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Preface 

In the past 40 years, electronic systems have become a pervasive force in 
modern society. Digital integrated circuits (ICs) are at the heart of a large ma- 
jority of these systems. These digital ICs are complex systems comprised of 
millions of interconnected transistors in a very small area. Moreover, the un- 
derlying semiconductor fabrication technology used to manufacture these ICs 
allows for the doubling of the number of transistors in the same area approxi- 
mately every 18 months. 

The design of digital systems is an intricate and time consuming process that 
progresses through various phases and levels of abstraction relying heavily on 
CAD (Computer-Aided Design) software tools. Within this context, ensuring 
the correctness of these digital systems is a critical consideration, especially 
because failure costs are becoming increasingly high. One of the most famous, 
recent examples of the importance of correct design is the Intel Pentium flaw 
in the floating point divide unit in 1994 that eventually forced Intel to replace 
many of the Pentium chips that were already in the market. In many cases, the 
possibility of failure is plainly unacceptable. Examples of these applications 
are transportation systems, medical applications and financial systems. Driven 
by the importance of correct design, the cost of verification in modern com- 
puting systems has grown to dominate the cost of system design in terms of 
the time and human resources dedicated to it. In contrast, even though guaran- 
teeing the correctness of a design is such a central aspect of its development, 
current verification methodologies are still inadequate to tackle the complex 
systems that are being developed nowadays. Hardware design companies try 
to compensate for mediocre CAD tools by dedicating the majority of their re- 
sources to verification, yet are still unable to guarantee correct functionality 
over the entire design space. 

In industry, the scalability, flexibility and predictable run-time behavior of 
logic simulation makes it the most widely accepted technique for ensuring the 
correctness of digital ICs. The technique is based on verifling a digital system 
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by providing sequences of binary values for each of the inputs of the system 
and checking that the corresponding outputs are correct, based on what the de- 
sign team expected to see or described in a specification document. However, 
logic simulation can usually visit only a small fraction of all the possible con- 
figurations of a system - also called the state space - and, thus, the discovery 
of bugs heavily relies on the expertise of the designer to select a few crucial 
configurations to verify. 

Symbolic simulation is another verification method that is attracting increas- 
ing interest because it allows the verification engineer to explore all, or a major 
portion, of a circuit's state space without the need to design time-consuming 
test stimuli. However, this approach poses a high demand on the resources of 
the simulating host, and in particular, on the memory system, because of the 
complexity of the algorithms involved and their unpredictable runtime behav- 
ior. Thus, the scalability of this approach has been the main limiting factor to 
its mainstream deployment, with the consequence that, thus far, its scope has 
been limited to small systems. 

About this book 
This book presents recent advancements in symbolic simulation-based solu- 
tions which radically improve scalability. We overview current verification 
techniques, both based on logic simulation and on formal verification meth- 
ods, and we describe in detail the baseline technique of symbolic simulation. 
The core of this book focuses on new techniques that narrow the performance 
gap between the complexity of digital systems and the limited ability to verify 
them. In particular we cover a range of solutions that exploit approximation 
and parametrization methods in order to achieve this goal. In the direction 
of approximation techniques, we comprehensively cover quasi-symbolic sim- 
ulation - an aggressive technique aiming at simulating only the portion of the 
design necessary for the verification goal at hand - and cycle-based symbolic 
simulation - a unique combination of formal methods and logic simulation that 
can stimulate a circuit with a very large number of input combinations and se- 
quences in parallel. Cycle-based symbolic simulation is a hybrid solution that 
uses both approximation and parametrization to attain its scalability goal. Its 
key concept is the use of a parametric form to represent the set of states visited 
during simulation. This approach maintains a high degree of scalability, in line 
with current logic simulation techniques, while achieving better efficiency. 

In the realm of parametric solutions, we discuss a range of approaches, in- 
cluding various applications of parametric symbolic simulation to industrial 
microprocessor designs. An in-depth analysis is dedicated to another solu- 
tion that we recently proposed, disjoint-support decomposition-based symbolic 
simulation, where the parametrization makes use of the disjoint-support de- 
composition properties of a Boolean function. This simulation technique is 
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rooted on a novel algorithm that exposes the disjoint decomposition proper- 
ties of a Boolean function by restructuring its BDD representation. The new 
algorithm is very efficient in the sense that it has worst-case complexity that 
is only quadratic in the size of the initial BDD, compared to that of previous 
solutions which had exponential complexity in the number of input variables 
of the function. We deploy this algorithm to decompose of the state functions 
in symbolic simulation. Then, by restructuring the next-state functions using 
their disjoint components, it is possible to transform them into a simpler para- 
metric form without sacrificing simulation accuracy. Results show that this 
technique is effective in reducing the memory requirements of symbolic simu- 
lation while maintaining exact state exploration. When the design complexity 
becomes overwhelming, it can trade-off search breadth for performance, and 
proceed to simulate very large trace sets in parallel, thus maintaining a simula- 
tion speed and memory profile that are close to logic simulation. 

In structuring this book, the hope was to provide an interesting reading for a 
broad range of readers. Chapters 1 ,2  and 3 constitute a panoramic flight over 
the world of digital systems' design and, in particular, verification. Chapter 
3 reviews some of the mainstream symbolic techniques in formal verification, 
dedicating most of the focus to symbolic simulation. 

We use Chapter 4 to cover the necessary principles of parametric forms 
and disjoint-support decompositions. In particular, we attempt to keep the 
material at a level that facilitates understanding, but without too many for- 
mal details. While there is a range of resources discussing parametric forms 
and parametrizations for Boolean functions, we felt that the topic of disjoint- 
support decompositions was not as readily available. For that reason Appendix 
A complements Chapter 4 in providing a more formal presentation of the topic 
and derivation of the theoretical results. 

Chapters 5 and 6 focus on a range of recent symbolic simulation techniques, 
which we grouped in approximate solutions, and exact parametrizations. Fi- 
nally, Chapter 7 wraps up the presentation and outlines possible future research 
directions. 
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Chapter 1 

INTRODUCTION 

In the past decade, the semiconductor industry has experienced a challeng- 
ing evolution in the complexity of digital integrated circuit (IC) designs: in- 
creasing integration density and die size has made it possible to design chips 
with hundreds of millions of transistors. In the same respect, the growing im- 
portance of getting products to market quickly has increased the pressure on 
design teams to deliver new products and new technologies in a short time 
span: typical development times are less than two years. In this fast evolving 
landscape, ensuring that the digital ICs are functionally correct is crucial: an 
error in the design's functionality can delay product deployment by months. 
Moreover, ICs are embedded in many safety critical applications, where a de- 
sign flaw can lead to the loss of human life. 

Due to the importance of design correctness, a significant fraction of engi- 
neering development time and resources are devoted to it. Design verification 
involves checking that the initial functional design of a circuit is correct against 
the specifications. It consists of a whole set of activities aimed at acquiring rea- 
sonable confidence that a circuit will function correctly, under the assumption 
that no manufacturing fault is present. Validating the functionality of digi- 
tal circuits and systems is an increasingly difficult task. Multiple chip-design 
projects are reporting that approximately 70% of their design time is spent in 
verification. This is due to the growing complexity of the designs that has not 
yet been accompanied by improvements in functional verification techniques. 

Part of this high resource allocation is due to the fact that verification method- 
ologies are still very experimental, there is almost no standard approach or 
methodology in any area pertaining to verification, and the whole process is 
still largely manual. The cause of this high investment cost can be attributed 
to the large complexity of the task at hand, but also to the lack of support from 
the design automation industry. While on the design synthesis front, they have 
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made available tools that can, at least partially, support the complexity and the 
challenges of such highly integrated designs . . . on the verification front there 
has been almost a complete lack of support. The only widely deployed tools 
for verification are logic simulators. Such simulators are a key tool for the ver- 
ification team to gain insight in to the actual functionality of the design under 
test; nonetheless, they cannot be used to guarantee the general correctness of 
any aspect of a design and thus, their usefulness as push-button verification 
tools is limited. 

1.1 Functional validation 

Designers normally try to ensure correctness by developing multiple sets of 
tests that stimulate a digital design and by later inspecting the results of the 
simulations. These techniques are the only ones available today that can cope 
with the complexity and scale of current digital ICs; at the same time they have 
significant limitations. 

Today, logic simulation is the mainstream approach for the validation of 
large synchronous systems because of its scalability: CPU time is proportional 
to the design size and test length. Simulation is also flexible: practical cycle- 
based simulators allow for circuits with multiple clocks and the ability to mix 
cycle-based and event-based simulation. Unfortunately, the fraction of the de- 
sign space which can be explored by simulation is miniscule, especially for 
large designs. Only one state and one input combination of the design under 
test are visited during each simulation cycle. Moreover the test stimuli must be 
handcrafted by the designers to cover those areas of the design that they wish 
to validate. For a large, complex system it is impossible to test andlor simulate 
all possible inputs or sequences of inputs. One measure of the quality of veri- 
fication for a design that is commonly used in industry is state coverage. State 
coverage counts how many different configurations of a system have been vis- 
ited, and consequently verified, by simulation. When the size of the design 
space, or total number of reachable configurations, is known, the state cov- 
erage can be expressed as a fraction of the overall state space. Furthermore, 
simulation inputs are usually based on the design specification and, therefore, 
are only aimed at verifying that the design performs all the primary activities 
indicated in the specification document. However, it is often the case that com- 
plex systems manifest unforeseen behavior in comer-case situations that were 
not planned in the specification. Most often, designers are unaware of behav- 
ior that results as a by-product of the interactions among different modules and 
that was unaccounted for in the specification document. Consequently these 
cases do not get checked, while they may likely have negative consequences 
on the overall behavior of the system. 
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Overall, designers are discovering that their simulation-based verification 
approaches are inadequate as ICs become more complex through increased 
size, more aggressive pipelining and greater use of concurrency. 

1.2 Formal verification 
In its broadest meaning, formal verification consists of proving formally that 

the implementation of a digital IC is compatible with the design's specifica- 
tion. In a formal verification approach, the desired functionality of the system 
is completely specified, then a formal model of the system is constructed - the 
implementation - and finally, formal reasoning is used to show that this formal 
model satisfies the specification. Formal verification techniques have the po- 
tential of providing more general results than traditional validation methods. 
It is possible, for instance, to guarantee that a specific property will hold for a 
design under all possible input stimuli. Due to the complexity of constructing a 
complete specification and of formally proving the compatibility between im- 
plementation and specification, this approach is infeasible for state-of-the-art 
hardware designs. 

Traditionally, formal methods have mainly been explored in academic re- 
search settings and only applied to problems of very limited size. However, 
the recent "verification crisis" - that is, the inability of current validation tech- 
niques to provide sufficient confidence in the correctness of the design - has 
spurred an increased interest in this approach of verification which has led to 
new algorithmic solutions and to new approaches that compromise the com- 
pleteness of the verification in order to reduce its complexity. In particular, the 
past ten years have seen efforts in developing commercial formal verification 
tools. However, thus far these tools have not shown the required robustness 
to be included in the industry mainstream verification methodology, and have 
only been applied to experimental projects. One of the main limitations shown 
by these first attempts is in the complexity of the algorithms involved in for- 
mal verification - usually their demand for computing resources far exceeds 
the resources available at most design sites. Another limitation has been the 
amount of engineering effort that is required for providing a complete formal 
specification of the design. As a consequence, formal techniques have only 
be applied to very simple designs that do not represent the complexity of the 
digital ICs developed in industry. 

1.2.1 Symbolic simulation 
Symbolic simulation is a promising approach to formal verification. The 

key idea is to simulate the design using Boolean symbolic variables instead of 
constant binary values at the combinational inputs of the circuit's model. Dur- 
ing simulation, the approach derives Boolean expressions based on the initial 
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symbolic variables and the functionality of each of the circuit components. At 
the end of each simulation step, we obtain a set of Boolean expressions rep- 
resenting, implicitly, all configurations - or sets of states - that are reachable 
by the circuits in one clock cycle with an appropriate set of inputs. Thus, this 
approach allows the complete behavior of a design in a specific state to be ver- 
ified with a single simulation step, simultaneously, under all possible inputs. 
Hence, it has the potential of 1) verifying many configurations of the design 
in parallel and providing much better coverage than traditional logic simula- 
tion, and 2) providing the ability to prove time-bound properties of the design. 
The problem with this approach is that it requires extensive manipulation of 
Boolean expressions which, in turn, often exhausts the memory resources of 
the host computer even on designs of limited complexity. 

This book addresses the robustness and scalability limitations of symbolic 
simulation and discusses recent algorithms that dramatically reduce the mem- 
ory requirements compared to traditional techniques. The algorithms pre- 
sented attack the scalability problem either through approximation or by using 
reparametrization, or both. 

Among the techniques that use both approximation and parametrization we 
present a solution called cycle-based symbolic simulation. This technique sim- 
plifies the Boolean expressions involved in symbolic simulation by substitut- 
ing the state vector with an alternate parametric form whose co-domain spans a 
very large subset of the original set of states described by the state vector. The 
resulting simulator maximizes the level of parallelism achievable with a lim- 
ited amount of memory. Cycle-based symbolic simulation performs well from 
a scalability standpoint, and achieves a high level of parallelism, in terms of 
test vectors that are run through the simulator, while maintaining a low mem- 
ory profile. 

Another approximation technique presented here is quasi-symbolic simula- 
tion, which achieves scalability by avoiding the computation of complex ex- 
pressions for internal nodes that are not involved in the verification of the spe- 
cific aspect of the design under inspection. The selection of the nodes whose 
computation can be avoided is automatically estimated by the simulator and 
adjusted during re-simulation if the estimate is found over-conservative. 

In the quest for effective parametrization techniques, we found that exploit- 
ing the decomposition properties of Boolean fbnctions had the potential for an 
exact, yet computationally efficient parametrization. Hence, we introduce the 
theory of disjoint-support decompositions and present a new, efficient algo- 
rithm that exposes all the decompositions of a function. The disjoint-support 
decomposition of a scalar function F : !Bm -+ !B, consists of finding other, 
simpler functions G and H that decompose F into disjoint support blocks: 
F ( x l ,  - .  . ,xm) = G ( H ( x l ,  - .  . , X ~ ) , X ~ + ~ ,  . . .,xm). An exact solution to this prob- 
lem that had exponential complexity in the number of variables of the function, 
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was proposed in the late 1950's. The algorithm we present in this book takes, 
as input, a binary decision diagram (BDD) representation of a Boolean func- 
tion and restructures it into its disjoint decomposition components. The worst- 
case complexity of the algorithm we propose is only quadratic in the size of 
the BDD, making it well suited for use with complex functions. In discussing 
exact parametrizations, we apply this algorithm to transform and simplify the 
Boolean expressions involved in symbolic simulation so that the simulation re- 
quires fewer memory resources while continuing to provide the original quality 
of results. Experimental results show that these solutions provide often more 
than ten orders-of-magnitude better performance (in test vectors per second) 
than a logic simulator, while, at the same time, they improve the design com- 
plexity that can be addressed by symbolic simulation by enabling simulations 
with up to thousands more symbolic variables. 

1.3 Organization of the book 
In order to provide the context for our work, we present a quick overview 

of the steps involved in the design cycle of a digital IC in Chapter 2. Chapters 
2 and 3 present the models of digital systems used in verification and the main 
algorithms for both traditional simulation and formal verification. In particu- 
lar, Chapter 3 focuses on symbolic simulation and closely related techniques. 
In addition, it covers the history of symbolic simulation, and provides a very 
broad presentation of the ongoing research on the subject. 

Chapter 4 focuses on two background theories that are key to the solutions 
proposed in this book: parametrizations and disjoint-support decompositions. 
We introduce these topics from a practical point of view and through many ex- 
amples. In discussing disjoint-support decompositions we present our BDD- 
based algorithm and show, with experimental results, that many Boolean func- 
tions arising in digital designs are non-trivial decompositions. The Appendix 
complements the discussion with a formal presentation of decompositions, a 
proof of the uniqueness of the maximal decomposition, and of the complete- 
ness of the BDD-based algorithm. 

We then dive in the presentation of recent, effective solutions in the symbolic 
simulation space. Chapters 5 and 6 group these solutions into approximation- 
based and parametric techniques. Cycle-based symbolic simulation and quasi- 
symbolic simulation are discussed in Chapter 5. The chapter provides a pre- 
sentation of the algorithms and simulation results comparing the performance 
of cycle-based simulation to a plain logic simulator. 

Chapter 6 is dedicated to the discussion of exact parametric solutions. In 
particular, disjoint-support decomposition-based symbolic simulation exploits 
the decomposition properties of the state vector functions arising in simulation. 
We compare the results of this approach to a plain symbolic simulator and to 
cycle-based simulation, showing that DSD-based simulation can address much 
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more complex designs within the same budget of memory resources. Another 
solution presented in Chapter 6 is concerned with the application of symbolic 
simulation to microprocessor-design verification. 

We conclude the book with Chapter 7, which includes a review of the meth- 
ods presented and some directions for future research. In each chapter we 
attempt to provide, first, a general overview of the topic discussed and the re- 
lated research work that has been published on the subject. The reference list 
should support the enticed reader in studying more in depth a topic of interest. 



Chapter 2 

DESIGN AND VERIFICATION 
OF DIGITAL SYSTEMS 

Before delving into the discussion of the various verification techniques, we 
are going to review how digital ICs are developed. During its development, a 
digital design goes through multiple transformations, from the original set of 
specifications to the final product. Each of these transformations corresponds, 
coarsely, to a different description of the system, which is incrementally more 
detailed and which has its own specific semantics and set of primitives. This 
chapter provides a high-level overview of this design flow in the first two sec- 
tions. We then review the mathematical background (Section 2.3) and cover 
the basic circuit structure and finite state machine definitions (Section 2.5) that 
are required to present the core algorithms involved in verification. 

The remaining sections present the algorithms that are at the core of the 
current technology in design verification. Section 2.6 presents the approach 
of compiled-level logic simulation. This technique was first introduced in the 
late 80's and it is still today the industry's mainstream verification approach. 
Section 2.7 provides an overview of formal verification and a few of the solu- 
tions in this space; we leave the discussion of symbolic simulation and other 
symbolic techniques to Chapter 3. 

2.1 The design flow 
Figure 2.1 presents a conceptual design flow from the specifications to the 

final product. The flow in the figure shows a top-down approach that is very 
simplified - as we discuss later in this section, the reality of an industrial de- 
velopment is much more complex, involving many iterations through various 
portions of the flow in the figure, until the final design converges to a form 
that meets the requirements of functionality, area, timing, power and cost. The 
design specifications are generally presented as a document describing a set of 
functionalities that the final solution will have to provide and a set constraints 
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that it must satisfy. In this context, the functional design is the initial process 
of deriving a potential and realizable solution from these specifications and 
requirements. This is sometimes referred to as modeling and includes such 
activities as hardwarelsoftware tradeoffs and micro-architecture design. 

Because of the large scale of the problem, the development of a functional 
design is usually carried out using a hierarchical approach, so that a single de- 
signer can concentrate on a portion of the model at any given time. Thus, the 
architectural description provides a partition of the design in distinct modules, 
each of which contributes a specific functionality to the overall design. These 
modules have well-defined input/output interfaces and protocols for commu- 
nicating with the other components of the design. Among the results of this 
design phase is a high-level functional description, often a software program 
in C or in a similar programming language, that simulates the behavior of the 
design with the accuracy of one clock cycle and reflects the module partition. 
It is used for performance analysis and also ,as a reference model to verify the 
behavior of the more detailed designs developed in the following stages. 

From the functional design model, the hardware design team proceeds to 
the Register Transfer Level (RTL) design phase. During this phase, the archi- 
tectural description is further refined: memory elements and functional com- 
ponents of each model are designed using a Hardware Description Language 
(HDL). This phase also entails the development of the clocking system of the 
design and architectural trade-offs such as speed and power. 

With the RTL design, the functional design of our digital system ends and 
its verification begins. RTL veriJication consists of acquiring reasonable confi- 
dence that a circuit will function correctly, under the assumption that no man- 
ufacturing fault is present. The underlying motivation is to remove all possible 
design errors before proceeding to the expensive phase of chip manufacturing. 
Each time functional errors are found, the model needs to be modified to reflect 
the proper behavior. During RTL verification, the verification team develops 
various techniques and numerous suites of tests to check that the design be- 
havior corresponds to the initial specifications. When that is not the case, the 
functional design model needs to be modified to provide the correct behavior 
specified and the RTL design updated consequently. It is also possible that the 
RTL verification phase reveals incongruous or overlooked aspects in the origi- 
nal set of specifications and it is found that the specification document is to be 
updated instead of the RTL description. 

In the diagram of Figure 2.1, RTL verification appears as one isolated phase 
of the design flow. However, in practical designs, the verification of the RTL 
model is carried on in parallel with the other design activities and it often 
lasts until chip layout. An overview of the verification methodologies that are 
common in today's industrial developments is presented in the next section. 
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The next design phase consists of the Synthesis and Optimization of the 
RTL design. The overall result of this phase is to generate a detailed model of 
a circuit, which is optimized based on the design constraints. For instance, a 
design could be optimized for power consumption or the size of its final real- 
ization (IC area) or for the ease of testability of the final product. The detailed 
model produced at this point describes the design in terms of its basic logic 
components, such as AND, OR, NOT or XOR, in addition to memory elements. 
Optimizing the netlist, or gate-level description, for constraints such as timing 
and power requirements is an increasingly challenging aspect of current devel- 
opments and it usually involves multiple iterations of trial-and-error attempts 
before reaching a solution that satisfies the requirements. Such optimizations 
may, in turn, introduce functional errors that require additional RTL verifica- 
tion. 

All the design phases, up to this point, have minimal support from Computer- 
Aided Design (CAD) software tools and are almost entirely hand-crafted by the 
design and verification team. Consequently, they absorb a preponderant frac- 
tion of the time and cost involved in developing a digital system. Starting with 
synthesis and optimization, most of the activities are semi-automatic or at least 
heavily supported by CAD tools. Automating the RTL verification phase, is 
the next challenge that the CAD industry is facing in providing full support for 
digital systems development. 

The synthesized model needs to be verified. The objective of RTL versus 
gates ver$cation, or equivalence checking, is to guarantee that no errors have 
been introduced during the synthesis phase. It is an automatic activity, re- 
quiring minimal human interaction, that compares the pre-synthesis RTL de- 
scription to the post-synthesis gate-level description in order to guarantee the 
functional equivalence of the two models. 

At this point, it is possible to proceed to technology mapping andplacement 
and routing. The result is a description of the circuit in terms of geometrical 
layout used for the fabrication process. Finally, the design is fabricated, and 
the microchips are tested andpackaged. 

This design flow is obviously a very ideal, conceptual case. For instance, 
usually there are many iterations of synthesis, due to changes in the specifi- 
cation or to the discovery of flaws during RTL verification. Each of the new 
synthesized versions of the design needs to be put again through all of the 
subsequent phases. One of the main challenges faced by design teams, for 
instance, is satisfying the ever-increasing market pressure to produce digital 
systems with better and better performance. These challenging specifications 
force engineering teams to push the limits of their designs by optimizing them 
at every level: architectural, component (optimizing library choice and sizing), 
placement and routing. Achieving timing closure, that is, developing a design 
that satisfies the timing constraints set in the specifications while still operat- 
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ing correctly and reliably, most often requires optimizations that go beyond the 
abilities of automatic synthesis tools and pushes engineers to intervene man- 
ually, at least in critical portions of the design. Often, it is only possible to 
check if a design has met the specification requirements after the final layout 
has been produced. If these requirements are not met, the engineering team 
must devise alternative optimizations or architectural changes and create a new 
design model that must be put through the complete design flow all over again. 

2.2 RTL verification 
As we observed in the previous section, the correctness of a digital circuit 

is a major consideration in the design of digital systems. Given the extremely 
high and increasing costs of manufacturing microchips, the consequences of 
flaws going unnoticed in system designs until after the production phase, are 
very expensive. At the same time, RTL verification, that is, verifying the cor- 
rectness of an RTL description, is still one the most challenging activities in 
digital system development: as of today, it is still carried on mostly with ad-hoc 
tests, scripts and, often, even ad-hoc tools developed by design and verification 
teams specifically for the present design effort. In the best scenarios, the de- 
velopment of this verification infrastructure can be amortized among a family 
of designs with similar architecture and functionality. Moreover, verification 
methodology still lacks any standard or even a commonly accepted plan of at- 
tack, with the consequence that each hardware engineering team has its own 
distinct verification practices, which often change with subsequent designs by 
the same team, due to the insufficient "correctness confidence-level" that any 
of the current approaches provide. Given this scenario, it is not only easy to see 
why many digital IC development teams report that more than 70% of the de- 
sign time and engineering resources are spent in verification, but it is clear why 
verification is, thus, the bottleneck in the time-to-market odyssey for integrated 
circuit development [Ber03a]. 

The workhorse of the industrial approach to verification is functional vali- 
dation. The functional model of a design is simulated with meaningful input 
stimuli and the output is then checked for the expected behavior. The model 
used for simulation is the RTL description. The simulation involves applying 
patterns of test data at the inputs of the model, then using the simulation soft- 
ware (or hardware) to compute the simulated values at the outputs and, finally, 
checking the correctness of the values obtained. 

Validation is generally carried on at two levels: module level and chip level. 
The first verifies each module of the design independently of the other modules. 
It involves producing entire suites of stand-alone tests, each of which checks 
the proper behavior of one specific aspect or functionality of that module. Each 
test includes a set of input patterns to stimulate the module. These tests also in- 
clude a portion that verifies that the output of the module corresponds to what 
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is expected. The design of these tests is generally very time consuming, since 
each of them has to be handcrafted by the verification engineering team. More- 
over, their reusability is very limited because they are specific to each module. 
Recently, a few CAD tools have become available to support functional val- 
idation, meaning, they mainly provide more powerful and compact language 
primitives to describe the test patterns and to check the outputs of the module, 
thereby saving some test development time [HKMO 1, HMNO 1, Ber03al. 

During chip-level validation, the design is verified as a whole. Often, this is 
done after sufficient confidence is obtained regarding the correctness of each 
single module. The focus is mainly in verifying the proper interaction between 
modules. This phase, while more computationally intensive, has the advantage 
of being carried on in a semi-automatic fashion. In fact, input test patterns 
are often randomly generated, with the only constraint being that they must 
be compatible with what the specification document defines to be the proper 
input format for the design. During chip-level validation, it is usually possible 
to use a golden model for verification. That is, run in parallel the simulation 
of both the RTL and a high-level description of the design, and check that the 
outputs of the two systems and the values stored in their memory elements 
match one-to-one at the end of each clock cycle (this is called lock-step). 

The quality of all these verification efforts is usually analytically evaluated 
in terms of coverage: a measure of the fraction of the design that has been ver- 
ified [KN96, LMUZ021. Functional validation can provide only partial cover- 
age because of its approach. The objective therefore is to maximize coverage 
for the design under test. 

Various measures of coverage are in use: for instance line coverage counts 
the lines of the RTL description that have been activated during simulation. 
Another common metric is state coverage, which measures the number of all 
the possible configurations of a design that have been simulated (i.e.validated). 
This measure is particularly valuable when an estimate of the total-state space 
of the design is available. In this situation the designer can use state coverage 
to quantify the fraction of the design that has been verified. 

With the increasing complexity of industrial designs, the fraction of design 
space that the functional validation approach can explore is becoming vanish- 
ingly small, indicating more and more that it is an inadequate solution to the 
verification problem. Since only one state and one input combination of the 
design under test are visited during each step of simulation, it is obvious that 
neither of the above approaches can keep up with the exponential growth in 
circuit complexity1. 

l ~ h e  state space of a system doubles for each additional state bit added. Since, as we discussed earlier, 
the area available doubles every 18 months, and assuming that a fixed fraction of this area is dedicated to 
memory elements, the overall complexity growth is exponential. 
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Because of the limitations of functional validation, new, alternative tech- 
niques have received increasing interest. The common trait of these techniques 
is the attempt to provide some type of mathematical proof that a design is cor- 
rect, thus guaranteeing that some aspect or property of the circuit behavior 
holds under every circumstance. and, therefore, its validity is not limited only 
to the set of test patterns that have been checked. These techniques go under 
the name of formal ver$cation and have been studied mostly in academic re- 
search settings for the past 25 years. Formal verification constitutes a major 
paradigm shift in solving the verification problem. As the qualitative sketch in 
Figure 2.2 shows, with logic simulation we probe the system with a few hand- 
crafted stimuli which are sent through the system and produce an output that 
must be interpreted in order to establish the correctness of the system for that 
specific setting. On the other hand, with formal verification the correctness of 
a design is shown by generating an analytical proof that the system is compat- 
ible with each of the properties derived from the specification. Compared to 
a fhnctional validation approach, this is equivalent to simulating a design with 
all possible input stimuli, thus providing 100% coverage. 

testbench 
design 

module clockgen 
initial 

begin 
clk = 0; 

always 
#5clk = -clk; 

endmodule 

design 

executions ? u 

output traces 

Figure 2.2: Approaches to verification: validation vs. formal verification 
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It is obvious that the promise of such thorough verification makes formal 
verification a very appealing approach. While, on one hand, the solution to the 
verification problem seems to lie with formal verification approaches, on the 
other hand, these techniques have been unable to tackle industrial designs due 
to the complexity of the underlying algorithms, and thus have been applicable 
only to smaller components. They have been used in industrial development 
projects only at an experimental level. So far they generally have not been part 
of the mainstream verification methodology. 

The next sections review some of the model abstractions for digital systems 
in use, in the context of functional verification. We then present, in depth, an 
algorithm underlying the mainstream approach of functional validation: logic 
simulation. 

2.3 Boolean functions and their representation 
Boolean functions are the most common vehicle to describe the functional- 

ity of a digital block. We dedicate this section to review a few basic aspects 
of Boolean algebra and Boolean functions. The concepts outlined here will be 
referenced throughout the book. 

We use the symbol B to denote the Boolean algebra defined over the set 
{0,1).  A symbolic variable is a variable defined in B. A logic function, 
or Boolean function, is a mapping F : Bn --t BM. In the attempt to ease the 
reading of the theoretical presentations in this book, we use lower-case letters 
to denote symbolic variables, and upper-case to denote functions. In addition, 
scalar functions, F (xl  , . ,xn) : Bn --t B are represented by regular face liter- 
als, while vector-valued functions are represented in boldface. The majority of 
our presentation will be concerned with scalar functions. The ith component of 
a vector function P is indicated by 4. 

An important aspect of a logic function is its support, that is, the set of 
variables the function effectively depends on. For instance the support of the 
function F(a, b, c,  d )  = a + b is S ( F )  = {a,  b). To find which variables are in 
the support of a function, we need to use the concept of cofactor: 

Definition 2.1. The 1-cofactor of a function F with respect to a variable xi is 
the function Fxi obtained by substituting 1 for xi in F. Similarly, the 0-cofactor, 
Fxi, is obtained by substituting 0 for xi in F. 

By computing the cofactors w.r.t. (with respect to) c for the function used in 
the previous example, we can easily find that F, = F, = a f b .  Here is a formal 
definition of support: 

Definition 2.2. Let F : Bn + B denote a non-constant Boolean function of n 
variables XI, - - . ,xn. We say that F depends on xi zfFXi # Fxi. We call support 
of F,  indicated by S (F) ,  the set ofBoolean variables F depends on. In the most 
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general case, when F  is a vector function, we say that F  : Bm -+ Bn depends 
on a variable xi, ifat least one of its components F, depends on it. 

The size of S ( F )  is the number of its elements, and it is indicated by IS(F) I .  
Two functions F, G  are said to have disjoint support if they share no support 
variables, i.e. S ( F )  n S ( G )  = 0. The concept of disjoint support is the core of 
the presentation in Chapter 4. 

Another aspect of Boolean functions which is central to this entire book 
is range, that is, the co-domain spanned by a logic function. Using again 
our little example, the range of F  = a + b is {O,l). When discussing vector 
functions the concept of range becomes more meaningful, since each output 
value is a Boolean vector. The notion of range is relevant to our discussion for 
the following reason: in symbolic simulation, each cycle computes a symbolic 
vector to represent the next states of the design. This vector is effectively a 
Boolean function, say NS. The next step of simulation transfers this vector to 
the present state and then proceeds by simulating the combinational logic of 
the design. However, as we point out again in later chapters, the only relevant 
information to be transferred among symbolic steps is the range spanned by 
NS, because this range describes the set of states that have been visited by the 
simulator up to that point. The key advantage of parametrization techniques is 
that of considering the NS vector function and devising an alternative vector, 
P, which will span the same range but will involve smaller functions. This is a 
formal definition for the range of a function: 

Definition 2.3. The range of a function F : Bn + Bm is the set of rn-tuples that 
can be asserted by F, and is denoted by R ( F ) :  

For scalar functions the range reduces to R ( F )  = B for all except the two 
constant functions 0 and 1. 

A special class of functions that will be used frequently is that of charac- 
teristic functions. Characteristic functions are scalar functions that represent 
sets implicitly - they are asserted if and only if their input value belongs to the 
set represented. Characteristic functions can be used, for instance, to describe 
implicitly all the states of a system that have been explored by a symbolic 
technique. 

Definition 2.4. Given a set V c Bn, whose elements are Boolean vectors, its 
characteristic function xv(x )  : !I?" -+ B is defined as: 

1 when x E V 
0 otherwise 
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For example, the characteristic function of the set S = ( 0 0 , l l )  is xs(xl ,x2) = 
xlxs +x-. When sets are represented by their characteristic function, the op- 
erations of set intersection, union and set complement correspond to the AND, 
OR and NOT respectively, on their corresponding functions. 

We conclude this section by defining two additional operations between 
Boolean functions. These are function composition and generalization of co- 
factor and will be useful in the presentation of the disjoint-support decomposi- 
tion algorithm in Chapter 4. Its application will be discussed in Chapter 6. 

Definition 2.5. Given two functions F (xl  , - . , xn) and X, ('yl,. -. ,yn, the func- 
tion composition F O X ,  is the function obtained by replacing the function X, 
in F for each occurrence of the variable xi. 

Definition 2.6. Given two functions F and G, the generalized cofactor of F 
wxt. G is the function FG such that for each input combination satisfiing G 
the outputs of F and FG are identical. 

Notice that, in general, there are multiple possible functions FG satisfying 
the definition of the generalized cofactor. Moreover, if F and G have disjoint 
supports, then one possible solution for FG is the function F itself. 

NP-equivalence, or negation-permutation equivalence, is a family of trans- 
formations among Boolean functions. They are of interest in the Computer- 
Aided Design world because two functions that are NP-equivalent can be real- 
ized by the same circuit. The implementation of the two NP-equivalent func- 
tions will differ only in the mapping of the function's inputs on the inputs of 
the circuit, and in the need of complementing some of the circuit's inputs. The 
difficulty, however, lies in identifying when two functions are NP-equivalent. 
Canonical data structures, such as BDDs (see Section 2.4) provide many bene- 
fits by recognizing easily when two functions are identical. On the other hand, 
two NP-equivalent functions may have completely different BDD representa- 
tions and can be, therefore, very hard to identify. 

An NP-function is a function that can be connected in front of another func- 
tion F to generate a function G that is NP-equivalent to F [BL92, MD931: 

Definition 2.7. A function P(xl ,  . . . , xn): Bn -+ Bn is termed an NP-function 
iJ; for each of its components F,, either F;: = xj or F;: = xj for some j and 
S ( f l ) n S ( F k )  = @ , i f  k. 

