil voltage VL (t) decreases exponentially with the same time constant τ from
its initial value V0 to zero.
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2. Switching the current off

After switching off the voltage source, a coil of inductance L is shorted through a re-
sistance R. According to the mesh rule, the coil voltage VL (t) equals the voltage at the
resistor VR(t):

0 = VL (t)+ VR(t) = L
dI (t)

dt
+ R · I (t) .

Hence, the coil current I (t) obeys the differential equation

dI (t)

dt
= − 1

τ
I (t) , I (0) = I0 .

For the coil current I (t) and the coil voltage VL (t) then follows:

I (t) = I0 · e−t/τ , VL (t) = V0 · e−t/τ , τ = L

R
.

▲ The coil current decreases exponentially with a time constant τ from its original value
I0 = V0/R to zero.

▲ The coil voltage decreases with the same time constant τ from its original value V0
to zero.

➤ When switching off a coil current, the occurrence of high voltages may lead to spark-
ing at the switch contacts and may destroy electronic switching elements.

15.2 Alternating-current circuit

Alternating-current engineering deals with the behavior of resistors, capacitors and induc-
tors when an alternating current is flowing through them or an alternating voltage is applied
to them.

Alternating quantities may be represented by complex numbers that facilitate the cal-
culation of physical quantities in alternating-current circuits. They may be represented by
phasors in the complex plane: the phasor diagram.

15.2.1 Alternating quantities
Alternating quantity, a quantity with a time dependence given by a periodic function.

1. Characteristics of alternating quantities

Instantaneous value, momentary value, the value of an alternating quantity at an arbi-
trary time t .

Period, T , the time interval in which the alternating quantity x repeats all values in the
same time sequence. The period is T if for any time t ,

x(t + T ) = x(t) .

Frequency, f , reciprocal value of the period T ,

f = 1

T
.

The simplest periodic functions are the sine function and the cosine function.
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2. Sinusoidal alternating quantities

An alternating quantity with a sinusoidal time dependence is completely described by spec-
ifying:
• amplitude, peak value, x̂ , maximum value the alternating quantity x may take.
• angular frequency, angular velocity, 2π times the frequency: ω = 2π f .
• zero phase angle, phase angle at the time t = 0: ϕ0.

3. Alternating voltage and alternating current

Alternating voltage v(t), described by

v(t) = v̂ sin(ωt + ϕv) .

v̂ denotes the amplitude, ϕv the zero phase angle of the alternating voltage (Fig. 15.13).
Alternating current i(t), described by

i(t) = î sin(ωt + ϕi ) .

î denotes the amplitude, ϕi the zero phase angle of the alternating current.

v

v

v
Figure 15.13: Period and
zero phase angle of the sine
function.

More complicated periodic functions may be constructed by superposition (linear com-
bination) of sine and cosine functions (Fourier series).

15.2.1.1 Time average of periodic functions

1. Mean values of alternating quantities

Mean value, characterizes an alternating quantity x(t) by a value, without specifying the
detailed time behavior.

Several possibilities of averaging:

mean value or arithmetic mean value x = 1

T

T∫
0

x(t) dt

rectified value or absolute mean value |x | = 1

T

T∫
0

|x(t)| dt

effective value or root-mean-square value X =

√√√√√ 1

T

T∫
0

x(t)2 dt
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Crest factor, ratio of amplitude to effective value:

ks = x̂

X
.

Form factor, ratio of effective value to absolute mean value:

kf = X

|x | .

2. Mean values of sinusoidal alternating quantities

For a sinusoidal alternating quantity, the mean values, crest factor and form factor are given
by:

Mean value Absolute mean value Effective value Crest factor Form factor

x = 0 |x | = 2

π
x̂

≈ 0.637 x̂

X = 1√
2

x̂

≈ 0.707 x̂

ks = 1.414 kf = 1.111

Distortion factor, specifies the deviation of an alternating quantity from the sinusoidal
shape.

3. Thermal load of ohmic components

In order to calculate the thermal load of ohmic components for a sinusoidal alternating
voltage, the effective values of voltage and current have to be taken into account. At an
ohmic resistor, current and voltage are in phase. The fraction with frequency zero in the
Fourier expansion of the absorbed power is

P = v̂ · î
2
= v̂2

2R
= V 2

R
= I 2 · R .

The power consumption corresponds to that of a resistor in a direct-current circuit if the
applied direct voltage corresponds to the effective value of the alternating voltage, and the
equivalent direct current corresponds to the effective value of the alternating current.

4. Measurement of alternating voltage and alternating current

M Alternating current and alternating voltage can be measured by means of moving-
coil instruments with a preconnected rectifier. Usually the measuring instrument is
calibrated to display the effective value of a sinusoidal quantity. For non-sinusoidal
alternating quantities, the displayed value has to be converted to the effective value
by correction factors.

■ The voltage common in domestic appliances in the U.S. is measured by means of a
moving-coil voltmeter and is equal to V = 117 V. The amplitude of the alternating
voltage is

v̂ = √2 · V = √2 · 117 V = 165 V .
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15.2.2 Representation of sinusoidal quantities
in a phasor diagram

▲ Alternating quantities with a sinusoidal time dependence may be represented in a
phasor diagram.

If a point P moves in a x-y coordinate system along a circle of radius r about the origin
in the mathematically positive sense and with a constant angular velocity, the projection
of this point onto the y-axis has a sine-like time behavior, the projection onto the x-axis a
cosine-like time behavior (Fig. 15.14).

Mathematically positive sense of rotation, counterclockwise rotation.

1. Phasor,

vector from coordinate origin to the point P in the complex plane, position vector of P .
The phasor is fully determined by giving its coordinates a with respect to the x-axis and b
with respect to the y-axis of the reference system.
▲ The phasor is represented by a complex number in the complex number plane.

Complex plane Real plane

v

v

v

v

Figure 15.14: Relation between rotating phasor in the complex plane and sine function.

2. Cartesian representation of a complex number,

a pair of real numbers a and b written in the form

z = a + jb

(Fig. 15.15 (a)); j denotes the imaginary unit, often also denoted as i . Real and imaginary
parts of the complex number may be considered Cartesian coordinates of a point P in the

Figure 15.15: Representations of a complex number. (a): Cartesian representation in the
complex number plane, (b): exponential representation.
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(x, y)-plane, P = P(a, b). A real number x is a complex number z with the imaginary
part zero,

z = x + j · 0 .
■ The complex number 3+ j · 4 has real part a = 3 and imaginary part b = 4.
A complex number may be viewed as a vector in the two-dimensional plane. The product
of two complex numbers is again a complex number. The division operation may be done
with complex numbers.

3. Exponential representation of complex numbers

Complex exponential function, represented by Euler’s formula:

Euler’s formula

e jϕ = cosϕ + j sinϕ

Symbol Quantity

ϕ phase
j = √−1 imaginary unit

➤ The complex exponential function is 2π j-periodic.
Exponential representation of complex numbers (Fig. 15.15 (b)):

z = r · e jϕ .

r gives the length of the phasor, the phase ϕ is the angle between the positive x-axis and
the phasor, in the positive sense of rotation.

4. Conversion between the representations of complex numbers

The following relations hold for the conversion between the representations of complex
numbers:

a = r cosϕ, b = r sinϕ ,

and

r =
√

a2 + b2, ϕ = arctan

(
b

a

)
.

5. Phasor diagram and phasor characteristics

Phasor diagram, representation of phasors in the complex plane.
▲ The length of a phasor represents the amplitude of the corresponding alternating

quantity.
Phasor, determined by:
• the physical quantity represented by the phasor. The formula symbol is written next

to the phasor;
• the magnitude of the physical quantity, the length of the phasor. One selects a repre-

sentation in terms of either peak values or effective values;
• the zero phase angle ϕ0, the orientation of the phasor with respect to the real axis at

the time t = 0;
• the angular velocity ω of the phasor, the angular frequency of the represented quan-

tity.
➤ Phasor quantities are represented by underlined symbols.
■ A current phasor i(t) is assigned to an alternating current i(t).
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6. Transformation of an alternating quantity into a phasor

Transformation between an alternating quantity and its phasor in the complex plane: the
sine function describing the alternating quantity is viewed as the imaginary part of a com-
plex number whose real part is a cosine function of equal phase and equal amplitude:

x(t) = x̂ sin(ωt + ϕ0) −→ x(t) = x̂ cos(ωt + ϕ0)+ jx̂ sin(ωt + ϕ0)

= x̂ e j(ωt+ϕ0).

■ An alternating current

i(t) = î sin(ωt + ϕi )

is mapped onto the phasor quantity

i(t) = î e j (ωt+ϕi ) .

■ An alternating voltage

v(t) = v̂ sin(ωt + ϕv)

is mapped onto the phasor quantity

v(t) = v̂ e j (ωt+ϕv) .

A calculation using complex phasors is often simpler and more transparent than the treat-
ment with angular functions (see below).

15.2.3 Calculation rules for phasor quantities
1. Addition of phasor quantities

Phasor addition, corresponds to the addition of complex numbers. The real parts and
imaginary parts of the phasors are added separately:

addition of two complex numbers

z1 + z2 = (a1 + j · b1)+ (a2 + j · b2)

= (a1 + a2)+ j · (b1 + b2)

= z

Symbol Quantity

z1 = a1 + j · b1 first summand

z2 = a2 + j · b2 second summand

z sum

■ The sum of two phasors represented by the complex numbers z1 = 3 + j · 4 and
z2 = 2+ j · 5, is

z = z1 + z2 = (3+ j · 4)+ (2+ j · 5) = (3+ 2)+ j · (4+ 5) = 5+ j · 9 .

The resultant phasor in the complex domain has real part a = 5 and imaginary part
b = 9.
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2. Subtraction of phasor quantities

Phasor subtraction, corresponds to the subtraction of complex numbers. The subtrac-
tion is done by component for the real part and the imaginary part, respectively:

subtraction of two complex numbers

z1 − z2 = (a1 + j · b1)− (a2 + j · b2)

= (a1 − a2)+ j · (b1 − b2)

= z

Symbol Quantity

z1 = a1 + j · b1 minuend

z2 = a2 + j · b2 subtrahend

z difference

■ From a phasor represented by the complex number z1 = 3 + j · 4, the phasor z2 =
2+ j · 5 is subtracted. The resulting phasor z is represented by

z = z1 − z2 = 3+ j · 4− (2+ j · 5) = (3− 2)+ j · (4− 5) = 1− j .

The resulting phasor has real part a = 1 and imaginary part b = −1.

3. Multiplication of phasor quantities

Phasor multiplication, corresponds to the multiplication of complex numbers. The mul-
tiplication of two phasor quantities may be done more easily in the exponential represen-
tation. Here the phases of the complex numbers are summed, whereas the magnitudes are
multiplied:

multiplication of two complex numbers

z1 · z2 = r1 e jϕ1 · r2 e jϕ2

= r1 · r2 e j(ϕ1+ϕ2)

= z

Symbol Quantity

z1 = r1 e jϕ1 first factor

z2 = r2 e jϕ2 second factor

z product

4. Division of phasor quantities

Phasor division, corresponds to the division of complex numbers.
As with the multiplication, the division of two phasor quantities may be done more easily

in the exponential representation. The phases of the complex numbers are subtracted from
each other, and the magnitudes are divided by each other:

division of two complex numbers

z1
z2
= r1 e jϕ1

r2 e jϕ2

= r1

r2
e j(ϕ1−ϕ2)

= z

Symbol Quantity

z1 = r1 e jϕ1 dividend

z2 = r2 e jϕ2 divisor

z quotient
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5. Complex conjugation of a phasor quantity

Complex-conjugate phasor z∗ of a phasor z, has the same magnitude, but the opposite
phase:

z∗ = |z| · e−jϕ for z = |z| · e jϕ .

In the Cartesian representation, the complex-conjugate phasor reads

z∗ = a − jb for z = a + jb .

▲ The complex-conjugate phasor is obtained by reflection of the original phasor at the
real axis.

Complex conjugation applied twice to a phasor quantity (reflection of the reflected image)
yields the original phasor quantity:

(z∗)∗ = z .

6. Inversion of a phasor quantity

Inversion, special case of complex division. If the original phasor z has the length |z|, then
the inverted phasor 1/z has the length 1/|z|. As in complex conjugation, the sign of phase
changes:

1

z
= z∗
|z|2 .

In exponential representation,

1

z
= 1

r
e−jϕ for z = r e jϕ .

In Cartesian representation,

1

z
= a − jb

a2 + b2
for z = a + jb .

■ If the complex resistance Z is given, the complex conductance Y is obtained by in-
version,

Y = 1

Z
= Z∗
|Z |2 ,

and vice versa.

7. Differentiation of phasor quantities

Differentiation of phasors corresponds to the differentiation of complex functions. The
differentiation is done with respect to the time.

Let a phasor quantity z be given by the magnitude z, the zero phase angle ϕ, and the
angular frequency ω:

z(t) = z e j(ωt+ϕ) .
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Then, the time derivative reads

dz

dt
= jωz e j(ωt+ϕ) = jωz = ω z e j(ωt+ϕ+ π2 ) .

▲ The time derivative corresponds to a rotation combined with stretching. In the com-
plex phasor plane, the rotation proceeds counterclockwise by an angle π/2.

8. Integration of phasor quantities

Integration of phasors, corresponds to the integration of complex functions. The integra-
tion is done with respect to the time.

Let a phasor quantity z be given by the magnitude z, the zero phase angle ϕ, and the
angular frequency ω:

z(t) = z e j(ωt+ϕ) .

Then, the integral over the time reads

∫
z(t)dt = 1

jω
· z e j(ωt+ϕ) = 1

jω
z = 1

ω
z e j(ωt+ϕ− π2 ) .

▲ The integration corresponds to a rotation-stretching. The rotation proceeds in the
complex phasor plane by the angle −π/2.

15.2.4 Basics of alternating-current engineering

15.2.4.1 Complex resistance

1. Definition of the complex resistance

Complex resistance, Z , determined by:
• the ratio of the amplitudes of voltage and current, or the ratio of the effective values

of voltage and current, respectively, and
• the phase shift of the voltage against the current.

complex resistance = complex voltage
complex current

L2T−3MI−2

Z = v(t)
i(t)

Symbol Unit Quantity

Z 	 complex resistance
v(t) V complex voltage
i(t) A complex current

Ohm, 	, SI unit of the complex resistance Z ,

[Z ] = 	.

▲ If the voltage and the current have the same time dependence, then the complex re-
sistance is time-independent.
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2. Cartesian form of the complex resistance,

Z , composed of:
• resistance, resistive part of impedance, R, the real part of the complex resistance,
• reactive impedance, reactance, X , the imaginary part of the complex resistance.

complex resistance, Cartesian form L2T−3MI−2

Z = R + jX

Symbol Unit Quantity

Z 	 complex resistance
R 	 resistance
X 	 reactive impedance

▲ The resistance equals the ohmic resistance of the circuit or two-terminal network.

3. Exponential form of the complex resistance,

Z , expressed by:
• Apparent resistance, impedance, Z , absolute value of the complex resistance,

Z = ∣∣Z ∣∣ = √R2 + X2 .

• Phase angle, ϕZ , arc-tangent of the ratio of reactive resistance X to resistance R,

ϕZ = arctan
X

R
.

complex resistance, exponential form L2T−3MI−2

Z = Z · e jϕZ

Symbol Unit Quantity

Z 	 complex resistance
Z 	 impedance
ϕZ 1 phase angle

The impedance Z gives the ratio of the voltage amplitude v̂ and the current amplitude î (or
the ratio of the effective values V and I ), without taking into account the phase shift:

Z = v̂
î
= V

I
.

The phase angle ϕZ is the difference between the zero phase angles of the voltage, ϕv , and
the current, ϕi :

ϕZ = ϕv − ϕi .

4. Resistance phasor,

representation of the complex resistance in the complex resistance plane (Fig. 15.16).
■ Let the complex resistance have the value Z = (50+ j · 22) 	. Then, the impedance

is

Z =
√

R2 + X2 =
√

502 + 222 	 = 54.6 	,
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Figure 15.16: Representation
of the complex resistance.
R: resistance, X : reactive
impedance, Z : impedance.

and the phase angle is

ϕZ = arctan
X

R
= arctan

22 	

50 	
= 23.7◦ .

15.2.4.2 Ohm’s law in the complex domain
▲ The complex current i through an ohmic resistor is proportional to the complex volt-

age v. The proportionality factor is the ohmic resistance (resistance) R.

complex voltage = ohmic resistance · complex current L2T−3MI−1

v(t) = R · i(t)
Symbol Unit Quantity

v(t) V complex voltage
R 	 ohmic resistance
i(t) A complex current

▲ For an ohmic resistor, current and voltage are in phase:

ϕZ = ϕv − ϕi = 0 .

15.2.4.3 Complex conductance

1. Complex conductance,

Y , determined by:
• the ratio of the amplitudes of current and voltage (or the ratio of the effective values),

and
• the phase shift between current and voltage.
The complex conductance is the reciprocal value of the complex resistance,

Y = 1

Z
= Z∗

Z2
= i(t)

v(t)
.

Z∗ is the complex-conjugate of the complex resistance.

2. Cartesian form of the complex conductance,

Y , composed of:
• conductive part of admittance, conductance, G, real part of the complex conduc-

tance, and
• susceptive part of admittance, susceptance, B, imaginary part of the complex con-

ductance.
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complex conductance, Cartesian form L−2T3M−1I2

Y = G + jB

Symbol Unit Quantity

Y S complex conductance
G S conductance
B S susceptance

Siemens, S, SI unit of the complex conductance Y ,

[Y ] = S.

3. Exponential form of the complex conductance,

consists of:
• admittance, Y , magnitude of the complex conductivity:

Y = ∣∣Y ∣∣ = √G2 + B2 ,

• phase angle, ϕY , arc-tangent of the ratio of the susceptance B and the conduc-
tance G:

ϕY = arctan
B

G
.

complex conductance, exponential form L−2T3M−1I2

Y = Y · e jϕY

Symbol Unit Quantity

Y S complex conductance
Y S admittance
ϕY 1 phase angle

The admittance Y gives the ratio of the current amplitude î and the voltage amplitude v̂ (or
the ratio of the effective values of current I and voltage V ), without taking into account
the phase shift:

Y = î

v̂
= I

V
.

Phase shift, ϕY , the difference of the zero phase angles of the current ϕi and the voltage
ϕv :

ϕY = ϕi − ϕv .

4. Phasor of the conductance,

representation in the complex conductance plane (see Fig. 15.17).
The complex conductance is the reciprocal quantity of the complex resistance. From

there follows:
▲ A positive susceptance B corresponds to a negative reactance X .
▲ The phase of the complex conductance equals the negative value of the phase of the

complex resistance.
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Figure 15.17: Representation
of the complex conductance.

▲ The admittance Y is the reciprocal value of the impedance Z .
■ Let the complex conductance be Y = (12+ j · 27) S. Then, the admittance is

Y =
√

G2 + B2 =
√

122 + 272 S = 29.5 S ,

and the phase shift is

ϕY = ϕi − ϕv = arctan
B

G
= arctan

27 S

12 S
= 66◦ .

Hence, the current leads the voltage by 66◦.

15.2.4.4 Power in the alternating-current circuit

1. Power in the alternating-current circuit;

p(t), product of the current i(t) and the voltage v(t):

power = current · voltage L2T−3M

p(t) = i(t) · v(t)
Symbol Unit Quantity

p(t) W power
i(t) A current
v(t) V voltage

▲ In general, the power in the alternating-current circuit is time-dependent.
For a sinusoidal current of angular frequency ω,

i(t) = î sinωt

and a sinusoidal voltage out of phase by ϕ,

v(t) = v̂ sin(ωt + ϕ)

the power consists of a time-independent part and a time-dependent part pulsating with
twice the angular frequency:

p(t) = V · I · cosϕ − V · I · cos(2ωt + ϕ) ,

with the effective values of voltage and current, V = v̂/√2; I = î/
√

2, respectively.
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2. Real power and reactive power

Real power, P , denotes the time-independent part of the power for sinusoidal currents and
voltages:

P = V · I cos ϕ .

Power factor, cosϕ, cosine of the phase shift ϕ of current and voltage.
■ For an ohmic resistance, cosϕ = 1; the real power is

P = V · I .

For a pure inductance or capacitance, cos ϕ = 0; the real power vanishes:

P = 0 .

Reactive power, Q, the time-dependent part of the power. For sinusoidal currents and
voltages, one has:

Q = V · I · sinϕ .

Reactive power factor, sinϕ, sine of the phase shift ϕ of current and voltage.
Apparent power, S, product of the effective values of current I and voltage V :

S = V · I =
√

P2 + Q2.

15.2.4.5 Complex power

1. Complex power,

S, product of the complex voltage v and the complex-conjugate i∗ of the complex current i :

S = v · i∗.

The complex power consists of:
• real power, P , real part of the complex power,
• reactive power, Q, imaginary part of the complex power.

2. Cartesian form of the complex power

complex power, Cartesian form L2T−3M

S = P + jQ

Symbol Unit Quantity

S W complex power
P W real power
Q W = var reactive power

Watt, W, SI unit of the complex power S,

[S] =W.
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➤ Although in the SI system the watt is assigned to power, the following units are also
used:

voltampere-reactance, var, unit of the reactive power Q,

[Q] = var = V · A ,
voltampere, VA, unit of the apparent power S,

[S] = VA = V · A .

3. Exponential form of the complex power

complex power, exponential form L2T−3M

S = S e jϕS

Symbol Unit Quantity

S W complex power
S W = VA apparent power
ϕS 1 phase angle

Power factor, cosϕS , denotes the ratio of the real power P to the apparent power S:

cosϕS = P

S
.

■ For electromotors, the phase angle ϕS , and thus the power factor cosϕS , depend on
the load. The power factor specified by the manufacturer holds only for full load.

15.2.4.6 Kirchhoff’s laws for alternating-current circuits

1. Branch-point rule in the complex domain,

the sum of all complex currents i1 . . . in flowing to and from a branch point is equal to
zero:

i1 + i2 + i3 + · · · + in = 0 .

If the current phasors are added at a branch point like two-dimensional vectors, one gets
a closed polygon loop in the phasor diagram (Fig. 15.18 (b)).

2. Mesh rule in the complex domain,

the sum of all complex voltages along a network mesh is equal to zero:

v1 + v2 + v3 + · · · + vn = 0 .

If the phasors for the voltages along a mesh are added like vectors, the result is a closed
polygon loop in the phasor diagram (Fig. 15.18 (a)).

15.2.4.7 Series connection of complex resistances
The same current flows through all circuit components (Fig. 15.19).
▲ The complex total resistance is equal to the sum of the complex individual resis-

tances:

Z = Z1 + Z2 + Z3 + · · · + Zn .
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V V

V

V

V

V

Figure 15.18: Addition of phasors. (a): voltage polygon for a mesh, (b): current polygon
for a branch point.

V
V V V

V
n

n

Figure 15.19: Series connection of complex resistances.

15.2.4.8 Parallel connection of complex resistances
The same voltage is applied to all circuit elements (Fig. 15.20).
▲ The complex conductance is equal to the sum of the complex individual conduc-

tances:

Y = Y 1 + Y 2 + Y 3 + · · · + Y n .

V Vn

n

Figure 15.20: Parallel connection of complex resistances.

15.2.5 Basic components in the
alternating-current circuit

The two-terminal networks (see p. 501) resistor, capacitor and inductor show a charac-
teristic dependence of the complex resistance in an alternating-current circuit as function
of the frequency. The complex resistances of the capacitor and the inductor depend on the
frequency of the alternating voltage.

Locus, represents the dependence of a complex quantity on the frequency in the complex
plane.
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The complex resistance may be easily calculated in this representation. The phasor di-
agram immediately displays the phase shift between current and voltage as the angle be-
tween the current phasor and the voltage phasor.

15.2.5.1 Ohmic resistor
The complex resistance Z of an ohmic resistor is real and independent of the frequency of
the alternating current.

The locus of the complex resistance is restricted to one point in the complex resistance
plane corresponding to the value of the ohmic resistance R (Fig. 15.21 (b)).
▲ The reactance X vanishes.

Complex resistance Impedance Resistive part Reactive part

Z = R Z = R R X = 0

The complex conductance Y of an ohmic resistor is also real and independent of the
frequency.
▲ The susceptance B vanishes.

Complex conductance Admittance Conductive part Susceptive part

Y = 1

R
Y = 1

R
G = 1

R
B = 0

▲ For an ohmic resistor, current and voltage are in phase. The phase of the complex
resistance is zero:

ϕZ = ϕv − ϕi = 0 .

In the phasor diagram (Fig.15.21 (c)), the current phasor and the voltage phasor are point-
ing in the same direction.
▲ The complex power of an ohmic resistor is real.

Complex power Apparent power Real power Reactive power

S = V · I S = V · I P = V · I Q = 0

v

v

Figure 15.21: Ohmic resistor in an alternating-current circuit. (a): circuit symbol, (b): locus
of the complex resistance, (c): phasor diagram for current and voltage.
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15.2.5.2 Capacitor
Capacitor in the alternating-current circuit, the voltage v(t) is the time integral of the
current i(t) flowing into the capacitor, divided by the capacitance C :

v(t) = 1

C

t∫
0

i(t ′) dt ′ .

1. Complex resistance of a capacitor

The complex resistance ZC of a capacitor of capacitance C (Fig. 15.22 (b)) is purely
imaginary and inversely proportional to the frequency f = ω/(2π).
▲ The reactance is negative.
▲ The resistance R vanishes.
The impedance is inversely proportional to the frequency f and the capacitance C ; for low
frequencies, it tends to infinity.

Complex resistance Impedance Resistance Reactance

Z = − j

ωC
Z = 1

ωC
R = 0 X = − 1

ωC

■ A capacitor connected to a direct voltage, i.e., an alternating voltage of frequency
f = 0 Hz, has an infinitely high resistance.

➤ A capacitor connected to a high-frequency alternating voltage behaves like a short-
circuit.

In the phasor diagram (Fig. 15.22 (c)), the current phasor and the voltage phasor are per-
pendicular to each other.
▲ The current leads the voltage by 90◦:

ϕZ = ϕv − ϕi = −90◦ .

v
v

Figure 15.22: Capacitor in an alternating-current circuit. (a): circuit symbol, (b): locus of
the complex resistance, (c): phasor diagram for current and voltage.

2. Complex conductance of a capacitor

The complex conductance Y C is purely imaginary and proportional to the frequency f =
ω/(2π) and to the capacitance C .
▲ The conductance vanishes.
▲ The susceptance is positive.
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The admittance is proportional to the frequency f and the capacitance C .

Complex conductance Admittance Conductance Susceptance

Y = jωC Y = ωC G = 0 B = ωC

▲ The complex power at the capacitor is purely imaginary.
▲ The reactive power is negative.

Complex power Apparent power Real power Reactive power

S = −jV · I S = V · I P = 0 Q = −V · I

15.2.5.3 Inductor
Inductor in an alternating-current circuit, the voltage v(t) is equal to the product of the
inductance L and the time derivative of the current i(t):

v(t) = L
di(t)

dt
.

1. Complex resistance of an inductor

The complex resistance Z L (Fig. 15.23 (b)) of an inductor of inductance L is purely imag-
inary and depends on the frequency.
▲ The resistance R vanishes.
▲ The reactance X is positive.

The impedance ZL is proportional to the frequency f and vanishes for f = 0 Hz.

Complex resistance Impedance Resistance Reactance

Z = jωL Z = ωL R = 0 X = ωL

■ An ideal coil (R = 0) connected to a direct voltage is a short-circuit.
➤ A coil connected to a high-frequency alternating voltage has an infinitely high

impedance.
In the phasor diagram (Fig. 15.23 (c)), the current phasor and the voltage phasor are per-
pendicular to each other.
▲ The voltage leads the current by 90◦:

ϕZ = ϕv − ϕi = 90◦ .

v

v

Figure 15.23: Inductor in an alternating-current circuit. (a): circuit symbol, (b): locus of
the complex resistance, (c): phasor diagram for current and voltage.
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2. Complex conductance of an inductor

The conductance Y L is purely imaginary and inversely proportional to the frequency f =
ω/(2π), as well as to the inductance L:
▲ The conductance vanishes.
▲ The susceptance is negative.
The admittance is inversely proportional to the frequency f = ω/(2π) and to the induc-
tance L:

Complex conductance Admittance Conductance Susceptance

Y = − j

ωL
Y = 1

ωL
G = 0 B = − 1

ωL

▲ The complex power at the inductor is purely imaginary.
▲ The reactive power is positive.

Complex power Apparent power Real power Reactive power

S = jV · I S = V · I P = 0 Q = V · I

15.2.5.4 Complex resistances of the simplest
two-terminal networks

Quantity Resistor R Capacitor C Inductor L

Z = R + jX R −j
1

ωC
jωL

R R 0 0

X 0 − 1

ωC
ωL

Z =
√

R2 + X2 R
1

ωC
ωL

φZ = arctan (X/R) 0 −π/2 π/2

Y = G + jB
1

R
jωC −j

1

ωL

G
1

R
0 0

B 0 ωC − 1

ωL

Y =
√

G2 + B2 1

R
ωC

1

ωL

φY = arctan (B/G) 0 π/2 −π/2
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15.2.6 Series connection of resistor and capacitor
Series connection of a resistor and a capacitor (Fig. 15.24).

v

v

v

(a) (b) (c)

Figure 15.24: Series connection of a resistor and a capacitor in an alternating-current cir-
cuit. (a): circuit symbol, (b): locus of the complex resistance, (c): current-voltage phasor
diagram.

The complex resistance is calculated according to the mesh rule: the complex total volt-
age equals the sum of the complex individual voltages of the resistor and capacitor.

The complex total resistance Z is (see Fig. 15.24 (b)):

resistance for series connection of R and C L2T−3MI−2

Z = R − j

ωC

Symbol Unit Quantity

Z 	 complex resistance
R 	 ohmic resistance
ω s−1 angular frequency
C F capacitance
j 1 imaginary unit

The resistive part of the impedance equals the ohmic resistance value R.
The reactive part of the impedance equals the reactive part of the capacitance C :

X = − 1

ωC
.

The impedance of the series connection is

Z =
√

R2 +
(

1

ωC

)2
.

▲ The phase shift (see Fig. 15.24 (c)) is between 0◦ and −90◦. For high frequencies, it
approaches 0◦, and for low frequencies it approaches −90◦,

ϕZ = ϕv − ϕi = − arctan
1

ωRC
.
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15.2.7 Parallel connection of a resistor
and a capacitor

Parallel connection of a resistor and a capacitor (Fig. 15.25).
The complex resistance is calculated according to the branch-point rule: the complex

total current equals the sum of the complex individual currents through the resistor and
capacitor.

The complex total conductance Y is (see Fig. 15.25 (b)):

conductance for parallel connection of R and C L−2T3M−1I2

Y = 1

R
+ jωC

Symbol Unit Quantity

Y S complex conductance
R 	 ohmic resistance
ω s−1 angular frequency
C F capacitance
j 1 imaginary unit

The conductive part of the admittance equals the reciprocal value of the ohmic resis-
tance R:

G = 1

R
.

The susceptive part of the admittance equals the susceptance of the capacitor C :

B = ωC .

The admittance of the parallel connection is

Y =
√

1

R2
+ (ωC)2 .

▲ The phase shift (see Fig. 15.25 (c)) is between 0◦ and −90◦. For high frequencies, it
approaches −90◦, for low frequencies, 0◦,

ϕ = ϕv − ϕi = − arctanωRC .

v v v

(a) (b) (c)

Figure 15.25: Parallel connection of resistor and capacitor. (a): circuit symbol, (b): locus
of the complex conductance, (c): current-voltage phasor diagram.
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15.2.8 Parallel connection of a resistor
and an inductor

Parallel connection of a resistor and an inductor (Fig. 15.26).
The complex resistance is calculated according to the branch-point rule: the complex

total current equals the sum of the complex individual currents through the resistor and the
inductor.

The complex total conductance Y (see Fig. 15.26 (b)) is:

complex conductance for parallel connection of R and L L−2T3M−1I2

Y = 1

R
− j

ωL

Symbol Unit Quantity

Y S complex conductance
R 	 ohmic resistance
ω s−1 angular frequency
L H inductance
j 1 imaginary unit

The conductive part of the admittance (conductance) equals the reciprocal value of the
ohmic resistance R:

G = 1

R
.

The susceptive part of the admittance (susceptance) equals the susceptance of the induc-
tor L:

B = − 1

ωL
.

The admittance is

Y =
√

1

R2
+
(

1

ωL

)2
.

▲ The phase shift (see Fig. 15.26 (c)) is between 0◦ and 90◦. For high frequencies, it
approaches 0◦, for low frequencies, 90◦:

ϕ = ϕv − ϕi = arctan
R

ωL
.

15.2.9 Series connection of a resistor
and an inductor

Series connection of a resistor and an inductor (Fig. 15.27).
The complex resistance is calculated according to the mesh rule: the complex total volt-

age equals the sum of the complex individual voltages of resistor and inductor.
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v v v

(a) (b) (c)

Figure 15.26: Parallel connection of a resistor and an inductor. (a): circuit symbol, (b):
locus of the complex conductance, (c): current-voltage phasor diagram.

The complex total resistance Z (see Fig. 15.27 (b)) is:

resistance for series connection of R and L L2T−3MI−2

Z = R + jωL

Symbol Unit Quantity

Z 	 complex resistance
R 	 ohmic resistance
ω s−1 angular frequency
L H inductance
j 1 imaginary unit

The resistance is equal to the value of the ohmic resistance R.
The reactance is equal to the reactance of the inductor L:

X = ωL .

The impedance is

Z =
√

R2 + (ωL)2 .

▲ The phase shift (see Fig. 15.27 (c)) is between 0◦ and 90◦. For low frequencies, it
approches 0◦, and for high frequencies it approaches 90◦:

ϕ = ϕv − ϕi = arctan
ωL

R
.

v

v

v

(a) (b) (c)

Figure 15.27: Series connection of a resistor and an inductor. (a): circuit symbol, (b): locus
of the complex resistance, (c): current-voltage phasor diagram.
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15.2.10 Series-resonant circuit
1. Series-resonant circuit,

a series connection of resistor, inductor, and capacitor (Fig. 15.28). The complex resistance
is calculated according to the mesh rule.

v

v

v

v

(a) (b) (c)

Figure 15.28: Series-resonant circuit. (a): circuit symbol, (b): locus of the complex resis-
tance, (c): current-voltage phasor diagram.

The complex resistance (see Fig. 15.28 (b)) is

series-resonant circuit L2T−3MI−2

Z = R + j

(
ωL − 1

ωC

)
Symbol Unit Quantity

Z 	 complex total resistance
R 	 ohmic resistance
ω s−1 angular frequency
L H inductance
C F capacitance
j 1 imaginary unit

The resistance equals the ohmic resistance R.
The reactance equals the sum of the reactances of capacitor and inductor:

X = ωL − 1

ωC
.

The reactance depends on the frequency f = ω/(2π). It vanishes at the resonance fre-
quency (see below).

The impedance is

Z =
√

R2 +
(
ωL − 1

ωC

)2
.

The phase angle is

ϕZ = arctan

(
ωL − 1/(ωC)

R

)
.
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2. Resonance,

occurs when the capacitive reactance and the inductive reactance cancel each other. The
total resistance is then real and equal to the ohmic resistance. The current takes a maximum
value for a given applied voltage.

Series resonance, denotes the resonance in the series-resonant circuit.
Resonance frequency, for given inductance L and capacitance C , is

fr = 1

2π

1√
LC

.

The current in the series-resonant circuit takes a maximum value at the resonance fre-
quency, and the phase angle changes by 180◦ (Fig. 15.29).
▲ At resonance the total resistance is real and takes a minimum value.
▲ Below the resonance frequency, the total current leads the total voltage, above the

resonance frequency, the total voltage leads the total current.
▲ At the resonance frequency, the total current and the total voltage are in phase.

v

v

v

v

Figure 15.29: Series-resonant circuit. (a): current-voltage phasor diagram for resonance,
(b): current amplitude, (c): phase angle for finite quality.

Quality of the series-resonant circuit, Q R , the ratio of inductive or capacitive reactance
at resonance X0 = XC = X L to the resistance R of the series connection:

Q R = X0

R
.

▲ The lower the quality, the faster the oscillation in the circuit dies away; for low qual-
ity, the oscillation is damped more strongly, and the resonance curve i(ω) shows a
broader maximum.

Damping factor of the series-resonant circuit, dR , reciprocal value of the quality Q R ,

dR = 1

Q R
.

15.2.11 Parallel-resonant circuit
1. Parallel-resonant circuit,

a parallel connection of resistor, inductor and capacitor (Fig. 15.30). The complex conduc-
tance is calculated according to the branch-point rule.
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v

v

v v v

(a) (b) (c)

Figure 15.30: Parallel-resonant circuit. (a): circuit symbol, (b): locus of the complex con-
ductance, (c): current-voltage phasor diagram.

The complex conductance is:

parallel-resonant circuit L−2T3M−1I2

Y = 1

R
+ j

(
ωC − 1

ωL

)
Symbol Unit Quantity

Y S complex total conductance
R 	 ohmic resistance
ω s−1 angular frequency
L H inductance
C F capacitance
j 1 imaginary unit

The conductance is equal to the conductance of the ohmic resistor:

G = 1

R
.

The susceptance is equal to the sum of the susceptances of capacitor and inductor:

B =
(
ωC − 1

ωL

)
.

The susceptance depends on the frequency f = ω/(2π); it vanishes at the resonance
frequency (see below).

The admittance is

Y =
√

1

R2
+
(
ωC − 1

ωL

)2
.

The phase angle of the complex conductance reads

ϕY = arctan

(
ωRC − R

ωL

)
.

2. Resonance,

occurs when the susceptances of the inductor and the capacitor cancel each other.
▲ At resonance, the total conductance is real and equal to the reciprocal value of the

ohmic resistance.
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Parallel resonance, denotes the resonance in the parallel-resonant circuit.
Resonance frequency, fr , the frequency at which the resonance occurs,

fr = 1

2π

1√
LC

.

The current takes a minimum value at the resonance frequency of the parallel-resonant
circuit, and the phase angle changes by 180◦ (Fig. 15.31).
▲ At resonance, the total resistance is real and takes a maximum value.
➤ The parallel-resonant circuit acts as a rejector circuit.
▲ Below the resonance frequency, the voltage leads the current. Above the resonance

frequency, the current leads the voltage.
▲ At resonance, the current and the voltage are in phase.

v v v v

Figure 15.31: Parallel-resonant circuit. (a): current-voltage phasor diagram at resonance,
(b): current amplitude, (c): phase angle for finite quality.

Quality of the parallel-resonant circuit, Q P , ratio of the inductive or capacitive suscep-
tance at resonance Y0 = YC = YL to the conductance G of the parallel connection:

Q P = Y0

G
.

The lower the quality, the faster the oscillation in the circuit dies out; for low quality,
the oscillation is damped more strongly, and the resonance curve i(ω) shows a broader
minimum.

Damping factor of the parallel-resonant circuit, dP , the reciprocal value of the quality
Q P ,

dP = 1

Q P
.

15.2.12 Equivalence of series
and parallel connections

1. Equivalent conversions

A series connection consisting of an ohmic resistor and a reactance (inductor or capac-
itor) may be represented—for a definite angular frequency ω—by a parallel connection
(Fig. 15.32).
▲ A parallel connection and a series connection of an ohmic resistance and a reactance

have the same response if the complex resistances of both connections are the same.
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▲ The equivalence can hold only for a definite frequency ω. For other frequencies, the
complex resistances for series and parallel connection behave differently.

▲ The equivalence holds only for sinusoidal voltages and currents.

Figure 15.32: Equivalent conversions of series and parallel connections for a fixed fre-
quency ω.

2. Transformation of a parallel connection to an equivalent series connection

parallel connection �⇒ series connection L2T−3MI−2

RR = GP

G2
P + B2

P

XR = BP

G2
P + B2

P

Symbol Unit Quantity

RR 	 resistance of the series connection
XR 	 reactance of the series connection
GP S conductance of the parallel connection
BP S susceptance of the parallel connection

3. Transformation of a series connection to an equivalent parallel connection

series connection �⇒ parallel connection L−2T3M−1I2

GP = RR

R2
R + X2

R

BP = XR

R2
R + X2

R

Symbol Unit Quantity

GP S conductance of the parallel connection
BP S susceptance of the parallel connection
RR 	 resistance of the series connection
XR 	 reactance of the series connection

15.2.13 Radio waves
1. Generation and reception of electromagnetic waves

Resonant circuits are used for generating and receiving electromagnetic waves. Both the
emission and the reception are carried out with antennas.

Mode of operation:
Linear oscillator, also Hertz oscillator or Hertz dipole, oscillating charge distribu-

tion that is surrounded by electromagnetic fields. The separation and propagation (see
Fig. 15.33) of these fields is described by Maxwell’s equations (see p. 496). At a distance
of only a few wavelengths from the oscillating dipole, this field is already a transverse
wave.
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➤ The Hertz dipole may be represented by a resonant circuit with the inductance of a
coil with a single loop, and the capacitance of a capacitor consisting of two wires
extended to a linear dipole.

Electromagnetic oscillations at high frequencies are damped, in particular by electromag-
netic radiative losses. The losses may be compensated by feeding the circuit by electric
energy in the rhythm of the oscillations.

Figure 15.33: Separation of the electromagnetic field generated by an oscillating Hertz
dipole.

Resonance frequency of the linear oscillator, inversely proportional to the conductor
length l of the oscillator:

resonance frequency ∼ 1
conductor length

T−1

f = c

2l

Symbol Unit Quantity

f Hz=1/s resonance frequency
c m/s speed of light
l m length of conductor

2. Electromagnetic waves: propagation and applications

The propagation properties, hence the application, of electromagnetic waves depend
strongly on the wavelength.

Wavelength Frequency Notation, use

high frequency

30 km · · · 2 km 10 kHz · · · 150 kHz ultra-long waves, VLF
(very low frequency)
underwater radio

2000 m · · · 600 m 150 kHz · · · 500 kHz long waves, LW
radio broadcasting

600 m · · · 200 m 500 kHz · · · 1.5 MHz medium waves, MW
radio broadcasting

100 m · · · 10 m 3 MHz · · · 30 MHz short waves, SW
radio broadcasting, amateur radio

10 m · · · 1 m 30 MHz · · · 300 MHz ultra-short waves, USW, VHF
(very high frequency)
radio broadcasting, television
police radio, air navigation
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Wavelength Frequency Notation, use

high frequency (continued)

1 m · · · 10 cm 300 MHz · · · 3 GHz decimeter waves, UHF
(ultra-high frequency)
television, line-of-sight radio

10 cm · · · 1 cm 3 GHz · · · 30 GHz centimeter waves
line-of-sight radio, radar

10 mm · · · 1 mm 30 GHz · · · 300 GHz millimeter waves

light waves

1 mm · · · 1 µm 3 · 1011 Hz · · · 3 · 1014 Hz infrared, thermal radiation
760 nm 3.95 · 1014 Hz red
589 nm 5.09 · 1014 Hz yellow
527 nm 5.70 · 1014 Hz green
486 nm 7.65 · 1014 Hz violet

100 nm · · · 10 nm 3 · 1015 Hz · · · 3 · 1016 Hz ultra-violet

x-rays

1 nm · · · 100 pm 3 · 1017 Hz · · · 3 · 1019 Hz

gamma rays

100 pm · · · 0.1 pm 3 · 1019 Hz · · · 3 · 1022 Hz

➤ The wavelength ranges of x-rays and gamma radiation overlap. x-rays and gamma
radiation differ by their generation mode (transitions between energy levels in atoms
and in atomic nuclei, respectively).

15.3 Electric machines

Electric machines serve for the conversion of one form of energy into another one. The
law of induction and the Lorentz force are used to operate generators and motors.

A motor receives electric energy and converts it into rotational energy.
A generator receives rotational energy and converts it into electric energy.

▲ In principle, any electric machine can work in the motor mode or in the generator
mode, depending on the direction of energy flow.

➤ The energy conversion by electric machines has the advantage that the losses are
particularly small. Efficiencies beyond 99 % may be achieved.

15.3.1 Fundamental functional principle
1. Moving conductor loop in a magnetic field

When a conducting loop is moved in a magnetic field, a voltage Vind is induced in the loop.
If this voltage can drive a current through the conductor, the conductor is under the action
of a force F (Lorentz force) that opposes the direction of motion of the conductor.

Load current, I , flows in the conductor loop when the ends of the wire are connected
through a resistor.
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■ Technical application: Conductor loops and magnets are suitably arranged to rotate
against each other. Either the magnets can rotate within a fixed arrangement of con-
ductors, or the conductor loops can rotate between fixed magnets.

Stator, the fixed part of the machine.
Rotor or runner, movable, rotating part of the machine.
Armature, the part of the machine that carries the winding for the load current, depend-

ing on the design of the machine.
➤ Generators are usually constructed as revolving-field machines because of the ease

of connecting to the current output, so that armature and stator are identical.
The magnetic flux �E is guided in iron with possibly narrow air gaps between stator and
rotor, and is generated by a coil carrying the field current IE.

2. Induced voltage and torque

Induced voltage, Vind, directly proportional to the exciting flow �E and the turn speed n:

induced voltage ∼ exciting flow · turn speed L2T−3MI−1

Vind = k1 ·�E · n

Symbol Unit Quantity

Vind V induced voltage
k1 1 machine constant
�E Wb = Vs exciting flow
n min−1 turn speed

The machine constant k1 includes all constructive features of the machine.
The Lorentz force acts on the coil windings of the rotor, thereby generating a torque.
The torque is directly proportional to the load current I1 and to the exciting flux �E.

The proportionality factor k2 is another machine constant.

torque ∼ load current · exciting flux L2T−2M

τ = k2 · I ·�E

Symbol Unit Quantity

τ Nm torque
k2 1 machine constant
I A load current
�E Wb = Vs exciting flux

➤ These two machine equations may be transferred accordingly to various types of
machines.

15.3.2 Direct-current machine
Fig. 15.34 shows a section view of a quadrupole direct-current machine in the motor
mode.

The outer stator carries the main poles of the exciting winding and four smaller commu-
tating poles. The armature winding moves within the poles, which are arranged in slots on
the rotor. If a coil of the armature winding leaves the range of action of a main pole and
moves into the range of the opposite pole, the current direction in the armature must be
inverted by the commutator.

Commutator, collector or current reverser, contact foils are assigned to each coil,
insulated against each other and rotating with the rotor shaft. In the neutral zone between
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Armature

Commutator pole

Commutator-pole
winding
Brush

Excitation winding

Main pole

Shaft

Rotor
Rate and
sense of rotation

Figure 15.34: Configuration of a direct-current machine in motor mode.

the poles, the current of one direction is supplied or extracted by spatially fixed carbon
brushes that are pushed against the commutator.

Commutating poles are excited by the armature current, in a direction contrary to the
main poles. They facilitate reversal of the current direction under the brush.

Speed control for the direct-current motor, the rate of rotation n may be increased by
increasing the terminal voltage VT or by decreasing the exciting flux �E:

turn speed of the direct-current motor T−1

n = VT − IA · RA

k1 ·�E

Symbol Unit Quantity

n min−1 turn speed
VT V terminal voltage
IA A armature current
RA 	 internal resistance of armature
k1 1 machine constant
�E Wb=Vs exciting flux

➤ There is risk of destruction at too high a rate of rotation if the exciting flux vanishes!
This is called run-away of the motor.

1. Starting a direct-current motor

To start a direct-current motor, the exciting current IE has to be adjusted to the maximum
allowed value in order to generate a sufficiently high starting torque. Since the armature
circuit has only a very low internal resistance, a short-circuit current would flow when
switching on the terminal voltage. In order to restrict the transient current pulse, a starting
resistance is preconnected to the armature circuit; it thereafter must be shorted out after the
motor reaches speed.

2. Connection of direct-current motors

Direct-current motors exhibit different performance characteristics that depend on how
they are connected:

a) Shunt motor, the exciting circuit (E1, E2) and the armature circuit (A1, B2) are con-
nected in parallel to each other and to the supply voltage (Vsupply) (Fig. 15.35 (a)).

b) Separate-excited motor, the exciting coil (F1, F2) is fed by a separate voltage source
(VE) (Fig. 15.35 (b)).
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V V

V

Vsupply supply supply

Figure 15.35: Connection of direct-current motors. (a): shunt motor, (b): separate-excited
motor, (c): series motor.

A shunt motor and a separate-excited motor exhibit similar performance characteristics.
Their rate of rotation may be varied by a field rheostat for the exciting field. For the
adjusted value, the rate of rotation decreases only slightly under load.

c) Series motor, the exciting coil (D1, D2) is connected in series to the armature circuit
(A1, B2) (Fig. 15.35 (c)). Hence, the exciting field and the torque are kept constant with
increasing load, the turn speed, however, decreases.
➤ Therefore, a series motor may be used only if the operational conditions exclude

running without a load!
■ Application for vehicle starters, drives of railroads and motors for cranes.

d) Compound motor, combination of shunt motor and series motor, separate exciting
windings in shunt connection and series connection.

Therefore, changes of load cause only minor changes in rate of rotation, smaller than
for a series motor. A run-away under no-load conditions is excluded by the fixed no-load
speed of the series connection.

3. Reversal of rotation sense

The rotation direction of a direct-current machine may be reversed by inverting the field or
current direction of the exciting winding. Since in a series machine the field winding and
the armature winding are in series, a change of polarity acts simultaneously on both field
directions, and therefore there is no change of the rotation sense.
➤ This suggests the operation of the series machine by single-phase alternating cur-

rent, which leads to the principle of the single-phase alternating current motor or
universal motor.

15.3.3 Three-phase machine
Three-phase machines, subdivided into synchronous machines and asynchronous ma-
chines (three-phase induction machine), depending on whether the armature runs syn-
chronously or asynchronously with the main frequency.
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15.3.3.1 Synchronous machine

1. Functional principle of the synchronous machine

The armature winding is embedded in the stator iron, the rotor is designed as a pole wheel.
Compared with a direct-current machine, this arrangement has the advantage that the com-
parable high load currents of the armature may be guided through fixed terminals, and the
lower exciting current can be guided with constant current direction in the exciting winding
through only two slip rings on the rotor shaft (Fig. 15.36).

For the connection to a three-phase current, the armature winding is split into three phase
windings staggered electrically by 120◦. The alternating fields generated by the individual
phase windings superpose to a rotating field that rotates with the main frequency and
causes the rotor to run in coincidence with the rotating field, i.e., synchronously with the
mains frequency.

Stator

Pole piece

Excitation winding

Pole shoe

Armature winding

Figure 15.36: Configuration of a synchronous machine.

2. Rate of rotation equation

A synchronous engine has only one fixed rate of rotation nsync, which is determined by the
main frequency f divided by the number of pole pairs p of the engine:

turn speed = frequency
number of pole pairs

T−1

nsync = f · 60

p

Symbol Unit Quantity

nsync min−1 turn speed
f Hz mains frequency
p 1 number of pole pairs

■ The synchronous engine (Fig. 15.36) has two pole pairs and runs for a main frequency
f = 50 Hz with a rate of rotation of nsync = 1500 min−1.

➤ Notice that the basic configuration of the phase windings of the stator has to cor-
respond to the number of pole pairs of the rotor. The rate of rotation equation also
shows that—contrary to the direct-current machine—a change of the exciting current
cannot influence the turn speed.
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Overexcitation, excitation of the synchronous machine beyond its demand of magnetiza-
tion. Overexcitation causes the armature current to lead the terminal voltage, i.e., a capac-
itive action for the electric network.

Underexcitation, causes a lagging of the armature current, i.e., an inductive action. For
strong underexcitation and simultaneous load, the pole wheel cannot keep step with the
applied frequency, the machine drops out of synchronization.

3. Operation of the synchronous machine

▲ As generator a synchronous machine may only then be connected to the main supply
or parallel to other generators if the following three synchronizing conditions are
fulfilled:

• equal voltage,
• equal frequency,
• equal phase relation.
▲ As motor, a synchronous machine must be started only with a shorted exciting wind-

ing to avoid mechanical damage due to a sudden acceleration or high voltages in-
duced in the armature winding.

➤ The asynchronous run-up is facilitated by a squirrel-cage winding in the pole faces.

15.3.3.2 Asynchronous machine

1. Functional principle of the asynchronous machine

The stator of an asynchronous machine (see Fig. 15.37 for a quadrupole machine) is con-
structed like the stator of the synchronous machine, with three phase windings connected
to the three-phase main voltage.

The three-phase windings generate a field that rotates with the main frequency and pen-
etrates the rotor. The rotor is drum-like and arranged in layers of iron sheets, and carries
a squirrel-cage winding. The rotating field induces voltages in the winding bars of the
rotor causing a current and generating a field imposed to the rotor. This rotor field lags the
rotational field by 90◦ and accelerates the rotor to follow the rotational field.

Figure 15.37: Configuration
of an asynchronous
machine.

If the rotor approaches the rate of rotation corresponding to the main frequency, the
induction by the rotating field, and thus the acceleration of the rotor, no longer acts.
➤ Therefore, the rotor runs slightly slower than the rotating field, i.e., asynchronously,

with the actual rate of rotational n.
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2. Synchronous speed,

or rotating-field speed, nsync, determined by the number of pole pairs p of the stator
winding, as for the synchronous machine:

synchronous speed of asynchronous machine T−1

nsync = f · 60

p

Symbol Unit Quantity

nsync min−1 synchronous speed
f Hz mains frequency
p 1 number of pole pairs

3. Slippage,

s, a measure for the load-dependent delay of the rotor against the rotating field.
■ For a nominal load, the slippage lies between 0.5 % and 10 %.
▲ The slippage s is given by the difference between the actual rate of rotation n and the

rate of rotation of the rotating field nsync, related to nsync:

slippage of the asynchronous motor 1

s = nsync − n

nsync

= 1− n

nsync

Symbol Unit Quantity

s 1 slippage
n min−1 actual rate of rotation
nsync min−1 synchronous rate of rotation

➤ Since the rotor of the asynchronous machine is designed to be drum-like without pro-
nounced poles, the nominal speed is fixed only by the choice of the stator winding. A
pole changing of the stator winding following Dahlander allows for speed changing
between two fixed speed values.

In order to restrict the high starting current of an asynchronous machine, the stator winding
is frequently switched on through a star-delta starter.
▲ The starting torque of the asynchronous machine is lower than the nominal torque.

Therefore, for larger machines the start is provided by current-displacement rotors,
or by start resistors connected into the rotor circuit by slip rings.

▲ Advantage of the asynchronous motor: It is not very sensitive and is nearly
maintenance-free.

■ Frequently used as driving motor.



16
Current conduction in liquids, gases
and vacuum

In liquids and gases, electric current is not transported only by electrons as it is in solids,
but also by positive and negative ions. Also, the electric current in liquids can cause their
decomposition.

16.1 Electrolysis

16.1.1 Amount of substance
Amount of substance, n, measure of the number of particles in a quantity of equal particles
(atoms, molecules or ions), independent of their mass.

amount of substance = particle number/Avogadro constant N

n = N

NA

NA = 6.022 136 7 · 1023 mol−1

Symbol Unit Quantity

n mol amount of substance
N 1 particle number
NA 1/mol Avogadro constant

Mole, mol, SI unit of the amount of substance. 1 mol is the quantity of substance that
contains just as many particles as 0.012 kg 12C.

Avogadro constant, Avogadro’s number, also Loschmidt number, NA, the number of
particles in 1 mol of substance.

551
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16.1.2 Ions
1. Ionization and ions

Ionization, removal of one or several electrons from an atom, or addition of one or several
electrons to an atom, so that the resulting object is electrically charged.

Ions, atoms or molecules, which in total are not electrically neutral.
• Ions may be charged positively or negatively.
• Ions may carry one or several electric elementary charges.
• Ions are generated by the transfer of electrons, e.g., in the fragmentation of polar

molecules (H2O→ OH− + H+: dissociation).
• Positively charged ions often are ionized metal atoms.
• Negatively charged ions often are non-metallic molecule groups.
■ Cations, positive ions: Na+, Ca++ (metals); H+ (non-metal).

Anions, negative ions: SO−−4 , Cl−, NO−3 .

2. Properties of ions

If a voltage is applied, anions move towards the anode, cations move towards the cathode.
➤ Frequently, salts are composed of ionic crystals. If they are dissolved in water, they

divide into single ions (NaCl→ Na+ + Cl−).
Ionic valence, z, the excess of positive charge over negative charge in an ion.

■ Li+ z = 1
Li2+ z = 2
Cl− z = −1
U92+ z = 92

➤ The ionic valence z should not be confused with the atomic charge Z that gives the
number of protons in the nucleus, independent of the actual number of electrons in
the shell.

16.1.3 Electrodes
Electrode, part of a solid conductor supplying a liquid, a gas, a vacuum or a solid with
electric current.

Electrochemical electrode, two-phase system consisting of a combination of an ele-
ment (e.g., a copper rod) and solutions of its ions (e.g., copper-sulphate solution).

Standard hydrogen electrode, platinum electrode in electrolyte bathed in hydrogen.
Anode, positive electrode.
Cathode, negative electrode.

▲ Anodes receive electrons, cathodes deliver electrons.
▲ Anions discharge at the anode, cations at the cathode.

16.1.4 Electrolytes
Electrolyte, a liquid that conducts the current. To a large extent, it consists of mobile ions.
➤ Pure water is a poor conductor because it dissociates only to a very small extent. The

conductance may be strongly increased by adding a small portion of salts.
Hydratization, non-dense enclosure of dissolved ions in a cloud of polar solvent particles,
such as water by electrostatic ion-dipole interaction.
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Electronegativity, the tendency of an atom to bind electrons. In the periodic table of
elements, fluorine and oxygen have the highest electronegativity, rubidium and caesium
have the lowest electronegativity.
➤ Because of the special form of the molecule and the distinct electronegativities of

hydrogen and oxygen, water has a static dipole moment, i.e., it is a polar molecule.

16.1.4.1 Electric conductance of an electrolyte

1. Ion motion in electrolytes

If an external electric field �E is applied to an electrolyte, then the ions drift through the
electrolyte at constant velocity (Fig. 16.1).

Drift velocity of ions vdr in electrolytes, mean velocity of ions in an electrolyte in an
external electric field �E.

Cathode Anode

Figure 16.1: Motion of
ions of an electrolyte in an
external electric field.

drift velocity of ions in an electrolyte LT−1

vdr = µE

Symbol Unit Quantity

vdr m/s drift velocity
µ m2/(Vs) ion mobility
E V/m electric field strength

▲ The ions drift parallel or antiparallel to the local electric field, depending on the sign
of the ion charge.

The ion mobility depends both on the ion sort and on the medium the ions are drifting in.
The ion mobility in electrolytes is by about four orders of magnitude lower than the ion

mobility in gases.
The energy gain in the external electric field is counteracted by the energy losses by

collisions between the drifting ions and the surrounding molecules of the electrolyte. As a
result, a mean drift velocity is observed.

2. Electric conductance of an electrolyte,

γ , conductance per unit length in an electrolyte (Fig. 16.2):

electric conductance of an electrolyte L−3T3M−1I2

γ = ze0(µ+n+ + µ−n−)

Symbol Unit Quantity

γ S/m electric conductance
z 1 ionic-charge number
e0 C elementary charge
µ± m2/(Vs) ion mobility
n± 1/m3 ionic density

Both positive and negative ions contribute to the electric current. Their mobilities are
different, depending on the ionic charge and ionic radius.
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Concentration (%)

Increase in
ion mobility

Decrease in ionic density

Figure 16.2: Electric
conductance of H2SO4 in
water (schematic).

Equivalent conductance, �, defined by

� = γ
c
,

where c is the concentration of the amount of substance, i.e., the number of moles of
substance per unit volume.
➤ An electric current in an electrolyte leads to chemical reactions in the medium and at

the electrodes, which may cause dissociation of the electrolyte.
Electrolysis, the decomposition of a substance by applying an electric voltage.
■ Water is decomposed into gaseous hydrogen and gaseous oxygen by applying a volt-

age between the two electrodes.

16.1.4.2 Faraday’s laws
The quantitative relation between the electric current through the electrolyte and the quan-
tities of substance precipitated at the electrodes is formulated in Faraday’s laws.

1. Faraday’s first law,

the mass precipitated is proportional to the transported quantity of charge only:

precipitated mass = charge/Faraday constant M

m = M Q

zF

Symbol Unit Quantity

m kg precipitated mass
M kg/mol molar mass
Q C transported charge
z 1 charge number per molecule
F C/mol Faraday constant

2. Faraday constant,

the proportionality constant between the transported quantity of a substance and the trans-
ported charge, product of two universal constants e0 and NA, the electron charge and Avo-
gadro constant:

Faraday constant ITN−1

F = e0 NA

= 9.648 530 9 · 104 C/mol

Symbol Unit Quantity

F C/mol Faraday constant
e0 C elementary charge
NA 1/mol Avogadro constant
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■ Faraday constants of several substances (in C/mol): hydrogen 96 364, oxygen
96 486, nickel 96 515, tin 96 482.

3. Mass transport and mass deposition

The transported material is deposited at the electrodes as gas or metal.
▲ The amount of transported material is independent of the geometry of the cathode

and the concentration of the electrolyte.
➤ The independence of the deposited mass on the external conditions served as a defi-

nition of the charge unit Coulomb (1 C = 1 As) until 1948.
■ In a silver nitrate solution (AgNO3), a current I = 1 A flowing for 1 s deposits

n = 1/96 485 mol = 1.036 × 10−5 mol of silver. This corresponds to a quantity of
silver of 1.118 mg.

■ Electrolytic baths are frequently used for the production of pure metals, e.g., for
electrolytic copper.

■ Micromechanics, microscopic mechanical elements that may control mechanical de-
vices of smallest dimension:

Micromotors, microactors, microsensors. Micromechanical elements may be
produced by galvanic methods (LIGA methods).

4. Electrochemical equivalent,

E , the mass of the electrolyte deposited for a given charge:

electrochemical equivalent MT−1I−1

E = m

Q

Symbol Unit Quantity

E kg/C electrochemical equivalent
m kg deposited mass
Q C transported charge

An equivalent definition in terms of the molar mass is

E = M

zF
.

■ Electrochemical equivalents (in 10−3 g/C): hydrogen 0.010 46, oxygen 0.082 91,
nickel 0.304 15, platinum 0.505 88, silver 1.118 17.

5. Faraday’s second law,

the masses deposited by the same quantity of electric charge are related like the electro-
chemical equivalents:

ratio of masses deposited by equal quantities of charge 1

m1

m2
= E1

E2

Symbol Unit Quantity

mi kg deposited masses
Ei C/kg electrochemical equivalents

16.1.4.3 Electric double layer
Electric double layer, arises at contact interfaces between materials with different con-
centrations of charge carriers (Fig. 16.3 (a)). Electric double layers locally compensate the
potential differences caused by the difference in concentrations.
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■ Electric double layers arise in the contact between solids (frictional electricity), be-
tween metals and electrolytes, and also between electrolytes with different ion con-
centrations.

Hydrogen

Exhaust gas

Platinum

Electrolyte

Figure 16.3: (a): Electric double layer at an electrode-electrolyte interface, (b): standard
hydrogen electrode.

16.1.4.4 Nernst equation
The potential jump at an interface between electrolytes containing an ion species in differ-
ent concentrations is proportional to the logarithm of the ratio of concentrations:

Nernst equation: potential jump L2T−3MI−1


U = −kT

e0
ln

c1

c2

Symbol Unit Quantity


U V potential difference
k J/K Boltzmann constant
T K temperature
e0 C elementary charge
ci mol/kg ion concentrations

1. Electromotive force,

the equilibrium voltage between a metal and an electrolyte that contains a 1-normal con-
centration of the metal ions.

M The measurement of the electromotive force requires a second electrode; only the
difference between the electromotive force of the two electrodes can be determined
by the measurement.

2. Standard hydrogen electrode,

reference electrode for voltage measurement. It consists of a platinum sheet in a 1-normal
H3O+ ionic solution bathed in gaseous hydrogen (Fig. 16.3 (b)).

By definition, the potential zero is assigned to the standard hydrogen electrode.
➤ Electromotive force is given analogously for non-metals and molecules as well.

3. Electrochemical potential series,

list of electromotive force of metals in an acid solution. Negative voltages imply the release
of electrons; positive voltages imply the reception of electrons.
■ Elements of the electrochemical potential series (voltage in V): Li/Li+ −3.02,

Mg/Mg2+ −2.38, Zn/Zn2+ −0.76, Pb/Pb2+ −0.126, Cu/Cu+ +0.35, Pt/Pt2+
+1.2.
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➤ An atom may have different electromotive forces for different ions.
■ Au has an electromotive force of +1.42 V with respect to Au+, but an electromotive

force of +1.5 V with respect to Au3+.

16.1.5 Galvanic cells
If two distinct metals are brought into contact with the same electrolyte, then a potential
difference is established between them corresponding to the difference of the electromotive
force (Fig. 16.4).
■ A copper electrode and a zinc electrode are immersed in an acid solution. A voltage

V is established between them:

V = (0.35− (−0.76)) V = 1.11 V .

If both electrodes are connected by an electric conductor, then a current flows.
More noble metal, stands at a lower position in the electrochemical potential series. In

a galvanic cell it receives electrons from a metal at a higher position (less noble metal). It
forms the anode, the metal standing higher forms the cathode.

In an electrolyte the current circuit is closed by the flow of ions.
If both electrodes are metallic, the cathode dissolves during the course of time while the

more noble metal is deposited at the anode as long as it is present as an ion in the solution.
This deposition permits the galvanic production of metals in purest form.

Membrane

Voltmeter

Figure 16.4: Galvanic cell.

Primary cells, galvanic cells carrying out an irreversible conversion of chemical energy
into electrical energy.

In the course of time, the voltage decreases due to chemical changes in the electrodes.
Capacitance, K , of a galvanic cell, measured in ampere hours (Ah), a measure of the

time (in h) a galvanic cell may deliver a current (in A).

16.1.5.1 Electrolytic polarization
Electrolytic polarization, the decrease of the voltage in a galvanic cell due to the forma-
tion of secondary galvanic cells at the electrodes.
■ An external voltage is applied to two platinum electrodes in a water solution; Pt-O2

and Pt-H2 double layers are formed by the electrolysis of water. These double layers
are galvanic cells in themselves, diminishing the voltage between the electrodes.

Electrokinetic potential, V , the potential difference between the two parts of the double
layer. The electrolytic reaction products at the electrodes may be dissolved chemically.

Constant galvanic cells, galvanic cells the voltage of which is kept nearly constant by
preventing electrolytic polarization using chemical reactions.

Dry-cell battery, a constant galvanic cell with a non-liquid electrolyte.
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■ Zinc-carbon battery, dry-cell battery consisting of a carbon rod and a cylindric zinc
cover filled with electrolyte paste (Fig. 16.5). A layer of manganese oxide (MnO2) is
placed around the carbon rod, which oxidizes the hydrogen formed at the carbon and
thus removes it. The voltage decreases only when the zinc is consumed.

Positive pole
(carbon)

Depolarizer
(MnO )2

Negative pole
(zinc) Electrolyte paste

(NH Cl)4

Figure 16.5: Zinc-carbon
battery.

Leakage of a battery, destruction of a zinc-carbon battery by electrolytic dissociation of
the zinc. The electrolyte released may cause corrosion.

16.1.5.2 Fuel elements
Fuel elements, fuel cell, galvanic cells in which the reaction energy from oxidation of the
fuel (hydrogen, carbon) is continuously converted directly into electric energy by oxygen or
air (Fig. 16.6). Water is produced as a byproduct of the combustion. A fuel cell consists of a
porous anode at which the supplied fuel (H2) is reduced (H2 −→ 2H++2e−), and a porous
cathode at which the supplied oxidizer (O2) is oxidized (2H+ + 2e− + 1

2 O2 −→ H2O).
The electrodes are separated by an electrolyte, which permits the transport of ions (H+)
from the anode to the cathode, but stops the flow of electrons. The electrons are guided to
the cathode as a load current through an external current circuit. Without current flow, a cell
voltage of about 1 V is reached. Fuel cells are distinguished by a favorable current-voltage
characteristic, a high power per mass unit, and a good energy efficiency.

Porous
electrodes

Electrolyte

Figure 16.6: Fuel cell.

M Two platinum electrodes, which are bathed in hydrogen and oxygen and are elec-
trically connected, are immersed in dilute sulfuric acid. At the hydrogen electrode,
hydrogen is catalytically ionized to hydrogen ions. The electrons are passing through
the conductor to the other electrode, where they burn cold with the hydrogen ions
transported through the electrolyte and the oxygen present:

O2 + 4 H+ + 4 e− → 2 H2O .

The released energy of 286.2 kJ/mol can be used as electric energy.
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➤ Currently, the efficiency of this direct conversion of chemical energy to electrical
energy is about 60 %. The only byproduct of this ecologically sound technology is
pure water.

16.1.5.3 Accumulators
Secondary cells, rechargeable galvanic cells in which the electrolytic polarization is ex-
ploited for storing electric energy.
■ Lead-acid accumulator, secondary cell consisting of lead electrodes immersed in

sulphuric acid. The lead electrodes become covered with a layer of lead sulphate
(PbSO4). In the charging process, (PbO2) is formed at the anode and metallic lead
is formed at the cathode.
Anode:

PbSO4 + 2OH− → PbO2 + H2SO4 + 2e−;
Cathode:

PbSO4 + 2H+ + 2e− → Pb+ H2SO4.

A galvanic cell obtained in this way yields a voltage of 2.02 V. When extracting
current from the cell, both reactions proceed inversely until the original state is nearly
re-established.

➤ About 75 % of the stored chemical energy may be converted to electric energy.

16.1.5.4 Connection of galvanic cells
Parallel connection, the cathodes of the individual cells are connected to each other. The
same is done with the anodes.
▲ The voltage of the parallel connection is the same as the voltage of the individual

cell, but the capacitance K is the sum of the capacitances Ke of the individual cells.

voltage and capacitance of a parallel connection

V = Ve

K = nKe

Symbol Unit Quantity

V V voltage of parallel connection
K Ah capacitance of parallel connection
n 1 number of cells
Ve V voltage of single cell
Ke Ah capacitance of single cell

■ This is applied in a starting assist.
Series connection, the anode of a cell is connected to the cathode of the subsequent cell.
▲ The total voltage is the sum of the voltages of the individual cells.

voltage and capacitance of a series connection

V = nVe

K = Ke

Symbol Unit Quantity

V V voltage of series connection
K Ah capacitance of series connection
n 1 number of cells
Ve V voltage of single cell
Ke Ah capacitance of single cell
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16.1.6 Electrokinetic effects
In a liquid in an external electric field, charged particles feel a force, which can cause them
to move. The particles may either be charged from the beginning, or the charges may be
induced by an electric double layer.

16.1.6.1 Electrophoresis
Electrophoresis, directed motion of suspended charged particles in a non-conductive liq-
uid under the action of an external electric field.

The charge of the suspended particles induces a cloud of oppositely charged ions that
surround the particles. Hence, the force acting on a particle does not depend only on its
charge, but also on the ion concentration of the suspending agent.
■ This phenomenon is exploited in technology for dehydration of the walls of build-

ings.
M Paper electrophoresis, electrophoresis of a molecular suspension on a paper carrier

to which a direct voltage of several kV is applied. The various components of the
suspension are separated because of their different drift velocities.

16.1.6.2 Electro-osmosis
Electro-osmosis, the motion of a liquid in a porous solid under the action of an external
electric field. Double electric layers are formed at the liquid-solid interfaces, the liquid part
of which separates and starts to move in the electric field. Because of internal friction, the
whole liquid starts to move.
➤ In electro-osmosis only charges of one sign move, whereas in electrophoresis charges

of both sign move.

16.1.6.3 Diaphragm electricity
Diaphragm electricity, the inverse effect of electro-osmosis. If a liquid is pressed through
a porous solid, a current along the flow direction is observed that is due to the removal of
part of the electric double layer.

16.2 Current conduction in gases

A rarefied neutral gas does not conduct current like an ideal vacuum does. The rarefied gas
may become conducting only by the input of charge carriers. Both electrons and ions may
serve as charge carriers. Denser gases usually are also insulators, as are liquids. But a cer-
tain number of ions are always generated by cosmic radiation and by natural radioactivity.

Gas discharge, current conduction in gases mainly at low pressure.

16.2.1 Non-self-sustained discharge
Non-self-sustained discharge, a gaseous discharge in which the charge carriers are pro-
duced from outside.

Sources for the production of charge carriers are:
• hot gases in flames,
• heated metallic surfaces,
• cosmic radiation,
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• ion sources,
• electron guns,
• short-wave electromagnetic radiation (e.g., UV or X-rays),
• radiation of radioactive nuclei.
Dark discharge, a gaseous discharge at very low current densities and low discharge volt-
ages insufficient to ignite a self-sustained discharge. Mainly it may be sustained only by
external ionization due to an external source of radiation.

Dark discharges generate only a faint glow of light in the gas. They arise at current
densities J < 10−9 A/m2.

In an external electric field, the ions in a gas move uniformly because the energy gain
by the external field is compensated by collisions between the molecules.

16.2.1.1 Drift velocity of ions in gases
Drift velocity, vdr, directed velocity of ions through a gas in an external electric field �E.

drift velocity of ions in a gas LT−1

vdr = µE

Symbol Unit Quantity

vdr m/s drift velocity
µ m2/(Vs) ion mobility
E V/m electric field strength

▲ Depending on the sign of the ionic charge, the ions move along or against the direc-
tion of the electric field.

The ion mobility depends on the type of ion and the medium.
The ion mobility in gases is by about four orders of magnitude higher than the ion

mobility in electrolytes. The drift velocity is usually very small compared with the thermal
velocity of the ions.
■ Ion mobility µ in air under standard conditions: hydrogen 5.7 · 10−2 m2/(Vs) for

positive ions and 8.6 · 10−2 m2/(Vs) for negative ions, nitrogen 1.29 · 10−2 m2/(Vs)
for positive ions and 1.82 · 10−2 m2/(Vs) for negative ions.

■ In an electric field E = 1 kV/m an H+2 ion in air under standard conditions is drifting

with a velocity vdr = 5.7 · 10−2 m2/Vs · 1000 V/m = 57 m/s towards the cathode.

16.2.1.2 Electric conductance of gases
Electric conductance of a gas, γ , the conductance per unit length of a column of gas:

electric conductance of a gas L−3T3M−1I2

γ = ze0(µ+n+ + µ−n−)

Symbol Unit Quantity

γ S/m electric conductance
z 1 ionic valence
e0 C elementary charge
µ± m2/(Vs) ion mobility
n± 1/m3 ion density

Positive and negative ions are contributing to the electric current through a gas; their mo-
bilities are distinct, however.
■ Air has an electric conductance of γ ≈ 1 · 10−14 S/m near the ground.
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16.2.1.3 Recombination
Recombination, the inverse process to ionization, i.e., ions and electrons agglomerate to
form neutral atoms and molecules.

Recombination in gases proceeds mainly by thermal collisions.
Ion lifetime, τ , mean lifetime of an ion in the vicinity of other ions.
Recombination coefficient, αi , proportionality factor between the reciprocal values of

the mean lifetimes of the ions and their number density. The recombination coefficient
depends mainly on temperature, pressure and ion species.

ion lifetime T

τ = 1

αi n0

Symbol Unit Quantity

τ s ion lifetime
αi m3/s recombination coefficient
n0 1/m3 ion density at t = 0

The equation holds only if no new ions are formed during the decay.

16.2.1.4 Current-voltage characteristic of a gas
Ohm’s law holds in gases only for small applied voltages. One distinguishes three ranges
of voltages (ordered according to increasing applied voltage, Fig. 16.7).

V

Figure 16.7: Current-voltage
characteristic of a non-self-
sustained gas discharge.
I: recombination range,
II: saturation range, III:
proportional range, after that
transition to a self-sustained
gas discharge.

1. Characterization of the voltage ranges

Recombination range, the range of voltage in which the current increases proportionally
with the voltage applied. Ohm’s law is valid in the form:

current in the recombination range I

I = γ A

d
V

Symbol Unit Quantity

I A current
γ S/m electric conductance
A m2 cross-sectional area of electrode
d m distance of electrodes
V V voltage

Saturation range, range of voltage in which nearly all ions reach the electrode. The current
I is nearly independent of the voltage V .

In the saturation range, the recombination losses are negligible.
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Proportional range, the range of voltage in which the energy of the ions and electrons is
sufficiently high to ionize neutral atoms and molecules. The ionization current I increases
linearly with the voltage V .

2. Application for the measurement of ionizing radiation

M Ionization chamber, device for the measurement of the intensity of ionizing radi-
ation. Two insulated electrodes are arranged in a gas-filled vessel. The voltage is
chosen such that ions generated within the volume of the device contribute directly
to the measurable current. Ionization chambers are operated in the saturation range.

Dead time, time that is needed after a registrated event until an ionization detector is again
ready for registrating additional events. This time interval, during which the detector is
insensitive to ionizing radiation, is determined by the drift velocity of the ions. The dead
time specifies the time resolution of the detector.

M Geiger-Müller counter, trigger counter, measuring device for the detection of sin-
gle ionizing particles. Single ionizing particles generate ion avalanches by impact
ionization in a gas-filled vessel (gas amplification). The avalanches are measured as
discharge pulses (Fig. 16.8, range II). The dead time of a trigger counter is several
hundred milliseconds.

Proportional counter, the voltage is chosen such that the counter may operate in
the proportional range. The number of secondary charge carriers is proportional to
the number of the primary charge carriers (Fig. 16.8, range I). The discharge pulse
is also proportional to the energy loss 
E of the particle. The proportional counter
has a high time resolution, and is thus appropriate for the measurement of high pulse
rates.

Ion chamber Geiger counter

V

Figure 16.8: Working ranges
of ionization detectors.
V : detector voltage, I :
ionization current, I:
proportional range, II:
trigger range.

16.2.2 Self-sustained gaseous discharge
Self-sustained gaseous discharge, a gaseous discharge in which the charge carriers are
released by the applied voltage itself (Fig. 16.9).

16.2.2.1 Types of self-sustained gaseous discharges

1. Glow discharge,

a luminous discharge at mean current densities (10−9 A/m2 < J < 10−4 A/m2). The ions
striking the cathode liberate electrons, which flow towards the anode.

Owing to the different mobility of the positive and negative charge carriers, zones of
different space charges build up in the region between the electrodes. Therefore, the gas
between cathode and anode does not glow uniformly.
■ Fluorescent lamps, lamps that reach a high luminous efficiency by gaseous dis-

charges in the filling gases at low pressure. The UV radiation that arises is converted
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to visible light by appropriate layers. Radiation similar to daylight may be obtained
by special luminescent layers on the inner surface of the tube.

2. Arc discharge,

bright luminous discharge at current densities J > 10−4 A/m2. The cathode is heated by
the incident current and emits more electrons by thermo-ionic emission or field emission.
■ Carbon arc lamp, a lamp in which an electric arc burns between two carbon elec-

trodes. The light spot lies at the cathode.
■ Mercury-vapor lamp, a lamp for high luminous fluxes. An arc discharge in a mer-

cury gas under high pressure is burned between two metallic electrodes.

3. Spark discharge,

self-terminating arc discharge.
The ignition voltage of the spark discharge depends on the shape and the distance of the

electrodes, as well as on the pressure of the gas between the electrodes.
➤ The light emission of the various gaseous discharges arises from impact excitation of

the gas atoms in collisions with electrons.
Corona discharge, luminous discharge at high pressure and high electric fields. It sur-
rounds high-voltage cables, or manifests itself as Saint Elmo’s fire.

Figure 16.9: Types of
gaseous discharge. I: glow
discharge, II: arc discharge,
III: dark discharge.

16.2.2.2 Current-voltage characteristic of a gaseous discharge
Ignition voltage, voltage at which a dark discharge turns into a glow discharge.

Self-sustained gaseous discharges have decreasing resistance characteristics
(Fig. 16.10), or even a negative differential resistance dV/dI . Therefore, a dropping
resistor (current limiter) is indispensable—for alternating current, an induction coil may
be used.

V

V

Figure 16.10: Current-
voltage characteristic
of a gaseous discharge.
Vz : ignition voltage. I:
dark discharge, II: glow
discharge, III: arc discharge.
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16.3 Electron emission

The emission of electrons from metals is the basis of various technical devices such as
vacuum tubes and photomultipliers. By supplying energy externally, electrons from metals
or other solids are released.

Electronic work function, WA, the energy to be supplied to a conduction electron in a
metal in order to free it from the metal to vacuum.

The electronic work function is between 1 eV and 5 eV. It depends on the type of metal
and is particularly small for alkali metals.

At room temperature, the thermal energy of the conduction electrons is of the order
of magnitude of 1 % of the work function WA. But some of the electrons exceed this
threshold.

16.3.1 Thermo-ionic emission
Thermo-ionic emission, the emission of electrons from a metal heated to point of glowing.
The fraction of the electron gas in the metal at the upper end of the velocity distribution
with energies exceeding the work function WA increases with the temperature T propor-
tional to T 2e−WA/(kBT ).
▲ The current density J of the emitted electrons as a function of the temperature T and

the work function WA is described by the Richardson equation:

Richardson equation IL−2

J = AT 2e
− WA

kBT

Symbol Unit Quantity

J A/m2 current density of electrons
A A/(m2K2) Richardson constant
WA J work function
kB J/K Boltzmann constant
T K temperature

Richardson constant, proportionality factor in the Richardson equation:

A ≈ 6 · 10−3 Am−2K−2.

▲ The Richardson constant is equal for all pure metals with a uniform emitting surface.
M Glow cathode, an electrode consisting of a directly or indirectly heated carrier metal

covered by BaO and alkaline metal admixtures in order to reduce the work function
WA. It is used as the cathode in vacuum tubes.

16.3.2 Photo emission
Photo emission, the release of electrons by light quanta of sufficient energy (see p. 820).

Einstein equation, gives the kinetic energy of the emitted electrons as a function of the
frequency of the incident radiation and the work function (Fig. 16.11):
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Einstein equation ML2T−2

Ekin = h f −WA

Symbol Unit Quantity

Ekin J kinetic energy of emitted electrons
h Js Planck’s quantum of action
f 1/s photon frequency
WA J work function

The energy of the photoelectrons is independent of the intensity of the incident radiation.
The radiation intensity determines only the magnitude of the photocurrent, i.e., the number
of electrons released per unit time.

External photoeffect, emission of electrons from the illuminated surface into free
space.

M Photoelectric cell, device to measure the illuminance. The photoelectric cell involves
two electrodes, one of them illuminated. The electrons released by this electrode may
be registered as current between both electrodes.

Figure 16.11: Dependence
of the kinetic energy of
photoelectrons on the
frequency of the incident
radiation.

Internal photoeffect, release of electrons inside the material. In a semiconductor, the effect
causes a change of the electric conductance.
■ Photovoltaic cell, resistance depending on the illumination.

16.3.3 Field emission
Field emission, the emission of electrons from materials into vacuum under the influence
of strong external electric fields.

Field emission requires field strengths of the order of 109 V/m. These values may be
reached at sharp points.

M Field emission microscope, electron microscope for the magnification of atomic
structures at sharp points.

In a vacuum tube, a sharp point serves as counter electrode for a metallic ring. A
voltage of several kV generates a high field strength at the strongly curved point that
accelerates the electrons from the point through the anode ring onto a luminescent
screen. The atomic structures of the tip, and also the atoms of filling gases, may be
made visible. The maximum magnification is 106.

M Scanning tunneling microscope, a microscope for the magnification of atomic struc-
tures on surfaces.

A tunnel current flows between the surface and a fine needle electrode. The cur-
rent value strongly depends on the distance between them. By keeping the distance
constant, the surface is scanned by the electrode with a discrimination of 10−11 m.

Single atoms may be observed with a scanning tunneling microscope.
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16.3.4 Secondary electron emission
Secondary electron emission, the emission of electrons from a material due to the impact
of fast charged particles. By the collisions, material molecules are ionized and electrons are
released that can be separated from the material molecules by electric or magnetic fields.

After acceleration to sufficiently high energy, the released electrons may ionize more
molecules by repeated collisions and in this way generate an electron avalanche.

M Secondary electron multiplier, a device to amplify weak electron currents. Elec-
trons striking the first electrode liberate several electrons by impact ionization, and
they are then accelerated by an electric field towards further electrodes, the dynodes.
There, each electron liberates a number of secondary electrons. Hence, a series of
dynodes may amplify the current by several orders of magnitude.

Photo multiplier, a device for the measurement of the lowest light intensities. A
photoelectrode is connected to a secondary electron multiplier. It responds to incident
photons by releasing a primary current, which may be subsequently amplified.

16.4 Vacuum tubes

Vacuum tube, evacuated glass bulb with inserted electrodes that control the flow of elec-
trons by their electric potentials.

1. Cathode and anode in vacuum tubes

Cathode, negative electrode in the tube that releases electrons by thermo-ionic emission.
It is heated either directly or indirectly.

Usually, the cathodes are covered with alkaline-earth oxides in order to reduce the work
function and to increase the electron yield.

Anode, positive electrode opposed to the cathode.
➤ Vacuum tubes are evacuated in order to reduce as far as possible the collisions of

electrons with gas molecules and to prevent oxidation of the hot cathode. The vacuum
degrades with increasing age, however, due to evaporation of cathode material.

Anode potential, Va, voltage between anode and cathode.
Anode current, Ia, current between anode and cathode.

➤ More complex vacuum tubes contain other electrodes besides the anode and cathode.

2. Plate resistance and characteristics

Plate resistance, Ri, the internal electric resistance of a vacuum tube.
By analogy to ohmic resistance, one defines:

plate resistance L2T−3MI−2

Ri = Va

Ia

Symbol Unit Quantity

Ri 	 plate resistance
Va V anode potential
Ia A anode current

➤ In general, the plate resistance depends on the operating conditions of the tube.
Characteristics, diagrams of the electric properties of vacuum tubes.

To an increasing extent, vacuum tubes are being replaced by semiconductor components.
Current applications of vacuum tubes: special tubes (television tubes, x-ray tubes), tubes
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for high electric and mechanical loads, tubes for high power like transmitting vacuum
tubes.
➤ Unlike semiconductors, tubes are rather insensitive to overvoltages and particle radi-

ation.

16.4.1 Vacuum-tube diode
Vacuum-tube diode, simplest type of vacuum tube consisting of cathode and anode. Since
electrons can flow only from cathode to anode, the vacuum-tube diode serves as rectifier.

Residual current, the current flowing in a vacuum-tube diode without an applied exter-
nal voltage (Fig. 16.12).
➤ The electrons released by heating of the cathode provide a current between cathode

and anode even without an external voltage (Fig. 16.13). The current stops only when
a sufficiently high counter-voltage is applied.

Saturation current

Linear
region

Saturation
region

Residual current

V Heater

Anode

Cathode

Figure 16.12: Characteristic of a
vacuum-tube diode.

Figure 16.13: Vacuum-tube diode.

16.4.2 Vacuum-tube triode
Vacuum-tube triode, more complex vacuum tube for voltage amplification. The vacuum-
tube triode contains a grid between anode and cathode (Fig. 16.15). The magnitude of
the anode current may be controlled by applying a potential difference between grid and
cathode (Fig. 16.14). The grid remains almost free of current, hence the current control
works without power consumption.

The voltage signal applied to the grid is amplified by the triode.
➤ Vacuum tubes with additional grids (tetrode, pentode, . . .) exhibit a behavior qualita-

tively similar to the triode.

16.4.2.1 Vacuum-tube parameters

1. Grid voltage and slope conductance

Grid voltage, Vg, the voltage applied to the grid in order to control the anode current.
Slope conductance of the characteristic, S, the slope of the current-voltage characteris-

tic for constant anode potential.
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V

V

Anode

Cathode

Heater

Grid

Figure 16.14: Characteristics of a
vacuum-tube triode for varying direct
voltage.

Figure 16.15: Vacuum-tube triode; for
negative grid voltage, the electrons are
decelerated.

slope of characteristic L−2T3M−1I2

S = 
Ia


Vg

Symbol Unit Quantity

S A/V slope of characteristic
Ia A anode current
Vg V grid voltage

The slope of the characteristics is given for constant anode potential Va. The formula holds
only in the linear range. In general,

S = ∂ Ia

∂Vg
, Va = const.

➤ For a large signal amplification of the tube, the slope conductance S should be as
high as possible.

2. Internal resistance and grid transparency

Internal resistance of a triode, Ri , generalization of the plate resistance:

Ri = ∂Va

∂ Ia
, Vg = const.

Transparency of the vacuum tube, D, the reaction of the anode potential Va to the grid
voltage Vg.

transparency of the triode 1

D = ∂Vg

∂Va
, at Ia = const.

Symbol Unit Quantity

D 1 transparency
Vg V grid voltage
Va V anode voltage
Ia A anode current
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3. Control voltage

Control voltage of grid, Vs, effectively acting voltage at the grid:

control voltage of grid L2T−3MI−1

Vs = Vg + DVa

Symbol Unit Quantity

Vs V control voltage of grid
Vg V grid voltage
D 1 transparency
Va V anode potential

➤ The control voltage Vs and the anode current Ia are related by

Ia = SVs .

4. Barkhausen equation,

relation between slope conductance S, transparency D and internal resistance Ri.

Barkhausen equation 1

SDRi = 1

Symbol Unit Quantity

S A/V slope conductance
D 1 transparency
Ri 	 internal resistance

5. Amplification factor of a vacuum tube,

A, ratio of the anode alternating voltage Va to the grid alternating voltage Vg.

amplification factor of a vacuum tube 1

A =
∣∣∣∣Va

Vg

∣∣∣∣
Symbol Unit Quantity

A 1 amplification factor of a vacuum tube
Va V anode alternating voltage
Vg V grid alternating voltage

The amplification factor of a vacuum tube V depends on the load resistance Ra in the
anode circuit:

amplification factor of a vacuum tube 1

A = −S
Ra Ri

Ra + Ri

Symbol Unit Quantity

A 1 amplification factor of a vacuum tube
S A/V slope conductance
Ra 	 resistance in anode circuit
Ri 	 internal resistance of vacuum tube

In order to reach a high amplification factor, the characteristic should be as steep as possi-
ble.
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16.4.3 Tetrode
Tetrode, complex vacuum tube with two grids between anode and cathode. One distin-
guishes two types:
• Screen-grid vacuum tube, tetrode with an additional grid between anode and control

grid; this grid reduces the transparency D and increases the amplification.
• Space-grid vacuum tube, tetrode with an additional grid between cathode and con-

trol grid; this grid increases the slope conductance S of the characteristic curve.

16.4.4 Cathode rays
Cathode rays, electron beams in evacuated vacuum tubes which, after being accelerated
by the voltage between cathode and anode, leave the acceleration region through a hole in
the anode plate. Cathode rays propagate along straight paths in the field-free space, or they
may be deflected by electric and magnetic fields.

Cathode rays cause certain glasses, minerals and special fluorescent dyes to fluoresce.
■ Braun’s tube, device in which a cathode beam may be guided over a luminous screen

by electric or magnetic fields. Application: as display in television sets and oscillo-
scopes.

The velocity of the electrons in the cathode ray is determined by the accelerating field
between cathode and anode:

velocity of cathode rays LT−1

v =
√

2e0V

me

Symbol Unit Quantity

v m/s velocity of cathode rays
e0 C elementary charge
V V voltage between anode and cathode
me kg electron mass

➤ The equation holds only for v � c.
■ For a voltage between anode and cathode of V = 50 V, one obtains v = 4.19 ·

106 m/s. This corresponds to 1.4 % of the speed of light.

16.4.5 Channel rays
Channel rays, rays of positively charged gas ions accelerated by the electric field towards
the cathode and passing through it in channels (Fig. 16.16).

Anode

Cathode

Discharge region Channel rays Screen

Figure 16.16: Generation of
channel rays in a gaseous
discharge.



572 16. Current conduction in liquids, gases and vacuum

velocity of channel rays LT−1

v = √2ze0V/mI

Symbol Unit Quantity

v m/s velocity of channel rays
z 1 ionic valence
e0 C elementary charge
V V voltage between anode and cathode
mI kg ion mass

■ For a voltage between anode and cathode of V = 50 V, one obtains v = 9.78·104 m/s
for protons and v = 1.85 · 104 m/s for N+2 ions. Because of the large ion mass,
this velocity is very small compared with the velocity of the electrons of the same
acceleration energy.
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Plasma physics

Plasma, gaseous mixture of free electrons, ions and electrically neutral particles—atoms,
molecules and free radicals. All components of the mixture have a high kinetic energy,
but they are not necessarily in thermal equilibrium with each other. The electromagnetic
interaction between the individual particles contributes significantly to the behavior of the
system.
■ Much of the visible matter of the universe is in a plasma state, e.g., the Sun.

17.1 Properties of a plasma

Apart from the usual thermodynamic properties of a gas, such as temperature and pressure,
a plasma also has peculiarities originating in its character as a mixture of partly charged
and partly uncharged particles in different states of excitation.

Quasi-neutrality, fundamental property of a plasma: plasmas are electrically neutral
in macroscopic regions, both in the spatial and temporal averages. Any volume element
contains about the same quantity of positive and negative charge carriers.
➤ The kinetic energy of the plasma particles is large compared with the potential energy,

which is caused by a local charge.

17.1.1 Plasma parameters
Owing to the large number of interacting species of particles, a large variety of quantities
is required for a description of a plasma.

17.1.1.1 Degree of ionization
Degree of ionization, xr , the fraction of ions of nuclear charge Z in a plasma of atoms and
positively charged ions that are ionized at least r times:

573



574 17. Plasma physics

degree of ionization 1

xr =
∑Z

i=r ni∑Z
i=0 ni

≤ 1

Symbol Unit Quantity

xr 1 degree of ionization of the
r th ionization step

ni mol/m3 concentration of i-times
charged ions

Z 1 nuclear-charge number

➤ Frequently, the degree of ionization x1 of the first ionization step, r = 1, is denoted
simply degree of ionization x .

Owing to the neutrality condition, the electron concentration is given by

ne =
Z∑

i=1

i ni .

If negatively charged ions are present, the equation has to include the corresponding nega-
tive terms.

Plasmas are classified according to their degree of ionization x1:
• weakly ionized plasmas: degree of ionization x1 � 1.
• highly or fully ionized plasmas: degree of ionization x1 ≈ 1.
➤ Plasmas may also be classified by the ratio of the charge-carrier density to the screen-

ing length, or by the ratio of kinetic and potential energy of the particles.
Plasmas with temperatures T < 105 K (T > 106 K) are refered to as cold (hot)

plasmas. Nuclear fusion processes are possible only in plasmas of temperature T >

108 K.

17.1.1.2 Distribution functions of the plasma
The energy content of the plasma may be distributed over the usual excitations of a gas
(rotational and vibrational excitations) and, to a large extent, electronic excitations.

1. Complete thermodynamic equilibrium,

ideal state of a plasma:
▲ In complete thermodynamic equilibrium, all distribution functions are determined by

a single state variable, the temperature T .
▲ Principle of detailed balance: Every process occurs at the same rate as the inverse

process.
In particular:
• the same number of atomic electrons are excited and de-excited,
• the same number of atoms that are ionized as ions are recombining with electrons to

become neutral atoms,
• all possible chemical reactions are in equilibrium according to the law of mass

action,
• direct reactions and inverse reactions occur at an equal rate (e.g., thermal

dissociations).

2. Distribution functions of a plasma in complete thermodynamic equilibrium,

a) Electromagnetic radiation of plasma, corresponds to the cavity radiation (see
p. 818) of a black radiator.



17.1 Properties of a plasma 575

Planck’s radiation law, the distribution of photons of energy h f at the radiation tem-
perature T :

spectral radiation energy distribution of a plasma MT−3

Le, f (T ) = 2h f 3

c2

1

e(h f )/(kBT ) − 1

Symbol Unit Quantity

Le, f (T ) W/m2 emitted spectral
radiation intensity

h Js Planck’s quantum
of action

f 1/s frequency of radiation
kB J/K Boltzmann constant
T K plasma temperature
c m/s vacuum speed of light

b) Maxwellian velocity distribution of the particles (ions and electrons at the same
temperature T ):

velocity distribution of a plasma in complete thermodynamic equilibrium 1

f (v) = 4√
π
v2
(

m

2kBT

)3/2
e−mv2/(2kBT )

Symbol Unit Quantity

f 1 particle number
in velocity
range v, v+dv

v m/s particle velocity
m kg particle mass
kB J/K Boltzmann constant
T K plasma temperature

➤ Different particle species at the same temperature have different velocity distributions
because of their different particle masses.

➤ Often the quantum mechanical degeneracy of the electrons cannot be ignored, so that,
for the electron plasma in metals or in cold stars (white dwarfs), the Fermi-Dirac
distribution must be used.

c) Boltzmann distribution, specifies the occupation of excited electronic states:

distribution of electronic excitations of a plasma 1

n j

n
= g j

g0
e−E j /(kBT )

Symbol Unit Quantity

n j 1 particle number in j th excited state
n 1 total number of particles
g j 1 statistical weight of excited state j
g0 1 statistical weight of the ground state
E j J excitation energy of j th excited state
kB J/K Boltzmann constant
T K plasma temperature

The partition function appearing in the denominator has been approximated by its first term
g0. A separate distribution holds for each of the individual degrees of ionization.
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3. Saha equation,

describes ionization-recombination equilibrium:

Saha equation 1

x2

1− x
= 2

(2πme)
3/2

h3

g1

g0 p

· (kBT )5/2e−EI/(kBT )

Symbol Unit Quantity

x 1 ionization degree
me kg electron mass
h Js Planck’s quantum

of action
gi 1 statistical weight

in i th ionized state
p N/m2 plasma gas pressure
EI J ionization energy
kB J/K Boltzmann constant
T K temperature

The Saha equation holds only in this simple form for equilibrium between the ground state
and the first ionized state. To take into account further ionized states, one has to solve a
system of Saha equations simultaneously. The partition functions have been replaced by
their first term. The decrease of the ionization energy produced by the plasma has been
ignored.

4. Real plasmas

In most cases, real plasmas deviate from complete thermodynamic equilibrium. But some
of the statements referring to completely thermodynamic equilibrium may still be valid,
depending on which of the partial equilibria are no longer valid.
➤ In chemically reactive plasmas, the equilibrium of the chemical reactions has to be

taken into account as well. In completely thermodynamic equilibrium, the chemical
reactions obey the law of mass action separately.

Local thermal equilibrium, partial equilibrium in which radiation equilibrium is no
longer valid. For a sufficiently high electron concentration (ne > 1023 m−3), the colli-
sion processes exceed the absorption and emission processes, so that the particle balances
remain unaffected.

In local thermal equilibrium, the plasma is described by two state variables, a matter
temperature Tm and a radiation temperature Ts.

Deviations from equilibrium, require the introduction of different temperatures for
different elementary processes and for different particle species.

17.1.1.3 Energy content of the plasma
In the plasma, different forms of energy are continually converted into each other by the
various interactions among the particles:
• energy of the electric and magnetic fields,
• ionization energy,
• translational energy of the neutral particles and charge carriers,
• dissociation energy and chemical binding energy,
• energy of electronic excitations,
• energy of rotational and vibrational excitations,
• radiation energy,
• energy of collective motions (plasma oscillations and plasma waves).
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The establishment of thermal equilibrium among the various kinds of energy is determined
by the coupling between them.
➤ The mean kinetic energies of the atoms and ions are rapidly equilibrated by colli-

sions between particles of similar mass. The equilibration between ions and electrons
proceeds more slowly, since only a small amount of kinetic energy is transferred in
collisions involving very different masses.

17.1.1.4 Electric conductivity of plasmas

1. Charge-carrier drift of plasma particles in an external field

In an external electric field, the charge carriers of the plasma drift at constant velocity along
the field lines. The drift velocity of ions is lower than that of electrons, hence the electric
conductivity is dominated by the electronic transport (Fig. 17.1 (a)).

Coulomb logarithm, characteristic plasma parameter for describing the ratio of plasma
temperature to electron density:

Coulomb logarithm 1

ln� = ln

(
aT 3/2
√

ne

) Symbol Unit Quantity

ln� 1 Coulomb logarithm
a (Km)−3/2 proportionality constant
T K temperature
ne 1/m3 electron-number density

The proportionality factor a has the value a ≈ 107 (Km)−3/2. For most plasmas ln� ≈
15 . . . 20.

electric conductivity of plasma I2L−3T3M−1

σ = e2
0neτe

me

Symbol Unit Quantity

σ S/m electric conductivity of plasma
e0 C elementary charge
ne 1/m3 electron-number density
τe s mean time of flight between two collisions
me kg electron mass

2. Properties of the electric conductivity of a plasma

The electric conductivity is governed by different processes depending on the degree of
ionization:

Weakly ionized plasmas, the mean time of flight is limited by the collisions between
electrons and neutral particles; τe is independent of the electron density, and σ ∼ ne.

Completely ionized plasmas, the collisions between charged particles are crucial. Then
τe ∼ 1/ne, and σ is independent of ne.

Spitzer formula, gives the electric conductivity in completely ionized thermal plasmas,
taking into account the electron-ion collisions. If the electron-electron collisions are in-
cluded, the value of σ is halved.
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Spitzer formula I2L−3M−1T3

σ = 64
√

2πε2
0

e2
0
√

me

(kBT )3/2

ln�

Symbol Unit Quantity

σ S/m electric conductivity
ε0 C2 J−1 m−1 free-space permittivity

constant
e0 C elementary charge
me kg electron mass
kB J/K Boltzmann constant
T K plasma temperature
ln� 1 Coulomb logarithm

■ A nitrogen plasma at T = 104 K has an experimentally measured electric conductiv-
ity of σ = 3000 S/m.

17.1.1.5 Heat conductivity of a plasma
The transport of heat energy in a plasma may proceed in two ways:
• transport by transfer of translational energy of the particles available,
• reaction heat conduction, energy transport by transfer of excitation energy, dissoci-

ation energy and ionization energy.
The mechanism of heat conduction due to reactions means that, in regions of high temper-
ature, heat energy is used for excitation or dissociation. The reaction products diffuse to
cooler regions, and there release the heat energy by inverse processes (Fig. 17.1 (b)).
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Figure 17.1: (a): electric conductivity σ and (b): heat conductivity κ of a nitrogen plasma.

17.1.1.6 Screening and Debye length

1. Potential about charged particle in a plasma

In a plasma, the potential about a charged particle differs significantly from that in a vac-
uum. A cloud of negative particles is formed around a positive particle that appreciably
diminishes the range of the potential. Therefore, a screening potential is superimposed on
the usual Coulomb potential:
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screened electric potential I−1ML2T−3

ϕ(r) = 1

4πε0

e0

r
e−r/λD

Symbol Unit Quantity

ϕ V electric potential
r m distance from charge carrier
ε0 C2 J−1 m−1 free-space permittivity

constant
e0 C elementary charge
λD m Debye length

The potential given above holds for a plasma with Z = 1 in which e0V � kBT every-
where.

2. Debye length,

λD, characteristic length that describes the screening of a potential. Within a Debye length,
the potential drops to 1/e of the original value:

Debye length L

λD =
√
ε0kBT

2e2
0ne

Symbol Unit Quantity

λD m Debye length
ε0 C2 J−1 m−1 free-space permittivity constant
kB J/K Boltzmann constant
T K temperature
e0 C elementary charge
ne 1/m3 electron-number density

■ For a Hydrogen plasma at T = 104 K and ne = 1023 cm−3, λD ≈ 2× 10−5m.

3. Plasma classification by the Debye length

The Debye length may be used to classify a plasma:
• Ideal plasma, a plasma containing many charge carriers within a sphere of radius of

one Debye length. The potential electric energy is significantly lower than the thermal
energy.

• Non-ideal plasma, a plasma containing only few charge carriers within one Debye
length of another charge carrier. Non-ideal plasmas exhibit characteristic anomalies
(phase transitions, anomalous electric conductivities).

■ Dense plasmas are usually non-ideal plasmas.

17.1.1.7 Plasma oscillation frequency
Plasma oscillations, collective motion of a plasma caused by space charge fluctuations.
The restoring force is due to the space charge field arising from the displacement of charge
carriers.

Langmuir frequency, ωPe, fundamental frequency of plasma oscillations:
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Langmuir frequency of electron oscillations T−1

ωPe =
√

e2
0ne

ε0me

Symbol Unit Quantity

ωPe rad s−1 Langmuir frequency
e0 C elementary charge
ne 1/m3 electron-number density
ε0 C2 J−1 m−1 free-space permittivity constant
me kg electron mass

➤ For ion oscillations, which also occur, the electron mass me must be replaced by the
ion mass mi.

17.1.2 Plasma radiation
1. Radiation from a plasma

Due to the high kinetic energy of the particles and the large number of excited atoms and
ions, plasmas emit electromagnetic radiation in the range from microwaves up to hard x-
rays (for highly ionized metal atoms).

Radiation from plasmas may originate from different kinds of transitions:
• discrete transitions between bound states,
• free-free transitions in the continuum (bremsstrahlung), i.e., transitions between un-

bound states,
• free-bound transitions in electron-ion recombination.
• bound-free transitions with dissociation in the lower state.
➤ The last three kinds of transitions yield continuous-emission spectra.

2. Characteristic quantities of plasma radiation

The radiation emitted by a plasma corresponds to spontaneous and stimulated emission, as
well as to absorption in the plasma interior.

Spectral-radiation density, L f , a quantity describing the radiation energy per fre-
quency interval d f emitted by a volume element.

Emission coefficient, ε f , coefficient specifying the radiation energy emitted per unit
volume and unit time within a frequency interval.
➤ The emission coefficient includes the spontaneous, but not the stimulated, emission.

It is independent of the spectral-energy density at this position, but is itself frequency-
dependent.

Effective-absorption coefficient, κ ′, a coefficient describing absorption, scattering and
stimulated emission in a medium.

Optical depth, τ , a quantity that specifies the transparency of a column of matter for
radiation. It is given by the integral of the effective-absorption coefficient along the column:

optical depth 1

τ =
∫ l

0
κ ′(x)dx

Symbol Unit Quantity

τ 1 optical depth
l m length of column of matter
κ ′ m−1 effective-absorption coefficient
x m position along the column

After passing through a layer of matter with an optical depth τ = 1, the radiation density
is reduced to 1/e of the original value.
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17.1.3 Plasmas in magnetic fields

17.1.3.1 Motion of charged particles in external fields

1. Force of an external field on plasma particles

In order to analyze the behavior of plasmas in external fields, one must consider the motion
of individual particles.

A particle of charge q and velocity �v in an electric field �E and a magnetic field �B expe-
riences the Lorentz force

�FL = q
(
�v× �B

)
+ �F .

�F includes all external forces, including also the force q �E due to the electric field. The
entire motion may be separated into two distinct motions:
• gyration, rotation along a circular orbit about the direction of the (local) magnetic

field,
• displacement of the center of the circle with the drag velocity �vF.

Gyration radius rG and gyration frequency �ωG are given by:

gyration radius and gyration frequency

rG = mv⊥
q B

�ωG = − q

m
�B

Symbol Unit Quantity

rG m gyration radius
�ωG 1/s gyration frequency
m kg particle mass
v⊥ m/s particle velocity perpendicular to

magnetic field axis
q C particle charge
�B T magnetic flux density

The magnetic moment of the rotation remains constant; it is given by

�µ = −m
v⊥
2

�B
B2
.

➤ The particle motion has exactly this form only in a uniform, time-independent mag-
netic field and for a vanishing external force �F = 0.

2. Special cases of external fields

• �B is constant in time and space, �F = 0.
A particle rotates on helical orbits about the magnetic field lines. The drag velocity

corresponds to the particle velocity along the magnetic field.
For increasing magnetic flux density �B, the gyration radius rG becomes ever

smaller, i.e., the particles are bound more tightly to the magnetic field lines.
• �B is constant in time and space, �F �= 0.

Besides the motion in helical orbits, there is an additional transverse drag per-
pendicular to �B and to the force component �F⊥ perpendicular to �B. The drag velocity
is given by

�vF =
�F⊥ × �B

q B2
.
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• �B is constant in time but not in space, �F = 0.
Gradient-B drift, a drift motion in a non-uniform magnetic field whose gradient

is perpendicular to the field. The drag velocity obeys

�vF = v⊥rG

2B
grad⊥B .

In a non-uniform field, the gradient of which is parallel to the magnetic flux direction,
longitudinal kinetic energy is converted into rotational energy.

Mirror effect, inversion of the direction of the drag velocity in a non-uniform
magnetic field, the gradient of which is parallel to the magnetic field axis.

Ions may be confined in a cylindrical, non-uniform magnetic field (magnetic bottle)
by the mirror effect.

• �B is not constant in either time or space.
In a field increasing with time, the gyration radius rG decreases; in a field decreas-

ing with time, rG increases.
The magnetic flux enclosed by the particle during the gyration cycle is nearly con-

stant.

17.1.3.2 Motion of charged particles in a magnetic field
including collisions

Charged particles stop circulating around a magnetic field line because of collisions and
are transferred to another field line. This corresponds to a drift motion across the magnetic
field.

The collisions act randomly and may be treated by adding an effective-stochastic-force
term, which acts like a friction force.

Langevin equation, equation describing the motion in a magnetic field including colli-
sions and additional external forces:

Langevin equation MLT−2

m
d�v
dt
= q

(
�v× �B

)
+ �F− m f �vm

Symbol Unit Quantity

m kg particle mass
�v m/s particle velocity
t s time
q C particle charge
�B T magnetic flux density
�F N external forces
f 1/s collision frequency
�vm m/s mean velocity

17.1.3.3 Drift motion in an external electric field
In an external, time-independent electric field, the drift motion due to coupled fields may
be determined by the averaged Langevin equation. Let the magnetic field point along the
z-direction and the x-direction be chosen such that Ey = 0, then:
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• Ez generates a drift motion along the magnetic field that is not affected by the mag-
netic field;

• The component Ex perpendicular to �B generates a drift motion along the x-direction,
but with the reduced mobility

µx = 1

1+
(
ω2

Ge

/
f 2
e

) µz, ωGe gyration frequency of the electrons,

fe collision frequency of the electrons.
• Ex excites a drift in y-direction, although Ey = 0.

17.1.3.4 Continuum theories
With increasing interaction between the particles, the model of individual particles has to
be replaced by the model of a continuous medium. There are two approaches:
• magnetohydrodynamics, a combination of hydrodynamics and electrodynamics,
• plasma dynamics, hydrodynamics using different liquids for electrons, ions and neu-

tral particles.
Analogous quantities arise for the hydrodynamic variables.

Magnetic pressure, additional plasma pressure arising because of the interaction be-
tween plasma and magnetic field. The magnetic pressure for a time-independent field is

pm = B2

2µ0
, µ0 permeability of free space.

17.1.4 Plasma waves

The various interactions in a plasma, in particular in a medium far from equilibrium, cause
a parse variety of possible wave excitations. The following quantities may display wave-
like fluctuations:
• electric field strength E ,
• electric space charge density ρ,
• magnetic flux density B,
• particle concentrations of charge carriers and neutral particles,
• temperatures of ions and electrons,
• drift velocities of the particles.
➤ The treatment of plasma waves requires the simultaneous treatment of Maxwell’s

equations and the transport equations for the charge carriers.

17.1.4.1 Plasma-acoustic waves in plasmas

1. Electron plasma waves

Electron plasma waves, Langmuir waves, longitudinal wave motion, connected with
Langmuir oscillations of the electron density.

Electron plasma waves do not occur in cold plasmas. They are not affected by magnetic
fields directed along the propagation direction of the wave.
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dispersion relation of Langmuir waves T−2

<ve>
2 k2−ω2 + ω2

Pe = 0

Symbol Unit Quantity

<ve> m/s mean electron velocity
k 1/m wave number
ω 1/s angular frequency of wave
ωPe 1/s Langmuir angular frequency

of electrons

2. Ion plasma waves,

additional longitudinal waves arising at low frequencies (ω � ωe), since in this range ion
density fluctuations also contribute to the wave motion in addition to the fluctuations of the
electron density. Ion plasma waves are free of dispersion.

Ion sound velocity, propagation of ion plasma waves.

ion sound velocity LT−1

cS = <vi>

√
1+ Te

Ti

Symbol Unit Quantity

cS m/s ion sound velocity
< vi > m/s averaged ion velocity
Te K electron temperature
Ti K ion temperature

The ion sound velocity is affected by the electron and ion temperatures.

17.1.4.2 Magnetohydrodynamic waves
Magnetohydrodynamic waves, mixed hydrodynamic-electromagnetic waves which are
strongly affected by the motion of the charge-carrier background.

Alfven waves, magnetohydrodynamic waves in a magnetic field parallel to the propaga-
tion direction. They are free of dispersion, and their phase velocity cph is

phase velocity of Alfven waves LT−1

cph = c0√
1+ µ0c2

0ρm

B2
a

Symbol Unit Quantity

cph m/s phase velocity
c0 m/s vacuum speed of light
µ0 Vs/Am free-space permeability constant
ρm kg/m3 mass density of plasma
Ba T external magnetic field

Alfven waves may be interpreted as electromagnetic waves propagating through a medium
of increased relative permittivity:

εr =
√√√√1+ µ0c2

0ρm

B2
a

.



17.1 Properties of a plasma 585

17.1.4.3 Electromagnetic waves in plasmas
The propagation of electromagnetic waves in a plasma is modified (compared with the
propagation in a vacuum) by the presence of free charge carriers. For ω →∞, the waves
behave like vacuum waves because no charge carriers may be dragged along. For ω ≈ ωPe
and ω ≈ ωGe (ωGe gyration frequency of electrons), strong deviations occur. For circularly
polarized waves propagating in a magnetic field parallel to the field axis, simple dispersion
relations may be given:

Ordinary wave, circularly polarized electromagnetic wave with the �E vector rotating
against the gyration of electrons.

Extraordinary wave, circularly polarized electromagnetic wave with the �E vector ro-
tating in the same sense as the gyration of electrons.

dispersion relation of electromagnetic plasma waves T−2

c2
0k2 − ω2 + ω2

Pe

1± ωGe

ω

= 0

Symbol Unit Quantity

c0 m/s vacuum light speed
k m−1 wave number
ω s−1 angular frequency of wave
ωPe s−1 Langmuir angular frequency

of electrons
ωGe s−1 gyrational angular frequency

of electrons

The positive sign holds for ordinary waves, the negative sign for extraordinary waves.
In a plasma in which no external magnetic field is acting, the refractive index n obeys

the Eccles relation:

Eccles relation for the refractive index 1

n =
√

1− ωPe

ω

Symbol Unit Quantity

n 1 refractive index of plasma
ωPe s−1 Langmuir angular frequency of electrons
ω s−1 angular frequency of wave

➤ Waves with ω = ωPe are reflected when entering the plasma.

17.1.4.4 Landau damping
Besides the usual damping due to collisions between the plasma particles, energy of plasma
motion is also transferred into electromagnetic waves.

Landau damping, damping of plasma waves by energy transfer in the convected wave
field. Particles with velocities higher than the phase velocity of the wave are decelerated,
particles with lower velocities are accelerated. If the velocity distributions of the plasma
particles are Maxwellian, then the damping part (on the decreasing side), is predominant,
so that altogether the wave releases energy.
➤ For an appropriate velocity distribution, the wave may also be amplified.



586 17. Plasma physics

17.2 Generation of plasmas

In order to generate plasmas, sufficient energy has to be provided from outside to supply
the minimum energy to the atoms and molecules that is needed for ionization. There are
two mechanisms available:
• Increase of the energy content by heat supply. The energy supplied is distributed over

the available degrees of freedom; the ionization proceeds by collisions, or by photo
absorption. Mostly, these plasmas are close to thermal equilibrium.

• Increase of the energy content by calculated energy supply (radiation or electric cur-
rent) without a significant increase of temperature. The ionization proceeds directly
by the transfer of the energy supplied from outside to atoms and molecules. The re-
sulting plasmas are far from thermal equilibrium (Te � Ti).

17.2.1 Thermal generation of plasma
Plasma oven, a device for the heating of gas by contact with hot walls. The plasmas in
plasma ovens are in equilibrium and satisfy the Saha equation. But the degree of ionization
is limited by the maximum temperature achieved (T ≤ 3500 K).

Q-machine, generates thermal plasmas with an increased degree of ionization reached
by contact ionization of gas atoms by electrons leaving electrodes. The ionization energy
of the gas must be lower than the electron work function of the electrode materials. The
plasma cylinder is confined by a longitudinal magnetic field; the degree of ionization may
reach 50 %.
➤ Besides mechanical heating, energy from chemical or nuclear reactions may also be

used for heating plasmas. Heating in flames or explosions leads to plasmas of low
temperature (T < 104 K), fusion plasmas with T ≈ 109 K may be ignited by
nuclear reactions.

■ The ignition of the plasma in a hydrogen bomb proceeds by the explosion of a
nuclear-fission bomb in the center of the hydrogen vessel.

17.2.2 Generation of plasma by compression
By adiabatic compression of gases, the temperature may be increased so much that ion-
ization starts and a plasma is generated. The compression may proceed by external forces
(pistons, shock waves), or by magnetic self-compression of a conducting gas or plasma.

Shock tube, cylindrical tube in which a shock wave is initiated by destroying a mem-
brane between a high-pressure region and a low-pressure region. Ionization occurs because
of the strong heating of the gas when the shock wave passes (Fig. 17.2).

Shock waves may also be generated by the rapid heating of an amount of gas by pulse
discharges, or by magnetic fields increasing in time (inductive hydrodynamic shock tube
Fig. 17.3). In an electric-pulse discharge, a shock wave is released exclusively by sudden
heating. When using magnetic fields, one exploits the magnetohydrodynamic properties
of the plasma arising during the process to increase the temperature and the degree of
ionization.

17.2.2.1 Pinch effect
Pinch effect, compression of charged liquids and gases in a magnetic field. The compres-
sion is generated by the passage of a large current or magnetic field (depending on the
geometry) through the liquid or gas. The temperature of the plasma is increased by the
compression.
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Figure 17.2: Mechanical shock tube. Figure 17.3: Inductive-hydrodynamic shock
tube.

1. z-pinch,

a pinch in which the current flows axially through the plasma column. Because of the
discharge between two electrodes, a current flows along the pinch axis and generates an
azimuthal magnetic field �Bθ . In this field, a force density pointing radially inward

�f = �Jz × �Bθ

acts on the charge carriers (Fig. 17.4). �Jz is the current density along the z-direction. The
force pointing towards the pinch axis is just the Lorentz force of electrodynamics.

For sufficiently high current density, the force density exceeds the plasma pressure and
compresses the plasma column, which thereby constricts (pinch effect) and separates from
the walls of the vessel.

Bennett equation, equation giving the current needed for compressing a plasma column
in a z-pinch:

Bennett equation I2

I 2 = 8π

µ0
NkBT

Symbol Unit Quantity

I A discharge current
µ0 Vs/Am free-space permeability constant
N 1/m charge carrier density per

unit length
kB J/K Boltzmann constant
T K plasma temperature

Discharge
current

Plasma
column

Coil

Plasma
column

External
magnetic field

Figure 17.4: z-pinch. Figure 17.5: Theta-pinch.
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■ In order to compress a fusion plasma (T ≈ 109 K) of diameter r = 15 cm and charge
carrier density n = 1022 m−3, a current I = 2.1 · 107 A is needed.

2. Theta-pinch,

θ -pinch, a pinch in which an external coil generates an axial magnetic field increasing in
time and inducing an azimuthal current in the plasma column that analogously leads to a
radial-force density directed inward (Fig. 17.5).

The lifetime of pinch plasmas is limited (τ ≈ 10 µs) by plasma instabilities. Longer
confinement times require other geometries, such as toroidal plasma columns.

17.3 Energy production with plasmas

Plasmas, like electrically conducting gases, can be confined by magnetic fields and thus
kept away from contact with solid surfaces in the vicinity. This may be exploited in differ-
ent ways:
• Heat engines can be operated at higher maximum temperatures than allowed techni-

cally by the material of the combustion chamber (MHD generators).
• Fusion plasmas can be confined without contact with the environment so that fusion

reactions may take place in a reactor chamber for controlled energy production.

17.3.1 MHD generator
MHD generator, continuously running heat engine combining the functions of a turbine
and a generator with a single working medium (Fig. 17.6).

Fu
el

re
se

rv
oi

r

Combustion
 chamber

Electrodes

Jet Figure 17.6: MHD
generator.

A plasma flows from a combustion chamber through a nozzle into a space region tra-
versed by an external magnetic field pointing perpendicular to the efflux axis. The resulting
Lorentz force causes a charge separation of ions and electrons, which may be drawn off by
electrodes.
➤ In order to reach a sufficient degree of ionization at typical combustion temperatures

of T = 2000 . . . 3000 K , alkali atoms must be added to the combustion gas. This
doping of the gas also reduces the internal resistance of the generator, which limits
the maximum power that may be obtained.

The MHD generator combines the operation modes of a turbine and a generator of a
conventional heat engine into one operation step. The maximum potential efficiency is
limited by the Carnot efficiency:

η = Th − Tk

Th
.

Because of the high accessible values of Th, which due to the magnetic confinement are
not limited by the material of the walls, theory predicts significantly higher efficiencies
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for MHD generators than for conventional heat engines. The technical problems remain
unsolved, however.

17.3.2 Nuclear fusion reactors
In the fusion of light nuclei, an amount of energy in the order of magnitude of 10 MeV
per fusion reaction is released. But, in order to start the fusion reaction, sufficient thermal
energy has to be supplied to the reaction partners to overcome the Coulomb repulsion. In
a fusion power plant, part of the fusion energy delivered must be used to start additional
reactions.

1. Nuclear reactions for nuclear fusion

The following nuclear reactions are possible candidates for a fusion reactor:

2
1D+3

1 T→ 4
2He+1

0 n+ 17.60 MeV

2
1D+2

1 D→ 3
2He+1

0 n+ 3.27 MeV

2
1D+2

1 D→ 3
1T+1

1 H+ 4.04 MeV

6
3Li+2

1 D→ 2 4
2He+ 22.4 MeV

11
5 B+1

1 H→ 3 4
2He+ 8.47 MeV.

The energy released is distributed uniformly over the reaction products.
➤ The reactions listed above are arranged according to decreasing cross-section for a

given temperature. The D-T reaction requires the lowest technical effort, but the hard
neutron radiation and the need to use radioactive tritium make its safety difficult to
ensure.

2. Power density

The power density that may be reached by fusion reactions is given by:

power density from fusion reactions L−1MT−3

p = n1n2〈vσ 〉ε

Symbol Unit Quantity

p W/m3 power density
ni 1/m3 number densities of reaction partners
〈vσ 〉 m3/s velocity-averaged reaction rates
ε J reaction energy

3. Confinement time,

τ , the time during which a fuel mixture maintains integrity, e.g., by external magnetic
fields.
➤ Because of the high kinetic particle energy and the additional radiation pressure,

fusion plasmas exert enormous pressures that may be balanced, depending on the
density, for only a few ns.

4. Lawson criterion,

a criterion that connects the plasma fuel density required with the confinement time.
In order to produce a self-sustaining chain reaction in a reactor, the released fusion en-

ergy must be at least as large as the required thermal plasma energy. For a plasma composed
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of one particle type:

1

4
n2〈vσ 〉ετ > 3nkBT .

Hence, one obtains a minimum value for the product nτ .

Lawson criterion L−3T

nτ >
12kBT

〈vσ 〉ε

Symbol Unit Quantity

n 1/m3 fuel density
τ s confinement time
kB J/K Boltzmann constant
T K plasma temperature
〈vσ 〉 m3/s velocity-averaged reaction rates
ε J reaction energy

■ For D-T reactions nτ > 5 · 1019 s m−3, for D-D reactions analogously nτ >

1021 s m−3.

5. Energy losses in fusion plasmas,

leakage of energy, which has to be compensated by the fusion energy delivered:
• bremsstrahlung,
• discrete radiation by impurity atoms—particularly critical for impurities of high

atomic number,
• synchrotron radiation (for toroidal confinement),
• heat conduction,
• particle loss.

6. Confinement techniques

In order to fulfill the Lawson criterion, there are two approaches for confining plasmas:
• Magnetic confinement: in a magnetic field, a plasma of low density holds together

for a relatively long time. It is heated inductively from outside, in order to gain the
necessary thermal energy.

• Inertial confinement: the fuel is compressed by energy input so that it holds together
for a short time due to its own inertia. Thereby, a high density is reached.

17.3.3 Fusion with magnetic confinement
1. Variants of magnetic confinement

In order to confine a plasma of low density completely in a magnetic field, there are two
choices:
• Mirror machine, linear θ -pinch, at the ends the magnetic field increases such that

particles moving towards the ends are reflected. However, because of ion-ion colli-
sions in the plasma, the required temperature is increased so much that an application
in reactors is still questionable.

■ With the mirror machine 2XIIB at Lawrence Livermore National Laboratory
(California, USA), ion temperatures of Ti = 9 keV (for kB = 1) at a density of
1020 m−3 and a confinement time of t = 1 ms have been reached.

• Toroidal plasma confinement, a θ -pinch bent to a torus.
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A simple θ -pinch bent to a torus does not provide a stable plasma confinement, since a
resultant force component pointing outward acts on the charge carriers in the plasma. An
additional meridional magnetic field may, however, force the charge carriers to move along
spiral-like orbits about the torus axis.

2. Versions of generating the magnetic field

The meridional magnetic field may be generated by various choices:
• Tokamak: a transformer induces a current in the plasma, which itself generates the

meridional magnetic field. Since this current occurs in a pulse, difficulties arise in
continuous performance.

■ Tokamak JET, the most advanced test device for magnetic fusion in Great
Britain.

• Stellarator: an asymmetric coil geometry generates a combined azimuthal-
meridional magnetic field. Diffusion losses are limited by the arrangement of the
coils so that a stationary operation is possible in principle.

■ Stellarator Wendelstein, test device for magnetic fusion at the Max Planck
Institute for plasma physics, Munich, Germany.

The heating of the plasma to temperatures above 108 K proceeds by induction, or by
injection of high-energetic particles. Besides the energy losses by radiation, the losses by
plasma diffusion, i.e., motion perpendicular to the axis of the magnetic field, have also to
be taken into account. The collisions between charged particles are not pure two-particle
collisions, but may affect several particles due to the long range of the Coulomb interaction.
Such collisions strongly reduce the lifetime of even a plasma in mechanical equilibrium.

17.3.4 Fusion with inertial confinement
In fusion under inertial confinement, a small amount of fuel enclosed in a spherical pellet is
compressed by implosion to a multiple of the solid-state density after external irradiation.
The symmetric compression of the fuel leads to a strong increase of its temperature; hence,
in the center a fusion reaction is ignited. A thermonuclear burning wave then propagates
outward. A plasma confinement by technical means is not needed, since the internal plasma
is kept together by the external layers of the pellet during the time of burning (several
hundred ps).

1. Structure of the fuel pellet

Fuel pellet, hollow sphere composed of several layers. The innermost layer consists of
fuel, a frozen deuterium-tritium mixture. In the surrounding absorber, the energy input
is deposited such that the external part (tamper) evaporates outward, while the inner part
(pusher) is driven radially inward by the recoil. The fuel is thereby compressed into the
hollow region (Fig. 17.7).

2. Methods of compression

In order to ignite the fuel pellet, energy injected from outside is deposited in a possibly
symmetrical manner. For this purpose, there are several choices:
• Bombardment with laser beams. Laser beams may be well focussed with simultane-

ous high energy density. However, the coupling is not very efficient because of the
sudden formation of a plasma layer outside the solid pellet surface, which absorbs
the laser radiation. Furthermore, the laser efficiency is low.

➤ Laser irradiation generates extremely hot electrons, which may penetrate the entire
pellet. This pre-heating of the fuel strongly increases the required compression work.
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Figure 17.7: Fusion under inertial confinement. (a): structure of the fuel pellet, (b): pellet
implosion.

• Bombardment with ion beams. Ion beams offer a strongly localized and efficient
coupling of the beam to the pellet (due to the Bragg peak in the energy deposition
profile). The focussing of the beam, in particular for heavy-ion beams, is technically
difficult, and there is a lower limit for the size of the system.

Currently, the direct bombardment of pellets by ion beams appears insufficient for an
effective ignition of the fuel because asymmetries of the energy deposition and hydro-
dynamic instabilities (Rayleigh-Taylor instabilities at the interface of two substances of
different density accelerated against each other) limit the maximum compression that can
be achieved.

Indirectly driven pellet, a method for the compensation of the asymmetries in the irra-
diation. The ion or laser beam is not guided directly onto the pellet, but hits gold radiation
converters that convert a high percentage of the incoming radiation into weak x-rays, which
are absorbed in a cavity and then re-emitted towards the pellet. A much better symmetriza-
tion is expected; however, the required energy to ignite the fuel is increased by two orders
of magnitude.



Symbols used in formulae on electricity and
plasma physics

symbol unit designation

α 1/K temperature coefficient
αi m3/s recombination coefficient
γ , σ S/m conductance
ε C/(Vm) permittivity
ε J reaction energy
ε0 C/(Vm) free-space electric-permittivity constant
εr 1 relative permittivity
κ S/m conductance
λ C/m line charge density
λD m Debye length
�m Vs/A magnetic conductance
µ Vs/(Am) permeability
µ m2/(Vs) ion mobility
µ0 Vs/(Am) free-space magnetic-permeability constant
µr 1 relative permeability
ρ 	m specific resistance
ρ C/m3 space charge density
σ C/m2 surface charge density
τ 1 optical depth
� A magnetomotive force
ϕ V electric potential
� Wb magnetic flux
χm 1 magnetic susceptibility
ψ Vm electric flux
ψ Wb induction flux
�ωG 1/s gyration frequency
ωGe 1/s gyration frequency of electrons
ωPe 1/s Langmuir frequency of electrons
ωPe rad/s Langmuir frequency
A 1 amplification factor of valve
A A/(m2K2) Richardson constant
b m2/(Vs) mobility
B S susceptance
B J/m2 emitted radiant energy
�B T magnetic flux density
c m/s speed of light in matter
c0 m/s speed of light in vacuum
ci mol/kg ionic concentration
cS m/s ion sound velocity
C F capacitance
dp 1 damping factor
D 1 grid transparency
�D C/m2 electric displacement density

(continued)
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symbol unit designation

e0 C elementary charge
E kg/C electrochemical equivalent
�E V/m electric field strength
f 1/s radiation frequency
f 1/s photon frequency
F C/mol Faraday constant
G S conductance
h Js Planck’s quantum of action
�H A/m magnetic field strength
I A current
Ia A anode current
�J A/m2 current density
kB J/K Boltzmann constant
ln� 1 Coulomb logarithm
L H inductance
me kg electron mass
M H mutual inductance
M kg/mol molar mass
�M A/m magnetization
n mol quantity of substance
N 1 particle number
NA 1/mol Avogadro constant
Q C charge
Q W reactive power
Qp 1 quality
rG m gyration radius
R 	 electric resistance
Ra 	 resistance in anode circuit
Ri 	 valve resistance
Rm A/Wb magnetic resistance
s 1 slippage
S W apparent power
S A/V transconductance
T K temperature
u 1 transmission ratio
V V electric voltage
Va V anode voltage
Vg V grid voltage
Vs V control voltage of grid
〈vσ 〉 m3/s velocity-averaged reaction rates
〈ve〉 m/s mean electron velocity
vdr m/s drift velocity
W J binding energy of electron
WA J work function
x 1 fractional ionization
X 	 reactance
Y S admittance
z 1 ionic valence
Z 	 impedance



18
Tables on electricity

18.1 Metals and alloys

18.1.1 Specific electric resistance
18.1/1 Metals at room temperature

1

ρ

dρ

dT

/
Element T/K ρ/10−8	 m 10−3K−1

antimony 273 39.0
bismuth 273 107 4.45
cadmium 273 6.8 4.26
cerium 290 – 300 82.8
cobalt 273 5.6 6.58
dysprosium 290 – 300 92.6
erbium 290 – 300 86.0
europium 290 – 300 90.0
gadolinium 290 – 300 131.0
gallium 273 13.6
holmium 290 – 300 81.4
indium 273 8.0 5.1
iridium 273 4.7 4.9
lanthanum 290 – 300 61.5
lutetium 290 – 300 58.2
mercury 273 94.1 0.89
neodymium 290 – 300 64.3
niobium 273 15.2 2.28

(continued)
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18.1/1 Metals at room temperature (continued)

1

ρ

dρ

dT

/
Element T/K ρ/10−8	 m 10−3K−1

osmium 273 8.1 4.2
polonium 273 40
praseodymium 290 – 300 70.0
promethium 290 – 300 75.0
protactinium 273 17.7
rhenium 273 17.2 3.1
rhodium 273 4.3 4.57
ruthenium 273 7.1 3.59
samarium 290 – 300 94.0
scandium 290 – 300 56.2
terbium 290 – 300 115
thallium 273 15 5.2
thorium 273 14.7 3.3
thulium 290 – 300 67.6
tin 273 11.5 4.63
titanium 273 39 5.5
uranium 273 28 3.4
ytterbium 290 – 300 25.0
yttrium 290 – 300 59.6
gold 273 2.06 4.5
platinum 273 9.81 3.93

18.1/2 Pressure dependence

As a rule, the electric conductance of metals increases when applying an external hydro-
static pressure. A measure for the magnitude of this change is the pressure coefficient
(1/ρ)(dρ/dp) of the specific electric resistance.

Pressure /102 MPa
0 10 30

Metal T/K
1

ρ

dρ

dp
/10−5MPa−1

lithium 303 −7.00 −7.52 −9.0
beryllium 298 1.77 1.63 1.46
sodium 303 58.8 23.6 4.04
magnesium 298 5.40 4.67 3.81
aluminum 301 4.29 4.06 3.6
potassium 303 134.4 30 0.88
calcium 303 −9.48 −12.2 −20.7
titanium 296 1.19 1.12 1.02
chromium 298 22.2 17.3 8.96
iron 303 2.42 2.26 1.90
cobalt 297 0.96 0.90 0.80

(continued)
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18.1/2 Pressure dependence (continued)

Pressure /102 MPa
0 10 30

Metal T/K
1

ρ

dρ

dp
/10−5MPa−1

nickel 298 1.77 1.82 1.73
copper 303 1.92 1.80 2.42
zinc ‖ c 303 9.68 8.76 6.72
zinc ⊥ c 303 5.28 4.40 2.84
rubidium 303 157.0 14.4 −28.8
strontium 303 −45.3 −59.0 −118.8
zirconium 299 0.32 0.33 0.22
niobium 297 1.40 1.37 1.30
molybdenum 300 1.31 1.29 1.24
rhodium 299 1.65 1.62 1.56
palladium 299 2.10 2.04 1.93
silver 303 3.48 3.28 2.60
indium 296 1.25 1.09 0.85
tin ‖ c 303 10.0 9.0 6.1
tin ⊥ c 303 9.24 8.26 5.61
antimony 303 −9.84 −14.8 −2.80
barium 303 7.2 1.2 −13.6
cerium 297 −4.1 — 1.6
praseodymium 297 1.36 1.20 1.02
neodymium 297 1.57 1.32 1.03
tantalum 302 1.62 1.62 1.55
tungsten 302 1.33 1.31 1.25
iridium 296 1.39 1.37 1.33
platinum 296 1.92 1.88 1.78
gold 303 3.02 2.84 2.44
mercury (liqu.) 303 23.1 17.0 —
lead 303 13.7 11.6 6.96
bismuth 303 −14.8 −18.5 —
uranium 293 4.88 4.56 4.10

18.1/3 Relative change at the melting point

Metal Tmelt/K ρliqu./ρsolid Metal Tmelt/K ρliqu./ρsolid

lithium 453 1.68 cadmium 594 1.89
sodium 370 1.46 indium 388 2.12
magnesium 924 1.63 tin 505 2.11
aluminum 934 1.82 antimony 904 0.71
potassium 337 1.55 tellurium 722 2.00
iron 1808 1.09 caesium 303 1.66
copper 1357 2.07 gold 1336 2.28
zinc 693 2.11 mercury 234 3.36
gallium 303 0.47 lead 601 1.98
rubidium 312 1.61 bismuth 544 0.47
silver 1234 1.9



598 18. Tables on electricity

18.1/4 Alloys

Alloy ρ/10−6 	m
1

ρ

dρ

dT
10−3K

gold-chromium 0.33 0.001
graphite 8.00 −0.2
isabellin 0.50 0.02
commutator coal 40 —
constantan 0.50 0.03
manganin 0.43 0.02
chromium-nickel (80 Ni, 20 Cr) 1012 0.2
nickelin 0.43 0.2
novoconstantan 0.45 0.04
platinum-iridium (20 %) 0.32 2.0
platinum-rhodium (10 %) 0.20 1.7
resistin 0.51 0.008
red brass 0.127 1.5
nickel brass 0.30 0.4

18.1.2 Electrochemical potential series
18.1/5 Electrochemical potential series

The given values of the electromotive force V0 refer to hydrogen as reference electrode
and hold for a 1-n solution.

Material Valence V0/V Material Valence V0/V

fluorine 1 +2.87 cadmium 2 −0.40
gold 1 +1.69 iron 2 −0.45
chlorine 1 +1.35 sulphur 2 −0.48
gold 3 +1.40 gallium 3 −0.55
bromium 1 +1.07 chromium 2 −0.91
platinum 2 +1.18 zinc 2 −0.76
mercury 2 +0.80 tellurium 2 −1.14
silver 1 +0.80 manganese 2 −1.19
graphite 2 +0.75 aluminum 3 −1.66
iodine 1 +0.54 uranium 3 −1.80
copper 1 +0.52 magnesium 2 −2.37
polonium 4 +0.76 beryllium 2 −1.85
oxygen 2 +0.39 sodium 1 −2.71
copper 2 +0.34 calcium 2 −2.87
arsenic 3 +0.23 strontium 2 −2.90
bismuth 3 +0.31 barium 2 −2.91
antimony 3 −0.51 potassium 1 −2.93
tin 4 +0.02 rubidium 1 −2.98
hydrogen 1 ±0.00 lithium 1 −3.04
iron 3 −0.04 steel (galvanized) −0.53 · · · −0.72
lead 2 −0.13 ingot iron −0.21 · · · −0.48
tin 2 −0.14 cast iron −0.18 · · · −0.42
nickel 2 −0.26 brass +0.26 · · · +0.05
cobalt 2 −0.28 bronze +0.36 · · · +0.03
indium 3 −0.34 chromium-nickel +0.75 · · · −0.05
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18.1/6 Thermoelectric potential series

The given values of the thermal electromotive force V0 hold for platinum or copper as
second metal and a temperature difference of 100 K.

V0/(mV/100 K) V0/(mV/100 K)
Material platinum copper Material platinum copper

tellurium +50 +49 caesium +0.5 —
silicon +44.8 +44 lead +0.44 −0.31
antimony +4.75 +4.0 tin +0.42 −0.33
chromium-nickel +2.2 +1.45 magnesium +0.42 −0.33
iron +1.88 +1.08 tantalum +0.41 −0.34
molybdenum +1.2 −0.45 aluminum +0.39 −0.36
brass +1.1 +0.35 coal +0.30 −0.45
cadmium +0.9 +0.15 graphite +0.22 −0.53
tungsten +0.8 +0.05 mercury ±0 −0.75
V2A-steel +0.8 +0.05 platinum ±0 −0.75
copper +0.75 ±0 thorium −0.1 −0.85
silver +0.73 −0.02 sodium −0.2 −0.95
gold +0.7 −0.05 palladium −0.5 −1.25
zinc +0.7 −0.05 nickel −1.5 −2.25
manganese +0.7 −0.05 cobalt −1.7 −2.45
iridium +0.66 −0.09 constantan −3.3 −4.05
rhodium +0.65 −0.10 bismuth −6.5 −7.25

18.1/7 Thermoelectric voltage of common thermocouples

Reference temperature 0 ◦C

0

0

500 1000

10

1500

T( C)°

50

30

70

PtRh Pt−

Cu
Constantan

−

NiCr
Constantan

−
Fe

Constantan
−

−10

NiCr Ni−

V
(m

V
)

18.1/8 Common thermocouples

Temperature range Thermocouple

−200 ◦C – 600 ◦C Cu-constantan
−200 ◦C – 800 ◦C Fe-constantan

0 ◦C – 1200 ◦C NiCr-Ni
0 ◦C – 1600 ◦C PtRh-Pt
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18.1/9 Peltier coefficient P for various metals

The arrow indicates the flow direction of the electric current.

Metal couple T/◦C P/(µJ/K)

As→ Pb 20 3.81
Bi‖ → Bi⊥ 20 15.03
Cd‖ → Cd⊥ 20 0.85
Cd→ Ni 15 6.40
Cu→ Ag 0 0.0703
Cu→ Al 14 1.70
Cu→ Au 0 0.3403
Cu→ Bi 18 16.12
Cu→ Ni 0 7.95

14.4 5.80
Cu→ Pd 0 0.588
Cu→ Pt 0 0.238
Cu→ constantan 15.5 2.436
Fe→ Cu 0 0.664
Fe→ Hg 18.4 1.1644

99.64 1.388
182.3 1.511

Fe→ Ni 15 2.288
Fe→ constantan 0 3.10
Pb→ Bi 20 5.16
Pb→ constantan 0 7.95

100 11.43
200 15.07
300 18.42

Sb→ Bi 20 44.79
Sb→ Pb 20 0.78
Zn→ Ni 15 6.42
Zn‖ → Zn⊥ 20 0.53
graphite→ Cu 20 2.94
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18.2 Dielectrics

In the following tables, εr denotes the relative permittivity, δ the dielectric loss angle, and
Vd the breakdown voltage.

18.2/1 Relative permittivity εr

The given values hold for room temperature.