In other words, an NP-function can only permute and/or complement its 
inputs. 
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Definition 2.8. Two functions F (x l ,  + ,xn) and G(x l ,  - ,xn) are said to be 
NP-equivalent ifthere is a NP-function NP(xl,  ,xn) such that 

that is, F is obtained by composing G with NP 

2.4 Binary decision diagrams 
Binary Decision Diagrams (BDDs) are a compact and efficient way of repre- 

senting and manipulating Boolean functions. Because of this, BDDs are a key 
component of all symbolic techniques of verification. They form a canonical 
representation, making the testing of functional properties, such as satisfiabil- 
ity and equivalence, straightforward. BDDs are directed acyclic graphs that 
satisfy a few restrictions for canonicity and compactness. BDDs have two ter- 
minal nodes, 0 and 1, all other internal nodes are labeled by a symbolic variable 
and have two outgoing edges: one corresponding to the O-cofactor w.r.t. the 
variable labeling the node, and one corresponding to the 1-cofactor. Each path 
from root to leaves, in the graph, corresponds to an evaluation of the Boolean 
function for a specific assignment of its input variables. An important factor 
in the success of BDDs is the ease of manipulating Boolean functions through 
this representation: the apply operation is implemented by a simple recursive 
function which traverses one or more BDDs (the operands) bottom-up and ap- 
plies a specified Boolean operator at each intermediate node. We provide here 
a brief presentation. The interested reader is referred to [Bry86, Bry921 for an 
in-depth introduction and an overview of their applications. 

Example 2.1. Figure 2.3.a represents the BDD for the function F = ( ~ + y ) p q .  
Given any assignment for the four input variables it is possible to find the value 
of the function by following the corresponding path from the root F to a lea$ 
At each node, the O-edge (dashed) is chosen if the corresponding variable has 
a value 0, the 1 -edge otherwise. 

Figure 2.3. b represents the BDD for the function G = w @x  @ y @ z. Obsewe 
that the number of BDD nodes needed to represent XOR functions with BDDs, 
is 2 .  #vars. At the same time, other canonical representations, such as truth 
tables or sum of minterms require a number of terms that is exponential with 
respect to the number of variables in the function's support. 

For a given ordering of the variables, it was shown in [Bry86] that a function 
has a unique BDD representation. Therefore, checking the identity of two 
functions corresponds to checking for BDD identity, which is accomplished in 
constant time. The following definition formalizes the structure of BDDs: 

Definition 2.9. A BDD is a DAG with two sink nodes labeled "0" and " I "  
representing the Boolean functions 0 and 1. Each non-sink node is labeled 
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Figure 2.3: Examples of binary decision diagrams 

with a Boolean variable xi and has two out-edges labeled 0 and I .  Each non- 
sink node represents the Boolean function Zfi + x i f i ,  where Fo and Fl are the 
cofactors w.r:t. x, and are represented by the BDDs rooted at the 0 and I edges 
respectively. 

Moreovec a BDD satisfies two additional constraints: 

I There is a complete (but otherwise arbitrary) ordering of the input vari- 
ables. Every path from source to sink in the BDD visits the input variables 
according to this ordering. 

2 Each node represents a distinct logic function, that is, there is no duplicate 
representation of the same function. 

A common optimization in implementing BDDs is the use of complement 
edges [BRBgO]. A complement edge indicates that the connected function is to 
be interpreted as the complement of the ordinary function. When using com- 
plement edges, BDDs have only one sink node "I", whereas the sink node "0" 
is represented as the complement of "1". Boolean operations can be easily im- 
plemented as graph algorithms on the BDD data structure by simple recursive 
routines making Boolean function manipulation straightforward when using a 
BDD representation. 
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A critical aspect that contributes to the wide acceptance of BDDs for repre- 
senting Boolean functions is that, in most applications, the amount of memory 
required for BDDs remains manageable. The number of nodes that are part 
of a BDD, also called the BDD size, is proportional to the amount of mem- 
ory required, and thus the peak BDD size is a commonly used measure to 
estimate the amount of memory required by a specific computation involving 
Boolean expressions. However, the variable order chosen may affect the size 
of a BDD. It has been shown that for some type of functions the size of a BDD 
can vary from linear to exponential based on the variable order. Because of 
its impact, much research has been devoted to finding algorithms that can pro- 
vide a good variable order. While finding the optimal order is an intractable 
problem, many heuristics have been suggested that find sufficiently good or- 
ders, from static approaches based on the underlying logic network structure 
in [MWBSV88, FFK881, to dynamic techniques that change the variable order 
whenever the size of the BDD grows beyond a threshold [Rud93, BLW951. 

Moreover, much research work has been dedicated to the investigation of al- 
ternative representations to BDDs. For instance BMDs [BCOl] target the repre- 
sentation of circuit with multiplicative cores, Zero-Suppressed BDDs [Mi11931 
are suitable for the representation of sets, and MTBDDs [FMY97] can repre- 
sent multi-valued functions. An example application which uses MTBDDs is 
presented in Chapter 5. 

Binary decision diagrams are used extensively in symbolic simulation. The 
most critical drawback of this method is its high demand on memory resources, 
which are mostly used for BDD representation and manipulation. This book 
discusses recent techniques that transform the Boolean functions involved in 
symbolic simulations through parametrization and approximation. The objec- 
tive of parametrization is to generate new functions that have a more compact 
BDD representation, while preserving the same results of the original sym- 
bolic exploration. The reduced size of the BDDs involved translates to a lower 
demand of memory resources, and thus it increases the size of IC designs that 
can be effectively tackled by this formal verification approach. 

2.5 Models for design verification 

The verification techniques that we present in this book rely on a struc- 
tural gate-level network description of the digital system, generally obtained 
from the logic-synthesis phase of the design process. In the most general case, 
such networks are sequential, meaning that they contain storage elements like 
latches or banks of registers. Such circuits store state information about the 
system. Hence, the output at any point in time depends not only on the current 
input but also on historical values of the input. State transition models are a 
common abstraction to describe the functionality of a design. In this section 
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we review both their graph representation and the corresponding mathematical 
model. 

2.5.1 Structural network model 
A digital circuit can be modeled as a network of ideal combinational logic 

gates and a set of memory elements to store the circuit state. The combinational 
logic gates that we use are: AND, OR, NOT or XOR. Figure 2.4 reproduces the 
graphic symbol for each of these types. 

2-inputs AND gate NOT gate 

2-inputs OR gate 2-inputs XOR gate 

Figure 2.4: Graphic symbols for basic logic gates 

A synchronous sequential network has a set of primary inputs and a set 
of primary outputs. We make the assumption that the combinational logic 
elements are ideal, that is, that there is no delay in the propagation of the value 
across the combinational portion of the network. Figure 2.5 represents such a 
model for a general network, also called netlist. 

We also assume that there is a single clock signal to latch all the memory 
elements. In the most general case where a design has multiple clocks, the 
system can still be modeled by an equivalent network with a single global clock 
and appropriate logic transformations to the inputs of the memory elements. 

Example 2.2. Figure 2.6 is an example of a structural network model for a 
3-bits up/down counter with reset. The inputs to the system are the reset and 
the count signals. The outputs are three bits representing the current value of 
the counteu: The clock input is assumed implicitly, and not represented in the 
jigure. This system has four memory elements that store the current counter 
value and control if the counter is counting up or down. At each clock tick the 
system updates the values of the counter ifthe count signal is high. The value 
is incremented until it reaches the maximum value seven. Subsequently, it is 
decremented down to zero. Whenever the reset signal is held high, the counter 
is reset to zero. 
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inputs 

Figure 2.5: Structural network model schematic 

The dottedperimeter in theJigure indicates the combinationalportion ofthe 
circuit's schematic. 

reset 

count 

Figure 2.6: Network model of a 3-bits upldown counter with reset 
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2.5.2 State diagrams 
A representation that can be used to describe the functional behavior of a 

sequential digital system is a Finite State Machine (FSM) model. 
Such a model can be represented through state diagrams. A state diagram is 

a labeled, directed graph where each node represents a possible configuration 
of the circuit. The arcs connecting the nodes represent changes from one state 
to the next and are annotated by the input combinations which would cause the 
transition in a single clock cycle. State diagrams present only the functional- 
ity of the design, while the details of the implementation are not considered. 
Any implementation satisfying this state diagram will perform the function de- 
scribed. State diagrams also contain the required outputs at each state andor 
at each transition. In a Mealy state diagram, the outputs are associated to each 
transition arc, while in a Moore state diagram outputs are specified with the 
nodeslstates of the diagram. The initial state is marked in a distinct way to 
indicate the starting configuration of the system. 

Example 2.3. Figure 2.7 represents the Moore state diagram corresponding to 
the counter of Example 2.2. Each state indicates the value stored in the three 
f i -Jops xo, X I ,  x2 in bold and in the up/downfZip-Fop under it. All the arcs 
are marked with the input signal required to perform that transition. Notice 
also that the initial state is indicated with a double circle. 

countreset countreset countreset 

010 . . . . . . . . . . . . . . . . . , . . 

countreset countreset countreset 

value 

Figure 2.7: State diagram for a 3-bits upldown counter 

In the most general case the number of configurations, or different states a 
system can be in, is much smaller than the number of all possible values that 
its memory elements can assume. 
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Example 2.4. Figure 2.8 represents thejinite state machine for a 3-bits counter 
I-hot encoded. Notice that even if the state is encoded using three bits, only 
the three conjigurations 001,010,100 are possible for the circuit. Such con- 
jigurations are said to be reachable from the Initial State. The remainingjve 
conjiguration 000,O 1 1,10 1,110,111 are said to be unreachable, since the cir- 
cuit will never be in any of these states during normal operation. 

Figure 2.8: State diagram for a 1-hot encoded 3-bits counter 

2.5.3 Mathematical model of finite state machines 
An alternative way of describing a Finite State Machine (FSM) is through a 

mathematical description of the set of states and the rules to perform transitions 
between states. In mathematical terms, a completely specified, deterministic 
finite state machine is defined by a 6-tuple: 

= (I7 O7 s7 67 
where: 

w I is an ordered set (il, . . ., im) of Boolean input symbols, 

w 0 is an ordered set (ol, . . ., op) of Boolean output symbols, 

w S is an ordered set (sl, . . ., s,) of Boolean state symbols, 

6 is the next-state function: 6 : S x I : Bnfm t S : Bn, 

w h is the output finction h : S x I : Bnf t 0 : Bp, 

w and So is an initial assignment of the state symbols. 

The definition above is for a Mealy-type FSM. For a Moore-type FSM the 
output function h simplifies to: h : S : Bn -+ 0 : !Bp. 
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Example 2.5. The mathematical description of the FSM of Example 2.4 is the 
following: . I = {count, reset), . 0 = {XO,XI  ,x2), . S={001,010,100), 

While the state diagram representation is often much more intuitive, the 
mathematical model gives us a means of building a formal description of a 
FSM or, equivalently, of the behavior of a sequential system. The formal math- 
ematical description is also much more compact, making it possible to describe 
even very complex systems for which a state diagram would be unmanageable. 

2.6 Functional validation 
This section is dedicated to the presentation of an algorithm for cycle-based 

logic simulation, a mainstream technique in functional validation. The next 
section outlines some of the techniques used in formal verification. 

The most common approach to functional validation involves the use of 
a logic simulator software. A commonly deployed architecture is based on 
the levelized, compiled-code logic simulator approach by Barzilai and Hansen 
[BCRR87, Han88, WHPZ871. 

Their algorithm starts from a gate-level description of a digital system and 
chooses an order for the gates based on their distance from the primary inputs 
- in fact, any order compatible with this partial ordering is valid. The name 
"levelized" of the algorithm is due precisely to this initial ordering of the gates 
in "levels7'. The algorithm then builds an internal representation in assembly 
language where each gate corresponds to a single assembly instruction. The 
order of the gates and, equivalently, of the instructions, guarantees that the val- 
ues for the instructions' inputs are ready when the program counter reaches a 
specific instruction. This assembly block constitutes the internal representation 
of the circuit in the simulator. 

Example 2.6. Figure 2.9 reproduces the gate-level representation of the counter 
we used in Example 2.2. Each combinational gate has been assigned a level 
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reset 

count 

Figure 2.9: Compiled logic simulator 

number (italicized in the graphic) based on its distance from the inputs of the 
design. Subsequently, gates have been numbered sequentially (gates numbers 
are in boldface), in a way compatible with this partial ordeu: From this diagram 
it is possible to write the corresponding assembly block: 

Note, that there is a one-to-one correspondence between each instruction in 
the assembly block and each gate in the logic network. 

The assembly compiler can then take care of mapping the virtual registers 
of the source code to the physical registers' set available on the specific sim- 
ulating host. Multiple input gates can be easily handled by composing their 
functionality through multiple operations. For instance, with reference to Ex- 
ample 2.6, the 3-input XVOR of gate 7, can be translated as: 

7. r7tmp = XOR(up, xl) 
7bis. r7 = XNOR(r7tmp, xO) 

At this point, simulation is performed by providing an input test vector, ex- 
ecuting the assembly block, and reading the output values computed. Such 
output values can be written to a separate file to be further inspected later to 
verify the correctness of the results. Figure 2.10 shows an outline of the al- 
gorithm, where the core loop includes the assembly code generated from the 
network. 
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Logic~Simulator(networkmode1) 
{ 

assignbresent-state-signals, reset-state-pattern); 
while (input-pattern != empty) 
{ 

assign(input-signals, input-pattern); 
CIRCUITASSEMBL Y; 

output-values = read(output-signals); 
state-values = read(next-state-signals); 
write-simulation~output(output~values); 
assignbresent-state-signals, state-values); 
next input-pattern; 

1 
1 

Figure 2.10: Pseudo-code for a cycle-based logic simulator 

Notice that, in first approximation, each of the assembly instructions can 
be executed in one CPU clock cycle of the host computer, thus providing a 
very high performance simulation. Moreover, this algorithm scales linearly 
with the length of the test vector and with the circuit complexity. The high 
performance and linear scalability of logic simulation are the properties that 
make this approach to functional validation widely accepted in industry. 

The model just described is called a cycle-based simulator, since values are 
simulated on a cycle-by-cycle basis. Another family of simulators are event- 
driven simulators. The key difference is that each gate is simulated only when 
there is a change of the values at its inputs. This alternative scheduling ap- 
proach makes possible to achieve a finer time granularity in the simulation, 
and also facilitates simulating events that occur between clock cycles. 

Various commercial tools are available that use one or both of the approaches 
described above, and that have proven to have the robustness and scalability to 
handle the complexity of designs being developed today. Such commercial 
tools are also very flexible. Practical, cycle-based simulators allow for circuits 
with multiple clocks and the ability to mix cycle-based and event-based simu- 
lation to optimize performance [DeV97]. When deployed in a digital-system 
development context, simulators constitute the core engine of the functional 
validation process. However, the bulk of the time spent in verification is in the 
development of meaningful test sequences. Generally, the test stimuli are orga- 
nized so that distinct sequences cover different aspects of the design function- 
alities. Each test sequence needs to be hand-crafted by verification engineers. 
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The simulated output values then are checked again by visual inspection. Both 
these activities require an increasing amount of engineering resources. 

As mentioned before, some support in such development is available from 
specialized programming languages that make it possible for the verification 
engineer to use powerful primitives to create stimuli for the design, and to then 
generate procedures to automatically check the correctness of the output values 
[HKMOl, KOWfOl]. These test programs are then compiled and executed 
side-by-side with the simulation, exchanging data with it at every time step. 

Another module that is often run in parallel to the simulator, or as a post- 
processing tool, is a coverage engine. Coverage engines collect analytical data 
on the portions of the circuit that have been exercised. Since designs are devel- 
oped and changed on a daily basis, it is typical to make use of verification farms 
- thousands of computers running logic simulators - where the test suites are 
run every day for weeks at a time. Another common validation methodology 
approach in industry is pseudo-random simulation. Pseudo-random simulation 
is mostly used to provide chip-level validation and to complement stand-alone 
testing validation at the module level. This approach involves running logic 
simulation with stimulus generated randomly, but within specific constraints. 
For instance, a constraint could specify that the reset sequence is only initi- 
ated 1% of time. Or, it could specify some high-level flow of the randomly 
generated test, while leaving the specific vectors to be randomly determined 
[AGL+95, CIJ+95, YSP+99]. The major advantage of pseudo-random simu- 
lation is that the burden on the engineering team for test development is greatly 
reduced. However, since there is very limited control on the direction of the 
design-state exploration, it is hard to achieve a high coverage with this ap- 
proach and to avoid just producing many redundant tests that have limited in- 
cremental usefulness. 

Pseudo-random simulation is also often run using emulators which, concep- 
tually, are hardware implementations of logic simulators. Usually they use 
configurable hardware architectures, based on FPGAs (Floating Point Gate 
Arrays) or specialized reconfigurable components that are configured to re- 
produce the gate-level description of the design to be validated [Pfi82, Hau95, 
CMA021. While emulators can perform one to two orders of magnitude faster 
than software-based simulators, they constitute a very expensive solution. It is 
expensive because of the high raw cost of acquisition and the time-consuming 
process of configuring them for a specific design, which usually requires sev- 
eral weeks of engineering effort. Because of these reasons, emulators are 
mostly used for IC designs with a large market. 

Even if design houses put forth great effort in developing tests for their de- 
signs and in maximizing the amount of simulation in order to achieve thorough 
coverage, simulation can only stimulate a small portion of the entire design and 
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can, therefore, potentially miss subtle design errors that might only surface un- 
der particular sets of rare conditions. 

2.7 Formal verification 
On the other side of the verification spectrum are formal verification tech- 

niques. These methods have the potential to provide a quantum leap in the cov- 
erage achievable on a design, thus improving significantly the quality of verifi- 
cation. Formal verification attempts to establish universal properties about the 
design, independent of any particular set of inputs. By doing so, the possibility 
of letting comer situations go untested in a design is removed. A formal verifi- 
cation system uses rigorous, formalized reasoning to prove statements that are 
valid for all feasible input sequences. Formal verification techniques promise 
to complement simulation because they can generalize and abstract the behav- 
ior of the design. 

Almost all verification techniques can be roughly classified in one of two 
categories: model-based or proof-theoretic. Model-based techniques usually 
rely on a brute-force exploration of the whole solution space using symbolic 
techniques and finite state machine's representations. The main successful re- 
sults of these methods are based on symbolic state traversal algorithms which 
allow the full exploration of digital systems, although with very limited scala- 
bility. Typical design sizes that can be handle by these solutions are up to a few 
hundreds latches, which is far from what is needed in an industrial context. At 
the root of state traversal approaches is some type of implicit or explicit rep- 
resentation of all the states of a systems that have been visited up to a certain 
step of the traversal. Since there is an exponential relationship between the 
number of states and the number of memory elements in a system, it is easy 
to see how the complexity of these algorithms grows exponentially with the 
number of memory elements in a system. This problem is called the state ex- 
plosion problemsymbolic state traversa1,state explosion problem and it is the 
main reason for the very limited applicability of the method. At the same time, 
the approach has the advantage of being fully automatic. A variant within 
this family is bounded model checking, which allows for the handling of much 
more complex systems. Although, as the name suggests, it has a limited (or 
bounded) depth of analysis. 

An alternative approach, that belongs to the model-based category, is sym- 
bolic simulation. This method verifies a set of scalar tests with a single sym- 
bolic vector. Symbolic functions are assigned to the inputs and propagated 
through the circuit to the outputs. This method has the advantage that large 
input spaces can be covered in parallel with a single symbolic sweep of the 
circuit. Again, the bottleneck of this approach lies in the explosion of sym- 
bolic functions' representations. The next chapter is dedicated to discuss in 
depth symbolic simulation and a range of related solutions. 
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Symbolic approaches are also at the base of equivalence checking, another 
verification technique. In equivalence checking, the goal is to prove that two 
different network models provide the same functionality. In recent years, this 
problem has found heuristic solutions that are scalable to industrial-size cir- 
cuits, thereby achieving full industrial acceptance. The success of scalable 
symbolic solutions in the domain of equivalence checking, gives hope that 
symbolic techniques will be also the basis for viable industrial-level solutions 
for formal verification. 

A different family of approaches, prooftheoretic methods, are based on 
abstractions and hierarchical techniques aimed at proving the correctness of 
a system [Hue02, JohOl]. Verification within this framework uses theorem- 
proving software to provide support in reasoning and deriving proofs about 
the specifications and the implementation model of a design. They use a va- 
riety of logic representations, called theories. The design complexity that a 
theorem prover can handle is unlimited. However, currently available theorem 
provers require significant human guidance: even with a state-of-the-art theo- 
rem prover, proving that a model satisfies a specification is a very hand-driven 
process. Thus, this approach is still impractical for most industrial applica- 
tions. 

We conclude the section by describing in more detail one of the techniques 
outlined above, to give the reader a sense of the computational procedures 
involved in formal verification. Symbolic simulation techniques will be de- 
scribed in the next chapter. 

2.7.1 Symbolic finite state machine traversal 

One approach used in formal verification is to focus on a property of a circuit 
and to prove that this property holds, for any configuration of the circuit, that 
is reachable from its initial state. For instance, such property could specify 
that if the system is properly initialized, it never deadlocks. Or, in the case of 
pipelined microprocessors, one property could be that any issued instruction 
completes within a finite number of clock cycles. The proof of properties such 
as these, requires, first of all, to construct a global state-graph representing the 
combined behavior of all the components of the system. After this, each state 
of the graph needs to be inspected to check if the property holds for that state. 
Many problems in form'al hardware verification are based on reachable-state 
computation of finite state machines. A reachable state is just a state that is 
reachable for some input sequence from a given set of possible initial states 
(see Example 2.4). This type of computation uses a symbolic breadth-first 
approach to visit all reachable states, also called reachability analysis. The 
approach, described below, has been published in seminal papers by Madre, 
Coudert and Berthet [CBM89] and later in [TSL+90, BCL+94]. 
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In the context of FSMs, reachable-state computations are based on implicit 
traversal of the state diagram (Section 2.5.2). The key step of the traversal is in 
computing the image of a given set of states in the diagram, that is, computing 
the set of states that can be reached from the present state with one single 
transition (following one edge in the diagram). 

Example 2.7. Consider the state diagram of Figure 2.7. The image of the one 
state set (000 - 1) is (000 - 1,001 - 1 )  since there is one edge connecting the 
state 000 - 1 to both of these states. The image of the set (1  10 - 1 , 1 1 1  - 0 )  is 
(000- 1,110- 1 , 1 1 1  -0,110-0). 

The following definition formalizes the operation of image computation: 

Definition 2.10. Given a FSM M and a set of states R, its image is the set of 
states that can be reached by one step of the state machine. With reference to 
the model defiition of Section 2.5.3, the image is: 

It is also possible to convert the next-state function 6 ( )  into a transition rela- 
I tion TR(s,sl), which is asserted when there is some input i such that S(s,x) = s . 

This relation is defined by existentially quantifying the inputs from 6 0 :  

where Sk represents the transition function for the k-th bit. As it could be 
imagined, the transition relation can be represented by a corresponding char- 
acteristic function - see Definition 2.4 - XTR which equals 1 when TR(s,st) 
holds true. 

Finally, the image of a pair ( M ,  R) can be defined using characteristic func- 
tions. Given a set of states R with characteristic hnction XR, its image under 
transition relation TR is the set Img having the characteristic function: 

X ~ m g  (st)  = 3s (XTR (8 ,  s') XR ( s )  ) 

Symbolic FSM traversal performs image computations iteratively starting 
from the initial state. At each steps it accumulates the states visited (that is, 
the images) into a reached set. The traversal ends when a fixed point is found, 
which is detected when the reached set does not grow from iteration to itera- 
tion. At the end of the computation, the reached set represents the characteristic 
function of all the states that can be reached by the system, and it can be used 
to prove properties specified over the states of the design. The fixed point com- 
putation of symbolic FSM traversal will be discussed in more detail in Section 
3.4.1. 
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2.8 Summary 
This chapter presented an overview of the design and verification flow in- 

volved in the development of a digital integrated circuit. It discussed the main 
techniques used to verify such circuits, namely functional validation (by means 
of logic simulation) and formal verification, using a range of techniques. 

We reviewed basic concepts and representations for Boolean functions and 
for sequential systems, and described how a logic simulator works. The mod- 
els discussed in the earlier sections will be needed to present all the main tech- 
niques in the later chapters. The last part of the chapter was dedicated to skim 
over a range of formal verification techniques, and give a sense of this method- 
ology through the presentation of symbolic FSM traversal. The next chapter 
covers in great detail another technique, symbolic simulation, and draws the 
similarities between that and reachability analysis. 
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Chapter 3 

SYMBOLIC SIMULATION 

This chapter introduces symbolic simulation, a verification technique that 
has been in use for the past 25 years. We overview here its evolution, the base- 
line algorithms that fall under the symbolic simulation umbrella and a range of 
techniques that have been explored to improve performance and its ability to 
tackle complex designs. 

3.1 The origins of symbolic simulation 
Symbolic simulation was first explored in the late 1970's as an answer to 

the increasing inadequacy of logic simulators to explore and verify all the pos- 
sible execution paths in digital designs. Different decade, same problem of 
today. Designs were reaching sizes comprised of tens of thousands of transis- 
tors, simulating hosts could only run at a few Megahertz, and the time required 
by functional verification was becoming a burden. 

The key idea of symbolic simulation consists in the use of mathematical 
techniques to represent symbolically the logic values at internal nodes of a 
digital circuit during its simulation. A preliminary work in this area is by King 
in [Kin76], where he proposes a method of symbolic execution to verify soft- 
ware programs. One of the first hardware symbolic simulators was developed 
by IBM in 1979 [CJB79] to verify instruction micro-code in their processor 
designs. The main idea was to provide a simulator system where symbolic 
variables could be mixed with constant values at the inputs of the design un- 
der test. Symbolic expressions would then be propagated through the design 
schematic and the expressions obtained at the output would be evaluated for 
correctness by means of theorem proving techniques. However, this first sym- 
bolic simulator was lacking some important features of modern tools: it could 
only handle combinational circuits, algebraic expressions could not rely on a 
compact data-structure for their representation (BDDs were not discovered, 
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yet), and algebraic minimization capabilities were, well, at a minimum, leav- 
ing the bulk of the verification work to theorem proving. Because of the lack 
of specialized techniques to simplify expressions, the IBM simulator could 
handle both bit-level and word-level symbolic variables uniformly. 

The first pre-cursor to modern symbolic simulators is MOSSYM, a software 
package developed by Randy Bryant in the mid 1980's [Bry85]. MOSSYM 
was the first tool to include a Boolean-expression manipulation package, a pre- 
cursor of the Binary Decision Diagrams (BDDs) - see Section 2.4. Because of 
this, it also required symbolic variables to be associated with single-bit signals, 
so that the resulting expressions could be handled by the Boolean library. In 
1987, the ideas of MOSSYM carried on to COSMOS [BBB+87], a symbolic 
simulator for CMOS designs. COSMOS uses full-fledged BDDs as the under- 
lying Boolean expression package to represent and manipulate the symbolic 
expressions associated with the nodes of the circuit. In addition, initial tech- 
niques to simulate specialized types of sequential circuits, such as pipelined 
designs, are explored in the same period by [BF89, BBS901. 

3.2 Symbolic simulation of a logic gate 
As described in Section 2.6, a logic simulator uses a gate-level represen- 

tation of a circuit and performs the simulation by manipulating the Boolean 
scalar values, 0 and 1. Symbolic simulation differs from logic simulation be- 
cause it builds Boolean expressions rather than scalar values, as a result of 
circuit simulation. 

scalar values symbolic values 

Figure 3.1 : Comparison of logic and symbolic simulation 

Consider the two OR gates in Figure 3.1. On the left side, in performing 
logic simulation, the two input values 0 and 1 are evaluated and the result of the 
simulation produces a value 1 for the output node of the gate. On the right side 
of the figure, we perform a symbolic simulation of the same gate. The inputs 
are the two symbolic variables a and b, and the result placed at the output node 
is the Boolean expression a+ b. By composing the expressions generated at the 
output of simple gates, it is possible to compute the functionality of group of 
gates, as shown with two pictorial examples in Figure 3.2. By extension, when 
a distinct Boolean symbol is assigned to each input net of a gate-level netlist, 
the functionality of the entire combinational logic portion can be computed. 

This approach is very powerful in two ways. First, at the completion of 
the symbolic simulation, we have a Boolean expression that represents the full 
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Figure 3.2: Simulation of a netlist by composition of symbolic expressions 

functionality of the circuit (in this example, two tiny two-gate circuits). This 
expression can be compared and verified against a formal specification of the 
desired outputs. Expressions obtained by symbolic simulation become quickly 
very complex. Hence, the comparison is only feasible for very small designs. 
In addition, a great deal of effort is spent, and has been spent, in devising 
techniques to represent the expressions compactly and keeping them in simple 
canonical form. 

Second, symbolic simulation can be seen as a way of executing multiple 
logic simulations in parallel, one for each possible assignment of the symbolic 
variables. The number of equivalent logic simulations is given by 2n where 
n is the number of symbolic variables introduced. Because values are propa- 
gated symbolically, the expressions obtained at the circuits' outputs encode the 
output values under all possible assignments. For instance, the symbolic sim- 
ulation of Figure 3.1 is implicitly applying four test vectors in parallel, corre- 
spondingto {a=O,b=O),  {a= l ,b=O) ,  { a = O , b =  1) and{a= 1 , b =  1). 
This aspect of symbolic simulation is also interesting because it can be eas- 
ily integrated in a logic simulation methodology where the amount of paral- 
lelism in the input test vector can be tuned by substituting constant values with 
Boolean variables and vice versa, based on the resources available in the sim- 
ulating host. 

3.3 Symbolic simulation, time frame-by-time frame 
We now describe a full-fledged symbol simulation algorithm. The frame-by- 

frame approach is a mainstream technique to symbolically simulate sequential 
circuits. We use this algorithm as the baseline for the discussion of related 
techniques, performance improvements and more scalable variations that are 
the topic of the subsequent sections and chapters of this book. Because it is our 
reference technique, when we use the term symbolic simulation in this book, 
we are referring to this frame-by-frame algorithm. 

In frame-based simulation, the state space of a synchronous circuit is ex- 
plored iteratively, with reference to a gate-level description of the digital de- 
sign. At each step of simulation, a distinct Boolean expression is assigned to 
each input signal and present-state signal. They can vary from complex ex- 
pressions to extremely simple ones, such as simple Boolean variables or even 
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constant values. The simulation proceeds by deriving the appropriate Boolean 
expression for each internal signal of the combinational portion of the network, 
based on the expressions at the inputs of each logic gate and the functionality 
of the gate. It is straightforward to see an analogy with the logic simulation 
approach described in Section 2.6, where we would operate on the same gate- 
level description model for the design, but the inputs would be assigned to con- 
stant values instead of Boolean expressions and the internal operations would 
be in the binary domain. 

With reference to Figure 3.3, the algorithm operates as follows: At time 
step 0, the gate-level network model is initialized with the initial assignment 
So for each of the state signals and with a set of Boolean variables INao = 

{ilao,  . . . , i,@O) for the combinational input signals. During each time step, 
the Boolean expressions corresponding to the primary outputs and the next- 
state signals are computed in terms of the expressions at the inputs of the net- 
work. To do this, a Boolean expression is computed at each gate's output node 
based on the gate's functionality. Gates are evaluated in a levelized order com- 
patible with their distance from the input nodes, similarly to what is done in 
compiled-level logic simulation (see Section 2.6). At the end of each step, the 
Boolean expressions obtained for the primary outputs are used to evaluate the 
correctness of the design (for instance by checking against a bounded prop- 
erty). The expressions computed for the memory elements' inputs are fed back 
to the state inputs of the circuit, and the next step of simulation starts. 

Figure 3.3: Schematic of the iterative model of symbolic simulation 

Example 3.1. Assume that we want to symbolically simulate the counter cir- 
cuit of Example 2.2. To set up the simulation, we configure the state lines 
with the initial state So = (000 - I} as shown in Figure 2.7. We then use two 
symbolic variables ro and co for the set INao on the two input lines. 

At this point the simulation proceeds to compute a symbolic expression for 
each internal gate. Using the labels of Figure 2.9, we show some of the expres- 
sions for thefirst step of simulation: 
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symbolic 
inputs 

initial 
state 

Figure 3.4: Symbolic simulation for Example 3.1 - Initialization phase 

At the end of theJirst step, the expressions for the primary outputs and the 
flip-Jops ' inputs are: 

The expressions computed for the memory elements are used to set the state 
lines for the next simulation step, while the input lines will be set with new 
symbolic variables INB1 as suggested by Figure 3.5. At completion of the 
second simulation step, we obtain the following expressions: 

Notice that new Boolean variables are created at every simulation step, one 
for each of the primary inputs of the network. Thus, the expression obtained 
for the primary outputs and the state signals at the end of each step k will be 
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Figure 3.5: Symbolic simulation for Example 3.1 - Simulation Step 2 

functions of variables in {IN@o, . . . , IN@k). The vector of Boolean functions 
obtained for the state symbols ST@k : %mk -+ %n represents all the states that 
can be visited by the circuit at step k. The state symbols STBk represent the 
states at step k in implicit form, that is, any distinct assignment to the symbolic 
variables {INBo, . . . , INBk) will evaluate the state expressions to a valid state 
vector that is reachable in k steps from the initial state So. Vice versa, each 
state that is k steps away from the initial state and corresponds to at least one 
evaluation of the symbolic variables. Note also, from the example, how the 
expressions involved in the simulation become increasingly complex at each 
time step. 

The procedure just described is equivalent to propagating the symbolic ex- 
pressions through a time-unrolled version of the circuit,symbolic simulation,time- 
unrolled circuit where the combinational portion is duplicated as many times 
as there are simulation steps. Figure 3.3 shows this iterative model and input 
and output nodes for the symbolic expressions. 

A simple pseudo-code of the verification algorithm just described is shown 
in Figure 3.6. 

3.3.1 Symbolic simulation to expose design flaws 
By running a frame-based symbolic simulation, we generate a Boolean ex- 

pression for each output and each simulation step. If some of those outputs 
represent the outcome of checkers or assertions embedded in the system, we 
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Symbolic~Simulator(network~model) 

{ 
assign(present-state-signals, reset-state-pattern); 
for (step = 0; step i MAX-SIMULATION-STEPS; step+l ) 
{ 

input-symbols = create-boolean-variables (m, step); 
assign(input-signals, input-symbols); 
foreach (gate) in (combinationalnetlist) 
{ 

compute~boolean~expression(gate); 
} 
output-symbols = read(output-signals); 
state-symbols = read(next-state-signals); 
check~simulation~output(output~symbols); 
assign (present-state-signals, state-symbols); 

1 
} 

Figure 3.6: Pseudo-code for frame-by-frame symbolic simulation 

can then use these expressions to check if we exposed a design error, and also 
to produce a trace (Boolean test vector) that leads the system from an initial 
state to the flawed configuration. Such trace can then be executed by a logic 
simulator and used to debug the design. If no error is exposed by the output 
expressions, then the simulator proceeds to the next step, searching for bugs 
embedded deeper in the design's state space. 

Specifically, at each step, the functions OUT@k : {in@o,. . , in@k} -+ %P 
represent a set of legal values for the outputs of the circuit. If, for instance, 
one of these outputs corresponds to the outcome of a checker that we expect to 
be always at 1 under correct fbnctionality, then 1) a bug is exposed if we see 
that the corresponding OUT@ki expression differs from the constant value 1, 
and 2) a trace can be generated by finding an assignment for the inputs of the 
expression OUTaki so that it evaluates to the desired value. 

In the most general case, if the expected output vector at time k is given 
by the Boolean vector C E IBP, all the assignments that falsify the expression 
Val id: 

P 
Valid = A(ouT@~,~  = Ci) (3.1) 

i= 1 

are valid test sequences that expose the design error. Once Valid is computed, 
it can either be a constant 1 expression, or it is simple to find a falsifying 
expression by just traversing its BDD representation from the top down until 
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a 0 leaf is reached. This approach can be easily generalized to verify more 
complex properties where the output signals must satisfy complex relations 
expressed in terms of the input symbols. 

3.4 Close relatives of symbolic simulation 
The algorithm just described plays a key role in many formal verification 

techniques. We briefly overview here two important formal verification tech- 
niques that use symbolic simulation: 1) In reachability analysis, the transition 
relation of the circuit is typically computed using symbolic simulation, and 2) 
symbolic simulation is also the underlying engine of symbolic trajectory eval- 
uation. The next section will outline some of the main improvements proposed 
for symbolic simulation. 

Symbolic reachability analysis uses symbolic computation to generate an 
implicit function representing of all the reachable states of a finite state ma- 
chine. Once the reachable state set is known it is straightforward to verify if 
a property holds by simply validating it for all the reachable states. A corner- 
stone in the evolution of reachability analysis was the work by Coudert and 
Madre in [CBM89], where the authors discovered a technique to compute the 
reached set using the same explicit Boolean expressions that are used in sym- 
bolic simulation, making reachability analysis a more scalable solution. Their 
technique can also be seen as a way of reparametrizing the symbolic output 
functions, a very fruitful research direction for symbolic simulation, as we will 
see in the later sections. 

The other technique that we cover here is Symbolic Trajectory Evaluation 
(STE). STE is a way of focusing symbolic simulation on the verification of 
a specific property, by restricting the symbolic test vector to specify only the 
input sequences of interest. STE can tackle more complex problems (in terms 
of design size), especially when the property to be verified requires a very 
narrow (very specific) stimulus. 

3.4.1 Symbolic reachability analysis 
The objective of symbolic reachability analysis is to determine the set of 

states that a system can reach after an arbitrary number of transitions, starting 
from an initial state (or set of states) So. The system is described by a finite state 
machine, and the mathematical model of the FSM is used to run the analysis. 
The key step of reachability analysis is the operation of image computation, as 
we described it in the previous chapter, Section 2.7.1, that is the operation of 
computing all the states that can be reached in one transition, starting from a 
start state, under any possible input. 

The set of reachable states can be computed by a symbolic breadth-first 
traversal where all operations are performed with characteristic functions. Dur- 
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ing each iteration, the procedure starts from a set of newly encountered states 
from and performs an image computation on the set to determine the new 
set of states to that can be reached in one transition from the states in from. 
The states included in the from set are simply the states in the to set of the 
previous step that have not already been used in a previous image computa- 
tion. Since the FSM that is being traversed has a finite number of states and 
transitions, these iterations will eventually reach a point where no new states 
are encountered. That point is called thefipoint. The final accumulated set of 
states reached represents the set of all reachable states from the initial state 
So. In practice, all the sets involved in the computation are represented by their 
characteristic functions. 

Symbolic-Reachability (FSM !M ) 

from = new = reached = initial-state; 
while (new # 0) 
{ 

to = Img(transitionrelation, from); 
new = To - reached; 
reached = reached U new; 
from = new; 

} 
return (reached); 

1 
Figure 3.7: Pseudo-code for symbolic reachability analysis 

In general, the number of iterations required to achieve this fixpoint could be 
linear in the number of states of the FSM and, thus, exponential in the number 
of memory elements of the system. 

Symbolic reachability analysis is at the core of the symbolic model check- 
ing technique for verification. The basic idea underlying this method is to use 
BDDs (Section 2.4) to represent all the functions involved in the process and 
the set of states that have been visited during the exploration. Once again, the 
primary limitation of this approach is that the BDDs that need to be constructed 
can grow extremely large, exhausting the memory resources of the simulation 
host machine and/or causing severe performance degradation. Moreover, each 
image computation operation can take too long. The solution (exact or ap- 
proximate) to these challenges is still the subject of intense research, in par- 
ticular, various solutions have been proposed that try to contain the size of the 
BDDs involved [RS95, CCQ961 and to reduce the complexity of performing 
the image computation operation [CCLQ97, MKRSOO]. Recently, Goel and 
Bryant [GB03] proposed a technique to simplify the complexity of computing 
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the reached set of states from the symbolic state vector, by defining set oper- 
ations directly on the vector, obtaining a more complex representation of the 
reached set and bypassing complex and time-consuming BDD operations. 

Finally, another limitation of symbolic traversal is that it is not very infor- 
mative from a design-debugging standpoint: If a bug is found, it is not trivial 
to construct an input trace that exposes it. 

3.4.2 Symbolic trajectory evaluation 

Symbolic Trajectory Evaluation, or STE, strives to improve the scalability of 
symbolic model checking by restricting how properties are described, so that a 
frame-based symbolic simulator can be used, instead of performing full-blown 
reachability analysis. 

In symbolic trajectory evaluation [SB95], the property to be checked is re- 
stricted to be expressible in the form A + C. This type of properties states that 
whenever the design behavior matches a pattern described by A, then it must 
also satisfy the pattern specified by C. The formulas A and C describe the de- 
sired behavior by specifying the values of circuit nodes for a finite number of 
clock cycles into the future. However, only the node values that are relevant for 
the property condition or assertion must be specified. These types of formulas 
are called "trajectory formulas". Although trajectory formulas seem difficult to 
express, STE software typically provides features to ease the laboriousness of 
this task. More importantly, trajectory formulas lack the expressivity of other 
property specification languages (e.g., CTL). For instance, it is not possible to 
describe a trajectory as the negation of a pattern, nor as the disjunction of two 
trajectories; it is also not possible to describe an event that may happen "even- 
tually" (with the meaning of CTL) in the future, since trajectories describe 
events over a finite interval of time (this last limitation has been overcome with 
the introduction of "generalized STE" in [YS03]). 

These limitations are offset by an important benefit: all the circuit behav- 
ior described in a trajectory formula can be expressed by a unique symbolic 
simulation vector, where at each cycle the input signals are assigned to 0, 1, 
a symbolic variable, or the value 'X' to indicate 'unspecified'. Hence, a tra- 
jectory formula can be verified with a single run of symbolic simulation by 
symbolically simulating the vector for A,  and after each simulation cycle, by 
checking that the circuit state is consistent with the corresponding part of C. 

It can be noted that this approach is usually much faster than traditional 
model checking, which requires the computation of a fixpoint for reachability 
analysis. The downside is the limited expressiveness of trajectory formulas 
discussed previously. In addition, this technique may suffer the same prob- 
lems of traditional symbolic simulation in terms of performance and memory 
resource demands. 
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3.5 Enhancements and optimizations 
While theoretically a symbolic simulation can proceed indefinitely, prac- 

tically the representation of the Boolean expressions involved will eventually 
require memory resources beyond those available in the simulation host. More- 
over, for the more complex designs, the complexity of the Boolean expressions 
impacts, very early on, the amount of memory resources needed to proceed. 
The consequence is that both the poor performance and the low scalability of 
plain symbolic simulation are a bottleneck for this verification solution. 

Many techniques to improve the applicability of symbolic simulation have 
been proposed in the past fifteen years. A few of them are briefly outlined here 
below, mainly to give a flavor of how broad and diversified this research has 
been. The next chapters are dedicated to cover, in depth, a few solutions that 
make aggressive use of both reparametrization and approximation, in order to 
show the effectiveness of these techniques in making symbolic simulation a 
scalable verification approach. 

In the area of microprocessor verification, Velev, et al. [VBJ97] presented 
a technique to symbolically simulate memories. Memories are common in mi- 
croprocessor designs and present an added difficulty for a symbolic simulator 
because it needs to store a distinct symbolic fbnction for each storage bit of a 
memory. In Velev's solution a memory is represented by a black box. Write 
accesses are tracked through a queue storing symbolic addresses and data in 
proper time order. Read accesses compute the proper data function by com- 
posing the superimposition effect of all the write operations. In general, this 
technique makes symbolic simulation more amenable for systems with large 
memory blocks, since the complexity is proportional to the number of write 
operations, as opposed to the size of the memory. It is true that read operations 
over time could entail very long computations, because they require to process 
all the write accesses to a portion of the memory (as specified by the symbolic 
address of the operation). However, a baseline symbolic simulator involves 
more and more complex symbolic functions over time, too. The Velev ap- 
proach has the advantage that the first few accesses are very simple to process 
by the simulator, and the complexity only grows over time, with the growing 
number of read accesses. To address the verification of microprocessors, Ritter, 
et al. proposed a technique that combines hierarchical equivalence checking 
with symbolic simulation to prove the equivalence between the specification 
and an implementation of a microarchitecture [REH99]. Jones [AJS99] also 
dedicated much work to the verification of microprocessors, and addressed the 
problem by using hybrid techniques and parametrization. We will cover some 
of this work in Chapter 6. 

Kolbl, et al. proposed a method to deploy symbolic simulation in the con- 
text of event-driven simulation [KKDOl]. To this end, simulation time is also 
handled symbolically, and simulation advances by processing a queue of sym- 
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bolic events. The attractiveness of this solution lies in the ability to simulate a 
design that has not been synthesized, hence, this formal technique can be ap- 
plied in the very early stages of system development. However, it is an added 
level of complexity in the use of symbolic time. As a result, all of the different 
possible ordering among simulation events must be considered and evaluated. 
The authors present a solution to merge events by identifying when they occur 
at the same time, however, in general the sequencing of the events is a source 
of considerable complexity. 

Techniques that directly address the performance of simulation include the 
work of Want at al., [WCZKOl], where the authors attack the problem by 
simulating the circuit's gates in an order that minimizes the overall size of the 
BDDs in use at any point in time. The technique uses a min-cut linear arrange- 
ment graph algorithm adjusted to take into account the topological constraints 
of the circuit. In addition, the graph edges are weighted by an estimate of the 
BDD size at each internal circuit node. This estimate can be derived from the 
size at the previous simulation step, and does not keep track of the sharing 
potential among BDDs. Another example is [HSH+OO], where an attempt is 
made to overcome the limitations of plain symbolic simulation by parallelizing 
it with other collaborative engines: symbolic simulation interacts with logic 
simulation to achieve higher coverage within boundaries of time and memory 
usage. Simultaneously, symbolic state traversal is used together with abstrac- 
tion techniques to prune unreachable portions of the design's state space, and 
thus simplify the simulator's work. The result is an integrated software tool 
that supports the designer in "classifying" the state space of the IC design into 
reachable and unreachable sets, and produces efficient and compact tests to 
visit the relevant portions of a design. 

Earlier in this chapter we mentioned that symbolic simulation can be viewed 
as running an exponential number of logic simulators in parallel: this gives 
symbolic simulation a notable advantage. A fraction of this advantage could 
be traded to gain scalability (through simpler Boolean expressions) and obtain 
viable and efficient symbolic solutions for functional verification. For instance, 
in [WDOO], the trade-off is between the breadth of the search and a better abil- 
ity to simulate complex designs. Wilson, et al. present a technique that im- 
poses a hard limit on the size of the BDDs involved in the simulation. When- 
ever this limit is reached, one or more of the symbolic variables are evaluated 
to a constant, so that the Boolean expressions, and consequently, their BDD 
representations, can be simplified. The step is then re-simulated with the other 
constant value for each of the simplified symbolic variables, until complete ex- 
pressions are obtained for the outputs of the network. Another technique that 
we developed [BDQ99] makes a hybrid use of reparametrization and approxi- 
mation: at each step of simulation it reparametrizesreparametrization the state 
space by deploying a technique that constrains the parametric functions to be 
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extremely compact. If a solution under this constraint is not viable, the state set 
is under-approximated to what is representable by the parameters. Both these 
solutions are covered in detail in Chapter 5. 

Chapter 6 is dedicated to reparametrization solutions and it presents the 
work by Jones in relation to microprocessor verification [AJS99]. The chap- 
ter also introduces a technique we developed in this research space, which 
makes use of disjoint-support decompositions to generate an efficient and ex- 
act parametrization [B002]. 

The research overviewed in this section is just a small sample of the work 
that has been developed in this area. While we did not attempt to provide an 
exhaustive presentation, the objective was to show the broad range of enhance- 
ments proposed. 

3.6 The challenge in symbolic simulation 

Even if some of these efforts provide a major contribution in making sym- 
bolic simulation much more attractive for use in industrial settings, the func- 
tional verification of digital systems remains a challenge for every hardware 
engineering team. There are two core observations underlying the solutions 
that we discuss in the rest of this book. First, symbolic simulation traverses 
the states of a digital system carrying forward, at each simulation step, much 
more information than is needed to verify the system. In fact, it uses complex 
Boolean expressions to describe each of the states that can be visited during 
each step and how they relate to the symbolic input variables. However, much 
less information is actually needed to achieve the objective of verification, that 
is, having the ability to identify, globally, which states are visited at each step. 
In fact, it is possible to re-encode the relevant information in more compact 
parametric forms. This observation leads us to explore parametric techniques 
to generate effective encodings. 

The second observation is that when attempting to expose a bug, only a 
small portion of the signals during a simulation are relevant, while the base- 
line frame-based symbolic simulation algorithm outlined above computes ex- 
act Boolean expressions for all intermediate nodes. If we could select the cor- 
rect portion of the design up front, the remaining part could be approximated 
and it would be possible to save a lot of computational work. 

The next chapters discuss solutions and theoretical work to restrict the com- 
putational effort to only the relevant part of the simulation, and also to discover 
new and efficient encodings of the state sets involved in simulation. These new 
encodings, or parametrizations, have representations that are more compact 
than the original ones, and thus allow for a memory efficient symbolic simula- 
tion, that presents much better robustness and scalability characteristics. 
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3.7 Summary 
This chapter covered symbolic simulation, its evolution and the baseline 

algorithm of reference. We also covered other related symbolic techniques 
and drew the analogy to simulation. Finally the last part of the chapter was 
dedicated to discuss some of the ongoing research in this area. 

The next chapter will take a step back from the verification problem, and 
focus on introducing parametrizations and disjoint-support decompositions. 
Both these theoretical aspects will be deployed in the symbolic simulation so- 
lutions presented later in this book. 
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Chapter 4 

COMPACTING INTERMEDIATE STATES 

This chapter is dedicated to introducing two techniques that enable the trans- 
formation of intermediate states of symbolic simulation into compact paramet- 
ric vectors. The two techniques are parametrization and disjoint-support de- 
composition. We first introduce the basic concepts of parametrization through 
simple examples, and we discuss the motivation for this direction of work in 
symbolic simulation, namely, a reduced memory profile in simulation and a 
more intuitive description of the state of the design. We then introduce disjoint- 
support decompositions, also called DSDs, and present the key aspects and 
benefits of this representation for Boolean functions. We attempt to provide 
a broad introduction to disjoint-support decomposition and omit much of the 
formal derivation. The interested reader is referred to the Appendix for a de- 
tailed analysis of the canonicity of disjoint-support decompositions and the 
construction algorithm. The two chapters that follow will use one or both of 
these techniques to create scalable and compact symbolic simulation solutions. 

4.1 Parametric transformations 
A parametrization is a transformation which considers the range of a vec- 

tor function F (see also Definition 2.3), and encodes this range through a new 
vector function P over a fresh set of parametric variables, so that P spans ex- 
actly the same range. The hope when performing a parametrization is that the 
parametric vector has a more compact representation than the original vector. 

Example 4.1. Consider the vector function F : B' t !B5: 
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Since the cardinality of is only four, we should be able to find an encod- 
ing of the elements of this set using only two parameters. One possible such 
encoding is: 

P ( P I , P ~ )  =< PI,P~Z,E,  ,PIE,P~ > (4.3) 
By similar enumeration, it is possible to check that the parametric vector P 

spans exactly the same range as F, even though each distinct output value is 
not repeated at multiple input combinations. Moreover, P has the advantage of 
using simpler expressions and fewer symbolic variables. 

The range of F can be computed by trying all the possible assignments to 
the input variables ii, as shown below: 

In the context of symbolic simulation, one key observation that was made 
very early on is that one of its sources of complexity is the memory required to 
represent the Boolean expressions at the circuit's outputs and internal nodes. 
However, each time a simulation step is completed, the only information that 
is carried forward is the range spanned by the next-state vector. Hence, if 
we could find simpler parametric Boolean expressions, such as those in the 
example, that span exactly the same range, we could simplify the simulation 
job without sacrificing its breadth. 

input 
00000 
00001 
00010 
0001 1 
00100 
001 01 
00110 
00111 

4.1.1 A formal definition 
Consider a Boolean vector function V ( i l ,  . . , in) : Bn t Bm. For each dis- 

tinct assignment to the input variables i, the vector will evaluate to an m-bits 
Boolean value. Collectively, all the values generated constitute the range of V ,  
Z(.(V). In the most general context, a parametric transformation is a transfor- 
mation that generates another Boolean vector P, whose range is identical to the 
one of V :  

Definition 4.1. A parametric transformation is a mapping from a Boolean 
vector V ( i l , .  . . , ik)  to another Boolean vector P ( j l ,  . - . , j,) such that the range 
(indicated by the symbol of the two vectors is identical: 

By collecting all of the output vectors we gather the range of F: 

output input 
OOIOO OIOOO 
OOIOO OIOOl 
00100 01010 
O l l O l  01011 
OIlOl OIlOO 
01 101 OllOI 
01101 01110 
01101 01111 

output input 
00100 10000 
00100 IOOOl 
00100 10010 
01101 10011 
01101 10100 
01101 lOI0l 
OIIOl l o l l 0  
01101 10111 

output input 
IOOlO 11000 
IOOlO 11001 
10010 11010 
10001 11011 
loo01 11100 
IOOOI 11101 
loo01 11110 
loo01 11111 

output 
00100 
00100 
00100 
01101 
OIlOl 
01101 
OIlOI 
01101 
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If we assume that Boolean vectors are represented by BDDs, then interesting 
parametrizations are those that generate vectors P which have more compact 
BDDs than their V counterpart, and have possibly fewer inputs, that is k 5 r. 

'Wvq dl--- Vn) 

Vector of 

v 
..... 

TRANSFORMATION I 

Boolean 
functions 

Fewer inputs 

Figure 4.1: Schematic of the impact of parametric transformations 

Figure 4.1 illustrates the concept pictorially: on the top part of the diagram 
is the original Boolean vector V, represented by complex BDDs, on the bottom 
part, the parametric vector P, which is described by smaller BDDs, with fewer 
inputs. 

4.1.2 Applications to symbolic simulation 
The central observation underlying the work presented in the next chapter of 

this book is that the expressions involved in a symbolic exploration carry more 
information than the algorithm uses. At the end of each step, the Boolean 
expressions representing the state signals are fed back to the sequential inputs 
of the gate-level network and used for the next simulation step. As we pointed 
out in Section 3.3, at the end of a generic step k, these expressions represent 
implicitly all the states that are reachable by the design in k steps from an initial 
state So. We observe now, that this implicit description of the set of states S@k 
is most often redundant. In fact, the only information that must be transferred 
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across simulation steps is the set of states that have been reached in the previous 
step. Therefore, it can be generally possible to define a more compact encoding 
of this set description, that is, a new parametrization of the state set. We can 
then use this new implicit description for the next simulation step. Figure 4.2 
shows where the transformation takes place in the simulation flow. Note that 
the parametrization phase does not need to applied at each cycle, it is possible 
to have an evaluation mechanism that triggers the parametrization only when 
needed, for instance because of scarce resources available. 

inputs 

Figure 4.2: Parametrization of the state vector during symbolic simulation 

Consequently, if we could define a new encoding that uses compact BDDs 
and that transforms the expressions defining the set of reached states at the end 
of every simulation step, then we can maintain a low memory profile across 
the process and thus achieve better scalability and robustness in simulation. 

Example 4.2. Consider once again the counter of Example 2.2. When we 
perform the first step of symbolic simulation on this design, with reference to 
Figure 4.3 - step I ,  we obtain the following vector of Boolean expressions for 
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the next-state functions: 

By varying the values associated with each of the variables in the expres- 
sions, that is, performing all the assignments {00,01,10,11) for the pair of 
variables ro and co, we obtain an explicit list of all the states that can be 
reached in one step of symbolic simulation. For this example, such state set 
is { 1000,1001). It's easy to see that this set can be more simply encoded as 
{ 1 OOpo), where po is a new Boolean parameter. Note that the newparametriza- 
tion uses only one Boolean variable instead of two. 

We can now use this new simpler representation of the state set for the 
second step of simulation and obtain the expressions reported in Figure 4.3 
- step 2 after simulating the combinational portion of the network. The new 
state expressions depend now on three variables: rl, cl andpo, the parameter. 
Once again, by evaluating the expressions for each possible assignment to the 
Boolean variables, we only obtain three distinct states: { 1000,100 1,10 10). 
These three states can be more ejiciently encoded using only two parameters 
as: 

step I 
state set 

step 2 
state set 

step 3 

Figure 4.3: Three steps of symbolic simulation for the counter of Example 2.2 
and possible parametrizations of the reached state sets 

As even this small example shows, most often symbolic simulation produces 
expressions that are not an efficient encoding of the state set spanned by the 
traversal. In order to exploit the compact memory representations allowed by 
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parametrization, we need to deploy an efficient algorithm that can discover 
good parametrizations automatically. 

4.1.3 A brief history of parametric solutions 
An entire branch of research on symbolic simulation has concerned itself 

with finding efficient and compact parametrizations for the next-state functions 
STBk. We overview here some of the solutions proposed, while the following 
chapters will cover in depth a few of them. 

Some of the first parametrization work was developed by Jain and Gopalakr- 
ishnan in [JG92, JG941, where they stated the relevance of parametrization in 
symbolic simulation and evaluated a range of techniques for a few specialized 
applications. Other solutions rely on user interaction to suggest candidate re- 
lations among the signals of the systems under verification, that will then be 
explored when parametrizing the simulation. For instance, in [HD93], the au- 
thors exploit the dependencies among state variables to simplify the traversal 
of a FSM. Such dependencies are suggested by the designer and are verified 
for correctness during the simulation of the system. 

The work on reachability analysis by Coudert and Madre [CBM89, CM901 
can also be viewed as a parametric transformation (which they call functional 
parametrization) from an explicit next-state vector to an implicit reached set. 
In contrast, Aagard, et al., [AJS99] addressed the scalability of simulation 
by both partitioning the search space and using a parametrization technique 
where an implicit function is transformed to an explicit set of functions, with 
an overall more compact representation. The structural partitioning is based on 
a design-derived case splitting, so that each individual case can be fairly com- 
pact and self-contained. Van Eijk, et al., in [vEJ96], automatically discover 
dependencies among state variables during finite state machine traversal. De- 
tecting such dependencies requires checking all the state variables at each step 
of the traversal and transforming both the reached set and the transition rela- 
tion accordingly. Consequently, the copious computation required offsets the 
benefits of the more compact parametric representation. Another contribution 
in this area is by Moon, et al., in [MKK+O~], who developed an alternative 
technique by creating a compact, functionality-preserving representation for a 
circuit portion, which reduces the overall complexity of combinational equiv- 
alence checking. 

A research direction related to symbolic simulation and parametrizations fo- 
cuses on partitioning the search exploration based on circuit-related constraints 
and then performing multiple simulation for each element of the partition. In 
this context, parametrization techniques have been used to express the condi- 
tions of each sub-problem in the partitioned constraints. In particular, Jain, 
et al., considered in [JG93] a variety of Boolean formula representations for 
the constraints and proposed a method to obtain parametric solutions. Aa- 
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gaard, et al., [AJS99] introduced an alternative method where the case splitting 
on the constraints is based on Shannon decomposition. Our techniques from 
[BDQ99] and [BOO21 are also in the realm of parametric solutions, the former 
in relation to fast approximations, and the latter in conjunction to disjoint- 
support decompositions. All these solutions will be discussed in depth in the 
following chapters. 

The next few sections of this chapter are dedicated to present the theory of 
disjoint-support decompositions. We discuss the theoretical background and 
present a recent algorithm that enables the computation of decompositions for 
complex functions of thousands of variables. We will see in the next chapters 
how this algorithm and parametrizations techniques are used to improve the 
scalability of simulation. 

4.2 Disjoint-support decompositions 
Disjoint-support decomposability is an intrinsic property of Boolean func- 

tions. Most functions arising in practical design contexts present some amount 
of decomposability, that is, they can be split in two or more sub-functions, 
which do not share any input signals. 

In general terms, given a Boolean function F ( x l ,  . . . ,xn), it is often possible 
to represent F by means of simpler component functions. When F can be 
represented with two other functions, say K and J,  such that the inputs of J and 
K do not intersect, F = K ( x l ,  . . . , x jP l ,  J(xj ,  . . . ,xn)) ,  then we say that F has 
a simple disjoint-support decomposition. A qualitative representation of this 
process is depicted in Figure 4.4. 

Original function Decomposed function 

Figure 4.4: General form of a disjoint-support decomposition (DSD) 

The following example shows how a functions has in general multiple dis- 
tinct disjoint-support decompositions. If that is the case, there is always a 
"common-denominator" decomposition with a finer granularity than all the 
other decompositions. 

Example 4.3. The function F = (xl +x2) (x3 e x 4 )  has a simple disjoint-support 
decomposition where K1 = J1 (x3 e x 4 )  and Jl = X I  +x2 as in Figure 4.5.a. The 
decomposition K2 = (xl + x2)J2 and J2 = x3 $ x4 is also a simple disjoint sup- 
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port (Figure 4.5.b). Note that it is possible to combine these two decompo- 
sitions and represent the function as F = K3 (J1, J2) where K3 = jl j2 (Figure 
4.5.c). 

XOR 

Figure 4.5: Three different disjoint-support decompositions for Example 4.3 

A disjoint-support decomposition can also be seen as a way of partitioning 
the inputs of a function, each element of the partition being the set of inputs 
to one of the component functions. For instance, with reference to the pre- 
vious example, the decomposition in Figure 4.5.c corresponds to the partition 
{{xl,x2), {x3,x4)). If we consider each of the inputs xi of F ,  they can be- 
long to the support of at most one of the component functions, otherwise we 
would violate the requirement of non-intersection. We can also guarantee that 
they belong to no less than one function. In fact, if that was not the case, the 
variable xi would not be part of the support of F ,  against the assumption that F 
depended on xi (see Section 2.3 for a definition of support of a function). When 
a h c t i o n  can be decomposed in more than one way, there is always a decom- 
position of maximal granularity, that is, a decomposition that imposes a finer 
partition on the support of F and such that the elements of this partition can be 
composed to all the other decompositions. The last decomposition of 
Example 4.3 is a maximal decomposition. 

The following sections, complemented by the Appendix, will unfold the the- 
ory behind disjoint-support decompositions, their uniqueness, and a canonical 
form that we defined in recent work [BD97, Ber03bl. We will also a outline 
an algorithm that can create the maximal decomposition tree for any Boolean 
function, starting from its BDD representation. The algorithm has worst-case 
complexity quadratic in the size of the input BDD. A symbolic simulation so- 
lution discussed in Chapter 6 shows that the decomposed form can be used to 
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generate efficiently an exact parametrization of the intermediate state vectors 
of simulation. 

4.2.1 A canonical form of DSDs 
In the most general terms, the disjoint-support decomposition of a scalar 

function F : 19" -+ 19 consists of finding other, simpler functions L and Ai such 
that: 

The decomposing function L is called a divisor of F. In addition, functions 
can be grouped into two different categories based on how they decompose. 
A function for which no disjoint-support decomposition exists is said to be 
prime. For instance F = ac + bE is prime, since it cannot be decomposed by 
any simpler function. Another example of prime function is the majority func- 
tion: F = ab + bc + ca, which has no decomposition through disjoint-support 
components. A maximal decomposition is a decomposition where each com- 
ponent cannot be further decomposed, for instance, the decomposition in Fig- 
ure 4.5.c is maximal. In a maximal decomposition, the component function 
blocks of the decomposition can be either prime functions or associative oper- 
ators (OR, AND, XOR). In terms of the Equation 4.5, this is equivalent to say 
that L can only fall into one of the two categories above. It is relevant to note 
that, because of this classification, prime functions must always have three or 
more inputs, otherwise they would be an associative operator. 

4.2.2 Decomposition trees 
Note that each function Ai in Equation 4.5 can also be decomposable. Hence, 

by applying the decomposition recursively, we obtain a tree structure, called 
a decomposition tree. Leaves of a decomposition tree of a function F are la- 
beled by variables xi or their complements x. Nodes of the decomposition tree 
are labeled by the type of function L that divides the subfunction rooted at that 
node of the tree. Each node has k incoming edges, one for each Ai function. 
The function elements of the decomposition are the actuals list, while the vari- 
ables in the support of the dividing function L constitute the formals list. When 
the decomposition is maximal, the internal nodes can be either prime functions 
or associative operators, and the tree is called maximal decomposition tree. 

Example 4.4. Consider the function F = h( (a  @ b )  MAJ(c,d, e + f )  . g)  + 
h(k+ j - m). Figure 4.6 represents its decomposition tree. The node labeled 
MUX corresponds to the function L(y ,y2, y3)  = y3y1 + Y3Y2 with indexes of 
the formals list increasing left to right for the edges in the picture. The node la- 
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beled MAJ corresponds to the function majority. The other nodes corresponds 
to AND, OR and XOR functions. 

Figure 4.6: A decomposition tree for Example 4.4 

We prove in the Appendix that the maximal decomposition tree of a function 
is unique and that distinct decomposition trees correspond to different func- 
tions. The only two constraints we must impose to construct this canonical 
form are that: 

1 when a function is decomposed by an associative operator, the cardinality 
of its actuals list, that is k, must be maximal, and 

2 each node of the decomposition tree must be maximally decomposed. 

In a maximal decomposition tree, each of the internal nodes corresponds to a 
kernel function, which is a function that cannot be further decomposed, and 
abides the canonicity constraint 1. Moreover, any cut through the decomposi- 
tion tree represents a valid disjoint-support decomposition for the function F. 
Normalization rules related to the use of complement edges allow to further 
compact the representation, while maintaining a canonical form, in a fashion 
similar to what is discussed in [BRB90] for BDDs. 
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Example 4.5. Consider the function F = MAJORITY(a@ b, cd+e, ITE( fg ,  h, i)) .  
F has the following disjoint-support representation: 

F = MAJORITY(G, H, I ) ;  

G = a@b;  

H = L+e; 

I = ITE(M, h, i); 

L = cd; 

M = fg; 

The data structure of its normal decomposition tree is reported in Figure 4.7. 
Notice that the representation is normalized by representing each AND decom- 
position with it's dual OR and using complement edges. Moreovel; since the 
function I is decomposed through a PRIME, all of its actuals list element must 
have positive polarity. Thus, the first element A 1 for the decomposition of I is 
thehnction fg  instead of f g  and the kernel we use for I is KI = a x ,  +xox2 
which takes into account the polarity change. 

Figure 4.7: Decomposition data structure for the function of Example 4.5 
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4.3 A BDD-based algorithm to extract DSDs 

In the previous section we presented a canonical data structure to represent 
all the disjoint-support decompositions of a Boolean function. We showed 
there and in the Appendix that this structure, the decomposition tree, is unique 
for each function, because of the uniqueness of the maximal decomposition. 

To be able to explore the decomposability of functions, we need an algo- 
rithm that can build the decomposition tree. Historically (see Section 4.5 for 
more details), algorithms to this end would attempt to find decompositions 
by exploring all the possible partitions of the support of a function F, conse- 
quently their complexity would be exponential in the number of input variables 
of F. Because of this, only very small functions with a few inputs could be de- 
composed. The algorithm that we present here, uses a completely different 
approach. It starts by considering a function in its BDD form, and it proceeds 
by traversing the BDD tree bottom-up and constructing the decomposition of 
each intermediate node, until eventually it obtains the decomposition of the 
root node, that is the whole function. Moreover, the complexity of the algo- 
rithm is only quadratic in the size of the BDDs, which enables the construction 
of the decomposition tree for functions with thousands of variables. The care- 
ful reader may notice that this does not constitute a major breakthrough in the 
theory of computer science. In fact, it is known that in the worst case scenarios, 
BDDs have exponential complexity over the number of variables of the func- 
tion they represent (Section 2.4). In those worst case scenarios, our algorithm 
is no better than the original solutions attempting all the partitioning of the sup- 
port set. However, from a practical standpoint, many functions involved in the 
design of integrated circuits have much simpler BDDs, often of complexity just 
linear on the size of support set. In addition, the advent of BDDs has enabled 
the representation and manipulation of Boolean functions much more complex 
than what was possible before. For all these functions, the algorithm presented 
below is a viable technique to extract all the disjoint-support decompositions. 

4.3.1 Building decompositions bottom-up 

The decomposition algorithm, which we call DEC, operates recursively on 
the BDD of the function, in a bottom-up fashion. At each intermediate node 
it discovers the decomposition of the sub-function corresponding to that node, 
deriving it from the decompositions of the two children of the node, that is, 
the two cofactors. This construction is done by considering a list of cases that 
may arise and matching the correct situation to the node at hand. After the 
decomposition of a node is completed, the algorithm moves on to compute its 
parent's decomposition. Here we provide a high level overview of the cases 
that may arise, and we then discuss the various components of the DEC algo- 



Compacting Intermediate States 63 

rithm. The Appendix reports a detailed discussion of all these cases and proves 
the correctness of the analysis. 

To set the stage, assume that we are decomposing a hnction F ,  whose BDD 
has the variable z at the root node. We already know the decomposition tree 
of the two cofactors, DT(Fo) and DT(Fl), and we want now to compute the 
decomposition tree for F ,  DT (F). In principle, one could build DT(F) by 
running a case analysis based on the decomposition type of Fo, Fl, that is, 
OR, AND, XOR or PRIME. Example 4.6 below, however, indicates that this 
information alone may not be enough, and additional comparisons need to be 
carried out on DT (Fo) , DT (Fl ) : 

Example 4.6. Let G, H, J denote three functions, with painvise disjoint sup- 
ports. Suppose they all have a PRIME kernel. Suppose also that the two co- 
factors of F w ~ t .  z are as follows: 

That is, Fo has a PRIME decomposition, while Fl has an OR decomposition. 
The decomposition for F can be found as follows: 

and KF is an OR function. 
Consider now the case where Fl is as above, while Fo = J. Again we have 

a situation where Fo and Fl decompose through a PRIME and an OR function, 
respectively. However the decomposition of F results as: 

and KF is a PRIME function. Thus, functions with dzferent decomposition 
types may have cofactors whose decomposition types are identical. 

In practice, in order to build the decomposition, it is necessary to take the 
specific actual lists of Fo and Fl into consideration. The resulting analysis 
would involve additional comparisons on the actual lists that are often numer- 
ous and complex. Therefore, we present here a different solution, based on the 
observation made by the following example: 

Example 4.7. Suppose that F has a decomposition with KF a PRIME function: 

The two cofactors will then have decomposition 
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If neither A1 ( z  = 0) nor A1 ( z  = 1) is a constant, the kernels of f i  and Fl co- 
incide, and the two actuals lists dzffer in exactly one element. It is shown in 
Appendix, Section A.4.I.I that also the inverse is true: ifFo and Fl have the 
same prime kernel and very similar actuals lists, then F will have the same ker- 
nel as Fo and the actuals list can be readily constructed. A similar observation 
holds also ifF has OR, AND, or XOR decomposition. 

Example 4.7 suggests that we may subdivide the problem by distinguishing 
the case where both A1 ( z  = 0) and A1 ( z  = 1) are constants, from the case when 
at most one of them is constant. In fact, the former will require a simpler 
analysis to identify the decomposition of the function F .  If we impose that 
both cofactors of A1 should be constant, then A1 must have a single variable in 
its support and it must be Al = z or A1 = 2. We refer to this situation as a new 
decomposition, since in this case we are starting a new decomposition block 
that contains the single variable at the top of our construction. We refer to the 
other situations, when at least one of the cofactors of Al is not constant, as an 
inherited decomposition, since in this case we are expanding a block that exists 
already in the decomposition of the cofactors of F by "adding" the variable z 
to it. The definition below formalizes the classification of new and inherited 
decompositions: 

Definition 4.2. We say that the decomposition of F: (KF, F / K F )  is inherited 
i f  1.5 (A 1 ) I > 2. It is termed new otherwise. 

the Appendix shows that in an inherited decomposition, F shares the ker- 
nel (and some actuals) with at least one of its cofactors. However, in a new 
decomposition, this is not guaranteed to happen, and the kernel of F may be 
completely different from either of the cofactors. 