Substance Molecular formula Frequency/MHz εr

aluminum oxide Al2O3 1 10
ammonium bromide NH4Br 100 7.1
ammonium chloride NH4Cl 100 7.0
apatite (⊥ optical axis) 300 9.5
apatite (‖ optical axis) 300 7.41
asphalt < 1 2.68
barium chloride BaCl2 60 11.4
barium chloride (2 H2O) 60 9.4
barium nitrate Ba(NH3)2 60 5.9
barium sulphate BaSO4 100 11.4
beryl (⊥ optical axis) Be3Al2Si6O18 0.01 7.02
beryl (‖ optical axis) Be3Al2Si6O18 0.01 6.08
calcite (⊥ optical axis) CaCO3 0.01 8.5
calcite (‖ optical axis) CaCO3 0.01 6.08
Acetic amide C2H5NO 400 4.0
acetic acid (2 ◦C) C2H4O2 400 4.1
calcium carbonate CaCO3 1 6.14
calcium fluoride CaF2 0.01 7.36
calcium sulphate (2 H2O) CaSO4 0.01 5.66
cassiterite (⊥ optical axis) SnO2 106 23.4
cassiterite (‖ optical axis) SnO2 106 24
copper oxide Cu2O 100 18.1
copper oleate Cu(C18H33O2)2 400 2.8
copper sulphate CuSO4 60 10.3
copper sulphate (2 H2O) 60 7.8
diamond C 100 5.5
dolomite (⊥ optical axis) CaMg(CO3)2 100 8.0
dolomite (‖ optical axis) CaMg(CO3)2 100 6.8
iron oxyde Fe3O4 100 14.2
lead acetate Pb(C2H3O2)2 1 2.6
lead carbonate PbCO3 100 18.6
lead chloride PbCl2 1 4.2
lead monoxide PbO 100 25.9
lead nitrate Pb(NO3)2 60 37.7
lead oleate Pb(C18H32O2)2 400 3.27
lead sulphate PbSO4 1 14.3
lead sulphide PbS 1 17.9
malachite Cu2(OH)2(CO3) 106 7.2

(continued)
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18.2/1 Relative permittivity εr (continued)

Substance Molecular formula Frequency/MHz εr

mercury chloride Hg2Cl2 1 3.2
HgCl2 1 9.4

naphthalene C10H8 400 2.52
phenol (10 ◦C) C6H6O 400 4.3
red phosphorus P4 100 3.6
kalinite KAl(SO4)2 · 12H2O 1 3.8
potassium carbonate KHCO3 100 5.6
potassium chlorate KClO3 60 5.1
potassium chloride KCl 0.01 5.03
potassium chromate K2CrO4 60 7.3
potassium iodide KI 60 5.6
potassium nitrate KNO3 60 5.0
potassium sulphate K2SO4 60 5.9
quartz (⊥ optical axis) SiO2 30 4.34
quartz (‖ optical axis) 30 4.27
rutile (⊥ optical axis) TiO2 100 86
rutile (‖ optical axis) 100 170
selenium Se 100 6.6
silver bromide AgBr 1 12.2
silver chloride AgCl 1 11.2
silver cyanide AgCN 1 5.6
zinc carbonate (⊥ optical axis) ZnCO3 106 9.3
zinc carbonate (‖ optical axis) 104 9.4
sodium carbonate Na2CO3 60 8.4
sodium carbonate (10 H2O) 60 5.3
sodium chloride NaCl 0.01 6.12
sodium oleate NaC18H38O2 400 2.75
sodium perchlorate NaClO4 60 5.4
sugar 300 3.32
sulphur S — 4.0
thallium chloride TlCl 1 46.9
tourmaline (⊥ optical axis) 0.01 7.10
tourmaline (‖ optical axis) 0.01 6.3
zirconium Zr 100 12

18.2/2 Ceramics

Substance εr tan δ Vd/(kV/mm)

porcelain 6 . . . 7 0.035 20 . . . 28
steatite 6 . . . 6.5 0.002 20 . . . 25

capacitor ceramics

ZrTiO4 28 . . . 30 2.5 . . . 5.5 · 10−4 32
TiO2 78 . . . 88 4 . . . 5.5 · 10−4 27
CaTiO3 150 . . . 165 2 . . . 4 · 10−4 22
(SrBi)TiO3 900 . . . 1000 5 . . . 10 · 10−4 28
(BaTiO3)0.9 · (BaZrO3)0.075 2700 . . . 3000 1 . . . 2 · 10−2 13
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18.2/3 Glasses

Type of glass εr 10−4 tan δ

pyrex glass 4.1 . . . 4.6 45 . . . 130
quartz glass 3.75 1 . . . 2
corning glass 4.0 6

18.2/4 Electric properties of polymers

Polyvinyl Polymethyl Epoxy
Property Polyethylene Teflon chloride Polystyrene methacrylate resin

thermal
stability/◦C 100 260 60–70 65–96 68–88 140

ρ /	m 1015–1017 1015–1016 1014–1016 1017–1018 1014–1016 1013–1014

εr (1 MHz) 2.3 2 3–5 2.45–2.65 3.5–4.5 3.7
tan δ(1 MHz) 2 · 10−4 2 · 10−4 0.03–0.08 (1–4) · 10−4 0.04–0.06 0.019
Vd /(kV/mm) 18–20 20–30 14–20 20–35 18–35 18

18.2/5 Specific electric resistance of insulating materials

Insulating material ρ/	m Insulating material ρ/	m

bakelite 1014 plexiglass 1013

benzene 1015 polyethylene 1010 . . . 1013

amber > 1016 polystyrene 1015 . . . 1016

celluloid 108 . . . 1010 polyvinyl chloride up to 1013

ivory 2 · 106 porcelain 5 · 1012

earth, wet > 106 quartz glass 5 · 1016

flint glass 3 · 108 shellac 1014

galalith ≈ 1014 slate 106

glass > 1011 sealing wax 8 · 1013

mica 1013 . . . 1015 silicon 8 · 107

gutta-percha ≈ 4 · 107 silicon oil 1013

hard rubber 1013 . . . 1016 transformer oil 1010 . . . 1013

wood, dry 109 . . . 1013 vaseline 1010 . . . 1013

marble 107 . . . 108 vulcanized fibre 1010 . . . 1013

rubber 6 · 1014 water, distilled (1 . . . 4) · 104

colophony 5 · 1014 river water 10 . . . 100
paper 1015 . . . 1016 sea water 0.3
paraffin 1014 . . . 1016 soft rubber (2 . . . 14) · 1011

paraffin oil 1014 polyester resin (8 . . . 14) · 1011

kerosene 1010 . . . 1012
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18.2/6 Electric properties of insulating materials

ε 10−3 tan δ
Materials ρ/	m (50 Hz) (800 Hz) (50 Hz) (800 Hz) Vd/(kV/mm)

phenoplasts

pure casting resin 109 . . . 1014 — 8 — 75 10
pure moulding resin 1013 — 4.3 — 47 8
mineral powder 109 . . . 1011 — 10 — 100 5 . . . 10

phenol asbestos fibre 109 . . . 1011 12 6 . . . 20 — 30 . . . 300 5 . . . 15
form wood flour 1010 . . . 1012 — 9 — 70 15 . . . 20
aldehyde paper shred 109 . . . 1012 — 6 . . . 10 — 40 . . . 100 8 . . . 15

paper breadths 1019 — 6 — 100 1.5 . . . 5.2
textile breadths 109 5 . . . 7 — 50 . . . 600 100 —

phenol minerals 109 . . . 1011 — 4.8 — 40 . . . 150 1.6 . . . 2.4
furfural wood flour 1010 . . . 1012 — 4.5 . . . 80 — 100 . . . 150 1 . . . 2

textile 109 . . . 1011 — 405 . . . 6 — 80 . . . 200 1 . . . 2

aminoplasts

urea wood flour 1013 . . . 1014 6.6 — 20 . . . 34 20 . . . 30 2.8 . . . 2.9
melanine cellulose 1012 . . . 1014 6.2 . . . 7.6 6.2 . . . 7.5 32 . . . 60 13 . . . 100 10
melanine asbestos 1011 6.4 . . . 10.2 9 70 . . . 117 70 —
aniline moulding resin 1012 3 . . . 4 — 10 . . . 20 — 1

cellulose derivates

cellulose, soft 1015 — 5.5 — 21 17
cellulose acetate, medium 1015 — 5.4 — 23 17
cellulose acetate, hard 1015 — 5.3 — 22 18
cellulose acetate, higher 1016 — 4.3 — 20 19
cellulose acetobutyrate 1016 — 3.5 — 10 21
cellulose nitrate 1012 . . . 1013 — 4 . . . 9 — 10 30
ethyl cellulose 1013 . . . 1014 — 2.5 . . . 3.5 — 5 . . . 25 60 . . . 100
benzyl cellulose 1014 — 3.5 — 50 40

ethylene derivates

high-pressure polyethylene 1016 2.3 2.3 0.4 0.4 60
low-pressure polyethylene 1016 — 2.3 — 0.5 . . . 1 60
polypropylene 1013 — 2.3 — 0.5 70
polystyrene 1016 . . . 1017 — 2.5 — 0.2 . . . 0.7 50 . . . 55
polystyrene (styrene) 1014 — 2.8 — 4 40
polystyrene (acrylonitrile) 1014 3 — 10 40
polymethacrylic ester 1015 3.5 . . . 4.5 3.5 . . . 3.5 40 . . . 60 30 . . . 50 15
polyacrylic ester 1015 — 3.5 — 40 15
polyvinyl chloride 4 3.4 20 . . . 40 20 . . . 40 50

polycarbonate 1015 3.5 3.2 0.5 1.65 100

(continued)
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18.2/6 Electric properties of insulating materials (continued)

ε 10−3 tan δ
Materials ρ/	m (50 Hz) (800 Hz) (50 Hz) (800 Hz) Vd/(kV/mm)

proteins

polyurethane type Ug 1014 4 3.3 10 10 —
poly type U30 1014 — 4.1 — 37 —
polyamide 6 1012 — 6 300 20 1.14
polyamide 6+ GV 1012 — 6.8 — 220 25
polyamide 66 1012 — 5.5 — 200 28
polyamide 66+GV 1012 — 5.6 — 160 28
polyamide 11 1014 3.7 3.7 50 50 20
polyamide 11+GV 1015 3.8 3.8 30 30 20
polyamide 12 1013 4.2 4.2 90 90 31
polyamide 12+GV 1012 4.2 4.2 120 120 31
artificial horn 105 — 6 — 140 1 . . . 5

fluorocarbones

polyfluoromonochloroethylene 1016 2.3 2.8 15 24 20 . . . 30
polytetrafluoroethylene 1015 2 2 0.2 . . . 0.5 0.2 . . . 0.5 20 . . . 60

silicons

silicon resin 1015 3 3 0.5 . . . 1 — 20 . . . 70
silicon rubber 1014 2.5 2.5 20 — 20 . . . 30

elastomers

neoprene 105 — 7.5 — 19 14
buna S 103 — 4 . . . 5 — 5 25
perbunan 103 — 18 — 17 —

modified natural materials

vulcanized fibre 108 4 4 80 80 6
hard rubber 1012 2.5 . . . 5 2.8 . . . 5 50 50 3

18.2/7 Electric properties of transformer oil

Property Transformer oil Castor oil

ρ /	m 1014 . . . 1015 5 · 1010 . . . 5 · 1012

εr (1 MHz) 2.1 . . . 2.3 4.0 . . . 4.4
tan δ(1 MHz) 0.002 . . . 0.005 0.01 . . . 0.03
Vd /(kV/mm) 20 14 . . . 16

18.2/8 Some properties of electrets

Composition NaKC4H4O6 · 4H2O KH2PO4 NH4H2PO4

Curie point TC1 = 258K; TC2 = 295.5K 123 K 147.9 K
melting point /◦C 58 252.6 190
density /(g/cm3) 1.775 2.34 2.311
spontaneous polarization
/(µC/cm2) 0.25 4.7 4.8
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18.2/8 Some properties of electrets (continued)

Composition KH2AsO4 NH4H2AsO4

Curie point /K 95.6 TC 216.1
melting point /◦C 288 300
density /(g/cm3) 2.85 1.803

Composition (CN2H6)AL(SO4)2 · 12H2O (CH2NH2COOH)3H2SO4

Curie point 473 320 . . . 323
spontaneous

polarization
/(µC/cm2) 0.35 —

18.2/9 Ferroelectrics with oxygen octahedron structure

Compound Formula Structure TC/
◦C εr

barium titanate BaTiO3 perovskite 120 1700 . . . 2000
(at TC 8 . . . 10 · 103)

lithium tantalate LiTaO3 ilmenite > 450
sodium niobate NaNbO3 perovskite 640; 518; anti-ferroelectric; 350

480; 360
lead hafniate PbHfO3 perovskite 215; 163 anti-ferroelectric; 100;

at 215 ◦C: 1000
lead niobate PbNb2O3 cubic 570 280;
lead tantalate PbTaO6 cubic 260 300 · · · 400;

at 260 ◦C: 1100
lead titanate PbTiO3 perovskite 500 200; at 500 ◦C: 3500
lead zirconate PbZrO3 perovskite 235 anti-ferroelectric; 250;

at 235 ◦C: 3750
strontium titanate SrTiO3 perovskite −250

18.3 Practical tables of electric engineering

18.3/1 Resistance alloys

Max. working
Alloy ρ/	mm2m−1 α/K−1 temperature/ ◦C

nickelin (67 % Cu, 30 % Ni, 3 % Mn) 0.4 0.0003 300
manganin (86 % Cu, 12 % Mn, 2 % Ni) 0.43 0.00001 300
constantan (54 % Cu, 45 % Ni, 1 % Mn) 0.5 ±0.00003 400
chromium-nickel 1.0 . . . 1.2 0.00003 1000
megapyr (65 % Fe, 30 % Cr, 5 % Al) 1.4 −0.00006 1300
kanthal 1.45 0.00006 1300
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18.3/2 Voltage of Weston standard elements

Temperature/◦C Voltage /V Temperature/◦C Voltage /V

11 1.01874 20 1.01830
12 1.01868 21 1.01826
13 1.01863 22 1.01822
14 1.01858 23 1.01817
15 1.01853 24 1.01812
16 1.01848 25 1.01807
17 1.01843 26 1.01802
18 1.01839 27 1.01797
19 1.01834 28 1.01792

18.3/3 Contact materials

Conductance Melting
Material /m 	−1 ·mm−2 temperature/◦C Properties

E-copper 56 1085 electric arc creates a badly
conducting oxide layer;
cheap

fine silver 60 960 conducting oxide layer;
low hardness; unstable
against sulphur; low
transition resistance

fine gold 45.7 1063 chemically resistive; soft;
contacts agglutinate easily

tungsten 18.2 3370 low burn-off; very hard

mercury 1.04 −38.9 maintenance-free; long
serviceable life;
chemically resistive;
toxic!

coal 0.03 . . . 12 — no oxide layer, non-
welding, self-lubricating,
applicable up to 400 ◦C

silver bronze 30 . . . 50 700 . . . 1100 good spring properties

hard silver 52 . . . 56 920 electric-arc resistive, hard

silver-cadmium 16 880 Cd acts electric-arc-
quenching
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18.3/4 Voltage ranges in electric engineering

Designation Voltage range /V Application

small voltage 0 < V ≤ 42 electromechanical toy
low voltage 0 < V ≤ 1000 operation networks of all kinds
medium voltage 1000 < V ≤ 30000 high-voltage open wires
high voltage 1000 < V ≤ 110000 high-voltage open wires
extra-high voltage 110000 < V ≤ 5 · 106 extra-high-voltage open wires

18.3/5 Guide values of some voltages

V /V V /V

antenna voltage (5 . . . 40) · 10−6 trolley, rapid transit 500 . . . 800
nerval potential (0.5 . . . 5) · 10−2 spark plug (5 . . . 15) · 103

lead accumulator 2 wire voltage of railway 15 · 103

bicycle dynamo 6 x-ray tubes up to 2 · 105

mains voltage 120 or 240 belt-type generators up to 5 · 106

18.3/6 Gas transmittance κ of various quartz glasses

The gas-transmission coefficient specifies the quantity of gas in cm3 passing at standard
pressure and a pressure difference of 1.33 · 102 Pa through an area of 1 cm2 per second for
a glass thickness of 1 mm.

Helium Hydrogen

T/◦C κ T/◦C κ

−78 2 · 10−13 200 2 · 10−12

0 6 · 10−12 300 10−11

100 6 · 10−11 400 3.7 · 1011

200 2 · 10−10 500 1.25 · 10−10

400 10−9 700 2.52 · 10−10

800 5 · 10−9 900 6.4 · 10−10

Neon Nitrogen

T/◦C κ T/◦C κ

500 1.4 · 10−11 600 6.5 · 10−12

600 2.8 · 10−11 700 1.32 · 10−11

700 4.2 · 10−11 800 4.3 · 10−11

900 1.18 · 10−10 900 1.19 · 10−10

Argon

T/◦C κ

800 1.6 · 10−12

900 5.8 · 10−11
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18.3/7 Effect of electric current on the human body

Alternating current
Response 15 . . . 200Hz

Range effective value Direct current

I increase of blood
pressure

minor muscle
contraction in the
fingers

0.4 . . . 4mA 1 . . . 20mA

no influence on
heart-beat frequency

nervous shock up
to the forearm

0.8 . . . 4.5mA 25 . . . 40mA

no influence on the
stimulus-conducting
system

letting go the
electrode still
possible

6 . . . 22mA 40 . . . 60mA

letting go the
electrode no
longer possible

8.5 . . . 30mA 60 . . . 90mA

II no unconsciousness
yet, increase of
blood pressure,
irregular heartbeat;

reversible cardiac
arrest at higher
current intensities,
partly already
unconsciousness

25 . . . 80mA 80 . . . 300mA

III flickering of ventricles, unconsciousness 80mA . . . 8A 250mA . . . 8A

IV as in range II,
arythmics, cardiac
arrest, increase of
blood pressure;

pulmonary swell
out, burns,
unconsciousness

> 3A > 3A

18.4 Magnetic properties

18.4/1 Magnetic susceptibility of elements

The table lists the molar magnetic susceptibility χm = χ · M in SI units.
M is the molecular weight of the substance. These values hold under standard conditions.

Element χm Element χm

Ag −19.5 Br2 −56.4
Al +16.5 Cd −19.8
Am +1000 Ca +40.0
Ar −19.6 C(diam.) −5.9
As(α) −5.5 C(graph.) −6.0
As(β) −23.7 Ce(β) +2500
As(γ ) −230 Ce(γ ) +2270
Au −28.0 Cs +29.0
Ba +20.6 Cl2 −40.5
Be −9.0 Cr +180
Bi −280.1 Cu −5.46
B −6.7

(continued)
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18.4/1 Magnetic susceptibility of elements (continued)

Element χm10−9 Element χm10−9

Dy +98 000 P(black) −26.6
Er +48 000 Pr +5530
Eu +30 900 Pt +201.9
Gd +185 000 Pu +610.0
Ga −21.6 Re +67.6
Ge −76.84 Rb +17.0
Hf +75.0 Rh +111.0
He −1.88 Ru +43.2
Hg −33.44 Sb −99.0
Ho +72 900 Se −25.0
H2 −3.98 Sc +315
In −107.0 Si −3.9
I2 −88.7 Sm +1860.0
Ir 25.6 Sn(white) +3.1
K +20.8 Sn(grey) −37.0
Kr −28.8 Sr +92.0
La 95.9 S(α) −14.9
Pb −23.0 S(β) −15.4
Li +14.2 Ta +154.0
Lu > 0.0 Tc +270.0
Mg 13.1 Te −39.5
Mn(α) +529.0 Tb +170 000
Mn(β) +483.0 Tl −50.9
Mo +89.0 Th +132
Na +16.0 Tm +24 700
Nd +5930 Ti +153.0
Ne −6.74 W +59.0
Nb +195 U +409.0
N2 −12.0 V +255.0
Os +9.9 Xe −43.9
O2 +3449.0 Yb +67
O3 +6.7 Y +187.7
Pd +567.4 Zn −11.4
P(red) −20.8 Zr −122.0
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18.4/2 Magnetic susceptibility of inorganic compounds

Compound χm 10−9 Compound χm 10−9

Al2O3 −37.0 CdBr2 −87.3
Al2(SO4)3 −93.0 CdCO3 −46.7
NH3 −18.0 CdCl2 −68.7
NH4C2H3O2 −41.1 CdCrO4 −16.8
(NH4)2SO4 −67.0 CdF2 −40.6
BaCO3 −58.9 CdO −30.0
Ba(BrO3)2 −105.8 CdS −50.0
BaO −29.1 CaCO3 −38.2
BaO2 −40.6 CaCl2 −54.7
BeCl2 −26.5 CaF2 −28.0
Be(OH)2 −23.1 Ca(OH)2 −22.0
BeO −11.9 CaO −15.0
Bi2O3 −83.0 CaO2 −23.8

Compound χm 10−9 Compound χm 10−9

CsBr −67.2 CuCl −40.0
CsBrO2 −75.1 CuCl2 +1080
Cs2CO3 −103.6 Cu2O −20.0
CsO2 +1534.0 CuO +238.9
Cs2S −104.0 Cu3P −33.0
Cr(C2H3O2)3 +5104 CuP2 −35.0
CrCl2 +7230 CuSO4 +1330
CrCl3 +6890 Dy2O3 +89 600
Cr2O3 +1960 Dy2(SO4)3 +91 400
CrO3 +40.0 Dy2S3 +95 200
Cr2(SO4)3 +11 800 Er2O3 +73 920
Co(C2H3O2)2 +11 000 Er2S3 +77 200
CoBr2 +13 000 Eu2O3 +10 100

Compound χm 10−9 Compound χm 10−9

BiCl3 −26.5 CO2 −21.0
Bi2(CrO4)2 +154.0 CO −9.8
Bi2(SO4)3 −199.0 CeCl3 +2490
BiPO4 −77.0 CeO2 +26.0
GaCl3 −63.0 MgCl2 −47.4
Ga2O −34.0 MgO −10.2
Ga2S −36.0 MgSO4 −50.0
GaS −23.0 MnBr2 +13 900
Ga2S3 −80.0 MnCO3 +11 400
GeCl4 −72.0 MnO +4850
GeO −28.8 Mn2O3 +14 100
GeO2 −34.3 Mn3O4 +12 400
GeS −40.9 MnSO4 +13 660
GeS2 −53.3 Hg2O −76.3
AuCl3 −112.0 Hg2SO4 −123.0
AuF3 +74.0 MoBr3 +525.3

(continued)
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18.4/2 Magnetic susceptibility of inorganic compounds (continued)

Compound χm 10−9 Compound χm 10−9

AuP3 −107.0 MoBr4 +520.0
HfO2 −23.0 Mo3Br6 −46.0
Ho2O3 +88 100 Mo2O3 −42.0
Ho2(SO4)3 91 700 Mo3O8 +42.0
HCl −22.6 Nd2O3 +10 200
InBr3 −107.0 Nd2(SO4)3 +9990
In2O −47.0 NiCl2 +6145.0
In2O3 −56.0 NiO +660.0
In2S −50.0 NiSO4 +4005.0
InS −28.0 NiS +190.0
In2S3 −98.0 N2O −18.9
IrCl3 −14.4 NO +1460
IrO2 +224.0 OsCl2 +41.3
FeBr2 +13 600 PdCl2 −38.0
FeCO3 +11 300 PdH +1077
FeCl2 +14 750 Pd4H +2353
FeO +7200 Pt2O3 −37.70
FePO4 +11 500 PuF4 +1760.0
FeSO4 +10 200 PuF6 +173.0
La2O3 −78.0 PuO2 +730.0
Pb(C2H3O2)2 −89.1 K2CO3 −59.0
PbCO3 −61.2 KCl −39.0
PbCl2 −73.8 K3Fe(CN)6 +2290.0
PbO −42.0 K4Fe(CN)6 −130.0
PbS −84.0 KO2 +3230.0
LiC2H3O2 −34.0 KO3 +1185
Li2CO3 −61.2 K4MnO4 +20.0
LiH −10.1 PrO2 +1930.0
MgBr2 −72.0 ReO2 +44.0
MgCO3 −32.4 ReO3 +16.0

Compound χm 10−9 Compound χm 10−9

CoCl2 +12 660 EuSO4 +25 730
Co2O3 +4560 EuS +23 800
Co3O4 +7380 Gd2O3 +53 200
Co3(PO4)2 28 110 Gd2S3 +55 500
RbBr −56.4 Tl3PO4 −145.2
Rb2CO3 −75.0 Tl2SO4 −112.6
RbCl −76.0 Th(NO3)4 −108.0
RbO2 +1527.0 ThO2 −16.0
Rb2SO4 −88.4 Tm2O3 +51 444
RuCl3 +1998.0 SnCl4 −115.0
RuO2 +162.0 SnO −19.0
Sm2O3 +1988.0 SnO2 −41.0
Se2Br2 −113.0 TiC +8.0
Se2Cl2 −94.0 TiCl2 +570.0

(continued)
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18.4/2 Magnetic susceptibility of inorganic compounds (continued)

Compound χm 10−9 Compound χm 10−9

SeO2 −29.6 TiCl3 +1110.0
SiC −12.8 TiCl4 −54.0
SiO2 −29.6 Ti2O3 +125.6
AgBr −59.7 TiS +432.0
Ag2CO3 −80.9 WC +10.0
AgCl −49.0 WO2 +57.0
Ag2O −134.0 WO3 −15.8
AgMnO4 −63.0 UF4 +3530.0
Ag3PO4 −120.0 UF6 +43.0
NaBr −41.0 UO +1600.0
Na2CO3 −41.0 UO2 +2360.0
NaCl −30.3 UO3 +128.0
NAOH −16.0 VCl2 +2410.0
Na2O −14.5 VCl3 +3030.0
Na2O2 −28.1 VO2 +270.0
Na2HPO4 −56.6 V2O3 +1976.0
Na2SO4 −52.0 V2O5 +128.0
SrBr −86.6 VS +600.0
SrCO3 −47.0 H2O −12.97
SrCl2 −63.0 H2O(ice) −12.65
SrO −35.0 D2O −12.76
SrO2 32.3 D2O(ice) −12.54
SrSO4 −15.5 Yb2S3 +18 300
SO2 −39.8 Y2O3 +44.4
H2SO4 −39.8 ZnCO3 −34.0
Ta2O5 −32.0 ZnCl2 −65.0
Tb2O3 +78 340 ZnO −46.0
TlBr −63.9 ZnSO4 −45.0
Tl2CO3 −101.6 ZnS −25.0
TlCl −57.8 ZrC −26.0
TlCN −49.0 Zr(NO3)4 · 5H2O −77.0
Tl2O3 +76.0 ZrO2 −13.8
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18.4/3 Magnetic alloys of technical relevance

Composition Coercitive Relative
without iron Remanence force permeability

Material component Br/T Hc/(A/m) µr

Magnetically hard metals

carbon steel 1 % C 1 . . . 2 4000 —
chromium steel 5.8 % Cr; 1.1 % C 0.992 5200 —
tungsten steel 6 % W 1.1 4800 —
cobalt steel 36 % Co; 4.8 % Cr 0.93 18160 —
vicalloy 3.5 % Mn; 1.1 % C; 0.97 24000 —

30–40 % Co;
14 % V

KS-magnetic 9 % W; 1.5–3 % Cr; 1 19200 —
steel 0.4–0.8 % C

tromalite 25 % Ni; 13 % Al 0.4 60000 —

Magnetically soft metals

E-iron — 1.08 30.4 14600
(1× annealed)

E-iron — 0.085 12 4900
(2× annealed)

E-iron 3.5 % Si; 0.3 7.68 19400
vacuum molten

permalloy 78.5 % Ni; 3 % Mo — < 8 −100000
nicalloy 40 % Ni 1.4 24 10000
hyperm 50 50 % Ni 1.5 6.8 28000
mu-metal 76 % Ni; 5 % Cu; 0.8 5 100000

2 % Co

18.5 Ferromagnetic properties

The notation in the following tables is:
TC Curie temperature
σS specific saturation magnetization referred to the mass unit

at room temperature (20 ◦C)
σ0 specific saturation magnetization, extrapolated to T = 0 K

nB effective number of magnetons, defined by nB = σ0 M0

NAµB
(M0 is the molecular weight, NA the Avogadro constant and µB the Bohr magneton.)
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18.5/1 Ferromagnetic elements

Z TC/
◦C σS/(10−7Tm3kg−1) σ0/(10−7Tm3kg−1) nB

26 Fe 770 218.0 221.9 2.219
27 Co 1120 161 162.5 1.715
28 Ni 358 54.39 57.5 0.604
64 Gd 20 0 253.5 7.55
65 Tb −50 0 173.5 9.24
66 Dy −186 0 235 10.20
67 Ho −253 0 290 10.34
68 Er −253 — — 8.0
69 Tm −235 — — 7.0

18.5/2 Binary iron alloys

Element Conc. atom% TC/
◦C σS/(10−7Tm3kg−1) nB/atom

Al 7.1 756 207 2.05
19.7 664 164 1.74
24.9 441 134 1.29
26.0 494 149 1.40

Au 6.2 767 174 2.08
10.5 768 154 202

Co 20 950 236 2.42
33 970 238 2.52
50 980 233 2.42
75 870 203 2.14
80 910 184 1.94

Cr 17.7 678 196 1.70
47.5 483 90 0.98
68.8 268 35 0.53

Ir 4.0 750 200 2.25
15.0 — 120 1.67

Ni 10 750 217 2.26
20 720 209 2.22
40 330 152 1.82
60 560 136 1.45
80 560 98 1.04

Os 8.1 — 158 1.97
12.5 — 50 0.69

Pd 5.5 754 203 2.19
40.0 — 129 1.89
74.8 ≈ 250 45 0.97

(continued)
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18.5/2 Binary iron alloys (continued)

Element Conc. atom% TC/
◦C σS/(10−7Tm3kg−1) nB/atom

Pt 8.1 — 191 2.36

12.4 — 177 2.43
24.8 164 104 2.23
50.0 — 32 0.75

Rh 10.0 — 209 2.32
25.0 714 192 2.39

40 624 161 2.26

Ru 7.0 660 200 2.18
12.5 — 105 1.17

Sn 2.3 768 208 2.18
6.0 768 197 2.16

Si 8.3 720 204 2.00
15.9 653 174 1.67
23.5 587 141 1.32

V 5.9 815 204 2.09
10.6 805 184 1.91

18.5/3 Binary nickel alloys

Element Conc. atom% TC/
◦C σS/(10−7Tm3kg−1) nB/atom

Al 2.0 293 47.1 0.54
Au 3.4 321 46.0 0.58
Cr 1.7 298 49.8(−123 ◦C) 0.53

6.7 72 25.4(−123 ◦C) 0.30
Mo 1.9 266 42.3 0.51

4.2 120 23.1 0.37
Mn 25(1) 470 90 1.02
Pd 12.1 330 — 0.60

45.2 217 — 0.57
91.3 −116 — —

Pt 9.1 245 37.7 0.55
25.0 86 16.4 0.44
45.0 −71 — 0.25

Sb 7.5 23 12.6 0.24

(1) (amorphous) (continued)
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18.5/3 Binary nickel alloys (continued)

Element Conc. atom% TC/
◦C σS/(10−7Tm3kg−1) nB/atom

Si 3.7 234 40.3 0.48
6.8 117 23.7 0.36
8.8 19 — 0.28

Sn 2.7 234 401 0.49
9.0 225 9.9 0.30

Ta 3.6 — — 0.41
6.3 — — 0.28

Ti 4.8 207 34.5 0.43
10.3 30 — 0.22

W 2.1 270 39.2 0.49
3.9 150 19.9 0.34

Y 5.5 67 15.3 0.29
Zn 4.1 300 45.3 0.52

10.8 157 25.4 0.37

18.5.1 Magnetic anisotropy
The magnetic anisotropy is determined by the magnetization work. It differs in the vari-
ous crystallographic orientations. The axis of easiest magnetization is determined by the
minimum of magnetization work. For the most important crystallographic systems, the
magnetization work reads as follows.

a) Cubic crystals:

Ea = K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1)+ K2α

2
1α

2
2α

2
3 + K3(α

2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1)

2 + · · · ;

α1, α2, α3 are the direction cosines referred to the axes of the elementary cell.

b) Hexagonal crystals:

Ea = K1 sin2 φ + K2 sin4 φ + K3 sin6 φ + K4 sin6 φ sin6 ψ + · · · ;

φ is the angle between the magnetization direction and the [001]-axis.
ψ is the angle between the magnetization axis and the c-axis.

c) Tetragonal crystals:

Ea = K1 sin2 ϑ + K2 sin4 ϑ + K3 cos2 α cos2 β + · · · ;

ϑ is the angle between the magnetization axis and the tetragonal [001]-axis.
α and β are the angles between the magnetization axis and the tetragonal axes [100] and
[010], respectively.

The anisotropy coefficients are temperature-dependent.
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18.5/4 Anisotropy coefficients K1 and K2 of Fe-Co, Fe-Ni and Fe-Co-Ni alloys

Composition 20 ◦C 200 ◦C 300 ◦C 380 ◦C
Atom% K1 K2 K1 K2 K1 K2 K1 K2

Fe Co Ni 102 J/m3

100 420 150 300 22
70 30 102 160
60 40 45 −110
50 50 −68 −390
30 70 −433 50
50 50 33 −180 25 −82 18 −7
35 65 15 −70 12 −40 10 −32
30 70 7 −17 2 −4 0 0
10 90 −7 −23 −2 −10 0 −8

100 −34 53 5 20
65 35 −258 150
40 60 −108 −40
20 80 −4 8
10 90 16 −40
3 97 −10 9

50 10 40 61 −160 19 4 7 −60
25 25 50 4 16 4 2 −3 22
20 15 65 9 −110 −1 −18 −3 −2
15 25 60 −26 34 −10 −45 −3 −15
10 40 50 −72 −4 −54 41 −9 −102
10 30 60 −38 −80 −17 −50 −12 −37
10 20 70 −29 17 −25 70 −14 29
10 10 80 −2 −39 −2 −20 −2 6

18.5/5 Directions of easy, medium and difficult magnetization in cubic crystals

K1 + + + − − −
K2 − 9

4 K1 −9K1 −∞ −∞ 9
4 |K1| 9|K1|

..

.
..
.

..

.
..
.

..

.
..
.

+∞ − 9
4 K1 −9K1

9
4 |K1| 9|K1| +∞

easy [100] [100] [111] [111] [110] [110]
medium [110] [111] [100] [110] [111] [100]
difficult [111] [110] [110] [100] [100] [111]
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18.6 Ferrites

18.6/1 Magnetic properties of some ferrites with spinel structure

Parameter Fe3O4 MgFe2O4 MnFe2O4 CuFe2O4

x-ray density /(g/cm3) 5.24 4.52 5.0 5.25
Curie temperature /◦C 585 440 300 455
magnetic moment/molecule /(µB) 4.1 1.1 4.6 2.3 (cub.)

1.3 (tetrag.)
spec. saturation magnetization 92 27 80 25
/(10−7 Tm3/kg)

anisotropy constant K1 /(102 J/m3) −10.7 −2.5 −2.8 −6.3
anisotropy constant K2 /(102 J/m3) −2.8 — −0.2 —

CoFe2O4 NiFe2O4 Li0.5Fe2.5O4

x-ray density /(g/cm3) 5.29 5.37 4.75
Curie temperature /◦C 520 585 670
magnetic moment/molecule /(µB) 3.94 2.3 2.6
spec. saturation magnetization 80 50 65
/(10−7 Tm3/kg)

anisotropy constant K1 /(102 J/m3) 290 −6.2 −8.4
anisotropy constant K2 /(102 J/m3) — −3 −0.2

18.7 Antiferromagnets

18.7/1 Properties of some antiferromagnets

The following table lists the Néel temperature of the phase transition, the temperature TC
of the Curie-Weiss law and the molar magnetic susceptibility of several antiferromagnetic
compounds.

TN TC χM 10−3 TN TC χM 10−3

Substance /K /K /(cm3/mol) Substance /K /K /(cm3/mol)

Ti2O3 248 2000 0.24 α − VSe 163 2570 0.62
VO2 343 13.60 0.66 ZnCr2Se4 22 115 340
MnO 120 610 6 MnSe 247 740 19
MnS2 48;20 592 7.1 MnTe2 ≈ 80 528 6.8
MnF2 72 113 25 MnAu3 145 −200 77.5
MnCO3 32 64.5 43 KMnF3 88.3 238 17.7
RbMnF3 54 190 17.7 Mn2SiO4 50 163 18.8
FeO 198;186 190 8 FeF2 78 15.9 117
FeCl2 23 −48 320 FeI2 10 23 85
FeP2 250 17 1.18 αVS 1040 3000 0.066
FeTiO3 68;56 −17 61 LaCrO3 295 600 1.9
FeSO4 ≈ 22 30.5 78.5 β −MnS 165;110 528 6
CoF2 37.7 52.7 50 MnSe2 75 483 6.6
βCoSO4 12 52 62 MnF3 47 −8 75
NiF2 73.2 100 20 LaMnO3 131;100 −40 48.4
NiSO4 37 82 15 MnUO4 12 8 200
GdP 15 2 480 FeS ≈ 597 917 2.2

(continued)
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18.7/1 Properties of some antiferromagnets (continued)

TN TC χM 10−3

Substance /K /K /(cm3/mol)

FeBr2 11 −6 160
FeSn2 380 230 1.95
YFeO3 643 — 2.2
Fe2SiO4 65 150 20.4
CoCl2 24.9 −20 60
CoUO4 12 52 62
NiCl2 52 −67 110
CuSO4 34.5 77.5 12
GdAg 145 82 40
FeCO3 35;20 14 17
LaFeO3 738 480 12
CoO 328;291 280 5.3
KCoF3 114;109 125 8.5
Nb2Co4O9 30;27 10 133
NaTiO3 23 55 23.4
EuTe 11;9.7 7 440
GdIn 28 66 73.5

18.8 Ion mobility

18.8/1 Ion mobility µ in air at 18 ◦C and standard pressure

µ in 10−2m2/Vs

Gas positive ions negative ions

hydrogen 5.7 8.6
helium 5.1 6.3
argon 1.37 1.7
oxygen 1.33 1.8
nitrogen 1.29 1.82
ethyne 0.71 0.86
benzene 0.18 0.21
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Equilibrium and state variables

Thermodynamics describes macroscopic properties of matter in terms of appropriate phys-
ical quantities, and establishes universal relations between these quantities.

19.1 Systems, phases and equilibrium

19.1.1 Systems
Thermodynamic system, an arbitrary assembly of matter with properties that can be de-
scribed uniquely and completely in terms of specific state variables (volume, energy, par-
ticle number, . . . ).
➤ In general, this matter is separated from an outside environment by walls. Other

modes of confinement are also possible, e.g., the confinement of hot plasmas in strong
magnetic fields.

19.1.1.1 Isolated systems
Isolated system, a system having no interaction with the environment. The container
(walls) is impenetrable by any kind of energy and matter (Fig. 19.1 (a)).
➤ This cannot be realized entirely: any wall, for example, is heat-conducting. The mag-

netic plasma confinement in a vacuum also allows heat transport by radiation.
▲ In an isolated system, the total energy E (mechanical, electric, . . . ) is constant.
➤ Energy and particle number are conserved quantities: microcanonical ensemble.
Besides the energy, the particle number N and the volume V are quantities specifying an
isolated system.

Dewar flasks, double-walled mirrored vessels with an intermediate vacuum layer that
approach the requirements for containers of isolated systems.
■ Thermos bottles are constructed according to this principle.
➤ For experiments at low temperatures, several containers nested within each other may

serve for keeping liquid coolant.

623
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19.1.1.2 Closed systems
Closed system, a system that may exchange only energy with the environment, but cannot
exchange matter (Fig. 19.1 (b)).
➤ Energy is not a conserved quantity, but the particle number is conserved: canonical

ensemble.
The actual energy of the system fluctuates due to the exchange of energy with the envi-

ronment. But in the equilibrium of the closed system with its environment a certain average
value of the energy is established which may be related to a temperature of the system or
the environment.

Heat bath

Figure 19.1: Thermody-
namic systems. (a): closed
system, (b): closed system
in a heat bath.

To specify the macroscopic state, besides the particle number N and the volume V , one
can use the temperature.

19.1.1.3 Open systems
Open system, may exchange energy as well as matter with its environment (Fig. 19.2).
Neither energy nor particle number are conserved quantities.

Figure 19.2: Open thermodynamic systems. (a): a particle reservoir, (b): a flowthrough
system.

➤ If the open system is in equilibrium with its environment, then certain mean values of
energy and particle number are established: macrocanonical (or grand canonical)
ensemble.

Analogous to the relation between mean energy and temperature, the mean particle number
may be related to a quantity denoted as the chemical potential µ.

Temperature T and chemical potential µ may be used to characterize an open system.

19.1.2 Phases
1. Homogeneous and heterogeneous systems

Homogeneous system, a system with the same properties throughout.
■ A container with (dry) air under standard conditions is a homogeneous system.
Heterogeneous system, a system whose properties may change discontinuously at certain
interfaces.
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■ A vessel containing water, water vapor and air is a heterogeneous system.

2. Phases and phase interfaces

Phase, a homogeneous part of a heterogeneous system.
Phase interface, the boundary surface separating two phases.

■ For a closed pot with water, water vapor and air the surface of the water is a phase
interface. There is a gaseous phase (vapor and air) and a liquid phase (water).

➤ In some cases, the macroscopic properties of the system depend on the size (and the
shape) of the phase interfaces.

■ Pot with water, water vapor, and air.
The system exhibits distinct macroscopic properties depending on whether the wa-

ter is condensed at the bottom or distributed as droplets (fog).

3. Interface tension

tension arising at the interface between two phases that tends to reduce the interface area.
It originates in different intermolecular interactions at the interface and in the interior of a
phase. The interface tension of liquids against the gaseous phase is denoted surface tension.

4. Random surfaces

interfaces of two-phase systems, with very low or vanishing interface tension, that strongly
fluctuate in shape. The behavior of random surfaces is determined by the elastic bending
energy and the shear stiffness of the material.
➤ The statistics of random surfaces is significant for the thermodynamic description of

micro-emulsions and of the thermal motion of cell membranes.

19.1.3 Equilibrium
1. Equilibrium state

the macroscopic state of an isolated system that evolves by itself after a sufficiently long
waiting time (Fig. 19.3 (a)).
▲ In equilibrium, the macroscopic state variables no longer vary with time.
➤ Thermodynamic state variables can be defined and measured only in equilibrium.
➤ Frequently, it is meaningful to speak of thermodynamic equilibrium even if the ther-

modynamic state variables vary quite slowly.
■ The Sun continually loses energy by radiation and, therefore, is not in equilibrium.

Nevertheless the use of thermodynamic state variables makes sense since the changes
proceed very slowly.

Global equilibrium, requires that the thermodynamic state variables not vary in time
for all phases of the system.

Local thermal equilibrium, a system that is not in global equilibrium, but in partial
volumes behaves like an equilibrium system. In this case, the intensive variables are defined
only locally.
■ Stars whose different zones are at distinct temperatures;

Earth’s atmosphere with different weather zones.

2. Steady state,

a state in which the macroscopic thermodynamic properties do not vary in time but an
energy flow occurs (Fig. 19.3 (b)). A steady state system is not closed, but energy flows in
and out. This is not the case for equilibrium states.
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■ A pot placed upon an electric heating plate. After some time a steady state is reached
in which the temperature of the food no longer changes. But energy must be supplied
continuously, in order to prevent cooling of the pot, which continues to deliver energy
(heat) to the environment.

Figure 19.3: Thermodynamic systems. (a): system in equilibrium, (b): steady state.

3. Thermal equilibrium,

is established between two subsystems of an isolated system if they are brought in contact
energetically (without exchange of matter) and a sufficiently long period elapses such that
the net energy exchange ceases. The thermodynamic properties change until equilibrium
is reached, and the temperatures in the two subsystems are equal.

4. Zeroth law of thermodynamics,

an empirical theorem on thermal equilibrium: All systems which are in thermal equilibrium
with a given third system (the thermometer) are also in mutual thermal equilibrium.
➤ This law is the basis for defining the concept of temperature.

5. Mechanical equilibrium,

arises for systems with fixed boundaries if the forces of both systems acting on the bound-
aries are of equal magnitude. Hence, the pressures of both systems are equal,

p1 = p2 .

If the systems are not in mechanical equilibrium, then the volumes of the systems change
until a balance of pressure is reached.

6. Chemical equilibrium,

for systems with variable particle number: the number of particles entering the system
equals the number of particles leaving the system.

As for thermal equilibrium, the chemical equilibrium must be distinguished conceptually
from a steady state, e.g., in a system with particle flow.

In chemical equilibrium, the chemical potentials of the systems are equal,

µ1 = µ2 .

Frequently, the conditions for chemical and mechanical equilibrium are related due to the
partial pressure.
■ If a system consisting of carbon dioxide and water is under pressure, carbon dioxide

is dissolved in water until the vapor pressure of the dissolved carbon dioxide is equal
to the pressure of the gaseous carbon dioxide. While the particle numbers equalize,
there is also an equalization of pressure.
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19.1.3.1 Conditions for equilibrium
Different types of equilibrium result from different special conditions:

isolated isochoric equilibrium states ⇔ maximum of entropy S,
isothermal-isobaric equilibrium states ⇔ minimum of free enthalpy G,
isothermal-isochoric equilibrium states ⇔ minimum of free energy F ,
adiabatic-isobaric equilibrium states ⇔ minimum of enthalpy H .

thermodynamic potentials ML2T−2

U(S, V , N ) = T S − pV + µN

F(T, V , N ) = U − T S

H (S, p, N ) = U + pV

G(T, p, N ) = U + pV − T S

Symbol Unit Quantity

U J internal energy
F J free energy
H J enthalpy
G J free enthalpy
p Pa pressure
V m3 volume
T K temperature
S J/K entropy
µ J chemical potential
N 1 particle number

19.2 State variables

19.2.1 State property definitions
1. State property,

a physical quantity that specifies a macroscopic property as uniquely as possible.
■ Temperature, pressure, chemical potential, charge, dipole moment, refractive index,

viscosity, chemical composition, size of phase interfaces, etc.
Microscopic properties, such as the positions or the momenta of the particles, are not ther-
modynamic state properties.
▲ Thermodynamic properties may be defined and measured only in equilibrium.

2. Equation of state,

a functional law connecting various thermodynamic state properties.
In thermodynamics equations of state must be determined empirically. Often one uses

polynomials in the state variables; the virial coefficients of the variables then must be deter-
mined experimentally. Such empirically determined equations of state generally agree with
experimental findings only within a very restricted range of values of the state variables.
■ The equation of state of an ideal gas (see p. 650) can give reliable results for real

gases only at very low density. For higher densities, modified relations, such as the
Van der Waals equation or the virial expansion, are used.

3. State variable,

a thermodynamic property of a system that may vary in time.
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▲ In order to fix a thermodynamic state uniquely, only the state variables are needed.
The remaining thermodynamic properties then take values that depend on the selected
state variables.

➤ The number of the required state variables is related to the number of phases (see
p. 734) of a system.

Generally, one distinguishes two categories of state properties: extensive and intensive
quantities.

19.2.1.1 Extensive thermodynamic properties
Extensive thermodynamic properties, quantity proportional to the quantity of material
in a system.
■ Volume, total energy, total mass are extensive thermodynamic properties.
▲ If the quantity of material is multiplied, then all extensive quantities are multiplied.
A thermodynamic property is also an extensive one if it is proportional to all other prop-
erties known to be extensive. The proportionality holds only as far as all non-extensive
properties remain constant.

Heterogeneous total systems: the extensive properties of the total system are composed
additively from the corresponding properties of the individual phases.
■ The volume of a pot of water, vapor and air is obtained from the volumes of the liquid

phase, and the gaseous phase.

19.2.1.2 Intensive thermodynamic properties
Intensive thermodynamic property, property independent of the quantity of material and
not additive for the various phases of the system. Intensive thermodynamic properties may
take different values for the various phases, but not necessarily.
■ Density, pressure, temperature, refractive index are intensive properties.
Products of two intensive quantities are again intensive quantities. Quotients of two exten-
sive quantities are intensive quantities.
■ The density is the quotient of the total mass and the volume.
The product of an extensive property and an intensive property is an extensive property.
■ The total charge is the product of the charge density (intensive) and the volume (ex-

tensive).
Intensive properties may be defined locally, i.e., they may vary in space.
■ The density of Earth’s atmosphere decreases continuously with the height above its

surface.
The water pressure in the ocean increases with depth.

The determination of the spatial dependence of intensive state variables either requires
additional conditional equations (e.g., from hydrodynamics), or must be added in terms of
additional equations of state.

19.2.1.3 Specific and molar properties

1. Specific quantity,

an intensive property of state, g, defined by the quotient of an extensive property G and the
mass m,

g = G/m.

■ The specific heat q is the amount of heat per kilogram.
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➤ In many textbooks on chemistry and physics, the concept of a specific quantity means
the quotient of the property of state and the number of moles. This definition corre-
sponds to the definition of a molar property quoted below.

▲ In technology, specific quantities are denoted by lowercase letters.
Most of the extensive quantities are specified by capital letters so that the corresponding
specific quantity is characterized by the corresponding lowercase letter.

Extensive quantity Specific quantity

quantity of heat Q specific heat q
heat capacity C specific-heat capacity c
entropy S specific entropy s
volume V specific volume v

enthalpy H specific enthalpy h

2. Molar quantity,

a quantity of state Gmol defined by the quotient of an extensive quantity G and the number
of moles n,

Gmol = G/n .

■ The molar heat capacity cmol is the heat capacity per mole.
In this book, molar quantities are specified by mol.

Relation between molar and specific quantities:

Gmol = g · m

n
= g · M, M = m

n
: molar mass.

➤ In technical textbooks, a subscript m or M is frequently used for molar quantities.

19.2.2 Temperature
Temperature, T , SI unit K (kelvin), a common intensive property of systems that are in
mutual thermal equilibrium. Systems not in mutual thermal equilibrium may have different
temperatures.

The temperature is related to the mean kinetic energy available for the individual parti-
cles.
■ In gases, the mean velocity of gas particles is directly related to the temperature.

In solids the amplitude of oscillations of the particles about their lattice sites depends
on the temperature.

➤ The oscillations of electrons cause, e.g., thermal noise and restrict the efficiency of
sensitive measuring devices.

➤ The concept of temperature may be extended to systems that are not in equilibrium
as an entity. This is possible as far as the total system may be decomposed in partial
systems to which a local (position-dependent) temperature may be assigned.

19.2.2.1 Temperature units
The symbol of temperature is T in physical use.
➤ In technology, the temperature measured in Kelvin according to ISO is specified by

the symbol T , the temperature measured in Celsius by t or ϑ .
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a) Kelvin, the physical unit of temperature. Symbol: 1 kelvin = 1 K.
▲ One kelvin is the fraction 1/273.16 of the temperature difference between the triple

point of water and absolute zero T0
def= 0 K.

b) Celsius, symbol ◦C, more frequently used unit of temperature for common use. It is
based on the melting point (0 ◦C) and the boiling point (100 ◦C) of water under standard
pressure (1013.25 hPa).

The Celsius scale is shifted with respect to the Kelvin scale by 273.15 degrees.
➤ The triple point of water is at 0.01 ◦C.

conversion kelvin–celsius Θ

ϑ/◦C = T/K− 273.15
T/K = ϑ/◦C+ 273.15

Symbol Unit Quantity

ϑ ◦C temperature in celsius degrees
T K temperature in kelvin

▲ Temperature differences are identical in the Celsius and Kelvin scales:

(ϑ1 − ϑ2)/
◦C = (T1 − T2)/K.

c) Réaumur, symbol ◦R, subdivides the temperature difference between the melting
point and the boiling point of water (under standard pressure) into 80 units (T (melting
point) = 0 ◦R, T (boiling point) = 80 ◦R):

ϑ/ ◦C = T/K− 273.15 = 1.25 T/◦R , T/◦R = 0.8ϑ/◦C .

d) Fahrenheit, Symbol ◦F, still in use in some English-speaking countries, in particular
in USA. The limiting points of a freezing mixture (0 ◦F ≈ −17.8 ◦C) and the temperature
of human blood (100 ◦F ≈ 37.8 ◦C):

T/◦F = 9

5
ϑ/◦C+ 32 , ϑ/◦C = 5

9
T/◦F− 17, 7̄,

T/◦F = 9

5
T/K− 459.67, T/K = 5

9
T/◦F+ 255.372̄.

e) Rankine, Symbol R, a Fahrenheit scale with the zero point shifted to absolute zero,
analogous to the Kelvin scale:

T/R = 9

5
T/K = 9

5
ϑ/◦C+ 491.67, T/K = 5

9
T/R.

➤ In atomic and nuclear physics, the Boltzmann constant is often set to k = 1, and the
temperature is given in electron volts eV. Then:

1 eV = 11604 K · k, 1 K = 8.617 · 10−5 eV/k .

19.2.2.2 Calibration points
Calibration points of temperature, points to fix the temperature scale. They are defined
by temperature-dependent properties of materials (triple point, boiling point or solidifica-
tion point for definite pressure).
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IPTS fixed points, the fixed points of the International Practical Temperature Scale
(IPTS-90) passed by the General Conference for Measures and Weights. They are listed in
Tab. 19.1.

The boiling and solidification points refer to the standard pressure of 1013.25 hPa (ex-
cept for the boiling point of hydrogen, marked by ∗).

Other characteristic temperatures that may be used as calibration points can be found in
Tab. 22.1/1.

Standard temperature, fixing the temperature to

Tn = 273.15 K = 0 ◦C .

Standard conditions, fixing the temperature to the standard temperature and the pressure
to the standard pressure 1013.25 hPa,

Tn = 273.15 K = 0 ◦C , pn = 1013.25 hPa = 1.01325 bar.

Table 19.1: IPTS-90 fixed points.

fixed point substance T /K ϑ /◦C
triple point hydrogen 13.81 −259.34
boiling point∗ hydrogen 17.042 −256.11
boiling point hydrogen 20.28 −252.87
boiling point neon 27.10 −246.05
triple point oxygen 54.36 −218.79
boiling point oxygen 90.19 −182.96
triple point water 273.16 0.01
boiling point water 373.15 100.00
solidification point zinc 692.73 419.58
solidification point silver 1235.08 961.93
solidification point gold 1337.58 1064.43

∗ at a pressure of 333.306 hPa

19.2.2.3 Measurement of temperature,

1. Methods of measuring temperature,

are based on bringing a system whose thermal equilibrium state is connected uniquely to
an easily observable thermodynamic variable, into thermal equilibrium with the system to
be measured.

Thermometer, apparatus with which a property correlated with temperatures can be
measured.
➤ The method of measuring the temperature is connected with an equation of state,

namely the dependence of the observed state variable on the temperature.
Possible properties observed:
• the volume of a liquid (liquid thermometer, Fig. 19.4 (a)),
• the volume of a gas (gas thermometer),
• distinct extension of two metallic strips (bimetal, Fig. 19.4 (c)),
• extension of ceramic rods, e.g., control rods in muffle furnaces.
• deformation of ceramic cones in metallurgy (Seger cone),
• in the millikelvin range: the alignment of the nuclear spins of 60Co in the monocrys-

tal, and thus the anisotropy of gamma radiation,
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Resistance
bridge

Figure 19.4: Schematic representation of various types of thermometers. (a): liquid ther-
mometer (volume change of liquid), (b): resistance thermometer (temperature-dependent
conductance), (c): bimetals (distinct linear expansion of metals), (d): thermocouples (dis-
tinct voltages at the contact points).

• the voltage at the junction of a pair of wires made from different metals
(thermocouple Fig. 19.4 (d)),

• the color of light emitted by a solid or a gas (pyrometer),
• the resistance of certain conductors (resistance thermometer Fig. 19.4 (b)) with

positive temperature coefficient (PTC) or negative temperature coefficient (NTC),
see chapter on electricity, temperature dependence of resistance.

2. Operation range of thermometers

The schematic representation in Fig. 19.5 shows the operation ranges (temperature along
the abscissa) of various thermometers, arranged along the ordinate according to the func-
tion principle:

a) mechanical contact thermometer,
b) special forms of mechanical contact thermometer,
c) electric contact thermometer,
d) special forms of electric contact thermometer,
e) radiation thermometer.

3. Calibration of thermometers

For the calibration of thermometers in between the fixed points, the following devices are
assigned:

Platinum resistance thermometer with special specifications for the temperature range
13.81 to 903.89 K.

The range is subdivided into five subranges for which special interpolation polynomials
are used to calculate the temperature from the values of resistance.

Rhodium/platinum thermocouple with a platinum and a rhodium(10 %)-platinum
compound as thermocouple in the temperature range 903.89 to 1337.58 K.

The relation between the temperature and the thermovoltage is interpolated by means of
a quadratic equation.

Spectral pyrometer above 1337.58 K. Here, Planck’s radiation law is used.

19.2.2.4 Kelvin scale and absolute zero
Rarefied gases show a very similar connection between temperature and volume expansion.
The volume of a definite quantity of such a gas at definite pressure may be used as a
measure of temperature, and other thermometers may be calibrated correspondingly.
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Bimetallic strip

Solid-expansion thermometer

Gas thermometer

NTC-Thermistor
PTC-Thermistor

Quartz-crystal thermometer

Liquid crystal

Thermo elements

Vapor-pressure thermometer

Liquid in glass thermometer
Liquid-spring thermometer

Color temperature
Temperature-sensitive film

Ratio pyrometer

Total radiation thermometer

Objective measure

Subjective
measure

Filament pyrometer

cone

Figure 19.5: Operation ranges of thermometers.

1. Thermodynamic temperature,

T , determined through the volume of a rarefied gas (see p. 661) (Fig. 19.6),

T = T0
V

V0
.

Pressure and particle number must remain constant.

2. Kelvin scale,

the temperature scale for which the triple point of water serves as fixed point. The pressure
at the triple point is 619.6 Pa, and the temperature is defined as 273.16 K. The subdivision
into degrees closely follows the Celsius scale, which was established earlier.

Conversion between the Kelvin and Celsius scales:

T/K = ϑ/◦C+ 273.15 .

3. Absolute zero,

extrapolation of the temperature-volume relation to the volume V = 0 (Fig. 19.7). The
assumption of a gas whose volume may be diminished arbitrarily is of importance for the
discussion of the ideal gas. In practice, at very low temperatures the volume of a gas can
no longer be measured because of nascent liquefaction.



634 19. Equilibrium and state variables

Scale

Mercury drop

Low density
gas

Figure 19.6: Gas thermometer (schemati-
cal).

Figure 19.7: V -T diagram of a rarefied gas.
Air liquefies at 80 K, H2 at 20 K and He at
4.2 K.

At absolute zero, all motion of atoms and molecules ceases. The value of the temperature
is T = 0 K = −273.15 ◦C.
▲ Absolute zero cannot be attained. It is impossible to establish a system with exactly

T = 0 K.
➤ This is a formulation of the third law of thermodynamics (see p. 702).

19.2.3 Pressure
Pressure, p, SI unit Pa (pascal), the magnitude of a force acting perpendicularly on a
measuring area A divided by the area (see p. 172):

pressure = normal component of force
area

ML−1T−2

p = F⊥
A

Symbol Unit Quantity

p Pa pressure
F⊥ N normal force component
A m2 area

Strictly speaking, the pressure is the component of the force vector �F normal to the surface,
i.e., the scalar product of the force vector �F and the normal vector �nA of the surface A,
divided by the area,

p = �F · �nA

A
.

Microscopically, the pressure occurs because particles strike the surface, where they are
reflected and thereby transfer a certain momentum. The pressure is the average momentum
transferred to the wall per unit time and unit area.

Macroscopically, the pressure is related linearly to the density and thus inversely pro-
portional to the volume occupied (see p. 651).

M McLeod pressure gauge, a mercury manometer for measuring low gas pressures
(Fig. 19.8) that operates according to the principle of volume measurement. A small
amount of gas of the system to be measured is confined. Its volume is then diminished
and the pressure difference between the reduced volume and the original system is
measured.
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To the vacuum
system

Figure 19.8: McLeod
pressure gauge.

19.2.3.1 Units of pressure

1. SI units of pressure

Pascal, abbreviation Pa, SI unit of pressure (see p. 172):

1 Pa = 1
N

m2
= 1

kg

m s2
.

In practice, pressures frequently are of the order 105 Pa (about normal air pressure); there-
fore, the more convenient unit bar is introduced.

Bar, 105 Pa.
➤ Formerly, the millibar was used frequently in meteorology. Currently, the identical SI

unit hectopascal is used:

1 Pa = 10−5 bar , 1 bar = 105 Pa = 10
N

cm2
.

2. Pressure and energy density

The pressure has the same dimension as the energy density.
▲ Often, the pressure is related to the energy density in a simple manner.
■ In an ideal gas, the pressure is directly proportional to the mean kinetic energy density

e = ρN Wkin, ρN being the particle density and Wkin the mean kinetic energy:

p = 2

3
e .

3. Other units of pressure

The following units are not in the SI-system, but are found in many older technical books
and in everyday settings (e.g., psi).

Technical atmosphere, at, corresponds to the pressure exerted by a mass of 1 kg at
standard gravity

g = 9.806 65 m/s2

onto a square centimeter.
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➤ The now obsolete force unit kilopond (kp) represents the weight of a mass of 1 kg at
standard gravity.

1 at = 1
kp

cm2
= 1

kg

cm2
g = 98 066.5 Pa = 0.980 665 bar , 1 bar = 1.02 at .

➤ 1 at corresponds to the pressure of a water column of a height of 10 m.
Atmospheric excess pressure, ate, excess pressure in atmospheres:

pate = p/at− 1 .

Millimeters of water, mm WS, specifies the height of a column of water with a gravity
pressure equivalent to the given pressure:

1 mm WS = 10−4 at = 9.80665 Pa .

Standard atmosphere, atm, adjusted to the mean air pressure at the earth’s surface.
Torr, the raise of mercury in mm in an evacuated closed vertical glass tube immersed in

an open mercury vessel, equivalent to air pressure.

1 atm = 760 Torr = 101325 Pa

1 Torr = 133.32 Pa =̂ 1 mm Hg

1 bar = 0.987 atm = 750.06 Torr

4. Standard pressure and standard conditions

Standard pressure, norm pressure, reference value of pressure for specifying material
properties.
▲ The standard pressure is one standard atmosphere:

pn = 101 325 Pa = 1 atm = 760 Torr .

■ In general, melting and boiling points are given for standard pressure.
Standard conditions, fixing the temperature to the standard temperature (T =
273.15 K = 0 ◦C) and the pressure to the standard pressure pn = 1013.25 hPa.

19.2.3.2 Measurement of pressure

1. Pressure gauges

Measurement of pressure is in general done by determining the force acting on a surface
of known area (Fig. 19.9).

Pressure balance and piston manometer, measure the force acting on a piston in a
hollow cylinder. The counterforce is provided by weights or springs.

Liquid manometers are used preferentially for measuring low pressures. Confining liq-
uids are, for example, alcohol, water, mercury, or special liquids with possibly low vapor
pressure, possibly temperature-independent density, and possibly favorable capillary prop-
erties.

Thermovac tubes and Penning tubes, employ the thermal or electric conductance of
gases for measuring pressure in the vacuum region.
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p

p

pp

p

Figure 19.9: Schematic representation of the principle of operation of pressure gauges: the
pressure acting on a fixed piston area is compensated by a counterforce. The magnitude
of the counterforce may be determined by: the deflection of a Bourdon pressure gauge (a),
the deflection of a pointer compensated by a spiral spring (b), the extension of a curled
pressure hose (c) or (for known counterpressure) the height of ascent of a liquid column
(d).

2. Local pressure

Pressure may also be defined locally, i.e., within a small subsystem.
M For measurements of local pressure a small test surface is connected to the system.

The net force F on the surface is measured, and the pressure is determined from the
difference between F/A, where A is the area of the surface, and a calibrated pressure
on the other side of the surface.

19.2.4 Particle number, amount of substance
and Avogadro number

1. Particle number,

N , non-dimensional quantity, describes the number of particles present in the system.
➤ According to ISO, the symbol X may also be used, in particular if mixtures of differ-

ent kinds of particles are being considered.
➤ Since N takes very large numbers for macroscopic systems, multiples of the Avo-

gadro number are used.

2. Avogadro number,

Avogadro constant, NA, used to determine the number of atoms or molecules in a sample
of a substance.
▲ The Avogadro number is just the number of atoms or molecules in one mole of a

substance.

NA = 6.022 136 7 · 1023 mol−1 .

3. Atomic mass unit,

u (formerly amu), particularly suitable to specify the mass of individual particles (atoms,
molecules) (see p. 912); it is defined as one twelfth of the mass of an atom of the carbon
isotope 12C:

1 u = 1

12
m12C = 1.661 · 10−27 kg .
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This unit is particularly appropriate, since atomic masses may be measured very precisely
by means of mass spectrometers that are calibrated readily with carbon compounds.

For normal applications, e.g., in stoichometric calculations in chemistry, it is sufficient to
specify the mass of an atom generally by its mass number (number of protons and neutrons;
it is also given in the periodic table).
■ An oxygen molecule has the mass m(O2) = m(2 16O) = 2 · 16 u = 32 u.

4. Amount of substance and molar volume

Amount of substance, n, SI unit mol, description of the number of particles, given as
multiples of the Avogadro number.

Mol, SI unit for NA particles (atoms, molecules) of a certain element (or a compound).
▲ The mole (mol) is the basic unit for the amount of substance: 1 mol is the amount of

substance of a system which contains as many molecules as there are atoms in 0.012
kg of the carbon isotope 12C.

Molar volume, the volume of one mole of a substance at standard temperature and
pressure (STP) (0 ◦C temperature and 1.01325 bar pressure).
■ At STP, an ideal gas has a molar volume of about 22.4 liters.

5. Loschmidt constant,

the number of particles of an ideal gas at STP per molar volume:

Loschmidt constant = Avogadro number
molar volume

L−3

NL = NA

Vm

= 2.686 75 · 1025 m−3

Symbol Unit Quantity

NL m−3 Loschmidt constant
NA mol−1 Avogadro number
Vm m3/mol molar volume

6. Molar mass,

the mass of one mole of a substance:

molar mass = Avogadro number · particle mass MN−1

M = NA · m N

= m

n

Symbol Unit Quantity

M kg/mol molar mass
NA mol−1 Avogadro number
m N kg particle mass
m kg total mass
n mol amount of substance

a) Molar mass of a mixture, mass of one mole of a mixture,

Mmixture = mmixture

nmixture
= m1 + m2 + m3 + · · ·

n1 + n2 + n3 + · · · .

It may be calculated from the molar masses Mi of the components i :

Mmixture = n1 M1 + n2M2 + n3M3 + · · ·
n1 + n2 + n3 + · · · = x1M1 + x2M2 + x3M3 + · · · .

(The mole fraction xi is explained below.)
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■ The molar mass of air is Mair = 28.96 g/mol. Its main constituents are nitrogen
MN2 ≈ 28 g/mol and oxygen MO2 ≈ 32 g/mol.

b) Molar mass of an element, see Periodic Table.
■ Molar masses of several elements (in g/mol): hydrogen 1.00797, oxygen 15.9994,

nickel 58.71, silver 107.87, platinum 195.09.
➤ Rule of thumb: number of neutrons and protons ≈ molar mass in gram.

c) Molar mass of a compound, can be obtained additively from the components
(atoms),

M(AaBbCc) = aM(A)+ bM(B)+ cM(C) .

■ The molar mass of sulphuric acid (H2SO4) is approximately given by

M = 2 · 1 g/mol+ 32 g/mol+ 4 · 16 g/mol = 98 g/mol .

Molar masses of several gases see Tab. 22.2/2.

7. Amount of substance,

the number of moles of a substance:

amount of substance = particle number
Avogadro number

N

n = N

NA

n = m

M

NA = 6.022 136 7 · 1023 mol−1

Symbol Unit Quantity

n mol amount of substance
N 1 particle number
M kg/mol molar mass
NA mol−1 Avogadro number
m kg total mass

8. Universal gas constant,

the product of Avogadro number and Boltzmann constant:

gas constant = Boltzmann constant · Avogadro number ML2T−2Θ−1N−1

R = k · NA

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

R J/(K mol) gas constant
NA mol−1 Avogadro number
k J/K Boltzmann constant

The value of R is

R = 8.314 J/(mol K) .

9. Mole fraction,

xi , non-dimensional quantity, fraction of particles of kind i of the total number of particles:

xi = Ni

N1 + N2 + · · · + Nn
,

∑
i

xi = 1 .
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▲ The sum of all mole fractions always yields unity.
➤ According to ISO, a lowercase letter xi is used for the mole fraction while Xi repre-

sents the total particle number of a species.
The mole fraction is an intensive variable and may take distinct values in different phases.

10. Mass fraction,

ξi , non-dimensional quantity, ratio of the total mass of a kind of particle to the total mass
of all particles. It is equal to the product of the mole fraction and the ratio of the molar
mass of the kind of particle i to the molar mass of the total system:

ξi = mi

mtot
= xi

Mi

Mtot
.

19.2.5 Entropy
1. Entropy as an extensive state function

Entropy, S, SI unit joule per kelvin, an extensive state function describing the disorder in
the system (see p. 642).

The entropy change may be defined (for small temperature variations) via the reduced
heat (see p. 702):

entropy change = heat change
temperature

ML2T−2Θ−1


S = 
Q

T

= C 
T

T

Symbol Unit Quantity

S J/K entropy
Q J amount of heat
T K temperature
C J/K heat capacity

Here only entropy differences are defined, not an absolute value of the entropy.
The absolute normalization is given by the third law of thermodynamics (see p. 702):

▲ The entropy at absolute zero is equal to zero,

ST=0 = 0 .

2. Microscopic consideration

Macrostate, the state characterized by the bulk properties of the system.
Microstate, the state determined by the properties of the individual particles.

■ If a certain number of spheres is distributed over two containers, then the macrostate
is specified by the number of spheres in each container, whereas the microstate is
specified by identifying individual spheres in each of the containers.

Every thermodynamic macrostate may be realized by a large number of microscopically
possible states (microstates).
■ In a system of three particles with three fixed distinct velocities, the state in which

particle 1 has the highest velocity and particle 3 has the lowest velocity, and the state
in which particle 1 has the lowest velocity and particle 2 has the highest velocity, are
microscopically different. Macroscopically, both states are identical.

▲ The state with the most realizable possibilities is the most probable state.
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■ Let a box be filled with gas. If one investigates whether a particle is in the left or right
half of the box, the state with all particles in the left section is energetically allowed,
but has only one microscopic realization. A uniform distribution of all particles to
the left and right section has a much larger number of microscopic realizations and is
therefore the most probable state.

▲ The equilibrium state is the state with the maximum number of microscopic real-
izations.

➤ Since the entropy increases with the number of realization possibilities, the entropy
of the equilibrium state has a maximum.

3. Connection between entropy and number of microstates

entropy = Boltzmann constant · ln (number of realizations) ML2T−2Θ−1

S = k ln	

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

S J/K entropy
k J/K Boltzmann constant
	 1 number of microstates

19.3 Thermodynamic potentials

19.3.1 Principle of maximum entropy—principle
of minimum energy

Closed systems evolve to an equilibrium state characterized by a maximum of entropy.
This state has the maximum number of microscopic realizations.
➤ This statement is a consequence of the second law of thermodynamics (see p. 701).
▲ In a closed system, all (irreversible) processes evolving by themselves increase the

entropy until its maximum is reached in the equilibrium state.
In mechanics and electrodynamics, non-isolated systems tend to reduce their energy.
■ Mechanical systems tend to a local minimum of the potential energy.
▲ A non-isolated system of constant entropy evolves to a minimum of energy.
Both principles are connected via the laws of thermodynamics.

19.3.2 Internal energy as a potential
Internal energy, U , SI unit joule (J), extensive variable, describes the total energy con-
tained in the system. In an isolated system, it is a central variable.

The internal energy is written as a function of the natural extensive variables entropy S,
volume V and particle number N . If the dependence of the internal energy U(S, V , N , . . .)
on the other variables is known, a complete knowledge of all thermodynamic quantities is
guaranteed.

Differential representation of the internal energy:

dU = T dS − p dV + µ dN + · · · .
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The intensive variables temperature T , pressure p and chemical potential µ may be de-
scribed as functions of the natural extensive variables.

The intensive variables are described by a partial derivative with respect to an extensive
variable (the other variables are assumed to be constant).

temperature, pressure and chemical potential as derivatives of U

T = ∂U

∂S

∣∣∣∣
V ,N ,...

−p = ∂U

∂V

∣∣∣∣
S,N ,...

µ = ∂U

∂N

∣∣∣∣
S,V ,...

Symbol Unit Quantity

U J internal energy
T K temperature
S J/K entropy
p Pa pressure
V m3 volume
µ J chemical potential
N 1 particle number

▲ For isochoric adiabatic systems the internal energy U has a minimum, dU ≤ 0 for
V = const., S = const.

19.3.2.1 Internal energy in an ideal gas
In the ideal gas without rotational degrees of freedom, the following holds:

U = 3

2
NkT .

For isochoric changes of state, the following holds:

internal energy ∼ temperature ML2T−2

U = cV mT

Symbol Unit Quantity

U J internal energy
cV J/(K kg) specific-heat capacity at

constant volume
m kg mass
T K temperature

19.3.3 Entropy as a thermodynamic potential
Entropy, S, SI unit joule per kelvin, in a closed system is a central variable, as is the
internal energy. It describes the number of possible microstates in the system.

Differential representation of the entropy:

dS = 1

T
dU + p

T
dV − µ

T
dN − · · · .

If the dependence of the entropy S(U, V , N , . . .) on the variables U , V , N , . . . is known,
then full knowledge of all thermodynamic quantities is guaranteed.
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internal energy, pressure and chemical potential as derivatives of S

1

T
= ∂S

∂U

∣∣∣∣
V ,N ,...

p

T
= ∂S

∂V

∣∣∣∣
U,N ,...

−µ
T
= ∂S

∂N

∣∣∣∣
U,V ,...

Symbol Unit Quantity

U J internal energy
T K temperature
S J/K entropy
p Pa pressure
V m3 volume
µ J chemical potential
N 1 particle number

▲ For isochoric systems with constant internal energy, the entropy S has a maximum,
dS = 0 for V = const., U = const.

19.3.3.1 Entropy of the ideal gas
Entropy of an ideal gas without rotational degrees of freedom:

S(T, p) = Nk

{
s0(T0, p0)+ ln

[(
T

T0

)5/2 ( p0

p

)]}
.

Rewritten in terms of N , V ,U :

S(N , V ,U) = Nk

{
s0(N0, V0,U0)+ ln

[(
N0

N

)5/2 ( U

U0

)3/2 ( V

V0

)]}
.

From this equation, all equations of state of the ideal gas can be obtained by partial differ-
entiation.
■ Differentiating with respect to the internal energy yields:

∂S

∂U

∣∣∣∣
N ,V
= 1

T
= 3

2
Nk

1

U
⇒ U = 3

2
NkT ;

Differentiating with respect to the volume yields the equation of state,

∂S

∂V

∣∣∣∣
N ,U
= p

T
= Nk

1

V
⇒ pV = NkT .

19.3.4 Free energy
1. Free energy,

also Helmholtz potential, F , SI unit joule (J), is of importance, in particular, for the de-
scription of processes running at constant temperature (isothermal).

The free energy is the difference between internal energy and the product of temperature
and entropy,

F = U − T S .
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This corresponds to a Legendre transformation from a function of entropy (internal energy)
to a function of temperature (free energy).

The total differential of F is

dF = −S dT − p dV + µ dN + · · · .

Change of the free energy:

F = W +
T2∫

T1

S dT .

2. Free energy as a function of the state variables

The free energy is written as a function of temperature, volume and particle number. If the
dependence of the free energy F(T, V , N , . . .) on the other variables is known, then full
knowledge of all thermodynamic quantities is guaranteed.

The remaining variables may be obtained by partial differentiation.

entropy, pressure and chemical potential as derivatives of F

−S = ∂F

∂T

∣∣∣∣
V ,N ,...

−p = ∂F

∂V

∣∣∣∣
T,N ,...

µ = ∂F

∂N

∣∣∣∣
T,V ,...

Symbol Unit Quantity

F J free energy
T K temperature
S J/K entropy
p Pa pressure
V m3 volume
µ J chemical potential
N 1 particle number

3. Free energy and isothermal processes

The change of the free energy dFsys of a system at constant temperature (isothermal pro-
cesses) represents the work delivered by (or supplied to) the system if the process is re-
versible.

Isothermal processes during which the system exchanges only heat but no work with the
environment tend to a minimum of free energy, i.e., simultaneously to minimum internal
energy and to maximum entropy.
▲ Isothermal and isochoric processes spontaneously evolve in the direction in which

the free energy decreases.
Isothermal processes that actually increase the internal energy may occur spontaneously
provided that energy is supplied from a heat bath. In order for this to occur, the gain of en-
ergy T dS must exceed dU , the energy supplied. If there is no energy supplied, the process
would run spontaneously in the opposite direction.

19.3.5 Enthalpy
1. Enthalpy,

H , SI unit joule (J), is of importance for the description of processes proceeding at constant
pressure (isobaric).
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■ In practice, chemical processes often proceed at constant pressure.
Displacement work, the product of pressure and volume.

Enthalpy is the sum of internal energy and displacement work,

H = U + pV = T S + µN .

The enthalpy is written as a function of entropy, pressure and particle number. If the depen-
dence of the enthalpy H (S, p, N , . . .) on the other variables is known, then full knowledge
of all thermodynamic quantities is guaranteed.

The total differential of the enthalpy is:

dH = dU + p dV + V dp ,

= T dS + V dp + µ dN .

▲ For adiabatic, isobaric systems (
Q = 0, p = const.) the enthalpy H tends to a
minimum, dH = 0.

2. Determination of the properties of state from the enthalpy

If the enthalpy H (S, p, N , . . .), is known, then all remaining properties can be obtained by
partial differentiation.

temperature, volume and chemical potential as derivatives of H

T = ∂H

∂S

∣∣∣∣
p,N ,...

V = ∂H

∂p

∣∣∣∣
S,N ,...

µ = ∂H

∂N

∣∣∣∣
S,p,...

Symbol Unit Quantity

H J enthalpy
T K temperature
S J/K entropy
p Pa pressure
V m3 volume
µ J chemical potential
N 1 particle number

3. Isobaric and adiabatic processes

In principle, the enthalpy may be given for any system. It is particularly suitable for iso-
baric (p = const., dp = 0) and adiabatic systems (
Q = 0). Such systems do not
exchange heat with the environment (
Q = 0), but in an expansion they may do volume
work against the constant external pressure (Fig. 19.10). For isobaric changes of state, the
change of enthalpy is just the quantity of heat exchanged with the environment and other
work (which does not contain the volume work against the external pressure).

Technical work, Wt, SI unit joule (J), the total amount of work a machine may do in
theory.

Wt =
p2∫

p1

V dp .

▲ Irreversible processes will cause an isobaric adiabatic system to proceed on its own
until an equlibrium state of minimum enthalpy is reached.



646 19. Equilibrium and state variables

Heat bath T

Figure 19.10: Thermo-
dynamic systems. (a):
isothermal-isobaric system,
(b): adiabatic-isobaric
system.

19.3.5.1 Enthalpy of the ideal gas
The enthalpy is the sum of the internal energy and the displacement work.

enthalpy ∼ temperature ML2T−2

H = cpmT

Symbol Unit Quantity

H J enthalpy
cp J/(K kg) spec. heat capacity at constant pressure
m kg mass
T K temperature

Enthalpy of the ideal gas, microscopically (without rotational energy):

H (T, p, N ) = 5

2
NkT .

19.3.5.2 Enthalpy and phase transitions
In phase transitions proceeding at constant pressure (isobaric) and at constant temperature
(isothermal), the change of enthalpy of the substance is equal to the latent heat received (in
melting, sublimating and boiling) or delivered (in solidifying, de-sublimating and conden-
sation):

Hfl = Hsolid +
HS .

Melting enthalpy, 
HS, the enthalpy spent in melting.
Solidification enthalpy, −
HS, the enthalpy released in solidification. Analogously,

the evaporation enthalpy, 
HV , is related to the condensation enthalpy, −
HV , and
the sublimation enthalpy, 
Hsub = 
HS + 
HV , to the desublimation enthalpy,
−
Hsub.

Mollier diagram, graph in which the entropy per mass unit is plotted against the en-
thalpy per mass unit (h, s diagram).

Analogously, graphs of other quantities, such as concentration against enthalpy (h, x
diagram), may be used.

19.3.5.3 Reaction enthalpy and theorem of Hess
Reaction enthalpy, the enthalpy delivered or spent in a chemical reaction.
➤ Many chemical reactions proceed in open vessels at constant pressure.
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▲ The question whether a chemical reaction proceeds spontaneously without external
energy may be answered using the balance of enthalpy,


H = Hproducts − Heducts .

If the balance is negative, 
H ≤ 0, the reaction proceeds spontaneously and exothermi-
cally.
▲ Theorem of Hess: The total enthalpy difference between products and reactants is

independent of the reaction path.
Usually, the enthalpy balance depends strongly on the environmental pressure and the en-
vironmental temperature. Frequently, activation energy must be expended to start the reac-
tion.
■ At room temperature, hydrogen and oxygen may be mixed. Despite the negative for-

mation energy of water, the reaction does not proceed spontaneously. With a catalyst
or open fire the reaction proceeds explosively (oxyhydrogen reaction).

Catalyst, a substance that allows for, or at least enhances, the reaction of other substances
without being consumed itself.
■ Metallic platinum is a good catalyst for many reactions.

Exothermic reaction, reaction delivering enthalpy.
Endothermic reaction, reaction consuming enthalpy.

M In chemistry, reaction enthalpies are measured simply by measuring the quantity of
heat produced in the reaction in a calorimeter according to


H = 
Q|p .

19.3.6 Free enthalpy
1. Free enthalpy,

also Gibbs potential, G, SI unit joule (J), a quantity introduced by J. W. Gibbs (1875) that
is particularly suited to systems at given temperature and given pressure:

G = U − T S + pV .

▲ The free enthalpy per particle coincides with the chemical potential for systems of
one kind of particle that do not exchange another kind of energy (e.g., electrical
energy) with the environment.

The total differential of the free enthalpy reads:

dG = −S dT + V dp + µ dN .

▲ For an isobaric-isothermal system (p = const., T = const.), the free enthalpy is a
minimum, dG ≤ 0.

2. Free enthalpy as function of state variables

The free enthalpy is written as a function of temperature, pressure and particle number. If
the dependence of the free enthalpy G(T, p, N , . . .) on the other variables is known, then
full knowledge of all thermodynamic quantities is guaranteed.

If the function G(T, p, N ) is known, then all other quantities can be obtained by partial
differentiation.
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entropy, volume and chemical potential as derivatives of G

−S = ∂G

∂T

∣∣∣∣
p,N ,...

V = ∂G

∂p

∣∣∣∣
T,N ,...

µ = ∂G

∂N

∣∣∣∣
T,p,...

Symbol Unit Quantity

G J free enthalpy
T K temperature
S J/K entropy
p Pa pressure
V m3 volume
µ J chemical potential
N 1 particle number

The change of the free enthalpy is just the work converted by the system in isothermal
and isobaric reversible processes, without the volume work against the constant external
pressure.
▲ In an isothermal isobaric system, irreversible processes proceed until a minimum of

free enthalpy is reached.

19.3.6.1 Chemical reactions
The free enthalpy is of importance for reactions proceeding slowly.

Exoergic reactions, reactions in which free enthalpy is released.
Endoergic reactions, reactions in which free enthalpy is consumed.
Law of mass action, determines the conversion ratio between the products and reactants

of a chemical reaction:

a1 A1 + a2 A2 + · · ·� b1 B1 + b2 B2 + · · · ,
(
xB1

)b1
(
xB2

)b2 . . .(
xA1

)a1
(
xA2

)a2 . . .
= e

(
−
G0(p,T )

kT

)
= K (p, T ) .

The quantity 
G0 is a constant characterizing the reaction. The equilibrium constant
K (p, T ) is determined by the difference of the free enthalpies 
G0.
▲ For K > 1 the equilibrium lies on the side of the products, for K < 1 the concentra-

tion of the reactants is predominant.
For the most important reactions, acid-base reactions, and dissociations, the equilibrium
constants are given in chemical tables.

19.3.6.2 Principle of Le Chatelier
Principle of Le Chatelier, statement on the change of an equilibrium state under external
conditions.
▲ If a constraint is imposed or changed (change of temperature, pressure or concentra-

tion) an equilibrium state is shifted such that the constraint is relaxed.
■ Under external pressure, a system of water and steam will partly condense and

thereby reduce its total volume.

19.3.7 Maxwell relations
Maxwell relations, relations connecting the partial derivatives of different thermodynamic
potentials:
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∂T

∂V

∣∣∣∣
S,N
= − ∂p

∂S

∣∣∣∣
V ,N

,
∂S

∂V

∣∣∣∣
T,N
= ∂p

∂T

∣∣∣∣
V ,N

,

∂T

∂p

∣∣∣∣
S,N
= ∂V

∂S

∣∣∣∣
p,N

, −∂S

∂p

∣∣∣∣
T,N
= ∂V

∂T

∣∣∣∣
p,N

.

➤ Usually, only systems of constant particle number (dN = 0) are considered so that
the number of relations is reduced appreciably. But, if there are additional state vari-
ables, for example, a magnetic field and a magnetic dipole moment (see p. 463),
other relations must be added.

Thermodynamic quadrangle, simple mnemonic aid giving a quick overview on the po-
tentials and their variables and allows a quick reading of the Maxwell relations (Fig. 19.11).

Figure 19.11: Thermo-
dynamic quadrangle for
N = const.

It is designed especially for systems of constant particle number and without other state
variables.

The variables V , T, p, S form the vertices of the quadrangle represented in Fig. 19.11.
The edges represent the potentials depending on the variables at the corresponding vertices,
e.g., F(V , T ).
▲ The derivative of a potential with respect to a variable (vertex) is given by the variable

at the diagonal-opposite site. The two arrows in the diagonals indicate the sign.
■ The differentiation of F with respect to V yields a minus sign (see arrow) p :

∂F/∂V = −p.
The Maxwell relations may be read as follows: The derivatives involving the variables
along an edge of the quadrangle (e.g., ∂V/∂S), with the variable in the diagonal-opposite
vertex (here p) kept constant, are just equal to the corresponding derivative on the opposite

edge (here −
(
∂T

∂p

)
S

). The signs depend on the sense in which the diagonals are passed.

19.3.8 Thermodynamic stability
1. Various kinds of equilibrium states

Equilibrium states, distinguished by a maximum of entropy, or by a minimum in the
various thermodynamic potentials.

Closed isochoric states, characterized in equilibrium by a maximum of entropy S.
Isothermal-isobaric states, characterized in equilibrium by a minimum of the free en-

thalpy G = U + pV − T S.
Isothermal-isochoric states, characterized in equilibrium by a minimum of the free

energy F = U − T S.
Adiabatic-isobaric states, characterized in equilibrium by a minimum of the enthalpy

H = U + pV .
Adiabatic-isochoric states, characterized in equilibrium by a minimum of the internal

energy U .
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differential representation of thermodynamic potentials

dU = −pdV + T dS

dF = −pdV − SdT

dH = V dp + T dS

dG = V dp − SdT

Symbol Unit Quantity

U J internal energy
F J free energy
H J enthalpy
G J free enthalpy
p Pa pressure
V m3 volume
T K temperature
S J/K entropy

2. Survey of equilibrium criteria

System is . . . Isothermal Isobaric Isochoric Adiabatic Closed

entropy S
maximum

dV = 0 dU = 0

internal energy U
minimum

dV = 0 
Q = 0

free energy F
minimum

dT = 0 dV = 0

enthalpy H
minimum

dp = 0 
Q = 0

free enthalpy G
minimum

dT = 0 dp = 0

▲ If a system is in stable equilibrium, then all spontaneous changes of the variables
must initiate processes that bring the system back to equilibrium, i.e., counteract
these spontaneous changes.

➤ This statement follows from the principle of Le Chatelier.

19.4 Ideal gas

Ideal gas, the gas particles may be treated like point particles of classical mechanics with-
out any interaction. The ideal gas is a simple model of a real gas, assuming that the particles
are of negligible size and have few mutual interactions. The approximation improves the
more the gas is rarefied.
■ Under standard conditions air, hydrogen, and noble gases may be described quite

well by an ideal gas.
▲ When describing real gases, one must take into account:
• the internal volume of the particles,
• the interaction between the gas particles.
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19.4.1 Boyle-Mariotte law
Boyle-Mariotte law, general relation between pressure and volume of a gas at constant
temperature, described in 1664 by R. Boyle, and independently by E. Mariotte in 1676.
▲ For constant temperature the product of pressure and volume is constant.

pressure · volume = constant

pV = p0V0, T = const.

p

p0
= V0

V
= ρ

ρ0
, T, N = const.

Symbol Unit Quantity

p Pa pressure
V m3 volume
T K temperature
ρ kg/m3 density
N 1 particle number

■ If for constant temperature the volume of a cylinder is reduced to one half, the pres-
sure of the gas is doubled (Fig. 19.12).

p–V diagram, diagram representing the pressure as a function of the volume, important
for describing changes of state and thermodynamic machines.

If pressure and volume at fixed temperature are plotted against each other (Fig. 19.13),
for the ideal gas one obtains hyperbolas.

p ∼ 1

V
.

p
(1

04  
Pa

)

V (10-3 m3)

Figure 19.12: Relation between pressure
and volume. Addition of liquid increases
the pressure in the leg with closed end, the
gas volume is reduced.

Figure 19.13: p–V diagram for 1 mole of an
ideal gas. The isotherms are hyperbolas.

■ The McLeod pressure gauge is an application of Boyle-Mariotte’s law.

19.4.2 Law of Gay-Lussac
1. Law of Gay-Lussac

dependence of the volume of a gas on the temperature, formulated in 1802 by Gay-Lussac:

V (ϑ) = V0(1+ γϑ) , V0 : volume at ϑ0 = 0 ◦C .
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▲ If the absolute temperature of the gas in a cylinder is changed, the volume at constant
pressure changes proportional to the temperature.

relative change of volume ∼ change of temperature L3


V

V0
= γ
T

p = const.

Symbol Unit Quantity

V m3 volume
γ 1/K volume-expansion coefficient
T K temperature
p Pa pressure

In a notation in terms of temperature differences, the temperature difference may also be
given in celsius instead of kelvin.

Volume-expansion coefficient, γ , SI unit 1/kelvin, describes the relative change of vol-
ume for varying temperature.

The volume-expansion coefficient has almost the same value for all rarefied gases. For
the ideal gas

γ = 0.003661 K−1 = 1

273.15
K−1, referred to the volume at 0◦C.

The corresponding equation is identical to the definition of absolute temperature.

2. Rewriting the law of Gay-Lussac

For constant pressure, the volume of an ideal gas varies proportional to the temperature:

volume ratio = temperature ratio

V

V0
= T

T0
, p = const.

Symbol Unit Quantity

V m3 volume
T K temperature
p Pa pressure

For constant volume, the pressure of the ideal gas varies proportional to the temperature:

pressure ratio = temperature ratio

p

p0
= T

T0
, V = const.

Symbol Unit Quantity

p Pa pressure
T K temperature
V m3 volume

19.4.3 Equation of state
Equation of state of the ideal gas, describes the connection between the quantities
p0, V0, T0 (pressure, volume and temperature) of an arbitrary initial state and the same
quantities p, V , T of a final state (see p. 627).
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equation of state of ideal gas

pV

T
= p0V0

T0
= Nk

pV = NkT

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

p Pa pressure
V m3 volume
T K temperature
N 1 particle number
k J/K Boltzmann constant

This equation is obtained if two processes are carried out successively and the gas laws of
Boyle and Gay-Lussac are applied.

Alternative notations may be found in the section on equations of state (see p. 661).

19.5 Kinetic theory of the ideal gas

Every particle in the gas has a definite velocity vector �v.
Velocity distribution, the distribution function of the particle velocities in a system.

▲ In the equilibrium state, the velocity distribution of a system does not change. The
velocity of individual particles may change, of course.

19.5.1 Pressure and temperature
1. Microscopic interpretation of pressure,

the pressure is described as the momentum transfered per unit time and unit area onto the
container walls by collisions of the gas particles (Fig. 19.14).

Figure 19.14: Scheme to
calculate the pressure.
Only the component of the
momentum normal to the
wall is taken into account.

Principal equation of gas theory, describes the relation between the pressure and the
total kinetic energy.

pressure · volume = 2
3

total kinetic energy ML2T−2

pV = 2

3
Wkin

Symbol Unit Quantity

p Pa pressure
V m3 volume
Wkin J total kinetic energy
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2. Mean kinetic energy

Mean kinetic energy per particle, εkin, SI unit joule, total kinetic energy (see p. 66)
divided by the particle number,

εkin = Wkin

N
= 1

N

N∑
i=1

miv
2
i

2
.

Using the ideal gas law, the temperature dependence of the total energy and the mean
kinetic energy are given by:

kinetic energy ∼ particle number · temperature ML2T−2

Wkin = 3

2
NkT

εkin = 3

2
kT

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

Wkin J total kinetic energy
N 1 particle number
k J/K Boltzmann constant
T K temperature
εkin J mean kinetic energy per particle

▲ The mean kinetic energy of the particles is proportional to the temperature. Micro-
scopic interpretation of the temperature as a measure of the mean energy in a system.

19.5.1.1 Root-mean-square velocity

1. Root-mean-square velocity,√
v2, the root of the average value of the squares of velocity.

➤ The symbol vrms (root mean square) is also used.
Assuming equal particle masses, the mean value of the squares of the velocity is twice the
mean kinetic energy divided by the particle mass m,

√
v2 =

√
2εkin

m
.

For an ideal gas, the following holds:

mean-square velocity in ideal gas LT−1

√
v2 =

√
3kT

m

= √3Rs T

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity√
v2 m/s mean-square velocity

k J/K Boltzmann constant
T K temperature
m kg particle mass
Rs J/(K kg) specific gas constant

2. Average velocity,

or mean velocity, v, arithmetic mean of the magnitudes of velocity (without taking velocity
directions into account).
➤ The mean velocity depends on the velocity distribution assumed (see p. 655).
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3. Mean-velocity vector,

〈�v 〉, a vector whose components are the mean values of the velocity components of the
particles,

〈�v 〉 =
⎛
⎝vx
vy
vz

⎞
⎠ .

If there is no flow, the magnitude of the mean-velocity vector is zero, since all directions
occur with equal probability.
▲ The root-mean-square velocity, the mean velocity, and the magnitude of the mean-

velocity vector are three completely different quantities.

19.5.2 Maxwell–Boltzmann distribution
1. Velocity distribution,

a distribution function specifying the relative probability of a certain velocity in a system.
The relative probability of velocities in the range v1 to v2 is given by the integral

h(v1 ≤ v ≤ v2) = N (v1 ≤ v ≤ v2)

N (total)
=

v2∫
v1

f (�v)d3v .

The integral over all velocities yields unity,

v2=∞∫
v1=0

f (�v)d3v = 1 .

2. Maxwell–Boltzmann distribution,

velocity distribution of an ideal gas (Fig. 19.15):

f (�v) = 1

N

dN

dv
= 4πv2

( m

2πkT

)3/2
e

(
−

1
2 mv2

kT

)
.

Figure 19.15: Maxwell–
Boltzmann velocity
distribution for various gases
and various temperatures.
Ordinate: % of molecules
with v in the range of 10 m/s
about the given velocity.
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The term 4πv2 is from the assumption that the velocity distribution does not depend on
the direction, f (�v)→ f (v). Then:

∫
f (v) dvx dvydvz =

∫
f (v) · v2 sinϑdϑdφdv =

∫
4πv2 f (v)dv .

The term (m/2πkT )3/2 is due to the normalization of the function to unity,

∫
f (�v)d3v = 1 .

3. Boltzmann factor,

denotation for the exponential term. The term in the numerator of the exponential function
is the kinetic energy,

e− E
kT = e−mv2

2kT .

Generally, the Boltzmann factor is given by the exponential term with negative exponent,
with the energy in the numerator and the temperature (multiplied by the Boltzmann con-
stant) in the denominator.
▲ The velocity distribution depends on temperature and particle mass.
■ At the same temperature, oxygen molecules have a lower mean velocity than the

lighter hydrogen molecules (see Fig. 19.15).

4. Most-probable velocity and mean velocity

Most-probable velocity, vmax or vw , the velocity with the highest probability. vw is the
velocity at the maximum of the distribution function.

most-probable velocity ∼ √
temperature

vw =
√

2kT

m

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

vw m/s most-probable velocity
k J/K Boltzmann constant
T K temperature
m kg particle mass

The mean velocity, v, for a Maxwell-Boltzmann distribution is

v =
√

8kT

πm
=
√

8

3π

√
v2 =

√
8

3π
vrms .

Its value is between vw and

√
v2:

vw =
√

2

3

√
v2 =

√
2

3
vrms ,

v =
√

8

3π

√
v2 =

√
8

3π
vrms .
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19.5.3 Degrees of freedom
Degree of freedom of a particle, description of the possibilities to take energy and convert
it into some kind of motion. Hereby translational motion, rotational motion or vibrational
motion may occur.

Number of degrees of freedom, f , non-dimensional quantity specifying the number of
independent kinds of motion.
■ There are three degrees of freedom of translational motion, corresponding to motion

along the x-axis, the y-axis and the z-axis.

a) Monatomic particles have only the three translational degrees of freedom.
■ All noble gases (He, Ne, Ar, Kr, Xe, Rn) are monatomic.

b) Diatomic particles have five degrees of freedom, three of translation, and two of
rotation about two different axes perpendicular to the connecting line (Fig. 19.16).

Figure 19.16: Rotational
degrees of freedom of
a diatomic molecule.
The rotational axes are
perpendicular to the
connecting line.

The rotation about the molecular axis does not count as a degree of freedom, since the
associated moment of inertia J is very small (for an ideal gas, even exactly zero) so that
very high energies would be required to excite these rotations (E = L2/(2J ), L: angular
momentum).
■ Most molecules of air, such as N2 and O2, are diatomic.

c) Polyatomic molecules in most cases have three rotational axes, hence six degrees of
freedom.
■ Sulphur dioxide (SO2), ammonia (NH3) and many hydrocarbon gases (methane

CH4, . . .) belong to this category.
Vibrational degrees of freedom are excited in gases mostly at very high temperatures. The
number of degrees of freedom therefore depends strongly on the temperature over a wide
range of temperature.

In solids, the translational degrees of freedom ( f = 3) and the vibrational degrees of
freedom about the lattice sites ( f = 3) yield six degrees of freedom in total.

19.5.4 Equipartition law
Equipartition law, equipartition theorem, thermal energy is apportioned equally among
the degrees of freedom of a system.
▲ The thermal energy is distributed equally to each degree of freedom. On average,

each degree of freedom carries the same energy.
The mean energy per gas particle (molecule) is:
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mean energy ∼ degrees of freedom · temperature ML2T−2

W = f

2
kT

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

W J mean particle energy
f 1 number of degrees of freedom
k J/K Boltzmann constant
T K temperature

Mono-atomic gases thus have a mean energy per particle of

W = 3

2
kT .

Diatomic gases correspondingly have a mean energy per particle of

W = 5

2
kT .

Tri- and polyatomic molecules in general have a mean energy per particle of

W = 3kT .

19.5.5 Transport processes
In real gases the particles mutually interact via molecular potentials. The gas particles col-
lide, exchange momentum and energy, and fly apart with altered velocities. These collision
processes are of great importance for the transport of energy and matter.

1. Characteristics of collision processes in gases

Mean free path l, often denoted by λ, SI unit meter, gives the length of the path of a parti-
cle (atom, molecule or—in metals—electron) between two collisions with other particles.

Mean collision time τ , SI unit second, the mean time interval between two collisions.
Collision frequency f , SI unit 1/second, the mean frequency of collisions per unit time.

■ At the temperature of 293 K and a pressure of 1.0 · 105 Pa, the molecules of air have
a mean free path of l = 6.4 · 10−8 m. The mean free path increases with decreasing
pressure. For a pressure of 100 Pa, l = 6.4 · 10−5 m.

The collision time and the collision frequency are related to the mean velocity v of the
particles known from the velocity distribution and to their mean free path as follows:

collision time = 1
collision frequency

= mean free path
mean velocity

T

τ = 1

f
= l

v

Symbol Unit Quantity

τ s collision time
f Hz collision frequency
l m mean free path
v m/s mean velocity

2. Cross-section,

σ , may be interpreted as the knock-on area of the colliding particles (Fig. 19.17).
The mean free path is related to the cross-section as follows:
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Figure 19.17: Cross-section
in geometric interpretation.
Particles passing through
the grey area undergo a
collision.

cross-section = 1
mean free path · density

L2

σ = 1

lρN

Symbol Unit Quantity

σ m2 cross-section
l m mean free path
ρN 1/m3 particle density

Barn, encoding word during Second World War, a unit of cross-section used in atomic and
nuclear physics:

1 b = 10−28 m2.

3. Heat conductivity,

λ, SI unit watt per kelvin and meter, energy transport capability of a system. It is of impor-
tance for heat conduction.

heat conductivity (microscopic) MLT−3Θ−1

λ = 1

3
vlρcV

Symbol Unit Quantity

λ W/(K m) heat conductivity
v m/s mean velocity
l m mean free path
ρ kg/m3 density
cV J/(K kg) spec. heat capacity for const. volume

➤ Instead of density times specific heat capacity, one may also use the product of molar
density and molar heat capacity, or the product of particle density and specific heat
per particle.

4. Heat conductivity of monatomic gases

For monatomic gases, the following holds:

heat conduction (monatomic gas) MLT−3Θ−1

λ = 1

2
kvlρN

Symbol Unit Quantity

λ W/(K m) heat conductivity
k J/K Boltzmann constant
v m/s mean velocity
l m mean free path
ρN 1/m3 particle density
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5. Heat conductivity of various materials

The heat conductivity of numerous materials may be found in Tab. 22.3.
■ Heat conductivity λ of several metals (in W · cm−1 · K−1): copper 4.01, gold 3.17,

lead 0.353, titanium 0.219.
Heat conductivity λ of several liquids and gases (in W · m−1 · K−1): water 0.60,
benzene 0.13, air 0.025, hydrogen 0.171, steam 0.016, chlorine 0.0081.
Heat conductivity λ of several materials (in W ·m−1 ·K−1): cast iron 58, brass 113,
sandstone 2.3, spruce 0.14, window glass 0.81, glass wool 0.04, PVC 0.16.

6. Diffusion constant,

D, SI unit square meter per second, describes the transport of matter (see nonequilibrium
processes—diffusion).

diffusion constant (microscopic) L2T−1

D = 1

3
vl

Symbol Unit Quantity

D m2/s diffusion constant
v m/s mean velocity
l m mean free path

■ Diffusion constant D of various gas-gas systems (in cm2/s): H-He 2.35, H-H2 0.184,
He-O2 0.45, Ar-O2 0.167, Kr-Xe 0.081.

7. Dynamic viscosity,

η, SI unit 1/(second meter), describes the internal friction.

viscosity (microscopic) L−1T−1

η = 1

3
vlρN

Symbol Unit Quantity

η 1/(m s) viscosity
v m/s mean velocity
l m mean free path
ρN 1/m3 particle density

Dynamic viscosities of various substances may be found in Tab. 22.3.1.
The ratio

λ

η
= CmV

M
= 3

2
k = const.

is experimentally confirmed to good approximation (CmV is the specific molar heat at
constant volume).
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19.6 Equations of state

19.6.1 Equation of state of the ideal gas
Equation of state of the ideal gas, the relation between the quantities p0, V0, T0 (pres-
sure, volume and temperature) of an arbitrary initial state and the corresponding quantities
p, V , T of a final state:

pV

T
= p0V0

T0
= const. = Nk .

Pressure and temperature are intensive properties, the volume is an extensive property. The
product of an extensive and an intensive quantity is an extensive quantity (see p. 628), and
is therefore proportional to the particle number N .

Definition via the particle density of the gas:
▲ The pressure is the product of the particle density ρN = N/V , the temperature, and

the dimensional factor k, the Boltzmann constant.

pressure ∼ density · temperature ML−1T−2

p = ρN kT

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

p Pa pressure
ρN m−3 particle density
T K temperature
k J/K Boltzmann constant

This definition no longer involves extensive variables.

19.6.1.1 Gas constants

1. Boltzmann constant and universal gas constant

Boltzmann constant, k, the proportionality factor of the ideal gas law,

k = 1.380 66± 0.000 10 · 10−23 J/K .

Universal gas constant, general gas constant R, the product of Avogadro number and
Boltzmann constant.

gas constant = Boltzmann constant · Avogadro number

R = k · NA

NA = 6.022 136 7 · 1023 mol−1

Symbol Unit Quantity

R J/(K mol) universal gas constant
NA mol−1 Avogadro number
k J/K Boltzmann constant

The value of the universal gas constant R is

R = 8.314 J/(mol K) .

2. Equation of state of an ideal gas

The gas law reads:
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ideal gas equation of state (universal gas constant)

pV

T
= n R = Nk

pV = n RT = NkT

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

p Pa pressure
V m3 volume
T K temperature
n mol quantity of substance
R J/(K mol) universal gas constant
N 1 particle number
k J/K Boltzmann constant

When applying this equation of state, it is a disadvantage that, in general, the number of
moles cannot be determined directly.

In technical thermodynamics, the following equation of state is frequently used:

ideal gas equation of state (specific gas constant)

pV

T
= m Rs

pV = m Rs T

Symbol Unit Quantity

p Pa pressure
V m3 volume
T K temperature
m kg gas mass
Rs J/(K kg) specific gas constant

3. Specific gas constant,

Rs , or individual gas constant, Ri , material-dependent proportionality constant of the
equation of state frequently used in technical thermodynamics.
➤ In technical thermodynamics, the specific gas constant is mostly denoted simply by

R. The index s has been added here in order to avoid confusion with the universal gas
constant. For distinct substances, one frequently attaches a material index R1, R2 . . .

to the specific gas constant.
The specific gas constant is material-dependent.

specific gas constant = universal gas constant
molar mass

L2T−2Θ−1

Rs = R

M
= n R

m

R = 8.314 J/(K mol)

Symbol Unit Quantity

Rs J/(K kg) specific gas constant
R J/(K mol) universal gas constant
M kg/mol molar mass
n mol amount of substance
m kg mass

For specific gas constants of various gases, see Tab. 22.2/2.

4. Representation of the pressure by the specific gas constant

Representation by the gas density:
▲ The pressure is the product of density ρ = m/V , temperature and specific gas con-

stant.
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pressure = density · specific gas constant · temperature ML−1T−2

p = ρRs T

Symbol Unit Quantity

p Pa pressure
ρ kg/m3 density
T K temperature
Rs J/(K kg) specific gas constant

19.6.1.2 Gas mixtures
Gas mixture, system of several kinds of particles, with N1, N2, . . . , Nn particles of type
i = 1, . . . , n.

Mole fraction, xi , the fraction of particles of one kind in the total amount,

xi = Ni

N1 + N2 + · · · + Nn
,

∑
i

xi = 1 .

The mole fraction gives the percentage composition of the system. It is an intensive
variable and may take distinct values in different phases.

The specific gas constant of a gas mixture, RG , can be written as

RG = R1m1 + R2m2 + · · ·
m1 + m2 + · · · =

∑
i Ri mi∑

i mi
.

19.6.1.3 Calculation of quantities from the gas law
The following conversion formulae are based on the following definitions, in addition to
the ideal gas law:

definitions for conversion

R = NAk

R = M Rs

m = ρV

m = nM

N = nNA

N = ρN V

n = ρm V

ρ = ρm M

k = 1.380 66 · 10−23 J/K

R = 8.314 J/(K mol)

NA = 6.022 136 7 · 1023 mol−1

Symbol Unit Quantity

R J/(K mol) universal gas constant
Rs J/(K kg) specific gas constant
k J/K Boltzmann constant
M kg/mol molar mass
m kg mass of gas
n mol amount of substance
NA mol−1 Avogadro number
N 1 particle number
ρ kg/m3 density
ρN m−3 particle density
ρm mol/m3 molar density

Pressure in the ideal gas:

p = n RT

V
= NkT

V
= m Rs T

V
,

= ρm RT = ρN kT = ρRs T .
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Volume of an ideal gas:

V = n RT

p
= NkT

p
= m Rs T

p
,

= n

ρm
= N

ρN
= m

ρ
.

Temperature of an ideal gas:

T = pV

n R
= pV

Nk
= pV

m Rs
,

= p

ρm R
= p

ρN R
= p

ρRs
.

Density of an ideal gas:

ρ = p

Rs T
= pM

RT
= pM

NAkT
,

= ρN
M

NA
= ρm M = ρN

M

NA
.

19.6.1.4 Barometric formula
Barometric formula describes how the barometric pressure varies as a function of altitude
above Earth’s surface, assuming a constant gravitational acceleration.

The idea of the barometric formula is that the weight of a volume of gas is compensated
by the pressure differential at upper and lower face of the volume: Then, one obtains the
differential equation

dp

dz
= −mg

kT
p .

The solution of such a differential equation is an exponential function:

barometric formula

p(z) = p0 e−
mgz
kT

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

p Pa pressure
p0 Pa pressure at z = 0
z m altitude
m kg mass of gas particle
g m/s2 gravitational acceleration
k J/K Boltzmann constant
T K temperature

▲ The pressure in Earth’s atmosphere decreases exponentially with the altitude. Here, it
is assumed that the temperature is constant over the volume (isothermal atmosphere).
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Using the equation of state p = ρN kT , with the specific density ρ = m · ρN one obtains
by substituting the values p0 and ρ0 :

p(z) = p0 · e−
ρ0gz

p0 = p0 · e−
z
z0 , z0 = p0

ρ0g
.

Pressure correction factors may be found in Tab. 22.5.1.

19.6.2 Equation of state of real gases
The equation of state of ideal gases holds only in the limit of very low density. For real
gases one must take into account the following properties in addition:
• The particles have a finite volume.
• The particles mutually interact.

19.6.2.1 Virial expansion of the real gas
Virial expansion, extension of the equation of state by inclusion of additional terms. In
general, one uses a polynomial expansion in the pressure (or the density) with temperature-
dependent coefficients. The standard representation of the virial expansion is as follows:

virial expansion of the equation of state of real gases

pVmol = RT

(
1+ B(T )

Vmol
+ C(T )

V 2
mol

+ · · ·
)

Vmol = V

n

R = 8.314 J/(K mol)

Symbol Unit Quantity

p Pa pressure
Vmol m3/mol molar volume
V m3 volume
n mol amount of

substance
R J/(K mol) universal gas

constant
T K temperature
B(T ) mol/m3 second virial

coefficient
C(T ) mol2/m6 third virial

coefficient

Virial coefficient, temperature-dependent coefficient in front of the power of an intensive
quantity in the virial expansion (Fig. 19.18).

The virial coefficients depend on the substance, they may be taken from tables. Visually
an expansion up to the second term (B(T )) is sufficient.

Theory

VkT

Figure 19.18: Virial
coefficients of various gases,
experiment (points) and
theory (line).
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19.6.2.2 Van der Waals equation

1. Assumptions for deriving the Van der Waals equation

Van der Waals equation, an equation of state for real gases, set up by Van der Waals
(1873), with the following additions:
• Only the freely accessible volume is taken into account. The internal volume of the

gas particles is subtracted from the total gas volume.
• The predominantly attractive interaction of the particles leads to a contraction of the

gas. Hence, the pressure on the confining walls is reduced.

2. Internal volume and internal pressure

Internal volume, Nb′, the volume occupied by the N particles. It is subtracted from the
volume of the vessel. The volume correction is proportional to the particle number,

V �→ V − Nb′ .

Internal pressure, a force per unit area acting inward. It originates from the mutually
attractive force between the particles that cancels in the interior of the gas, but remains
active for gas particles at the boundary (Fig. 19.19).

Figure 19.19: Illustration of
internal pressure. Particles
at the boundary are subject
to the intermolecular forces
only from a hemisphere.

3. Derivation of the Van der Waals equation

In general, the attractive force is assumed to be a dipole interaction. The potential is then
proportional to the negative sixth power of the distance. The reduction of the pressure
depends on the number of particles at the surface (proportional to the particle density) and
the mean distance between the gas particles (also approximately proportional to the particle
density).

The magnitude of the pressure reduction must be added to the real (measured) pressure
to obtain the (hypothetical) pressure of the ideal gas,

p �→ p + a′
(

N

V

)2
.

Frequently, the Avogadro number is incorporated into the constant. One then uses the molar
density:

p �→ p + aρ2
mol .

After inserting internal volume and internal pressure, the Van der Waals equation reads:
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Van der Waals equation

(
p +

( n

V

)2
a

)
(V − nb) = n RT

R = 8.314 J/(K mol)

Symbol Unit Quantity

p Pa pressure
n mol amount of substance
V m3 volume
a Nm4/mol2 constant of

internal pressure
b m3/mol constant of

internal volume
R J/(K mol) universal gas

constant
T K temperature

The constants a and b for internal pressure and internal volume, respectively, are material
parameters, see Tab. 22.2/3.

4. Van der Waals equation in technical thermodynamics

In technical thermodynamics, one often calculates with gas masses. The constants a and b
are correspondingly redefined.

conversion of molar to specific constants

as = a

M2

bs = b

M

Symbol Unit Quantity

as Nm4/kg2 specific constant of
internal pressure

a Nm4/mol2 molar constant of
internal pressure

M kg/mol molar mass
bs m3/kg specific internal volume
b m3/mol molar internal volume

In the technical literature, the specific constants are frequently denoted by a and b. The
notation as and bs (s standing for specific) used here serves only for a clear distinction.

5. Pressure of the Van der Waals interaction

p = n · R · T
V − nb

− a
n2

V 2
.

A graphic representation of the pressure as a function of the volume (at constant tem-
perature) is given by the difference of a simple hyperbola and a quadratic hyperbola
(Fig. 19.20).
➤ In general, the calculation of the volume from the pressure is no longer unique.
▲ For high temperatures and low densities, the Van der Waals equation approaches the

equation for the ideal gas.
Isotherm, a curve for constant temperature.
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V (10-3 m3)

Figure 19.20: Van der
Waals isotherms for
various temperatures in
the pV -diagram. Grey:
phase coexistence region, c:
critical point (saddle point),
Tc: critical isotherm, pc, Vc:
pressure and volume at the
critical point.

19.6.2.3 Region of phase coexistence
For low temperatures and certain volumes, the pressure becomes negative according to the
Van der Waals equation. Furthermore, for positive pressure values there are also regions in
which the pressure decreases with decreasing volume. In these regions, the system cannot
be stable, but will contract on its own to a smaller volume. These unstable regions describe
the gas-liquid phase transition. The gaseous and the liquid phase occur simultaneously.

Phase coexistence region, a region in which two phases may coexist (see p. 722).
Maxwell construction, the prescription to replace the isotherms in the non-equilibrium

region by horizontal lines through the phase coexistence region (Fig. 19.21).

V (10-3 m3)

Figure 19.21: Maxwell
construction for Van der
Waals isotherms. The
magnitudes of the areas
between the curve and the
straight substitution line
must balance each other.

19.6.2.4 Critical point
Critical isotherm, curve for the temperature Tc at which the pressure as a function of the
volume has a saddle point.

Critical temperature, Tc , the temperature corresponding to the critical isotherm.

critical temperature (Van der Waals equation) Θ

Tc = 8a

27Rb

R = 8.314 J/(K mol)

Symbol Unit Quantity

Tc K critical temperature
a Nm4/mol2 molar coefficient of

internal pressure
b m3/mol molar coefficient of

internal volume
R J/(K mol) universal gas constant



19.6 Equations of state 669

Critical point, the saddle point of the critical isotherm. Below the critical temperature one
may always construct horizontal straight lines. Above the critical temperature the derivative
dp/dV is always negative.

Critical pressure, pc, pressure at the critical point.

critical pressure (Van der Waals equation) ML−1T−2

pc = a

27b2

Symbol Unit Quantity

pc Pa critical pressure
a Nm4/mol2 molar coefficient of

internal pressure
b m3/mol molar internal volume

Critical molar volume, vc, the volume of one mole at the critical point.

critical molar volume = 3 · molar internal volume L3N−1

vc = 3b

Symbol Unit Quantity

vc m3/mol critical molar volume
b m3/mol molar internal volume

19.6.2.5 Law of coinciding states
Reduced variable, representation of a state variable in units of the value at the critical
point,

p = p

pc
, v = v

vc
, T = T

Tc
.

Law of coinciding states, statement introduced by Van der Waals: all simple gases satisfy
the same Van der Waals equation in the reduced variables.

Simple gas, gas of particles having a small electric dipole moment and whose atoms or
molecules are not strongly correlated even in the liquid phase.
■ Noble gases, N2, O2, H2 or CO, CH4 are simple gases.
Van der Waals equation in reduced variables:

(
p + 3

v2

)
(3v − 1) = 8T .

19.6.2.6 Van der Waals equation as virial expansion

1. Approximation of the Van der Waals equation

An approximation to the Van der Waals equation is obtained by replacing the molar density
n/V in the term corresponding to the internal pressure by the value of the ideal gas, n/V ≈
p/RT : (

p + p2

(RT )2
a

)
(V − nb) = n RT,

R = 8.314 J/K mol .
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Representation as expansion:

pV = n RT

1+ pa

(RT )2

+ pnb.

Using constants normalized to the particle number,

a′ = a

N 2
A

, b′ = b

NA
, NA = 6.022 136 7 · 1023 mol−1,

the representation reads:

(
p + p2

(kT )2
a′
)
(V − Nb′) = NkT,

k = 1.380 66 · 10−23 J/K .

Representation as expansion:

pV = NkT

1+ pa

(kT )2

+ pNb.

2. Representation of the approximation using specific constants

If specific constants are used for technical thermodynamics, then:

conversion of molar into specific constants

as = a

M2

bs = b

M

Rs = R

M

R = 8.314 J/(K mol)

Symbol Unit Quantity

as Nm4/kg2 specific constant of
internal pressure

a Nm4/mol2 molar constant of
internal pressure

M kg/mol molar mass
bs m3/kg specific internal volume
b m3/mol molar internal volume
R J/(K mol) universal gas constant
Rs J/(K kg) specific gas constant

Representation with specific quantities:

(
p + p2

(Rs T )2
as

)
(V − mbs) = m Rs T .

Expansion for low pressure and high temperatures:

pV = n RT + n
(

b − a

RT

)
p + · · · .
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19.6.3 Equation of states for liquids and solids
Liquids and solids expand in all directions under heating—as do gases. One should notice,
however, the anomaly of water between 0 ◦C and 4 ◦C. Microscopically, the changes of
the macroscopic dimensions of a body with temperature originate from changes of the po-
tential and kinetic energies, hence from the variations of the interatomic and intermolecular
distances.

1. Equation of state for solids and liquids,

describes the variation of the volume with temperature and pressure.
▲ The change of the volume of a solid or a liquid is to first approximation linearly

related to the change of temperature and pressure.
This formulation yields a good description over a wide range of the variables.

equation of state of solid or liquid

V (T, p) = V0 {1+ γ (T − T0)

− κ (p − p0)}

Symbol Unit Quantity

V m3 volume
T K temperature
p Pa pressure
γ K−1 volume-expansion coeff.
κ Pa−1 compressibility

V0 = V (T0, p0) is an arbitrary initial state. Temperature differences T − T0 may be given
also in ◦C instead of kelvin.

2. Special coefficients of the equation of state

Volume-expansion coefficient, γ , SI unit 1/kelvin, describes the temperature-dependent
volume expansion at constant pressure.

Representation as partial derivative:

γ = lim

T→0


V

V0
T
= 1

V0

∂V

∂T

∣∣∣∣
p=p0

.

Compressibility, κ , describes the pressure-dependent change of volume at constant tem-
perature.

Representation as partial derivative:

κ = − 1

V0

∂V

∂p

∣∣∣∣
T=T0

.

Compression modulus, K , the reciprocal value of the compressibility,

K = 1

κ
.

➤ In ultrasound technology, the compression modulus K is also denoted by CB .
M The compressibility may be determined statically (directly) by measuring the change

of volume for a known force and surface, and dynamically by ultrasonic experiments.
Strictly speaking, in the latter approach it is the compression modulus that is mea-
sured.

Expansion coefficients of numerous materials may be found in the Tab. 22.3.
For numerous materials, the expansion coefficient lies:
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• for solids in the range γ ≈ 10−5 K−1,
• for liquids about 1–2 orders of magnitude above this value (10−3 − 10−4 K−1) .
Values of compressibility may also be found in Tab. 22.3. For solids and liquids, they are
of the order of magnitude κ ≈ 10−6 bar−1.
➤ The compressibility of liquids and solids is far lower than that of gases.
Small changes in temperature cause changes of volume similar to those caused by large
changes of pressure. The consequence is that even small changes in temperature at constant
volume may cause very high pressures.
■ If water were not compressible, the water level of the oceans would rise by about

30 m and large coastal regions would be submerged!

3. Linear expansion coefficient,

α, describes the variation of a length with temperature:

L2 = L1 +
L = L1 + αL1
T

= L1(1+ α
T ) .

Representation as partial derivative:

α = 1

L

∂L

∂T

∣∣∣∣
p=p0

.

➤ The linear expansion of bodies must be taken into consideration for constructions
underlying fluctuations of temperature.

■ The space between lengths of railroad tracks is placed there to allow for the thermal
expansion of the steel.
Bridges have a fixed bearing at one end and a roller bearing at the other end.

M Dilatometer, measures the linear expansion of a sample by the capacitance of a cell
into which the sample is mounted.

The linear expansion under temperature changes may serve for measuring the temperature.
■ Mercury thermometer.

Bimetal, distinct expansion of two metallic strips. Application: control rods in muffle
furnaces.

4. Surface expansion coefficient,

β, describes the change of a surface with temperature:

A2 = A1 +
A = A1 + βA1
T

= A1(1+ β
T ) .

If the linear expansion is small compared with the total length, the linear expansion coef-
ficient α, the surface expansion coefficient β, and the volume expansion coefficient γ are
related as follows:

β = 2α , γ = 3α .

19.6.3.1 Anomaly of water
Nearly all substances have a positive expansion coefficient over the entire range of temper-
atures, i.e., the volume increases with increasing temperature, independent of the tempera-
ture range.
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Water anomaly, the peculiar property of water not to have a positive expansion coeffi-
cient at every temperature.
▲ The expansion coefficient of water between 0 ◦C and 4 ◦C is negative. At 4 ◦C, γ =

0.
▲ Water has maximum density at 4 ◦C.
■ A liter of water at 4 ◦C is heavier than a liter of water at the freezing point. Moreover,

there is a step-like increase of volume at freezing. Hence, ice floats on water.
Fig. 19.22 shows the volume expansion of 1 kg of water between −10 ◦C and 50 ◦C.

Two striking properties emerge:
• At low temperature, the expansion coefficient is negative.
• At high temperature, the rise is not linear. The expansion coefficient is not constant,

but temperature-dependent.

Water
Ice

V (10-3 m3)

Figure 19.22: Thermal
expansion of water. The
minimum of the curve is at
4 ◦C.

The behavior of water under pressure is analogous to the temperature dependence.
▲ Under pressure, ice melts to water.
The statement that water cannot freeze to ice when under pressure is equivalent to the
statement above.
■ Lakes do not freeze from the bottom.
This anomaly of water is of great importance for many biological processes.



20
Heat, conversion of energy and changes
of state

20.1 Energy forms

The total energy E of a system is a macroscopic quantity that plays an important role in
thermodynamics. The total energy is the product of the mean energy of the particles times
the particle number. The energy of a particular particle, as well as the distribution of the
total energy E over the individual particles, is of minor importance.
▲ First law of thermodynamics: the total internal energy of a system is a conserved

quantity. Energy cannot be created or destroyed, but only transferred from one system
to another.

Energy may occur in various forms, and energy transport may proceed in different ways.
Various forms of energy may be partly converted from one to another.
■ Heat appears when braking a moving body by friction.

Generators convert mechanical work into electric energy.
Efficiency of conversion, the ratio of the converted energy to the input energy (see p. 71).
The remaining fraction of energy is not lost, but occurs in another form of energy.
■ In a combustion engine, chemical energy is partly converted into mechanical work

and partly into heat.

20.1.1 Energy units
The following energy units are used preferentially:
• Newton meter, Nm, used for mechanical work.
• Joule, J, used for heat.
• Watt second, Ws, used for electric work.
▲ The units of energy are equivalent to each other:

1 Nm = 1 J = 1 Ws = 1 VAs = 1
kg m2

s2
.

675
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■ A current of 1 ampere flowing for one second through a voltage of 6 volts needs just
as much energy as lifting a weight of 6 newtons by 1 meter.

20.1.1.1 Non-SI units
Erg, 10−7 joule.

1 J = 107 erg.

Calorie, cal, an older, no longer recognized unit, the amount of heat that is needed to heat
1 g of water at 14.5 ◦C by one degree:

1 cal = 4.187 J 1 J = 0.239 cal.

British Thermal Unit or BTU, a no longer recognized unit that is still used in Anglo-
Saxon countries:

1 BTU = 1055.06 J.

Electron volt, a quantity used in atomic and nuclear physics, representing the work done
if an elementary charge is accelerated by a potential difference of 1 V.
➤ By setting � = c = 1 instead of �c ≈ 197.32 MeV fm, the energy in quantum

mechanics may also be represented by an inverse length in fm (= 10−15 m):

1 eV = 1.602 · 10−19 J = 5.063 · 10−9 fm−1
�c , 1 J = 6.242 · 1018 eV .

20.1.2 Work
1. Work in thermodynamic systems

Work, corresponds in thermodynamics to the mechanical definition of work: The work
performed on the system is counted positive and the work extracted from the system is
negative.

Work, W , SI unit newton meter (Nm), the product of the force acting along a path times
the distance covered:

work = force · path ML2T−2


W = −�F ·
�s,

W1.2 = −
s2∫

s1

�F · d�s

Symbol Unit Quantity

W Nm work
�F N force
�s m distance

The work is a scalar product of two vectors.
▲ Forces acting perpendicular to the displacement do not do work.

2. Compression work,

is done when a gas is compressed against the internal pressure (Fig. 20.1).
■ The volume of a cylinder filled with gas is reduced.
Work is the product of pressure and change in volume. The change in volume may proceed
by displacing the boundary surface of a volume.
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Figure 20.1: Work upon
compression. The work
to be done corresponds
to the product of internal
force times displacement,
or pressure times volume
difference.

work = pressure · surface · displacement ML2T−2


W = p A
s

Symbol Unit Quantity

W Nm work
p Pa pressure
A m2 surface area

s m displacement

▲ The displacement is counted positively if the volume is diminished.
As a result of this definition of displacement, 
s and 
V have different signs,


V = −A
s .

Therefore, the work must be viewed as the negative value of the product of pressure and
change in volume. The change in volume is positive for enlarging, and negative for dimin-
ishing.

work = −pressure · volume change ML2T−2


W = −p
V

Symbol Unit Quantity


W Nm work
p Pa pressure

V m3 volume change

▲ The mechanical work done
W not only depends on the limits of integration, i.e., on
the initial and final state of the system, but also on the path from the initial to the final
state. Mathematically, this means that there is no total differential dW = Fds.

20.1.3 Chemical potential
Chemical potential, µ, SI unit joule, quantity of work to be done in order to account for a
change in particle number so that the system remains in equilibrium.

chemical potential = input work
change of particle number

ML2T−2

µ = 
W


N

Symbol Unit Quantity

µ J chemical potential
W J work
N 1 particle number
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Hence, the work received or needed when 
N additional particles are added to the system
is


W = µ ·
N .

Energy is needed because the particles added cannot be introduced cold into the system
without thermal changes. In order to be in thermal equilibrium with the system the particles
must carry the mean energy of the particles already present.

20.1.4 Heat
Heat is a particular form of energy connected with the temperature increase of a substance.
An input of heat causes a temperature increase. The relation for the input of heat and
temperature increase is determined by a material property, the heat capacity C .
➤ In a phase transition, there may be an input or output of heat (e.g., melting heat or

evaporation heat) without a change in temperature. However, in this case the heat
capacity tends to infinity, and the definition given here can no longer be applied.

1. Quantity of heat

Heat, 
Q, SI unit joule, the energy absorbed in a temperature increase 
T :

quantity of heat = heat capacity · temperature difference ML2T−2


Q = C
T

Q1.2 =
T2∫

T1

CdT

dQ = CdT

Symbol Unit Quantity

Q J quantity of heat
C J/K heat capacity
T K temperature

The differential representation holds in a mathematically strict sense only if no additional
mechanical or chemical work is expended. Otherwise, dQ is not a total differential.

2. Measurement of heat

Heat is measured in calorimeters by determining the change in temperature for known heat
capacity CK of the calorimeter construction. Possible losses of heat must be taken into
account:


Q = CK ·
T + heat loss.

Calorimeters are used for measuring quantities of heat. The most common types are:
Liquid calorimeter, most common construction: The reaction vessel is placed in a con-

tainer with liquid, insulated against the surroundings.
Metallic calorimeter, particularly suited for wide temperature ranges: A block of metal

(silver, copper, aluminum) confines the reaction zone.
Combustion calorimeters, are used for fast combustion reactions. Examples:
• Bomb calorimeter after Berthelot (for solids and liquids),
• Exchange calorimeter (also called wet calorimeter, for gases),
• Mixture calorimeter (dry calorimeter, also for gases).
➤ The heat exchange in chemical reactions may be determined with an accuracy of

picodegrees. Principle of measurement: a 0.4 µm thick aluminum film is deposited
on one side of a 0.4 mm long and 1.5 µm thick silicon strip. The system responds
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to heating like a bimetallic strip does. The magnitude of bending is determined from
the reflection angle of a laser beam.

■ A block of copper (mass 200 g) with a heat capacity of 76.6 J/K is heated from 17 to
23 ◦C. Assuming no heat loss, the quantity of heat absorbed is


Q = C ·
T = 76.6 J/K · (23− 17) ◦C = 459.6 J .

20.2 Energy conversion

Different forms of energy may be converted into each other.
■ A weight can be lifted by electric energy.

A generator converts mechanical work to electric energy.
In principle, one might assume that these conversions proceed completely.
▲ A real energy converter always shows losses.
But these losses do not mean that energy is lost; rather that only a fraction of the energy
has been converted into the desired form.
■ In the conversion of mechanical energy, waste heat may occur.
▲ The total energy is a conserved quantity. Energy is not lost.
It turns out, however, that not all forms of energy can be converted completely into each
other.
▲ Heat cannot be converted completely into mechanical or electric energy.
➤ This is the statement of the second law of thermodynamics.
By contrast, mechanical and electric energy may be converted completely into heat.

20.2.1 Conversion of equivalent energies into heat
Thermal energy may be produced in different ways. Possible ways include the conversion
of mechanical energy (e.g., by friction) or of electric energy.

20.2.1.1 Electric energy
Electric energy may be converted loss-free into heat by the ohmic resistance of a conduc-
tor. But heat energy cannot be converted completely into electric energy.

heat = voltage · current · time ML2T−2

Q = V · I · t
Q = P · t

Symbol Unit Quantity

Q J quantity of heat
V V electric voltage
I A electric current
t s time
P W power

■ Assume an immersion heater (220 V nominal voltage, 4.5 A current input) heats wa-
ter for 1 minute. The electric energy is converted completely into heat. The quantity
of heat obtained is

Q = Wel = Pel · t = V · I · t = 220 V · 4.5 A · 60 s = 59400 Ws = 59.4 kJ .

The quantity of heat is sufficient to heat a glass of water (200 ml) by 75 ◦C.
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Using Ohm’s law, one obtains for the heat released at a resistor:

heat = (voltage)2

resistance
· time ML2T−2

Q = V 2t

R

Q = I 2 Rt

Symbol Unit Quantity

Q J produced heat
V V voltage
t s time interval
R 	 electric resistance
I A current

■ A voltage of 5 volts is applied across a resistor (R = 4.7 k	). The waste heat of the
resistor per hour is

Q = V 2

R
t = (5 V)2

4.7 k	
· 3600 s = 19.15 J .

20.2.1.2 Mechanical energy
Mechanical energy, like electric energy, may be converted completely into heat. By con-
trast, thermal energy cannot be converted completely into mechanical energy. Here, me-
chanical energy may occur as kinetic energy or as potential energy (e.g., tension of a
spring).

heat = kinetic energy + potential energy ML2T−2


Q = 
Wkin +
Wpot

Symbol Unit Quantity


Q J heat produced

Wkin Nm input of kinetic energy

Wpot Nm input of potential energy

■ A sphere of mass 5 g with a velocity of 150 m/s is stopped by a sandbag. The kinetic
energy is completely converted into heat. The heat released is

Q = Wkin = 1

2
mv2 = 1

2
· 0.005 kg ·

(
150

m

s

)2 = 56.25 Nm = 56.25 J .

20.2.1.3 Combustion energy
Combustion energy, most important form of conversion of chemical energy into heat.
Here, predominantly materials containing carbon and hydrogen are oxidized.
■ Oil and natural gas consist mainly of hydrocarbon chains (predominantly alkanes) of

various lengths. In their combustion, predominantly carbon dioxide (CO2) and water
(H2O) are released, but also other substances, for example sulphur dioxide (SO2) and
nitrogen oxides (NOx ) due to contaminations.

1. Specific caloric value,

H , of a liquid or solid material, SI unit joule per kilogram, the thermal energy released per
mass unit by combustion if the water vapor produced in the reaction is not condensed.
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specific caloric value = quantity of heat
mass of substance

L2T−2

H = Q

m

Symbol Unit Quantity

H J/kg specific caloric value
Q J heat produced
m kg mass of substance burned

One might also define the specific caloric value for gaseous substances in a similar way.
However, the volume of a gas is more easily determined than its mass.
➤ Since the volume depends on temperature and pressure, the standard volume under

standard conditions (p = 101.325 kPa, T = 273.15 K = 0 ◦C) is being used.

2. Specific caloric value of gases,

Hg , SI unit joule per cubic meter, the heat released by gaseous substances per unit of
volume under standard conditions.

specific caloric value of gases = quantity of heat
volume

ML−1T−2

Hg = Q

Vn

Symbol Unit Quantity

Hg J/m3 specific caloric value of gases
Q J quantity of heat
Vn m3 volume at standard conditions

The specific caloric values of selected substances are listed in Tab. 22.9.
■ Most solid (dry) fuels have a caloric value of approximately 20 – 50 MJ/kg, oil of

approximately 40 – 50 MJ/kg, gases, approximately 10 – 130 MJ/m3.

3. Gross caloric value,

Ho, of a substance, the energy per unit mass produced directly by combustion.
However, part of this energy is needed to vaporize the water produced in the combustion

of hydrogen. This energy may be used again in the condensation of the water vapor.
➤ Caloric value and gross caloric value differ by the heat of evaporation of the water

produced.

4. Upper and lower heating value

Upper heating value Ho, formerly used notation for the gross caloric value or combustion
heat.

Lower heating value Hl , formerly used notation, nowadays called caloric value.
Heating power boiler: In older technical systems only, the (lower) heating value is of

importance for the useful thermal energy. More recent systems are operated such that the
temperature of the waste gases lies below the dew-point so that the condensation heat of
the evaporated water is regained. Hence, the full heating value may be exploited, which
means, e.g., for gas heating about 10 % additional utilization.
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For the quantity of heat produced by combustion:

quantity of heat = mass · caloric value ML2T−2

Q = m · H

Q = Vn · Hg

Symbol Unit Quantity

Q J useful quantity of heat
m kg mass (solid/liquid substances)
H J/kg specific caloric value (solid/liquid)
Vn m3 gas volume, standard conditions
Hg J/m3 specific caloric value (gas)

■ 300 g of charcoal is burned. The quantity of heat released is

Q = m · H = 0.3 kg · 31
MJ

kg
= 9.3 MJ .

20.2.1.4 Solar energy
The irradiation of Earth by the Sun represents heat transport by radiation. The radiation
may, for example, be converted into heat. Here the absorptance of the irradiated substance,
as well as the angle between the insolation and the normal of the irradiated area, have to
be taken into account.

quantity of heat ∼ irradiated area · absorption factor · cos(angle) ML2T−2

Q = qS · A · α · t · cosϕ

Symbol Unit Quantity

Q J quantity of heat
qS W/m2 solar constant
A m2 irradiated area
α 1 absorption factor
t s time
ϕ 1 incidence angle

Solar constant, annual mean of the power of the insolation on Earth per unit area,

qS = 1.37
kW

m2
.

The solar constant is only a nominal value, ignoring the influence of clouds, dust, etc.
About half of the energy flow radiated to Earth is absorbed in the atmosphere.

■ A plate of size 50 cm × 50 cm is irradiated for one hour by the Sun at an angle
of 30◦ with respect to the normal. Assuming an absorption rate of 35 % (including
absorption in air), the heat absorption is

Q = qS · A · α · t · cosϕ

= 1.37
kW

m2
· 0.25 m2 · 0.35 · 3600 s · cos 30◦ ≈ 374 kJ .
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20.2.2 Conversion of heat into other forms of energy
The conversion of thermal energy into other forms of energy proceeds in general by means
of heat engines, which operate according to the principle of the Carnot cycle (see p. 702).

The basic principle is to induce various changes of state in a system of substances by
alternately bringing the system into contact with a cold and a hot thermal reservoir or
“heat bath.” The system thereby transports heat from the hot bath to the cold bath and does
mechanical work that may be converted into other forms of energy.

Efficiency η of energy conversion, a nondimensional quantity, the ratio of the gained
mechanical work to the total energy conversion.

The efficiency is always smaller than unity,

η < 1 .

▲ Thermal energy cannot be converted completely into other forms of energy.
The efficiency of a heat engine depends sensitively on the temperatures of the hot and

cold bath between which heat is being exchanged.

ideal efficiency = 1 − temperature of cold reservoir
temperature of warm reservoir

1

ηC = 1− Tc

Th

Symbol Unit Quantity

ηC 1 ideal efficiency
Tc K temperature of cold reservoir
Th K temperature of hot reservoir

20.2.3 Exergy and anergy
There are forms of energy that can be converted completely into other forms of energy and
forms for which this is not true.
■ Mechanical energy can be converted (almost) completely into electric energy, and

vice versa. Mechanical energy and electric energy can be converted completely into
thermal energy. On the other hand, thermal energy cannot be converted completely
into electric or mechanical energy.

1. Classification of forms of energy

Energy forms may be classified as follows:
• Exergy, Ex , SI unit joule, fraction of the energy that can be converted without limit

into other forms of energy.
• Energy forms that can be converted into exergy only in a limited way.
• Anergy, B, SI unit joule, fraction of energy that cannot be converted at all.
■ Unlimited convertible forms (exergy) include mechanical and electric energy.

Limited convertible forms are heat, internal energy and enthalpy. They contain frac-
tions of anergy.

2. Separation of the total energy

The total energy may be separated into two parts: mechanically usable energy and mechan-
ically unusable energy.
▲ The total energy consists of exergy and anergy,

Wtot = Ex + B .

➤ Of course, one of the two parts may vanish.
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3. Energy conversion principles

For the conversion of energy:
• Exergy may be converted into anergy.
• Anergy cannot be converted into exergy.

This is directly related to the second law of thermodynamics.
▲ Processes in which exergy is transformed into anergy are irreversible.
▲ In reversible processes, there is no conversion of exergy into anergy.

20.3 Heat capacity

20.3.1 Total heat capacity
1. Heat capacity,

C , SI unit joule per kelvin, sometimes also called total heat capacity, a material property
of a body to be able to change its temperature under a certain input of heat. It depends on
the amount of substance.

heat capacity = quantity of heat
temperature difference

ML2T−2Θ−1

C = 
Q


T

C = dQ

dT

Symbol Unit Quantity

Q J quantity of heat
C J/K heat capacity
T K temperature

Temperature differences may also be measured in degrees Celsius instead of Kelvin, with-
out recalculating the formulae.

In a phase transition, the heat capacity of a substance may become formally infinite,
since heat is incorporated without leading to a change of temperature.

2. Measurement of heat capacity

The heat capacity of an unknown substance may be determined by measuring the change
of the temperature for a known input of heat. The heat influx by conversion of electric
energy may be determined to a high precision by measuring current, voltage and time of
heating. But one must take into account the efficiency of the heating and the heat capacity
of the heating material or heat container (water equivalent of calorimeter),

C = η
Q


T
− CK , η: efficiency, CK : water equivalent .

■ A liquid is heated by an immersion heater (1000 W) for 15 s and shows a temperature
increase of 7.18 K. The heat capacity is

C = 
Q


T
= 15 kJ

7.18 K
= 2.09 kJ/K .
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3. Product representation of heat capacity

The heat capacity may be written as the product of the specific (molar) heat capacity and
the total mass (total number of moles). So, this property of the substance used may be
factorized into a (general) material property, and the quantity of substance that can be
measured easily.

heat capacity = specific heat capacity · total mass ML2T−2Θ−1

C = n cmol

C = m c

Symbol Unit Quantity

C J/K heat capacity
n mol quantity of substance
m kg total mass
cmol J/(K mol) molar heat capacity
c J/(K kg) specific heat capacity

■ Half a liter (500 g) of water with a specific heat capacity of c = 4.182 kJ/(kg K) has
the heat capacity

C = m · c = 0.5 kg · 4.182 kJ/(K kg) = 2.091 kJ/K .

20.3.1.1 Heat capacity of mixtures of substances
▲ The total heat capacity of a mixture of different substances is the sum of the individual

heat capacities:

C = C1 + C2 + C3 + · · · .

20.3.1.2 Water equivalent
In the evaluation of the temperature change of liquids (also solids or gases), the heat capac-
ities of the surrounding vessels, as well as of the measuring device (e.g., thermo probes),
must be taken into account. This heat capacity is called water equivalent and is denoted
CK or W .

W = CK = mk · ck .

The total heat capacity of the system is:

total heat capacity = heat capacity + water equivalent ML2T−2Θ−1

Ctot = C + W

Symbol Unit Quantity

Ctot J/K total heat capacity
C J/K heat capacity of substance
W J/K water equivalent

M In order to determine the water equivalent, the calorimeter is filled with a definite
quantity of water. A definite quantity of heat is absorbed, and the increase in temper-
ature is measured.
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20.3.2 Molar heat capacity
Molar heat capacity, cmol, SI unit per kelvin and per mole, the heat capacity of one mole
of a certain substance.

It may be defined analogously to the specific heat capacity.

1. Representation of molar heat capacity

Molar heat capacity, the quantity of heat absorbed by one mole of a substance per unit of
temperature change.

molar heat capacity = quantity of heat
quantity of substance · temperature

ML2T−2Θ−1N−1

cmol = 
Q

n
T


Q = cmoln
T

Symbol Unit Quantity

cmol J/(K mol) molar heat capacity

Q J quantity of heat

T K change of temperature
n mol quantity of substance

Temperature differences can be measured also in degrees Celsius instead of Kelvin, without
rewriting formulae.

2. Molar heat capacity as material property

The molar heat capacity is a material property that is defined by the quotient of heat capac-
ity and the number of moles.

The molar heat capacity is the heat capacity per mole of a substance.
➤ In some books on thermodynamics, the molar heat capacity defined here is denoted

specific heat capacity or specific heat. This may cause confusion.

molar heat capacity = heat capacity
quantity of substance

ML2T−2Θ−1N−1

cmol = C

n

cmol = C · NA

N

NA = 6.022 136 7 · 1023 mol−1

Symbol Unit Quantity

cmol J/(K mol) molar heat capacity
C J/K heat capacity
n mol quantity of substance
N 1 particle number
NA mol−1 Avogadro number

For temperatures above 200 K, the molar heat capacity of solids is 3R = 24.9 J/(K mol).
This follows from the Dulong-Petit rule (see p. 691).

3. Representation by specific heat capacity

The definition of the molar heat capacity has the disadvantage that one must first determine
the molar quantity of the substance considered. It is related to the specific heat capacity
(easier to handle) via the molar mass.
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molar heat capacity = specific heat capacity · molar mass ML2T−2Θ−1N−1

cmol = c · M

Symbol Unit Quantity

cmol J/(K mol) molar heat capacity
c J/(K kg) specific heat capacity
M kg/mol molar mass

■ Water has a molar mass of 18 g/mol and a specific heat capacity of 4.182 kJ/(kg K).
The molar heat capacity is

cmol = c · M = 4.182 kJ/(kg K) · 0.018 kg/mol = 75.28 J/(K mol) .

20.3.3 Specific heat capacity
1. Specific heat capacity,

c, SI unit joule per kelvin and per kilogram, the quantity of heat to be transferred to one
kilogram of substance per degree of temperature increase.

specific heat capacity = quantity of heat
temperature difference · mass

L2T−2Θ−1

c = 
Q

m
T


Q = cm
T

Symbol Unit Quantity

c J/(K kg) specific heat capacity

Q J quantity of heat

T K change of temperature
m kg total mass

Temperature differences can be measured in degrees Celsius instead of Kelvin without
rewriting formulae.

The specific heat capacity is often referred to as the specific heat; in some books, how-
ever, the term specific heat is used for the heat content per unit mass.

2. Representation as quotient

The specific heat capacity corresponds to the quotient of heat capacity and mass, or of
molar heat capacity and molar mass.
➤ In some books on thermodynamics, the notion specific heat capacity is used for the

molar heat capacity. Furthermore, the specific heat capacity is sometimes simply de-
noted specific heat. This may cause confusion.

specific heat capacity = (molar) heat capacity
(molar) mass

L2T−2Θ−1

c = C

m

c = C

n · M

c = cmol

M

Symbol Unit Quantity

c J/(K kg) specific heat capacity
cmol J/(K mol) molar heat capacity
C J/K heat capacity
n mol quantity of substance
M kg/mol molar mass
m kg total mass
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M The specific heat capacity is determined by measuring the heat capacity and the mass
of the substance considered.

▲ The specific heat capacity depends on the material.
For specific heat capacities of important substances see Tab. 22.3.
■ The values of c lie in the range 0.1–3 kJ/(kg K), for water approx. 4.2 kJ/(kg K).
■ A metallic block of 250 g has a heat capacity of 224 J/K. What about the metal?

c = C

m
= 224 J/K

0.25 kg
= 896 J/(kg K).

This is the specific heat capacity of aluminum.

20.3.3.1 Additional properties of specific heat capacity
• In general, the specific heat capacity depends on the temperature.
• The specific heat capacity tends to infinity for a first-order phase transition or a λ-

transition. Therefore, in these cases one quotes the latent heat of melting or evapora-
tion.

• For a second-order phase transition, the specific heat capacity has an anomaly at the
critical point.

• The specific heat capacity of all substances tends to zero at absolute zero T = 0 K:
cT→0 = 0 .

20.3.3.2 Specific heat capacity of mixtures of substances
The specific heat capacity of a mixture of substances is equal to the sum of the individual
heat capacities divided by the total mass:

c = C

m
= m1c1 + m2c2 + m3c3 + · · ·

m1 + m2 + m3 + · · · .

■ A mixture of 30 g NaCl (c = 867 J/(K kg)) and 5 g KCl (c = 682 J/(kg K)) has a
specific heat capacity of

c = m1c1 + m2c2

m1 + m2

= 0.03 kg · 867 J/(kg K)+ 0.005 kg · 682 J/(kg K)

0.03 kg+ 0.005 kg
≈ 841 J/(kg K) .

20.3.3.3 Specific heat capacity of gases
The specific heat capacity may be measured either at constant pressure (volume varies with
temperature), or at constant volume (pressure varies with temperature).