4.3.2 Putting it all together: The DEC procedure 
We detail now the decomposition procedure. This description sets the stage 

for the complexity analysis presented in Section 4.3.3. The algorithm traverses 
the nodes of the BDD of F in a bottom-up fashion. During the sweep, each 
node is inspected, and the decomposition tree of the function rooted at this node 
is determined from the decomposition of its cofactors and the top variable, 
using the results presented earlier in this chapter. 

The BDD node is then labeled with a signed ' pointer (DEC *) to the root 
of its decomposition tree. With the reference to the pseudo-code in Figure 4.8, 
the function GetDecomposition simply extracts the DEC pointer from a 
BDD node, and complements it if the BDD node was negated. The call to 
decompose is the decomposition procedure proper as shown in Figure 4.9. 

'because of the use of complemented edges - see also the Appendix at Section A.3 
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We attempt the decomposition as an inherited or new decomposition. Each 
subroutine then considers all the corresponding cases that are presented in the 
Appendix. 

decompose-node(BDD* node) 
{ 

node = NodeRegular(node); 
if (node->dec != NULL) return; 
var z = node->topVar; 
BDD *corn = node->cofactorO; 
BDD *cofl = node->cofactorl; 
decomposeaode(cof0); 
decomposeaode(cof1); 
DEC *decO = GetDecomposition(cof0); 
DEC *decl = GetDecomposition(cof1); 
DEC *res = decompose(z,dec0, decl); 
node->dec = res; 
return; 

1 
Figure 4.8: Pseudo-code for the decompose-node procedure 

DEC *decompose(var z, DEC* dec0, DEC* decl) 
{ 

res = decompose~INHERITED(z, dec0, decl); 
if (res) return(res); 
res = decomposeNEW(z, dec0, decl); 
return(res); 

1 
Figure 4.9: Pseudo-code for the decompose procedure 

A DEC node contains a type field and an a c t u a l s  list. The type field has 
four possible values: VAR (for simple variables), OR, XOR and PRIME; and 
it represents the decomposition type of the function rooted at that node. The 
actuals list is a list of signed pointers to BDD nodes. Each pointer represents a 
function Ai. 

It is worth noting that decompose-INHERITED and decompose-NEW 
are just switches, activating other procedures. In addition, since we must suc- 
ceed with at at least one type of decomposition, the return value of decompose 
is guaranteed to be non-null. Finally, when two or more cases require a similar 
analysis, we group them in the same procedure so that portion of the compu- 
tation can be shared; this is especially useful in building inherited decompo- 
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sitions as shown in Figure 4.10 where the case numbering is made with refer- 
ence to the presentation in the Appendix. Figure 4.1 1 shows the pseudo-code 
to build new decompositions. 

DEC* decompose~INHERITED(var z, DEC* dec0, DEC* decl) 
{ //case 1 .b 2.b 3.b for AND/OR dec. 

res = decompose-INHERITED-OR-123.b(z7 dec0, decl); 
if (res) return(res); 
// case 1 .b 2.b for XOR dec. 
res = decompose~INHERITEDXOR_12.b(z, dec0, decl); 
if (res) return(res); 
//case 1 .a 2.a 3.a 
res = decompose-INHERITEDPRIME-1 .a(z, dec0, dec 1); 
if (res) return(res); 
res = decompose-INHERITED-PRIMEZ.a(z, dec0, decl); 
if (res) return(res); 
res = decompose-INHERITED9RIMEE3.a(z, dec0, decl); 
return(res); 

1 
Figure 4.10: Pseudo-code for decompose-INHERITED 

DEC* decompose-NEW(var z, DEC* dec0, DEC* decl) 
{ 

res = decomposeNEW-OR(z, dec0, decl); //case 4.a 
if (res) return(res); 
res = decomposeNEWXOR(z, dec0, decl); //case 4.b 
if (res) return(res); 
res = decomposeNEW-PRIME(z, dec0, decl); //case 4.c 

Figure 4.1 1: Pseudo-code for decompose_NEW 

Since the maximal decomposition is unique, the calling order of the vari- 
ous sub-procedures is irrelevant; with the following exception: since we only 
detect a new PRIME decomposition by failing all other cases, the procedure 
that builds a new PRIME decomposition, decompose_NEW-PRIME, must be 
called last. In practice, we exploit this level of freedom by ordering the proce- 
dures based on the amount of analysis that they require, the fastest ones first; 
and disregarding even the grouping of new decompositions and inherited ones. 
For instance, our implementation of decompose-node executes, first of all, 
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decomposeNEW-OR and decomposeNEWXOR, since those are the sim- 
plest situations to evaluate. 

4.3.3 Complexity analysis and considerations 
This section analyzes the complexity of the algorithm, given a function F 

whose BDD representation has #BDD nodes and whose support ISF I has #VAR 
variables. The reader may want to use the Appendix as a reference in following 
the discussion of all the possible case analysis that may arise when decompos- 
ing a function. 

Notice, first of all, that the length of any actuals list in DTF is bound by the 
number of variables in the support of the function, IF/KFI 5 ISF/. We now 
analyze the complexity of each procedure in decompose. 

The procedures decomposeNEW-OR and decomposeNEW-XOR require 
only constant time operations: O(k) . decompos eNEW-PRIME requires only 
building the set Max(Fo,Fl). As pointed out previously, the complexity of this 
operation is linear in the size of the decomposition trees involved. The number 
of nodes in a decomposition tree is bound by #VAR; thus the complexity for 
this procedure is O(#VAR) . 

Inherited decomposition procedures involve recursive calls to decompose. 
The inherited procedures for OR and XOR decompositions require intersecting 
two actuals lists, an operation linear in their length, and performing a recursive 
decomposition call. Note that, at each recursive call, the support of the function 
to decompose has at least one fewer variable, since the common portion of the 
final actuals list must have at least a support of size one. In conclusion, for 
these two procedures, we can write a recursive equation of their complexity: 
O(ISFI) = O(#VAR) + O(ISFI - 1). 
decompose-INHERITED-PRIME-1 . a has a similar treatment, with two 

differences: 1) In addition of intersection the actuals lists, we need to com- 
pute also four generalized cofactors. As we showed in Section A.5.1.3, these 
are special cofactor operations whose complexity is linear with the size of 
the BDDs involved. 2) At each recursive step, the support of the function 
to decompose now has at least two fewer variables, since we are dealing with 
PRIME nodes which have at least three inputs. The recursive operation for this 
procedure is thus: O(ISFI) = O(#VAR) +4 - O(#BDD) + O(ISFI - 2). 

The decomposition functions decompose-INHERITED-PRIME-2 . a and 
decompose-INHERITED-PRIME-3 . a require a list intersection, a number 
of cofactor operations, up to twice the length of the actuals lists, and a recursive 
call to decompose. However, in this case the call is guaranteed to be termi- 
nated by a new OR decomposition whose complexity, as we saw, is constant: 
O(#VAR) + 2 O(#BDD. #VAR) + O(k). 

By solving the recursion of decompose~INHERITED~PRIME~1. a ,  we 
obtain a complexity of O(#BDD .#VAR), which cannot be made worse even by 
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terminating any of the recursive steps with a call to the decomposition function 
decompose-INHERITED-PRIME-3. a. Thus, this is also the worst com- 
plexity of decompose. Since we need to call this procedure for each BDD 
node in the representation of F ,  the overall complexity of our algorithm is: 
0 (#BDD~ . #VAR) . 

Previously known algorithms had exponential complexity in the size of SF 
and would compute only one of the many decompositions of a function. The 
complexity of our algorithm is dominated by the size of the BDD that repre- 
sents the function F ,  not by the number of variables in its support. Moreover, 
it has the advantage of computing the finest granularity decomposition, from 
which all others can be derived. 

For those functions whose BDD representation has size exponential in the 
number of the input variables, our algorithm has no better complexity than 
previously known ones. However, it is known that most functions representing 
digital circuit have corresponding BDDs whose size is much more compact 
and thus it is possible to build such BDDs even for some very large functions. 
Using our algorithm it is practically always possible to find the maximal dis- 
junctive decomposition of a function, once a BDD has been built. 

4.3.4 Decomposability experiments 
The algorithm described in this chapter was implemented in a C++ program 

and tested on the circuits from the Logic Synthesis Benchmarks suite [Yan91] 
and the ISCASY89 Benchmark Circuits [BBK89], including their 1993 addi- 
tions. We report results on all the testbenches of the two suites. The test- 
benches are grouped by benchmark suite and by group within the suite: the 
Logic Synthesis suite includes two-level combinational circuits, multi-level 
combinational networks, sequential circuits and the tests added in '93. The 
ISCAS '89 suite includes a set of core sequential testbenches and additional 
circuits from '93. For all the sequential circuits, we considered only the com- 
binational portion of the tests, we created an additional primary output for each 
latch input net and an additional primary input for each latch output. For each 
testbench, we first built the BDDs representing each output node as a func- 
tion of the primary inputs, and then we attempted the decomposition of this 
functions. 

The decomposition results are reported in Table 4.1. Next to the testbench's 
name we indicate how many of the output functions we could decompose: 
Output corresponds to the number of outputs of the circuit, DEC reports how 
many of these output functions have a disjoint-support decomposition. Output 
functions that are constant or a copy of a single input signal are considered de- 
composable. When not all of the outputs could be decomposed, we also looked 
at the non-decomposable outputs and checked if any of the two cofactors w.r.t. 
the top variable were decomposable. Column Dec Cof reports in how many 
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cases at least one of the two cofactors was decomposable. We report a "-" in 
this column when all the outputs of the circuits were decomposable and thus 
the decomposability of the cofactors is not meaningful. By just glancing at 
the table, it's easy to notice that the column Dec Cof has a - for most of the 
circuits, meaning all of the outputs for that testbench are found to be decom- 
posable. 

Often, if a function is not decomposable, its cofactors are, and thus it is 
still possible to obtain a representation that has almost all the advantages and 
properties of disjoint-support decompositions, except for a non-disjoint mul- 
tiplexer corresponding to the node with the top variable of the specific BDD. 
Notice that even fairly large functions have a disjoint decomposition in most 
cases. For visual reference to the more complex testbenches, the table reports 
in boldface those circuits whose BDD construction, before starting the decom- 
postion, required building more than 10,000 nodes. 

The following two columns report the number of inputs of the circuit (In- 
puts) and the maximum number of inputs to any block in the decomposition 
tree of the output functions for that testbench (Fanln). It is worth noticing that 
in many cases, even the most complex decomposition can reduce considerably 
the largest fanin to any block in the network's representation, while keeping 
each block disjoint support from the others. Then we indicated the total num- 
ber of blocks in the normal decomposition trees. These latter two values are 
helpful in giving an indication of the amount of partitioning possible in the 
routing of the benchmark circuit. 

The last four columns of the table provide performance information. The 
first time and memory pair reports the time in seconds and the amount of mem- 
ory in kilobytes required to produce the BDDs of all the output functions of a 
testbench. The second pair indicates the additional time and memory required 
to construct the normal decomposition trees from the BDDs. All the experi- 
ments were run on a Linux PC equipped with a Pentium 4 processor running 
at 2.7Ghz and 2GB of memory and 512Kb of cache. In running the tests, 
we used a proprietary BDD package. In particular, our BDD package records 
the support of the functions associated to each BDD node. While this feature 
is convenient because of the number of support operations and tests we need 
to perform, its efficiency could be optimized. Moreover, our decomposition 
package has also room for implementation improvements. 

In most cases the additional time to decompose a function is small com- 
pared to the time required to build the initial BDDs. However, there are a few 
cases where this is not the case: specifically C1355 and C499 of the Logic 
Synthesis suite cannot find a decomposition for any of the primary outputs, 
yet the algorithm is very time consuming. These circuits are very similar, they 
have the same number of inputs and outputs and they are both error correcting 
circuits as reported in [Yan91]. By inspecting the two circuits we found that 
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Table 4.1 : Disjoint-support decomposition results (Part 1) 

Circuit Outputs DEC ",: Inputs FanIn Blks BDD perf DEC perf 
Time Mem Time Mem 

Logic Synthesis '91 - Two level tests 
5xpl 10 9 0 
9sym 1 0 0 
alu4 8 1 0  
apex1 45 43 0 
apex2 3 3 - 
apex3 50 39 2 
apex4 19 5 0 
apex5 88 88 - 
bw 28 15 4 
clip 5 0 2 
con 1 2 0 2 
duke2 29 24 3 
e64 65 65 - 
misexl 7 1 0  
misex2 18 17 1 
misex3c 14 2 5 
misex3 14 2 1 
064 1 1 - 
rd53 3 1 1  
rd73 3 1 0  
rd84 4 2 0 
sao2 4 4 - 
seq 35 35 - 
vg2 8 8 - 
xor5 1 1 - 

Logic Synthesis '91 - FSM tests 
daio 6 5 1 
ex l 39 39 - 
ex2 21 21 - 
ex3 12 12 - 
ex4 23 23 - 
ex5 11 11 - 
ex6 16 12 4 
ex7 12 12 - 
s1196 32 24 6 
s1238 32 24 6 
s1423 79 77 2 
s1488 25 23 2 
s1494 25 23 2 
~ 2 0 8  10 10 - 
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Table 4.2: Disjoint-support decomposition results (Part 2) 

Circuit Outputs DEC Ez Inputs FanIn Blks BDD perf 
Time Mem 

Logic Synthesis '91 - FSM tests (cont.) 
~ 2 7  4 4 -  8 
s298 20 17 3 18 
s344 26 23 0 25 
s349 26 23 0 25 
~ 3 8 2  27 27 - 25 
~ 3 8 6  13 13 - 14 
~ 4 0 0  27 27 - 25 
~ 4 2 0  18 18 - 3 6 
~ 4 4 4  27 27 - 25 
s510 13 5 3 26 
s526n 27 24 2 25 
s526 27 24 3 25 
s641 42 42 - 55 
~ 7 1 3  42 42 - 55 
s820 24 22 1 24 
s832 24 22 1 24 
~ 8 3 8  34 34 - 68 
s953 52 47 2 46 

Logic Synthesis '91 - Multilevel tests 
9symml 1 0 0 9 9 1 0.00 37 
alu2 6 4 0 10 10 8 0.00 78 
alu4 8 4 0 14 14 14 0.01 199 
apex6 99 99 - 135 14 369 0.00 77 
apex7 37 37 - 49 9 155 0.00 44 
b 1 4 3 1 3 3 2 0.00 1 
b9 21 21 - 41 8 54 0.00 15 
C1355 32 0 0 41 41 32 0.23 1545 
C17 2 1 1  5 4 4 0.00 0 
C1908 25 7 0 33 32 93 0.05 754 
C2670 140 119 1 233 78 187 0.05 666 
C3540 22 14 0 50 50 49 0.53 2301 
C432 7 1 1  36 36 23 0.01 329 
C499 32 0 0 41 41 32 0.16 1406 
C5315 123 80 10 178 66 186 0.04 371 
C7552 108 107 1 207 118 295 0.18 1148 
C880 26 26 - 60 41 96 0.02 373 
c8 18 10 8 28 3 69 0.00 19 
cc 20 20 - 2 1 4 32 0.00 7 
cht 36 36 - 47 3 74 0.00 12 
cm138a 8 8 - 6 2 40 0.00 1 

DEC perf 
Time Mem) 
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Table 4.3: Disjoint-support decomposition results (Part 3) 

Circuit Outputs DEC Inputs FanIn Blks BDD perf 
Co f Time Mem 

Logic Synthesis '91 - Multi level tests (cont.) 
cml50a 1 1 - 2 1 
cml5la 2 2 - 12 
cm152a 1 0 0 11 
cm162a 5 5 - 14 
cm163a 5 5 - 16 
cm42a 10 10 - 4 
cm82a 3 3 - 5 
cm85a 3 3 - 11 
cmb 4 4 - 16 
comp 3 3 - 32 
count 16 16 - 3 5 
cu 11 11 - 14 
decod 16 16 - 5 
des 245 245 - 256 
example2 66 49 17 85 
f51m 8 8 - 8 
frg 1 3 3 - 28 
frg2 139 139 - 143 
k2 45 43 2 45 
la1 19 19 - 26 
Idd 19 18 1 9 
majority 1 1 - 5 
mux 1 1 - 21 
my-adder 17 17 - 3 3 
pair 137 137 - 173 
parity 1 1 - 16 
pcler8 17 17 - 27 
pcle 9 9 - 19 
pml 13 13 - 16 
rot 107 104 3 135 
sct 15 14 1 19 
tcon 16 8 8 17 
term1 10 10 - 34 
too-large 3 3 - 3 8 
ttt2 21 18 2 24 
unreg 16 16 - 36 
vda 39 29 10 17 
xl 35 35 - 5 1 
x2 7 7 - 10 

DEC perf 
Time Mem 
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Table 4.4: Disjoint-support decomposition results (Part 4) 

Circuit Outputs DEC Cof Inputs FanIn Blks BDD perf 
Time Mem 

-- - -- 

Logic Synthesis '91 - Multi level tests (cont.) 
x3 99 99 - 135 
~4 71 71 - 94 
z4ml 4 4 -  7 

Logic Synthesis '91 - Addition '93 
b12 9 8 0 15 
bigkey 421 194 3 487 
clma 115 115 - 416 
cordic 2 2 - 23 
CPS 109 109 - 24 
dalu 16 15 1 75 
dsip 421 194 3 453 
ex4p 28 28 - 128 
ex5p 63 54 2 8 
i10 224 224 - 257 
i l  13 13 - 25 
i2 1 1 - 201 
i3 6 6 - 132 
i4 6 6 - 192 
i5 66 66 - 133 
i6 67 1 29 138 
i7 67 3 64 199 
i8 81 18 63 133 
i9 63 0 0 88 
mm4a 16 16 - 20 
mm9a 36 36 - 40 
mm9b 35 35 - 39 
mult 16a 17 17 - 34 
m ~ l t  16b 31 31 - 48 
mult32a 33 33 - 66 
~ 2 0 8  9 9 - 19 
s38584 1730 1611 113 1465 
s5378 212 211 0 199 
~ 8 3 8  33 33 - 67 
s9234 174 169 5 172 
sbc 83 83 - 68 
sqrt8ml 4 4 -  8 
sqrt8 4 4 -  8 
squar5 8 4 2  5 
t48 1 1 1 - 16 
table3 14 0 2 14 
table5 15 3 2 17 

DEC perf 
Time Mem 

(s) (kb) 
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Table 4.5: Disjoint-support decomposition results (Part 5) 

Circuit Outputs DEC Inputs FanIn Blks BDD perf DEC perf 
Co f Time Mem Time Mem 

ISCAS '89 - FSM tests 
s1196 32 24 
s1238 32 24 
~13207.1 790 783 
~13207 790 783 
s1423 79 77 
s1488 25 23 
s1494 25 23 
s15850.1 684 651 
s15850 684 651 
s208 9 9 
s27 4 4 
s298 20 17 
s344 26 23 
s349 26 23 
s35932 2048 2048 
s382 27 27 
s38584.1 1730 1611 
s38584 1730 1611 
s386 13 13 
s400 27 27 
s420 17 17 
s444 27 27 
s510 13 5 
s526n 27 24 
s526 27 24 
s5378 213 212 
s641 42 42 
s713 42 42 
s820 24 22 
s832 24 22 
s838 33 33 
s9234 250 245 
s953 52 47 

ISCAS '89 - Addition '93 
prolog 158 152 
s1196 32 24 
s 1269 47 30 
s1512 78 78 
s3271 130 102 
s3330 205 199 
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Table 4.6: Disjoint-support decomposition results (Part 6) 

Circuit Outputs DEC Inputs FanIn Blks BDD perf DEC perf 
Co f Time Mem Time Mem 

ISCAS '89 - Addition '93 (cont.) 
s3384 209 172 37 
s344 26 23 0 
s4863 88 66 2 
s499 44 44 - 
~ 6 3 5  33 33 - 
s6669 269 194 44 
~ 9 3 8  33 33 - 
s967 52 47 2 
~ 9 9 1  36 36 - 

the intermediate nodes of these circuits up to about half way in the bottom-up 
construction were often decomposable; then the repetitive application of the 
algorithm decomposerJEW-PRIME, Section A.5.2.2, made it so that the top 
half of the construction produces almost invariably a PRIME decomposition 
with a kernel identical to the function itself. Circuit i10 from Logic Synthesis 
'91 - Addition '93 instead requires times and memory resources above aver- 
age because of the long actuals lists that are produced during the computation. 
Table 4.1 reports decomposition results for all the circuits in the test suites 
mentioned above with two exceptions: we could not apply the decomposition 
algorithm to circuit C6288 (a 16-bit multiplier) since we run out of memory 
building the initial BDDs for it; circuit s38417 runs out of memory during 
the decomposition because of its large support size and long intermediate ac- 
tuals lists involved. We hope to be able to tackle this latter testbench with a 
more clever implementation of the decomposition algorithm. Summarizing the 
results we found that we could decompose 16,472 functions out of a total of 
18,584. The total time spent constructing the BDDs was 79.63s, while the time 
spent after that to attempt the functions' decompositions was 209.11 s. 

4.4 On the decomposability of Boolean functions 
Shannon proved in [Sha49] that for a sufficiently large support size, IS()I, 

almost all Boolean functions require an exponential number of elements for 
their representation. He also showed in the same paper that the fraction of all 
functions of a given size support, (S()I, that are decomposable approaches 0 
as 1.50 I approaches infinity. Sasao provided some quantitative results on how 
fast this limit is approached in [Sas99]. He reports there that at IS() I = 5, the 
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percentage of functions that are undecomposable is already 99.9%. However, 
common experience indicates that most functions representing the function- 
ality of digital systems can be represented by logic networks with much less 
than an exponential number of elements. The reason lies in the fact that most 
functions used in digital designs are not randomly picked at all, but instead are 
usually the results of the designers' natural choice of building complex systems 
by composing simpler functions. 

4.5 Evolution of disjoint-support decompositions 

Algorithms for extracting disjunctive decompositions are a classic research 
subject of switching theory. Ashenhurst and Singer [Ash57, Sin531 developed 
the first theoretical framework in the '50s. In particular, Ashenhurst presented 
in [Ash571 a classification of the various types of disjoint decompositions. 
They also introduced an algorithm to detect all the simple decompositions of a 
function based on decomposition charts. The method consists of partitioning 
the support variables of a function in two sets A and B and detecting if there 
exists a decomposition such that F(A,  B) = L(P(A),  B).  The method is efficient 
for functions of up to six variables and it is exponential in the number of vari- 
ables in the support since it needs to try all the possible partitions of the variable 
support set. Ashenhurst showed in [Ash571 how simple decompositions can be 
combined to obtain complex ones and proved that the partition of the support 
variables induced by decomposition is unique, with the exception of functions 
representing associative operations. Curtis and Karp explored applications for 
the theory in the area of synthesis of digital circuits in [Cur62, Kar631. 

In the early '70s, Shen et al., [SMW71], presented an algorithm based on the 
Jacobian that quickly rules out some partitions as candidates for a disjunctive 
decomposition. This method achieves good performance when used on unde- 
composable functions. However, it requires even more computation time for 
functions which have a decomposition. This algorithm has been implemented 
recently in [SM98]. 

Alternative simplified techniques, for instance, algebraic factorization, as 
proposed in [BM82], have been extremely successful in transforming large 
two-level covers in multiple-level representations, and have been extended in 
various ways to include other forms of decomposition. Algebraic factoring 
[BM82] is a form of disjunctive decomposition. In algebraic factorization, one 
attempts to decompose a two-level cover of F into a product G * H, where G 
and H have no variables in common. Factoring is a powerful step in passing 
from a Boolean cover to a multiple-level representation in multiple-level logic 
synthesis [BRSVW87]. Logic synthesis have been also attempted starting di- 
rectly from BDD representations: In [CM92] it was shown, for instance, that 
all implicants of a function could be implicitly represented in a BDD. A two- 
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level synthesis algorithm, finding an optimal cover of a function from its BDD, 
was also developed in [MSBSV93]. Links between BDDs and multiple-level 
logic have been explored in [Kar89, Kar88, Kar901. In [KaBO], in particular, it 
is shown that particular BDD topologies may lead to the identification of par- 
ticular decompositions. For instance, the presence of a two-cut (a partition of 
the BDD with only two boundary nodes) leads to the identification of disjunc- 
tive, MUX-based decompositions. On the other hand, the presence and aspect 
of two-cuts depends on the variable order of the BDD. Therefore, topological 
approaches must rely on tailored ordering algorithms. 

Decomposition has also been considered in the context of technology map- 
ping [MNS+90] and function representation [BD96b, BD96al. In [BD96a] 
we proposed a new function representation that merges BDD and a restricted 
type of decomposition. In that work, it was shown that a special decomposi- 
tion, using only NOR functions, is indeed canonical. If a function F can be 
decomposed into the NOR of disjoint-support components: 

F = (fi + . a * +  fn)' 

then, provided that no component function fi is itself the OR of other disjoint- 
support functions, the functions f; are uniquely determined, up to a permuta- 
tion. This result was used to develop a hybrid normal form (MLDDs) for logic 
functions based on Shannon and disjoint-support NOR decompositions. Algo- 
rithms for translating BDDs into MLDDs and for the direct manipulation of 
MLDDs were also presented. This algorithm is capable of identifying a NOR- 
tree decomposition regardless of the variable ordering selected. The ability of 
discovering decomposition and the efficiency of the representation, however, 
are impaired by the restriction to NOR gates. [BD97] overcomes this limitation 
and constitutes a preliminary version of the material presented in this chapter. 
Subsequent work has refined the algorithm and provided techniques to per- 
form Boolean operations directly on the decomposition data structure, hence 
eliminating the need to build the initial un-decomposed BDD [PBOSb, PBOSa]. 

4.6 Summary 
This chapter discussed parametrizations and disjoint-support decomposi- 

tions, two techniques that have been used effectively in improving the scala- 
bility of symbolic simulation. We conveyed the main ideas of parametrization 
through examples related to simulation. For disjoint-support decompositions, 
we overviewed the main aspects of this theory, and we refer the interested 
reader to the formal presentation in the Appendix. We also presented the DEC 
algorithm, which can expose the maximal disjoint-support decomposition of a 
Boolean function represented by its BDD and which has quadratic complexity. 
Results show that it is very fast in practice as we were able to obtain the decom- 
position of most testbenches in a period of time comparable to the construction 
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of their BDD. Experimental results also indicate that the majority of functions 
representing the behavior of digital systems are indeed decomposable and the 
maximal disjoint decomposition has, in fact, a fine granularity, as indicated by 
the support size of the biggest component block. The next two chapters will 
exploit these techniques in devising new solutions for symbolic simulation. 
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Chapter 5 

APPROXIMATE SIMULATION 

In this chapter we present approximate solutions for symbolic simulation. 
In particular we discuss an approximate reparametrization technique that we 
developed which can simulate much more complex designs than can the tra- 
ditional symbolic methods described in Chapter 3, while still using a bounded 
amount of memory resources. The main focus of this algorithm, called cycle- 
based symbolic simulation, is to achieve as much breadth of traversal as pos- 
sible with the constraint of maintaining the scalability and economic mem- 
ory requirements of logic simulation. In the best situation, the solution pre- 
sented below achieves the same breadth of traversal as a pure symbolic sim- 
ulation algorithm. However, this breadth can be reduced if required in order 
to limit memory usage. Thus, cycle-based symbolic simulation, or CBSS, can 
be viewed as a hybrid approach that exploits the trade-offs between symbolic 
search and logic simulation. The results compare CBSS to logic simulation 
and show that each CBSS simulation step generates the equivalent results of 
multiple logic simulation test vectors. Ultimately, even if a step of CBSS is 
more time consuming, as it requires operating on Boolean expressions instead 
of constant values, overall the gain in parallelism offsets this cost, producing 
an improvement in performance by orders of magnitude over plain logic sim- 
ulation. 

In addition, we overview another approximate technique: quasi-symbolic 
simulation. In this case the goal is to avoid computing the symbolic value 
of intermediate nodes, unless strictly necessary. This simulator embeds an 
automatic evaluation of the nodes to be computed, and a feedback loop to 
adjust in the case of miscalculation. 
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5.1 Cycle-based symbolic simulation flow 
Cycle-based symbolic simulation is a hybrid approach in the sense that the 

values propagated through the network can be either symbolic expressions 
or constant Boolean values. Section 2.4 showed that BDDs can be used to 
represent both data efficiently. Our algorithm, which was first published in 
[BDQ99], adds a reparametrizationphase at the end of each symbolic simula- 
tion step, in line with the structure presented in 4.1.1. The CBSS reparametriza- 
tion transforms the state vector into a new parametric state vector made of 
smaller BDDs, that use only a small amount of memory resources. It is possi- 
ble that the set of parametric BDDs produced spans only a subset of the original 
state set. This under-approximation may occur as a trade-off between accuracy 
of the traversal (that is, producing an exact parametrization) and complexity of 
the expressions produced (which we want to keep at a minimum). When we 
under-approximate, we settle for simulating only a subset of the state set. In 
this situation, the objective is to select a parametrization that maximizes the 
amount of states represented given the amount of memory used. 

5.2 The CBSS algorithm 
A Cycle-Based Symbolic Simulation is initialized by setting the state of the 

circuit to the initial constant vector So (see Section 2.5.3 for a definition of 
So). Each of the combinational input signals is assigned a distinct symbolic 
variable INBo = {ilBo, - . - , i,@o). The simulation proceeds by computing the 
Boolean expressions corresponding to each node in the combinational portion 
of the network, as in the basic symbolic simulation algorithm. At the end of a 
simulation step, the expressions representing the next-state functions undergo a 
parametric transformation. During this parametrization, a minimal number of 
symbolic variables could be set to constants. This could be the case if the state 
set that the state vector spans is not representable by our simple and compact 
parametrization. If this happen, we under-approximate the state set that we 
represent, so that it coincide with one of the parametric forms that we can 
generate. The objective of the selection is to maximize the breadth of the 
traversal, while keeping the representation of the state set compact through use 
of Boolean expressions with a small BDD representation. 

In addition, during the simulation, we do not compute a reached set as 
in symbolic reachability analysis (Section 3.4.1). This computation is one of 
the main causes of the limited scalability of symbolic state traversal. Its main 
advantage is to maintain a history of states previously visited in the traversal, 
which is central to 1) discover when all the reachable states have been vis- 
ited and the traversal is complete, and to 2) select a set of states to use in the 
next simulation step, possibly with a compact representation. However, the 
simulation approach we present here targets circuits whose size is beyond the 



Approximate simulation 83 

capability of this symbolic analysis. In general, we don't expect to complete 
the simulation within a few hundreds steps, as it is generally the case for the 
type of designs that symbolic reachability analysis can address. Moreover, we 
use a novel reparametrization algorithm that does not require reached set 
information. 

After reparametrization, the newly generated functions are used as the present 
state to start the next step of simulation. Figure 5.1 shows how the algorithm 
just described corresponds to the iterative model for symbolic simulation. No- 
tice that now we have added two new blocks to those in Figure 3.3. The outputs 
of the parametric transformation (PAR-TRF) block are: 1) the parametrized 
state vector that is fed to the present state in the next step of simulation and 2) 
a set of parametric equations that relate the newly created parameters p@k to 
the set of combinational inputs {IN@o,. . . , INBk). Notice also that by doing 
so we are simulating in parallel many distinct input vectors, in other words we 
are performing the equivalent of many logic simulation steps. 

Figure 5.1 : Flow of cycle-based symbolic simulation algorithm 

The parametric representation of frontier sets that we adopted can be con- 
structed and manipulated very efficiently. The selection of which inputs to tie 
and to what value is based on the ease of construction of this representation. 
Alternatively, the value selection can be left to the user or to the tool: by eval- 
uating to constant symbolic variables selectively, it is possible to simulate any 
neighborhood of an input trace generated by the testbench. 

5.3 The reparametrization phase 
The parametrization technique is based on the following observation. In 

symbolic Finite State Machine traversal, the next-state function 6 can be often 
very complex. We overcome this bottleneck using the following observation. 
The next-state functions of symbolic simulation at time step 0, St ,  can be de- 
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{ 
assignbresent-state-signals, reset-state-pattern); 
for (step = 0; step < MAX-SIMULATION-STEPS; step+l ) 
{ 

input-symbols = create-boolean-variables (m, step); 
assign(input-signals, input-symbols); 
foreach (gate) in (combinationalnetlist) 

compute~boolean~expression (gate); 

I 
output-symbols = read(output-signals); 
state-symbols = read(next-state-signals); 
check~simulation~output(output~symbols); 
/* the next line also writes out parametric eqns */ 
parametric-state-set = Parameterize(state-symbols, step); 
assignbresent-state-signals, parametric-state-set); 

Figure 5.2: Pseudo-code for cycle-based symbolic simulation 

rived fiom 6 as: 

that is, by evaluating the state variables of the 6 function to the initial state val- 
ues, and substituting the combinational input variables with the input variables 
of time step 0. The initial state of digital system is often a single well-defined 
state, or it entails a few states. The result is that the initial state vector is made 
mostly of constant values. Hence, because the state variables in the 6 func- 
tion become, in turn, constant values, the resulting components of S1 are very 
simple, such as constants, copies of an input, or complements of an input. 

Moreover, an input variable may be copied into several components of S1: 
there are then functional dependencies among the various state bits. We use 
these functional dependencies to obtain a simplified representation PSI of S1. 
At each time step k, we produce a simple, parametrized representation of the 
next-state functions to use for the next step k + 1. By always presenting a 
simple set of functions at the present-state signals of the network we are able 
to generate next-state functions Sak that are always simpler and more compact 
than the ones involved in the pure symbolic simulation algorithm. 

In practice, we never explicitly build the next function 6. Rather, at each 
clock tick k, we use the functional dependencies among the components of 
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the next-state function Sak at time k to build a parametrized version, PS@k, 
for time k+ 1. If, in spite of our efforts, PS@k becomes too complex to be 
represented with BDDs within our memory budget, a few symbolic variables 
are tied to constant values to simplify it. 

Notice that the parametric representation allows us to avoid the computa- 
tion and representation of the global next-state functions of the circuit as in 
symbolic state traversal, thereby avoiding a lengthy simulation set-up time. 

5.3.1 Using functional dependencies 
We discover and exploit functional dependencies using a parametric repre- 

sentation of the next-state set. Figure 5.1 illustrates the approach. We introduce 
some intermediate variables pi. At a generic clock tick k, we inspect the BDDs 
of SBk and build a function PSak such that (see also Definition 2.3): 

In practice, we will settle for a PS@k such that 1) the number of parameter 
variables p is small, and 2) R(PSBk) is a "large" and easily identifiable subset 
of R(S@k): 

R(PS@k) G R(S@k). (5.3) 

The state space that is not visited because of the approximation, can be ab- 
sorbed later in the simulation, once the state set has a shape that can be parametrized 
by CBSS. 

The set PS@k that we generate has cardinality that is 2p, where p is the 
number of parameters we introduce during the parametrization phase. The 
diagram in Figure 5.3 shows the relation between the whole state space of the 
system, S@k and PSBk. 

Section 5.3.2 provides the details on PSak and its construction. The BDD 
of the next-state functions for step k+ 1 is then built by simulation of the com- 
binational portion of the circuit. In terms of the 6 function, this corresponds 
to: 

and a new PSk+l can then be constructed by parametrizing Sk+1. Notice that 
the state variables are effectively replaced by the parametric variables pi. 

In addition, we build a second mapping PE@k. This second mapping ex- 
presses each pi as a function of inputs and intermediates at the previous tick. 
PE@k should also be "simple", for the following reason. Suppose an error is 
discovered at time k. There is then an assignment of primary inputs and in- 
termediates at time k that exposes the bug. We need to be able to map the 
assignment of intermediates to an assignment of inputs and intermediates at 
time k - 1, and then iteratively back to primary inputs at time k - 2, . - - ,O. 
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design state space 

Figure 5.3: The parametrized frontier subset PSak 

The parametric transformation develops in two phases: the first phase iden- 
tifies simple variables, while the second phase parametrizes unbound functions. 
The pseudo-code of the Parametrize function is shown in Figure 5.4. It guar- 
antees that K(Sk) can be parametrized in linear time. If this is not the case, 
it identifies variables for assignment, and cofactors Sk accordingly. The ac- 
tual constant values used for the assignment could correspond to the values 
provided in a testbench for the design, if this is available. For instance, if at 
the third step of CBSS simulation we need to evaluate to constant the vari- 
able corresponding to input x, we could extract the value assigned at input x in 
the associate testbench at the third step of logic simulation. By choosing values 
based on this criteria, we guarantee that our CBSS algorithm produces a design 
exploration that includes the search path corresponding to a logic simulation 
run on the same testbench. In addition, if there is a testbench that drives the 
design to a specific comer case to be checked, CBSS can not only check that 
specific configuration of the system, but also cover a set of additional configu- 
rations that are "close" to the target in the FSM model. 

Whenever a testbench is not available, we can still automatically produce a 
random value for the variable assignment. This choice will drive the design 
through a random walk of the state space. 

The pseudo-code of the parametrization phase is shown in Figure 5.4. The 
details of functions find_simple_complex-var, f ind-shared-eqclasses, and 
remap are described in the following sections. Function assign-&-cofactor 

simply takes a vector of expressions and a set of variables, assigns a value to 
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each of the variables in the set and partially evaluates each expression based 
on these values. 

Parametrize(state-equations, step) 
{ < simple, complex> = Find-simple-complex~var(state~equations); 

state-equations = assign-&-cofactor(state-equations, complex); 
state-equations = remap(state-equations, simple); 
append-param-equations(simple, step); 
<classes, shared> = find-shared-eqclasses(state-equations); 
state-equations = assign-&-cofactor(state-equations, shared); 
state-equations = remap(state-equations, classes); 
append-param-equations(classes, step); 
return (state-equations); 

) 

Figure 5.4: Pseudo-code for the Parametrize function of CBSS 

5.3.2 How to classify the components of the state vector 
We show how to quickly identify a function PSak such that 2((PSak) is 

a "large" subset of 2((Sak). The set of transformations presented in the next 
two sections can be applied to any Boolean vector function. For purposes of 
readability, in the following definitions we will refer to the generic function 
V : !Bn + 9". As explained above, the CBSS algorithm applies such transfor- 
mation to the next-state vector SBk. 

Below we classify the symbolic variables in the support (see Definition 2.2) 
of the state vector as simple or complex. We consider having multiple support 
sets, one for each bit-function of the state vector. Simple variables are those 
variables that appears alone in at least one of the support sets. Once simple 
variables are identified, we can simplify complex variables, which are all those 
variables that share a support set with a simple variable. For instance if one 
support set is {a) ,  and another is {a, b) ,  but there is not set with b alone, then 
a is simple and b is complex and must be evaluated to a constant value. If there 
were a third set including b alone, than both a and b would be simple. The two 
definitions below formalize this description. 

Definition 5.1. A variable x is termed simple ifthere is a component Vi of 
V such that S(Vi) = {x). Given a function V, let Si denote the set of simple 
variables. A component Vi is termed simple ifS(Vi) Si. 

Definition 5.2. Let again Si denote the set of simple variables. A non-constant 
component function Vi is termed complex $ 

I S (Vi) n Si # 0 and 
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For a complex function Vi, a variable belonging to S(Vi) n% is also termed 
complex. 

Once simple and complex variables are classified, there may be additional 
state functions which include variables that are not classified. Actually, from 
the definition of simple and complex variable, we can guarantee that all the 
remaining non-parametrized hnctions contain only unclassified variables. To 
handle these functions we group into equivalence classes, where we assign to a 
class all the occurrence of a given function and its complement. The variables 
in these remaining functions can be classified as bound or shared. They are 
bound is they belong to the support of only one function, and thus equivalence 
class. They are shared if they belong to more than one equivalence class. Once 
again, we evaluated shared variables to constant, since that makes the functions 
disjoint support and straightforward to parametrize. 

Definition 5.3. A function is unbound ifit is neither simple nor complex. Two 
components Vi and V j o f  V are termed equivalent if they are unbound and 
either Vi = Vj or Vi = Vj holds. 

Definition 5.4. Given an equivalence class E of functions with reference to the 
previous de$nition, we indicate with S(E) the set of variables belonging to the 
support of any function in E. A variable x E S(V) is said to be bound if it 
belongs only to the support of a single equivalence class of V. It is termed 
shared ifit belongs to more than one class. 

Example 5.1. Consider the following function S@k: 

Its components are only: I )  constants, 2) functions of a single variable, or 3) 
functions of variables also appearing as single variables in other components 
(that is, simple functions). 

In this situation, an exact parametric description is obtained by replacing x 
and y with two parameters: 

Notice that PEak is just a data-transfer: po = x, pl = y. 

Suppose now that PSBk consists only of simple and complex functions. By 
assigning a value to complex variables, other complex variables may become 
simple: 

Example 5.2. Consider a system with the following state function at state k: 
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S@k,O and S@k,, are simple. S@k,2 and S@k,3 are complex, as variables q, r 
and s are complex. Ifwe assign q and r as q = 0 and r = 1 ,  component S@k,3 
become simple and Sak can have a simple parametric representation: 

Simple and complex variables (and functions) are identified in a two-pass 
scan of the BDDs of Sak. Figure 5.5 shows the pseudo-code for identifying 
them. We assume that initially, all component functions are labeled UNBOUND. 
The first f oreach loop finds the support of each component of S@k and iden- 
tifies simple variables. The second f oreach loop identifies complex vari- 
ables and places them in Co. It also classifies the functions whose support is 
all contained in S i as simple. 

Find~simple~complex~var(state~equations) 

{ 
Si = Co = 0; 
foreach (eq) in (state-equations) 
{ 

assign-type(eq, SIMPLE); 
1 

} 
foreach (eq) in (state-equations) 
{ 

if (support(eq) f l  Si # 0) 
{ 

csupp = support(eq) \ Si; 
if (csupp # 0) 
{ 

Co = Co U csupp; 
assign-type(eq, COMPLEX); 

) else { 
assign-type(eq, SIMPLE); 

Figure 5.5: Pseudo-code for classifying simple and complex support variables 
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After complex variables are identified and removed, each component of SBk 
is labeled as either SIMPLE or UNBOUND. Unbound functions have no support 
variables in Si. 

We then examine unbound functions. The simplest case occurs when one 
such function has support disjoint from all other components. For example, in 
Eq. 5.9 below: 

S@k = ( f  ( P , ~ ) , X , Y , ~ ( ~ , Y ) ) .  (5-9) 

the first component is unbound and has support disjoint from all others. The 
component can be replaced by an independent intermediate variable: 

where . 

Po=f(p ,q) ;  p l=x ;  p2=y. (5.1 1) 

Consider now the more general situation: 

The first and second component of Sak can be replaced by po, po respectively. 
Definition 5.4 partitions the set of unbound functions in S@k into equiva- 

lence classes. These classes can be discovered in a single scan of the array 
Sak. If a value is assigned to all shared variables, then the support of each 
equivalence class will contain only bound variables, so that each class can be 
replaced by an independent parameter. 

Example 5.3. Consider a system with the following state set at step k: 

By assigning the shared variable z = 0, the components of Sak become: 

A parametric representation of K(S@k) is then 

where po = x + y and pl = w. 

Figure 5.6 shows the algorithm for finding shared variables. We first group 
the UNBOUND state expressions into equivalence classes. Then, we consider 
each variable in the support of these expressions, check if it belongs to one or 
more equivalence classes and tag it accordingly. 
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Find~shared~eqclasses(state~equations) 

{ 
Sh=EC=0;  
foreach (eq) in (state-equations) 

if (function-type(eq) == UNBOUND) 

{ 
class = find-or-makenew-class(eq, EC); 
EC = EC U class; 
foreach (x) in (support(eq)) 

{ 
if (tag(x) == empty) tag(x) = class; 
else if (tag(x) # class) tag(x) = shared; 

1 
) 
foreach (class) in (EC) 
{ 

foreach (x) in (support(class)) 
{ 

if (tag(x) == shared) Sh= Sh U {x); 

1 
1 

1 
return <Sh, EC>; 

) 

Figure 5.6: Pseudo-code for classyfing shared support variables 

5.3.3 The remap function 
remap generates the new parameters for PSak based on the results of the 

previous two routines. The first call remaps the variables in the simple set. 
Each of these variables is simply substituted by a new parameter variable in 
the state expressions with a single traversal of each of the BDDs. The sec- 
ond call remaps each equivalence class to a parameter. This operation is even 
simpler, since it just requires to represent each state equation with a single pa- 
rameter based on the equivalence class it belongs to. The maximum numbers 
of parameters needed by the two calls is bounded by the number of memory 
elements in the design to simulate. In fact, a new parameter is only assigned 
to Boolean expressions that occur at least once as a complete state equation. 
Thus, after parametrization, for each parameter, there is at least one equation 
whose expression is simply the parameter variable. 
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Example 5.4. Suppose you are given a system to simulate with ten memory el- 
ements and eight inputs. After thejrst cycle of symbolic simulation, we obtain 
the following expressions for the state equations, where each combinational 
input was assigned a distinct Boolean variable literal a to h: 

SO = a s3 = ab S6=d+e+f s s = f + g  
s1 = a  s4 = abc s7 = &T sg = hg 
s2 = b ss = b+c 

Atjrst, all the equations are assigned the type UNBOUND. With thejrst pass 
through the state equations, we detect the simple variables: a and b and we 
assign the type S I M PLE to so, sl and s2. The second pass detects that s3 is 
also simple, and classijes variable c and equations s4 and ss COMPLEX. After 
evaluating variable c to 0 and remapping the simple variables, we obtain: 

At this point, we need to identz3 the equivalence classes for the remaining 
unboundfunctions. WeJnd three equivalence classes: EI = {s6,  s7), ~2 = {sg) ,  
~3 = Isg). Variables d and e are tagged with el, h is tagged with ~2 and f and 
g are shared. Consequently, we need to evaluate these last two variables to 
a constant value. We choose 0 for f and 1 for g. The set of equations at this 
point is: 

and after remapping the unbound functions using one parameter for each 
equivalence class, we obtain: 

Notice that the function in class ~2 was reduced to a constant, thus we did 
not need to use a parameter to remap it. Thisjnal set of equation is our new 
parametrized state vector: The PEBk equations are: 

Note that the number of parameters that are needed during each parametriza- 
tion is always 5 n where n is the number of state elements in the design. This 
is easy to derive based on the fact that for each parameter pi there is at least 
one parametrized state equation PSakYj such that PS@klj = pi. 
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5.4 Implementation and insights 
In implementing the algorithm we made some observations that made pos- 

sible to use the Boolean variables needed for efficient simulation. Since, in 
general, BDD packages can allow only a limited number of variables, this has 
also an impact on how many steps of simulation we can run. First, since we 
know that the number of parameters is bounded by the number of memory 
elements, we simply reserved an equivalent number of variables in the BDD 
manager for parametrization. 

Second, we noticed that at the end of each parametrization step, the state 
equations do not depend on the combinational input variables any longer, but 
only on the parameters. Thus, we can reuse the same set of Boolean variables 
for the combinational inputs at every step of simulation. It follows that CBSS 
only needs a constant number of Boolean variables, equal to the number of 
inputs plus the number of states of the design to simulate. In contrast, a basic 
symbolic simulator requires a new Boolean variable for each combinational 
input signal needs at each simulation step. Thus, a symbolic simulator needs 
a number of Boolean variables that depends on the length of the simulation 
and is equal to the number of combinational input signals times the number of 
simulation steps. 

During simulation, the parametric equations PE at each step can be stored in 
BDD form. Since the variables used for these equations are the same involved 
in the simulation, sharing among the BDD nodes is possible and the additional 
memory required for these equations is not significant. 

Moreover, while remapping the simple variables, we assign them in ascend- 
ing variable order and we choose the parameters to reflect the same order, so 
that corresponding BDDs do not need to be recomputed, but can be simply 
duplicated and relabeled in a single pass. A more optimized approach would 
simply dynamically classify which variables are inputs and which are parame- 
ters, then, without modifying the BDDs at all, simple variables would just be 
reclassified as parameters at the next step of simulation and an equivalent num- 
ber of parameters would become input variables to assign to the input signals. 

The complexity of the algorithm can be computed considering each phase 
separately. We use here n for the number of states in the design, and #BDD for 
the size of the BDDs of the state equations: 

simple variables can be identified in a single pass of the state equations - 
O(n>.  

complex variables can be identified in another single pass of the state equa- 
tions. We also need to cofactor each state equation w.r.t. to the complex 
variables, this can be done with a specialized cofactor routine that traverses 
each BDD once - O(n x #BDD). 
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a remapping simple variables as we mentioned above can be done with a 
single pass of the state equations' BDDs - O(#BDD). 

w equivalence classes can again be identified in a single pass of the state 
equations - O(n) .  

a shared variables require similar treatment than complex variables, leading 
to the same worst case complexity - O(n x #BDD). 

w remapping unbound functions requires only assigning the proper param- 
eter variable to each equivalence class - O(n).  

5.4.1 Experimental results 
The CBSS algorithm was implemented in a C++ program and tested on the 

largest sequential circuits from the Logic Synthesis Benchmarks suite [Yan91] 
and the ISCASY89 Benchmark Circuits [BBK89], including their 1993 addi- 
tions. Table 5.1 reports results on all but the smallest testbenches of the two 
suites (we excluded from the table the circuits with less then 20 memory ele- 
ments). The testbenches are grouped by benchmark suite. The experiments 
were run on a Linux PC equipped with a Pentium 4 processor running at 
2.7Ghz and 2GB of memory and 5 12Kb of cache. As the underlying ROBDD 
package we used the CUDD package by Somenzi, [CUD99], for which we set 
a reordering threshold of 200,000 nodes. We evaluated the simulator by run- 
ning it for 5,000 symbolic simulation cycles on each testbench: at the end of 
each symbolic simulation step we would run our parametrization algorithm to 
simplify the state functions and then proceed to the next step. For the purpose 
of evaluating the performance of the approach, we chose a random Boolean 
value whenever we needed to evaluate complex and shared variables to con- 
stant. However, in a real-world context it is possible to choose the values based 
on the test stimulus, if one is available. For each circuit, the table reports first 
a few relevant metrics: the numberof inputs In, outputs out, memory elements 
FF, and internal network gates Gates. 

The next three columns report the results of the parametrizations. The val- 
ues are the average over the 5,000 steps of simulation. Our objective is to 
evaluate how many symbolic parameters we could find and the average num- 
ber of states we could reach at each simulation step. To this end, the first of this 
group of columns, Param, reports the average number of symbolic parameters, 
that we generate during a parametrization phase. For our second objective, 
we used the following reasoning: if we never evaluated a variable to constant, 
the number of symbols we had at each step would be given by the number 
of inputs symbols plus the number of parameters. However, since at every 
step some variables maybe be assigned to constant, we need to keep this into 
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account by subtracting this amount from the number of live symbols that we 
carry across simulation steps. The average number of states that we reach at 
each step is then given by 2 to the power of this value, since, after parametriza- 
tion each symbol doubles the number of states spanned by the parametrized 
state functions. The table shows the results we obtained with this evaluation: 
the second column of the group indicates the average number of symbolic vari- 
ables that we assigned to a constant because they were classified as complex 
or shared variables, and the third column counts the number of live symbols as 
just described: Symbols = Param + IN - Ass.d. The actual size of the average state 
set visited at every step is 2Symb01s. This latter value also represents the aver- 
age number of logic simulation equivalent traces that we carry on in parallel at 
every step. 

The reminder of the table compares the results we obtained with CBSS to 
the performance of a compiled-level logic simulator. We built a logic simulator 
as described in Section 2.6 and we simulated again each of the testbenches for 
5,000 cycles, providing a random stimuli to each circuit's inputs at each step. 
The two columns labeled Time compare the execution time for the CBSS simu- 
lation to the one for the logic simulator. We did not take into account the time 
spent compiling the circuit's netlist into assembly code for logic simulation. 
However, we measured this time and it was not transcurable: above 200s for 
the seven biggest benchmarks and above 1s for most of the testbenches. As the 
table indicates, once the compilation was completed, logic simulation could 
execute quite fast. As for the CBSS execution times, we point out that variable 
reordering was only triggered by the test s6669 of the ISCAS suite, and thus 
it was not a factor for all the other benchmarks. Column Efficiency compares 
the performance of CBSS to logic simulation in terms of traces simulated per 
second of execution. Its value is computed as the ratio 2Symbo~s-(~ime-logic/~ime- 

csss). It represents the number of traces visited by CBSS in the time of execut- 
ing one logic simulation trace. A value of 1 in this column indicates that CBSS 
is providing the same performance as a compiled-level logic simulator; when 
the value is less than 1, the logic simulator is more efficient; otherwise CBSS is 
providing "~fficiency" times better performance than a logic simulator. Note that 
most of the testbenches show an efficiency of 10-20 orders of magnitude over 
logic simulation, and this is particularly true for the most complex designs. Our 
intuition is that the more complex designs have more inputs and more memory 
elements that increase the possibility of discovering good parametrizations for 
the state vectors. For instance, the two variations ofs13207 in the ISCAS suite, 
provide very different efficiency results: the second one, having only half the 
inputs, can generate many fewer Symbols on average and thus it achieves lower 
efficiency. When the parametrization can only produce a small number of s y m -  
bols because of the high percentage of complex and shared variables, the extra 
time spent by CBSS in manipulating Boolean expressions makes this approach 
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less attractive compared to logic simulation. This is the case mostly for the 
smaller designs, because of their limited potential for parametrizations. 

Finally, the last two columns compare the memory profile of the two ap- 
proaches. Even the smallest designs require a minumum of 4-5 KB to start the 
CUDD package in CBSS. However, the memory profiles are only moderately 
sensitive to the size of the design. As for the logic simulation memory col- 
umn, we were able to collect the memory profile of the simulator only for the 
medium to large designs of the suites, and we report a '-' for the testbenches 
for which we could not gather this data. This last column can be used to gain 
an insight on the impact of design size over the memory profile of logic simu- 
lation, which can then be compared to the corresponding one for CBSS. 

6344 6713 6526 sbc 91423 ~9234.1 93384 96669 ~15850.1 ~13207.1 938417 

Figure 5.7: Comparison of CBSS vs. logic simulation 

Figure 5.7 shows a comparison between our CBSS solution and logic simu- 
lation in terms of efficiency, i.e., input traces visited per second of simulation. 
The testbenches on the horizontal axis are ordered by increasing complexity. 
As discussed earlier, logic simulation has fast performance, but explores only 
one input trace per simulation step. On the other hand, CBSS is slower, but 
can span many traces at once. The diagram shows that for most testbenches 
CBSS shows better efficiency, and the benefits seems to grow with the com- 
plexity of the testbench. Overall we see that a high average number Symbols is 
key to a high efficiency over logic simulation. In general, testbenches that con- 
tain highly sequential components (such as counters) have a lower potential for 
good parametrizations: if the state bits of a counter take constant value at some 
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point in time, that is, they are represented by constants, then they will be repre- 
sented by constants also at the next clock tick. On the other hand, other circuits 
are more data-path intensive, they contain several large data-transfer or arith- 
metic operations, and in this cases it is easier to assign state bits independently, 
hence the larger number of parameter variables. 

The following section present a solution based on the approximation of com- 
plex Boolean functions with X values. 

5.5 Quasi-symbolic simulation 
Chris Wilson's solution [WDOO, WDBOO] to the scalability problem sug- 

gests to avoid the computation of complex symbolic expressions at internal 
nodes that are irrelevant for the verification goal at hand. His algorithm starts 
very conservatively by carrying forward only very simple expressions: when- 
ever the simulator encounters a node which requires constructing a complex 
expression, instead of generating such expression, it simply assigns the value 
X to this node (X represents an unspecified value for that node, which can be 
seen as an approximation of its real symbolic value, hence the name). At the 
end of a simulation step, some outputs will be simple symbolic expressions, 
others will have X values. If the verification goal was to check for a specific 
value at an output with a symbolic expression, the check can be performed 
as usual. If, instead, the output has an X value, then we need to "refine" it 
in order to discern if the check passes or not. The refinement is achieved by 
re-simulating, this time computing the symbolic value for additional internal 
nodes that are deemed relevant for our desired output node, based on circuit 
topology and dynamic values at other internal or input nodes. The refinement 
phase may require that a simulation step be repeated one or more times, after 
which the check can be performed and simulation can advance. The exam- 
ple below provides a high-level description of the algorithm's flow through a 
simple scenario. 

Example 5.5. Consider a design whose outputs include a fail signal which 
should not assume the value 1 under any correct working condition. The sim- 
ulation is initialized as usual by assigning a distinct symbolic variable to each 
of the circuit's combinational inputs. However, ifthe evaluation of any internal 
node requires computing a complex expression, then, instead of generating the 
expression, the value X is simply assigned to the node. This value is propa- 
gated based on an extended definition of Boolean operations which considers 
the case where one of the operands is X (see Figure 5.8). IJ at the end of a 
simulation step k, we obtain a value X at the fail output, then the simulation 
needs to be refined and re-simulated. This is done by selecting one of the input 
symbolic variables and by re-evaluating the simulation twice, by substituting 
the values 0 and 1 in turn for the symbolic variable. The hope is that one of 
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the two re-simulations will generate a simple symbolic expression for the out- 
put of interest. I f  this is not the case, an additional input variable is selected 
for simpliJication and the process is repeated recursively. Once a well-de3ned 
symbolic expression is obtained for fail, it is straightforward to evaluate the 
correctness of the design using the technique presented in 3.3.1 (in addition 
the expressions for OUT@ki will be very simple). Ifthe design is found correct 
up to step k, the simulation can proceed forward. 

The approach taken by this technique shares common traits with symbolic 
trajectory evaluation (STE), outlined in Section 3.4.2, in particular the use of 
approximate values and the view of simulation as a continuous computation 
over a virtual unrolled design. For instance, it is possible that the refinement 
phase requires evaluating symbolic variables from previous simulation steps, 
and hence re-simulating the circuit, in general, from the initial state. However, 
this work has some important differences with STE in that the approximate 
simulation and the refinement process are completely automatic and transpar- 
ent to the user, while in traditional STE, the nodes with approximate values are 
hand selected, and the refinement loop has to be managed directly by a user. 

The following sections provide insights into the components of quasi-symbolic 
simulation. For the interested reader, a detailed presentation is available in Wil- 
son's Ph.D thesis [WilOl]. 

5.5.1 Simulation with X values 
We mentioned that the evaluation of complex Boolean expressions is avoided 

in quasi-symbolic simulation by replacing these expressions with X values at 
appropriate internal nodes. In order to do so, we need to extend the classic 
logic operations to the ternary domain (0, 1,X). The tables in Figure 5.8 indi- 
cate that X is propagated only when the other input operand is not controlling 
the output value. Note that this is in line with the definition of operation over 
X values in the hardware description languages (HDL). In both contexts, X 
represents an unknown or undefined value. 

NOT(a) AND(a,b) OR(a,b) 

O I X  1 1 1  

Figure 5.8: Definition of logic operations over the ternary set {0,1 ,X) 
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Moreover, the expressions carried forward in quasi-symbolic simulation are 
specified over this ternary set, hence a representation with plain BDDs is not 
suitable anymore (see Section 2.4). To this end, the authors of this work used 
a variant of BDDs called multi-terminal BDDs (MTBDDs) which can handle 
multiple terminal values (three, for the problem at hand). MTBDDs benefit 
from similar advantages as BDDs, including canonicity, simple recursive rou- 
tines to perform logic operations, and approximately linear memory profile for 
most circuits. On the downside, the node-sharing aspects of BDDs that make 
them such a compact data structure, are usually less pronounced in MTBDDs, 
and the potential for sharing nodes within a function decreases with an increas- 
ing number of terminal nodes. 

Figure 5.9: MTBDD for the function (a+X)b  

Example 5.6. Figure 5.9 shows the MTBDD for the function f (a,  b )  = (a  + 
X)b. The function assumes the approximate value X only when a = 0 and 
b = 1. For all other input assignments, the output o f f  is a fully specijed 
value. Note that the two nodes labelled by the variable b could not be shared 
because their terminals diffeer: In general, for MTBDD, the more distinct the 
terminal nodes, the fewer the opportunities for sharing. 

5.5.2 Approximating and reclassifying symbolic variables 
We stated in the previous section that one of the relevant aspects of quasi- 

symbolic simulation was the ability to automatically select the variables to be 
approximated for re-simulation. For the purpose of this discussion, an input 
variable is the symbolic variable associated with an input signal of the design 
at a specific time step. 

Quasi-symbolic simulation uses two main techniques to refine a simulation 
that leads to an unspecified X value for the relevant outputs of the design. 
The first technique is by case splitting and was described in Example 5.5. It 
consists in selecting a symbolic variable and performing two re-simulations, 



102 SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION 

one evaluating it to a logic 1 and the other with a logic 0. As an optimization, 
if the first re-simulation is sufficient to fail the checker under consideration, 
the second one can be avoided. The variables to be used for case splitting are 
chosen among those present in the most complex logic expression generated. 

The second technique classifies variables as care or don't care. In general, 
this selection is based on an approximate evaluation, and refined at each itera- 
tion of re-simulation. Note, however, that during each re-simulation, only the 
portion of the internal nodes affected by the classification refinement need to 
be evaluated. 

Example 5.7. In the circuit shown in Figure 5.10, two inputs are associated 
with two symbolic variables, the third has an X value. Howevec note that by 
propagating the symbolic expressions, the symbolic output is well defined, and 
can be checked for correctness. IJ'the expression obtained at the output had 
contained X values, a re-simulation would have been required. 

Figure 5.10: Quasi-symbolic simulation for Example 5.7 

Variables are classified in control variables, data variables and don't care 
variables. Control and data variables are associated with control and data sig- 
nals of the design, respectively. Don't care variables are variables that are 
irrelevant for the purpose of the test at hand, and they can be specified as such 
by the user, or reclassified as don't care by the simulator. At the beginning of 
a simulation only the control variables are symbolic, while data and don't care 
variables may be assigned the value X. Assigning symbolic variables to data 
signals can be beneficial because it provides additional coverage. However, of- 
ten this benefit is offset by the high complexity increase of manipulating many 
more variables and ternary expressions. On the other hand, the verification of 
the data-path portions of a design can be more easily addressed through con- 
strained random simulation, since it presents more uniform behavior. 

5.5.3 Care and Don't care sets 
The initial classification of input variables as care and don't care variables 

may not be sufficient to obtain a well defined output expression in the simu- 
lation. If this is the case, the quasi-symbolic simulator must re-evaluate the 
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partition between care and don't care variables. To do so, each internal node 
is tagged with two sets of variables: care and don't care. These set are propa- 
gated forward during the simulation and computed for each internal gate. Once 
an output is reached that has a value X, the care set indicates which variable 
must be converted from don't care to care in re-simulation. Because at each 
re-simulation only a finite number i of variables are re-classified, it is sufficient 
to generate care and don't care set with i elements. As a consequence, the 
amount of memory required to maintain these lists is proportional to the size 
of the circuit alone, and not to the number of input signals or the depth of the 
simulation. 

Care and don't care set, called C-set and D-set, respectively, are generated 
and propagated along with the symbolic expressions across each internal gate. 
The propagation obeys specific and intuitive rules. For instance, the C-set at the 
output of an AND gate is the union of the inputs' C-sets (the cardinality of the 
resulting C-set can be pruned, based on the maximum set cardinality allowed) 
and the D-set is given by the intersection of the D-sets. A NOT gate will 
simply swap C-set and D-set of the input node. The impact of other logic gates 
on the care and don't care set propagation can be found in [WDOO, WilOl]. 

Experimental results have shown that the approximation and automatic clas- 
sification techniques of quasi-symbolic simulation have the ability to contain 
greatly the rate of growth of memory resources required by simulation, and 
contribute to create a simulation solution that can address industrial size de- 
signs and produce verification results that pure frame-based simulation can- 
not achieve. Moreover, whenever the verification goal is too complex to be 
achieved, the solution presented here has the ability to degrade gracefhlly and 
provide at least some partial results. 

5.6 Summary 
This chapter presented two approximation solutions for symbolic simula- 

tion. Ideally, both cycle-based symbolic simulation and quasi-symbolic sim- 
ulation improve scalability and performance of simulation by running an ap- 
proximation of the state space and exploiting the symbolic information within. 
CBSS solves this problem using reparametrization, while quasi-symbolic sim- 
ulation has an automatic and adaptive detection technique to select the symbols 
to approximate. 

CBSS has shown to improve the scalability of symbolic simulation by pro- 
viding a quick and memory-friendly parametrization technique for the state 
equations. It can find quickly a large subset of the frontier set which can be 
represented with great efficiency. The experimental results show that, in most 
cases, we can achieve 10-20 orders of magnitude (or more) better efficiency 
over a compiled logic simulator. However, in some cases we notice that many 
variables in the support of the state vector are complex, or shared, and need 
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to be evaluated to a constant value. In those situations the performance is no 
longer competitive with logic simulation and the breadth of the state explo- 
ration is limited. In order to improve on the quality of the parametrization, we 
need to explore better techniques to represent the state vector through parame- 
ters. To this end, the next chapter introduces alternative exact parametrization 
techniques. 
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Chapter 6 

EXACT PARAMETRIZATIONS 

This chapter discusses parametrization techniques that reduce the size of the 
BDDs of the state vector without compromising accuracy, in contrast with the 
approximation techniques in Chapter 5. The first technique presented is con- 
cerned with the verification of microprocessor designs. The work by Jones, et 
al., addresses this goal with a range of techniques, including the use of multi- 
ple engines in a hybrid verification solution [AJS99]. We are concerned here 
with the aspects of this work related to parametrization in symbolic simulation, 
which we describe in Section 6.3. 

The second technique is disjoint-support decomposition-based (DSD-based) 
symbolic simulation. It was developed by us in [B002], and it exploits the dis- 
joint decomposition properties of Boolean functions when generating a para- 
metric form for a state vector. By restructuring the next-state functions in their 
disjoint support components into simpler sub-functions which do not share any 
variable, we gain a better insight in to the role of each input variable and we 
can then generate a compact parametrization based on the structure of the de- 
composition. Consequently, we can simplify the next-state functions without 
sacrificing the accuracy of simulation. In those situations where the simplifica- 
tions enabled by DSD are not sufficient, we deploy case-splitting partitioning 
of the state space to maintain a low memory profile during simulation. At the 
end of the chapter, we provide experimental results on simulations run with 
a fixed quota of memory resources. Under this constraint, we show that this 
approach can visit much deeper states and explore a much larger design space, 
compared to that of plain symbolic simulation. 

6.1 Re-encoding the state function using DSDs 
The theory of disjoint-support decompositions provides important insights 

on the structure of a Boolean function and on the role and influence of each of 
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its support variables. Moreover, the algorithm presented in Section 4.3 allows 
us to take advantage of such insights very efficiently. 

We saw in Chapter 5 that quasi-symbolic simulation and, in particular, cycle- 
based symbolic simulation are computationally very efficient, but not exact. 
Often we may need to compromise by exploring only a subset of the possible 
set of states of the design under verification to maintain computational effi- 
ciency. In the latter solution, sometimes this trade-off produces simulation 
performance that is comparable to plain logic simulation in terms of vectors 
simulated per second. The parametrization presented here, in a new algorithm 
called DSD-basedsymbolic simulation (DSD-SS), exploits the disjoint decom- 
position of the state vector functions, to generate an exact parametrization, that 
is, a new set of functions spanning the exact same state set as the original state 
vector. These new functions have smaller support than the original, and thus a 
simpler BDD representation. 

In formal terms, the parametrization of CBSS was building a function PS@k 
such that 

R(PS@k) C R(S@k), 

while the algorithm unveiled in the next few sections builds a parametrized 
vector function with 

R(PS@k) = R(S@k). 

In order to generate the parametric state vector for DSD symbolic simulation, 
at each step of simulation we start by generating the disjoint-support decom- 
position representation for each of the component functions of the state vector. 
While each element of the vector has a tree decomposition with no reconver- 
gence, as described in Section 4.2, it is now possible that two or more elements 
intersect at some intermediate node of their decomposition trees. 

Figure 6.1 shows an example of a decomposed state vector for a small design 
with only four memory elements. The dashed line delimits the decomposition 
of component sl to show that each single component function is represented 
by a tree. The structure is the decomposition tree for the function sl. We 
call the graph representing the union of all the state vector decompositions a 
decomposition graph. 

The decomposed representation is generated dynamically during simula- 
tion. At the completion of each cycle, we create the decomposition graph 
for the state vector and then use this to generate an efficient parametrization 
to be used in the next step. The parametrization we propose is based on the 
observation that at each symbolic simulation step k, it is possible to substi- 
tute the state function Sak : !Bmk + !Bn with a new function PSBk such that 
R(S@k) = R(PSBk) without affecting the results of the simulations, which 
are: 1) The set of outputs that can be generated by the circuit and 2) the set 
of states the circuit can reach at each cycle. If we can find a suitable function 
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Figure 6.1 : The decomposed state vector for a small design 

PSBk that has also a smaller BDD representation (i.e., fewer BDD nodes), then 
we can control the size of the Boolean expression and improve the performance 
of symbolic simulation. This observation was also made in greater length in 
Section 4.1. 

The relationship between the set of states spanned by the new PS@k vector 
function versus the original state vector and the entire search space is reported 
in Figure 6.2. It is worth comparing it with the corresponding Figure 5.3 of the 
CBSS parametrization of Section 5.3. 

In the following sections we present various transformations that we apply 
to the decomposition graph to accomplish the objective of producing an ex- 
act parametrization with a more compact representation than the original state 
vector. For each of these transformations, we show that the function vectors 
before and after the transformation span the same identical range. The first 
technique, called reduction at freepoints, is independent of the type of decom- 
position node it applies to. Prime function elimination is specific to PRIME 
nodes, while non-dominant variable removal refers to variable inputs that fan 
out to associative operators nodes, such as AND, OR and XOR. 

In presenting the techniques, we will refer to the generic vector function F 
instead of Sak since such transformations can be applied to any Boolean vector 
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Figure 6.2: The parameterized frontier set PSBk 

function. Moreover, we will use the terms decomposition graph F and function 
F interchangeably to refer to the multiple output function F. 

6.11 Reduction at free points 
The first transformation, called reduction at freepoints, aims at simplifying 

the decomposition graph by finding nodes which constitute a single cut-point. 
In other words, the output of such nodes is only affected by a set of variables 
which don't influence any other portion of the graph. 

We first provide the definition of a freepoint and we show an example trans- 
formation. Then we provide a formal proof that the transformation does not 
affect the range of the vector function. The following definition is also illus- 
trated in Figure 6.3. The definition of function composition used below was 
provided in Section mathbackground. 

Definition 6.1. A free point p in a decomposition graph of F is a function 
corresponding to an output of a block node in the graph. It has the property 
that, ifwe substitute the function (i.e.the sub-graph) rooted at the point p with 
a new input variable w, such that w $ S(p), the new function G has disjoint 
support with the function rooted at p: 

and S (G) n S (p) = 0. 

Figure 6.3 shows three free points with dark circles. Note that the output of 
p is a free point since none of the variables in the support of p appears in the 
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Figure 6.3: A vector function and its free points 

support of other parts of the graph. On the other hand, the dashed circle at the 
output of q is not a free point since, if we split the graph at that node, the two 
functions obtained, H and q with F = H o q, would still share the input ql. 