Notation:
cV volume remains constant, pressure varies;
cp pressure remains constant, volume varies.

Analogously, total (CV , C p) and molar heat capacities (cV mol, cp mol) for constant volume
and constant pressure may be defined.
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The specific heat capacity at constant pressure is larger than the specific heat capacity at
constant volume.

cp > cV .

The quantity of heat supplied at constant pressure, 
Q, will not only heat the system,
but also expand it, and thus do volume work against the external pressure (atmospheric
pressure).
▲ The quantity of heat supplied is not only used for heating, but is also needed to do

work against the external pressure.

heat exchange at constant pressure ML2T−2

cpm
T = cV m
T + p
V

Symbol Unit Quantity

cp J/(K kg) specific heat cap. at
const. pressure

cV J/(K kg) specific heat cap. at
const. volume

m kg total mass

T K change of temperature
p Pa pressure

V m3 change of volume

20.3.3.4 Specific heat capacity of ideal gas

1. Representation of specific heat capacities

For a gas with f degrees of freedom, the molar or specific heat capacity at constant volume
is:

molar and specific heat capacity of ideal gas

cV mol = R · f

2

cV = Rs · f

2

R = 8.314 J/(K mol)

Symbol Unit Quantity

cV mol J/(K mol) molar heat cap. const. vol.
cV J/(K kg) specific heat cap. const. vol.
f 1 number of degrees of freedom
R J/(K mol) universal gas constant
Rs J/(K kg) specific gas constant

For an ideal gas pV = n RT �⇒ p
V = n R
T at constant pressure. Inserting for p
V
yields

cpm
T = cV m
T + n R
T .

2. Difference of specific heat capacities

▲ The difference between the specific heat capacities at constant pressure and constant
volume, respectively, is a material-dependent constant, the specific gas constant Rs .
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difference of specific heat capacities L2T−2Θ−1

cp − cV = n

m
R

= R

M
= Rs

R = 8.314 J/(K mol)

Symbol Unit Quantity

cp J/(K kg) spec. heat capacity at
const. pressure

cV J/(K kg) spec. heat capacity at
const. volume

n mol quantity of substance
m kg total mass
M kg/mol molar mass
R J/(K mol) universal gas constant
Rs J/(K kg) specific gas constant

▲ For the molar heat capacity in the ideal gas:

cp mol − cV mol = R .

Specific gas constant, individual gas constant Rs , the material-dependent proportionality
factor used in technical thermodynamics in the equation of state of an ideal gas.

Universal gas constant R, the material-independent proportionality factor appearing in
the equation of state of an ideal gas (see p. 650),

R = 8.3145
J

K mol
.

The expansion work may be described by compressibility and coefficients of expansion.

3. Relation between specific heat capacities

relation between specific heat capacities L2T−2Θ−1

cp = cv + T
α2

κρ

Symbol Unit Quantity

cp J/(K kg) specific heat cap. at
const. pressure

cV J/(K kg) specific heat cap. at
const. volume

T K temperature
ρ kg/m3 density
α K−1 coefficient of expansion
κ Pa−1 compressibility

20.3.3.5 Adiabatic index
Adiabatic index, κ , dimensionless quantity, quotient of the specific heat capacities of an
ideal gas,

cp

cV
= κ .

➤ There is a risk of confusion with the compressibility κ . However, the latter has a
dimension, contrary to the adiabatic index.

Isentropic index, alternative denotation of the adiabatic index.
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For an ideal gas:

adiabatic index = 1 + 2
number of degrees of freedom

1

κ = 1+ 2

f

Symbol Unit Quantity

κ 1 adiabatic index
f 1 number of degrees of freedom

20.3.3.6 Specific heat capacity of liquids and solids
Nearly exclusively the value of cp (easier to measure) is given.
➤ Liquids exhibit rather different dependences on pressure and temperature.
Dulong-Petit rule, a simple rule for the specific heat capacity of metals:
▲ All metals have the constant molar heat capacity of cp ≈ 25 JK−1mol−1 over a

wide range of temperatures.
For the specific heat capacity the following holds:

specific heat capacity (const. pressure) ≈ 25 J/(K mol)
molar mass

L2T−2Θ−1

cp ≈ 1

M
· 25

J

K mol

Symbol Unit Quantity

cp J/(K kg) spec. heat cap. at const. pressure
M kg/mol molar mass

➤ This no longer holds for temperatures markedly below 200 K. For T → 0, one finds
c→ 0 because of the third law of thermodynamics.

20.4 Changes of state

20.4.1 Reversible and irreversible processes
1. Equilibrium state,

a state in which the macroscopic parameters no longer vary.
▲ According to general experience, in an isolated system processes proceed on their

own until an equilibrium is reached.

2. Irreversible process,

a process that cannot proceed on its own in the reverse sequence (Fig. 20.2 (b)).
➤ All transitions from non-equilibrium to equilibrium are irreversible.
■ Two metallic plates at different temperatures brought in contact equilibrate their tem-

peratures.
Irreversible processes proceed via non-equilibrium states.
▲ Irreversible processes increase the microscopic disorder (entropy) of the system.

3. Reversible process,

a process proceeding only through equilibrium states (Fig. 20.2 (a)).
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Figure 20.2: Changes of state. (a): reversible process, (b): irreversible process, (c): quasi-
reversible process.

Reversible processes are an idealization, which, strictly speaking, does not exist. If a
system is in equilibrium, the state variables have time-independent values, and nothing
changes macroscopically.

Reversible changes of state may, however, be simulated approximately by small (in-
finitesimal) changes of the state variables which means that the equilibrium is disturbed
only slightly. If these changes proceed slowly enough, the system always has sufficient
time to equilibrate.

Quasi-reversible process, a process involving only very small changes of state
(Fig. 20.2 (c)).

4. Particular importance of reversible processes

The importance of reversible changes of state lies in the fact that at all stages of the process
one has an equilibrium state with definite values of the state properties, so that the total
changes of state properties may be obtained by integration over the infinitesimal reversible
steps.
➤ This is not possible for irreversible processes.
■ Isothermal expansion, e.g., expansion of a gas in a heating bath.

Reversible performance is achieved by slowly pulling back the piston,
irreversible performance by a jerky motion of the piston.

20.4.2 Isothermal processes
1. Characteristics of isothermal processes

Isothermal process, a process in which the temperature remains constant.
Isotherms for the ideal gas are hyperbolic sections in the p–V -plane,

p · V = const., T = const.

Hence, the pressure decreases in an isothermal expansion and increases in an isothermal
compression like 1/V .

This is just the law of Boyle–Mariotte (Fig. 20.3).
For T = const. the change in internal energy is equal to zero.

internal energy = constant ML2T−2


U = CV
T = 0


U = 
Q +
W


Q = −
W

Symbol Unit Quantity

U J internal energy
CV J/K heat capacity
T K temperature

Q J heat transferred

W J work
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p
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05
Pa

)

V (10-3 m-3)

Figure 20.3: Isotherms. (a): ideal gas, (b): system in a heat bath.

▲ In isothermal processes, the heat supplied is equal to the volume work of the gas.
➤ This follows from the first law of thermodynamics. The minus sign indicates that the

system does work if heat is absorbed.

2. Isothermal process: work done and change of entropy

Work done by the gas during a change of state at T = const.:

W12 = p1V1 ln

(
V2

V1

)
= p2V2 ln

(
V2

V1

)
,

= n RT ln

(
V2

V1

)
= m Rs T ln

(
V2

V1

)
.

In terms of the pressure:

W12 = p1V1 ln

(
p1

p2

)
= p2V2 ln

(
p1

p2

)
,

= n RT ln

(
p1

p2

)
= m Rs T ln

(
p1

p2

)
.

The change of entropy is


S = (C p − CV ) ln

(
V2

V1

)
= C p ln

(
V2

V1

)
+ CV ln

(
p2

p1

)
.

20.4.3 Isobaric processes
1. Characteristics of isobaric processes

Isobaric process, a process in which the pressure remains constant.
Isobars are horizontal straight lines (p = const.) in the p–V -diagram (Fig. 20.4 (a)):

The volume increases with increasing temperature—the system changes from a lower
isotherm to a higher isotherm.
➤ The linear relation between volume and temperature just corresponds to the law of

Gay-Lussac.
The work due to change of volume in an isobaric process is

W12 = p(V1 − V2) .
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2. Isobaric process: change of heat and entropy

For p = const., the absorbed heat Q12 is given by:

change of heat ∼ temperature difference ML2T−2

Q12 = mcp(T2 − T1)

= C p(T2 − T1)

= ncp mol(T2 − T1)

Symbol Unit Quantity

Q J quantity of heat
m kg mass of gas
n mol molar quantity
cp J/(K kg) spec. heat capacity

at const. pressure
C p J/K heat capacity
cp mol J/(K mol) molar heat capacity
T K temperature

For p = const., the change of entropy is given by


S = C p ln

(
T2

T1

)
= C p ln

(
V2

V1

)
.

20.4.4 Isochoric processes
1. Characteristics of isochoric processes

Isochoric process, a process in which the volume remains constant (Fig. 20.4 (b)).

c c

Figure 20.4: Changes of state. (a): isobaric process, (b): isochoric process. For isobaric
expansion or isochoric increase of pressure, T1 = Tc (cold) and T2 = Th (hot).

Isochors are vertical straight lines (V = const.) in the p–V -diagram.
The pressure increases with increasing temperature, the system changes from a lower

isotherm to a higher isotherm.
➤ The linear relation between pressure and temperature just corresponds to the law of

Gay-Lussac.
Because V = const., the volume work vanishes,


W = p
V = 0 .

2. Isochoric process: change of heat and entropy

For V = const., the change of heat corresponds to the change of the internal energy.
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change of heat ∼ temperature difference ML2T−2

Q12 = mcV (T2 − T1)

= CV (T2 − T1)

= ncV mol(T2 − T1)

= 
U

Symbol Unit Quantity

Q J quantity of heat
m kg mass of gas
n mol molar quantity
cV J/(K kg) spec. heat capacity at

const. volume
CV J/K heat capacity
cV mol J/(K mol) molar heat capacity
T K temperature
U J internal energy

For V = const., the change of entropy is given by


S = CV ln

(
T2

T1

)
= CV ln

(
p2

p1

)
.

20.4.5 Adiabatic (isentropic) processes
1. Characteristics of adiabatic and isentropic processes

Isentropic process, a process in which the entropy remains constant.
Adiabatic process, a process in which no heat is exchanged with the environment.

■ Reactions in closed systems (e.g., Dewar flasks) are adiabatic.
▲ For reversible processes, the notions adiabatic and isentropic may be used synony-

mously.
➤ In regions of low temperature, however, in the demagnetization of crystals, adiabatic

and isentropic processes may proceed differently.
Isentrops and adiabats in the p–V -diagram are steeper than isotherms (Fig. 20.5),

pV κ = const., κ > 1 .

isobaric

isothermal

adiabatic

Figure 20.5: Changes of state. (a) isobaric, isothermal and adiabatic process, (b): closed
system.

2. Adiabatic index,

κ , dimensionless quantity, the exponent of the volume in the adiabatic equation. The adi-
abatic index is equal to the ratio of the (specific) heat capacities for constant pressure and
constant volume,

κ = C p

CV
= cp

cV
= cp mol

cV mol
.
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▲ For an ideal monatomic gas, κ = 5/3.
▲ The specific heat capacities cp and cV differ by the specific gas constant Rs ,

cp − cV = Rs .

▲ Analogously, the molar heat capacities differ by the universal gas constant R,

cp mol − cV mol = R .

In an adiabatic process, the change of entropy and heat is equal to zero,


Q = 0 , 
S = 0 .

3. Adiabatic process: change of internal energy

The work due to a change of volume is equal to the change of internal energy.

work ∼ temperature difference ML2T−2

W12 = mcV (T2 − T1)

= CV (T2 − T1)

= 
U

Symbol Unit Quantity

W12 J work
m kg mass of gas
cV J/(K kg) spec. heat capacity at

const. volume
CV J/K heat capacity
T K temperature
U J internal energy

20.4.5.1 Polytropic processes

1. Characteristics of polytropic processes

Polytropic process, a process in which the product pV n remains constant.

polytropic equation

p · V n = const.

T · V n−1 = const.

Symbol Unit Quantity

p Pa pressure
V m3 volume
n 1 polytropic coefficient
T K temperature

Polytropic index, n, nondimensional quantity, exponent of the volume variable in the poly-
tropic equation.

The polytrope may be understood as a generalization of the processes discussed so far:

special cases of the polytropic process

n = 0 p = const. isobaric process

n = 1 pV = n RT = const. isothermal process

n = κ pV κ = const. adiabatic process

n →∞ p1/∞V = const. isochoric process
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Mostly, one restricts oneself to the cases 1 < n < κ describing systems in which heat is
exchanged with the environment, but no complete balance of heat is reached.
■ Processes proceeding very fast in noninsulated systems belong to this group.
In the p–V diagram, the course of polytropes belonging to 1 < n < κ is steeper than that
of isotherms, but is flatter than that of isentrops, a specific example being pV n = const.

2. Polytropic process: change of state variables

Work due to the change of volume:

W12 = p2V2 − p1V1

n − 1
.

The absorbed heat is given by:

absorbed heat ∼ temperature difference ML2T−2

Q12 = mcV (T2 − T1)
n − κ
n − 1

= CV (T2 − T1)
n − κ
n − 1

Symbol Unit Quantity

Q J quantity of heat
m kg mass of gas
cV J/(K kg) spec. heat capacity at

const. volume
CV J/K heat capacity
T K temperature
n 1 polytropic index
κ 1 adiabatic index

Change of entropy:


S = CV
n − κ
n − 1

ln

(
T2

T1

)
= CV (κ − n) ln

(
V2

V1

)
.

20.4.6 Equilibrium states
Equilibrium, the state achieved in a system on its own after sufficient time.

Depending on the external conditions, the equilibrium state is characterized as follows:

Closed isochoric states: maximum of entropy S.
Isothermal-isobaric states: minimum of free enthalpy G = U + pV − T S.
Isothermal-isochoric states: minimum of free energy F = U − T S.
Adiabatic-isobaric states: minimum of enthalpy H = U + pV .
Adiabatic-isochoric states: minimum of internal energy U .

Differentials of the thermodynamic potentials ML2T−2

dU = −pdV + T dS

dF = −pdV − SdT

dH = V dp + T dS

dG = V dp − SdT

Symbol Unit Quantity

U J internal energy
F J free energy
H J enthalpy
G J free enthalpy
p Pa pressure
V m3 volume
T K temperature
S J/K entropy
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Survey of equilbrium conditions

system is . . . isothermal isobaric isochoric adiabatic closed

entropy S
maximum

dV = 0 dU = 0

internal energy U
minimum

dV = 0 
Q = 0

free energy F
minimum

dT = 0 dV = 0

enthalpy H
minimum

dp = 0 
Q = 0

free enthalpy G
minimum

dT = 0 dp = 0

20.5 Laws of thermodynamics

Law of thermodynamics, a fundamental relation among properties of state that holds
empirically for all known systems.
■ The first law of thermodynamics states essentially that no energy may be lost or

created in any form.

20.5.1 Zeroth law of thermodynamics
Equilibrium state, that macroscopic state of a closed system taken after sufficient time on
its own.
▲ In the equilibrium state, the macroscopic properties of a state no longer change with

time.
If two systems are joined together, exchange processes will proceed until the intensive
quantities (pressure, temperature, chemical potential) of the systems are balanced.

When approaching thermal equilibrium, an exchange of heat continues until the tem-
peratures of both systems are equal.

Zeroth law of thermodynamics, describes the equivalence of thermal systems:
▲ All systems in thermal equilibrium with one system are also in mutual thermal equi-

librium with each other.
➤ The operation of a thermometer is based on this law.

20.5.2 First law of thermodynamics
Conserved quantity, a property of state that does not change in the system. A conserved
quantity may be used to characterize the macroscopic state.
■ The total energy E of the closed system (see p. 623) is a conserved quantity.

In physics, the principle of energy conservation is of fundamental importance.
▲ All experience confirms the assumption that this principle is correct both for macro-

scopic and for microscopic dimensions.
➤ Besides the work expended or received by a system, one must also take into account

the heat exchanged with the environment.
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Internal energy, U , the total energy present in the internal degrees of freedom of a gas. In
a closed system, the internal energy is identical to the total energy of the system.

1. Formulation of the first law of thermodynamics

First law of thermodynamics: The total change of energy of a system includes exchange
of work and heat.
▲ The change of the internal energy in any (reversible or irreversible) change of state is

given by the sum of work 
W and heat 
Q exchanged with the environment:

internal energy = work + heat ML2T−2


U = 
W +
Q

Symbol Unit Quantity

U J internal energy
W J work
Q J quantity of heat

• 
W < 0: work expended by the system,
• 
W > 0: work done on the system.
➤ One can also find the inverse definition in the literature.
The work and the heat exchanged with the environment depend on the manner in which
the process is carried out. This is of importance, e.g., in chemical reactions for the concept
of the reaction device.
➤ Work and heat are not total differentials. Therefore, the change is designated here by

a 
 for the sake of clarity.

2. Work for reversible processes

work = −pressure · change of volume ML2T−2


Wrev = −p
V

Wrev = −
V2∫
V1

p dV

Symbol Unit Quantity

W J work
p Pa pressure
V m3 volume

➤ In irreversible processes, one may have 
Wirr = 0.

3. Heat for reversible processes

heat = temperature · change of entropy ML2T−2


Qrev = T 
S

Qrev =
S2∫

S1

T dS

Symbol Unit Quantity

Q J quantity of heat
T K temperature
S J/K entropy

➤ This holds only for the reversible case.
Representation in terms of the heat capacity CV at constant volume holds only for the
reversible case:
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heat = heat capacity · change of temperature ML2T−2


Qrev = CV 
T

Qrev =
T2∫

T1

CV dT

Symbol Unit Quantity

Q J quantity of heat
CV J/K heat capacity at const. volume
T K temperature

▲ While the formulas for the partial contributions above are valid only for reversible
processes, the first law of thermodynamics always holds.

20.5.2.1 Equivalent formulations of the first law
of thermodynamics

Selection of various formulations of the first law of thermodynamics, which are all equiv-
alent:
▲ In the energy balance of a system, the sum of exchanged work and heat yields

the total change of energy of the system.
This knowledge is due to Robert Mayer (1814–1878) and J.P. Joule (1818–1889),

who proved by precise experiments that heat is a special form of energy.
▲ The internal energy U of a system is a state function. This means that the total

energy content of a system is always the same no matter what process was used to
reach the macrostate.

▲ There is no perpetuum mobile of the first kind.
The term perpetuum mobile of the first kind denotes a machine that operates in a

cycle and generates energy without extracting it from its environment.
▲ The change of the internal energy in an arbitrary, infinitesimal change of state

is a total differential.
The change of the internal energy depends only on the initial and final state, not on

the path.

20.5.2.2 Microscopic aspects of the first law
of thermodynamics

If neither heat nor work is added to the system, then the mean kinetic energy of the

molecules 1
2 mv2 does not change.

If the system is heated through the walls of the cylinder without doing work, the kinetic
energy of the molecules is increased by collisions with the wall (Fig. 20.6 (a)). In the
collisions, energy is transferred from the wall to the particles. The system is heated, the
walls are cooled.

If the system does expansion work, i.e., the piston is displaced outward, then the
molecules lose kinetic energy by collisions with the piston moving away. The particles
slow down, and the system cools (Fig. 20.6 (c)).
■ A camping gas cartridge or can of shaving cream cools during the outflow of the gas.
If the piston moves inward, i.e., compression work is performed on the system, the particles
colliding with the piston get an additional momentum from the motion of the piston, which
also increases the kinetic energy (Fig. 20.6 (b)).
➤ In an irreversible expansion of real gases, the Joule–Thomson effect (see gas liquefac-

tion – Joule–Thomson effect) causes heating or cooling, depending on the inversion
temperature.
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Figure 20.6: Change of the mean molecular velocity under compression (b) and expansion
(c) of the system (a).

20.5.3 Second law of thermodynamics
▲ All experience confirms that the entropy takes a maximum value in the equilibrium

state,

S = Smax in equilibrium.

1. Formulation of the second law of thermodynamics

There are no processes in nature in which the total entropy decreases.
All irreversible processes in a closed system are connected with an increase of entropy.

After a change of state, the system must move again to equilibrium, whereby the entropy
increases,


S ≥ 0 .

In subsystems, 
S < 0 may be valid. But this is possible only by input of work. The
system delivering this work correspondingly increases its entropy.

Reversible processes: the entropy remains constant,

dS = 0.

Irreversible processes: the entropy increases,

dS > 0.

2. Equivalent formulations of the second law of thermodynamics

▲ There is no perpetuum mobile of the second kind.
A perpetuum mobile of second kind is a machine that does nothing but performs

work by cooling down a heat reservoir, that is, it would transform heat completely
into work.

One always needs a second reservoir to be heated up.
▲ There is no process that converts anergy into exergy.

Heat cannot be converted completely into mechanical work, only the exergetic
fraction of heat is convertible into work.

▲ Any closed macroscopic system tends towards the most probable state.
This is the state characterized by the largest number of microscopic possibilities,

i.e., by the highest entropy (disorder).
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20.5.4 Third law of thermodynamics
At finite temperature, any material has an intrinsic excitation energy corresponding to the
quantity of heat.
■ Oscillations in the crystal lattice are temperature-dependent, intrinsic excitations.
At absolute zero, a body no longer has excitation energy.
■ All lattice oscillations in a solid are frozen. Nevertheless, at T = 0 the kinetic energy

is not zero, since the atoms carry out quantum-mechanical zero-point oscillations.

1. Third law of thermodynamics,

defines the absolute value of the entropy at absolute zero.
▲ At absolute zero, every body has zero entropy,

S = 0 for T = 0 K .

2. Equivalent formulations of the third law of thermodynamics

▲ The specific heat capacity of all substances vanishes at absolute zero. The specific
heat of all materials disappears at absolute zero.

cT=0 = 0.

▲ Absolute zero can never be reached experimentally; it is a theoretical reference only.
➤ Any quantity of heat (energy), however small, causes a finite increase of temperature.

20.6 Carnot cycle

20.6.1 Principle and application
1. Cycle,

a periodic process that, after a certain number of changes of state, reaches the initial state
again (Fig. 20.7 (a)).

Carnot cycle, a cycle introduced by Carnot in 1824 with the ideal gas as working
medium (Fig. 20.7 (b)).

The Carnot cycle allows production of work by heat exchange between cold and hot
media.

State variable 1

St
at

e 
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 2

c

Figure 20.7: Cycles (schematic representation). (a): general cycle, (b): Carnot cycle.
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2. Heat engine and refrigerator

Heat engine, a machine that does work by heat exchange.
■ Combustion motors, steam engines, turbines.
➤ The inverse process, the heating of a hot body by a cold body with the expenditure of

work, is also possible.
Refrigerator or heat pump, a machine that heats up a hot system or cools down a cold
system by input of work.
■ Refrigerator, air conditioning, heat pump.
The designation refrigerator or heat pump depends on whether one is referring to the heat-
ing of a hot system or the cooling of a cold system.
■ Machines based on a Carnot cycle may be used for continuous generation of low

temperatures, also for air liquefaction in small quantities (see gas liquefaction).
▲ The ideal Carnot cycle can be realized technologically to a good approximation.

20.6.1.1 Stages of the Carnot cycle
The Carnot cycle involves four successive reversible partial processes (Fig. 20.8):
• isothermal expansion at high temperature Th (I) ,
• adiabatic expansion with cooling to Tc (II) ,
• isothermal compression at low temperature Tc (III) ,
• adiabatic compression with heating to Th (IV) .
The working media are at temperatures Th (hot) and Tc (cold), respectively.

1. First step: isothermal expansion

from volume V1 to the volume V2 at constant temperature Th . For the isotherm,

V2

V1
= p1

p2
.

The energy of an ideal gas cannot change at constant temperature,


UI = 
WI +
QI = 0.

The exchanged quantity of heat is


QI = −
WI = NkTh ln
V2

V1
.

2. Second step: adiabatic expansion

of the isolated working medium from V2 to V3 with cooling to the temperature of the cold
medium. For the ideal gas,

V3

V2
=
(

Th

Tc

)3/2
.

The work done by the gas is


WI I = 
UI I = CV (Tc − Th).

Because 
QI I = 0 (adiabatic process), the work done during expansion is taken from the
internal energy.

3. Third step: isothermal compression

of the system at temperature Tc from V3 to V4.
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Analogous to step 1, the exchanged quantity of heat is


QI I I = −
WI I I = NkTc ln
V4

V3
.

The gas releases this amount of heat.

4. Fourth step: adiabatic compression

from V4 to V1 with heating to the temperature Th .
The system returns to the initial state.

High-temperature 
reservoir

Low-temperature 
reservoir

Machine does work Work is done on the machine

Isothermal
expansion

Adiabatic
expansion

Isothermal
contraction

Adiabatic
contraction

Figure 20.8: Partial steps in the Carnot cycle.

Work done on the gas:


WI V = 
UI V = CV (Th − Tc).

In the T -S diagram, the Carnot cycle is given by a rectangle defined by the straight lines
T = const. (isotherms) in steps I and III, and the straight lines S = const. (adiabats) in
steps II and IV (Fig. 20.9).

c

c

Figure 20.9: Carnot cycle in the p–V - and T -S-diagrams.
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20.6.1.2 Energy balance and efficiency of the Carnot cycle
The total change of internal energy is


Utotal = 
QI +
WI︸ ︷︷ ︸
I

+
WI I︸ ︷︷ ︸
I I

+
QI I I +
WI I I︸ ︷︷ ︸
I I I

+
WI V︸ ︷︷ ︸
I V

= 0.

▲ The internal energy does not change (first law of thermodynamics).
Work generated in the process:


W = −Nk (Th − Tc) ln
V2

V1
= −
Q .

Correspondingly, the converted quantity of heat is equal but of opposite sign to the work.
Efficiency, the ratio of the generated work and the heat loss of the hot medium.

efficiency = 1 − low temperature
high temperature

1

η = 1− Tc

Th
= Th − Tc

Th

Symbol Unit Quantity

η 1 efficiency
Tc K low temperature
Th K high temperature

The remaining part is nonconvertible heat (see p. 683).

20.6.2 Reduced heat
Reduced heat, quotient of heat and temperature.
➤ This definition leads directly to the concept of entropy.
In the Carnot cycle, the sum of the reduced heats is equal to zero,


QI

Th
+ 
QI I I

Tc
= 0.

The reduced heats of the processes II and IV are zero (adiabats).
▲ In a closed reversible process in arbitrarily small cycles, it follows that the reduced

heat is conserved.
▲ Any closed process may be decomposed into Carnot cycles (Fig. 20.10).

Figure 20.10: Decomposition of a cycle. (a): p–V -diagram, (b): T -S-diagram.
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From the conservation of the reduced heat in the cycle, it follows that the reduced heat
of a process is independent of the path,

∮

Qrev

T
= 0.

This is the second law of thermodynamics.
➤ The reduced heat 
Qrev/T forms a total differential.
The reduced heat directly implies the entropy:


S = 
Qrev

T
, S1 − S0 =

1∫
0


Qrev

T
.

20.7 Thermodynamic machines

20.7.1 Right-handed and left-handed processes
1. Right-handed processes,

cycles running in the p–V -diagram to the right, i.e., clockwise (see Fig. 20.9).
■ The description of the Carnot cycle in the preceding section corresponds to a right-

handed process.
▲ In right-handed processes, heat is taken from the hot system to do work.
The sum of the quantities of heat supplied to and withdrawn from the system during the
process steps is negative, the total work done is positive:


Q < 0 , 
W > 0 .

■ Heat engines are based on right-handed cycles.

2. Left-handed processes,

cycles running in the p–V -diagram to the left, i.e., counterclockwise (Fig. 20.11 (a)).

c

c

Figure 20.11: Left-handed process. (a): p–V -diagram, (b): T –S-diagram.
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▲ In left-handed processes, work is expended in order to supply heat to the hot system.
The sum of the quantities of heat supplied to and withdrawn from the system during the
process steps is positive, the total work done is negative:


Q > 0 , 
W < 0 .

■ Heat pumps and refrigerators are based on left-handed cycles.

20.7.2 Heat pump and refrigerator
1. Heat pump,

a thermodynamic machine operating according to the principle of a left-handed cycle that,
with expenditure of work, pumps heat from the colder system to the warmer system. It
may be used as a refrigerating machine to generate low temperatures (see generation of
low temperatures), but also as a heater for heating a room from an environment at lower
temperature.
■ Heat pumps installed in houses may be used in winter as heaters, and in summer as

air conditioners. Both applications require input energy.

2. Coefficient of performance of a heat pump,

εW , dimensionless quantity, the ratio of the quantity of heat transferred to the hot system
and the work expended.

coefficient of performance of a heat pump 1

εW = |Q|W

εW, C = Th

Th − Tc

= 1

ηC

Symbol Unit Quantity

εW 1 coeff. of performance heat pump
Q J released quantity of heat
W J expended work
εW, C 1 coeff. of performance Carnot cycle
Th K high temperature
Tc K low temperature
ηC 1 efficiency Carnot cycle

▲ The coefficient of performance εW in the Carnot cycle is always larger than unity.
▲ The coefficient of performance εW is largest for small temperature differences.

3. Refrigerating machine and its coefficient of performance

Refrigerating machine, a machine operating according to the same principle as the heat
pump, taking heat from the colder system and pumping it into the warmer system.
➤ Heat pumps and refrigerating machines are distinguished only in the technical appli-

cation. For the heat pump, the interest lies on the hot system to be heated, for the
refrigerating machine on the cold system to be cooled.

Coefficient of performance of a refrigerating machine εK , dimensionless quantity, the
ratio of the quantity of heat withdrawn from the cold system and the work expended.
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coefficient of performance of a refrigerating machine 1

εK = |Q|W

εK , C = Tc

Th − Tc

Symbol Unit Quantity

εK 1 coefficient of performance
refrigerating machine

Q J quantity of heat withdrawn
W J expended work
εK , C 1 coefficient of performance

Carnot cycle
Th K high temperature
Tc K low temperature

▲ The coefficient of performance εK of the Carnot cycle is always larger than unity.
▲ The coefficient of performance εK increases with decreasing temperature difference.

20.7.3 Stirling cycle
1. Stirling cycle,

cycle represented in Fig. 20.12, consisting of two isothermal and two isochoric partial
processes.
▲ The efficiency of the Stirling cycle is equal to the efficiency of the Carnot cycle.
Efficiency of the Stirling cycle is given by:

efficiency of the Stirling cycle 1

η = 1− Tc

Th

Symbol Unit Quantity

η 1 efficiency
Tc K low temperature
Th K high temperature

Th

Tc

Figure 20.12: Stirling
cycle. Working steps of the
Stirling cycle: (I) isothermal
compression, (II) isochoric
heating, (III) isothermal
expansion, (IV) isochoric
cooling.

2. Stirling engine,

also hot-air engine, using a cycle with a fixed quantity of gas moved between two heat
reservoirs (Fig. 20.13).

Isothermal compression and expansion:
• working piston is shifted,
• displacer piston is not shifted.
Isochoric heating and cooling:
• working piston is not shifted,
• displacer piston is shifted.
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Displacer
piston

Working
piston

c

h

Figure 20.13: Stirling
engine.

The Stirling engine has two pistons, the displacer piston and the working piston moving
with a 90◦ phase shift relative to each other.

Working steps of the Stirling engine:
Isothermal compression: The displacer piston remains at its top end point and prevents

contact to the hot heat bath while the working piston compresses the gas.
Isochoric heating: The displacer piston moves downwards while the working piston

stands at its top end point. The gas is displaced upwards and contacts the hot heat bath.
Isothermal expansion: While the displacer piston remains at the bottom end point, the

working piston moves downwards. The gas expands.
Isochoric cooling: The working piston remains at the bottom end point and the displacer

piston moves upwards. The gas is displaced from the hot to the cold temperature reservoir.
The practical use of the Stirling engine suffers from incomplete heat transfer during the

displacement.
M The efficiency is improved by inserting regenerators consisting of metal chips into

the displacer, which support cooling and heating of the air flowing through.

20.7.4 Steam engine
Clausius–Rankine cycle, cycle in the region of phase coexistence between liquid and
gaseous phases (Fig. 20.14). It consists of two isentropic and two isobaric partial processes:
• isentropic (adiabatic) compression (I),
• isobaric supply of heat (II),
• isentropic expansion (III),
• isobaric extraction of heat (IV).

c

c

c

Figure 20.14: Clausius-Rankine cycle. (a): p–V -diagram, (b): T –S-diagram.
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➤ The isobaric supply or extraction of heat does not lead to a change of temperature,
but, as condensation heat, to a change of the fractions of liquid and gaseous phase.

▲ The efficiency η depends sensitively on the enthalpies of steam before (H2) and after
(H3) expansion.

The indices refer to the points plotted in Fig. 20.14.

efficiency of a steam engine 1

η = H2 − H3

H2 − H4
≈ 1− H3

H2

Symbol Unit Quantity

η 1 efficiency
H J enthalpy

Steam engine, a machine based on the Clausius–Rankine cycle (Fig. 20.15).

Steam

Figure 20.15: Steam engine,
schematic.

The high-pressure steam enters through the inlet (left), the low-pressure steam is ex-
pelled through the exhaust (small circle, mid-left). Piston and valve operate with phase
shifts.

20.7.5 Open systems
1. Closed system,

a system with a fixed quantity of matter involved in the working process.
■ The Stirling engine is a closed system.
➤ Combustion engines in a closed system cannot use the combustion gas as a working

medium. However, the combustion gas is used in open systems as a working medium.

2. Open system,

a system for which a certain number of particles leaves the system per unit time, and a
certain number enters the system (see p. 624). Nevertheless, the total number of particles
in the system may be conserved.
■ In the Otto engine, the gasoline–air mixture enters and the combusted gas escapes

through the exhaust.
As a substitute, one usually considers a system including the particles crossing the

boundary of the working system during the process time. At the beginning, this substi-
tute system contains all particles that will enter the working system during the process and,
at the end, all particles that have left the system during the process. This substitute system
may have different pressures, volumes and temperatures before and after the process.



20.7 Thermodynamic machines 711

The balance of enthalpy is:

balance of enthalpy in open system ML2T−2


H = 
Wext +
Q

Symbol Unit Quantity

H J enthalpy
Wext J external work
Q J supplied quantity of heat

If the flow velocities and potential energies of the entering and exiting particles are differ-
ent, the corresponding energy differences must be summed:


H +
W flow
kin +
Wpot = 
Wext + Q .

3. Technical work,

also operation work, the total work done by a machine (theoretically) during a process
step. It includes:
• injection of particles,
• change of volume,
• ejection of particles.
It can be defined as an integral,

Wt =
p2∫

p1

V dp .

20.7.6 Otto and Diesel engines

20.7.6.1 Otto cycle

1. Otto cycle,

a cycle in an open system, consisting of two isentropic and two isochoric partial processes
(Fig. 20.16):
• isentropic (adiabatic) compression,
• isochoric heating,
• isentropic expansion,
• isochoric cooling.
Efficiency η, depends on the volumes in the compressed and expanded state:

efficiency of the Otto engine 1

η = 1− 1

εκ−1

ε = V1

V2

Symbol Unit Quantity

η 1 efficiency
ε 1 compression ratio
κ 1 adiabatic index
V m3 volume
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2. Otto engine,

combustion engine operating in the Otto cycle. A homogeneous air–fuel mixture cyclically
undergoes a fast combustion reaction by external ignition (spark plug).

Work steps of the Otto engine (Fig. 20.16):
• ab: intake of the fuel-air mixture,
• bc: compression stroke,
• cd: ignition of the fuel mixture, heating of the combustion gases,
• de: power stroke,
• e: opening of the exit valve,
• ba: exhaust stroke.

Figure 20.16: Otto cycle.

➤ Anti-knock compounds in the gasoline help prevent self-ignition.

20.7.6.2 Diesel cycle

1. Diesel cycle and Diesel engine

Diesel cycle, a cycle in an open system, consisting of two isentropic steps, one isochoric
step and one isobaric partial step:
• isentropic (adiabatic) compression,
• isobaric heating,
• isentropic expansion,
• isochoric cooling.
Work steps of the Diesel engine (see Fig. 20.17):
• ab: intake of air,
• bc: compression stroke,
• cd: injection of fuel and combustion,
• de: power stroke,
• e: opening of the exit valve,
• ba: exhaust stroke.

Figure 20.17: Diesel cycle.
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2. Efficiency of the Diesel engine

Efficiency η, depends on the volumes in the compressed (V3 > V2) and expanded (V1)
state:

efficiency of the Diesel engine 1

η = 1−

(
V3

V2

)κ
− 1

κ

(
V3

V2
− 1

)(
V1

V2

)κ−1

Symbol Unit Quantity

η 1 efficiency
κ 1 adiabatic index
V m3 volume

Diesel engine, a combustion engine operating in the Diesel cycle. The fuel is injected into
compressed air. The combustion proceeds cyclically by self-ignition.
➤ Although at equal compression ratios the Diesel engine has a lower efficiency than the

Otto engine, it can achieve higher compression ratios, meaning the overall efficiency
of the Diesel engine is better than that of the Otto engine.

20.7.7 Gas turbines
1. Joule cycle,

an open cycle used for example in jet engines of airplanes. It consists of two isentropic and
two isobaric partial steps (Fig. 20.18 (a)):
• isentropic (adiabatic) compression (I),
• isobaric heating (II),
• isentropic expansion (III),
• isobaric cooling (IV).
Efficiency η, depends on the temperatures before (T1) and after (T2) compression, or on
the pressures, respectively:

η = 1− T1

T2
= 1−

(
p1

p2

)κ − 1

κ .

2. Ericsson cycle,

a closed cycle consisting of two isothermal and two isobaric partial processes
(Fig. 20.18 (b)):
• isothermal compression (I),
• isobaric heating (II),
• isothermal expansion (III),
• isobaric cooling (IV).

c

Figure 20.18: Cycles. (a): Joule cycle, (b): Ericsson cycle.
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Efficiency η, depends on the temperatures:

η = 1− Tc

Th
= ηC .

▲ Under ideal conditions, the efficiency may reach that of the Carnot cycle.

20.8 Gas liquefaction

Gas liquefaction at temperatures below the critical point may occur directly by compres-
sion.
■ Ammonia (NH3), sulphur dioxide (SO2) and chlorine (Cl2) are gases whose critical

temperatures lie above room temperature.
Otherwise, the gas must first be cooled below the critical temperature.

20.8.1 Generation of low temperatures
Low temperatures may be generated by:
• heat exchange with freezing mixtures,
• withdrawal of heat by dissolving of substances,
• cooling by a heat pump,
• employing the Joule–Thomson effect.

20.8.1.1 Freezing mixtures
Freezing mixtures, in general solid-liquid mixture systems used as reservoir for generating
constant low temperatures. These mixtures must be brought first to this temperature by
other means.

One uses systems at the melting point because, here, heat fluctuations do not lead to
temperature changes, but, as latent heat, cause only fluctuations in the relative mass ratio
of solid and liquid phases.

Low-temperature mixtures, see Tab. 22.6.

20.8.1.2 Heat of dissolution
Heat of dissolution, quantity of heat needed to dissolve a quantity of solid substance in a
liquid substance.

If a substance is dissolved in a liquid, then heat is withdrawn from the liquid.
▲ Thereby, the temperature may drop below the melting point of the pure solvent with-

out solidification of the system (freezing-point depression, see p. 737).
■ Casting salt on streets to prevent ice formation exploits this principle.
➤ Freezing mixtures of solutions consist of the solvent in solid phase (e.g., ice = frozen

water) and the liquid phase with the dissolved substance (e.g., the salt solution).

20.8.1.3 Heat pump
Cooling of a system may be achieved by a left-handed cycle. Hereby, heat is withdrawn
from the cold system by expenditure of work (see p. 707).
▲ According to the second law of thermodynamics, a second system must always be

heated in this process.
■ Production of small quantities of liquid air or liquid helium.
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➤ A system may also be cooled by a right-handed cycle, but only as long as the other
system is colder than the system to be cooled.

20.8.2 Joule–Thomson effect
Gases kept in a vessel under increased pressure cool down when flowing out of a nozzle if
the gas temperature lies below the inversion temperature. The process is an irreversible,
adiabatic expansion of a real gas, since no external work is expended in the expansion
(
W = 0), and the expansion proceeds so rapidly that no heat can be exchanged with the
environment (
Q = 0).

The change of temperature occurs only for real (Van der Waals) gases, but not for an
ideal gas. For control of the adiabatic expansion, the outflowing gas is slowed by a throttle
(Fig. 20.19).

Joule–Thomson coefficient, δ, determines the inversion curve:

Joule–Thomson coefficient M−1LT2Θ

δ = V

C p
(Tα − 1)

= Tα − 1

cpρ

Symbol Unit Quantity

δ K/Pa Joule–Thomson coefficient
V m3 volume
C p J/K heat capacity at const. pressure
T K temperature
α 1/K isobaric-expansion coefficient
cp J/(K kg) spec. heat capacity at

const. pressure
ρ kg/m3 density

Throttle valve
Figure 20.19: Joule–
Thomson effect.

Inversion curve, temperature-pressure curve for which δ just vanishes (Fig. 20.20).
Inversion temperature, temperature below which an irreversible expansion leads to a

cooling of the gas.

Inversion curve

Figure 20.20: Inversion
curve.
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➤ An irreversible expansion above the inversion temperature leads to a heating.
Inversion temperature of the Van der Waals gas:

inversion temperature = 6.75 · critical temperature Θ

Ti = 2a

Rb
= 6.75 Tc

Symbol Unit Quantity

Ti K inversion temperature
Tc K critical temperature
a Nm4/mol2 internal-pressure constant
b m3/mol internal volume
R J/(K mol) universal gas constant

This value is the maximum value. The inversion temperature Ti depends on the pressure.
➤ Instead of the molar constants a, b and R, the specific constants may also be used

here.

20.8.2.1 Linde process
Linde process, method of liquefaction of air according to the Joule–Thomson principle
(Fig. 20.21).

In order to lower the temperature of the high-pressure gas, countercurrent heat ex-
changers are used for liquefaction of air. The expanded cooled gas is brought in thermal
contact with the high-pressure gas in a system of pipes in which the high-pressure gas and
the cooled gas flow in opposite directions.
▲ This method operates only for gases whose inversion temperature for given pressure

of the compressor lies above room temperature.
■ Air, CO2, N2, . . . may be liquefied in this manner.
➤ For hydrogen and helium, pre-cooling is needed because their inversion temperatures

(hydrogen Ti ≈ −80◦C) lie below room temperature.
Liquid hydrogen may be used for pre-cooling of helium. But this is no longer done
because of explosion hazard and expense.

Compressor

Throttle valve
Figure 20.21: Linde process
(schematic).

In a reversible expansion of real gases, the temperature always decreases because the
gas must also do external work. The process of adiabatic expansion (see p. 707) has the
advantage of higher efficiency and is therefore used to liquefy helium.

20.8.2.2 Claude process
Claude process, an air liquefaction process wherein throttling is partially replaced by an
adiabatic expansion. The yield of liquid air is increased by the expansion. Furthermore,
part of the work expended is regained.
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Phase transitions, reactions
and equalizing of heat

21.1 Phase and state of aggregation

21.1.1 Phase
Homogeneous system, a system with properties that are uniform throughout.
■ A vessel of dry air under standard conditions.
Heterogeneous system, a system with properties that may change discontinuously at
boundary surfaces.
■ A vessel containing water, steam and air.
Phase, homogeneous part of a heterogeneous system.

Phase boundary, a separating interface between two phases.
■ A closed pot containing water and steam.

The surface of water is a phase boundary. There is a gaseous phase (steam) and a
liquid phase (water).

Phase transition, change of a substance in its intrinsic structure that affects the order of
the system. This change in the order of the system causes a change of the temperature
dependence of its properties.
■ If water is heated, it starts to boil when the boiling temperature is reached. An addi-

tional supply of heat does not lead to an increase of temperature, but only to further
evaporation of water (Fig. 21.1).

21.1.2 Aggregation states
Aggregation state of a substance, a phase of a substance determined by certain properties
and by the intrinsic structure.

Four states of aggregation exist:

717
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Ice

Steam

Water
vapor

W
at

er

Evaporization

Melting

Figure 21.1: Temperature
increase by supply of heat.

Solid: The body has a fixed internal order, e.g., a crystal lattice, with very strong internal
interactions. It has a fixed shape with a defined surface. It takes a fixed volume, which
changes only under high pressure.

Liquid: A liquid has no tightly fixed internal order, but is governed by strong internal
interactions. A liquid does not take a specific shape, but still has a definite surface. It
occupies a fixed volume, which changes only under high pressure.

Gas: A gas has no internal order and is governed only by weak internal interactions. A
gas has neither a fixed shape nor a surface. It rather adapts to any volume, filling it entirely.
Its volume may be changed by pressure.

Plasma: The plasma state occurs at very high energies. The atoms are ionized and de-
composed into charged constituents. A plasma has no fixed intrinsic structure, but is gov-
erned by electromagnetic interactions (see p. 573).
▲ By supplying energy, a body may be converted from a solid state to a liquid or gaseous

state, and a liquid may turn into a gaseous state.

21.1.3 Conversions of aggregation states
1. Boiling and condensation

Boiling of a substance, conversion of a liquid into a gas. Boiling of a substance occurs if
the vapor pressure of the substance becomes higher than the environmental pressure.

Latent heat of vaporization, the amount of energy needed to vaporize a liquid.
Specific latent heat of vaporization, the amount of heat needed to vaporize 1 kg of a

material. The specific latent heat depends on the pressure and the temperature.

specific latent heat = latent heat
mass

L2T−2

lv = 
Q

m

Symbol Unit Quantity

lv J/kg specific latent heat of vaporization

Q J latent heat of vaporization
m kg mass of vaporized substance

M In order to determine latent heats of vaporization (or condensation), vapor is con-
densed in specially designed calorimeters. The heat transfer to the calorimeter is
measured.

Boiling point, the temperature at which the substance boils. The boiling point depends on
the external pressure.

Boiling points of many substances are given in Tab. 22.1.2.
■ Boiling points of several elements (in ◦ C): aluminum 2467, lead 1740, mercury

356.58, oxygen (O2) −182.96, hydrogen (H2) −252.8, nitrogen (N2) −195.8.
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Condensation, conversion of a gas into a liquid.
Condensation occurs at the same temperature as boiling. Under specific conditions, a

material may boil at temperatures slightly above the boiling point (see p. 727), or condense
at temperatures slightly below that point (see p. 727).

Latent heat of condensation, the heat released in the condensation of a gas. Its numer-
ical value equals that of the heat of vaporization.

2. Melting and solidification

Melting, the conversion of a solid into a liquid. Melting occurs if the sublimation pressure
of the solid becomes lower than the vapor pressure of the liquid.

Solidification, conversion of a liquid into a solid. Solidification occurs at the same tem-
perature as melting.

Melting point, the temperature at which a solid substance melts or a liquid substance
solidifies. The melting point depends on the external pressure.

For the melting points of many substances, see Tab. 22.1.2.
■ Melting points of several elements (in ◦ C): aluminum 660.4, lead 327.5, iron 1535,

gold 1064.4, mercury −38.87, oxygen (O2) −218.4, hydrogen (H2) −259.34, ni-
trogen (N2) −209.86.

Latent heat of fusion, the quantity of heat that is released when a liquid freezes.
Specific latent heat of fusion, the amount of energy needed to melt 1 kg of a material:

specific latent heat of fusion = melting heat
mass

L2T−2

lf = 
Q

m

Symbol Unit Quantity

lf J/kg specific latent heat of fusion

Q J melting heat
m kg mass of molten substance

Latent heat of melting, the heat released during solidification of a liquid. Its numerical
value equals that of the heat of fusion.

Sublimation, conversion of a solid into a gas.
Desublimation, the inverse process.
Heat of sublimation, quantity of heat to be supplied to sublimate a body.

➤ The sublimation heat is equal to the sum of melting heat and evaporation heat.

21.1.4 Vapor
Wet steam, saturated vapor, occurs in the coexistence of liquid and gaseous states in
equilibrium.

Saturated vapor pressure, pD , SI unit Pascal, vapor pressure of the saturated gas. The
value depends exponentially on the temperature.

Vapor pressure curve, curve pD(T ) representing the saturated vapor pressure of a two-
phase system as a function of temperature (Fig. 21.2).

Nonsaturated vapor, vapor that is not in equilibrium with the liquid.
➤ In the course of time, the liquid vaporizes until equilibrium is reached or all the liquid

is vaporized.
Triple point, point in which solid, liquid and gaseous phase are in mutual equilibrium
(Fig. 21.3). At the triple point both the pressure ptr and the temperature Ttr are fixed (see
p. 734).
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Figure 21.2: Vapor pressure curve.
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Figure 21.3: Phase diagram
of water with triple point
Ttr and critical temperature
Tcrit . I: sublimation pressure
curve, II: melting pressure
curve, III: vapor pressure
curve.

■ For water, the temperature and the pressure at the triple point are 273.16 K and
610.6 Pa, respectively.

➤ Triple points are particularly well suited as fixed points for establishing the tempera-
ture scale.

21.2 Order of phase transitions

Change of entropy, due to the heat supplied or carried off in a phase transition, the entropy
(disorder) of the system (which differs in the phases) is changed.

change of entropy = heat supplied (or released)
temperature

ML2T−2Θ−1


S = 
Q

T

Symbol Unit Quantity

S J/K entropy
Q J quantity of heat
T K temperature

21.2.1 First-order phase transition
Phase transition of first order, characterized by an additional heat supply (release) during
the phase transition. Consequence:
▲ The entropy jump in the S-T -diagram (Fig. 21.4 (a)) is ascribed to the additional

heat supply at the phase transition point.
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■ Transitions between the different aggregation states are first-order transitions, except
for the transition at the critical point.

Relation between the supplied (released) quantity of heat 
Q and the change in tempera-
ture 
T :


Q = C 
T , C : heat capacity.

▲ Since the temperature remains constant at the phase transition, the heat capacity tends
to infinity at the phase transition of first order:

C −→∞ .

The volume also displays a step-like behavior in the p–V -diagram.
▲ The compressibility of the substance diverges at the first-order phase transition:

κ = 1

V

∂V

∂p

∣∣∣∣
T=const.

−→ ∞ .

Characterization of the first-order phase transitions:
• a jump in entropy,
• the heat capacity approaches infinity,
• the compressibility approaches infinity.

21.2.2 Second-order phase transition
Second-order phase transition, characterized by a kink in the temperature (or entropy)
curve (Fig. 21.4 (b)) in the T -S-diagram.
➤ The entropy curve T (S) has no jump, 
S = 0, but the derivative of the entropy with

respect to the temperature changes discontinuously at the transition point.

Transition 
temperature

crit

Figure 21.4: Phase transitions. (a): phase transition of first order, (b): phase transition of
second order.

■ Phase transitions at the critical point are second-order phase transitions.
Second-order phase transitions are characterized by:
• a continuous break point in the entropy,
• a finite jump of heat capacity,
• the compressibility diverges.
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21.2.3 Lambda transitions
Lambda transition, λ-transition, characterized by:
• The entropy as function of the temperature T exhibits no kink, but has a vertical

tangent at a temperature Tλ.

• The derivative of the entropy with respect to the temperature diverges,
dS

dT
→∞.

• The heat capacity diverges, C →∞.
The heat-capacity curve shows a characteristic λ-shape (Fig. 21.5).

Figure 21.5: λ-transition. From left to right, the width of the interval about the transition
temperature becomes smaller and smaller.

■ The transitions to superfluidity in 3He and 4He, as well as some conversions of crystal
structures in binary alloys, are λ-transitions.

21.2.4 Phase-coexistence region
Coexistence region, two phases may exist simultaneously.

In the coexistence region, the temperature is constant for isobars.
The coexistence region is characterized by an entropy jump in the T -S-diagram, and

by a jump in volume in the p–V -diagram. The coexistence region of two phases becomes
smaller with increasing pressure and increasing temperature (Fig. 21.6), and finally van-
ishes at the critical point.

Coexistence
region

Vapor

Liquid

V (10-3 m3)

Figure 21.6: Coexistence region of two phases (schematically). (a): p–V -diagram, (b): S-
T -diagram.
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Critical point, the position in the phase diagram at which the region of coexistence
shrinks to a point.
▲ There is no longer a phase transition above the critical point.
➤ It makes no sense to talk of distinct phases above the critical point.

21.2.5 Critical indices
At the critical point, there are no longer phase boundaries.
➤ Large density fluctuations may occur, manifested, e.g., by critical opalescence, where

an extremely strong scattering of light is observed.
■ A transparent substance suddenly becomes impermeable to light. A tiny fog forms.
▲ At the critical point, several thermodynamics quantities become infinite.
For describing the behavior of diverging quantities near the critical point, power-series
expansions are used.

Critical indices, the exponents of these expansions.
For the liquid–gas phase transition one needs six critical indices for which the standard

notations α, α′, β, γ, γ ′, δ have become customary.
Density difference, the difference of the densities of liquid and gas, z = ρ f l − ρg . For

T → Tc, it approaches zero as

z = ρ f l − ρg ∼
(

1− T

Tc

)β
.

The specific heat capacity at the critical volume CV=Vc may diverge for T → Tc when
approaching the critical temperature from above or from below:

CV=Vc ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
T

Tc
− 1

)−α
if T |ρ≈ρc ≥ Tc ,

(
1− T

Tc

)−α′
if T |ρ≈ρc ≤ Tc .

Compressibility, displays an analogous trend:

κ ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
T

Tc
− 1

)−γ
if T ≥ Tc ,

(
1− T

Tc

)−γ ′
if T ≤ Tc .

Critical isotherm:

p − pc ∼ |ρ − ρc|δ for T = Tc .

Simple gases show a similar behavior with respect to the critical indices.
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21.3 Phase transition and Van der Waals gas

21.3.1 Phase equilibrium
Vapor-pressure curve, curve representing the saturated vapor pressure of a two-phase
system as a function of temperature (Fig. 21.7).
▲ The vapor pressure pg(T ) is a pure function of temperature and does not depend on

the vapor volume V . A change in the vapor volume affects only the quantity of vapor.
➤ Excess vapor is condensed again to liquid. If the quantity of vapor is too low, the

liquid continues to vaporize until saturation is reached.
In equilibrium between vapor and liquid, a certain vapor pressure pg is established that
can be calculated with the Clausius–Clapeyron equation.

Liquid

Vapor

Solid

G
as Figure 21.7: Three-

dimensional p(V , T ) phase
diagram. The vapor pressure
curve p(T ) and the p–V
diagram are projections onto
the p–T and p–V planes,
respectively.

The equilibrium conditions are:
p f l = pg mechanical stability,
T f l = Tg thermal stability,
µ f l (p, T ) = µg(p, T ) chemical stability.

21.3.2 Maxwell construction
1. Equation of state according to Van der Waals

The Van der Waals equation of state for real gases takes into account the internal volume
of the molecules and the (attractive) forces between the molecules. It allows for a simple
approximation for real gases, but is inaccurate for liquids.

Van der Waals equation ML2T−2

(
p +

( n

V

)2
a

)
(V − nb) = n RT

R = 8.314 J/(K mol)

Symbol Unit Quantity

p Pa pressure
n mol number of moles
V m3 volume
a Nm4/mol2 internal-pressure

constant
b m3/mol internal-volume

constant
R J/(K mol) universal gas

constant
T K temperature
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This equation of state allows for metastable and unstable regions.
• Metastable regions display a negative derivative of the pressure with respect to the

volume, and thus a positive compressibility. Metastable states may be reached during
changes of state (see p. 727).

• Unstable regions show a positive derivative of the pressure with respect to the volume
and negative compressibility. They cannot be reached by reversible changes of state.

2. Maxwell construction,

a prescription to replace a section of the curve p(V ) by a horizontal line.
In the region between the outer intersection points of the horizontal line with the Van

der Waals curve (Fig. 21.8):
▲ The area in the p–V -diagram under the horizontal line must be equal to the area

under the Van der Waals curve.
Thus, the intersection points between the curve and the horizontal line are chosen such that
the area enclosed by the horizontal line, the x-axis and the vertical lines through the (outer)
intersection points equalizes the corresponding area obtained by using the Van der Waals
curve as upper boundary.

Figure 21.8: Maxwell
construction.

In other words:
▲ The area enclosed by the horizontal line and the curve above the horizontal line is

equal to the area enclosed by the horizontal line and the curve below the horizontal
line.

▲ The outer intersection points of the horizontal line with the curve define the phase
coexistence region.

In this interval, the Van der Waals curve describes the metastable and unstable regions
which, however, cannot be reached in equilibrium. If the state of the system is changing,
the metastable and unstable regions may be reached (see p. 727).

The length of the horizontal distance decreases continuously with increasing tempera-
ture. Hence, with increasing temperature, the phase coexistence region also shrinks. The
length of the horizontal section approaches zero at the critical point.

3. Critical point and critical temperature in the Maxwell construction

Critical point, the state at which the phase coexistence region shrinks to a point.
Critical isotherm, isotherm passing through the critical point.
Temperature, pressure and molar volume at the critical point may be calculated:

▲ The critical point must be a saddle point on a Van der Waals isotherm.
➤ The critical isotherm is the only Van der Waals isotherm that has a saddle point.
Critical temperature, Tc, the temperature belonging to the critical isotherm.
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critical temperature (Van der Waals equation) Θ

Tc = 8 a

27 Rb

R = 8.314 J/(K mol)

Symbol Unit Quantity

Tc K critical temperature
a Nm4/mol2 internal-pressure

coefficient
b m3/mol internal volume
R J/(K mol) universal gas constant

4. Critical pressure in the Maxwell construction,

pc, pressure at the critical point.

critical pressure (Van der Waals equation) ML−1T−2

pc = a

27 b2

Symbol Unit Quantity

pc Pa critical point
a Nm4/mol2 internal-pressure coefficient
b m3/mol internal volume

Above the critical temperature, no Maxwell construction is possible. Liquid and gas then
can no longer be distinguished.
▲ In processes that do not intersect the range of coexistence in the phase diagram, two

phases may be converted into each other without a phase transition. To carry out such
a process one must go beyond the critical point.

■ The isothermal compression of a gas below the critical temperature leads to a phase
transition. Heating a liquid to a temperature above the critical one, and subsequent
isothermal expansion followed by isochoric cooling (Fig. 21.9), converts the liquid
into a gas without a perceptible phase transition.

Figure 21.9: Scheme of a
closed cycle with only one
perceptible phase transition.

21.3.3 Delayed boiling and delayed condensation
The metastable regions (with negative derivative of the pressure with respect to the volume)
of the Van der Waals isotherm may be realized in experiment in a non-equilibrium state.
■ If a gas is compressed isothermally with great care (avoiding shaking and presence of

condensation centers), then one can follow the Van der Waals isotherm even beyond
the intersection point with the horizontal Maxwell line, nearly up to the maximum of
the curve.
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Delayed condensation, vapor does not condense, although the temperature drops below
the condensation temperature.

Delayed boiling, liquid does not boil, although its temperature exceeds the boiling tem-
perature.

Superheated liquid, liquid brought to the metastable range by isochoric heating.
Supercooled vapor, gas brought to the metastable range by isochoric cooling.

▲ Even for slight disturbances, the metastable system changes in a shock-like manner
into the stable state of phase coexistence.

➤ In practice, these unstable ranges are avoided by adding beads (condensation nuclei)
or stirring the boiling liquid.

There are analogous phenomena in the solid–liquid phase transition.

21.3.4 Theorem of corresponding states
Reduced variable, the representation of a state variable in units of its value at the critical
point:

p = p

pc
, v = v

vc
, T = T

Tc
.

▲ The reduced variables p , v , T are dimensionless.
Simple gas, gas of particles having no large electric dipole moments and whose atoms and
molecules are not strongly correlated even in the liquid phase.
■ Noble gases, N2, O2, H2 or CO, CH4 are simple gases.
Theorem of corresponding states, a statement introduced by Van der Waals:
▲ All simple gases satisfy the same Van der Waals equation in the reduced variables.

Van der Waals equation in reduced variables:(
p + 3

v

)
(3v − 1) = 8T .

21.4 Examples of phase transitions

21.4.1 Magnetic phase transitions
Paramagnets require higher field strengths than ferromagnets to reach saturation mag-
netization.

1. Curie temperature

When an external magnetic field is removed, a solid in a ferromagnetic state retains a
permanent magnetic polarization. The magnitude of the magnetization depends strongly
on the mechanical and thermal history of the material.
➤ Ferromagnetism is found mostly in solids with a well defined crystal structure. Amor-

phous ferromagnets represent exceptions.
Curie temperature, conversion temperature of the transition from ferromagnetism to para-
magnetism. Ferromagnetism is established only below the Curie temperature.
■ The elements iron, cobalt and nickel exhibit ferromagnetic properties below the Curie

temperature.
The Curie temperatures of various metals are listed in Tab. 22.1.3.
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2. Weiss domains and Bloch walls

In a non-magnetic ferromagnetic, the atomic magnetic dipoles are not oriented randomly
but are aligned parallel within larger regions of extension of several tenths of millimeters.
These regions have a macroscopic magnetic dipole moment.

Weiss domains, designation of regions with parallel alignment of the magnetic dipoles.
In a nonmagnetized ferromagnet, the dipole moments of the individual magnetized Weiss
domains are randomly oriented (Fig. 21.10). Therefore, the material as a whole appears to
be nonmagnetic.

Figure 21.10: Weiss domains
(schematic). �m: magnetic
dipole moment.

Spontaneous magnetization, varies continuously between the individual Weiss do-
mains over a range of ca. 300 atoms.

Bloch walls, interfaces between the Weiss domains.
▲ An external magnetic field causes the Weiss domains with similar alignment to en-

large until all domains are equally aligned: saturation magnetization.

21.4.2 Order–disorder phase transitions
In phase transitions of this kind, the low-temperature phase exhibits a certain order of
atoms or molecules which get lost above the transition temperature.
➤ In principle, the solid–liquid and solid–gaseous transitions may also be understood

as order–disorder transitions. But it is a convention to include only solid–solid phase
transitions in this category.

Positional order, the arrangement of atoms or molecules in a crystal lattice.
➤ Order–disorder phase transitions also include conversions in the arrangement of

atoms on the lattice sites.
■ Phase transition in β-brass (CuZn) at T = 465 ◦C: In the low-temperature phase,

brass displays a structure in which copper and zinc are well ordered in distinct sub-
lattices. At higher temperatures, the elemental atoms are statistically distributed.

Orientational order describes the relative orientation of certain molecules with respect to
each other.
■ Ammonium halides NH4Cl, NH4Br and NH4J. Here the NH+4 –tetrahedrons may

take two distinct orientations in the crystal lattice (Fig. 21.11). Above the critical
temperature, both orientations occur statistically distributed. Below Tc = 256 K
all tetrahedrons in NH4Cl have the same orientation, while in NH4Br below Tc the
tetrahedrons take an alternating orientation.

Figure 21.11: Possible
orientation of the NH+4 –
tetrahedron in NH4Cl.
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21.4.3 Change in the crystal structure
1. Phase transitions of the type solid-solid

The solid phases of many substances may take different crystal structure, depending on
pressure and temperature (for alloys also depending on the composition).
■ For ice at pressures up to 8000 bar, five distinct modifications are known (ice I, II,

III, IV, V). Ordinary ice at p ≈ 1 bar is only one of them.
➤ At extremely high pressures, several nonmetals may even be transformed to a metal-

lic phase.
■ Carbon and hydrogen have this property.
If no appropriate catalyst is present, the solid–solid phase transitions sometimes may be
delayed appreciably.
■ Actually, a diamond is not stable at atmospheric pressure (see Fig. 21.12). However,

the phase transition is appreciably delayed: a diamond is practically stable.

Liquid
Metal

Diamond

Graphite

Gas Figure 21.12: Phase diagram
of 12C (without fullerenes).

2. Structures of carbon

So far, three important stable forms of solid carbon are known:

a) Graphite, the most stable phase; planar, honeycomb-like structures, metallic conduc-
tivity. Three valence electrons are used for bonds with the neighbors in the plane. The
fourth electron may be displaced freely in this plane (sp2-hybrid) generating the con-
ductivity of graphite. The individual planes are not linked among each other by chemical
interactions, and thus may be shifted against each other (graphite is suitable as lubricant).

b) Diamond, very hard, at standard atmospheric pressure metastable (but in fact stable)
phase, tetrahedron-like structures, insulator. Chemically resistant material with low fric-
tional coefficient and high thermal conductivity. All four valence electrons are used for
simple bonds with four neighbors each. Application as material for coating of tools, anti-
corrosion layers, wear-resistant surface coating and as passive material in microelectronics.
Diamond layers can be produced synthetically as polycrystals, and with high purity by pre-
cipitation from the gaseous phase.

c) Fullerene, spherical closed structures of carbon. Three valence electrons are used
for bonds with the neighbors, the fourth points to the outer surface of the spherical
shell. Semiconducting material, soluble by several organic solvents, similar softness as
graphite. Production by vaporization of graphite in an electric arc in a low-pressure noble-
gas atmosphere (Huffmann–Kraetschmer method). Possible use for batteries (take-in
of electrons), superconductivity (fullerene–alkali mixtures), photochemistry (photosensi-
tizer), microconductors, optical switching elements.
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d) Most important kinds of fullerenes:
• Buckminster fullerene C60, most famous and most stable modification with the

shape of a soccer ball, consisting of 12 pentagons and 20 hexagons. Main product
of the Huffmann-Krætschmer method.

• C70, second-most-frequent modification, with the shape of an American football.
• Buckybabies, unstable structures C32,C44,C50 and C58, nearly spherical.
• Buckygiants, unstable, large structures C240,C540,C960.

e) Fullerene-like structures:
• Buckytubes, tube-like macromolecules, similar to graphite, with a length of microm-

eters and microscopic diameter (some nanometers). Application in electric engineer-
ing (molecular wires).

• Buckyonions, onion-like arrangement of spherical fullerenes. Use not yet known,
high resistance to compression expected.

21.4.4 Liquid crystals
In some organic substances with high molecular weight and a stretched form of the
molecules, the long-range order remains in melting. Such molecules also have an align-
ment in the liquid phase, and hence are not isotropic.

Liquid crystals may occur in a variety of structures, e.g., in smectic or nematic phases
(see p. 730).
➤ With increasing temperature, some substances may form various types of liquid crys-

tals. Then they have several conversion temperatures.
Usually, liquid crystals are formed by complicated organic substances. Many of them have
conversion temperatures and melting points in the range of 100 ◦C.
➤ Liquid crystals only received technical interest after substances with lower conversion

temperatures were discovered.
Optic anisotropy of nematic liquid crystals leads to a strong scattering of light.
➤ In the phase transition to an isotropic liquid, the scattering disappears.
In liquid crystals of sufficiently large electric dipole moment, the permeability of light, the
reflection, and the optical activity may be controlled in a simple manner by applying an
electric field almost without power supply.
■ LCDs (liquid crystal displays) are based on this principle.

21.4.5 Superconductivity
Superconductors, electric conductors for which the direct-current resistance drops to an
extremely small value when the temperature falls below a critical temperature Tc. The
charge carriers are not single electrons, but Cooper pairs. For most of the metallic super-
conductors, the transition temperature lies at about 1–10 kelvin.

High-temperature superconductors, HTCS, ceramic superconductors based on cop-
per oxide with high critical temperature.
➤ For high-temperature superconductors, liquid air is sufficient as coolant. For cool-

ing of the common metallic superconductors, the more expensive liquid helium is
necessary. But because of the thermal motion of the magnetic flux lines, the high-
temperature superconductors have a relatively high electric resistance, which de-
creases only continuously with decreasing temperature. Besides the material insta-
bilities, the electric resistance represents an appreciable limitation for technical ap-
plications.
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Meissner–Ochsenfeld effect, shielding of external magnetic fields by the superconduc-
tor up to a critical magnetic field strength for which the superconductivity breaks down
(see solid-state physics, superconductors). For intensities below the critical magnetic field
strength Hc, no magnetic field can penetrate into the superconductor.
■ Superconductors are mainly used for loss-free circuit lines and for generation of high

magnetic flux densities by superconducting magnetc coils.

21.4.6 Superfluidity
Superfluidity, the ability of a liquid to creep up at the walls of vessels and to overcome
potential barriers.
■ If a beaker is immersed in a superfluid such that the bottom is below the surface of

liquid but the rims project beyond the surface, the superfluid creeps up to the rim
of the beaker and flows down the inner wall until the liquid level inside the beaker
equals the level outside.

In superfluid liquids:
• the viscosity is zero, η→ 0,
• the thermal conductivity is infinite: λ→∞.
No temperature gradients arise, since all heat fluctuations are compensated immediately.

Helium II, a superfluid phase with maximum order. Below a pressure of 25 bar, there is
no conversion of helium II into solid helium for arbitrary low temperature.

For standard atmospheric pressure, liquid helium converts into helium II at 2.2 K.
• Helium II has an extremely high thermal conductivity.
• Helium II does not boil—as other liquids do—with formation of vapor bubbles in the

liquid volume. Helium II instead evaporates from the surface.
The viscosity of helium II may take extremely low values.
■ Helium II can still flow through the smallest capillaries that may not allow even

gaseous helium to flow through.

21.5 Multicomponent gases

Multicomponent gas, a gas with more than one distinguishable type of particle
(component).

Mole fraction, xi , dimensionless quantity, the fraction of one kind of particles of the
total quantity:

mole fraction = number of particles of one type
total number of particles

1

xi = Ni

N

Symbol Unit Quantity

xi 1 mole fraction, type i
Ni 1 particle number, type i
N 1 total number of particles

The sum over all mole fractions yields unity:

K∑
i=1

xi =
K∑

i=1

Ni

N
= N

N
= 1 .
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Concentration, ci , the quantity of a substance i per unit volume or unit mass.
There are several definitions for the description of concentration (see p. 742). The notion

of concentration used here for the solutions involves the molarity, the ratio of the quantity
of substance of a dissolved substance to the volume of the solvent,

ci = ni

V
.

Mass fraction, ξi , the ratio of the total mass of a given type of particle to the total mass
of all particles. The mass fraction is equal to the product of the mole fraction and the ratio
of the molar mass of the i type of particles and the molar mass of the total system.

mass fraction = total mass of type i
total mass of all particles

1

ξi = mi

mtot

= xi
Mi

Mtot

Symbol Unit Quantity

ξi 1 mass fraction type i
mi kg total mass type i
mtot kg total mass all particles
xi 1 mole fraction
Mi kg/mol molar mass type i
Mtot kg/mol molar mass total mixture

➤ In some books, the mass fraction is labeled xi , and the mole fraction κi .

21.5.1 Partial pressure and Dalton’s law
Total pressure p of a mixture of gases, SI unit pascal, the sum over all forces F exerted
by momentum transfer onto an area A:

p = F

A
.

Partial pressure pi of one type of particle, the sum over all forces F exerted by mo-
mentum transfer by the specific type of particle onto an area A:

partial pressure = fraction of force
area

ML−1T−2

pi = Fi

A

Symbol Unit Quantity

pi Pa partial pressure particles, type i
Fi N fraction of force perp. area, type i
A m2 area

Dalton’s law:
The sum over all partial pressures of a gas consisting of various components yields the

total pressure:

K∑
i=1

pi =
K∑

i=1

Fi

A
= F

A
= p .
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The components of a gas are distributed independently of each other over the entire volume.
Every component behaves as if there were no other components.
▲ Any component occupies the volume uniformly.
▲ In equilibrium, the partial pressure of a component is the same everywhere.
The quotient of partial pressure pi and total pressure p is equal to the mole fraction xi of
the gas,

pi

p
= Ni

N
= xi .

21.5.2 Euler equation and Gibbs–Duhem relation
Euler equation, representation of the internal energy U(T, S, p, V , µi , Ni ) as a function
of the other variables for an isolated system in equilibrium:

Euler equation ML2T−2

U = T S − pV +
∑

i

µi Ni

Symbol Unit Quantity

U J internal energy
T K temperature
S J/K entropy
p Pa pressure
V m3 volume
µi J chemical potential, type i
Ni 1 particle number, type i

Gibbs–Duhem relation, differential relation: The intensive variables T, p, µ1, . . . , µK
conjugated to the extensive variables S, V , N1, . . . , NK cannot all be independent of each
other,

0 = S dT − V dp +
K∑

i=1

Ni dµi .

Differential representation of the internal energy:

dU = T dS − pdV +
K∑

i=1

µi dNi .

➤ This representation is connected with the Gibbs–Duhem relation if the total differen-
tial of the Euler equation is formed:

dU = T dS − p dV +
K∑

i=1

µi dNi + S dT − V dp +
K∑

i=1

Ni dµi .

Temperature, pressure and chemical potential (intensive variables) are the derivatives
of the internal energy with respect to the extensive variables entropy, volume and particle
number:

∂U

∂S
= T,

∂U

∂V
= −p,

∂U

∂Nl
= µl , l = 1, . . . , K .



734 21. Phase transitions, reactions and equalizing of heat

21.6 Multiphase systems

Heterogeneous system, the properties of the system change discontinuously at certain
interfaces.
■ A vessel with water, water vapor and air.
Phase, a homogeneous part of a heterogeneous system.

Phase boundary, the separating interface between two phases.
■ A pot with water and water vapor has the water surface as phase boundary. There is

a gaseous phase (water vapor) and a liquid phase (water).

21.6.1 Phase equilibrium
In a system with P phases (i) = 1, 2, . . . , P and K components l = 1, 2, . . . , K , every
phase obeys the equation:

dU (i) = T (i)dS(i) − p(i)dV (i) +
K∑

l=1

µ
(i)
l dN (i)l , i = 1, 2, . . . , P .

➤ For a complete description of the system K + 2 extensive properties of state are
sufficient.

If the total system is in thermodynamic equilibrium, the intensive properties of the P
phases and K components satisfy:

T (1) = T (2) = · · · = T (P) thermal equilibrium,
p(1) = p(2) = · · · = p(P) mechanical equilibrium,

µ
(1)
l = µ(2)l = · · · = µ(P)l , l = 1, . . . , K chemical equilibrium.

■ For the liquid-gas system in equilibrium:

T f l = Tg, p f l = pg, µ f l = µg .

If the system is not in thermal equilibrium, then an energy exchange proceeds until the
temperature T is equalized. Analogously, in the absence of chemical equilibrium, an ex-
change of particles proceeds until the chemical potentials µl of every type of particle l are
equal to each other. In the absence of mechanical equilibrium, a redistribution of volumes
occurs until the pressure is equalized.
■ In a closed pot, water vaporizes until the saturated vapor pressure is reached. In an

open pot, the environment must be included into the system. If the air is nonsaturated,
water vaporizes completely before equilibrium can be achieved.

21.6.2 Gibbs phase rule
Gibbs phase rule, specifies the number F of intensive variables (degrees of freedom)
needed for a complete description of the system.
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number of degrees of freedom =
number of components + two − number of phases

F = K + 2− P

Symbol Unit Quantity

F 1 number of degrees of freedom
K 1 number of components
P 1 number of phases

➤ The notion of the degree of freedom used here should not be confused with the mi-
croscopic number of degrees of freedom f of molecules that may receive kinetic
energy.

■ In a closed pot with steam (K = 1), three extensive variables are needed to describe
the system completely, e.g., S, V , N . One of them (e.g., V ) fixes only the size of the
system. The intensive properties are already described completely by F = 1+2−1 =
2 intensive variables, e.g., pressure and temperature.

Vapor-pressure curve, curve pD(T ), the vapor pressure of a two-phase system as a func-
tion of the temperature.

According to F = K +2− P = 1+2−2 = 1 in a (one-component) two-phase system,
there is only one degree of freedom. Pressure and temperature of the system are dependent
on each other.

Triple point of a one-component system, the point at which three phases are all in
equilibrium. Here, F = 1+ 2− 3 = 0.
▲ At the triple point, all intensive variables are fixed.
■ For water Ttr = 273.16 K and ptr = 610.6 Pa.
➤ Triple points are particularly well suited as fixed points in establishing a temperature

scale.
At the triple point, only the relative ratio of quantities of the various phases is variable.

The triple-point values of numerous substances are listed in the Tab. 22.1/1.

21.6.3 Clausius–Clapeyron equation
Clausius–Clapeyron equation, a differential equation for the vapor pressure p(T ) if en-
tropy and volume per particle are known functions of T and p.

Clausius–Clapeyron equation ML−1T−2Θ−1

dp

dT
= sg − s f l

vg − v f l

= Sg − S f l

Vg − V f l

= Q

(Vg − V f l )T

Symbol Unit Quantity

p Pa pressure
T K temperature
S f l , Sg J/K entropy liquid, gaseous phase
V f l , Vg m3 volume liquid, gaseous phase
s f l , sg J/(K kg) specific entropy, liquid, gas
v f l , vg m3/kg specific volume, liquid, gas
Q J evaporation heat

➤ Vg and V f l do not mean the volumes of the entire liquid and gaseous phase, but rather
the volumes taken by the same quantity of substance as liquid and as gas, respectively.

➤ Instead of the specific quantities, one may also use molar quantities or the entropy
and volume per particle.
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In most cases Vg � V f l , one then obtains the approximation:

dp

dT
≈ Q

VgT
.

➤ Of course, this approximation no longer holds near the critical point.
Representation in terms of specific quantities:

pressure difference = specific latent heat · density
temperature

ML−1T−2Θ−1

dp

dT
≈ lvρg

T

Symbol Unit Quantity

p Pa pressure
T K temperature
lv J/kg specific latent heat of vaporization
ρg kg/m3 density of gas

21.7 Vapor pressure of solutions

Vapor pressure curve, the curve pD(T ) representing the vapor pressure of a two-phase
system as a function of the temperature.
➤ Here the saturated vapor pressure in equilibrium is used.
Boiling of a substance, the vapor pressure equals the environmental pressure.

Solidification of a substance, the sublimation pressure is lower than the vapor pressure.

21.7.1 Raoult’s law
Raoult’s law, describes the reduction of vapor pressure of a solvent on dissolving a slow-
evaporating substance.
▲ The relative lowering of vapor pressure is proportional to the molar fraction of the

dissolved substance.

vapor pressure reduction
original vapor pressure

= mole fraction (dissolved substance) 1


p

p(T )
= xst

Symbol Unit Quantity


p Pa vapor pressure reduction
p(T ) Pa original vapor pressure
xst 1 mole fraction of dissolved substance

➤ This law is valid only for very low concentrations (Fig. 21.13). Raoult’s law has an
appreciably wider range of application if the chemical activity is used in place of the
mole fraction.

21.7.2 Boiling-point elevation and
freezing-point depression

On dissolving a substance, the vapor pressure of the solvent is lowered. Therefore, the
system reaches the vapor pressure corresponding to the environmental pressure only at
higher temperatures.
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Raoult's law

Figure 21.13: Comparison
of Raoult’s law with
experiment.

1. Boiling-point elevation

▲ On dissolving a substance, the boiling temperature is raised in proportion to the quan-
tity of the dissolved substance.

Ebullioscopic constant, E , SI unit kelvin, proportionality factor between rise in boiling
point and mole fraction of the dissolved substance.

boiling-point elevation ∼ mole fraction Θ


T = E · xdiss. subst.

Symbol Unit Quantity


T K rise in boiling point
E K ebullioscopic constant
xdiss. subst. 1 mole fraction

For ebullioscopic constants, see Tab. 22.8/2.

2. Freezing-point depression,

lowering of the freezing temperature because the vapor-pressure curve intersects the subli-
mation curve only at lower temperature (Fig. 21.14).

Ice

W
at

er

Solution

Figure 21.14: Rise in boiling
point 
TS and fall in
freezing point 
TG .

■ The spreading of salt in winter serves to lower the freezing point of water, in order to
prevent formation of ice.

▲ On dissolving a substance, the melting point is lowered in proportion to the quantity
of the dissolved substance.

Cryoscopic constant, K , SI unit kelvin, proportionality factor between freezing-point de-
pression and mole fraction of the dissolved substance.
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freezing-point depression ∼ mole fraction Θ


T = K · xdiss. subst.

Symbol Unit Quantity


T K freezing-point depression
K K cryoscopic constant
xdiss. subst. 1 mole fraction

For cryoscopic constants, see Tab. 22.8/2.
➤ For electrolytic solvents, dissociation must be taken into account. Dissociation mod-

ifies the mole fraction.

21.7.3 Henry–Dalton law
Henry–Dalton law:
The pressure of a gas above a solvent is proportional to the concentration x of the dissolved
gas; for known reference points p0, x0:

x

x0
= p

p0
.

The law is also valid to a good approximation for the partial pressures of several gases.
■ In a closed bottle of mineral water an equilibrium is established between dissolved

CO2 (forming carbonic acid) and gas.
• The Henry–Dalton law describes the vapor pressure of a gas dissolved in a liquid.
• Raoult’s law refers to the solution of a slowly evaporating substance, and the solvent

produces the vapor pressure (see Fig. 21.15).

Henry–
Dalton

Experiment

Raoult

/

Figure 21.15: Comparison of Raoult’s law and Henry–Dalton law with experiment.

21.7.4 Steam–air mixtures (humid air)
Steam–air mixtures are of great importance, e.g., for energy production and air condition-
ing.
■ Gasoline-vapor–air mixtures in combustion engines, or steam–air mixtures in air con-

ditioning.
Dehydration of a gas, by withdrawal of water by chemicals, molecular sieves, freeze-out,
heating or mixing with dry air. Generally, dehydrators are used.
■ Drying agents include: silica gel, phosphorus pentoxide and sulfuric acid.
Humidification of a gas, spraying of water, cooling, or mixing with humid air.
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1. Atmospheric humidity

Absolute humidity, f , the quotient of the mass of water present, mW (gaseous and liq-
uid), and the volume of air, VL :

f = mW

VL
, [ f ] = kgm−3.

Water content, degree of moisture, x , the ratio of the mass of water, mW , to the mass of
air, mL :

x = mW

mL
, [x] = 1.

Relative atmospheric humidity, relative moisture, ϕ, dimensionless quantity, the ratio
of partial vapor pressure of water, pD , to the saturated vapor pressure, pS , at the corre-
sponding temperature:

relative moisture = absolute moisture
maximum moisture

1

ϕ = pD

pS

Symbol Unit Quantity

ϕ 1 relative moisture
pD Pa partial pressure
pS Pa saturated vapor pressure

The relative moisture is generally given as a percentage:
• nonsaturated vapor ϕ < 100 %,
• saturated vapor ϕ = 100 %.
➤ For humans at room temperature, a relative moisture of 50 % is considered to be

comfortable.
M Hygrometers are devices for measuring the relative atmospheric moisture.

Hair hygrometers are based on the variation of length of animal hair with humidity.
Dew-point hygrometers are based on the determinantion of the dew-point.
Aspiration hygrometers measure the temperature depression resulting from the
evaporation of water.
Psychrometry measures the moisture by comparing a temperature measurement with
a thermometer kept at ϕ = 100 % and another thermometer kept at room moisture,
see Tab. 22.8/3.
Electronic hygrometers measure, e.g., the modified capacitance of a capacitor.

▲ The relative atmospheric moisture increases on cooling the steam–air mixture. This
is caused by the lowering of the vapor pressure of water with the temperature
(Fig. 21.16).

If the temperature decreases to the dew-point, then condensation water is observed:

pD = pS .

2. Saturated steam

Saturated steam, dry-saturated steam with ϕ = 100 % exactly. Saturated steam is ex-
tremely unstable; a small withdrawal of heat may lead to formation of fog.

Supersaturated steam, occurs at temperatures below the dew point. Small water
droplets are formed that precipitate as fog.
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Figure 21.16: Density of
steam as a function of the
temperature.

Condensation nuclei, small solid particles on which small water droplets are formed
so that condensation is enhanced.

Fog arises by formation of water droplets at condensation nuclei.
Clouds arise by the rise of moist masses of air that cool at high altitude.
Desublimation leads to formation of solid water (ice crystals, snow) at crystallization

nuclei in the atmosphere at very low temperatures.
Hail arises when liquid water (rain drops) is cooled in cold air to temperatures below

0 ◦C.
Wet steam, two-phase mixture of saturated steam and liquid at boiling temperature.

Rising vapor bubbles from the boiling liquid may transport small quantities of water.
The mass of the wet steam includes the mass of the saturated steam and the mass of

water,

mwetsteam = msaturatedsteam + mwater .

Steam content, xsteam, ratio of masses of saturated steam and wet steam, respectively.
Water content, xwater, ratio of mass of water to mass of wet steam,

xsteam = msaturatedsteam

mwetsteam
, xwater = mwater

mwetsteam
.

Superheated steam, steam at a temperature above the temperature corresponding to the
saturated state.
▲ Superheated steam is nonsaturated.

3. Density of moist air

Density of moist air, sum of the specific density of dry air and the specific density of the
steam fraction.

density of moist air ML−3

ρmoist = 1

T

(
pdry

Rdry
+ psteam

Rsteam

)

pdry = pmoist − psteam

Rdry = 287 J/(kg K)

Rsteam = 462 J/(kg K)

Symbol Unit Quantity

ρ kg/m3 density
T K temperature
pmoist Pa pressure of moist air
pdry Pa pressure of dry air
psteam Pa pressure of steam
Rdry J/(kg K) spec. gas constant

of dry air
Rsteam J/(kg K) spec. gas constant

of steam
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The conditional equation for dry air (second row) follows from Dalton’s law (see p. 732).
▲ Moist air is lighter than dry air.

4. Specific enthalpy of moist air

▲ The enthalpy of moist air is equal to the sum of the enthalpy of dry air and the
enthalpy of steam.

The specific enthalpy of moist air is the sum of the specific enthalpy of dry air and the
specific enthalpy of steam multiplied by the degree of moisture:

specific enthalpy of moist air L2T−2

hmoist = hdry + xhsteam

Symbol Unit Quantity

hmoist J/kg spec. enthalpy of moist air
hdry J/kg spec. enthalpy of dry air
hsteam J/kg spec. enthalpy of steam
x 1 degree of moisture

The change of the specific enthalpy is determined by the change in temperature and by the
specific heat capacity at constant pressure. For the steam, the specific evaporation enthalpy

hevapor. must be added (see Tab. 22.8/6).

specific change of enthalpy L2T−2


hdry = cp dry
T


hsteam = cp steam
T

+
hevapor.

Symbol Unit Quantity

hdry J/kg spec. enthalpy dry air
hsteam J/kg spec. enthalpy steam
hevaporation J/kg spec. evaporation

enthalpy
T K temperature
cp dry J/(kg K) spec. heat capacity

dry air
cp steam J/(kg K) spec. heat capacity

steam

5. Mollier diagram

Mollier diagram, graphic representation of the relation between degree of moisture, rela-
tive atmospheric moisture, temperature and specific enthalpy.

h, x-diagram, exact denotation of this special type of diagram from which one may
deduce the dependence of the specific enthalpy h on the degree of moisture x (Fig. 21.17).
➤ Usually, the degree of moisture x is plotted on the abscissa and the temperature T

on the ordinate. Points referring to equal specific enthalpy correspond to the inclined
straight lines, points referring to equal relative atmospheric moisture correspond to
the rising lines curving to the right.

Saturation line, the line referring to the relative moisture ϕ = 100 %, lower boundary of
the diagram.
▲ An h, x-diagram is valid only for a fixed fixed total pressure (range).
The partial pressure of the steam is variable and proportional to the degree of moisture.
Therefore, there are also other representations in which the specific enthalpy depends on
the vapor pressure, or an assignment vapor pressure—moisture is implemented in the pic-
ture.
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Specific
 enthalpy h (kJ/kg)

Moisture content x (g/kg)

Figure 21.17: Representation of a h, x-diagram following Mollier. The horizontal lines
correspond to equal temperature, the vertical lines to equal degree of moisture, the slanting
lines to equal enthalpy and the curves inclined to the right correspond to equal relative
moisture.

21.8 Chemical reactions

Chemical reaction, a process in which particles of one type react with particles of another
type to yield new particles. These conversions are written with reaction equations.
■ Two molecules of hydrogen and one molecule of oxygen react to form two water

molecules,

2 H2 + O2 � 2 H2O.

Reaction equation, describes the initial substances and the final products of a reaction
and their quantitative contributions.

Reactants, initial substances of a reaction.
Products, substances produced in the reaction.
Notation of a reaction equation in which the substances A1, A2, . . . are converted into

the substances B1, B2, . . . :

reaction equation

a1A1 + a2A2 + · · ·
� b1B1 + b2B2 + · · ·

Symbol Unit Quantity

a1, a2 1 stoichiometric coefficient
reactant 1, 2

b1, b2 1 stoichiometric coefficient
product 1, 2

Stoichiometric coefficients, ai , bi , specify how many particles of one type participate in
a reaction process.
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■ In the formula given above, a1 particles of type A1 react with a2 particles of type A2,
forming b1 particles of type B1, and so on.

➤ As is indicated by the notation �, the backward reaction is also determined. The
relation between both reactions is determined by the law of mass action (see.p. 745).

21.8.1 Stoichiometry
Stoichiometry, quantitative evaluation of chemical reactions.

1. Relations between the mass ratios

In order to guarantee that the reaction

a1A1 + a2A2 + · · ·� b1B1 + b2B2 + · · ·

can proceed to completion, the mass ratios must obey the relation:

mass ratio ∼ molar mass ratio

m1

m2
= a1 M1

a2 M2

Symbol Unit Quantity

m1,m2 kg total mass substance 1, 2
a1, a2 1 stoichiometric coefficient

substance 1, 2
M1,M2 kg/mol molar mass substance 1, 2

2. Solutions

Concentration, ci , quantity of a substance i per unit volume or unit mass. The following
terms are used:
• Mass fraction, fraction of the mass of the specific substance related to the total mass,

ξi = mi

mtot
= xi

Mi

Mtot
.

• Mass percentage, specification of the mass fraction as a percentage,

mass-% = ξi · 100 % = mi

mtot
· 100 % .

• ratio of mass of substance i to the remaining mass mremain.,

mi

mremain.
= mi

mtot − mi
= ξi

1− ξi .

This ratio is particularly suitable for preparing solutions.
• Molarity c, the number of moles of a substance per liter of solvent.
• Mass of a substance per unit of volume of a solvent. This specification is also useful

for preparing solutions.
• Volume percentage, the ratio of the volume of a substance to the total volume,

vol.-% = Vi

Vtot
· 100 %.

This definition is meaningful only for mixing liquids.
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The concept of concentration used here for solutions employs the molarity,

ci = ni

V
= mole quantity

volume solvent
.

■ A 0.5-molar NaCl solution contains 0.5 mol of NaCl per liter of water.
For the preparation of a solution with the desired molarity c, one has:

mass of substance to be dissolved M

m = cV M

Symbol Unit Quantity

m g mass of substance to be dissolved
c mol/� molarity
V � volume of solvent
M g/mol molar mass of substance to be dissolved

■ To prepare 250 m� 0.1-molar NaF solution, one needs

m = 0.1 mol/� · 0.25 � · 42 g/� = 1.05 g .

Normality, the number of reactive monovalent reaction groups per liter of solvent.
➤ The equal charge of the monovalent reaction groups is of importance. So, for NaOH

one does not count both groups Na+ and OH−, but only one group.
■ A 1-molar HCl solution forms H3O+ Cl− and is also 1-normal.

A 1-molar H2SO4 solution forms 2H3O+ SO2−
4 and is 2-normal.

21.8.2 Phase rule for chemical reactions
Extended Gibbs phase rule, describes the number of degrees of freedom including chem-
ical reactions:

number of degrees of freedom = components + two
− number of phases − number of reactions

F = K + 2− P − R

Symbol Unit Quantity

F 1 number of degrees of freedom
K 1 number of components
P 1 number of phases
R 1 number of reaction equations

The total number of extensive variables is (K − R + 2).

21.8.3 Law of mass action
Notation for a reaction equation:

a1A1 + a2A2 + · · ·� b1B1 + b2B2 + · · · .
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1. Law of mass action,

describes the equilibrium concentrations of the initial and final substances of a chemical
reaction:

law of mass action

xb1
B1

xb2
B2
. . .

xa1
A1

xa2
A2
. . .
= K (p, T )

Symbol Unit Quantity

a1, a2 1 stoichiometric coefficient
reactant 1, 2

b1, b2 1 stoichiometric coefficient
product 1, 2

xA1 , xA2 1 mole fraction reactant 1, 2
xB1 , xB2 1 mole fraction product 1, 2
K 1 equilibrium constant

➤ Instead of the mole fraction, the absolute concentration of the substance also may be
used. But then the equilibrium constant has to be adapted correspondingly,

cb1
B1

cb2
B2
. . .

ca1
A1

ca2
A2
. . .
= K ′ .

▲ In the law of mass action, the initial substances (reactants) raised to the power of their
multiplicity occur in the denominator, and the produced substances (products) raised
to the power of their multiplicity occur in the numerator.

2. Statements of the law of mass action

The equilibrium constant K (p, T ) describes the point of equilibrium and, therefore, the
dominance of a forward reaction or backward reaction.

K > 1: The equilibrium lies on the side of the products. The concentration
of the products dominates in equilibrium.
For an equal concentration of products and reactants the forward reaction
dominates.

K < 1: The equilibrium lies on the side of the reactants.
The concentration of reactants dominates in equilibrium.
For equal concentration of products and reactants the
backward reaction dominates.

▲ For the course of the reaction, the products of concentrations in the numerator and
denominator are of importance, but not the individual concentration.

■ If the concentrations are changed such that the product of the concentrations remains
constant, then the final concentration does not change, e.g.,

xC

xA · xB
= xC

0.5xA · 2xB
= K .

This is of particular importance if the equilibrium constant K is small.
■ A substance P has to be produced with an expensive raw material T and an inexpen-

sive raw material B. The scheme of the reaction is

T + B � P ,
xP

xT · xB
= K .
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For an incomplete reaction (K very small), an optimal use of the expensive substance
can be achieved if the inexpensive substance is added in excess. For twice the con-
centration of the inexpensive material, only half the expensive material is needed to
produce the same quantity of the product.

3. Equilibrium constant,

the equilibrium constant is related to the chemical potentials µ j of the reaction partners,

K (p, T ) = e

⎡
⎣− 1

kT

⎛
⎝∑

j

b jµ j (p, T )−
∑

i

aiµi (p, T )

⎞
⎠
⎤
⎦
.

The equilibration constant depends on pressure and temperature.
Description in terms of the balance of free enthalpy:

equilibrium constant

K (p, T ) = e

(
−
G(p,T )

kT

) Symbol Unit Quantity

K 1 equilibrium constant
G J free enthalpy
k J/K Boltzmann constant
T K temperature

For the most important reactions, acid-base reactions, dissociations, the equilibrium con-
stants are listed in tables on chemistry.
➤ Frequently, concentrations remaining constant, e.g., solvents (e.g., H2O) are included

in the constant.

21.8.4 pH-value and solubility product
For the dissociation (decomposition) of water,

2 H2O� H3O+ + OH−

according to the law of mass action:

xH3O+ · xOH−

x2
H2O

= K ,
cH3O+ · cOH−

c2
H2O

= K ′ .

The concentration of water, remaining constant, is included in the constant.
■ For water:

cH3O+ · cOH− = 10−14 mol2/�2 (at T = 22 ◦C) .

One may determine the OH− concentration from the H3O+ concentration in water.

1. pH-value and pOH-value

pH-value, negative logarithm (base 10) of the H3O+ concentration,

pH = − log

(
cH3O+

1 mol/�

)
.
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pOH-value, negative logarithm (base 10) of the OH− concentration,

pOH = − log

(
cOH−

1 mol/�

)
.

➤ The sum of both values is equal to 14,

pH+ pOH = 14 .

• Acidic solutions have high H3O+ concentrations and low pH-values.
• Basic solutions have lower H3O+ concentrations and high pH-values.
• Neutral solutions have equal concentrations of H3O+ and OH−,

pH = pOH = 7 .

➤ There is no exact thermodynamic relation between the activity of the hydrogen ions
and the pH-value. The conventional pH-scales are realized by a series of buffer solu-
tions.

The H3O+ or OH− concentrations may be varied by adding acids or bases.
■ In fact, hydrochloric acid may dissociate completely into water,

HCl+ H2O → H3O+ + Cl− .

The resulting H3O+ excess leads to a lower pH-value determined by

pH = − log

(
cH3O+

1 mol/�

)
= − log

(
cacid + cdiss.

1 mol/�

)
,

where for the concentrations:

(cacid + cdiss.) · cdiss. = 10−14mol2/�2 .

2. Acid and base constants

Acid constant, KS , describes the dissociation of acids.
Base constant, K B , describes the dissociation of bases.
➤ The degree of dissociation of acids and bases is higher for diluted acids and bases

than for concentrated acids and bases.
pKS and pK B give the negative logarithm of the acid constants and base constants, respec-
tively:

pKS = − log KS, pK B = − log K B .

3. Solubility product,

L , law of mass action for dissolved salts. It describes the ionic concentration of a saturated
solution.
➤ The salt not dissolved is deposited at the bottom and can be ignored. So, only the

terms in the numerator remain.
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■ Solubility product of AgCl. On dissolving in water, the dissociation of silver chloride

AgCl (deposit)� Ag+ + Cl− (saturated solution)

is determined by the solubility product,

cAg+ · cCl− = L = 1.6 · 10−10 mol2

�2
.

4. Effective concentrations,

also activity concentrations, a, take into account the interaction between ions. They are
used in the law of mass action instead of the concentrations of substances, which can be
fixed analytically.

M Only the mean activity coefficient f , the geometric mean of the activity coefficients
of anions and cations, can be measured.

Activity, a, effective concentration of the solvent,

a = f · c .

21.9 Equalization of temperature

Heat can flow spontaneously only from the warmer system to the colder system. In doing
so, the warmer system cools and the colder system is heated.

In this process, the total entropy increases.
Heat exchange, occurs by a direct contact of two substances of different temperature.
Final temperature, T f , temperature of the total system after the heat exchange has

terminated.

21.9.1 Mixing temperature of two systems
1. Richmann’s mixing rule,

in mixing two systems, the final temperature is determined by the total heat capacities of
the substances.

Richmann’s mixing rule

CA(T f − TA) = CB(TB − T f )

Symbol Unit Quantity

CA,CB J/K heat capacity
substance A, B

TA, TB K initial temperature
of substance A, B

T f K final temperature
of system

It is assumed that no mechanical work or heat is released into the environment. The process
is irreversible: 
S > 0 .
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The internal energy U of the total system remains constant. The total balance of the
quantity of heat also remains constant, since the quantity of heat released by one system is
absorbed by the other system. However, the entropy increases.

mixing temperature = sum (heat capacities · temperature)
sum heat capacities

Θ

T f = CATA + CB TB

CA + CB

= cAm ATA + cBm B TB

cAm A + cBm B

Symbol Unit Quantity

T f K final temperature of
the system

CA,CB J/K heat capacity
substance A, B

TA, TB K initial temperature
substance A, B

cA, cB J/(K kg) specific heat capacity
substance A, B

m A,m B kg mass substance A, B

2. Systems of equal specific heat capacity

▲ For equal specific heat capacity cA = cB , the mixing temperature T f depends only
on the masses of the systems m A and m B ,

T f = m ATA + m B TB

m A + m B
for cA = cB .

Systems with equal masses, m A = m B , reach the mean value of the temperatures as
mixing temperature,

T f = TA + TB

2
for CA = CB .

If one system is much larger than the other one (m B � m A for cA = cB or CB � CA),
the mixing temperature is nearly the temperature of the larger system,

T f ≈ CA

CB
TA + TB ≈ TB for CB � CA.

A heat bath with fixed temperature must have a much higher heat capacity than the system
being heated in the bath. Water is particularly well suited as a carrier of the heat bath
because of its high specific heat capacity.

3. Several systems with distinct specific heat capacities

If several systems are put together, the final temperature is

T f = C1T1 + C2T2 + C3T3 + · · ·
C1 + C2 + C3 + · · · = c1m1T1 + c2m2T2 + c3m3T3 + · · ·

c1m1 + c2m2 + c3m3 + · · · .

21.9.2 Reversible and irreversible processes
In the irreversible case (direct contact), the final temperature is

T f = CATA + CB TB

CA + CB
.
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For an irreversible process (direct contact) for the total system, 
U = 
Q = 0. If a heat
engine is fitted between A and B, then the process is reversible, and


S = 
SA +
SB = 0 .

The final temperature is given by

T f =
(

T CA
A T CB

B

) 1
CA+CB .

• A reversible process yields the geometric mean of TA and TB , weighted by CA,CB .
• An irreversible process yields the arithmetic mean weighted by CA,CB .
Reversible case with dimensionless quantities in base and exponent:

T f = TA ·
(

1+ TB − TA

TA

) CB
CA+CB

.

For very small temperature differences, the power expression for the reversible case may
be expanded. In first order, the formula for the irreversible case is the result.
▲ The final temperature in the reversible case is lower than the final temperature in the

irreversible case,

T rev
f < T irr

f .

In the reversible case, the work done by the heat engine is given by


W = 
U = CA(T f − TA)+ CB(T f − TB ) .

21.10 Heat transfer

Heat transfer, heat transport, may proceed by three distinct mechanisms.

a) Convection, the heat energy is transported by the flow of a fluid (liquid or gaseous
material).
■ The supply of warm seawater from the tropics to the Northern Hemisphere by the

Gulf Stream; the cooling of engines by fans and ventilators.

b) Heat radiation, emission or absorption of electromagnetic radiation. Each body with
finite temperature emits heat radiation.
■ Irradiation of Earth by the Sun; infrared lamps.

c) Heat conduction, requires direct contact between two bodies. The particles of one
body transfer energy to the particles of the other body by collisions.
■ Heat transfer through windows and walls; saucepan on an electric range.

Heat conduction is of importance for many physical and chemical processes.
■ In exothermic chemical reactions, heat must be removed in order to guarantee the

safety of the reaction device, and to prevent the chemical reaction from running out of
control. In endothermic chemical reactions, heat must be supplied in order to sustain
the reaction.
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21.10.1 Heat flow
Heat flow, heat flux, �, SI unit watt (= joule per second), the quantity of heat exchanged
per unit of time. The differential notation is obtained by the limit of the time interval equal
to zero.

heat flow = quantity of heat
time interval

ML2T−3

� = Q

t

� = lim

t→0


Q


t
= dQ

dt

Symbol Unit Quantity

� J/s =W heat flow

Q J quantity of heat

t s time interval

■ A body cooling slowly (and uniformly) within 15 seconds releases a quantity of heat
of 90 J to the environment. The heat flow is

� = 
Q


t
= 90 J

15 s
= 6 W.

M The heat flow can be determined by the law of heat transmission (see p. 759) by
attaching a small mat of known heat conductivity coefficient (see p. 753) equipped
with thermo-probes to a thermal contact spot and measuring the difference between
the temperatures on both sides of the mat. The advantage of this method is that no
precise information on the material at the contact spot is needed. The disadvantage
is that the heat flow is affected by the measurement, and therefore can be determined
only with limited accuracy.

21.10.2 Heat transfer
1. Heat transfer,

the heat transport between two substances of different temperature through an interface.
Heat conduction, convection and heat radiation occur at the same time (Fig. 21.18).
▲ The exchanged heat is proportional to the product of the surface area, the temperature

difference, and the duration of time.

Figure 21.18: Heat transfer.

2. Heat transmission coefficient,

also heat transfer coefficient, α, SI unit watt per kelvin and per square meter. Proportion-
ality factor determining the intensity of the heat transfer.

The heat transfer coefficient specifies the ability of a medium (gas or liquid) to remove
heat from a substance.

The heat transfer coefficient depends on properties of the heat-removing medium (spe-
cific heat, density, heat conductivity coefficient), and on the surface of the heated or cooled
substance.
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quantity of heat ∼ area · temperature difference · time ML2T−2


Q = α · A

· (T − TM ) ·
t

Symbol Unit Quantity


Q J released quantity of heat
α W/(K m2) heat transfer coefficient
A m2 contact surface
T K temperature of substance
TM K temperature of medium

t s time interval

The time interval 
t should be not too large, since the exchange of heat also causes a
change of temperature.

Because only temperature differences are considered, these may be given also in degrees
Celsius.
■ A cube of iron with an edge length of 30 cm and a temperature of 70 ◦C is cooling

in air (20 ◦C). Let the cooling at the bottom face be negligible, so that only five faces
contribute to the heat exchange:

A = 5 · (30 cm)2 = 0.45 m2.

The loss of heat during half a minute is

Q = αAt (TA − TB ) = 5.8
W

m2 K
· 0.45 m2 · 30 s · 50 ◦C = 3.915 kJ.

▲ The flow velocity of the heat-removing medium is very important for cooling pro-
cesses.

For heat transfer coefficients, see Tab. 22.4/3.
Their order of magnitude covers a wide range depending on whether one considers gases

at rest (about 10 W/(m2 K)), rapidly moving gases (about 100 W/(m2 K)), water (several
100 up to several thousands W/(m2 K)) or even condensing water vapor (above 10000
W/(m2 K)).

3. Heat flow

Heat flow in heat transition:

heat flow ∼ area · temperature difference ML2T−3

� = dQ

dt
= α

· A · (T − TM )

Symbol Unit Quantity

� J/s heat flow
α W/(K m2) heat transfer coefficient
A m2 contact surface
T K temperature of substance
TM K temperature of medium

4. Time dependence of cooling by heat transition

In the steady state, the temperature curve follows an exponential function. The speed of
cooling is influenced by the magnitude of the contact area and the heat capacity of the
cooled or heated substance.

Since the heat flow, the rate of change of the quantity of heat released, is proportional to
the difference in temperatures between the substances and the temperature change by heat
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removal, the change of the temperature difference Td = Tsubstance−Tmedium is determined
by a differential equation, the solution to which is an exponential function:

temperature dependence of cooling Θ

dTd

dt
= −α · A

C
· Td

T (t) = (T0 − TM ) e−αA
C t + TM

Symbol Unit Quantity

T K temperature of
substance

T0 K initial temperature
TM K temperature of

medium
α W/(K m2) heat transfer

coefficient
A m2 contact area
C J/K heat capacity of

substance
t s time passed

▲ The heat capacity of the heat-removing medium should be much larger than the heat
capacity of the cooled or heated substance.

21.10.3 Heat conduction
1. Heat conduction,

heat transfer in a medium as energy transport caused by collision processes between neigh-
boring molecules. Heat conduction in a medium at rest implies no convection. In a moving
medium, there is heat transfer by convection and conduction.

quantity of heat ∼ area
thickness

· temperature difference · time ML2T−2


Q = λ · A

s
· (TA − TB) ·
t

Symbol Unit Quantity


Q J transferred quantity
of heat

λ W/(K m) heat transfer coefficient
A m2 contact area
s m thickness of wall

t s time interval
TA, TB K temperatures

Definition in terms of heat flow:

heat flow ∼ area
thickness

· temperature difference ML2T−3

� = dQ

dt
= λ · A

s
· (TA − TB )

Symbol Unit Quantity

� J/s heat flow
λ W/(K m) heat transfer coefficient
A m2 contact area
s m thickness of wall
TA, TB K temperatures
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■ For a temperature difference of 20 K, the heat loss per second through a wall of glass
(1 m2) with a thickness of 5 mm is

� = λ A

s
(TA − TB) = 1

W

m K
· 1 m2

0.005 m
· 20 K = 4 kW.

2. Heat conductivity,

thermal conductivity, heat conductivity coefficient, λ, SI unit watt per kelvin and per
meter, describes the property of a material to conduct heat.

The heat conductivity is determined by intrinsic properties of the material. The density
of the substance, the specific heat, the mean velocity and the mean free path of the particles
involved in the heat transport are of importance.

For heat conductivity coefficients, see Tab. 22.3.
■ The heat conductivity coefficient amounts to several hundreds W/(m K) for metals,

0.1 to 1 W/(m K) for liquids, and about 0.02 W/(m K) for gases.

3. Microscopic description of heat conduction

In gases, the gas particles collide with each other. They exchange momentum and energy
and continue to travel with altered velocities. These collision processes are of primary
importance for the transport of energy and matter.

Mean free path, l, specifies the length of free flight of a particle (atom, molecule or
metal electron) between two successive collisions with other particles.

Mean velocity, average velocity, v̄, the arithmetic mean of the velocities (without tak-
ing into account the directions).

For a Maxwell–Boltzmann distribution (see p. 655), one has

v̄ =
√

8kT

πm N
=
√

8

3π

√
v2 .

Heat conductivity, λ, ability of the system to transport heat.

heat conductivity (microscopic) MLT−3Θ−1

λ = 1

3
v̄lρcV

Symbol Unit Quantity

λ W/(K m) heat conductivity
v̄ m/s mean velocity
l m mean free path
ρ kg/m3 density
cV J/(K kg) spec. heat at const. volume

➤ Instead of the product of density and specific heat capacity, one may also use the
product of molar density and molar heat capacity, or the product of particle density
and specific heat per particle.

For monatomic gases ( f = 3 degrees of freedom):
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heat conductivity (monatomic gas) MLT−3Θ−1

λ = 1

2
kv̄lρN

k = 1.380 66 · 10−23 J/K

Symbol Unit Quantity

λ W/(K m) heat conductivity
k J/K Boltzmann constant
v̄ m/s mean velocity
l m mean free path
ρN 1/m3 particle density

4. Heat conductivity of gas mixtures

For gas mixtures, the thermal conductivity of the mixture may be calculated approximately
by adding the thermal conductivities, weighted by the relative concentration, of the gases:

total heat conductivity of mixture MLT−3Θ−1

λ = x1λ1 + x2λ2 + · · ·

x1 = n1

n1 + n2 + · · ·

Symbol Unit Quantity

λ W/(m K) total heat conductivity
x1 1 mole fraction gas 1
λ1 W/(m K) heat conductivity gas 1
n1 mol quantity of particles gas 1

➤ The measurement of the thermal conductivity of gases is an important method to
analyze gases, in particular to investigate the admixture of impurities in gases (gas
chromatography).

M The measurement of the thermal conductivity of gases for the purpose of analyzing
impurities is made by a comparative measurement with a control gas without impu-
rities (Fig. 21.19). The gases (M) to be measured and the gases (V) for comparison
are heated in chambers. The heating wires are connected in a type of Wheatstone
bridge (see Wheatstone bridge) set to zero by adjusting the resistors until the cur-
rent in a vanishes when the same gas flows through all four arms. For a change of
concentration in the gas to be analyzed, its thermal conductivity is also changed, and
therefore the heat emission by the heating wire. So, the temperature and the electric
resistance of the heating wire are changed. The measuring instrument, calibrated to
show Vol.-%, shows a drop of electric voltage proportional to the perturbation of the
thermal conductivity, and hence proportional to the concentration of the impurity gas.

a

Figure 21.19: Measurement
of heat conductivity:
Wheatstone bridge circuit
with the gas (M) to be
measured and the gas (V )
for comparison.
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5. Heat conduction through several walls with the same surface

Heat conduction through several walls of thicknesses s1, s2, . . . for equal areas of surface
and coefficients of heat conductivity:

� = λ · A

s1 + s2 + · · · (TA − TB) .

Heat conduction for different coefficients of heat conductivity and equal thickness:

� = 1
1

λ1
+ 1

λ2
+ 1

λ3
+ · · · + 1

λn

A

s
(TA − TB) .

Heat conduction for different coefficients of heat conductivity and different values of thick-
ness:

� = 1
s1

λ1
+ s2

λ2
+ s3

λ3
+ · · ·

A(TA − TB) .

■ A wooden wall of 2 cm thickness is placed behind a glass wall of 5 mm thickness
and an area of 1 m2 (λ = 0.2 W/(m K)). For a temperature difference of 20 ◦C, the
loss of heat per second is

� = A(TA − TB)

s1/λ1 + s2/λ2
,

= 1 m2 · 20 ◦C
(0.005 m/(1 W/(m K)))+ (0.02 m/(0.2 W/(m K)))

= 190.5 W .

6. Heat flow through a single layer tube wall

See Fig. 21.20 for reference.

heat flow ∼ 2π tube length
ln (ratio of diameters)

ML2T−3

� = 2πl

ln

(
dA

dI

)λ(TA − TB)

= 2πl

ln

(
dI + 2s

dI

)λ(TA − TB)

Symbol Unit Quantity

� W heat flow
dI m inner diameter

of tube
dA m outer diameter

of tube
s m thickness of

tube wall
l m tube length
λ W/(K m) heat conductivity

coefficient
TA, TB K temperatures



21.10 Heat transfer 757

Figure 21.20: Heat conduction in a tube. (a): tube without peripheral layer, (b): tube with
peripheral layer.

■ For a temperature difference of 25 ◦C, the heat flow through a tube of concrete (inner
diameter 40 cm, length 3 m, thickness 4 cm) is

� = 2πl

ln

(
dI + 2s

dI

)λ(TA−TB ) = 2π · 3 m

ln

(
0.4 m+ 0.08 m

0.4 m

) ·1 W

m K
·25 ◦ C = 2.6 kW .

Heat flow through a tube wall consisting of several layers:

� =
[

1

2πlλ1
ln

(
d A

1

d I
1

)
+ 1

2πlλ2
ln

(
d A

2

d I
2

)
+ · · ·

]−1

(TA − TB)

=
[

1

2πlλ1
ln

(
d I

1 + 2s1

d I
1

)
+ 1

2πlλ2
ln

(
d I

1 + 2s1 + 2s2

d I
1 + 2s1

)
+ · · ·

]−1

(TA − TB) .

The tubes must fit directly into each other without a gap, i.e., the inner radius of tube 2
must be equal to the outer radius of tube 1, d A

1 = d I
2 .

▲ Air gaps must be treated as separate tubes with the heat conductivity coefficient of
air.

21.10.4 Thermal resistance
1. Definition of thermal resistance

Thermal resistance, Rth, SI unit kelvin per watt, proportionality factor between heat flow
and temperature difference.

thermal resistance = temperature difference
heat flow

M−1L−2T3Θ

Rth = TA − TB

�

Symbol Unit Quantity

Rth K/W thermal resistance
TA, TB K temperatures
� W heat flow

▲ The thermal resistance depends on the heat conductivity coefficient, the thickness of
the wall and the cross-sectional area.
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thermal resistance = thickness of wall
heat conductivity coefficient · surface area

M−1L−2T3Θ

Rth = s

λA

Symbol Unit Quantity

Rth K/W thermal resistance
s m thickness of wall
λ W/(K m) heat conduction coefficient
A m2 surface area

2. Analogies to the theory of electricity

The (electric) resistance influences the (electric) current for given temperature (or voltage)
difference.

Analogies between quantities of thermodynamics and theory of electricity:
temperature difference 
T corresponds to potential difference (= voltage) V
heat flow � corresponds to current I
thermal resistance Rth corresponds to electric resistance R
heat conductivity λ corresponds to electric conductance κ

series of walls corresponds to electric resistors in series
▲ Like the electric resistance, the thermal resistance depends on the surface and the

length of the resistor (thickness of wall), and on the (specific) conductivity.

3. Ohm’s law of thermodynamics

The relation between temperature, heat flow and thermal resistance can be written formally
as Ohm’s law:

heat flow = temperature difference
thermal resistance

ML2T−3

� = TA − TB

Rth

Symbol Unit Quantity

� W heat flow
TA, TB K temperatures
Rth K/W thermal resistance

4. Series connection of several thermal resistors

If several walls (heat resistors) are placed one behind the other, then this arrangement is
treated analogously to the series connection of electric resistors (Fig. 21.21).

total resistance = sum of individual resistances M−1L−2T3Θ

Rtot = R1 + R2 + R3 + · · ·
R1 = s1

λ1 A1
,

R2 = s2

λ2 A2

Symbol Unit Quantity

Rtot K/W total resistance
R1, R2, . . . K/W resistance wall 1, 2, . . .
s1, s2, . . . m thickness wall 1, 2, . . .
λ1, λ2, . . . W/(K m) heat conductivity

coefficient wall 1, 2, . . .
A1, A2, . . . m2 surface wall 1, 2, . . .



21.10 Heat transfer 759

V

V V V

Figure 21.21: Thermal resistance. (a): series connection of thermal resistors, (b): analogy
to electricity.

total heat current = temperature difference
sum of individual resistances

ML2T−3

� = TA − TB

R1 + R2 + · · ·

Symbol Unit Quantity

� W heat flow
TA, TB K temperatures
R1, R2 K/W resistance wall 1, 2

21.10.5 Heat transmission
1. Heat transmission,

the heat transfer between two liquid or gaseous substances A and B through one or several
walls (Fig. 21.22).

Figure 21.22: Heat conduction (a): through one wall, (b): through several walls.

The heat transfer proceeds by the following steps (Fig. 21.23):
• Heat transfer from substance A to the first wall: heat transmission coefficient α1.
• Heat conduction through wall 1 of thickness s1 and surface area A: heat conductivity

coefficient λ1.
• Heat conduction through subsequent walls.
• Heat transfer from the last wall (surface area A) to substance B: heat transmission

coefficient α2.
■ Thermopane windows are designed to minimize heat loss from the interior of a build-

ing into the environment. They consist of two panes of glass with a gap between them.
The gap is filled with either air or a specially chosen gas mixture.
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Figure 21.23: Heat transmission through several layers. (a): arrangement of layers, (b):
trend of temperature.

2. Heat flow and thermal resistance

Description of the heat flow in terms of the thermal resistance:

heat flow = temperature difference
sum of individual resistances

ML2T−3

� = TA − TB

RA + RB + R1 + R2 + · · ·

Symbol Unit Quantity

� W heat flow
TA, TB K temperatures
RA, RB K/W thermal resistance

medium A, B
R1, R2 K/W thermal resistance

wall 1, 2

The thermal resistances of the media in front of and behind the walls are:

thermal resistance = 1
heat transmission coefficient · area

M−1L−2T3Θ

RA = 1

α1 A

RB = 1

α2 A

Symbol Unit Quantity

RA, RB K/W thermal resistance of
medium A, B

α1, α2 W/(K m2) heat transmission coefficient
medium A, B

A m2 contact surface

The thermal resistances of the walls are:

thermal resistance = thickness of wall
thermal conduction coefficient · surface area

M−1L−2T3Θ

R1 = s1

λ1 A

R2 = s2

λ2 A
. . .

Symbol Unit Quantity

R1, R2 K/W resistance of wall 1, 2
s1, s2 m thickness of wall 1, 2
λ1, λ2 W/(K m) thermal conductivity of wall 1, 2
A m2 surface area of wall 1, 2

Description of the heat flow after direct substitution:

� = 1
1

α1
+ 1

α2
+ s1

λ1
+ s2

λ2
+ · · ·

· A(TA − TB) .
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■ Let the wall of a room consist of two rows of bricks with a thickness of 9 cm and an
air gap of 5 cm in between them. For a temperature difference of 15 ◦C, the loss of
heat per second and square meter is

Q = At (TA − TB )

1/α1 + 1/α2 + s1/λ1 + s2/λ2 + s3/λ3

= 1 m2 · 1 s · 15 ◦C
2 · (1/(8.1 W/(m2 K)))+ 0.05 m/(0.026 W/(m K))+ 2 · 0.09 m/(0.6 W/(m K))

= 6.07 J .

3. Heat transfer coefficient

Heat transfer coefficient, k-value, k, SI unit watt per kelvin and per square meter, de-
scribes the total heat transfer between two media separated by walls. For many sys-
tems (e.g., walls of buildings with fixed thickness), the k-value has been tabulated (see
Tab. 22.4/1 and Tab. 22.4/2).

heat flow ∼ surface area · temperature difference ML2T−3

� = k · A · (TA − TB)

Symbol Unit Quantity

� W heat flow
k W/(K m2) heat transfer coefficient
A m2 cross-sectional area
TA, TB K temperatures

Calculation of the heat transfer coefficient:

1
heat transfer coefficient

= 1
heat transmission coefficient

+ 1
heat conductivity coefficient

M−1T3Θ

1

k
= 1

α1
+ 1

α2

+ s1

λ1
+ s2

λ2

+ · · ·

Symbol Unit Quantity

k W/(K m2) heat transfer coefficient
α1, α2 W/(K m2) heat transmission coefficient

medium A, B
s1, s2 m thickness of wall 1, 2
λ1, λ2 W/(K m) heat conductivity coefficient

wall 1, 2

Connection with the total resistance:

thermal resistance = 1
heat transfer coefficient · area

M−1L−2T3Θ

Rtot = 1

k A

= RA + RB + R1

+ R2 + · · ·

Symbol Unit Quantity

R K/W thermal resistance
k W/(K m2) heat transfer coefficient
A m2 cross-sectional area
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4. Heat transmission through an encased tube

Description of the heat flow in terms of the thermal resistance:

heat flow = temperature difference
sum of individual resistances

ML2T−3

� = TA − TB

RA + RB + R1 + R2 + · · ·

Symbol Unit Quantity

� W heat flow
TA, TB K temperatures
RA, RB K/W thermal resistance of

medium A, B
R1, R2 K/W thermal resistance of

tube 1, 2 . . .

The thermal resistances of the media are:

thermal resistance = 1
heat transfer coefficient · area

M−1L−2T3Θ

RA = 1

l · π d I
1 · α1

RB = 1

l · π d A α2

Symbol Unit Quantity

RA, RB K/W thermal resistance of
medium A, B

α1, α2 W/(K m2) heat transfer coefficient
medium A, B

d I
1 m inner diameter of tube 1

l m tube length
d A m outer diameter of outer-

most tube

For the thermal resistances of the tube walls (Fig. 21.24):

thermal resistance = ln(ratio of diameters)
heat conductivity coefficient · tube length

M−1L−2T3Θ

R1 = 1

2πlλ1
ln

(
d A

1

d I
1

)

R2 = 1

2πlλ2
ln

(
d A

2

d I
2

)

Symbol Unit Quantity

R1, R2 K/W thermal resistance tube 1, 2
d I

1 m inner diameter tube 1
d A

1 m outer diameter tube 1
λ1 W/(K m) heat conductivity coefficient

tube 1
l m tube length

The outer diameter of the inner tube is always equal to the inner diameter of the outer
tube:

d A
1 = d I

2 , d A
2 = d I

3 , . . .

➤ If there is an air gap between two tubes, then this air gap must be treated like a tube
with the thermal conductivity of air.
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Figure 21.24: Heat transmission through several tube-like layers. (a): construction of tube,
(b): the trend of radial dependence temperature.

Heat transfer resistances represented in terms of thickness of tubes:

thermal resistance = 1
heat transfer coefficient · area

M−1L−2T3Θ

RA = 1

l · π · d · α1

RB = 1

l · π · (d + 2s1 + 2s2) · α2

Symbol Unit Quantity

RA, RB K/W thermal resistance
of medium A, B

α1, α2 W/(K m2) heat transfer
coefficient 1, 2

s1, s2 m thickness of tube
wall 1, 2

d m inner diameter of
tube 1

l m tube length

Thermal resistances of the tube walls:

thermal resistance = ln(ratio of diameters)
heat conductivity coefficient · tube length

M−1L−2T3Θ

R1 = 1

2πlλ1
ln

(
d + 2s1

d

)

R2 = 1

2πlλ2
ln

(
d + 2s1 + 2s2

d + 2s1

)

Symbol Unit Quantity

R1, R2 K/W thermal resistance
of tube 1, 2

λ1 W/(K m) heat conductivity
coefficient of
tube 1

s1 m thickness of wall
tube 1

d m inner diameter of
tube 1

l m tube length

Total thermal resistance:

Rtot = 1

lπdα1
+ 1

lπ(d + 2s1 + 2s2)α2
+ 1

2πlλ1
ln

(
d + 2s1

d

)

+ 1

2πlλ2
ln

(
d + 2s1 + 2s2

d + 2s1

)
+ · · · .
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➤ Formally, a heat transmission coefficient can also be given for tubes. However, here it
is more meaningful to give a quantity scaled with the tube length instead of a quantity
scaled with an area. Corresponding results may be found in the specialized literature.

21.10.6 Heat radiation
Heat radiation, electromagnetic radiation emitted by any body of finite temperature
T �= 0 K.

Stefan–Boltzmann law, relation between the thermal energy emitted by an area A at
temperature T per unit time, and the temperature.
▲ The radiated energy increases with the fourth power of the temperature.
Stefan–Boltzmann constant, radiation constant of a black body, σ ,

σ = 5.67 · 10−8 W/m2 · K4 .

Emittance, ε ≤ 1, a dimensionless quantity depending strongly on the material and the
surface conditions, as well as on the temperature of the radiating body.

The frequency dependence of the heat radiation is described by Planck’s radiation
law (see p. 818).

The Earth receives thermal energy from the Sun by heat radiation. The magnitude of the
thermal energy received per unit of time and area is called the solar constant. According
to ISO standards, its magnitude is

qS = 1.37 kW/m2 .

According to CIE standards, qs = 1.35 kW/m2.

21.10.7 Deposition of radiation
If radiation impinges upon the surface of a substance, the following processes may occur
(Fig. 21.25):
• Absorption: the radiant power is deposited and converted to another type of energy.
• Transmission: the radiation passes through the substance unhindered.
• Reflection: the radiation is reflected.

Figure 21.25: Deposition of
radiation. (a): absorption,
(b): transmission, (c):
reflection.

The three effects mentioned do not occur separately but, in general, simultaneously.
The radiation is partly absorbed, partly transmitted and partly reflected. The fractions of

the total radiation are specified by the associated coefficients.

1. Absorptance,

α, dimensionless, ratio of the absorbed radiant power to the total radiant power.
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absorptance = absorbed radiant power
total radiant power

1

α = �a

�0

Symbol Unit Quantity

α 1 absorptance
�a W absorbed radiant power
�0 W total radiant power

The absorptance depends on the wavelength of the radiation, and on the temperature.
■ Red glass absorbs radiation of wavelengths of colors other than red.

Leaves appear as green, since they preferably absorb the red range of white light.
➤ Recording of absorption spectra of a substance in an ultraviolet (UV) spectrometer

may be used for analyzing materials.

2. Black body radiator,

a substance with the absorptance α = 1.
This property cannot be technically realized in full.
■ Solar panels are black in order to absorb as much of the incident light as possible.

3. Kirchhoff’s law,

The absorptance is equal to the emittance (see p. 818).

4. Transmittance,

τ , dimensionless, ratio of the total radiant power transmitted through the substance and the
total radiant power.

transmittance = transmitted radiant power
total radiant power

1

τ = �t

�0

Symbol Unit Quantity

τ 1 transmittance
�t W transmitted radiant power
�0 W total radiant power

Similar to the absorptance, the transmittance also depends on wavelength and temperature.

5. Reflectance,

ρ, dimensionless, ratio of the radiant power reflected by a substance and the total radiant
power.

reflectance = reflected radiant power
total radiant power

1

ρ = �r

�0

Symbol Unit Quantity

ρ 1 reflectance
�r W reflected radiant power
�0 W total radiant power

The reflectance depends on the wavelength and temperature.
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▲ No radiant power is lost (energy conservation). The fractions of absorbed, transmit-
ted, and reflected radiation together must yield the total radiant power.

absorption + transmission + reflection = 1

α + τ + ρ = 1

Symbol Unit Quantity

α 1 absorptance
τ 1 transmittance
ρ 1 reflectance

21.11 Transport of heat and mass

Heat flow density, qth, SI unit watt per square meter, limit of the quantity of heat flowing
per unit time 
t through an area element 
A:

qth = lim

t→0

lim

A→0


Q


t
A
= d2 Q

dtdA
.

The vector of heat flow density �qth has the magnitude of the heat flow density qth and
points along the direction of heat transport. Hence, the vector points along the steepest
decrease of temperature.

21.11.1 Fourier’s law
Fourier’s law, the heat flow proceeds along the steepest decrease of temperature.

�qth = −λ · grad T .

Heat conductivity λ, material-dependent proportionality constant in Fourier’s law.
➤ The quantity λ is identical to the constant in the law of heat conduction (see p. 753,

Tab. 22.3/3–10).
The total heat flow is obtained as an integral of the heat flow density vector, normal to the
surface, over the surface,

� = dQ

dt
= −

∫
surface

�qth · �n dA = −
∫
(qx nx + qyny + qznz) dA .

�n is the unit vector of the surface normal. The minus sign indicates that the heat flows from
the warmer to the cooler region.

21.11.2 Continuity equation
1. Heat flow density vector,

description of the heat flow by means of the heat flow density vector as integral over the
surface passed,

� = −
∫
�qth · �n dA = −

∫ (
∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z

)
dV .
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Rewritten form with vector differential operators:

� = ∂Q

∂t
= −

∫
div �qth dV .

The conversion is carried out by means of the Gaussian integral theorem.
Specific quantity of heat per volume, e, thermal analog to the electric charge density,

e = dQ

dV
, Q =

∫
e dV .

This expression may be included in the representation of heat flow,

� = d

dt

∫
e dV = −

∫
div �qth dV .

2. Continuity equation of thermodynamics,

equation expressing the conservation of the ‘heat density.’
▲ The specific quantity of heat may be changed only by an in-flow or out-flow of heat,

as expressed in terms of a heat flow,

∂e

∂t
+ div �qth = 0 .

This equation is derived from the definition of heat flow under the assumption of an arbi-
trary volume in the integral.
▲ The continuity equation, as well as its derivation, holds only if heat is conducted by

equalization of temperature and no work is done on or by the system.
If work W is done, then according to the first law of thermodynamics

∂e

∂t
+ div �qth = − d2W

dV dt
= dp

dt
.

Here it has been assumed that W is given by the integral of the pressure p during a change
of volume dV ,


W = −
∫

pdV .

If the change in pressure is considered as given, then it may be viewed as a source term for
heat (loss). But other changes in energy may also contribute to a change of Q.

21.11.3 Heat conduction equation
1. Laws of heat conduction

quantity of heat = heat capacity · temperature difference ML2T−2


Q = CV
T = c · m ·
T

Symbol Unit Quantity


Q J quantity of heat
CV J/K heat capacity at const.

volume

T K temperature difference
c J/(K kg) specific heat capacity
m kg mass
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Heat conduction equation, describes the quantity of heat transported per unit time and
unit volume,

cρ
∂T

∂t
− λ div grad T = dp

dt
,

∂T

∂t
− λ

cρ

(
∂2T

∂x2
+ ∂

2T

∂y2
+ ∂

2T

∂z2

)
= 1

cρ

dp

dt
.

This equation is derived by applying Fourier’s law, the continuity equation and the defini-
tion of the quantity of heat in terms of the heat capacity.

2. Thermal diffusivity,

κ , SI unit square meter per second, proportionality constant specifying how rapidly a spa-
tial temperature difference equalizes:

thermal diffusivity = heat conductivity
specific heat capacity · density

L2T−1

κ = λ

cρ

Symbol Unit Quantity

κ m2/s thermal diffusivity
λ W/(m K) heat conductivity
c J/(K kg) specific heat capacity
ρ kg/m3 density

➤ Instead of density times specific heat capacity, one may also insert the product of
molar density and molar heat capacity, or the product of particle density and specific
heat per particle.

Heat conduction equation without source term in short notation:

∂T

∂t
− κ
T = 0 ,


 being the Laplace operator.

21.11.4 Fick’s law and diffusion equation
1. Basic laws for mass transport

Concentration differences may be described by analogy to heat differences.
Vector of particle flux density, �j, vector pointing along the steepest decrease of the

particle density, and hence of the concentration ρN . Its magnitude represents the change of
the particle number per unit time.
▲ Fick’s law, describes the connection between the particle flux density vector and the

particle density:

�j = −D grad ρN .

Diffusion constant, D, specifies how rapidly the system follows the gradient of concen-
tration.
▲ Continuity equation, relation between the particle flux and the particle density:

∂ρN

∂t
+ div �j = w .
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The expression w on the right-hand side involves the change of the total particle number,
which may be caused, e.g., by a change in the chemical potential.

If w = 0, the particle density may change only where the incoming and outgoing fluxes
are not balanced against each other.
▲ Diffusion equation, equation for the time variation of the particle density:

∂ρN

∂t
− D
ρN = w ,

where 
 is the Laplace operator.
The diffusion equation is obtained from Fick’s law and the continuity equation.

➤ The diffusion equation may also be established for the molar densities or mass den-
sities, instead of the particle densities.

2. Microscopic description

Mean free path, l, the mean distance of free flight of a particle between two successive
collisions with other particles.

Average velocity, mean velocity, v̄, arithmetic mean of velocities (without taking into
account the directions of motion).

For a Maxwell–Boltzmann distribution (see p. 655):

v̄ =
√

8kT

πm N
=
√

8

3π

√
v2 .

Diffusion constant, D, describes the transport of matter:

diffusion constant (microscopically) L2T−1

D = 1

3
v̄l

Symbol Unit Quantity

D m2/s diffusion constant
v̄ m/s mean velocity
l m mean free path

21.11.5 Solution of the equation of heat
conduction and diffusion

The solution of the diffusion equation in three-dimensional space is

ρ(x, y, z, t) =
√(

1

4πDt

)3
e−

x2+y2+z2

4Dt .

In the position coordinates x, y, z, the function describes the density distribution or concen-
tration distribution ρ as a Gaussian with the center at the origin of the coordinate system.
The width of the curve is determined by the denominator 4Dt in the exponent of the expo-
nential function. The width of the function increases over time. Simultaneously, the value
of the function in the center decreases over time due to the negative power t−3/2 in the
normalization factor.
▲ However, the description of diffusion processes is valid only if there are no additional

flows (or vortices). Otherwise, additional macroscopic flows (e.g., the stirring of the
dissolved substance in the solvent) may dominate the whole process.
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If one considers a point at which the density is c times (0 < c < 1) the density at the
center,

ρ1 = c · ρ0 ρ1 = ρ(x1, 0, 0, t) ρ0 = ρ(0, 0, 0, t) ,

the time evolution of the distance of this point from the center is:

x = √−(ln c) · 4Dt .

The extension velocity of the density cloud decreases in time,

v = dx

dt
=
√
− (ln c)D

t
.

The path-time law involving the root of time, x ∼ √Dt , is typical for diffusion processes.
The edges of the distribution (c very small) are moving outward faster than the regions
with large c.

Illustrative interpretation:
The initially high concentration (e.g., of a drop of color in a liquid) is diminished by spread-
ing (the drop of color fades), but the total number of particles remains constant.
➤ The space integral over ρ does not depend on the time,

∫
ρdV =

∫ √(
1

4πDt

)3
e−

x2+y2+z2

4Dt dxdydz = 1 .
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Symbol Unit Designation

α 1 absorptance
α W/(K m2) heat-transmission coefficient
α 1/K linear-expansion coefficient
β 1/K surface-expansion coefficient
γ 1/K volume-expansion coefficient
ε 1 compression ratio
εkin J mean kinetic energy
η 1/(Pa s) viscosity
η 1 efficiency
ηC 1 efficiency of Carnot cycle
ϑ ◦C degree Celsius
κ m2/s thermal diffusivity
κ 1 adiabatic exponent
κ Pa−1 compressibility
λ W/(K m) heat-conductivity coefficient
µ J chemical potential
ξi 1 mass fraction
ρ 1 reflectance
ρ kg/m3 density
ρm mol/m3 molar density
ρN 1/m3 particle density
σ m2 cross-section
σ W/(m2K4) Stefan-Boltzmann constant
τ s collision time
τ 1 transmittance
ϕ 1 relative moisture
� J/s =W heat flow
a Nm4/mol2 molar internal-pressure constant
as Nm4/kg2 specific internal-pressure constant
A m2 area
b m3/mol molar internal volume
bs m3/kg specific internal volume
B J anergy
B(T ) mol/m3 second virial coefficient
c mol/� molarity
c J/(K kg) specific heat capacity
cmol J/(K mol) molar heat capacity
cp J/(K kg) specific heat capacity, constant pressure
cV J/(K kg) specific heat capacity, constant volume
C J/K heat capacity
C(T ) mol2/m6 third virial coefficient
d m diameter

(continued)
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Symbol Unit Designation

D m2/s diffusion constant
E K ebullioscopic constant
E J total energy
Ex J exergy
f 1 number of degrees of freedom
f kg/m3 absolute moisture
f Hz collision frequency
fmax kg/m3 maximum moisture
F J free energy
F N force
G J free enthalpy
h m altitude above sea level
h J/kg specific enthalpy
H J enthalpy
H J/kg specific calorific value
Hg J/m3 specific calorific value of gases
Ho J/kg specific gross-calorific value
j 1/(m2 s) particle flux density
k J/K Boltzmann constant
k W/(K m2) heat transmittance
K K cryoscopic constant
K 1 equilibrium constant (law of mass action)
l m tube length
l m mean free path
l J/kg specific latent heat
m kg total mass
m N kg particle mass
M kg/mol molar mass
n 1 polytrope exponent
n mol quantity of substance
N 1 particle number
NA mol−1 Avogadro’s number
NL m−3 Loschmidt constant
p Pa pressure
pc Pa critical pressure
pD Pa partial pressure
pn Pa standard pressure
pS Pa saturated-vapor pressure
P W power
qth W/m2 heat-flow density
qS W/m2 solar constant
Q J quantity of heat
R J/(K mol) universal gas constant
Rs J/(K kg) specific gas constant
Rth K/W thermal resistance
s m wall thickness
s J/(K kg) specific entropy

(continued)
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Symbol Unit Designation

S J/K entropy
t s time
T K temperature
Tc K critical temperature
Tc K temperature, cold bath
Th K temperature, heat bath
Ti K inversion temperature, Joule-Thomson
Tn K standard temperature
U J internal energy
v m3/kg specific volume
vc m3/mol critical molar volume
vrms m/s root-mean-square velocity
vw m/s most-probable velocity
v m/s mean velocity
V m3 volume
Vm m3/mol molar volume
Vn m3 standard volume
Wkin J total kinetic energy
W J mean energy
x 1 degree of moisture
xi 1 mole fraction sort i
z m altitude

Universal constants and their values

k 1.380 66 · 10−23 J/K Boltzmann constant
NA 6.022 136 7 · 1023 mol−1 Avogadro’s number
NL 2.686 75 · 1025 m−3 Loschmidt constant
pn 101 325 Pa standard pressure
qS 1.37 kW/m2 solar constant
R 8.314 J/(K mol) universal gas constant
Tn 273.15 K standard temperature
σ 5.67 · 10−8 W/(m2 K4) Stefan-Boltzmann constant



22
Tables on thermodynamics

22.1 Characteristic temperatures

22.1.1 Units and calibration points
22.1/1 Calibration points of temperature scales

Substance Temperature

Formula Name Point T /K ϑ/◦C
4He helium-4 λ-point 2.18 −270.97
4He helium-4 boiling point 4.21 −268.94
p − H2 parahydrogen triple point 13.81 −259.34
n − H2 hydrogen (normal) triple point 13.97 −259.18
p − H2 parahydrogen boiling point 20.27 −252.88
n − H2 hydrogen (normal) boiling point 20.39 −252.76
Ne neon triple point 24.56 −248.59
Ne neon boiling point 27.07 −246.08
N2 nitrogen phase transition 35.5 −237.65
O2 oxygen phase transition 43.7 −229.79
O2 oxygen triple point 54.36 −218.79
N2 nitrogen triple point 63.14 −210.01
N2 nitrogen boiling point 77.35 −195.80
O2 oxygen boiling point 90.18 −182.97
C5H12 isopentane melting point 113.5 −159.65
C7H14 methyl cyclohexane melting point 146.85 −126.30
C4H10O diethyl ether melting point 156.85 −116.30
CS2 carbon disulphide melting point 161.55 −111.60

(continued)

775
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22.1/1 Calibration points of temperature scales (continued)

Substance Temperature

Formula Name Point T /K ϑ/◦C
C7H8 toluene melting point 178.05 −95.10
CO2 carbon dioxide melting point 194.65 −78.50
CHCl3 trichloromethane melting point 209.65 −63.50
Hg mercury melting point 234.28 −38.87
H2O water melting point 273.15 0.00
H2O water triple point 273.16 0.0100
C12H10O diphenyl ether triple point 300.03 26.88
Na2SO4 · 10 H2O sodium sulphate phase transition 305.43 32.38
H2O water boiling point 373.15 100.00
C7H6O2 benzoic acid triple point 395.51 122.36
In indium melting point 429.76 156.61
C10H8 naphthalene boiling point 491.15 218.0
Sn tin melting point 505.05 231.9
C14H10O benzophenone boiling point 579.05 305.9
Cd cadmium melting point 594.05 320.9
Pb lead melting point 600.65 327.50
Hg mercury boiling point 629.73 356.58
Zn zinc melting point 692.73 419.58
S sulphur boiling point 717.82 444.67
Sb antimony melting point 903.65 630.5
Al aluminum melting point 934 660.37
Ag silver melting point 1235 961.93
Au gold melting point 1338 1064.43
Cu copper melting point 1356 1083
Ni nickel melting point 1728 1455
Co cobalt melting point 1768 1495
Pd palladium melting point 1827 1554
Pt platinum melting point 2045 1772
Rh rhodium melting point 2239 1966
Ir iridium melting point 2683 2410
W tungsten melting point 3683 3410
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22.1.2 Melting and boiling points
22.1/2 Melting and boiling points of elements

Melting point Boiling point
Element ϑ/◦C ϑ/◦C
actinium 1050 3200± 300
aluminum 660.37 2467
americium 994± 4 2607
antimony 630.5 1750
arsenic 817 613

at 2.8 MPa sublimation
barium 725 1640
beryllium 1275± 5 2970
bismuth 271.3 1560± 5
boron 2300 2550
bromine (Br2) −7.2 58.78
cadmium 320.9 765
calcium 839± 2 1484
carbon sublimation

at 3652
cerium 798 3443
cesium 28.40± 0.01 669.3
chlorine(Cl2) −100.98 −34.6
chromium 1857± 20 2672
cobalt 1495 2870
copper 1083.4± 0.2 2567
dysprosium 1412 2467
europium 822 1527
fluorine −219.62 −188.14
gadolinium 1313 3273
gallium 29.78 2403
germanium 93704 2830
gold 1064.43 2808± 2
hafnium 2227± 20 4602
holmium 1474 2700
hydrogen (H2) −259.34 −252.8
indium 156.61 2080
iodine (J2) 113.5 184.35
iridium 2410 4130
iron 1535 2750
krypton −156.6 −152.30± 0.10
lanthanum 918 3464
lead 327.502 1740
lithium 180.54 1342
magnesium 648.8 1107
manganese 1244± 3 1962
mercury −38.87 356.58
molybdenum 2610 5560
neodymium 1021 3074

(continued)
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22.1/2 Melting and boiling points of elements (continued)

Melting point Boiling point
Element ϑ/◦C ϑ/◦C
neptunium 630± 1
nickel 1455 2730
niobium 2468± 10 5127
nitrogen (N2) −209.86 −195.8
osmium 2700 >5300
oxygen (O2) −218.4 −182.962
palladium 1554 2970
phosphorus (red) 590 bei 4.3 MPa
phosphorus (yellow) 44.1 280
platinum 1772 3827± 100
plutonium 641 3232
polonium 254 962
potassium 63.25 760
praseodymium 931 3520
promethium 1042 (3000)
protactinium < 1600
radium 700 < 1140
radon −71 −61.8
rhenium 3180 5627
rhodium 1966± 3 3727± 100
rubidium 38.89 686
ruthenium 2310 3900
samarium 1074 1794
scandium 1541 2836
selenium 217 684± 1.0
silicon 1410 2355
silver 961.93 2212
sodium 91.81± 0.03 882.9
strontium 769 1384
sulphur (mcl.) 119.0
sulphur (rh.) 112.8 444.674
tantalum 2996 5425± 100
tellurium (a.) 449.5± 0.3 989.8± 3.8
tellurium (rh.) 452 1390
terbium 1356 3230
thallium 303.5 1457± 10
thorium
thulium 1545 1950
tin (cub.) 231.9681 2270
titanium 1660± 10 3287
tungsten 3410± 20 5660
uranium 1132.3± 0.8 3818
vanadium 1890± 10 3380
xenon −111.9 −107.1± 3
ytterbium 819 1196
zinc 419.58 907
zirconium 1852± 2 4377
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22.1/3 Conversion temperatures of inorganic compounds

Melting point Boiling point
Substance ϑ/◦C ϑ/◦C
aluminum carbonate stable up to 1400 diss. 2200
aluminum oxide 2072 2980
aluminum phosphate > 1500
aluminum sulphite 1100 subl. 1500
ammonia −77.7 −33.35
ammonium chloride subl. 340 520
ammonium nitrate 169.6 210
ammonium thiocyanate 149.6 diss. 170
antimony bromide 96.6 280
antimony chloride 2.8 79
antimony oxide 656 1550
antimony trihydride −88 17.1
barium oxide 1918 ca. 2000
barium permanganate 3.77 diss. 200
beryllium bromide 490± 10 520
beryllium chloride 405 520
beryllium iodide 510± 10 590
beryllium oxide 2530± 30 ca. 3900
bismuth bromide 218 453
bismuth selenide 710 diss.
bismuth sulphide diss. 685
boric acid 236± 1
boron carbide 2350 > 3500
boron oxide 45± 2 ca. 1860
cadmium bromide 567 863
cadmium chloride 568 960
cadmium fluoride 1100 1758
cadmium iodide 387 796
cadmium oxide > 1500 subl. 1559
cadmium telluride 1121 1091
calcium bromide 742 1815
calcium carbide stab. 25 - 447 2300
calcium carbonate 1339 diss. 898.6
calcium chloride 782 > 1600
calcium fluoride 1423 ca. 2500
calcium iodide 784 ca. 1100
calcium oxide 2614 2850
cesium bromide 636 1300
cesium chloride 645 1290
cesium fluoride 682 1251
cesium iodide 626 1280
chromium carbide 1980 3800
chromium oxide 2266± 25 4000
cobalt fluoride ca. 1200 1400
copper chloride 620 993
copper iodide 605 1290

(continued)
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22.1/3 Conversion temperatures of inorganic compounds (continued)

Melting point Boiling point
Substance ϑ/◦C ϑ/◦C
dysprosium bromide 881 1480
dysprosium chloride 718 1500
dysprosium fluoride 1360 > 2200
dysprosium iodide 955 1320
erbium fluoride 1350 2200
erbium iodide 1020 1280
europium bromide 677 1880
europium chloride 727 > 2000
europium fluoride (EuF2), 1380 > 2400

(EuF3) 1390 2280
europium iodide (EuI2) 527 1580
fluorine dioxide −223.8 −144.8
gallium arsenide 1238
gallium dichloride 164 535
gallium trichloride 77.9± 0.2 201.3
heavy water 3.82 101.42
holmium bromide 914 1470
holmium chloride 718 1500
holmium fluoride 1143 > 2200
holmium iodide 989 1300
hydrogen disulphide −89.6 70.7
hydrogen fluoride −83.1 19.54
hydrogen peroxide −0.41 150.2
hydrogen sulphide −85.5 −60.7
indium antimonide 535
indium arsenide 943
indium phosphide 1070
indium telluride 667
iron oxide 1594± 5
lead bromide 373 916
lead fluoride 855 1290
lead iodide 402 954
lithium oxide > 1700
magnesium chloride 714 1412
magnesium fluoride 1261 2239
magnesium oxide 2852 3600
mercury bromide 236 322
mercury chloride 276 302
mercury iodide 259 354
orthophosphoric acid 73.6 diss. 200
ozone −192.7± 2 −111.9
potassium bromide 734 1435
potassium chlorate 356 diss. 400
potassium hydroxide 360.4± 0.7 1320 - 1324
potassium perchlorate 610± 10 diss. 400
radium bromide 728 subl. 900

(continued)
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22.1/3 Conversion temperatures of inorganic compounds (continued)

Melting point Boiling point
Substance ϑ/◦C ϑ/◦C
rubidium bromide 693 1340
rubidium chloride 718 1390
rubidium fluoride 795 1410
silicon dioxide (quartz) 1610 2230
silicon tetrahydride (silane) −185 −111.8
sodium amide 210 400
sodium bromide 747 1390
sodium chloride 801 1413
sodium cyanide 563.7 1496
sodium fluoride 993 1695
sodium hydroxide 318.4 1390
sodium iodide 661 1304
sodium metaborate 966 1434
strontium chloride 875 1250
strontium fluoride 1473 2489
strontium oxide 2430 ≈ 3000
sulphuric acid (100 %) 10.36 330± 0.5
tellurium bromide 210 339
terbium bromide 827 1490
terbium fluoride 1172 2280(?)
terbium iodide 946 > 1300
tetrachlorosilane −70 57.57
tetrafluorosilane −90.2 −86
thallium bromide 480 815
thallium chloride 430 720
thorium carbide 2655± 25 ca. 5000(?)
thorium oxide 3220± 50 4400
thorium tetraiodide 566 839
thulium bromide 952 1440
thulium fluoride 1158 > 2200
thulium iodide 1015 1260
titanium carbide 3140± 90 4820
titanium di-iodide 600 1000
titanium dioxide 1830 - 1850 2500 - 3000
titanium fluoride 1200 1400
titanium monoxide 1750 > 3000
titanium nitride 2930
tungsten carbide 2870± 50 6000
tungsten dicarbide 2860 6000
vanadium carbide 2810 3900
vanadium dioxide 1967
vanadium (V) oxide 690 diss. 1750
vanadium (III) oxide 1970
ytterbium bromide 677 1800
ytterbium chloride 702 1900
ytterbium fluoride 1052 2380
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22.1/4 Melting and boiling points of organic compounds

Compound Molecule formula Melting point ϑ/◦C Boiling point ϑ/◦C

alkanes

methane CH4 −182.48 −161.49
ethane CH3CH3 −183.27 −88.62
propane CH3CH2CH3 −187.69 −42.07
butane CH3(CH2)2CH3 −138.35 −0.5
pentane CH3(CH2)3CH3 −129.72 36.07
hexane CH3(CH2)4CH3 −95.35 68.74
heptane CH3(CH2)5CH3 −90.61 98.42
octane CH3(CH2)6CH3 −56.8 125.66
nonane CH3(CH2)7CH3 −53.52 150.79
decane CH3(CH2)8CH3 −29.66 174.12
isobutane (CH3)2CHCH3 −159.6 −11.73
isopentane (CH3)2CHCH2CH3 −159.9 27.85

alkenes (olefins)

ethene CH2 = CH2 −169.15 −103.71
propene CH2 = CHCH3 −185.25 −47.7
cyclohexene CH2(CH2)3CH = CH −103.7 83.2

alkynes

ethyne CH ≡ CH −80 −83.4
propyne CH3C ≡ CH −102.7 −23.22

aromatic hydrocarbons

benzene C6H6 5.53 80.1
naphthaline C10H8 80.29 217.95
toluene C6H5CH3 −94.99 110.63
ethyl benzene C6H5CH2CH3 −94.98 136.19
propyl benzene C6H5(CH2)2CH3 −99.5 159.22
o-xylene C6H4(CH3)2 −25.18 144.41
styrene C6H5CH = CH2 −30.63 145.2

amines

methyl amine CH3NH2 −93.49 −6.33
dimethyl amine (CH3)2NH −92.19 6.88
trimethyl amine (CH3)3N −117.3 2.87
ethyl amine CH3CH2NH2 −81 16.58
propyl amine CH3CH2CH2NH2 −83 48.5
aniline C6H5NH2 −63 184.13

organic halogen compounds

chloromethane CH3Cl −97.72 −24.22
bromomethane CH3Br −93.6 3.56
iodomethane CH3I −66.45 42.43
dichloromethane CH2Cl2 −95.14 39.75
trichloromethane CHCl3 −63.49 61.73
tetrachloromethane CCl4 −23.02 76.54
tetrabromomethane CBr4 92 190
tetraiodomethane CI4 171 135

(continued)
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22.1/4 Melting and boiling points of organic compounds (continued)

Compound Molecule formula Melting point ϑ/◦C Boiling point ϑ/◦C

organic halogen compounds (continued)

chloroethane CH3CH2Cl −136.4 12.27
bromoethane CH3CH2Br −117.6 38.35
chlorobenzene C6H5Cl −45.58 131.7
bromobenzene C6H5Br −30.82 156.06
iodobenzene C6H5I −30.63 145.2

alcohols

methanol CH3OH −97.68 64.51
ethanol CH3CH2OH −114.1 78.32
1-propanol CH3CH2CH2OH −126.2 97.2
1-butanol CH3(CH2)2CH2OH −89.3 117.73
2-propanol CH3CHOHCH3 −88.5 82.5
1-pentanol CH3(CH2)3CH2OH −78.2 138.35
ethene glycol CH2OHCH2OH −13.56 197.3
glycerol CH2OHCHOCH2CH3 18.6 290
cyclohexanol CH2(CH2)4CHOH 25.15 161.5

ethers

dimethyl ether CH3OCH3 −141.49 −24.84
diethyl ether CH3CH2OCH2CH3 −116.3 34.55
methyl phenyl ether C6H5OCH3 −37.3 154

aldehydes

formaldehyde HCHO −92 −19.1
acetaldehyde CH3CHO −123 20.4
propionaldehyde CH3CH2CH2CHO −80 48
butanal CH3CH2CH2CHO −96.4 74.8
isobutyraldehyde (CH3)2CHCHO −65 64.1
benzaldehyde C6H5CHO −26 178

ketones

acetone CH3COCH −94.7 56.29
ethyl methyl ketone CH3CH2COCH3 −86.69 79.64
acetophenone C6H5COCH3 19.65 202

carboxylic acids

formic acid HCOOH 8.4 100.56
acetic acid CH3COOH 16.63 117.9
propionic acid CH3CH2COOH −20.8 140.99
butyric acid CH3CH2CH2COOH −4.26 163.53
chloroacetic acid ClCH2COOH 63 189.5
dichloroacetic acid Cl2CHCOOH 10.8 192.5
trichloroacetic acid Cl3CCOOH 56.3 197.55
glycine NH2CH2COOH 234 286
lactic acid CH3CHOHCOOH 18 56
oxalic acid CO2HCOOH 157 189.5
adipic acid CO2H(CH2)4COOH 152 267
benzoic acid C6H5CO2H 121.7 249

(continued)
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22.1/4 Melting and boiling points of organic compounds (continued)

Compound Molecule formula Melting point ϑ/◦C Boiling point ϑ/◦C

carboxylic acidic derivates

acetyl chloride CH3COCl −112 51
acetyl bromide CH3COBr −96 76.7
acetyl iodide CH3COJ 0 108
acetamide CH3CONH2 82.15 221.1
methyl formate HCO2CH3 −99 32
methyl acetate CH3CO2CH3 −98.05 56.9
ethyl acetate CH3CO2CH2CH3 −39.5 77.1
acetic anhydride (CH3CO)2O −73.05 140

others

urea NH2CONH2 132.75 decays

22.1/5 Melting point Tf and boiling point Ts of oils

Substance Tf/
◦C Ts/

◦C
diesel fuel −5 60 . . . 300
heating oil −5 200 . . . 350
machine oil −5 380 . . . 400
tar −15 300
transformer oil −5 175
gas oil −30 200 . . . 300
linseed oil −15 316
kerosene −70 150 . . . 300
turpentine oil −10 160
gasoline −30 . . .− 50 67 . . . 100

22.1/6 Melting temperatures of high-temperature ceramics

Substance ϑmelt /
◦C Substance ϑmelt /

◦C
HfC 3890± 150 NbB4 2900
TaC 3880± 150 VC 2810
ZrC 3530 HfO2 2790
NbC 3480 W2B 2770± 80
HfB2 3250± 100 W2C 2730± 15
TiN 3205 UO2 2730
TiC 3147 WC 2720
TaB2 3100 MoC 2700
TaN 3087± 50 ZrO2 2700
NbB2 3000 ZrB12 2680
HfN 2982 YN 2670
ZrN 2982 ThC2 2656± 75
TiB2 2980 ScN 2650
ThO2 2950 UN 2650± 100
ThN 2630± 50 BeO 2440
CoO 2603 Cr2O2 2400

(continued)
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22.1/6 Melting temperatures of high-temperature ceramics (continued)

Substance ϑmelt /
◦C Substance ϑmelt /

◦C
NbB6 2540 Nb5Si3 2440
SmB6 2540 TaB 2430
LaB6 2530 ThS 2425
Ta4Si 2510 TaS 2425
MgO 2500 Nb2N 2420
Ta5Si3 2500 Y2O3 2410
UB4 2495 AlN 2400
SrO 2460 U2C 2400
CeS 2450 VB2 2400± 50
WB(α) 2400± 100 Be3N5 2205
UB2 2385 BaS 2205
VN 2360 Be3N2 2200
MoB 2350 Ti2B 2200
UC 2315 CrB2 2200± 50
La2O3 2310 TaSi2 2200
YC2 2300± 50 Nd2S3 2200
W2B5 2300± 50 GeB6 2190
BeB6 2300 WSi2 2165
YB6 2300 ThB6 2150
CaC2 2300 ZrSi 2150
Th2S 2300 Mo2B 2140
Th4S7 2300 NdS 2140
NbB 2280 Ti5Si3 2120
ScB2 22500 GdB6 2100
Mo3B4 2250 Th3N4 2100
VB 2250 MoB2 2100
Zr5Si3 2250 La2S3 2100
UC2 2250 V3B2 2070
SrB6 2235 Al2O3 2050
UB12 2235 CrB 2050
CaB6 2230 Ce3S4 2050± 75
BaB6 2230 MoSi2 2030
Ba3N2 2220 TiO 2020
ThB4 2210 Al2O3 · BaO 2000

22.1/7 Melting temperatures of low-melting alloys at the eutectic point

Substance ϑmelt /
◦C Substance ϑmelt /

◦C
(92.2 % Hg; 2.8 % Na) −48.2 (90 % K; 10 % Na) 17.5
(94.5 % Cs; 5.5 % Na) −30 (56 % Na; 44 % K) 19
(93 % Cs; 7 % N) −28 (85.2 % Na; 14.8 % Hg) 21.4
(78 % K; 22 % Na) −11.4 (60 % Na; 40 % K) 26
(80 % K; 20 % Na) −10 (70 % Na; 30 % K) 41
(91.8 % Rb; 8.2 % Na) −4.5 (50 % Na; 50 % Hg) 45
(70 % K; 30 % Na) −3.5 (70 % Hg; 30 % Na) 55
(60 % K; 40 % Na) 5 (80 % Na; 20 % K) 58
(50 % K; 50 % Na) 11 (60 % Na; 40 % Hg) 60
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22.1.3 Curie and Néel temperatures
22.1/8 Ferromagnetic phase transitions—Curie temperature

Substance TC/K Substance TC/K

Co 1400.15 CrO2 380.15
Dy 105.15 UH3 180.15
Er 29.15 silicon-iron (4 Si) 963.15
Fe 1033.15 alperm (16 Al) 673.15
Gd 289.15 permalloy (78.5 Ni) 873.15
Ho 29.15 super permalloy (78.5 Ni) 673.15
MnSb 587.15 hipernik (50 Ni) 773.15
Ni 627.15 permendur (50 Co) 1253.15
Tb 221 perminvar (25 Co, 45 Ni) 988.15
Tm 22(?) perminvar (7 Co, 70 Ni) 923.15
FeRh 675

22.1/9 Antiferromagnetic phase transitions—Néel temperature

Substance TN /K Substance TN /K

Ce 125 Ho 131.55
CoCl2 521.45 Mn 103.15
CoO 274.93 MnF2 66.45
Cr 473.15 MnO 122.15
Cr2O3 305.95 Nd 7.5
Dy 178.5 NiCl2 49.55
Er 85 NiO 523.15
Eu 87 Pr < 1.5
FeCO3 57.15 Sm 15
FeCl2 23.45 Tb 229
FeF2 78.35 TiCl2 103.15
FeO 198.15 Tm 51–60
FeRh 350

22.1/10 Ferro- and antiferroelectric transitions—Curie temperature

Type of Type of
Substance transition TC/K Substance transition TC/K

BaTiO3 F 193.15 (NH4)H2PO4 AF 148.15
F 278.15 NaNbO3 AF 793.15
F 393.15 NaTaO3 AF 748.15

CsH2PO4 F 160.15 PbTiO3 F 763.15
KD2PO4 F 216.15 PbZrO3 AF 506.15
KH2PO4 F 123.15 RbH2PO4 F 147.15
KNbO3 F 708.15 WO3 AF 1010.15
KTaO3 F 13.15
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22.2 Characteristics of real gases

22.2/1 Values of temperature, pressure and density at the critical point

Gas Tc/K pc/MPa ρc/(102 kg m−3)

oxygen 155 5.06 4.1
nitrogen 126 3.39 3.11
hydrogen 33 1.29 0.31
helium 5 0.23 0.69
neon 44 2.72 4.84
argon 151 4.85 5.31
chlorine 417 7.69 5.73
carbon monoxide 133 3.48 3.01
carbon dioxide 304 7.36 4.68
sulphur dioxide 431 7.86 5.24
methane 191 4.62 1.62
air 132 3.77
ethane 305 4.88 2.03
propane 370 4.24 2.20
butane 425 3.78 2.28
isobutane 408 3.64 2.21
ammonia 405 11.2 2.35
hydrogen sulphide 374 8.98 3.49
ethene 283 5.10 2.27
ethyne 309 6.22 2.31
dinitrogen oxide 310 7.24 4.59
nitrogen monoxide 180 6.56 5.20
dichlorodifluoromethane 385 4.10 5.55
trifluoromethane 471 4.36 5.54

22.2/2 Molar mass, specific gas constant and density of gases

The density refers to standard conditions T = 273.15 K, p = 101325 Pa

Gas M/(g mol−1) Rs/(J K−1kg−1) ρ/(kg m−3)

air 28.96 286.91 1.293
chlorine 70.91 117.19 3.214
methane 16.04 517.97 0.717
ethane 30.07 276.35 1.357
ethene 28.05 296.21 1.260
ethyne 26.04 319.14 1.175
propane 44.10 188.45 2.010
propene 42.08 197.48 1.915
ammonia 17.03 487.9 0.771
carbon monoxide 28.01 296.67 1.250
carbon dioxide 44.01 188.81 1.977
oxygen 32.00 259.69 1.429
nitrogen 28.02 296.61 1.250
nitrogen monoxide 30.01 276.93 1.340
hydrogen 2.02 4122.0 0.0899
steam 18.02 461.25 0.804
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22.2/3 Van der Waals constants

Gas a/(N m4 mol−2) b/(10−6 m3 mol−1)

acetone 1.58 98.5
ammonia 0.422 37.2
argon 0.136 32.3
ethanol 1.22 84
helium 0.0035 23.8
krypton 0.234 39.9
methane 0.228 27.1
methanol 0.95 67
neon 0.21 17.1
propane 0.92 84.5
1-propanol 1.5 101
oxygen 0.138 31.8
nitrogen 0.141 39.2
water 0.555 30.5
hydrogen 0.0245 26.6
xenon 0.415 51

22.2/4 Pressure and temperature at the triple point

Substance Tt/K pt/hPa

ammonia 195.5 60.6
carbon dioxide 216.56 5180
oxygen 543.6 1.5
nitrogen 63.14 12.53

Substance Tt/K pt/hPa

neon 24.56 431
parahydrogen 13.81 70.4
water 273.16 6.1

22.3 Thermal properties of substances

22.3.1 Viscosity
The viscosity is given for the temperature 0 ◦C or 20 ◦C and standard pressure.

22.3/1 Dynamic viscosity of gases

Gas η(0 ◦C)/(10−6 Pa s) η(20 ◦C)/(10−6 Pa s)

ammonia 9.3 10.2
chlorine 12.3 13.5
ethene 9.4 10.3
ethyne 9.5 10.4
carbon monoxide 16.6 18.0
carbon dioxide 13.7 15.0
air 17.2 18.4

(continued)
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22.3/1 Dynamic viscosity of gases (continued)

Gas η(0 ◦C)/(10−6 Pa s) η(20 ◦C)/(10−6 Pa s)

methane 10.2 11.0
sulphur dioxide 11.6 12.8
oxygen 19.2 20.7
nitrogen 16.5 17.8
hydrogen 8.4 9.0

22.3/2 Dynamic viscosity of liquids

Substance η(0 ◦C)/(10−6 Pa s) η(20 ◦C)/(10−6 Pa s)

acetone 395 322
benzene 910 648
trichloromethane 700 570
ethanol 1780 1200
heptane 517 409
methanol 820 587
pentane 282 232
mercury 1685 1554
toluene 768 585
water 1792 1002

22.3.2 Expansion, heat capacity and
thermal conductivity

The tables below list the following thermal quantities:
• linear expansion coefficient α at 25 ◦C,
• specific heat capacity cp at constant pressure at 25 ◦C,
• thermal conductivity λ at 27 ◦C.

22.3/3 Thermal properties of pure metals

Metal α /(10−6 K−1) cp /(J · g−1 · K−1) λ /(W · cm−1 · K−1)

aluminum 23.1 0.897 2.37
antimony 11.0 0.207 0.243
barium 20.6 0.204 0.184
beryllium 11.3 1.825 2.00
bismuth 13.4 0.122 0.0787
cadmium 30.8 0.232 0.968
calcium 22.3 0.647 2.00
cerium 5.2 0.192 0.113
cesium 0.242 0.359
chromium 4.9 0.449 0.937
cobalt 13.0 0.421 1.00
copper 16.5 0.385 4.01

(continued)
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22.3/3 Thermal properties of pure metals (continued)

Metal α /(10−6 K−1) cp /(J · g−1 · K−1) λ /(W · cm−1 · K−1)

dysprosium 9.9 0.173 0.107
erbium 12.2 0.168 0.145
europium 35 0.182 0.140
gadolinium 9 0.236 0.105
gallium 0.371 0.406
gold 14.2 0.129 3.17
hafnium 5.9 0.144 0.230
holmium 11.2 0.165 0.162
indium 32.1 0.233 0.816
iridium 6.4 0.131 1.47
iron 11.8 0.449 0.802
lanthanum 12.1 0.195 0.134
lead 28.9 0.129 0.353
lithium 46 3.582 0.847
lutetium 9.9 0.154 0.164
magnesium 24.8 1.023 1.56
manganese 21.7 0.479 0.0782
mercury 0.140 0.0834
molybdenum 4.8 0.251 1.38
neodymium 9.6 0.190 0.165
neptunium 0.063
nickel 13.4 0.444 0.907
niobium 7.3 0.265 0.537
osmium 5.1 0.130 0.876
palladium 11.8 0.244 0.718
platinum 8.8 0.133 0.716
plutonium 46.7 0.0674
polonium 0.200
potassium 0.757 1.024
praseodymium 6.7 0.193 0.125
promethium 11 0.15
rhenium 6.2 0.137 0.479
rhodium 8.2 0.243 1.500
rubidium 0.363 0.582
ruthenium 6.4 0.238 1.17
samarium 12.7 0.197 0.133
scandium 10.2 0.568 0.158
silver 18.9 0.235 4.29
sodium 71 1.228 1.41
strontium 22.5 0.301 0.353
tantalum 6.3 0.140 0.575
technetium 0.506
terbium 10.3 0.182 0.111
thallium 29.9 0.129 0.461
thorium 11.0 0.113 0.540
thulium 13.3 0.160 0.169

(continued)
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22.3/3 Thermal properties of pure metals (continued)

Metal α /(10−6 K−1) cp /(J · g−1 · K−1) λ /(W · cm−1 · K−1)

tin 22.0 0.228 0.666
titanium 8.6 0.523 0.219
tungsten 4.5 0.132 1.74
uranium 13.9 0.116 0.276
vanadium 8.4 0.489 0.307
ytterbium 26.3 0.155 0.385
yttrium 10.6 0.298 0.172
zinc 30.2 0.388 1.16
zirconium 5.7 0.278 0.227

22.3/4 Thermal properties of construction and building materials

Material α /(10−6 K−1) cp /(J · g−1 · K−1) λ /(W ·m−1 · K−1)

metals

steel, V2A 16.0 0.51 14
steel, unalloyed 11 . . . 13 0.49 47 . . . 58
cast iron 10.5 0.532 58
aluminum bronze 24 0.435 128
bronze 17.5 0.37 64
constantan 15 0.410 23.3
brass 18 0.385 113
monel 14 0.43 19.7
nickel brass 18.36 0.398 48
phosphorus bronze 18.9 0.36 110

concrete

standard concrete
(1:2:4) 12 0.88 1.4 . . . 1.5

ferroconcrete 10 . . . 15 0.88 0.39 . . . 1.6

wood

oak ≈ 3 2.4 0.17
maple ≈ 3 1.6 0.16
birch ≈ 3 1.9 0.142
beech ≈ 3 2.1 0.17
alder ≈ 3 1.4 0.17
ash ≈ 3 1.6 0.16
pine ≈ 3 1.4 0.14
spruce ≈ 3 2.1 0.14

(continued)
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22.3/4 Thermal properties of construction and building materials (continued)

Material α /(10−6 K−1) cp /(J · g−1 · K−1) λ /(W ·m−1 · K−1)

building bricks

brick 6 0.92 1
sandstone 7 . . . 12 0.71 2.3
chamotte 5 0.8 ≈ 1.2
slate 0.76 ≈ 0.5
marble ≈ 11 0.84 2.8

glass

window glass 7.9 0.84 0.81
quartz glass 0.6 0.73 0.81
glass wool 0.84 ≈ 0.04

22.3/5 Thermal properties of gases

cp/ cv/ λ/

Substance (J · g−1 · K−1) (W ·m−1 · K−1)

ethene 1.47 1.173 0.017
ammonia 2.056 1.568 0.022
argon 0.52 0.312 0.016
acetylene 1.616 1.300 0.018
chlorine 0.473 0.36 0.0081
hydrogen chloride 0.795 0.567 0.013
furnace gas 1.05 0.75 0.02
helium 5.20 3.121 0.143
carbon dioxide 0.816 0.627 0.015
carbon monoxide 1.038 0.741 0.023
krypton 0.25 0.151 0.0088
city gas 2.14 1.59
air, dry 1.005 0.718 0.02454
methane 2.19 1.672 0.030
neon 1.03 0.618 0.046
propane 1.549 1.360 0.015
oxygen 0.909 0.649 0.024
carbon disulphide 0.582 0.473 0.0069
sulphur dioxide 0.586 0.456 0.0086
hydrogen sulphide 0.992 0.748 0.013
nitrogen 1.038 0.741 0.024
hydrogen 14.05 9.934 0.171
steam (100 ◦C) 1.842 1.381 0.016
xenon 0.16 0.097 0.0051
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22.3/6 Thermal properties of liquid substances

cp/ λ/

Substance (J · g−1 · K−1) (W ·m−1 · K−1)

diethyl ether 2.298 0.13
ethyl alcohol 2.38
acetone 2.22 0.16
petrol 2.02 0.13
benzene 1.70 0.15
diesel fuel 2.05 0.15
glycerol 2.37 0.29
heating oil 2.07 0.14
linseed oil 1.88 0.17
petroleum ether 1.76 0.14
mercury 0.138 10
colza oil 1.97 0.17
nitric acid, conc. 1.72 0.26
lubricating oil 2.09 0.13
sulphuric acid, conc. 1.42 0.47
transformer oil 1.88 0.13
trichloroethylene 0.93 0.12
toluene 1.67 0.14
water 4.187 0.60

22.3/7 Thermal properties of plastic materials

α/ cp/ λ/

Material (10−6 K−1) (J · g−1 · K−1) (W ·m−1 · K−1)

acryl 90 1.5
polyvinyl chloride (PVC); flexible 240 1 . . . 2 0.16
polyvinyl chloride (PVC); stiff 50 0.9 0.16
polyethylene 2.3
polystyrene 70 1.3
polyester 80 2.1 23
polyester, 70 % fiberglass 12 0.17
bakelite (with wood flour) 50 1.5 34
bakelite (with asbestos) 30 1.3 60
rubber (slightly vulcanized) 220 2.1 15
rubber (with soot) 160 1.6 17

22.3/8 Heat conductivity and specific heat capacity of solid materials

cp/ λ/

Material (J · g−1 · K−1) (W ·m−1 · K−1)

asbestos 0.816
basalt 0.86 1.67
ice 2.09 2.33
gypsum 1.1 0.81
mica 0.87 0.35

(continued)
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22.3/8 Heat conductivity and specific heat capacity of solid materials (continued)

cp/ λ/

Material (J · g−1 · K−1) (W ·m−1 · K−1)

graphite 0.71 168
hard rubber 1.42 0.17
charcoal 0.84 0.084
limestone 0.909 2.2
boiler scale 0.80 1.2 . . . 3
colophony 1.30 0.317
cork ≈ 2.0 ≈ 0.05
chalk 0.84 0.92
leather, dry ≈ 1.5 0.15
paper 1.336 0.14
paraffin 3.26 0.26
pitch 0.13
porcelain ≈ 1 ≈ 1
quartz 0.80 9.9
black, soot 0.84 0.07
sand, dry 0.80 0.58
emery 0.96 11.6
snow 4.187
silicon carbide 0.67 15.2
hard coal 1.02 0.24
beef fat 0.88
tombac 0.381 159
clay, dry 0.88 ≈ 1
peat dust, dry 1.9 0.08
vulcanized fiber 1.26 0.21
wax 3.34 0.084

22.3/9 Heat conduction of thermal insulators

Material λ /(W ·m−1 · K−1)

flexible material in layers

hair felt 0.038
balsam wool 0.039
felt, 75 % hair, 25 % flax 0.039
felt, 50 % hair, 50 % flax 0.038
flax fiber between paper 0.04
thermofelt (flax + asbestos) 0.053

loose material

rock wool 0.037 . . . 0.042
glass wool 0.042
granular cork 0.043 . . . 0.045
gypsum powder 0.075 . . . 0.086
sawdust 0.059 . . . 0.061
charcoal 0.052 . . . 0.056
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22.3/10 Heat conduction at various temperatures

λ(0 ◦C)/ λ(50 ◦C)/ λ(100 ◦C)/
Substance (W m−1 K−1) (W m−1 K−1) (W m−1 K−1)

asbestos 0.15 0.18 0.195
acetone 0.17 0.16 0.15
aniline 0.19 0.177 0.167
ethanol 0.188 0.177 —
castor oil 0.184 0.177 0.172
foamed concrete 0.11 0.11 0.13
water 0.551 0.648 0.683

22.3/11 Volume expansion of water at various temperatures

ϑ/ ◦C γ/(10−4K−1) ϑ/ ◦C γ/(10−4K−1)

5 – 10 0.53 20 – 40 3.02
10 – 20 1.50 40 – 60 4.58
20 2.07 60 – 80 5.87

22.3/12 Volume expansion of liquids

The values of volume expansion of liquids are given for a temperature of 18 ◦C.

Substance γ /(10−4K−1)

acetone 14.3
aniline 8.5
trichloromethane 12.8
diethyl ether 16.3
ethanol 11.0
rock oil 9.2
glycerol 5.0

Substance γ /(10−4K−1)

kerosene 10.0
methanol 11.9
1-propanol 9.8
mercury 1.8
nitric acid 12.4
turpentine oil 9.4
toluene 10.8

22.4 Heat transmission

22.4/1 Thermal transmittance k in
W

m2 · K (approximate values)

wall thickness/cm
Material 0.3 1 2 5 10 12 15 20 25

glass 5.8 5.6

wooden wall 3.8 2.4 1.7

gravel concrete 4.1 3.5 3.1 2.8

slag brick 2.7 1.7

ferroconcrete 4.2 3.7 3.3 2.9
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22.4/2 Thermal transmittance k in
W

m2 · K for building bricks

wall thickness/cm
inner wall outer wall

Material 9 19 24 24 30 39 49

full brick 2.56 1.94 1.73 2.00 1.78 1.45 1.22
horizontally perforated brick 2.00 1.63 1.36 1.50 1.28 1.10 0.87
vertically perforated brick 2.36 1.69 1.49 1.69 1.48 1.19 1.00
clinker brick 2.73 1.99 2.35

sandy limestone

perforated bricks 2.24 1.88 1.62 1.85 1.57 1.37 1.10
full bricks 2.52 2.19 1.94 2.28 1.97 1.74 1.43
hard bricks 2.56 2.23 2.02 2.35 2.04 1.80 1.49

metallurgic bricks 2.24 1.88 1.60 1.81 1.57 1.37 1.10

gas concrete

600 kg ·m−3 1.64 1.28 1.04 1.12 0.94 0.80 0.62
800 kg ·m−3 1.77 1.41 1.15 1.26 1.06 0.91 0.71
1000 kg ·m−3 1.90 1.52 1.26 1.38 1.17 1.01 0.79

lightweight concrete solid bricks

1200 kg ·m−3 2.00 1.63 1.36 1.50 1.30 1.10 0.87
1400 kg ·m−3 2.17 1.81 1.52 1.72 1.48 1.29 1.02
1600 kg ·m−3 2.36 1.99 1.71 1.97 1.71 1.50 1.21

lightweight concrete hollow-block bricks

1400 kg ·m−3 1.30 1.45 1.27
1600 kg ·m−3 1.42 1.59 1.38
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22.4/3 Heat transmission coefficients α (guide values)

Conditions α/(W ·m−2 · K−1)

air along plane polished surface

speed of air v ≤ 5m · s−1 5.6+ 4v

m · s−1

speed of air v > 5m · s−1 7.12 ·
(

v

m · s−1

)0.78

air along plane iron wall

speed of air v ≤ 5m · s−1 5.8+ 4v

m · s−1

speed of air v > 5m · s−1 7.14 ·
(

v

m · s−1

)0.78

air along plane brickwork

speed of air v ≤ 5m · s−1 6.2+ 4.2v

m · s−1

speed of air v > 5m · s−1 7.52 ·
(

v

m · s−1

)0.78

air perpendicular to metallic wall
at rest 3.5 . . . 35
moderate motion 23 . . . 70
rapid motion 58 . . . 290

water around pipes
at rest 350 . . . 580

flowing 350+ 2100

√
v

m · s−1

water in vessels 580 . . . 2300
water in vessels, stirred 2300 . . . 4700
boiling water in pipes 4700 . . . 7000
boiling water at metallic surfaces 3500 . . . 5800
condensing steam 11 600
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22.5 Practical correction data

22.5.1 Pressure measurement
p0 and ρ0 denote the pressure and density of air at sea level and ϑ = 15 ◦C.

22.5/1 Standard atmosphere in relative units

Altitude/m p/p0 ρ/ρ0 ϑ/ ◦C Altitude/m p/p0 ρ/ρ0 ϑ/ ◦C
0 1 1 15 5000 0.533 0.601 −17.5
1000 0.887 0.907 8.5 6000 0.465 0.538 −24
2000 0.784 0.822 2 7000 0.405 0.481 −30.5
3000 0.692 0.742 −4.5 8000 0.351 0.428 −37
4000 0.608 0.669 −11 10000 0.261 0.337 −50

22.5/2 Air pressure p as a function of altitude h, absolute units

h/m p/hPa

0 1013.25
100 1001.3
200 989.5
300 977.7
400 966.1
500 954.6
600 943.2

h/m p/hPa

700 931.9
800 920.8
900 909.7
1000 898.8
1200 877.2
1400 856.0
1600 835.3

h/m p/hPa

2000 795.0
2400 756.3
2800 719.1
3200 683.4
3600 649.2
4000 616.4
5000 540.2

h/m p/hPa

6000 471.8
8000 356.0
10000 264.4
12000 193.3
15000 120.4
17500 81.2
20000 54.75

22.5.1.1 Conversion to sea level
As a rule, pressure data refer to sea level. For that reason, the reference data must be
corrected. The altitude of the place of measurement above sea level and the temperature
difference between the place of measurement and sea level must be taken into account.
The influence of the geographic latitude is, as a rule, masked by the inaccuracies in the
temperature of the air column. The correction is made as follows. From the first table, one
picks the factor that accounts for the altitude and the air temperature. With this value, one
then uses the second table and takes, for this factor, the quantity of correction that must be
added to the measured quantity. The unit adopted is the non-SI unit: torr = 1 mm Hg.
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22.5/3 Temperature and altitude factors

Temperature of air column/◦C
Altitude/m −16 0 16 28

2000 1.2 1.1 1.0 1.0
2100 11.5 10.8 10.2 9.7
2200 23.0 21.6 20.3 19.5
2300 34.5 32.5 30.5 29.2
2400 46.0 43.3 40.7 38.9
2500 57.5 54.1 50.9 48.6
2600 69.0 64.9 61.0 58.3
2700 80.6 75.7 71.2 68.1
2800 92.1 86.5 81.4 77.8
2900 103.6 97.4 91.5 87.5
3000 115.1 108.2 101.7 97.3
3100 126.6 119.0 111.9 107.0
3200 138.1 129.8 122.0 116.7
3300 149.6 140.6 132.2 126.4
3400 161.1 151.4 142.4 136.2
3500 172.6 162.3 152.5 145.9
3600 184.1 173.1 162.7 155.6
3700 195.6 183.9 172.9 165.3
3800 207.1 194.7 183.1 175.0
3900 218.6 205.5 193.2 184.8
4000 230.1 216.3 203.4 194.5
4100 241.6 227.1 213.5 204.2
4200 253.1 237.9 223.7 213.9
4300 264.6 248.8 233.9 223.6
4400 276.1 259.6 244.0 233.4
4500 287.6 270.4 254.2 243.1
4600 299.1 281.2 264.4 252.8
4700 310.6 292.0 274.5 262.5
4800 322.1 302.8 284.7 272.2
4900 333.6 313.6 294.9 282.0
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22.5/4 Additive correction term for pressure measurement

Temp. Barometer measured value
altitude in mm Hg
factor 780 760 740 720 700

1 0.9 0.9 0.9 0.8 0.8 —
5 4.5 4.4 4.3 4.2 4.0 —
10 9.0 8.8 8.6 8.3 8.1 —
15 13.6 13.2 12.9 12.5 12.2 —
20 18.2 17.7 17.2 16.8 16.3 —
25 22.8 22.2 21.6 21.0 20.4 —
30 27.4 26.7 26.0 25.3 24.6 —
35 — 31.2 30.4 29.6 28.8 —

760 740 720 700 680 660

40 35.8 34.9 33.9 33.0 32.0 31.1
45 40.4 39.3 38.3 37.2 36.2 35.1
50 45.0 43.8 42.7 41.5 40.3 39.1
55 49.7 48.4 47.1 45.8 44.5 43.1
60 — 52.9 51.5 50.1 48.6 47.2
65 — 57.5 55.9 54.4 52.8 51.3
70 — 62.1 60.4 58.7 57.1 55.4
75 — 66.7 64.9 63.1 61.3 59.5

720 700 680 660 640

80 69.5 67.5 65.6 63.7 61.7 —
85 74.0 72.0 69.9 67.9 65.8 —
90 78.6 76.4 74.2 72.1 69.9 —
95 83.2 80.9 78.6 76.3 74.0 —

100 87.9 85.4 83.0 80.5 78.1 —
105 — 89.9 87.4 84.8 82.2 —
110 — 94.5 91.8 89.1 86.4 —
115 — 99.1 96.3 93.4 90.6 —
120 — 103.7 100.7 97.8 94.8 —
125 — 108.3 105.3 102.2 99.1 —

680 660 640 620 600

125 105.3 102.2 99.1 96.0 92.9 —
130 109.8 106.6 103.3 100.1 96.9 —
135 114.3 111.0 107.6 104.3 100.9 —
140 118.9 115.4 111.9 108.4 104.9 —
145 123.5 119.9 116.3 112.6 109.0 —
150 128.2 124.4 120.6 116.9 113.1 —
155 — 128.9 125.0 121.1 117.2 —
160 — 133.5 129.4 125.4 121.4 —
165 — 138.1 133.9 129.7 125.5 —
170 — 142.7 138.4 134.0 129.7 —

(continued)
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22.5/4 Additive correction term for pressure measurement (continued)

Temp. Barometer measured value
altitude in mm Hg
factor 640 620 600 580 560

170 138.4 134.0 129.7 125.4 121.1
175 142.9 138.4 133.9 129.5 125.0
180 147.4 142.8 138.2 133.6 129.0
185 151.9 147.2 142.4 137.7 132.9
190 153.5 151.6 146.7 141.8 136.9
195 161.1 156.1 151.0 146.0 141.0
200 165.7 160.5 155.4 150.2 145.0
205 170.4 165.0 159.7 154.4 149.1
210 — 169.6 164.1 158.6 153.2
215 — 174.1 168.5 162.9 157.3

620 600 580 560 540

215 174.1 168.5 162.9 157.3 151.7
220 178.7 172.9 167.2 161.4 155.7
225 183.3 177.4 171.5 165.6 159.7
230 188.0 181.9 175.8 169.8 163.7
235 192.6 186.4 180.2 174.0 167.8
240 — 191.0 184.6 178.2 171.9
245 — 195.5 189.0 182.5 176.0
250 — 200.1 193.4 186.8 180.1
255 — 204.7 197.9 191.1 184.3
260 — 209.4 202.4 195.4 188.4

580 560 540 520

260 202.4 195.4 188.4 181.5 —
265 206.9 199.8 188.4 181.5 —
270 211.5 204.2 196.9 189.6 —
275 216.0 208.6 201.1 193.7 —
280 220.6 213.0 205.4 197.8 —
285 225.2 217.5 209.7 201.9 —
290 229.9 222.0 214.0 206.1 —
295 — 226.5 218.4 210.3 —
300 — 231.0 222.8 214.5 —

560 540 520 500 480

305 235.6 227.2 218.8 210.3 201.9
310 240.2 231.6 223.0 214.4 205.9
315 244.8 236.0 227.3 218.6 209.8
320 249.4 240.5 231.6 222.7 213.8
325 254.1 245.0 236.0 226.9 217.8
330 — 249.6 240.3 231.1 221.8
335 — 254.1 244.7 235.3 225.9
340 — 258.7 249.1 239.6 230.0
345 — 263.3 253.6 243.8 234.1
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22.5.1.2 Mercury barometer measurements
(temperature correction)

This correction has its origin in the thermal expansion of mercury, as well as of the mea-
suring scale.

22.5/5 Barometric measurements with a brass scale

The quantities given in the table must be subtracted from the measuring value. Intermediate
values may be estimated by linear interpolation.

Temperature Measuring value in mm
ϑ/◦C 620 630 640 650 660 670 680 690 700

0 0 0 0 0 0 0 0 0 0
5 0.51 0.51 0.52 0.53 0.54 0.55 0.56 0.56 0.57
10 1.01 1.03 1.04 1.06 1.08 1.09 1.11 1.13 1.14
15 1.52 1.54 1.56 1.59 1.61 1.64 1.66 1.69 1.71
20 2.02 2.05 2.08 2.12 2.15 2.18 2.21 2.25 2.28
25 2.52 2.56 2.60 2.64 2.68 2.72 2.77 2.81 2.85
30 3.02 3.07 3.12 3.17 3.22 3.27 3.32 3.36 3.41
35 3.52 3.58 3.64 3.69 3.75 3.81 3.86 3.92 3.98

Temperature Measuring value in mm
ϑ/◦C 710 720 730 740 750 760 770 780 790

0 0 0 0 0 0 0 0 0 0
5 0.58 0.59 0.60 0.60 0.61 0.62 0.63 0.64 0.64
10 1.16 1.17 1.19 1.21 1.22 1.24 1.26 1.27 1.29
15 1.74 1.76 1.78 1.81 1.83 1.86 1.88 1.91 1.93
20 2.31 2.34 2.38 2.41 2.44 2.47 2.51 2.54 2.57
25 2.89 2.93 2.97 3.01 3.05 3.09 3.13 3.17 3.21
30 3.46 3.51 3.56 3.61 3.66 3.71 3.75 3.80 3.85
35 4.03 4.09 4.15 4.21 4.26 4.32 4.38 4.43 4.49

22.5/6 Barometric measurements with a glass scale

The quantities given in the table must be subtracted from the measuring value. Intermediate
values may be estimated by linear interpolation.

Temperature Measuring value in mm
ϑ/◦C 700 710 720 730 740 750 760 770 780

0 0 0 0 0 0 0 0 0 0
5 0.060 0.061 0.062 0.063 0.064 0.064 0.065 0.066 0.067

10 0.121 0.122 0.124 0.126 0.127 0.129 0.130 0.132 0.134
15 0.181 0.184 0.186 0.189 0.191 0.193 0.196 0.198 0.201
20 0.242 0.245 0.248 0.252 0.255 0.258 0.261 0.264 0.268
25 0.303 0.307 0.311 0.315 0.319 0.323 0.327 0.331 0.335
30 0.363 0.368 0.373 0.378 0.383 0.387 0.392 0.397 0.402
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22.5.2 Volume measurements—conversion to
standard temperature

22.5/7 Temperature correction for aqueous solutions

Frequently, the values for aqueous solutions refer to the standard temperature of 20 ◦C. The
volume measurement is made, however, at another temperature. The following table lists
an additive correction to the volume to be measured, by reference to the standard volume
at 20 ◦C. The volume-expansion coefficient of glass is assumed to be 0.000025 per degree.

Temperature Volume at 20 ◦C
ϑ/◦C 2000 1000 500 400 300 250 150

15 −1.54 −0.77 −0.38 −0.31 −0.23 −0.19 −0.12
16 −1.28 −0.64 −0.32 −0.26 −0.19 −0.16 −0.10
17 −0.99 −0.50 −0.25 −0.20 −0.15 −0.12 −0.07
18 −0.68 −0.34 −0.17 −0.14 −0.10 −0.08 −0.05
19 −0.35 −0.18 −0.09 −0.07 −0.05 −0.04 −0.03
21 0.37 0.18 0.09 0.07 0.06 0.05 0.03
22 0.77 0.38 0.19 0.15 0.12 0.10 0.06
23 1.18 0.59 0.30 0.24 0.18 0.15 0.09
24 1.61 0.81 0.40 0.32 0.24 0.20 0.12
25 2.07 1.03 0.52 0.41 0.31 0.26 0.15
26 2.54 1.27 0.64 0.51 0.38 0.32 0.19
27 3.03 4.52 0.76 0.61 0.46 0.38 0.23
28 3.55 1.77 0.89 0.71 0.53 0.44 0.27
29 4.08 2.04 1.02 0.82 0.61 0.51 0.31
30 4.62 2.31 1.16 0.92 0.69 0.58 0.35
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22.5.2.1 Measurements with a glass
constant-volume thermometer

22.5/8 Temperature correction for a glass constant-volume thermometer

The following table lists the additive correction due to the thermal expansion of glass, with
respect to 20 ◦C.

Temperature Measured volume in milliliters
ϑ/◦C 2000 1000 500 400 300 250

15 −0.25 −1.12 −0.06 −0.05 −0.04 −0.031
16 −0.20 −0.10 −0.05 −0.04 −0.03 −0.025
17 −0.10 −0.08 −0.04 −0.03 −0.02 −0.019
18 −0.10 −0.05 −0.02 −0.02 −0.02 −0.12
19 −0.05 −0.02 −0.01 −0.01 −0.01 −0.006
21 0.05 0.02 0.01 0.01 0.01 0.006
22 0.10 0.05 0.02 0.02 0.02 0.012
23 0.15 0.08 0.04 0.03 0.02 0.019
24 0.20 0.10 0.05 0.04 0.03 0.025
25 0.25 0.12 0.06 0.05 0.04 0.031
26 0.30 0.15 0.08 0.06 0.04 0.038
27 0.35 0.18 0.09 0.07 0.05 0.044
28 0.40 0.20 0.10 0.08 0.06 0.050
29 0.45 0.22 0.11 0.09 0.07 0.056
30 0.50 0.25 0.12 0.10 0.08 0.062

22.6 Generation of liquid low-temperature baths

To generate constant low temperatures, one may use solid-liquid mixtures at the melting
point. This bath must be stirred. Cooling is undertaken, depending on the required tem-
perature, with dry ice (−78 ◦C) or liquid air (−190 ◦C). The substances listed in the
subsequent table may be used as temperature baths (TK = melting point, TS = boiling
point).

22.6/1 Liquid baths at low temperatures

Substance TK /◦C TS /
◦C

isopentane −159.9 27.85
methyl cyclopentane −142.4 71.8
allyl chloride −134.5 45
n-pentane −129.7 36.1
allyl alcohol −129 97
ethyl alcohol −117.3 78.5
carbon disulphide −110.8 46.3
isobutyl alcohol −108 108.1
acetone −95.4 56.2
toluene −95 110.6
ethyl acetate −84 77

(continued)
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22.6/1 Liquid baths at low temperatures (continued)

Substance TK /◦C TS /
◦C

dry ice + acetone −78 —
p-cymen −67.9 177.1
trichloromethane −63.5 61.7
N-methyl aniline −57 196
chlorobenzene −45.6 132
anisole −37.5 155
bromobenzene −30.8 156
tetrachloromethane −23 76.5
benzonitrile −13 205

22.7 Dehydrators

Dehydration of gases may be achieved by absorption (chemical effect) or by adsorption
(physical effect).

22.7/1 Efficiency of chemical dehydration

Residual water in Residual water in
Substance mg/(10−3 m3) of dry air Substance mg/(10−3 m3) of dry air

P2O5 < 1 mg in 40 m3 NaOH molten 0.16
Mg(ClO4)2 anhyd. — CaBr2 0.18
BaO 0.00065 CaCl2 molten 0.34
KOH molten 0.002 Ba(ClO4)2 0.82
CaO 0.003 ZnCl2 0.85
H2SO4 0.003 ZnBr2 1.16
CaSO4 anhyd. 0.005 CaCl2 granular 1.5
Al2O3 0.005 CuSO4 anhyd. 2.8

22.7/2 Efficiency of physical dehydration

The dehydrators are ordered according to increasing efficiency.

argil (fired at low temperatures)
asbestos
charcoal
clay
porcelain (fired at low temperatures)
glass wool
diatomite
silica gel
freezing-through
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22.8 Vapor pressure

22.8.1 Solutions
22.8/1 Saturated vapor pressure at 20 ◦C

Substance pD/hPa

acetone 240
benzene 100
trichloromethane 213
diethyl ether 584
ethanol 587

Substance pD/hPa

methanol 129
pentane 565
tetrachloromethane 121
toluene 29.3
water 23.4

22.8/2 Cryoscopic and ebullioscopic constants

Substance K/K E/K

ammonia 1320 340
benzene 5070 2640
diethyl ether 1790 1830
tetrachloromethane 4900 3800

Substance K/K E/K

acetic acid 3900 3070
ethanol — 1070
carbon tetrachloride 29800 4880
water 1860 520

22.8.2 Relative humidity
22.8/3 Psychrometry

Determination of the relative humidity through the temperature difference
ϑ of two ther-
mometers, one of which measures at 100 % humidity (ϑ f ), while the other measures at the
local value (ϑR). For 
ϑ = 0, ϕ = 100 %.

ϑR /
◦C ϕ in % at 
ϑ /◦C

0 1 2 3 4 5 6 7 8 9 10

0 100 81 63 45 28 11 — — — — —
2 100 84 68 51 35 20 — — — — —
4 100 85 70 56 42 28 14 — — — —
6 100 86 73 60 47 35 23 10 — — —
8 100 87 75 63 51 40 28 18 7 — —
10 100 88 76 65 54 44 34 24 14 4 —
12 100 89 78 68 57 48 38 29 20 11 —
14 100 90 79 70 60 51 42 33 25 17 9
16 100 90 81 71 62 54 45 37 30 22 15
18 100 91 82 73 64 56 48 41 34 26 20
20 100 91 83 74 66 59 51 44 37 30 24
22 100 92 83 76 68 61 54 47 40 34 28
24 100 92 84 77 69 62 56 49 43 37 31
26 100 92 85 78 71 64 58 50 45 40 34
28 100 93 85 78 72 65 59 53 48 42 37
30 100 93 86 79 73 67 61 55 50 44 39
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22.8.3 Vapor pressure of water
22.8/4 Vapor pressure of water at low temperatures

ϑ/ ◦C pD/hPa

0 6.0
2 7.0
4 8.0
6 9.2
8 10.5

ϑ/ ◦C pD/hPa

10 12.1
12 13.8
14 15.8
16 18.6
18 21.1

ϑ/ ◦C pD/hPa

20 23.4
22 27.0
24 30.5
26 34.3
28 38.6

ϑ/ ◦C pD/hPa

30 43.2
32 48.6
34 54.3
36 60.6
38 67.6

22.8/5 Vapor pressure and specific enthalpy of water

Temperature Density Specific volume Vapor pressure Specific enthalpy
ϑ/ ◦C �/(kg m−3) v/(10−3m3 kg−1) pD/bar h/(kJ kg−1)

5 1000 1.0 0.0087 21, 0
10 1000 1.0 0.0123 42.0
15 999 1.001 0.0170 62.9
20 998 1.002 0.0234 83.9
25 997 1.003 0.0317 104.8
30 996 1.004 0.0424 125.7
40 992 1.008 0.0738 167.4
50 988 1.012 0.1234 209
60 983 1.017 0.1992 251
70 978 1.023 0.3116 293
80 972 1.029 0.4736 335
90 965 1.036 0.7011 377
100 958 1.044 1.013 419
120 943 1.061 1.985 504
140 926 1.080 3.614 589
160 907 1.102 6.181 675
180 887 1.128 10.03 763
200 864 1.157 15.55 852
250 799 1.251 39.78 1085
300 712 1.404 85.93 1345
350 574 1.741 165.35 1672



808 22. Tables on thermodynamics

The following table is of importance for the description of saturated steam and wet steam.
The indices D and W denote steam and (boiling) water, respectively; p – vapor pressure,
ϑ – temperature, v – specific volume and h – specific enthalpy.

22.8/6 Specific volume and specific enthalpy of steam

vW / vD/ hW / hD/

p/bar ϑ/ ◦C (10−3m3 kg−1) (m3 kg−1) (kJ kg−1) (kJ kg−1)

0.01 6.98 1.0001 129.2 29.34 2514
0.02 17.53 1.0012 67.01 73.46 2533.6
0.04 28.98 1.0040 34.80 121.41 2554.5
0.06 36.18 1.0064 23.74 151.50 2567.5
0.08 41.53 1.0084 18.10 173.86 2577.1
0.1 45.83 1.0102 14.67 191.83 2584.4
0.2 60.09 1.0172 7.650 251.45 2609.9
0.4 75.88 1.0265 3.993 317.65 2636.9
0.6 85.95 1.0333 2.732 359.93 2653.6
0.8 93.51 1.0387 2.087 391.72 2665.8
1.0 99.63 1.0434 1.694 417.51 2675.4
1.4 109.3 1.0513 1.236 458.42 2690.3
2.0 120.23 1.0608 0.8854 504.70 2706.3
3.0 133.54 1.0735 0.6056 561.43 2724.7
4.0 143.62 1.0839 0.4622 604.67 2737.6
5.0 151.84 1.0928 0.3747 640.12 2747.5
6.0 158.84 1.1009 0.3155 670.42 2755.5
8.0 170.41 1.1150 0.2403 720.94 2767.5
10.0 179.88 1.1274 0.1943 762.61 2776.2
12.0 187.96 1.1386 0.1632 798.43 2782.7
15.0 198.29 1.1539 0.1317 844.67 2789.9
20.0 212.37 1.1766 0.09954 908.59 2797.2
30.0 233.84 1.2163 0.06663 1008.4 2802.3
40.0 250.33 1.2521 0.04975 1087.4 2800.3
50.0 263.91 1.2858 0.03943 1154.5 2794.2
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22.9 Specific enthalpies

22.9/1 Specific calorific value Hu (mean values)

Solid substances Hu/(MJ · kg−1)

anthracite 33.4
lignitic coal 9.6
lignitic coal, hard 17
lignitic coal, briquette 20
fat coal 31.0
coke 29.2
wood, dry 13.3
lean coal 31.0
peat, dry 14.6
furnace coke 30.1
charcoal 31

Liquid substances Hu/(MJ · kg−1)

ethyl alcohol 26.9
benzene 40.2
diethyl ether 34
petroleum 41
diesel fuel 42.1
heating oil 41.8
petrol 42.5
methyl alcohol 19.5
kerosene 40.8
spirit (95 %) 25.0
coal tar 34

Gaseous substances Hu/(MJ ·m−3)

ethyne 85.99
butane 124
natural gas, wet 29
ethane 64.5
natural gas, dry 43.9
furnace gas 5
methane 35.9
propane 93.4
city gas 20
hydrogen 10.8
propene 88.0
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22.9/2 Specific melting and evaporation enthalpies of pure metals

Spec. melting Spec. evapor.
enthalpy 
hs enthalpy 
hv

Metal /(kJ · kg−1) /(kJ · kg−1)

aluminum 397 10 900
antimony 167 1050
barium 56 1100
beryllium 1390 32 600
bismuth 52.2 725
cadmium 56 890
calcium 216 3750
cerium 39 2242
cesium 16.4 496
chromium 280 6700
cobalt 275 6503
copper 205 4790
dysprosium 68.1 —
erbium 119 —
europium 60.6 —
gadolinium 63.6 —
gallium 80.8 3640
gold 65.7 1650
hafnium 146 3703
holmium 103 —
indium 28.5 1970
iridium 117 3900
iron 277 6340
lanthanum 81.3 2880
lead 23.0 8600
lithium 603 20 500
lutetium 126 —
magnesium 368 5420
manganese 266 4190
mercury 11.8 285
molybdenum 290 5610
neodymium 49.5 —
nickel 303 6480
niobium 334 7492
osmium 289 —
palladium 157 —
platinum 111 2290
potassium 59.6 1980
praseodymium 48.9 —
rhenium 178 3797
rhodium 218 —
rubidium 25.7 880
ruthenium 193 —

(continued)
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22.9/2 Specific melting and evaporation enthalpies of pure metals (continued)

Spec. melting Spec. evapor.
enthalpy 
hs enthalpy 
hv

Metal /(kJ · kg−1) /(kJ · kg−1)

samarium 57.3 —
scandium 314 6785
silver 105 2350
sodium 113 390
strontium 94 1585
tantalum 199 4162
terbium 67.9 —
thallium 20.6 794.6
thorium 59.5 2344
thulium 99 —
tin 59.6 2450
titanium 324 8990
tungsten 192 4350
uranium 36.6 1731
vanadium 452 8998
ytterbium 44.3 —
yttrium 128 4421
zinc 111 1755
zirconium 219 6382

22.9/3 Relative volume change in melting

Substance 
V/V

aluminum 0.066
antimony −0.0094
cadmium 0.047
gallium −0.03
gold 0.0519
indium 0.025
lead 0.036
lithium 0.015

Substance 
V/V

magnesium 0.042
mercury 0.036
potassium 0.024
silver 0.05
sodium 0.025
tin 0.026
water (ice) −0.083
zinc 0.069

22.9/4 Temperature dependence of evaporation heat

Substance 0 ◦C 20 ◦C 60 ◦C 100 ◦C 140 ◦C 180 ◦C 220 ◦C
methanol 1220 1190 1130 1030 906 743 472
ethanol 927 925 894 827 717 584 370
1-propanol — — — 688 598 488 358
diethyl ether 388 367 329 287 234 134 —
acetic acid — 352 376 387 385 368 344
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22.9/5 Specific melting enthalpies 
Hs and evaporation enthalpies 
Hv


hs/ 
hv/

Substance (kJ · kg−1) (kJ · kg−1)

1-pentanol — 502
1-propanol 86.5 750
acetic acid 192 406
acetone 98 525
aluminum oxide 1069 4730
ammonia — 1370
argon 29.44 163
benzene 128 394
boron 2055 50000
bromine 67.8 183
butane 80.34 385
butyl alcohol 121.35 616
cane sugar 56 —
carbon dioxide 180.7 136.8
carbon disulphide 57.8 352
carbon monoxide 29.86 216
chlorine 90.48 290
deuterium 98.5 304
diethyl ether — 384
ethane 95.23 489
ethanol 108 840
ethene 119.68 483
ethyl chloride — 382
fluorine 81.9 172
formic acid 276 432
frigen 11 (CCl3F) 50.24 182
frigen 12 (CCl2F2) 34.27 162
frigen 21 (CHCl2F) — 242
frigen 22 (CHClF2) 47.68 234
glycerol 201 —
heptane 141 318
hexane 152 332
hydrogen chloride — 443
hydrogen fluoride — 375
iodine 124 172
krypton 19.52 108
methane 58.62 510
methanol 92 1100
methyl acetate — 406
naphthalene 148 314
neon 16.58 91.2
nitrobenzene 94.2 397
nitrogen 25.74 198

(continued)
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22.9/5 Specific melting enthalpies 
Hs and evaporation enthalpies 
Hv
(continued)


hs/ 
hv/

Substance (kJ · kg−1) (kJ · kg−1)

octane 181 299
oxygen 13.87 213
ozone — 316
pentane 116 360
phenol 122 510
phosphorus, white 21.0 400
phosphorus trihydride 33.33 430
potassium chloride 342 2160
potassium nitrate 107 —
propane 57.36 426
propene 71.48 438
pyridine 105 450
selenium 68.6 1200
silicon 164 14 050
sodium chloride 500 2900
sulphur 42 290
sulphur dioxide 115.64 390
sulphuric acid 109 —
toluene — 364
trichloromethane 75 279
water 334 2265
water, heavy 318 2072
xenon — 99.2
xylene 109 343
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23
Photons, electromagnetic radiation and
light quanta

The particle character of light was first demonstrated in three phenomena: thermal radia-
tion, photo effect and Compton scattering.

23.1 Planck’s radiation law

A significant hint of the failure of classical physics arose from investigations of thermal
radiation (Planck, 1900). According to Einstein (1905) electromagnetic radiation is quan-
tized in photons.

1. Photons and Planck’s quantum of action

Photons, symbol γ , the energy quanta of the electromagnetic field.
Photon energy, EPh, proportional to the frequency f or the angular frequency ω =

2π f . Usually it is given in electron volts (eV),

EPh = h f = �ω .

Photon momentum, �pPh, proportional to the wave number vector �k (with |�k| = 2π
λ

, λ is
the wavelength of the electromagnetic radiation),

�pPh = ��k, |�pPh| = �k = h/λ .

The vector �k points along the propagation direction of the electromagnetic radiation.
Planck’s quantum of action, a universal constant,

h = 6.626 075 5(40) · 10−34 J s ,

� = h

2π
= 1.054 572 66(63) · 10−34 J s = 6.582 122(20) · 10−22 MeV s .
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2. Thermal radiation and the blackbody radiator

Thermal radiation, temperature radiation, the electromagnetic radiation of a body at
finite temperature. The body also absorbs a fraction of the thermal radiation from its envi-
ronment. There is a permanent exchange of energy between the body and its environment.
In the end, this process leads to temperature equilibrium.

Blackbody radiator, a body with the reflectance zero. A blackbody absorbs any incident
radiation completely.

Figure 23.1: Model of the
blackbody.

Cavity radiator, model of a blackbody radiator (Fig. 23.1): a box with a small aperture
in the wall. The wall is impenetrable for radiation from inside (ideally reflecting) and has
a definite temperature. The probability that a photon enters the cavity through the aperture
and, after multiple reflection by the inner walls, leaves the cavity through the aperture
again, is negligible (absorptance α = 1). The aperture appears absolutely black.

Cavity radiation, the thermal radiation leaving the aperture of a cavity radiator. The
spectral distribution of the radiation energy density of the cavity radiation depends on the
temperature of the cavity radiator.
➤ According to Kirchhoff’s law (see p. 765), the spectral radiance Le, f of an arbitrary

thermal radiator may be reduced to that of a black body.
For the radiation field in the interior of the cavity, one defines:

radiant energy density ML−1T−2

u = Q

V

Symbol Unit Quantity

u J/m3 radiant energy density
Q J radiant energy
V m3 volume

3. Planck’s radiation law

This law describes the frequency and temperature dependence of the radiant energy density
of the cavity radiation:

spectral radiant energy density ML−1T−1

u f ( f, T ) = 8π f 2

c3
· h f

eh f/(kT ) − 1

Symbol Unit Quantity

u f ( f, T ) J s m−3 spectral radiant
energy density

c m s−1 speed of light
f s−1 frequency
h J s quantum of action
k J K−1 Boltzmann constant
T K temperature
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This law connects the classical picture of continuous emission and absorption of electro-
magnetic waves with the photon picture of quantized electromagnetic radiation.
➤ Conversion of the radiant density (radiant power density) Le, f into the energy density

u f of unpolarized uniform and isotropic cavity radiation:

u f = 2
∫

d	
Le, f

c
= 8π

Le, f

c
.

4. Connection between radiant energy density and frequency

The dependence of the spectral radiant energy density of the cavity radiation on the angular
frequency ω or wavelength λ reads as follows:

uω(ω, T ) = u f ( f, T ) · d f

dω
= 1

2π
· u f ( f, T ) ,

uω(ω, T ) = �ω3

π2c3

1

e�ω/(kT ) − 1
,

uλ(λ, T ) = u f ( f, T ) ·
∣∣∣∣d f

dλ

∣∣∣∣ = f 2

c
· u f ( f, T ) ,

uλ(λ, T ) = 8πhc

λ5

1

ehc/(kλT ) − 1
.

M Planck’s radiation law is the basis of optical pyrometry for measuring high tempera-
tures.

5. Wien’s displacement law and limiting cases of Planck’s formula

▲ Wien’s law for h f � kT :

u f ( f, T ) = 8π f 3h

c3
e−

h f
kT .

▲ Rayleigh-Jeans law for h f � kT :

u f ( f, T ) = 8π f 2

c3
kT .

▲ Wien’s displacement law: With increasing temperature, the maximum of the spec-
tral radiant energy density u f ( f, T ) is shifted to higher photon energy, i.e., to higher
frequencies (shorter wavelengths) (Fig. 23.2):

Wien’s displacement law L

λmax = b

T

b = 2.8978 · 10−3 m · K

Symbol Unit Quantity

λmax m wavelength at max. u f ( f, T )
b m · K Wien’s constant
T K temperature
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hf/eV

Figure 23.2: Radiant energy density u f ( f, T ) for various temperatures according to
Planck’s radiation law. Dashed-dotted line: Rayleigh-Jeans law.

6. Stefan-Boltzmann law

Integration of the spectral radiant energy density over all frequencies yields the total radiant
flux �tot of a radiation emitted by an area A. The total radiant flux �tot is proportional to
the fourth power of the temperature T .

total radiant flux ∼ temperature4 ML2T−3

�tot = σ · A · T 4

σ = 5.67051(19)

· 10−8 W/(m2K4)

Symbol Unit Quantity

�tot W total radiant flux
A m2 area
σ W/(m2K4) Stefan-Boltzmann

constant
T K temperature

23.2 Photoelectric effect

Photoeffect, photons eject electrons from a material.

1. Properties of photoelectrons

Photoelectrons, electrons ejected out of a material in the photoeffect.
Photoelectric current, photocurrent, arises if there is an appropriate potential differ-

ence between the irradiated body and an anode. The ejected electrons move to the anode.
Photoelectric Einstein equation, describes the kinetic energy Ekin of electrons ejected

from the body by the incident radiation:

kinetic energy of photoelectrons ML2T−2

Ekin = h f − WA

Symbol Unit Quantity

Ekin J kinetic energy
h J s quantum of action
f s−1 frequency
WA J work function
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The kinetic energy of the photoelectrons depends on the frequency of the incident radiation,
but not on the radiation intensity (Fig. 23.3). The radiation intensity determines only the
intensity of the photocurrent (Fig. 23.4).

2. Work function

Work function, WA, the minimum energy required for the ejection of an electron from a
material. The work function typically amounts to several electron volts (see Tab. 29.3).
■ Work function WA of several elements (in eV): K 2.30, Na 2.75, Hg 4.49, Ge 5.0.
For any material there is a threshold frequency for the photoeffect (red limit). Below this
threshold frequency f0, no photoeffect occurs (Fig. 23.3):

f0 = WA

h
.

The chemical structure and surface properties determine the work function WA, and hence
the threshold frequency f0. The photoeffect may be explained only in the framework of
the photon model of electromagnetic radiation.

A

Figure 23.3: Left: experimental set-up for measuring the photoeffect. Right: dependence
of the kinetic energy of photoelectrons on the frequency f of the incident radiation.

3. Use of the photoeffect for measurements

M When a suppression voltage is applied, the photocurrent vanishes at a threshold volt-
age VG , which is related to the maximum velocity vmax of the photoelectrons by
eVG = mv2

max/2. The quantum of action h can be determined by measuring the
incident frequency f and the threshold voltage VG . The measurement yields a lin-
ear relation between the suppression voltage at which the photocurrent vanishes, and
the frequency (Fig. 23.3). The slope of the straight line yields Planck’s constant, or
quantum of action, h = e dVG/d f .

V V

Figure 23.4: Photocurrent
I as function of the applied
voltage V for different
intensities I of the incident
radiation.

M Internal photoeffect, leads to a change of the electric conductance of semiconduc-
tors. The phenomenon is used for light-intensity measurement with semiconductor
diodes.
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23.3 Compton effect

1. Scattering of photons by electrons

Compton effect, a shift of the wavelength (and hence the frequency) in the elastic scatter-
ing of photons by free electrons. The shift increases with the scattering angle, but does not
depend on the wavelength of the incident radiation (Fig. 23.5):

Compton shift of wavelength L


λ = h

mec
(1− cosϕ)

Symbol Unit Quantity


λ m shift of wavelength
h J s quantum of action
me kg electron mass
c m s−1 speed of light
ϕ 1 scattering angle of photon

2. Conservation laws for scattering

Momentum and energy conservation for the scattering process (relativistically):

mec2 + h f = mec2√
1− β2

+ h f ′,

��k = me�v ′e√
1− β2

+ ��k ′ ,

with |�k| = 2π

λ
and β = v

c
.

Am-
source

Graphite
target

Scattered
photon

Si-
detector

Figure 23.5: Compton effect. (a): experimental set-up, (b): kinematics of photon-electron
scattering, (c): intensity I of the scattered radiation as a function of the wavelength λ′ of the
scattered radiation for various scattering angles ϕ. λ: wavelength of the incident radiation.
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• The electron is at rest before the reaction.
• �k is the wave number vector pointing along the direction of photon propagation.
• The primed quantities refer to the situation after the collision.
➤ The non-shifted line in the spectrum of the scattered radiation corresponds to photon

scattering by strongly bound electrons. The momentum transfer, which in this case
is imparted to the atom as a whole, is very low, and therefore the wavelength of the
radiation remains almost unchanged in the scattering (Thomson scattering).

3. Compton wavelength

of the electron, λC, the proportionality factor in the formula for Compton scattering:

λC = h

mec
= 2.426 310 58(22) · 10−12 m .

Frequently,

λC– = �

mec
= 3.861 593 23(35) · 10−13 m

is denoted the Compton wavelength.
➤ The Compton effect may occur in photon scattering by any electrically charged par-

ticles. Then the corresponding mass of these particles must be inserted in the formula
to obtain their Compton wavelength.

■ λ
proton
C = 1.321 41 · 10−15 m ≈ 1 fm .

4. Radiation pressure

Also called light pressure, momentum transfer in the reflection of electromagnetic radi-
ation by a body (change of photon momentum in the reflection). The radiation pressure
of sunlight on a mirror is of the order of magnitude of 10−11 bar, which is unobserv-
ably small. Since the radiation pressure for small particles may reach the magnitude of the
gravitational attraction, it affects astrophysical processes. For example, the tail of a comet
always points away from the Sun as a result of radiation pressure.
➤ During a period of 28 months, the spherical satellite Vanguard 1 (diameter 16 cm)

was displaced from its orbit by 1600 m due to radiation pressure.
➤ Intense laser light may reach intensities of 1018 W/cm2. Such radiation may generate

a pressure of ca. 100 Mbar on the outer surface of a plasma, which may lead to plasma
compression. In this way, access to new ranges of pressure and temperature in plasma
physics are obtained.
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Matter waves—wave mechanics of particles

Quantum mechanics, the theory of the laws of motion in the atomic range (spatial exten-
sion < 10−8 m).
➤ For particle velocities v ≈ c, with c being the speed of light in a vacuum, relativistic

quantum mechanics must be used for describing the phenomena.

24.1 Wave character of particles

24.1.1.1 Basic assumptions of quantum mechanics
Quantum mechanics is based on two hypotheses:

1. Planck’s quantum hypothesis

In emission and absorption of electromagnetic radiation by atoms, the energy may be ex-
changed only in definite amounts (quanta).

energy of photon ML2T−2

E = � · ω , ω = 2π f ,

� = h

2π

Symbol Unit Quantity

E J energy
ω rad s−1 angular frequency
f s−1 frequency
h J s quantum of action

In atomic physics, the quantity electron volt is frequently used as an energy unit.
One electron volt corresponds to an energy of 1.602 177 33(49) · 10−19 J.

Wave-number vector, �k, a vector along the propagation direction of the electromag-

netic wave, with magnitude |�k| = 2π
λ

. λ is the wavelength of the electromagnetic radia-
tion.

Photon momentum, proportional to the wave-number vector �k:

825
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momentum of photon MLT−1

�p = � · �k, k = 2π

λ
,

� = h

2π

Symbol Unit Quantity

�k m−1 wave-number vector
h J s quantum of action
�p kg m/s momentum vector

2. Matter waves

A de Broglie wavelength may be assigned to any free particle; it is inversely proportional
to the particle momentum.

de Broglie wavelength L

λ = h

p

Symbol Unit Quantity

λ m wavelength
h J s quantum of action
p kg m/s momentum

■ After being accelerated by a voltage V , an electron with

m = 9.109 389 7(54) · 10−31 kg (electron mass)

e = −1.602 177 33(49) · 10−19 C (electron charge)

has the wavelength

λ = h√
2m|e|V =

√
150.5

V
· 10−10 m (V in volts) .

■ de Broglie wavelength (in m): electron (1 eV) 1.23·10−9, electron (102 eV)
0.12 · 10−9, α particle (102 eV) 1.4·10−12, thermal neutrons (0.025 eV) 0.18·10−9,
golf ball (v = 25 m/s) 5.8·10−34.

24.1.1.2 Wave-particle duality
Wave-particle duality, the property of atomic particles (photons, electrons, nucleons,
atoms, molecules) to behave either as particles with defined values of energy and mo-
mentum (in emission and absorption processes or collisions), or as a wave (in propagation,
diffraction and interference).

M Electron diffraction, coherent diffraction of electron beams by periodic structures
so that an interference pattern arises behind the sample. This is a demonstration of
the wave property of electrons.
Electron diffraction is used for investigating the structure of surfaces or thin layers
(for the principle of measurement see Fig. 24.1).
Electron microscope (E. Ruska, Nobel Prize, 1986), exploits the short wavelength
of accelerated electrons. The resolving power is better by a factor of 1000 than that
of the light microscope.
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Electron
gun

Slit

Target

Magnetic
lens Viewing

screen

Figure 24.1: Electron diffraction. (a): basic experimental set-up, (b): interference pattern.

24.2 Heisenberg’s uncertainty principle

The notion of a particle trajectory, i.e., the specification of the particle coordinates as a
function of time, loses its meaning in quantum mechanics. It is no longer possible to assign
simultaneously a defined spatial position and an exact momentum value to the particle. A
plane wave with a defined wave number �k corresponds to a free particle with constant
momentum �p and is infinitely extended: the particle is not localized in space.

Heisenberg’s uncertainty principle, connects the uncertainty 
px in the determina-
tion of the component px of the momentum with the uncertainty 
x in a simultaneous
determination of the position coordinate x .

uncertainty in position · uncertainty in momentum
≥ Planck’s constant/2

ML2T−1


x ·
px ≥ �

2

Symbol Unit Quantity


x m uncertainty in position

px kg m/s uncertainty in momentum
�(= h/(2π)) J s quantum of action

For objects on the atomic scale, the measuring process is inevitably connected with some
influence on the quantity to be measured. Any reduction of the fluctuation of the measured
values of the particle position increases the fluctuation of the measured momentum values.
This is not due to inaccuracy of the methods of measurement adopted, but is instead a basic
principle of nature.
➤ The momentum component py and the position coordinate x can be measured simul-

taneously without fluctuation.
The uncertainty principle holds also for other canonically conjugated quantities, the prod-
ucts of which have the dimension of action. For the angle φ and the angular momentum l,

φ ·
l ≥ �/2. For the energy E and the time t , there also exists an uncertainty principle,

E ·
t ≥ �/2.

24.3 Wave function and observable

1. Wave function and probability of finding a particle

Wave function, ψ(x, y, z, t), a complex function describing the state of a particle
quantum-mechanically completely. It serves as a mathematical tool and cannot be deter-
mined experimentally.
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▲ The wave function contains the full information on the results of measurements of
physical quantities of a quantum-mechanical system.

Probability density: The probability dw(x, y, z, t) of finding a particle at time t at position
�r = (x, y, z) in volume dV is given by the square of the magnitude of the wave function:

probability density = |wave function|2 1

dw(x, y, z, t) = |ψ(x, y, z, t)|2 dV

Symbol Unit Quantity

w 1 probability density
ψ m−3/2 wave function
dV m3 volume element

▲ The wave function has the meaning of a probability amplitude.
Normalization of the wave function, the integration of the probability density over the
entire space must yield unity, since the probability of finding the particle somewhere must
be unity, ∫

|ψ(x, y, z, t)|2 dV = 1 .

▲ The wave function must be normalizable.

2. Wave function of a free particle

Free particles, described by plane waves:

wave function of free particles L−3/2

ψ(�r, t) = a · e j[(�k·�r)−ωt]

= a · e j
�
[(�p·�r)−E(p)t]

Symbol Unit Quantity

a m−3/2 amplitude
j 1 imaginary unit
ω rad s−1 angular frequency
t s time
�k m−1 wave-number vector
�r m position vector
ψ(�r, t) m−3/2 wave function
�p kg m/s momentum
E(p) F energy

3. Wave packet,

the superposition of many plane waves of neighboring frequencies. For one-dimensional
motion along the x-direction, a wave packet has the form (Fig. 24.2):

ψ(x, t) = 1

2π

+∞∫
−∞

f (k) e j[k·x−ω(k)t] dk .

The amplitude function (spectral function) f (k) determines the weight distribution of
the plane waves of various frequencies. In most cases, the probability of finding the parti-
cle differs from zero only in a limited space region: the particle is localized. In this case,
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Figure 24.2: Schematic
illustration of a wave packet.

the appearance of many distinct frequencies in the wave function also means a large mo-
mentum width: a reduction of the fluctuation of the measured position values increases the
uncertainty of the momentum.

The amplitude function f (k) also determines the uncertainty in position and momentum
at the initial time. Over the course of time, the center of gravity of the wave packet moves
with a mean velocity given by f (k). The momentum uncertainty 
p is conserved while
the uncertainty in position 
x increases: the wave packet blurs (Fig. 24.3).

Figure 24.3: Blurring of a wave packet. |φ(p, t)|2, |ψ(x, t)|2: probability density for mo-
mentum p and position x ; p0, x0: mean values of momentum and position at time t = 0;
v: mean velocity (group velocity); 
p(t),
x(t): uncertainty in momentum and position
at time t .

4. Observable,

O, a physical quantity that may be observed, i.e., may be defined by a prescription for the
measuring procedure.
■ Energy, position, momentum, orbital angular momentum, spin.
In quantum mechanics, one assigns an operator Ô to any observable O operating on the
wave function ψ .
▲ Time is not an operator in quantum mechanics; it is a parameter of the wave function.
When transforming quantities to quantum mechanics, the operators are constructed accord-
ing to the structure of the classical quantities.
■ In quantum mechanics, the Cartesian components of the classical orbital angular mo-

mentum �l = �r× �p:

lx = ypz − zpy , ly = zpx − xpz , lz = xpy − ypx

are replaced by the operators l̂x , l̂y, l̂z constructed in the same manner from the com-

ponents of the position operator �̂r and the momentum operator �̂p:

l̂x = ŷ p̂z − ẑ p̂y , l̂y = ẑ p̂x − x̂ p̂z , l̂z = x̂ p̂y − ŷ p̂x .



830 24. Matter waves—wave mechanics of particles

Inserting the Cartesian representation for the components of the position and momen-
tum operators, one obtains:

l̂x = y

(
−j�

∂

∂z

)
− z

(
−j�

∂

∂y

)
, l̂y = z

(
−j�

∂

∂x

)
− x

(
−j�

∂

∂z

)
,

l̂z = x

(
−j�

∂

∂y

)
− y

(
−j�

∂

∂x

)
.

The operator of orbital angular momentum is a vector operator, with

�̂l = (l̂x , l̂y, l̂z) , �̂l 2 = l̂2
x + l̂2

y + l̂2
z .

5. Survey of important observables

Physical quantity Symbol Operator

position component i x̂i xi , i = 1, 2, 3

momentum component i p̂xi −j · � ∂

∂xi
, i = 1, 2, 3

orbital angular momentum components:

x-direction l̂x j · �
(

sin ϕ · ∂
∂ϑ
+ cotϑ · cos ϕ · ∂

∂ϕ

)

y-direction l̂ y −j · �
(

cos ϕ · ∂
∂ϑ
− cotϑ · sin ϕ · ∂

∂ϕ

)

z-direction l̂z −j · � ∂
∂ϕ

square of orbital angular momentum l̂2 −�2
ϑ,ϕ

energy Ĥ − �
2

2m

+ V

The coordinates in a Cartesian frame are designated by the indices i = 1, 2, 3. The
components of the orbital angular momentum operator are given in spherical coordinates.

Angular component of the Laplace operator 
 in spherical coordinates:


ϑ,ϕ = 1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

r2 sin2 ϑ

∂2

∂ϕ2
.

■ Applying the position operator x̂ on the wave function ψ means multiplication of the
wave function by the position coordinate x . Applying the momentum operator p̂x on
the wave function ψ means partial derivation of the wave function with respect to x
and multiplication by the number −j�.

6. Eigenfunction,

ψn of the operator Ô: application of the operator Ô on the function ψn reproduces the
function multiplied by the eigenvalue an ; the index n labels the various eigenfunctions
and the related eigenvalues,

Ô ψn = an ψn , n = 1, 2, 3, . . . .
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■ The one-dimensional motion of a free particle of momentum p along the x-direction
is described by a plane wave. The spatial part of the wave function is given by

ϕ(x) = e jkx = e
j
�

px .

Application of the momentum operator p̂x on the wave function ϕ yields

p̂x ϕ(x) = �

j

∂

∂x
ϕ(x) = p ϕ(x) .

A plane wave is an eigenfunction of the momentum operator with the eigenvalue p.
➤ A plane wave is also an eigenfunction of the energy operator (Hamiltonian) Ĥ =

p̂2/(2m) with the eigenvalue E = p2/(2m).
Degeneracy, there are several eigenfunctions ψn1, ψn2, . . . with a given eigenvalue an :

Ô ψn1 = an ψn1 , . . . , Ô ψnN = an ψnN , N -fold degeneracy .

Parity, π , of a wave function, characterizes the behavior of the wave function ψ(�r) under
reflection at the coordinate origin, �r −→ −�r (Fig. 24.4),

ψ(−�r) = +ψ(�r) , π = +1 , even parity,

ψ(−�r) = −ψ(�r) , π = −1 , odd parity.

Symmetric Antisymmetric

Figure 24.4: Parity of a wave function ψ(x). π = +1: even parity, symmetric function,
π = −1: odd parity, antisymmetric function.

7. Simultaneous eigenfunction,

a function ψ is a simultaneous eigenfunction of a set of operators Ô1, . . . , Ôk ,

Ô1 ψ = a1 ψ , . . . , Ôk ψ = ak ψ .

■ Simultaneous eigenfunctions of the operators �̂l 2, l̂z are the spherical harmonics
(spherical surface harmonics) Y m

l (ϑ, ϕ):

�̂l 2 Y m
l (ϑ, ϕ) = �

2 l(l + 1)Y m
l (ϑ, ϕ) ,

l̂z Y m
l (ϑ, ϕ) = �m Y m

l (ϑ, ϕ) .

Possible quantum numbers of the orbital angular momentum are l = 0, 1, 2, . . . .
In the illustrative vector model, they specify the magnitude of the orbital angular
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momentum vector, |�l| = �
√

l(l + 1). For a given value of l, there are 2l + 1 values
of the magnetic quantum number m that specify the possible orientations (projec-
tions) of the orbital angular momentum vector with respect to the z-axis as quantiza-
tion axis (directional quantization), m = −l,−l + 1, . . . , 0, . . . l − 1, l (Fig. 24.5).
The angle α between the quantization axis and the angular momentum vector satisfies
cos α = m/

√
l(l + 1).

➤ There is no function that would be a simultaneous eigenfunction of the operator of an
additional orbital angular momentum component lx or ly . In an angular momentum
state characterized by the quantum numbers l,m these orbital angular momentum
components do not take fixed values; their expectation values vanish.

■ Angular momentum quantum numbers: l = 2, m = −2,−1, 0, 1, 2.

Figure 24.5: Vector model
of the orbital angular
momentum �l. Directional
quantization for l = 2.

8. Eigenvalues of operators and their meaning

▲ The eigenvalues of an operator representing an observable in quantum mechanics are
real,

a∗n = an .

▲ The eigenvalues of an operator Ô are the possible measured values of the observable
O. After a measurement of an observable O that gave the value an , let the system be
in the eigenstate ψn :

state ψ
measurement O−→ measured value an, state ψn .

▲ Any wave function ψ may be expanded in terms of the complete set of normalized
eigenfunctions ψn of the operator Ô ,

ψ =
∑

n
cn ψn .

The wave function ψ is normalized if

∑
n
|cn |2 = 1 .

The expansion coefficient cn yields the probability |cn |2 of obtaining the value an
when measuring the observable O of a system in the state ψ .
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Repeated measurements of the observable O of a system in the eigenstate ψn always lead
to the same measured value an , without any fluctuation of the measured values of the
individual measurements. If the observable O is repeatedly measured for a system which
is in an arbitrary state ψ that is not an eigenstate of Ô, the measured values fluctuate about
the expectation value.

9. Expectation values of observables

Expectation value O of the observable O in the state ψ , the mean value of the measured
values of the observable O measured on a system in the state ψ ,

O =
∫
ψ∗ Ô ψ dV =

∑
n
|cn |2 an .

The expectation value is in general time-dependent.
■ The possible measured values of the position of a particle moving in x-direction

cover the interval [−∞,+∞], i.e., the position operator x̂ has a continuous spectrum
of eigenvalues. If the particle is in the state ψ , the weight function for averaging
the possible measured values to get the expectation value is given by the probability
density of finding the particle at the position x in the element dx ,

dw(x, t) = |ψ(x, t)|2 dx .

The expectation value of the position is

x =
∫ +∞
−∞

x dw(x, t) =
∫ +∞
−∞

x |ψ(x, t)|2 dx =
∫ +∞
−∞

ψ(x, t)∗ x ψ(x, t) dx .

■ The expectation value of the momentum component px in the state ψ is

px =
∫ +∞
−∞

ψ∗ · �
j

d

dx
ψ .

10. Matrix representation of operators

Matrix representation of the operator Ô in the basis of the functions ϕi , i = 1, . . . , N :

Oik =
∫
ϕ∗i Ô ϕk dV , i, k = 1, . . . , N .

▲ Observables are represented in quantum mechanics by Hermitean matrices:

O∗ik = Oki .

The quadratic matrix becomes diagonal if the orthonormalized eigenfunctions ψn are used
as a basis:

Onm =
∫
ψ∗n Ô ψm dV = am

∫
ψ∗n ψm dV = am δnm .

The diagonal elements are the eigenvalues am , i.e., the possible measured values.

If two observables O1, O2, the operators of which have eigenfunctions ψ(1)n , ψ
(2)
m , are

measured successively, the state generated by the first measurement is in general disturbed
by the second measurement:

state ψ
measurement O1−→ an, ψ

(1)
n

measurement O2−→ bm , ψ
(2)
m .
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11. Commutators of operators

Commutator, Ĉ , of the operators Ô1 and Ô2, an operator defined by

Ĉ = [Ô1, Ô2] = Ô1 Ô2 − Ô2 Ô1 .

Two operators are said to commute if their commutator vanishes,

Ĉ = [Ô1, Ô2] = 0 .

Then,

Ô1 (Ô2 ψ) = Ô2 (Ô1 ψ) .

Commuting operators Ô1, Ô2 have a simultaneous system of eigenfunctions ψnm , with
the eigenvalues an, bm ,

Ô1 ψnm = an ψnm , Ô2 ψnm = bm ψnm .

▲ Commuting operators represent compatible measurements:

state ψ
measurement O1−→ {an, ψnm } measurement O2−→ {bn, ψnm} .

The state n generated by the measurement of O1 is not disturbed by the measurement
of O2. The second measurement merely specifies the state m.

a) Commutation relations for position and momentum operators: relations be-
tween the products of position and momentum operators (i = 1, 2, 3):

[x̂i , p̂k ] = x̂i · p̂k − p̂k · x̂i = j · � · δik with δik =
{

1 : k = i
0 : k �= i

These commutation relations establish the validity of Heisenberg’s uncertainty relation
for position and momentum (see p. 827).

b) Commutation relations for orbital angular momentum operators:

[ ˆlx , ˆly] = ˆlx · ˆly − ˆly · ˆlx = j � l̂z ,

[ ˆly, l̂z ] = ˆly · l̂z − l̂z · ˆly = j � ˆlx ,
[l̂z , ˆlx ] = l̂z · ˆlx − ˆlx · l̂z = j � ˆly .

The operator of the square of the orbital angular momentum commutes with the operators
of all components of the orbital angular momentum,

[�̂l 2, ˆlx ] = [�̂l 2, ˆly] = [�̂l 2, l̂z ] = 0 .

➤ Any set of operators whose components satisfy commutation relations of this kind
represents an angular momentum.
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12. Hamiltonian and time evolution

Hamiltonian, Ĥ , operator of the total energy of a quantum-mechanical system. The
Hamiltonian determines the time evolution of the state function ψ .

■ Free particle of mass m: Ĥ = p̂2

2m .

Particle of mass m in a potential V : Ĥ = p̂2

2m + V (�̂r) .

Particle of mass m in a one-dimensional oscillator potential: Ĥ = p̂2
x

2m + m
2 ω

2 x̂2 .

Electron in hydrogen atom: Ĥ = p̂2

2m
− e2

r
.

Time evolution operator, Û (t, t0), describes the time evolution of a state ψ from the time
t0 to the time t ,

ψ(t) = Û (t, t0) ψ(t0) , Û (t0, t0) = 1 , Û (t, t0) = e−
j
�

H (t − t0) .

13. Schrödinger and Heisenberg pictures

Schrödinger picture, formulation of quantum mechanics with time-independent operators
ÔS and time-dependent states ψS,

∂ ÔS

∂t
= 0 ,

∂ψS(t)

∂t
= − j

�
HψS(t) Schrödinger equation.

Heisenberg picture, formulation of quantum mechanics with time-dependent operators
ÔH and time-independent states ψH,

∂ψH

∂t
= 0 ,

dÔH(t)

dt
= + j

�
[H, ÔH(t)] Heisenberg equation .

Connection between the two representations: the quantities coincide at time t = t0,

ψS(t) = Û (t, t0) ψ
H , ÔH(t) = Û†(t, t0) ÔS Û (t, t0) .

▲ Schrödinger picture and Heisenberg picture are equivalent formulations of quantum
mechanics. They provide identical physical statements (expectation values of observ-
ables).

24.4 Schrödinger equation

▲ Electromagnetic waves in a vacuum (speed of light c) and matter waves for free par-
ticles obey different dispersion relations ω = ω(k).
Electromagnetic waves: ω(k) = c · k, matter waves: ω(k) = m0c2

�
+ �k2

2m0
.

The various dispersion relations correspond to different differential equations for
wave propagation.

1. Differential equation for the wave function (Schrödinger equation)

Schrödinger equation, a differential equation for wave functions governing the behavior
of atomic particles in the nonrelativistic limit, similar to Newton’s equation of motion that
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determines the motion of a classical point mass. The Schrödinger equation is a linear and
homogeneous partial differential equation, of first order in the time, and of second order in
the space, variable. The solutions of the Schrödinger equation are complex functions.

The time-dependent Schrödinger equation for a particle of mass m in a potential V (�r)
reads:

time-dependent Schrödinger equation ML1/2T−2

−�
j

∂ψ(�r, t)
∂t

= Ĥ ψ(�r, t)

Ĥ = p̂2

2m
+ V (�̂r)

−�
j

∂ψ(�r, t)
∂t

= − �
2

2m

ψ(�r, t)+ V (�r)ψ(�r, t)


 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

Symbol Unit Quantity

ψ m−3/2 wave function
j 1 imaginary unit
m kg particle mass

 m−2 Laplace

operator
V (�r) J potential
� J s quantum of

action

▲ The Hamiltonian of a quantum-mechanical system determines the time evolution of
this system.

➤ The time evolution of a state according to the time-dependent Schrödinger equation
has to be distinguished from the changes of the state caused by the interference of
a measuring apparatus. After measuring an observable Ô resulting in the measured
value an , the system is in the eigenstate ψn .

■ A free particle is represented by a plane wave. Inserting this wave function into the
Schrödinger equation, differentiation with respect to time yields the factor h f , and ap-

plication of the Laplace operator yields
h2k2

8π2m
. The common factor ae j[2π f t−(�k·�r)]

in the Schrödinger equation cancels out:

h f = h2k2

8π2m
+ V (r) ,

= p2

2m
+ V (r) .

This is the law of energy conservation, with h f being the energy of a quantum of
frequency f .

2. Normalization of the wave function,

corresponds to the requirement that the probability of finding the particle anywhere be
equal to unity for any point in time t :

∫
|wave function|2 · volume element ≡ 1 1

∫
V

dw(x, y, z, t) =
∫
V

|ψ(x, y, z, t)|2 dV

≡ 1

Symbol Unit Quantity

ψ m−3/2 wave function
dV m3 volume element
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▲ A solution to the Schrödinger equation can only then be interpreted as a probability
amplitude if the function is normalizable.

➤ A plane wave is not normalizable. The normalized wave function of a free particle is
a wave packet.

3. Stationary states

Stationary state, a state for which the probability density of finding the particle is time-
independent. The wave function of a stationary state is given by

ψ(�r, t) = e
j
�

Et · ϕ(�r) , Ĥ ϕ(�r) = E ϕ(�r) , |ψ(�r, t)|2 = |ϕ(�r)|2 .
Stationary Schrödinger equation, equation of motion of a particle with a spatial proba-
bility density that does not depend on time:

Ĥϕ = Eϕ ,
h2

8π2m

ϕ + (E − V (�r))ϕ = 0 .

The normalization condition for ψ(�r, t) requires:∫ ∞
0
|ϕ(�r)|2 dV = 1 .

Energy eigenfunctions, the solutions to the stationary (time-independent) Schrödinger
equation. These solutions exist only for certain eigenvalues of the energy E .

Energy eigenvalues, energies for which solutions to the stationary Schrödinger equation
exist.

Energy spectrum of the particle (or particle system), the set of all eigenvalues E .
If the potential V (r) is a monotonously rising function and if lim

r→∞ V (r) = 0, then the

energy eigenvalues form a discrete spectrum in the range E < 0. For E ≥ 0, the energy
eigenvalues form a continuum.

24.4.1 Piecewise constant potentials
Piecewise constant potential, one-dimensional potential of constant value, interrupted by
finite potential steps.

General formulation for the solutions of the time-independent Schrödinger equation
for a particle of mass m and energy E in a constant potential V :

V = 0 ϕ(x) = A · e±jk1x , k1 =
√

2m
�

2 E = p1
m .

Plane wave propagating to the left or right,
wave number k1, particle momentum p1.

V = V0 > 0 E > V0 :
ϕ(x) = A · e+jk2x + B · e−jk2x , k2 =

√
2m
�

2 (E − V0) = p2
m .

Plane wave propagating with the amplitude A to the right
and with amplitude B to the left, wave number k2,
particle momentum p2.
E < V0 :
ϕ(x) = A · e+k3x + B · e−k3x , k3 =

√
2m
�

2 (V0 − E) .

Increasing or decreasing exponential function, classically
forbidden motion.
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➤ For reasons of normalization, wave functions that do not vanish asymptotically (x →
±∞) are excluded.

In general, the particle is reflected with some probability and transmitted with some other
probability by a potential step, even if the total energy is larger than the step in the potential.

Transmission coefficient, T , the ratio of transmitted particle flux to incident particle
flux.

Reflection coefficient, R, the ratio of reflected particle flux to incident particle flux.
Since the total particle number is conserved, R = 1− T .

1. Potential step

Potential formulation (Fig. 24.6):

V (x) =
{

0 for x < 0 ,
V0 > 0 for x ≥ 0 .

Figure 24.6: Potential step. (a): potential, (b): probability density |ϕ(x)|2 for E < V0 and
E > V0, (c): reflection coefficient R and transmission coefficient T as a function of the
ratio E/V0.

Total energy E < V0 : R = 1, T = 0 .

Total energy E > V0 : R =
(

k1 − k2
k1 + k2

)2
, T = 4k1k2

(k1 + k2)
2 .

➤ According to classical mechanics, there is no particle motion with E < V0 and x > 0
because the kinetic energy then would have to be negative. In quantum mechanics,
however, the probability density of the particle in this range differs from zero, since its
localization at the classical turning point x = 0 causes a momentum uncertainty that
leads to energies above the potential step. According to the uncertainty principle, for
energy and time this energy uncertainty
E may be maintained only for a finite time
interval
t , hence a particle incident from the left may not be observed at x →+∞.
The probability density decreases exponentially in the classically forbidden range,
i.e., the particle is reflected.

2. Potential barrier

Potential formulation:

V (x) =
{

0 for |x | > a ,
V0 > 0 for |x | ≤ a .
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E < V0: T =
(

1+ V0
2

V0
2 − (2E − V0)

2
sinh2 (2ak3)

)−1

.

E > V0: T =
(

1+ V0
2

V0
2 − (2E − V0)

2
sin2 (2ak2)

)−1

.

Reflection coefficient: R = 1− T .
Approximation for E < V0 and 2a · k3 � 1:

T ≈
(

2k1k3

k2
1 + k2

3

)2

e−4ak3 ≈ e−4ak3 , a · k3 � 1 .

➤ A potential step may be viewed as a potential barrier of infinite width. In this case,
no tunnel effect (see below) may occur (T = 0, R = 1).

▲ For E < V0 the transmission coefficient increases monotonously with increasing
incident energy E ; the reflection coefficient correspondingly decreases. For fixed en-
ergy E < V0, the transmission coefficient increases with decreasing width 2a of the
potential barrier.

▲ For E > V0 there is no reflection by the potential barrier (R = 0, T = 1) if the
energy E coincides with a resonance energy, given by:

2ak2 = nπ , n = 1, 2, . . . .

■ In α-decay of heavy atomic nuclei, α-particles are emitted with kinetic energies that
are far below the maximum value of the potential barrier that arises as sum of a
repulsive Coulomb potential and an attractive nuclear potential. For 212Po, the height
of the potential barrier is about 30 MeV, the decay energy of the α-particles is 8.9
MeV. These energetic relations and their connection with the lifetime of the decaying
nucleus can be understood on the basis of the tunnel effect.

Tunnel effect, a potential barrier of height V0 and width 2a is traversed by a particle of
energy E < V0. Such a process is forbidden according to classical mechanics. When lo-
calizing the particle at the classical turning point, the wave function involves momentum
components that correspond to energies above the potential barrier. The uncertainty prin-
ciple between energy and time allows the maintenance of this uncertainty in energy 
E
over a time interval
t , which is sufficiently long to observe the particle behind a potential
barrier of finite width (Fig. 24.7).

Tunnel microscope: A metallic pin is moved at a distance of several nm over a species
surface to be studied such that the tunnel current is kept constant by varying the distance
between the pin and the species by means of a piezocrystal. The crystal driving voltage
provides a mapping of the surface structure.

3. Potential well

Potential formulation:

V (x) =
{

0 for |x | ≤ a ,
V0 > 0 for |x | > a .

E < V0: discrete spectrum, bound states.
E > V0: continuous spectrum, scattering states, reflection and transmission.
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∞ ∞

Figure 24.7: Tunnel effect. (a): separation of the incident wave packet into a reflected and a
transmitted fraction (solution to the time-dependent Schrödinger equation), (b): probabil-
ity density |ϕ(x)|2 (stationary solution to the Schrödinger equation), (c): variation of the
transmission coefficient T and reflection coefficient R with the ratio E/V0.

Constraints equation for bound states:

K 2 − k2 + 2kK cot 2ka = 0 , k2 = 2m

�
2

E , K 2 = 2m

�
2
(V0 − E) .

➤ The equation for determining the energy eigenvalues may be solved graphically.
▲ The number and position of the bound energy levels depend on V0a2. For V0a2 <

π2
�

2/(8m) there exists only one bound state.
▲ The distance between successive energy eigenvalues increases with the excitation

energy.
▲ The bound particle may be found with some probability beyond the turning points of

classical motion.
▲ The wave function of the ground state has positive parity.
▲ Successive (as function of energy) eigenfunctions of the spectrum have opposite par-

ities.

4. Infinitely high potential well

Potential formulation:

V (x) =
{

0 for |x | ≤ a/2 ,
∞ for |x | > a/2 .

▲ The wave function vanishes for |x | ≥ a/2. It obeys the boundary condition

ϕ(−a/2) = ϕ(a/2) = 0 .

The wave function has a kink at these points (discontinuous derivative).
▲ In an infinitely high potential well, there are only bound states.
▲ The energy between successive energy eigenvalues increases with the excitation en-

ergy.
▲ The wave function of the ground state has positive parity.
▲ Alternate energy eigenfunctions of the spectrum have opposite parities.
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Energy eigenvalues (Fig. 24.8a):

En = π2
�

2

2ma2
n2 , n = 1, 2, 3, 4, . . . .

Ground-state energy (zero-point energy):

E1 = π
2
�

2

2ma2
.

Eigenfunctions of positive parity (Fig. 24.8b):

ϕn(x) =
√

2

a
cos

nπx

a
, n = 1, 3, 5, . . . .

Eigenfunctions of negative parity (Fig. 24.8b):

ϕn(x) =
√

1

a
sin

nπx

a
, n = 2, 4, 6, . . . .

a/2a/2a/2a/2

Figure 24.8: Infinitely high potential well. (a): schematic spectrum of energy eigenvalues

En = π
2
�

2

2ma2 · n2, π : parity of eigenfunctions, (b): eigenfunctions ϕn(x).

24.4.2 Harmonic oscillator
Harmonic oscillator, a particle of mass m under the influence of a restoring force pro-
portional to the displacement from the rest position and producing vibrations of a certain
eigenfrequency along one or several spatial directions.

1. Time-independent Schrödinger equation

of the one-dimensional harmonic oscillator with angular frequency ω:

d2

dx2
ϕ(x)+ 8π2m

h2
(E − mω2

2
x2)ϕ(x) = 0 .
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▲ The energy states of the harmonic oscillator are quantized (Fig. 24.9),

En = �ω(n + 1

2
), n = 0, 1, 2, 3 . . . ,

E0 = �ω/2 is the zero-point energy. There are no eigenstates with the asymptotics
of scattering states.

▲ The energy levels of the harmonic oscillator are equally spaced,


E = En+1 − En = �ω .

▲ The particle may be found with a non-zero probability beyond the turning points of
classical motion.

▲ The wave function of the ground state has positive parity.
▲ Alternate energy eigenfunctions of the spectrum have opposite parity.

Figure 24.9: Harmonic
oscillator. Spectrum
of energy eigenvalues,

E = �ω.

2. Eigenfunctions of the harmonic oscillator

The eigenfunctions of the harmonic oscillator are given by

ϕn(x) = (r0)
1/4

√
1

2n n!√π e−r0x2/2 Hn(
√

r0x) .

r0 =
√

mω/� is the oscillator parameter, Hn are the Hermite polynomials (Fig. 24.10):

H0(z) = 1 , H1(z) = 2z , H2(z) = 4z2 − 2 , H3(z) = 8z3 − 12z , . . . .

The probability densities |ϕn(x)|2 for the first few states are shown in Fig. 24.11.
▲ The momentum (hence the energy) of a particle localized about the minimum of the

potential differs from zero because of Heisenberg’s uncertainty relation. The ground-
state energy of the harmonic oscillators does not coincide with the minimum value of
the potential energy function.

Zero-point energy, ground-state energy, lowest energy of the harmonic oscillator:

E0 = 1

2
�ω .

➤ The harmonic oscillator serves as a model for many kinds of excitations, among them:
• vibrations in molecules and atomic nuclei,
• lattice vibrations in a crystalline solid.
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Phonon, frequently used name for an energy quantum of the harmonic oscillator with
E = h f = �ω. If this amount of energy is transferred to the harmonic oscillator, then it is
excited into the next higher energy state.

Figure 24.10: Harmonic oscillator: energy eigenfunctions ϕn(x), n = 0, 1, 2, 3, 4.

Figure 24.11: Harmonic oscillator: probability density |ϕn(x)|2.

3. Bohr’s correspondence principle

Correspondence principle of Bohr: The classical description of a mechanical system must
correspond to the quantum-mechanical description in the limit of large quantum numbers
(Fig. 24.12).
■ For large quantum numbers n, the trend of the probability density of a quantum-

mechanical particle in a one-dimensional oscillator potential corresponds to the prob-
ability of finding a classical particle: maximum in the vicinity of the classical turning
points (the particle velocity has a minimum value), and minimum at the equilibrium
position (the particle velocity has a maximum value).

24.4.3 Pauli principle
Fermions, particles with half-integer spin.
■ Electrons and nucleons (neutrons, protons) are fermions with spin s = 1/2.
▲ Fermions obey the Pauli principle. The wave function of a system of indistinguish-

able fermions must be antisymmetric with respect to permutation of any two particles.
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2

Figure 24.12: Probability density of a particle in an eigenstate of the harmonic oscillator
with large quantum number.±x1: turning points of classical motion. Dashed line: classical
probability of finding the particle.

Antisymmetric wave function for two particles:

 a(1, 2) = 1√
2
(ψn(1) · ψm(2)− ψn(2) · ψm(1)) .

n and m denote arbitrary complete sets of quantum numbers. The function  a(1, 2) is
normalized. It changes sign under permutation of the particles 1 and 2,

 a(2, 1) = − a(1, 2) .

Pauli principle: If two fermions are indistinguishable and the quantum numbers n and m
coincide, a ≡ 0, i.e., the probability of finding two particles in the same state equals zero.
Two indistinguishable fermions must not occupy the same state (exclusion principle).
➤ The Pauli principle provides an understanding of the structure of the electron shell of

atoms, as well as of atomic nuclei.

24.5 Spin and magnetic moments

24.5.1 Spin
Spin, intrinsic angular momentum (eigen angular momentum) of elementary particles. The
spin has a definite fixed value for any kind of elementary particles. Unlike the orbital
angular momentum, the spin quantum number may also take half-integer values.

1. Experimental demonstration of spin

Stern–Gerlach experiment (1921): A beam of silver atoms is sent through an inhomoge-
neous magnetic field. The individual electron, which according to the shell structure of the
Ag atom determines the total angular momentum of the atom, carries no orbital angular
momentum. Hence, an atomic magnetic moment can only be due to the spin of this elec-
tron. According to classical theory, one would expect a broad distribution of the outgoing
beam, since any orientation of the magnetic moment connected with the spin against the
magnetic field should be allowed. One observes, however, a splitting of the beam into two
components, which demonstrates the value of the electron spin to be s = 1/2, with two
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possible orientations ms = ±1/2 with respect to the direction of the magnetic field (see
Fig. 24.13).

Rabi experiment (1938), permits the measurement of the much smaller nuclear mo-
ments by means of successive magnetic fields of different orientation.

Source

Slit

Magnetic
field

Figure 24.13: Stern–Gerlach experiment demonstrating the electron spin.

2. Spin operators and their properties

Spin operator for particles with the spin (intrinsic angular momentum) 1/2, vector opera-
tor with Cartesian components ŝx , ŝy, ŝz (Fig. 24.14),

�̂s = (sx , sy, sz) , �̂s 2 = s2
x + s2

y + s2
z .

Commutation relations for the spin operator, correspond to the commutation relations of
an angular momentum operator,

[ŝx , ŝy] = ŝx · ŝy − ŝy · ŝx = j �ŝz ,

[ŝy, ŝz] = ŝy · ŝz − ŝz · ŝy = j �ŝx ,

[ŝz, ŝx ] = ŝz · ŝx − ŝx · ŝz = j �ŝy .

and

[�̂s 2, ŝx ] = [�̂s 2, ŝy] = [�̂s 2, ŝz] = 0 .

Figure 24.14: Vector model
of electron spin �s (s = 1/2).

3. Pauli spin matrices,

σ̂x , σ̂y, σ̂z , representation of the operators corresponding to the spin components by 2× 2-
matrices,

�̂s = �

2
�̂σ , σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 − j
j 0

)
, σ̂z =

(
1 0
0 −1

)
.
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Spin eigenfunction, χsms , simultaneous eigenfunction of the operator of the z-component
of spin with the eigenvalue ±�ms , and of the operator of the square of spin with the eigen-

value s(s + 1)�2 = 3
4�

2,

ŝz χsms = �ms χsms , ms = ±1

2
,

�̂s 2 χsms = �
2s(s + 1)χsms , s = 1

2
.

Eigenstate with ms = +1/2: spin pointing in positive z-direction.
Eigenstate with ms = −1/2: spin pointing in negative z-direction.

Representation of the spin eigenfunctions by column matrices:

χsms= 1
2
=
(

1
0

)
, χsms=− 1

2
=
(

0
1

)
.

Arbitrary normalized spin state:

χ = a χsms= 1
2
+ b χsms=− 1

2
=
(

a
b

)
, |a|2 + |b|2 = 1 .

|a|2, (|b|2) is the probability for measuring the spin component ms = +1/2, (−1/2) in
z-direction.

Spin orientation along the direction ϑ, ϕ:

a = cos(ϑ/2) e−jϕ2 , b = sin(ϑ/2) e jϕ2 .

The general wave function of a particle with spin 1/2 has two components,

ψ(�r, s, t) =
(
ψ+(�r, t)
ψ−(�r, t)

)
.

|ψ+(�r, t)|2 dV , (|ψ−(�r, t)|2 dV ) is the probability for finding the particle at time t in the
volume element dV about the position �r, with the spin pointing along the positive, (nega-
tive) z-direction.

Figure 24.15: States of the total angular momentum �j = �l + �s for l = 2. m j : magnetic

quantum number for the z-component of total angular momentum �j.
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4. Total angular momentum,

�̂j of an electron, obtained by vector addition of the orbital angular momentum �̂l and spin �̂s,

�̂j = �̂l+ �̂s , ĵz = l̂z + ŝz .

The possible values of the quantum numbers for �̂j 2
and ĵz are (Fig. 24.15):

j = l + 1/2 , j = l − 1/2 , m j = − j, . . . ,+ j .

An angular momentum state j has only 2 j + 1 possible orientations with respect to the
quantization axis.

24.5.2 Magnetic moments
1. Magnetic moment of orbital motion,

�̂µl , expressed by the orbital angular momentum operator �̂l:

operator of orbital magnetic moment

�̂µl = −gl
e0

2me
· �̂l

= −gl µB ·
�̂l
�

gl = 1

Symbol Unit Quantity

�̂µl J T−1 operator of orbital
magnetic moment

gl 1 g-factor of orbital
angular momentum

e0 C elementary charge
me kg electron mass
�̂l J orbital angular momentum

operator

Bohr magneton, µB, universal constant:

µB = − e0 · �
2 · me

= 5.788 382 63(52) · 10−11 MeV/T = 9.274 015 4 · 10−24 J/T .

2. Magnetic spin moment,

�̂µs, expressed by the spin operator �̂s:

operator of magnetic spin moment

�̂µs = −gs
e0

2me
· �̂s

= −gs µB · �̂s
�

gs = 2.0023

Symbol Unit Quantity

�̂µs J T−1 operator of magnetic
spin moment

gs 1 g-factor of spin
e0 C elementary charge
me kg electron mass
�̂s J spin operator
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Gyromagnetic factor, g, proportionality coefficient between angular momentum and mag-
netic moment of the electron:

gl = 1 , gs ≈ 2 .

➤ Relativistic quantum theory shows that the gyromagnetic spin factor does not exactly
equal the value 2,

gs − 2

2
= (1159.652 193± 0.000 010) · 10−6 .

➤ The magnetic spin moment of the electron nearly corresponds to the magnetic mo-
ment of an orbital motion with angular momentum l = 1.

▲ Magnetic moment and angular momentum of the electron have opposite orientation
both for orbital and spin magnetism, respectively.

3. Total magnetic moment,

�̂µ, of the electron in the atom, sum of the magnetic moments of spin and orbital motion
(Fig. 24.16),

�̂µ = �̂µl + �̂µs = −
e0

2me
(�l+ 2 · �s) .

▲ In the vector model, the total magnetic moment �̂µ of the electron is not antiparallel
to the total angular momentum �j = �l+ �s.

Figure 24.16: Coupling of
orbital angular momentum
�l and spin �s to the total
angular momentum �j,
and magnetic moments
�µl, �µs, �µ = �µl + �µs.

4. Potential energy in the magnetic field

The potential energy Epot of an unbound electron in a uniform magnetic field �B =
(0, 0, Bz) along the z-direction is given by

Epot = −�µs · �B = gs
e0

2me
sz · Bz .

For an eigenstate of the z-component of the spin operator with the projection quantum
number ms = ±1/2:

Epot = gs
e0�

2me
ms · Bz = gsµB · ms · Bz .

Similarly, for an electron with orbital angular momentum (l,m):

Epot = gl
e0�

2me
m · Bz = glµB · m · Bz .
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The potential energy of an atom in a state with the quantum numbers J,MJ for the total
angular momentum and its projection onto the z-axis, L for the total orbital angular mo-
mentum, and S for the total spin, in a uniform magnetic field �B = (0, 0, Bz) along the
z-axis is given by:

potential energy in a magnetic field ML2T−2

Epot = −�µ · �B
= g(L , S, J ) · µB · MJ · B

Symbol Unit Quantity

Epot J potential energy
MJ 1 quantum number of

projection of total
angular momentum

g(L , S, J ) 1 Landé factor
µB J/T Bohr magneton
B T magnetic flux density

Landé factor g(L , S, J ), describes the dependence of the gyromagnetic ratio on the
quantum numbers of the term:

g(L , S, J ) = 1+ J (J + 1)− L(L + 1)+ S(S + 1)

2J (J + 1)
.

Larmor precession, precession of the vector of the magnetic moment of an atomic system
in an external magnetic field �B with constant angular velocity about the field direction.

Larmor frequency, frequency of Larmor precession, for the orbital magnetism given
by

ωL = gl µB · B

�
.

Nuclear magnetic spin, generated by the magnetic moment of the atomic nucleus as a
consequence of the nuclear spin.

M Nuclear magnetic spin is used to cool bodies to temperatures of the order of µK.
An external magnetic field aligns the magnetic moments of the atomic nuclei of a
pre-cooled material. After switching off the magnetic field, the atomic nuclei again
approach a statistically disordered state. This process is carried out adiabatically
(
Q = 0). A lowering of the degree of order, which would correspond to an in-
crease of entropy, is therefore connected with a decrease of temperature. The lowest
temperature of a test sample reached so far is about 5 · 10−6 K. To date, the lowest
temperature measured for a system of Cu nuclei is about 50 · 10−9 K.
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Atoms, the smallest particles of a chemical element possessing its chemical properties. An
electrically neutral atom consists of a Z -fold positively charged nucleus, and Z negatively
charged electrons (shell) moving in the Coulomb field of the nucleus.

Nuclear charge number, atomic number, Z , number of protons forming the atomic
nucleus.
▲ Atoms are electrically neutral. The sum of the electrons of an atom equals the number

of protons of the atomic nucleus.
Atomic radius, RA, of the order of magnitude 10−10 m (formerly used: 1 angstrom =
1 Å = 10−10 m). The radius of the atomic nucleus, in contrast, is of the order of magnitude
1 fm = 10−15 m.

Atomic and ionic radii of the elements are compiled in Tab. 29.2. The values depend on
the method of measurement and should be considered only as a guide. The trend of atomic
radii with atomic number is plotted in Fig. 25.1.
■ Atomic radii of some elements (in nm): He 0.122, Li 0.155, O 0.056, Fe 0.126, Rb

0.248, U 0.153.
Ions, electrically charged particles that occur when an atom releases or accepts electrons
(see p. 552).

The ionic charge is given by a superscript to the right of the atomic symbol: H+ (single
positively charged hydrogen ion), Cl− (single negatively charged chlorine ion).

Ionization energy, Ei, or ionization work, Wi, the energy expended to remove an elec-
tron from a stationary bound atomic state (Fig. 25.2).

25.1 Fundamentals of spectroscopy

Energy levels, stationary states of the atom with a definite energy. The energy levels are
specified by additional quantum numbers, such as total orbital angular momentum L , total
spin S and total angular momentum J .

Ground state, the stationary state with lowest energy.
Excited state, a state with an energy above the ground-state energy.

851
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(RA/Aº )

Figure 25.1: Atomic radius RA plotted against atomic number Z .

Figure 25.2: Ionization energy Ei plotted against atomic number Z .

Level scheme, a graphical representation of the energies of the stationary states of an
atom.

Spectroscopy, measurement and analysis of the radiation emitted or absorbed by atoms
(or molecules, atomic nuclei, etc.).

Spectrum, the dependence of the intensity of radiation emitted or absorbed by atoms,
molecules, nuclei, etc., on the frequency or wavelength of the radiation.

1. Emission spectrum,

the frequency distribution of the radiation emitted by a substance. Emission spectra are
measured for transitions from an excited atomic state to the ground state, or to another
energetically lower atomic state.
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M The sample may be stimulated to emit radiation through electron collisions in gas
discharges, in a high-frequency plasma or by spark discharge, in an electric arc, and
by thermal excitation. Emission spectra are measured by decomposing the radiation
emitted by excited atoms into components of different wavelengths by a spectro-
graph.

▲ The emission spectrum of the hydrogen atom is a line spectrum.

2. Line shape of spectral lines

Line shape, profile of the intensity I (ω) in a small frequency range about a spectral line ω0
that corresponds to a spontaneous transition from the stationary state i into the stationary
state f ,

I (ω) ∼ (
ω)/2

(ω − ω0)
2 + (
ω)2/4 .

Natural line width, 
ω, difference between the frequency values at which the intensity
curve drops to half the peak value Imax (see Fig. 25.3).
▲ The line width 
ω corresponds to an energy uncertainty of the initial state, 
E =

�
ω, which according to Heisenberg’s uncertainty relation is related to the mean
lifetime τ of the initial state i as follows:


E ∼ �/τ .

Figure 25.3: Width 
ω of a
spectral line.

Line broadening, enlargement of the width of an experimentally observed spectral line
versus the natural line width. Line broadening can be caused by the Doppler effect, by
atomic collisions depending on the pressure, and by interaction with radiation fields.
■ The mean lifetime of excited atomic states lies in general between 10−7 s and 10−8

s. Hence, the frequency uncertainties range up to 
ω ≈ 108 Hz.
➤ Transitions from metastable states of long lifetime (τ ≈ 10−3 s) have a small line

width (
ω ≈ 103 Hz).
▲ The emission or absorption spectra of molecules consist of sequences of lines that,

at low resolution of the spectral apparatus, appear as structureless bands (band spec-
trum).

▲ The thermal radiation emitted by bodies is electromagnetic radiation with a continu-
ous spectrum.

3. Absorption spectrum,

the frequency distribution of the incident radiation intensity that is attenuated in the sample.
Absorption spectra usually correspond to transitions of atoms from the ground state to
excited states. An example is shown in Fig. 25.4.



854 25. Atomic and molecular physics

Figure 25.4: Absorption spectrum of SiO2 in the infrared. k: wave number, I : intensity of
radiation.

M Absorption spectra are observed when white light passes through “cold” vapor or
“cold” gases. The wavelengths corresponding to the absorbed frequencies appear as
black lines in the transmission spectrum.

Resonance spectroscopy, measurement of the absorption of an incident radiation of fixed
wavelength by a sample as a function of an external parameter (temperature, pressure,
magnetic field).

25.2 Hydrogen atom

A hydrogen atom is an electrically neutral object consisting of an electron and a proton,
and bound by the electrostatic interaction. The binding energy in the ground state amounts
to about 13.6 eV, the atomic radius is about 0.5 Å.

Electron, elementary particle with a negative charge −e (e: elementary charge) and a
rest mass me,

e = 1.602 177 33(49) · 10−19 C ,

me = 9.109 389 7(54) · 10−31 kg .

Proton, elementary particle with a positive charge e and a rest mass mp ≈ 1836 me,

mp = 1.672 623 1(10) · 10−27 kg .

The numbers in brackets give the uncertainty of the last digits.
Deuteron, an atomic nucleus consisting of a proton and a neutron. The neutron is elec-

trically neutral and about 2.5 electron masses heavier than the proton.
Deuterium, heavy hydrogen. The nucleus of the deuterium atom is a deuteron.
Hydrogen-like systems, systems whose energetic behavior is determined by a single

electron. Hydrogen-like systems are the ions He+,Li2+,Be3+, . . . ,U91+.
■ In 1993 the hyperfine splitting of 209Bi82+ was measured for the first time at the

heavy-ion storage ring ESR at GSI (Darmstadt, Germany).
Alkali atoms Li, Na, K, Rb, Cs, Fr, show similarity to the hydrogen atom: the nucleus
and the inner electrons represent a positively charged center, the weakly bound valence
electron moves about this center.

Rydberg atoms, highly excited hydrogen atoms or hydrogen-like atoms (principal quan-
tum number n > 100). Their radii range up to ≈ 5 · 10−7 m; this corresponds to the size
of a virus.
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25.2.1 Bohr’s postulates
1. Formulation of Bohr’s postulates

a) Bohr postulate (postulate of stationary states):
Atoms may exist in certain stationary states in which they do not radiate energy. These

stationary states correspond to the “orbits” in the classical picture along which the electrons
move in a planetary motion. They do not emit electromagnetic radiation when in these
orbits, despite the radial acceleration.

b) Bohr postulate (postulate of quantization of orbits):
The orbital angular momentum of an electron in a stationary orbit is equal to an integer

multiple of �:

ln = rn · mevn = n · � , � = h

2π
, n = 1, 2, 3, . . . .

rn is the radius of the nth orbit; n is a natural number, n > 0.
In the stationary state n, the hydrogen atom has an energy

En = − Z2e4me

8h2ε2
0

· 1

n2
ε0: electrical permittivity of free space.

c) Bohr postulate (Bohr frequency condition):
An atom emits a quantum of electromagnetic radiation (photon) when an electron

changes from an orbit with number m to an orbit with a smaller number n.
Energy of photon, difference of the energies of the electron in the orbits before and

after the transition:

E = �ω = h f = Em − En .

Bohr’s postulates cannot be derived from classical physics and are explained only by quan-
tum mechanics. The concept of electron orbit proposed in Bohr’s atomic model is success-
ful because of the wave nature of the electron and because of Heisenberg’s uncertainty
relation.
➤ Bohr’s postulates can be used to explain the line spectrum of the hydrogen atom.

2. Bohr radii

Bohr orbital radius, rn, follows from the equilibrium condition for the centrifugal force
and the Coulomb force on a classical circular orbit, and from the second Bohr postulate:

Bohr orbital radius L

Ze2

4πε0r2
n
= me · v

2
n

rn

rn · mevn = n · �

rn = 4πε0
n2
�

2

me Ze2

Symbol Unit Quantity

Z 1 atomic number
e C elementary charge
ε0 C V−1m−1 electric permittivity

of free space
rn m Bohr orbital radius
me kg electron mass
vn m/s orbital velocity

Bohr radius, r1, frequently denoted by a0 or a∞, radius of the orbit with n = 1,

r1 = 0.529 177 249(24) · 10−10 m ≈ 0.5 Å .
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M The Franck–Hertz experiment (1913) confirmed Bohr’s postulates by the demon-
stration of a discrete energy transfer by accelerated electrons to mercury atoms in a
triode-like vacuum tube.

3. Frequencies in the hydrogen spectrum

Hydrogen spectrum, a line spectrum consisting of several series:

frequencies in the hydrogen spectrum T−1

fmn = cRH

(
1

n2
− 1

m2

)
n < m

RH = 1.0967 758 10 · 107 m−1

Symbol Unit Quantity

fmn s−1 frequency
c m s−1 speed of light
RH m−1 Rydberg constant

for H-atom
n,m 1 natural numbers

wavelengths in hydrogen spectrum L

λmn = 1

RH

(
n2 · m2

m2 − n2

)
n < m

RH = 1.0967 758 10 · 107 m−1

Symbol Unit Quantity

λmn m wavelength
RH m−1 Rydberg constant

for H-atom
n,m 1 natural numbers

Principal quantum numbers, n, discrete values of the series n = 1, 2, . . . , describe the
energy spectrum of the hydrogen atom.

4. Series and series formulas of the hydrogen spectrum,

for a scheme of the series see Fig. 25.5.

Continuum, E>0

Figure 25.5: Series in the line spectrum of the hydrogen atom. Term scheme and transitions,
n: principal quantum number.
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▲ For the principal quantum numbers in the series formulas m > n.
Lyman series (n = 1) in the ultraviolet, Balmer series (n = 2) in the visible range,
Paschen series (n = 3) in the near infrared, Brackett series (n = 4) and Pfund series
(n = 5) in the far infrared frequency range (Fig. 25.6).

Term, Tn , given by

Tn = cRH

n2
.

▲ The lines of the hydrogen spectrum may be represented as differences of terms.
The Rydberg constant RH for the hydrogen atom determined from the spectra differs
slightly from the calculated Rydberg constant R∞:

Rydberg constant, R∞ (assuming an infinitely heavy center of force),

R∞ = mee4

8ε2
0h3 · c = 1.097 373 156 83(4) · 107 m−1 .

When calculating RH, one has to take into account that the proton has a finite mass mp as
compared with the electron mass me (reduced mass µ = mpme/(mp + me)):

RH = R∞
1+ me/mp

.

Series limit, the maximum value of the frequency of a line in a series. For m → ∞, the
energy of the limit frequency flim = f∞n in the hydrogen atom is:

En = h flim = h RH c

n2
.

▲ The ground state of the hydrogen atom lies at E1 = −13.595 eV.
▲ There are additional frequencies, also above the frequency limit, corresponding to

transitions between continuum states and discrete atomic states.

5. Degeneracy in the hydrogen spectrum

The total angular momentum �j of the electron in the hydrogen atom is calculated by vector
addition of the orbital angular momentum �l and the spin �s, �j = �l + �s. For l > 0, the
possible values of the quantum number j that determines the magnitude of the total angular
momentum are given by j = l ± 1/2.

Accidental degeneracy in the hydrogen atom, a degeneracy of the energy levels spe-
cific to the Coulomb potential (∼ 1/r ), see Fig. 25.7.
▲ The energy of the stationary states of a hydrogen atom depends almost entirely on

the principal quantum number n. To an energy state En belong wave functions with
orbital angular momentum quantum numbers l = 0, 1, 2, . . . , n − 1.

Degeneracy in the energy spectrum of the hydrogen atom:

E1 n = 1 l = 0 ground state
E2 n = 2 l = 0, 1 first excited state
E3 n = 3 l = 0, 1, 2 second excited state
E4 n = 4 l = 0, 1, 2, 3 third excited state
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

➤ In the ground state, n = 1, the orbital angular momentum vanishes: ln=1 ≡ 0.
➤ The exclusive dependence of the energy eigenvalues on the principal quantum num-

ber holds for all hydrogen-like systems, provided the magnetic interaction between
the orbital motion and the electron spin is ignored.
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 UV                          Visible                     Near IR                       Far IR

Figure 25.6: Series in the line spectrum of the hydrogen atom: wavelengths λ and ener-
gies h f .

∞n

Figure 25.7: Accidental
degeneracy of the states
of the hydrogen atom with
respect to the quantum
number l of the orbital
angular momentum.

6. Fine structure of the hydrogen spectrum

If spin–orbit coupling is taken into account, there arises a fine-structure splitting of the
levels in hydrogen and hydrogen-like systems. The energy of the stationary states in the
hydrogen atom then depends only on the quantum number j of the total angular momen-
tum. The states remain partly degenerate with respect to the orbital angular momentum
quantum number l: the levels with l = j − 1/2 and l = j + 1/2 have the same energy.

Fine structure splitting of levels in hydrogen and hydrogen-like systems caused by
relativistic effects like electron spin (Fig. 25.8).

Figure 25.8: Fine structure
of the hydrogen spectrum.
Classification of the states
by nl j , n: principal quantum
number, l: orbital angular
momentum quantum
number, j : quantum
number of the total angular
momentum.
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fine-structure formula by Sommerfeld ML2T−2

Enj = − R∞ · h · Z2

n2

·
[

1+ Z2 · α2

n2 ·
(

n

j + 1
2

− 3

4

)]

α = 1/137.035 989 5(61)

Symbol Unit Quantity

Enj J energy eigenvalue
j J s total angular

momentum
α 1 fine-structure constant
R∞ m−1 Rydberg constant
Z 1 nuclear charge number
h J s quantum of action
n 1 principal quantum

number

Fine-structure constant α, ratio of the “orbital velocity” of the first Bohr orbit (orbit

radius r1 = ε0 · h2

2π · me · e2
) to the speed of light c,

α = 2πe2

h · c = 1/137.035 989 5(61) .

➤ The splitting of the l = j ± 1/2 levels, which is only 4.375·10−6 eV for the terms
2s1/2 and 2p1/2, (Lamb shift) can be explained by quantum electrodynamics.

25.3 Stationary states and quantum numbers
in the central field

Potential energy of an electron in the field of the atomic nucleus, which for hydrogen-like
systems takes into account the screening of the nuclear Coulomb field by the inner-shell
electrons via the introduction of an effective atomic number Z∗ < Z ,

VC(r) = − 1

4πε0

Z∗e2

r
.

r is the distance of the electron from the center of the nucleus.
Application of the operator �̂l 2 on a wave function ψnl specified by the orbital angular

momentum quantum number l (l = 0, 1, 2, . . .) yields:

�̂l 2 ψnl = �
2 l(l + 1) ψnl .

Centrifugal potential, additional potential for electrons in a state with l �= 0:

V (l)Z (r) = �
2

2m
· l(l + 1)

r2
.

The centrifugal potential causes the electrons in states with larger angular momentum to
be pushed farther outward, similar to planetary motion.
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1. Effective central potential in the many-electron atom

Effective potential, V (l)eff (r), a central potential consisting of the sum of the screened
Coulomb potential of the atomic nucleus and the centrifugal potential (Fig. 25.9),

V (l)eff (r) = VC(r)+ V (l)Z (r) .

effective central potential ML2T−2

V (l)eff (r) = −
1

4πε0

Z∗e2

r

+ �
2

2me
· l(l + 1)

r2

Symbol Unit Quantity

Veff J potential energy
Z∗ 1 effective atomic

number
ε0 C V−1m−1 electric permittivity

of free space
r m distance electron –

atomic center
l J s quantum number

orb. ang. momentum
me kg electron mass
� J s quantum of action

Centrifugal potential

Coulomb potential

Effective potential

Figure 25.9: Effective potential V (l)eff (r) (schematic). (a): Coulomb potential and centrifugal
potential, (b): total potential. r1, r2: inversion points of classical motion of a particle of
energy E < 0.

2. Wave function of a particle and radial quantum number

Wave function of a particle in a central potential, in spherical coordinates (r, ϑ, ϕ) sep-
arable into radial and angular components:

ψnr lm =
unr l (r)

r
Y m

l (ϑ, ϕ) ,

∫ ∞
0
|unr l (r)|2 dr = 1 .

The angular component is represented by the spherical harmonics (spherical surface har-
monics) Y m

l .
➤ This formulation for the wave function holds not only for the Coulomb potential, but

for any central potential V (r), independent of the detailed radial variation.
Radial quantum number, nr , number of zeros of the radial wave function unr l (r), with-
out counting the trivial zeros at r = 0 and r = ∞ (Fig. 25.10). Possible values for nr :
nr = 0, 1, 2, . . . .
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Figure 25.10: Radial wave function unr l (r) (schematic). (a): wave function without node,
various angular momentum quantum numbers l, (b): wave function with one node. The
trivial zeros of u(r) at r = 0 and r →∞ are not counted.

3. Orbital angular momentum and magnetic quantum numbers

Orbital angular momentum quantum number, l, integer quantity specifying the orbital
angular momentum state of a particle. Possible values for l : l = 0, 1, 2, . . . .

In spectroscopic notation, different values of the orbital angular momentum quantum
number l are expressed by letters:

l 0 1 2 3 4 . . .

name s p d f g . . .

Magnetic quantum number m, integer quantum number, specifies the component of
the orbital angular momentum along the quantization axis (z-axis). Possible values of m
for given value of l: m = −l,−l + 1, . . . , 0, . . . , l − 1, l.
▲ An angular momentum l has 2l + 1 possible orientations along the quantization axis.
Parity, π , of the wave function ψnr lm , determined by the behavior of the spherical har-
monic under reflection at the coordinate origin ϑ −→ π − ϑ, ϕ −→ ϕ + π ,

Y m
l (ϑ, ϕ) −→ Y m

l (π − ϑ, ϕ + π) = (−1)l · Y m
l (ϑ, ϕ) , π = (−1)l .

Orbital angular momenta l = 0, 2, 4, . . . : states of positive parity, π = +1.
Orbital angular momenta l = 1, 3, 5, . . . : states of negative parity, π = −1.

▲ The energy eigenvalues of a particle in the central potential depend only on the radial
quantum number nr and the orbital angular momentum quantum number l, E =
Enr l .

4. Level degeneracy in the central potential

Degeneracy of a level, the feature that several quantum-mechanical states with different
quantum numbers belong to a given energy value.
▲ The stationary state of a particle in a central potential with the energy eigenvalue

Enr l shows a natural (2l + 1)-fold degeneracy with respect to the magnetic quantum
number m.

Accidental degeneracy in the hydrogen atom, a degeneracy of the energy levels specific
for the Coulomb potential (∼ 1/r ). The energy of the states of the hydrogen atom depends
only on the principal quantum number n,

n = nr + l + 1.
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▲ To the energy state En belong wave functionsψnl with the orbital angular momentum
quantum number,

l = 0, 1, 2, . . . , n − 1.

➤ The exclusive dependence of the energy eigenvalues on the principal quantum num-
ber holds for all hydrogen-like systems provided the spin–orbit interaction is ignored.

5. States of positive energy: scattering states

Scattering states, solutions to the Schrödinger equation for positive energy values E =
p2/2m. The spectrum of eigenvalues is continuous. For large distances from a spherically
symmetric scattering potential that decreases faster than 1/r at large distances, the wave
function consists of an incident plane wave with the wave vector �k, and an outgoing spher-
ical wave with scattering amplitude f�k(ϑ):

ψ(�r) −→ e j�k�r + f�k(ϑ) ·
e jkr

r
for r →∞ .

The absolute square of the scattering amplitude | f�k(ϑ)|2 determines the probability for
scattering of the particle through an angle ϑ relative to the incident wave, which is given
by the orientation of �k.

6. Probability density for electrons

Electron density w(�r) in an atom, determined by the quantity

w(�r) = |ψ(�r)|2 .
Radial probability density W (r) dr = 4π |ψ |2 r2dr , probability of finding the electron
within a spherical shell of radii r and r + dr about the nucleus (Fig. 25.11). The position
of the peak of the function W (r) determines the most likely distance of the electron from
the nucleus.

Only the s-electrons (l = 0) have a nonvanishing probability w(�r) to be found at the
position of the atomic nucleus (r → 0).

Angular distribution of the electron density, determined by the quantum numbers of
the orbital angular momentum and its projection onto a given z-axis (Fig. 25.12).

Selection rules, conditions for the transition of an atomic electron from some energy
level to another one with the emission or absorption of a photon. In electric dipole transi-
tions, the orbital angular momentum quantum numbers may change as follows:


l = ±1 and 
m = 0,±1 .

The principal quantum numbers of the levels involved in the transition affect the radiation
intensity.

7. Shell structure of the electron shell

Electron shells, the set of atomic electrons occupying states with the same principal quan-
tum number n forms a shell.

Spectroscopic classification by the principal quantum numbers:

n 1 2 3 4 . . .

shell K L M N . . .
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Figure 25.11: Radial probability density of electrons for s-, p- and d-states in the hydrogen
atom. r1 is the Bohr radius.

Figure 25.12: Angular dependence of the electron density for s-, p- and d-states.
Quantization axis is the z-axis.
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25.4 Many-electron atoms

1. Vector model of atom

▲ Pauli principle: Any atomic single-particle state described by the quantum numbers
n, l, m can be occupied by only two electrons, which have the possible spin orienta-
tions ms = ±1/2 (see p. 844).

Vector model of the atom, the orbital angular momentum of any electron is represented
by the vector �l, the spin by the vector �s. These vectors may take only certain orientations
relative to the z-axis (directional quantization).

The vector model serves to systematize the complex spectra of many-electron atoms and
in studies of the fine structure of spectra.

Directional quantization, the feature of the angular momenta of an electron that the
projections of the vectors �l and �s onto a selected direction in space (e.g., an external mag-
netic field in z-direction) may take only discrete values. The selected direction is called
quantization axis. The component of the vector �l along the quantization axis may take
only the (2l + 1) integer values l, l − 1, . . . , 0, . . . ,−l + 1,−l (in units of �). The vector
�s, on the contrary, has only the components+1/2 and−1/2 along the quantization axis (in
units of �).

2. Total angular momentum in the vector model

total angular momentum vector ML2T−1

�j = �l+ �s
jz = lz + sz

Symbol Unit Quantity

�j J s total angular momentum
�l J s orbital angular momentum
�s J s spin
jz J s z-component total angular momentum
lz J s z-component orbital angular momentum
sz J s z-component of spin

According to quantum-mechanical vector addition, the total angular momentum of an elec-
tron of orbital angular momentum l may take only the values j = 1/2 (for l = 0), or
j = l+1/2, l−1/2 (for l > 0). Thus, the vector �j has 2 j +1 possible orientations relative
to the z-axis. The projections of spin and orbital vectors add up, m j = ml + ms .

3. Spin–orbit coupling

Spin–orbit coupling, interaction between magnetic spin and orbital moment, given by:

spin–orbit coupling

Vls = − Ze2

2m2
ec2

1

r3
�l · �s

Symbol Unit Quantity

Z 1 atomic number
e C electron charge
me kg electron mass
c m/s speed of light
�l J s orbital angular momentum
�s J s spin
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The energy of an atomic electron depends on the relative orientation of spin and orbital
angular momentum because of the magnetic interaction between spin moment and orbital
moment. States with orbital angular momentum�l and spin �s aligned parallel or antiparallel,
respectively, differ in energy. A level with the quantum number l splits into two levels
with the quantum numbers j = l + 1/2 and j = l − 1/2, hence a fine structure of the
spectral lines is observed (Fig. 25.13).

Figure 25.13: Spin–orbit coupling. (a): Illustration of the magnetic interaction between spin
and orbital motion, (b): spin–orbit splitting of a level with orbital angular momentum l.

4. L S-coupling,

a coupling scheme for weak spin–orbit interaction. One first couples the orbital angular
moments of the atomic electrons considered to a total orbital angular momentum �L,

�L =
N∑

i=1

�li with |�L| = �

√
L(L + 1) ;

then the atomic electron spins are coupled to a total spin �S:

�S =
N∑

i=1

�si with |�S| = �

√
S(S + 1) .

The total angular momentum �J of the atom is given by the vector sum of the total orbital
angular momentum �L and the total spin �S:

�J = �L+ �S with |�J| = �

√
J (J + 1) .

The quantum number J may take the values

J = L + S, L + S − 1, . . . , |L − S| + 1, |L − S| .

J takes 2S + 1 values if L ≥ S, and 2L + 1 values if L ≤ S (Fig. 25.14).
▲ The L S-coupling scheme is an appropriate starting point for approximate solutions if

the spin–orbit interaction causes only a weak perturbation of the electron motion. It
is used preferably in spectral analyses of light atoms.
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Figure 25.14: L S-coupling for L > S and S = 2 (schematic).

5. j j -coupling,

a coupling scheme for strong spin–orbit interaction. Here the orbital angular momentum
�li and the spin �si of an atomic electron are first coupled to an individual total angular
momentum of this electron:

�ji = �li + �si .

The total angular momentum �J of the atom is then obtained by summing the total angular
momenta of the individual electrons:

�J =
N∑

i=1

�ji with |�J| = �

√
J (J + 1) .

▲ The j j-coupling scheme is an appropriate starting point for approximate solutions
when the spin–orbit interaction is strong. Its use is preferable in spectrum analysis of
heavy atoms.

➤ In the analytical treatment based on the Schrödinger equation, the angular-momen-
tum vectors are replaced by the corresponding operators.

6. Multiplets in the term structure

Multiplet, a group of energy levels (terms) belonging to different values of the quantum
number J of the atomic total angular momentum.

Multiplicity, the number of terms belonging to a multiplet (L , S, J ) of energy levels:

S ≤ L: multiplicity 2S + 1 , S > L: multiplicity 2L + 1 .

■ S = 0: multiplicity 1, singlet system,

S = 1
2 : multiplicity 2, doublet system,

S = 1: multiplicity 3, triplet system.
▲ The following spectroscopic notation is used for characterizing the terms of a many-

electron system:
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multiplicitytotal orbital angular momentumtotal angular momentum

2S+1L J

Symbol Unit Quantity

S 1 quantum number of total spin
L 1 quantum number of total orbital

angular momentum
J 1 quantum number of total angular

momentum

7. Hund rules

In accordance with the Pauli principle, the electrons fill the quantum states such that:
1. the maximum total spin S,
2. the maximum total orbital angular momentum L ,
3. the total angular momentum J = L − S for less-than-half-filled shells,

the total angular momentum J = L + S for more-than-half-filled shells.
Selection rules, relations among the quantum numbers of two stationary atomic states

that must be satisfied in order to get an allowed radiative dipole transition:


S = 0 , 
L = ±1 , 
J = 0,±1 (but not 0 −→ 0) , 
MJ = 0,±1 .

8. Example: Helium atom

In the helium atom (nuclear charge number Z = 2), the spins of the two electrons couple to
S = 0 (singlet) or S = 1 (triplet). Two term systems arise: parahelium (S = 0) and ortho-
helium (S = 1). The spin function in the singlet state behaves antisymmetrically under
permutation of the particle coordinates; the spin function in the triplet is symmetric under
permutation of the particles. The low-lying energy states correspond to the occupation of
the lowest single-electron states in the Coulomb potential (Fig. 25.15):

Figure 25.15: Helium atom.
(a): parahelium (spin sin-
glet, S = 0) and ortho-
helium (spin triplet, S =
1), (b): structure of terms
(schematic). (nl, n′l ′): elec-
tron configuration (n prin-
cipal quantum number, l
orbital angular momen-
tum), 2S+1L J : spectro-
scopic classification of the
terms by the total spin (S),
total orbital angular mo-
mentum (L) and total an-
gular momentum (J ).
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electron 1 electron 2 configuration orbital angular momentum

1s 1s (1s)2 L = 0 (S)
1s 2s (1s, 2s) L = 0 (S)
1s 3s (1s, 3s) L = 0 (S)
1s 2p (1s, 2p) L = 1 (P)
1s 3p (1s, 3p) L = 1 (P)
1s 3d (1s, 3d) L = 2 (D)

Terms in parahelium: 1SJ=0, 1 PJ=1, 1 DJ=2.
Terms in orthohelium: 3SJ=1, 3 PJ=0,1,2, 3 DJ=1,2,3.
The fine-structure splitting of the terms 2S+1L in the helium atom with respect to the

allowed J -values is very small.
➤ According to the Pauli principle, the electron configuration (1s)2 cannot occur in or-

thohelium, since both the spatial function and the spin function would be symmetric
under permutation of the particles. But the total function must be antisymmetric un-
der permutation of all variables (position, spin).
The comparable states in orthohelium are more tightly bound than those in parahe-
lium (positive exchange energy in symmetric spatial states).

9. Isotopic shift,

mass-dependent shift of the hyperfine structure multiplets observed in isotopic mixtures. It
is caused by
• different values of the Rydberg constant of the isotopes due to nuclear drag (different

nuclear masses of the isotopes),
• different deviations of the nuclear Coulomb field from the field of a point charge

(different nuclear quadrupole moments for different isotopes).

25.5 X-rays

1. Characteristic x-rays,

arise in electron transitions from outer shells to atomic inner-shell states with small prin-
cipal quantum number n. In the excitation of characteristic x-radiation by bombarding a
metallic electrode by accelerated electrons, the electron collisions create holes in the inner
electron shells that are subsequently filled by electrons from electron shells with a higher
principal quantum number m (see Fig. 25.16). Such a transition is accompanied by emis-
sion of an x-ray quantum (photon) of energy,

h fmn = Em − En .

▲ X-ray quanta are in the energy range keV. The characteristic x-radiation consists of
individual sharp lines.

Principal lines of characteristic x-ray spectra of several elements are listed in Tab. 29.4/1.
Primary radiation, characteristic x-radiation generated in the ionization produced by

electron collisions.
Fluorescence radiation, x-radiation generated by photo ionization, i.e., in the absorp-

tion of x-ray photons by atoms.
If an electron is removed from the K-shell (n = 1), electrons from the L (n = 2)-, M

(n = 3)-shell, etc., may go to the free places in the K-shell. These transitions are followed
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Figure 25.16: Characteristic x-radiation and bremsstrahlung from fast electrons (v/c ≤ 1)
deflected by an atomic nucleus.

by transitions to the secondary free places in the higher shells. The process terminates only
when all atomic states are occupied again by electrons after electron capture, i.e., the atom
is electrically neutral again.