The following theorem shows that we can use free points to simplify the 
decomposition graph. In fact ,by substituting a fresh symbolic variable at each 
free point of the decomposition graph, we simplify the state vector functions, 
without altering their range. 

Theorem 6.1. Given a decomposition graph for a multiple output Boolean 
function F(xl,  .. . ,xm) : g m  -+ gn, afree point p(xl ,  .. . ,xp)  : 23P + 23 in it, 
and the function G(p,xp+1, . . a ,xm) : gm-p+' + Bn, obtained by substituting 
the function p ( )  with the new input variable p in the graph of F,  the range of 
the two functions F and G is the same: 

ProoJ: Consider the function F(xl, .  . -xm) and compute its range by splitting 
on the input variables(this type of divide and conquer approach was presented 
in [CBM89] in he context of FSM reachability analysis): 
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By applying this equation recursively over all the variables (xl , . .xp) in the 
support of p, we obtain: 

Then, using Equation 6.1 : 

Fx'xl=ilJ2=i2,. ,x,,=i, = Gp=iw where i, = p(i l , .  . , ip)  E { O , l )  (6.5) 

since p evaluates to a constant. Substituting in Eq. 6.4 we finally obtain: 

Thus, we can substitute all the free points with new variables and generate 
a new state function G with a smaller representation. 

To maximize the benefit, we would like to  apply the substitution to the 
largest free points available, that is the free point use support has the largest 
cardinality. A simple traversal of the graph is sufficient to discover all the free 
points with maximal support, that is, all the free points whose support is not 
contained in any other free point of the decomposition graph: 

Definition 6.2. A free point p( )  is said to have maximal support ifits support 
S ( p )  is not aproper subset of any other freepoint in the graph. 

The transformation of free sub-graphs with new variables produces a new 
function G ,  with IS(G) I 5 IS(F)I, which has still the same range of F. 

Example 6.1. Consider the decomposition graph of Figure 6.4. Figure 6.4.a 
shows all the free points of the graph with filled circles. The free points sur- 
rounded by a dashed circle are also maximal and we can substitute the portion 
of the graph rooted at these nodes with a new parametel; without afecting the 
range of the graph. Figure 6.4. b shows the new, reduced graph obtained. 

Note that, anytime we perform a free point reduction we remove a set of in- 
put variables from the support of the vector function F. Thus, we can reassign 
any of these variables from a combinational input variable role to a parameter 
variable role and use it as the parameter assigned to the free point. This is rel- 
evant from an implementation standpoint, where functions, symbolic variables 
and parametric variables would be represented by BDDs, and the ability of not 
allocating new BDD variables at each parametrization, enables the simulation 
not to be bound by the pool of variables available in the BDD software. 
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Figure 6.4: Free points elimination for Example 6.1 

6.1.2 Elimination of prime functions 
As mentioned in Section 4.2, each block of a decomposition is either termed 

a PRIME function or it is an associative operator. We found that, if a PRIME 
function satisfies certain conditions, we can remove it from the decomposition 
graph, along with the entire graph rooted at that node, and simply substitute 
it with a fresh input variable. This simplification can be performed without 
affecting the range of the state vector. 

In order for the substitution to be allowed, the output node of the PRIME 
block has 'to be almost a free point, in the sense that up to one input of the 
PRlME block can be a node shared with rest of the decomposition graph. As 
the proof shows, in this special case, the tree rooted at the PRIME block can 
still be removed. In fact, PRIME blocks inherently guarantee that their output 
cannot be kept constant by fixing the value of any single one of their input 
signals. It follows that, no matter what is the value for the node that is shared 
with the rest of the decomposition graph, the output of PRlME block can still 
assume both values 0 and 1, and thus has full range. 

Theorem 6.2. Given a prime function r ( r l ,  . , r,.) in a decomposition graph 
F, ifall of its inputs, except at most one, are freepoints, than the decomposition 
graph G obtained by substituting the new variable r for function r ( ) ,  

is such that 

R(V = R ( G ) .  

ProoJ: We distinguish two cases: 
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1 All the inputs of the prime block are free points. Then the output of the 
free block is also a free point and the theorem reduces to the hypothesis of 
Theorem 6.1. 

2 The prime block r has one input that it is not a free-point, say rl, without 
loss of generality. All the other inputs to the prime function: (r2, . , r,) are 
still free points and we can assume that have been reduced to input variables 
by Theorem 6.1. 
In the most general case, rl is a single output function of other input vari- 
ables that are in the support of both G and r: S ( r l )  = (a l , .  ,ap). The 
function F has then the form: 

Let's proceed again by computing the K(F)  by recursively splitting on the 
input variables: 

For each different assignment (il , , ip), rl evaluates to a constant value: 

Substituting the expansion of F as in Equation 6.7, we obtain: 

Note that we cannot drop the cofactors w.r.t. the ai in G because rl is not a 
free point and thus its inputs fan out to other nodes of the graph. 

Now, the function rrl=irl (r2, + , rr) is a free point and as such it can be 
substituted by a new free variable r. We show now that it is not possible 
that rrl,irl (r2,. , r,.) reduces to a constant for any value of i,,. In fact, if 
that was the case, r could be expressed as r = rl @ rres(r2, . . - , rr), where @ 
is either AND or OR and S ( r l )  r l  S(rres) = 0. r would then have a disjoint- 
support decomposition through an associative operator and would not be a 
PRIME function. 

By carrying on the substitution r = rrl=irl (r2, ,rr), Eq. 6.9 reduces to: 

which substituted into Equation 6.8 proves the theorem. 

A possible structure for the graph F is represented in Figure 6.5.a: All the 
inputs to block r are free points, except for rl . We can then remove the block r 
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Figure 6.5: General case for prime function elimination: (a) before and (b) 
after the transformation 

and substitute it with a new input variable obtaining the graph in Figure 6.5.b 
without affecting the range of the function. Note that input variables r2 and r3 
are not needed anymore. 

Example 6.2. The testbench sl  I96 from the IWLS [Yan91] suite contains the 
blocks reported in Figure 6.6 in its next-state function at step 10 of symbolic 
simulation. In thefigure, we named the variables from the indices based on the 
internal association made by the BDD manipulation software, hence that do 
not correspond to the signal names in the testbench. Since the prime function 
r has the two inputs x35 and x39 that are free points and only one input that has 
multiple fan-out, we can completely eliminate this portion of the graph andjust 
substitute it with the input variable r. 

* '  1 OR I I ' 
To other 

X16 4 - blocks 

Figure 6.6: Prime elimination in test s1196 for Example 6.2 
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6.1.3 Removal of non-dominant variables 
Under certain conditions, an input variable can be removed from the decom- 

position graph without affecting its range. 

Example 6.3. Consider the following 3-outputs function: 

The range of this function is !B3 \ { 10 1,100). We can remove the variable 
a from the function, by cofactoring all the components wxt. a = 0 without 
changing the range spanned by F. The result is: 

and it still has range !B3 \ { 10 1,100). 

We could do the simplification in the example because the range of the func- 
tion for a = 1 is a subset of the range for a = 0. The following definition 
formalizes the situation: 

Definition 6.3. An input variable of a decomposition graph possesses a non- 
dominant value 0 z f i t  fans out only to blocks that are decomposed through 
OR or XOR associative operators. It has a non-dominant value 1 zrit fans 
out only to blocks that are AND or XOR decompositions. Otherwise it does not 
have a non-dominant value. 

Note in particular that a variable may have a non-dominant value 0 and a 
non-dominant value 1 simultaneously if it fans out only to XOR decomposi- 
tions. The theorem below shows that in the most general case, a variable that 
fans out only to associative operators can be removed from the decomposition 
graph if it has a unique non-dominant value for the whole graph. 

Theorem 6.3. I f a  decomposition graph F has an input variable v with non- 
dominant value k E (0, I), and each of the blocks (i.e., intermediate single- 
output functions) that have v in their fanin have at least one other input in 
their fanin which is a free point, then: 

ProoJ For a generic function F, we have: 
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We now show that under the conditions specified: 

and Equation 6.12 reduces to K(F) = R(Fv=k). 
Let's consider first the case where k = 0 and let's label each of the functions 

that have v in their fanin x(v,p,xl, . . axx), y(v, q, yl , . . . yy), W(V, r, wl, . . ww) 
. . .where p, q, r . . . are the free points in each of them and xi, Yi, wi . . . are 
other variables the functions depend on. The x(), y(), w(), . . .functions by 
hypothesis can only be OR or XOR decompositions. 

We can then express F using the composition of these functions: 

Note that, in general, xi, yi, wi . . . are also in the fanin of G. Let's now compute 
the two cofactors of F w.r.t. v: 

In order to show the inclusion of the ranges of Equation 6.13, we are going 
to represent each range as a union of ranges by cofactoring the variables in the 
support of x, y, w, . . . one function at a time starting with x(): 

We distinguish two cases for each x, y, w, . . . function: 

1 x is a OR decomposition. When all the (xl , . - . ,xx) are zero, for FVz1, x 
evaluates to the constant value 1. For FVLo, x = p. In all the other cases x 
evaluates to 1. By grouping all the component ranges so that to distinguish 
the special case from all the others , we can simplify the expressions: 

It can be easily seen that the first range for FV=l is a subset of the corre- 
sponding range for Fv=o, while the rest of the expression is identical. 

2 x is an XOR decomposition. For the l-cofactor, Fv=l, x = XNOR(p, 
X I , .  . ,xx) . In the case of the O-cofactor, FV=o, x evaluates to the com- 
plement:, x = XOR(p,xl, e e e ,xx). We can again group all the component 
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ranges so that to distinguish the cases where XOR(xl , . . ,xx) = 0 from the 
ones where XOR(xl, - - .  ,xx) = 1: 

And it can be observed that the two components of each expression match. 
It follows: X(Fv=o) = R(Fv=l). 

This procedure can be applied recursively for each of the other finctions y, w, 
. . . , by computing and grouping all the cofactors for the sets of input variables 
bl. . 'yy),  (w1 "'w,), 

For the case where k = 1, the functions x, y, w, . . .can now only be AND or 
XOR decompositions. The corresponding proof can be obtained by substituting 
AND for OR and 1 for 0 in the proof just discussed. Finally, for the case where 
the input variable v has both a non- dominant value 0 and 1, we can just use 
any of the two value- specific proofs. 

Figure 6.7: Non-dominant variable removal for Example 6.4 
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Example 6.4. Figure 6.7.a shows a system with two non-dominant variables: 
xl has a non-dominant value I ,  since it only fans out to AND and XOR nodes, 
while x3 has a non-dominant value 0, since it fans out to OR and XOR. After 
removing of these two non-dominant variables and eliminating the nodes left 
with only one input, we obtain the system in Figure 6.7.b. Note that at this 
point we can apply the free point reduction technique to the graph of F. 

As the previous example pointed out, the three techniques are not exclusive, 
on the contrary, identifying one situation for a parametric transformation, often 
generates a parametric decomposition graph which enables additional simpli- 
fications. In implementing this solutions, we iterated among the three groups 
of transformation until convergence. 

6.2 The DSD-based simulator 
Our implementation of the disjoint-support decomposition-based symbolic 

simulator performs the parameterizations at the end of each symbolic simula- 
tion step. We first generate the decomposition graph for the state vector SBk 
and then attempt the three transformations described above. Often, the graph 
produced by applying one of the transformations enables further simplifica- 
tions through some of the other transformations. 

Even when all of the transformations fail, we still want to maintain a com- 
pact representation for the state function Sak, SO that we can make further 
progress with the simulation. Thus, when the state function exceeds a thresh- 
old value, we choose a variable to set to a constant value. The variable with 
fanout to the maximum number of blocks is selected becuase by simplifying 
this variable we eliminate the largest interdependency among the nodes of the 
graph and thus we maximize the likelyhood of creating a graph where our tech- 
niques can be applied in future simulation steps. When computing the fanout 
of a primary variable that is candidate for elimination, we only consider those 
decomposition blocks which have other input variables in their fanin. The in- 
tuition behind this choice is that those blocks are closer to become free points, 
since some of their inputs are already free points. 

We found experimentally that often, after eliminating a variable by setting it 
to constant as described, we could discover additional free points or variables 
with non-dominant values. 

6.2.1 Experimental results 
The parametrization techniques presented in the previous section were im- 

plemented in a C++ program called DSD-SS. We tested this approach on the 
largest sequential circuits from the Logic Synthesis Benchmarks suite [Yan91] 
and the ISCAS'89 Benchmark Circuits [BBK89], including their 1993 addi- 
tions, as we did for the previous CBSS technique in Section 5.7. Table 6.1 
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reports results on all but the smallest testbenches of the two suites (we ex- 
cluded from the table the circuits with less then 20 memory elements). The 
testbenches are grouped by benchmark suite. The experiments were run on a 
Linux PC equipped with a Pentium 4 processor running at 2.7Ghz and 2GB 
of memory and 512Kb of cache. We linked DSD-SS to the CUDD package 
[CUD991 as the underlying BDD manipulation library for the combinational 
portion of the simulation and a proprietary BDD package for the parameter- 
ization~. We set the reordering threshold in CUDD to 80,000 nodes. Each 
testbench is run for 100 simulation steps and, at the end of each step, DSD-SS 
performs the decomposition of the next-state symbolic vector and applies the 
transformations described in Sections 6.1.1-6.1.3. Whenever the transforma- 
tions are not sufficient to provide an exact small representation for the state 
vector, we resort to pick a variable to evaluate to a constant value, in order to 
guarantee a compact representation. The variable is chosen based on the crite- 
ria described in the previous section. After a few experiments, we chose 2,500 
nodes as a reasonable value to use for the upper limit for the size of the state 
vector. We noticed that, generally speaking, this value can be used to trade-off 
simulation breadth vs. time. 

For each circuit, the table reports first the same relevant metrics, as we pre- 
sented earlier in Table 5.1: the number of inputs In, outputs out, memory el- 
ements FF, and internal network gates Gates. The subsequent three columns 
report how many times we were able to apply our transformations: FP is the 
cumulative number of free point substitutions, PE is the number of prime func- 
tion eliminations, NVD the number of non-dominant variables removals over all 
the symbolic simulation steps. The next column of this group, NUII, counts the 
cumulative number of times where no exact transformation could be applied, 
but the state vector was within the limit size (of 2,500 nodes), and thus DSD-SS 
advanced to the next step of simulation without applying any parametrization. 
Note that during a single simulation step we may apply more than one tech- 
nique until we reduce the state vector within limits or until no additional exact 
parametrization is possible. The values of Table 6.1 indicate that the condi- 
tions that allow an exact parametrization of the state vector are frequently met 
in almost all the circuits. In particular, in most cases the transformations can 
be applied successfully multiple times during each same simulation step. Free 
point elimination is the parametrization that achieves the best results across all 
the testbenches producing a total 2,417 exact simplifications over 4,200 sim- 
ulation steps (42 testbenches, each run for 100 steps). The second most suc- 
cessful technique appears to be the non-dominant variable removal, which was 
applied for a total of 1,243 times, while prime function elimination satisfied 
the necessary conditions for exact parametrization only 139 times. 

The purpose of the next group of columns is to compare the breadth of the 
state exploration between DSD-SS and a pure symbolic simulator that does not 
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Table 6.1 : DSD-based symbolic simulation (Part 1) 

Circuit In Out FF Gates Pxtechniques Symbol reductions Time (s) 
FP PE NDV DSD-SS PlainSym. 

Logic Synthesis '91 - FSM tests 

ex 1 9 19 20 622 
s 1423 17 5 74 830 
$338 35 2 32 596 
s953 16 23 29 658 

Logic Synthesis '91 - Addition '93 
bigkey 262 197 224 9211 
clma 382 82 33 24482 
dsip 228 197 224 3893 
mm9a 12 9 27 639 
mm9b 12 9 26 786 
multl6b 17 1 30 284 
mult32a 33 1 32 715 
~38417 28 106 1465 23771 
~38584 38 304 1426 20281 
s5378 35 49 163 3232 
s838 34 1 32 618 
s9234 36 39 135 3019 
sbc 40 56 27 1143 

ISCAS '89 - FSM tests 
s13207.1 62 152 638 
~13207 31 121 669 
s1423 17 5 74 
s15850.1 77 150 534 
~15850 14 87 597 
~35932 35 320 1728 
~38417 28 106 1636 
~38584.1 38 304 1426 
~38584 12 278 1452 
s5378 35 49 179 
s838 34 1 32 
S9234.1 36 39 211 
s9234 19 22 228 
s953 16 23 29 

ISCAS '89 - Addition '93 
prolog 36 73 136 
s 1269 18 10 37 
s1512 29 21 57 
s3271 26 14 116 
s3330 40 73 132 
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Table 6.2: DSD-based symbolic simulation (Part 2) 

Circuit In Out FF Gates Par.techniques Null Symbol reductions 
FP PE NDV 

Time (s) 
DSD-SS PlainSym. 

ISCAS '89 - Addition '93 (cont.) 
s3384 43 26 183 1734 61 2 3 4 1551 2565 297.18 
s4863 49 16 104 2492 163 0 149 0 2400 
s635 2 1 32 382 31 0 0 35 82 5 55.74 
s6669 83 55 239 3272 17 22 0 1 6262 
s938 34 1 32 626 0 0 0 51 52 61 70.76 
s967 16 23 29 677 0 0 50 50 0 73 1 2.56 

include parametrization. To this end, we built a plain symbolic simulator and 
we constrained it to have the same upper bound for the size of the state vec- 
tor at the end of each simulation cycle as DSD-SS. While the only reduction 
technique available to the plain symbolic simulator was an approximation of 
the state vector by evaluating symbolic variables to constant values, DSD-SS 
would attempt first exact parametrization, and default to approximation only 
as a backup method. The number of variables approximated to constant pro- 
vides an indication of how much the search breadth has been restricted: every 
time a variable is set to constant, we cut in half the amount of equivalent sim- 
ulation traces checked by the exploration. Thus, in this section of the table, a 
bigger value indicates a more aggressive approximation and a smaller breadth 
of search. DSD-SS greatly outperformed a pure symbolic simulator in all but 
three testbenches. The situation of a test such as s635, can arise because DSD- 
SS chooses the variable to approximate so to maximize the chance of being 
able to perform additional exact parameterizations. This may not be the choice 
that leads to the smallest BDD vector size with the least number of approxi- 
mations. However, in all the other cases, even with this disadvantage, DSD-SS 
avoids the elimination of many symbolic variables and propagates through the 
simulation a factor of 2 to 10 times more symbols over a plain symbolic sim- 
ulator, when the same amount of memory is available. The situation of test 
bigkey is exceptional in this sense: because of the exact parameterizations, 
DSD-SS could avoid the evaluation to constant of more than 11,000 symbols 
over a plain symbolic simulator. 

The last column reports the execution times of DSD-SS. The current im- 
plementation of DSD-SS at this point is fairly poor, since we need to transfer 
the data back and forth between the two BDD packages many times during the 
simulation. The proprietary BDD package that we currently use to perform the 
parameterizations has special functionalities for linking to the disjoint-support 
decomposition library. Execution times are also penalized by multiple vari- 
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able reorderings in the CUDD package that are triggered by many of the test- 
benches. We hope in the near future to be able to directly link the DSD library 
to the CUDD package; we expect this connection to provide great improve- 
ments in the performance of DSD-SS. At this point, the plain symbolic simu- 
lator executes faster than DSD-SS since it can rely simply on the usage of the 
CUDD package. Still, in a few cases DSD-SS can gain enough advantage from 
a compact representation to be faster than the plain simulator, for instance, in 
the case of test bigkey. Finally, the testbenches with a "-" mark indicate that 
either the plain symbolic simulator or DSD-SS run out of the allotted time of 
one hour of execution. For these testbenches we only report the number of 
transformations that we were able to complete. 

Figure 6.8 compares three simulation techniques: DSD-SS just presented 
in this chapter, CBSS discussed in Chapter 5 and a plain logic simulator. The 
comparison is carried in terms of eficiency, i.e., input traces visited per sec- 
ond of simulation. In order to evaluate the efficiency of DSD-SS we needed 
to compute the exact size of the reached state set at each simulation step. This 
is because DSD-SS does not use a straightforward parametrization as CBSS, 
where the size of the visited state set is simply a 2-power of the number of 
Params at each step. DSD-SS uses in general a more involved parametrization 
where the parametric functions has intra-dependencies, and thus an explicit 
computation of the reached set is required to evaluate its size. The conse- 
quence of this observation is that we could only run the comparison for a few 
benchmarks, the others not appearing in the graph, could not complete the 
reached set computation after a few steps. Thus, the reached set computation 
for DSD-SS is only required to estimate its efficiency for the comparison, it is 
not part of the algorithm flow, as presented earlier in this section. 

As pointed out in the previous chapter and comparison, the fast perfomance 
of logic simulation is offset by its very limited breadth (only 1 input test vec- 
tor evaluated per each simulation step). CBSS performs a fast parametriza- 
tion, which allows it to achieve a good level of parallelism at the cost of extra 
computation time due to the manipulation of Boolean functions. The time for 
CBSS is mostly in the simulation of the combinational circuit, where BDD 
operations can be complex, and not in the parametrization algorithm, which is 
fairly straightforward. Finally, DSD-SS dwells in a more involved parametriza- 
tion algorithm, which, however, generates a parametric vector that spans ex- 
actly the same range as a pure symbolic simulation approach. The graph shows 
that DSD-SS has always higher efficiency compared to the other two solutions. 
In particular, DSD-SS seems to overcome the occasional poor efficiency that 
CBSS encountered in testbenches not easily parametrizable, where the state 
vector function where tightly interconnected. Once again, the efficiency bene- 
fits seems to grow with the growing complexity of the testbench, unfortunately, 
as mentioned earlier, we could not compare the most complex designs on this 
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graph because of the reachability analysis step involved in computing this met- 
rics. 

s713 sbc sf423 ~9234.1 s5378 

Figure 6.8: Comparison of DSD simulation vs. cycle-based symbolic simula- 
tion and vs. logic simulation 

The next section presents another parametric solution in symbolic simula- 
tion developed by [AJS99] in the context of verification of microprocessors. 
The solution is an exact parametrization in that it partition the design space in 
multiple segments and it then proceed to symbolically simulate each of them 
individually, until all the elements of the partition have been covered. 

6.3 Parametrization in the micro-processor domain 
A symbolic simulation solution that has been proposed in the context of 

microprocessor verification is by Robert Jones et al. [AJS99, Jon99, Jon021. 
In this context the authors would partition the verification search space, and 
use parametric forms to represent the Boolean constraints to specify each of 
the subsets. 

Microprocessor verification is a classic area of application of verification 
techniques because it presents many challenges to verification, starting from 
the sheer complexity of the logic designs and design blocks involved. In addi- 
tion, because of the large production of general purpose microprocessors, and 
their deployment in many different domains, from entertainment to life critical 
activities, guaranteeing the correctness of these designs is a high priority con- 
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cern in the industry. To address the complexity of the problem, the solution 
presented by the authors recommends to attack the problem with a divide-and- 
conquer approach in two fashions: 

Structural decomposition. Here, the symbolic simulation problem is par- 
titioned structurally based on the characteristics of the design to be ver- 
ified. With reference to Example 6.5, if the design is composed of two 
blocks whose outputs are multiplexed together, a structural partition would 
first assign symbolic variables to the inputs of one block only, and select 
the multiplexor to have that block's outputs pass through. Then the multi- 
plexor's selector is switched and the symbolic variables are assigned only to 
the second block. In general, a structural partitioning would require some 
architectural understanding of the design in order to be most effective. In 
the examples presented in [AJS99], the authors discuss how they found an 
effective partitioning by understanding the overall function implemented 
by the system and devising clever decompositions of the problem at hand. 

Data-space decomposition. This decomposition is performed by case- 
splitting the problem space, and parametrizing the domain space of each 
subproblem. In contrast with structural partitioning, case-splitting can be 
made completely automatic. The partition is performed on individual sym- 
bolic variables, where each case-split reduces the exploration space in half. 
Note, however, that both cases need to be simulated, hence the simulation 
time increases. The benefit is that case-splitting brings the problem to a 
manageable size. The parametrization phase consider the domain of each 
case split and parametrizes the domain so that it is encoded in a compact 
way. If this phase were not executed, the domain would be represented 
by a complex characteristic function, usually requiring memory resources 
beyond those available in the system. A compact parametrization brings 
the additional advantage that the symbolic simulator manipulates simpler 
expressions. 

It is important to notice that neither of these partitioning techniques actually 
need fully disjoint partitions. In fact, in the most general case they simply 
constitute a cover of the entire search space. This aspect could be particularly 
useful when devising a structural partition, since a cover could lead to more 
compact problem subsets. 

6.3.1 Structural decompositions 
Example 6.5. Consider the schematic design of Figure 6.9. Here two sequen- 
tial blocks have combinational outputs o~ and o~ connected to a multiplexor 
controlled by the signal sel. A structural partition for the symbolic simulation 
of this design would consider veribing the two circuits A and B one at a time. 
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Figure 6.9: Design decomposition for Example 6.5 

To do so, thejirst simulation wouldgenerate symbolic variables for each of the 
combinational inputs i ~ ,  hold sel constant to 0, and set the inputs of circuit A 
to constant values. The spec@ values at iA are not relevant, given the value 
at the sel input. 

Afer enough coverage has been obtained for circuit A with this symbolic 
simulation run, the setting between the two circuits can be swapped, and the 
value of sel held constant at 1. This would enable the second simulator run to 
provide coverage on circuit B. 

In industrial situations the partitioning can be much more involved than the 
example. Typical situations includes partitioning on the different modes of 
operation of a system, which may activate and de-activate entire blocks, or 
split the range spanned by a multi-bit value into multiple intervals in a way that 
simplifies the operation of the system (by de-facto partitioning it). Examples 
of both these types of partitioning are presented in [AJS99]. 

6.3.2 Parametrization for data-space partitions 
Once a data-space partition has generated a tentative number of case-splits, 

the sub-domain space for a simulation run is encoded in a parametric form. 
For this phase, the authors target a technique that is efficient, although not 
optimal. In particular it generates expressions that are usually smaller that the 
original Boolean vector, but they don't aim at generating the minimum number 
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of parametric variables. The parametrization algorithm operates on the BDD 
representation of the function, is recursive and Shannon-decomposition based, 
similar to the recursive algorithms to perform Boolean manipulation of BDDs. 
Previous work [JG94] had already suggested a similar technique, however the 
authors of [AJS99] include additional parametric variables for unconstrained 
inputs, which have simple representation and increase the span covered by the 
simulation. 

6.4 Summary 
This chapter introduced two exact parametrization techniques for symbolic 

simulation, disjoint-support decomposition-based symbolic simulation and ex- 
act parametrizations for industrial applications. We first presented the work 
on DSD simulation in in [B002]. Its core contribution is in exploiting the 
disjoint-support decomposition properties of the state vector in order to gener- 
ate a compact and exact parametrization during symbolic simulation. The main 
advantage of this approach is that it is a no-loss transformation. That means 
that we can generate a compact representation of the state vector without los- 
ing any of the information it carries between simulation steps. Results show 
that, within a fixed amount of memory resources dedicated to represent the 
frontier set, we can keep a much broader search space than can pure symbolic 
simulation. 

The direction taken by Jones, et al., in [AJS99] takes a step towards aggres- 
sively partitioning the search space and traversing it one partition at a time. 
This technique is also called case-splitting. Automatic case-splitting is com- 
plemented by a hand-crafted structural partition of the design, which is devel- 
oped so as to create partitions that de-activate entire portions of the design and 
focus on verifying only a few. This structural decomposition is key in bringing 
the complexity to manageable levels, however, it may require a lot of effort 
from the engineer to devise a good partition. 
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Chapter 7 

CONCLUSION 

This book focuses on recent developments in symbolic simulation, and their 
subsequent application to digital design verification. The book sets the stage of 
the discussion by overviewing the process of designing and verifLing a digital 
system and reviewing mainstream techniques for verification, both in func- 
tional validation and in formal verification. 

Symbolic simulation is presented in detail, along with some of the most 
closely related symbolic techniques. The central part of this book is devoted 
to discussing some of the most recent advancements in the area of symbolic 
simulation. The evolution of this research area is driven by the quest for better 
performance and scalability in symbolic simulation, where recent and upcom- 
ing improvements could, thereby, enable this technique to become a major 
contributor to the landscape of verification tools deployed in industry. 

The main research directions explored by the solutions presented here are 
heuristic approximations and reparametrization. Key concepts that relate to 
both topics have been presented in Chapter 4. The book then dives into the 
exploration of a range of symbolic simulation techniques that move in one, or 
both, of these directions. 

The solutions presented have been evaluated against designs derived from 
industrial developments,industrial design development with complexity that 
resembles those of digital design blocks. Among the solutions presented, 
those developed by us, cycle-based symbolic simulation [BDQ99] and disjoint- 
support decomposition-based symbolic simulation [B002], are presented along 
with experimental results and comparisons to the performance of logic simu- 
lation and also to alternative techniques. For the other solutions, that is, quasi- 
symbolic simulation [WDOO] and case-splitting parametrizations [AJS99], rel- 
evant experiments have been reported, and the reader is referred to the bibli- 
ography to gather the details. Experimental evaluation has indicated that these 
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solutions are, in fact, sufficiently powerful to enable their use in a broad indus- 
trial context. 

7.1 Enabling techniques for symbolic simulation 
In this work, we presented two core aspects of Boolean functions and their 

representations used here to develop effective verification techniques based on 
simulation. 

Parametric representations are particularly suited for symbolic simulation, 
because they condense the information that is carried forward between simu- 
lation cycles by removing the redundancy of the original encoding. The key 
observation here is that the information carried across simulation cycles con- 
sists of only the subset of the state space that has been visited thus far. When 
using reparametrization it is possible to encode the description of said subset 
in a much more compact fashion than its original form. 

Disjoint-support decompositions are an intrinsic property of Boolean func- 
tions, which lead to the possibility of representing a function by means of 
smaller, simpler components that do not share any input signal. The conse- 
quence is a structure of small functional blocks loosely connected in a tree 
graph. These decompositions have been applied to both the synthesis and the 
verification domains. In this book we exploited the fact that DSDs expose 
the inherently parallel components in the computation of a function and we 
then used them to create a compact and efficient parametrization technique for 
symbolic simulation. 

7.2 Scalable symbolic simulation techniques 
The solutions presented in the central part of the book use approximations 

and one, or more, techniques from initial sections to achieve robustness against 
diverse design sizes and topologies. They all rely on core algorithms that are 
self-tunable in a feedback loop which evaluates the quality of the simulation 
run and then adapts the system to respond to a variety of conditions. In ad- 
dition, they all dedicate a bounded amount of resources and effort to achieve 
parallelism in the simulation by using symbolic expressions, yet they stand 
ready to gracefully degrade the symbolic effort if the conditions are not suffi- 
ciently favorable. 

Along side the specific solutions discussed, all these ingredients are critical 
to providing solid and scalable verification solutions to an industry that is fo- 
cused on reliably developing more complex designs in a shorter time frame; 
an industry that demands push-button solutions adaptable to a wide range of 
situations. In this direction, the advancements presented in this book are a step 
towards closing the gap between growing complexity of designs and the ability 
to verify them. 
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Appendix A 
Disjoint-support decompositions 

This appendix complements Chapter 4 in providing a formal introduction 
to disjoint-support decompositions. A preliminary presentation of this work 
was discussed in [BD97, Ber03b1, while recent improvements include [PBOSb, 
PBOSa]. 

A.1 Function decompositions 
We derive here the definition of divisor, and prime function starting from a 

most general definition of decomposition, not necessarily disjoint support. 

Definition A.1. The operation of decomposition of F : 23" -+ 23 consists of 
finding other, simpler@nctions L and A1,. - . ,Ak such that: 

The above definition does not impose that the support of the functions Ai is 
disjoint, which will be implied by the constraints posed on the characteristics 
of L. The two following definitions bind the characteristics of L as a divisor of 
F ,  and specify the conditions for a function to be prime. If a function F has a 
proper divisor L, then the component functions that are input of L are disjoint 
support, as we will prove soon. 

Definition A.2. A function L(yl, . - - ,yk) : 'Bk -+ 23 is said to divide a function 
F(x1,. - . ,xn), n 1 k 1 2 ifthere are k non-constant functions A1 ,  . . . , Ak : 23" -+ 

23 such that: 

I fn  > k, we say that L divides F properly. I fF  cannot be dividedproperly by 
any L, then it is said to be prime. 
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In particular, any function F can always be divided by itself, although im- 
properly. We indicate by F/L any ordered list of functions (A1, A2,. - . ) sat- 
isfying Equation A.2. The list of variables yl, . . . ,yk and F/L will be termed 
formals list and actuals list of L, respectively. We can now formally define a 
maximal disjoint-support decomposition: 

Definition A.3. We call a disjunctive decomposition of F any pair (L,F/L) 
that satisfies Equation A.2. We distinguish two situations in identiJLing maxi- 
mal decompositions: 

- If L = yi @I y2 @I . . .y,, where €9 is one of the associative operators: OR, 
AND, XOR, the decomposition is said to be maximal zfnone of the F/L 
can be further divided by the same operatol; that is the cardinality of the 
inputs of L is maximal; 

- Otherwise the decomposition is maximal zfL is a prime function. 

If a function L divides F ,  then any other fbnction L' that is NP-equivalent to 
L will also divide F :  The actuals list F/L' will be a permutation of the original 
ones, possibly with some functions Ai E F/L complemented. The reader is 
referred to Section 2.3.1 for a definition of NP-equivalence. 

Example A.1. Consider the function F = F x 2  + G x 3  + ~ 1 x 4 ~ 5 .  It can be di- 
vided by L ~ I ,  y2, y3) = y1y2 +ny3. The formals list is Cyl ,y2, y3), while the 
actuals list is (xl,x4x5,x2 +x3). It can also be divided by L'(y1,y2,Y3) = 
j5 j5 + yv1. In this second case the formals list is the same as before, while 
the actuals list is (~4x5 ,XI ,X;!). Notice that L and L' are NP-equivalent. 

As each function in the actuals list F IL  may be itself decomposable, the 
lists associated with the decomposition of F and of its actuals, form a tree, 
hereafter called a decomposition tree for F. Leaves of a decomposition tree 
of a function F are labeled by variables xi or their complements z. Nodes of 
the decomposition tree are labeled by a function L that divides the subfunction 
rooted at that node of the tree. 

A.2 The unique maximal disjoint-support decomposition 
This Section shows that, under simple restrictions, every logic function has 

a unique decomposition tree, and that, each decomposition tree corresponds to 
a distinct function. In general, it may be expected that any nontrivial function 
F can be divided by many functions. Moreover, for a given divisor L, one may 
expect that many different functions could contribute to FIL. Contrary to this, 
the section proves that the decomposition is unique. The section is organized 
in two parts: we first show that there is actually a unique prime function L 
maximally dividing F ,  then prove that the functions Ai that compose F are also 
unique. This result leads to a partial ordering of Boolean functions based on the 
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maximal divisor of any function F and is key to the definition of decomposition 
tree that is presented in Section A.3. 

In order to show the uniqueness of the maximal DSD, we need to introduce 
the concept of kernel function. Notice first that all the Boolean hnctions with 
only two inputs can only be one of the associative operators: AND, OR, XOR or 
their complement or one of their NP-equivalent variants. These fhnctions are 
also always prime, since they cannot be properly divided by any other function. 

If a function F can be divided by a prime function L that is a 2 inputs asso- 
ciative operator: AND2, OR2, XOR2, we call kernel that function KF that: 1) 
divides F ,  2) is the same associative operator as L, but 3) has the maximum 
number of input operands. For instance if F = a + be + c f ,  it can be divided 
b y L = x l + x 2 , b u t i t s k e r n e l f u n c t i o n i s K F = ~ ~ + ~ ~ + ~ ~ .  

In the case where the prime function L has more than 2 inputs, IS(L)I > 2, 
the kernel function is L itself: KF = L. We show in this section that for a 
given F ,  there is a unique KF, Section A.2.3 proves that F/KF is unique. The 
reason why we refer to KF in our presentation is to disambiguate among the 
many similar functions that can divide a function F with an associative operator 
(similar in the sense that they differ only in the number of input operands): we 
choose to use the one with maximum granularity because that is the only one 
that can impose a unique partitioning on the actuals list of F ,  F/KF. 

A.2.1 Partitions and representative elements 
To prove the results of the section, we need to introduce some auxiliary 

terminology. The proof of the theorems below require to consider support sets, 
their partitions imposed by the actuals elements Ai, and the ability to select a 
"representative" variable from each of the partition subsets. A representative 
variable for a subset is simply a variable that belong to that subset. 

Definition A.4. Given a set of variables S, a partition T of S is a collection 
of disjoint subsets of S: 

Given apartition T of S into k subsets S 1 ,  . Sk, we call a selection of S a 
subset S* of S containing exactly k variables X I ,  . . - ,xk, where xi E Sj. 

In other words, S* contains one representative variable for each subset Si in 
the partition T. 
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A.2.2 Uniqueness of the kernel function 
This section proves the first part of the uniqueness results, that is, for any 

Boolean function F there is a unique prime function, which decompose F .  We 
call this function L, however, notice that now L is not a generic divisor, as 
in Section A.l, but a prime function. Among all the functions that divide a 
function F ,  the prime function L is the one with the smallest number of inputs. 

Theorem A.1. Let L denote aprime function dividing F.  Then, L divides any 
other function M that divides F .  

To prove Theorem A.1, we first need to prove the Lemma below, which 
shows that there is a unique such function L for any F and that any other 
divisor M with a larger number of inputs, can be further divided. We will then 
use the result of the Lemma to prove the uniqueness of the prime function L in 
Theorem A. 1. 

Lemma A.2. Consider an arbitrary function F(xl, - ,x,), n 1 2, and let L 
denote a function dividing F .  Then, for any other function M dividing F, if 
IS (M) I > IS (L) I, M is decomposable. 

ProoJ Let A1 ,A2,. ,AIS(L)I denote the functions in FIL. Recall that such 
functions are all non-constant and share no support variables. These properties 
must also hold for the functions in FIM, hereafter listed as PI, P2, - .  ,ljs(M)I. 

The starting point of the proof is the presumed equality 

The sets S(Pl), . . ,S(qs(M)I) form a partition ofS(F). Consider building a se- 
lection from this partition. We indicate with xp, ,xp,, - a . the selected variables, 
and with XM the selection {xp, ,x&, . + ) just constructed. Notice in particular 
that IS(M)I = IXMI. 

The selection must satisfy one additional property: XM must be such that 
for at least two functions in FIL, say, A1 and A2, 

xMnS(Al) # 8 and x ~ n S ( A 2 )  # 0. 

It is always possible to construct XM so that Equation A.5 holds, as follows. 
If Equation A.5 is not satisfied by a current selection XM, then it must be (say) 
X M ~ S ( A ~ )  = 8. Select a variablex~, from S(A2). Notice that XA, also belongs 
to the support of some function in FIM, say, to S(Pl ). By replacing xp, with 
XA* in XM the new set is still a valid selection, and it satisfies Equation A.5. 

Consider assigning constant values to the variables not belonging to XM, in 
the following way. Since xpi E S ( e ) ,  it is always possible to assign values 
to the remaining variables of S ( 4 )  in such a way that, under this assignment, 
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P j  = xpi or P j  = xpi. For our purpose, complementation is irrelevant. Hence, we 
will assume for simplicity that this assignment results in Pi = xpi. 

We indicate with f* a function resulting from another function f aRer this 
partial assignment. By applying the same partial assignment to the left-hand 
side of Equation A.4, we obtain: 

Notice that the support of the right-hand side of Equation A.6 is precisely 
XM. Because JXMJ = IS(M)I > IS(L)I, the support of at least one of the func- 
tions AT,A;, must contain 2 or more variables. Because of the partial as- 
signment, some of the functions AT may actually be constants, and the function 
L may simplify to a different function L*. From Equation A.5, however, at least 
two functions AT are not constant, hence IS(L*) I 2 2 and L* is a function of at 
least two inputs. Equation A.6 then indicates that L* divides M and MIL* is 
the set of non-constant AT. 

We can now prove Theorem A. 1, stating that the prime function L dividing 
F is unique: 

ProoJ - Theorem (A.1) - Consider a selection XM of IS(M)I variables and 
a sensitizing assignment as in the Proof of Lemma A.2. Equation A.4 then 
reduces to: 

L(AT,A;,...) = M(xp1,xp2,...) . (A.7) 

(remember that f* is the function resulting from a function f after a partial 
assignment). 

By the way of choice of the variables xpj, we know that at least two of the 
functions AT are not constant. We now show that, because of the primality of L, 
actually none of them can be constant. If, by contradiction, any of the AT were 
a constant, then L could be replaced in Equation A.7 by a function L* such that 
IS(L*)I < JS(L)I. L* would also have at least two inputs because at least two 
AT are not constant. Hence, Equation A.7 would indicate that L* divides M, 
and therefore it would divide F. We would then have two functions, namely, L 
and L*, with IS(L) I > JS(L*) I ,  that divide F. From Lemma A.2, L would then 
be decomposable, against the assumption. None of the AT of Equation A.7 can 
then be constant. 

Suppose first (S(M) I > IS(L) I. At least one of the functions AT must have 
support size larger than one. Hence, Equation A.7 indicates that L divides M, 
and MIL = {AT). 

If IS(M) I = IS(L) I, each of the AT must be either a variable xj from the selec- 
tion or its complement. In other words, (A1, , Als(L)l) = NP(xl, . . . ,xls(M)I). 
Therefore M is NP-equivalent to L. 



136 SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION 

Example A.2. Consider the function F(xl ,x2 ,x3 ,x4) = ~ 1 ~ 2 x 3  + X I X ~ X ~  +x3x4. 
It can be decomposed as F = MAJORITY(xlx2,x3,x4). It is easy to verzS, that 
the function MAJORITY (a,  b, c )  is prime by exhaustive enumeration. Hence, 
from Theorem A. I ,  F cannot be decomposed with any prime function L other 
than MAJORITY, while maintaining arguments with disjoint support. It fol- 
lows that MAJORITY is the unique kernel of F .  

The following Corollary is a direct application of the previous Theorem and 
it is reported here because, as we will see, it has relevant application in the the 
process of constructing the disjoint-support decomposition of a function. 

Corollary A.3. I f a  function F can be decomposed by the two input function 
OR2 (AND2 , XOR2 ) of two disjoint-support functions, then it cannot be de- 
composed using any of the other two operators. 

We then show an important property of such prime function, namely, that it 
divides any other function M that divides F. 

A.2.3 Uniqueness of the actuals list 
The second part of the uniqueness results consists of showing that the ele- 

ments of the actuals list, F/KF, are also unique. We provide here a charac- 
terization of the functions in F/KF, by analyzing the two possible cases one 
at a time: Theorem A.4 below considers the case where the prime L is not an 
associative operator. The reader may recall that this implies that IS(L) I > 2. 
As discussed in the previous Section, in this case KF = L. We show here that, 
in this situation, the functions in F/KF are unique. The case where IS(L)I = 2 
and KF # L is then considered in Theorem A.5. 

Theorem A.4. Let L denote a prime function, with IS(L) I > 2, and let SA = 

{A1 ,A2, ,AIS(L)I) ,  SB = {B1 ,B2, + ,BIS(L)I)  denote two sets of disjoint sup- 
port functions such that 

Then, there exists a NP-function N P  such that 

In other words, A , A2, . coincides with B1 , B2, - . . or their complements. 

ProoJ: We prove the result by contradiction: We assume that two sets of func- 
tions exist that satisfy Equation A.8 but violate Equation A.9, and draw the 
conclusion that L is not prime. 

The proof mechanism is again based on building a selection from the sup- 
por t~  ofB1,B2, . . .  . 
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We need to consider two cases. In the first case, the support partition in- 
duced by A1, . . . coincides with that of B1, . . - . In the second case, it does not. 

First case. 
It is not restrictive to assume that S(Al ) = S(Bl);S(A2) = S(B2), . - . . Con- 

sider any assignment that is complete for the variables in S(A2),S(A3), . . ., 
but that does not assign any values to those variables in S(A1). In this case, 
all functions except A1 and B1 reduce to constants. Let a2, a3,. denote the 
constant values A;, A;, . . Equation A.8 reduces to 

(A. 10) 

Notice that we can always choose the values a2, as, . . in such a way that 

L ( A ~ , ~ ~  ,... ) = A ~  or L ( A ~ , ~ ~ , - . . ) = A I -  (A. I 1) 

In this case, Equation A. 10 becomes 

(A. 12) 

Since A1 is, by construction, not a constant, Equation A.12 indicates that 
expression L(Bl , b2, . . ) is also non-constant. On the other hand, L has only 
one non-constant argument, namely, B1, and therefore L(B1, b2, . ) coincides 
with either B1 or with B1. Hence, Equation A. 12 ultimately implies that 

A l  = B1 or A l  =B1. (A. 13) 

By repeating the same reasoning for all functions in SA, eventually (A1, A2,.  . ) = 
NP(Bl , B2, - . ) for some NP function. 

Second case. 
Suppose the support of one function of SA (say, A2) overlaps with the sup- 

port of (at least) two functions Bj (say, B1 and B2). Consider constructing a 
selection XB from SB containing at least two variables from S(A2). We impose 
one more requirement on XB, namely, that for at least another function Ai, i # 2 
XB nS(Ai) # 0. 

It is always possible to construct such a selection. If, for a current selection 
XB, XB nS(Ai) = 0; i # 2, it would imply XB G S(A2). Choose then a variable 
from, say, S(A3). This variable must belong to the support of some B,. Replace 
then xej with this new variable. For the new selection, XB n S(A3) # 0, and, 
since lXB 1 2 3, at least two variables still belong to S(A2). 

Notice that, since at least two variables belong to S(A2), for at least another 
functionofA1,A2,--. (say,A1)XBnS(Al) =0. 

Consider applying a partial assignment, such that all functions B1, B2, . - . 
reduce to variables in XB or their complements: BT = XB~.  Since no variables of 
A1 are included in XB, A1 reduces to a constant al ,  and Equation A.8 becomes 

L(al,A;(x~,,x~2),A3*,'..) =L(xBI,XB2,"') (A. 14) 
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Notice that, since the left-hand side of Equation A. 14 must have support XB : 

1 A; is not a constant; 

2 A; is not a constant; 

Because a1 is a constant, however, we can replace L by a simpler function L* : 

L*(A;(xB~,xB~),AT,"-) =L(xB, ,xB~, . . . )  (A. 15) 

Equation A. 15 then indicates that we have been able to decompose L using L*, 
and LIL* = {A;, AT, ). This contradicts the assumption that L be a prime 
function. Hence, this second case is impossible, and FIL is unique. 

Notice that the constraint IS(L) I > 2 is essential to the proof, for if IS(L)I = 
2, Equation A. 14 reduces to 

(A. 16) 

indicating only that A; coincides with L or its complement. 

Example A.3. Consider again the function F ( X I ,  x2 ,x3, x4) = ~ 1 x 2 ~ 3  +xlx2xq + 
~3x4.  Its kernel function is MAJORITY. From Theorem A.4, the only possible 
elements of the actuals list are A1 = ~1x2 ,  A2 = x3 and A3 = x4 or any other 
NP-equivalent set. 

Example A.4. Consider the function F = xl +x2 +x3. It can be decomposed 
using the function OR2(a, b) at the root. From Corollary A.3, no other prime 
function can be used. The functions F/OR2, howevel; are not uniquely iden- 
tiJied, as A1 = xl +x2, A2 = x3 and Al = xl, A2 = x2 +x3 are both legitimate 
choices. 

We now address the case where the prime function L dividing F is a 2-input 
function. It is convenient to restrict our attention to the associative operators 
OR,AND,XOR: All other 2-input functions are in fact NP-equivalent to one 
of these operators. Example A.4 already showed that the inputs of L are not 
identified uniquely. Because the operators are associative, however, instead 
of decomposing F using only two arguments A1 ,A2, we allow the number of 
inputs to the divisor function to be as large as possible and in this case we call 
KF such maximum-inputs divisor function. 

To this end, we report here a result derived from [BD96a] : 

Theorem A.5. Suppose a function F is decomposable using one binary asso- 
ciative operator @ (where @ = AND, OR, XOR) as 

F =A1  @A2@-. .@An (A. 17) 



Appendix A: Disjoint-support decompositions 139 

and suppose further that none of the component functions Ai is further decom- 
posable using 8; then the set of functions {A1, - . ,A,) is : 

w unique in the case ofAND, OR decompositions. 

unique modulo complementation for XOR decompositions. 

ProoJ The proof follows by contradiction. Assume that there exist two dis- 
tinct sets of component functions that decompose F ,  namely, {A1,. . . ,A,) and 
{B1, , B,); we show that this leads necessarily to the violation of some prop- 
erties of the functions Ai or Bi. 

Consider first the case where 8 = OR. Since the two sets are distinct, at 
least one of the functions Bj (say, B1) must differ from any of the functions Ai. 
Since {Ai), {Bj) are both actuals lists for the decomposition of F, it must be : 

A1 +...+A, =B1 + a e - + B q .  (A. 1 8) 

Since all functions Bi have disjoint support, it is possible to find a partial as- 
signment of the variables such that Bj = 0, j = 2,. . . , q. Notice that the vari- 
ables in S(Bl) have not been assigned any value. Corresponding to this partial 
assignment, Equation A. 18 becomes: 

AT+.. .+Al=B1 (A. 19) 

In Equation A. 19, AT denotes the residue function obtained from Ai with the 
aforementioned partial assignment. 

We need now to distinguish several cases, depending on the assumptions on 
the structure of the left-hand side of Equation A. 19. 

1 The left-hand side reduces to a constant. Hence, B1 is a constant, against 
the assumptions. 

2 The left-hand side contains two or more terms. Since these terms must 
have disjoint support,Bl is further decomposable by OR, against the as- 
sumptions. 

3 The left-hand side reduces to a single term. It is not restrictive to assume 
this term to be AT. IfA1 =AT, then we have B1 = A1, against the assumption 
that B1 differs from any Ai. Hence, it must be AT # A1, and 

S(B1) = S(AT) c S(Al ) strictly. (A.20) 

We now show that also this case leads to a contradiction. 

Consider a second assignment, zeroing all functions Ai, i # 1. Equation 
A. 18 now reduces to 

Al =BT+.. .+Bi (A.2 1) 
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By the same reasonings carried out so far, the r.h.s. of Equation A.21 can 
contain only one term. We now show that this term must be B1. 

In fact, if A1 = B;, j # 1, then by Equation A.20 one would have 

against the assumption of Bl , Bj being disjoint-support. Hence, it must be 
A1 = BT. In this case, by reasonings similar to those leading to Equation 
A.20, we get 

S(A1) = S(B7) c S(B1) strictly (A.23) 

which contradicts Equation A.20. Hence, B1 cannot differ from any Aj. 

The case where @ =AND is derived similarly, with the only difference that we 
choose partial assignments such that the component hnctions evaluate to 1. 

Finally, for the case @ = XOR, we choose partial assignments such that the 
component functions evaluate to 0. Case 1) and 2) are still analogous to the 
previous derivation above. For case 3), we may reduce to either B1 = AT or 
B1 = AT. However, in both cases the relation between the supports still holds, 
in particular Equation A.20 and A.22 are still valid. From the two equations 
we can then derive the contradiction. 

The Corollary below indicates how the decomposition of Theorem A.5 is the 
common denominator of all the other decompositions through an associative 
operator: 

Corollary A.6. Suppose F is divided by an associative operator 8, and let 
B1, .  , Bq denote a collection of disjoint-support functions such that 

Then each function Bj  can be expressed using terms from the actuals list F/KF: 

Bi=Akj+l@".~kj+,  with k l=O,kq=k.  (A.25) 

In other words, F/KF forms a base for expressing all possible ways of decom- 
posing F using @. 

ProoJ: We prove the results only for q = 2,@ = OR, the generalizations being 
straightforward. Consider the equality 

Consider two distinct partial assignments leading to B1 = 0 and to B2 = 0, 
respectively. Equation A.26 becomes 
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and 
B1 =A;*+. . .+Ar . 

By computing the OR of the two components, 

From Theorem A.5, there can be at most k terms in the right-hand side of 
Equation A.29. For each function Ai, at least one ofAT, AT* must be nonzero (or 
otherwise S(Ai) n S ( F )  = 0). Hence, for each Ai, either AT = 0 and AT* = Ai, 
or AT = Ai and AT* 7 0. Each term in the right-hand sides of Equation A.27 
is then either 0 or coincides with some Ai. It is not restrictive to assume that 
the first kl terms are nonzero. Hence, Equations. A.27 and A.28 reduce to 
Equation A.25. 

In summary, a function can be decomposed in exactly one of the following 
ways : 

I By the binary associative operators AND or OR. In this case, hereafter KF 
denotes the AND or OR function with the largest support size and KF is 
unique in the sense of Theorem A.5. 

2 By an XOR operator. Also in his case F/KF will be taken to denote the 
finest-grain decomposition. F/KF is unique modulo complementation of 
an even number of its elements. 

3 By a PRIME function of three or more inputs. F/KF is unique modulo 
complementation of some of its elements. 

Note that the complement of a function has a decomposition that can be de- 
rived immediately from the decomposition of the function: If a function is OR- 
decomposable, its complement has an AND-decomposition where the inputs 
are complemented and conversely. The complement of functions with XOR- 
decompositions are also XOR-decomposition with one of the inputs comple- 
mented. Finally, PRIME-decompositions have complements which are PRIME- 
decompositions with the kernel function KF complemented. 

A.3 The canonical decomposition tree 
In Sections A.2.2 and A.2.3, we showed that for a given function F, the 

kernel KF and the actuals F/KF are unique, up to complementations and per- 
mutations (see also Section 2.3.1). We now establish some conventions so as 
to choose a unique representative of all the decomposition trees corresponding 
to the same function F.  These conventions will lead to the definition of the 
normal, or canonical, decomposition tree. 

In representing decomposition trees, we reference the tree by a pointer to the 
root node. Moreover, we use signed edges, much like common BDD represen- 
tations ([BRB90]). If a decomposition tree represents the function F ,  the tree 
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obtained by complementing the edge to the root node represents the function 
F. 

Definition A.5. Given a function, its normal decomposition tree is a tree 
graph and it is denoted DT(F).  It is dejined recursively as follows: The root 
node represents F, and it is labeled by the type of decomposition. The root 
node has IF/KFI outgoing edges, each edgepointing to the root of DT(Ai). In 
order to resolve permutation ambiguities, the elements of F/KF are ordered 
according to the order of their top variable in their BDD representation. 

In order to resolve complementation ambiguities, the following rules are 
adopted: 

I f F  has PRIME or XOR decomposition, the set F/KF contains functions 
with positive BDD polarity. In the case of XOR decomposition, the root 
node will be referred to through a complement edge $necessary. 

Ij"F has an AND decomposition, DeMorgan rule is applied: the root node 
is labeled OR and will be referred to through a signed edge. The fanout 
edges of the root node point to the complements ofF/ANDk. 

From Theorems A.l and A.4, it follows trivially that with this set of con- 
ventions and with the full labeling of PRIME nodes, there is a one-to-one cor- 
respondence between normal decomposition trees and logic functions. 

A.3.1 Extracting all decompositions from the canonical tree 
The decomposition tree represents concisely all possible disjunctive decom- 

positions of F. This property will be useful to the decomposition algorithm 
presented in the next chapter. In order to extract a decomposition from a nor- 
mal decomposition tree, we need to define the concept of a cut of a DT. Given 
a generic tree graph, a cut is any set of nodes that separates each leaf of the tree 
from the root and such that in any path from the root to the leaves there is only 
one node that belongs to the cut. Since for our decomposition trees each node 
corresponds to a function, we define cuts as a collection of functions. The last 
lemma of this chapter shows that there is a one to one correspondence between 
divisors of a function F and cuts through its normal decomposition tree. 

To formalize this aspect of decomposition trees, we need to introduce a 
few definitions, which will be used again when we describe the decomposition 
algorithm. 

Definition A.6. We say that a function G(x l , .  . . ,x,) appears explicitly in 
DT(F) $one of the following holds: 

2 G appears explicitly in DT(Ai) for some Ai in F/KF. 



Appendix A: Disjoint-support decompositions 143 

In other words, functions appearing explicitly in DT(F)  correspond to tree 
nodes. 

We say G appears implicitly in DT(F)  ifone of the following holds : 

I G = F  

2 F = @ ( A I ,  - .  . ,An) and G = @(B1, , B,), where @ is OR, XOR, and 
where each Bi E {A1, .  ,An} 

4 G appears implicitly in one of the subtrees DT (Ai). 

Finally, we say G appears in DT ( F )  if it appears explicitly or implicitly. 

Example A.5. Consider the function F = ~ 1 x 2 ~ 3  +xqxs. A decomposition 
tree is reported in Figure A.1.a. Figure A.1.b depicts the equivalent nor- 
mal decomposition tree (the Figure uses the signed edges convention to rep- 
resent the complementation of a node in the tree). The functions G1 = F, 
G2 = ~ 1 ~ 2 x 3 ,  G3 = ~4x5,  and all the functions corresponding to a simple input 
variable, appear explicitly in DT(F)  and are indicated in the Figure. Func- 
tions G4 = e+ E, G5 = Fi + and G6 = X 2  + X3 appear implicitly in the 
decomposition tree by rule (2) on implicit appearance of Dejinition A. 6. More- 
ovel; functions G7 = ~1x2 ,  G8 = xlxj and G9 = ~2x3  also appear implicitly by 
rule (3) of the Dejinition. 

Figure A. 1 : Decomposition tree for Example A.5 

Notice that if a function G appears in DT(F) ,  then every function in DT(G) 
will also appear in DT (F) .  The following definition and lemma will enable us 
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to extract all the disjoint-support decompositions of a function from its normal 
decomposition tree by considering all the cuts of the tree. As a result, the nor- 
mal DT can be viewed as a compact way to encode all disjoint decompositions. 

Definition A.7. A set of functions C = {Ai) is called a cut of DT(F)  ifthe 
following hold: 

1 each function Ai appears in DT(F).  

Example A.6. A possible cut for the function of Example A.5 is given by the set 
{G3, G4 ,x3), that is, {x4xs ,xlx2 ,x3). Notice that G4 appears only implicitly. 

Lemma A.7. For every function Mdividing F, F / M  is a cut of DT(F).  Con- 
versely, for any cut C of DT(F),  there is a function Msuch that F / M  = C. 

Proo$ The first part of the theorem is proved by induction on the number of 
variables in S(F) .  The base of the induction (when IS(F)I = 2) is trivial. 

For the generic induction step, let m = IS(M) I and let yl , . , ym denote for- 
mal inputs to M. Since M divides F ,  there exist m functions Pl ( X I ,  . . . ), P2, . . . 
(the actuals list of F / M )  such that: 

By assumption, PI ,  - . , Pm are disjoint support and their support must coincide 
with S(F) .  Thus, we need to show only that PI , .  . . , Pm appear in DT(F).  From 
Theorem A. I, the prime function L that divides F ,  divides also M. Therefore, 
there exist 1 = IS(L) I disjoint-support functions Bl , Bz,.  . , Bl of yl , . . ,ym 
such that 

M =  L(B1,...  ,Bl). (A.3 1 )  

It is not restrictive to assume that the support variables yi are numbered so that 

for suitable integers bi, with bo = 0 and bl = m. 
We now need to distinguish whether L is a 2-input function (i.e. an associa- 

tive operator), or a prime function with three or more inputs. The latter case is 
simpler and we carry it out first. By composing Equations. A.30 and A.3 1 one 
obtains 

Since L divides F and it is a prime function, from Theorem A. 1 it must be 
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where {A1 , . . . ,AI) = FIL. Notice that by definition of decomposition tree, all 
Ai appear in DT(F). For each function Ai, Bi is either a single-input function, 
or a multiple-input function. In the first case, Ai = Pbi (modulo complementa- 
tion), and therefore Pbi appears in DT(F). In the second case, Equation A.34 
indicates that Ai is decomposed by Bi. Since IS(Ai)l < IS(F)I, by induction 
each of Pbi-l + , . - . ,Phi must appear in DT (Ai), hence in DT (F) . 

Consider now the case where L is an associative operator 8. In this case, 
one can write 

for suitable functions GI,  G2. By substituting the formals yi with the actuals P, 
in Equation A.35 , and taking into account Theorem A.5, 

where {A1, . - , Ak) = FIKF. We now focus on GI, the same reasoning being 
then applicable to G2. Equation A.36 is the subject of Corollary A.6: Either 
GI coincides with some Ai (in which case it appears explicitly in DT (F)), or it 
is expressible as the sum of some of the Ai. In this second case, we have 

Let F2 denote the function A1 @ . . .@ Akl . Notice that F2 appears implicitly in 
DT(F). Hence, every function appearing in DT(F2) will appear in DT(F). By 
the inductive assumption, for every function M dividing F2, F2/M appears in 
DT(F2), hence in DT (F). Equation A.37 states precisely that G1 divides F2, 
thus PI, . , Pm appear in DT(F2) and consequently in DT (F). 

The second statement of the theorem can be trivially proved by building the 
function M corresponding to the decomposition tree obtained from DT(F) by 
substituting a distinct variable yi for each node Ai of the cut C. 

Example A.7. Consider the function F given previously in Example 4.5. The 
function MJORITY(xl$ x2 ,x3 ,x4) = (x3 + x4) (XI e x 2 )  +x3x4 is a divisor of 
F and the cut C of DT(F) with reference to the Example is C = {a, b, H,I}. 

A.4 Building the decomposition tree from a BDD 
This section presents in detail the various components of the decomposi- 

tion algorithm that have been introduced in Section 4.3.1, and a proof of the 
correctness of this construction. 

As a reminder, the objective here is to decompose a function F ,  whose root 
node is labeled by z, and produce DT(F). The decompositions of the two 
cofactors of F w.r.t to z are assumed to be known, and have decomposition 
trees DT(Fo) and DT (FI). In addition, we assume that, for any decomposi- 
tion, the actuals list members are ordered so that the top variable of each Ai has 
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a decreasing index when going from A1 to Ak. With this assumption, we can 
easily derive that the decomposition of F will contain an actuals list member 
A1 whose support includes the variable z: z E S ( A I ) .  Section 4.3.1 indicates 
that the construction can be split into two groups: inherited and new decompo- 
sitions, as reported by Definition 4.2. 

Inherited decompositions can be classified further into smaller subgroups, 
as the list below illustrates. Let A10 = A1 (z = 0 )  and A11 = A1 (z = I), then an 
inherited decomposition must fall into one of the following cases: 

1 Neither A10 nor Al is constant, Alo # z ,  and 

(a) F has PRZAE decomposition; 

(b) F has AND, OR , or XOR decomposition; 

2 Exactly one of Ale, A1 1 is constant (i.e. A1 is the OR or AND of z - or 2 - 
with a suitable function); and 

(a) F has PRIME decomposition; 

(b) F has AND, OR, XOR decomposition. 

3 Alo  =z and Alo  is not a constant (i.e. A1 is the XOR of z with a suitable 
function); and 

(a) F has a PRIME decomposition; 

(b) F has AND or OR decomposition. 

Notice that since A1 has a XOR decomposition, F cannot have a XOR de- 
composition. 

Notice that, in the first type of inherited decompositions, A1 is essentially an 
arbitrary function of three or more variables. A1 may of course have a XOR, 
OR, or AND decomposition, we just exclude the situation where z (or 2) appears 
as an element of its actuals list. The three scenarios are mutually exclusive, and 
together they cover all the possibilities for inherited decompositions. 

Given this classification of decomposition types, we analyze each case in 
turn: Sections A.4.1 to A.4.3 cover all the three subtypes of inherited decom- 
positions, Section A.4.4 analyzes new decompositions. Each Section shows 
how to determine to which scenario a Shannon decomposition belongs to, and 
how to construct D T ( F )  from DT (Fo) and DT(Fl) ,  for its specific condition. 

A.4.1 Case 1. Neither A l o  nor A l l  is constant and A l o  # A11 
This case was implicitly described in Example 4.7. We need to distinguish 

the two subcases where F is prime and where F is decomposed by an associa- 
tive operator. The two subcases are addressed separately by the two Lemmas 
below: 



Appendix A: Disjoint-support decompositions 147 

A.4.1.1 Case 1.a - PRIME decomposition 
Lemma A.8. A function F has a PRIME decomposition with arbitrary func- 
tion Al ( 2 , .  . + ) in its actuals list ifand only if: 

I Fo and Fl both have PRIME decompositions; 

2 the actuals lists Fo/KF, and Fl /KFl have the same size, and they dzfler in 
exactly one element, called G and H, respectively; 

3 either 

Fo(G=O)=Fl(H=O) and F o ( G = l ) = F l ( H = l )  (A.38) 

f i (G=O)=Fl(H= 1) and &(G= l )=Fl (H=O)  (A.39) 

must hold. 

Moreover; $Equation A.38 holds, then F/KF is obtained from Fo/KF, by re- 
placing G with A1 = ZG + zH, else by replacing G with A1 = ZG + zp .  

Notice that Lemma A.8 does not require any explicit comparison between 
KFo and Kfi. These comparisons are replaced by the comparison of generalized 
cofactors. We can thus avoid building explicit representations of KFo, Kf i .  

ProoJ: To prove the only if part, notice that Equation 4.7 indicates that KF 
divides Fo and Fl. Since we assumed KF to be PRIME, KF will be NP- 
equivalent to KFo,KF,. All elements of F/KF have positive BDD polarity, 
hence, A2,. . . , Al will appear with the same polarity in Fo/KF, and Fl /K,v,. 
One or both of Alo, A1 1 ,  however, may have negative BDD polarity. Therefore, 
Fo/KF, will actually contain either Alo or G. The same reasoning obviously 
applies to Fl/Kfi .  We indicate with G, H the functions actually appearing in 
Fo/KFo and Fl /KF1, respectively. To verify the third point, consider taking the 
generalized cofactors of Fo and Fl with respect to G and H. If A10 and A1 1 have 
the same polarity (say, positive), then Kfi = Kfi and we have: 

If Ale and A1 1 have opposite polarity (say, Alo has negative polarity), then 

Hence, Equations A.40 and A.42 reduce to Equation A.38 and A.39. 
To prove the ifpart, recall that Fo and Fl both have PRIME decompositions 

and that their actuals list differ in exactly one element (G vs. H). The cofactors 
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of Fo and Fl with respect to G and H are then well defined. Suppose first 
Equation A.38 holds: 

Using the decomposition of Fo in Equation A.44 : 

Equation A.45 indicates that KF, divides Fl as well, hence Fo and Fl have the 
same decomposition type. From Equation A.38 it also follows that 

F =zFo+zF1 =zKF~(G,A~ , . . .  ,Al)+zKF,(H,A2,... ,Al) = KF,(zG+zH,A2,... ,Al) 
(A.46) 

Equation A.46 indicates precisely that F has PRIME decomposition (its kernel 
being KF,), and that F/KF = {FG + zH, A2,. . ,Al), which is what we needed 
to prove. 

The case where Equation A.39 holds can be handled in the same way, just 
by replacing H with H .  

Example A.8. The function F = azb + ezb + cb @ d has kernel KF (xl , x2, x3 ,x4) = 
~ 1 x 2  + ~3x2 @xq and actuals list (az + ez, b, c, d). By computing the cofactors 
w.r.t. z, we obtain Fo and Fl with kernel identical to KF and actuals lists: 
f i / K ~ ,  = (e, b,c,d) and f i / K ~ ,  = (a, b,c,d), respectively. Since the two co- 
factors satisfy all the three conditions of Lemma A.8, we canjind the decom- 
position of F from their kernels and actuals lists. 

A.4.1.2 Case 1.b - Associative decomposition 
The case where F is decomposed by an associative operator is slightly more 

complex. Therefore, we first provide the intuition, and then prove formally a 
criterion for identifying such a case. Suppose F has a (say) OR decomposition: 

The two cofactors will also have OR decomposition: 

fi=ORk(A~o,A2,...,Ak) and Fl=ORk(All,A2,..-,Ak) 

Notice, however, that one or both of Ale, A1 1 may have a OR decomposition as 
well. Let 

Aio = ORl(Bi,B2,'.+ ,BI) and A11 = ORm(C1,... ,C,) where 1,m > 1. 

Therefore, it is shown that KFo = ORk-,+l, FO/KFo = {BI , - -. , BI, A2, .  + .  , Ak) 
and KF, = ORk- 1 +m, Fl /KF, = {el ,  , Cm, A2, . . . , Ak). Notice that all the 
functions Bi must differ from all of the Cj, and that the two actuals lists still 
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have at least one element in common (A2, - - , Ak). These observation are for- 
malized in Lemma A.9 below: 

Lemma A.9. A  function F  has an OR decomposition with arbitrary function 
Al (z, . . ) in its actuals list ifand only 8 

I both Fo and Fl have OR decompositions; 

2 the set of common actuals 2& = {A2, - ,Ak) is not empty; 

Prooj The only ifpart of the proof follows immediately from the previous 
observations. For the ifpart, let B 1 , .  . . , Bf denote the functions in Fo/KF, - &, 
and C 1 ,  - . . , Cm those in fi  /Kfi  - &. Then , 

Fo = ORk-l+l(B1,. . .  ,B / ,A2 , . . .  ,Ak) and Fl = ORk-l+m(C1,'.. ,Cm,A2,. . .  ,Ak) 

Hence, 

We need to show now that ZORl (B1 ,  . + , BI)  +zOR, (el , .  . - , C,) does not have 
an OR decomposition. Suppose, by contradiction, that it has an OR decompo- 
sition. Then, some of the terms ( B 1 , .  , Bl) would coincide with some of the 
(el, . , C,), against our assumptions. Hence, Equation A.47 indicates that F 
has a ORk decomposition. 

Identical results can be shown for the AND and XOR cases. 

A.4.2 Case 2. Exactly one of Alo,  A l l  is constant 
We now assume that exactly one ofAlo, All is a constant. We consider only 

the case Alo = 0, so that effectively A1 = zA1 1 .  The other cases can be handled 
similarly. In this scenario we need to consider separately the case where F will 
have a PRIME decomposition, and the case where F  will be decomposed by 
an associative operator. 

A.4.2.1 Case 2.a - PRIME decomposition 
In this case : 

F=KF(Al ,A2, . . '  ,A / )  

where KF is a PRIME function. Recalling that A1 = zA11, the two cofactors 
are: 

Fo =KF(0,A2,-a .  ,AI)  and Fl = K F ( A l l , A 2 , . . .  ,AI)  (A.48) 

Equation A.48 indicates that: 
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1 KF is also the kernel of Fl ; 

2 Fl /KF differs from F/KF in exactly one element (A1 va. A1). 

3 KF is not the kernel of Fo. 

Again, the following Lemma helps us avoid comparing kernels explicitly: 

Lemma A.lO. A function F has a PRIME decomposition with A1 = zG in its 
actuals list, for a suitable non-constant function G ifand only if: 

1 Fl has a PRIME decomposition; 

2 there exists a function G E Fl /Kf i  such that Fl (G = 0) = Fo. 

Prooj For the only ifpart, recall that Equation A.48 indicates that Fl has the 
same kernel as F. The second point also follows immediately from Equation 
A.48, using G = AI  I .  

For the ifpart, notice that, since Fo = Fl (G = O), 

indicating precisely that KF, is also the kernel of F , and that A1 = zG . 
It is worth noticing that Lemma A.10 does not indicate which hnction in 

Fl /KF, needs be chosen for the cofactoring. Indeed, all functions Ai E Fl /KF, 
such that S (Ai)  n S (Fo) = 0 are candidates. 