K-series, spectral lines corresponding to transitions of electrons from outer shells to the
K-shell. Analogously there are L-, M-series, etc.

The lines of a series are distinguished by a Greek letter as index (Kα,Kβ,Kγ , . . .).
■ Kα1 denotes an x-ray transition from the 2p3/2-state of the L-shell to the 1s1/2-state

of the K-shell. Kβ corresponds to a transition from the M- to the K-shell. Kγ corre-
sponds to a transition from the N- to the K-shell, etc.

2. Moseley’s law for characteristic frequencies

Moseley’s law 1

√
fmn

cR
= a(Z − σ)

Symbol Unit Quantity

a 1 constant
fmn s−1 frequency
R m−1 Rydberg constant
c m s−1 speed of light
Z 1 atomic number
σ 1 screening constant

The constant a depends on the quantum numbers of the shells involved in the transition.
Screening constant, σ , a quantity that takes into account the screening of the valence

electrons by the inner electrons, i.e., the valence electrons do not feel the full nuclear
charge, but a smaller effective charge. According to Moseley’s law, the frequencies of the
α-lines of an element with atomic number Z are:

fKα =
3

4
cR(Z − 1)2 ,

fLα ≈
5

36
cR(Z − 7.4)2 .

3. Bremsstrahlung,

a continuous x-ray spectrum generated by the deflection of electrons in the Coulomb field
of the nucleus. The bremsstrahlung spectrum terminates at a certain lowest wavelength
λmin.
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▲ The energy of the x-ray quanta cannot exceed the kinetic energy Wk of the electrons
generating them:

Wk = eV0 = h fmax = hc/λmin .

wavelength limit of bremsstrahlung L

λmin = c h

e V0

≈ 1.24 Å for V0 = 104 V

Symbol Unit Quantity

λmin m wavelength limit
c m/s speed of light
h J s quantum of action
e C elementary charge
V0 V acceleration voltage

M Measurements of the short-wave limit of a bremsstrahlung spectrum yield precise
values of h.

25.5.1 Applications of x-rays

M X-rays have a significant penetration depth in materials due to their high energy. This
fact is used for measurement of thickness, materials testing and quality control.

1. Absorption of x-rays

Absorption coefficient, linear-attenuation coefficient, µ, reciprocal value of the penetra-
tion depth at which the radiation intensity drops to the fraction 1/e (e ≈ 2.718). The coeffi-
cient of x-ray absorption by matter decreases with increasing acceleration voltage V0 (fre-
quency of x-ray quanta). For mass-attenuation coefficient µ/ρ for x-rays, see Tab. 29.6/1.

Absorption edges break the monotonous dependence of the absorption coefficient at
frequencies at which the energy of the x-ray quanta is sufficiently high to release electrons
from the K-,L-,M-, . . . shell of the atom. At these energies, the absorption coefficient
increases discontinuously (Fig. 25.17).

2. Auger effect,

a two-step process. The atom is excited by absorption of an x-ray quantum releasing an
electron from a deeper shell (preferably the K-shell). The hole is then filled by an electron
from a higher (L-, M-, . . .) shell. The released energy 
E is used to separate an additional
electron (Auger electron) from an outer shell. The process is a radiationless transition.

M X-ray quanta are measured by exploiting their ability to ionize or dissociate atoms
or molecules. X-ray quanta may ionize atoms or molecules in a gas volume which,
after acceleration by an electric field, produce a current pulse (counter). They may
also be registered photographically via blackening of an x-ray film.

M X-ray computer tomography, method of generating cross-sectional images of bod-
ies. The principle rests on the dependence of the absorption coefficient on the trans-
mission direction. The tomogram reflects the inhomogeneity of the irradiated body
(Fig. 25.18). The distribution of inhomogeneity (mostly inhomogeneity of density)
is calculated in three dimensions by a mathematical deconvolution of the intensity
attenuation measured in various directions.

M Positron-emission tomographs (PET), internal γ -source (positron emitter) may vi-
sualize dynamical processes in a body. The principle of measurement is similar to
that of the x-ray computer tomograph.
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X-ray
tube

Detectors
Irradiated
body

Figure 25.17: Absorption edges in the x-ray
attenuation coefficient.

Figure 25.18: Principle of computer
tomography.

25.6 Molecular spectra

Molecular spectra, consist of sequences of lines, bands and band systems. They originate
from:
• electronic transitions, radiation in the infrared, visible and ultraviolet frequency

range,
• vibrational transitions, radiation in the infrared spectral range,
• rotational transitions, radiation in the far infrared spectral range.

1. Vibrational spectra

Vibrational excitations, correspond to oscillations of the atoms of a molecule against each
other along their connecting line. The center of mass of the molecule remains at rest, the
electronic state remains unchanged.

Lennard–Jones potential, a model potential for diatomic molecules (Fig. 25.19):

V (r) =
(
− a

r6
+ b

r12

)
.

The constants a and b are material parameters and are to a large extent independent of
temperature. The high power of the second term means that the repulsive force becomes
effective only when the distance between the particles is small.

Figure 25.19: Ion binding in
the NaCl molecule. Potential
energy V as a function of the
ionic distance r , equilibrium
distance: r0 ≈ 2.5 ·10−10 m.
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For dissociation energies of diatomic molecules, see Tab. 29.1/6.
The harmonic approximation holds for small oscillation amplitudes:

V (r) = const · (r − r0)
2 .

Vibrational spectrum of diatomic molecules, corresponds to transitions between the
vibrational states of the molecule. In the approximation of small vibrational amplitudes,
the atoms of the molecule vibrate against each other about the equilibrium distance r0 and
form a harmonic oscillator with equally spaced energy levels (Fig. 25.20):

quantum-mechanical vibrator ML2T−2

Evib = h f

(
v + 1

2

)

f = 1

2
π

(
k

µ

)1/2

v = 0, 1, 2, . . .

Symbol Unit Quantity

Evib J energy
h J s quantum of action
f s−1 frequency
v 1 vibrational quantum number
k kg/s2 force constant
µ kg reduced mass

▲ Vibrational spectra are characterized by equally spaced energy levels.
➤ About 20 vibrational levels are known in the NaCl molecule. The level spacing is

about 0.04 eV.

2. Rotational spectra

Rotational spectra of diatomic molecules correspond to electromagnetic transitions be-
tween the rotational states of the molecule. The molecule rotates as a whole about an axis
perpendicular to the molecular axis, without change of the atomic distance, or individual
parts of the molecule rotate relative to each other (inner rotation).

Rigid rotator, the distance between the atoms of a diatomic molecule does not change
under rotation (dumbbell model). The energy of a rigid rotator is determined only by its
moment of inertia I and its angular momentum J (Fig. 25.21):

quantum-mechanical rotator ML2T−2

Erot(J ) = �
2

2I
J (J + 1)

Symbol Unit Quantity

Erot J energy
h J s quantum of action
J 1 rotational quantum number
I kg m2 moment of inertia at r0

▲ Rotational spectra are characterized by a linear increase in the spacing between
neighboring energy levels with increasing rotational quantum number,


E = Erot(J )− Erot(J − 1) = �
2

I
J .

➤ The quantity �
2/I has a value of 10−4 eV to 10−2 eV for typical molecules. The

spacing between neighboring rotational levels is lower than the spacing between vi-
brational levels. In the NaCl molecule, about 40 rotational states have been observed.

➤ There exists a series of rotational states for each given vibrational state.
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Dissociative continuum

Figure 25.20: Vibrational spectrum of a
diatomic molecule. v: vibrational quantum
number.

Figure 25.21: Rotational-vibrational states
of a diatomic molecule and allowed
transitions. v: vibrational quantum number,
J : rotational quantum number.

Selection rule for transitions between vibrational states:


v = ±1 .

Selection rule for transitions between rotational states:


J = ±1 .

Rotational-vibrational band, a group of spectral lines related to transitions between
rotational states built upon different vibrational states.

Dissociation continuum, continuum limit joining a band towards the short wavelength
spectral range. The continuum corresponds to dissociation of the molecule into free states
of its constituents.
➤ The vibrational and rotational spectra of diatomic molecules are a result of the mo-

tion of the nuclei only. Moreover, there are also transitions between different electron
configurations of the molecule, with energies between 1 eV and 10 eV. If the elec-
tron state changes, the binding potential between the ions or atoms of the molecule
also changes. Hence, the equilibrium distance, the moment of inertia, the vibrational
frequency and therefore also the excitation energies of the vibrational and rotational
states are modified.

Electronic band spectrum, a complex spectrum with band structure generated by a man-
ifold of transitions that involve a simultaneous change of the electronic, vibrational and
rotational state of a molecule.

3. Raman spectra,

are produced by inelastic scattering of photons by molecules. In Raman scattering, in ad-
dition to the spectral lines of the primary light source, there also arise lines shifted sym-
metrically from these lines, weak lines of lower and higher frequency (see Fig. 25.22):

h f0 + E1 → h fr + E1 (a)

h f0 + E1 → h fs + E2 (b)

h f0 + E2 → h fa + E1 (c).
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E1 and E2 are the energies of the vibrational or rotational states of the molecule involved
in the scattering.

Rayleigh lines, lines for which the scattered photon has the same frequency fr as the
incident f0 (process a):

fr = f0 .

Stokes lines, lines corresponding to a scattered frequency fs lower than the incident fre-
quency f0 (process b):

fs = f0 − E2 − E1

h
.

The photon transfers energy to the molecule.
Anti-Stokes lines, lines corresponding to a scattered frequency fa higher than the inci-

dent frequency f0 (process c):

fa = f0 + E2 − E1

h
.

The photon carries off vibrational or rotational energy from an excited molecule.
M Raman spectra yield information on the eigenfrequencies, the moments of inertia and

the shape of molecules.

Figure 25.22: Raman
spectra. Excitation of a
virtual intermediate level
(dashed line). (a): Rayleigh
lines, (b): Stokes lines, (c):
anti-Stokes lines.

25.7 Atoms in external fields

1. Electron in a magnetic field

Hamiltonian of an electron in a magnetic field Bz ⊥ x, y-plane:

Ĥ = 1

2m
(p2

x + (py + mωcx)2) , with ωc = eBz

m
.

Changing from classical momenta to momentum operators:

px →−j · � ∂
∂x

py →−j · � ∂
∂y
.

Substitution: q = (x − x0) = x + �ky

mωc
.
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Schrödinger equation for x-direction:(
− �

2

2m
· ∂

2

∂x2
+ 1

2
mω2

cq2

)
ψ(x, y) = Eψ(x, y) .

➤ This differential equation is similar to that of a harmonic oscillator (see p. 90).
The energy levels form an equally spaced spectrum:

En = �ωc

(
n + 1

2

)
.

Cyclotron frequency, the angular frequency ωc:

ωc = eBz

m
.

➤ These equations also hold for free electrons in solids, and for nucleons in the nu-
cleus. Because of the modification of free motion by the potential in the medium, the
particle mass must be replaced by the so-called “effective mass” m∗.

2. Zeeman effect,

a splitting of spectral lines in the magnetic field, caused by the shift of atomic energy levels
due to the interaction of the atomic magnetic moment with the external magnetic field. The
splitting is proportional to the magnetic flux density B.

Transverse Zeeman effect, the emitted light is observed perpendicular to the orientation
of the magnetic field lines.

Longitudinal Zeeman effect, the emitted light is observed along the direction of the
magnetic field lines.

Normal Zeeman effect in transverse observation: splitting of a line of frequency f into
a triplet. The triplet consists of the non-shifted line and of two lines shifted symmetrically
to higher and lower frequencies f ±
 f (see Fig. 25.23). The normal Zeeman effect occurs
only in singlet systems (S = 0, J = L). The magnetic moment of the atom is then
determined by the orbital moment. The term L splits into 2L+1 terms, which are separated
by 
E = µB · B, µB being the Bohr magneton. The selection rule 
M = 0,±1 provides
a splitting into three lines, independent of L .

Figure 25.23: Normal Zeeman effect.

Anomalous Zeeman effect, complicated splitting of the spectral lines in a magnetic
field. It occurs when the terms involved in the transitions are not spin singlets (Fig. 25.24).
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2p3/2

2p1/2

2s1/2

Figure 25.24: Anomalous Zeeman effect. Splitting of the ground state (2s1/2) and of the

first two excited states (2p1/2, 2p3/2) of the Na atom in a magnetic field �B. g: Landé factor.
The arrows mark the allowed transitions (selection rule 
MJ = 0,±1).

3. Energy splitting in a magnetic field

energy splitting in magnetic field ML2T−2


E = g(L , S, J ) · m J · µB · B

Symbol Unit Quantity


E J energy splitting
mj 1 quantum number

projection of
tot. ang. mom.

g(L , S, J ) 1 Landé factor
µB J/T Bohr magneton
B T magnetic flux density

Landé factor, g(L , S, J ), describes the dependence of the gyromagnetic ratio on the quan-
tum numbers of the term:

g(L , S, J ) = 1+ J (J + 1)− L(L + 1)+ S(S + 1)

2J (J + 1)
.

■ Anomalous Zeeman effect in the sodium spectrum: the D1-line (transition 2p1/2
−→ 2s1/2) and the D2-line (transition 2p3/2 −→ 2s1/2) split into 4 and 6 lines,
respectively.

Paramagnetic electron resonance, selective absorption of electromagnetic radiation by
atoms of a substance. The frequencies correspond to transitions between Zeeman levels in
an external magnetic field.

M Electron spin resonance: The substance to be studied is placed in a magnetic field.
The spin degeneracy is removed. A weak HF field is radiated onto the specimen,
and the damping of the oscillator is measured as a function of the frequency. The
damping reaches a maximum when the radio frequency coincides with the frequency
of a transition between the Zeeman levels.

4. Stark effect,

the splitting of spectral lines under the influence of an electric field. This splitting is very
small even in strong fields of 103 to 106 V/cm. In order to observe the effect, high-
resolution spectrometers are needed.
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Quadratic Stark effect, the splitting varies with the square of the electric field strength.
The quadratic Stark effect occurs in atoms that have no permanent electric dipole moment
in the ground state. In an external electric field �E the atoms are polarized. The induced
electric dipole moment �d is proportional to �E. In the field �E it has the potential energy
−�d · �E ∼ �E2. Thus, the quadratic Stark effect is connected with the electric polarizability
of atoms.

Linear Stark effect, occurs in hydrogen and in hydrogen-like atoms, in which a degen-
eracy of states of equal principal number n with respect to the orbital angular momentum
arises, i.e., states of different parity (e.g., l = 0 and l = 1) are mixed (Fig. 25.25).
▲ Hydrogen in the ground state (n = 1, l = 0) does not display the linear Stark effect.

Figure 25.25: Linear Stark effect in the hydrogen atom.

25.8 Periodic Table of elements

1. Basic assumptions for explaining the Periodic Table

a) Model of independent particles, every electron of an atom moves independently of
the other electrons in an effective potential. The mutual repulsion of the electrons yields
only a weak residual interaction. This model combined with the Pauli principle explains
the Periodic Table of elements.
▲ Pauli principle: In a system of indistinguishable particles with half-integer spin (see

p. 889), no more than one particle can occupy a given one-particle state (n l mlms).
Applied to the atom, this means: every electron in an atom has its own set of quantum
numbers n, l,ml and ms that differs from the quantum numbers for any other electron.

b) Electron shells, the set of electrons occupying states with the same principal quantum
number n.

Subshell, in the general case of a central potential deviating from the Coulomb potential,
the degeneracy with respect to the orbital angular momentum quantum number l observed
in the hydrogen atom is removed. The energy levels of a shell characterized by the quantum
number l then form a subshell each. Formation of shells in the atom means a grouping
of the levels according to the energy: the energy spacing between the subshells remains
smaller than the energy separation of the main shells.
▲ Pauli principle: In a many-electron system, at most 2n2 electrons may occupy a shell

with the principal quantum number n.
The electrons of the first ten elements occupy the following single-electron states (the
arrow indicates the spin orientation):
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atomic shell K M ionization
number element state 1s 2s 2p energy /eV

1 H ↑ 13.6
2 He ↑↓ 24.6
3 Li ↑↓ ↑ 5.4
4 Be ↑↓ ↑↓ 9.32
5 B ↑↓ ↑↓ ↑ 8.296
6 C ↑↓ ↑↓ ↑↑ 11.256
7 N ↑↓ ↑↓ ↑↑↑ 14.545
8 O ↑↓ ↑↓ ↑↑↑↓ 13.614
9 F ↑↓ ↑↓ ↑↑↑↓↓ 17.418
10 Ne ↑↓ ↑↓ ↑↑↑↓↓↓ 21.559

2. Filling of the electron states

Sequence of filling the electron states in the shells and in the subshells, distinguished by
the orbital angular momentum l, corresponds to the sequence of the energy levels with
given n and l:

Within a shell the state with l = 0 is occupied first, and then the states with larger l up
to l = n − 1 follow.

Within a subshell, the successive filling is such that a maximum value of the total angular
momentum is achieved.

Orbital, a state defined by n and l.
Valence electrons, determine the chemical and optical properties of the atoms. They

belong to the s- and p-subgroups of the shell with the highest value of n of a given atom.

a) Inert-gas atoms, atoms with completely filled shells. For this reason, they respond
inertly in chemical processes. Their ionization energy is very large.

b) Transition elements, elements with a modified sequence of shell occupation. It is en-
ergetically advantageous to fill first electron states with the next higher principal quantum
number n + 1, but lower orbital angular momentum quantum number l before closure of
the shell n. This refers to the orbitals (n + 1)s and (n + 1)p as compared to the orbitals nd
and nf.

c) Transuranic elements, elements with atomic numbers above Z = 92. The atomic
nuclei of these elements are not stable. They do not occur in nature.

The naming of the transuranic elements with atomic numbers 104 – 109 was controver-
sial for a long time. The final names selected are: Rutherfordium (104), Dubnium (105),
Seaborgium (106), Bohrium (107), Hassium (108), Meitnerium (109).

The heaviest artificially produced elements have been made in heavy-ion-induced nu-
clear reactions. The velocity filter Ship at Gesellschaft für Schwerionenforschung (GSI) in
Darmstadt, Germany detected:

Bohrium, 107Bh (named after Niels Bohr): production reaction 209Bi+54Cr. It belongs
to the 6d-transition metals. The 5f-, 6s-, 6p- and 7s-shells are occupied. The 6d-shell is half
filled with five electrons. The element should have chemical properties like manganese and
rhenium.

Hassium, 108Hs (named after the German federal state of Hesse, location of GSI): pro-
duction reaction 208Pb + 58Fe. This element belongs to the 6d-transition metals, with
similar chemical properties as iron, osmium and ruthenium. The 5f-, 6s-, 6p- and 7s-shells
are occupied. The 6d-shell carries six electrons. Up until 1993, four atoms of this element
have been detected.
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Meitnerium, 109Mt (named after Lise Meitner): production reaction 209Bi+ 58Fe. This
element is a 6d-transition metal with properties similar to cobalt, rhodium and iridium. The
5f-, 6s-, 6p- and 7s-shells are occupied. The 6d-shell carries seven electrons.

d) Superheavy elements, elements with Z ≥ 110. Z = 112 were observed for the first
time in 1996. In 1999 elements Z = 114, 116, 118 were reported by a Lawrence Berkeley
Laboratory team.

3. Magnetic moment of the atom,

is determined by the contribution of the spin moment and the contribution from incom-
pletely filled subshells.
▲ In an occupied s-state, the magnetic spin moments of the electrons compensate each

other.
▲ In occuped p-, d-, f-subgroups, besides the magnetic spin moments, the magnetic

orbital moments are compensated too. The magnetic moment of these atoms equals
zero.

Diamagnetism occurs in all elements with completed subshells.
Paramagnetism occurs in elements with incompletely filled subshells. These atoms

have a nonvanishing magnetic moment.

4. Ionization potentials and atomic radii

Ionization potentials: Tab. 29.1/1, atomic and ionic radii: Tab. 29.2.

25.9 Interaction of photons with
atoms and molecules

25.9.1 Spontaneous and induced emission
Absorption, a photon is absorbed by an atom. The atom thereby changes to a higher energy
state (Fig. 25.26).

1. Spontaneous and induced emission

Spontaneous emission, the emission of photons by excited atoms (molecules) without a
fixed phase relation between photons emitted by different atoms (molecules) in identical
excited states.

Absorption           Emission                Induced emission

Figure 25.26: Schematic pictures of absorption and emission of photons.

Induced emission, the emission of photons of energy h f from excited atomic or molec-
ular states under the action of an electromagnetic field of the same frequency. In this case
the incident and the emitted photon have the same phase. After the process, the number of
photons with frequency f in the radiation field has increased by 1.
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➤ The property of coherence of photons in the induced emission is used in the quan-
tum generators, the lasers and masers (light/microwave amplification by stimulated
emission of radiation).

Occupation number N1, number of atoms in a certain energy state E1. It is temperature-
dependent. The occupation numbers are changed by emission and absorption.

Occupation number ratio, determined by the Boltzmann distribution at a definite
temperature in thermal equilibrium (see p. 576):

Boltzmann distribution 1

N1

N2
= e−

E2−E1
kT

Symbol Unit Quantity

N1, N2 1 occupation numbers
E1, E2 J energy of states
k J/K Boltzmann constant
T K temperature

In thermal equilibrium, the occupation of the lower-lying level dominates.

2. Occupation inversion,

inversion, occupation inversion, a process leading to a higher occupation of the upper
energy level than that of the lower level, by input of energy.
■ Three-level laser: There exists a metastable state of relatively long lifetime (τ ≈

10−3 s) (Fig. 25.27). Normally, the lifetime of an excited atom is about τ ≈ 10−8 s.
A further level lying above the metastable one is excited, e.g., by intense illumination
of short-wave light (E1 → E3). The laser medium is selected such that spontaneous
transitions E3 → E2 are favored above E3 → E1. The different holding times in the
various states and the different transition probabilities between the states cause the
occupation number of level 2 to dominate over that of level 1 (N2 > N1).

Energy
pump

Metastable
state

Higher
state

Figure 25.27: Three-level laser.

Optical resonators, the induced emitted light quanta are forced by a mirror system to
stay in a limited space region. Thereby the number of coherent light quanta increases in an
avalanche-like manner.

M Helium-neon laser, belongs to the group of gas lasers (Fig. 25.28).
The excitation is carried out by electron collisions in a gas-discharge tube. The laser-
active part is formed by a capillary. In the gas mixture (He-Ne; pHe : pNe =
(5 . . . 10) : 1), the helium atoms are excited by electron collisions via an intermediate
level at 25 eV into the metastable levels 23s and 21s. The excited He atoms trans-
fer their energy by collisions completely to the metastable 2s and 3s levels of neon
atoms, thereby generating an occupation inversion. Different laser radiation may be
extracted by stimulated transitions into the 2p and 3p levels. As a rule, the spectral
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lines lying in the IR range are suppressed in favor of the line with λ = 632.8 nm by
an appropriate choice of the resonator mirrors.

➤ Laser power of 10 GW is possible, though only in short pulses of 10−9 s duration.

Recombination

Special
window

Mirror

Mirror

He-Ne
mixture

Capillary
tube

Ground state

Collisions

Electron-collision excitation

Figure 25.28: Helium-neon laser. (a): Operation mode, (b): constructive design
(schematic).



26
Elementary particle physics—
standard model

26.1 Unification of interactions

26.1.1 Standard model
Standard model, model of fundamental particles and their interactions based on the elec-
troweak theory and quantum chromodynamics (theory of color interaction).

1. Fundamental particles

12 fermions (spin-1/2 particles):
• six quarks and
• six leptons,
each group being subdivided into three generations according to increasing mass. All
matter is composed of these particles and their antiparticles:

Quarks Q /e Leptons Q /e

1st generation d (down) −1/3 electron neutrino νe 0
u (up) +2/3 electron e− −1

2nd generation s (strange) −1/3 muon neutrino νµ 0
c (charme) +2/3 muon µ −1

3rd generation b (bottom) −1/3 tau neutrino ντ 0
t (top) +2/3 tau τ −1

2. Fundamental interactions

Universality, the observation that the particle families differ only in their mass, but not in
their interaction.

883
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Four fundamental interactions describe the known physical world completely (Fig.
26.1):
• gravitation,
• electromagnetism,
• strong nuclear force,
• weak nuclear force.

Interaction Strength Range Interaction Field quanta
type (relative) (m) between (gauge bosons)

strong 1 ≈ 10−15 color charges and quarks gluons g
electromagnetic 10−2 ∞ electric charges photons γ
weak 10−14 ≈ 2 · 10−18 leptons and hadrons W±, Z0 bosons
gravitation 10−38 ∞ all particles gravitons

The four interactions are mediated by exchange particles, the vector bosons:
• graviton,
• photon γ ,
• gluon g,
• W±, Z0.

Figure 26.1: Elementary graphs of (a): gravitational interaction, (b): electromagnetic inter-
action, (c): strong interaction, (d): weak interaction.

26.1.1.1 Gravitational interaction
Gravitational interaction, the attractive interaction between masses. It is described in
terms of the exchange of hypothetically massless gravitons with spin 2 as field quanta (see
p. 887).

gravitational force = constant · mass1 · mass2

distance2
MLT−2

�FG = −G · M1 · M2

r2
· �r

r

G = 6.672 59(85)

· 10−11 N m2 kg−2

Symbol Unit Quantity

�FG N gravitational force
G N m2 kg−2 gravitational constant
M1, M2 kg masses
�r m distance vector

between masses

The gravitational interaction has an infinite range and cannot be shielded.
➤ The hypothesis of a fifth force, which may be introduced as an additional Yukawa-

type term to the gravitation potential �, with a strength parameter α and a range
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parameter λ,

�(r) = −G
M

r
(1+ αe−r/λ) ,

leads to a gravitational constant that would depend on the distance r of the test body
from the gravitating mass M . This hypothesis has not been substantiated by experi-
ment so far.

26.1.1.2 Electromagnetic interaction
Electromagnetic interaction, the interaction between electric charges, currents, and mag-
netic moments. It is explained by the exchange of massless photons with spin 1 as field
quanta. The interaction between electric charges is described by Coulomb’s law.

Coulomb force = constant · charge1 · charge2

distance2
MLT−2

�Fel = 1

4πε0
· Q1 · Q2

r2

�r
r

ε0 = 8.854 187 817

· 10−12 C V−1 m−1

Symbol Unit Quantity

�Fel N Coulomb force
Q1, Q2 C charges
ε0 CV−1m−1 permittivity of free space
r m distance between charges

➤ The ratio of the gravitational force and the Coulomb force between two protons is:

FG

Fel
= G · 4πε0 ·

m2
p

e2
≈ 0.83 · 10−36 .

For a given distance apart, the electrostatic interaction between protons is about 1036

times stronger than the gravitational force between them.

26.1.1.3 Weak interaction

1. Weak interaction

the interaction responsible for the decay of heavy leptons and quarks into the lighter ones.
This decay is described as the exchange of W±, Z0 vector bosons with spin 1 and large
mass. As a consequence, the weak interaction has a short range.
■ Free neutrons decay via the weak interaction into three particles: n → p + e− +

νe: a proton, an electron and a neutral electron antineutrino (Fig. 26.2). The mean
lifetime of the free neutron

τ = (889.1± 2.1) s

is larger by a factor of 1027 than the time of 10−23 s that is characteristic for pro-
cesses governed by the strong interaction.
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Figure 26.2: Quark line diagrams. (a): fusion of hydrogen, (b): neutron decay.

2. Properties of the weak interaction

• The interaction strength is significantly smaller than the strength of the strong inter-
action, and at low energies also smaller than that of the electromagnetic interaction.
It is, however, larger than the strength of the gravitational interaction.

• The weak interaction has an extremely short range, smaller than 10−17m.
• There are no bound states.
The short range of the weak interaction has its origin in the large rest mass of the W±
and Z0 bosons. According to the uncertainty relation, the exchange of virtual particles
must satisfy the condition 
E ·
t ≥ �, 
E = mWc2 being the rest energy of the boson.
These bosons may propagate only a distance of the order of:

R0 ≈ �

mWc
≈ 200 MeV · fm

100 · 103 MeV
= 2 · 10−18 m ,

even if they were to move with the speed of light in a vacuum. This corresponds to about
one one-thousandth of the range of the nuclear force.
➤ For photons mph = 0, and hence R0 = ∞: the electromagnetic field has an infinite

range.
Virtual particle, a particle with energy and momentum that do not satisfy the relativistic
energy–momentum relation for free particles:

E2

c2
− p2 �= m2

0c2.

▲ Virtual particles exist only for short times (mediators of interactions).

26.1.1.4 Strong interaction
Strong interaction, the interaction responsible for the binding of nuclear constituents,
and therefore for the existence of stable nuclei. The strong interaction between quarks as
constituents of hadrons and mesons is attributed to the exchange of massless gluons, which
are field quanta with spin 1.
▲ Properties of the strong interaction:
• The strong interaction is attractive at distances of r ≈ 2 · 10−15 m, and repulsive

for r < 10−15 m.
• It has a short range (≈ 10−15 m).
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• Within this range, it is about 100 to 1000 times stronger than the electromagnetic
interaction.

• A saturation of the binding energy per nucleon with increasing nuclear mass number
occurs.

• The strong interaction is state-dependent. The interaction between two nucleons
depends on the relative orientation of the nucleon spins, the isospin T of the two-
nucleon system, and the orbital momentum of the relative motion.

• The strong interaction is charge-independent. In the nucleon–nucleon system with
isospin T = 1, the same force V (n−n) = V (p−p) = V (p−n) acts independently of
the charge state of the nucleon pair (assuming otherwise identical quantum numbers
of the nucleon-pair state). The interaction V (p− n) in the isospin state T = 0 differs
from the interaction in the T = 1-state.

Mechanism of the strong interaction is based on the color force, i.e., the exchange of
massless colored gluons with spin 1 as field quanta.

At sufficiently large distances, the strong interaction may also be described effectively
by the exchange of mesons between the nucleons.

Yukawa potential, an approximation for the attractive part of the potential between two
nucleons:

Yukawa potential MLT−2

VK = V0 · 1

r
e
− r

r0

Symbol Unit Quantity

VK J/m Yukawa potential
V0 J interaction strength
r0 m range
r m nucleon distance

26.1.2 Field quanta or gauge bosons
1. Gauge bosons

or field quanta, mediators of the interactions (bosons, integer spin values).
Graviton, spin 2, gauge boson (mediator) of the gravitational interaction. The graviton

is expected to be massless and uncharged. The graviton has not yet been detected experi-
mentally.

Photon, spin 1, gauge boson of the electromagnetic interaction in quantum electrody-
namics (QED). This theory takes into account the quantum nature of the electromagnetic
field and correctly describes the experimental deviations from the description based on
potentials (Coulomb force, Maxwell equations).
▲ The photon has rest mass mγ = 0 and charge qγ = 0.
Free photons are the energy quanta of light, virtual photons are the mediators of the
electromagnetic interaction.

W±, Z0 bosons, spin 1, field quanta of the weak interaction:
• W± with mass m = 80.22± 0.26 GeV,
• Z0 with mass m = 91.173± 0.020 GeV.
Z -bosons are the reason neutrinos are repeled by electrons and quarks.

2. Electroweak interaction

(Salam and Weinberg), unified theory of electromagnetic and weak interactions. The exis-
tence of the Z0 particle was predicted by this theory.
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➤ Another prediction of the unified theory, the Higgs particle with mH ≈ 300 GeV, has
not yet be observed.

3. Field quanta of the strong interaction

Gluons (the Greek root for glue), spin 1, field quanta of the strong or color interaction
(quantum chromodynamics). The gluons bind the quarks together. Eight distinct gluons
should exist in total, which differ in their color. Like photons, they are quanta without rest
mass. Unlike photons, which may propagate over unlimited distances, gluons are restricted
to a finite space region of about 10−15 m diameter, since they carry color charge and
therefore strongly interact among each other. See Fig. 26.3 for a comparison of size scales
of matter and their various binding forces. Presumably, free quarks or gluons will never be
observed, since the force between two quarks increases with their separation r (assuming
a linear quark-quark potential V (r) = Br , B > 0).

Glueballs, particles consisting exclusively of gluons. There are experimental hints of
such bound systems of field quanta.

Type of Matter      Interaction                      Mediator

gravitational

Figure 26.3: Scales of matter and corresponding forces.

M Gluons arise e.g. in the annihilation of a high-energy positron-electron pair. A quark
and an antiquark are generated in these annihilations. If the energy of the electrons
and positrons is sufficiently large, one or several gluons may be formed in the sepa-
ration of the quark-antiquark pair.

Quark, antiquark, and gluon cannot propagate as individual particles beyond dis-
tances of 10−15 m, since they immediately produce additional particles. Characteris-
tic hadron jets are formed in this way.

4. Theoretical approaches of elementary-particle physics

Gauge theory, mathematical formulation of the interactions, derived from a symmetry
principle: The basic equation is invariant under certain transformations of the wave func-
tion.
■ Electroweak theory and quantum chromodynamics are gauge theories. One hopes

to formulate a unification of the interaction, possibly including a gravitation theory
based on a gauge theory.

Coupling constants g1, g2, g3, parameters of electromagnetic, weak and strong interac-
tion. They determine the relative strength of the corresponding forces between the particles.
The coupling constants depend on the momentum and energy transferred in the interaction
process.

Asymptotic freedom: The coupling constant g3 of the strong interaction becomes small
for large momentum transfer or at small distances. The quarks then behave like quasi-free
particles. Perturbation theory can be applied.
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Figure 26.4: Quark confinement. (a): field lines of an electric dipole, (b): field configuration
of gluons between the quark q and the antiquark q , (c): formation of quark-antiquark pairs
(mesons) in breaking the flow tube (arrows show directions of motion).

Quark confinement, expected, but not yet strictly proven, consequence of quantum
chromodynamics that quarks cannot be observed as free particles. It follows from the
property of the quark–quark interaction via the exchange of self-interacting gluons: for
larger distances of quark and antiquark as constituents of a meson, the energy of the quark-
antiquark pair increases proportional to the distance, hence new quark-antiquark pairs are
formed that combine to become colorless mesons (Fig. 26.4).

26.1.3 Fermions and bosons
The elementary particles are grouped in two classes according to their spin values: fermi-
ons and bosons.

1. Fermions

All elementary particles with half-integer spin (1/2, 3/2, 5/2, . . .). They obey Fermi statis-
tics and are governed by the Pauli principle (see p. 844).

Fermi–Dirac statistics, quantum statistics for a system consisting of fermions in equi-
librium.

Fermi distribution, gives the mean number ni of noninteracting fermions in the state i
with energy Ei (Fig. 26.5):

Fermi distribution 1

ni = g

e
Ei−µ

kT + 1

g = 2s + 1

Symbol Unit Quantity

ni 1 particle number
g 1 weight factor
Ei J energy of state i
µ J chemical potential
k J/K Boltzmann constant
T K temperature
s 1 particle spin
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Chemical potential, µ, determined by the condition∑
i

ni = N (total number of fermions) .

Figure 26.5: Fermi
distribution.

2. Bosons

Elementary particles with integer spin, they obey Bose–Einstein statistics and are not gov-
erned by the Pauli principle.

Bose–Einstein statistics, describe the statistical distribution according to the quantum
mechanics of indistinguishable particles with integer spin (0, 1, 2, . . .).
➤ A state i may be occupied by an arbitrary number of bosons.
Bose–Einstein distribution, describes the mean particle number ni of noninteracting par-
ticles with integer spin in a state i with energy Ei :

Bose–Einstein distribution 1

ni = g

e
Ei−µ

kT − 1

g = 2s + 1

Symbol Unit Quantity

ni 1 particle number
g 1 weight factor
Ei J energy of state i
µ J chemical potential
k J/K Boltzmann constant
T K temperature
s 1 particle spin

The weight factor g is equal to 1 for bosons with spin s = 0, and g = 3 for bosons with
spin s = 1. For fermions with spin s = 1/2, g = 2. In general: g = 2s + 1.
▲ All fundamental particles have a non-zero spin value.
▲ Gauge bosons, the field quanta of the fundamental interactions, have the following

spin values: spin 1 for photons, W±, Z0 and gluons, spin 2 for the hypothetical gravi-
ton.

➤ The boson nature of photons is of importance for the laser principle: there can be
an arbitrary number of photons with identical phase at a given position in the same
energy state.

3. Bose–Einstein condensation

transition of a non-interacting particle system obeying Bose–Einstein statistics into a state
in which all particles occupy the lowest energy state. Bose–Einstein condensation is ex-
pected at high particle number densities n or low temperatures T if the distance between
the particles (mass m) becomes comparable to the de Broglie wavelength λ of the particles
in thermal motion,
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nλ3 ≥ 2.612 , λ =
√
�2/(2πmkT ) ,

(k Boltzmann constant). Bose–Einstein condensation is disturbed by the interatomic inter-
actions: if there are strong forces between the molecules, a normal liquid arises rather than
a Bose–Einstein condensate.

The Bose–Einstein condensation of a weakly interacting system of bosons was demon-
strated in 1995 for a gas of rubidium atoms by combining the methods of laser cooling
and evaporation cooling of a gas confined in a magnetic trap. By laser pre-cooling in a
magneto-optical trap a cold, dense cloud of rubidium atoms is produced which then is
brought into a magnetic trap. Here it is cooled down by evaporative cooling to a temper-
ature of 170 nK at a density of 3 · 1012 cm3. Bose–Einstein condensation of about 2000
atoms has been observed in the center of the trap, manifesting itself as a drastic change of
the position and momentum distribution of the particles. A second, non-condensed com-
ponent was observed in the vicinity of the condensate.

Evaporative cooling, selective removal of energy-rich particles from the system. After
thermalization, the remaining system has a lower mean energy.
➤ Bose–Einstein condensation has also been demonstrated for lithium atoms which at-

tract each other by the weak Van der Waals forces.

26.2 Leptons, quarks, and vector bosons

26.2.1 Leptons
Leptons, a class of particles governed by the electroweak interaction, but not by the strong
interaction.
▲ Leptons have spin 1/2, they are fermions.
▲ There are six types of leptons and their corresponding antiparticles.
▲ All leptons are structureless, point-like particles.

Properties of leptons:

Name Mass m/(MeV/c2) Charge Q/e

electron e 0.510 999 06± 0.000 000 15 −1
electron neutrino νe < 7.3 · 10−6 0

muon µ 105.658 389± 0.000 034 −1
muon neutrino νµ < 0.27 0

tau lepton τ 1776.3± 2.4 −1
tau neutrino ντ < 31 0

Magnetic dipole moment Electric
Name µ/µB d/(e · cm) Lifetime

electron e 1.001 159 652 193 (−0.3 τ > 3.8 · 1023 a
±0.000 000 000 010 ±0.8) · 10−26

electron neutrino νe < 1.08 · 10−9 τ/mνe > 300 s/eV
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Magnetic dipole moment Electric
Name µ/µB d/(e · cm) Lifetime

muon µ (1.001 165 923 (+3.7 τ = (2.197 03

±0.000 000 008)
me

mµ
±3.4) · 10−19 ±0.000 05) · 10−6 s

muon neutrino νµ < 7.4 · 10−6 τ/mνµ > 15.4 s/eV

tau lepton τ τ = (0.305
±0.006) · 10−12 s

tau neutrino ντ < 4 · 10−6

Lepton charge, lepton number L , a charge-like quantum number similar to baryon
number B.
▲ For a system of elementary particles, the baryon and lepton charges are summed

separately.
▲ Lepton charge is conserved in all nuclear reactions.
▲ All leptons have lepton number L = ±1.
▲ All leptons have baryon number B = 0.
■ The electron has lepton charge +1, the positron lepton charge −1.
■ The photon γ has both baryon charge B = 0 and lepton charge L = 0.
Positron, the antiparticle of the electron.

26.2.2 Quarks
Hadrons, all particles governed by the strong interaction. They have an intrinsic structure.
Baryons and mesons are hadrons. Any baryon is composed of three quarks. Any meson
consists of a quark-antiquark pair.
▲ All hadrons have lepton number L = 0.
Quarks, particles invented hypothetically in order to explain the similarity of baryon and
meson multiplets.
▲ Quarks are structureless and point-like. There are six kinds of quarks and six kinds of

antiquarks, just as there are six kinds of leptons and six kinds of antileptons. Quarks
(q) and antiquarks (q̄) have baryon numbers 1

3 and − 1
3 , respectively.

Properties of quarks:

Name m/(MeV/c2) Q/e I Iz s π S Charm Bottom Top

down d 5 . . . 15 − 1
3

1
2 − 1

2
1
2 + — — — —

up u 2 . . . 8 + 2
3

1
2

1
2

1
2 + — — — —

strange s 100 . . . 300 − 1
3 0 0 1

2 + −1 — — —

charm c 1300 . . . 1700 + 2
3 0 0 1

2 + — +1 — —

bottom b 4700 . . . 5300 − 1
3 0 0 1

2 + — — −1 —

top t 174000± 17000 + 2
3 0 0 1

2 + — — — +1

Q: charge, I : isospin, Iz : isospin projection, s: spin, π : parity, S: strangeness.
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▲ Because of the relatively long lifetime of the mesons and hadrons, which are com-
posed of the c/c̄-quarks, b/b̄-quarks and t/t̄-quarks, new quantum numbers are as-
signed to them: to the c-quark: charm; to the b-quark: bottom; to the t-quark: top.

Top-quark. The top-quark t was detected in 1994 in proton-antiproton collisions with a
center-of-mass energy of 1.8 TeV. A light quark within the proton collides with a light an-
tiquark within the antiproton, forming a t t̄-pair. The top-quark t decays almost exclusively
into a b-quark and a W+-meson, which in turn decays either (67 %) hadronically into two
quarks (u (or c) and d̄ (or s̄)), or (33 %) leptonically into e+ + νe or µ+ + νµ. Similarly,
t̄ decays into b̄ and W−, with a subsequent hadronic or leptonic decay of the W−-meson.
The neutrinos manifest themselves as a missing value in the energy balance for the recon-
structed event. The quarks and antiquarks hadronize with formation of hadronic showers
(jets), whereby the particle tracks arising in the hadronization of the b-quarks are charac-
terized by a displacement of the vertex away from the interaction point. The t t̄-pair thus
can be detected by events characterized by the appearance of two charged leptons and at
least two jets.

The mass of the top-quark is (174± 17)GeV/c2, and thus 35 times larger than the mass
of the b-quark. The t-quark is the heaviest elementary particle known so far.

Baryon charge, baryon number B, a charge-like quantum number assigned to the
elementary particles (charge-like means: it is an additive scalar quantity, like the electric
charge).
▲ All quarks have baryon number B = ± 1

3 and lepton number L = 0.
▲ All baryons have lepton number L = 0.
▲ The baryon number is conserved in all particle conversions.
➤ This conservation law guarantees that the number of particles and antiparticles be-

longing to a family remains unchanged. Protons and neutrons have baryon charge
+1. Electrons and positrons have baryon number 0.

1. Flavors: strangeness, charm, bottom, and top

▲ Hadrons are composed of quarks. The six quark types are called flavors.
▲ Mesons consist of one quark and one antiquark each. Their baryon number therefore

equals 0.
▲ Baryons consist of three quarks, their baryon number is 1.
▲ The strong interaction is flavor-blind, i.e., it does not distinguish between the kinds

of quarks.
▲ Flavor changes are mediated by the weak interaction.
All baryons in the baryon decuplet and the baryon octet may be constructed from the
down-, up- and strange-quarks.

The three edges in the baryon decuplet violate the Pauli principle if there is no new
degree of freedom characterizing the quarks.

2. Color

▲ Color, a new degree of freedom ascribed to quarks and gluons. It has the character
of a (color) charge responsible for the color interaction.

▲ Any quark occurs in three colors. Convention: red r , blue b, green g.
▲ Antiquarks carry the complementary colors (anti-red r̄ , anti-blue b̄, anti-green ḡ).
▲ All hadrons are color-neutral (white).

Baryons: the three quarks have distinct colors adding up to zero (white).
Mesons are formed by qq̄-pairs with complementary colors rr̄ , bb̄, gḡ.

▲ Gluons, the mediators of the strong color interaction, are themselves colored:
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Unlike the photon, which is electrically neutral, the gluons have a “color charge”.
There are eight distinct color combinations of gluons: r b̄, r ḡ, bḡ, gb̄, br̄ , gr̄ , (rr̄ +
gḡ − 2bb̄)/

√
6, (rr̄ − gḡ)/

√
2.

26.2.3 Hadrons
Hadrons, spatially extended elementary particles governed by the strong interaction (see
p. 892). Mesons and baryons are distinguished by their spin values.
Mesons, elementary particles composed of a quark–antiquark pair. They are governed by
the strong interaction and have integer spin values.
▲ Mesons have baryon number B = 0.
Baryons, elementary particles composed of three quarks. They are governed by the strong
interaction and have half-integer spin. Baryons are fermions.
▲ Baryons have baryon number B = ±1.
Fig. 26.6 illustrates the quark composition of various baryons and mesons.

1. Strangeness and heavy baryons

Strangeness, S, property of certain elementary particles to be generated by the strong
interaction and to decay via the weak interaction. A new quantum number is assigned to
these particles that describes this property and is mediated by a quark, the strange quark.
▲ The strangeness quantum number is conserved in strong and electromagnetic inter-

actions; it is not conserved in weak interaction.
▲ If the decay of a particle implies the violation of a conservation law, the process is

suppressed, and this corresponds to a prolongation of the lifetime of the particle.

Figure 26.6: Quark line diagrams. (a): delta decay, (b): lambda decay.

2. Hyperons and kaons

Hyperons, particles with half-integer spin value s and masses above the nucleon mass.
They belong to the family of baryons and carry strangeness (S �= 0).

K-meson, kaon, an unstable elementary particle from the meson family. It carries
strangeness S = ±1 and decays after a mean lifetime τ of 10−8–10−10 s. This time is
very large as compared with the characteristic time for processes governed by strong in-
teraction. A time of 10−10 s is typical for processes proceeding via the weak interaction.

There are four K-mesons: K+,K0,K
0
,K−.

▲ Frequently, hyperons and K-mesons are produced in pairs.
M Fig. 26.7 schematically shows the reaction:

π+ + p→ �0 + K0 + π+ + π+
�0 → π− + p

K0 → π+ + π−.
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Figure 26.7: Schematic
view of a bubble-chamber
exposure: A π+ strikes an
(invisible) proton at rest.

�0-hyperon, a neutral elementary particle invisible in a bubble-chamber, as is any neu-
tral particle. It decays into a proton and a π−-meson with a mean lifetime of 2.6 · 10−10 s.

K0-meson, a neutral K-meson, also invisible in bubble-chamber records. The K0-meson
decays with a mean lifetime of 10−10 s into a π+-meson and a π−-meson.

3. Table of mesons with spin 1 (vector mesons)

Name Symbol m/(MeV/c2) Q/e S �/MeV Quark content

rho-meson ρ+ 768.1± 0.5 1 0 151.5± 1.2 ud̄
ρ0 768.1± 0.5 0 0 151.5± 1.2 (uū − dd̄)/

√
2

ρ− 768.1± 0.5 −1 0 151.5± 1.2 dū
omega-meson ω 781.95± 0.14 0 0 8.43± 0.10 (uū + dd̄)/

√
2

phi-meson φ 1019.413± 0.008 0 0 4.43± 0.06 ss̄
kaon K∗+ 891.59± 0.24 1 1 49.8± 0.8 us̄

K∗0 896.10± 0.28 0 1 50.5± 0.6 ds̄
K∗− 891.59± 0.24 −1 −1 49.8± 0.8 ūs
K̄∗0 896.10± 0.28 0 −1 50.5± 0.6 d̄s

4. Table of mesons with spin 0 (pseudoscalar mesons)

Name Symbol m/(MeV/c2) Q/e S τ/s Quark content

charged pion π± 139.5679 ±1 0 (2.6030 ud̄
±0.0007 ±0.0024) · 10−8 dū

neutral pion π0 134.9743 0 0 (8.4 (uū − dd̄)
±0.0008 ±0.6) · 10−17 /

√
2

eta-meson η 547.45± 0.19 0 0 ≈ 0.55 · 10−18 (uū + dd̄
−2ss̄)/

√
6

η′ 957.75± 0.14 0 0 ≈ 0.33 · 10−20 (uū + dd̄
+ss̄)/

√
3

kaon K± 493.646 ±1 ±1 (1.2371 us̄
±0.009 ±0.0029) · 10−8 ūs

neutral kaon K0 497.671 0 1 50%K0
S, ds̄

±0.031 50%K0
L

K
0

497.671 0 −1 50%K0
S, d̄s

±0.031 50%K0
L

K short K0
S 497.671 0 — (0.8922 —

±0.031 ±0.0020) · 10−10

K long K0
L 497.671 0 — (5.17 —

±0.031 ±0.04) · 10−8

Notation in the table: m mass; Q electric charge; S strangeness; τ mean lifetime.
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▲ Giving the decay width is equivalent to giving the mean lifetime τ , since � = �/τ .

5. Ordering scheme of the meson family

The spin O meson family ordering scheme is shown in Fig. 26.8.

Isospin component I3

(MeV/c2)

Figure 26.8: Ordering
scheme of the meson family
with spin 0 (pseudoscalar
mesons).

Additional mesons, also composed of c-(c̄-) and b-(b̄-)quarks:
• D- and D∗-mesons with charm C = ±1,
• DS- and D∗S-mesons with charm and strangeness C = S = ±1,
• B- and B∗-mesons with bottom B = ±1.

6. Quarkonium

Quarkonium, a quark-antiquark state (=meson) involving the heavy quarks,
• charmonium (cc̄): e.g. the J/ψ with m = 3096.93± 0.09 MeV/c2,
• bottonium (bb̄): e.g. the ϒ with m = 9460.32± 0.22 MeV/c2.
➤ The names are formed in analogy to positronium, the bound e+ − e− state.
The excited states are similar to the level series found in atomic physics (Fig. 26.9).

m
/(

M
eV

/
c2 )

Figure 26.9: Mass spectrum
of the charmonium states
with spin S, orbital angular
momentum L , and total
angular momentum J .

7. Baryons with spin 1/2

Spin-1/2 octet, ordering scheme of the baryons with spin 1
2 (see Fig. 26.10).
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Survey of mass m, charge Q, mean lifetime τ , magnetic dipole momentµ, electric dipole
moment d , and strangeness S:

Name Symbol m/MeV/c2 Q/e τ/s

proton p 938.272 31± 0.000 28 1 > 1031 yr
neutron n 939.565 63± 0.000 28 0 889.1± 2.1
lambda � 1115.63± 0.05 0 (2.632± 0.020) · 10−10

sigma "+ 1189.37± 0.07 1 (0.799± 0.004) · 10−10

"0 1192.55± 1.10 0 (7.4± 0.7) · 10−20

"− 1197.43± 0.06 −1 (1.479± 0.011) · 10−10

xi #0 1314.90± 0.6 0 (2.90± 0.09) · 10−10

#− 1321.32± 0.13 −1 (1.639± 0.015) · 10−10

Quark
Name Symbol µ/µN d/(e · cm) S content

proton p 2.792 847 39± 6 · 10−8 (−4± 6) · 10−23 0 uud
neutron n −1.913 042 7± 5 · 10−7 < 12 · 10−26 0 udd
lambda � −0.613± 0.004 < 1.5 · 10−16 −1 sdu
sigma "+ 2.42± 0.05 −1 suu

"0 −1 sdu
"− −1.160± 0.025 −1 sdd

xi #0 −1.250± 0.014 −2 ssu
#− −0.6507± 0.015 −2 ssd

8. Baryons with spin 3/2

Spin-3/2 decuplet, ordering scheme for baryons with spin 3
2 . Baryon multiplet of three

quarks (see Fig. 26.11):

Isospin component I

(MeV/c2)

Isospin component I3

(MeV/c2)

Figure 26.10: Ordering scheme of baryons
with spin 1/2.

Figure 26.11: Spin-3/2 baryon decuplet of
three quarks.

The antibaryons have similar multiplets.
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➤ For the isospin component I3 = 0 and strangeness −1, there exist two states distin-
guished by the isospin quantum number I : I = 0 : �0, I = 1 : "0.

Baryon family with spin 3/2

Quark
Name Symbol m/(MeV/c2) Q/e τ/s S content

omega 	− 1672.43± 0.32 −1 (0.822± 0.012) · 10−10 −3 sss
xi #∗0 1531.80± 0.32 0 � = 9.1± 0.5 MeV −2 ssu

#∗− 1535.0± 0.6 −1 � = 9.9± 1.8 MeV −2 ssd
sigma "∗+ 1382.8± 0.4 1 � = 35.8± 0.8 MeV −1 suu

"∗− 1387.2± 0.5 −1 � = 39.4± 2.1 MeV −1 sdd
"∗0 1383.7± 1.0 0 � = 36± 5 MeV −1 sdu

delta 
++ 1232 2 � = 115− 125 MeV 0 uuu

+ 1232 1 � = 115− 125 MeV 0 uud

0 1232 0 � = 115− 125 MeV 0 udd

− 1232 −1 � = 115− 125 MeV 0 ddd

26.2.4 Accelerators and detectors
Subatomic structures may be studied only by highly energetic projectiles (incident par-
ticles). According to

λ = h

p
,

(see p. 826) the wavelength λ of the beam of matter shortens with increasing momentum,
i.e., finer and finer details may be resolved.

In order to produce new pairs of particles of mass m, a specific threshold energy is
required:

E = 2mc2 .

Any increase in energy achieved in accelerators may thus provide new knowledge.

1. Accelerators

Linear accelerator, a particle accelerator with a linear succession of high-frequency ac-
celeration segments. The beam of projectiles passes them only once before hitting the
target.

Cyclotron, circular accelerator. The particles follow orbits in a transverse magnetic
field. The high-frequency acceleration voltage of fixed frequency acts on the particles many
times.

Synchrotron, circular accelerator with a magnetic field varying with time. The particle
orbit is a closed path, which the particles traverse many times.

Collider, accelerator based on the synchrotron principle. Two beams moving in opposite
direction are made to collide with a small angle between them. For the same beam energy,
a much higher energy in the center-of-mass system of the colliding particles is reached
than in fixed-target accelerators.
■ Examples of colliders are the electron–proton storage ring HERA at DESY in Ham-

burg, with a circumference of 6.3 km (30-GeV electrons colliding with 820-GeV
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protons) and the electron-positron collider LEP at CERN in Geneva, with 26.7 km
circumference and 60 + 60 GeV beam energy. The Z - and W -bosons, the carri-
ers of the weak interaction, were demonstrated unambiguously for the first time in
1983 at the proton-antiproton collider at CERN (1984 Nobel Prize to C. Rubbia and
S. van der Meer).

Currently, the proton–proton collider LHC at CERN is under construction with
8 TeV available energy.

Luminosity, L∗ = NS/σ , unit s−1cm−2, important characteristic for storage rings, gives
the number of reactions of a certain type NS per second, divided by the reaction cross
section σ .

Linear collider, arrangement of two oppositely directed linear accelerators. The par-
ticles traverse the acceleration sections only once before collision. But since the particles
travel in straight lines, the large radiation losses due to deflections in storage rings are
avoided. Currently, several 0.5 TeV e+e− collision machines are being planned: TESLA
(20 km length, 1.3 GHz frequency) and S-Band (25 km, 3 GHz), both at DESY, CLIC
(6.25 km, 30 GHz) at CERN, and several others.

2. Detectors

• Nuclear plates, photographic emulsions blackened along the tracks of the detected
particles.

• Bubble chamber, formerly used for measuring elementary particles. A liquid is kept
under pressure close to its boiling point in a large chamber. By a sudden lowering of
pressure, the liquid is brought to a superheated state. Highly energetic charged par-
ticles passing this region generate an ionization track along which the surrounding
liquid starts to boil. This causes a change in the refractive index, and the track can
be observed in transmission or reflection of light. The bubble chamber is sensitive
for about 10 ms after lowering of pressure. The charged particles are deflected by
magnetic fields (Lorentz force). The charge and velocity of the particles can be ex-
tracted from the track curvature. The energy of the particles is determined from the
ionization density. Liquid hydrogen or propane have been used as detector liquids.

• Streamer chamber, detector in which the passage of particles is made to produce
luminous discharges along the track by the application of pulses of high voltage. The
tracks are photographed for later analysis.

• Ionization chamber, detector that measures the primary ionization generated by the
particle. The detector works with a counter gas in an electric field.

• Čerenkov counter, a detector in which the particles move with a speed above the
phase velocity of light through an optically strongly refractive material, and thus gen-
erate a cone-like electromagnetic wave front. The particle velocity can be determined
from the angle of the light cone. Recent application is the Ring Imaging Cherenkov
counter (RICH).

• Semiconductor detectors, determine the ionization 
E/
x , and possibly also the
deposited energy E .

• Silicon-strip detector, strips of boron on a silicon monocrystal. The p-n junction
is operated with back-bias. The electrons produced by a charged particle passing
through the detector are collected on the anodes of the stripes.

• Scintillation counter, particle detection by fluorescent light quanta in the passage
of a charged particle through a scintillator. Amplification of the light signal by
secondary-electron multipliers. The high time resolution enables high counting rates.
The spatial resolution is low.
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• Proportional chamber, consists of planes of parallel anode wires (thickness about
50 µm, distance about 1 mm) between metallic cathode planes. Argon-alcohol mix-
ture as filling gas. High precision in spatial localization of particle track.

• TPC (time projection chamber), track detector allowing the reconstruction of the par-
ticle trajectory, taking into account the drift times of electrons produced by the ion-
ization processes. The position and time coordinates of the particles are determined
by hundreds of anode wires or pads.

26.3 Symmetries and conservation laws

Homogeneity of time, properties of the laws of nature do not change in time. Physical
quantities of a system homogeneous in time do not depend on time t , but only on time
differences 
t . This is a deeper explanation of energy conservation.
Homogeneity of space, properties of the laws of nature do not vary in space. Physical
quantities of a system homogeneous in space do not change in displacements (translations)
�r → �r +
�r . This is a deeper explanation of momentum conservation.
Isotropy of space, the equivalence of all directions in space. The properties of a system do
not change under rotations. A consequence of the isotropy of space is the conservation of
angular momentum.
Noether theorem: the correspondence of fundamental symmetries and conservation laws.
The invariance of the field-theoretical action integral with respect to an n-parametric con-
tinuous transformation group implies the existence of n conservation laws.

26.3.1 Parity conservation and the weak interaction
Mirror symmetry of the world means that the mirror object of any object may also exist
as a real object.

Parity conservation, mirror symmetry of the world in quantum mechanics. It always
holds when the strong or electromagnetic interaction is responsible for the reaction.
■ Excited atoms in a field-free space radiate electromagnetic waves isotropically. If

the atom is put into the magnetic field of a pair of coils, the atomic levels of different
angular momentum projections relative to the field direction are split (Zeeman effect).
The radiation pattern is mirror-symmetric with respect to the plane of the circular
current. It does not change if the current-flow direction is reversed (Fig. 26.12).

Electromagnetic radiation

Figure 26.12: Electromagnetic radiation in
the Zeeman effect, parity conservation.

Figure 26.13: Schematic diagram of parity
violation.
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Parity operator, P̂ , generates a spatial reflection of the wave function: P̂ψ(�r) =
ψ(−�r).

Parity violation, the non-conservation of parity during a nuclear, atomic, or elementary-
particle reaction. An example of a parity-violating reaction is nuclear β-decay, as is
schematically shown in Fig. 26.13.
■ A β-emitter (e.g. a 60Co-source) is put into a uniform magnetic field at low temper-

ature. Let the magnetic moments of the 60Co-nuclei be fully polarized. The count-
ing rate of a β-sensitive detector (e.g. an anthracene scintillator) is measured as a
function of the heating time of the sample. Simultaneously, the γ -radiation emitted
by the source is recorded. With increasing temperature, the polarization is gradually
removed by thermal motion, and the β-asymmetry disappears. In a second measure-
ment, the polarity of the magnetic field is reversed. Fig. 26.14 shows the results.

and

γ - rays

R
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d β - Asymmetry

Figure 26.14: Experimental results on β-decay of 60Co. H : magnetic field.

The asymmetry of β-emission depends on the orientation of the magnetic field H and
is therefore not mirror-symmetric. The asymmetry of the γ -quanta, on the contrary, is
independent of the magnetic field direction.
▲ Parity is not conserved in weak interactions.
Consequence of parity violation:
▲ The spins of electron and neutrino from weak decays always point opposite to the

propagation direction (negative helicity). The spins of the corresponding antiparti-
cles, positron and antineutrino, on the contrary, always point along the propaga-
tion direction (positive helicity).

▲ An intrinsic parity πn = πp = +1 is assigned to protons and neutrons. Intrinsic
parity πe = +1 is also ascribed to the electron. A system of two particles A and B
has parity

π = (−1)lπA · πB ,

where l is the quantum number of the orbital angular momentum of the relative mo-
tion. Parity is a multiplicative quantum number.

26.3.2 Charge conservation and pair production
▲ Elementary-particle and nuclear reactions always proceed in such a way that the total

charge does not change; electric charge, baryon charge, and lepton charge are added
separately and are conserved in all reactions.

■ An example of the conservation of electric charge is alpha decay:

14
7N+ 4

2He︸ ︷︷ ︸
9

→ 1
1H+ 17

8O︸ ︷︷ ︸
9

.
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Pair production, a reaction in which electromagnetic radiation (γ -quantum) is converted
into a particle and the corresponding antiparticle, e.g. production of an electron–positron
pair:

γ → e+ + e− .

Because of energy and momentum conservation, the e+e− pair formation may proceed
only in the external field of a third particle (e.g. an atomic nucleus). Pair production is a
threshold reaction. Because of the finite rest mass of the electron and the positron (me ·c2 ≈
511 keV), this reaction occurs only at γ -energies above 1.022 MeV.

Pair annihilation, a process in which a particle and its antiparticle (with a vanishing to-
tal momentum) annihilate to form electromagnetic radiation. Because of momentum con-
servation, at least two photons must emerge:

e+ + e− → 2γ .

Antiparticles, elementary particles the charge-like quantum numbers have the opposite
signs (but the same magnitude) with respect to the conjugated particles.
➤ The conservation law of electric charge would allow the conversion of a γ -quantum

into an electron and a proton. This reaction is not observed; both the baryon number
as well as the lepton number would then not be conserved.

Antiproton, the antiparticle of the proton. It has electric charge qp̄ = −1e, baryon number
Bp̄ = −1, and parity πp̄ = −1.

According to the abovementioned conservation laws, conversion of a γ -quantum into a
proton and an antiproton is possible. The threshold energy for this reaction is

Qthr ≥ 2 · mp · c2 = 2 · 938.2796 MeV.

The charge-like quantum numbers of various elementary particles are listed below.

Elementary Electric Baryon Lepton
particle charge charge charge

proton +1 +1 0
neutron 0 +1 0
electron −1 0 +1
positron +1 0 −1
π+, π0, π−-mesons +1, 0,−1 0 0
photon 0 0 0
neutrino 0 0 +1
antiproton −1 −1 0
antineutron 0 −1 0
antineutrino 0 0 −1

26.3.3 Charge conjugation and antiparticles
Charge conjugation, C , symmetry operation connecting particles and antiparticles.
Charge conjugation is connected with a discontinuous transformation. Under this trans-
formation, a particle is substituted for its antiparticle.
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▲ For any particle there exists an antiparticle. It has the same mass and lifetime as the
particle, but opposite charge-like quantum numbers.

➤ For symmetry with respect to charge conjugation, the universe should not only be
electrically neutral, but there should be as many particles as antiparticles. All present
observations, however, indicate an asymmetry of the universe.

Ĉ-operator, operator carrying out the transformation particle→ antiparticle. Applying this
operator twice successively leads back to the original particle.

26.3.4 Time-reversal invariance and inverse reactions
Time-reversal invariance, the symmetry of physical phenomena with respect to time re-
versal.

T̂ -operator, operator causing time reversal, i.e., replacement of t by −t .
■ In an inelastic collision between two particles A and B, particles C and D are pro-

duced in the final state. The probability for the transition of the system from the
initial state i to the final state f is denoted w f i . The probability for the inverse pro-
cess (initial state f ∗ goes into the final state i∗) is wi∗ f ∗ . Time-reversal invariance
requires:

w f i = wi∗ f ∗ .

The following table shows the behavior of several physical quantities with respect to time
reversal T̂ , charge conjugation Ĉ , and space inversion P̂ .

Symmetry operation

Quantity T̂ Ĉ P̂

momentum �p −�p �p −�p
spin �J −�J �J �J
electric field �E �E �E −�E
magnetic field �H −�H �H �H
dipole moment (electric) �J · �E −�J · �E �J · �E −�J · �E

▲ Time-reversal invariance has been confirmed for reactions governed by strong or
electromagnetic interaction.

▲ Symmetry of the interaction under separate Ĉ-, P̂- or T̂ -transformation is not a uni-
versal law of nature.

▲ The electromagnetic, weak, and strong interactions are invariant under the application
of all three operations in any order.

➤ A consequence of the Ĉ P̂ T̂ -invariance that may be confirmed by experiment is the
equality of the mean lifetimes, the masses and the magnitudes of magnetic moments
of particles and antiparticles. Up to the present no experiments are known that violate
the Ĉ P̂ T̂ -invariance.

26.3.5 Conservation laws
Conservation laws and interaction symmetries are closely related:
▲ If a symmetry is broken, then a conservation law is violated.
Universal conservation laws and their validity for the various interactions:
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Conservation law/ Interaction
quantum number strong electromagnetic weak gravitational

energy E + + + +
momentum �p + + + +
angular momentum �J + + + +
charge-like:
electr. charge Q + + + +
baryon charge B + + + +
lepton charge L + + + +
spin-like:
spin ŝ + + + +
isospin Î + — — —
isospin component Iz + + — —

strangeness S + + — —

Conservation law Physical origin Type of conservation law

energy homogeneity of time geometric
momentum homogeneity of space geometric
angular momentum isotropy of space geometric
Ĉ P̂-invariance right-left symmetry of space geometric
T̂ -invariance symmetry of time (t,−t) geometric
electric charge unknown charge
baryon charge unknown charge
lepton charge unknown charge
strangeness unknown

26.3.6 Beyond the standard model

M Lifetime of proton, should be τ = 4.5·1029±1.7 yr according to the prediction of the
Grand Unified Theory (GUT) of Georgi and Glashow (i.e., by many orders of mag-
nitude larger than the age of the universe). Various experiments have yielded lower
limits of 1031 up to 5 · 1032 years. The experiments were carried out in salt mines,
gold mines, and mountain tunnels in order to shield them from cosmic radiation.

The energy-dependent coupling parameters for the interactions, including a GUT, are
shown in Fig. 26.15.

E

Mm

E
g

Figure 26.15: Energy-
dependent coupling
parameters g1 (elec-
tromagnetic inter-
action), g2 (weak
interaction), g3 (strong
interaction), and gGUT
(Grand Unified Theory).
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Supersymmetry model (SUSY), model of unification postulating a series of new ele-
mentary particles associated with the known ones:
■ Neutralino, chargino, sneutrino, selectron, smuon, squark and gluino.
A mass m > 15 GeV/c2 has been predicted for the lightest supersymmetric particle.
None of these particles has been detected up to the present. The mass spectrum could
be measured at future proton storage rings like LHC, or at future electron-positron linear
accelerators.

Magnetic monopole, isolated occurrence of magnetic elementary charges as required
by unified theories. The existence of magnetic monopoles would violate time-reversal in-
variance. This would not constitute a basic problem, since violation of this symmetry has
already been observed for neutral kaons.

M Magnetic monopoles have not yet been observed, despite intense search: detectors
have been exposed to cosmic rays in balloon ascents, and lunar rocks have been
investigated. In 1975 the discovery of a magnetic monopole was announced, but it
is now believed that the event was caused by an extremely heavy nucleus. Magnetic
monopoles might be 1016 times heavier than a proton.

Majorana neutrinos, massive neutrinos, neutrinos with mν �= 0. According to standard
electroweak theory mν = 0. Finite neutrino rest masses would have far-reaching conse-
quences for the theory: for example, the lepton number would not be conserved.

M The experimental upper limit for the electron-neutrino mass is about 7 eV/c2. These
experiments actually measure the value of m2

ν , which turned out to be partly negative.
An upper limit for the neutrino mass is provided by the explosion of a star 165,000

years ago: the difference in the arrival time of the neutrinos and of the light from the
supernova (SN1987A) observed in 1987 leads to a rest mass of m < 7 eV/c2.

Planck mass, M = √�c/G ≈ 1.2·1019 GeV/c2 (G is the gravitational constant), mass or
energy beyond which gravitation, according to the general theory of relativity, essentially
determines the physics of elementary particles.
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Nuclear physics

27.1 Constituents of the atomic nucleus

Atomic nucleus, bound system of A nucleons.
Nucleon, generic term for proton and neutron.
Proton, positively charged elementary particle with spin 1/2. The magnitude of the elec-

tric charge of the proton corresponds to the elementary charge.
Neutron, neutral elementary particle with spin 1/2.

1. Basic characteristics of the atomic nucleus

Atomic number, proton number, Z , number of protons in the atomic nucleus, hence
number of electrons in the neutral atom.

Neutron number, N , number of neutrons in the atomic nucleus.
Mass number, A of the atomic nucleus, the total number of nucleons in the nucleus,

A = Z + N .

Notation: The atomic number Z is given as left subscript of the atomic symbol X , the
mass number A as left superscript, the neutron number N as right subscript:

A
Z X N .

even-even nuclei, even proton number Z , even neutron number N ,
even-odd nuclei, even proton number Z , odd neutron number N ,
odd-even nuclei, odd proton number Z , even neutron number N ,
odd-odd nuclei, odd proton number Z , odd neutron number N .

2. Isotopes, isobars and isotones

Isotopes, atomic nuclei with the same atomic number Z , but different neutron numbers N .
■ A

Z X N and A+1
Z X N+1 are isotopes. Example: the carbon isotopes 12C, 13C and 14C.

907
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➤ Basically, isotopes are chemically equivalent. Only processes that depend on mass
exhibit a slightly different behavior for different isotopes (differences in the physical-
chemical equilibria, differences in diffusion velocity, isotopic shifts in atomic spectra,
resonance frequencies in molecules, critical temperature of superconductors). These
phenomena are called isotope effects.

Isobars, atomic nuclei with equal mass number A, but different proton numbers Z . Isobars
belong to different chemical elements.
■ A

Z X N and A
Z+1 YN−1 are isobars. Example: 14C and 14N.

Isotones, atomic nuclei with equal neutron number N , but different atomic numbers Z .
Isotones belong to different chemical elements.
■ A

Z X N and A+1
Z+1YN are isotones.

3. Isospin and generalized Pauli principle

Isospin, �̂t, operator of isospin, has all the mathematical properties of the spin operator
ŝ = σ̂ /2 (in units of �),

�̂t = (t̂x , t̂y, t̂z) ,
�̂t = �̂τ/2 , t = 1/2 , mt = ±1/2 .

Proton and neutron may be considered to be two states of the nucleon with different isospin
orientation mt (third component of isospin):

mt = +1/2: proton , mt = −1/2 : neutron .

Charge operator q̂ of the nucleon, has eigenvalues 0 (neutron) and e (proton),

q̂ = e

2
(1+ τ̂z) , e: elementary charge .

In a vector model, the isospins �t1,�t2 of two nucleons couple to the total isospin �T, with
quantum numbers T,MT = mt1 + mt2 :

isospin singlet: T = 0, MT = 0 neutron-proton system,
isospin triplet: T = 1, MT = 1 proton-proton system,

MT = 0 neutron-proton system,
MT = −1 neutron-neutron system.

Symmetry of the isospin function of the two-nucleon system under permutation of the
isospin coordinates of the two nucleons:

T = 0: antisymmetric isospin function,
T = 1: symmetric isospin function.
Charge independence of nuclear forces, the two-nucleon force in the isospin triplet

state of a pair of nucleons (pp, pn or nn) is independent of its charge if the electromagnetic
interaction is ignored. The np-force in the isospin singlet state differs from that in the
isospin triplet state.

Generalized Pauli principle, the wave function of a many-nucleon system must be
antisymmetric under simultaneous permutation of the spin, isospin and space coordinates
of any two nucleons.
■ The ground state of the deuteron is an isospin-singlet state (T = 0, MT = 0, anti-

symmetric isospin function) and a spin-triplet state (S = 1, symmetric spin function)
of the neutron-proton system. According to the generalized Pauli principle, the spa-
tial function must be symmetric under permutation of the particle coordinates, i.e., the
quantum number L of the orbital angular momentum of the relative motion may take
only even values: L = 0, 2, 4, . . . .
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4. Table of fundamental properties of nucleons

Property Proton Neutron

mass 1.672 623 1(10) · 10−27 kg 1.674 928 6(10) · 10−27 kg

charge +1.602 177 33± 0.000 004 65 · 10−19 C 0

lifetime ≥ 1031 yr (889± 2.1) s

spin (�) 1/2 1/2

magnetic (+2.792 847 39 (−1.913 042 7
moment ±0.000 000 06) · µK ±0.000 000 5) · µK

gyromagnetic 5.585 692 −3.826 3
ratio

isospin projection +1/2 −1/2

5. Nuclear spin resonance

Nuclear magneton, unit of the magnetic moment of atomic nuclei,

µK = e �/(2mproton) = 3.152 451 66(28) · 10−14 MeV T−1 .

M The proton spin is measured by means of the paramagnetic nuclear spin resonance
(NMR, Nuclear Magnetic Resonance): The magnetic moment �µp of the proton may
take only definite orientations in a magnetic field �B (directional quantization). These
directions correspond to different energies. If a sample (e.g., water) is put in a mag-
netic field, a spin polarization of the protons of hydrogen arises. A high-frequency
field is applied by a coil and the frequency is varied continuously. If the frequency f
reaches a value corresponding to a transition from one spin state to another, the RF
circuit embedding the coil is damped (Fig. 27.1).

➤ NMR is used to analyze the structure of organic molecules; it also has applications in
medicine (nuclear spin tomograph).

Polarizer

Shielding

Analyzer

HF

HF

Figure 27.1: (a): Principle of nuclear magnetic resonance measurement (NMR). (b): NMR
measurement of the neutron spin via the counting rate N as a function of the frequency f
of the HF field.

6. Magnetic moment of nucleons

Both the neutron and proton have a non-zero magnetic moment.
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Magnetic moment of neutron:

µn = −(1.913 042 7± 0.000 000 5) · µK .

M The most precise method of measuring the magnetic moment of the neutron is the
nuclear spin resonance technique: A neutron beam (En ≈ 25 meV) is polarized
by means of a polarizer and passes through a uniform magnetic field superimposed
on an HF field. After passing the magnetic field, the polarization of the neutron is
determined by an analyzer. Here, the magnetic scattering by magnetically saturated
surfaces of a ferromagnetic material due to the magnetic moment of the neutron is
employed. If the polarization coincides with the direction of magnetization of the
analyzer, the scattering reaches a maximum. The frequency of the HF field at which
the magnetic moment of the neutron flips is determined with such an analyzer.

Magnetic moment of the proton:

µp = +(2.792 847 39± 0.000 000 06) · µK .

The Bohr magneton and the nuclear magneton are based on a point-like, structureless,
charged particle. Since the neutron is electrically neutral, one might expect a vanishing
magnetic moment. But the magnetic moment of the proton, as well as the magnetic mo-
ment of the neutron, deviate appreciably from the expected values. The measured values
therefore indicate that nucleons are not point-like particles.
▲ Nucleons are spatially extended objects with an intrinsic structure. Protons and neu-

trons consist of three constituent quarks, gluons and virtual quark-antiquark pairs.
➤ To date, attempts to measure an electric dipole moment of the neutron have failed.

Recent experiments based on magnetic resonance techniques have shown that the
electric dipole moment of the neutron must be less than 4 · 10−25 e · cm, if it exists
at all.

27.2 Basic quantities of the atomic nucleus

Shape of atomic nuclei, mostly deformed in an axially symmetric manner, spherical near
closed nucleon shells.

Nuclear radius R, may be estimated by the formula

R = r0 · A1/3 , r0 ≈ 1.2 fm = 1.2 · 10−15 m, A = atomic mass number.

1. Nucleon number and mass-density distribution

Nucleon-number density, ρ0, the number of nucleons per unit volume in the nuclear
interior is almost constant for all nuclei:

ρ0 = 0.17 · 1045 nucleons/m3 = 0.17 nucleons/fm3 .

This value corresponds to a mass density of atomic nuclei of about 2.7·1017 kg/m3. The
highest density of a macroscopic solid is ρ = 22 570 kg/m3 for the metal osmium. Hence,
the nuclear density exceeds the density of solids under standard conditions by 13 orders
of magnitude.
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Mass-density distribution, ρ(r), density of the atomic nucleus as function of the dis-
tance r from the center of the nucleus (Fig. 27.2), empirically determined as

ρ(r) = ρ0

1+ e(r−R)/a
.

The parameter a measures the thickness b of the surface layer within which the nuclear
density drops from 90 % to 10 % of the central density: b = 4.4 a, a ≈ 0.6 fm.

Figure 27.2: Mass-density
distribution in the atomic
nucleus. R: nuclear radius,
a: surface parameter, b:
thickness of surface layer,
ρ0: central nucleon-number
density.

M The charge distribution in the nucleus is measured by scattering of charged particles
(e−, p, α-particles) (Rutherford scattering, Fig. 27.3 (a)). The mass-density distri-
bution of heavy nuclei may deviate slightly from the charge-density distribution, due
to the neutron excess. The nuclear radius R and the radius parameter r0 can be derived
from scattering data, assuming an appropriate form factor for the charge distribution.

ρ(
r)

/
(f

m
-3

)

Figure 27.3: (a): Measured charge distribution in the 58Ni- and 208Pb-nuclei. r is the dis-
tance from the nuclear center. (b): Binding energy per nucleon B/A in MeV as function of
the atomic mass number A.

2. Binding energy and mass defect

Binding energy, B, the energy released when free nucleons are bound together to form a
nucleus. SI unit is the joule, J. Usually the binding energy is given in MeV:

1 MeV = 1.6022 · 10−13 J .

▲ The mass of a stable atomic nucleus is smaller than the sum of the masses of the
constituent nucleons.

Mass defect, 
W (A, Z), the difference between the sum of masses of all nucleons and
the nuclear mass mK(A, Z),


W (A, Z) = Z · mp + (A − Z) · mn − mK(A, Z) .
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According to mass-energy equivalence, the mass defect 
W is related to the binding en-
ergy B,

B = 
W (A, Z) · c2 , 1 MeV/c2 = 1.7827 · 10−30 kg .

M Atomic masses may be determined by mass spectrometers from the deflection of
ions in electric and magnetic fields. The binding-energy difference of atomic nuclei
can also be determined from the decay energy in β-decay, or the Q-value of nuclear
reactions.

3. Atomic mass unit,

u, equal to 1/12 of the mass of a neutral atom of the carbon isotope 12C:

u = 1

12
m12C =

1 g

NA
= 1.660 540 2(10) · 10−27 kg (NA: Avogadro’s number) .

This unit is convenient in nuclear physics, since the masses of all atomic nuclei may be
given by almost-integer multiples of u.

Quantity Symbol Value Error /ppm

atomic mass unit u 931.494 32 MeV/c2 0.30
electron mass me 0.510 999 06 MeV/c2 0.30
muon mass mµ 105.658 389 MeV/c2 0.32
proton mass mp 938.272 31 MeV/c2 0.30
neutron mass mn 939.565 63 MeV/c2 0.30
Planck’s constant � 6.582 122 0 · 10−22 MeV · s 0.30

4. Binding energy per nucleon

Binding energy per nucleon B/A, a measure for the stability of an atomic nucleus. Mean
experimental value: B/A ≈ 8 MeV.
▲ Nuclei are bound with ca. 1 % of their mass.
For light nuclei, the binding energy per nucleon increases with the mass number. The most
stable atomic nucleus is iron (56Fe) with a binding energy per nucleon of ≈ 8.8 MeV.
For A > 56, the binding energy per nucleon decreases with increasing nucleon number
(Fig. 27.3 (b)). Therefore, nuclear energy may be released either by fusion of light nuclei,
or by fission of heavy nuclei.
➤ The local maxima of the binding energy in the range of light nuclei (e.g., for 4

2He)
are caused by closure of neutron and/or proton shells (see p. 917), analogous to the
strong binding of the electron shell in inert-gas atoms.

Saturation of nuclear forces, the binding energy per nucleon is approximately constant at
about 8 MeV.
▲ The magnitude of the binding energy of a nucleus determines its stability against

decay.

27.3 Nucleon-nucleon interaction

27.3.1 Phenomenologic nucleon-nucleon potentials
The potential V12 of the interaction between two nucleons may be determined up to en-
ergies of about 300 MeV from the elastic nucleon-nucleon scattering by a phase-shift
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analysis. One measures the differential cross-section in single-scattering experiments,
and spin-dependent quantities (polarization, depolarization) in multiple-scattering exper-
iments, or in experiments with polarized particle beams or/and polarized targets.

General formulation:

V12 = VW(r)+ VB(r) (�σ1 · �σ2)+ VH(r) (�τ1 · �τ2)+ VM(r) (�σ1 · �σ2)(�τ1 · �τ2)
+ VT S12 + VLS (�L · �S) .

Wigner force, VW, central force depending only on the nucleon distance r .

1. Exchange forces

Exchange force, a central force depending on the state of the nucleon-nucleon system:
magnitude and sign (attraction or repulsion) depend on the symmetry of the spin function
(total spin S = 0 or S = 1), the isospin function (total isospin T = 0 or T = 1) or the
spatial function (orbital angular momentum L = 0, 2, 4, . . . or L = 1, 3, 5, . . .).

Bartlett force,∼ �σ1 · �σ2, exchange force that distinguishes between the spin states S = 0
and S = 1.

Heisenberg force,∼ �τ1 · �τ2, exchange force that distinguishes between the isospin states
T = 0 and T = 1.

Majorana force, ∼ (�σ1 · �σ2)(�τ1 · �τ2), exchange force that distinguishes between states
with even and odd orbital angular momentum.
■ For an interaction consisting of Wigner and Bartlett forces, the total potential is

V12 = VW − 3 · VB for S = 0 ,

V12 = VW + 1 · VB for S = 1 .

2. Tensor forces and spin-orbit coupling

Tensor force, S12 a static noncentral force depending on the relative orientation of the
nucleon spins �s1,�s2 with respect to the distance vector �r of the two nucleons (Figs. 27.4
and 27.5, �s = ��σ/2),

S12 = 3
(�σ1 · �r)(�σ2 · �r)

r2
− �σ1 · �σ2 .

The electric quadrupole moment of the deuteron originates from the tensor term of the
nucleon-nucleon force.

Spin-orbit coupling,∼ �L · �S, a velocity-dependent noncentral force that depends on the
relative orientation of the total spin �S and the orbital angular momentum �L of the relative
motion of the nucleons.

Figure 27.4: Tensor force S12 between two
nucleons N1, N2. �s1,�s2: nucleon spins.

Figure 27.5: Tensor force S12 in special
configurations of the neutron(n)-proton(p)
system.
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3. Hard-core

Hard-core potential, infinite repulsive potential in the form factor of the nucleon-nucleon
potential. Two nucleons may not approach each other to distances below the hard-core
radius rc, rc ≈ 0.6 fm (Fig. 27.6). The hard-core potential contributes to the saturation of
nuclear binding.

-

Figure 27.6: Hard-core
potential with hard-core
radius rc. r : distance
between the nucleons.

27.3.2 Meson exchange potentials
Meson exchange: The emission of a virtual meson of finite mass by a nucleon and ab-
sorption of this meson by a second nucleon modifies the momentum states of the nucleons.
This effect may be interpreted as the action of a force. The range of this force R is inversely
proportional to the mass m of the exchanged meson,

R ≈ �/(m c) .

1. Yukawa potential,

a nucleon-nucleon potential caused by the exchange of a single pion (mπc2 ≈ 140 MeV)
(one-pion-exchange potential OPEP, Fig. 27.7 (a)). The Yukawa potential includes cen-
tral forces with exchange character and the long-range tensor force. The r -dependence is
given by

VY = e−µr /(µr) , µ = mπ c/� .

The one-pion-exchange potential provides a satisfactory description of the nucleon-
nucleon interaction at nucleon separations r ≥ 2 fm.

Figure 27.7: Exchange of virtual mesons between two nucleons N1, N2. (a): one-pion
exchange, (b): 2π -exchange, (c): 2π -exchange with virtual excitation of the 
(1232)-
resonance in the nucleon.
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➤ The uncorrelated exchange of two pions may be simulated to a good approximation
by the exchange of a fictitious scalar meson, the σ -meson with a mass of ≈ 400
MeV. The σ -meson mediates the attractive component of the nucleon-nucleon force
at medium distances (Fig. 27.7 (b)).

2. Boson-exchange potential,

nucleon-nucleon potential corresponding to a correlated multi-pion exchange involving
heavy mesons with integer spin (Fig. 27.7 (c)).

2π -channel: isovector ρ-meson (spin I = 1, isospin T = 1) ,
3π -channel: isoscalar ω-meson (spin I = 1, isospin T = 0) .
The boson-exchange model describes the nucleon-nucleon interaction at short distances

(but r > rc).
➤ The spin-orbit coupling in the nucleon-nucleon potential is due to the exchange of

vector mesons. It is a short-range force.

27.4 Nuclear models

27.4.1 Fermi-gas model
Fermi-gas model, considers the nucleus an ensemble of A nucleons moving without mu-
tual interaction in a limited space region that corresponds to the nuclear volume. In the
ground state, the nucleons occupy discrete momentum states of increasing energy up to the
Fermi momentum pF, which is determined by the nuclear density ρ,

pF = � kF , kF =
(

3

2
π2ρ

)1/3
≈ 1.36 fm−1 .

Fermi energy, maximum kinetic energy of a nucleon in the Fermi gas,

εF = �
2

2m
k2

F ≈ 37 MeV .

27.4.2 Nuclear matter
Nuclear matter, a nuclear model that treats the atomic nucleus as an infinite system of
nucleons (nucleon number A→∞, volume V →∞) with a fixed particle-number density
ρ at temperature T = 0,

lim
A,V→∞

A

V
= ρ = const.

The mass difference between neutron and proton, and the Coulomb interaction between
the protons, is ignored. The nucleons interact through a two-particle force represented by a
realistic potential derived from the free nucleon-nucleon scattering. The binding energy per
nucleon B/A is calculated in the approximation of independent pairs as a function of the
particle number density ρ. For low densities, the kinetic energy of the nucleons dominates.
With increasing density, the influence of the attractive components of the nucleon-nucleon
interaction, which leads to binding, is however more and more counteracted by the repul-
sive short-range components. This interplay yields a minimum of the binding energy per
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Figure 27.8: Nuclear matter.
Binding energy per nucleon
B/A versus particle-number
density ρ (schematic). ρ0:
saturation density, (B/A)0:
binding energy per nucleon
at saturation density, (kF)0:
wave number corresponding
to the Fermi momentum at
saturation density.

nucleon as a function of the nuclear density. The minimum of the curve corresponds to the
saturation values for density and binding energy in the nucleus; the value found for B/A
may be compared with the volume term of the Bethe–Weizsäcker formula (see below).

27.4.3 Droplet model
Droplet model, treats the nucleons as molecules of an incompressible, charged liquid drop.

Ground state, the energetically lowest state of the nucleus.

1. Bethe–Weizsäcker formula,

based on the droplet model, yields the binding energies of nuclei in the ground state:

binding energy = volume- + surface- + Coulomb-
+symmetry- + pairing energy

ML2T−2

EB = aV · A − aO · A2/3

− aC · Z2

A1/3

− aS · (A − 2Z)2

A
+ εP

Symbol Unit Quantity

aV MeV volume energy
per nucleon

aO MeV coefficient of
surface energy

aC MeV coefficient of
Coulomb energy

aS MeV coefficient of
symmetry energy

εP MeV pairing energy
A 1 mass number
Z 1 atomic number

Values of the constants:

Constant aV aO aC aS εP

E /MeV 15.85 18.34 0.71 23.22 0 oder ±11.46/
√

A

2. Properties of the components in the binding energy

Volume energy (EV ∼ R3 ∼ A), a consequence of the short range of nuclear forces. Only
the next neighbors of a nucleon are reached by the nuclear force. The volume energy corre-
sponds to the binding energy in the limit of large mass numbers A for N = Z and ignoring
the Coulomb interaction between the protons. The linear dependence of the volume energy
on A expresses the saturation property of nuclear forces.
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Surface energy (EO ∼ R2 ∼ A
2
3 ), a consequence of the fact that the nucleons at the

surface of a finite nucleus cannot saturate their interactions with neighboring nucleons. The
surface energy reduces the nuclear binding.

Coulomb energy (EC ∼ R−1 ∼ A− 1
3 ), corresponding to the electric repulsion between

protons. The Coulomb energy reduces the nuclear binding.
Symmetry energy (ES ∼ (N − Z)2/A), expresses the trend to particular stability of

nuclei with N = Z for small A. Light nuclei become less stable if |N − Z | increases.
Pairing energy, the energy gain δ when two neutrons or protons form a pair with to-

tal spin S = 0. The pairing energy is an empirical correction to the pure droplet model
(compare Cooper pairing, p. 1044), which results in a stronger binding of nuclei with even
neutron and/or proton number:

ε =
⎧⎨
⎩

δ : N even, Z even ,
0 : N odd, Z even, or vice versa ,
−δ : N odd, Z odd .

δ = 11.46/
√

A MeV

3. Line of beta-stability,

the line in the N -Z plane about which the stable nuclei are arranged (Fig. 27.9).
➤ Light nuclei are particularly stable for Z = N . The doubly-magic tin isotope with

Z = N = 50 is the heaviest nucleus with equal number of neutrons and protons
accessible to experiment. Heavier nuclei with N = Z decay by spontaneous proton
emission.

Magic numbers

Figure 27.9: Line
of β-stability in the
N -Z plot. The ar-
rows indicate the
directions along
which particular
nuclei are arranged.
The magic numbers
(full lines) mark the
shell closure for
protons and neu-
trons, respectively.

27.4.4 Shell model
Shell model, a description of the motion of nucleons in terms of noninteracting particles
in a mean nuclear potential generated by the nucleons themselves.

This description of nucleonic motion in the nucleus corresponds to the treatment of
electronic motion in the electron shell of the atomic nucleus. But while the electrons are
moving in a given external field, the Coulomb potential of the nucleus, the nuclear shell
model is based on a replacement of the two-particle forces between the nucleons by an
effective mean nuclear potential. The remaining two-particle residual interaction between
the nucleons is assumed to be weak.
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▲ The nuclear shell model describes the energy spectrum of light nuclei and of heavier
nuclei near shell closure (magic nucleon numbers) rather well if the two-nucleon
residual interaction is taken into account.

The mean potential is frequently approximated by an oscillator potential, or by a potential
with a radial dependence suggested by the mass-density distribution of the nucleus. In mass
regions in which the nuclear shape deviates from the spherical shape, a deformed mean
potential must be used. The mean nuclear potential field is characterized by the presence of

a strong spin-orbit coupling term Vls(r)(�̂l · �̂s), which causes an energy difference between
single-particle states with parallel and antiparallel orientation of the nucleonic spin �s and
the orbital angular momentum �l.
1. Single-particle states in the shell model

The mean potential is used for calculating the single-particle states (energy levels) of the
nucleons in the nucleus. The quantum numbers of the single-particle states are:
• n = 0, 1, 2, . . .

radial quantum number, number of zeros of the radial wave function,
• l = 0, 1, 2, . . .

orbital angular momentum quantum number,
• j = l ± 1/2

quantum number of the total angular momentum �j = �l+ �s,
• m j = ml + ms , m j = − j, . . . , j

quantum number of the projection of the total angular momentum jz = lz + sz .
The quantities ml and ms are the projection quantum numbers for orbital angular
momentum and spin of the nucleon, respectively.

Conventional spectroscopic classification of the single-particle states: (n + 1)l j .
The single-particle energies ε depend only on the quantum numbers n, l, j : ε = εnl j .

2. Shell structure of the energy states

The single-particle states in the mean nuclear potential are energetically grouped in shells:
the energy separation between the levels within a shell is much smaller than the energy
separation between the shells (Fig. 27.10).

Continuum

Shell
structure

Figure 27.10: Shell structure
of the single-particle states
in the mean shell model
potential V (r) (schematic).
εnl j : single-particle
energies, n: radial node
number, l: quantum
number of orbital angular
momentum, j : quantum
number of the total angular
momentum.

3. Nucleon configuration

Nucleon configuration, a specific occupation of the single-particle states

(n1l1 j1), (n2l2 j2), . . . (n f l f j f )

by the A nucleons of the nucleus,

(n1l1 j1)
N1 (n2l2 j2)

N2 · · · (n f l f j f )
N f , N1 + N2 + · · · + N f = A .
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A single-particle state (nl j) can be occupied by at most 2 j + 1 neutrons and protons.
Configuration: (nl j)2 j+1.

4. Magic nuclei

Magic numbers, numbers of protons or neutrons for which the nucleus is particularly
stable, as compared with neighboring nuclei:

N , Z : 2, 8, 20, 28, 50, 82, 126 and N = 184.

▲ In magic nuclei the shells are completely filled.
▲ Particularly many stable elements exist with magic neutron numbers.
Doubly-magic nuclei, nuclei for which the neutron number and the proton number are
equal to a magic number.
■ 4

2He2,
16
8O8,

40
20Ca20,

208
82Pb126.

▲ Doubly-magic nuclei are particularly stable. Their abundance in nature is higher than
that of their neighbors.

Figure 27.11: Single-particle states in the mean shell model potential. Spectroscopic
classification: (n + 1)l j , n: node number of the radial function, l: orbital angular
momentum, j : total angular momentum. (a): oscillator potential, (b): central potential
of finite depth with Woods-Saxon radial shape, (c): central potential of finite depth with
spin-orbit coupling (Nilsson). Numbers in brackets: maximum occupation numbers for
one kind of nucleons, numbers in circles: magic numbers.

Figure 27.12: Two-particle configurations for two single-particle states (n1l1 j1), (n2l2 j2).
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5. Role of residual interaction

Configuration mixing, a state in which the wave functions of different nucleon configura-
tions are superposed coherently due to the residual interaction between the nucleons.
➤ If the residual interaction is a two-body force, then it may connect only such config-

urations that differ in the single-particle states of at most two particles.

6. Excited states in the shell model

Single-particle excitation, transition of a single nucleon from a single-particle state (nl j)
to an energetically higher single-particle state (n′l ′ j ′).

Particle-hole excitation, excitation of a single nucleon from a fully occupied shell.
Transition from the configuration (nhlh jh)

2 j+1 to the configuration (nhlh jh)
−1(nplp jp)1.

Figure 27.13: Cosmic
abundance of elements.
N , Z : magic numbers.

Figure 27.14: Elementary exci-
tation in the shell model. (a):
single-particle excitation (nl j) −→
(n′l ′ j ′), (b): particle-hole excitation
(nhlh jh)

−1(nplp jp)1.

27.4.5 Collective model
Collective model, describes the nucleons not as individual, independent particles, but as an
ensemble of strongly interacting particles which perform a coherent motion. The relevant
degrees of freedom are the coordinates representing vibrations of the nuclear surface and
rotations of the nucleus.

Rotational and vibrational excitations occur the same way they do in molecules.
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1. Vibrations of the nuclear surface

Vibrational excitations, harmonic oscillations of the nuclear surface about the equilibrium
shape of the nucleus with angular frequency ωI . The vibration is characterized by the
angular momentum I (multipolarity) and by the number nI of excitation quanta (phonons).
In harmonic approximation, an equally spaced spectrum of excited states is produced, and
EI nI+1 − EI nI = �ωI occurs for any value of the angular momentum I :

vibrational excitation ML2T−2

EI nI =
(

nI + 1

2

)
· � · ωI

Symbol Unit Quantity

EI nI J excitation energy
� J s quantum of action/(2π)
ωI rad s−1 angular frequency
I 1 angular momentum

quantum number
nI 1 vibrational quantum

number

Quadrupole vibrations (I = 2) occur as the lowest vibrational excitations in nuclei with
N = Z . If two quadrupole vibrational quanta are excited (n2 = 2), three degenerated
states occur with total angular momenta (nuclear spins) J = 0, 2, 4. In real nuclei, this
degeneracy is removed by the interaction between the phonons: one actually observes a
trio of states that are closely grouped about the energy of the two-phonon state at 2 · �ω2
(Fig. 27.15).

Figure 27.15: Excitation
of quadrupole vibrations
(I = 2) in 188Pt. E :
excitation energy, �ω2:
excitation energy of a
quadrupole phonon, Jπ :
spin and parity of the level.

2. Electric quadrupole moment,

Q0, characterizes nuclei with a deformed charge distribution in the ground state:

Q0 = 2

5
Ze(b2 − a2) .

b and a are the half-axes of the ellipsoid, Z is the charge number of the nucleus.

3. Nuclear rotations

Rotational excitations, rotation of a nucleus with a permanent deformation in the ground
state, with angular momentum J about an axis perpendicular to the symmetry axis, without
excitation of intrinsic nucleonic motion. The excitation energy of the rotational states is
determined by the moment of inertia� of the nucleus. The separation between subsequent
states in the rotational spectrum increases with the angular momentum of rotation.
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rotational excitation ML2T−2

E J = �
2

2�
J (J + 1)

Symbol Unit Quantity

E J J excitation energy
� J s quantum of action/2π
J 1 angular momentum

quantum number
� kg m2 moment of inertia

For axially symmetric nuclei with shapes that are invariant against a rotation through an
angle π about an axis perpendicular to the symmetry axis, for reasons of symmetry the
rotational quantum number J is restricted to even values J = 0, 2, 4 . . . .

Symmetry

axis

Figure 27.16: Excitation of rotational states in atomic nuclei. (a): angular momentum �J
of the rotation about an axis perpendicular to the symmetry axis. M : angular momentum
projection to the z-axis (quantization axis), (b): rotational band in 238U.

➤ The moment of inertia of nucleus is about a factor of two smaller than the moment of
inertia of a solid body of the same shape and mass density.

27.5 Nuclear reactions

27.5.1 Reaction channels and cross-sections
Nuclear reaction, conversion of a nucleus by interaction (collision) with another nucleus,
a hadron, a lepton or a gamma quantum. Reaction equation:

a+ A −→ b+ B , A(a, b)B .

a: incident particle (projectile), A: target nucleus,
b: outgoing particle (ejectile), B: remaining nucleus.
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Types of nuclear reactions:

elastic scattering: a+ A −→ a+ A ,
inelastic scattering: a+ A −→ a′ + A∗ ,
radiative capture: a+ A −→ B+ γ ,
rearrangement reaction: a+ A −→ b+ B , a �= b ,
multi-particle reaction: a+ A −→ B+ b1 + b2 + · · · ,
fusion: a+ A −→ C∗ ,
induced nuclear fission: a+ A −→ B1 + B2 .

1. Characteristics of reaction channels

Reaction channel, α, subdivision λ of a number N of nucleons into two groups
N1, N2, N1 + N2 = N that are spatially separated from each other and have intrinsic
states specified by excitation energy, spin I1, I2, parity π1, π2 and possibly other quantum
numbers κ1, κ2:

channel index: α = {λ, I1, I2, π1, π2, κ1, κ2} , λ = (N1, N2) , N = N1 + N2 .

Channel radius, Rα , minimum distance between the nucleon groups N1, N2 at which
there is not yet a strong interaction between the two nuclei.

Interaction region, part of the configuration space in which the mass centers of both
nuclei are separated by a distance R < Rα for all partitions λ.

Entrance channel, reaction channel in which the system is found at time t → −∞
(initial state).

Exit channel, reaction channel in which the system is found at time t → +∞ (final
state).

Open channel, reaction channel allowed by energy conservation.
Closed channel, reaction channel forbidden by energy conservation.

2. Channel spin and total angular momentum

Channel spin �Si in the entrance channel, vector addition of the spins �Ia and �IA of incident
particle a and target nucleus A to a total spin �Si ,

channel spin = spina + spinA ML2T−1

�Si = �Ia + �IA

|Ia − IA| ≤ Si ≤ Ia + IA

Symbol Unit Quantity

�Si J s channel spin
�Ia J s spin of projectile a
�IA J s spin of target A

Analogously, for the channel spin in the exit channel Sf:

�Ib + �IB = �Sf , |Ib − IB| ≤ Sf ≤ Ib + IB .

The vector addition of the channel spin �S and the orbital angular momentum of relative
motion �L yields the total angular momentum �J of the corresponding channel,

�L+ �S = �J , |L − S| ≤ J ≤ S + L .
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total angular mom. = channel spin + orbital angular mom. ML2T−1

�J = �S+ �L
|L − S| ≤ J ≤ S + L

Symbol Unit Quantity

�J J s total angular momentum
�S J s channel spin
�L J s orbital angular momentum

of relative motion

3. Example: Nuclear reactions on lithium

Proton-induced nuclear reactions on 7
3Li at an incidence energy of several MeV:

entrance channel: p+ 7
3Li,

exit channels: p+ 7
3Li,

p′ + 7
3Li∗,

n+ 7
4Be,

α + α,
α + α + γ,
α + t+ p.

4. Reference frames

Laboratory system, the reference frame in which the target nucleus is at rest in the initial
state.

Center-of-mass system, the reference frame in which the center of mass of projectile
and target nucleus is at rest.
▲ If the mass of the scattering center is very large compared with the mass of the inci-

dent particle; the laboratory and center-of-mass coordinates coincide.

5. Energy transfers in nuclear reactions

Q-value, energy change Q of a nuclear reaction, difference of the kinetic energies in the
exit channel f (after the reaction) and the entrance channel i (before the reaction) Ef and
Ei in the center-of-mass system:

Q = Ef − Ei .

The Q-value of a reaction in which a light particle a (mass ma) with the kinetic energy
Ea hits a target nucleus A (mass MA) at rest, generating a final nucleus B (mass MB)
with kinetic energy EB and a light particle b (mass mb) with kinetic energy Eb under the
reaction angle θ , is given by

Q = EB + Eb − Ea

= (ma + MA − MB − mb) · c2

= Eb

(
1+ mb

MB

)
− Ea

(
1− ma

MB

)
− 2

MB

√
Ea Ebmamb cos θ .

Exothermal reactions, reactions with positive Q-value, Q > 0: energy is released.
Endothermal reactions, reactions with negative Q-value, Q < 0: energy is needed.

The reaction is observed only above a threshold energy.
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■ 3
2He+ n→4

2He+ Q
m3He= 3.0392471 u
+mn= 1.00866497 u∑= 4.047912 u m4He = 4.002603256 u

The mass of 4He is smaller than the first sum. The Q-value of the reaction is
positive.

■ 10B+ n → 7Li+ 4He+ Q
m10B = 10.01293800 u
+mn = 1.00866497 u∑ = 11.02160297 u

m7Li = 7.01600450 u
m4He = 4.002603256 u∑ = 11.01860775 u

The second sum is smaller than the first sum. The Q-value of the reaction is posi-
tive. In this reaction, energy is released.

6. Cross-sections of nuclear reactions

Cross-section, σ , dimension of an area, a measure of the probability that the system
changes from the entrance channel to a definite exit channel.

σ = number of reactions/unit time

number of incident particles/(unit time · unit area)
.

Unit of the cross-section in atomic and nuclear physics: barn b (1 b = 10−28 m2).
The cross-section depends on the projectile-target combination, and on the incident en-

ergy.
Differential cross-section dσ/d	, cross-section for a reaction with an outgoing particle

observed in the solid angle element d	 = sin θ dθ dφ.
Doubly differential cross-section d2σ/(d	 dE), cross-section for a reaction with an

outgoing particle observed in the solid angle element d	 and the energy interval dE .
Total cross-section, σtot, the integral of the differential cross-section over the full solid

angle,

σtot(E) =
∫ (

dσ(E, θ, φ)

d	

)
· d	 .

Total cross-section, also the sum of the total interaction cross-sections σαα′ over all
open reaction channels α′,

σtot =
∑
α′
σαα′ .

Nomenclature for the cross-sections according to the type of reaction:
• Elastic scattering cross-section, σs, cross-section for elastic scattering of an incident

particle by a target nucleus.
• Inelastic scattering cross-section, σin, cross-section for inelastic scattering of an

incident particle by a target nucleus.
• Reaction cross-section, σab, cross-section for the transition from the entrance chan-

nel a into the exit channel b.
• Absorption cross-section, σc, cross-section for absorption of an incident particle by

the sample. For neutrons, this quantity is frequently called the capture cross-section.
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27.5.2 Conservation laws in nuclear reactions
▲ In nuclear reactions, the baryon number (number of nucleons) and the electric charge

are conserved as well as the energy, momentum and angular momentum.
▲ In processes governed by strong interaction, the parity π , and for special two-particle

interactions the isospin �T, are also conserved:

πa · πA · (−1)L i = πb · πB · (−1)L f ,

�Ta + �TA = �Tb + �TB .

27.5.2.1 Energy and momentum conservation
The kinematics of nuclear reactions is determined by energy and momentum conservation
(Fig. 27.17). Both conservation laws hold generally, i.e., for all interactions. They are the
starting point for calculating the kinematics of collision processes.

a a A

b

b

B

B

A

Figure 27.17: Momentum conservation
in elastic collisions (laboratory system).
�p: momentum before collision, �pb+�pB:
momentum after collision.

If a particle with kinetic energy Ekin(a) hits a target nucleus A at rest (Ekin(A) = 0),
for a reaction A(a,b)B with Q-value Q at the reaction angles θb, θB:

Ekin(a) = Ekin(b)+ Ekin(B)− Q ,

p2
a

2ma
= p2

b
2mb

+ p2
B

2mB
− Q ,

�pa = �pb + �pB .

This system of equations yields for particle b:

Ekin(b) = Ekin(a)− Ekin(B)+ Q , pb =
√

2mb · Ekin(b) , sin θb = pB

pb
· sin θB ,

pb =
√

2ma · Ekin(a) · cos θB

(1+ mb

mB
)

±

√√√√√√
⎛
⎜⎝√2ma · Ekin(a) · cos θB

(1+ mb

mB
)

⎞
⎟⎠

2

+ 2Ekin(a)(mb − ma)+ 2Q · mb

(1+ mb

mB
)

.

Threshold energy, the energy needed to start a certain reaction. This threshold energy
arises in endothermal reactions (Q < 0),

Ekin(a, threshold) = −ma + mA

mA
Q with Q < 0 .
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■ p + p → p + p + π
In this reaction, a π -meson is generated. The Q-value of this reaction therefore equals
the mass of the π -meson multiplied by the square of the speed of light in a vacuum c:

Q = −mπ · c2 ≈ −140 MeV.

Threshold energy:
mp + mp

mp
· mπ · c2 ≈ 2 · 140 MeV.

27.5.2.2 Angular momentum conservation
Impact parameter, b, perpendicular distance between the path of the incident particle
from the target nucleus before a collision process. For a given incident energy Ekin(a) =
p2

a/(2ma), the impact parameter determines the orbital angular momentum L of the rela-
tive motion of the two reaction partners, L = pa · b (Fig. 27.18).
▲ Because of the finite range R of nuclear forces, the energy of the incident particles de-

termines the possible values of angular momenta involved in the reaction (Fig. 27.19),

Lmax = pa · R .

s-wave scattering, scattering of particles by atomic nuclei where only particles with orbital
angular momentum L = 0 (central collisions) contribute to the cross section.
➤ In low-energy nucleon-nucleon scattering, angular momenta L ≥ 1 may be ignored.

s-wave scattering dominates the scattering of slow neutrons (E ≈ 1 eV) by nuclei.
p-wave scattering, scattering with angular momentum L = 1, contributes significantly to
the neutron-nucleus scattering cross-section already at neutron energies of about 1 MeV.
➤ In the calculation of scattering cross-sections and angular distributions of 14 MeV

neutrons by nuclei, one has to take into account orbital angular momenta up to L ≈
14.

▲ Angular momentum conservation: The total angular momentum in the entrance chan-
nel i equals the total angular momentum in the exit channel f:

�Ji = �Si + �Li = �Sf + �Lf = �Jf .

▲ Conservation of the total angular momentum permits the conversion of orbital angu-
lar momentum in the initial state into nuclear spin in the final state.

a

Figure 27.18: Impact parameter b and
scattering angle θ of a trajectory with
orbital angular momentum L = pa · b, pa:
momentum of the incidence particle.

Figure 27.19: Probabilities for finding the
incidence particle versus distance between
particle and scattering center for various
orbital angular momenta L of partial waves.
λ: De Broglie wavelength.
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➤ High orbital angular momenta (L ≈ 100 �) are reached in heavy-ion-induced nuclear
reactions with a specific energy of about 10 MeV/nucleon. In this way, excitation
states with high spins (high-spin states) may be reached.

27.5.3 Elastic scattering
1. Rutherford scattering,

the scattering of charged particles in the Coulomb field of the nucleus.

particles

Figure 27.20: Rutherford
scattering of α-particles
by nuclei. d0: minimum
distance in a central
collision.

2. Rutherford scattering formula

Differential cross-section of Rutherford scattering in the center-of-mass frame:

Rutherford scattering formula L2

dσR

d	
=
(

Z · Z ′ · e2

4E0

)2

· 1

sin4(θ/2)

·
(

1

4πε0

)2

Symbol Unit Quantity

dσR
d	

b/sr differential cross-section

Z 1 charge number of
projectile

Z ′ 1 charge number of
target nucleus

E0 J kinetic energy of
projectile

θ rad scattering angle
e C elementary charge
ε0 C V−1 m−1 electric permittivity

of free space

▲ The quantity d0 is distance of closest approach between the incident particle of energy
E0 and the target nucleus in a central collision.

■ In the scattering of α-particles by heavy nuclei at a kinetic energy of 15.8 MeV, d0 is
about 1.2 · 10−15 m.

3. Mott scattering,

the scattering of very energetic particles (velocity v close to the speed of light c). The
theory of Mott scattering takes into account the influence of the spin of the interacting
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particles and yields the relativistic correction to the Rutherford scattering cross section
dσR

d	
:

dσM

d	
= dσR

d	

cos2(θ/2)

1+ 2 · (v/c)2 · sin2(θ/2)
.

27.5.4 Compound-nuclear reactions
Compound-nuclear reaction, a reaction model based on the idea of the nucleus as a drop
of a nuclear liquid (see p. 916). The kinetic energy of the incident particle and the binding
energy released in its capture by the target nucleus are statistically distributed over all
nucleonic degrees of freedom—as in the transfer of thermal energy to a liquid. A highly
heated compound nucleus C is generated with an excitation energy given by the sum of the
incidence energy Ekin(a) and the binding energy EB(a) of the particle a in the nucleus B,

a+ A −→ C∗ , E∗(C) = Ekin(a)+ EB(a) .

1. Probability of formation and decay of compound nuclei

The probability of formation of a compound nucleus is large when this excitation energy
coincides with the energy of a compound-nuclear level. On the other hand, the compound
nucleus has a long lifetime, since it decays only when an amount of energy above the
binding energy is concentrated into a nucleon or a group of nucleons by collisions between
the nucleons,

C∗ −→ b+ B .

■ In the capture of slow neutrons with an incident energy of only 1 eV, about 8 MeV is
released in nuclei of medium mass number due to the binding energy of a neutron.

▲ Formation and decay of the compound nucleus are independent processes. The
cross-sections of nuclear reactions proceeding through highly excited long-living
compound-nuclear states show narrow, closely spaced resonances as a function of
the incidence energy (Fig. 27.21).

➤ The lifetime of a compound-nuclear state is about 10−18 s. It is thus several orders
of magnitude larger than the transit time of the incident particle across the nucleus.
In heavy nuclei, the width of neutron resonances is about 10−2 eV; the mean separa-
tion of the resonances is about 50 keV.

σC a

b

Figure 27.21: Compound-
nuclear reaction
a+ A −→ C∗ −→ b+ B
(schematic). �: total
width of resonance, σC

a :
cross-section for formation
of the compound nucleus
versus kinetic energy of
the incidence particle
Ekin(a), with resonances at
quasi-stationary states of the
compound nucleus C.
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2. Cross-section of the compound-nuclear reaction A(a,b)B:

σab = σC
a · Pb , Pb = �b

�
, � =

∑
i

�i , i = a, b, c, . . . .

σC
a : cross-section for compound-nucleus formation,

Pb: probability for decay of the compound nucleus with emission of particle b,
�b: partial width for the decay C∗ −→ b+ B,
�: total width of compound-nuclear level.
▲ The separation between neighboring resonances decreases with increasing excitation

energy of the compound nucleus, the resonance width increases, i.e., the resonances
begin to overlap.

1/v-law for the capture cross-section of slow neutrons of energy E :

σC ∼ 1√
E
∼ 1

v
, v : neutron velocity .

■ Several formation and decay channels of the compound nucleus 51Cr∗ are shown in
Fig. 27.22.

Compound nucleus

Entrance channel                    Exit channel

Figure 27.22: Reactions with
formation of the compound
nucleus 51Cr through
various entrance channels
decay through various exit
channels.

3. Breit–Wigner formula,

describes the energy variation of the cross-section of the compound-nuclear reaction
A(a,b)B near a resonance (Fig. 27.23):

Breit–Wigner formula L2

σ(a, b, E) = σ(a, Er)

· � · �b

(E − Er)2 + ( 1
2�)

2

Symbol Unit Quantity

σ(a, b, E) m2 cross-section of
reaction a → b

Er MeV resonance energy
E MeV particle energy
σ(a, Er) m2 compound-nuclear

formation cross-
section

� MeV total width of
compound-nuclear
resonance

�b MeV partial width for
exit channel b

Evaporation spectrum, the energy distribution of the particles emitted by a highly ex-
cited compound nucleus. The spectrum largely corresponds to a Maxwellian distribution
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(Fig. 27.24). The number N (E) dE of particles emitted in the energy interval between E
and E + dE is

N (E) dE ∼ E e−E/(kT ) dE , T : nuclear temperature .

▲ The angular distribution of the reaction products of a compound-nuclear reaction is
in general isotropic.

M Resonance reactions of neutrons are of practical importance in the operation of nu-
clear reactors. They affect the neutron transport and lead to unwanted neutron losses.

r

Neutrons
Protons

Figure 27.23: Breit–Wigner resonance with
half-width �. Er: resonance energy.

Figure 27.24: Evaporation spectrum for
neutrons and protons (schematic).

27.5.5 Optical model
Optical model, considers the atomic nucleus as a refracting and absorbing medium. It
provides cross-sections for elastic scattering and absorption of the incident particle. The
optical model may be applied to the interaction of neutrons, protons, complex light parti-
cles (deuterons, α-particles), heavy ions and mesons with nuclei.

Optical potential, U(r), function of the distance r of the incident particle from the
center of the target nucleus, consists of a complex spherical potential and a spin-orbit
coupling term:

U(r) = −V f (r)− jW g(r)+ Wls(r) (�σ · �l) .

Frequently used form factors:

f (r) = 1

1+ e(r−R)/a
, g(r) = e−(r−R)2/b2

.

R: nuclear radius, a, b: surface parameters.
The form factor f (r) of the real part follows the radial mass density distribution in the

nucleus (Woods-Saxon potential, Fig. 27.25). The form factor g(r) of the imaginary part
of the optical potential simulates particle absorption at the nuclear surface. The strength
parameters V and W depend on the incidence energy (Fig. 27.26).
▲ The cross-sections as functions of incidence energy calculated with the optical model

exhibit giant resonances with resonance widths of several MeV.

27.5.6 Direct reactions
Direct reactions differ from compound-nuclear reactions in the following ways:
• the reaction time (≈ 10−22 s) corresponds to about the transit time of the incident

particle across the target nucleus,
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Figure 27.25: Form factors of the optical
potential. f (r): real part (Woods-Saxon
potential), g(r): imaginary part (Gaussian
potential).

Figure 27.26: Dependence of the strength
parameters of the optical potential on the
incidence energy E .

• a direct transition proceeds from the entrance channel to the exit channel without
formation of a quasi-stationary intermediate state of the total system,

• only few nucleonic degrees of freedom are involved in the reaction,
• the reaction proceeds preferably at the nuclear surface,
• the energy dependence of the cross-section displays broad giant resonances.
Stripping reaction, a direct reaction in which a particle is stripped from the projectile
when it passes the target nucleus, and is captured into a single-particle state in the mean
nuclear potential of the target nucleus. The process is mediated by a peripheral interaction
of the projectile with the target nucleus.

Pick-up reaction, a direct reaction in which the projectile passing the target nucleus
picks a particle from a single-particle state in the mean potential of the target nucleus. The
process is mediated by a peripheral interaction of the projectile with the target nucleus.
➤ Direct reactions of this type are used to determine single-particle states in nuclei.
Direct inelastic scattering, a collision process in which preferably collective vibrational
and rotational states of the target nucleus are excited.

Intermediate processes, reactions in which the formation of an intermediate state of the
total system begins but the decay into the exit channel proceeds before a complete equi-
librium state is established. The spectra and angular distributions of the reaction products
show features of both compound-nuclear and direct reactions.

27.5.7 Heavy-ion reactions
Heavy-ion reactions, reactions in which nuclei with relatively high atomic number Z >

2, A > 4 are used as incident particles.

1. Coulomb barrier and kinetic energy per nucleon

Coulomb barrier, TC, the minimum value of the kinetic energy of the incident particle
needed to reach the range of nuclear forces:
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Figure 27.27: Direct reactions (schematic figure). �k: wave vectors. (a): vibrational excita-
tion, (b): rotational excitation, (c): stripping reaction A(d,p)B, capture of the neutron into
the single-particle state (nl j) of the target nucleus, (d): pick-up reaction A(p,d)B.

Coulomb barrier ML2T−2

TC = Z1 · Z2 · e2

(R1 + R2)
· 1

4πε0

Symbol Unit Quantity

TC J Coulomb barrier
Z1, Z2 1 atomic numbers
R1, R2 m nuclear radii
e C elementary charge
ε0 CV−1m−1 electric-permittivity

constant

■ For the reaction 40
20Ca20 on 208

82Pb126, the Coulomb barrier is 211 MeV, i.e., 5.3
MeV/nucleon.

Specific energy ε, kinetic energy per nucleon,

ε = Ekin

A
.

Classification of heavy-ion reactions by the specific energy ε:
ε < 10 MeV/A: low-energy heavy-ion reactions,
10 MeV/A < ε < 100 MeV/A: heavy-ion reactions at medium energies,
100 MeV/A < ε < 10 GeV/A: relativistic heavy-ion reactions,
ε > 10 GeV/A: ultra-relativistic heavy-ion reactions .

2. Features particular to heavy-ion reactions

• Because the incident particle often has a mass comparable to that of the target, a large
fraction of the kinetic energy goes into center-of-mass motion.

• Both reaction partners have a high charge, hence Coulomb effects become significant
and many phenomena result from the interplay of Coulomb and nuclear forces.

• In the interaction region, intermediate states with as many as 300 to 400 nucleons
are formed. Therefore, in the description of the system, macroscopic aspects may be
taken into account to a larger extent than in light-body induced reactions.
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• In peripheral collisions, the nucleus-nucleus interaction proceeds via partial waves
corresponding to a large orbital angular momentum of relative motion (L ≥ 100 �).

• The De Broglie wavelength of relative motion is small compared with the character-
istic geometric dimensions of the system, so that the relative motion may be treated
by classical considerations using collision parameters and trajectories.

▲ In heavy-ion reactions, nuclear states with very high spins can be excited.
■ In the reaction 40

20Ca20 →208
82 Pb126, an orbital angular momentum of about 140 �

may be reached at the Coulomb barrier. Such high angular momenta allow the pro-
duction of superdeformed nuclei with cigar-like shapes.

■ For 40
20Ca20-ions with an energy of 10 MeV per nucleon, the De Broglie wavelength

is λ = 0.5 fm.

3. Reaction types in heavy-ion reactions

Depending on the collision parameter, one distinguishes the following reaction types in
low energy, heavy-ion reactions (Fig. 27.28):
▲ Coulomb processes, elastic Rutherford scattering and Coulomb excitation of collec-

tive states of the target nucleus and/or the projectile for large values of the collision
parameter at which nuclear forces are not yet effective (L � Lgr, Lgr—angular
momentum at grazing incidence).

▲ Quasi-elastic reactions, direct reactions for collision parameters corresponding to
grazing incidence of the projectile (L ≈ Lgr). The small reaction time of ≈ 10−22 s
allows an excitation of only few nuclear degrees of freedom. The exchange of energy
and nucleons between projectile and target nucleus is still weak.

▲ Deep-inelastic reactions, reactions at medium values of the collision parameter
(Lcrit < L < Lgr), which proceed via formation of a relatively long-living two-
nuclei system with a lifetime of ≈ 10−21 s. In this system, many degrees of freedom
are excited without reaching a compound-nuclear state. A strong exchange of energy
and of nucleons between projectile and target nucleus is observed.

Coulomb
scattering

Direct
(quasi-elastic)
scattering

Deep-inelastic
scattering

Dinuclear system Fusion

crit

Figure 27.28: Classification of low-energetic heavy-ion reactions A1+A2 by the collision
parameter (orbital angular momentum L). Lgr: orbital angular momentum for grazing
nucleus-nucleus interaction, Lcrit: orbital angular momentum at which fusion begins.
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▲ Fusion reactions, formation of a highly excited compound nucleus with a lifetime of
≈ 10−18 s for small collision parameters (L < Lcrit). The compound nucleus decays
by emission of particles and γ -rays, or by fission.

■ The cross-section of the reaction 40Ar(379 MeV) +232Th shows that, besides the
quasi-elastic peak near the incidence energy, there is a second relative maximum at
an energy loss of ≈ 160 MeV that corresponds to a deep-inelastic process.

■ In the deep-inelastic reaction 86
36Kr(515 MeV)+166Er, one observes reaction products

similar to the projectile with nuclear charge numbers between Z = 28 and Z = 45.
➤ Nuclei far from the line of stability are produced in heavy-ion reactions.

Islands of stability, regions in the Z -N plane, stabilized by magic proton numbers Z
and neutron numbers N . These nuclei should have very long lifetimes compared with
neighboring nuclides in the Z -N diagram. According to model calculations, islands of
stability are expected around Z = 114 and N = 184.

Superheavy elements, elements with Z ≥ 110.
➤ The heaviest transuranium elements Bohrium (107Bh), Hassium (108Hs) and

Meitnerium (109Mt) as well as the elements with Z = 110 – 112, 114, 116, 118
have surprisingly long lifetimes (τ ≈ ms). The long lifetime suggests a new shell
structure in this region.

4. Higher-energy heavy-ion collisions

Multifragmentation, decay of the highly-excited compressed nucleon system formed in
heavy-ion collisions of intermediate energy into numerous fragments with a broad distri-
bution of charge and mass numbers. A nuclear phase transition liquid-gas is expected to
play a role.

Relativistic heavy-ion collisions, heavy-ion reactions with extremely high incidence
energies produced at CERN (Geneva) and at AGS (Brookhaven). These reactions may
generate new states of matter:
• Resonance matter, enrichment of normal nuclear matter by excited unstable nucle-

onic states (
- and N∗-resonances).
• Antimatter, formed from the antiparticles of nucleons: p̄, n̄, d̄ (antideuteron), ᾱ . . .
• Hypernuclei, and multi-hyperon matter, consisting of nucleons and hyperons (�-,

"−- and #−-particles).
• Quark-gluon plasma, phase of nuclear matter in which quarks and gluons move

almost freely, instead of being bound in baryons and mesons. This deconfinement is
expected to occur only at very high baryonic and energy densities (1–3 GeV/fm3).

Fusion Deep- 
inelastic
reaction

Quasi-
elastic
reaction

c

Figure 27.29: Schematic
subdivision of the
cross-section σL of a
low-energetic, heavy-ion
reaction. Lgr: orbital angular
momentum for a grazing
nucleus-nucleus interaction,
Lcrit: orbital angular
momentum for beginning
fusion.

27.5.8 Nuclear fission
Nuclear fission, the process of decomposition of a heavy nucleus into two fractions (fission
products) of almost equal size, and several neutrons (fission neutrons). Nuclear fission
can be induced by capture of neutrons or photons by the nucleus.
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■ 235U+ n→ X+ Y+ ν n+ 200 MeV, ν : number of fission neutrons.

On average, ν = 2.43± 0.07 neutrons with a mean energy of 2 MeV are emitted per
fission event.

1. Cause of nuclear fission

➤ Nuclear fission may be explained by the droplet model and by the shell model. At
low excitation energy, the nucleus carries out surface vibrations of small amplitude
about the equilibrium shape in the ground state. The surface tension thereby creates
a potential barrier causing stability of the nucleus against large deformations. If the
excitation energy increases, this fission barrier may be overcome: the nuclear defor-
mation increases until the nucleus forms a neck and finally breaks into two fractions,
which then separate under the influence of the repulsive Coulomb potential.

Fission barrier, potential energy barrier that prevents fission.

nucleus binding energy of neutron fission barrier

235U 6.5 MeV 236U: 6 MeV
238U 6 MeV 239U: 7 MeV

➤ Since the binding energy of a neutron in 235U exceeds the fission barrier, 235U is
usually chosen as the main fuel material in thermal nuclear reactors.

2. Spontaneous fission and fission isomerism

Spontaneous fission, fission from the ground state of nuclei with Z2/A > 17 by tunneling
the fission barrier. The half-life for spontaneous fission is larger than the half-life for α-
decay.
■ 235U: α-decay: T1

2
= 7.1 · 108 yr, spontaneous fission: T1

2
= 1.8 · 1017 yr.

Fission isomerism, appearance of a second minimum in the nuclear potential as a function
of the separation between the fission products, caused by shell effects. In neutron-induced
fission, the nucleus first passes to an excited state belonging to the first potential minimum,
which couples to states belonging to the second minimum. Fission finally proceeds by
decay from the states in the second minimum by the tunnel effect.
■ Example:

16O+ 238U→ 251Fm∗ + 3 n

The excited Fermium nucleus 251Fm∗ decays by fission with a half-life of T1
2
≈

0.014 s.
➤ Ternary fission (three pieces) of heavy nuclei occurs with low probability.
▲ The kinetic energy of the fission products nearly equals the total energy released in

fission.
▲ As a rule, fission products are radioactive.
▲ Fission products decay preferably by neutron emission, but also by γ - and β-decay.

3. Fission neutrons and mass distribution

Prompt neutrons, neutrons emitted simultaneously with fission.
Delayed neutrons, neutrons emitted by the fission products after the primary fission

process. This emission is delayed typically between 0.2 s and 60 s.
➤ Delayed neutrons play a fundamental role in the operation of controlled chain reac-

tion devices.
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delayed

Figure 27.30: Time evolution
of the fission of a uranium nu-
cleus.

Mass distribution in fission, abundance distribution of fission products.
▲ As a rule, the mass distribution is asymmetric (mass ratio of fission products≈ 3 : 2).
■ For 235U, symmetric fission is 600 times less likely than asymmetric fission.

Fission
barrier

Neutron
binding energy

Coulomb energy

Figure 27.31: Nuclear
fission. Potential energy
V and nuclear shape as
functions of the separation r
of the fission products.

Figure 27.32: Mass
distribution of the fission
products in the fission of
uranium.

27.6 Nuclear decay

Radioactive decay, spontaneous decay of unstable nuclides with the emission of particles
or photons. The decays proceed via radioactive decay series into stable nuclides.

Radionuclide, nuclide undergoing radioactive decay.
Radioactive isotopes, particular species of radionuclide.
Radioactivity, the property of nuclides or macroscopic quantities of matter (atmosphere,

waters, rocks, building materials) to emit radioactive radiation.
Natural radioactivity, radioactivity of nuclides occurring in nature.
Artificial radioactivity, radioactivity occurring in nuclides produced artificially, e.g., in

nuclear reactions.
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Modes of radioactivity:

Change of
Decay mode nuclear neutron mass

charge 
Z number 
N number 
A

α-decay (emission of a He nucleus) −2 −2 −4

β-decay (e+- or e−-emission) ±1 ∓1 0
γ -decay (emission of a photon) 0 0 0
electron capture −1 +1 0
proton emission −1 0 −1
neutron emission 0 −1 −1
cluster radioactivity −Zcluster −Ncluster −(Zcluster + Ncluster)

spontaneous fission ≈ 1
2 Z ≈ 1

2 N ≈ 1
2 A

▲ Radioactive decay is a statistical process.

27.6.1 Decay law
1. Decay constant

Decay constant, λ, specifies the probability of a certain radioactive decay mode. It is
independent of space and time, but is specific to the particular nucleus.
▲ Every radionuclide has a unique decay constant.
The decay constant gives the fraction of nuclei decaying per second.

number of decays = −decay constant · number of nuclei · time 1

d N = −λ · N · d t

Symbol Unit Quantity

dN 1 number of decays
λ s−1 decay constant
N 1 number of radioactive nuclei
dt s time interval

Radioactive decay follows the exponential decay law (Fig. 27.33):

decay law 1

N (t) = N0e−λ·t

Symbol Unit Quantity

N (t) 1 number of radioactive nuclei at time t
N0 1 number of nuclei at time t = 0
λ s−1 decay constant
t s time variable

/e
/2

e

Figure 27.33: Exponential
decay law. λ: decay
constant, τ : mean lifetime,
T1

2
: half-life.
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Mean lifetime τ (SI unit: second s) of radioactive nuclei, reciprocal value of the decay
constant:

τ = 1

λ
.

2. Half-life,

T1/2 (SI unit: second s), the time interval after which the number of radioactive nuclei
drops to half of the initial number:

T1
2
= ln 2

λ
= ln 2 · τ.

Partial decay constant, λk , the probability for a particular decay mode k.
For radioactive isotopes that may decay via several modes:

λ =
∑

k

λk .

3. Activity,

A, the number of decays per unit time,

A = −dN

dt
.

activity T−1

A = λ · N = λ · N0e−λ·t

= λ · m · NA

M

Symbol Unit Quantity

M kg/mol molar mass of the substance
m kg mass of the substance
N 1 number of radioactive nuclei
NA mol−1 Avogadro’s number
λ s−1 decay constant

Becquerel (Bq), SI unit of activity,

1 Bq = 1 decay

s
.

Specific activity, As , the activity per unit mass of the substance,

As = A

m
, m : mass.

4. Radionuclides in the environment

Typical concentration of several radionuclides in the environment:
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Substance Radionuclide Half-life T1
2

/yr Concentration 10−3Bq/ l

ground water 3H 12.232 20 – 100
40K 1.26 · 109 4 – 400
238U 4.51 · 109 1 – 200

surface water 3H 12.232 40 – 400
40K 1.26 · 109 40 – 2000
238U 4.51 · 109 – 40

drinking water 3H 12.232 20 – 70
40K 1.26 · 109 200
238U 4.51 · 109 – 40

5. Decay chains,

arise when a nuclide produced in a radioactive decay may again be radioactive.
▲ For the number of radioactive parent and daughter nuclides present at time t , the

following decay law holds:

change of daughter nuclei
time unit

= production rate − decay rate T−1

dND

dt
= λP · NP − λD · ND

Symbol Unit Quantity

ND 1 number of daughter nuclides
NP 1 number of parent nuclides
t s time variable
λD s−1 decay constant of daughter

nucleus
λP s−1 decay constant of parent

nucleus

decay law for daughter nuclide 1

ND(t) = NP(0)
λP

λD − λP

·
(

e−λP·t − e−λD·t
)

Symbol Unit Quantity

ND 1 number of daughter
nuclides

NP(0) 1 number of parent
nuclides at time t = 0

t s time variable
λD s−1 decay constant of

daughter nucleus
λP s−1 decay constant of

parent nucleus

Radioactive equilibrium, stationary state of a daughter isotope with an equal number
of production- and decay reactions in a certain time interval:

dND

dt
= 0 .
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Parent
nuclide

Daughter
nuclide

Figure 27.34: Decay chain (schematic).

In equilibrium:

NP · λP = ND · λD ,
NP

ND
=

T1
2 P

T1
2 D
.

NP: number of parent nuclides, ND: number of daughter nuclides,
T1

2 P: half-life of parent nuclide, T1
2 D: half-life of daughter nuclide.

6. Example: uranium-radium decay chain,

(Fig. 27.35), in the uranium series

NRa

NU
= 0.36 · 10−6 .

Hence, one has to process tons of uranium in order to get one gram of radium.

27.6.2 α-decay
α-decay, the emission of a He nucleus of mass number A = 4 and nuclear charge number
Z = 2 (Fig. 27.36).

Decay equation:

A
Z X N →A−4

Z−2 X N−2 +4
2 α2 .

■ 212
84Po128 −→208

82 Pb126 +4
2 α2 .

▲ The kinetic energies Eα of the particles emitted in α-decay form a line spectrum.
Typical energies of α-particles are between 4 MeV and 9 MeV.

■ 212Po: Eα = 8.9 MeV, 232Th: Eα = 4.1 MeV.
▲ The half-lifes of many α-radioactive nuclei are relatively large, since the α-decay

proceeds by the tunnel effect. The potential wall at the nuclear surface resulting from
the overlay of the attractive nuclear potential and the repulsive Coulomb potential is
higher than the kinetic energy of the emitted α-particles. In order to leave the nucleus
the α-particles have to tunnel through the potential wall (see p. 839, Fig. 27.37).

Geiger-Nutall relation, empirical connection between the decay constant λ and the
kinetic energy Eα of the α-particles:

lnλ = k1 + k2 · ln Eα .

The constants k1 and k2 characterize the different decay chains.
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Stabile

Figure 27.35: Uranium-radium decay chain.

(weak)

(weak)

(weak)

Figure 27.36: α-decay. In the decay of
232

92U140 into 282
90Th138, six α-groups of

different kinetic energy and intensity are
observed corresponding to different excited
states of the final nucleus.

Figure 27.37: α-decay as tunnel effect
through the Coulomb barrier.
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Penetrability, D, of the Coulomb potential wall:

penetrability of a potential wall 1

D = e
− 4π ·R

λB · γ

γ =
√

B

E
arccos

√
E

B
−
√

1− E

B

B = Z · z · e2

4πε0 R

λB = h√
2m B

Symbol Unit Quantity

D 1 penetrability
R m nuclear radius
λB m De Broglie wavelength
B J height of potential wall
e C elementary charge
ε0 C/(Vm) electric permittivity

constant
E J kinetic energy of

particle
Z 1 charge number of

nucleus
z 1 charge number of

emitted particle
m kg mass
h J s Planck’s constant

This relation holds for all charged particles.

27.6.3 β-decay
β-decay, includes three modes of nuclear conversions caused by weak interactions:
• β−-decay, instability of an atomic nucleus against emission of an electron,
• β+-decay, instability of an atomic nucleus against emission of a positron,
• electron capture, capture of an atomic electron by the nucleus.

In β±-decay, there are three particles in the final state:

n −→ p+ e− + ν̄e , p −→ n+ e+ + νe .

Neutrino, ν, a particle invented by Pauli (1931), at first hypothetically, in order to preserve
the validity of energy and angular momentum conservation in β-decay. The neutrino carries
no electric charge and presumably also no rest mass, but has spin s = 1/2 and lepton
number ±1. Recent experiments have given an indication of a very small, but non-zero,
mass for the neutrino.

Electrons, positrons and neutrinos do not exist in the nucleus as constituents. They are
generated just at the moment of decay by the weak interaction between the nucleons.

Equation for radioactive decay of a nucleus X :

A
Z X N →A

Z±1 X N∓1 + e∓ +
(
ν̄e

νe

)
.

Electron capture, e-capture, capture of an atomic electron by the nucleus with conversion
of a proton into a neutron.

Equation for decay:

e− +A
Z X N −→ A

Z−1 X N+1 + νe .
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K-capture, capture of an electron from the K-shell, the most intense transition, since the
probability of finding an electron within the nuclear range is a maximum for the K-shell.
➤ The electron hole remaining in the K-shell is filled by an electron transition in the

shell with the emission of characteristic X-rays or an Auger electron.

1. β-stability

β-stability, the property of isotopes to be stable against β-decay.
▲ All nuclides occuring in nature lie in the “valley of stability” of the Z -N diagram.

Nuclides on the left side of the energy-Z diagram of isobars show β−-decay.
Nuclides on the right side show β+-decay.

■ β-decays of the isobars with A = 41 (Fig. 27.38 (a)).
▲ The energy spectrum of electrons emitted in β-decay is continuous up to a maxi-

mum energy E0 (Fig. 27.38 (b)).
➤ A two-body decay to an isobar and a β-particle would display a discrete energy spec-

trum because of energy and momentum conservation.
If the neutrino had a rest mass differing from zero (Majorana neutrino), the energy

distribution in the above figure would diverge from the solid line just below the maxi-
mum energy and follow the trend indicated by the dashed line, with a vertical tangent
at the endpoint.

yr

Figure 27.38: (a): β-decays of the isobars with A = 41. The binding energy B, the decay
mode (β+, β− or electron capture ε) and the half-life T1

2
are given. (b): energy spectrum

in β-decay. E0: maximum energy. Dashed: trend for a finite neutrino mass.

2. Fermi plot,

also Curie plot, representation of the measured β-energy distribution in a diagram of the
form:
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Curie representation of the β-spectrum 1

C(ε) =
√

N (η)

F(Z , η)η2

η = p

m0c

ε = E

m0c2

Symbol Unit Quantity

C(ε) 1 Curie function
N (η) 1 number of electrons
F(Z , η) 1 Fermi function
p kg m s−1 momentum
η 1 momentum/(m0c)
E kg m s−2 energy
ε 1 energy/(m0c2)

m0 kg electron mass
c m s−1 speed of light

3. Fermi function,

F(Z , η), takes into account the distortion of the electron and positron wave function ψ at
the position of the nucleus by the Coulomb field of the nucleus:

F(Z , η) = |ψ(0)Coulomb|2
|ψ(0)free|2

.

The Fermi function depends strongly on the element (Z ).

ele
ctr

on ca
ptu

re 
(11

%)
yr

yr

Figure 27.39: β-decay and electron capture. E0: maximum energy in the β-spectrum. (a):
decay scheme for the β−-decay of 137

55 Cs, (b): decay scheme for the β+-decay of 22
11Na.

4. Selection rules for β-transitions

The β-transitions between nuclear states obey selection rules in spin and parity.
Allowed transitions, the Fermi plot of the β-spectrum is a straight line.
Forbidden transitions, the Fermi plot of the β-spectrum deviates from a straight line.
ft-value, a method of classifying β-decays, connected with the measured half-life T1

2
:
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ft-value ∼ half-life 1

f t = T1/2

ε0∫
1

F(Z , ε)ε
√
ε2 − 1

· (ε0 − ε)2dε

Symbol Unit Quantity

F(Z , ε) 1 Fermi function
ε 1 energy/(m0c2)
ε0 1 maximum energy/(m0c2)
T1/2 s half-life

Superallowed transitions: log f t ≈ 3.5.
Allowed transitions: log f t ≈ 5.
Forbidden transitions: log f t = 9 . . . 18.

27.6.4 γ -decay
γ -decay, emission of a photon by an excited nucleus. The excitation may be preceded by
α- or β-decay, by a nuclear reaction, or an inelastic collision with another nucleus. Similar
to electrons in the atomic shell, the atomic nuclei have discrete energy levels and can emit
electromagnetic radiation with characteristic line spectra.

Equation of decay:

A
Z X∗N −→A

Z X N + γ .

■ 60
27Co-sample as γ -source:

The β-decay of 60
27Co (T1/2 = 5.2 yr) populates the excited states E∗ = 2.505 MeV,

Jπ = 4+ (99.9 %) and E∗ = 1.332 MeV, Jπ = 2+ (0.1 %) of the nucleus 60
28Ni.

The corresponding endpoint energies in the β-spectrum are 314 keV and 1480 keV,
respectively. In the transitions 4+ −→ 2+ and 2+ −→ 0+ (ground state), the Ni-
nucleus emits γ -radiation of 1.173 MeV and 1.332 MeV, respectively (Fig. 27.40).

Nuclear isomerism, occurrence of long-lived excited states in nuclei, caused by large
differences in the spins of the levels involved in possible transitions.

Nuclear resonance fluorescence, the re-absorption of a γ -rays after emission by a nu-
cleus of the same species. Resonance absorption is suppressed by the recoil-energy loss
and by the Doppler effect: the photon energy available for a new excitation of a nucleus
is smaller than the de-excitation energy 
E of the isotope. The thermal motion of nuclei
causes a broadening of the line, both in the emission and absorption spectrum.

M Mössbauer effect (Rudolf Mössbauer, Nobel Prize, 1961), amplification of reso-
nance absorption in crystals at low temperatures, since the recoil momentum must
then be transferred to the crystal as a whole. The resonance width is then so small
that energy spectra can be measured with a resolution up to 10−9 eV.

yr

Figure 27.40: Decay scheme
of 60

27Co.
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27.6.5 Emission of nucleons and nucleon clusters
Delayed nucleon emission, emission of nucleons following a radioactive decay (e.g., β-
decay) populating excited states in the daughter nucleus with excitation energy E∗ above

the nucleon binding energy E(N)B (Fig. 27.41).
➤ Delayed emission of α-particles has also been observed.
Spontaneous nucleon emission, decay of nuclides generated in nuclear reactions beyond
the limit of nuclear stability (vanishing binding energy for nucleons at sufficient distance
from the line of stability) by spontaneous nucleon emission (proton emission at high proton
excess, neutron emission at high neutron excess).

Cluster decay, the decay of nuclei by emission of clusters (12C, 14C and other nuclei).
This decay mode suggests the importance of shell closure for the stability of atomic nuclei.

Figure 27.41: Decay
scheme for delayed nucleon
emission. E∗: excitation
energy, E(n)B : neutron
binding energy.

27.7 Nuclear reactor

Chain reaction, nuclear fission reactions that become self-sustaining by the release of a
sufficient number of neutrons per fission event at a controlled constant rate (reactor), or
suddenly (atomic bomb) (Fig. 27.42).

Fission product Fission product

Figure 27.42: Scheme for a chain reac-
tion.

1. Characteristics of the chain reaction

Multiplication factor, k, the number of neutrons released in a chain reaction available for
an additional fission process.
▲ Condition for a chain reaction is k ≥ 1.
Subcritical assembly, a device for nuclear fission in which the multiplication factor is less
than unity. In order to maintain nuclear fission, an external neutron source is necessary.
Critical assembly, controlled chain reaction, a device for nuclear fission in which the
multiplication factor is set to unity.

Supercritical assembly, the multiplication factor is larger than unity. The chain reaction
then increases in an uncontrolled manner. The consequence is an explosion.
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Mean fission-neutron number, ν, the number of neutrons released on the average per
fission event. In real assemblies, this number is reduced by radiative capture in the fuel and
external nuclei, as well as by the escape of neutrons from the active zone.

Fast-fission factor, ε, the factor by which the number of fission neutrons is modified
due to the release of additional neutrons from fission of 238U and 235U by fast neutrons.

Resonance factor, ψ , a measure of the neutron loss due to neutron absorption in the
energy range in which the resonance absorption cross-sections of uranium are particularly
high.

Resonance-escape probability, p, the probability of avoiding resonance absorption:

p = 1− ψ .

Fission probability, f , the ratio of the fission cross-section to the total absorption cross-
section.

Leakage rate, L , the probability that neutrons will escape from the surface of the reac-
tor.

2. Neutron balance and reactivity excess

neutron balance in the reactor 1

k = ν · ε · p · f · L

Symbol Unit Quantity

k 1 multiplication factor
ν 1 mean neutron number per

235U-fission
ε 1 fast-fission factor by fission

of 238U
p 1 resonance-escape probability
f 1 fission probability
L 1 leakage rate

▲ Reactivity excess:

δ = k − 1 > 0 .

The condition must be fulfilled in order to compensate for the fuel consumption and
“poisoning” of the fuel by fission fragments that capture neutrons.

Control rods, rods of strongly neutron-absorbing material used to reduce the reactivity
excess to zero.

Delayed neutrons, neutrons emitted by fission products. They allow a response time for
controlling the reaction in second range.

3. Moderators and neutron spectrum

Moderators, substances with small mass number (H,D,B,C,O) and low neutron absorp-
tion cross-section used to thermalize fast-fission neutrons (mean energy ≈ 2 MeV). The
moderation proceeds mainly by elastic collisions with the moderator nuclei, which reduces
their kinetic energy to the thermal energy region in which the fission cross-section is high.
■ Water is frequently used as moderator in thermal reactors.
Neutron spectrum, the energy spectrum of neutrons. Fig. 27.43 shows the spectrum of
neutrons produced in a fission event for a reactor with moderator.
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~ ~

Figure 27.43: Neutron
spectrum of a thermal
reactor.

Thermal neutrons, are in thermal equilibrium with the moderator. Their velocity dis-
tribution is well described by a Maxwellian distribution. Most-probable values for velocity
and kinetic energy: v = 2200 ms−1, E = 0.0253 eV.

27.7.1 Types of reactors
The various types of reactors are distinguished by the following characteristics:
• energy of neutrons triggering the fission, and kind of fissionable material,
• kind of coolant,
• kind of moderator.

Thermal reactors, the fission proceeds mainly by capture of thermal neutrons (En ≈
0.025 eV).

Fast reactors, the fission proceeds mainly by means of fast neutrons (En > 0.1 MeV).
As fissionable material, U235 (frequently weakly enriched), U233 (bred from Th232)

and Pu239 (bred from U238), as well as mixtures of these, are used.
Moderators: usually water, heavy water or graphite. Coolants: water, gases (CO2, He);

in fast breeders (see below): liquid sodium.

1. Pressurized-water reactors,

thermal reactors using enriched uranium with about 5 % 235U. Water is used as moderator
and coolant. An increased pressure (15.8 MPa) leads to a shift of the boiling point.
➤ The natural abundance of 235U in the uranium isotopes is 0.72 %.
First cycle, coolant cycle, passing directly through the active zone of the reactor. This
coolant cycle is closed.

Active zone, the region of the reactor in which the fuel is located and nuclear fission
proceeds.

Second cycle, is used to cool the first cycle and drives the generators directly.
Spent-fuel elements, fuel elements in which the fraction of 235U is no longer sufficient

to sustain a chain reaction (< 0.8 % 235U).

Concrete
shielding

Control rods

Active
zone

Control-rod drive

First cycle

Second cycle

Pressure vessel

Steam
producer

Tu
rb

in
es

an
d

co
nd

en
so

r

Figure 27.44: Scheme of a pressurized-water reactor.
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2. Boiling-water reactors,

thermal reactors with enriched uranium as fuel in which the coolant (water) flows through
the active zone from bottom to top. Part of the water evaporates. The steam (steam tem-
perature about 286 ◦C; pressure of about 7 MPa) is directly used to drive a turbine. The
steam leaving the turbine is liquified in a condenser and is fed back into the active zone by
pumps.

3. Breeding process and breeder reactors

Breeding of nuclear fuel, production of thermally fissionable fuel nuclides 233
92U and 239

90Pu

in reactors by neutron capture into 232
90Th and 238

92U.
■

n+232
90 Th −→233

90 Th −→233
91 Pa −→233

42 U .

Breeding rate, the ratio of the number of fissionable nuclei formed by neutron capture to
the number of nuclei consumed by fission events.
▲ If the breeding rate is larger than unity, the reactor produces more fuel than it con-

sumes.
Breeder reactors, reactors with breeding rates larger than unity.

Fast breeders, use uranium in natural isotopic abundance and plutonium (about 80 %
UO2; 20 % PuO2) for the fuel elements. In the breeding blanket there is UO2 with a de-
pletion of 235U. Breeding proceeds via the following process:

238
92U+ n→ 239

92U
↗ γ

−→
β−; 23.5 min

239
93Np −→

β−; 2.36 d

239
94Pu .

Liquid sodium is used as coolant. A moderator is not appropriate. The 24
11Na produced in

the active zone remains in the first cycle in the safety zone of the reactor.

Control rods

Pump

Breeding Fission

First sodium
cycle

Second sodium cycle

Steam producer
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Figure 27.45: Scheme of a fast
breeder.

27.8 Nuclear fusion

Nuclear fusion, the fusion of light nuclei. Energy is released in the fusion of light nuclei
(see p. 911).
■ Several fusion reactions of light nuclei:

D+ D −→ T+ p+ 4.04 MeV ,

D+ T −→ 4He+ n+ 17.6 MeV ,

T+ T −→ 4He+ 2n+ 11.3 MeV .

For other possible fusion reactions, see Tab. 29.5/2.
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➤ The Sun and the stars get their energy from such fusion reactions.
Hydrogen burning, fusion of four protons via several intermediate reactions to a stable
α-particle, the energy release is 26.7 MeV.
■ Fusion of 1 g hydrogen yields about 6 · 1011 J.
Helium burning fusion of three α-particles to a 12C-nucleus.

1. Proton-proton processes,

Hydrogen cycle, hydrogen burning in which the light nuclei Li, Be and B are also in-
volved as nuclear catalysts in the reaction chain. The reaction chains I, II, III are mainly
distinguished by the energy fraction going into neutrinos (Fig. 27.46). Reaction chain I is
denoted as the deuteron cycle.

Proton-proton process

Reaction chain I               Reaction chain II                              Reaction chain III

p+p

d+p

p

p

e p

e

d e

Figure 27.46: Reaction chains of the proton-proton process.

2. CNO cycles,

the hydrogen burning occurring in the Sun. The reaction chains involve the light nuclei C,
N and O as nuclear catalysts (Fig. 27.47).

(e+, e)

p p

(p) (e+, e)

(e+, e)

p

p

p

p

Figure 27.47: CNO cycle.
Double-cycle, determined
by the branching ratio of the
reactions 15N(p,α)12C and
15N(p,γ )16O.

3. Carbon-nitrogen cycle,

CN cycle, a reaction chain proposed by Bethe to explain the Sun’s energy (Fig. 27.48).
Salpeter process, fusion of three α-particles to form a 12C-nucleus in a two-step pro-

cess:

4He+4 He+ 95 keV −→ 8Be+ γ , 8Be+4 He −→ 12C+ γ + 7.4 MeV .
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Carbon-Nitrogen Cycle

p

p

p

p

e

e

Figure 27.48: CN cycle.

The Coulomb barrier has to be overcome in the fusion of two nuclei. For the hydrogen
cycle, the required energy is 0.5 MeV. This corresponds to a temperature of about 5.8 ·
109 K. For the carbon–nitrogen cycle, a temperature about four times higher than for the
deuteron cycle is needed.

4. Fusion reactor,

a nuclear reactor in which a controlled fusion reaction takes place. The fuel is in the plasma
state. The necessary kinetic energy of the reaction partners corresponds to a plasma tem-
perature of about 108 K.

Plasma, a gaseous mixture of free electrons, ions and electrically neutral particles.
Confinement, inclusion of a plasma in a limited volume. This confinement may not

consist of conventional materials because of the high temperature. Moreover, in order to
gain energy in a fusion reactor, the high-temperature plasma must be kept together for a
sufficient time interval.

Magnetic confinement, a plasma at low fuel density is kept together for a longer time
by a magnetic field of special configuration.

Inertial confinement, the fuel is compressed by energy supplied by laser, electron or
heavy-ion beams. It is kept together for a short time at high density by its own inertia.

Fusion
region

Liquid lithium

to the
steam
producer

Heat
exchanger

Lithium
blanket

Laser
pulse

DT-Pellet

Figure 27.49: Scheme of a fusion reactor with inertial confinement and ignition of the fuel
pellet by laser pulses.
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5. Lawson criterion,

balance equation for maintaining the fusion process in a plasma (break-even condition):

Lawson criterion ML2T−2

(EF + EP + Eγ ) · (η + ε)
= EP + Eγ

Symbol Unit Quantity

EF J fusion energy
EP J thermal plasma energy
Eγ J bremsstrahlung energy
η 1 efficiency of energy

conversion
ε 1 efficiency of energy

supply

In 1993 the Lawson criterion was approached to within one order of magnitude at the Joint
European Torus (JET).

27.9 Interaction of radiation with matter

27.9.1 Ionizing particles
Ionizing particles, all charged particles; they produce positive ions and electrons by colli-
sions with electrons in the atomic shells.

Ionization, the production of a secondary electrons and reduce the kinetic energy of the
incident particle.

1. Ionization losses,

decrease of the kinetic energy of the incident particle by ionization processes.
Bremsstrahlung, the energy radiation caused by the acceleration of charged particles in

the Coulomb field of the atomic nucleus.
Radiation losses, decrease of the kinetic energy of the incident particle by production

of bremsstrahlung through the electromagnetic interaction with the atomic nucleus.
▲ The radiation losses of heavy charged particles are negligible compared with the

ionization losses. Energy losses by bremsstrahlung become important only at energies
> m0c2 (for protons > 103 MeV).

▲ For electrons, the stopping power rapidly increases at energies > 1 MeV due to the
bremsstrahlung losses (relativistic rise).

▲ Heavy charged particles have a material-dependent finite range R in matter.

2. Range and Bragg peak

Mean range, R̄, the penetration depth at which the incoming particle flux is reduced to
half of the initial value (Fig. 27.50).

ex

Figure 27.50: Range of
heavy charged particles
in matter. x : penetration
depth, R̄: mean range, Rex:
extrapolated range.
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Extrapolated range Rex, the intersection point of the tangent to the relative flux density
(as function of the penetration depth) at the inflexion point, and the x-axis.

Bragg maximum, Bragg peak, the ionizing power of heavy charged particles (in-
cluding protons) takes a maximum at the end of their trajectory in the target material
(Fig. 27.51).

Figure 27.51: Specific
ionizing power dN/dx of
heavy charged particles
versus penetration depth x .

M Application of heavy-ion beams and proton beams in technology and medicine: Due
to the Bragg peak, the depth of penetration in solids (ion implantation, doping) or
organic tissue (tumor therapy) may be controlled precisely (±1 mm) via the bom-
barding energy.

3. Energy-range relation,

connection between kinetic energy Ekin of the incident particles (charge Z ) and their range
R in a medium,

R ∼ E2
kin/Z2 , v � c ,

R ∼ Ekin/Z2 , v ≈ c .

■ α-particles of energy E = 5 MeV have a range in air of 3.5 cm. The range of these
α-particles in aluminum is only 23 µm.

For the range of α-particles see Tab. 29.6/3.
▲ Unlike the trajectories of heavy charged particles, the trajectories of electrons are not

straight lines in the target. Hence, there is no unique range for electrons.
➤ Photons also do not have a defined range in matter.

4. Stopping power,

S, differential energy loss dE along the path element dx ,

S = −dE

dx
.

▲ The stopping power depends on the square of the charge number of the incident
particle.

➤ In dosimetry, the quantity S is also called linear energy transfer power (LET,
linear energy transfer) L∞.

The stopping power for heavy charged particles of energy E � m0c2 is well described by
the Bethe-Bloch equation:
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Bethe-Bloch equation MLT−2

S = Z · z2 · e4 · NA · mi

8πε2
0 · me · Ekin · MA

· ρ · ln
(

4me · Ekin

Ī · mi

)

Symbol Unit Quantity

S MeV/cm stopping power
Z 1 atomic number of

target atom
z 1 charge number

of projectile
NA mol−1 Avogadro’s number
mi kg mass of projectile
ε0 C V−1 m−1 permittivity of

free space
me kg rest mass of electron
Ekin J kinetic energy of

projectile
MA g/mol molar mass of

target material
Ī J mean ionization

energy
ρ kg/m3 density
e A s elementary charge

5. Stopping power for electrons

stopping power for electrons MLT−2

S = Ze4 NA

8πε2
0mev2 MA

· ρ · ln
(

mev
2 Ekin

2 Ī 2(1− β2)

)

+ f (β)

Symbol Unit Quantity

S MeV/cm stopping power
Z 1 atomic number

of target atom
NA mol−1 Avogadro constant
mi kg mass of

projectile
ε0 C V−1 m−1 electric permittivity

of free space
me kg rest mass of electron
Ekin J kinetic energy of

projectile
MA g/mol molar mass of target
Ī J mean ionization

energy
v m/s electron velocity
β 1 v/c
f (β) J/m relativistic correction
ρ kg/m3 density
e A s elementary charge

■ The differential ionization power of electrons is about 1000 times smaller than that
of α-particles.
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6. Mass stopping power and specific ionization

Mass stopping power, Sm , the ratio of stopping power S and density ρ of the target mate-
rial,

Sm = − 1

ρ

dE

dx
.

M From this quantity, the mass stopping power of heterogeneous materials may be de-
termined by weighting with the mass fractions of the corresponding components.

Electrons

Figure 27.52: Penetration
of electrons in matter. x :
penetration depth, N (x):
particle number at depth x .

Specific ionization, j , ratio of mass stopping power Sm and mean ionization energy Ī ,

j = Sm/ Ī .

The number of ion pairs dN produced along a path element dx is given by

dN = j · dx .

➤ Particles of equal charge and energy but different mass may be distinguished from
each other by their specific ionization.

■ An electron of energy Ekin = 105 eV produces about 200 ion pairs per 1 cm path in
air. A proton of the same energy produces about 104 ion pairs along the same path
length.

27.9.2 γ -radiation
Attenuation of γ -radiation by a layer of matter of thickness d and density ρ is described
by an exponential attenuation law:

attenuation law for γ-radiation L−2T−1

ϕ = ϕ0 e−µd

Symbol Unit Quantity

ϕ m−2s−1 particle flux density behind absorber
ϕ0 m−2s−1 particle flux in front of absorber
µ m−1 linear attenuation coefficient
d m thickness of layer

Mass-attenuation coefficient µM = µ/ρ (SI unit m2/kg), linear-attenuation coefficient
referred to the density.
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1. Photoelectric effect,

production of secondary electrons by the interaction of photons with bound electrons.
For secondary electron emission, see Tab. 29.3/5.

▲ The photoelectric effect is the dominant interaction for Eγ < 0.5 MeV.
Mass-attenuation coefficient for photons τ/ρ (SI unit m2/kg), increases rapidly with Z
and decreases with increasing photon energy:

τ

ρ
∼ Z4

(h f )3
.

2. Compton effect,

describes the elastic collision of photons by free electrons.
Compton mass-attenuation coefficient σ/ρ (SI unit m2/kg), nearly independent of the

atomic number Z and inversely proportional to the γ -energy:

σ

ρ
∼ 1

h f
.

▲ The Compton effect dominates for medium photon energies
(H2O: 30 keV < h f < 25 MeV; Pb: 500 keV < h f < 5 MeV).

3. Pair production,

the creation of an electron-positron pair in the Coulomb field of the atomic nucleus. The
reaction threshold is h f = 2mec2 = 1.022 MeV (see p. 902).

Mass-attenuation coefficient for pair production κ/ρ (SI unit m2/kg), proportional
to Z and increasing logarithmically with increasing γ -energy:

κ

ρ
∼ Z ln(h f ) .

Pair production

Nucleus

Electron

Electron

Electron

Photoelectric effect

Compton effect Photoelectric effect

Compton effect

Pair p
roduction

Figure 27.53: (a): Interaction of γ -radiation with matter. (b): Linear-attenuation
coefficients of γ -radiation in lead.
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4. Total-attenuation coefficient,

µ (SI unit m2/kg), composed additively from the photo-absorption coefficient τ , the
Compton attenuation coefficient σ , and the pair-production coefficient κ:

µ = τ + σ + κ.
For the mass-attenuation coefficient of X-rays, see Tab. 29.6/1.

Linear-attenuation coefficient, µ′, product of mass-attenuation coefficient and density
(SI unit m−1),

µ′ = µ · ρ , ρ: density.

27.10 Dosimetry

Dosimetry, measurement techniques for ionizing radiation, x-rays, γ -radiation and neu-
trons.

1. Definition of activity

Activity, A, a measure of the decay rate of a radionuclide. It does not take into account the
different biological efficiency of the radiation modes.

activity = number of decays
time

T−1

A = dN

dt

Symbol Unit Quantity

A Bq activity
N 1 number of decays
t s time

Becquerel, SI unit of activity,

[A] = Bq = 1 decay

s
.

➤ The formerly used unit of 1 curie = 1 Ci is of historical origin and corresponds to the
number of decays of 1 g 226Ra per second:

1 Ci = 3.7 · 1010 Bq.

2. Energy dose

(short form: dose), D, a measure of the physical radiation impact:

energy dose = absorbed radiation energy
mass

L2T−2

D = 
W


m

Symbol Unit Quantity

D Gy energy dose

W J absorbed radiation energy

m kg mass
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Gray, SI unit of energy dose,

[D] = Gy = J

kg
.

➤ The unit “rad” was used until 1985,

1 rad = 10−2 Gy.

➤ In organic tissue and water, the dose of 1 Gy corresponds to an increase of tempera-
ture of 0.00024 K. But the energy release proceeds in a very narrow region. Therefore,
vital molecules may be destroyed.

▲ When evaluating a radiation dose, the biological efficiency of the various radiation
modes has to be taken into account.

3. Equivalent dose,

H , takes into account the efficiency of the different radiation modes:

equivalent dose = evaluation factor · energy dose L2T−2

H = q · D

Symbol Unit Quantity

H Sv equivalent dose
D Gy energy dose
q 1 evaluation factor

Sievert, SI unit of equivalent dose,

[H ] = Sv = J

kg
.

➤ Until 1979 the “rem” served as the unit of equivalent dose,

1 rem = 10−2 Sv .

4. Evaluation factor,

q, factor to evaluate the biological effect of a certain dose of radiation. It is composed of a
quality factor Q that takes into account the radiation mode, and a factor N that takes into
account the distribution of the radiation in space and time:

q = Q N

For irradiation of a body from outside, N = 1.
Quality factor, Q, connected with the linear energy transfer (LET) capacity of charged

particles for unlimited energy transfer.
Mean quality factors Q̄ for various radiation modes:
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radiation mode Q̄

x-rays, γ 1
electrons, positrons 1
thermal neutrons 2.3
fast neutrons 10
α-particles 20
heavy ions 20

Dose rate, the equivalent dose per unit time.

■
Sv

h
,

Sv

min
,

Sv

s

5. Particle and energy flux densities

Spectral particle radiance, pE, particle flux density in relation to the solid angle and
energy:

pE(�r) = φE(�r, t, E,	) , unit: s−1J−1sr−1m−2 .

Spectral particle flux density, φE, the integral of the spectral particle radiance over the
solid angle:

φE(�r, t, E) =
∫

pE(�r)d	 .

Particle flux, �, is obtained from the spectral particle flux density by integration over
kinetic energy and time:

particle flux L−2

�(�r) =
t2∫

t1

∞∫
0

4π∫
0

pE(�r)d	dEdt

= dN

dA⊥

Symbol Unit Quantity

�(�r) m−2 particle flux
pE(�r) 1/(s J sr m2) spectral particle

radiance
	 sr solid angle
E J energy
t s time
N 1 particle number
A⊥ m2 area

▲ The particle flux is the number of particles flowing in a per unit time interval in the
normal direction through an area element of a spherical surface about the source.

Particle flux density, φ, the particle fluence per unit time.

particle flux density = particle density · velocity L−2T−1

φ(�r, t) = �(�r)
t
= n · v

Symbol Unit Quantity

φ(�r, t) m−2 s−1 particle flux density
�(�r) m−2 particle flux
t s time
n m−3 particle density
v m s−1 particle velocity
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Spectral energy flux density, ψ , the product of particle flux density and energy:

ψ = E · φE(�r, t, E) .

Energy flux density, IE, the integral of the product of particle flux density and energy
integrated over energy:

IE =
∫

E · φE(�r, t, E)dE .

Energy flux, the time integral of the energy flux density.

6. Attenuation law,

determines the attenuation of a beam by a certain material of thickness dz:

attenuation L−2T−1

dψ = −ψ · µ · dz

Symbol Unit Quantity

dψ m−2 s−1 attenuation of spectral energy
flux density

ψ m−2 s−1 spectral energy flux density
µ m−1 linear mass attenuation coefficient
dz m thickness of material

Integration of the above relation yields the attenuation law:

ψ(z) = ψ0e−µ·z .

This law holds only for a narrow beam and, because of the sensitive energy dependence of
the mass-attenuation coefficient, only for mono-energetic radiation.

Half-value depth, s, the thickness of the material at which half of the incident radiation
quanta have interacted with the material:

s = ln 2

µ
.

7. Energy-transfer coefficient

Energy-conversion coefficient, linear energy-transfer coefficient, µtr, determines the
energy transfer from the radiation to the attenuating layer:

linear energy-transfer coefficient L−1

µtr = 1

W
· dWkin

dz

Symbol Unit Quantity

µtr m−1 linear energy-transfer coefficient
W J total radiant energy
dWkin J kinetic energy of secondary electrons
dz m thickness of layer
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8. Kerma

(kinetic energy released per unit mass), K , describes the first stage of the interaction of
indirectly ionizing radiation (e.g., neutrons):

indirectly ionizing radiation L2T−2

K = 1

ρ

dEtr

dV

Symbol Unit Quantity

K Gy kerma
ρ kg/m3 material density
Etr J kinetic energy of released

charged particles
V m3 volume

➤ When giving a kerma, one must refer to the specific material.

9. Relative biological efficiency

(RBE) of a kind of radiation x for a biological endpoint a (e.g., a given value of the survival
probability of some kinds of cells), is determined by comparison with a reference dose:

RB Ea =
(

Dref

Dx

)
a
.

The reference dose causes the same biological effect as the dose Dx.
Frequently, 60Co-γ -radiation or a 250 keV-X-radiation is used as reference dose.

27.10.1 Methods of dosage measurements
Personal dosimetry, the measurement of the dose at a place near the surface of the body
representative for radiant exposure.

M Ionization chamber, gas counter with gas amplification 1, used in the range of dose

of µGy up to 103 Gy. The discharge of a cylindrical capacitor is measured. The
residual charge is a measure of the dose (Fig. 27.54 (b)).

➤ Ionization chambers are used for personal dosimetry. They provide quick and
sufficiently accurate information. The ionization chamber is an integrating
dosimeter.

Gas amplification, the increase of free charge carriers by secondary ionization of the
primarily produced ions accelerated in the electric field.

M Proportional counter, gas counter with a gas amplification up to 104.

Counter

Figure 27.54: (a): Sketch of a proportional counter, (b): sketch of an ionization chamber.
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The pulse height of the current pulse produced is proportional to the energy of
the incident radiation. The number of pulses is a measure of the number of incident
radiation quanta (Fig. 27.54 (a)).

M Geiger-Müller counters, trigger counters operating with a gas amplification of about

108. The proportionality of pulse height and energy of the incident radiation is lost.
These dosimeters are used in local dose and dose rate measurements.

Local dose, the equivalent dose for soft tissue at a certain place in the radiation field within
a certain time interval.

M Film dosimeters, detectors that exploit the blackening of photographic material by
incident radiation. They are used in the dose range between 0.1 mSv and 1 Sv and are
suitable for photon energies between 20 keV and 3 MeV. Film dosimeters are applied
in personal dosimetry, in particular to keep track of the dose received by radiation-
exposed persons. By means of radiation converters (e.g., Cd plates for neutrons in
γ -radiation), this dosimeter may be used universally. It integrates the total dose.

M Thermoluminescence dosimeter, converts the energy of ionizing radiation stored
in a solid into light via heating. This storage of energy is a solid-state effect (see
p. 1063).

Radiotoxicity, the toxicity of radionuclides for the human body due to the emitted radia-
tion.

Biological half-life, the time over which an activity present in the body is reduced by
excretion to half of the initial value.

Physical Biological Critical
Nuclide half-life half-life organ

Class 1 of radiotoxicity: maximum 3.7 kBq
90Sr 28.1 yr 11 yr bones
210Pb 22 yr 730 d bones
210Po 138 d 40 d spleen
233U 1.63 · 105 yr 300 d bones

Physical Biological Critical
Nuclide half-life half-life organ

Class 2 of radiotoxicity: maximum 37 kBq
22Na 2.58 yr 19 d whole body
137Cs 26.6 yr 100 d muscle
144Ce 285 d 330 d bones
131I 8.0 d 180 d thyroid gland

Class 3 of radiotoxicity: maximum 370 kBq
14C 5570 yr 35 yr fatty tissue
24Na 15 h 19 d whole body
105Rh 1.54 d 28 d kidney
109Cd 1.3 yr 100 d liver

Class 4 of radiotoxicity: maximum 3.7 MBq
3H 12.6 yr 19 d whole body
238U 4.5 · 109 yr 300 d kidney
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27.10.2 Environmental radioactivity
Cosmic radiation, radiation incident from outer space on Earth. The primary cosmic ra-
diation consists mainly of protons and α-particles interacting with the nuclei of molecules
of air (14

7N, 16
8O). Components of the secondary radiation: p, n, π , µ, K, e, γ , ν.

The neutrino flux has no influence on the radiation exposure of humans, since neutrinos
are governed only by the weak interaction.
➤ The mean dose rate of cosmic radiation at sea level is about 3 · 10−4 Sv/yr.
➤ Singular events have been observed in cosmic rays from which one may conclude

the existence of particles of energy > 1020 eV. The nature (new exotic particles,
energetic photons or atomic nuclei) and origin (extragalactic sources, neutron stars,
collision fronts in the halo of our galaxy) of these particles is not yet clear.

Terrestrial radiation, radiation of the natural radioactive nuclides with very long half-life,
and of their products.
Cosmic radiation produces the radioactive isotopes tritium 3

1H and 14
6C.

Terrestrial doses for various places, and some extreme values:

Place/country Equivalent dose (10−5 Sv/yr)

Nile Delta, Egypt 350
Paris, France 350
Grand Central Station, New York 525
Katzenbuckel/Baden-Württemberg, Germany 630

India/Kerala state ≤ 2700
Brazil/Atlantic coast ≤ 8700

Nuclei produced in the upper atmosphere fall to Earth’s surface by sedimentation, rain-
fall or convection.

Until 1963 1963/1964 1979
/ (Bq/kg(H2O))

rainfall, central Europe (annual average) 740 222000 9250
rainfall, European west coast (annual average) 296 92500 2960
ground water, central Europe 444 166500 7400
surface water, North Atlantic 22.2 1850 555

■ Besides tritium, radioactive hydrogen and radioactive carbon, the air contains mainly
radon and its decay products. Radon escapes from clefts in the Earth’s crust and is
swept to the surface by spring water.

Fall-out, increase of radioactivity, in particular the tritium abundance, in the earth surface,
as a consequence of the above-ground atomic explosions in the 1960s.

Self-radiation of the human body, originates from radioactive isotopes ingested in food,
and by breathing.
▲ The natural self-radiation level is about 3 · 10−4 Sv/yr.
Natural exposure, the sum of all three components: cosmic, terrestrial and self-radiation.
▲ Currently, the natural exposure is about 1.1 · 10−3 Sv/yr.
Some parts of the body are exposed much more by the inhalation of radioactive decay
products.
■ For example, exposure of the lungs is about 1.2 · 10−2 Sv/yr.
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Man-made Exposure

Diagnostic x-rays

3 jet flights per yr
Nuclear power

Television

Natural Exposure

Cosmic rays

Terrestrial

Self-radiation

yr

yr

Figure 27.55: Comparison of man-
made and natural exposures. Two rel-
atively high altitude locations in Ger-
many are compared with sea level.

Man-made or artificial exposure, the exposure produced by man. Among these are:
• nuclear power plants,
• medical diagnostics,
• building materials.
Activity of various building materials:

Building 226Ra (α-emitter) 232Th (α-emitter) 40K (β-emitter)
material / (Bq/kg)

building bricks 52.5 49.2 652
sandstone 11.5 4.1 273
concrete 26.3 21.8 437

▲ X-ray diagnostics and radiation therapy are the main exposure factors.
Dose rate of various x-ray sources:

Dose rate Sv/h
Device (distance 10 cm)

color TV 0.6 · 10−6

monitor screens 5 · 10−6

oscilloscores 1 · 10−6

radar control screens 4 · 10−6



28
Solid-state physics

28.1 Structure of solid bodies

28.1.1 Basic concepts of solid-state physics
Solid, matter in the solid physical state. Solids may be classified according to the state of
order of their structural constituents (atoms, ions, molecules):
• Crystalline solid (crystal), a solid with periodic order of its structural constituents.

Regular, periodically repeating configurations of structural elements occur in all three
dimensions.

• Amorphous solid, a solid without long-range order of the structural elements. There
are no periodically repeating configurations of structural elements.

■ Alkali metals have a crystalline structure. Diamond is crystalline carbon. Common
salt (sodium chloride, NaCl) exhibits a crystalline structure.

■ Alloys and gels are amorphous solids.
Many solid materials (e.g., glasses or polymers) cannot be included in this scheme. Poly-
mers have a partly periodic order. Solids exist with micro-crystalline structure.

Solids are distinguished from each other by their response to a physical influence:
• Isotropic solid, no space direction is preferred over the others. The response of the

solid is direction-independent.
▲ Frequently, amorphous solids are isotropic.
• Anisotropic solid, certain space directions are different from the others. The response

of the solid is direction-dependent.
▲ The periodic structures in crystals define preferred spatial orientations.
Monocrystal, idealized solid with a periodically repeating atomic structure that extends
over the entire volume. The crystal axes have about the same orientation relative to a body-
fixed coordinate frame in all regions of the body.
■ Salts crystallizing out of solutions are often monocrystals.

M Monocrystal growing from melts (one component), from solutions (several compo-
nents) or from the gaseous phase.

967
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Figure 28.1: Schematic view of the
Czochralski method. 1 – melt, 2 – heater,
3 – growing monocrystal.

Figure 28.2: Schematic view of the
Bridgeman method. 1 – melt, 2 – heater,
3 – growing crystal, 4 – cooling.

Czochralski method: The crystal is drawn directly from the melt (Fig. 28.1).
Bridgeman method: The crystal grows in a crucible, which descends at a constant

speed from the hot zone into the cold zone (Fig. 28.2).
The methods mentioned above have the disadvantage that the crystal is polluted by

oxygen incorporated from the crucible walls.
Zone melting method: The impure material is melted by a narrow melting de-

vice moving slowly along the sample. A monocrystal forms behind the heating zone.
Impurities prefer the liquid phase and are removed.

Lattice defect, deviation from the ideal structure of strict spatial periodicity by lattice
defects (dislocations, vacancies, stacking disorders, etc.).
▲ The type and abundance of lattice defects essentially determines the physical proper-

ties of a solid.
Polycrystalline solids, the monocrystalline regions (crystallites) frequently extend over
few micrometers only, the crystallite orientations vary randomly.
■ Metals crystallized after melting are usually polycrystalline.
Grain, monocrystalline region in a solid.

Grain boundaries, separate the monocrystalline regions of a polycrystalline solid.
Texture, distribution of the orientation of grains in a polycrystalline solid.

28.1.2 Structure of crystals
Crystal lattice, periodic, three-dimensional arrangement of atoms, molecules or ions; their
type and geometric structure determines the outward appearance and the physical proper-
ties of the crystal.

Space lattice, point lattice, mathematical abstraction of the crystal lattice to a spatially
periodic arrangement of points corresponding to the lattice sites. The kind of atoms or
molecules at the lattice sites is thereby ignored.

Base, a group of atoms or molecules ascribed to any lattice point or any elementary
parallelepiped.

Space lattice                     +   Base                 =           Crystal structure

Figure 28.3: On the concept of crystalline structure.
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1. Crystal structure,

determined by the symmetry of the structure, the lattice parameters (lengths and angles),
and the specification of the center-of-mass positions in the asymmetric unit of the elemen-
tary cell.

Elementary cell, element of the crystal lattice from which the complete lattice may be
reproduced by translation.

Asymmetric unit, smallest spatial fraction of an elementary cell from which the entire
elementary cell may be obtained by symmetry operations.

Translation, displacement of an elementary cell in space by the translation vector �T.

2. Lattice vectors and crystal axes

Fundamental translation vectors, lattice vectors �a, �b, �c, displacements �T = �an1+�bn2+
�cn3 along integral multiples of these vectors map a crystal lattice onto itself.
■ Let �r be an arbitrary point in space. The lattice at the point

�r ′ = �r+ n1�a+ n2�b+ n3�c (n1, n2, n3 are integers)

is identical to the lattice at the point �r. The lattice vectors �a, �b, �c span a parallelepiped.

Figure 28.4: On the concept
of the translation vector.

▲ A point lattice is uniquely defined by the fundamental translation vectors (lattice
vectors) �a, �b, �c.

Crystal axes, directions defined by the fundamental lattice vectors �a, �b and �c.
Lattice constants, magnitudes of the fundamental lattice vectors �a, �b and �c, specify the

distances of the bases along the crystal axes.

3. Primitive elementary cell,

elementary cell with the minimum volume for a given lattice structure. The primitive ele-
mentary cell contains only one lattice point.
➤ Although the primitive parallelepiped has one lattice point on each of its eight edges,

these have to be shared over the eight elementary cells contacting each other there.
The lattice vectors shown in Fig. 28.5 each span a primitive elementary cell.

Figure 28.5: Primitive
elementary cells.

➤ It is not always suitable, or customary, to choose the elementary cell to be as small as
possible. The elementary cells of tungsten and copper shown in the following figure
exhibit the cubic symmetry of these metals better.
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Figure 28.6: Elementary cell. (a): copper (face-centered cubic lattice), (b): tungsten (body-
centered cubic lattice).

4. Crystal system and lattice types

Crystal system, subdivision of crystals into seven crystal systems according to the follow-
ing criteria:
• lattice constants are equal or different,
• angles between the crystal axes.
Lattice types:
• Primitive lattice: all lattice points are on the edges of the elementary cell.
• Face-centered lattice: additional atoms occur at the intersection points of the face

diagonals of the elementary cell.
• Base-centered lattice: besides the atoms at the edges, there is one atom at each in-

tersection point of the face diagonals of two opposite faces.
• Body-centered lattice: besides the atoms at the edges, there is one atom at the inter-

section point of the space diagonals of the elementary cell.

28.1.3 Bravais lattices
1. Types of Bravais lattices

Bravais lattice, notation for individual lattice types. In 3D space, there are 14 distinct
Bravais lattices:

Simple                    Space-centered           Body-centered Figure 28.7: Cubic Bravais
lattice.

Figure 28.8: Tetragonal Bravais lattice. Figure 28.9: Monoclinic Bravais lattice.
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Figure 28.10: Orthorhombic
Bravais lattice.

Figure 28.11: Bravais lattices. (a): triclinic, (b): rhombohedral, (c): hexagonal.

The following structures are important for metals:
• the face-centered cubic lattice (fcc),
• the body-centered cubic lattice (bcc),
• the hexagonal compact packing of spheres (hcp).
➤ The lattice types of important elemental crystals are given in the Periodic Table of

elements.

2. Packing density of the elementary cell

Compact packing of spheres, regular arrangement of spheres of equal size with a min-
imum of empty space between them. One distinguishes between hexagonal and face-
centered compact packing of spheres.

Fig. 28.12 shows a layer of compact packing of spheres with the centers at A.

Figure 28.12: Compact
packing of spheres.

If the second layer is arranged in the positions B (or in the equivalent positions C), there
are two possibilities for arranging the third layer:
• The spheres of the third layer may be placed above the positions A. The result is a

sequence AB AB A . . . (hexagonal structure).
• The spheres of the third layer occupy the positions above C . The result is a sequence

of planes ABC ABC . . . (face-centered cubic).
▲ In the compact packing of spheres, every sphere of a plane touches six other spheres

of the same plane and three spheres in each of the two neighboring planes.
Packing density, fraction of space occupied in the elementary cell by the volume of the
spheres.
• In both types of structures for the compact packing of spheres, the packing density

amounts to 74 %.
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• For comparison: the packing density of the bcc-lattice is 68 %.
Coordination number, the number of next neighbors of an atom.

3. Lattice planes and Miller indices

Lattice plane, arbitrary plane in a lattice. A plane is uniquely determined by three non-
collinear points. The intersection points of the plane with the crystal axes are used to define
the lattice plane. Miller indices, abbreviation for the specification of lattice planes for
given crystal axes. They are fixed as follows:
• The intersection points of the plane with the crystal axes defined by the lattice vectors

�a, �b, �c are determined in units of the lattice constants (Fig. 28.14).
• The reciprocal values of the numbers obtained in this way are reduced to the least

common denominator.
• The numerators of the fractions are the Miller indices of the lattice plane.
• The planes are identified by Miller indices given in brackets: (hkl).
• If an intersection point is at infinity, the corresponding index is zero.

Plane Plane

Figure 28.13: Lattice plane perpendicular to
the z-axis, lattice sites in the x-y-plane.

Figure 28.14: Construction scheme of the
Miller indices: example (h, k, l) = (2, 1, 2).

■ For the plane with intersection points 6, 2, 3, the reciprocal values are 1/6, 1/2, 1/3
→ 1/6, 3/6, 2/6.

Hence, the Miller indices are (132).
• If the plane intersects one or several crystal axes on the negative side of the origin,

the index is specified by an upper horizontal bar.
■ (hkl) means that the plane intersects the �b-axis in the negative range.
Crystal direction, direction of a vector in the basis of the fundamental lattice vectors; its
components are integer numbers (Fig. 28.16).

Direction

Figure 28.15: Several crystal planes in a
cubic lattice.

Figure 28.16: Crystal direction.
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These integer numbers are put into square brackets: [hkl].
➤ In cubic crystals the direction [hkl] is always perpendicular to the plane (hkl)with

the same indices. In other crystal systems this does not hold in general.
Atomic coordinates u, v, w, determine the positions of lattice points in an elementary
cell. They are given as fractions of the lattice constants a, b, c along the crystal axes.

28.1.3.1 Simple crystal structures

1. NaCl

Crystal a/nm Crystal a/nm

LiH 0.408 AgBr 0.577
NaCl 0.563 MgO 0.420
KCl 0.629 MnO 0.443
PbS 0.592 UO 0.492

Figure 28.17: NaCl-structure and representative crystals of the NaCl-structure (a: lattice
constant).

Bravais lattice: fcc, base: 1 sodium- and 1 chlorine atom (separation: 1
2 of space diago-

nal), number of base units per elementary cell: 4, coordination number: 6.
Atomic coordinates:

Na: 000; 1

2

1

2
0; 1

2
0

1

2
; 0

1

2

1

2
Cl:

1

2

1

2

1

2
; 00

1

2
; 0

1

2
0; 1

2
00

2. CsCl

Crystal a/nm Crystal a/nm

CsCl 0.411 AgMg 0.328
TlBr 0.397 LiHg 0.329
TlI 0.420 AlNi 0.288
NH4Cl 0.387 BeCu 0.270

Figure 28.18: CsCl-structure and representative crystals of the CsCl-structure (a: lattice
constant).

Bravais lattice: simple cubic, base: 1 cesium- and 1 chlorine atom (separation 1
2 of space

diagonal), number of base units per elementary cell: 1, coordination number: 8.
Atomic coordinates:

Cs: 000 Cl:
1

2

1

2

1

2
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28.1.4 Methods for structure investigation
1. X-ray diffraction,

most common method for structure investigation. It is based on the diffraction of x-rays by
the lattice atoms. Wavelength of photon (energy Eγ ):

λγ = 1.24

Eγ /keV
nm .

Diffraction occurs on the atomic electrons. Hence, the intensity of diffraction depends
strongly on atomic number Z .

X-ray diffraction is not very sensitive for elements of low atomic number. The posi-
tions of oxygen atoms or hydrogen atoms may barely be determined by x-ray diffraction.
Moreover, elements of neighboring atomic numbers may barely be distinguished from each
other.

2. Electron diffraction,

diffraction of electrons by atomic nuclei, therefore sensitively dependent on the atomic
number. The wavelength of an electron with energy Ee is

λe = 1.2√
Ee/eV

nm .

Electrons are charged particles and about 2000 times lighter than neutrons. They interact
very intensely with matter electromagnetically, hence do not penetrate deeply into the crys-
tal. Electron diffraction is therefore of particular importance for structure investigations of
surfaces and thin layers.

3. Neutron diffraction,

exploits the wave property of the neutron for diffraction by periodic structures. Neutron
diffraction by a crystal lattice occurs if the de Broglie wavelength of the neutrons (energy
En) is similar to the separation of the lattice planes in the crystal. The wavelength of the
neutron is

λn = 0.028√
En/eV

nm .

Coherent scattering of neutrons occurs at the atomic nuclei of the structure compo-
nents. The intensity of the diffraction depends on the neutron scattering cross-section
of the nucleus. Structure analysis may be done with experiments with thermal neutrons
(En ≈ 0.025 eV).

Neutron diffraction allows both the determination of the position of elements of low
atomic number, and also the discrimination between neighboring elements of the Periodic
Table.

Magnetic scattering of neutrons, scattering by the magnetic moments of the atoms due
to the interaction with the magnetic moment of the neutron.

4. Bragg condition,

premise for constructive interference in the reflection of incident radiation by the lattice
planes of the crystal. If the condition is not fulfilled, the radiation interferes destructively.
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Bragg condition L

nλ = 2d · sin�

Symbol Unit Quantity

n 1 integer number
λ m wavelength
d m separation of lattice planes
� rad glancing angle

➤ The wavelength must be within the range given by the structure of the crystal in order
to produce measurable Bragg reflections.

n

( )

e

Figure 28.19: Wavelengths of x-ray
photons, neutrons and electrons as a
function of their energy.

Figure 28.20: Bragg condition. �: glancing
angle. The angle of incidence relative to
the normal to the lattice planes is π/2−�.
A, B: wave fronts, ABC : path difference
2d sin�.

5. Methods of x-ray and neutron scattering

a) Laue method: In this method, a fixed monocrystal is irradiated by x-ray or neutron
beams with a continuous, “white” spectrum. The Bragg condition is fulfilled only for
certain wavelengths. Constructive interferences arise at certain angles, producing point-
like reflections. The pattern of reflections is determined by the structure of the crystal.
This method is particularly convenient for a rapid determination of crystal orientations and
crystal symmetries. It is rarely used for structure investigations.

b) Rotating-crystal method: A monocrystal in a mono-energetic x-ray or neutron
beam is rotated about a fixed axis. The Bragg condition is fulfilled at certain rotation
angles at which point-like constructive interferences occur.

c) Debye-Scherrer method: This method is applied for the investigation of powders.
The powder specimen is irradiated by a mono-energetic beam. The crystallites in the
powder sample are statistically oriented. Diffracted beams emerge from crystallites that
are randomly oriented in such a way that the primary beam hits several lattice planes at an
angle that fulfils the Bragg condition.

The Debye-Scherrer method is applied for measurements of the variation of the lattice
constants with the temperature, or the variation of the composition of an alloy. A practical
advantage of the method is that monocrystals are not needed.
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Figure 28.21: Rotating-crystal method.
1 – primary beam, 2 – scattered beam,
3 – rotating monocrystal, 4 – film.

Figure 28.22: Debye-Scherrer method.
1 – polycrystal, 2 – scattered beam, 3 – film.

28.1.5 Bond relations in crystals
1. Survey of the types of bond in crystals

Type of bond Ionic (heteropolar) Covalent (unipolar)

properties insulator at low temperatures, ionic
conduction at high temperatures,
plastically deformable

insulator, semiconductor, brittle,
high melting point

interaction

examples alkali halogenides organic molecules; C; Si; InSb

binding energy
(eV/atom)

6 – 20 1 – 7

Type of bond Metallic Van der Waals

properties electric conductor, good thermal
conductor, plastic, high reflectance
in IR and visible spectrum

insulator, low melting point, easily
compressible, transparent in the far
UV

interaction

examples metals, alloys noble-gas crystals, H2, O2,
polymers, molecular crystals

binding energy
(eV/atom)

1 – 5 10−2– 10−1

Lattice energy, difference of energy between the free atoms and the crystal.
▲ A crystal is only stable if its total energy is lower than the total energy of the free

atoms or molecules of which it is composed.



28.1 Structure of solid bodies 977

2. Ionic bond,

caused by the attracting Coulomb force between different charged ions.
■ Common salt, Na+Cl−, is a typical ionic crystal.

binding energy in ionic bond ML2T−2

EB = Q2

4πε0
· α

r

Symbol Unit Quantity

EB J binding energy
Q A s charge
ε0 A s/(V m) permittivity of free space
r m distance
α 1 Madelung constant

Ionic binding forces have a long range. Frequently, the effect of not only the next but also
of even more distant neighbors has to be taken into account.

Madelung constant, α, determines the strength of the ionic bond by taking into account
the more distant ionic charges:

Madelung constant 1

α =
∑

j

±R

r j

Symbol Unit Quantity

R m distance of next neighbors
r j m distance between ion j and reference ion

For a negative reference ion, positive ions get a sign +, and negative ions a sign −.

jth ion                Reference ion

rj

Figure 28.23: On calculating
the Madelung constant.

Table of typical values of the Madelung constant α:

Structure NaCl CsCl ZnS (cubic)

α 1.747558 1.747558 1.6381

Repulsive interaction, occurs because of the Coulomb force and the Pauli principle (see
p. 844) if two atoms approach each other closely and their electron shells overlap.
• At low temperature, ionic crystals are insulators.
• At high temperature, ionic conduction occurs. Ionic crystals are plastically deform-

able.

3. Metallic bond,

originates from the electrostatic interaction of the valence electrons released by the atoms
with all positive atomic cores of the crystal. The binding partners are not rigidly coupled;
the free valence electrons have a high mobility and are not localized.
■ Sodium, aluminum, iron.
Transition metals, metals with an incomplete d-shell (3d-, 4d-, 5d-metals), i.e., all metals
beyond the eight main groups of the Periodic Table of elements (see p. 877). They are
characterized by a high binding energy. Additional binding forces are generated by the
interaction between the inner d-shells.
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■ Copper, silver, gold.
The metallic bond is weaker than the ionic bond. Hence, the lattice energy of an alkali
metal crystal is significantly lower than that of an ionic alkali halogenide crystal.
Example: NaCl: 8.1 eV/atom, Na: 1.1 eV/atom.

M Crystals with a metallic bond are electric conductors and good thermal conductors.
They are plastically deformable. They are strongly reflecting in the IR and the visible
spectral range.

4. Covalent bond,

unipolar bond, electron pair binding via the exchange interaction. This type of bond is
dominant in the elements of the third through the fifth main group of the Periodic Table.
The unfilled valence electron shells may organize a closed, noble-gas-like electron config-
uration that involves the valence electrons of the next neighbors.
■ Many carbon compounds are covalently bound, in particular diamond and organic

molecules.
Electron exchange, an affiliation of an electron pair to two neighboring atoms.

Exchange interaction of covalent bond, a force mediated by the exchange of electrons
between atoms. The spins of the electrons are oriented antiparallel (singlet state), so that
(due to the Pauli principle) the spatial wave function of the two electrons is symmetric. For
a spatially symmetric electron wave function (antiparallel spins: antisymmetric spin wave
function), the probability density of finding the particle at the center between the binding
partners is larger than in the case of a spatially antisymmetric wave function for electrons
with parallel spins (triplet state – symmetric spin function). The singlet configuration of
electrons yields an energy contribution—as compared with separated atoms—which leads
to a binding of the two atoms.

Figure 28.24: Binding potentials as a function of the interatomic distance r for electron
pairs with (a) antiparallel spins (bound state), and (b) parallel spins (scattering state). The
right side of the figure sketches the contour lines of the electron density distribution: despite
the exchange force, the electrons remain closely to the atoms.

▲ Covalent bonds are bonds between neutral atoms. A configuration with parallel ori-
entation of the spins of electrons involved in the exchange does not lead to a binding
of the atoms.

▲ Important examples are covalently bound semiconductors.
▲ Besides crystals with ionic or covalent bonds, there are also crystals with a mixed

bond.

5. Van der Waals bond,

weakly attracting dipole-dipole interaction occurring when instantaneous dipole moments
are mutually induced in the crystal atoms or molecules. The interaction from these induced
dipole moments (dipole-dipole interaction) results in a weak attractive electric force.
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Van der Waals binding energy ML2T−2

U(r) ≈ − C

r6

Symbol Unit Quantity

U(r) J binding potential
C J m6 interaction constant
r m distance

▲ C is of the order of magnitude of 10−77 J m6.
▲ The Van der Waals potential is the most important attractive interaction in noble-gas

crystals and between organic molecules.
➤ For a correct description of the experimental data, an additional weak-repulsive po-

tential of the hard-core type ∼ r−12 is needed.
The Lennard-Jones potential results from combining the hard-core repulsion with the
Van der Waals potential

Lennard-Jones potential ML2T−2

U(r) = 4ε

[(σ
r

)12 −
(σ

r

)6
]

C = 4εσ 6

Symbol Unit Quantity

U(r) J binding potential
r m distance
ε J parameter
σ m parameter

with new parameters ε and σ , where C = 4εσ 6.
Table of ε, σ and C for the noble gases:

Noble gas He Ne Ar Kr Xe

ε/10−23 J 14 50 167 225 320
σ/10−10 m 2.56 2.74 3.40 3.65 3.98
C = 4εσ 6/(10−77J m6) 0.016 0.085 1.032 2.128 5.088

28.2 Lattice defects

Lattice defect, deviation from the ideal structure of strict spatial periodicity by construc-
tion faults (vacancies, dislocations, stacking disorders, etc.).
▲ Type and abundance of lattice defects modify the mechanical, electric, magnetic and

optical properties of solids in a characteristic manner.

28.2.1 Point defects
1. Vacancies

Vacancies, atoms missing on regular lattice sites.
Divacancies, neighboring vacancies.
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Figure 28.25: Lattice plane
of a two-atomic lattice with
vacancies (1 – vacancies,
2 – divacancy).

Vacancy-formation energy, EV , energy expended to remove an atom from the lattice
compound and lift it to the crystal surface.

vacancy density in equilibrium L−3

n = N · e−
EV

kBT

Symbol Unit Quantity

n m−3 vacancy density
N m−3 particle density
EV J vacancy-formation energy
kB J · K−1 Boltzmann constant
T K temperature

■ At room temperature n
N ≈ 10−17.

At 1000 K the vacancy concentration increases to n
N ≈ 10−5.

▲ In ionic crystals it is more advantageous energetically to produce the same number
of cation and anion vacancies.

M Measurement of vacancy concentrations: The vacancy concentration may be cal-
culated from the difference between the relative linear expansion 
L/L in heating
and the relative lattice change 
a/a determined by means of x-ray diffraction. A
vacancy affects the diffraction only weakly, but the length of the sample increases if
atoms migrate from the crystal interior to the surface.

Vacancy concentrations have been determined for about two decades by means
of positron annihilation spectroscopy (PAS). Positrons from a positron source (e.g.,
22Na) are thermalized in a solid by collisions with the lattice atoms and then captured
into the vacancies. The vacancies represent a negatively charged sink relative to their
environment. The positrons captured into such sinks produce annihilation photons
that have different characteristics from those produced by freely moving positrons.

2. Frenkel defects, lattice impurities and color centers

Interstitial atoms, additional atoms built into the lattice between the regular lattice sites.
Frenkel defect, consists of a vacancy and an atom at an interstitial position in the vicin-

ity of the vacancy where the atom would fit in. There is an attractive interaction between
the interstitial atom and the vacancy.
▲ Frenkel defects are the most abundant point defects in silver halogenides.
Lattice impurities, impurity atoms built in:
• at regular lattice sites (substitutional), or
• between the lattice sites (interstitial).
▲ Lattice impurities in semiconductors play a dominant role as donors or acceptors.
Color centers, lattice impurities that absorb visible light.
▲ Color centers occur in ionic crystals. They cause a coloring of these crystals which—

as a rule—are transparent in the optical range of the spectrum.
F-center, simplest color center consisting of an anion vacancy and an excess electron
bound to this vacancy.
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Figure 28.26: F-center.

28.2.2 One-dimensional defects
Dislocation, a linear arrangement of point defects.
▲ Dislocations generate a stress field in their vicinity.
Edge dislocation, a lattice plane terminates in the crystal, like a wedge does.

Low external stresses may move dislocations if the binding forces have no preferred
orientation.

Glide plane, a crystal plane along which two parts of the crystal glide over each other.
▲ The gliding direction is perpendicular to the dislocation line (symbol ⊥) for edge

dislocations.

Figure 28.27: Edge dislocation. Figure 28.28: Glide plane.

■ Forces of 1N/cm2 are sometimes sufficient to move a dislocation.
Screw dislocation, can be visualized as follows: A crystal is cut across the middle. Then a
shear stress is applied parallel to the cut edge one atomic distance away.
▲ The crystal lattice is displaced parallel to the dislocation line by one atomic plane.
Burgers vector, �b, together with the direction of the dislocation line �s characterize the
geometric properties of a dislocation. The Burgers vector �b is always a lattice vector.

Shear

Figure 28.29: Schematic
figure on the generation
of a screw dislocation. �s:
dislocation line, �b: Burgers
vector.

• A closed loop is made from atom to atom about a dislocation line that lies completely
in the non-disturbed crystal region.

• This loop, starting from the same atom, is transferred into the corresponding ideal
crystal without dislocation. The loop is then no longer closed.

• The missing vector required to complete the loop is the Burgers vector �b.
▲ For edge dislocations, the Burgers vector is perpendicular to the dislocation line.
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Figure 28.30: Burgers vector �b of an edge dislocation. (a): circulation in the distorted
crystal region, (b): circulation in the non-distorted crystal region. The step sequence is
indicated.

Figure 28.31: Burgers vector �b of a screw dislocation. (a): circulation in the distorted crys-
tal region, (b): circulation in the non-distorted crystal region. The step sequence is indi-
cated.

▲ For screw dislocations, the Burgers vector and the dislocation line are parallel to
each other.

Dislocation density, number of dislocation lines per unit area.
■ In strongly deformed metal crystals one observes dislocation densities of 1011 −

1012 cm−2.
Plasticity, a measure of irreversible shape variability of solids under external deforming
forces.
▲ The more dislocations exist in a crystal, the higher is its plasticity.

M Dislocations may be etched by appropriate bases or acids. The etching speed in the
region distorted by the dislocation is higher than in the non-disturbed crystal. The
resulting etch pits may be counted by a microscope or an electron microscope.

28.2.3 Two-dimensional lattice defects
Grain boundaries, boundaries between monocrystalline regions (grains).

Small-angle grain boundaries, boundaries of crystallites the grain boundaries of which
enclose angles of only few degrees because of twisting of the crystallites forming the grain
boundary. Fig. 28.32 sketches a small-angle grain boundary formed by successive edge
dislocations.

Stacking disorder, two atomic planes are displaced in their plane by a vector that is not
a lattice vector.
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Figure 28.32: Schematic
representation of a small-
angle grain boundary.
1 – crystal 1, 2 – crystal 2,
3 – grain boundary, 4 – edge
dislocations.

28.2.4 Amorphous solids
Amorphous solids, solids without long-range order. A certain short-range order may exist
in the vicinity of individual atoms.
▲ Amorphous solids are always produced by the freezing of a disorder.
▲ The amorphous state is a metastable state, i.e., after extended preservation (some-

times years) the substance recrystallizes.
M Thermal treatment converts the amorphous solid into a crystalline state.
Metallic glasses, amorphous alloys displaying the properties of metals:
• elastic at high mechanical stress,
• magnetic,
• good thermal conductivity,
• electrically conducting,
and properties of glasses,
• mechanically hard,
• corrosion-resistive.
Cooling speeds of 106 K/s and more are required in order to produce amorphous metals.
Simple metals may not be able to be produced as stable amorphous materials. Besides the
metal, a so-called glass-former (boron or phosphorus) must be added to an alloy. Metallic
glasses occur only for a thickness up to 50 µm. The cooling speed is too low for higher
thicknesses.

M Melt-spinning is the most common method for the production of metallic glasses
(Fig. 28.33).

Metallic glasses are used for:
• transformer sheets, because of low eddy current losses,
• hard recording-head material, fast remagnetization capability,
• magnetic memories.
Nanocrystalline materials, solids consisting up to about 50 % of lattice defects
(Fig. 28.34).

Nanocrystalline materials are generated by local energy supply, i.e., by producing a high
density of lattice defects.

Figure 28.33: Scheme of the melt-spinning
method. 1 – melting pot, 2 – coolant liquid,
3 – amorphous tape.

Figure 28.34: Scheme of a nanocrystalline
material.
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28.3 Mechanical properties of materials

Mechanical stress, σ , force referring to the cross-sectional area generated by a solid to
prevent deformation.

Strain

St
re

ss

Figure 28.35: Stress-strain
diagram. 1 – Hooke’s region,
2 – plastic region.

Hooke’s law, a linear relation between stress and strain (see p. 156).
Elastic region, interval in which Hooke’s law is valid.

Hooke’s law: stress ∼ strain ML−1T−2

σ = E · ε
ε = 
l/ l

Symbol Unit Quantity

σ N m−2 stress
E N m−2 elasticity modulus
ε 1 strain
l m length

l m change of length

Newton’s law: The viscous or plastic behavior of a material is proportional to the expan-
sion velocity.

Newton’s law: strain ∼ expansion velocity ML−1T−2

σ = η0 · dε

dt
ε = 
l

l

Symbol Unit Quantity

σ N m−2 stress
η0 N m−2 s dynamical viscosity
dε/dt s−1 expansion velocity
l m length

l m change of length

Creeping, a typical property of polymers, which also occurs for other materials. It refers
to the compliance of a substance under an applied mechanical stress.

28.3.1 Macromolecular solids
Macromolecular solids, solids formed from very long molecules.
▲ Macromolecular solids are held together by covalent and Van der Waals binding

forces.
▲ Macromolecular solids may be either amorphous or crystalline.

28.3.1.1 Polymers
Monomers, molecules that form the basic reactive units of polymers.

Polymers, macromolecules formed from monomers via chemical reactions (conversion
of the monomer into a reactive state by breaking of bonds, growth of chains by attachment
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of reactive monomers, termination of chains by attachment of a molecule). The process of
bonding of monomers to long chains is called as polymerization.

Figure 28.36: Scheme for the polymerization of polyethylene. (a): monomer (ethene),
(b): polymer (polyethylene).

1. Characteristics of polymers

Molecular mass distribution, variation of the molecular mass due to different lengths of
chains.
▲ The molecular mass distribution determines the performance of the material.
▲ The broader the molecular mass distribution, i.e., the larger the range of variation of

molecular masses, the wider the temperature range over which the polymers soften.
Mean relative molecular mass, degree of polymerization, Mr , measure of the length of a
macromolecule.

mean relative molecular mass Mr 1

Mr = m M

u

Symbol Unit Quantity

Mr 1 mean relative molecular mass
m M kg molecular mass
u kg mass of monomer

➤ Mean relative molecular masses range from 103 to 106.
▲ The mean relative molecular mass is a measure of the viscosity of the material. The

viscosity increases with molecular mass.
▲ Polymers do not exist in the gaseous phase.
The order of polymers may be:
• statistical (ball structure), or
• paracrystalline (chain molecules aligned with each other in a certain order).
▲ The tensile strength of polymer materials is strongly dependent on the temperature.
▲ Solid polymers are visco-elastic substances.
➤ The order of polymers may be described theoretically by field-theoretical methods

developed originally for treating magnetic systems (Pierre-Gilles de Gennes, Nobel
Prize, 1991).

2. Elasticity and plasticity of polymers

Elasticity, deformations that ocurred in the past are no longer present; the deformations
are fully reversible.

Plasticity, the deformations are irreversible and are preserved in the future.
■ Rubber is largely elastic, plasticine is plastic.
Visco-elasticity, after applying a constant strain, there occurs at first a small elastic ex-
tension, followed by a plastic deformation. After removing the strain, the elastic extension
disappears, but the plastic deformation is retained (Fig. 28.37).
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ε

ε

ε

Figure 28.37: Visco-elastic
behavior. (a): applied
stress, (b): elastic behavior,
(c): plastic behavior, (d):
visco-elastic behavior.

▲ Visco-elastic behavior is caused by the shearing of macromolecules (chain
molecules) against each other.

Loading speed, dσ/dt , speed of change of stress on the sample.
Deformation speed, dε/dt , speed of response of the body against a load by strain.
Maxwell model of the visco-elastic behavior:

Maxwell model T−1

dε

dt
= 1

G

dσ

dt
+ σ
η

Symbol Unit Quantity

dε/dt s−1 deformation speed
G N m−2 shear modulus
σ N m−2 stress
η N m−2 s dynamic viscosity

▲ At very low shear velocity, a polymer behaves like a viscous liquid.
▲ At extremely high shear velocities (e.g., by a stroke), a polymer behaves like an

elastic solid.
■ Silly-putty toy.

28.3.1.2 Thermoplasts
Thermoplasts, easily melting and swelling polymer materials of high solubility. Recycling
is possible with low supplied energy.
■ Polyethylene (PE), polyvinyl chloride (PVC), polystyrene (PS), polyamide (nylon,

perlon), polyester, polyacrylonitrile, polycarbonates.

28.3.1.3 Elastomers
Elastomers, almost fully elastic polymers.
▲ Elastomers swell readily, do not melt and are not soluble.
▲ The elastic behavior results because of the wide-meshed cross-linkage of the macro-

molecules.
Vulcanization, process of cross-linking of the macromolecules after shaping. The degree
of cross-linking of the molecules is essential for the elasticity of the material.
■ Elastomers: synthetic rubber, neoprene, polyurethane, silicon rubber.
Relaxation, behavior of a polymer, the strain of which returns exponentially to zero after
removing the shear stress.
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Voigt-Kelvin model of relaxation 1

ε(t) = σ0

E

(
1− e−

t
τ

)
after applying

ε(t) = σ0

E
e− t

τ

after removing

Symbol Unit Quantity

ε 1 extension
E N m−2 elasticity modulus
σ0 N m−2 strain
τ s relaxation time
t s time

Figure 28.38: Relaxing
polymer (schematic).

28.3.1.4 Duromers
Duromers (duroplasts), very close-meshed, interlaced, very hard, inelastic polymers.
▲ Duromers are neither meltable nor soluble.
■ Duromers: bakelites, formaldehyde resins and epoxide resins.

28.3.2 Compound materials
Compound materials, various substances joined to another substance—the compound
material.
■ Reinforced concrete, fiberglass-stabilized polyester and laminated fabric.
Layer-compound materials, compound materials produced by layer-on-layer stacking of
individual material components.
■ Bimetal, compound material consisting of two materials (metals) of different thermal

expansion and used as a temperature-controlled switch.
Particle-compound materials, substances consisting of a matrix with small particles de-
posited into the structure.

Dispersion hardening, deposition of hard particles, e.g., carbides, oxides and silicides,
in a soft matrix. Thereby the resistivity increases because of suppression of the dislocation
motions.
■ Dispersion-hardened alloys are used in turbine blades.
▲ Metallic particles dispersed in a matrix of elastomers may lead to electric conduction:

conducting elastomers.

Figure 28.39: Principle
scheme of a pressure sensor.
1 – conducting elastomer,
2 – conducting plates.
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Fiber-reinforced compound materials, materials with very long (endless fibers) or
short (short fibers) metallic or nonmetallic fibers embedded into a (metallic or nonmetallic)
matrix.
▲ The hard fibers take a part of the forces.
Whiskers, monocrystalline fibers with extremely high values of rupture resistance.
■ Fiber-reinforced compound materials are used in light-weight construction of cars

and airplanes.

28.3.3 Alloys
1. Main properties of alloys

Alloys, mixtures of several metals to a coherent body.
Limiting cases:
• Heterogeneous mixture, the components are not miscible. The alloy then always

consists of distinct crystal types.
■ Copper-lead.
• Mixed crystals, the components are miscible in any mixing ratio. A homogeneous

alloy results that contains only one crystal type.
■ Copper-nickel.
Intermetallic compounds, for certain compositions the components form compounds
characterized by a crystal lattice.
■ Fe3Al.

2. Temperature-dependent shape variation of alloys

Shape-memory alloy, memory alloy, an alloy that shows a temperature-dependent shape
variation.
▲ Shape memory is caused by a martensitic phase transition, a diffusionless and

reversible phase transformation characterized by coupled atomic displacements by
magnitudes that are small compared with the atomic separation. A visible shape vari-
ation arises.

▲ Shape-memory alloys have different coefficients of thermal expansion in different di-
rections, both in magnitude as well as in sign. They are by 3 to 4 orders of magnitude
greater than those of an ordinary metal.

▲ The volume of a sample increases in heating.
Properties of memory alloys:
• superelastic performance,
• high damping capability.

One-way effects, memory effects in which the state before deformation is reached again
after heating and is preserved in cooling.

Original shape              Distortion                    Heating                         Cooling

Figure 28.40: Memory alloy. One-way effect.

Two-way effects, are produced irreversibly in a deformation by additional dislocation
motions. When heating to above the temperature of the phase transition, a high-temperature
deformation arises, and in cooling a corresponding low-temperature deformation.
▲ This conversion may be repeated many times.
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Distortion                     Heating                         CoolingOriginal shape

Figure 28.41: Memory alloy. Two-way effect.

All-round effects, occur in certain Ni-Ti alloys. The initial material is deformed and
then undergoes a thermal treatment at 400 ◦C − 500 ◦C (tempering). The result is a
complete shape inversion under temperature change.
▲ This conversion may be repeated many times.

Original shape              Distortion                    Heating                     Cooling

Figure 28.42: Memory alloy. All-round effect.

3. Application of memory effects

• Antennas for space vehicles may consist of a compact winding of thin wire. They
widen by the heat of sun to a circular shape with a diameter of several kilometers.

• Cold welding, connection of tubes. A sleeve of memory alloy is produced with an
inner diameter several percent smaller than the outer diameter of the parts to be con-
nected. At the temperature of liquid nitrogen, the sleeve widens to fit over the outer
diameter of the tubes to be joined. At room temperature, the sleeve shrinks in diame-
ter and stretches in the axial direction. A solid, hermetically tight joint results.

Room temperature

Figure 28.43: Cold welding.

• Surgery for bone fractures: A spring clamp of given size and shape is stretched at
low temperature. The ends are fixed by screws at both sides of the fracture. The alloy
is chosen so that the spring clamp at body temperature remembers its initial shape
and simultaneously turns over into the superelastic state. On knitting of the bones,
the residual deformation gradually reduces, nevertheless a constant pressure stress is
maintained.

4. Superelasticity,

property of certain alloys to maintain the capability of elastic extension beyond the Hooke
region. When relaxing after reaching the 10 %-extension, the relaxation line runs somewhat
less steeply than, but nearly parallel to, the load line. No permanent deformation remains.
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Figure 28.44: Strain-
extension diagram in the
superelastic case.

28.3.4 Liquid crystals
1. Types of liquid crystals

Liquid crystals display both the properties of a liquid and those of a crystalline medium
in a certain range of temperature or concentration of a solvent. Liquid crystals are formed
by stretched molecules, mostly of aromatic compounds.

Nematic phases, liquid crystals. On average, the longitudinal axes of the molecules are
aligned parallel within larger or smaller regions. The molecules may, however, be shifted
arbitrarily along these axes and twisted against each other about the axes.

Smectic phases, liquid crystals in which the molecules also occur with parallel longitu-
dinal axes, but in layers.

In the time and spatial average, a parallel alignment of the longitudinal axes occurs only
over small ranges.
▲ External fields may generate the ideal case – parallel ordering of all molecules over

a larger region.
Cholesteric phase, special case of the nematic phase. Nematically ordered regions are
ordered in layers whereby the orientations of the longitudinal axes are twisted from layer
to layer.

Figure 28.45: (a): smectic phase, (b): nematic phase, (c): cholesteric phase.

2. Properties of liquid crystals

Orientation elasticity, property of orientation of the longitudinal molecular axes under
the influence of an external perturbation. After removing the perturbation, the initial state
is restored.

Optical birefringence, optical anisotropy, displayed in particular by liquid crystals in
the cholesteric phase.

Selective total reflection, only certain wavelengths are reflected. Selective total reflec-
tion is a feature of cholesteric liquid crystals built of twisted nematic structures. It de-
pends on pressure and temperature variations, as well as on electric and magnetic fields.
▲ The selectively reflected wavelength depends on the pitch of the helix, and on the

mean refractive index of the liquid crystal.
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Pitch

Figure 28.46: Twisted
nematic structure.

3. Applications of liquid crystals

• Liquid crystals are used for surface-covering measurement of temperature in medical
diagnostics. Incident white light appears as colored when reflected, and the color
corresponds to the body’s surface temperature.

• Liquid crystal display element (LCD): A 10 – 20 µm thick layer of a nematic liquid
is put between two electrodes. The molecules of the liquid crystal are deposited at the
electrodes with preferred directions twisted against each other by π/2. The electrodes
are transparent. If light that is linearly polarized parallel to a preferred direction is
projected onto this twisted nematic phase, the polarization direction is also rotated
by π/2 when it traverses the cell. When the individual segments of the electrode are
triggered by a voltage of 10 − 20 V, the original orientation of the molecules of the
liquid is disturbed, since the molecules now align with respect to the applied electric
field. An analyzer placed behind the cell with a rotated transmission direction of π/2
with respect to the polarizer distinguishes whether an electrode segment has been
activated or not; an activated electrode element appears as dark.

• Despite the high voltage, power consumption of an LCD practically vanishes, since
the alignment of molecules requires very low energy.

28.4 Phonons and lattice vibrations

28.4.1 Elastic waves
1. Lattice vibrations,

vibrations of the lattice elements n, n + 1, etc. about their equilibrium positions.
▲ For small displacements, Hooke’s law applies (harmonic lattice vibrations).
Elastic constant, Cn , interaction constant between planes with a separation of n · a, a
being the lattice constant.

equation of motion for one atom per elementary cell MLT−2

M
d2us

dt2
= Fs

=∑n Cn · (us+n − us)

Symbol Unit Quantity

Cn kg s−2 elastic constant
us m displacement of

plane s
us+n m displacement of

plane at d = n · a
M kg atomic mass
Fs kg m s−2 force
t s time
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2. Elastic waves,

solutions us of the equation of motion:

elastic wave L

us(�r, t) ∼ e j(�k�r−ωt)

Symbol Unit Quantity

us m displacement
�k m−1 wave vector
ω rad/s angular frequency
�r m position vector
t s time

3. Dispersion of elastic waves

Dispersion, ω(�k), dependence of the angular frequency ω of elastic waves on the wave
vector �k.

For a monoatomic cubic lattice in which only nearest neighbors interact (n = 1), for the
propagation directions parallel to the [100]-, [110]- and [111]-direction (reduction to the
one-dimensional problem of a one-dimensional linear wave):

dispersion T−1

ω =
√

4C1

M

∣∣∣∣sin

(
ka

2

)∣∣∣∣
Symbol Unit Quantity

ω rad/s angular frequency
k m−1 wave number
a m lattice constant
C1 kg s−2 elastic constant
M kg mass of atom

4. Phonons

First Brillouin zone, range of the physically meaningful values of the wave vector �k (see
Fig. 28.47). The range of −π · · · + π for the phase ka includes all independent values of
ω. The statement that two neighboring atoms are out of phase by more than π is physically
meaningless, since there exists a physically identical phase with a value within the range
−π · · · + π .

Figure 28.47: First Brillouin
zone.

▲ The wave number k may be restricted to the range −π/a ≤ k ≤ +π/a.
Phonon, energy quantum of an elastic wave. The denotation is analogous to that of the
photon, the energy quantum of an electromagnetic wave.
▲ The elastic energy of a lattice is quantized.
▲ The propagation of phonons is described by their wave vector �k and the dispersion

relation ω(�k).
▲ Phonons interact with particles, or with fields, as if they had a quasi-momentum ��k.



28.4 Phonons and lattice vibrations 993

Quasi-momentum of a phonon ��k, a quantity with the dimension of a momentum,
which does not actually exist in the crystal, but which obeys selection rules for allowed
transitions between quantum states similar to momentum conservation.

5. Measurement methods for phonons

Phonon spectrum, the energy distribution of the elastic waves in a solid.
M Inelastic neutron scattering, most important method of measurement of the phonon

spectrum of a solid. Because of their zero charge, the neutrons are not affected by the
Coulomb field of nuclei. They interact directly with the nuclei of a solid lattice.

The kinematics of neutron scattering is determined by the conservation laws for energy
and momentum.

energy and momentum conservation in neutron scattering

E f = Ei ± � · ω
�p f = �pi ± ��k

Symbol Unit Quantity

ω rad/s phonon frequency
�k m−1 wave vector
Ei , E f J energy of incoming

and outgoing neutron
�pi , �p f kg m s−1 momentum of incoming

and outgoing neutron
� J s quantum of action

The (+) signs apply to scattering processes in which a phonon is annihilated, the (−) signs
to processes creating a phonon. The quantity vs denotes the velocity of sound, ω = vs · k.

M In order to determine the dispersion relation, and hence the elastic constants, the
energy loss or energy gain of the scattered neutrons must be measured as a function
of the direction of scattering �p f −�pi . Typical neutron energies for such measurements
are in the range of several meV (milli electron volts).

6. Types of phonons

Longitudinal phonons, correspond to vibrations of the medium along approximately the
direction of propagation of the elastic wave.

Transverse phonons, energy quanta of vibrations of the medium approximately per-
pendicular to the direction of propagation of the wave. Exact parallelness, or orthogonality,
occurs only for certain symmetry directions of the lattice or in the limit of isotropic media.

Acoustic phonons: The atoms of a primitive elementary cell vibrate along the same
direction (analogous to an in-phase vibration of coupled oscillators). There are always
three acoustic branches. For low wave numbers, an approximately linear relation exists,
ω ≈ ck, and hence a sound velocity.

Figure 28.48: Schematic
trend of the dispersion
relation ω(k) in the long-
wave limit. (1): acoustic
phonons, (2): optical
phonons.
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Figure 28.49: Vibrational states of a transverse-phonon wave. (a): acoustic branch, (b):
optical branch.

Optical phonons: If the primitive elementary cell contains N > 1 atoms then—besides
the acoustic phonons—3N − 1 additional “optical” branches occur that correspond to op-
posite relative vibrations of the various atoms of the elementary cell (analogous to the
opposite-phase vibrations of coupled oscillators). The natural frequencies of the optical
phonons are higher than those of the acoustic ones.
■ In a two-atomic lattice (e.g., NaCl) the atoms vibrate against each other.

7. Equations of motion of elastic waves

Equation of motion for elastic waves in crystals with two atoms per elementary cell,
assuming an interaction between next neighbors only (for propagation directions of waves
coinciding with symmetry directions where the lattice planes each contain only one type
of atom):

equation of motion, two atoms per elementary cell MLT−2

M1
d2u2i+1

dt2
= C1 · (u2i+2 + u2i − 2u2i+1)

M2
d2u2i

dt2
= C1 · (u2i+1 + u2i−1 − 2u2i )

Symbol Unit Quantity

ui m displacement of
lattice plane i

C1 kg s−2 elastic constant
M1,M2 kg atomic masses

▲ The coupled system of differential equations has only then a solution if the following
dispersion relation holds:

ω2 = C1

(
1

M1
+ 1

M2

)
± C1

√(
1

M1
+ 1

M2

)2
− 4 sin2(k · a)

M1 · M2
.

▲ For small k, i.e., for very long waves (λ� a):

ω2 ≈ 2C1

(
1

M1
+ 1

M2

)
optical branch,

ω2 ≈ 2C1

M1 + M2
k2a2 acoustic branch.

8. Phonon velocity

Group velocity, vgr = dω

d�k of the elastic wave, velocity of the phonons.

For mono-atomic lattices (atomic mass M , lattice separation a), it follows from the
dispersion relation that

vgr =
√

C1a2

M
cos

ka

2
.
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▲ At the boundary of the Brillouin zone (ka = ±π ), the group velocity always
vanishes. These elastic waves are therefore standing waves.

▲ Elastic constant C1 and elasticity modulus E are proportional to each other:

C1 = a · E, a: lattice constant.

➤ In ionic crystals, optical phonons give rise to a strong electric polarization so that this
type of vibration may be excited very efficiently by photons, i.e., by electromagnetic
fields.

Gap, the frequency range between the acoustic and optical branches that is not included
in the phonon spectrum. Crystals do not display natural vibrations in this frequency range,
so that electromagnetic waves may propagate only with strong damping: the reflectance in
this frequency range is therefore very high.

Figure 28.50: Schematic representation of the gap in the state density D(ω) of the phonon
spectrum. (1): optical frequency, (2): acoustic frequency.

M The dispersion in prisms of ionic crystals is employed in infrared spectroscopy.

28.4.2 Phonons and specific heat capacity
According to classical mechanics, any vibrational lattice component of a solid has three
translational degrees of freedom. An equivalent statement says that at finite temperature
T > 0 phonons are excited in the lattice. The temperature dependence of the excitation of
degrees of freedom manifests itself as a thermodynamically measurable quantity related to
the specific heat C(T ).

Heat capacity, CV , derivative of the internal energy with respect to the temperature at
constant volume:

CV =
(
∂U

∂T

)
V
.

Specific heat capacity, cV , ratio of the heat capacity CV to the mass m of the substance:

cV = CV

m
.

Molar heat capacity, Cmol, ratio of the heat capacity CV to the quantity of substance
n = m/M , with M denoting the molar mass:

Cmol = CV

n
.

Dulong-Petit law: the molar heat capacity is a constant.
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At room temperature, this law holds for nearly all solids.

Dulong-Petit law ML2T−2Θ−1

Cmol = 3NAkB

= 24.9
J

mol · K

Symbol Unit Quantity

Cmol J K−1 mol−1 molar heat capacity
NA mol−1 Avogadro constant
kB J K−1 Boltzmann constant

Low temperatures (T → 0): the specific heat capacity for insulators varies as T 3, and for
metals as T as T goes to zero:

cV ∼
{

T 3 insulators
T metals

for T → 0 .

Bose-Einstein distribution, probability distribution n(ω, T ), of finding a state of energy
�ω in thermal equilibrium at temperature T ,

n(ω, T ) = 1

e
�ω

kBT − 1

.

State density D(ω), distribution of the vibrational states over the range of frequencies.
D(ω)dω is the number of natural vibrations in the frequency range between ω and ω+dω.
Internal energy U of the crystal:

internal energy of a crystal with the state density D(ω) ML2T−2

U =
∞∫

0

�ω n(ω, T )D(ω)dω

Symbol Unit Quantity

U J internal energy
ω rad/s angular frequency

of an oscillator
D(ω) s/rad state density
n(ω, T ) 1 Bose-Einstein

distribution function
T K temperature
� J s quantum of action

28.4.3 Einstein model
All N lattice atoms oscillate harmonically and isotropically, independent of each other,
with the same angular frequency ωE about their equilibrium positions.
State density in the Einstein model:

D(ω) = N · δ(ω − ωE ) .

Here, δ(ω − ωE ) is the delta function,

δ(ω − ωE ) =
{

0 for ω �= ωE
→∞ for ω = ωE

,

∫ ∞
−∞

δ(ω − ωE )dω = 1.
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internal energy of N oscillators in the Einstein model ML2T−2

U = f · N�ω

e
�ω

kBT − 1

Symbol Unit Quantity

U J internal energy
N 1 number of oscillators
ω rad/s angular frequency of oscillator
kB J K−1 Boltzmann constant
T K temperature
f 1 number of degrees of freedom

Heat capacity:

CV = f · NkB

(
�ω

kBT

)2
· e

�ω
kBT(

e
�ω

kBT − 1

)2
.

C
p
(c

al
 m

o
l-1

 K
-1

)

T/ TE

Figure 28.51: Comparison of the measured molar quantity of heat of diamond with the
theoretical curve calculated in the Einstein model for a parameter value TE = �ω

kB
=

1320 K.

In the limit of high temperature, the Einstein model yields the law of Dulong-Petit. At
very low temperatures, it provides too low a value for CV .

28.4.4 Debye model
Debye model, the state density increases as the square of ω up to the frequency limit ωD .
At this Debye frequency ωD , the state density drops suddenly to zero.

state density in the Debye model T

D(ω) =
{
ω2/ω3

D for ω ≤ ωD

0 for ω > ωD

ω3
D = 6π2v3

s N/V ,

ω = vs · k

Symbol Unit Quantity

D(ω) s rad−1 state density
ω rad s−1 angular frequency
ωD rad s−1 Debye frequency
vs m s−1 sound velocity
k m−1 wave number
N 1 number of oscillators
V m3 volume
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The sound velocity vs is a constant withω = vs ·k. In the Debye model, the group velocities
are replaced by the mean sound velocities.

Figure 28.52: State density in the Debye
model for a simple cubic lattice. Shadowed
area: integration over the Debye sphere;
dashed line: integration over the first
Brillouin zone.

Figure 28.53: Dispersion in the Einstein
and Debye models. 1 – optical branch,
2 – acoustic branch, 3 – Debye model,
4 – Einstein model.

Debye temperature, TD , determined from the Debye frequency ωD :

Debye temperature Θ

TD = �ωD

kB
= �vs

kB
·
(

6π2 N

V

)1/3

Symbol Unit Quantity

ωD rad s−1 Debye frequency
vs m s−1 sound velocity
N 1 number of oscillators
V m3 volume
kB J K−1 Boltzmann constant
� J s quantum of action
TD K Debye temperature

N : total number of particles in the volume V .
Internal energy for very low temperatures T � TD in any direction of lattice:

internal energy in the Debye model ML2T−2

U = 3

5
π4 NkBT

(
T

TD

)3

Symbol Unit Quantity

U J internal energy
N 1 number of oscillators
kB J K−1 Boltzmann constant
T K temperature
TD K Debye temperature

T/ TD

Figure 28.54: Specific
heat capacity cV of a
solid according to the
Debye model. The T 3-law
corresponds to the range
T/TD < 0.1.
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Figure 28.55: Specific heat
capacity cp of silicon and
germanium.

Debye’s T3-law for low temperatures T � TD :

Debye’s T3-law for T � TD L2T−2Θ−1

CV ≈ 12

5
π4 N · kB

(
T

TD

)3

Symbol Unit Quantity

CV J K−1 kg−1 heat capacity
N 1 number of oscillators
kB J K−1 Boltzmann constant
T K temperature
TD K Debye temperature

28.4.5 Heat conduction
1. Insulators

Heat conduction in insulators, energy transport mediated by the motion of phonons in a
solid.

Free-phonon gas, model according to which the phonons move freely and indepen-
dently of each other, like the molecules of a gas.
▲ Phonons propagate in a solid with velocity of sound. The heat transport mediated by

them proceeds much slower, however, since the phonons collide with each other and
with impurities, thereby permanently changing their direction of motion.

Mean free path of phonons,�ph , the average distance traveled by a phonon between two
collisions.
▲ The heat conduction in an insulator may be modeled by the phonon gas.

heat conductivity λ in insulators MLT−3Θ−1

λ = 1

3
v�PhCPhρPh

Symbol Unit Quantity

λ W/(m K) heat conductivity
v m/s mean phonon velocity
�Ph m mean free path of phonon
CPh J K−1 heat capacitance of phonon gas
ρPh m−3 phonon density

➤ The mean group velocity and the specific heat capacitance may be estimated with the
Debye model. The mean free path cannot be derived from the Debye model, since it
would yield an infinitely large mean free path.

▲ At low temperature, the mean free path is determined essentially by the scattering of
phonons on lattice defects.

Heat flow density, jq , the heat transported per unit area and unit time caused by a
temperature difference.
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heat flow density jq in insulators MT−3

jq = λ · 
T


x

Symbol Unit Quantity

jq W m−2 heat flow density
λ W/(m K) heat conductivity

T/
x K m−1 temperature gradient

➤ Heat conduction is a non-stationary process. A very small volume element may, how-
ever, be considered to be in thermodynamic equilibrium.

2. Metals

Heat conduction in metals, differs from heat conduction in insulators by the additional
heat transport due to the free electrons.

electronic heat conductivity λel in metals MLT−3Θ−1

λel = 1

3
vel�elCelρel

Symbol Unit Quantity

λel W/(m K) heat conductivity of electrons
vel m/s mean velocity of electrons
�el m mean free path of electrons
Cel J/K heat capacitance of electron gas
ρel m−3 density of electron gas

➤ The heat capacity of the electron gas is significantly lower than the heat capacity of
the phonon system. On the contrary, the mean velocity of electrons is much higher
than the mean group velocity (sound velocity) of phonons. The mean free path of
electrons also exceeds the mean free path of phonons.

▲ In metals, heat is mainly transported by the electron gas.
Wiedemann-Franz law: The heat conductivity of metals is directly proportional to the
electric conductivity κ .

Wiedemann-Franz law MLT−3Θ−1

λel = π
2

3

(
kB

e

)2
Tκ

Symbol Unit Quantity

λ W m−1 K−1 heat conductivity
kB J K−1 Boltzmann constant
e C elementary charge
κ 	−1 m−1 electric conductivity
T K temperature

28.5 Electrons in solids

Electrical conductivity, κ , of a metal, ratio of current density and electric field strength.
It is inversely proportional to the specific electrical resistivity ρ,

κ = 1

ρ
.
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➤ The SI unit of electric conductivity is (	 m)−1.
■ The specific electrical resistivity ρ of solids varies from 10−8 	 m to 1013	 m.
Classification of substances according to their specific electrical resistivity:
• conductors: ρ < 10−5 	m⇐⇒ κ > 105(	m)−1 (z.B. Cu 5.88·107, Ag 6.21·107,

Au 4.55 · 107)
• semiconductors: 10−5 	 m < ρ < 107 	 m ⇐⇒ 10−7(	 m)−1 < κ <

105(	 m)−1

• insulators: ρ > 107 	 m⇐⇒ κ < 10−7(	 m)−1

28.5.1 Free-electron gas
Ideal Fermi gas, many-body state of free, non-interacting particles that obey the Pauli
principle.

1. Eigenfunctions and eigenvalues of free electrons

The wave function of the free electron in the stationary state is a plane wave:

ϕ = 1√
2π

e j�k�r normalization to δ-function.

Since the electrons are confined in the solid, their probability density at the boundary must
vanish. If the solid is approximated by a cube of edge length L with periodic boundary
conditions, the components of the wave number vector along the cube edges are integer
multiples of 2π/L:

components of wave number vector L−1

kx = 2π

L
· nx ,

ky = 2π

L
· ny,

kz = 2π

L
· nz

Symbol Unit Quantity

kx , ky, kz m−1 components of wave number vector
nx , ny, nz 1 integer numbers
L m edge length of normalization volume

▲ Free electrons in a solid may take only discrete energy values:

energy values of free electrons in a solid ML2T−2

E = �
2

2m
· �k2

= 2π2
�

2

mL2
(n2

x + n2
y + n2

z )

Symbol Unit Quantity

E J energy of electron
m kg electron mass
L m edge length of cube
nx , ny, nz 1 integer numbers

▲ The Pauli principle prevents all electrons from occupying the lowest energy state
(nx = ny = nz = 1). Each energy state may be occupied by at most two electrons
with opposite spins.
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Figure 28.56: Energy levels
(- - -) and wave functions
(ϕ) of an electron gas in a
cube of edge length L .

2. Characteristics of a Fermi gas

Position space, configuration space, a space spanned by the position vectors �r. A point
in the position space has Cartesian coordinates (x, y, z).

Momentum space, a space spanned by the momentum vectors �p. A point in the mo-
mentum space has Cartesian coordinates px , py, pz .

k-space, a space spanned by the wave vectors �k. A point in the k-space has Cartesian
coordinates kx , ky, kz .

A particle with the momentum �p = ��k has coordinates (kx , ky, kz) = �
−1(px , py, pz)

in k-space.
Ground state, the state with lowest energy. The ground state of an N -particle system

is constructed by successively putting the particles into the lowest possible one-particle
state—beginning with the lowest one—until all N particles are placed.

Fermi level, the highest occupied energy level in the ground state of a system of
fermions.

Fermi sphere, volume in momentum space occupied by electrons of a non-interacting
electron gas (Fermi gas) in the ground state.

Fermi momentum, pF , radius of the Fermi sphere. The Fermi momentum is the maxi-
mum magnitude of a particle of mass m in a Fermi gas, pF = �kF =

√
2m EF .

Fermi velocity, vF , velocity of the particles (electrons) of mass m at the surface of the
Fermi sphere:

vF = �kF/m .

Fermi energy, EF , energy of the Fermi level, surface of the Fermi sphere.

relation between Fermi energy and momentum ML2T−2

EF =
p2

F
2m
= �

2k2
F

2m

Symbol Unit Quantity

EF J Fermi energy
pF kg m/s Fermi momentum
kF m−1 Fermi wave number
m kg mass of particle
� J s quantum of action/(2π)

An electron gas is in the ground state only for T = 0. For finite temperature, some of the
electrons will attain a momentum above �kF due to the thermal energy and will leave the
Fermi sphere: the surface of the Fermi sphere becomes diffuse.
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Figure 28.57: Fermi sphere.

3. Electron number density in a Fermi gas

Elementary volume in k-space:

Vk =
(

2π

L

)3
.

▲ Only two electrons with opposite spin may be placed in the elementary volume.
For a three-dimensional electron gas, the Fermi sphere has a volume

VF = 4π

3
k3

F .

Number of particles in the Fermi sphere of radius kF ,

N = 2 · VF

Vk
= L3

3π2
k3

F =
V k3

F

3π2
,

where the factor 2 accounts for the spin. V = L3 is the volume in position space.

Fermi wave number and Fermi energy of an N-electron system

kF =
(

3π2 N

L3

)1/3

EF = �
2

2m

(
3π2 N

L3

)2/3

Symbol Unit Quantity

kF m−1 Fermi wave number
EF J Fermi energy
L m width of potential well
m kg electron mass
N 1 number of electrons

▲ The electron number density n determines the position of the Fermi level, i.e., the
magnitude of the Fermi momentum,

n = N

L3
= N

V
.

The Fermi momentum increases if, for a constant particle number N , the volume V
confining the Fermi gas is reduced.

4. Experimental determination of the electron number density

Electron number densities are determined experimentally by means of the Hall effect. A
current of density jx = n · e · vx flows in x-direction through a conducting slab of width b
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and thickness d; n denotes the electron density, vx the drift velocity, and e the elementary
charge.

Figure 28.58: Hall effect.

The electrons moving in the magnetic field �Bz perpendicular to the conductor plane are
affected by the Lorentz force,

FL = −e · vx · Bz .

This force displaces the electrons perpendicular to the original current direction �ex and per-
pendicular to the orientation of the transverse magnetic flux density. A potential difference
arises between the points A and B (Hall voltage):

VH = Bzvx b = 1

n · e jx Bzb = RH jx Bzb .

Hall coefficient RH = 1

n · e (see Tab. 29.7/1).

5. Quantum Hall effect,

at very low temperatures (liquid helium, T ≈ 4 K) and very strong magnetic fields (su-
perconducting coil), the Hall resistance RH = VH /Ix of an extremely thin (“two dimen-
sional”) layer is quantized in a way related to the quantum of action h and the elementary
charge e via

RH = h

e2
= 25812.807 	 .

When varying the magnetic field or the current only, the Hall resistances are measured,

RHall = 1

n

h

e2
, n integer.

This effect was observed for the first time in 1977 by Klaus von Klitzing in studies of the
Hall effect in silicon field-effect transistors (Nobel Prize, 1985).
➤ Because of the high precision in the determination of RHall, the quantized Hall effect

serves as definition of a standard resistance.
M The fine-structure constant α may be measured with very high precision via the quan-

tized Hall effect:

α = 1

2ε0c

e2

h
= 1

2ε0c
/RHall .
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6. Table of several parameters of the Fermi level of various metals

Alkali metals Transition metals
Li Na K Cu Ag Au

electron concentration
n in 1022 cm−3 4.6 2.5 1.34 8.5 5.76 5.9

Fermi energy EF
in eV 4.7 3.1 2.1 7.0 5.5 5.5

Fermi wave number kF
in 1010 m−1 1.1 0.9 0.73 1.35 1.19 1.20

Fermi velocity vF
in 106 m/s 1.3 1.1 0.85 1.56 1.38 1.39

7. State density in Fermi systems

State density, D(E), the number of energy states per unit volume and energy interval dE .

state density per unit of volume and energy M−1L−5T2

D(E) = 1

V

dN

dE

Symbol Unit Quantity

D(E) m−3 J−1 state density
dE J considered energy interval
dN 1 number of states in the

energy interval dE
V m3 volume

state density in the ground state for T = 0 M−1L−5T2

D0(E) = 1

2π2

(
2m

�2

)3/2
· √E

Symbol Unit Quantity

D0(E) m−3 J−1 state density for T = 0
m kg electron mass
� J s quantum of action /(2π)
E J energy of electron gas

8. Fermi–Dirac distribution function,

f (E, T ), the probability distribution in a free electron gas of temperature T for occupation
of a quantum state with the energy E ,

f (E, T ) = 1

e
E−EF

kBT + 1

.

▲ For T > 0, the state density D0 has to be multiplied with the Fermi–Dirac distribution
f (E, T ) to obtain the state density D(E, T ) (Fig. 28.59).
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state density for T > 0 M−1L−5T2

D(E, T ) = f (E, T )D0(E)

= 1

2π2

(
2m

�2

)3/2

·
√

E

e
E−EF

kBT + 1

Symbol Unit Quantity

D(E, T ) m−3 J−1 state density for T > 0
D0(E) m−3 J−1 state density for T = 0
f (E, T ) 1 Fermi–Dirac distribution
m kg electron mass
� J s quantum of action/(2π)
kB J K−1 Boltzmann constant
T K temperature
EF J Fermi energy
E J energy of electron

➤ When increasing the temperature from 0 to T , electrons from below the Fermi energy
are thermally excited to above the Fermi energy. In a solid, the electrons in the vicinity
of the Fermi surface may receive energy from the phonons.

B

B

Figure 28.59: State density
D of a Fermi gas as a
function of the energy E .
Dashed line: density of
the occupied states for
a finite temperature T
(kBT � EF ). Shadowed
area: density of the occupied
states for T = 0.

9. Fermi temperature and heat capacity

Fermi temperature, TF , corresponding to the Fermi energy EF :

TF = EF/kB.

➤ The Fermi temperature TF is not the physical temperature of the system, but rather a
quantity that compares the Fermi energy with the temperature.

▲ Only electrons at the surface of the Fermi sphere are mobile and contribute to the
specific heat. They correspond to a fraction T/TF of all electrons.

Heat capacity of the electron gas, Ce, depends linearly on the temperature.

internal energy and heat capacity of an electron gas

U ≈ N (kBT )
T

TF

Ce ≈ 2kB N
T

TF

Symbol Unit Quantity

U J internal energy
Ce J K−1 heat capacity of electron gas
N 1 number of electrons
T K temperature
TF K Fermi temperature
kB J K−1 Boltzmann constant
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28.5.2 Band model
1. Bloch theorem and the model of almost free electrons

Bloch theorem: The solutions to the Schrödinger equation ψk (�r) for a periodic potential
V (�r) = V (�r+ �T) are always of the form:

Bloch function L−3/2

ψk (�r) = uk (�r) e j�k�r

uk (�r+ �T) = uk (�r)

Symbol Unit Quantity

ψk(�r) m−3/2 state function
uk(�r) m−3/2 periodic function
�r m position vector
�k m−1 wave vector

▲ �T is a fundamental translation vector (see p. 969) in the crystal lattice.
Kronig–Penney model, a δ-potential is assumed at the positions of the atoms.
▲ Energy gaps occur in the Kronig–Penney model.

Almost-free electrons, a model for describing conduction mechanisms in metals based
on the assumption that the electrons are only weakly disturbed by the periodic lattice po-
tential, but may be scattered at the lattice sites according to the Bragg condition.

2. Bragg reflection condition and standing electron waves

Bragg reflection condition, condition for the reflection of a wave by a crystal lattice.
Given wavelengths may be reflected only at certain glancing angles θ (incidence angles
π/2− θ ).

Bragg reflection condition L

2a sin θ = nλ

Symbol Unit Quantity

a m lattice constant
θ rad glancing angle
λ m wavelength
n 1 integer number

Bragg condition in one dimension

λn = 2a

n

with kn = ±2π

λn
= ±nπ

a

Symbol Unit Quantity

a m lattice constant
λn m wavelength
kn m−1 wave number
n 1 integer number

Standing electron waves in the crystal, generated by constructive interference of electron
waves scattered at the lattice sites.

If Bragg reflection occurs, standing waves are formed (n = 1):

ψ(+) = e jk1x + e−jk1x = 2 cos
(πx

a

)
,

ψ(−) = e jk1x − e−jk1x = 2j sin
(πx

a

)
.
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probability of presence of standing electron waves

ρ(+) = |ψ(+)|2 ∼ cos2 πx

a

ρ(−) = |ψ(−)|2 ∼ sin2 πx

a

Symbol Unit Quantity

ρ(+), ρ(−) m−3 probability densities
x m position
a m lattice constant

Figure 28.60: Schematic representation of the potential energy (a) and the probability den-
sities of standing waves (b).

Depending on the type of interference, the electrons may mainly be found:
• close to the atomic centers (x = 0, a, 2a, . . . , maxima of ρ(+)), or
• removed from the atomic centers (x = a/2, 3a/2, . . . , maxima of ρ(−)).
The two states have different energies.
➤ The expectation value of the potential energy of a traveling wave not obeying the

Bragg condition is larger than that in the state ψ(+), but smaller than that in the
state ψ(−). According to the model, energies between these levels may not occur for
traveling waves.

3. Energy bands and energy gaps

Energy band, synonym for a limited but continuous energy range.
Energy gap, Eg , forbidden energy interval between allowed energy bands.

If the Fermi energy falls within an allowed energy band, then at T > 0 electrons may
occupy higher energy states without crossing an energy barrier, i.e., even at very low tem-
perature. If the Fermi edge falls within a forbidden band, then the electrons need at least
the gap energy (energy barrier) in order to change to an excited state.
• Valence band, allowed energy band in which all electron states are occupied at T =

0.
• Conduction band, allowed energy band of energy higher than that of the valence

band.
▲ Electrons in the conduction band contribute to electric conduction.
▲ In the ground state (T = 0), the conduction band is not fully occupied.

Figure 28.61: Band
scheme with valence band,
conduction band and energy
gap. 1 – conduction band
empty, 2 – energy gap Eg ,
3 – valence band occupied.



28.5 Electrons in solids 1009

4. Metals, insulators and semiconductors

Metals, substances with the Fermi energy about in the middle of an allowed band. The
energy band is therefore not fully occupied, and hence is a conduction band. There are
nearly as many unoccupied states as occupied states, so many electrons may move in the
conduction band even at low temperature.

Insulators, dielectrics, substances for which the Fermi energy falls in the forbidden
range between two bands. The thermal energy is not sufficiently high to lift enough elec-
trons from the fully occupied valence band into the empty conduction band.

Semi-metals, poorly conducting metals for which the Fermi energy lies close to the top,
or at the bottom, of an allowed band. If the Fermi level lies near the bottom of the band,
then only few electrons are available to take energy from the electric field and to participate
in the process of conduction. On the other hand, if the Fermi energy lies close to the upper
edge of the band, then a sufficient number of electrons is available, but the number of
allowed free states is low.

Semiconductors, have a narrow forbidden range (Eg ≈ 1eV) within which the Fermi
energy falls. Electrons from the fully occupied valence band may overcome the small-
energy gap and reach the free-conduction band by thermal excitations at temperatures
T > 0.

Figure 28.62: Band scheme for various substances. (a): metal, (b): semi-metal, (c): insula-
tor, (d): semiconductor.

5. Fermi energy and optical properties

The optical properties of solids are sensitively determined by the position of the Fermi
energy. Visible light covers the energy range 1.6 eV < E < 3.2 eV. The gap between
bands in dielectrics (insulators) amounts to about 4 eV. The energy of the visible light is
not sufficient to lift electrons from the valence band into the next higher band.
▲ All ideal dielectrics are transparent in the visible spectrum of light. The imperme-

ability of many dielectric minerals is connected to their impurity.
▲ Metals contain sufficiently many free electrons and free allowed energy states in

order to absorb light quanta. Therefore, metals are opaque for light. On the other
hand, an electron may lose energy by creating a photon of corresponding energy.
Both processes have equal probabilities. Therefore, metals are good reflectors.

A prerequisite for high reflectance and absorptance is a clean surface. Oxidation
frequently leads to formation of dielectric surface layers.

■ Ordinary mirrors reflect light by a metallic layer (e.g., silver) evaporated behind the
glass.

▲ Semiconductors with band gaps of 1 eV may absorb light quanta. An electron may
overcome the energy gap between valence band and conduction band at the cost of
the energy of an absorbed photon (photo current).
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6. Occupation numbers and equation of motion

Occupation number, the number of electrons occupying an energy band. For isolated
atoms, the occupation number of energy states that are classified by the principal quantum
number n and the orbital angular momentum quantum number l is given by 2(2l + 1).
▲ Energy bands are described by the same quantum numbers as in the isolated atom.
■ The lithium atom has three electrons. Two electrons occupy the energetically lowest

level (1s-level), which is thereby completely filled. The excess electron populates
the 2s-state at slightly higher energy. If lithium atoms form a crystal, there arises a
localized core state of 1s-type and an energy band of 2s-type above it. Every lithium
atom contributes two electrons to the 1s-core state, which then is fully occupied. The
third electron populates the 2s-band. This band is only half-filled. So a lithium crystal
is a metal.

The other alkali metals Na, K, Rb, Cs and Fr behave analogously.

Figure 28.63: (a): Energy levels in the Li atom, (b): energy band (2s) and localized 1s-core
states in a Li crystal.

Equation of motion of an electron in a solid under the influence of the forces of the
crystal lattice:

equation of motion of an electron MLT−2

�
d�k
dt
= m∗ · d�vgr

dt

= �F

vgr = 1

�
· dε

dk

Symbol Unit Quantity

F kg m s−2 force
k m−1 wave number of electron
m∗ kg effective electron mass
vgr m/s group velocity of electron wave
ε(k) J dispersion of electron
� J s quantum of action/(2π)

Effective mass, m∗, takes into account the dependence of the electron energy on the wave
number (dispersion).

effective electron mass in a solid M

m∗ = �
2

d2ε

dk2

Symbol Unit Quantity

m∗ kg effective mass
� J s quantum of action/(2π)
ε J electron energy
k m−1 wave number

▲ Narrow energy bands correspond to a large effective mass.
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■ Na: In sodium the 3s-band is half-filled. The motion of the electrons is almost free:

m∗
m
≈ 1 .

Fe, Co, Pt: 3d-transition metals. Here, the 4s-band is filled first.
All s-bands are very narrow, i.e., m∗ is large:

m∗
m
≈ 10 .

28.6 Semiconductors

Semiconductors, dielectric with a small gap distance (energy gap between the conduction
band and the valence band).

Elemental semiconductors, elements of the IV-th group of the Periodic Table with four
valence electrons.
■ Element semiconductors: C, Si, Ge, Sn (for their properties see Tab. 29.9/1).
Compound semiconductor, chemical compound with the properties of a semiconductor
(see Tab. 29.9/2).

Intrinsic conduction of a semiconductor, arises when electrons from the valence band
reach the empty conduction band by thermal excitation, or by incident light.

Defect electrons, holes, electrons missing from complete occupation of the valence
band. The holes behave like positively charged particles in a sea of electrons.
▲ In intrinsically conducting semiconductors, free electrons and holes are always pro-

duced pairwise.

1. Electron density and conductance in semiconductors

density of free electrons = density of holes L−3

n = p

Symbol Unit Quantity

n m−3 density of free electrons
p m−3 density of holes

The conductance κ is determined by the product of the mobility µ and the number of free
charge carriers n, p.

conductivity of a semiconductor I2T3M−1L−3

κ = e(µn · n + µp · p)

Symbol Unit Quantity

κ 	−1 m−1 conductance
e C elementary charge
µn m2/(V s) mobility of electrons
µp m2/(V s) mobility of holes
n m−3 density of free electrons
p m−3 density of holes
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electron density in the conduction band L−3

n = nL · e−
EL−EF

kBT

Symbol Unit Quantity

n m−3 density of free electrons
EL J bottom of the conduction band
EF J Fermi energy
nL m−3 effective electron density

in the conduction band
kB J K−1 Boltzmann constant
T K temperature

Figure 28.64: State
density D, distribution
function f and densities
of charge carriers n, p of
a semiconductor. EV : top
edge of valence band, EL :
bottom of conduction band,
EF : Fermi energy, Eg :
energy gap.

density of holes in the valence band L−3

p = nV · e−
EF−EV

kBT

Symbol Unit Quantity

p m−3 density of holes
EV J top edge of valence band
EF J Fermi energy
nV 1 effective density of holes

in the valence band
kB J K−1 Boltzmann constant
T K temperature

➤ The mobilities of electrons µn and holes µp are strongly dependent on the semicon-
ducting material.

▲ The electron mobilities of pure semiconductors are only weakly dependent on the
temperature,

µ(T ) = µ0

(
T

T0

)3/2
.

Intrinsic charge-carrier density, ni , density of free charge carriers for intrinsically con-
ducting semiconductors.
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intrinsic charge-carrier density ni L−3

ni = √nL nV · e−
Eg

2kBT

Symbol Unit Quantity

ni m−3 intrinsic charge-carrier density
nL , nV m−3 effective state densities in

conduction band and
valence band

Eg J energy gap
T K temperature
kB J/K Boltzmann constant

➤ The intrinsic conductivity σ is very small. At room temperature,

kBT ≈ 1

40
eV .

For an energy gap of Eg ≈ 1 eV

σ ≈ 10−8 	−1 m−1 .

M The resistance of a semiconductor R(T )may be used as a temperature sensor for low
temperatures according to the relation

R(T ) ≈ R0 · e
−Eg
2kBT .

Here, R0 is a material-dependent constant.

2. Properties of important elemental semiconductors Ge, Si

Ge Si

Data on crystal structure

structure diamond diamond
lattice constant a 0.564613 nm 0.543095 nm
atomic density n 4.42 · 1022 cm−3 0.5 · 1022 cm−3

Electrical properties

energy gap Eg 0.66 eV 1.11 eV
intrinsic carrier density ni 2.24 · 1013 cm−3 1.14 · 1010 cm−3

relative permittivity constant εr 16 11.8
mobility µn 3900 cm2 V−1 s−1 1350 cm2 V−1 s−1

mobility µp 1900 cm2 V−1 s−1 480 cm2 V−1 s−1

Effective state density

conduction band nL 1.04 · 1019 cm−3 3.22 · 1019 cm−3

valence band nV 6.03 · 1018 cm−3 1.83 · 1019 cm−3
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28.6.1 Extrinsic conduction
Impurity atoms deposited in pure semiconductors modify the resisitivity appreciably.
➤ An addition of 1 ppm (= 10−6) of impurity atoms may increase the conductivity by

a factor of more than 100.

1. Donor,

impurity atom with a larger number of valence electrons than that of the atoms of the pure
semiconductor lattice. The excess electrons are not needed for the lattice binding and may
be separated from the atomic site without much energy expenditure.
▲ In terms of the band model, these electrons form localized levels just below the con-

duction band.
■ For elemental semiconductors of the IV-th group (e.g., Ge), the elements of the V-th

group (e.g., P) are donors.

Figure 28.65: Doping of a germa-
nium crystal with phosphorus atoms
(schematic). (a): non-doped germanium
crystal, (b): germanium crystal doped
with phosphorus atoms.

Doping of a germanium crystal with phosphorus atoms: The non-saturated electron of
the pentavalent phosphorus atom makes a bond with the positive ion, which leads to a
hydrogen-like state. The binding energy of this system is only 0.01 eV for germanium, and
0.03 eV for silicon.

2. Acceptor,

impurity atom with fewer valence electrons than the lattice atoms. It offers a low-lying
energy level in the crystal compound to another electron. Since in filling a vacancy another
vacancy arises, i.e., the hole arises at another position, the phenomenon is called hole
conduction.
▲ In terms of the band model, these electrons form localized levels just above the va-

lence band.
■ For the elemental semiconductors of the IV-th group, the elements of the III-rd group

are acceptors.

Donor levels                 Acceptor levels

Conduction
band

Conduction
band

Valence
band

Valence
bandLocalized

levels Figure 28.66: Band scheme
with localized electron
levels. (a): donor levels, (b):
acceptor levels.

3. Doping of semiconductors

Doping, process in which impurity atoms (donors, acceptors) with a different number of
valence electrons are implemented into a pure semiconductor lattice.
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For localized levels in various semiconductors, see Tab. 29.9/3 and 29.9/4.
Majority-charge carriers, charge carriers participating predominantly in electrical con-

duction.
n-doping, doping with donors; electron conduction predominates.
p-doping, doping with acceptors; hole conduction predominates.
n-conducting semiconductor, semiconductor with n > p; electron conduction pre-

dominates.
p-conducting semiconductor, semiconductor with p > n; hole conduction predomi-

nates.
➤ Without an applied voltage, electrons diffuse from the n-region to the p-region

where—despite charge neutrality—free lattice sites are nevertheless available. This
is due to the electron excess in the n-region and the electron deficit in the p-region.

Space charge regions, at the interface a positive space charge forms in the n-region and a
negative space charge in the p-region.

Junctions of p- and n-semiconducting regions: A p–n junction arises in a monocrystal
containing two oppositely doped regions. The region with implanted acceptor atoms is p-
conducting. In the region with implanted donor atoms, the electrons are majority-charge
carrier.

region region

Vp

Figure 28.67: Properties of
doped semiconductors. (a):
p-n interface, (b): acceptor
and donor concentration,
(c): charge carrier density,
(d): space charge regions of
widths dn (negative) and
dp (positive), (e): potential
difference between the n-
and p-region.

Widths of the negative and positive space charge regions dn and dp because of charge
neutrality are given by:



1016 28. Solid-state physics

widths of space charge regions L

dn · nD = dp · n A

Symbol Unit Quantity

dn, dp m width of the negative and
positive space charge region

nD, n A m−3 majority-charge carrier density

➤ Similar to parallel plate capacitors, the space charge regions generate a potential gra-
dient, the diffusion voltage.

Diffusion voltage, VD , the potential difference between the n- and p-conducting regions:

diffusion voltage across the pn-junction L2T−3MI−1

VD = kBT

e
ln

n AnD

n2
i

Symbol Unit Quantity

VD V diffusion voltage
n A m−3 acceptor concentration
nD m−3 donor concentration
ni m−3 intrinsic charge carrier density
e C elementary charge
kB J K−1 Boltzmann constant
T K temperature

The width of the space charge region is given by:

width of the space charge region L

d =
√

2εr ε0VD

e
· n A + nD

n A · nD

Symbol Unit Quantity

d m width of space
charge region

εr 1 relative permittivity
constant

ε0 C/(V m) permittivity constant
of free space

VD V diffusion voltage
n A m−3 acceptor concentration
nD m−3 donor concentration
e C elementary charge

28.6.2 Semiconductor diode
Diode, a circuit element conducting the current in one direction, but blocking it in the other
direction.

Semiconductor diode, a circuit element with a pn-junction.

1. Main characteristics of semiconductor diodes

Anode, the electrode at the p-region of the diode.
Cathode, the electrode at the n-region of the diode.
Reverse voltage, VSp, negative voltage across the p- and the n-regions, causes a broad-

ening of the space charge region: the charge carriers are pushed out by the electric field,
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Depleted region Electron current

Figure 28.68: pn-junction, external voltage (a): zero, (b): negative (reverse direction),
(c): positive (forward direction).

region region

eVD

e(VD–V)

e(VD–V)

–eV

–eV
Figure 28.69: Energy levels
at the pn-junction according
to the band model.

and the current is interrupted to a large extent; the space charge region acts as a depletion
layer.

Avalanche breakdown, a steep increase of the diode current at maximum negative volt-
age, usually far above 6 V.

Zener effect, similar to the avalanche breakdown, but causing a rapid increase at a lower
voltage (below 6 V).

Breakdown voltage, Zener voltage, VZ , negative voltage at which the avalanche break-
down or Zener breakdown sets in.
➤ When the breakdown voltage is exceeded, the component may be destroyed.
A positive voltage between the p- and n-regions enhances the diffusion process from the
n-region to the p-region: the electrons are accelerated by the electric field against the field
direction. The current increases exponentially with the voltage (Shockley diode formula).

Shockley diode formula I

I = ISp

(
eV/VT − 1

)
ISp ∼ e−Eg/kBT

VT = kBT/e

Symbol Unit Quantity

ISp A reverse current
Eg eV energy gap
VT V temperature voltage
V V pn-voltage
I A current in pn-direction
kB J K−1 Boltzmann constant
T K temperature
e C elementary charge
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▲ The electric properties of diodes are strongly dependent on the geometry, the doping
and the temperature.

➤ Properties of the material and the geometry are included in the factor ISp.
➤ The temperature voltage VT is frequently set equal to the thermal energy kBT and is

given in eV.
Reverse direction, the anode potential is negative with respect to the cathode potential.

Reverse current, ISp, the leakage current of a pn-junction operated in reverse direction.
The leakage current is caused by electrons from the p-region and holes from the n-region,
i.e., by minority-charge carriers driven through the depletion layer by the electric field.

Forward direction, anode potential positive with respect to cathode potential.
Threshold voltage, VS , positive voltage; when exceeding it, the diode resistance be-

comes low, meaning it conducts current. VS cannot be fixed exactly because of the steep
but smooth increase of current with increasing voltage. In practice, the transition from the
blocking to the conducting state may occur suddenly.

Reverse recovery time, τ , the time needed by a pn-junction after polarity changing of
the voltage in order to change from the blocking to the conducting state.

Characteristic curves, graphical description of the current versus voltage dependence
of a circuit element.

There are various types of diodes, distinguished mainly by the magnitude of doping of
the two regions. This affects both the values of characteristics as well as the characteristic
curves.

Conducting
region

Barrier
region

VZ VZ

VR/ V

IR/ A

VS VS

VF/ V

IF/ A
Figure 28.70: Characteristic
curves of typical germanium
and silicon diodes VF :
voltage in forward direction,
VR : voltage in reverse
direction, VZ : Zener
voltage, VS : threshold
voltage, IF : continuous
forward current, IR : reverse
current.

➤ As a rule, the cathode of a diode is indicated by a ring on the component itself, and
in a circuit the symbol for a diode has a vertical line at the cathode.

CC

Figure 28.71: Schematic drawing (left) of a
diode and symbol (right) for a diode in a
circuit diagram; A: anode, C: cathode.

Figure 28.72: Switching diode: circuit
symbol and typical characteristic values VS :
low (Si: 0.7 V, Ge: 0.3 V), VZ : 50 . . . 100 V,
IF : 50 . . . 200 mA, IR : ≈ 1 nA, τ :
2 . . . 20 ns.

2. Switching diode,

fast diode. In the forward direction, the diode conducts with a low forward resistance; in
the reverse direction, it blocks the current down to a very low leakage value. Switching
diodes are produced very economically. Because of their versatility, they are also called
universal diodes.

M Universal diode for switching, limiting, decoupling, and for logic circuits.
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3. Schottky diode,

very fast diode suitable for high frequencies. It does not have a pn-junction, but rather a
metal-semiconductor junction, with the result that only majority carriers contribute to the
current conduction. The Schottky diode responds very quickly to voltage variations so that
currents may be switched reliably even in the GHz-range. Its characteristic curve is similar
to that of a switching diode, but increases less steeply in the forward direction.

Figure 28.73: Circuit symbol and typ-
ical parameters of a Schottky diode.
VS : 0.3–0.4 V, VZ : 50 . . . 100 V, IF :
0.1 . . . 1 mA, τ : 10 . . . 100 ps.

■ Application in high-frequency circuits (up to about 40 GHz).

4. Rectifier diode,

allows a high power loss and current-pulse capability in contrast to switching diodes.
Current-pulse capability is of particular importance in rectifier circuits directly connected
to the power supply, since very high currents (> 10 A) may occur in the forward direction.
Owing to the high voltages acting on line rectifiers, the reverse current should be very low
because, otherwise, additional losses arise. The characteristic curve corresponds to that of
a switching diode.

Figure 28.74: Circuit symbol and typ-
ical parameters of a rectifier diode.
VF : ≤ 1 V, VZ : up to 500 V, IR :
≈ 50 µA, τ : about µs (very short in
high-frequency rectifiers).

■ Bridge rectifier:
If VE is positive, current flows via the diodes D1 and D2 through the load resistor RL .
The diodes D3 and D4 are non-conducting. During the next half-wave, D4 and D3
are conducting while D1 and D2 are non-conducting. The current through RL has
the same direction in both half-waves. The advantage of this circuit over rectifiers
with only one diode is that the current flows through the load resistor even during the
negative half-wave. The voltage level still strongly fluctuates. This fluctuation may
be reduced by connecting a smoothing capacitor C parallel to RL .

VA

VE

Figure 28.75: Circuit of a
bridge rectifier.

5. Z-diode,

highly doped reversed-biased diode. It behaves as a switching diode does in the forward
and reverse directions, but has a much lower Zener voltage VZ , which is very precisely
specified by type (by the high doping, the field strength in the interface becomes very high,
causing additional breaking of electron-hole bonds, and hence additional charge carriers,
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which contribute to the current flow). Unlike switching diodes, the breakdown in the Z-
diode is intended and does not result in a damage of the diode.

Figure 28.76: Circuit symbol
of a Z-diode.

■ Z-diodes are used for the limitation and stabilization of voltages.

6. DIAC trigger diode,

DIode Alternating Current switch. Unlike all other types of diodes, it consists of two pn-
junctions and becomes conducting above a defined voltage.

Figure 28.77: Circuit symbol
and layer structure of a
DIAC.

In principle, a DIAC represents a pair of diodes connected in series and reversed. When a
voltage is applied, one diode is forward-biased, the other is reversed-biased. Thereby only
a low residual current I ≤ 100 µA flows as long as the voltage is not beyond the break-
down voltage VZ of a pn-junction. Then the DIAC suddenly becomes low-resistive, and
the current steeply increases while the voltage is falling. If the applied voltage is lowered
again, the DIAC becomes currentless when the voltage falls below a holding voltage VH .
Because of the symmetry of the layers, the polarity of the DIAC does not play any role.

V Figure 28.78: Characteristic
curve of a DIAC.

DIACs are applied in situations in which short, well defined current pulses are required
to trigger an (electronic) switch safely at a precisely defined voltage.

7. Photodiode,

varies its forward resistance depending on the luminous intensity incident on the diode.
The photodiode is operated reversed biased.
➤ Photodiodes are operated in reverse direction below the breakdown voltage (low

depleted-layer capacitance for short response times). The reverse current over a broad
range depends essentially on the illuminance (≈ 0.1 µA/lx), and only weakly but
linearly on the reverse voltage.

The charge carriers bound in the doped crystal of the photodiode may be lifted from the
valence band to the conduction band by energy supply through incident light (photoelectric
effect, creation of electron-hole pairs). The energy of the light quanta,

E ph = h f,

must be higher than the binding energy of the charge carriers at the lattice sites, h being
the quantum of action and f the photon frequency (see Tab. 29.9/5).
➤ If the frequency becomes too low, i.e., the wavelength too large, no charge carriers

are released despite the high light intensity (spectral range: Si-diodes 0.6 . . . 1 µm,
Ge-diodes 0.5 . . . 1.7 µm).
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C Figure 28.79: Circuit symbol
and characteristic curve of a
photodiode.

In principle, the photo effect also occurs for common pn-junctions. For the photodiode,
however, the effect is optimized by the composition and doping.

8. PIN diode,

an ohmic resistor, current-dependent for high-frequency signals, operated in forward di-
rection.

For the PIN diode, an undoped insulating layer (i-layer) is included between the p-region
and the n-region. The intrinsic layer contains almost no free charge carriers, therefore it is
insulating in the reverse direction. But in the forward direction, charge carriers from the
doped layers may flow into the insulating layer, which then becomes conducting.
▲ A PIN diode is a current-dependent resistor for high-frequency alternating currents.
A control direct current Id , which fixes the resistance value, is superimposed on a high-
frequency alternating current for which the PIN diode represents an ohmic resistance R.

Figure 28.80: Structure,
circuit symbol and
characteristic line of a PIN
diode. i : undoped insulating
layer.

■ Application: current-controlled switch for high-frequency signals.

9. Step-recovery diode,

(SRD), the current flow in the depletion layer is terminated suddenly, not continuously,
when changing from forward to reverse direction.
➤ In principle, all diodes exhibit this effect. For the step-recovery diode, it is particularly

pronounced due to the doping.

t
Figure 28.81: Circuit symbol
and characteristic behavior
of the step-recovery diode.

■ Application: generation of steep pulses, frequency multipliers up to the GHz range.

10. Tunnel diode

Tunnel effect, quantum-mechanical effect that allows a particle to overcome a high, but
not too wide, potential barrier with a certain probability depending on the height and width
of the barrier, although classically the motion is forbidden.

Tunnel diode, a highly doped germanium diode. The doping is so strong that the in-
terface between the layers, the depletion layer, becomes very thin. The wave nature of the
electrons enables them to overcome this thin potential barrier (tunnel effect), although the
field strengths are not sufficiently high. For low positive pn-voltage, the effect causes a
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linear current rise that is non-typical for diodes (the tunnel currents from p to n and vice
versa just compensate for V = 0; for a voltage increase, the current rise is proportional to
the voltage). For a further increase of voltage fewer and fewer energy levels are available to
which the electrons might tunnel, hence the current rises slowly up to a maximum and then
drops again, exhibited in the declining part of the characteristic curve. At high voltage, the
common diffusion current becomes dominant again. For negative pn-voltage, the tunnel
diode becomes conducting at once. This behavior is exploited in the backward diode. The
tunnel diode is characterized by its very fast switching time of about 100 ps, which enables
application in high-frequency technology.

(

(

)

)V

Figure 28.82: Circuit symbol
and characteristic curve of a
tunnel diode.

■ Application: very fast trigger diode, ultrahigh-frequency oscillator, reduction of
damping of oscillating circuits.

11. Backward diode,

has a lower doping than the tunnel diode, and therefore a significantly reduced current peak
at positive voltage, but keeps the property of conductance at negative voltage. This causes
behavior in the backward diode just opposite to that of a common diode. It is reversed
biased and then is conducting at negative voltage without threshold voltage, and has a high
resistance at positive voltage up to a relatively low reverse voltage.

( )

( )V

Figure 28.83: Circuit symbol
and characteristic curve of
the backward diode.

■ Application: high-frequency rectifier for low voltages.

12. Capacitance diode (varactor),

a voltage-dependent capacitance, reversed-biased.
In the capacitance diode, the depletion layer acts as a capacitor the plate area of which

remains constant while the distance of the plates, and thus the capacitance, is varied by
the applied control voltage. This effect arises in all diodes. Capacitance diodes are distin-
guished by a large ratio of highest (5 . . . 300 pF) to lowest (1 . . . 5 pF) capacitance to be
reached, and by a very low internal resistance, and thus high quality.
■ Application: tuning of radio receivers and TV sets.

V

Figure 28.84: Circuit symbol
and characteristic curve of
the capacitance diode.
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13. Light-emitting diode (LED),

a source of light with material-dependent frequency. The light intensity is controlled by the
current through the forward-biased pn-layer.

If the n-layer is very highly doped as compared with the p-layer, then the conduction
current consists mainly of electrons and depends only to a very small extent on hole con-
duction. The electrons reaching the p-layer in the forward direction recombine with the
holes present there. Energy is released, which is emitted as light in the infrared or visible
spectrum, depending on the material. If the radiation, which occurs more or less intensely
in any diode, is guided to the outside, the result is a LED.
➤ LEDs are produced not from silicon or germanium, but from GaAsP (III-V-

compounds). Their efficiency amounts to several percent in the infrared range and
less than 0.1 percent otherwise.

C

Figure 28.85: Light-emitting diode.
red, yellow: GaAsP (gallium arsenide
phosphide), green: GaP (gallium phos-
phide), blue: SiC (silicon carbide),
infrared: GaAs (gallium arsenide),
GaAlAs (gallium aluminum arsenide).

▲ The frequency of the emitted light depends on the energy gain in recombination.
■ Application as signal lamps, entertainment electronics, opto-electronic couplers, fiber

systems.

28.6.3 Transistor
Transistor, a semiconductor component with at least two pn-junctions, mainly for control
and amplification of signals, but also used as an electronic switch.

One distinguishes between bipolar and unipolar (field effect) transistors. Bipolar transis-
tors are current-controlled, whereas unipolar transistors are voltage-controlled. This means
that unipolar transistors consume significantly less power than bipolar ones. Therefore, in
present day applications, bipolar transistors are increasingly being replaced by unipolar
ones, in particular in the microelectronics of large-scale integrated circuits.

28.6.3.1 Bipolar transistors
Bipolar transistor, consists essentially of two pn-junctions. The sequence of layers defines
the type of the transistor (npn- or pnp-transistor).

npn-transistor, bipolar transistor with a layer sequence npn.
pnp-transistor, bipolar transistor with a layer sequence pnp, frequently replaced by a

npn-transistor.

Figure 28.86: Circuit symbol for npn- and pnp-transistors, each with the old (with a circle)
and new notation.
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Base, B, the electrode at the central layer. The control signals are applied to the base.
Collector, C , the electrode at one of the outer layers. In general, the collector is at posi-

tive potential for npn-transistors and at negative potential for pnp-transistors, with respect
to the emitter.

Emitter, E , the electrode at the second outer layer.
▲ As a rule, transistors are not configurated symmetrically. Collector terminal and emit-

ter terminal must not be interchanged.
➤ Mnemonic rule: The collector collects majority charge carriers of the central layer

and emits them again at the emitter. So, the current flow of the majority carriers of
the base always goes from the collector to the emitter.

➤ Because of its more frequent use, only the npn-type will be treated below. The pnp-
transistor is equivalent in the function and inverse in circuit technology. In most cases,
it may be replaced by a npn-transistor.

BE

CE

Collector

Depleted
region

Base

V

V

e

e

e

Figure 28.87: Configuration
and functional principle of a
bipolar transistor, IBe, ICe,
IEe electron currents.

Let there be a positive voltage VCE across collector C and emitter E . If B is negative
with respect to E , then no current may flow to C , since both the BC-diode as well as the
E B-diode are reversed-biased. If, however, B is positive with respect to E , the B E-diode
is forward-biased, and electrons from the n-zone may reach the p-zone. If the mean free
path of the electrons for recombination with a lattice hole is large enough and the p-layer
is narrow enough, the electrons may diffuse to the BC-junction, where they are extracted
towards the collector due to the positive VCE voltage: a current flows.

Notations for transistor circuits:
IC collector current
IB base current
IE emitter current
VCE collector-emitter voltage
VBE base-emitter voltage
VBC base-collector voltage.

➤ For pnp-transistors, the base has to be negative-biased relative to the emitter.
▲ The transistor acts as current-amplifier: a low base current causes a large collector

current.
Four-quadrant family of characteristics, a compact representation of the dependence of
all input and output currents and input and output voltages.

Input characteristic, the relation IB = IB(VBE) at VCE = const. (third quadrant). In
principle it is the characteristic of the base-emitter diode.

Output characteristic, the relation IC = IC(VCE) with the parameter IB (first quad-
rant).

Saturation region, the region of the output characteristics in which IC strongly in-
creases with VCE (VCE small).
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V

V

V

V

Us

Figure 28.88: Four-quadrant
family of characteristics of a
npn-transistor in emitter con-
nection. The points A mark op-
erating points in the linear parts
of the characteristic curves.

Active region, the part of the output characteristic in which IC depends very little on
VCE, but strongly depends on IB. Transistors in amplifier circuits are operating in this
region.

Current-gain characteristic or transfer characteristic, the relation IC = IC(IB) with
VCE = const. (second quadrant).

Reaction characteristic, back reaction of the output voltage VCE on the input volt-
age VBE = VBE(VCE, IB) (fourth quadrant). In the active region, the back reaction ≈ 0,
i.e., VBE is independent of VCE.

Control characteristic, a combination of input characteristic and current-gain charac-
teristic IC = IC(VBE) at VCE = const.

Absolute maximum ratings, maximum values for the connection of a transistor. If these
values are exceeded, the transistor may be destroyed. Transistors are particularly sensitive
to base voltages or base currents that are too high, since then the very narrow depleted layer
is affected. A high power consumption in the output circuit that is too high may also lead
to damage. The maximum ratings can be found in the data sheets for the corresponding
type of component.

Operating point, determines the region in the family of characteristics in which the
transistor operates. In analog technology, the transistor is frequently used for amplification
of time varying currents or voltages. In order not to distort the signals, these have to fall in
the linear range of the characteristics. But since the characteristics are extremely nonlinear
about the origin, the signal has to be raised to a linear section, the operating point (points A
in the family of characteristics). This is done by means of an external connection in which
a direct voltage is superimposed on the alternating signal.

Collector resistor, resistor before the collector. The emitter resistor and the base re-
sistor are similarly defined.

Resistance load line, serves to determine the operating point in the family of charac-
teristics and is fixed by the collector resistance RC (in the common emitter circuit). The
collector resistance provides a dependence between IC and VCE according to Ohm’s law,

IC = VS − VCE

RC
,

which has to be fulfilled in addition to the relation IC = IC(VCE) given by the transistor.
Hence, the operating point is fixed for given IB.
➤ Setting of the operating point is of central importance for any transistor circuit and is

crucial for its correct operation. The maximum ratings of the transistor always have
to be taken into account.
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28.6.3.2 Basic transistor circuits
Basic transistor circuits, fundamental circuits of a transistor. There are three distinct basic
circuits for bipolar transistors, depending on which of the three terminals is the common
reference point for the input and output signals. There is the common emitter circuit, the
common base circuit, and the common collector circuit. The common emitter circuit is the
most suitable circuit for voltage amplification.

V

Vin

Rc

Vout

Figure 28.89: Principle of
the common emitter circuit.
Vin = VB E : input voltage,
Vout = VC E : output voltage.

Common emitter circuit, the emitter is the common reference point for the input and
output signals.

parameters of the transistor for common emitter circuit

RBE = ∂VBE

∂ IB

vr = ∂VBE

∂VCE

β = ∂ IC

∂ IB

RCE = ∂VCE

∂ IC

Symbol Unit Quantity

RBE 	 differential input resistance
vr 1 voltage reaction
β 1 small-signal current gain
RCE 	 differential output resistance
VBE V base-emitter voltage
VCE V collector-emitter voltage
IB A base current
IC A collector current

Two-port network, a vector group the internal structure and performance of which is
ignored; only the functional relation between input and output quantities is known.

Two-port equations, the conditional equations of a two-port network. They link the
input and output quantities of the network.

A transistor may be regarded as a two-port network. One electrode is common for the in-
put and output of the two-port network (E for the emitter circuit). The transfer of the input
quantities VBE and IB through the transistor may be calculated by means of the two-port
equations. Similar relations may be given for the collector and base circuits, respectively.

two-port equations of transistor in common emitter circuit


VBE = RBE
IB + vr
VCE


IC = β
IB + 1

RCE

VCE

Symbol Unit Quantity


VBE V change of base voltage

IB A change of base current

VCE V change of output voltage

IC A change of collector

current
RBE 	 differential input

resistance
RCE 	 differential output

resistance
β 1 small-signal current gain
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▲ The quantities

Rin = 
VBE


IB
input resistance

B = 
IC


IB
current gain

Rout = 
VCE


IC
output resistance

may be assigned to the differential quantities. In the active region, the differential and
integrated values agree reasonably well.

characteristic quantities of the common emitter circuit

voltage gain:

vv = 
VCE


VBE
= −βRC

RBE

vv ≈ −100 . . .− 200

input resistance:

Rin ≈ RBE = VT

IB
≈ 40 mV

IB

output resistance:

Rout = RCE‖RC

Symbol Unit Quantity

Rin 	 input resistance
Rout 	 output resistance
RC 	 collector resistance
β 1 small-signal current gain
RBE 	 input resistance

at operating point
VT V temperature voltage
‖ parallel connection
vv 1 small-signal voltage gain

➤ The negative sign of vv means a 180◦-phase shift of the output signal with respect
to the input signal. Of course, vv is limited by the voltage reaction and by RCE and
cannot be enlarged arbitrarily by simply increasing RC.

Negative feedback in an amplifier circuit, a method to feed the output signal in opposition,
i.e., with opposite phase, back to the input signal. The gain of the circuit is always lowered,
but the operating point is stabilized, since the circuit is readjusting itself. The characteristic
curve is thereby linearized.

Negative voltage feedback, negative feedback in which the output voltage is fed back
to the input via a voltage divider. The gain of the transistor stage becomes independent of
the transistor parameters and is determined almost entirely by the external wiring.

Vin
Vout

V

Vs

Figure 28.90: Common
emitter circuit with negative
voltage feedback.
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Voltage gain:

v ≈ − R1 + R2

R2
.

Input resistance:

1

Rin
= 1

R1
+ 1

RBE
+ vv

R2
⇒ Rin � RBE.

Output resistance:

Rout = (RC‖RCE) · v
vv
.

The lower gain also causes a stabilization of the operating point according to 
VCE =
vD
VBE, with the drift gain

vD = 1+ R1

R2
.

Negative current feedback, negative feedback in which the voltage generated by the out-
put current is coupled back to the input with opposite phase.

Vs

Vin

Vout

Figure 28.91: Common
emitter circuit with negative
current feedback.

Voltage gain Input resistance Output resistance Current gain

v ≈ − RC

RE
Rin = RBE + βRE � RBE Rout ≈ RC vi ≈ β

➤ A large input resistance is an efficient way for amplifiers to keep the load of the signal
source low.

▲ Owing to the high output resistance, the common emitter circuit with negative current
feedback is suitable as constant current source.

■ Amplifier stage in common emitter circuit: The input capacitor C1 prevents a
short-circuit of the bias voltage of the base by the signal generator. The output ca-
pacitor C2 DC-decouples the load resistance from the collector voltage. The emitter
capacitor CE AC-connects RE .

Common collector circuit, a basic circuit in which the collector is the common refer-
ence point for the input and output signals.
➤ A transistor stage in common collector circuit is frequently called emitter follower.
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Vs

Vin

Vout

Figure 28.92: Amplifier stage in
common emitter circuit.

Vs

Ri

Vin
VoutRE

Figure 28.93: Common
collector circuit.

Voltage gain Current gain Input resistance Output resistance

vv ≈ 1 vi ≈ β Rin ≈ β · RBE Rout ≈ RBE + RE

β
� RBE

■ Owing to the high input resistance and low output resistance, common collector cir-
cuits are often used as impedance converters, i.e., matching pads between high-
resistance signal sources and low-resistance loads.

Common base circuit, a basic circuit in which the base is the common reference point for
the input and output signal.

Vs

RC

Vin Vout Figure 28.94: Common base
circuit.

Voltage gain Current gain Input resistance Output resistance

vv = βRC

RBE
vi ≈ 1 Rin = RBE

β
Rout ≈ RC

The voltage gain is the same as in a common emitter circuit. However, in the base circuit
the output signal is in phase with the input signal, hence a negative voltage feedback is
prevented. Input and output are completely decoupled by the constant base potential.
■ The common base circuit has a very high critical frequency, hence a much larger

bandwidth than an emitter stage.

28.6.3.3 Darlington transistor
Darlington transistor, a series connection of two transistors. The total current gain corre-
sponds to the product of the individual current gain factors and is connected like a single
transistor with a high amplification.
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VBE

IC2

VCE

IC1

Figure 28.95: Circuit
diagram of a Darlington
transistor.

■ Such a high amplification (β > 1000) may be necessary when matching high-
resistive voltage sources to low-resistive loads.

28.6.4 Unipolar (field effect) transistors
Field effect transistor (FET), voltage-free and, hence, nearly zero control power transistor
that in most cases may replace a bipolar transistor.

Substrate, doped semiconductor block into which the pn-junctions needed for the func-
tion of the FET have been diffused.

Whereas in the bipolar transistor two kinds of charge carriers, electrons and holes, are
involved in current conduction, the unipolar transistor consists of a substrate in which
only the majority carriers are conducting: either electrons or holes. The charge carriers are
influenced by an applied external field that controls the current flow. Hence, the control
draws no power.

28.6.4.1 Junction field effect transistor (JFET)
Junction FET, (JFET), consists of a doped Si-crystal as substrate into which a channel-
like zone (thickness ≈ 1 µm) with inverse doping is embedded. Depending on the doping
of the channel, one distinguishes n- and p-channel FET. The figure displays an n-channel
FET.

G

S

D
Depleted
zone

Electron
current

VGS

IDe

VDS

n
-c

h
an

n
el

Figure 28.96: (a): Configuration and operation mode of an n-channel junction FET, IDe
electron current. (b): circuit symbols for n-channel and p-channel junction FET.

Drain D and source S, the terminals of a FET connected to the conduction channel.
The signal to be controlled is applied to D and S.

Gate G, the terminal at a thin p-zone diffused into the n-channel to which the control
voltage is applied.

Bulk B, the terminal attached to the substrate, existing only for MOSFETs. In many
cases, B is internally connected with the source.

If a voltage VDS is applied across D and S, then an electron current flows through the
n-channel as it does through an ohmic resistor. If G becomes negative with respect to S
(VGS < 0), then the pn-junction between S and G is reversed-biased.
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V

Figure 28.97: Characteristic
of a junction-FET.

At the interface, a region free of charge carriers is formed which extends more and more
into the n-channel as the reverse voltage VGS increases. Thereby, the channel cross-section
is diminished, and the resistance is increased: the channel resistance may be controlled via
the gate voltage.

Depletion-type FET, a FET that conducts the DS-current without a gate voltage ap-
plied.

Enhancement-type FET, reversed-biased without a gate voltage applied.
➤ The junction-FET is a depletion-type FET.
Contrary to bipolar transistors, junction-FETs are in many cases configurated symmetri-
cally, hence D and S may be interchanged.
➤ For a negative gate, a gate current of only 1 pA to 1 µA flows. If, however, the

gate voltage VGS becomes positive, then the pn-junction between gate and n-channel
becomes conducting. In this case, the FET consumes power.

28.6.4.2 Insulated Gate FET (IGFET, MOSFET)
MOS technology (MOS: metal-oxide-silicon), manufacturing principle for FETs accord-
ing to which the gate is separated from a pn-junction by a thin but sophisticated insulating
layer (usually metal oxide).

MOSFET, a FET manufactured in MOS technology that has the advantage of also re-
maining currentless for a positive gate voltage.

Enhancement or enrichment mode, an enhancement-type MOSFET. One distin-
guishes p- and n-channel MOSFETs. For the n-channel, MOSFET two n-doped islands,
the source S and the drain D, are implemented into a p-doped substrate. No current may
flow between D and S if a voltage VDS is applied, since one pn-junction is reversed-biased
independent of the sign of the voltage. The surface is coated with a thin insulating layer
onto which a metallic layer, the gate G, is evaporated as a terminal. The substrate itself
may get a separate terminal, the bulk B, or may be internally connected with the source.
This terminal becomes important for the power-FET. If the gate is positive with respect
to the source, then the minority carriers of the p-region, the electrons, are electrostatically
pulled close to the insulating layer so that an n-conducting channel arises between S and
D.

layer

Accumulation
zone

Figure 28.98: Enhancement-type MOS-
FET. (a): configuration, (b): circuit
symbol for n-channel type.

➤ In the enhancement mode, the minority carriers in the substrate are accumulated be-
tween the n-conducting islands and constitute the conduction electrons that contribute
to the current flow.

The higher the gate voltage, the higher the number of electrons in the DS-channel and the
lower the conduction resistance.
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Figure 28.99: Depletion-type MOSFET. (a): configuration, (b): circuit symbols for p-
channel and n-channel types.

Depletion mode, a depletion-type field effect transistor, analogous to the junction-FET.
Here a thin, e.g., n-conducting channel is effected between the islands of enhancement-
type, which admits a current flow without applying a gate voltage: the FET is depletion-
type. If the gate voltage becomes negative, the majority carriers in the n-channel are pushed
out of the channel, and a smaller number of conduction electrons remain there: the resis-
tance increases. The particular feature of this FET is that, for a positive gate voltage, the
conduction electrons in the n-channel are enriched by minority carriers of the substrate,
and thus the drain current may increase.
➤ If bulk and source are internally connected, this property is indicated by the circuit

symbol:

Figure 28.100: Circuit
symbol of a depletion type
n-channel MOSFET with
source and bulk terminals
connected internally.

■ The FET became indispensable for large-scale integrated circuits due to its zero
power control and because of the possibility to produce it with shorter switching
times on a smaller and smaller area of substrate.

Dual-gate MOSFET, corresponds to a normal MOSFET, but has two gate terminals G1
and G2 arranged one behind the other above the conduction channel. The independent
wiring of the gates allows the control of the current flow independently as long as the
current is not turned off completely by one of the gates.
■ Application: adjustable amplifier in high-frequency circuits. One gate controls the

desired signal, the other one controls the transconductance of the MOSFET.

28.6.5 Thyristor
Thyristor or four-layer diode, a semiconductor with a pnpn-structure, meaning three de-
pletion layers. Like a common diode, the thyristor may conduct the load current only in
one direction.

C

Cathode

v

Figure 28.101: Thyristor.
(a): layer structure, (b):
circuit symbol.
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Anode and cathode, as for a common diode the outermost of the p- and n-layers, re-
spectively.

Gate, the terminal at the inner p-layer that, for a positive voltage with respect to the
cathode, makes the thyristor conduct.

Forward blocking region of the thyristor, range of voltages up to a maximum positive
voltage VDRM, which must not be exceeded. In this voltage region, the thyristor is reverse-
biased via the depletion layer.
➤ If the thyristor is loaded with a higher voltage, a forward breakover ignition occurs

in which the thyristor suddenly becomes transmitting. Caution: This may destroy the
thyristor!

Forward leakage current, the residual current flowing in a thyristor operated in the for-
ward blocking region.

Forward conduction region, that part of the characteristic of a thyristor into which the
bias point of the thyristor is shifted from the forward blocking region by a positive gate
voltage.

Triggering current, iG , the current at the gate that floods the central depletion layer
with charge carriers and triggers the thyristor, i.e., makes it conducting.

Reverse blocking region, the region of negative voltage between anode and cathode.
In the reverse blocking region, the thyristor cannot become conducting because both outer
depletion layers are inverse-biased.

Reverse breakdown voltage, the maximum negative voltage VRRM that may be con-
nected to the thyristor.

Reverse blocking current, residual current iR of several µA through the thyristor op-
erated in the reverse blocking region.
➤ When the reverse breakdown voltage VRRM is exceeded, the reverse blocking current

increases avalanche-like, and the thyristor is destroyed.

Forward
conducting
region

Forward
blocking regionReverse

blocking region

v Figure 28.102: Characteris-
tics of the thyristor.

Holding current iH , the current (usually between 10 and 100 mA) above which a trig-
gered thyristor remains conducting despite missing gate voltage. If the current is made
sufficiently high, a short trigger pulse at the gate is sufficient to make the thyristor perma-
nently conducting.

Trigger pulse, voltage pulse at the gate, switches the thyristor to the conducting state as
long as a sufficiently high holding current flows in the triggered state.

Trigger time, the time interval needed by the thyristor to switch from the blocking to
the conducting state. It depends on the steepness of the trigger pulse.
■ Phase angle control: By short periodic current pulses at the gate of a thyristor, certain

phases of the alternating signal may be reduced by an appropriate phase relation
of the pulses with respect to a control alternating voltage. This works only in the
positive half-wave, since for negative voltages the thyristor always blocks. However,
if the thyristor is triggered by the current pulse during the positive half-wave, then
the voltage drop across it remains zero until the alternating voltage falls below the
holding voltage.
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➤ There are thyristors that can be used up to blocking voltages of several kV and cur-
rents up to several kA. Their range of application is restricted to the kHz-region.

28.6.5.1 Triac
Triac (TRIode Alternating Current switch), acts as two inverse-parallel connected thyris-
tors and is frequently denoted bidirectional thyristor. It may control both positive and
negative half-waves of an alternating voltage.

v

v

Figure 28.103: Triac. (a): configuration, (b): characteristic, (c): circuit symbol.

28.6.5.2 Gate turn-off thyristor (GTO)
Gate turn-off thyristor, (GTO, Gate Turn Off thyristor), may be triggered by a positive
gate pulse and switched off again by a negative one. There are GTOs both with symmetric
as well as with asymmetric blocking capability.

C

Cathode

one or the 
other

v

v

Figure 28.104: GTO. (a): configuration, (b): characteristic, (c): circuit symbol.

■ Generation of a sinusoidal output voltage from a direct voltage by means of pulse
DC-AC inverters.

28.6.5.3 Insulated-gate bipolar thyristor (IGBT)
IGBT, a combination of MOS technology and technology of bipolar transistors. For
switching on and switching off, only low control power is needed. The transmission re-
sistance is very low.

28.6.6 Integrated circuits (IC)
Integrated circuit (IC), a circuit consisting of several transistor functions integrated on a
single semiconducting substrate of small size.
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Insulation

v

Figure 28.105: IGBT. (a): configuration, (b): characteristic, (c): circuit symbol.

28.6.6.1 Production of ICs
Wafer, silicon substrate on which the structures needed for producing an IC are deposited.

M Vapor-phase epitaxy, method for the deposition of Si-layers on a wafer. In an oven,
single Si atoms obtained by chemical reactions of Si-containing gases are deposited
on the wafer.

■ At 1250 ◦C, SiCl4 reacts with H2 to Si and HCl. The HCl is extracted while the
silicon is deposited.

➤ The layers may be doped, whereby the H2 is guided first through gases containing
boron (p-doping) or phosphorus (n-doping).