A.4.2.2 Case 2.b - Associative decomposition 
Since we assumed at the beginning of Section A.4.2 that A1 has an AND 

decomposition, zA1 1 ,  F can have only OR or XOR decomposition. We focus 
here on OR decompositions, the XOR case being conceptually identical. 

Again, we need to consider the case where All itself may have an OR de- 
composition. 

Let 
All  = ORl(Bl,.. .  ,Bl)  12 1 .  

The case where A1 1 does not have a OR decomposition is implicitly addressed 
by 1 = 1. The decomposition of F can then be written as : 

Equation A.50 indicates that Fl will also have an OR decomposition. Fo, how- 
ever, may have a different decomposition: in fact, in the special case k = 2, 
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Equation A.49 simplifies to Fo = A2 and A2 does not have an OR decompo- 
sition by hypothesis. In the general case, all the actuals of FO/ORk-l will 
belong to Fl/ORk+l-l. In the special case k = 2, Fo itself will be an element 
of Fl /ORk+1- 1 .  These observations are formalized below: 

Lemma A.ll. A function F has an ORk decomposition with A1 = zG in its 
actuals list, for a suitable non-constant function G if and only if: 

I Fl has an ORk+1-l decomposition with k 2 2 and 1 2 1; 

2 either k > 2 and Fo has an ORk-1 decomposition and Fo/KF, c Fl /KFl; or 
k =  2 andFo E Fl/KFl. 

ProoJ: The only ifpart follows directly from the above observations. For the if 
part, suppose: 

Fl = ORk-1+1(Bl,"' ,Bl,A2, " '  ,Ak) 

and 
Fo = ORk-1(A2,.-. ,Ak). 

Consequently, we have: 

which is what we needed to show. Notice that the algebra holds also for the 
corner case k = 2. I7 

A.4.3 Case 3. Ale =All and Ale is not a constant 
In this scenario A1 has XOR decomposition : A1 = z @ Alo. It is not restric- 

tive to assume that Alo has positive BDD polarity. Again, we need to address 
the case where F has a PRIME decomposition separately from the other cases. 

A.4.3.1 Case 3.a -PRIME decomposition 
If F has PRlME decomposition, then 

Fo=KF(AI0,A2, . . . ,Al)  and 4 =KF(&,A~ , . . . ,A I )  (A.5 1 )  

Again, KFo and Kfi are NP-equivalent to KF, hence, Fo and Fl have PRIME 
decompositions. Moreover, Fo/KF, and Fl /KF, are identical (because of the 
definition of normal decomposition tree - see also Section A.3). Another con- 
sequence of Equation A.5 1 is that: 

The following Lemma provides necessary and sufficient conditions for identi- 
fying this case: 
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Lemma A.12. A function F has a PRIME decomposition with A1 = z @ G in 
its actuals list, for a suitable non-constant function G ifand only i j  

I Fo and Fl have PRIME decompositions; 

3 there exists a function H in Fo/KF, such that: 

Fo(H=O)=F , (H=l )  and & ( H = 1 ) = F l ( H = 0 )  (A.52) 

In this case, either G = H or G = g. 
Proof: The only ifpart follows directly from the introduction to this case. For 
the ifpart, observe that if Equation A.52 holds, then: 

Hence, F has the same kernel as Fo, and its actuals list coincides with that of 
Fo, except for one element, namely, H, which is being replaced by either z @ H 
or by (z @ H), depending on the polarity of the BDD representation. 

Notice that Lemma A.12 does not indicate which function of Fo/KF, needs 
to be XOR-ed with z. Unfortunately, there is no way of knowing other than 
checking each function until Equation A.52 is verified. 

A.4.3.2 Case 3.b - Associative decomposition 
The difference from Case 3.a lies again in the fact that the candidate H may 

have the same decomposition type (AND, OR) as F. The way to handle this 
difference has been described already in Sections A.4.1.2 and A.4.2.2 for the 
other cases. Therefore, we omit it from the present analysis. 

A.4.4 New decompositions 
We now consider the case where A1 = 2 or A1 = z. We need to distinguish 

three subcases, namely, 

(a) F has an AND or OR decomposition; 

(b) F has an XOR decomposition; 

(c) F has a PRIME decomposition. 

These cases will be handled separately in the three paragraphs below. 
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A.4.4.1 Case NEW.a -AND or OR decomposition 
F = OR(z, G) , then the two cofactors are F, = G and F, = 1. Conversely, if 

F, = I, then F = F,Z + lz  = OR(z, F,) .  Hence the decomposition is inferred by 
verifying that one of F, is the constant 1. Since z @ S(FG), F has a OR decom- 
position with z E FIOR. The second case can be treated similarly showing that 
F has an OR decomposition with 5 E FIOR if and only if the cofactor F, is the 
constant 1. The case of AND decomposition is symmetrical, with the constant 
0 replacing the constant 1. In summary, a new AND or OR decomposition is 
discovered if one of the two cofactors Fo or Fl is a constant: 

A.4.4.2 Case NEW.b - XOR decomposition 
If F = XOR(z, G), then F, = G,F, = G, and conversely, if F, = E, then F 

has XOR decomposition with z E FIXOR. For this case, the decomposition is 
inferred by checking that F, = E. 

A.4.4.3 Case NEW.c - PRIME decomposition 
This case is by far the most complex of all. There are no necessary and 

sufficient conditions for identifying this case : It is determined by failing to 
construct any other type of decomposition. As mentioned, we do not need 
to keep track of the particular PRIME function used in the decomposition. 
Therefore, the task at hand is just to identify the actuals list F/KF. Unlike the 
previous cases, in order to build this list, we will need to compare not just the 
actuals lists fi/KF,, Fl /KFl, but the entire trees. Fortunately, this comparison 
can still be carried out efficiently. The rest of this section contains the details 
of this construction and the theoretical justification. 

Consider once again the Shannon decomposition of a function F with dis- 
junctive decomposition F = KF (z,A2,A3, + ,Al) : 

Let Lyl b2,. . .,ym) and Lyl ( ~ 2 , .  . .,ym) denote the functions KF(0,y2, ..,yn2) 
and K F ( ~  ,y2, ..,ym), respectively. Equation A.53 can then be written as 

In general, Lyl and Lyl may be further decomposable. Moreover, they may 
depend on only a subset of y2, . - . , y,. For this reason, in order to determine 
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the decomposition of F ,  it is not sufficient to compare the actuals list of F,,F,. 
However, from Equation A.54, Lyl divides F,. From Lemma A.7, the set of 
functions {A2,A3,. ) forms a cut of DT(F,) and thus F/KF also contains a 
cut of the same decomposition tree. Similar reasoning applies to F,. 

The definition of uniform-support is needed to identify which functions 
from the two decomposition trees of the cofactor we need to select as com- 
ponents of DT (F) :  

Definition A.8. Given a function F and a variable z E S(F) ,  a function A 
appearing in DT(F,) or in DT(F,) is said to have uniform-support i f  it has 
positive polarity and exactly one of the following is true: 

I S (A)  C S (F,) fl S (F,)  and A appears in DT (F,) only; 

2 S (A )  C S (F,) n S (F,) and A appears in both DT (F,) and DT (8); 

3 S (A)  C S (6) n S (F,) and A appears in DT (F,) only. 

A is also termed maximal iffor no other uniform-support function B appearing 
in DT (F,) or DT(F,), we have S ( A )  c S(B). 

For a given pair of decomposition trees DT(F,), DT(F,), we denote by 
Max(F,,F,) the set of maximal uniform support functions. It is this set of 
functions, together with the top variable z, that we will use as the actuals list 
for the decomposition of F. Theorem A.13 shows that this is the correct set of 
functions for F/KF. 

Example A.9. Consider the function F of Figure A.2. The decomposition of 
the two cofactors Fo and Fl is shown by its normal decomposition tree (which 
includes signed edges to indicate complementation of the function rooted at 
the signed node). The set Max(&, F,) for this function is {xl  + x2, x3, x4x5, x6). 
Notice that xl +x2 appears implicitly in DT(Fo) by rule (2) of Definition A.6, 
while it appears implicitly in DT(Fl) by rule (3) of the same Definition since 
the first element of Fl /KF, is A = X I +  x2 + x6. 

The first three elements of the maximal set satisJL condition 2 of the defini- 
tion of uniform support, while the last element satisfies condition I. 

As we mentioned, the set Max(F,,F,) effectively represents the actuals list 
of F. This is stated by the following Theorem: 

Theorem A.13. For a function F with decomposition F/KF = {z,A1 , - - .  ,Al), 
the actuals list is given by { z )  u Max(F,,F,). 

We first illustrate the result with an example and then prove the Theorem. 

Example A.lO. Based on Theorem A.13, the actuals list for the decompo- 
sition of the function in Figure A.2 is given by {z,xl + x2, x3, x4x5, x6). The 
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Figure A.2: Example of a PRIME decomposition. 

kernel function can then be easily derived by substituting the correspond- 
ing element of the formals list for each element of the actuals list. The for- 
mals list is Gyl ,Y;!,Y3 ,y4, y5) and the kernel is K.u = nMUX(y2  + y3, y4, y5) + 
~ l ( 0 1 2  +YS) + ~ 4 ) .  

The proof of Theorem A. 13 requires the proof of some properties of uniform- 
support functions. 

Lemma A.14. Any two maximal uniform-support functions ofDT(F,) or DT(F,) 
have disjoint support. 

ProoJ: We prove the Lemma by contradiction by showing that if two uniform- 
support functions A1 ,A2 share support variables, then at least one of them is not 
maximal. Notice, first of all, that there must be at least one decomposition tree 
where both functions appear. In fact, if one function only appeared in DT(F,) 
and the other only appeared in DT (F,) ,  then, by definition of uniform-support, 
they would also be disjoint support. For sake of simplicity, we assume that 
both functions appear in DT (F,) .  

We need now to distinguish a few cases. 

Both A1 and A2 appear in DT (F,) explicitly. It is easy to see that, in order for 
the supports to overlap, either A, appears as a node in the subtree DT(A2), 
or A2 appears as a node in the subtree DT(AI ). In the first case, S(Al ) c 
S(A2), while in the second case S(A2) c S(A1). In either case, one of the 
two functions is not maximal, as we intended to show. 
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One of the two functions (say, A1) appears only implicitly, while A2 appears 
explicitly. Then it must be: 

where @ is one of AND, OR, XOR , and Bi are disjoint-support functions. 
Moreover, there is a function Ql appearing explicitly in DT(F,) such that 

Notice that Ql does not need to be uniform-support. A2 shares support vari- 
ables with A], thus, either A2 appears explicitly in DT(Ql) or Ql appears 
explicitly in DT(A2). If Ql appears explicitly in DT(A2) or if A2 = Ql, 
however, S(A2) > S(AI), and A1 is not maximal. 

A2 must then appear explicitly in DT (e l ) ,  i.e. in exactly one of DT (Bi), i = 
1. . .m. But ifA2 appears explicitly in any DT (Bi), i = 1, . . , k, then S(A2) c 
S(Al) and A2 is still not maximal. Finally, if A2 appears explicitly in any 
DT(Bi), i = k+ 1,. ,m, then S(A2) nS(A1) = 0, against the hypothesis. 

Finally, suppose that both A1 and A2 appear implicitly. Then there must be 
an associative operator 0 = AND, OR or XOR such that 

Moreover, there must be a function Q2 appearing explicitly in DT(F,) such 
that 

Q2=8y=lCi 2 5 1 < n .  (A.58) 

As both Ql and Q2 appear explicitly in DT(F,), exactly one of the following 
must hold : 

1 S<Qi) nS(Q2) = 0. But then S(AI) C S(Q1) nS(Q2) 2 S(A2) = 0, 
against the hypothesis. 

2 Ql appears in DT(Ci) for one of the functions Ci,i 5 I .  But, from 
Equation A.57, s(AI) C S(Ci) C S(A2), and again one of the functions 
(A1) is not maximal. 

3 Ql appears in DT(Ci) for some Ci, 1 < i 5 n. This case is also impossi- 
ble since it would be S(AI) G S(Ci) nS(A2) = 0. 

4 Ql = Q2. Then, the operator @ of Equation A.55 must coincide with 8 ,  
and the functions Ci in Equation A.58 must coincide with the functions 
Bi in Equation A.56. Hence, A2 can be written as 
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Consider then the function 

U contains all the functions in the decomposition ofA1 /@ and ofA2/@. 
Hence, U has uniform support, and S ( U )  3 S(Al ) , S ( U )  3 S(A2) ,  
showing again that at least one of A ] ,  A2 is not maximal. 

In summary, in all cases, the assumption that AI ,A2 share variables leads to 
the conclusion that at least one of them is not maximal, as we intended to 
prove. 

Lemma A.15. The set Max(F,,F,) contains a cut of DT(F,) and of DT(F,). 

ProoJ: We only prove that Max(DT(F,), DT(F,))  contains a cut of DT(F,), 
the second part being entirely symmetrical. 

Consider the collection C of functions Ai E Max(DT(F,), DT(F,)) such that 
S(Ai) n S(F,) #, 0.  From the definition of uniform support, for each such func- 
tion, S(Ai) C S(F,) and they appear in DT(F,). From Lemma A.14, they are 
disjoint-support. Therefore, 

It remains to be shown that the containment relation A.61 is actually an equal- 
ity. To this regard, notice that for each variable xi E s(&) , the function xi 
is trivially uniform-support. Either it is maximal, or there exist a maximal 
uniform-support function X;: appearing in DT(F,) whose support contains xi. 
This function must then belong to Max(DT (F,) ,  DT (F, ) )  and therefore xi must 
belong to the left-hand side of Equation A.61. This completes the proof. 

We define now a bi-cut as a set of uniform-support functions that provides a 
cut for the cofactors' decomposition trees: 

Definition A.9. Given a function F and a variable z E S(F) ,  a collection of 
uniform support functions (not necessarily maximal) C2 = {Ai )  is termed a 
bi-cut ifthe following holds: 

2 C2 contains a cut of DT(F,) and of DT(F,). 

Example A. l l .  Consider a function F such that F, = (xl + x2)x4 and F, = 
( X I  + x2 + x3)x5 as in Figure A. 3 (we present a non-normal decomposition tree 

for improved readability). A possible bi-cut for such function is C2 = {xl  + 
x2,x3 ,xq,x5). Note that the set C = {xl  +x2 +x3 ,x4,x5) is not a bi-cut since it 
does not contain a cut of DT(F,). 



158 SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION 

Figure A.3: Function for Example A. 1 1. 

From Lemma A. 15, Max(DT (F,) ,  DT(F,)) is a bi-cut. It is also straightfor- 
ward to verify that Max(DT (F,) , DT (4)) has minimum size among bi-cuts. 
We now show that bi-cuts have a one-to-one correspondence to decomposi- 
tions. These facts will be enough to prove Theorem A.13. 

Lemma A.16. Let M denote any function dividing F, such that expression 
F / M  = {z,A2, ,A,). Then, the subset C2 = {A2,. ,Am) is a bi-cut of F 
w.r.t. z. Conversely, for each bi-cut C2 there exists a function M such that 
F / M =  { z )  U C2. 

ProoJ Equation A.54 shows that C2 contains a cut of DT(F,) and of DT(F,). 
The functions Ai are all disjoint-support, and each of them appears in at least 
one of DT(F,), DT(F,) (or else F would be independent from the variables in 
S(Ai)). We also need to show, however, that each Ai has uniform support. To 
this end, suppose, for the sake of contradiction, that the support of one of the 
functions (say, S (A2) )  is not uniform. It is not restrictive to assume that A2 
appears in DT(F,). Then S(A2)  S(F,) .  Since we take A2 to be not uniform, 
it must be 

S(A2) nS (F , )  # 0 (A. 62) 

otherwise A2 would be uniform by condition 1 of the definition of uniform- 
support; and 

s ( A ~ )  nS(F,) # 0 (A.63) 
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otherwise A2 would be uniform by condition 2. Let C indicate a subset of C2 
forming a cut of DT(F,); it follows that 

The last equality being valid by definition of cut. 
From Equation A.63, ifA2 E C, then S(C) nS(F,) # 0, contradicting Equa- 

tion A.64. Hence, A2 cannot belong to C. We now show that A2 cannot be left 
out of C either: From Equation A.62, there is a variable x in S(A2) n S(F,). 
Since all functions of C2 are disjoint-support, x cannot be in the support of any 
other function of the bi-cut C2. Hence, if A2 is left out of C, x $ S(C) and C 
is not a cut of DT (F,) .  In summary, A2 could not be in a cut of DT (F,) ,  but 
it could not be left out, a contradiction. Hence, A2 must have uniform support 
and C2 is a bi-cut of F w.r.t. z. 

We now show that for any given bi-cut C2 we can construct a decomposition 
of F .  Consider the subset & = {A2,. ,Aco) of C2 forming a cut of F,. From 
Lemma A.7, there exists a function Lob2, .  . ,ye,) such that &/Lo = Co. Let 
also Cl = {A,, , . ,Am) denote the subset of C2 forming a cut of DT (F , ) .  There 
exists then a function L1 kc,, . - ,ym) such that F,/Ll = Cl . It is then easy to 
verify that the function L b l ,  ,ym) = ~ L o ( j ~ 2 ,  - .  - ,y,) +ylL1 &, , . ,ym) 
satisfies 

L(z,A2,... ,Am) =F, (A.65) 

that is, we have constructed a decomposition of F from C2. 

Finally, the proof of Theorem A. 13 follows: 

ProoJ: - Theorem (A. 13) - From Lemma A. 16, a function L can be found such 
that F/L = {z) U Max(F,,F,). Then, from Theorem A. 1, F/KF cannot con- 
tain more elements than { z )  U Max(&, F,) .  Since Max(&, F,) is a bi-cut of 
minimum size, F/KF cannot contain fewer elements either, and consequently 
F/KF and F/L must have the same size. In this case, however, from Theorems 
A.l and A.4, KF must be NP-equivalent to L and F/KF must coincide with 
{z) U Max(& F,) ,  modulo NP-equivalence. 

A.5 The DEC procedure 
Section 4.3 presents a decomposition procedure which implement the algo- 

rithm just presented. The procedure operates bottom-up on the BDD represen- 
tation of the function to be decomposed and, at each node, constructs the de- 
composition of the root node from the already generated decompositions of its 
two cofactors. The decomposition procedure, called DEC, solve the problem 
by considering a list of cases which together cover all the possible situations 



160 SCALABLE VERIFICATION WITH SYMBOLIC SIMULATION 

that may arise. These cases match one by one all the situations that we con- 
sidered in Section A.4. Section 4.3 overviews the high level structure of the 
procedure, here we provide a presentation of the sub-procedures developed for 
each of those cases. 

We showed in Section 4.3 that the decompose functions breaks the prob- 
lem into discovering an inherited decomposition or a new decomposition. The 
pseudo-code for those two sub-functions whose given in Figures 4.10 and 4.1 1. 

A.5.1 Inherited decompositions 
This section discusses all the internal calls of decompose-INHERITED 

as outlined in Figures 4.10, the next section will present decompose-NEW. 

A.5.1.1 OR decompositions 

decompose~INHERITED~OR~12 3 . b groups the constructions described 
in Sections A.4.1.2, A.4.2.2 and A.4.3.2 for identifying OR decompositions. 
For all of the three cases, we need to consider the actuals lists of the two co- 
factors and identify the common elements, which will be part of the resulting 
actuals list. To this list, we need to add a new element obtained by calling 
the second prototype of decompose-node with the node's top variable and 
the reminder OR decompositions as cofactors. Notice that this new element 
must be the first element of the resulting actuals list, based on the definition of 
normal decomposition tree from Section A.3. 

This procedure is successful as long as at least one of the two cofactor has 
an OR decomposition and there is at least one element in common between the 
actuals lists of Fo and Fl. If, the actuals list of one cofactor is a proper subset 
of the other, then we have a Case 2.b decomposition. Otherwise we have a 
Case 1 .b or 3.b decomposition. Moreover, if one of the cofactors does not have 
a OR decomposition, for the purpose of this analysis, we consider its actuals 
list to have only one element, the cofactor function itself: Lemma A. I 1 shows 
how to treat this situation in its special case of k = 2. Figure A.4 illustrates this 
presentation with the pseudo-code of the routine. 

A.5.1.2 XOR decompositions 

Inherited XOR decompositions can arise only from Cases 1.b and 2.b of 
Section A.4.1. 

Similarly to what has been discussed in the previous section, we need once 
again to check that at least one of the two cofactors is an XOR decomposition 
and that there is at least one element in common between the two actuals lists. 
The rest of the construction corresponds to the one for inherited OR decompo- 
sitions. 
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DEC* decompose~INHERITED~OR~l23.b(var z, DEC* dec0, DEC* 
dec 1) 
{ 

DEC* res, deco-residue, dec 1 residue; 
list common = list-intersect(dec0->actuals, decl->actuals); 

dec01esidue = buildDecNode( OR, dec0->actuals - common); 
if ( list-size(dec0residue->actuals) == 0) 

deco-residue = CONST-0; 
if (list-size(decO-residue->actuals) == 1) 

decO residue = getFirst(dec0residue->actuals); 
// equivalently for right-residue 
G = decompose(z, decoresidue, dec 1 -residue); 
res = buildDecNode(OR, G, common); //constructs node 
return res; 

1 
else if (list-intersect(dec0->actuals, dec1) 

I I list-intersect(dec 1 ->actuals, dec0) ) 
{ 

// build resulting decomposition 
// similar to above case 

} 
else return 0; 

1 
Figure A.4: Pseudo-code for decompose~INHERITED~OR~l23 . b 

A.5.1.3 PRIME decompositions 

The first type of inherited PRIME decomposition is Case 1 .a. The conditions 
for that case require that the two cofactors be both PRIME decompositions, the 
actuals lists differ in exactly one element and the cofactors w.r.t. those two 
elements match. 

Example A.12. Consider again the function of Example 4.5 and assume that 
the top variable in its BDD representation was g. We consider available the 
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decompositions of the cofactors w . ~  t. g: 

Fo = MAJORITY(G, H ,  i ) ;  

H=L+e;  

L = cd; 

N = ITE( f ,  h, i);  

Both Fo and Fl are decomposed by the same PRIME function MAJORITY. 
Their actuals lists are (G,H, h)  and (G,H, N) ,  respectively. They dzfer in 
exactly one element, namely, N instead of h. 

We then check ifEquations A.38 or A.39 holds. This check can be carried 
out by computing f i ( i  = 0),  f i ( i  = l ) ,  Fl (N  = 0),  Fl (N  = I), and verzjjing 
that Fo(i = 0 )  = Fl(N = 0),  Fo(i = 1 )  = Fl(N = 1) .  We then form a repre- 
sentation of the function I = g'i + gMLTX( f ,  h,  i )  and construct the decompo- 
sition of F as MAJORITY(G,H,I). Note that, unless the decomposition of 
I is already known, we need to build that, too using the second prototype of 
decompose-node. 

The pseudo-code in Figure A.5 checks if Equations A.38 or A.39 hold. It 
returns the decomposition of F if the tests are successful. 

Case 2.a has a more complex set of comparisons. As the reader may recall 
from Section A.4.2.1, Lemma A.10 does not indicate precisely which is the 
function G to use to cofactor Fl. Instead we have a pool of candidates which 
are all the functions Aj E Fl /Kf i  such that S(Ai) n S(Fo) = 0. 

Thus we can detect such decomposition by considering the generalized co- 
factors (see Definition 2.6) of Fl with respect to a subset of its actuals list 
elements and compare the result with Fo to check if there is an element that 
satisfies the condition 2 of the Lemma. 

It is important to note that each of these cofactor operations have complexity 
that it is only linear in the size of the BDD of Fl (instead of quadratic). The 
reason for this simplified operation lies in the fact that the functions that we use 
in the cofactor operation are one in the decomposition of the other. To see this, 
consider a function F = L(G, . . .) and suppose we want to compute the cofactor 
w.r.t. G = 1. Then, FGZl = KF ( 1 ,  . . .). TO compute the last expression, we just 
need to consider any combination of inputs of G such that G = 1, for instance 
a cube that satisfies G. We can then take the cofactor of F w.r.t. this cube to 
obtain our result, which is a linear time operation. 

In general, we need to identify all the candidate Ai E Fl /KF, functions, and 
for each of those compute two generalized cofactors: Fl (Aj = 0 )  and Fl (Ai = 1 )  
until we find a match. In the worst case, this entails the computation of 2 - n 
cofactors, where n is the number of candidate elements. 
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DEC* decompose~INHERITED9RIMEEl.a (var z, DEC* dec0, DEC* 
dec 1) 
{ DEC* res; 

BDD* left-el, right-el, 10, rO; 
if (decO->type != decl->type != PRIME) return 0; 
if (list-size(dec0->actuals) != list-size(dec1->actuals)) 

return 0; 
common = list-intersect(dec0->actuals, decl ->actuals); 
if (list~size(common) != size(dec0->actuals) -1) return 0; 
N the two functions differ in exactly one argument 
left-el = dec0->actuals - common; 
right-el = dec 1 ->actuals - common; 
10 = cofactor(dec0, left-el, 0); 
rO = cofactor(dec 1, right-el, 0); 
// compute also 11 and r l  
if ( ((10 == rO) && (11 == rl)) 1 1  ((11 == rO) && (10 == rl)) ) 

{ 
G = decompose(z, left-el->dec, right-el->dec); 
res = buildDecNode( PRIME, G, common ); 
return res; 

} 
else return 0; 

1 
Figure A.5: Pseudo-code for decornpose~INHERITED~PRIME~1. a 

Example A.13. Consider the functions F, = ITE (A, CD, B + C)  ,F, = CD. The 
actuals list of F, contains A, B, C, D, of which only A and B are disjoint support 
from F,. 

We observe that by assigning B = 1, howevel; F, = A  + CD # F,, and that as- 
signing B = 0 results in F, = C(A + D) # F,. The function B is then discarded. 
Assigning A = 1 instead results in Fz = ITE(1, CD, B + C )  = CD = Fz. A new 
function Z = A + z is constructed, and F is decomposed as ITE (2, CD, B + C). 

The pseudo-code in Figure A.6 reflects the observations above. 
Case 3.a can be carried out similarly to case l.a, with the difference that 

now instead of checking that the lists differ in exactly one element, we expect 
them to be identical. Once again the candidate function H with reference to 
Lemma A. 12 can be any of the actuals list elements. 
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DEC* decompose-INHERITED-PRIME-2.a (var z, DEC* dec0, DEC* 
dec 1) 
{ 

DEC* res; 
BDD* 10,ll; 
tree-tag(dec 1 ->actuals); 
// find the untagged elements in the left actuals list 
tryset = list-untagged(dec0->actuals); 
foreach(BDD* argument in tryset) 

{ 
11 = cofactor(dec0, argument, 1); 
10 = cofactor(dec0, argument, 0); 
if ( 11 == decl ) 
{ 

G = decompose (z, argument->dec, CONST-1); 
list actuals = dec0->actuals - argument + G; 
res = buildDecNode( PRIME, actuals ); 
return res; 

} else if ( 10 == decl ) 
{ 

// similar to above. 

/I if unsuccessful, repeat by labeling the left tree 
} 

Figure A.6: Pseudo-code for decompose~INHERITED~PRIME~2 . a 

A.5.2 New decompositions 
The detection of new decompositions is also subdivided into matching a 

series of different situations. The presentation, and all the cases, follow the 
analysis in Section A.4.4. For a high level view of how all these situations are 
plugged in together, the reader is referred to the presentation of d e c o m p o s e r J E W  
as outlined in Figures 4.1 1. 

A.5.2.1 OR and XOR decompositions 
d e c o m p o s e r J E W - O R  and d e c o m p o s e r J E W - X O R  implement the checks 

of Sections A.4.4.1 and A.4.4.2. In the general case we create a new decom- 
position tree node of type OR or x O R  and with an actuals list of length 2. 
However, note that it is possible that the non-constant cofactor has already a 
decomposition of the same type. If we detect this situation, the decomposi- 
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tion node will have an actuals list that is the same of its cofactor with the new 
element z prepended. 

A.5.2.2 PRIME decompositions 
In order to implement the construction of a new PRIME decomposition, we 

need to construct the set Max(Fo, F l )  as shown in Theorem A.13. 

Construction of Max(G, H )  

This operation allows us to find the set of maximal uniform support functions 
of two functions G, H whose decomposition is known. We show now how to 
construct a decomposition tree whose root node has as its actuals list precisely 
the set of functions Max(G, H ) .  We call this tree also Max(G, H) .  

Given two normal decomposition trees DTG and DTH, representing the de- 
composition of two functions G and H,  respectively, the tree Max(G, H )  is the 
tree obtained as follows: 

1 Max(G, H )  contains each node appearing in both DTG and DTH; 

2 Max(G, H )  contains each arc appearing in both DTG and DTH; 

3 if a node N of DTG represents a function FN, such that S(FN) n S ( H )  = 0, 
then the tree rooted at N belongs to Max(G,H). Similarly for nodes of 
DTH. 

4 there is a node N labeled OR (XOR) for each pair of nodes NG E DTG, NH E 
DTH labeled OR (XOR) and such that S(FN,) nS(FN2) # 0. The actuals of 
N are the actuals common to NG and NH. The node N is suppressed if it has 
fewer than two actuals. 

5 a root node is added. There is an arc from the root node to each node with 
no ancestors. 

The construction above takes trivially time linear in the size of the two trees. 

Example A.14. Figure A. 7 illustrates two decomposition trees DTG and DTH 
and the construction of Max(G, H) .  In the graph we represent AND nodes as 
AND instead of complemented OR only for readability. 

The node OR and node 1 belong to the intersection by rule 3. The tree rooted 
at PRIME by rules 1 and 2. The two nodes AND follow rule 4producing the 
AND in the Max(G, H )  tree. 

To build a new PRIME decomposition, we simply need to build the tree 
Max(Fo,Fl) and label the root node with type PRIME. 
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Figure A.7: Two functions and the construction of their Max(G, H) tree. 

Example A.15. Consider the case where Fo = ITE (abc, d + e + f ,g@ h),  Fl = 
ITE(ab,e+ f +g,h@c).  Theset M a x ( 6 , f i )  isgiven by: 

A = ab; 

E = e + f ;  

Max(F0,Fl) = {A,E,c,d,g,h). 

Thus, the decomposition of F = ZFo + z f i  is given by F = KF (2, A, E , c,  d ,  g, h). 

This concludes the presentation of disjoint-support decompositions. The 
material that was presented in this Appendix complements the discussion in 
Chapter 4 and provides a formalization of the concepts presented there. 
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number of parameters, 94 
parametric equation, 93 
parametric transformation, 82 
parametric variable, 85 
remap function, 9 1 
shared variable, 88 
simple variable, 85, 87 
unbound function, 86,88,90 

Characteristic function, 15, 30 

Checker, 4 1 
Combinational logic, 20 
Computer-Aided Design, 10 
Coverage, 12 

coverage engine, 27 
line coverage, 12 
state coverage, 2, 12 

Cycle-based symbolic simulation, 4,47, 8 1 4 2  
efficiency, 97 
equivalent trace, 97 
frontier set, 83 
parametric equations, 83 
reparametrization, 82-83 
state vector, 83 
trace enlargement, 86 
under-approximation, 82 

DSD-based symbolic simulation, 5,47,105 
case-splitting, 105 
decomposed next-state function, 105 
decomposition graph, 106 
decomposition, 106 
efficiency, 121 
free sub-graph, 1 10 
maximal support, 110 
non-dominant value, 114 
non-dominant variable removal, 1 14 
parametric state vector, 106 
parametrization, 105 
prime function elimination, 1 1 1 
reduction at free points, 108 
s 1 196 example, 1 13 
transformation, 107 
under-approximation, 1 17 

Decomposition algorithm, 62, 145, 160 
complexity, 62,67 
experiments, 68 
inherited decomposition, 64, 146, 160 
new decomposition, 64, 153, 164 
structure, 62 
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Decomposition tree, 59, 132 
actuals list, 59 
bi-cut, 157 
canonical, 141 
complement function, 142 
cut, 142, 144 
data structure, 61 
explicit appearance, 143 
formals list, 59 
implicit appearance, 143 
maximal uniform-support function, 154 
normal, 141 
uniform-support function, 154 
uniqueness, 60 

Decomposition, 13 1 
Design flow, 7 

timing closure, 10 
design specifications, 7 
fabrication, 10 
functional design, 9 
placement, 10 
register-transfer level, 9 
routing, 10 
synthesis and optimization, 10 
technology mapping, 10,77 

Design verification, 1 
RTL verification, 11 
verification methodology, 11 

Disjoint-support decomposition, 4,57, 13 1 
Jacobian-based, 76 
actuals list, 136 
associative operator, 59 
canonical form, 59 
complement function, 141 
component function, 58 
decomposability of functions, 75 
decomposition algorithm, 58 
decomposition charts, 76 
divisor, 132, 138 
finest granularity, 57 
input partitioning, 58 
kernel function, 133 
maximal decomposition, 58, 132 
parallel components, 128 
partition, 133 
prime function, 59, 11 1, 131, 133 
selection, 133 
simple, 57 
unique partitioning, 133 
uniqueness, 134 

Emulation, 27 
Equivalence checking, 10,29 

hierarchical, 45 
Finite state machine, 22 

mathematical model, 23 
state diagram, 22 

Formal verification, 3, 13,28 

collaborative engines, 46 
model-based, 28 
proof-theoretic, 29 

Free point, 108 
Functional validation, 2, 1 I, 24 

chip-level validation, 12 
functional test, 27 
golden model, 12 
module-level validation, 1 1 
stand-alone tests, I I 
verification farms, 27 

Gate-level description, 10, 19,24, 37 
Image computation, 30,42 
Industrial design development, 127 
Logic function, 14 

See also Boolean function 
Logic simulation, 2 

compiled-code, 24 
assembly block, 25 

cycle-based, 24 
event-driven, 26 
levelized, 24 

Microprocessor verification, 45,47, 105,122 
Model checking 

bounded, 28 
symbolic, 4 3 4 4  

Netlist, 10,20, 97 
Non-dominant value, 114 
Parametric symbolic simulation 

data-space decomposition, 123 
structural decomposition, 123 
structural partitioning, 124 

Parametric transformation, 5 1-52 
encoding, 52 
parametric vector, 52 
range, 52 

Parametrization in symbolic simulation, 4, 15,47, 
53,56 

reachability analysis, 56 
state space partitioning, 56 

Pseudo-random simulation, 27 
constraints, 12 

Push-button solution, 128 
Quasi-symbolic simulation, 4,46, 81,99 

C-set, 103 
D-set, 103 
MTBDDs, 101 
X value, 99 
approximate values, 100 
case splitting, 102 
don't care variable, 102 
re-simulation, 99 
ternary simulation, 100 
variable classification, 102 

Reparametrization, 4,42,46 
See also Parametrization in symbolic 

simulation 
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Scalable verification, 128 
Sequential network, 20 
State diagram, 22 
State space, 2, 12,37,41,85-86, 105 
Symbolic FSM traversal, 29 

See also Symbolic reachability analysis 
Symbolic reachability analysis, 29,42 

breadth-first traversal, 42 
fixpoint, 43 
reachable state, 29 
reached set, 30,42 

Symbolic simulation, 3, 19,28,35, 127 
COSMOS, 36 
MOSSYM, 36 
advancements, 127 
bug trace, 41 
circuit-related partitioning, 56 
event-driven, 45 

frame-by-frame, 37 
logic gate, 36 
next-state, 38 
of memory, 45 
parallel simulation, 37 
state vector, 40 
time-unrolled circuit, 40 

Symbolic state traversal, 28 
state explosion problem, 28 

Symbolic trajectory evaluation, 42,44 
trajectory formula, 44 

Symbolic variable, 14 
Three-bits counter, 20, 22 

I-hot encoded, 23 
parametric simulation, 55 

Transition relation, 30 
Verification language, 27 
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