Oxidation, the deposition of a SiO2-layer on a wafer for
• insulation,
• protection against impurities in the pn-junctions,
• generation of circuit structures.

28.6.6.2 Generation of circuit structures
General procedure (see Fig. 28.106):
(a) Deposition of a SiO2-layer on the Si-wafer.
(b) Upon it, a layer of photosensitive material is deposited.
(c) Photolithography: masking (covering) of the regions where the SiO2 is to be re-

moved, and radiant exposure with UV-light (modifies the chemical properties of the
irradiated and non-irradiated areas).

(d) Development in a suitable chemical solution uncovers the SiO2 in the non-irradiated
areas.

(e) Etching of the SiO2 at the uncovered areas.
(f) Removal of the photosensitive material.

Layer

Figure 28.106: Photolithographic production of an IC. For legend see text.
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Doping
M In an atmosphere enriched with either boron atoms or phosphorus atoms, silicon is

heated to about 1000 ◦C so that Si-atoms are released from the lattice compound,
leaving free lattice sites into which boron atoms or phosphorus atoms may be incor-
porated (indiffuse), and thus the silicon becomes either p-doped (boron) or n-doped
(phosphorus).

▲ The penetration depth of the diffusion is time- and temperature-dependent.
■ Phosphorus atoms penetrate into Si to 1 µm if the substrate is heated to 1000 ◦C for

one hour.
➤ The diffusion rate in SiO2 is significantly lower than that in pure silicon. The struc-

tures generated by photolithography determine which regions are doped.
Production of electronic components

Transistor and diode (see Fig. 28.107):
(a) Deposition of an n-doped layer on a p-doped substrate. Part of this layer becomes the

collector.
(b) By oxidation and photolithography, the state in (b) is generated.
(c) Indiffusion of acceptor atoms into the exposed part of the n-layer: this region corre-

sponds to the base.
(d) After further oxidation and photolithography, another n-layer is indiffused into a part

of the p-layer. This region is the emitter.
(e) Once again, oxidation and cutting-out three windows above the collector, base and

emitter, and evaporation of an Al-layer generates the pad electrodes.
➤ For the production of diodes, the steps (d) and (e) are dropped.

n-layer Collector

Collector for

Collector

Figure 28.107: Generation of a transistor function. For legend, see text.

Resistor: In an n-doped layer, a narrow p-layer is embedded so that one of the pn-
junctions is operated reverse-biased and thereby a resistance is generated. The magnitude
of the resistance depends on the length of the p-channel, the cross-section, and the doping
strength.
➤ Owing to the high conductance of Si, it is very difficult to produce high-resistance

resistors without using much space. Therefore, the resistor is frequently replaced by
a transistor, and the resistance value is determined through the base current.

Capacitor: A capacitor essentially consists of two conducting electrodes separated by an
insulator. Usually, one electrode is generated by a very highly doped, and therefore highly
conducting, p- or n-region. An insulating SiO2-layer is deposited on this layer. The second
electrode is produced by evaporating a thin aluminum film on this oxide layer.
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region

Highly doped
n-region

Figure 28.108: Capacitor on
a silicon chip.

▲ In most cases, integrated circuits are realized in MOS technology because of the
low power drain of the individual transistor functions, in order to avoid a too-strong
heating of the component.

➤ Nevertheless, for extremely large integrated circuits, there may arise problems with
heat extraction. Therefore, the components must be equipped with cooling facilities.

M In practice, cooling of ICs is frequently done through good thermal contact with a
medium of high thermal conductivity, as a rule copper. Most recent findings indi-
cate that diamond (98.9 % 12C and 1.1 % 13C), by reducing the 13C-component (to
0.001 %) and cooling to 80 K (liquid nitrogen), has a thermal conductivity λ > 2000
W cm−1 K−1 (for comparison: copper: λ = 4.01 W cm−1 K−1). Thus, a power
density 500 times higher might be achieved.

28.6.7 Operational amplifiers
Operational amplifier, a multi-stage amplifier with a high gain that may get a definite
fixed gain value by external wiring, or may carry out mathematical operations.

Figure 28.109: Circuit
symbols of an operational
amplifier. “−” denotes
the inverting, “+” the
non-inverting input.

➤ The connections shown as vertical lines indicate the (symmetric) voltage supply of
the operational amplifier; as a rule, they are not plotted.

Inverting input terminal, the output signal is inverted (opposite phase) to the input signal.
Non-inverting input terminal, the output signal is non-inverted (in phase) to the input

signal.
Difference amplifier, the basic component of an operational amplifier. It consists of

two—possibly identical—transistors:

Constant
current

V

V

V

Figure 28.110: Difference
amplifier.
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M If both inputs have equal voltage, then one should get Va = 0. In practice, however,
Va �= 0 always. The reason for this behavior is the component tolerance of the
transistors and resistors, which results in an asymmetry of the difference amplifier.

Vn
Vp

VD

Va

Va

+Vs

–Vs

VD

Figure 28.111: Operational amplifier. (a): connection, (b): characteristic.

▲ An operational amplifier always amplifies the difference of the voltages at the inputs.

output voltage of an operational amplifier

Va = A(Vp − Vn)

= AVD

Symbol Unit Quantity

Va V output voltage
Vp V input voltage of the

non-inverting terminal
Vn V input voltage of the

inverting terminal
VD V difference voltage
A 1 gain

▲ An operational amplifier must be operated only with very small voltage differences
(order of millivolt).

Linear region, the range of voltage differences VD in which the operational amplifier acts
as a voltage amplifier (to about ±1 mV).

Saturation region, the difference voltages are beyond the linear region. The output
voltage no longer changes when VD is increased; it remains constant at the supply voltage
≈ ±Vs .

Ideal operational amplifier, an operational amplifier with the following properties:

Ideal Real

open-circuit voltage gain A ∞ 103 . . . 106

input resistance Re
(at both inputs) ∞ ≈ 1 M	

output resistance Ra 0 ≈ 100 	

➤ All statements about the operational amplifier always refer to the ideal operational
amplifier. In practice, minor deviations will always occur.

28.6.7.1 Negative-feedback operational amplifier
▲ For the operation of amplifiers, a stable bias point in the linear range of the opera-

tional amplifier has to be adjusted so that the amplifier does not run into a saturation
state. This is done by negative feedback, as is done for the transistor amplifier.
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Negative feedback, the output signal Va of the operational amplifier is fed back to the
inverting input (with opposite phase). Hence, deviations from the bias point will be fed
back with inverse sign, and therefore are weakened.

28.6.7.2 Inverting amplifier

gain of inverting amplifier 1

Va( jω)

Ve( jω)
= − Z ′( jω)

Z( jω)
· A( jω)

1+ A( jω)

≈ − Z ′( jω)

Z( jω)

β( jω) ≈ Z( jω)

Z( jω)+ Z ′( jω)

Symbol Unit Quantity

Va V output voltage
Ve V input voltage
Z , Z ′ 	 resistances
A 1 open-circuit

voltage gain

▲ The gain of the inverting amplifier is, for a sufficiently large open-circuit voltage gain,
independent of the architecture of the operational amplifier and determined only by
the external connection.

▲ An inverting amplifier multiplies Ve( jω) by a constant factor −Z ′( jω)/Z( jω).
➤ One may also make a non-inverting amplifier using an operational amplifier

(Fig. 28.112 (b)) with a gain

Va

Ve
= 1+ R0

R1
.

Va
Ve

Va
Ve

Figure 28.112: (a): Inverting amplifier, (b): non-inverting amplifier. Z and Z ′ denote (real
or complex) resistances.

28.6.7.3 Summing amplifiers
▲ The resistances R1, . . . , Rn determine the weighting factors of the input voltages

V1, . . . , Vn . The output voltage corresponds to the sum of the weighted input volt-
ages, multiplied by a factor determined by the coupling resistance R0.
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characteristic data of the summing amplifier

Va = −R0

(
V1

R1
+ · · · + Vn

Rn

)

Va = − R0

R
(V1 + · · · + Vn)

for R = R1 = · · · = Rn

Symbol Unit Quantity

Va V output voltage
V1, . . . , Vn V input voltages
R0 	 coupling resistance
R1, . . . , Rn 	 weighting factors

Subtractor, analogous to the adder, the non-inverting input is set to the voltage level to
be subtracted.
➤ Addition and subtraction may be done simultaneously with a single operational am-

plifier.

Vn

V2

Va VaV1

V2

V1

Figure 28.113: (a): Summing amplifier, (b): adder and subtractor.

28.6.7.4 Integrator
For sinusoidal signals Ve( jω) of angular frequency ω, the impedance ZC ( jω) of a capac-
itor with the capacitance C is

ZC ( jω) = 1

jωC
.

With Z( jω) = R and Z ′( jω) = ZC ( jω), one obtains an inverting amplifier.

performance of the integrator

Va( jω) = −Ve( jω)

jωRC

Va(t) = − 1

RC

∫
Ve(t) dt

Symbol Unit Quantity

Va V output voltage
Ve V input voltage
R 	 resistance
C F capacitance

Ve Va
Figure 28.114: Circuit
diagram of an integrator.
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Summing integrator, an integrator in which the charging current is supplied via separate
resistors R1, . . . , Rn , analogous to the summing amplifier:

Va(t) = − 1

C

∫ (
V1(t)

R1
+ · · · + Vn(t)

Rn

)
dt .

28.6.7.5 Differentiator
With Z( jω) = 1/( jωC) and Z ′( jω) = R one obtains for the inverting amplifier:

performance of the differentiator

Va( jω) = − jωRC · Ve( jω)

Va(t) = −RC
dVe(t)

dt

Symbol Unit Quantity

Va V output voltage
Ve V input voltage
R 	 resistance
C F capacitance

➤ In practice, the differentiation property is not as effective as the integrating one:
• For high frequencies ω, the approximation to the ideal operational amplifier is not

as good, since the open-circuit voltage gain A → A/( jωRC) is lowered, and hence
A→∞ is no longer fulfilled.

• High-frequency noise components at the amplifier input are amplified particularly
well.

• For large ω, and therefore small value of 1/( jωC), the internal resistance Ri of the
signal generator becomes noticeable.

M Application: analog computers.
Mathematical problems, e.g., integration of differential equations, may be carried

out by means of operational amplifiers.

Ve
Va

Figure 28.115: Circuit
diagram of a differentiator.

28.6.7.6 Voltage followers
Voltage follower, the full output signal is fed back to the inverting input (100 % negative
feedback): the output signal exactly follows the input signal,

Va

Ve
≈ 1 .

Ve

Va Figure 28.116: Voltage
follower.
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▲ The output resistance is very low, whereas the input resistance is very high.
■ The voltage follower is frequently used as impedance converter.

28.6.7.7 Positive-feedback operational amplifier
Positive feedback, the output signal is fed back to the non-inverting input. Owing to the
amplifying effect, the operational amplifier is driven into the saturation state.

Flip-flop circuit, a circuit with two stable output states. A flip-flop circuit produces
square-wave signals.

28.6.7.8 Schmitt trigger
Schmitt trigger, a flip-flop circuit that jumps to the alternative state if one of the two
definite input signal levels is exceeded. Switching between the stable states proceeds very
fast.

Falling below V on
e the circuit trips to the “on” state, exceeding V off

e it trips back to the
“off” state. One has:

V on
e = R1

R1 + R2
V min

a ,

V off
e = R1

R1 + R2
V max

a .

Switching hysteresis, the difference V off
e − V on

e . It is connection-dependent and cannot
be made arbitrarily small.

V off
e − V on

e = (V max
a − V min

a )(
R1

R1 + R2
− 1

A
)

≈ (V max
a − V min

a )
R1

R1 + R2
.

▲ R1/(R1 + R2) must always be larger than A−1.

Ve Va

Va

Ve
off

Va

Ve
on

Va

Ve

Figure 28.117: Schmitt trigger, (a): circuit, (b): operational mode.

28.7 Superconductivity

Superconductivity, a state of order of matter occurring in many metals and compounds
with metallic conductivity. Superconducting properties are destroyed by magnetic correla-
tions (Fig. 28.118).
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Figure 28.118: Temperature dependence of
the electric resistance of a superconductor
(1) and a normal conductor (2).

Figure 28.119: Alternative cycles in the
B-T phase diagram for superconductor and
ideal conductor. For the ideal conductor,
the final state (C) is path-dependent. In
a superconductor, the final state C is
path-independent (thermodynamically
stable state).

For superconductors, two effects are of particular importance:
• When cooling a sample below a characteristic temperature Tc, the specific electric

resistivity ρ(T ) drops to a value that cannot be distinguished experimentally from
ρ = 0.

• For temperatures T < Tc and magnetic fluxes B < Bc1, the substances are ideal
diamagnets (Meissner-Ochsenfeld effect).

Characteristic physical quantities of several superconductors may be found in the tables.

28.7.1 Fundamental properties of superconductivity
1. Meissner-Ochsenfeld effect,

also Meissner effect, the ideal diamagnetic behavior of a superconductor in a weak mag-
netic field. If a superconductor in a magnetic field (B < Bc1) is cooled below its critical
temperature Tc , the magnetic field lines are expelled from the interior of the superconduc-
tor. Thereby an induced persistent screening current flows in a thin surface layer of the
sample, its magnetic field just compensating the external flux density. The ideal diamag-
netism cannot be traced back to the ideal conductance.
➤ Below Tc (in the superconducting state) the thermodynamic quantities, and several

physical transport quantities of most superconductors, exhibit an exponential temper-
ature dependence. This behavior suggests the formation of an energy gap at the Fermi
energy in the superconducting state.

▲ The magnetic susceptibility of an ideal type-I superconductor is

χ = − 1

4π
(cgs), χ = −1 (SI).

▲ The specific heat has a λ-anomaly at Tc .
For T < Tc it displays an exponential temperature dependence.

▲ The ultrasonic attenuation in the superconducting state behaves like the specific heat.
M The temperature dependence of the ultrasonic attenuation (which is proportional to

the number of normally conducting electrons) was one of the first experimental con-
firmations of the BCS theory.
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Figure 28.120: States for path 1 and path 2
for an ideal conductor.

Figure 28.121: States for path 2 for a type-I
superconductor.

2. Theory of superconductivity

BCS theory (after Bardeen, Cooper and Schrieffer), a fundamental microscopic theory
of superconductivity. It describes the coupling of two electrons with opposite spins and
momenta by means of a phonon.

The attractive Coulomb force between an electron and the ion cores generates a local
and instantaneous deformation of the lattice. Owing to the large mass of the lattice atoms
and the associated inertia of the lattice, this deformation is not immediately canceled by the
thermal motion. A second electron then may find itself in a force field of positive charge,
and may be attracted. Therefore, an attractive interaction between two electrons arises via a
lattice deformation. This coupling is energetically favorable if both the spins and momenta
of the two electrons are aligned antiparallel to each other.

So, by means of a phonon, a new quasi-particle arises from two electrons, which is
denoted a Cooper pair. Each electron gains an amount of energy of EG/2 by the pair for-
mation. Moreover, an energy gap of width EG occurs in the electron distribution at the
Fermi energy. This energy gap determines the physical properties of the BCS supercon-
ductor. The width of the gap varies exponentially with decreasing temperature. Therefore,
all physical properties of a solid that are related to the conduction electrons exhibit an
exponential temperature dependence.

Cooper pair, quasi-particle of the BCS theory. Its spin is an integer, hence the Pauli
principle does not apply to Cooper pairs. Cooper pairs are governed by Bose-Einstein
statistics.
▲ All Cooper pairs may occupy the lowest energy state (Bose-Einstein condensation).

Therefore, they all have a fixed phase relation that may lead to formation of macro-
scopic quantum states.

▲ There is no inelastic scattering in the motion of Cooper pairs as long as the energy
loss is less than the energy gap.

3. Isotope effect and Josephson effect

Isotope effect, dependence of the critical temperature Tc on the mass M of the isotope of
the superconductor,

Mα · Tc = const. , α ≈ 0.5 .

M The parameter α depends on the series of isotopes. The most frequent experimental
value is about 1/2. Such a value is expected according to the BCS theory. The isotope
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effect is interpreted as experimental confirmation of the BCS theory and the role of
lattice vibrations in the formation of Cooper pairs.

Josephson effect, the tunneling of Cooper pairs through a thin insulating layer between
two superconductors. It is based on the fixed phase relation among the Cooper pairs (phase-
coherence effect, macroscopic quantum states). A tunnel current flows without an external
potential difference. A phase change arises in the tunneling of the Cooper pairs between
the two superconductors.

M The phase-coherence effects in superconductors are of great importance for mea-
suring very small magnetic fields. Such measurement systems are called SQUID
(superconducting quantum interferometer device). They are employed in solid-state
physics, geophysics, biophysics and medicine.

4. Critical current density,

the current density at which the superconducting state converts to normal conduction. The
reason is a possible energy loss in the inelastic scattering of Cooper pairs that is higher
than the energy gap.
■ The current density is j = 2env. n is the number of Cooper pairs, and v is the drift

velocity of Cooper pairs. Consider a crystal lattice of mass M that contains a defect.
The lattice moves with the velocity v relative to the electron gas. If an excitation
energy ε is transferred to the lattice by collision, then both energy and momentum
must be conserved:

1

2
Mv2 = 1

2
Mv′2 + ε , M�v = M�v′ + ��k .

Hence:

0 = ��k�v+ �
2k2

2M
+ ε .

If the mass of the crystal is very large (M →∞), then

vc = ε

�k
,

vc being the velocity for the energy ε = Eg . The existence of an energy gap Eg
prevents inelastic scattering for velocities v < vc. For higher velocities, inelastic
scattering may occur.

5. Critical magnetic flux density,

Bc, a consequence of the existence of a critical current. The superconducting state breaks
down above a critical magnetic field strength.
■ Besides the SQUID systems, the technical application of superconductors lies mainly

in the construction of high-flux magnets. Here, the critical current density of the
materials used is the crucial quantity. Presently, wires of Nb-compounds are produced
which are embedded in a Cu-matrix. The maximum flux density of such magnets is
about 20 tesla.

Pinning, the fixing of magnetic flux tubes in a type-II superconductor at a definite position
in the superconductor. The creation of pinning centers occurs because the Lorentz force
between the magnetic flux tubes during a current flow causes a motion of the tubes resulting
in a release of heat. Materials with pinned flux tubes are called hard superconductors. They
have a higher critical current density and are used for construction of magnets.
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Pinning centers, places at which the magnetic flux tubes in type-II superconductors
may be fixed. Such pinning centers may be dislocations, grain boundaries or segregations,
i.e., defects in the crystal lattice.

6. Type-I and type-II superconductors

Type-I and type-II superconductors, superconductors of the first and second kind. A suf-
ficiently strong magnetic field destroys the superconductivity and the diamagnetic behavior
of the sample. Type-I and type-II superconductors behave differently in a magnetic field.
• Type-I (also soft superconductors): for increasing magnetic flux density, a sudden

transition from superconductivity to normal conduction occurs at H = Hc. The per-
sistent screening currents flow in a thin surface layer of thickness λ (London pene-
tration depth). The values of Hc are too low for type-I superconductors to be used
in superconducting magnetic coils.

• Type-II (frequently alloys or transition metals with high electric resistance in the
normal state, i.e., small mean free path of electrons in the normal state). The transi-
tion from the superconducting state to the normally conducting state does not occur
discontinuously, but extends over an interval of magnetic field strengths between Hc1
and Hc2. At Hc1 < Hc, the field begins to penetrate into the sample, forming nor-
mally conducting flux tubes (vortices). The exit points of the flux tubes may be made
visible in the electron microscope by means of small ferromagnetic particles; they
again form ordered structures. The magnetic moment of the vortices is quantized.
Superconductivity disappears completely only for field intensities > Hc2.

Figure 28.122: Magnetization curves M(H ) of superconductors. (a): type-I superconduc-
tor, (b): type-II superconductors. 1 – superconducting state, 2 – mixed state, 3 – normally-
conducting state. The negative sign of M corresponds to diamagnetic behavior.

Figure 28.123: Vortex lattice
of flux tubes in type-II
superconductors.
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Flux quantum, the elementary quantity of magnetic flux. In flux tubes, it is equal to

�0 = h

2e
= 2 · 10−15 Vs .

➤ The number 2 in the denominator is a consequence of the double charge of a Cooper
pair.

7. London penetration depth and Ginsburg-Landau parameter

London penetration depth, usually denoted λ. It determines the penetration depth of a
magnetic field into a superconductor.

Coherence length, usually denoted ξ . It corresponds to the spatial extension of a Cooper
pair. The ratio of λ to ξ , the Ginsburg-Landau parameter κ , distinguishes between type-I
and type-II superconductors.

Ginsburg-Landau parameter,

κ = λ
ξ
.

▲ Superconductor of the first kind: κ <
1√
2

.

▲ Superconductor of the second kind: κ >
1√
2

.

M Because of the complete expulsion of magnetic fields from the interior of a super-
conductor, superconducting materials are used to shield unwanted electromagnetic
fields.

28.7.2 High-temperature superconductors
High-temperature superconductor (HTSC), superconducting copper-oxide compounds
with critical temperatures Tc ≥ 80 K. They are crystallized in the tetragonal perovskite
structure. This leads to an anisotropy of the superconducting properties.
➤ HTSC exhibit an appreciable residual resistance due to the thermal motion of the

magnetic flux lines.
➤ HTSC may achieve great importance in the technical applications of superconduc-

tivity. In order to reach the superconducting state, it is no longer necessary to use
expensive liquid helium; the temperature of liquid nitrogen is sufficient.

The HTSC most investigated at present is YBa2Cu3O7. Depending on the oxygen content
of the sample, the critical temperature is 60 – 93 K.
➤ These superconductors are ceramic and exhibit a relatively low critical current den-

sity at T = 77 K in zero-field (B = 0 T).

1. Families of high-temperature superconductors
and material-specific properties

The following table gives the most important families of high-temperature superconduc-
tors:
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Denotation Chemical formula Maximum Tc

123-HTSC (Y,Eu,Gd, ·)Ba2CU3O7 92 (YBCO)

bismuth-22(n − 1)n Bi2Sr2Can−1CunO2n+4 90 (Bi-2212)
122 (Bi-2223)
90 (Bi-2234)

thallium-22(n − 1)n Tl2Ba2Can−1CunO2n+4 110 (Tl-2212)
127 (Tl-2223)
119 (Tl-2234)

thallium-12(n − 1)n Tl(Sr,Ba)2Can−1CunO2n+3 90 (Tl-1212)
122 (Tl-1223)
122 (Tl-1234)
110 (Tl-1245)

▲ In all HTSC a certain number of CuO layers with interpolated layers of Y or Ca ions
are arranged to a pack. The conducting CuO layers are separated by insulating layers
(BaO, SrO or TcO layers).

▲ In HTSC the superconducting properties are strongly anisotropic ( jc, Hc1,2 ‖ to the
CuO layer 5 to 10 times stronger than jc, Hc1,2 ⊥ to the CuO layer).

▲ The many grain boundaries in the ceramic HTSC become barriers for the Cooper
pairs and reduce the critical current.

2. Methods of producton of HTSC layers

Epitaxial HTSC films are obtained by growth of films on monocrystalline substrates. The
anisotropy of the HTSC is utilized in the production of these monocrystalline layers, jc
increases. SrTiO3,LaHCO3 and also Al2O3 are used as substrates.

Texturization, another method to increase the critical current density. The random dis-
tribution of crystallites is converted by controlled crystallization to a more or less oriented
distribution of the crystal axes about a given direction.
➤ This method of texturization is applied to compact HTSC ceramics.
■ Superconducting resonators: because of their energy gap, HTSC exhibit significantly

lower HF losses in the frequency range up to 100 GHz than normal conductors
(Fig. 28.125).

■ Miniaturization of antennas in the lower GHz-range and for millimeter wave anten-
nas. They exhibit significantly lower losses than normal conductors (Fig. 28.124).

C

e

Figure 28.124: Model of an antenna made of
HTSC layers.

Figure 28.125: Model of a resonator
using YBa2Cu3O7.

■ High-current conductors in low magnetic fields: the Bi-2223 phase is used as su-
perconductor. The ceramicized powder is filled into Ag-tubes. These tubes are cast
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or rolled and treated by heat. Critical current densities (at T = 77 K and 0 T) of
13000 A/cm2 have been reached.

➤ HTSC ceramics have some undesirable material properties, e.g.:
• high brittleness,
• high instability against extraction of oxygen.

28.8 Magnetic properties

Magnetism, a quantum-mechanical phenomenon, state of order of matter occurring in
conductors and insulators in several forms. Metals at low temperatures are ordered either
as superconductors or magnetically aligned systems.

Magnetization, M , defined as the quotient of the magnetic moment and the volume of
the sample. M depends on the strength of the external magnetic field, and on the tempera-
ture.

Definitions:
cgs system: �B′ = �Ba + 4π �M,
SI system: �B = �Ba + µ0 �M.
�Ba : external magnetic flux density.
Magnetic susceptibility, χm , quotient of the magnitude of magnetization | �M| and the

magnitude of the magnetic field strength | �H|,

χm = M

H
, or χm = ∂M

∂H
.

Dimension: the magnetic susceptibility is dimensionless, according to �B = µ0 �H + �I =
µ0( �H + �M), the definition of the magnetic polarization �I = µ0χm �H, and the con-
stitutive equation �B = µrµ0 �H (µ0: magnetic field constant, µr : relative permeability,
µ = µrµ0: permeability). The magnetic susceptibility is related to the relative permability
in an isotropic medium by

χm = µr − 1.

The numerical measures of the susceptibility in the cgs system and in the SI system differ
by a factor 4π .

1. Kinds of magnetism

For paramagnetic substances χm > 0 ( �M, �H parallel),
for diamagnetic substances χm < 0 ( �M, �H antiparallel),
for ferromagnets χm depends on magnetization history.

M Magnetic susceptibilities are measured by means of a magnetic balance via the force
�F on a sample in an inhomogeneous magnetic field �H,

Fx ∼ V · �H · d �H
dx
.

It has to be assumed that the sample is small enough that both �H and
d �H
dx

effectively

do not vary through the volume of the sample. This method allows the measurement
of changes in the susceptibility down to 10−10.
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Figure 28.126: Magnetic
balance.

2. Diamagnetism,

is connected with the tendency of electric charges to shield the interior of a body against
an external magnetic field.
➤ This is analagous to Lenz’s law in electrodynamics.
Diamagnetic molar susceptibility, after Langevin, generated by the electrons of the indi-
vidual atoms:

diamagnetic molar susceptibility L3mol−1

χd = −µe
NA Ze2

6m
〈r2〉 (SI)

χd = − NA Ze2

6mc2
〈r2〉

Symbol Unit Quantity

χd 1 diamagnetic
susceptibility

µe A m2 magnetic moment
of electron

Z 1 atomic number
e C elementary charge
NA mol−1 Avogadro’s number
m kg electron mass
c m s−1 speed of light

Here, 〈r2〉 is the mean-squared distance of the electrons from the atomic nucleus.
Typical values of the diamagnetic molar susceptibility are

He Ne Ar Kr Xe
χdµ (in 10−12 m3/mol) −1.9 −7.2 −19.4 −28.0 −43.0.

➤ The formula given above presupposes that the field direction and the symmetry axis
of the system coincide. In many molecules this is not the case, however.

▲ Superconductors of the first kind also behave like ideal diamagnets.

3. Paramagnetism,

occurs in:
• atoms, molecules and lattice defects with an odd number of electrons. The total spin

cannot be zero in this case;
• free atoms and ions with a partially filled inner shell, e.g., in transition metals, rare

earths and actinides;
➤ inclusion of these atoms into a crystal lattice is not necessarily related to the para-

magnetic behavior of the entire solid.
• several substances with an even number of electrons;
• metals.
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4. Langevin equation and Curie’s law

Magnetization of a mole of a substance with an atomic magnetic moment µ is described
by the Langevin equation:

M = NA · µ · L(x), x = µ · H

kB · T .

The Langevin function L(x) is given by

L(x) = coth x − 1

x
.

For high temperatures T � µH

kB
, x � 1, expansion of the coth-function yields

L(x) ≈ x

3
.

The dependence of the magnetic susceptibility on the temperature in this approximation is
given by Curie’s law:

χM = M

H
= NAµ

2

3kBT
= C p

T
.

The quantity C p = NAµ
2/(3kB) depends on the substance.

M Owing to the
1

T
-behavior of the magnetic susceptibility, Curie’s law allows the use

of paramagnetic salts for measuring low temperatures (T < 1 K). The paramag-
netism of the conduction electrons arises from the spin moment of the electrons.

For
µB H

kBT
� 1,

χM =
NAµ

2
B

kBT
, µB: Bohr magneton.

The Bohr magneton µB is defined in the cgs system as e�/(2mc), in the SI system as
e�/(2m). It corresponds essentially to the magnetic spin moment of a free electron.

Only conduction electrons in the vicinity of the Fermi energy may contribute to
the paramagnetic susceptibility. This fraction is given by T/TF . The contribution of
the conduction electrons to the susceptibility is

χel = χm
T

TF
= NAµ

2
B

kBTF
.

▲ The conduction electrons yield a temperature-independent contribution to the sus-
ceptibility at high temperatures.

▲ At low temperatures, all electron spins are aligned parallel to the field.



1052 28. Solid-state physics

28.8.1 Ferromagnetism
1. Generation of ferromagnetism

Ferromagnets contain spontaneously aligned domains with equal orientation of the mag-
netization. These domains are denoted Weiss domains. Ferromagnetism is caused by un-
occupied inner electron shells.

Exchange integral, I , determines the interaction energy Eint of neighboring atoms via
the magnetic dipole-dipole interaction of the electron spins �si ,�si+1 (i, i + 1: neighboring
sites in a linear spin chain):

Eint = −2I

�2
(�si · �si+1) .

The exchange integral I depends on the overlap of the probability densities of the electrons
in both atoms. The interaction is therefore limited to immediately neighboring atoms.
▲ Electrons with antiparallel spins attract each other (I > 0) if the electrostatic repul-

sion is ignored.
▲ A purely magnetic dipole-dipole interaction cannot be the origin of the alignment of

the domains.
▲ The spin state of neighboring atomic electrons is influenced by the conduction elec-

trons.
▲ Ferromagnetism is related to conduction electrons. Therefore, ferromagnetism arises

only in metals.

Figure 28.127: Orientation of atomic
dipoles under the influence of a central
dipole.

Figure 28.128: Exchange interaction
between adjacent atoms by means of
conduction electrons. 1 – conduction
electrons, 2 – atoms.

2. Langevin equation of ferromagnetism

Molecular field, a model field generated by spontaneous magnetization:

�Hmolecular field = λ · �M .

The atomic magnetic moments are subject to the external field �H and to this molecular
field. The magnetization is given by

M = NAµB tanh
µB(H + λM)

kBT
.

In the absence of an external magnetic field,

M = NAµB tanh
λµB M

kBT
= f (M, T ) .

Fig. 28.129 shows graphical solutions of this equation and their temperature dependence.
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B

Figure 28.129: Graphical solu-
tion of the Langevin equation.

There is no solution if the slope of the function f (M, T ) is smaller than or equal to
1. Then, magnetization breaks down. This phenomenon occurs at temperatures above the
Curie temperature TC ,

T > TC =
NAµ

2
Bλ

kB
.

Curie-Weiss law, describes the magnetization for T > TC :

M = TC · H

λ(T − TC )
, χm = C

T − TC
.

3. Magnetic hysteresis

Hysteresis, the dependence of a physical state in a solid on the former states.
Magnetic hysteresis, dependence of the magnetic flux density on the magnetic field

strength. The phenomenon occurs in all ferromagnetic and ferrimagnetic substances.
Initial magnetization curve, the path of magnetization of a sample not previously sub-

jected to an external field as a function of the applied magnetic field.
Saturation magnetization, Ms , is reached if all atomic magnetic dipoles are aligned

parallel. The entire sample then consists of only one domain.
Remanence (residual magnetism), BR , the residual magnetization remaining when the

magnetic field H drops to zero after having reached the saturation magnetization.
Coercive field strength, Hc, the field strength that has to be applied opposite to the

original direction of the magnetic field in order to reduce the magnetization M to zero.
▲ The area enclosed by the hysteresis curve represents the energy loss, i.e., the absorp-

tion of magnetic energy in the material by remagnetization.
▲ For small variations of the field intensity, the domains are displaced again reversibly.

Barkhausen effect, irreversible displacements and rotations of domain walls at higher
field strengths. Fig. 28.131 below shows a section of the hysteresis curve with high resolu-
tion.

Soft magnets, magnets with a narrow and flat hysteresis. They have low coercive field
strengths and low remanence.

Hard magnets, magnets with an almost rectangular hysteresis with high remanence and
large coercive field strength.
■ Ferromagnets are of great technical importance. Soft-magnetic materials are used in

transformers, in electromagnets and for magnetic shielding. Hard magnets are used
as permanent magnets in generators and machines. Most important use is in storage
media (e.g., for recorder tapes, video tapes, hard disks).
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Figure 28.130: Ferromagnetic hysteresis.
Ms : saturation magnetization, BR :
remanence, Hc: coercive field strength.

Figure 28.131: Barkhausen discontinuities.

28.8.2 Antiferromagnetism and ferrimagnetism
Antiferromagnetism and ferrimagnetism, there exist sublattices with opposite magneti-
zation.

Antiferromagnetism, the magnetization of the sublattices is compensating, since the
antiparallel-aligned magnetic moments of the structure components are of equal magni-
tude. The resultant magnetization is zero, no domains occur. The substance behaves dia-
magnetically.

Figure 28.132: Antiferromagnet
(a) and ferrimagnet (b).

Néel temperature, TN , the temperature above which all atomic moments are statisti-
cally disordered due to thermal motion. The substance is then paramagnetic. For T ≥ TN ,
the susceptibility is given by

χm = C

T + TN
,

TN representing paramagnetic Néel temperature.
■ Manganese oxide (MnO) is antiferromagnetic.
Ferrimagnetism, the magnetic moments of the sublattices are only partly compensating,
since the antiparallel-aligned magnetic moments of adjacent structure components have
different magnitudes. The substance behaves like a weak ferromagnet.

Figure 28.133: Susceptibility ver-
sus temperature of: (a) paramag-
net, (b) ferromagnet (with complex
behavior in the shadowed region),
and (c) antiferromagnet. TC : Curie
temperature, TN : Néel tempera-
ture.
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■ Iron oxide Fe2O3 behaves ferrimagnetically. In this compound, the iron atom oc-
curs in two-valued and three-valued forms. Correspondingly, there are two atomic
moments of different magnitude.

➤ The theoretical description of antiferromagnetism and ferrimagnetism is, similar to
that of ferromagnetism, based on the molecular field approximation. The molecular
fields of the two sublattices receive different signs.

28.9 Dielectric properties

Dielectric, a crystal with a conductance by about 20 orders of magnitude smaller than that
of a metal. The capacitance of a capacitor increases if a dielectric is placed between the
capacitor plates.

Polarization, �P, electric dipole moment of a solid per unit volume.
Orientation polarization, the alignment of a polar molecule in an electric field. The

charge distribution in the molecule remains unchanged.
Displacement polarization, displacement of electric charges in an dielectric under the

influence of an electric field �E. Neutral molecules change to dipoles.
➤ In both cases, the polarization results in a separation of charge.

Figure 28.134: Displacement
polarization. 1 – dipoles
generated by the local field
EL , 2 – charges generated
by the de-electrification field
EN .

The induced or permanent dipoles are aligned by the electric field.

1. Electric displacement density in the dielectric

Electric displacement density, �D, characterizes the electric field in a dielectric:

electric displacement density 	D ITL−2

�D = ε0 �E+ �P

Symbol Unit Quantity

�D C m−2 electric displacement density
�E V m−1 electric field strength
�P C m−2 electric polarization
ε0 C V−1 m−1 permittivity constant of

free space

2. Charge separation in a dielectric

Electric susceptibility, χ , the amount of charge separation in a dielectric. χ describes the
macroscopic dielectric property of the material.
➤ For low electric field strengths, the electric polarization is proportional to the electric

field intensity:

�P = ε0χ �E ,
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where χ is the electric susceptibility, �E is the electric field strength and ε0 is the
permittivity constant of free space.
In a few exceptional cases, a constant term appears in the formula (e.g., Seignette
salts).

For low electric field strengths, it holds:

displacement density 	D for low electric field strengths ITL−2

�D = ε0 �E+ ε0χ �E
= ε0εr �E

εr = 1+ χ

Symbol Unit Quantity

�D C m−2 electric displacement density
�E V m−1 electric field strength
χ 1 electric susceptibility
ε0 C V−1 m−1 permittivity constant of

free space
εr 1 relative permittivity

➤ Laser light may generate such high field intensities that the approximation of a lin-
ear relation between polarization and electric field intensity is no longer valid. The
polarization then has to be expanded into a power series,

�P = ε
(

A + χE + χ ′E2 + · · ·
) �E

E
.

▲ In anisotropic materials, the relative permittivity is a tensor.
▲ The relative permittivity is frequency-dependent.

3. Polarizability and local field

Polarizability, αi , determines the magnitude of the dipole moment �pi generated under the
influence of an electric field at the position of a dipole,

�pi = αi · �ELi ,

where �ELi is the local field intensity at position i . Polarizability is an atomic quantity and
depends on the structure of the crystal.

Local field, �EL, superposition of the external field �Eext with the field �Esample of the
dipoles of the sample,

�EL = �Eext + �Esample .

➤ As a rule, one restricts oneself to geometrically simple test bodies such as ellipsoids,
spheres or disks.

De-electrification field, �EN , the field generated by the charges on the surface of a test
body (e.g., ellipsoid) directed opposite to the external field and depends on the geometry
of the sample. Inside the sample,

�E = �Eext + �EN

with

�EN = − 1

ε0
N �P; N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 ellipsoid
1

3
sphere

1 disk area ⊥ �Eext
0 disk area ‖ �Eext

.
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Lorentz field, �Ei , electric field inside a fictitious cavity in the interior of a polarized di-
electric,

�Ei = −�EN = − N

ε0
· �P .

N is determined by the geometrical shape of the cavity.

4. Dipole field in the crystal lattice

Dipole field, �ED(�r), electric field at the distance �r from a point dipole at the position
�r = �0, with the dipole moment �p :

electric field of a dipole LT−3MI−1

�ED(�r) = 3(�p · �r)�r− r2�p
4πε0r5

Symbol Unit Quantity

�ED(�r) V/m dipole field
�r m distance vector to

the dipole
�p C m dipole moment
ε0 C/(V m) permittivity constant of

free space

Dipole field in a crystal lattice:

�ED =
∑

i

�ED(�ri ) .

➤ The dipole field �ED depends on the lattice structure.
➤ For all lattices with cubic symmetry, the sum over the lattice yields zero, i.e., the

dipole field vanishes, �ED = 0. For lattices with tetragonal perovskite structure (−→
high-temperature superconductor), this is not so.

■ The local field for cubic lattice types with a sphere as test body is

�EL = �Eext − 1

ε0
· �P+ 1

3ε0
· �P .

This local field generates the local polarization of a lattice atom.
▲ For NV lattice atoms of equal kind per unit of volume the polarization of the test

body is

�P = ε0 NV α �EL = ε0 NV α(�E+ 1

3ε0
· �P) .

polarization of a spherical test body ITL−2

�P = ε0χ �E

χ = NV α

1− 1
3 NV α

Symbol Unit Quantity

�P C m−2 polarization
χ 1 electric susceptibility
�E V m−1 electric field strength
NV 1 atomic density in the lattice
α 1 polarizability
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➤ If the crystal is composed of different species of atoms, and if the atoms have different
polarizability, then one has to sum over the atoms.

electric susceptibility 1

χ =

∑
i

Niαi

1− 1

3

∑
i

Niαi

Symbol Unit Quantity

χ 1 electric susceptibility
Ni 1 number of atoms i
αi 1 polarizability of atoms i

5. Electronic and ionic polarization

Electronic polarization, deformation and displacement of the electron cloud of an atom
relative to the practically point-like positively charged atomic nucleus (Fig. 28.135).
➤ Electronic polarization may always occur.
➤ In the field of an electromagnetic radiation, the electronic polarization is not a static

quantity. It will oscillate in the rhythm of the electromagnetic waves. But acceler-
ated charges radiate energy: the forced oscillation of the electronic charge cloud is
damped. Therefore, the polarizability αi , and thus the susceptibility χ , are complex
numbers. The relative permittivity εr also becomes complex.

▲ For a dielectric in an alternating electromagnetic field, the optical quantities refractive
index n and absorption coefficient κ and the electric susceptibility χ are related as
follows:

relative permittivity εr 1

εr = 1+ χ = (n + jκ)2

Symbol Unit Quantity

εr 1 relative permittivity
χ 1 electric susceptibility
n 1 refractive index
κ 1 absorption coefficient
j – imaginary unit

Ionic polarization, occurs in ionic crystals. The positive and negative ions are deflected
differently by an electric field.

Figure 28.135: Electronic polarization
in an electric field �E. Shadowed area:
electronic cloud. (a): charge distribution in
an atom without external field, (b): charge
distribution in an atom in the field.

Figure 28.136: Ionic polarization in an
electric field �E.

Total polarization, the sum of ionic and electronic polarizations.
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28.9.1 Para-electric materials
Para-electric materials, substances containing electric dipoles even absent an external
electric field that are, however, disordered due to thermal motion.

Figure 28.137: Orientation
polarization in para-electric
substances.

Orientation polarizability, αorient, a function of frequency, and complex because of
damping,

αorient = α0

1− jωτ
.

τ is a characteristic time constant—the relaxation time. α0 is the static polarizability when
applying a field that is constant in time.
■ Orientation polarization occurs in liquid crystals.
➤ The relative permittivity εr = 1 + χ for water at room temperature is 81 under an

applied static field (ω = 0).
In the range of visible light, the corresponding value is only 1.77. Therefore, water

is transparent for light. The difference of the relative permittivity for a static field and
for visible light is due to the orientation polarization, which is essentially completely
suppressed at high frequencies because of damping.

Dielectric losses, w, arise when applying an electric field because of the resistance against
a polarization,

w = Im (χ) · E2ω ,

where Im (χ) is the imaginary part of the complex electric susceptibility.

28.9.2 Ferroelectrics
1. Electrets

Ferroelectric crystals exhibit a spontaneous polarization absent even an external electric
field.

Electrets, ferroelectric crystals with a permanent dipole moment. Their polarization can-
not be influenced by an external field.
➤ Electrets are analogous to permanent magnets.
■ Examples of electrets: nylon and wax.
▲ As a rule, ferroelectric crystals show a hysteresis similar to ferromagnetic materials.
➤ The hysteresis of electrets is almost a rectangle.
Ferroelectric Curie temperature, TC , the temperature above which the crystal is no
longer in a ferroelectric state.

M Production of electrets: in a thermal or photoelectric method. A sample is heated
beyond the Curie temperature, and in this state is exposed to a strong electric field.
The dipoles aligned by the field are then frozen by cooling. Thermally, this is a non-
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Figure 28.138: Ferroelectric hysteresis. Ps :
spontaneous polarization, Ec: coercive field
strength.

Figure 28.139: Influence of ionizing
radiation on the charge distribution in
electrets.

equilibrium state. It will pass over to the equilibrium state with a relaxation time τ .
For electrets, this relaxation time is in the range of years.

▲ Ionizing radiation generates free charge carriers in an electret. As a result, the surface
charge changes. The internal field is inverted.

■ Electrets are used in radiation detection.

2. Piezoelectricity,

property of a dielectric to become polarized under the influence of a mechanical defor-
mation and, conversely, to become deformed under the influence of an electric field (elec-
trostriction). The origin of piezoelectricity is the difference between the elasticity moduli
for the two sublattices of positive and negative ions.
▲ Ionic crystals may exhibit piezoelectricity. The lack of a symmetry center is a neces-

sary condition.

Figure 28.140: Piezoelec-
tricity (schematic). (a):
crystal without mechanical
stress, (b): crystal with
mechanical stress σ . 
P :
piezoelectric polarization
induced by stress.

■ Conversion of pressure to electric voltage:
• piezoelectric gas lighter,
• piezoelectric microphone.

Conversion of electric voltage to deformation and vice versa:
• oscillating quartz.
➤ Piezoelectric crystals are not always ferroelectric. Example: quartz.
Domains, regions in ferroelectrics over which the polarization has equal orientation for all
structural components. In adjacent domains, other orientations are prevalent.
▲ Domains have a size of several micrometers.
➤ So far, no satisfactory microscopic explanation of ferroelectricity has been found.

28.10 Optical properties of crystals

▲ Crystals that are not electrically conducting at room temperature are usually trans-
parent.
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▲ Colorless crystals do not have the possibility of exciting electron states or vibrational
states in the visible spectral range.

➤ The wavelengths in the visible spectral range are between 360 nm and 740 nm. This
range of wavelengths corresponds to energies between 3.4 eV and 1.7 eV.

28.10.1 Excitons and their properties
Exciton, bound electron-hole pair. In the creation of an exciton, the binding energy EB
is released. Therefore, at least the energy Eg is needed for the generation of an unbound
particle-hole pair, whereas for generating a bound particle-hole pair only the smaller energy
Eg − EB is needed.
➤ Excitons may move through the crystal. They transport excitation energy, but no

charge.
Recombination, decay of the exciton. The electron falls back into the unoccupied state
(hole). The released excitation energy leaves the crystal as radiation.
➤ The electron-hole pair may be considered analoguous to the positronium atom (bound

e+e−-system).
Energy level of an exciton. The energy level of weakly bound excitons (Mott-Wannier
excitons) relative to the top of the valence band is described by the following formula:

energy level of the Mott-Wannier exciton ML2T−2

En = Eg − µe4

8h2ε2
0 ε

2
r n2

1

µ
= 1

m∗e
+ 1

m∗h

Symbol Unit Quantity

En J exciton energy
Eg J energy gap
µ kg reduced mass of

electron-hole
system

m∗e kg effective mass of
electron

m∗h kg effective mass of hole
e C elementary charge
h J s quantum of action
εr C2 N−1 m−2 relative permittivity

of crystal
n 1 principal quantum

number
ε0 A s/(V m) permittivity constant

of free space

■ Cu2O is a crystal; its absorption spectrum at low temperature due to exciton excita-
tions is described by the above equation.

M Absorption spectra are measured by means of a set-up sketched in Fig. 28.142.
Frenkel exciton, bound electron-hole pair localized at a lattice atom of the crystal. An

ideal Frenkel exciton travels as a wave through the entire crystal, but the electron and hole
always remain close to each other.
▲ In alkali-halide crystals, the excitons of lowest energy are localized at the negative

halogen ions.
▲ Pure alkali-halide crystals are transparent in the visible range of the spectrum. The

absorption in the ultraviolet range exhibits considerable structure.
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Wave number (cm  ) Figure 28.141: Absorption
spectrum of Cu2O.

Figure 28.142: Optical
spectrometer. 1 – tungsten
incandescent filament, 2 –
lens, 3 – sample, 4 – Dewar
vessel, 5 – entrance slit,
6 – photomultiplier, 7 –
Rowland circle, 8 – concave
grating.

Figure 28.143: Schematic
representation of a Frenkel
exciton, localized at an atom
of an alkali-halide crystal.

28.10.2 Photoconductivity
Photoconductivity, the increase of the electric conductivity of an electrically insulating
crystal under the influence of radiation. In the elementary process of photoabsorption, an
electron from the valence band is lifted up to the conduction band (thereby leaving a hole
in the valence band).
▲ Both the holes and the electrons may contribute to the conductivity.
Time variation of the electron concentration n in the frame of a simple model (electron-
hole pairs are created uniformly over the entire crystal; the recombination proceeds via the
direct annihilation of electron-hole pairs) follows from a balance equation:

time variation of electron concentration L−3T−1

dn

dt
= L − An2

Symbol Unit Quantity

n m−3 electron concentration
L s−1 m−3 absorption probability
A m3 s−1 measure for recombination

probability
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In the steady state,
dn

dt
= 0 and

n0 =
√

L

A
.

Time constant, t0, characterizes the speed of decrease of charge carriers after switching
off the source of light:

n = n0

1+ t

t0

.

During the time t0, the concentration of charge carriers drops to n0/2.
Sensitivity, G, ratio of photon flow I to absorption probability,

G = I

L · d · e d: thickness of sample.

Traps, defects in the crystal that offer energy levels in the range between the conduction
band and the valence band, and thus may “hold back” an electron or a hole between the
energy bands.
■ Traps crucially affect the time behavior of the photoconducting cell in an exposure

meter, or in the luminescence layer of a TV tube.

28.10.3 Luminescence
Luminescence, absorption of energy by matter and subsequent re-emission in the visible
spectral range, or in adjacent spectral regions.
➤ The type of excitation does not matter.
Luminophors, crystalline solids capable of luminescence.

Fluorescence, emission of light during the excitation, or within a very short time delay
of 10−8 s after the excitation.
➤ The time interval of 10−8 s is of the order of the lifetime of an atomic energy state

for an allowed electric dipole transition in the visible spectral range.
Phosphorescence, afterglow during a finite time after switching off the excitation.
➤ The delay time may vary over a broad range: alkaline earth, zinc sulphide and zinc sil-

icate luminophors have afterglow times between µs (TV screens) and several hours
(luminous dials).

➤ Many solids have a low efficiency for conversion of other forms of energy to radia-
tion.

Activators, substances that in weak admixtures may cause an appreciable increase of the
efficiency.

28.10.4 Optoelectronic properties
Opto-electronics, deals with the phenomena involved in the conversion of electric energy
into optical energy and vice versa.
▲ The most important component is the semiconductor pn-junction.
Light-emitting diode (LED) or luminescence diode, consists of a pn-junction.
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e(Vd –V)

eVdeV
Figure 28.144: Schematic
picture of a pn-junction
of an LED. 1 – p-region,
2 – n-region.

The band deformation is weakened by a voltage in the flow direction. The electrons then
must spend only the energy e(Vd − V ) in order to pass from the n-region to the p-region.
Conversely, this also holds for the holes. In the vicinity of the junction, the electrons and
holes recombine and thereby release the energy of the band gap Eg in the form of photons.
▲ LEDs produce almost monochromatic, but in general incoherent, light of wavelength

λ ≈ 1.24

Eg(eV)
µm

(Eg in electron volts). The color of the LED is therefore determined by the width of
the forbidden zone.

▲ The radiant power released is proportional to the current.
▲ LEDs have very long lifetimes.
Laser diode, LD, pn-junction with very high doping nD ≈ 1019 cm−3 (degenerated
semiconductor).
▲ Laser diodes produce coherent radiation.
▲ Electrons occupy the conduction band in the n-region. Conversely, the holes occupy

the valence band.
Population inversion for laser diodes: Energetically high-lying states in the conduction
band are occupied by electrons while low-lying states are empty (occurs in the junction
region of the active zone).
▲ Hence, the basic condition for stimulated emission of the laser is fulfilled.
Resonator mirrors, necessary for feedback, they form the boundary surfaces of the semi-
conductor crystal. The reflecting-end faces are cleavage faces of the crystal that are per-
fectly planar and parallel. Because of the high refractive index of semiconductors, the
reflection is very strong.

Spontaneous emission (→ atomic physics), occurs for low current intensities.
Threshold current, Ith, current intensity above which stimulated emission occurs.
Longitudinal vibrational modes of laser, standing waves constituting the laser spec-

trum. Owing to the finite length L of the laser diode (distance between the reflecting planes)
the only standing waves occurring have wavelengths

λ = m

n

L

2
; m = 1, 2, 3, . . . ,

n being the refractive index of the crystal.
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Symbol Unit Designation

α C m2V−1 polarizability
α 1 fine-structure constant
α 1 Madelung constant
β 1 small-signal current amplification
γ N m2/kg2 gravitational constant
� MeV decay width

 1/m2 Laplace operator
ε 1 energy/(m0c2)

ε 1 stretching
ε 1 efficiency of energy supply
ε 1 fast-fission factor
ε J electron energy
ε J Lennard-Jones parameter
εP J pairing energy
ε0 A s/V m permittivity constant of free space
dε/dt s−1 stretching velocity
η 1 momentum/(m0c)
η 1 efficiency
η0 N m−2s dynamical viscosity
θ,� rad angle
�D K Debye temperature
κ/ρ m2/kg mass attenuation coefficient of pair production
κ 1 absorption coefficient
κ 	−1 m−1 electric conductivity
λ 1/s decay constant
λ W/(m K) thermal conductivity
λ m wavelength
� m mean free path
µ 1/m linear-attenuation coefficient
µ kg reduced mass
µ J/T magnetic moment
µ J chemical potential
µB J/T Bohr magneton
µK J/T nuclear magneton
µ̂l , µ̂s J/T operator of magnetic moment
µn m2/(V s) mobility of electrons
µp m2/(V s) mobility of holes
ν 1 mean neutron number
π 1 parity
ρ m−3 particle density

(continued)
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Symbol Unit Designation

σ/ρ m2/kg mass-attenuation coefficient of Compton scattering
σ b cross-section
σ J/m2 K4 Stefan-Boltzmann constant
σ N m−2 tension
σ 1 screening constant
σ m Lennard-Jones parameter
τ/ρ m2/kg mass-attenuation coefficient of photo effect
τ s mean lifetime
τ s relaxation time
�(�r) 1/m2 particle flux
φ(�r, t) 1/(m2s) particle flux density
�tot W total radiant flux
ϕ 1/m2s particle flux density behind absorber
ϕ rad scattering angle
χ 1 electric susceptibility
χd 1 diamagnetic susceptibility
χµ m−1 molar susceptibility
χm 1 magnetic susceptibility
ψ m−3/2 wave function
ψk(�r) m−3/2 state function
ωD rad s−1 Debye frequency
ω rad s−1 angular frequency
	 sr solid angle
a m lattice constant
aC MeV coefficient of Coulomb energy
aO MeV coefficient of surface energy
aS MeV coefficient of symmetry energy
aV MeV volume energy per nucleon
A Bq activity
A m3 s−1 recombination probability
A 1 mass number
A 1 amplification
b m K Wien’s constant
B 1 baryon number
B 1 bottom quantum number
B J binding energy
B T magnetic flux density
c m/s speed of light
cV J/(kg K) heat capacity
C F capacitance of capacitor
C J m6 Van der Waals interaction constant
C 1 charm quantum number
Ĉ 1 charge conjugation operator
Ce J K−1 heat capacity of electron gas
Cel J/K heat capacity of electron gas
Cn kg s−2 elastic constant
CPh J K−1 heat capacity of phonon gas

(continued)
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Symbol Unit Designation

d m interplanar crystal spacing
dn m width of negative space charge region
dp m width of positive space charge region
D Gy energy dose
�D A s m−2 electric displacement density
D(ω) s state density
e A s elementary charge
E N m−2 elasticity modulus
E J energy
dE J energy interval
�E V m−1 electric field strength
EB J binding energy
ED(�r) V/m dipole field
EF J Fermi energy
Eg J energy gap
EI J ionization energy
Ekin J kinetic energy
EL J lower edge of conduction band
EN J exciton energy
EV J energy of vacancy formation
EV J lower edge of valence band
f 1/s frequency
f 1 degrees of freedom
f 1 fission probability
f (E, T ) 1 Fermi distribution
�F N force
F(Z , η) 1 Fermi function
FS kg m s−2 deforming force
G N m−2 shear modulus
g 1 Landé factor
gi 1 weight factor
gs, gl 1 g-factor
h J s quantum of action
� J s quantum of action (h/2π )
H Sv dose equivalent
Ĥ J Hamiltonian
I kg m2 moment of inertia
Ī J mean ionization energy
I 1 isospin quantum number
�I,�j, �J J s total angular momentum
ISp A diode reverse current

IB A change of base current

IC A change of collector current
j 1 imaginary unit
jq W m−2 heat-flow density
J 1 rotational quantum number
J , j 1 angular momentum quantum number

(continued)
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Symbol Unit Designation

k J/K Boltzmann constant
k 1 multiplication factor
k m−1 wave vector (magnitude)
�k, �K 1/m wave vector
kB J K−1 Boltzmann constant
kF m−1 Fermi momentum
K m−1 wave number
K Gy kerma
�l, �L J s orbital angular momentum
L 1 leakage rate
L 1 lepton number
L s−1 m−3 absorption probability
l, L 1 orbital angular momentum quantum number
Le,ν (T ) W s/(m2 sr) spectral radiant density
m kg particle mass
m∗ kg effective mass
me kg electron mass
mj 1 magnetic quantum number
m M kg molecular mass
M kg atomic mass
M kg/mol molar mass
Mr 1 mean relative molecular mass
n m−3 vacancy density
n m−3 density of free electrons
n, m 1 principal quantum number
n(ω, T ) 1 Bose-Einstein distribution function
nA m−3 acceptor concentration
nD m−3 donor concentration
ni m−3 intrinsic charge carrier density
nL m−3 effective electron density in conduction band
nV 1 effective hole density
N m−3 particle density
N1, N2 1 occupation numbers
NA 1 Avogadro’s constant
p m−3 density of holes
p 1 resonance escape probability
�p kg m/s momentum
�p, d C m electric dipole moment
�P A s m−2 electric polarization
pE(�r) 1/(Js sr m2) spectral particle radiance
P̂ 1 reflection operator
Q A s charge
Q J radiant energy
Q J heat change
RBE 	 differential input resistance

(continued)
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Symbol Unit Designation

RC 	 collector resistance
RCE 	 differential output resistance
RH 1/m Rydberg constant hydrogen
R∞ 1/m Rydberg constant
rn m Bohr radius
�s, �S Js spin
S MeV/cm stopping power
S 1 strangeness quantum number
S, s 1 spin quantum number
T K temperature
T̂ 1 time-reversal operator
TF K Fermi temperature
T1/2 s half-life
TC J Coulomb barrier
u J/m3 radiant-energy density
u kg atomic mass unit
uk m displacement of kth lattice plane
uk (�r) m−3/2 periodic function
uν(ν, T ) J s/m3 spectral radiant energy density
us m displacement of plane
us+n m displacement of plane with distance n · a
U J internal energy
U(R) J binding energy
V0 V acceleration voltage
VD V difference voltage
VD V diffusion voltage
Vin V input voltage
Vn V voltage at the inverted input terminal
Vout V output voltage
Vp V voltage at the non-inverted input terminal
VT V temperature voltage

VBE V change of base voltage

VCE V change of output voltage
V m−3 volume
V (r) J potential
v 1 vibrational quantum number
v m/s mean phonon velocity
vel m/s mean electron velocity
vgr m/s group velocity of electron wave
vr 1 reverse voltage transfer
w 1 probability density
WA J work function
WI J ionization energy
Z 1 atomic number
Z 	 complex resistance
Z∗ 1 effective atomic number



29
Tables in quantum physics

29.1 Ionization potentials

29.1/1 Ionization energies of elements

The following table lists the ionization energies Ei in eV for the elements, and for various
charge states.
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29.1/2 Ionization energies of nitrogen compounds

Ei Ei EiMolecule
(eV)

Molecule
(eV)

Molecule
(eV)

NH 13.10 C3HN 11.6 CH3N− NH2 5.07
NH2 11.4 CH3CHCN 9.76 C2N2 13.8
NH3 10.15 C3H5NH2 9.6 (CH3)2N− NH2 8.12
ND3 11.52 n − C3H7NH2 9.17 (CH3)3N2 4.95
CN 15.13 (CH3)3N 8.32 NCC ≡ CCN 11.4
HCN 13.86 C4N 12.3 NH3 10.3
CH3NH2 9.41 (CH3)2CCN 9.15 CH3N3 9.5
CH5N 8.97 n − C4H9NH2 9.19 NF 12.0
C2N 12.8 (C6H5)2NH 8.44 NF2 12.0
CH2CN 10.87 C5N 12.0 NF3 13.2
CH3CN 11.96 C6H7N 7.70 CH2FCN 13.0
C2H5N 9.94 C7H9N 7.34 N2F4 12.04
(CH3)2NH 8.4 N2 15.51 CNCl 12.49
C2H5NH2 9.32 N+2 50 CH2ClCN 12.2
C2H3CN 10.75 N2H2 9.85 CNBr 11.95
C2H5CN 11.85 N2H3 7.88 CNI 10.98
C3N 14.3 N2H4 9.56

29.1/3 Ionization energies of hydrocarbon compounds

Ei EiMolecule
(eV)

Molecule
(eV)

H2 15.427 C5H2 = C(CH3)− CH = CH2 8.85
graphite 3.8 CH3CH2CCH3 = CH2 9.12
CH2 11.82 CH3CH2CH2CH = CH2 9.50
CH 9.86 C5H12 10.37
CD3 9.95 C6H4 10.23
CH4 12.99 C6H6 9.245
CD4 13.25 CH2 = C(CH3 − C)CH3 = CH2 8.72
C2H2 11.41 C6H10 8.945
C2H3 9.45 C4H9CH = CH2 9.46
C2H4 10.516 (CH3)2CHCH = CHCH3 8.30
(C4H8)4 9.23 C6H12 9.08
C2H5 8.80 C6H14 10.17
C2H6 11.65 C7H7 7.73
C3H3 8.25 C7H8 8.820
C3HC ≡ CH 10.34 CH3C6H11 9.86
CH3CH ≡ CH2 9.73 C7H16 10.06
C3H8 11.08 C6H5CH = CH2 8.86
CH ≡ C− C ≡ CH 10.73 (CH3)2C6H4 8.56
CH2 = CH− CH = CH2 9.07 C6H5CH2CH3 8.76
CH3C ≡ CCH3 11.46 C6H13CH = CH2 9.52
CH3CH2CH = CH2 9.58 C8H18 10.24
(CH3)2C = CH2 9.23 C6H5C3H7 8.72
CH3C3H5 9.88 C9H20 1021
C4H10 9.08 C10H8 8.12
C5H6 8.58 C14H10 7.38
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29.1/4 Ionization energies of halogen compounds

Ei Ei EiMolecule
(eV)

Molecule
(eV)

Molecule
(eV)

HF 15.77 CH2Cl 9.70 CBr 10.11
F2 15.83 CCl2 8.78 CH2Br 8.34
CF 13.81 CH3Cl 11.28 CHBr2 8.13
CF2 13.30 CF3Cl 12.92 CH3Br 10.54
CHF2 9.45 CClF 13.13 CHBrF2 12.1
CF3 10.10 CCl2F 8.96 CF3Br 12.3
CH3F 12.85 CCl3 7.92 CH2Br2 10.8
CF7 17.8 CCl4 11.1 C2H3Br 9.80
C2H3F 10.37 CH2Cl2 11.4 cycl−BrHC=CHBr 9.69
H2C = CF2 10.30 CF2Cl2 11.8 C2HBr3 9.27
C2HF3 10.14 CHCl3 11.42 C2H5Br 10.29
C2H4 10.12 C2HCl3 9.47 CH3 − C ≡ CBr 10.1
C2H5F 12.00 C2H3Cl 9.995 C6H5Br 9.41
CH2 = CHCF3 10.9 Cl2C = CH2 9.79 HI 10.38
C6H4F 10.86 cycl−ClHC−CHCl 9.67 IF5 13.5
C6H5F 9.197 C2F2Cl2 10.0 ICl 10.4
C6ClF5 10.4 C2F3Cl 10.4 IBr 10.3
C6BrF5 9.6 C2Cl4 9.5 I2 9.28
C6F5CH3 9.6 C2H5Cl 10.97 CH3I 9.51
HCl 12.74 CH3C ≡ CCl 9.9 CF3I 10.0
ClF3 13.0 HBr 11.62 C2H5I 9.33
Cl2 11.48 C6H5Cl 9.07 n − C3H7I 9.41
CCl 12.9 Br2 10.55 CH2 − C4H9 9.19
CCl2 13.10 BrCl 11.1 C6H5I 9.10

29.1/5 Ionization energies of oxygen compounds

Ei Ei EiMolecule
(eV)

Molecule
(eV)

Molecule
(eV)

OH 13.18 O2 14.01 O3 11.7
H2O 12.60 O+2 50 FO 13.0
CO 14.01 HO2 11.53 F2O 13.7
CO+ 43 H2O2 1092 (CF3)2C = O 11.82
CH2O 10.90 CO2 13.79 ClO 10.4
CH3O 9.2 HCOO 9.0 COCl2 11.77
CH2OH 8.2 COOH 8.7 CH2ClCOCH3 9.91
CH3OH 10.95 HCOOH 11.05 CHCl2COCH3 10.12
CH2 = C = O 9.60 HFC = O 11.4 ClO2 11.1
C2H5O 9.2 CHOCHO 9.48 ClO3 11.7
C2H4OH 7.0 (H2CO)2 10.51 ClO3F 13.6
C2H5OH 10.25 CH3COOH 10.38 NO 9.25
(CH3)2O 10.00 HCOOCH3 10.82 NH2HC = O 10.16
n − C3H7OH 10.42 CH3COCHO 9.60 N2O 12.63
n − C4H9OH 10.30 C2H5COOH 10.47 NO2 9.78. . . 12.3
(C2H5)2O 9.53 CH3COOCH3 10.27 CH5ONO 10.7
C6H5OH 8.50 n − C3H7COOH 10.2 CH3NO2 11.34
(C6H5)HC = O 9.51
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29.1/6 Dissociation energies of diatomic molecules

Ed Ed Ed EdMolecule
(eV)

Molecule
(eV)

Molecule
(eV)

Molecule
(eV)

Ag2 1.8 BeF 7.0 H2 4.48 MnO 3.4
AgBr 3.1 BrCl 2.23 HD 4.51 Na2 0.7
AgCl 3.4 BrF 2.4 HT 4.52 NaBr 3.8
AgH 2.36 BrO 2.4 HBr 3.75 NaCl 4.2
AgI 2.6 CaBr 2.9 HCl 4.43 NaF 5.0
AgO 2.5 CaCl 2.8 HF 5.9 NaH 2.1
AgSn 2.55 CaF 3.1 HI 3.05 NaI 3.1
AuCu 2.4 CsBr 4.3 Hg2 0.06 NaK 0.61
AlBr 4.6 CaH 1.7 HgBr 0.7 N2 9.76
AlC 1.9 CaI 2.8 HgCl 1.0 NBr 2.9
AlCl 5.1 CaO 5.0 HgF 1.8 NF 2.6
AlF 7.65 CaS 3.0 HgH 0.38 NH 3.6
AlH 2.9 C2 6.2 HgI 0.36 NO 3.5
AlI 3.84 CCl 2.8 HgS 2.8 NS 5.0
AlO 5.0 CF 4.7 I2 1.54 O2 5.1
AlS 3.5 CH 3.47 IBr 1.82 OH 4.4
AsN 6.6 CN 8.4 ICl 2.15 P2 5.0
AsO 5.0 CO 11.1 IF 2.9 Rb2 0.48
Au2 2.28 Cl2 2.48 IO 1.9 RbBr 4.0
AuAl 3.1 ClF 2.6 K2 0.51 RbCl 4.4
AuCl 3.1 ClO 2.8 KBr 3.95 RbF 5.4
AuCr 2.2 Cs2 0.45 KCl 4.4 RbH 1.8
AuH 3.1 CsCl 4.4 KF 5.1 RbI 3.3
AuMg 2.7 CsF 5.0 KH 1.86 S2 4.3
AuSn 2.55 CsH 1.9 KI 3.33 SF 2.8
BBr 4.5 CsI 3.6 Li2 1.1 SH 3.5
BCl 5.2 Cu2 0.2 LiBr 4.4 SO 5.3
BF 8.1 CuBr 3.4 LiCl 4.8 Tl2 4.59
BH 3.0 CuCl 3.7 LiF 6.0 TlBr 3.4
BO 7.45 CuF 3.0 LiH 2.4 TlCl 3.8
BaBr 2.8 CuH 2.9 LiI 3.6 TlF 4.7
BaCl 2.7 CuI 3.0 LiO 3.43 TlH 2.0
BaF 3.8 CuO 4.8 MnBr 3.2 TlI 2.8
BaH 1.8 D2 4.55 MnCl 3.9 ZnCl 2.6
BaO 4.7 F2 1.6 MnF 5.0 ZnH 0.85
BaS 2.4 FO 1.9 MnH 2.2 ZnI 1.4
BeCl 4.8

29.2 Atomic and ionic radii of elements

The values for atomic and ionic radii of elements depend on the method of measurement.
Therefore, the data on atomic and ionic radii compiled in this table must be considered
approximate values only.
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29.2/1 Atomic and ionic radii of elements

Atomic Ele- Charge Radius Atomic Ele- Charge Radius
number ment (nm) number ment (nm)

1 H −1 0.154 16 S −2 0.184
0 0.46 0 0.095

2 He 0 0.122 +2 0.219
3 Li 0 0.155 +4 0.037

+1 0.068 +6 0.030
4 Be 0 0.113 17 Cl −1 0.181

+1 0.044 0 0.089
+2 0.035 +5 0.034

5 B 0 0.091 +7 0.027
+1 0.035 18 Ar 0 0.192
+3 0.023 +1 0.154

6 C −4 0.260 19 K 0 0.236
0 0.077 +1 0.133
+4 0.016 20 Ca 0 0.197

7 N −3 0.171 +1 0.118
0 0.071 +2 0.099
+3 0.016 21 Sc 0 0.164
+5 0.013 +3 0.073

8 O −2 0.132 22 Ti 0 0.146
−1 0.176 +1 0.096
0 0.056 +2 0.094
+1 0.022 +3 0.076
+6 0.009 +4 0.068

9 F −1 0.133 23 V 0 0.134
0 0.053 +2 0.088
+7 0.007 +3 0.074

10 Ne 0 0.160 +4 0.063
+1 0.112 +5 0.059

11 Na 0 0.189 24 Cr 0 0.127
+1 0.097 +1 0.081

12 Mg 0 0.160 +2 0.089
+1 0.082 +3 0.063
+2 0.066 +6 0.052

13 Al 0 0.143 25 Mn 0 0.130
+3 0.051 +2 0.080

14 Si −4 0.271 +3 0.066
−1 0.384 +4 0.060
0 0.134 +7 0.046
+1 0.065 26 Fe 0 0.126
+4 0.042 +2 0.074

15 P −3 0.212 +3 0.064
0 0.130 27 Co 0 0.125
+3 0.044 +2 0.072
+5 0.035 +3 0.063

(continued)
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29.2/1 Atomic and ionic radii of elements (continued)

Atomic Ele- Charge Radius Atomic Ele- Charge Radius
number ment (nm) number ment (nm)

28 Ni 0 0.121 41 Nb 0 0.145
+2 0.069 +1 0.100
+3 0.035 +4 0.074

29 Cu 0 0.128 +5 0.069
+1 0.096 42 Mo 0 0.139
+2 0.072 +1 0.093

30 Zn 0 0.139 +4 0.070
+1 0.088 +6 0.062
+2 0.074 43 Tc 0 0.136

31 Ga 0 0.139 +7 0.098
+1 0.081 44 Ru 0 0.134
+3 0.062 +4 0.067

32 Ge −4 0.272 45 Rh 0 0.134
0 0.139 +3 0.068
+2 0.073 +4 0.065
+4 0.053 46 Pd 0 0.137

33 As −3 0.222 +2 0.080
0 0.148 +4 0.065
+3 0.058 47 Ag 0 0.144
+5 0.046 +1 0.126

34 Se −2 0.191 +2 0.089
−1 0.232 48 Cd 0 0.156
0 0.160 +1 0.114
+1 0.066 +2 0.097
+4 0.050 49 In 0 0.166
+6 0.042 +1 0.130

35 Br −1 0.196 +3 0.081
0 0.105 50 Sn −4 0.294
+5 0.047 −1 0.370
+7 0.039 0 0.158

36 Kr 0 0.198 +2 0.093
37 Rb 0 0.248 +4 0.071

+1 0.147 51 Sb −3 0.245
38 Sr 0 0.215 0 0.161

+2 0.112 +3 0.076
39 Y 0 0.181 +5 0.062

+3 0.089 52 Te −2 0.211
40 Zr 0 0.160 −1 0.250

+1 0.109 0 0.170
+2 0.074 +1 0.082

+4 0.070
+6 0.056

(continued)
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29.2/1 Atomic and ionic radii of elements (continued)

Atomic Ele- Charge Radius Atomic Ele- Charge Radius
number ment (nm) number ment (nm)

53 I −1 0.220 70 Yb 0 0.193
0 0.124 +3 0.081
+5 0.062 71 Lu 0 0.174
+7 0.050 +3 0.085

54 Xe 0 0.218 72 Hf 0 0.159
55 Cs 0 0.268 +4 0.078

+1 0.167 73 Ta 0 0.146
56 Ba 0 0.221 +5 0.068

+1 0.153 74 W 0 0.140
+2 0.134 +4 0.070

57 La 0 0.187 +6 0.062
+1 0.139 75 Re 0 0.137
+3 0.106 +4 0.072
+4 0.090 +7 0.056

58 Ce 0 0.183 76 Os 0 0.135
+1 0.127 +4 0.088
+3 0.103 +6 0.069
+4 0.092 77 Ir 0 0.135

59 Pr 0 0.182 +4 0.068
+3 0.101 78 Pt 0 0.138
+4 0.090 +2 0.080

60 Nd 0 0.182 +4 0.065
+3 0.099 79 Au 0 0.144

61 Pm 0 — +1 0.137
+3 0.098 +3 0.085

62 Sm 0 0.181 80 Hg 0 0.160
+3 0.096 +1 0.127

63 Eu 0 0.202 +2 0.110
+2 0.109 81 Tl 0 0.171
+3 0.095 +1 0.147

64 Gd 0 0.179 +3 0.095
+3 0.094 82 Pb 0 0.175

65 Tb 0 0.177 +2 0.080
+3 0.092 +4 0.065
+4 0.084 83 Bi −4 0.213

66 Dy 0 0.177 0 0.182
+3 0.091 +1 0.098

67 Ho 0 0.176 +3 0.096
+3 0.089 +5 0.071

68 Er 0 0.175 84 Po +6 0.067
+3 0.088 85 At +7 0.062

69 Tm 0 0.174 87 Fr 0 0.280
+3 0.087 +1 0.180

(continued)
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29.2/1 Atomic and ionic radii of elements (continued)

Atomic Ele- Charge Radius Atomic Ele- Charge Radius
number ment (nm) number ment (nm)

88 Ra 0 0.235 +4 0.097
+2 0.143 +6 0.080

89 Ac 0 0.203 93 Np 0 0.150
+3 0.118 +3 0.110

90 Th 0 0.180 +4 0.095
+4 0.102 +7 0.071

91 Pa 0 0.162 94 Pu 0 0.162
+3 0.113 +3 0.108
+4 0.098 +4 0.093
+5 0.089 95 Am +3 0.107

92 U 0 0.153 +4 0.092

29.3 Electron emission

29.3/1 Work function WA of electrons from pure elements

The table lists the values for various methods of measurement. The following abbreviations
have been used for these methods: T: thermal ionization; P: photoemission; CPD: contact
potential difference; F: field emission. For monocrystalline samples, the crystallographic
directions whose work function has been measured are given. Data in italics are relatively
uncertain (method of measurement not clear, preparation of sample not clear).

Crystal Crystal
Element WA /eV direction Method Element WA /eV direction Method

Ag 4.26 P Ca 2.87 P
4.64 (100) P Cd 4.22 CPD
4.52 (110) P Ce 2.9 P
4.74 (111) P Co 5.0 P

Al 4.28 P Cr 4.5 P
4.41 (100) P Cs 2.14 P
4.06 (110) P Cu 4.65 P
4.24 (111) P 4.59 (100) P

As 3.75 P 4.48 (110) P
Au 5.1 P 4.94 (111) P

5.47 (100) P 4.53 (112) P
5.37 (110) Eu 2.5 P
5.31 (111) Fe 4.5 P

B 4.45 T 4.67 (100) P
Ba 2.7 T 4.81α (111) P
Be 4.98 P 4.70α P
Bi 4.22 P 4.62β P
C 5.0 CPD 4.68γ P

(continued)
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29.3/1 Work function WA of electrons from pure elements (continued)

Crystal Crystal
Element WA /eV direction Method Element WA /eV direction Method

Ga 4.2 CPD Pt 5.65 P
Ge 5.0 CPD 5.7 (111) P

4.80 (111) P Rb 2.16 P
Gd 3.1 P Re 4.96 T
Hf 3.9 P 5.75 (1011) F
Hg 4.49 P Rh 4.98 P
In 4.12 P Ru 4.71 P
Ir 5.27 T Sb 4.55 —

5.42 (110) F (amorphous)
5.76 (111) 4.7 (100) —
5.67 (100) F Sc 3.5 P
5.00 (210) F Se 5.9 P

K 2.30 P Si (n) 4.85 CPD
La 3.5 P Si (p) 4.91 (100) CPD
Li 2.9 F 4.60 (111) P
Lu 3.3 CPD Sm 2.7 P
Mg 3.66 P Sn 4.42 CPD
Mn 4.1 P Sr 2.59 T
Mo 4.6 P Ta 4.25 T

4.53 (100) P 4.15 (100) T
4.95 (110) P 4.80 (110) T
4.55 (111) P 4.00 (111) T
4.36 (112) P Tb 3.0 P
4.50 (114) P Te 4.95 P
4.55 (332) P Th 3.4 T

Na 2.75 P Ti 4.33 P
Nb 4.3 P Tl 3.84 CPD

4.02 (001) P U 3.63 P&CPD
4.87 (110) P 3.73 (100) P&CPD
4.36 (111) T 3.90 (110) P&CPD
4.63 (112) T 3.67 (113) P&CPD
4.29 (113) T V 4.3 P
3.95 (116) T W 4.55 CPD
4.18 (310) T 4.63 (100) F

Nd 3.2 P 5.25 (110) F
Ni 5.15 P 4.47 (111) F

5.22 (100) P 4.18 (113) CPD
5.04 (110) P 4.30 (116) T
5.35 (111) P Y 3.1 P

Os 4.83 T Zn 4.33 P
Pb 4.25 P 4.9 (0001) CPD
Pd 5.12 P Zr 4.05 P

5.6 (111) P



1084 29. Tables in quantum physics

29.3/2 Work function for adsorbed surfaces

Adsorbent Adsorbate WA /eV Adsorbent Adsorbate WA /eV

Be Cs 1.94 Pt O 6.55
C Cs 1.37 Pt Na 2.10
Ti Cs 1.32 Pt K 1.62
Cr Cs 1.71 Pt Rb 1.57
Fe Cs 1.82 Pt Cs 1.38
Ni Cs 1.37 Pt Ba 1.9
Cu Ba 3.35 Pt Ba 3.28
Ge Ba 2.2 Au O 6.46
Zr Cs 3.93 Au O 5.66
Mo Cs 1.54 Au Ba 2.3
Mo Th 2.58 Au Ba 3.35
Ag Ba 1.56 WO Na 1.72
Hf Cs 3.62 WO K 1.76
Ta Cs 1.1 steel Cs 1.41
Ta Cs 1.6 steel (304) Cs 1.52
W Li 2.18 Ag2O Cs 0.75
W O 6.20 NbC Cs 1.2
W Ba 1.75 ZrC Cs 1.60
W La 2.2 Mo2C Cs 1.45
W Th 2.63 Ta2C Cs 1.4
Re Cs 1.45 MoSi2 Cs 1.75
Re Th 2.58 WSi2 Cs 1.47

29.3/3 Thermoelectric emission properties of a tungsten cathode

Basic properties of a thermocathode are: current density of thermoemission jT; evaporation
speed vv of the activated surface material. From these quantities, the efficiency of the
thermocathode may be evaluated: η = jT/vv.

T /K jT (A/cm2) vv (g/(cm2 s)) T /K jT (A/cm2) vv (g/(cm2 s))

2100 3.9 · 10−3 2.0 · 10−13 2600 7.0 · 10−1 3.9 · 10−9

2200 1.3 · 10−2 2.1 · 10−12 2700 1.6 1.8 · 10−8

2300 4.1 · 10−2 1.8 · 10−11 2800 3.5 7.4 · 10−8

2400 1.2 · 10−1 1.2 · 10−10 2900 7.3 2.8 · 10−7

2500 3.0 · 10−1 7.6 · 10−10 3000 14.0 9.5 · 10−7
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29.3/4 Photo cathodes of alkali antimonides

Quantum Limit Thermal
Photo yield wavelength Sensitivity Energy Type noise

cathode
electrons

photon
λ0(nm) (µA/lm) gap (eV) (A/cm2)

K3Sb 0.07 550 12 1.4 p —
K2CsSb 0.3 660 100 1.0 p 10−17

K2CsSb(O) 0.35 780 130 1.0 p 10−16

Na3Sb 0.02 330 ? 1.1 n —
Na2KSb 0.30 600 60 1.0 p 10−16

Rb3Sb 0.10 580 25 1.0 p —
Cs3Sb 0.15 580 25 1.6 p 10−16

Cs3Sb on MgO 0.20 650 80 1.6 p 10−15

(Cs)Na2KSb 0.30 870 300 1.0 p 10−15

29.3/5 Basic properties of secondary-electron emission

The secondary-electron yield δ is the number of emitted electrons per incident electron.
The maximum value δmax and the corresponding energy of the primary electron Emax are
compiled for various elements in the table below. The energies of primary electrons leading
to a yield of 1 are also given.

Element δmax Emax (eV) EI (eV) EII (eV)

Ag 1.5 800 200 > 2000
Al 1.0 300 300 300
Au 1.4 800 150 > 2000
B 1.2 150 50 600
Ba 0.8 400 — —
Bi 1.2 550
Be 0.5 200 — —
C (diamond) 2.8 750 > 5000
C (graphite) 1.0 300 300 300
C (black) 0.45 500 — —
Cd 1.1 450 300 700
Co 1.2 600 200
Cs 0.7 400 — —
Cu 1.3 600 200 1500
Fe 1.3 400 120 1400
Ga 1.55 500 75
Ge 1.15 500 150 900
K 0.7 200 — —
Li 0.5 85 — —
Mg 0.95 300 — —
Mo 1.25 375 150 1200
Na 0.82 300 — —
Nb 1.2 375 150 1050
Ni 1.3 550 150 > 1500
Pb 1.1 500 250 1000

(continued)
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29.3/5 Basic properties of secondary-electron emission (continued)

Element δmax Emax (eV) EI (eV) EII (eV)

Pd > 1.3 > 250 120
Pt 1.8 700 350 3000
Rb 0.9 350 — —
Sb 1.3 600 250 2000
Si 1.1 250 125 500
Sn 1.35 500
Ta 1.3 600 250 > 2000
Th 1.1 800
Ti 0.9 280 — —
Tl 1.7 650 70 > 1500
W 1.4 650 250 > 1500
Zr 1.1 350

29.4 X-rays

29.4/1 Main lines of the characteristic x-ray spectrum of various elements
(K-series)

Wavelength λ (m−12)

Element α2 α1 β

lead 17.0 16.5 14.6
chromium 229.4 229.0 208.5
iron 194.0 193.6 175.7
germanium 125.8 125.4 112.9
gold 18.5 18.0 15.9
cobalt 179.3 178.9 162.1
copper 154.4 154.1 139.2
manganese 210.6 210.2 191.0
nickel 166.2 165.8 150.0
selenium 110.9 110.5 99.2
silicon 712.8 712.5 676.8
uranium 13.1 12.6 11.1
tungsten 21.4 20.9 18.4
zinc 143.9 143.5 129.5
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29.5 Nuclear reactions

29.5/1 Cross-section for scattering of neutrons by various elements

Thermal neutrons
Fast

neutrons σS σAb σA
Element σtot (b) (b) (b) (b)

H 0.9 38 (H2) 0.33
He 1.4 0.8
Al 1.7 1.4 0.23 0.23
Fe 3.0 11.4 2.53 0.003
Ni 3.2 17.5 4.6 0.03
Cu 3.2 7.8 3.7 0.64; 2.9
Ge 3.4 9 2.4 0.002; 0.02; 0.2; 0.6
Cd 4.3 7 2600 0.1; 0.3; 0.04
Hg 4.8 21 380 0.025; 1.0
Pb 4.7 11.4 0.17 0.0003
232Th 7.2 12.6 7.4 7.4
238U 5.2 8.3 7.68 2.73; 0.76
238U 1.3 687 107; 580 (fission)
239Pu 2.0 1065 315; 750 (fission)

29.5/2 Nuclear-fusion reactions

Reaction
energy

Reaction Q(MeV)

2
1H+3

1H→4
2He+1

0n 17.61
2
1H+2

1H→3
2He+1

0n 3.27
2
1H+2

1H→3
1H+1

1p 4.03
2
1H+3

2He→4
2He+1

1p 18.35
1
1p+11

5 B→ 3·42He 8.7
12
6 C+1

1H→13
7 N+γ 1.9

13
7 N→13

6 C+e+ 1.2
13
6 C+1

1H→14
7 N 1.9

14
7 N+1

1H→15
8 O+γ 7.3

15
8 O→15

7 N+e+ 1.7
15
7 N+1

1H→12
6 C+4

2He 4.9
2
1H+1

1H→3
2He+γ 5.4

2
1H+2

1H→4
2He+γ 23.8

3
2He+1

1H→4
2He+e+ 18.7

3
2He+3

1H→4
2He2

1H 14.3
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29.6 Interaction of radiation with matter

29.6/1 Mass-attenuation coefficient µ/ρ in 10−1m2/kg for x-rays

Element Wavelength λ(nm)
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.2

Ag 5.4 37 17 39 71 120 174 250 354 436
Al 0.27 1.05 3.3 7.3 14.0 24 36 55 79 106
C 0.167 0.243 0.40 0.80 1.40 2.5 3.9 5.8 7.9 10.0
Cu 1.45 10 32 71 134 218 42 60 85 119
Fe 1.06 7.1 23.5 50.7 95 170 270 390 61 78
N 0.177 0.34 0.73 1.51 2.6
O 0.183 0.336 0.730 1.53
Pb 4.6 33 77 147 77 128 180 258 360

29.6/2 Mass-attenuation coefficient for electrons in aluminum

Energy Energy
E (keV) µ/ρ (m2 kg−1) E (keV) µ/ρ (m2 kg−1)

0.9 2.5 · 105 100.0 13
5.8 1.5 · 104 200.0 2.9
10.5 3.5 · 103 460.0 0.9
46.6 7.4 · 101 660.0 0.6

29.6/3 Range of α-particles in air, biological tissue and aluminum

Energy Tissue, Aluminum,
E (MeV) Air, R (cm) R (µm) R (µm)

4.0 2.5 31 16
5.0 3.5 43 23
6.0 4.6 56 30
7.0 5.9 72 38
8.0 7.4 91 48
9.0 8.9 110 58
10.0 10.6 130 69
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29.7 Hall effect

29.7/1 Hall coefficient for metals

The Hall coefficient is given for temperatures between 0 ◦C and 30 ◦C.

Metal RH/(10−10 m3C−1)

Li −1.7
Be (99.5 %) +7.7
Na −2.1
Mg −0.83
Al (99.5 %) 0.33
K −4.2
Ca (99 %) −1.78
Ti (99.91 %) −0.26
Ti (99.87 %) +0.10
V +0.82
V (99.63 %) +0.79
Cr (99.9 %) +3.63
Mn (99.99 %) +0.84
Cu −0.536
Zn (technical) +1.04
Ga −0.63
Rb −4.2
Y (99.2 %) −0.770

Y (monocr.ρ273K
ρ4.2K

= 10.4)
H ‖ c −1.72
H ⊥ c −0.47

Y (ρ273K
ρ4.2K

= 16)
H ‖ c +1.5
H ⊥ c +0.4

Zr (97.3 % Zr; 2.4 % Hf) +1.385
Zr (ρ273K

ρ4.2K
= 38) +2.15

Nb +0.88
Mo +1.80
Ru +2.2
Rh (99.5 %) +0.505
Pd −0.845

(continued)
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29.7/1 Hall coefficient for metals (continued)

Metal RH/(10−10 m3C−1)

Ag (technical) −0.897
Ag (99.9 %) −0.909
Cd (99.9 %) +0.531
In −0.073
Sn −0.022
Cs −7.8
La (99.8 %) −0.8
Ce (99.88 %) +1.81
Pr (99.9 %) +0.709
Nd (99.98 %) +0.971
Sm −0.21
Sm (ρ273K

ρ4.2K
= 17.3) −0.5

Tm −1.5
Yb +3.7
Lu −0.53

Lu (monocr.ρ273K
ρ4.2K

= 25)
H ‖ c −2.6
H ⊥ c +0.4

Hf (99.4 %) +0.42
Ta (99.8 %) +0.971
W +1.18
Re +3.15
Re (ρ273K

ρ4.2K
= 27) +1.6

Ir +0.402
Pt −1.27
Pt (99.9 %) −0.214
Au −0.705
Hg < 0.02
Tl +0.24
Th −1.2
U +0.34
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29.8 Superconductors

29.8/1 Selected properties of superconducting elements

Essential properties of superconductors are the critical temperature Tc and the critical field
strength Hc.

Element Tc (K) Hc (A/m)

W 0.0154± 0.0005 91.51± 2.39
Be 0.026
Lu 0.1± 0.03 27852.115± 3978.87
Ir 0.1125± 0.001 1273.24± 3.97
Hf 0.128 1010.63
U 0.2
Ti 0.40± 0.04 4456.34
Ru 0.49± 0.015 5490.85± 159.15
Cd 0.517± 0.002 2228.17± 79.58
Zr 0.61± 0.15 3740.14
Zr(ω) 0.65; 0.95
Os 0.66± 0.03 5570.42
Zn 0.85± 0.01 4297.18± 23.87
Mo 0.915± 0.005 7639.44± 238.73
Gd 1.083± 0.0001 4639.37± 15.92
Al 1.175± 0.002 8347.68± 23.87
Th 1.38± 0.02 127.32± 238.73
Pa 1.4
Re 1.697± 0.006 15915.49± 397.89
Tl 2.38± 0.02 14164.79± 159.15
In 3.408± 0.001 22401.06± 159.15
Sn 3.722± 0.001 24271.13± 159.15
Hg(β) 3.949 26 976.76
Hg(α) 4.154± 0.001 32706.34± 159.15
Ta 4.47± 0.04 65969.72± 477.46
La(α) 4.88± 0.02 63661.98± 795.77
V 5.40± 0.05 112 045.08
Gd(β) 5.9; 6.2 44 563.38
La(β) 6.00± 0.1 87 216.91; 127 323.95
Gd(γ ) 7 75 598.60
Pb 7.196± 0.006 63900.71± 79.57
Tc 7.8± 0.1 112 204.23
Gd(
) 7.85 64 855.63
Nb 9.25± 0.02 163 929.59
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29.8/2 Superconducting compounds and alloys with Tc > 10 K

Substance Tc (K) Substance Tc (K)

Al2CMo3 10.0 Nb0.3SiV2.7 12.8
CW 10 BaBi0.2O3Pb0.8 13.2
Nb0.18Re0.82 10 SiV2.7Zr0.3 13.2
B2LuRu 10 LiO4Ti2 13.7
Ir0.4Nb0.6 10 Br2Mo6S6 13.8
RhTa3 10 N0.93Nb0.85Zr0.15 13.8
CMOxNb1−x 10.2(max) InV3 13.9
CTa 10.3 Mo0.57Re0.43 14.0
NbTc3 10.5 Ge0.1Si0.9V3 14.0
Mo≈0.60Re0.395 10.6 CMo 14.3
Mo3Ru 10.6 GaNB3 14.5
NZr 10.7 Al0.1Si0.9V3 14.5
Cu1.8Mo6S8 10.8 Mo3Tc 15
NbSnTa2 10.8 Mo6Pb0.9S7.5 15.2
Nb0.75Zr0.25 10.8 B0.1Si0.9V3 15.8
Nb0.66Zr0.33 10.8 MoTc3 15.8
Nb3Pt 10.9 C0.1Si0.9V3 16.4
SiTi0.3V2.7 10.9 Nb2SnTa 16.4
C3La 11.0 Nb3Sn2 16.6
GeV3 11 GaV3 16.8
Mo0.52Re0.48 11.1 C0.66Th0.13Y0.21 17
B4Rh4Y 11.3 PbTa3 17
Cr0.3SiV2.7 11.3 SiV3 17.1
Ge0.5Nb3Sn0.5 11.3 Nb2.5SnTa0.5 17.6
LaMo6Se8 11.4 Nb2.75SnTa0.25 17.8
AuNb3 11.5 AlNb3 18.0
CNb 11.5 (Ca,La)2CuO4 18
C3Y2 11.5 Nb3Sn 18.05
B4LuRh4 11.7 Nb3Si 19
Mo0.3SiV2.7 11.7 Al≈0.8Ge≈0.2Nb3 20.7
AlV3 11.8 GeNb3 23.2
Mo0.3Tc0.7 12.0 (Ba,La)2CuO4 36
CMo2 12.2 Cu(La, Sr)2O4 39
Mo6Se8Tl 12.2 Ba2Cu3LaO6 80
Nb2SnTa0.5V0.5 12.2 Ba2Cu3O7Y 90
B0.03C0.51Mo0.47 12.5 Ba2Cu3O7Tm 101
Mn3Si 12.5 Bi2CaCu2O8Sr2 110
Al0.5Ge0.5Nb 12.6 Ba2CaCu2O8Tl2 120
Mo3Os 12.7
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29.9 Semiconductors

29.9.1 Thermal, magnetic and electric
properties of semiconductors

29.9/1 Element semiconductors

The given values refer to standard conditions.

Substance Formation Relative Refractive Energy gap Mobility
enthalpy permittivity εr index n Eg(eV) µ(cm2 V−1 s−1)

(kJ ·mol−1) electrons holes

C 714.4 5.7 2.419 5.4 1800 1400
Si 324 11.8 3.99 1.107 1900 500
Ge 791 16 3.99 0.67 3800 1820
α-Sn 267.5 0.08 2500 2400

29.9/2 Compound semiconductors

Sub- Formation Relative Refractive Energy Mobility Application
stance enthalpy permittivity index n gap µ(cm2 V−1 s−1)

(kJ ·mol−1) ε Eg(eV) electrons holes

ZnS 477 8.9 2.356 3.54 180 luminous
compound

ZnSe 422 9.2 2.89 2.58 540 28
ZnTe 376 10.4 3.56 2.26 340 100
CdTe 339 7.2 2.5 1.44 1200 50
HgSe 247 2.12 20000
AlAs 627 10.9 2.16 1200 420
AlSb 585 11 3.2 1.60 200 . . . 400 550

GaP 635 11.1 3.2 2.24 300 150 LED (green);
IR-diodes

GaAs 535 13.2 3.30 1.35 8800 400 LED; FET;
IR-diodes

GaSb 493 15.7 3.8 0.67 4000 1400

InP 560 12.4 3.1 1.27 4600 150 Gunn elements

InAs 477 14.6 3.5 0.36 33000 460 Hall generator,
RH = 100 cm3/A s

InSb 447 17.7 3.96 0.163 78000 750 Hall generator,
RH = 400 cm3/A s

Bi2Te3 — — — 0.15 800 400 electrical coolant

PbTe 393 280 — 0.21 1600 750 IR-detector

PbS 435 — — 0.37 800 1000 photo resistor,
IR-detector
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29.9/3 Properties of doping in Si

The energy Ei of the donor levels D gives the distance from the bottom of the conduction
band; the energy Ei of the acceptor levels A is the distance from the edge of the valence
band.

Al As Au B Bi Cu Fe Ga

type A D A A D A A A
Ei(eV) 0.057 0.049 0.35; 0.67 0.046 0.069 0.24; 0.72 0.4; 0.66 0.065

In Li O P S Sb Tl Zn

type A D D D D D A A
Ei (eV) 0.16 0.033 0.03–0.06 0.044 0.18; 0.37 0.039 0.26 0.31; 0.66

29.9/4 Properties of doping in Ge

The energy Ei of the donor levels D gives the distance from the bottom of the conduction
band; the energy Ei of the acceptor levels A is the distance from the edge of the valence
band.

Al Ag As Au B Be Bi

type A D D A A A D
Ei (eV) 0.0102 0.13; 0.5; 0.7 0.0127 0.16; 0.59; 0.0104 0.07 0.012

0.75

Cd Co Cr Cu Fe Ga In

type A A A A A A A
Ei (eV) 0.05; 0.15 0.09; 0.25; 0.07; 0.12 0.4; 0.33; 0.35; 0.52 0.0108 0.0112

0.48 0.53

Li Mn Ni O P Pt S

type D A D D D A D
Ei (eV) 0.0093 0.16; 0.42 0.22; 0.49 0.01 0.012 0.04; 0.20; 0.18

0.67

Sb Se Te Tl Zn

type D D D A A
Ei (eV) 0.0096 0.014; 0.28 0.11; 0.30 0.01 0.03; 0.09

29.9/5 Effect of ionizing radiation on semiconducting materials

This table lists the ionization energies for electron-hole pair formation and the pair densi-
ties g0 produced per 10−2 J/kg.

Material Eion(eV) g0(cm−3)

silicon 3.6 10 · 1013

silicon dioxide ≈ 18 ≈ 8 · 1012

gallium arsenide ≈ 4.8 ≈ 7 · 1013

germanium 2.8 1.2 · 1014
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30
Measurements and measurement errors

Statistics offers a number of methods that, under certain conditions, permit the specification
of the expectation value (mean value) and the variance (deviations from the mean value)
of the random quantity considered (e.g., a random sample or a measurement/run) or on the
correlation between random quantities. Hence, an error estimation relative to the actual
value becomes feasible.

30.1 Description of measurements

Measurement, a quantitative determination of a physical quantity in an experiment by
comparison with its basic unit.

Measured quantity, measured variable, nomenclature for the property to be deter-
mined by a measurement, a statistical survey, a sampling, or by carrying out a random
experiment.

Discrete measured quantities
■ number of dots on a die 1 to 6, faces of a coin (heads or tails).

Continuous measured quantities
■ measured values for the capacitance of a capacitor or the value of a resistance.

30.1.1 Quantities and SI units
Physical phenomena may be described by mathematical objects (numbers, vectors, func-
tions, etc.) and relations between them (equations). The goal of physics is the experimental
determination and the possible precision description of natural phenomena by means of the
underlying laws.

Physical quantity, serves for the description of physical states and processes. A physi-
cal quantity must be measurable in a way based on a measuring prescription using mea-
suring equipment, i.e., it must be convertible by a physical process into a phenomenon
(e.g., deflection of a pointer) that is directly accessible to human experience.

1097
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Unit, a convention allowing the quantification of the observation of a physical unit. For
example: the unit mass is the mass of the international prototype of the kilogram, i.e., all
masses are measured in terms of multiples and fractions of this unit mass. The definition
of a unit involves fixing the physical phenomenon that will be considered the measure (or
a definite quantity) of the physical quantity (e.g., mass of the kilogram prototype; distance
traversed by light in a vacuum during a definite time; absolute temperature of the triple
point of water, etc.). The unit gets a name (e.g., kilogram), which is denoted in formulas
by a standard abbreviation (e.g., kg).
▲ Any physical quantity is specified by its numerical value (numerical measure) {G}

and its unit [G]:

G = {G} · [G] .

System of units, a set of units that enables the quantification of all measurable physical
quantities. Fundamental quantities or basic quantities of a system of units with their
basic units are chosen in such a way that the units of all measurable quantities may be
derived from the basic units.

SI units, defined in the Système International d’Unités (International System of
Units). For the set of SI basic quantities, see p. 1125; for the list of SI units see p. 1126.
➤ The SI was established by the Conférence Générale des Poids et Mesures (General

Conference on Weights and Measures), which was founded on May 20, 1875, by the
Meter Convention and currently comprises 47 member countries. It is represented
and managed by the Bureau International des Poids et Mesures (International Board
on Weights and Measures) in Sèvres, France. The International Standardization Or-
ganization ISO and the International Union of Pure and Applied Physics IUPAP
promote international recommendations for use of the system.

Besides the SI, several other units still exist. Their use is accepted in selected fields (e.g.,
carat as a weight unit for precious stones, diopter as unit of refractive power) (see p. 1128).
➤ Quantities not established in the SI or elsewhere should not be used. This concerns

in particular the former technical systems of measures based on the kilopond and
centimeter-gram-second (cgs) systems.

The various systems of units differ not only by the choice of the basic units, but also by the
definition of basic units and derived units. For example, in the SI the mass is a basic unit
and the force a derived unit, whereas in the kilopond-system the mass is derived from the
basic unit of force.
➤ Units should be denoted only such as defined in SI. Examples: K for kelvin, not

◦K, but ◦C for degrees Celsius; kilometer per hour (km/h), but not hour kilometer
or kilometer/hour. The unit should always be separated from the numerical value by
a thin space, e.g., 35 mm film, but not 35mm film or 35-mm-film (exception: the
symbols ◦, ′ and ′′ for degree, minute and second).

Derived units, compound units, defined by equations relating physical quantities. Derived
units may be given by multiplication or division of basic units. For example, the SI unit of
velocity, meter per second (m/s), is obtained by division of the basic units meter (m) and
second (s). Powers may also be used:

1 m ·m = 1 m2 .

For clarity, negative exponents may be written instead of division slashes; brackets should
be used where confusion may arise:

1 kg/(m · s2) = 1 kg m−1s−2 .
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▲ Independently of the selected system of units, any derived unit is specified by citing
which basic units are involved.

Dimension, for any physical quantity a specification of the combination of basic units
which compose it. In this book, the dimension of the quantity under discussion is given in
all formula tables in a mini-box in the upper right-hand corner.
■ The unit of the dynamic viscosity is

1 Pa · s = 1 N/(m2 · s) = (1 kg ·m/s2)/(m2 · s)
= 1 kg/(m · s) = 1 kg ·m−1 · s−1.

Its dimension is written in a system-independent form as

ML−1T−1.

➤ Compound units are pronounced as follows: units multiplied by each other are simply
put in a row, units divided by each other are connected by “per.” Example:

kg m/s2 = “kilogram meter per square second.”

The pronunciation km/h = “kilometer per hour” is correct.
➤ Some compound units have been given special names that are used instead of com-

pound names, such as hertz (1/s), newton (kg ·m/s2) and others.
Nondimensional units, quantities with the unit 1, i.e., their numerical value is independent
of the selected system of units. These are in particular percentages, statements relative to
another quantity, and angles.

Conversions of units serve for the determination of comparable quantities expressed in
different units. They are made by replacing a unit in a formula by a conversion factor and
another unit. For example, to convert the old unit kilopond to the new unit newton, one
adopts the conversion formula

1 kp = 9.80665 N.

One ounce per cubic inch (oz/in3) is converted to metric units as

1 oz/in3 = 1 oz

(1 in)3
= 0.02835 kg

(0.0254 m)3
= 0.02835

0.02543

kg

m3
= 1730 kg/m3 .

Decimal prefixes, prefixes, are used for denoting decimal multiples and fractions of basic
units. Prefixes above 106 are represented by capital letters, all remaining prefixes by lower-
case letters (see p. 1126). Example:

1 km = 1 kilometer = 103 m = 1000 m.

➤ Only one decimal prefix is admitted in front of a unit.
➤ Exception: For historical reasons, the units derived from the basic unit kilogram (kg)

are the gram (= 10−3 kg), the milligram (= 10−6 kg), etc.
➤ Powers also refer to the decimal prefix:

1 cm2 = 1 square centimeter = 1 (cm)2 = 1 · (10−2 m)2 = 10−4 m2 .
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Natural constants, the characteristic quantities of certain natural phenomena that—to our
knowledge—in all physical processes have a fixed value, e.g., the gravitational constant or
the speed of light in a vacuum. Some of them are used for fixing the basic quantities, since
they may be measured independently; their values in the system of units are then exact.
➤ The values of the natural constants are fixed by measurements. A balancing cal-

culation (regression) yields those values for which the measurements are the least
contradictory; the most recent data are compiled periodically by CODATA.

➤ Several constants are fixed by standards for technical use.
Material constants, characterizing specific properties of materials. They may depend on
the composition of the material and on external parameters such as pressure, tension, etc.

Natural constants, on the contrary, have an arbitrarily precisely ascertainable value lim-
ited only by the measurement accuracy of the apparatus.
➤ The numerical values of the natural constants depend on the selected system of units.

Inversely, the system of units is determined by the specification of these numerical
values. Several natural constants have the dimension 1 (such as the fine-structure
constant (see p. 859) α ≈ 1/137) and therefore have the same numerical value in all
systems of units.

30.2 Error theory and statistics

30.2.1 Types of errors
Measured values of physical quantities are always subject to errors, i.e., they deviate from
the true value.

30.2.1.1 Measured result
Measured result, measured value, actual value, the value of one or several measured
variables after a measurement, in general not exactly reproducible but fluctuating about a
mean value or true value in repeated measurements.
■ This may be, e.g., the length of a screw from industrial production, the result of a

numerical random generator, the energy of a particle in a real gas, or the amount of
rainfall during 24 hours.

Run, compilation of several measured results. A primary list of data is generated from
the measurements.

30.2.1.2 Measurement error
Measurement error, deviation of a measured value from the true value. Depending on
their origin, one distinguishes so-called systematic errors from statistical errors.

Systematic errors, errors characteristic of the method of measurement. They are due
to the experimental arrangement or the measuring process (e.g., wrong calibration of the
measuring device) and may be avoided only partly by variation of the experimental set-up.

Statistical errors, random errors, deviations caused by the experimentalist (e.g., read-
ing errors), by uncontrollable perturbations (e.g., influence of temperature, variations of
atmospheric pressure, etc.) or by the random nature of the events considered (e.g., radioac-
tive decay).

Accuracy of measurement, in an experiment determined by systematic errors and sta-
tistical errors.
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True error, δxiw , deviation of the i th measurement with the measured result xi from
the “true value” xw . Mostly unknown, since xw is unknown,

δxiw = xi − xw .

Absolute error, measurement error referring to the individual measurement.
Apparent error, deviation of the measured value xi from the arithmetic mean x̄ as

approximate value of the true value,

vi = xi − x̄ .

Average error, linear variance, the mean value of the magnitude of the apparent error for
n individual measurements,

dx = v̄i = 1

n

n∑
i=1

|xi − x̄ | .

Relative error, vrel, the absolute error divided by the mean value, a dimensionless quantity,

vrel = vi

x̄
= xi − x̄

x̄
.

Percentage error, v%, the relative error given as a percentage, v% = vrel · 100 %.
Absolute maximum error, δzmax, upper error margin of a quantity z = f (x, y) de-

pending on parameters x and y that are subject to errors,

δzmax =
∣∣∣∣ ∂∂x

f (x̄, ȳ)δx

∣∣∣∣+
∣∣∣∣ ∂∂y

f (x̄, ȳ)δy

∣∣∣∣ .
Relative maximum error, δzmax/z̄, absolute maximum error divided by the mean value.
■ A wire (length L , radius R) is extended by a force F (tension σ ) by
L . The elasticity

modulus E of the wire can be determined by measuring L , R, F and
L . According
to Hooke’s law,


L

L
= 1

E
· σ , σ = F

A
, A = π R2 .

Because of

E = F

π R2
· L


L
,

the relative maximum error of the statement on E may then be calculated from the
errors δL , δR, δF , δ(
L) of the individual measurement:∣∣∣∣ δE

E

∣∣∣∣
max
=
∣∣∣∣ δF

F

∣∣∣∣+ 2

∣∣∣∣ δR

R

∣∣∣∣+
∣∣∣∣ δL

L

∣∣∣∣+
∣∣∣∣ δ(
L)


L

∣∣∣∣ .
The error of the measurement of the radius enters the relative maximum error of the
elasticity modulus with the factor 2.

Mean error of an individual measurement, δx :

σn = δx =
√√√√ 1

(n − 1)

n∑
i=1

(xi − x̄)2, x̄ is the arithmetic mean.
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Mean error of the mean value, δx̄ :

σ̄n = δx̄ =
√√√√ 1

n(n − 1)

n∑
i=1

(xi − x̄)2, x̄ is the arithmetic mean.

▲ The mean error δx̄ of the mean value x̄ equals the mean error δx of an individual
measurement xi divided by the square root of the number of measurements:

δx̄ = δx√
n
.

30.2.1.3 Error propagation
Error propagation, the error of a physical quantity f (x0, y0, . . .) composed of directly
measured partial quantities x0, y0, . . . may be calculated from the errors of the partial
quantities.

Error propagation in an individual measurement,

δ f (x0, y0) = ∂ f (x, y)

∂x

∣∣∣∣
x0,y0

δx + ∂ f (x, y)

∂y

∣∣∣∣
x0,y0

δy .

Gauss’ law of error propagation, propagation of the errors of mean values,

δ f (x0, y0) =
√√√√( ∂ f (x, y)

∂x

∣∣∣∣
x0,y0

δx

)2

+
(
∂ f (x, y)

∂y

∣∣∣∣
x0,y0

δy

)2

.

■ The density ρ of a spherical body is determined indirectly by measuring the mass m
and the radius R of the sphere, ρ = ρ(m, R). The error of the measurement of the
density follows from the errors of mass and radius.

30.2.2 Mean values of runs
Arithmetic mean, empirical expectation value, approximate value of the true value of a
run of n individual measurements. Frequently, the equally weighted mean of the n mea-
sured values that are subject to error is given:

x̄ = 1

n

n∑
i=1

xi = 1

n

k∑
j=1

H j · x j =
k∑

j=1

h j · x j ,

i.e., the n measured values are distributed over k ≤ n distinct x j -values with the rate H j .
▲ Center-of-gravity property, the sum of the deviations of the measured values of the

primary data list from the arithmetic mean is by definition identically zero,

n∑
i

(xi − x̄) ≡ 0 .

▲ Linearity of the arithmetic mean,

(ax + b) = ax + b.
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▲ a, b constants, x measured variable.
▲ Quadratic minimum property, the sum of the squares of the deviations of all mea-

sured values xi from the average value x̄ takes a minimum:

n∑
i

(xi − x̄)2 = minimum .

➤ This property is a basic ingredient of a balancing calculation.
▲ Combination of measurements, the mean of a total measurement involving n mea-

sured values equals the sum of the mean values of the partial measurements, weighted
by the relative fractions of measured points ni/

∑
ni = ni/n,

x̄ =
∑

x̄i · ni

n
=
∑

x̄i ni/
∑

ni .

▲ If the results of the run are given by a rate distribution, then

x̄ = 1∑k
i Hi

k∑
i=1

xi Hi .

▲ Here, xi are the class means of the classes Ki (i = 1, . . . , k).
Quantile, percentile of order p, a measured value that is not below a fraction p of all
measured values of the primary data list, and not above a fraction 1 − p, a characteristic
quantity for describing the relative position of the individual measured values among each
other.

Median, central value, x̃ , special case of a percentile, defined as the value bisecting the
series of the n measured values of the primary data list when ordered by the magnitude.

Median for even number of measured values:

x̃ =
x n

2
+ x n

2+1

2
.

Median for odd number of measured values:

x̃ = x n+1
2
.

➤ The median is applied mainly in the following situations:
a) classes at the boundaries of the ordered primary list are missing;
b) extreme measured values occur that would falsify the result;
c) variations of the measured values above and below the mean value do not affect this

value.
▲ The sum of the absolute magnitudes of the deviations of all measured values xi from

the median x̃ is smaller than the sum of the deviations from any other value a:

n∑
i=1

|xi − x̃ | <
n∑

i=1

|xi − a| , for all a �= x̃ , if n odd,
for all x n

2
≤ a ≤ x n

2+1 , if n even.

Quadratic mean:

xquad =
√√√√ 1

n

n∑
i=1

x2
i .
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Geometric mean:

x̂ = n

√√√√ n∏
i=1

xi = (x1 · x2 · · · · · xn)
1/n .

➤ The geometric mean is used in particular for quantities governed by laws that lead to
geometric sequences.

■ Mean average growth velocity or rate of increase of time-dependent processes (ra-
dioactive decay, lifetime of components),

x̂ = (x1 · x2 · · · · · xn)
1/n, xi > 0 .

▲ The logarithm of the geometric mean is equal to the arithmetic mean of the logarithms
of all measured values,

ln x̂ = 1

n
(ln x1 + · · · + ln xn) .

Growth velocity, the average percentage development from xn to xn+1 (specifications in
percent fractions of a total set A),

W = n−1
√

xn

x1
· 100 % .

Rate of increase, the average percentage evolution by R̄ percent,

R̄ =
(

n−1
√

xn

x1
− 1

)
· 100 % .

➤ If there is no percentage evolution, then the absolute values a1 = x1 · A, an = xn · A
may be inserted instead of x1, xn .

Harmonic mean:

xh = n
n∑

i=1

1

xi

.

▲ Theorem of Cauchy: There exists the following hierarchy of mean values xquad, xh ,
x̂ and x̄ :

xmin ≤ xh ≤ x̂ ≤ x̄ ≤ xquad ≤ xmax .

30.2.3 Variance
Variance, mean square deviation, standard deviation, measure of the variance caused
by measurement errors, fluctuation of the measured values about the true value.

Span, variation width, difference between the largest and smallest measured value,

δxmax = xmax − xmin .

➤ The span is mostly used for a small number of measured values. Application in sta-
tistical quality controls.
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Mean absolute deviation about the value C ,

|δx |C = 1

n

n∑
i=1

|xi − C| .

➤ Normally, C = x̃ (median) or C = x̄ (arithmetic mean) are used.
➤ If a rate table ordered by classes is given, then the centers of the classes are inserted

as measured values xi .
Root-mean-square deviation, standard deviation, empirical variance:

σn =
√
(δx)2 =

√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2 .

▲ If the run data are given in terms of a rate distribution, then

σn =
√
(δx)2 =

√√√√ 1

n − 1

k∑
i=1

(xi − x̄)2 H (xi ), n =
∑

i

H (xi ) .

➤ In the case of subdivision into classes, the class centers are often inserted instead of
the unknown measured values.

Empirical variance, σ 2
n , square of the standard deviation, also denoted as variance.

The empirical variance σn is an unbiased estimate for the variance of an underlying
probability function on the parent population.

Relative variance measure, variation coefficient, percentage value of the variance
measure related to the arithmetic mean,

(δx)2rel = (δx)
2

x̄
· 100 % .

30.2.4 Correlation
Covariance of two measured quantities x, y, cov(x, y), the expectation value of the prod-
uct of the deviations of the corresponding quantities from their mean values,

cov(x, y) = (x − x̄)(y − ȳ) .

Correlation coefficient of x, y, ρxy , covariance of x, y, divided by the product of the
root-mean-square deviations σx , σy ,

ρxy = cov(x, y)

σx · σy
, −1 ≤ ρxy ≤ 1 .

• If x and y are statistically independent random variables, then ρxy = 0; x and y
are not correlated.

• x and y are linearly dependent, y = ax + b (a, b : real numbers), if and only if
ρxy = ±1.

• The sign of the correlation coefficient indicates whether a positive or negative corre-
lation exists:
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positive correlation, an increase (decrease) of x causes an increase (decrease)
of y,

negative correlation, an increase (decrease) of x causes a decrease (increase) of y.

30.2.5 Regression analysis
Regression, the optimal adjustment of a properly selected parameter-dependent regres-
sion fit y = f (x, a, b, . . .) to n given data points (x1, y1), (x2, y2), . . . , (xn, yn) of two
correlated random variables.

Sum of error squares, sum of the squares of the differences between the measured
values yi and the function values of the regression fit f at the points xi ,

n∑
i=1

[yi − f (xi , a, b, . . .)]2 .

Principle of least squares, allows calculation of the parameter set a, b, . . . that provides
the optimal adjustment of the regression fit to the given data points by the condition that
the sum of the errors squared takes a minimum (Gauss’ minimum principle),

n∑
i=1

[yi − f (xi )]2 = min.

Linear regression, regression fit with a straight line as formulation,

y = ax + b.

The formulation is appropriate if the two random variables are almost linearly correlated.

Figure 30.1: Adjustment of a curve to given
data points by the principle of least squares.

Figure 30.2: Linear regression.

30.2.6 Rate distributions
Primary list, a list of all measured values of a run. Identical measured results may occur
repeatedly.
■ When producing n capacitors with a capacitance of C = 100 µF, the value for the in-

dividual component is in general not exactly 100 µF, but fluctuates about this value.
The data follow a characteristic distribution about the desired value C = 100 µF. To
get a deeper understanding of the type of distribution, and of the nature of the un-
derlying probability process, one determines the so-called relative rate distribution
and compares it with special probability functions that may be derived from known
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probability structures. For example, the hypergeometric distribution may be traced
back to the very simple and clear jar model.

In our example, the individual measured quantity is the capacitance of each capac-
itor. The data constitute the so-called primary list:

Capacitor no. 1 2 3 4 5 6 · · · n

Capacitance in µF 101.1 99.6 101.4 103.3 98.0 99.5 · · · Cn

Class Ki , a set of several elements (measured values) of a primary list with defined
properties which are combined under the index i .
■ The daily production output of n capacitors of a given capacitance C may be classi-

fied, e.g., by subdividing the capacitances into N = 8 intervals (N = 8 classes).

Class Limits of interval Class Limits of interval

K1 C < 92.5 K5 100.0 ≤ C < 102.5
K2 92.5 ≤ C < 95.0 K6 102.5 ≤ C < 105.0
K3 95.0 ≤ C < 97.5 K7 105.0 ≤ C < 107.5
K4 97.5 ≤ C < 100.0 K8 107.5 ≤ C

➤ Classes need not always be defined. For discrete measured values x = Xi repeating
in the primary list, the coinciding values may of course be considered a class of its
own, Ki = Xi .

Class center, interval center, arithmetic mean of the interval limits of a class.
➤ It is more suitable to form the arithmetic mean of all measured values of the corre-

sponding class. But sometimes the individual measured values are not known, or are
discarded in data-taking for reasons of time (computational effort in very extensive
surveys). Therefore, the interval center is in general an approximate quantity.

Rate Hi = H (Ki ), number of measured values from the primary list falling into the
class Ki .
➤ If measured values occur repeatedly in the primary list, a discrete measured value

may also be taken as a class.
Rate table, tabular mapping of each class onto the corresponding number (rate) of mea-
sured values.
■ The rate table of a daily production output, related to the capacitance of the capaci-

tors, might look as follows:

Ki K1 K2 K3 K4 K5 K6 K7 K8 sum

H (Ki ) 133 43789 189345 281321 255128 206989 26923 155 1003783
.

Rate distribution, rate histogram, graphic representation of a rate table.
■ The rate table given above is represented by the bar graph shown in Fig. 30.3. For

visual representation, one also uses other diagrams, e.g., the pie chart.
Relative rate, the relative rate hi of the class Ki for n measured values in total,

hi = Hi

n
.

Relative rate distribution, normalized rate distribution hi ,

N∑
i=1

hi = 1 .
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Figure 30.3: Representation of a rate table. (a): bar graph, (b): pie chart, (c): distribution
with three cluster points.

The relative rate may also be represented graphically by a histogram.
▲ When dividing the (relative) rate by a constant factor c, the arithmetic mean remains

unchanged,

N∑
i

xi · H (xi )/c

N∑
i

H (xi )/c

≡ x̄ .

Modal value, density mean, xm , the most frequently measured value in a series of mea-
sured values.
➤ For runs with several cluster points, there are also several density means. Each cluster

point has to be considered separately.
Urn model or jar model, n marbles are picked out of a vessel (urn or jar) containing N
marbles, M of them being black and N − M being white. If p is the probability to pick a
black sphere, then the probability to pick a white sphere is 1 − p. We are looking for the
probability of finding k marbles of a definite color among the n marbles picked out (when
repeating the experiment n times, a certain event happens exactly k times).

Selection with retjar (with return), every sphere is returned after selection.
Selection without retjar (without return), the marbles picked are not returned to the jar.

Analysis

with and without return Figure 30.4: Urn model.

Single probability, P(k), the probability that a discrete random variable takes the value
k in a single measurement.
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30.2.6.1 Special discrete distributions
• Hypergeometric distribution:

P(k) =

(
pN
k

) (
N (1− p)

n − k

)
(

N
n

) , p · N : integer.

Expectation value: n · p.
Variance: σ 2 = n · p(1− p)[(N − n)/(N − 1)] .

• Binomial distribution:

P(k) =
(

n
k

)
pk(1− p)n−k .

Expectation value: n · p .
Variance: σ 2 = n · p(1− p) .

• Poisson distribution:

P(k) = ck

k! · e
−c, k = 0, 1, 2, . . . ; c > 0 .

Expectation value: c.
Variance: σ 2 = c.

2

Figure 30.5: (a): binomial distribution, (b): Poisson distribution.

▲ The hypergeometric distribution corresponds to the jar model without returning the
marbles picked. The binomial distribution corresponds to the jar model with return
of the marbles picked.

▲ The binomial distribution follows from the hypergeometric distribution if the number
of marbles in a jar model becomes very large (N → ∞) and the number of random
samples n remains small.

▲ The Poisson distribution follows from the binomial distribution if the number of ran-
dom samples n in the jar model becomes very large and the marked fraction p is very
small but finite, n →∞, p → 0.

Probability density, f (x), density of the distribution of a continuous random variable, or
idealized analytic function for the probability density of discrete random variables.
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30.2.6.2 Special continuous distributions
• Gauss’ distribution, normal distribution:

f (x) = 1

σ
√

2π
e−(x−m)2/(2σ 2) .

Expectation value: m.
Variance: σ 2 .

• Standard normal distribution, Gauss’ normal distribution, special case of the
normal distribution with m = 0 and σ = 1 .

• Exponential distribution:

f (x) = λe−λx , λ > 0 , x ≥ 0 .

Expectation value: 1/λ .
Variance: σ 2 = 1/λ2 .

• Weibull distribution:

f (x) = γ
β

(
x − α
β

)γ−1
e−((x−α)/β)γ , x ≥ α .

Expectation value: β �(1+ 1/γ )+ α .
Variance: σ 2 = β2 {�(1+ 2/γ )− [�(1+ 1/γ )]2} , �(k): gamma function.

• χ2-distribution with the degree of freedom n: a distribution resulting for the mea-
sured quantity χ2 = Yn = x2

1 + x2
2 + · · · + x2

n if the individual measured values xi ,
(i = 1, . . . , n) follow a standard normal distribution,

fχ (Yn; n) = 1

2n/2�(n/2)
Y (n/2)−1

n e−Yn/2 .

Expectation value: n.
Variance: σ 2 = 2n .

• t-distribution, student’s distribution, distribution of the measured quantity Tn =
x/
√

Yn/n if x obeys a standard normal distribution and Yn obeys a fχ (Yn; n)-
distribution,

ft (Tn; n) = �((n + 1)/2)√
nπ�(n/2)

(
1+ T 2

n
n

)−(n+1)/2

.

Expectation value: 0 .
Variance: σ 2 = n/(n − 2) .

The normal distribution is symmetric about its maximum at x = m. The maximum
value of the function f (x) is 1/(σ

√
2π). The normal distribution has inflexion points at

x = m ± σ . About 99.7 % of the measured values fall into the interval x = m ± 3σ ,
about 95.5 % into the interval x = m ± 2σ , and about 68 % into the interval x = m ± σ .
The variance σ 2 may be extracted from the half-width b of the curve, i.e., the width of
the curve at half maximum, σ 2 = 0.18 · b2. For a finite number n of measurements, the
arithmetic mean x̄ of the measured values is the best estimate for the expectation value m.

The normal distribution is normalized to 1,

∞∫
−∞

f (x) dx = 1 .
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Figure 30.6: Normal distribution.
Maximum: M = 1/(σ

√
2π), inflexion

points: (m ± σ), half-width: b.

Figure 30.7: Exponential distribution.

Figure 30.8: Weibull distribution. Figure 30.9: χ2-distribution.

1

Figure 30.10: t-distribution.

Central value limit theorem, with increasing n, the sum of n independent random vari-
ables obeying the same distribution always converges towards the normal distribution.
▲ Owing to the multiple superposition of error sources, measuring errors are in general

normally distributed.

30.2.7 Reliability
Events depending on time (e.g., radioactive decay, failure of an electric component) may
be reasonably described several special quantities.

Lifetime, time between failures of objects. The distribution of the failures over time may
be purely incidental (non-aging objects), or may be altered by external influences (aging
objects).

Non-aging objects, objects with a finite lifetime, the failure is purely random and fol-
lows a distribution based on a purely combinatoric random principle (jar model, Poisson
distribution, exponential distribution). They are not influenced by aging processes, as,
e.g., external wearing phenomena.
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■ Electronic components such as resistors, capacitors, integrated circuits (under speci-
fied conditions of application, i.e., no excessive load by too high currents or too high
voltages) are to a good approximation non-aging objects.

■ Objects of finite “lifetime” are also found in non-technical fields. For example, the
infection with a rare disease is to a good approximation Poisson-distributed, the time
intervals between several infections follow an exponential distribution.

▲ The failures of non-aging objects follow a Poisson distribution with respect to time.
The times between the failures obey an exponential distribution.

Aging objects, objects with a finite lifetime that undergo an aging process. The aging may
affect the purely random decay process, hence may modify the distribution of failures (see
Weibull distribution).
■ Typical examples for aging objects are engines, tires, tools.
▲ The failure of aging objects is no longer Poisson-distributed. In order to describe the

time distances between the failures, a more sophisticated form of the distribution has
to be used. Frequently, the time distance between failures may be represented by a
superposition of several exponential distributions. The lifetime of aging objects may
in some cases be represented by a Weibull distribution.

The exponential distribution and the Weibull distribution are special cases of reliability.
Reliability, Z(t), the average number of parts N (t) still functioning after the time t ,

related to an initial set N0. General set-up for describing aging processes as a function of
time:

Z(t) = N (t)

N0
= e−

∫ t
0 λ(t

′)dt ′
.

Z(t) is the probability that a part did not yet fail after the time t .
Failure probability, F(t), average number of parts N0 − N (t) that failed after the time

t , relative to the initial quantity N0,

F(t) = 1− Z(t) .

F(t) is the probability that a part failed after the time t .
Failure density, ρ, the average number of failures per unit time at the moment t relative

to the initial set N0,

ρ(t) = dF(t)

dt
= −dZ(t)

dt
= λ(t)Z(t) .

➤ The integral over the failure density is just the quantity of failures relative to the initial
quantity N0,∫ t

0
ρ(t ′)dt ′ = −

∫ t

0

dZ(t ′)
dt ′ dt ′ = −(Z(t)− Z(0)) = 1− Z(t) = F(t) .

Failure rate, the average number of failures per time unit, relative to the number of still-
functioning parts N (t),

λ(t) = − 1

N (t)

dN (t)

dt
= − 1

Z(t)

dZ(t)

dt
= ρ(t)

Z(t)
.

Mean time between failures (MTBF):

MTBF =
∫ ∞

0
Z(t)dt .
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▲ The probability that the total system is still functioning after the time t is equal to the
product of the reliabilities of the individual systems,

Ztotal = Z1 Z2 . . . Zn .

Non-aging objects:

λtotal = λ1 + λ2 + · · · + λn .

▲ If the rate λ and the operating time t are small, the failure rate may be approximated
by the number of failures per initial quantity and operating time,

λ ≈ 1− N (t)

N0 · t = failures

initial quantity · operating time
.

▲ For non-aging objects, Z(t) is the exponential distribution (λ =const.), and the failure
time is thus 1/λ.

■ Some failure rates (λ in fit = failure/109 h):

wrap connections 0.0025
mica capacitor 1
HF-coil 1
metal-layer resistor 1
paper capacitor 2
transistor 200
light-emitting diode (50 % loss of luminosity) 500



31
Vector calculus

31.1.1 Vectors
Vector, a quantity characterized by a magnitude and an orientation. A vector is repre-
sented graphically by an arrow whose length represents the magnitude of the vector.
■ Velocity, momentum, electric field intensity are vectors, like the position vector point-

ing from the origin of the coordinate frame to a defined position.
Vectors are distinguished by their behavior under rotations of the coordinate frame. Since
they have a direction measured relative to a coordinate frame, their components (not their
magnitude) change under rotation of the reference frame. On the contrary, scalars do not
change their value under rotation of the reference frame; they are real or complex numbers.
■ Time, mass, charge and temperature are scalars.
When they represent physical quantities, both scalars and vectors have a unit that has to be
specified in addition. In the case of vectors, the unit refers to the magnitude of the vector.
➤ Although the magnitude of the vector is shown by the length of the arrow, it may

have an arbitrary unit. For example, the unit of a force vector is the newton.
Component representation, representation of the vector in a Cartesian coordinate frame.
In order to represent an arbitrary vector, the base of the vector arrow is put at the origin
of a Cartesian coordinate frame, and the coordinates of its end point can be specified by a
column vector:

�a =
⎛
⎝ax

ay
az

⎞
⎠ ←→ �a = ax�ex + ay�ey + az�ez ,

�ex , �ey, �ez being unit vectors pointing along the positive coordinate axes. The components
of the vector have the same unit as the vector itself,

[ax ] = [ay] = [az ] = [�a] .
1115
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Magnitude of a vector, the length of the vector arrow. In a component representation,
it is given by

|�a| =
√

a2
x + a2

y + a2
z .

For the unit,

[|�a|] = [�a] .

az

ay

ax

Figure 31.1: Component representation of
a vector �a in a three-dimensional Cartesian
reference frame.

Figure 31.2: Behavior of a vector under
rotation of the coordinate frame. (Fx , Fy)

and (Fx ′ , Fy′) are the components of the

vector �F in two frames rotated with respect
to each other by the angle α.

31.1.2 Multiplication by a scalar
A vector may be multiplied by a real or complex number (scalar).

Multiplication by a scalar, every component is multiplied by the real or complex num-
ber α:

α�a =
⎛
⎝αax
αay
αaz

⎞
⎠ .

The length of the vector is changed by the factor |α|: |α�a| = |α| |�a|. If α < 0, the resulting
vector points opposite to the original vector.

Inverse vector, opposite vector, the vector obtained by multiplication by−1. It has the
same length as the original vector, but points in the opposite direction.

Figure 31.3: Vector
multiplication. (a):
multiplication of a vector �a
by a scalar α, (b): opposite
vector −�a.
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31.1.3 Addition and subtraction of vectors
Vectors may be added and subtracted if they have the same units.

Vector addition, the individual components are added:

�a+ �b =
⎛
⎝ax + bx

ay + by
az + bz

⎞
⎠ ,

where �a and �b are arbitrary vectors having identical units. �a and �b form a parallelogram;
the resulting vector is the diagonal.

The same result is obtained by putting one vector at the end of the other vector; the
resulting vector points from the initial point of the first vector (origin) to the endpoint of
the second vector.

Vector subtraction, achieved by adding the opposite vector:

�a− �b = �a+ (−1) · �b .

The vector �a−�b is also called the “difference” vector; it points from the endpoint of vector
�b to the endpoint of vector �a.

Figure 31.4: Vector addition. (a): addition, (b): subtraction of the vectors �a and �b.

Unit vector along �a, a vector of length 1 pointing along the vector �a. It is obtained by
dividing the vector �a by its length,

�e = �a
|�a| .

Unit vectors are used to specify a direction.

31.1.4 Multiplication of vectors
There are two kinds of vector multiplication.

1. Scalar product,

�a · �b, its value is a real number (scalar). The scalar product is given by the length of the
normal projection of one vector onto the second vector multiplied by the magnitude of the
second vector. If the angle α between the two vectors is larger than 90◦, then the scalar
product is negative.
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scalar product

�a · �b = |�a| |�b| cosα

= ax bx + ayby + azbz

Symbol Unit Quantity

�a, �b arbitrary vectors
ax , bx , . . . arbitrary components
α rad angle between �a and �b

The scalar product is commutative, i.e.,

�a · �b = �b · �a .

y

yay =

ax = x x

Figure 31.5: Scalar product of two vectors
�a and �b.

Figure 31.6: Components (ax , ay) of a
vector �a along the axes given by �ex , �ey .

The scalar product is used to form the projection of a vector onto the direction of another
vector. In particular, one may decompose a given vector into its Cartesian components:

�a =
⎛
⎝ax

ay
az

⎞
⎠ = ax�ex + ay�ey + az�ez ,

ax = �a · �ex , ay = �a · �ey, az = �a · �ez ,

where �ex , �ey and �ez are unit vectors along the axes of a Cartesian coordinate frame.
Using the scalar product, one may check whether two vectors are perpendicular to each

other.
▲ The scalar product of two vectors that are perpendicular to each other vanishes.
The length of a vector is equal to the root of the scalar product of the vector with itself:

|�a| = √�a · �a .

It is always larger than or equal to zero.
Finally, one may calculate the angle α between two vectors �a and �b by the scalar product:

cosα = �a · �b
|�a| |�b| .

2. Vector product,

cross-product, �a× �b, a vector assigned to two vectors �a and �b that points perpendicular to
�a and �b. Its length is equal to the product of the lengths of the two vectors, and of the sine
of the angle enclosed:
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vector product

|�a× �b| = |�a| |�b| sinα

�a× �b =
⎛
⎝aybz − byaz

azbx − bzax
ax by − bx ay

⎞
⎠

Symbol Unit Quantity

�a, �b arbitrary vectors
ax , bx , . . . arbitrary components
α rad angle between �a and �b

The vector product is used to construct a vector perpendicular to two given vectors. The
vectors �a, �b and �a × �b in this order of sequence form a right-handed system, like the
thumb, forefinger and middle finger of the right hand.
➤ Distinctions between scalar and vector product: The vector product is a vector, the

scalar product is a real number. The scalar product has a maximum value when the
two vectors are parallel to each other; the magnitude of the vector product has a
maximum when the vectors are perpendicular to each other.

The most important properties of the vector product are:
▲ �a× �a = 0: the vector product of a vector with itself vanishes.
▲ �a× �b = −�b× �a: the vector product is anti-commutative.
▲ The unit vectors of a Cartesian coordinate frame are related as follows:

�ex × �ey = �ez ; �ey × �ez = �ex ; �ez × �ex = �ey .

The cross-products between identical unit vectors vanish:

�ex × �ex = �ey × �ey = �ez × �ez = 0 .

▲ Triple scalar product, the scalar product of a vector �c with the vector product of the
vectors �a and �b:

(�a× �b) · �c.

The triple scalar product is defined only in a three-dimensional space. The triple
scalar product is a scalar; its absolute value is equal to the volume of the paral-
lelepiped described by the vectors �a, �b, �c.

Figure 31.7: Vector product of two vectors
�a and �b. �a × �b points perpendicular to the
vectors �a and �b.

Figure 31.8: Triple scalar product.

The two-fold cross-product �a × (�b × �c) is a vector in the plane spanned by the
vectors �b and �c:

�a× (�b× �c) = �b(�a · �c)− �c(�a · �b) .
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Differential and integral calculus

32.1 Differential calculus

Derivative of a function y = f (x) at the point x , defined as the slope of the tangent to the
function at the point x .

Difference quotient, slope of the secant through the points P(x, y) and P0(x0, y0),


y


x
= 
 f (x)


x
= f (x)− f (x0)

x − x0
.

Differential quotient f ′(x), limit value of the difference quotient for P → P0, 
x → 0,

dy

dx
= f ′(x) = lim


x→0


y


x
= lim

x→0

f (x +
x)− f (x)


x
.

The derivative of a function at the point P0 corresponds to the gradient of its graph at the
point P0, f ′(x0) = tanα.

32.1.1 Differentiation rules
Constants rule, the derivative of a constant c is equal to zero,

c′ = 0 .

Factor rule, a constant factor c remains unchanged when the derivative is taken,

(c · f (x))′ = c · f ′(x) .

Power rule, when carrying out the derivative of a power function, the exponent is lowered
by unity, and the old exponent enters as a factor,

d

dx
xn = n · xn−1 .

1121
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y0

s

Figure 32.1: Derivative of a function f (x). t : tangent, s: secant.

Sum rule, the derivative of a sum (difference) is equal to the sum (difference) of the
derivatives,

( f (x)± g(x))′ = f ′(x)± g′(x) .

Product rule:

( f (x) · g(x))′ = f (x) · g′(x)+ f ′(x) · g(x) ,
( f (x) · g(x) · h(x))′ = f (x) · g(x) · h′(x)+ f (x) · g′(x) · h(x)+ f ′(x) · g(x) · h(x) .

Quotient rule: (
f (x)

g(x)

)′
= g(x) · f ′(x)− f (x) · g′(x)

g2(x)
,

(
1

g(x)

)′
= −g′(x)

g2(x)
.

Chain rule:

( f (g(x))′ = g′(x) · f ′(g(x)) , d f

dx
= dg

dx
· d f

dg
.

d f

dg
: exterior derivative,

dg

dx
: interior derivative.

Logarithmic derivative, derivative of the logarithm ln y of the function y for y > 0,

(ln y)′ = y′
y
.

32.2 Integral calculus

Integration, inverse of differentiation.
Antiderivative function, integral function F(x) of a function f (x). The derivative

F ′(x) of the integral function is equal to f (x). The function F(x) is defined over the same
interval as f (x).

Integration of a function f (x), determination of the integral function F(x) of f (x), the
derivative of which is again the original function f (x).
▲ To any integrable function, there exist infinitely many integral functions F(x) + C

that differ only by an additive integration constant C . All integral functions have
the same slope at a fixed value x .
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Figure 32.2: Definite
integral A of the function
f (x).

Indefinite integral I , the integration constant C is not fixed,

I =
∫

f (x) dx = F(x)+ C .

Definite integral, upper and lower boundary of integration are fixed. The definite integral
is a number,

A =
∫ b

a
f (x) dx = F(b)− F(a) .

▲ The definite integral A corresponds to the area between the function f (x) and the
x-axis between x = a and x = b. If f (x) becomes also negative in the integration
interval, then the definite integral is equal to the difference of the areas above and
below the x-axis.

32.2.1 Integration rules
Constant rule, a constant factor may be pulled out of the integral,∫

c · f (x) dx = c ·
∫

f (x) dx .

Sum rule, the integral over a sum of terms is equal to the sum of the integrals over the
terms, ∫

( f (x)+ g(x)) dx =
∫

f (x) dx +
∫

g(x) dx .

Power rule: ∫
xn dx = xn+1

n + 1
, n �= −1 .

Inversion rule, inversion of the sign of the definite integral under inversion of the integra-
tion boundaries,

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx .

Equality of upper and lower boundary, the integral vanishes,∫ a

a
f (x) dx = 0 .
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Interval rule, definite integrals may be decomposed into integrals over parts of the interval,∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .

Partial integration, inversion of the product rule of differentiation,∫
f (x) · g′(x) dx = f (x) · g(x)−

∫
f ′(x) · g(x) dx .

Substitution rule: ∫
f (g(x)) · g′(x) dx =

∫
f (z) dz , z = g(x) .

Logarithmic integration: ∫
f ′(x)
f (x)

dx = ln | f (x)| + C .

32.3 Derivatives and integrals of
elementary functions

Given are the original function f (x), its derivative f ′(x) = d f

dx
and the integral function∫

f (x) dx = F(x)+ C .

f (x) f ′(x) F(x) f (x) f ′(x) F(x)

c 0 cx ex ex ex

x 1 1
2 x2 ax ax ln(a) ax

ln(a)

xa axa−1 xa+1

a + 1 ln(x) 1
x x ln x − x

1
x − 1

x2 ln |x| loga(x)
1

x ln(a)
x ln x − x

ln(a)

sin(x) cos(x) − cos(x) arcsin(x) 1√
1− x2

x arcsin(x)+
√

1− x2

cos(x) − sin(x) sin(x) arccos(x) −1√
1− x2

x arccos(x)−
√

1− x2

tan(x) 1
cos2(x)

− ln | cos(x)| arctan(x) 1
1+ x2 x arctan(x)− 1

2 ln(1+ x2)

cot(x) −1
sin2(x)

ln | sin(x)| arccot (x) −1
1+ x2 x arccot (x)+ 1

2 ln(1+ x2)

sinh(x) cosh(x) cosh(x) Arsinh(x) 1√
x2 + 1

xArsinh(x)−
√

x2 + 1

cosh(x) sinh(x) sinh(x) Arcosh(x) 1√
x2 − 1

xArcosh(x)−
√

x2 − 1

tanh(x) 1
cosh2(x)

ln(cosh(x)) Artanh(x) 1
1− x2 xArtanh(x) + 1

2 ln(1− x2)

coth(x) −1
sinh2(x)

ln | sinh(x)| Arcoth(x) 1
1− x2 xArcoth(x) + 1

2 ln(x2 − 1)



33
Tables on the SI

33.0/1 International system of units (SI): Basic quantities

Denotation Abbr. Definition Dim.

meter m The meter is the length of path traversed by light in a
vacuum during the 1/299 792 458th fraction of a sec-
ond.

L

kilogram kg The kilogram is the mass of an international prototype
of the kilogram. It is a platinum-iridium cylinder de-
posited at the BIPM in Sèvres, near Paris.

M

second s The second is the duration of 9 192 631 770 vibrational
periods of the radiation corresponding to the transition
between the two hyperfine structure levels of the ground
state of the Cs133 atom.

T

ampere A The ampere is the constant current that, when flowing
through two infinitely extended conductors of negligi-
ble cross-sectional area positioned 1 meter apart in a
vacuum, generates a force of 2 · 10−7 N per meter of
length.

I

kelvin K The kelvin is the 1/273.16th fraction of the thermody-
namic temperature of the triple point of water.

�

mole mol The mole is the amount of substance that contains as
many elementary constituents as there are atoms in
0.012 kg of carbon 12.

N

candela cd The candela is the luminosity in a given direction of
a monochromatic source of radiation of frequency of
540 · 1012 hertz and a radiant intensity in that direction
of (1/683) watt per steradian.

J

1125
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33.0/2 Decimal prefixes

Prefix Value Abbreviation Prefix Value Abbreviation

yocto 10−24 y deca 101 da
zepto 10−21 z hecto 102 h
atto 10−18 a kilo 103 k
femto 10−15 f mega 106 M
pico 10−12 p giga 109 G
nano 10−9 n tera 1012 T
micro 10−6 µ peta 1015 P
milli 10−3 m exa 1018 E
centi 10−2 c zetta 1021 Z
deci 10−1 d yotta 1024 Y

33.0/3 Derived SI units

Denotation Symbol Defining equation Unit Name of unit

1. length

angle α, ϕ, . . . rad radian
solid angle 	 sr steradian
length s, l, . . . m meter
area A A = s2 m2

volume V V = s3 m3

2. time and velocity

time t s second

vibrational period T T = time

vibrations
s

frequency f f = 1/T Hz = 1/s hertz
velocity �v v = ds/dt m s−1

angular velocity �ω ω = dα/dt rad s−1

acceleration �a a = d2s/dt2 m s−2

angular acceleration �α α = d2ϕ/dt2 rad s−2

3. mechanics

mass m kg kilogram
density ρ ρ = m/V kg m−3

force �F F = m · a N = kg m s−2 newton
moment of inertia J J =∑i mi r

2
i kg m2

torque τ τ = r × F N m
momentum �p p = m · v kg m s−1

pressure p p = F/A Pa = N m−2 pascal
work, energy W W = ∫ �F · d�s J = N m joule
power P P = dW/dt W = N m s−1 watt
surface tension σ σ = dW/dA N m−1

elasticity modulus E E = σ/ε N m−2

compression modulus K K = −V dp/dV N m−2

dynamic viscosity η η = (FR/A) · dd/dv Pa s
kinematic viscosity ν ν = η/ρ m2 s−1

efficiency η η = Peff/Pein 1

(continued)
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33.0/3 Derived SI units (continued)

Denotation Symbol Defining equation Unit Name of unit

4. electricity and magnetism

electric charge Q Q = I · t C = A s coulomb
electric voltage V V = W/Q V = J C−1 volt
electric field strength �E �E = �F/Q N C−1 = V m−1

electric resistance R R = V/I 	 = V A−1 ohm
electric conductance G G = 1/R S = 	−1 siemens
spec. el. resistance ρ ρ = R A/ l 	 m
spec. el. conductance κ κ = 1/ρ 	−1m−1

electric capacitance C C = Q/V F = CV−1 farad
permittivity ε ε = D/E F m−1

magnetic flux � � = ∫ V dt Wb = V s weber
inductance L L = �/I H = V s A−1 henry
magn. flux density �B B = d�/dA T =Wb m−2 tesla
magn. field strength �H H = dI/ds A m−1

permeability µ µ = B/H H m−1

5. thermodynamics

temperature T K kelvin
quantity of heat Q (= form of energy) J joule
heat capacitance C C = 
Q/
T J K−1

spec. heat capacitance c c = C/m J K−1 kg−1

heat conductivity λ λ = l dQ/At dT W K−1 m−1

entropy S S = Q/T J K−1

spec. caloric power H H = Q/m J kg−1

internal energy U U = f

2
nmol RT J

free energy F F = U − T S J
enthalpy H H = U + pV J
free enthalpy G G = U + pV − T S J

6. physical chemistry

particle number N 1
particle number density n n = N/V m−3

amount of substance n n = N/NA mol mole

7. light

light intensity I cd candela
light flow � � = ∫ Id	 lm = cd sr lumen
amount of light Q Q = ∫ �dt lm s
luminance L L = dI/(dA cos θ) cd m−2

illuminance E E = (d�/dA) cos θ lx = lm m−2 lux
exposure H H = ∫ Edt lx s
radiant flux �e �e = dW/dt W
radiant intensity Ie Ie = d�e/d	 W sr−1

radiant density Be Be = dIe/(dA cos θ) W m−2 sr−1

irradiance Ee Ee = (d�e/dA) cos θ W m−2

irradiation He He =
∫

Eedt J m−2

focal length f 1/ f = 1/a + 1/b m

(continued)
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33.0/3 Derived SI units (continued)

Denotation Symbol Defining equation Unit Name of unit

8. nuclear reactions

decay constant λ λ = −dN/(N dt) s−1

half-life T1/2 T1/2 = ln 2/λ s

activity A A = decays

time
Bq = s−1 becquerel

spec. activity a a = A/m Bq kg−1

energy dose D D = W/m Gy = J kg−1 gray
energy dose rate Ḋ Ḋ = dD/dt Gy s−1

equivalent dose Dq Dq = q · N · D (1) Sv = J kg−1 sievert

cross-section σ σ = −dN

nNds
m2

9. acoustics

sound pressure p Pa
sound pressure level L p L p = 20 log10(p/p0) db decibel
volume level L N L N = 20 log10(p/p0) phon phon

(1)q is a quality factor for the different types of radiation. N is the product of several fac-
tors that are defined in more detail by the ICRP (International Commission on Radiological
Protection). They are related to biological efficiency.

33.0/4 Accepted non-SI units

This table surveys other accepted units and their conversion to SI units.

Quantity Unit Abbreviation Relation to SI unit

generally valid

plane angle second ′′ 1′′ = (1/60)′
minute ′ 1′ = (1/60)◦
degree ◦ 1◦ = (π/180) rad

volume liter l 1 l = 10−3 m3

time minute min 1 min = 60 s
hour h 1 h = 60 min = 3600 s
day d 1 d = 24 h = 86400 s

common year a, yr 1 a = 365 d = 8760 h
mass ton t 1 t = 103 kg
pressure bar bar 1 bar = 105 Pa

valid in special fields

length in light year ly 1 ly = 9.4605 · 1015 m
astronomy parsec pc 1 pc = 3.0857 · 1016 m = 3.26 ly

astronomic unit AU 1 AU = 1.4959787 · 1011 m
length in nautical mile sm 1 sm = 1852 m

navigation
length in angstrom unit Å 1 Å = 10−10 m

atomic physics
velocity in air and sea knot kn kn = 1 sm h−1 = 0.514444 m s−1

navigation

(continued)
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33.0/4 Accepted non-SI units (continued)

Quantity Unit Abbreviation Relation to SI unit

valid in special fields (continued)

refractive power dioptric dpt 1 dpt = m−1

of lenses
area of land hectare ha 1 ha = 104 m2

acre a 1 a = 102 m2

liquids liter l 1 l = 1 dm3 = 10−3 m3

plane angle gon gon 1 gon = (π/200) rad
in geodesy

size of tex tex 1 tex = 10−6 kg m−1

textile threads
mass of precious stones carat Kt 1 Kt = 0.2 g
mass in atomic mass u 1 u = 1.660 540 2 · 10−27 kg

atomic physics unit
energy in electron volt eV 1 eV = 1.602 177 33 · 10−19 J

atomic physics

33.0/5 Conversion table of energy units

erg J kWh

1 erg 1 10−7 2.7778 · 10−14

1 J 107 1 2.7778 · 10−7

1 kWh 3.6 · 1013 3.6 · 106 1
1 kpm 9.8066 · 107 9.8066 2.72 · 10−6

1 kcal 4.1868 · 1010 4.1868 · 103 1.16 · 10−3

1 eV 1.6021 · 10−12 1.6 · 10−19 4.45 · 10−26

kpm kcal eV

1 erg 1.0197 · 10−8 2.3884 · 10−11 6.2419 · 1011

1 J 1.10197 · 10−1 2.3884 · 10−4 6.2419 · 1018

1 kWh 3.6709 · 105 8.6001 · 102 2.25 · 1025

1 kpm 1 2.3427 · 10−3 2.6126 · 1019

1 kcal 4.2685 · 102 1 2.6126 · 1022

1 eV 1.634 · 10−20 3.8276 · 10−23 1

33.0/6 Wind forces

(as measured 10 m above ground)

Beaufort
degree Velocity Dynamic pressure Name / indication

3 3.4 to 5.3 m/s ca. 0.017 kN/m2 wind / moves leaves
6 9.9 to 12.4 m/s ca. 0.08 kN/m2 strong wind / moves strong

boughs, howls
9 18.3 to 21.5 m/s ca. 0.25 kN/m2 storm / moves loose stones
12 beyond 30 m/s beyond 0.5 kN/m2 hurricane / moves heavy objects
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33.0/7 Anglo-American units

Quantity Unit Abbreviation Conversion to SI units

length inch in 1 in = 0.0254 m
foot ft 1 ft = 12 in = 0.3048 m
yard yd 1 yd = 3 ft = 0.9144 m
statute mile mile 1 mile = 1760 yd = 1609.34 m
nautical mile n mile 1 n mile = 1852 m

area square inch in2 1 in2 = 6.452 · 10−4 m2

square foot ft2 1 ft2 = 144 in2 = 0.0929 m2

square yard yd2 1 yd2 = 9 ft2 = 0.8361 m2

square mile mile2 1 mile2 = 2.59 · 106 m2

acre a 1 a = 4046.86 m2

volume cubic inch in3 1 in3 = 1.63871 · 10−5 m3

cubic foot ft3 1 ft3 = 0.02832 m3

cubic yard yd3 1 yd3 = 0.76456 m3

gallon gal 1 gal = 3.78541 · 10−3 m3

registerton RT 1 RT = 100 ft3 = 2.832 m3

velocity mile per hour mph 1 mph = 1.609 km/h = 0.447 m/s
mass grain gr 1 gr = 6.4799 · 10−5 kg

dram dram 1 dram = 1.77184 · 10−3 kg
ounce oz 1 oz = 2.83495 · 10−2 kg
pound lb 1 lb = 0.45359 kg
long hundredweight long cwt 1 long cwt = 50.8023 kg
short hundredweight sh cwt 1 sh cwt = 45.3592 kg
long ton long tn 1 long tn = 1016.05 kg
short ton sh tn 1 sh tn = 907.185 kg

pressure pound-force per square inch lbf/in2 1 lbf in−2 = 6.8947 · 103 Pa
pound-force per square foot lbf/ft2 1 lbf ft−2 = 47.88 Pa
ton-force per square foot tonf/ft2 1 tonf ft−2 = 107.252 · 103 Pa

energy foot pound-force ft lbf 1 ft lbf = 1.3558 J
British thermal unit Btu 1 Btu = 1055.06 J

power horsepower hp 1 hp = 745.7 W



Index

Abbe number, 356, 368
Aberrations, 366–368
Absolute error, 1101
Absolute humidity, 739
Absolute maximum error, 1101
Absolute maximum ratings, 1025
Absolute mean value, 515
Absolute motion, 6
Absolute sensitivity, 403
Absolute zero, 633–634, 702
Absorptance, 764–765
Absorption

photon, 879
radiation, 764

Absorption coefficient, 401, 870
Absorption cross-section, 925
Absorption edges, 870
Absorption law, 401
Absorption lines, 151
Absorption spectrum, 853–854
Acceleration, 17–19

curvature of, 27–28
determination of velocity from,

18–19
of gravity (g), 53–54, 131
of rockets, 79–80

Acceleration vector, 25–28
Accelerators, 898–899
Acceptor, 1014
Accommodation, optical, 371

Accumulators, 559
Accuracy of measurement, 1100
Achromat, 390
Achromatic prism, 390
Acid constant, 747
Acids, density of, table, 237
Acoustic phonons, 993
Acoustic radiation resistance, 315
Acoustical-attenuation coefficients for

building materials, 412
Acoustics

musical, 331–334
physiological, 329–331
symbols used in formulae on,

407–408
tables on, 409–414

Action function, 89
Action line, 98
Action principle, 41
Activators, 1063
Active region, 1025
Active two-terminal network, 501
Activity, 748, 939, 958
Activity concentrations, 748
Actual value, 1100
A.D., 9
Adaptation, optical, 371
Addition of vectors, 1117
Addition theorem of velocities,

142–143

1131
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Additive correction term for pressure
measurement, 800–801

Addressing, 308
Adhesion, 185
Adiabatic compression, 704–705
Adiabatic expansion, 704
Adiabatic index, 690–691, 695–696
Adiabatic-isobaric states, 649
Adiabatic-isochoric states, 649
Adiabatic process, 695
Adiabats, 695
Adjustable resistor, 436
Adsorbed surfaces, work function for,

1084
AE (astronomical unit), 134
Aerodynamic tunnels, 206
Aerodynamics, 186–210
Aerostatics, 171–186
Affine coordinate system, 4
Age-related far-sightedness, 371
Aggregation states, 717–718

conversions of, 718–719
Aging objects, 1112
Air

sound field quantities in, 410
sound velocity in, 409

Air pressure, altitude and, 798
Alcohols, density of, table, 237
Alfven waves, 584
Alkali antimonides, photo cathodes

of, 1085
Alkali atoms, 854
All-round effects, 989
Allowed transitions, 945–946
Alloys, 988–990

electricity in, tables, 598
low-melting, melting points of,

785
magnetic, table on, 614
metallic, density of, table, 232–233
table of, 1092

Almost-free electrons, 1007
α-decay, 941–943
α-particles, table of ranges of, 1088
Alternating current, 427
Alternating-current circuits, 502,

514–544
basic components in, 529–533
capacitor in, 531–532
inductor in, 532–533
Kirchhoff’s laws for, 528

ohmic resistor in, 530
power in, 526–527

Alternating-current engineering, basics
of, 522–529

Alternating-current source, 502
Alternating quantities, 514–516
Altitude, air pressure and, 798
Aluminum, electrons in,

mass-attenuation coefficient for,
1088

Aluminum alloys, density of, table, 232
AM (amplitude modulation), 308
Aminoplasts, electric properties of, 604
Ammeters, 509
Amorphous solids, 967, 983
Amount of substance, 551, 638, 639
Ampere (unit), 427, 471
Ampere/meter, 469
Ampere/weber, 471
Ampere’s law, 428, 472–474
Ampere’s magnetic moment, 475
Amplification factor of vacuum tubes,

570
Amplifier stage, 1028
Amplitude, 256
Amplitude dependence, 211
Amplitude modulation (AM), 308
Analyzer, 391
Anastigmat, 366
Anergy, 683
Aneroid barometer, 173
Angle, 11–12

definition of, 11
Angle units, 11
Anglo-American units, table of, 1130
Angular acceleration, 33–34
Angular frequency, 515
Angular momentum, 48–49, 116–117
Angular momentum conservation,

927–928
Angular momentum conservation law,

85
Angular velocity, 32–33
Anharmonicity, 212
Anions, 421, 552
Anisotropic solid, 967
Anisotropy coefficients, table of, 618
Anode, 552, 1016
Anode current, 567
Anode potential, 567
Anomalous dispersion, 305, 389
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Anomalous Zeeman effect, 875–876
Anti-Stokes lines, 874
Antiderivative function, 1122
Antiferroelectric phase transitions,

Curie temperature of, 786
Antiferromagnetic phase transitions,

Néel temperature of, 786
Antiferromagnetism, 483–484,

1054–1055
Antiferromagnets, properties of,

619–620
Antimatter, 935
Antinode of standing wave, 297
Antiparticles, 902–903
Antiprotons, 902
Antireflection coatings, 383
Antisymmetric wave function, 844
Aperture aberration, 344, 366
Aperture diaphragm, 365
Aperture ratio, 374
Aphelion, 132
Apochromat, 390
Apparent power, 527
Apparent resistance, 523
Appendix, 1095–1130
Applied forces, 3
Apse line, rotation of, 149
Aqueous solutions, temperature

correction for, 803
Arc discharge, 564
Archimedes, principle of, 181
Architectural statics, 97
Area, 10
Arithmetic mean, 1102
Arithmetic mean value, 515
Armature, 545
Artificial exposure, 965
Artificial radioactivity, 937
Artificial satellites, 135
Artificially produced elements, 878
Aspiration hygrometers, 739
Assignment, 5
Asteroids, 135
Astigmatism, 366, 371
Astronomical telescope, 374–375
Astronomical unit (AE), 134
Asymmetric unit, 969
Asymmetry defect, 366
Asymptotic freedom, 888
Asynchronous machine, 549–550
Atmospheric excess pressure, 636

Atmospheric humidity, 739
Atmospheric pressure, 172
Atomic coordinates, 973
Atomic mass unit, 637–638, 912
Atomic nucleus, 907

basic quantities of, 910–912
constituents of, 907–910
shape of, 910

Atomic number, 851, 907
Atomic physics, 851–881
Atomic radii of elements, 1078–1082
Atomic radius, 851
Atoms, 851

in external fields, 874–877
interaction of photons with, 879–881
vector model of, 864

Attack, angle of, 197
Attenuation law, 961
Attraction pool, 220
Attractors, 220
Audible sound, 314
Auditory canal, 329
Auditory ossicles, 329
Auger effect, 870
Autoclave, 173
Automatic gears, 110
Avalanche breakdown, 1017
Average error, 1101
Average velocity, 754, 769
Avogadro constant, 551, 637
Avogadro number, 551, 637
Axial vector, 33

Backward diode, 1022
Balance scale, 38
Balance spring, 8
Balancing calculation, 1100, 1103
Ballistic galvanometer, 272, 422
Balloon, 182
Balmer series, 857
Band model, 1007–1011
Band spectrum, 853
Bang, 332
Bar (unit), 635
Barkhausen discontinuities, 1054
Barkhausen effect, 1053
Barkhausen equation, 570
Barn (unit), 659
Barometer, 175
Barometric equation, 177
Barometric formula, 664–665
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Barometric measurements
with brass scale, 802
with glass scale, 802

Bartlett force, 913
Baryon charge, 893
Baryon number, 893
Baryons, 894
Base, 968
Base-centered lattice, 970
Base constant, 747
Base resistor, 1025
Basic quantities, 1098

table on, 1125
Basic units, 1098
Basilar membrane, ear, 329
Battery, leakage of, 558
B.C., 9
BCS theory, 1044
Bearing forces, 127
Bearing moment, 121
Bearing reactions, 104–105
Bearings, 104
Beat period, 279–280
Beats, 279
Beaufort degrees, 205
Becquerel, 939, 958
Belt drives, 109
Bending, 155

definition of, 160–161
lens, 363
of rods, 160–164

Bending moment, 161–162
Bending stress, 164
Bennett equation, 587
Bent levers, 106–107
Bernoulli mapping, 220
Bernoulli’s equation, 192, 203
Bernoulli’s law, 191–193
β-decay, 943–946
β-stability, 944

line of, 917
Bethe-Bloch equation, 954–955
Bethe-Weizsäcker cycle, 151
Bethe-Weizsäcker formula, 916
Bicycle, 127
Bidirectional thyristor, 1034
Bifurcation diagram, 224
Bifurcations, 221–225
Big bang, 150
Billiards, 212
Bimetal thermometer, 672

Bimetals, 987
Binary iron alloys, ferromagnetic

properties of, 615–616
Binary nickel alloys, ferromagnetic

properties of, 616–617
Binding energy, 911

per nucleon, 912
Binomial distribution, 1109
Bio-acoustic transducer, 323
Biological half-life, 963
Biot-Savart’s law, 474–475
Bipolar transistors, 1023–1025
Black body, 402

radiation constant of, 764
Black body radiator, 765
Black hole, 149, 152
Black radiator, 818
Blasius formula, 208
Bloch theorem, 1007
Bloch walls, 481, 728
Body, human, effect of electric current

on, 609
Body-centered lattice, 970
Body cone, 125
Body-fixed coordinate system, 96
Bohr frequency condition, 855
Bohr magneton, 847, 1051
Bohr orbital radius, 855
Bohr radius, 855
Bohrium, 878, 935
Bohr’s correspondence principle, 843
Bohr’s postulates, 855–859
Boiling, 718, 736
Boiling-point elevation, 737
Boiling points, 718

of elements, 777–778
of oils, 784
of organic compounds, 782–784

Boiling-water reactors, 950
Bolometer, 396
Boltzmann constant, 661
Boltzmann distribution, 575, 880
Boltzmann factor, 656
Bomb calorimeter, 678
Bond relations in crystals, 976–979
Bose-Einstein condensation, 890–891
Bose-Einstein distribution, 890, 996
Bose-Einstein statistics, 890
Boson-exchange potential, 915
Bosons, 890
Bottom quark, 893
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Boundary-value problem, 190
Bourdon’s tube, 173
Boyle-Mariotte law, 651, 692
Brackett series, 857
Bragg condition, 974–975
Bragg grating, 353
Bragg maximum, 954
Bragg peak, 954
Bragg’s reflection condition, 378, 1007
Braking distance, 21
Branch, 503
Branch point, 503
Branch-point rule, 503

in complex domain, 528
Brass scale, barometric measurements

with, 802
Braun’s tube, 571
Bravais lattices, 970–973
Break point, 168, 169
Breakdown voltage, 1017
Breeder reactors, 950
Breeding of nuclear fuel, 950
Breeding ratio, 950
Breit-Wigner formula, 930
Bremsstrahlung, 869–870, 953
Brewster’s angle, 348, 392
Bricks, building

density of, table, 236
thermal transmittance of, 796

Bridge rectifier, 1019
Bridge scale, 107
Bridgeman method, 968
Brillouin zone, first, 992
Brinell hardness, 170–171
British Thermal Unit (BTU), 676
Bubble chamber, 899
Buckling, 169–170
Buckminster fullerene, 730
Buckybabies, 730
Buckygiants, 730
Buckyonions, 730
Buckytubes, 730
Building bricks, see Bricks, building
Building materials

acoustical-attenuation coefficients
for, 412

density of, table, 236
sound absorptance of, 414
thermal properties of, 791–792
thermal transmittance of, 795

Bulk, 1030

Bulk goods, density of, table, 237
Bulk modulus, 160
Buoyancy, 180–183

in flow around bodies, 196–197
Buoyant force, 180–181, 196–197
Burgers vector, 981–982

Calculation rules for phasor quantities,
519–522

Calendar, 9
Calendar week, 9
Calibration points

of temperature, 630–631
of temperature scales, 775–776

Calorie, 676
Calorimeters, 678
Camera, 369–370
Camera obscura, 369
Candela, 404
Canonical ensemble, 624
Canonically conjugate quantities, 89
Cantor set, 225
Capacitance, 457–460

of galvanic cell, 557
of simple arrangements of

conductors, 459–460
Capacitance diode, 1022
Capacitor plates, electric voltage

between, 446
Capacitor voltage, 512
Capacitors, 457

in alternating-current circuits,
531–532

charging of, 511–512
discharging of, 512–513
parallel connection of, 458–459
resistors and

parallel connection of, 535
series connection of, 534

series connection of, 459
voltage at, 511

Capillarity, 185–186
Capillary ascension, 185
Capillary cells of Corti’s organ, 330
Capture cross-section, 925
Carbon, structures of, 729
Carbon arc lamp, 564
Carbon dioxide, table of

compressibility of, 247
Carbon-nitrogen (CN) cycle, 151,

951–952
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Carnot cycle, 702–706
efficiency of, 705
stages of, 703–705

Cartesian coordinate system, 4
Cartesian representation of complex

numbers, 517–518
Catacaustic, 344
Catalyst, 647
Catapult, 107
Cathode, 552, 1016
Cathode rays, 571
Cations, 421, 552
Cauchy, theorem of, 1104
Cavity radiation, 818
Cavity radiator, 818
Cellulose derivates, electric properties

of, 604
Celsius (unit), 630
Celsius scale, 633
Center

of gravity, 13, 82, 94–95
of mass, 82, 94–95
of pressure, 197
of rotation, 100

Center-of-mass energy, 148
Center-of-mass law, 84–85
Center-of-mass rule, 95
Center-of-mass system, 924
Centered system, 338
Central collision, 74
Central forces, 47, 50
Central motion, 50
Central value, 1103
Central value limit theorem, 1111
Centrifugal force, 44, 60, 61
Centrifugal potential, 859
Centrifugal pump, 179
Centripetal acceleration, 28, 60
Centripetal force, 47, 60–61
Ceramics

density of, table, 234
elastic properties of, table, 242
electricity for, tables, 602
high-temperature, melting points of,

784–785
Cerenkov counter, 899
Cerenkov radiation, 302
Chain reaction, 947
Chain rule, 1122
Change of entropy, 720
Changes of state, 691–698

Channel radius, 923
Channel rays, 571–572
Channel spin, 923
Chaos, routes to, 224
Chaotic phase-space trajectory, 217
Chaotic system, 221
Characteristic acoustic impedance, 315
Characteristic curves, 1018
Characteristic temperatures, tables on,

775–786
Charge carriers, mobility of, 433–434
Charge conjugation, 902–903
Charge conservation, 422, 901–902
Charge independence of nuclear forces,

908
Charge operator, 908
Charge separation, 422

by electrostatic induction, 453
Charged hollow cylinder, field strength

and potential of, 450
Charged hollow sphere, field strength

and potential of, 449
Charged particles in magnetic fields,

582
Charging current, 512
Charging of capacitors, 511–512
Charging process, 559
Charm quark, 893
Chemical dehydration, efficiency of,

805
Chemical equilibrium, 626
Chemical potential, 677–678, 890
Chemical reactions, 648, 742–748

phase rule for, 744
χ2-distribution, 1110–1111
Chladni’s acoustic figures, 320
Cholesteric phase, 990
Chromatic aberration, 341, 366
Chromatic scale, 333
Ciliary muscle, 370
Circular double refraction, 393
Circular motion, 31, 59

in plane, 24–25
vibrations and, 262–263

Circular orbit velocity, 135
Circular polarization, 294
Circularly polarized light, 391
Clamps, 105
Class, 1107
Class center, 1107
Classical optics, 336
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Claude process, 716
Clausius-Clapeyron equation, 735–736
Clausius-Rankine cycle, 709–710
Clocks, 8
Closed channel, 923
Closed isochoric states, 649
Closed polygon, 103
Closed system, 13, 623–624, 641, 710
Closed universe, 149
Clouds, 740
Cluster decay, 947
CN (carbon-nitrogen) cycle, 151,

951–952
CNO cycles, 951
Coast line, 226
Coaxial conductor, 491
Cochlea, 329
Coercitive field strength, 482
Coercive field strength, 1053
Coexistence region, 722–723
Coherence, 294–295
Coherence condition, 380–381
Coherence lengths, 295, 1047

of light sources, 416
Coherent waves, 294
Cohesion, 183
Coil current, 513–514
Coil voltage, 513–514
Coinciding states, law of, 669
Cold conductor, 435
Cold welding, 989
Collective model, 920–922
Collector, 545
Collector resistor, 1025
Colliders, 898
Collision frequency, 658
Collision geometry, 74
Collision normal, 74
Collision plane, 74
Collision processes, 72–79

in gases, 658
Collisions, 72
Colloids, 199
Color, quark, 893–894
Color centers, 980
Colors, 336, 390
Coma, 366
Combustion calorimeter, 678
Combustion energy converted into heat,

681
Comets, 135

Common base circuit, 1029
Common collector circuit, 1028
Common emitter circuit, 1026, 1028
Commutating poles, 546
Commutation relations, 845
Commutator, 545, 834
Compact packing of spheres, 971
Compensation method, resistance

measurement by, 510–511
Complex amplitude, 388
Complex conductance, 524–526
Complex conductance plane, 525–526
Complex-conjugate phasor, 521
Complex domain

branch-point rule in, 528
mesh rule in, 528

Complex exponential function, 518
Complex numbers, Cartesian

representation of, 517–518
Complex power, 527–528
Complex resistances, 522–524

parallel connection of, 529
series connection of, 528–529
of two-terminal networks, 533

Component representation, 1115
Component tolerance, 1038
Composition of forces, 45–46
Compound materials, 987–988
Compound motor, 547
Compound-nuclear reactions, 929–931
Compound semiconductors, 1011

thermal, magnetic and electric
properties of, 1093

Compound units, 1098
Compressibility, 160, 176, 671, 723

of fluids under normal conditions,
table on, 247

of solids at 0◦ C, table on, 247
tables on, 244–247
temperature dependence of, table on,

247
Compression, 155
Compression front, 311
Compression modulus, 671
Compression springs, 55
Compressional work, 174, 676–677
Compressor, 180
Compton effect, 822, 957
Compton mass-attenuation coefficient,

957
Compton wavelength, 823
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Computer-generated holograms,
387–388

Concave mirror, 342–345
Concentration, 732, 743
Concentration differences, 768
Concert pitch, 333
Condensation, 719
Condensation heat, 719
Condensation nuclei, 740
Condensation water, 739
Condenser microphone, 322
Conductance, 432
Conducting elastomers, 987
Conduction band, 1008
Conductivity, 432–433
Conductor loop, moving, in magnetic

field, 544–545
Conductors, 1001

capacitance of simple arrangements
of, 459–460

inductances of geometric
arrangements of, 490–491

Configuration mixing, 920
Configuration space, 91, 214, 1002
Confinement techniques, 590
Confinement time, 589
Connection-rod ratio, 110
Connections between rigid bodies, 105
Conservation laws, 903–904, see also

specific quantities being
conserved

in nuclear reactions, 926–928
Conservative forces, 86
Conservative systems, 212, 217–219
Conserved quantity, 699
Consonance, 332
Constant current source, 1028
Constant galvanic cells, 557
Constant molar heat capacity, 691
Constant rule, 1121, 1123
Constants of motion, 219
Constraint forces, 64
Constraint reactions, 13, 47
Construction materials

density of, table, 232–233
sound velocity in, 412
thermal properties of, 791–792

Constructive interference, 296, 382
Contact materials

density of, table, 233
table on, 607

Continuity equation, 188–190,
766–767, 768–769

Continuous distributions, special,
1110–1111

Continuous gears, 110
Continuous measured quantities, 1097
Continuous mechanical gears, 110
Continuous spectrum, 853
Continuous system, 213
Continuum theories, 583
Contraction, coefficient of, 195
Control characteristic, 1025
Control rods, 948
Control voltage, 570
Controlled chain reaction, 947
Convection, 750
Convergent rays, 338
Converging lens, 362–363
Conversion table of energy units,

1129
Conversion temperatures of inorganic

compounds, 779–781
Conversions of units, 1099
Convex mirror, 345
Coolants, 949
Cooper pairs, 730, 1044
Coordinate systems, 4–5, 96
Coordinate transformation, 219
Coordinates, 3
Coordination number, 972
Copper alloys, density of, table, 232
Coriolis force, 60, 62–63
Cork-screw rule, 465
Cornea, 370
Corona discharge, 564
Corpuscular theory, 336
Correction data, practical, tables on,

798–804
Correction factors for pendulum period,

409
Correction term, additive, for pressure

measurement, 800–801
Correlation, 1105–1106
Correlation coefficient, 1105
Corresponding states, theorem of, 727
Corti’s organ, capillary cells of, 330
Cosmic radiation, 145, 964
Cosmology, 137, 148–152
Coulomb, 421
Coulomb barrier, 932
Coulomb energy, 917
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Coulomb friction, 269
Coulomb logarithm, 577
Coulomb processes, 934
Coulomb/square meter, 453
Coulomb’s law, 423–424
Coulomb’s magnetic moment, 475
Counter-current principle, 716
Coupled vibrations, 283–285
Couples, 51, 101–102

torque of, 102
Coupling coefficient, 285, 492
Coupling constants, 888
Coupling efficiency, 353–354
Covalent bond, 978
Covariance, 1105
Crank mechanism, 110
Creeping, 984
Crest factor, 516
Critical assembly, 947
Critical current density, 1045
Critical damping, 272
Critical indices, 723
Critical isotherm, 668, 723, 725
Critical magnetic flux density, 1045
Critical molar volume, 669
Critical point, 669, 723, 725

gases at, table on, 787
Critical pressure, 669
Critical Reynolds number, 206–207
Critical stresses, 168

table on, 240
Critical temperature, 668, 725–726,

730
Cross-product, 1118

two-fold, 1119
Cross-section, 658–659, 925

for scattering of neutrons by
elements, 1087

Crown glasses, 369
Cryogenic fluids, viscosity of, table,

248
Cryoscopic constant, 737

table on, 806
Crystal axes, 969
Crystal direction, 972
Crystal lattice, 968

dipole field in, 1057
Crystal structures, 969

change in, 729–730
simple, 973

Crystal system, 970

Crystalline lens, 370
Crystalline solid, 967
Crystals, 967

bond relations in, 976–979
optical properties of, 1060–1064
structure of, 968–970

CsCl-structure, 973
Cubic Bravais lattice, 970
Cubic crystals

magnetic anisotropy of, 617
magnetization in, 618

Cubic lattice types, 1057
Cubic meter, 10
Curie plot, 944–945
Curie temperature, 727

of ferro- and antiferroelectric phase
transitions, 786

of ferromagnetic phase transitions,
786

Curie-Weiss law, 482, 1053
Curie’s law, 480, 1051
Curl, 190
Current, electric, see Electric current

entries
Current balance, 428
Current conduction

in gases, 560–564
in liquids, 551–560

Current connection, 510
Current density, 188
Current division rules, 505
Current-gain characteristic, 1025
Current limiter, 564
Current measurement, 509
Current reverser, 545
Current-voltage characteristic, 432

of gaseous discharge, 564
of gases, 562–563

Curvature
radius of, 27
of space, 149
of trajectory and acceleration, 27–28

Curved four-dimensional space-time
continuum, 148

Cyclic coordinate, 91
Cyclotron, 898
Cyclotron frequency, 875
Cylindrical capacitor, 459
Cylindrical coordinate system, 5
Cylindrical lens, 358
Czochralski method, 968
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d’Alembert’s principle, 44
Dalton’s law, 732
Dam, 195
Damped electric oscillator circuit,

273–274
Damped vibrations, 257, 268–274
Damping coefficient, 270

for sound in gases, 410
Damping constant, 270
Damping factor

of parallel-resonant circuit, 541
of series-resonant circuit, 539

Dark discharge, 561, 564
Dark matter, 149–150
Darlington transistor, 1029–1030
Date, 9
Daughter nuclides, 940
dB (decibel), 317

loudness levels in, 413
de Broglie wavelength, 826
De-electrification field, 1056
Dead time, 563
Debye frequency, 314, 997
Debye length, 579
Debye model, 997–999
Debye-Scherrer method, 975–976
Debye temperature, 998
Debye’s T3-law, 999
Decay chains, 940–941
Decay constant, 938
Decay law, 938–941
Deceleration, 17, 21–22
Decibel, see dB
Decimal prefixes, 1099, 1126
Declination, 464
Decomposition of forces, 46–48
Deconfinement, 935
Deep-inelastic reactions, 934
Defect electrons, 1011
Definite integral, 1123
Deflection, 162
Deflection angle, 355–356
Deformable body, 14
Deformation, work of, 68–69, 166–167
Deformation speed, 986
Deformed mean potential, 918
Degeneracy, 831, 861
Degenerated semiconductor, 1064
Degree

of angles, 11
of ionization, 573–574

of moisture, 739
Degrees

of freedom, 7–8, 657
number of, 657

as ratios, 317
Dehydration, 738
Dehydrators, 805
Del operator, 189
Delayed boiling, 727
Delayed condensation, 727
Delayed neutrons, 936, 948
Delayed nucleon emission, 947
Demodulation of waves, 308
Density, 93–94

of gases, 787
at critical point, 787

of inhomogeneous bodies, 38–39
unit of, 38

Density difference, 723
Density field, 186
Density mean, 1108
Density variation, flow with, 209–210
Depletion layer, 1017
Depletion mode, 1032
Depletion-type FET, 1031
Deposition of radiation, 764–766
Derivative, 1121
Derivatives of elementary functions,

1124
Derived units, 1098
Destructive interference, 296, 382
Desublimation, 719, 740
Detailed balance, principle of, 574
Detectors, 899–900
Deterministic chaos, 211, 221
Deterministic system, 213
Deuterium, 854
Deuteron, 854
Deuteron cycle, 951
Dew-point, 739
Dew-point hygrometers, 739
Dewar flasks, 623
DIAC (diode alternating current)

trigger diode, 1020
Diamagnetic molar susceptibility,

1050
Diamagnetic substances, 1049
Diamagnetism, 480, 879, 1050
Diamond, 729
Diaphragm electricity, 560
Diaphragm pump, 178
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Diaphragms, 365
lenses with, 365–366

Diatomic gases, 658
Diatomic molecules, dissociation

energies of, 1078
Diatomic particles, 657
Diatonic tone scale, 332
Dichroism, 394
Dielectric losses, 1059
Dielectric properties, 1055–1060
Dielectrics, 456–457, 1009, 1055

tables on, 601–606
Diesel cycle, 712–713
Diesel engine, 713
Difference amplifier, 1037
Difference quotient, 1121
Differential calculus, 1121–1122
Differential cross-section, 925
Differential gears, 110
Differential quotient, 1121
Differentiation of phasors, 521–522
Differentiation rules, 1121–1122
Differentiator, 1041
Diffraction, 305–308

optical, 377–379
Diffraction effects, 384
Diffraction gratings, 384
Diffractional disk, 378
Diffractive optical elements, 384–388
Diffuse rays, 338
Diffuse scattering, 376
Diffuser, 192
Diffusion constant, 660, 768, 769
Diffusion equation, 769

solution of, 769–770
Diffusion pump, 179
Diffusion voltage, 1016
Dilatometer, 672
Dimension(s)

one
motion in, 14–22
simple motion in, 19–22

several, motion in, 22–31
of spaces, 3–4
three, trajectory in, 22
of units, 1099

Dimensionless relative quantities,
317

Diode alternating current (DIAC)
trigger diode, 1020

Diodes, 1016

Diopters, 362
Dipole, field strength and potential of,

449
Dipole field, 1057
Direct current, 427, 502
Direct-current circuit, 502–514

energy in, 507
Kirchhoff’s laws for, 503
power in, 507
resistors in, 503–505

Direct-current machine, 545–547
Direct inelastic scattering, 932
Direct reactions, 931–932
Direct voltage, 502
Direct-voltage source, 502
Directional quantization, 832, 864
Discharge, coefficient of, 195
Discharge current, 512
Discharging of capacitors, 512–513
Discrete distributions, special, 1109
Discrete measured quantities, 1097
Discrete system, 213
Dislocation, 981
Dislocation density, 982
Dislocation line, 981
Dispersion, 199, 305, 389–390

of elastic waves, 992
Dispersion hardening, 987
Dispersion relations, 835
Displacement, 258
Displacement current, 497–498
Displacement flux, 451
Displacement polarization, 454, 1055
Displacement work, 645
Dissipated heat, 167
Dissipation factor, 271
Dissipative power, 508
Dissipative systems, 212, 219–221
Dissociation, 552
Dissociation continuum, 873
Dissociation energies of diatomic

molecules, 1078
Dissolutions, surface tension of, table,

251
Dissonance, 332
Distinct visual range, 371
Distortion factor, 516
Distribution functions of plasmas,

574–576
Divacancies, 979–980
Divergent rays, 337
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Diverging lens, 363
Domains, 1060
Donor, 1014
Doping, 1036

in germanium, properties of, 1094
of semiconductors, 1014–1016
in silicon, properties of, 1094

Doppler effect, 15, 300–302
Dosage measurements, methods of,

962–963
Dose rate, 960
Dosimetry, 958–965
Double star, 151
Doubly differential cross-section,

925
Doubly-magic nuclei, 919
Drag coefficient, 204–205
Drag force, 197, 204
Drag velocity, 581
Drain, 1030
Drift gain, 1028
Drift motion in external electric

field, 582–583
Drift velocity of ions, 553

in gases, 561
Drive shaft, 108
Droplet model, 916–917, 936
Dry-cell battery, 557
Dual-gate MOSFET, 1032
Duffing oscillator, 216, 221
Dulong-Petit law, 995–996
Dulong-Petit rule, 691
Duromers, 987
Dutch telescope, 375–376
Dynamic buoyant force, 196–197
Dynamic pressure, 191
Dynamic viscosity, 198, 660

of gases, tables on, 788–789
of liquids, table on, 789

Dynamical equilibrium, 44
Dynamical evolution, sensitive

dependence of, on initial
conditions, 211, 220

Dynamical properties, tables on,
243–251

Dynamical systems, 212–217
Dynamics, 37–91

defined, 37
fundamental law of, 41
fundamental laws of, 37–53
nonlinear, 211

relativistic, 145–148
of rigid bodies, 111

Dynamometer, 55

Eardrum, 329
Earth, 133

basic data for, 134
Earth’s moon, 135
Ebullioscopic constant, 737

table on, 806
Eccles relation, 585
Ecliptic, 132
Eddy current, 487
Eddy-current brake, 487
Eddy-current losses, 488
Eddy-current tachometer, 15
Edge dislocation, 981
Edge-tone generator, 320–321
Educts, 742
Effective-absorption coefficient, 580
Effective concentrations, 748
Effective mass, 1010–1011
Effective potential, 860
Effective power, 71, 508
Effective sound pressure, 313
Effective value, 515
Efficiency

of Carnot cycle, 705
of chemical dehydration, 805
of energy conversion, 71–72, 675,

683
of physical dehydration, 805

Effluent velocity, 193–195
Eigenfunction, 830–831
Eigenvalue, 830
Einstein equation, 565–566
Einstein model, 996–997
Einstein sum convention, 122
Elastic collision, 73
Elastic constant, 991, 995
Elastic deformation, 153, 156–167
Elastic modulus, 156–157, 168
Elastic non-central collision with body

at rest, 76–78
Elastic off-center central collisions, 76
Elastic properties, tables on, 239–242
Elastic region, 168, 984
Elastic scattering, 928–929
Elastic scattering cross-section, 925
Elastic straight-line central collisions,

74–75
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Elastic waves, 991–995
equation of motion for, 994

Elasticity, 54, 985
theory of, 153–171

Elasticity modulus, 157, 995
Elastomers, 986

density of, table, 235
electric properties of, 605

Electrets, 1059–1060
electric properties of, 605–606

Electric charge density, 424–426
Electric charges, 421–424
Electric circuit, 267–268, 501
Electric conductance, 432

of electrolytes, 553–554
of gases, 561

Electric conductor, 422, 440
Electric current, 426–428, see also

Current entries
effect of, on human body, 609
switching on and off, in RL-circuit,

513–514
Electric current density, 428–431
Electric current flow field, 430–431
Electric dipole, 442–443
Electric displacement density, 1055
Electric displacement in vacuum,

453–454
Electric double layer, 555–556
Electric energy converted into heat,

679–680
Electric engineering

practical tables of, 606–609
voltage ranges in, 608

Electric field, 439–440
energy density of, 460–461
energy of, 461
external, drift motion in, 582–583
at interfaces, 461–462

Electric field lines, 441–444
Electric field strength, 440

of point charges, 444
of various charge distributions,

448–451
Electric flux, 451–452
Electric line charge density, 425
Electric machines, 544–550
Electric materials, density of, table, 233
Electric nonconductor, 422
Electric permittivity of free space, 423
Electric polarizability, 455, 877

Electric polarization, 454–457
Electric potential, 447–454

of various charge distributions,
448–451

Electric properties of insulating
materials, 604–605

Electric quadrupole moment, 921
Electric quantities, analogy between

magnetic quantities and,
495–496

Electric resistance, 431–432
Electric space charge density, 424
Electric surface charge density, 425
Electric susceptibility, 456, 1055, 1058
Electric tachometers, 15
Electric voltage, 445–446, see also

Voltage entries
between capacitor plates, 446

Electric(al) conductivity, 1000
of plasmas, 577–578

Electrical engineering, applications in,
501–550

Electricity, 419–620
applications of, 419
symbols used in formulae on,

593–594
tables on, 595–620

Electro-acoustic transducers, 321–324
Electro-acoustic transmission factor,

322
Electro-osmosis, 560
Electrochemical electrode, 552
Electrochemical equivalent, 555
Electrochemical potential series,

556–557
tables on, 598–600

Electrodes, 552
Electrodynamic transducer, 323
Electrodynamically driven emitter, 321
Electrodynamics, energy law of,

499–500
Electrokinetic effects, 560
Electrokinetic potential, 557
Electrolysis, 428, 551–560

defined, 554
Electrolytes, 552–557

electric conductance of, 553–554
ion motion in, 553

Electrolytic capacitor, 458
Electrolytic polarization, 557–558
Electromagnetic interaction, 885
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Electromagnetic oscillations, 543
Electromagnetic radiative losses, 543
Electromagnetic waves, 290, 498–500

in plasmas, 585
propagation and applications,

543–544
subdivision of, 336

Electromagnetically driven emitter, 321
Electromagnets, 463
Electromotive force, 502, 556
Electron capture, 869, 943
Electron concentration, time variation

of, 1062
Electron density, 862

in semiconductors, 1011–1012
Electron diffraction, 826, 974
Electron emission, 565–567

tables on, 1082–1086
Electron exchange, 978
Electron microscope, 826
Electron number densities, 1003–1004
Electron optics, 337
Electron plasma waves, 583–584
Electron shells, 862, 877
Electron spin resonance, 876
Electron states, filling of, 878
Electron volt, 676, 825
Electronegativity, 553
Electronic band spectrum, 873
Electronic heat conductivity in metals,

1000
Electronic hygrometers, 739
Electronic polarization, 1058
Electronic work function, 565
Electrons, 421, 851, 854

in aluminum, mass-attenuation
coefficient for, 1088

equation of motion of, 1010
in magnetic fields, 874–875
mobility of, 434
in solids, 1000–1011
stopping power for, 955

Electrophoresis, 560
Electrostatic energy, 268
Electrostatic induction, 422, 440–444

charge separation by, 453
Electrostatic transducer, 323
Electroweak interaction, 887–888
Electroweak theory, 883
Elemental semiconductors, 1093,

1011

Elementary cell, 969
packing density of, 971–972

Elementary charge, 422
Elementary functions

derivatives of, 1124
integrals of, 1124

Elementary volume, 1003
Elementary waves, 292
Elements

atomic radii of, 1078–1082
boiling points of, 777–778
cross-section for scattering of

neutrons by, 1087
ionic radii of, 1078–1082
ionization energies of, 1071–1075
magnetic susceptibility of, table on,

609–610
melting points of, 777–778
Periodic Table of, 877–879
work function for, 1082–1083
x-ray spectrum of, main lines of

characteristic, 1086
Elliptic polarization, 294
Elliptically polarized light, 391
Emission bands, 151
Emission coefficient, 580
Emission spectrum, 852–853
Emittance, 764
Emitter follower, 1028
Emitter resistor, 1025
Empirical expectation value, 1102
Empirical variance, 1105
Endoergic reactions, 648
Endothermal collision, 73
Endothermal reactions, 924
Endothermic reaction, 647
Energy, 65–66, 119–121

in direct-current circuit, 507
of electric field, 461
equivalence of mass and, 147–148
of magnetic field, 495
of mass and spring system,

259–260
of motion, 66
zero of, 66

Energy band, 1008
Energy change, 924
Energy conservation, 66, 72
Energy conservation law, 86, 120

in plastic deformations, 167
Energy conversion, 679
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Energy density, 396
of electric field, 460–461
of magnetic field, 494–495
pressure and, 635
of sound wave, 316

Energy difference, 66
Energy dose, 958–959
Energy eigenfunctions, 837
Energy eigenvalues, 837
Energy flux, 961
Energy flux density, 961
Energy forms, 675–679
Energy function, 217
Energy gaps, 1007, 1008
Energy law of electrodynamics,

499–500
Energy level(s), 851

of Mott-Wannier exciton, 1061
Energy loss, 78
Energy-momentum relation for

relativistic particles, 148
Energy production with plasmas,

588–592
Energy-range relation, 954
Energy spectrum, 837
Energy splitting in magnetic fields, 876
Energy-transfer coefficient, 961
Energy units, 675–676

conversion table of, 1129
Enhancement mode, 1031
Enhancement-type FET, 1031
Enriched uranium, 949
Enrichment mode, 1031
Enthalpy, 644–647

of ideal gas, 646
phase transitions and, 646

Entrance channel, 923
Entrance pupil, 365
Entropy, 640–641, 642

change of, 720
of ideal gas, 643
as thermodynamic potential, 642–643

Entropy jump, 720
Environment, radionuclides in, 939–940
Environmental radioactivity, 964–965
Epitaxial HTSC films, 1048
Equality of upper and lower boundary,

1123
Equalization of temperature, 748–750
Equation of motion

for elastic waves, 994

of electron, 1010
Equation of state, 627, 661–673

of ideal gas, 652–653, 661–662
for liquids, 671
of real gas, 665–670
for solids, 671

Equator, 135
Equatorial moments of inertia, 113
Equidirectional or equal-phase

vibration, 284–285
Equilibrium, 625–627

for rotational motion, 117
state variables and, 623–673

Equilibrium conditions of statics,
103–104

Equilibrium constant, 746
Equilibrium position, 255, 258
Equilibrium state(s), 255, 625, 641,

649, 691, 697–698
Equipartition law, 657–658
Equipotential surfaces, 448
Equivalent dose, 959
Erg, 676
Ergodicity, 220
Ericsson cycle, 713–714
Error estimation, 1097
Error propagation, 1102
Error theory, statistics and, 1100–1113
Errors, types of, 1100–1102
Escape velocity, 81, 134, 136
Ether hypothesis, 139
Ethylene derivates, electric properties

of, 604
Euler equation, 190–191, 733
Euler’s Formula (Buckling), 169
Euler’s formula, 518
Evaluation curve, 331
Evaluation factor, 959
Evaporation enthalpy, 646
Evaporation heat, 718

temperature dependence of, 811
Evaporation spectrum, 930–931
Evaporative cooling, 891
Event, 137
Exchange calorimeter, 678
Exchange force, 913
Exchange integral, 1052
Exchange interaction, 978
Excited state, 851
Excitons, 1061–1062
Exergy, 683
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Exit channel, 923
Exit pupil, 365
Exoergic reactions, 648
Exothermal collision, 73
Exothermal reactions, 924
Exothermic reaction, 647
Expectation value, 833, 1097
Exponential distribution, 1110–1111
Exponential representation, 518
Exposure meter, 1063
Extensive thermodynamic properties,

628
Extensive variables, 641
External ear, 329
External fields, atoms in, 874–877
External forces, 13, 83
External parameter, 221
External photo effect, 566
Extrapolated range, 954
Extrinsic conduction, 1014–1016
Eye, 370–371
Eye lens, 373

F-center, 980–981
Face-centered compact packing of

spheres, 971
Face-centered lattice, 970
Factor rule, 1121
Factors, 317
Fahrenheit scale, 630
Failure density, 1112
Failure probability, 1112
Failure rates, 1112, 1113
Fall-out, 964
Fall time, 29
Far-sightedness, 371
Farad, 457
Faraday cage, 441
Faraday constant, 554
Faraday effect, 392
Faraday’s first law, 554
Faraday’s law of induction,

486–487
Faraday’s laws, 554–555
Faraday’s second law, 555
Fast breeders, 950
Fast-fission factor, 948
Fast reactors, 949
Feigenbaum constant, 225
Feigenbaum law, 225
Fermat’s principle, 337

Fermi-Dirac distribution, 575
Fermi-Dirac distribution function,

1005–1006
Fermi-Dirac statistics, 889
Fermi distribution, 889
Fermi energy, 915, 1002
Fermi function, 945
Fermi gas, 1001

characteristics of, 1002
Fermi-gas model, 915
Fermi level, 1002

of metals, 1005
Fermi momentum, 915, 1002
Fermi plot, 944–945
Fermi sphere, 1002, 1003
Fermi systems, state density in, 1005
Fermi temperature, heat capacity and,

1006
Fermi velocity, 1002
Fermions, 843, 889–890
Ferrimagnetism, 484, 1054–1055
Ferrites, 484

density of, table, 234
magnetic properties of, 619

Ferroelectric crystals, 1059
Ferroelectric Curie temperature, 1059
Ferroelectric phase transitions, Curie

temperature of, 786
Ferroelectrics, 1059–1060

with oxygen octahedron structure,
606

Ferromagnetic Curie temperature, 482
Ferromagnetic elements, ferromagnetic

properties of, 615
Ferromagnetic phase transitions, Curie

temperature of, 786
Ferromagnetic properties, tables on,

614–618
Ferromagnetism, 481–483, 1052–1054

Langevin equation of, 1052–1053
Ferromagnets, 727, 1049, 1052
FET (field effect transistor), 1030
Fiber materials, table of elastic

properties of, 242
Fiber-optical sensors, 352–353
Fiber-reinforced compound materials,

988
Fiber types for optical

telecommunication, 414
Fibonacci sequence, 214
Fick’s law, 768
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Field curvature, 366–367
Field diaphragm, 366
Field effect transistor (FET),

1030
Field emission, 566
Field emission microscope, 566
Field energy of coil, 495
Field lens, 373
Field lines, 441
Field quanta, 887–889
Field rheostat, 547
Film dosimeters, 963
Final temperature, 748
Fine structure, 858
Fine-structure constant, 859
Finite elements, method of, 156
First critical velocity, 135
Fission, see also Nuclear fission
Fission barrier, 936
Fission isomerism, 936
Fission neutrons, 935
Fission probability, 948
Fission products, 935
Fissionable material, 949
Fixed axis, 97
Fixed point, 219

attractive, 223
Fixed pulley, 108
Fizeau fringes, 383
Flavors, quark, 893
Flint glasses, 369
Flip-flop circuit, 1042
Floating floor, 327
Flow

around sphere, 202–203
with density variation, 209–210

Flow bi-refringence, 393
Flow field, 186–187
Flow limit, 169
Flow noise, 328
Flow nozzle, 192
Flow potential, 189
Flow resistance, tables on, 250–251
Fluid mechanics, 186
Fluidity, 199
Fluids

density of, tables, 237–238
surface tension of, table, 251
viscosity of, table, 248

Fluorescence, 1063
Fluorescence radiation, 868

Fluorescent lamps, 563–564
Fluorocarbones, electric properties of,

605
Flux quantum, 1047
Flux tubes, 1045
FM (frequency modulation), 309
Focal length, 342
Focal ratio, 370
Focal ray, 343
Focus-image distance, 340
Focus-object distance, 340
Fog, 740
Footstep sound, 327
Forbidden transitions, 945–946
Force, 41–43

electric test charge, 445
impulse of, 42
moment of, 101
relativistic, 146

Force diagram, 45
Force parallelogram, 45
Force polygon, 45
Force vectors, 98–100
Forced damped vibration, 257
Forced vibration, 257, 275–277
Forces, 53–59

composition of, 45–46
decomposition of, 46–48

Form factor, 516
Formula symbols used in mechanics,

229
Forward blocking region, 1033
Forward breakover ignition, 1033
Forward conduction region, 1033
Forward direction, 1018
Forward leakage current, 1033
Four-layer diode, 1032
Four-quadrant family of characteristics,

1024
Fourier analysis, 282–283
Fourier decomposition, 282
Fourier optics, 388
Fourier spectrum, 282
Fourier synthesis, 282
Fourier’s law, 766
Fractal dimension, 225
Fractals, 225–227
Fractional change in thickness, 158
Francis turbine, 180
Franck-Hertz experiment, 856
Fraunhofer diffraction, 377
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Fraunhofer lines, 356
table on, 417

Free axis, 97
Free-electron gas, 1001–1006
Free energy, 643–644
Free enthalpy, 647–648
Free fall, 28–29
Free particles, 828
Free-phonon gas, 999
Free point mass, 13
Free pulley, 108
Free space

electric permittivity of, 423
permeability of, 469–470
permittivity of, 454

Free undamped vibrations, 257–268
Free vector, 102
Free vibrations, 257
Free waves, 287
Freedom, degrees of, 7–8
Freezing mixtures, 714
Freezing-point depression, 737
Frenkel defect, 980
Frenkel exciton, 1061–1062
Frequency, 255, 335
Frequency dependence, 764
Frequency modulation (FM), 309
Frequency range of hearing, 330
Fresnel diffraction, 377
Fresnel lens, 358
Fresnel-zone lens, 385–386
Fresnel-zone plate, 384–385
Fresnel’s formulas, 347–348
Friction, 269–273

coefficients of, tables on, 243–244
oscillation equation with, 269
for screws, 107

Frictional forces, 56–59
Frictional work, 70
Froude number, 207
f t-value, 945–946
Fuel cell, 558
Fuel elements, 558–559
Fuel pellet, 591
Fullerene(s), 729, 730
Fullerene-like structures, 730
Fundamental functional principle,

544–545
Fundamental law

of dynamics, 41
of rotational dynamics, 52–53

Fundamental particles, 883
Fundamental quantities, 1098
Fundamental tone, 333
Fundamental translation vector, 969,

1007
Fundamental vibration, 284, 320
Fusion, see also Nuclear fusion

with inertial confinement, 591–592
with magnetic confinement, 590–591

Fusion reactions, 935
Fusion reactor, 952

g (acceleration of gravity), 53–54, 131
Galaxy, 151
Galilean transformation, 137–138
Galileo’s principle of inertia, 40
Galileo’s telescope, 375–376
Galton whistle, 314
Galvanic cells, 557–559

parallel connection of, 559
series connection of, 559

γ -decay, 946
γ -radiation, 956–958
Gap, 995
Gas amplification, 962
Gas constants, 661–662
Gas discharge, 560
Gas law, calculation of quantities from,

663–664
Gas liquefaction, 714–716
Gas mixtures, 663

heat conductivity of, 755
Gas nebulae, 151
Gas theory, principal equation of, 653
Gas thermometer, 631
Gas transmittance of quartz glasses, 608
Gas turbine, 180, 713–714
Gaseous discharge, current-voltage

characteristic of, 564
Gases, 172, 718

collision processes in, 658
at critical point, table on, 787
current conduction in, 560–564
current-voltage characteristic of,

562–563
damping coefficient for sound in, 410
density of, 787

table, 238
drift velocity of ions in, 561
dynamic viscosity of, tables on,

788–789
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electric conductance of, 561
ideal, see Ideal gas
molar mass of, 787
pressure due to gravity in, 176–178
real, see Real gas
sound velocity in, 409
specific calorific values of, 809
specific gas constant of, 787
specific heat capacity of, 689
tables of compressibility of, 245–247
thermal properties of, 792
velocity of sound in, 312
viscosity of, table, 249

Gate, 1030
Gate turn-off thyristor (GTO), 1034
Gauge bosons, 887
Gauge theory, 888
Gauss’ distribution, 1110–1111
Gauss’ law of error propagation, 1102
Gauss’ minimum principle, 1106
Gauss’ normal distribution, 1110–1111
Gaussian optics, 340
Gaussian pattern, 398
Gay-Lussac, law of, 651–652, 694,

695
Gear pump, 178
Gearboxes, 109
Gears, 108–109
Geiger-Müller counter, 563, 963
Geiger-Nutall relation, 941
General gas constant, 661
General theory of relativity, 137,

148–152
Generalized coordinates, 86–87
Generalized forces, 87
Generalized momentum, 89
Generalized Pauli principle, 908
Generalized velocities, 87
Generator, 544
Geodesic pressure, 191
Geomagnetic field, 464
Geometric mean, 1104
Geometric optics, 337–358
Geometric similarity, 206
Geometrical bodies, moments of inertia

of, 114–115
Germanium, doping in, properties of,

1094
Getter pump, 179
Giant resonances, 931
Gibbs-Duhem relation, 733

Gibbs phase rule, 734–735
extended, 744

Gibbs potential, 647
Ginsburg-Landau parameter, 1047
Glan-Thompson prism, 395
Glass(es), 967

density of, table, 234
electricity for, tables, 603
sound velocity in, 412

Glass constant volume thermometer,
temperature correction for, 804

Glass scale, barometric measurements
with, 802

Glide plane, 981
Global equilibrium, 625
Glow cathode, 565
Glow discharge, 563–564
Glueballs, 888
Gluons, 886, 888
Glycerol, water dissolutions in,

viscosity of, table, 248
Golden rule of mechanics, 106
Gon (unit), 11
Gradient, 189
Gradient-B drift, 582
Gradient-index fibers, 352
Gradient-index lenses, 367–368
Grain, 968
Grain boundaries, 968, 982
Grand canonical ensemble, 624
Grand Unified Theory (GUT), 904
Graphical data processing, 376
Graphite, 729
Grating constant, 307
Grating spectroscope, 391
Gravitation, 129–152

law of, 129–131
Gravitational constant, 130
Gravitational field, 129–136
Gravitational field strength, 130
Gravitational force

lifting against, 67–68
properties of, 129–130

Gravitational interaction, 884–885
Gravitational mass, 37, 54
Gravitational pendulum, 263–265
Gravitational potential, 130–131
Graviton, 884, 887
Gravity

acceleration of (g), 53–54, 131
center of, 82, 94–95
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Gravity (cont.)
pressure due to

in gases, 176–178
in liquids, 174–175

Gravity gyroscope, 125
Gravity waves, 309
Gray (unit), 959
Grazing angle, 378
Green functions, 388
Gregorian calendar, 8, 9
Grid transparency, 569
Grid voltage, 568
GRIN rod, 368
Gross caloric value, 681
Ground state, 851, 916, 1002
Group velocity, 300, 994
Growth velocity, 1104
GTO (gate turn-off thyristor), 1034
Guide values

table of, 797
of voltages, 608

Guiding force, 47
GUT (Grand Unified Theory), 904
Gyration, 581
Gyrocompass, 127–128
Gyromagnetic factor, 848
Gyroscope horizon, 128
Gyroscope moments, 127
Gyroscope pendulum, 128
Gyroscopes, 121–128

applications of, 127–128

H , x-diagram, 741
Hadron jets, 888
Hadrons, 892, 894–898
Hagen-Poiseuille law, 201
Hail, 740
Hair hygrometers, 739
Half-life, 939
Half-tones, 333
Half-value depth, 961
Half-width, 1110
Hall coefficient, 1004

for metals, 1089–1090
Hall effect, 465, 1003–1004

table for, 1089–1090
Hall probes, 466
Hall voltage, 465, 1004
Halley’s comet, 135
Halogen compounds, ionization

energies of, 1077

Hamiltonian, 89–90, 835, 874
Hamilton’s equations, 89–90
Hamilton’s principle, 89
Hard-core potential, 914
Hard magnets, 1053
Hardness, 170–171
Harmonic, of standing wave, 297
Harmonic mean, 1104
Harmonic oscillator, 841–843

two-dimensional, 281–282
Harmonic sound pressure, 313
Harmonic vibration, 255–256, 258,

333
Hassium, 878, 935
Health, noise injurious to, 413
Hearing, 329–331

frequency range of, 330
Hearing impressions, classification of,

332
Hearing threshold, 315, 331
Heat, 66, 678–679

conversion of, into other forms of
energy, 683

conversion of equivalent energies
into, 679–683

of dissolution, 714–715
transport of, 766–770

Heat bath, 749
Heat capacity, 678, 684–691, 995

Fermi temperature and, 1006
Heat conduction, 750, 753–757,

999–1000
in metals, 1000
solution of equation of, 769–770
at temperatures, 795
of thermal insulators, 794
through several walls with same

surface, 756
Heat conduction equation, 767–768
Heat conductivity, 659–660, 754, 766

of gas mixtures, 755
in insulators, 999
of plasmas, 578
of solids, 793–794

Heat conductivity coefficient, 754
Heat engine, 703
Heat exchange, 748
Heat flow, 751, 752

thermal resistance and, 760–761
through single layer tube wall,

756–757
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through tube wall consisting of
several layers, 757

Heat flow density, 766, 999–1000
Heat flow density vector, 766
Heat flux, 751
Heat interchangers, 716
Heat pump, 703, 707–708, 715
Heat radiation, 750, 764
Heat transfer, 750–766
Heat transfer coefficient, 751, 761
Heat transition, 751–753
Heat transmission, 759–764

through encased tube, 762–764
Heat transmission coefficients, 751

table of, 797
Heat transport, 750
Heating power boiler, 682
Heavy-ion reactions, 932–935
Heisenberg force, 913
Heisenberg picture, 835
Heisenberg’s uncertainty principle, 827
Helium, table of compressibility of, 245
Helium burning, 951
Helium II, 731
Helium-neon laser, 881
Helmholtz condition, 190
Helmholtz equation, 388
Helmholtz potential, 643
Henry (unit), 488, 491
Henry-Dalton law, 738
Hermitean matrices, 833
Hermitean polynomials, 842
Herpolhode, 125
Hertz (unit), 255
Hertz dipole, 542
Hertz oscillator, 542
Hess, theorem of, 647
Heterogeneous mixture, 988
Heterogeneous system, 624–625, 717,

734
Heterogeneous total systems, 628
Hexagonal Bravais lattice, 971
Hexagonal compact packing of spheres,

971
Hexagonal crystals, magnetic

anisotropy of, 617
Higgs particle, 888
High-spin states, 928
High-temperature superconductor

(HTSC), 730, 1047–1049
Hinges, 105

Holding current, 1033
Holes, 1011
Holograms, 386–387
Homocentric rays, 338
Homogeneity

of space, 900
of time, 900

Homogeneous rod pendulum, 265
Homogeneous system, 624, 717
Hooke’s law, 54–55, 120, 156, 258, 984
Höppler’s sphere viscosimeter, 202
Horns, 321
Horsepower, 71
Hot-air engine, 709
Hot-wire amperemeter, 428
HTSC (high-temperature

superconductor), 730,
1047–1049

Hubble constant, 149
Hubble effect, 149
Huffman-Kraetschmer method, 729
Human body, effect of electric current

on, 609
Humid air, 738–742
Humidification, 738
Hund rules, 867
Huygens’ principle, 292, 387
Huygens’ telescope, 375–376
Hydratization, 552
Hydraulic press, 173
Hydraulics, 110, 173–174
Hydroacoustics, 329
Hydrocarbon compounds, ionization

energies of, 1076
Hydrodynamic paradox, 196
Hydrodynamic similarity, 206
Hydrodynamics, 171, 186–210
Hydrogen, table of compressibility of,

245
Hydrogen atom, 854–859

accidental degeneracy in, 857, 861
Hydrogen burning, 951
Hydrogen cycle, 951
Hydrogen-like systems, 854
Hydrogen spectrum, 856

degeneracy in, 857–858
fine structure of, 858–859

Hydrostatic paradox, 175
Hydrostatic pressure, 155
Hydrostatics, 171–186
Hygrometers, 739
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Hypergeometric distribution, 1109
Hypernuclei, 935
Hyperons, 894–895
Hypersound, 314, 328
Hysteresis, 1053
Hysteresis curve, 167, 481
Hysteresis losses, 494

IC (integrated circuits), 1034–1037
Ideal current source, 502
Ideal flow, 187

basic equations of, 187–197
Ideal gas, 187, 650–653

enthalpy of, 646
entropy of, 643
equation of state of, 652–653,

661–662
internal energy in, 642
kinetic theory of, 653–655
specific heat capacity of, 689–690

Ideal liquid, 187
Ideal operational amplifier, 1038
Ideal plasma, 579
Ideal transformer, 493
Ideal voltage source, 501, 503
IGBT (insulated-gate bipolar thyristor),

1034
IGFET (insulated gate FET),

1031–1032
Ignition voltage, 564
Illuminances, 405

table on, 416
Image distance, 340
Image focal length, 339
Image focus, 339
Image point, 338
Image principal point, 339
Image-side focal length, 339
Image size, 340
Imaginary unit, 517
Imaging equation, 340
Impact parameter, 927
Impact velocity, 29
Impedance, 523
Impedance converter, 1029, 1042
Impulse

of force, 42
of torque, 53

Impurity atoms, 1014
Incidence, plane of, 304
Inclination, 464

Inclined plane, 47–48
Indefinite integral, 1123
Indirectly driven pellet, 592
Individual gas constant, 662, 690
Induced emission, 879
Induced voltage, 545
Inductance(s), 488

of geometric arrangements of
conductors, 490–491

parallel connection of, 489
series connection of, 489

Induction, 485–488
Induction flux, 489
Inductor(s)

in alternating-current circuits,
532–533

resistors and
parallel connection of, 536
series connection of, 536–537

Inelastic collision, 73–74, 78–79
Inelastic neutron scattering, 993
Inelastic scattering cross-section, 925
Inert-gas atoms, 878
Inertia, 40

moments of, see Moments of inertia
products of, 122
tensor of, 121–124

Inertial confinement, 590, 952
fusion with, 591–592

Inertial forces, 43–44
in rotating reference systems, 59–63

Inertial mass, 37
Inertial system, 40, 137
Infinitely extended plate, field strength

and potential of, 451
Infinitely high potential well, 840
Infinitely thin lens, 364
Infrasound, 314
Inhomogeneous bodies, density of,

38–39
Initial conditions

sensitive dependence of dynamical
evolution on, 211, 220

sensitive dependence on, 220
Initial magnetization curve, 1053
Initial phase, 256
Inorganic compounds

conversion temperatures of, 779–781
magnetic susceptibility of, table on,

611–613
Input characteristic, 1024
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Input resistance, 1028
Instantaneous acceleration, 17–18
Instantaneous-rotation axis, 124
Instantaneous value, 514
Instantaneous velocity, 16–17, 23–24
Instruments, tonal ranges of, 334
Insulated-gate bipolar thyristor (IGBT),

1034
Insulated gate FET (IGFET),

1031–1032
Insulating materials

electric properties of, 604–605
specific electric resistance of, 603

Insulator(s), 422, 999–1000, 1001,
1009

heat conductivity in, 999
Integrability, 218–219
Integral calculus, 1122–1124
Integral function, 1122
Integrals

of elementary functions, 1124
of motion, 219

Integrated circuits (IC), 1034–1037
Integrated optics, 354
Integration, 1122

of phasors, 522
Integration constant, 1122
Integration rules, 1123–1124
Integrator, 1040–1041
Intensity of waves, 296
Intensive thermodynamic properties,

628
Interaction region, 923
Interactions

fundamental, 883–884
unification of, 883–891

Intercalary day, 9
Intercept distances, 340
Interface tension, 625
Interference

optical, 380–384
wave, 294–300

Interference term, 296
Interferometer, 9
Interferometry, 383–384
Intermediate processes, 932
Intermetallic compounds, 988
Internal ear, 329
Internal energy, 174, 641, 699

of crystal, 996
in Debye model, 998

in ideal gas, 642
as potential, 641–642

Internal forces, 13, 82
Internal friction, 197–199
Internal photo effect, 566, 821
Internal pressure, 666
Internal resistance, 569
Internal volume, 666
International barometric equation, 178
International Practical Temperature

Scale, 631
International Standardization

Organization, see ISO entries
International Union of Pure and

Applied Physics (IUPAP), 1098
Intersection distances, 358
Interstitial atoms, 980
Interval center, 1107
Interval notations, table of, 332
Interval rule, 1124
Intrinsic charge-carrier density,

1012–1013
Intrinsic conduction, 1011
Inverse magnetostriction, 483
Inverse reactions, 903
Inverse vector, 1116
Inversion, 33, 880

of phasor quantity, 521
Inversion curve, 715
Inversion rule, 1123
Inversion temperature, 715
Inverting amplifier, 1039
Inverting input terminal, 1037
Ion beams, 592
Ion lifetime, 562
Ion mobility, table on, 620
Ion motion in electrolytes, 553
Ion optics, 337
Ion plasma waves, 584
Ion sound velocity, 584
Ionic bond, 977
Ionic crystals, 995
Ionic polarization, 1058
Ionic radii of elements, 1078–1082
Ionic valence, 552
Ionization, 552, 953

degree of, 573–574
Ionization chamber, 563, 899, 962
Ionization energies, 851

of elements, 1071–1075
of halogen compounds, 1077
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Ionization energies (cont.)
of hydrocarbon compounds, 1076
of nitrogen compounds, 1076
of oxygen compounds, 1077

Ionization losses, 953
Ionization potentials, tables on,

1071–1078
Ionization work, 851
Ionizing particles, 953–956
Ionizing radiation, effect of, on

semiconducting materials, 1094
Ions, 552, 851

drift velocity of, 553
IPTS-90 fixed points, 631
Iris diaphragm, 370
Iron alloys

binary, ferromagnetic properties of,
615–616

density of, table, 233
Irradiance, 399
Irradiation, 399
Irreversible process, 691, 750
Irrotational flow, 190
Isentropic index, 691
Isentropic process, 695
Isentrops, 695
Islands of stability, 935
ISO (International Standardization

Organization), 1098
ISO standard atmosphere, 178
Isobaric adiabatic system, 645
Isobaric processes, 694
Isobars, 694, 908
Isochoric cooling, 709
Isochoric heating, 709
Isochoric processes, 694–695
Isochors, 695
Isoclines, 464
Isogons, 464
Isolated system, 623
Isospin, 908
Isotherm, 667
Isothermal compression, 704, 709
Isothermal expansion, 703, 709
Isothermal-isobaric states, 649
Isothermal-isochoric states, 649
Isothermal processes, 644, 692–693
Isotherms, 692
Isotones, 908
Isotope effect, 908, 1044–1045
Isotopes, 907–908

Isotopic shift, 868
Isotropic compression, 159–160
Isotropic pressure, 155, 172
Isotropic solid, 967
Isotropy of space, 900
IUPAP (International Union of Pure and

Applied Physics), 1098

Jar model, 1107, 1108, 1111
Jet engine, 79, 180
JET Tokamak, 591
JFET (junction field effect transistor),

1030–1031
jj-coupling, 866
Joints, 105
Josephson effect, 1045
Joule, 64, 65, 675
Joule cycle, 713
Joule magnetostriction, 483
Joule-Thomson coefficient, 715
Joule-Thomson effect, 715–716
Journal bearings, 105
Julian calendar, 9
Junction field effect transistor (JFET),

1030–1031
Jupiter, 133

K-capture, 944
K-meson, 894–895
K-series, 869, 1086
k-space, 1002
k-value, 761
Kaon, 894–895
Kaplan turbine, 180
Kelvin (unit), 630
3–Kelvin-background radiation, 150
Kelvin scale, 633
Kepler’s laws, 131–132
Kepler’s telescope, 374
Kerma, 962
Kerr cells, 395
Kerr effect, 395
Kilogram, 37

per cubic meter, 38
times meters squared, 112

per second, 49, 116
Kilogram meter per second, 39
Kilopond, 636
Kinematic quantities, basic, 96–97
Kinematic viscosity, 199
Kinematics, 93–97
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Kinetic energy, 66–67, 119–120
mean, 654
relativistic, 147–148

Kinetic theory, 186, 213
of ideal gas, 653–655

Kirchhoff’s first law, 430, 503
Kirchhoff’s laws, 402, 765

for alternating-current circuits, 528
for direct-current circuit, 503

Kirchhoff’s second law, 503
Kirschmer-Prandtl-Kármán formula,

208
Koch curve, 226
Koch’s snowflake, 226
Kronig-Penny model, 1007
Kundt’s tube, 298–299

Laboratory system, 148, 924
Lagrange equations, 87
Lagrange function, 87
Lamb shift, 859
Lambda transitions, 722
Lambert law, 398
Lambertian source, 398
Laminar boundary layer, 206
Laminar flow, 197–198

in tube, 200–202
Landau damping, 585
Landé factor, 849, 876
Langevin equation, 582, 1051

of ferromagnetism, 1052–1053
Langmuir frequency, 579–580
Langmuir waves, 583–584
Laplace operator, 189

angular component of, 830
Laplace’s equation, 189
Larmor frequency, 849
Larmor precession, 849
Laser beams, 591
Laser diode, 1064
Lasers, 380, 880

longitudinal vibrational modes of,
1064

types of, 416
Lateral magnification, 344
Lattice constants, 969
Lattice defects, 968, 979–983

one-dimensional, 981–982
two-dimensional, 982–983

Lattice energy, 976
Lattice impurities, 980

Lattice plane, 972
Lattice types, 970
Lattice vectors, 969
Lattice vibrations, 991
Laue method, 975
Lawson criterion, 589–590, 953
Layer-compound materials, 987
LCD (liquid-crystal display), 392,

991
LDR (light-dependent resistor), 436
Le Chatelier, principle of, 648
Lead-acid accumulator, 559
Leakage of battery, 558
Leakage rate, 948
Least squares, principle of, 1106
LED (light-emitting diode), 1023,

1063–1064
Left-handed processes, 707–714
Legendre transformation, 90
Length, 9–10
Length contraction, 144
Lennard-Jones potential, 871, 979
Lens eye, 370
Lens systems, 364–368
Lenses, 358–364

with diaphragms, 365–366
Lenz’s law, 488
Lepton charge, 892
Lepton number, 892
Leptons, 883, 891–892
Level-measuring sensor, 352–353
Level scheme, 852
Levels, 317
Lever arm, 100, 106
Levers, 106–107
Lifetime, 1111, 1112

of protons, 904
Lifting against gravitational force,

67–68
Light

main characteristics of, 335
speed of, see Speed of light
theoretical models of, 336

Light deflection, 149
Light-dependent resistor (LDR), 436
Light-emitting diode (LED), 1023,

1063–1064
Light measurement, 403–405
Light path, 337
Light pressure, 823
Light rays, 337
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Light second, 141
Light sources, coherence lengths of,

416
Light wave guide, 349–355
Light year, 134
Limit cycle, 219
Linde process, 716–716
Line broadening, 853
Line shape, 853
Line spectrum, 853
Linear accelerator, 898
Linear-attenuation coefficient, 870,

958
Linear collider, 899
Linear double refraction, 393
Linear energy-transfer coefficient, 961
Linear energy-transfer power, 954
Linear expansion coefficient, 672
Linear extension, coefficient of, 157
Linear force law, 258
Linear oscillator, 542

resonance frequency of, 543
Linear polarization, 294
Linear region, 1038
Linear regression, 1106
Linear resistance, 432
Linear Stark effect, 877
Linear system, 213–214
Linear variance, 1101
Linearly polarized light, 391
Liouville’s theorem, 218
Liquid calorimeter, 678
Liquid-crystal display (LCD), 392, 991
Liquid crystals, 730, 990–991
Liquid gears, 110
Liquid layers, detachment of, 203
Liquid low-temperature baths,

generation of, 804–805
Liquid manometers, 636
Liquid pendulum, 266–267
Liquid plastics, 199
Liquid state, metals in, density of, table,

238
Liquid thermometer, 631
Liquids, 172, 718

current conduction in, 551–560
dynamic viscosity of, table on, 789
equation of state for, 671
pressure due to gravity in, 174–175
sound-damping coefficients for, 411
sound velocity in, 410

specific calorific values of, 809
specific heat capacity of, 691
tables of compressibility of, 247
thermal properties of, 793
velocity of sound in, 312
volume expansion of, 795

Lissajous patterns, 280–281
Ljapunov exponent, 220
Load current, 544
Load current definition, 502
Load power, 508
Loading speed, 986
Local dose, 963
Local field, 1056
Local pressure, 637
Local thermal equilibrium, 576, 625
Localized levels, 1014
Locus, 529
Logarithmic decrement, 273
Logarithmic derivative, 1122
Logarithmic integration, 1124
Logistic mapping, 222–224
London penetration depth, 1046, 1047
Longitudinal phonons, 993
Longitudinal polarization, 294
Longitudinal vibrational modes of

lasers, 1064
Longitudinal wave, 293, 311
Longitudinal Zeeman effect, 875
Lorentz field, 1057
Lorentz force, 466, 587

properties of, 467
Lorentz transformation, 140–143
Loschmidt number, 551
Lost head, 203
Loudness, 331
Loudness levels, 330

in dB, 413
Loudspeaker sensitivity, 322
Loudspeakers, 321

range of, 323
Lower heating value, 682
LS-coupling, 865–866
Lumen, 404
Luminance, 404
Luminescence, 1063
Luminescence layer, 1063
Luminophors, 1063
Luminosity, 374, 899

relative, table on, 417
Luminous dials, 1063
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Luminous fluxes, 404
table on, 417

Luminous intensity, 404
Luneburg lens, 368
Lux (unit), 405
Lyman series, 857

Mach angle, 209, 302
Mach cone, 209, 302
Mach formula, 302
Mach number, 302
Mach shock waves, 302
Mach wave, 302
Machines, 106–110
Macrocanonical ensemble, 624
Macromolecular solids, 984–987
Macrostate, 640
Madelung constant, 977
Magnetic alloys, table on, 614
Magnetic anisotropy, tables on,

617–628
Magnetic circuits, 471

calculation of, 472
Magnetic conductance, 491
Magnetic confinement, 590, 952

fusion with, 590–591
Magnetic coupling, 492
Magnetic dipole moment, 649
Magnetic dipoles, 463
Magnetic energy, 268
Magnetic field(s), 462–463

charged particles in, 582
electrons in, 874–875
energy density of, 494–495
energy of, 495
energy splitting in, 876
at interfaces, 484–485
matter in, 478–484
moving conductor loop in, 544–545
plasmas in, 581–583
of rectilinear conductor, 476
of various current distributions,

477–478
Magnetic field lines, 463–465
Magnetic field strength, 469–470
Magnetic flux, 467–469
Magnetic flux density, 465–467
Magnetic hysteresis, 1053–1054
Magnetic induction, 465
Magnetic materials, density of, table,

233

Magnetic moment, 847–849
of neutrons, 910
of nucleons, 909–910
of protons, 910

Magnetic monopole, 905
Magnetic phase transitions, 727–728
Magnetic polarization, 479
Magnetic potential difference, 470–471
Magnetic pressure, 583
Magnetic properties, 1049–1055

of ferrites, 619
tables on, 609–614

Magnetic quantities, analogy between
electric quantities and, 495–496

Magnetic quantum number, 832, 861
Magnetic reluctances, 471, 491

parallel connection of, 472
series connection of, 472

Magnetic scattering, 974
Magnetic self-compression, 586
Magnetic spin moment, 847
Magnetic susceptibility, 479, 1049

of elements, table on, 609–610
of inorganic compounds, table on,

611–613
Magnetism, 463, 1049
Magnetization, 479, 1049

in cubic crystals, 618
virgin curve of, 482

Magnetization curves, 480
Magnetohydrodynamic waves, 584
Magnetohydrodynamics, 583
Magnetorotation, 392
Magnetostatics, 462
Magnetostriction, 483
Magnetostriction emitter, 322
Magnetostrictive transducer, 323
Magnification, 344, 371
Magnifying glass, 362, 372
Magnus effect, 196
Majorana force, 913
Majorana neutrinos, 905
Majority-charge carriers, 1015
Man-made exposure, 965
Mandelbrot set, 227
Manometer, 173, 175
Many-electron atoms, 864–868
Mapping, 213
Mars, 133
Martensitic phase transition, 988
Masers, 880
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Mass, 37–39, 42
center of, 82, 94–95
equivalence of energy and, 147–148
measurement of, 38
relativistic increase of, 145–146
on spring, 258–260
transport of, 766–770

Mass action, law of, 574, 648, 744–746
Mass-attenuation coefficient, 956

for electrons in aluminum, 1088
for pair production, 957
for photons, 957
for x-rays, 1088

Mass current density, 188
Mass defect, 911–912
Mass-density distribution, 911
Mass deposition, 555
Mass distribution in fission, 937
Mass energy, 147
Mass fraction, 640, 732, 743
Mass number, 907
Mass percentage, 743
Mass spectrometer, 38
Mass stopping power, 956
Mass transport, 555
Massive neutrinos, 905
Matching for power transfer, 508–509
Material constants, 1100
Material dispersion, 352
Materials, mechanical properties of,

984–991
Mathematical pendulum, 212, 260
Matrix representation of operators, 833
Matter

interaction of radiation with,
953–958

tables on, 1088
in magnetic fields, 478–484
speed of light in, 499

Matter waves, 826
Maximum bending stress, 162
Maximum energy, principle of, 641
Maximum load power, 508
Maxwell-Boltzmann distribution,

655–656
Maxwell construction, 668, 724–726
Maxwell equations, 139, 496–500
Maxwell model, 986
Maxwell relations, 648–649
Maxwellian velocity distribution, 575
Maxwell’s fish eye, 368

McLeod pressure gauge, 634–635, 651
Mean absolute deviation, 1105
Mean acceleration, 17
Mean charge density, 426
Mean collision time, 658
Mean error

of individual measurement, 1101
of mean value, 1102

Mean fission-neutron number, 948
Mean free path, 658, 754, 769

of phonons, 999
Mean kinetic energy, 654
Mean lifetime, 853, 939
Mean line charge density, 426
Mean nuclear potential, 917
Mean range, 401, 953
Mean relative molecular mass, 985
Mean space charge density, 426
Mean square deviation, 1104
Mean surface charge density, 426
Mean time between failures (MTBF),

1112
Mean value(s), 515, 1100

mean error of, 1102
of runs, 1102–1104

Mean velocity, 14–15, 23, 654, 656,
754, 769

Mean-velocity vector, 655
Measured quantity, 1097
Measured result, 1100
Measured value, 1100
Measured variable, 1097
Measurement(s), 1097

accuracy of, 1100
description of, 1097–1100

Measurement error, 1100–1102
Measures, 317
Measuring equipment, 1097
Measuring prescription, 1097
Mechanical energy converted into heat,

680
Mechanical equilibrium, 626
Mechanical properties of materials,

984–991
Mechanical sound emitters, 319–321
Mechanical stress, 984
Mechanical systems, 12–14
Mechanics, 3–251

formula symbols used in, 229
golden rule of, 106
tables on, 231–251
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Median, 1103
Meissner effect, 1043
Meissner-Ochsenfeld effect, 731,

1043
Meitnerium, 879, 935
Melt-spinning, 983
Melting, 719

relative volume change in, 811
Melting enthalpy, 646
Melting heat, 719
Melting point(s), 719

of elements, 777–778
of high-temperature ceramics,

784–785
of low-melting alloys, 785
metals at, relative change at, 597
of oils, 784
of organic compounds, 782–784

Membranes as sources of sound, 320
Memory alloy, 988
Mercury (planet), 133
Mercury barometer, 173
Mercury barometer measurements,

temperature correction for,
802

Mercury diffusion pump, 179
Mercury gauge, 175
Mercury-vapor blast pumps, 195
Mercury-vapor lamp, 564
Meridional section, 359
Mesh, 503
Mesh rule, 503

in complex domain, 528
in magnetic circuit, 471

Meson exchange, 914
Meson exchange potentials, 914–915
Mesons, 894
Metal-oxide-silicon (MOS) technology,

1031, 1037
Metallic alloys, density of, table,

232–233
Metallic bond, 977–978
Metallic calorimeter, 678
Metallic glasses, 983
Metallic phase, 729
Metals, 1009

electricity in, tables, 595–600
electronic heat conductivity in, 1000
Fermi level of, 1005
Hall coefficient for, 1089–1090
heat conduction in, 1000

in liquid state, density of, table, 238
at melting point, relative change at,

597
Peltier coefficient for, 600
pure

specific evaporation enthalpy of,
810–811

specific melting enthalpy of,
810–811

thermal properties of, 789–791
at room temperature, electricity in,

table, 595–596
simple, density of, table, 231–232
sound velocity in, 411

Meteorites, 135
Meter, 9
Meter/second, 311
Methane, table of compressibility of,

246
MHD generator, 588–589
Michelson interferometer, 139,

383–384
Michelson-Morley experiment, 139
Microcanonical ensemble, 623
Micromechanics, 555
Microphone sensitivity, 324
Microphones, 323–324
Microscope, 372–373
Microstate, 640
Milky Way, 151
Miller indices, 972
Millikan’s oil-droplet experiment, 423
Millimeters of water, 636
Mineral-oil products, sound velocity in,

410
Minimum action, principle of, 89
Minimum energy, principle of, 641
Minimum hearing threshold, 315
Minimum surface, 184
Minkowski diagram, 140, 141–142
Minkowski space, 3
Mirror effect, 582
Mirror machine, 590
Mirror symmetry of world, 900
Mirror telescope, 375
Mirrors, 341
Mixed crystals, 988
Mixing temperature of two systems,

748–749
Mixture calorimeter, 678
Modal value, 1108
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Mode dispersion, 352
Moderators, 948, 949
Modulation of waves, 308–309
Mohr’s balance, 38, 182
Moist air, density of, 740–741
Mol (unit), 638
Molar fraction, 736
Molar heat capacity, 686–687, 995
Molar mass, 638–639

of gases, 787
Molar quantity, 629
Molar volume, 638
Molarity, 743
Mole, 551
Mole fraction, 639–640, 663, 731
Molecular field, 1052
Molecular mass distribution, 985
Molecular physics, 851–881
Molecular pump, 179
Molecular spectra, 871–874
Molecules, interaction of photons with,

879–881
Mollier diagram, 646, 741–742
Moment, 50–52

of force, 101
Momentary value, 514
Moments of inertia, 111–115, 122,

657
of point mass, 49
principal, 123

Momentum, 39
relativistic, 146

Momentum conservation, 72
Momentum conservation law, 84–85
Momentum operators, 874
Momentum space, 1002
Momentum sphere, 76
Monatomic gases, 658
Monatomic particles, 657
Monochromator, 390
Monoclinic Bravais lattice, 970
Monocrystal, 967
Monocrystal growing, 967–968
Monomers, 984
Moon, 135
MOS (metal-oxide-silicon) technology,

1031, 1037
Moseley’s law, 869
MOSFET, 1031–1032
Mössbauer effect, 946
Most-probable velocity, 656

Motion, 3
description of, 3–14
energy of, 66
equation(s) of, 60, 82–84
of mass on spring, 259
in one dimension, 14–22
rotational, 31–35
in several dimensions, 22–31
simple, in one dimension, 19–22

Motional induction, 486
Motor, 544
Mott scattering, 928–929
Mott-Wannier exciton, energy level of,

1061
MTBF (mean time between failures),

1112
Multi-hyperon matter, 935
Multicomponent gases, 731–733
Multifragmentation, 935
Multiphase systems, 734–736
Multiplet, 866
Multiplication

by scalar, 1116
of vectors, 1117–1119

Multiplication factor, 947
Multiplicity, 866
Multistage gears, 109–110
Musical acoustics, 331–334
Mutual inductance, 492–493
Mutual induction, 492–494

n-conducting semiconductor, 1015
n-doping, 1015
Nabla operator, 189
NaCl-structure, 973
Nanocrystalline materials, 983
Natural constants, 1100
Natural exposure, 964
Natural frequency, 257
Natural line width, 853
Natural materials, modified, electric

properties of, 605
Natural radioactivity, 937
Natural stones, density of, table, 236
Natural vibrations, 298, 319
Navier-Stokes equation, 200
Near field, 373
Near-field microscope, 373
Near point, 371
Near-sightedness, 371
Nebula clusters, 151
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Néel temperature, 484, 1054
of antiferromagnetic phase

transitions, 786
Néel’s law, 483
Negative charges, 421
Negative correlation, 1106
Negative current feedback, 1028
Negative feedback, 1027
Negative-feedback operational

amplifier, 1038–1039
Negative focal length, 342
Negative temperature coefficient

(NTC), 435
Negative voltage feedback, 1027
Negatively uniaxial crystals, 394
Nematic phases, 990
Neptune, 133
Nernst equation, 556–557
Network elements, 501
Network theory, 501
Neutral axis, 161
Neutrinos, 943
Neutron balance, 948
Neutron diffraction, 974
Neutron number, 907
Neutron scattering

kinematics of, 993
methods of, 975–976

Neutron spectrum, 948–949
Neutron star, 152
Neutrons, 907

magnetic moment of, 910
New degree, 11
Newton (unit), 42
Newton friction, 273
Newton meter, 50, 675
Newton per meter squared, 154
Newtonian viscosity, 198
Newtonmeter, 100
Newton’s first law, 40
Newton’s imaging equation, 361
Newton’s law for materials, 984
Newton’s laws, 40–48
Newton’s rings, 383
Newton’s second law, 41
Newton’s third law, 43
Nickel alloys

binary, ferromagnetic properties of,
616–617

density of, table, 233
Nicol prism, 395

Nikuradse formula, 208
Nitrogen, table of compressibility of,

245
Nitrogen compounds, ionization

energies of, 1076
Nitrogen monoxide, table of

compressibility of, 246
Nodding motion, 124
Node of standing wave, 297
Noether theorem, 900
Noise, 332

injurious to health, 413
Nominal power, 71
Non-aging objects, 1111
Non-central collision, 74
Non-equilibrium states, 691
Non-ideal plasma, 579
Non-inverting input terminal, 1037
Non-metals, density of, tables,

234–237
Non-Newtonian materials, 199
Non-self-sustained discharge, 560–563
Non-SI units, 676

accepted, 1128–1129
Non-uniform motion, 3
Nondimensional units, 1099
Nonlinear dynamics, 211
Nonlinear resistance, 432
Nonlinear system, 214
Nonsaturated vapor, 719
Norm pressure, 636
Normal acceleration, 26, 47
Normal dispersion, 305, 389
Normal distribution, 1110–1111
Normal force, 47
Normal plane, 22–23
Normal stress, 153, 155
Normal surface, 288
Normal to curve, 22
Normal Zeeman effect, 875
Normality, 744
Normalization, 828

of wave function, 836–837
Normalized rate distribution, 1107
Novae, 151
Nozzle device, 192–193
npn-transistor, 1023
NTC (negative temperature coefficient),

435
Nuclear charge number, 851
Nuclear decay, 937–947
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Nuclear fission, 935–937, see also
Fission entries

Nuclear forces
charge independence of, 908
saturation of, 912

Nuclear fusion, 950–953, see also
Fusion entries

nuclear reactions for, 589
Nuclear-fusion process, 150
Nuclear-fusion reactions, table of, 1087
Nuclear-fusion reactors, 589–590
Nuclear isomerism, 946
Nuclear magnetic spin, 849
Nuclear magneton, 909
Nuclear matter, 915–916
Nuclear models, 915–922
Nuclear plates, 899
Nuclear radius, 910
Nuclear reactions, 922–937

conservation laws in, 926–928
for nuclear fusion, 589
tables on, 1087

Nuclear reactors, 947–950
types of, 949–950

Nuclear resonance fluorescence, 946
Nuclear spin resonance, 909
Nuclear spin resonance technique, 910
Nucleon configuration, 918–919
Nucleon-nucleon interaction, 912–915
Nucleon-number density, 910
Nucleons, 907

binding energy per, 912
emission of, 947
fundamental properties of, 909
magnetic moment of, 909–910

Numerical aperture, 350
Numerical value, 1098
Nutation, 124–125
Nutation cone, 125
Nutcracker, 107

Object distance, 340
Object focal length, 339
Object focus, 339
Object point, 338
Object principal point, 339
Object-side focal length, 339
Object size, 340
Objective lens, 372
Objective photometry, 396
Observables, 829–830

Occupation inversion, 880
Occupation number, 880, 1010
Occupation number ratio, 880
Octave, 333
Ocular lens, 373
Off-center collision, 74
Ohm (unit), 431
Ohm-meter, 433
Ohmic components, thermal load of,

516
Ohmic resistance, 431
Ohmic resistor in alternating-current

circuits, 530
Ohm’s law, 431

in complex domain, 524
of thermodynamics, 758

Oil(s)
boiling points of, 784
density of, table, 237
melting points of, 784
sound velocity in, 410

One-pion-exchange potential (OPEP),
914

One-way effects, 988
Open channel, 923
Open-circuit voltage, 502, 506
Open system, 624, 711
Open universe, 149
OPEP (one-pion-exchange potential),

914
Operating point, 1025
Operation work, 711
Operational amplifiers, 1037–1042
Operators, matrix representation of, 833
Opposite-directional or opposite-phase

vibration, 284–285
Opposite forces, 99–100
Opposite vector, 1116
Optical activity, 392
Optical axis, 338, 393
Optical birefringence, 990
Optical communication, 352
Optical crystals, 393
Optical density, 345
Optical depth, 580
Optical elements, 338
Optical glass, 368
Optical grating, 390
Optical image, 338
Optical imaging, 338–341
Optical instruments, 368–376, 372–376
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Optical model, 931
Optical path differences, 352
Optical path length, 337
Optical phonons, 994
Optical potential, 931
Optical properties

of crystals, 1060–1064
of solids, 1009

Optical resonators, 881
Optical telecommunication, fiber types

for, 414
Optical tube length, 373
Optics, 335–408

subfields of, 336–337
symbols used in formulae on,

407–408
tables on, 414–417
wave, 376–395

Opto-electronics, 1063
Opto-electronic properties, 1063–1064
Orbital, 878
Orbital angular momentum, 48–49
Orbital angular momentum quantum

number, 861
Orbital velocity, 34–35
Order-disorder phase transitions, 728
Organic compounds

boiling points of, 782–784
melting points of, 782–784

Orientation elasticity, 990
Orientation polarizability, 1059
Orientation polarization, 455, 1055
Orientational order, 728
Orthohelium, 867
Orthorhombic Bravais lattice, 971
Oscillation equation, 268

with friction, 269
Oscillator, 255, 258
Oscillator circuit, 267–268
Oscillator parameter, 842
Oscillator potential, 918
Osculating plane, 22–23
Otto cycle, 711–712
Otto engine, 712
Output characteristic, 1024
Output resistance, 1028
Oval window, ear, 329
Overdamped case, 272
Overexcitation, 549
Overhead projector, 362
Overtones, 320, 333

Oxidation, 1035
Oxygen compounds, ionization

energies of, 1077
Oxygen octahedron structure,

ferroelectrics with, 606
Oxyhydrogen reaction, 647

p-conducting semiconductor, 1015
p-doping, 1015
p-wave scattering, 927
Packing density, 971

of elementary cell, 971–972
Pain threshold of hearing, 331
Pair annihilation, 148, 902
Pair production, 902, 957

mass-attenuation coefficient for, 957
Pairing energy, 917
Paper electrophoresis, 560
Para-electric materials, 1059
Parabola, 30
Parabolic mirror, 342, 344
Parabolic orbit velocity, 136
Parabolic velocity, 134
Parahelium, 867
Parallax, 10, 134
Parallax range finding, 134
Parallel connection

of capacitors, 458–459
of complex resistances, 529
equivalence of series connection and,

541–542
of galvanic cells, 559
of inductances, 489
of magnetic reluctances, 472
of resistor and inductor, 536
of resistors, 436–437, 504–505
of resistors and capacitors, 535
of springs, 55

Parallel forces, 99
Parallel-plate capacitor, 442, 458
Parallel ray, 338, 343
Parallel resonance, 541
Parallel-resonant circuit, 539–541
Parallel shift, 102
Parallelogram of forces, 98
Paramagnetic electron resonance, 876
Paramagnetic nuclear spin resonance,

909
Paramagnetic substances, 1049
Paramagnetism, 480, 879, 1050
Paramagnets, 727
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Paraxial approximation, 388
Paraxial region, 340
Parent nuclides, 940
Parity, 831, 861
Parity conservation, 900
Parity operator, 901
Parity violation, 901
Parsec, 134
Partial decay constant, 939
Partial integration, 1124
Partial pressure, 732
Particle-compound materials, 987
Particle flux, 960
Particle flux density, 960

vector of, 768
Particle-hole excitation, 920
Particle number, 637
Particles

fundamental, 883
wave character of, 825–827

Partly inelastic collisions, 78
Pascal (unit), 172, 635
Pascal second, 198
Paschen series, 857
Passive two-terminal network, 501
Path, 6
Path difference, 295, 381
Pathlines, 187
Pauli principle, 843–844, 864, 877

generalized, 908
Pauli spin matrices, 845–846
Peak value, 515
Peltier coefficient for metals, 600
Pendulum, 8, 128, 216–217

gravitational, 263–265
homogeneous rod, 265
liquid, 266–267
mathematical, 212, 260
physical, 263–265
standard, 260–263

Pendulum period, correction factors for,
409

Penetrability of potential wall, 943
Penning tubes, 636
Percentage error, 1101
Percentile, 1103
Perception of sound, 330–331
Perfect wetting, 185
Perihelion, 132
Period, 33, 255
Period doubling, 223

Periodic functions, time average of,
515–516

Periodic phase-space trajectory, 217
Periodic processes, 255
Periodic Table of elements, 877–879
Permanent magnets, 463
Permeability, 479

of free space, 469–470
Permittivity of free space, 454
Perpetuum mobile

of first kind, 700
of second kind, 702

Personal dosimetry, 962
Perturbation, 258
Pfund series, 857
pH-value, 746
Phase(s), 256, 624–625, 717, 734

of wave, 288
Phase angle, 256, 523
Phase angle control, 1033
Phase boundary, 717, 734
Phase-coexistence region, 668, 722–723
Phase constant, 256
Phase difference, 295
Phase equilibrium, 724, 734
Phase interface, 625
Phase modulation, 309
Phase rule for chemical reactions, 744
Phase shift, 276
Phase-shift analysis, 912–913
Phase space, 91, 215
Phase-space projection, 216
Phase transitions, 717

enthalpy and, 646
examples of, 727–731
first-order, 720–721
order of, 720–723
second-order, 721
Van der Waals gas and, 724–727

Phase velocity, 289
Phasor, 517
Phasor addition, 519
Phasor diagram, 518

representation of sinusoidal
quantities in, 517–519

Phasor division, 520
Phasor multiplication, 520
Phasor quantities, calculation rules for,

519–522
Phasor subtraction, 520
Phenoplasts, electric properties of, 604
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Phon (unit), 330
Phonon spectrum, 993
Phonon velocity, 994–995
Phonons, 843, 992–994

specific heat capacity and, 995–996
Phosphorescence, 1063
Photo cathodes of alkali antimonides,

1085
Photo diode, 396, 1020–1021
Photo emission, 565–566
Photo emulsion, 396
Photo multiplier, 567
Photoconductivity, 1062–1063
Photocurrent, 820
Photoeffect, 820
Photoelasticity, 395
Photoelectric cell, 566
Photoelectric current, 820
Photoelectric effect, 820–821, 957
Photoelectric Einstein equation, 820
Photoelectrons, 820
Photolithography, 1035
Photometric inverse-square law, 399
Photometric limiting distance, 397
Photometric quantities, 396–402
Photometry, 395–405
Photon energy, 817
Photon momentum, 817, 825
Photons, 817, 885, 887

energy of, 855
interaction of, with atoms and

molecules, 879–881
mass-attenuation coefficient for, 957

Photoresistor, 436
Photovoltaic cell, 566
Physical dehydration, efficiency of,

805
Physical pendulum, 263–265
Physical quantity, 1097
Physiological acoustics, 329–331
Pick-up reaction, 932
Piecewise constant potential, 837–841
Piezoelectric crystals, 321
Piezoelectric elements, 173
Piezoelectric sound emitter, 321
Piezoelectric transducer, 323
Piezoelectricity, 1060
Piezoresistive transducer, 323
PIN diode, 1021
Pinch effect, 586–588
Pinhole camera, 369

Pinning, 1045
Pinning centers, 1046
Piston manometer, 636
Piston pressure, 173–174
Piston pump, 178
Pitch, 333

lens, 368
Pitot tube, 192
Planck mass, 905
Planck’s quantum hypothesis, 825
Planck’s quantum of action, 817
Planck’s radiation law, 402, 575, 764,

818–819
Plane, circular motion in, 24–25
Plane area moment of inertia, 161–162
Plane mirror, 342
Plane parallel glasses, refraction by,

356–357
Plane system of forces, 98
Plane truss, 105
Plane wave, 290–291
Planet rotation, 135
Planetary gears, 110
Planetary motion, 131–132
Planetary system, 133–136
Planets, 133

forces between, 211
Plasma-acoustic waves in plasmas,

583–584
Plasma dynamics, 583
Plasma oscillation frequency, 579–580
Plasma oven, 586
Plasma parameters, 573–580
Plasma physics, 573–594

symbols used in formulae on,
593–594

Plasma radiation, 580
Plasma waves, 583–585
Plasmas, 573, 718

distribution functions of, 574–576
electric conductivity of, 577–578
electromagnetic waves in, 585
energy content of, 576–577
energy production with, 588–592
generation of, 586–588

by compression, 586–588
heat conductivity of, 578
in magnetic fields, 581–583
plasma-acoustic waves in, 583–584
properties of, 573–585
thermal generation of, 586



1166 Index

Plastic deformation(s), 153, 167–171
energy conservation law in, 167

Plastic-elastic region, 168
Plastic materials, thermal properties of,

793
Plastic region, 168
Plasticity, 982, 985
Plate resistance, 567
Platinum resistance thermometer, 632
Pliers, 107
Plumbline, 128
Pluto, 133
Pneumatics, 174
pnp-transistor, 1023
Pockels effect, 395
pOH-value, 747
Poincaré cut, 216
Poincaré mapping, 217
Point charge(s), 441

electric field strength of, 444
field strength and potential of, 448

Point defects, 979–981
Point dipole, 1057
Point lattice, 968
Point mass(es), 12–13, 37

moment of inertia of, 49
system of, 82–86

Point of application, 98
Poisson coefficient, 158
Poisson distribution, 1109, 1111
Poisson’s equation, 189, 448
Polar coordinate system, 4
Polar moments of inertia, 113
Polar vector, 33
Polarizability, 1056
Polarization, 293–294, 391–395, 422,

441, 1055
Polarization angle, 392
Polarization direction, 391
Polarization vector, 455
Polarizer, 391–392
Polhode, 125
Polyatomic molecules, 657, 658
Polycarbonate, electric properties of,

604
Polycrystalline solids, 968
Polygon of forces, 99
Polymerization, 985
Polymers, 967, 984–986

electric properties of, 603
Polytropic index, 697

Polytropic processes, 696–697
Population inversion, 1064
Porro prism, 349, 375
Position energy, 68
Position function, 6
Position space, 1002
Position-time graph, 14
Position vector, 6, 22
Positional order, 728
Positive acceleration, 17
Positive charges, 421
Positive correlation, 1106
Positive-feedback operational amplifier,

1042
Positive temperature coefficient (PTC),

435
Positively uniaxial crystals, 394
Positron annihilation spectroscopy, 980
Positron-emission tomography, 871
Positrons, 421, 892
Potential, internal energy as, 641–642
Potential difference, 447
Potential energy, 67–70

electron, 859
torsional, 120–121

Potential equation, 448
Potential jump, 556
Potential wall, penetrability of, 943
Potential well, 839–840
Potentiometer, 436
Potentiometer circuit, 437
Power, 70–72, 118

in alternating-current circuits,
526–527

in direct-current circuit, 507
Power balance, 508
Power density, 589
Power factor, 527, 528
Power measurement, 509–510
Power rule, 1121, 1123
Power transfer, matching for, 508–509
Poynting vector, 500
Practical correction data, tables on,

798–804
Prandtl’s impact tube, 192
Precession, 125–127
Precession rate, 126
Prefixes, 1099
Pressure, 172–180, 634–637

center of, 197
decrease of, 202
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due to gravity in gases, 176–178
due to gravity in liquids, 174–175
energy density and, 635
of gases at critical point, 787
microscopic interpretation of, 653
at triple point, 788

Pressure balance, 636
Pressure dependence, electricity with,

table, 596–597
Pressure drag, 204
Pressure energy, 191
Pressure field, 186
Pressure gauges, 636–637
Pressure lever, 107
Pressure measurement(s)

additive correction term for, 800–801
tables on, 798–802

Pressure pumps, 180
Pressure valve, 178
Pressurized-water reactors, 949
Primary cells, 557
Primary kilogram, 37
Primary list of data, 1100, 1106, 1107
Primary radiation, 868
Primitive elementary cell, 969–970
Primitive lattice, 970
Principal axes, 123
Principal dispersion, 369
Principal moments of inertia, 123
Principal planes, 339
Principal points, 339
Principal quantum numbers, 856, 861
Principal refractive index, 369
Prism, 355

refraction by, 355–356
Prism spectroscope, 390
Probability density, 828, 1109
Product rule, 1122
Products, 742

of inertia, 122
Projectile motion, 28–31
Prompt neutrons, 936
Propagation vector, 288
Propagation velocity, 335
Propeller noise, 321
Proportional chamber, 900
Proportional counter, 962
Proportional range, 563
Proteins, electric properties of, 605
Proton number, 907
Protons, 421, 854, 907

lifetime of, 904
magnetic moment of, 910

Pseudoscalar mesons, 895
Psychrometry, 739

table on, 806
PTC (positive temperature coefficient),

435
Pulleys, 108–110
Pulsar, 152
Pulse modulation, 309
Pumping capacity, 179
Pumping flow, 179
Pumping height, 179
Pumps, 178–180
Pupil, 370
Pyrometer, 632

Q-machine, 586
Q-value, 924
Quadratic mean, 1103
Quadratic Stark effect, 877
Quadrupole moment, 444
Quality

of parallel-resonant circuit, 541
of series-resonant circuit, 539

Quality factor, 271, 959
Quanta, 825
Quantile, 1103
Quantities, SI units and, 1097–1100
Quantization axis, 864
Quantization of orbits, postulate of, 855
Quantum chromodynamics, 883, 888
Quantum generators, 880
Quantum Hall effect, 1004
Quantum-mechanical rotator, 872
Quantum mechanics, 825

basic assumptions of, 825–826
Quantum numbers, 918
Quantum optics, 337
Quantum physics, 815–1094

formula symbols used in, 1065–1069
tables on, 1071–1094

Quark confinement, 889
Quark-gluon plasma, 935
Quarkonium, 896
Quarks, 883, 892–894
Quartz glasses, gas transmittance of,

608
Quasi-elastic reactions, 934
Quasi-momentum, 993
Quasi-neutrality, 573
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Quasi-periodic motion, 218
Quasi-periodic phase-space trajectory,

217
Quasi-reversible process, 692
Quotient rule, 1122

Rabi experiment, 845
Radar, 10
Radar speed measurement, 302
Radial momentum, 48
Radial quantum number, 860
Radian, 11

per second, 32
per square second, 34

Radiant energy, 396
Radiant flux, 396–397
Radiant intensity, 397
Radiant power, 396–397
Radiation

deposition of, 764–766
interaction of, with matter,

953–958
tables on, 1088

Radiation constant of black body, 764
Radiation losses, 953
Radiation pattern, 398
Radiation pressure, 823
Radiation source, 398–399
Radio, stereo, 324
Radio waves, 542–544
Radioactive decay, 937–938
Radioactive equilibrium, 940
Radioactive isotopes, 937
Radioactivity, 937

environmental, 964–965
Radionuclides, 937

in environment, 939–940
Radiosity approach, 376
Radiotoxicity, 963
Radius of curvature, 27
Rainbow, 348
Raman spectra, 873–874
Random errors, 1100
Random surfaces, 625
Rankine scale, 630
Raoult’s law, 736
Rarefaction front, 311
Rate, 1107

of increase, 1104
Rate distributions, 1106–1111
Rate gyroscope, 128

Rate histogram, 1107
Rate table, 1107
Ray optics, 337
Ray tracing, 377
Rayleigh criterion, 379
Rayleigh-Jeans law, 819
Rayleigh lines, 874
Rayleigh scattering, 376
Reactance, 523
Reaction channel, 923
Reaction characteristic, 1025
Reaction cross-section, 925
Reaction enthalpy, 646–647
Reaction equation, 742
Reaction force, 13, 47
Reaction heat conduction, 578
Reaction mass, 79
Reaction principle, 43
Reactive impedance, 523
Reactive power, 527
Reactive power factor, 527
Reactivity excess, 948
Reader’s lens, 372
Real gas

equation of state of, 665–670
virial expansion of, 665

Real image, 338
Real power, 527
Real voltage source, 505–506
Réaumur scale, 630
Recoil, 80
Recoil principle, 79
Recombination, 562, 1061
Recombination coefficient, 562
Recombination range, 562
Rectified alternating voltage, 502
Rectified value, 515
Rectifier diode, 1019
Rectilinear conductor, magnetic field

of, 476
Red giant star, 151
Red limit, 821
Red shift of star light, 149
Reduced heat, 705–706
Reduced variable, 669, 727
Reference frames, 924
Reference-sound intensity, 318, 330
Reference-sound power, 318
Reference-sound pressure, 315, 318
Reference system, 5–6
Reference visual range, 371
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Reflectance, 765
Reflection

optical, 341–345
total, 349

radiation, 764
wave, 304–305

Reflection coefficient, 838
Reflection grating, 391
Reflection law

collision, 77–78
optical, 341
wave, 304

Reflection polarizers, 392
Refracting edge, 355
Refraction

double, 393
optical, 345–348, 379–380
by plane parallel glasses, 356–357
by prism, 355–356
by spherical surfaces, 357–358
wave, 302–303

Refraction law
optical, 346–347
wave, 303

Refractive index gradients, 367
Refractive indices, 345–346

table on, 415
Refractive optical elements, 384
Refractive power, 361
Refrigerating machine, 708
Refrigerator, 703
Regenerators, 709
Regression, 1100, 1106
Regression analysis, 1106
Relative aperture, 370
Relative atmospheric humidity, 739
Relative biological efficiency, 962
Relative error, 1101
Relative humidity, table on, 806
Relative maximum error, 1101
Relative moisture, 739
Relative permeability, 478
Relative permittivity, 456, 1058

table on, 601–602
Relative rate, 1107
Relative rate distribution, 1106, 1107
Relative refractive index, 347
Relative roughness, 208
Relative sensitivity, 403
Relative variance measure, 1105
Relative velocity, 301

Relative volume change in melting,
811

Relativistic dynamics, 145–148
Relativistic effects, 137, 144–145
Relativistic factor, 141
Relativistic force, 146
Relativistic heavy-ion collisions, 935
Relativistic increase of mass, 145–146
Relativistic kinetic energy, 147–148
Relativistic momentum, 146
Relativistic particles, energy-

momentum relation for, 148
Relativistic work, 147
Relativity

general theory of, 137, 148–152
principle of, 137–139
of simultaneity, 142
special theory of, 137–148

Relaxation, 986
Reliability, 1111–1113
Remanence, 482, 1053
Remanence flux density, 482
Repulsive interaction, 977
Residual compression, 167
Residual current, 568
Residual magnetism, 1053
Residual strain, 167
Resistance, temperature dependence of,

434–435
Resistance alloys

density of, table, 233
table on, 606

Resistance coefficient, table on,
250–251

Resistance load line, 1025
Resistance measurement by

compensation method, 510–511
Resistance phasor, 523–524
Resistance plane, 523–524
Resistance thermometer, 632
Resistive moment, 162
Resistivity, 432–433
Resistors

and capacitors
parallel connection of, 535
series connection of, 534

connection of, 436–437
in direct-current circuit, 503–505
and inductors

parallel connection of, 536
series connection of, 536–537
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Resistors (cont.)
parallel connection of, 436–437,

504–505
series connection of, 436, 504

Resolving power, 379
Resonance amplitude, 276
Resonance catastrophe, 277
Resonance-escape probability, 948
Resonance factor, 948
Resonance frequency, 276, 539, 541

of linear oscillator, 543
Resonance matter, 935
Resonance selectivity, 277
Resonance spectroscopy, 854
Resonances, broad spectrum of, 211
Resonator, 257
Resonator mirrors, 1064
Rest energy, 147
Rest friction, 56
Restoring force, 68, 258, 261
Resulting force, 45, 98
Resulting spring constant, 55
Retina, 370
Reverberation, 327–328
Reverberation time, 327–328
Reverse blocking current, 1033
Reverse blocking region, 1033
Reverse breakdown voltage, 1033
Reverse current, 1018
Reverse direction, 1018
Reverse recovery time, 1018
Reverse voltage, 1016
Reversible process, 692, 750
Revolutions per second, 33
Revolving-field machines, 545
Reynolds number, 203–204, 206
Rhodium/platinum thermocouple, 632
Rhombohedral Bravais lattice, 971
Richardson constant, 565
Richardson equation, 565
Richmann’s mixing rule, 748
Right-hand rule, 33, 465
Right-handed processes, 706
Right-handed system, 4, 1119
Rigid bodies, 13, 37, 93–128

connections between, 105
dynamics of, 111
general motion of, 97
motion of, 14

Rigid connections, 105
Rigid rotator, 872

Rim angle, 185
Ring conductors, 490
Rings of Saturn, 135
RL-circuit, switching current on and off

in, 513–514
Rocket equation, 81–82
Rocket thrust, 79–81
Rockets, 79–82

acceleration of, 79–80
Rockwell hardness, 171
Rod lenses, 368
Rogowski coil, 471
Roller bearings, 104
Rolling friction, 57–58, 269

coefficients of, table on, 243
Room temperature, 739

metals at, electricity in, table,
595–596

Root-mean-square deviation, 1105
Root-mean-square value, 515
Root-mean-square velocity, 654–655
Rope friction, 58–59
Rotary pump, 179
Rotary vibration, 265
Rotating-coil instrument, 428
Rotating-crystal method, 975–976
Rotating-field speed, 550
Rotating reference systems, inertial

forces in, 59–63
Rotation, 14, 31, 97

of apse line, 149
center of, 100

Rotation energy, 120
Rotational dynamics, fundamental law

of, 52–53
Rotational excitations, 921–922
Rotational frequency, 32
Rotational motion, 31–35, 100, 111

comparison of translational and, 53
equilibrium for, 117

Rotational spectra, 872–873
Rotational-vibrational band, 873
Rotor, 545
Roughness, 208
Round window, ear, 329
Rule of levers, 38
Run(s), 1100

mean values of, 1102–1104
Rupture stress, 169
Rutherford scattering, 911, 928
Rutherford scattering formula, 928
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Rydberg atoms, 854
Rydberg constant, 857

s-electrons, 862
s-wave scattering, 927
Sabine’s law, 328
Safety factor, 170
Sagittal section, 359
Saha equation, 576
Satellites, 135–136
Saturated steam, 739
Saturated vapor, 719
Saturated vapor pressure, 719

table on, 806
Saturation induction, 482
Saturation line, 741
Saturation magnetization, 727, 728,

1053
Saturation range, 562
Saturation region, 1024, 1038
Saturn, 133
Scalar, multiplication by, 1116
Scalar field, 439
Scalar product, 46, 1117–1118
Scales, 107
Scaling laws, 206–208
Scanning tunneling microscope, 566
Scattering, 376–377
Scattering angle, 77
Scattering center, 376
Scattering conservation laws, 822
Scattering states, 862
Schmidt mirror, 375
Schmitt trigger, 1042
Schottky diode, 1019
Schrödinger equation, 835–844
Schrödinger picture, 835
Scintillation counter, 899
Scissors, 107
Sclera, 370
Screen-grid vacuum tube, 571
Screened electric potential, 579
Screening constant, 869
Screw dislocation, 981
Screws, 107
Sea level, conversion to, 798–801
Second, 8
Second critical velocity, 136
Secondary cells, 559
Secondary-electron emission, 567

basic properties of, 1085–1086

Secondary electron multiplier, 567
Secondary rainbow, 348
Seger cone, 631
Selection rules, 862, 867
Selective total reflection, 990
Self-excitation, 211
Self-inductance, 488
Self-induction, 488–491
Self-radiation, 964
Self-similarity, 227
Self-sustained gaseous discharge,

563–564
SELFOC lenses, 368
Semi-metals, 1009
Semiconducting materials, effect of

ionizing radiation on, 1094
Semiconductor detectors, 899
Semiconductor diode, 1016–1023
Semiconductors, 396, 1001, 1009,

1011–1042
density of, table, 236
doping of, 1014–1016
electric properties of, 1093–1094
electron density in, 1011–1012
magnetic properties of, 1093–1094
tables on, 1093–1094
thermal properties of, 1093–1094

Sensitive dependence
of dynamical evolution on initial

conditions, 211, 220
on initial conditions, 220

Sensitivity, 1063
Separate-excited motor, 546
Separation of charge, 1055
Series connection

of capacitors, 459
of complex resistances, 528–529
equivalence of parallel connection

and, 541–542
of galvanic cells, 559
of inductances, 489
of magnetic reluctances, 472
of resistor and capacitor, 534
of resistors, 436, 504
of resistors and inductors, 536–537
of springs, 55
of thermal resistors, 758–759

Series limit, 857
Series motor, 547
Series resonance, 539
Series-resonant circuit, 538–539
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Shadow, 306
Shape-memory alloy, 988
Shear, 155, 156, 164–165
Shear angle, 164
Shear modulus, 164–165
Shear stress, 153, 155
Shell model, 917–920, 936
Shift moment, 102
Shock tube, 586
Shock wave, 209–210, 287
Shockley diode formula, 1017
Short-circuit current, 506
Short-circuit power, 508
Shunt motor, 546
Shunt resistor, 509
SI units, 1098

derived, 1126–1128
quantities and, 1097–1100
tables on, 1125–1130

Siemens (unit), 432
Siemens/meter, 433
Sierpinski triangle, 226
Sievert, 959
Signal dispersion, 352
Silicon(s)

doping in, properties of, 1094
electric properties of, 605

Silicon-strip detector, 899
Similarity laws, 206
Simple gas, 669, 727
Simultaneity, relativity of, 142
Simultaneous eigenfunction, 831–832
Single-mode wave guide, 351
Single-particle energies, 918
Single-particle excitation, 920
Single-phase alternating current motor,

547
Single probability, 1108
Singlet systems, 875
Singularity, 215
Sinks, 190
Sinusoidal alternating quantities, 515
Sinusoidal quantities, representation of,

in phasor diagram, 517–519
Siphon, 183
Siren, 320
Skin effect, 487
Sky maps, 150
Slide projector, 362
Sliding friction, 57, 70, 269

coefficients of, table on, 243–244

Slippage, 550
Slope, 48
Slope conductance, 568
Small-angle grain boundaries,

982–983
Smectic phases, 990
Snell’s law, 303, 346
Sockets, 105
Soft magnets, 1053
Soft superconductors, 1046
Solar constant, 682, 764
Solar energy converted into heat, 682
Solar system, 133
Solid angle, 12
Solid bodies, structure of, 967–979
Solid friction, 269
Solid-state physics, 967–1069

basic concepts of, 967–968
Solidification, 719, 736
Solidification enthalpy, 646
Solidification heat, 719
Solids, 718, 967

density of, tables, 231–237
electrons in, 1000–1011
equation of state for, 671
heat conductivity of, 793–794
optical properties of, 1009
specific calorific values of, 809
specific heat capacity of, 691,

793–794
tables of compressibility of, 247
velocity of sound in, 312–313

Solubility product, 747–748
Solutions, 743–744, 967

aqueous, temperature correction for,
803

tables on, 806
vapor pressure of, 736–742

table, 806
Sonar, 10
Sone (unit), 331
Sound

damping coefficient for, in gases, 410
parameters of, 313–317
perception of, 330–331
relative quantities, 317–319
timbre of, 333
wavelength of, 314

Sound-absorbing material, 325
Sound absorptance of building

materials, 414
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Sound absorption, 324–326
degree of, 325–326

Sound attenuation, 327–328
for standard pressure, 413

Sound damping, 325
Sound-damping coefficients for liquids,

411
Sound displacement, 314–315
Sound dissipation, degree of, 326
Sound emitter, 321
Sound field quantities in air, 410
Sound frequencies, 314
Sound intensity, 316, 333
Sound intensity level, 318
Sound level difference, 319
Sound level excess, 319
Sound levels, evaluated, 331
Sound particle velocity, 315
Sound power, 317
Sound power level, 318
Sound pressure, 313–314
Sound receivers, 323–324
Sound reflection, degree of, 325
Sound-reflection factor, 327
Sound-relative quantities, 318
Sound transducer, 321
Sound-transmission degree, 326
Sound velocity, 209, 311–313

in air, 409
in construction materials, 412
in gases, 409
in liquids, 410
in metals, 411
in oil and mineral-oil products, 410
in synthetic materials and glasses,

412
Sound wave(s), 311–319

energy density of, 316
Source point, 338
Sources, 190, 1030

of sound, 319–323
Space(s)

curvature of, 149
dimension of, 3–4
homogeneity of, 900
isotropy of, 900
of states, 215

Space charge regions, 1015
Space cone, 125
Space-fixed coordinate system, 96
Space-grid vacuum tube, 571

Space lattice, 968
Space-time continuum, 137

curved four-dimensional, 148
Span, 1104
Spark discharge, 564
Spatial statics, 104
Special continuous distributions,

1110–1111
Special discrete distributions, 1109
Special names, 1099
Special theory of relativity, 137–148
Specific activity, 939
Specific caloric value, 681, 809
Specific electric resistance

of insulating materials, 603
tables on, 595–598

Specific energy, 933
Specific enthalpy

of steam, 808
tables on, 809–813
of water, 807

Specific evaporation enthalpy
of pure metals, 810–811
of substances, 812–813

Specific evaporation heat, 718
Specific gas constant, 662, 690

of gases, 787
Specific heat, 679
Specific heat capacity, 687–691, 723

phonons and, 995–996
of solids, 793–794

Specific ionization, 956
Specific melting enthalpy

of pure metals, 810–811
of substances, 812–813

Specific melting heat, 719
Specific quantity, 628–629

of heat per volume, 767
Specific radiant emittance, 399
Specific volume of steam, 808
Spectral absorbance, 400–401
Spectral class, 151
Spectral colors, 336, 390
Spectral decomposition, 390
Spectral degree of brightness, 404
Spectral energy flux density, 961
Spectral filters, 400
Spectral particle radiance, 960
Spectral pure absorptance, 401
Spectral pure transmittance, 402
Spectral pyrometer, 632
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Spectral quantities, 400
Spectral radiance, 400
Spectral-radiation density, 580
Spectral reflectance, 400
Spectral relative luminosity, 404
Spectral resolving power, 379
Spectral transmittance, 401
Spectrograph, 390
Spectrometer, 390
Spectroscope, 390
Spectroscopic apparatus, 390–391
Spectroscopic photometer, 390
Spectroscopy, 852

fundamentals of, 851–854
Spectrum, 390, 852
Spectrum analysis, 390
Speed of light

in matter, 499
in vacuum, 335, 499

Spent-fuel elements, 949
Sphere, flow around, 202–203
Spherical aberration, 344, 366
Spherical capacitor, 460
Spherical coordinate system, 4
Spherical lens, 358
Spherical mirror, 342
Spherical surfaces, refraction by,

357–358
Spherical wave, 291
Spin, 844–847
Spin eigenfunction, 846
Spin operator, 845
Spin-orbit coupling, 858, 864–865, 913,

918
Spiral springs, 120
Spitzer formula, 577–578
Spontaneous emission, 879, 1064
Spontaneous fission, 936
Spontaneous magnetization, 728
Spontaneous nucleon emission, 947
Sprayer, 195
Spring

mass on, 258–260
vibration of, 69–70

Spring balance, 38
Spring constant, 54
Spring torsion forces, 54–55
Square meter, 10
Square-wave signals, 1042
SQUID (superconducting quantum

interferometer device), 1045

Squirrel-cage winding, 549
Stacking disorder, 982
Stadium billiards, 212
Standard acceleration of gravity, 54
Standard atmosphere, 178, 636

in relative units, 798
Standard conditions, 631, 636
Standard density, 178
Standard deviation, 1104, 1105
Standard hydrogen electrode, 552, 556
Standard model, 883–887

advances beyond, 904–905
Standard normal distribution,

1110–1111
Standard pendulum, 260–263
Standard pressure, 178, 636

sound attenuation for, 413
Standard resistance, 1004
Standard temperature, 631

volume measurement conversion to,
803

Standing electron waves, 1007–1008
Standing waves, 296–299
Star catalogs, 150
Star evolution, 151–152
Star light, red shift of, 149
Stark effect, 876–877
Stars, 150–152
State density, 996

in Fermi systems, 1005
State property, 627
State property definitions, 627–629
State variables, 623, 627–641

equilibrium and, 623–673
Static friction, 56–57

coefficients of, table on, 244
Static pressure, 191
Static-pressure tube, 192
Static stability, 103–104
Statics, 97–110

equilibrium conditions of, 103–104
Stationary Schrödinger equation, 837
Stationary state(s), 837

postulate of, 855
Statistical errors, 1100
Statistics, error theory and, 1100–1113
Stator, 545
Steady state, 625–626
Steam

specific enthalpy of, 808
specific volume of, 808
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Steam-air mixtures, 738–742
Steam content, 740
Steam engine, 709–710
Steam turbine, 180
Steel

density of, table, 233
table of elastic properties of, 241

Steel girder, 163–164
Stefan-Boltzmann constant, 764
Stefan-Boltzmann law, 764, 820
Steiner’s rule, 113–114
Stellar brightness, 150
Stellar clusters, 151
Stellarator, 591
Step-recovery diode, 1021
Steradian, 12
Stereo radio, 324
Stern-Gerlach experiment, 844
Stirling cycle, 708–709
Stirling engine, 709
Stoichiometric coefficients, 742
Stoichiometry, 743–744
Stokes (unit), 199
Stokes’ friction, 270–273
Stokes’ law of friction, 202
Stokes lines, 874
Stones, natural, density of, table, 236
Stopping power, 954

for electrons, 955
Stopwatch, 8
Straight lever, 106
Straight-line collision, 74
Strain, 155, 156–157
Strain tensor, 159
Strange attractor, 221
Strangeness, 894
Stray flux, 492
Stray light, 367
Stream lines, 187
Stream lines, electric current,

430–431
Stream tube, 187
Streamer chamber, 899
Streamlined body, 205
Stress, 153–156
Stress-strain diagram, 167
Stress tensor, 154
Strings as sources of sound, 319–320
Stripping reaction, 932
Stroboscope, 216
Strong interaction, 886–887

Structure investigation, methods for,
974–976

Student’s distribution, 1110–1111
Subatomic structures, 898
Subcritical assembly, 947
Subjective photometry, 396
Sublimation, 719
Sublimation enthalpy, 646
Sublimation heat, 719
Submersion depth, 183
Subshell, 877
Substances

specific evaporation enthalpy of,
812–813

specific melting enthalpy of, 812–813
thermal properties of, tables on,

788–795
Substitution rule, 1124
Substrate, 1030
Subtraction of vectors, 1117
Subtractor, 1040
Suction effects, 195–196
Suction pumps, 180
Suction valve, 178
Sum of error squares, 1106
Sum rule, 1122, 1123
Summing amplifiers, 1039–1040
Summing integrator, 1041
Sun, 133
Superconducting compounds, table of,

1092
Superconducting elements, selected

properties of, 1091
Superconducting quantum

interferometer device (SQUID),
1045

Superconductivity, 730–731,
1042–1049

fundamental properties of,
1043–1047

theory of, 1044
Superconductors, 730

tables on, 1091–1092
Supercooled vapor, 727
Supercritical assembly, 947
Superdeformed nuclei, 934
Superelasticity, 989–990
Superfluidity, 731
Superheated liquid, 727
Superheated steam, 740
Superheavy elements, 879, 935
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Supernovae, 151
Superposition law, 277
Superposition of vibrations, 277–283

in different directions and with
different frequencies, 280–282

of different frequencies, 279–280
of equal frequency, 277–278

Superposition principle, 213–214, 292
Supersaturated steam, 739
Supersonic velocity, 209
Supersymmetry model, 905
Support force, 103
Surface energy, 184, 917
Surface-friction drag, 204
Surface tension, 183–184
Surface waves, 309–310
Suspensions, 199
Switching diode, 1018
Switching hysteresis, 1042
Symmetric axis, 124
Symmetries, 900–905
Symmetry energy, 917
Synchronous machine, 548–549
Synchrotron, 898
Synthetic materials

sound velocity in, 412
table of elastic properties of, 242

Synthetics, density of, table, 235
System(s), 623–624

of principal axes, 123
of units, 1098

Systematic errors, 1100
Système International d’Unités, 1098,

see also SI units

t-distribution, 1110–1111
Tachometer, 15
Tachyons, 142
Tangent to curve, 22
Tangent unit vector, 24
Tangential acceleration, 26, 47
Tangential force, 47
Tangential stresses, 155
Tangential velocity, 34–35
Technical atmosphere, 635
Technical mechanics, 104–105
Technical work, 645, 711
Telescope, 363, 373–376
Temperature(s), 629–634

calibration points of, 630–631
equalization of, 748–750

of gases at critical point, 787
heat conduction at, 795
low, generation of, 714
measurement of, 631–632
at triple point, 788
versus viscosity at normal pressure,

249
Temperature/altitude factors, 799–801
Temperature coefficient, 434–435
Temperature correction

for aqueous solutions, 803
for glass constant volume

thermometer, 804
for mercury barometer

measurements, 802
Temperature correction factor,

249–250
Temperature dependence

of evaporation heat, 811
of resistance, 434–435

Temperature field, 186
Temperature radiation, 818
Temperature scales, calibration points

of, 775–776
Temperature units, 629–630
Tempering, 989
Tensile load, regions in, 167–169
Tensile strength, 169
Tension, 155
Tension energy, 69
Tension springs, 55
Tensor force, 913
Tensor of inertia, 121–124
Terminal voltage, 503
Terrestrial radiation, 964
Terrestrial telescope, 375
Tesla (unit), 465
Test charge, 440
Tetragonal Bravais lattice, 970
Tetragonal crystals, magnetic

anisotropy of, 617
Tetrode, 571
Texture, 968
Texturization, 1048
Theodolite, 10, 12
Thermal conductivity, 754
Thermal diffusivity, 768
Thermal equilibrium, 626
Thermal generation of plasmas, 586
Thermal insulators, heat conduction of,

794
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Thermal load of ohmic components,
516

Thermal neutrons, 949
Thermal noise, 629
Thermal properties

of building materials, 791–792
of construction materials,

791–792
of gases, 792
of liquids, 793
of plastic materials, 793
of pure metals, 789–791
of substances, tables on, 788–795

Thermal radiation, 818
Thermal reactors, 949
Thermal resistance, 757–759

heat flow and, 760–761
Thermal resistors, series connection

of, 758–759
Thermal sound generation, 321
Thermal transmittance

of building bricks, 796
of building materials, 795

Thermistor, 435
Thermo-ionic emission, 565
Thermocouples, 396, 632

common, 599
thermoelectric voltage of, 599

Thermodynamic machines,
706–714

Thermodynamic potential(s), 627,
641–650

entropy as, 642–643
Thermodynamic quadrangle, 649
Thermodynamic stability, 649–650
Thermodynamic systems, 623

work in, 676–677
Thermodynamic temperature, 633
Thermodynamical equilibrium, 213
Thermodynamics, 619–813

first law of, 675, 699–701
formula symbols used in,

771–773
laws of, 698–702
Ohm’s law of, 758
second law of, 679, 701–702
tables on, 775–813
third law of, 702
zeroth law of, 626, 698–699

Thermoelectric emission properties of
tungsten cathode, 1084

Thermoelectric potential series, tables
on, 599

Thermoelectric voltage of
thermocouples, 599

Thermoluminescence dosimeter, 963
Thermometers, 631

operation ranges of, 633
Thermopane windows, 759
Thermoplasts, 986

density of, table, 235
Thermosets, density of, table, 235
Thermovac tubes, 636
Theta-pinch, 588
Thick lenses, 358–364
Thick spherical lens, 360
Thin lenses, 364
Thinness ratio, 170
Third critical velocity, 136
Three-fingers rule, 466
Three-level laser, 880
Three-phase machine, 547–550
Threshold current, 1064
Threshold energy, 926
Threshold voltage, 1018
Thrust, 79–81
Thrust bearings, 105
Thyristor, 1032–1034
Tilting moment, 104
Timbre of sound, 333
Time, 8–9

homogeneity of, 900
Time average of periodic functions,

515–516
Time constant, 511, 1063
Time dilatation, 144–145
Time evolution of systems, 212
Time evolution operator, 835
Time interval, 8
Time projection chamber (TPC), 900
Time-reversal invariance, 903
Time units, 8
Time variation of electron

concentration, 1062
Titius-Bode relation, 134
Tokamak, 591
Tonal ranges, 333–334
Tone, 332
Tone scale, 332
Toothed gears, 109
Top quark, 893
Toroidal plasma confinement, 590–591
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Torque, 50–52, 100–101, 156, 545
of couples, 102
impulse of, 53

Torr, 636
Torricelli’s effluent formula, 193–195
Torsion, 156, 165–166, 265
Torsion springs, 55
Torsion stress, 165–166
Torsional constant, 120, 265
Torsional oscillator, 265
Torsional potential energy, 120–121
Torsional vibration, 265–266
Total-attenuation coefficient, 958
Total cross-section, 925
Total efficiency, 72
Total heat capacity, 684–686
Total polarization, 1058
Total pressure, 732
Total sound level, 318
Totally inelastic collision, 74, 78–79
TPC (time projection chamber),

900
Trajectory, 6–7, 138

curvature of, 27–28
in phase space, 215
in three dimensions, 22

Transfer characteristic, 1025
Transformer, 493–494
Transformer induction, 487–488
Transformer oil, electric properties

of, 605
Transient oscillations, 219
Transistor circuits

basic, 1026–1029
notations for, 1024

Transistors, 1023–1030
Transition elements, 878
Transition metals, 977
Translation, 14, 97, 969
Translation energy, 120
Translational motion, comparison of

rotational and, 53
Transmission, radiation, 764
Transmission coefficient, 838
Transmission grating, 391
Transmission ratio, 493
Transmissions, 109–110
Transmittance, 765
Transport processes, 658–660
Transport theory, 186
Transuranic elements, 878, 935

Transverse drag, 581
Transverse phonons, 993, 994
Transverse polarization, 294
Transverse strain, 155, 158–159
Transverse wave, 293, 311, 542
Transverse Zeeman effect, 875
Traps, 1063
TRIAC (triode alternating current)

switch, 1034
Triangulation, 10
Triatomic molecules, 658
Triclinic Bravais lattice, 971
Trigger pulse, 1033
Trigger time, 1033
Triggering current, 1033
Trimmer capacitors, 458
Triode alternating current (TRIAC)

switch, 1034
Triple point, 719, 735

pressure at, 788
temperature at, 788

Triple scalar product, 1119
True error, 1101
True value, 1100
Trusses, 105
Tube friction, 207–208
Tunable capacitors, 458
Tungsten cathode, thermoelectric

emission properties of, 1084
Tunnel diode, 1021–1022
Tunnel effect, 839, 941, 1021
Tunnel microscope, 839
Turbine, 179, 180
Turboprop engine, 180
Turbulences, 211
Turbulent flow, 197–198, 203–205
TV screens, 1063
Twilight number, 374
Twisted nematic structures, 990, 991
Twisting, 165
Two-body collisions, 72
Two-dimensional harmonic oscillator,

281–282
Two-port equations, 1026
Two-port network, 501, 1026
Two-terminal networks, 501, 529

complex resistances of, 533
Two-way effects, 988–989
Two-wire lines, 460
Type-I and type-II superconductors,

1046
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Ultrasonic diagnostics, 329
Ultrasound, 314, 328–329
Ultraviolet spectral range, table on, 417
Uncertainty principle, Heisenberg’s,

827
Underdamped case, 271
Underexcitation, 549
Unification of interactions, 883–891
Uniform electric field, 440
Uniform motion, 3, 19
Uniformly accelerated motion, 19–21
Uniformly charged cylinder, field

strength and potential of,
450–451

Uniformly charged sphere, field
strength and potential of,
449–450

Unipolar bond, 978
Unipolar transistors, 1030–1032
Unit vector, 1117
Units, 1098

conversions of, 1099
Universal constants, table of values of,

773
Universal diodes, 1018
Universal gas constant, 639, 661, 690
Universal motor, 547
Universality, 225, 883
Universe, properties of, 149–150
Upper heating value, 682
Uranus, 133
Urn model, 1108
Useful flux, 492

Vacancies, 979–980
Vacancy concentrations, measurement

of, 980
Vacancy-formation energy, 980
Vacuum

electric displacement in, 453–454
speed of light in, 335, 499

Vacuum pump, 173
Vacuum-tube diode, 568
Vacuum-tube parameters, 568–570
Vacuum-tube triode, 568
Vacuum tubes, 567–572

amplification factor of, 570
Valence band, 1008
Valence electrons, 878
Van der Waals bond, 978–979
Van der Waals constants, table of, 788

Van der Waals equation, 666–668, 724
in reduced variables, 727
as virial expansion, 669–670

Van der Waals forces, 183
Van der Waals gas, phase transitions

and, 724–727
Vane pump, 178
Vapor-ejector pump, 179
Vapor-phase epitaxy, 1035
Vapor pressure

of solutions, 736–742
tables on, 806–808
of water, tables on, 807

Vapor-pressure curve, 719, 724, 735,
736

Varactor, 1022
Variable-disk capacitors, 458
Variable-resistor units, 435–436
Variable stars, 151
Variance, 1097, 1104–1105
Variation coefficient, 1105
Variation width, 1104
Varistor, 436
VDR (voltage-dependent resistor), 436
Vector addition, 1117
Vector calculus, 1115–1119
Vector field, 439
Vector mesons, 895
Vector model of atom, 864
Vector multiplication, 1117–1119
Vector potential, 470
Vector product, 1118–1119
Vector subtraction, 1117
Vector waves, 292–293
Vectors, 1115–1116
Velocity(ies), 14–17

addition theorem of, 142–143
determination of, from acceleration,

18–19
Velocity coefficient, 195
Velocity-dependent mass, 147
Velocity distribution, 653
Velocity field, 186
Velocity gradient, 198
Velocity potential, 189
Velocity profile, 198
Velocity vector, 23

properties of, 24
Venturi principle, 195
Venturi tube, 192–193
Venus, 133
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Verdet constant, 392
Vertex, 11
Vertex rule in magnetic circuit, 471
Vibration air columns, 320–321
Vibration modes, 284
Vibrational excitations, 871, 921
Vibrational spectra, 871–872
Vibrations, 253, 255–285

circular motion and, 262–263
coupled, 283–285
of spring, 69–70
superposition of, see Superposition

of vibrations
symbols used in formulae on,

407–408
tables on, 409–414
waves and, 253–417

Vice, 105
Vickers hardness, 171
Video camera, 369
Virgin curve of magnetization, 482
Virial coefficient, 665
Virial expansion

of real gas, 665
Van der Waals equation as, 669–670

Virtual displacement, 88
Virtual image, 338
Virtual image focus, 363
Virtual image point, 338
Virtual particle, 886
Virtual photons, 887
Virtual trajectory, 88–89
Visco-elasticity, 985–986
Viscosity, 198

tables on, 248–250, 788–789
versus temperature at normal

pressure, 249
Viscous friction, 270–273
Vision, defects in, 371
Visual angle, 371
Visual field, 374
Voices, tonal ranges of, 334
Voigt-Kelvin model of relaxation, 987
Volt (unit), 446
Volt-meter, 452
Volt/meter, 440
Voltage(s)

across coil, 513
at capacitor, 511
electric, see Electric voltage
guide values of, 608

of Weston standard elements,
607–609

Voltage amplifier, 1038
Voltage connection, 510
Voltage-dependent resistor (VDR), 436
Voltage divider rules, 504
Voltage followers, 1041–1042
Voltage gain, 1028
Voltage measurement, 509
Voltage ranges in electric engineering,

608
Voltampere, 528
Voltampere-reactance, 528
Voltmeters, 509
Volume, 10
Volume energy, 916
Volume expansion

of liquids, 795
of water, 795

Volume-expansion coefficient, 38, 176,
652, 671

Volume flux, 188
Volume magnetostriction, 483
Volume measurement conversion to

standard temperature, 803
Volume percentage, 743
Vortex-free flow, 190
Vortices, 1046

formation of, 203
Vulcanization, 986

Water
specific enthalpy of, 807
vapor pressure of, tables on, 807
viscosity of, table, 248
volume expansion of, 795

Water anomaly, 673
Water content, 739, 740
Water dissolutions in glycerol, viscosity

of, table, 248
Water droplets, 740
Water equivalent, 685–686
Water-jet pump, 179, 195
Water jet turbine, 180
Water turbine, 180
Water waves, kinds of, 310
Water wheel, 180
Watt (unit), 71, 317
Watt second, 675
Watt/square meter, 316, 500
Wave character of particles, 825–827
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Wave equations, 287, 498
Wave front, 288
Wave function, 827

normalization of, 836–837
Wave number, 288
Wave-number vector, 825
Wave-optical boundary condition, 351
Wave optics, 337, 376–395
Wave packet, 300, 828–829
Wave-particle duality, 336, 826–827
Wave propagation, direction of, 288
Wave theory, 336
Wave train, 294
Wave vector, 288
Wavelength, 289, 335
Waves, 253, 287–310

basic features of, 287–293
modulation of, 308–309
symbols used in formulae on,

407–408
vibrations and, 253–417

Weak coupling, 283
Weak interaction, 885–886
Weakons, 885, 887
Weber (unit), 468, 489
Weber-Fechner law, 330
Wedges, 107
Weibull distribution, 1110–1111, 1112
Weight, 53–54, 131
Weiss domains, 481, 728
Well-tempered scale, 333
Wendelstein Stellarator, 591
Weston standard elements, voltage of,

607–609
Wet steam, 719, 740
Wetting energy, 186
Wheatstone’s bridge, 510
Wheelbarrow, 107
Whiskers, 988

table of elastic properties of, 240
Whole tone, 333
Widemann-Franz law, 1000
Widths, 1015–1016
Wien’s displacement law, 819
Wien’s law, 819
Wigner force, 913

Wind forces, table of, 1129
Wind load, 205
Wires, table of elastic properties of, 240
Wood, density of, table, 236
Woods-Saxon potential, 931
Woodwind instruments, 321
Work, 63–65, 118

of deformation, 68–69, 166–167
relativistic, 147
in thermodynamic systems, 676–677

Work function, 565, 821
for adsorbed surfaces, 1084
for elements, 1082–1083

World, mirror symmetry of, 900
World line, 141
World point, 141

X-ray computer tomography, 871
X-ray diffraction, 974
X-ray scattering, methods of, 975–976
X-ray sources, dose rate of, 965
X-ray spectrum of elements,

characteristic, main lines of,
1086

X-rays, 868–871
applications of, 870–871
mass-attenuation coefficient for, 1088

Year, 8
Yield strength, 168, 169
Young’s modulus, 156–157
Yukawa potential, 887, 914
Yukawa term, 131, 884

Z-diode, 1019–1020
z-pinch, 587
Zeeman effect, 875–876
Zener effect, 1017
Zener voltage, 1017
Zero balancing, 510
Zero of energy, 66
Zero phase angle, 515
Zero-point energy, 842
Zinc-carbon battery, 558
Zone melting method, 968
Zoom objective, 369



Natural constants in SI units

The numerical values are taken from CODATA.

Error
Quantity Symbol Value (ppm)

speed of light in vacuum c 2.99792458 · 108 m/s exact
gravitational constant G 6.67259 · 10−11 m3/(kgs2) 128
electron charge, e, e0 1.60217733 · 10−19 C 0.30

elementary charge
Planck’s quantum h 6.6260755 · 10−34 J · s 0.60

of action
Planck’s constant � = (2π)−1h 1.05457266 · 10−34 J · s 0.60
Avogadro’s number NA 6.0221367 · 1023 mol−1 0.59
Faraday constant F = NAe0 9.6485309 · 104 C/mol 0.30
electron mass me 9.1093897 · 10−31 kg 0.59

0.51099906 MeV 0.30
Rydbeg constant R∞ = (2h)−1mecα2 1.0973731534 · 107 m−1 0.0012
fine-structure constant α = e2

0(2ε0hc)−1 7.29735308 · 10−3 0.045
α−1 137.0359895 0.045

electron radius re = �(mec)−1α 2.81794092 · 10−15 m 0.13
e−-Compton λC = h(mec)−1 2.42631058 · 10−12 m 0.089

wavelength
Bohr radius a0 = reα

−2 5.29177249 · 10−11 m 0.045
atomic mass unit u = 1

12 m(12C) 1.6605402 · 10−27 kg 0.59
proton mass mp 1.6726231 · 10−27 kg 0.59

938.27231 MeV 0.30
neutron mass mn 1.6749286 · 10−27 kg 0.59

939.56563 MeV 0.30
magnetic flux quantum �0 = h(2e0)

−1 2.06783461 · 10−15 Wb 0.30
specific electron charge −e0m−1

e −1.75881962 · 1011 C/kg 0.30
Bohr magneton µB = e0�(2me)

−1 9.2740154 · 10−24 J/T 0.34
magnetic moment µe 9.2847701 · 10−24 J/T 0.34

of electron
nuclear magneton µN = e0�(2mp)

−1 5.0507866 · 10−27 J/T 0.34
magnetic moment µp 1.41060761 · 10−26 J/T 0.34

of proton
gyromagnetic ratio γp 2.67522128 · 108 rad/sT 0.30
quantum Hall resistance RH 25812.8056 	 0.045
universal gas constant R 8.314510 J/(mol K) 8.4
Boltzmann constant k, kB = R NA

−1 1.380658 · 10−23 J/K 8.5
Stefan-Boltzmann σ = π2k4

B(60�3c2)−1 5.67051 · 10−8 W/m2K4 34
constant

Wien’s constant b = λmaxT 2.897756 · 10−3 m · K 8.4
permeability of free space µ0 4π · 10−7 Vs/(Am) exact
permittivity constant ε0 = (µ0c2)−1 8.85418781762 · 10−12 As/(Vm) exact

of free space
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