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1

An Introduction to Reconfigurable Computing

Reconfigurable Computing (RC), the use of programmable logic to accelerate
computation, arose in the late ’80’s with the widespread commercial avail-
ability of Field-Programmable Gate Arrays (FPGAs). The innovative devel-
opment of FPGAs whose configuration could be re-programmed an unlimited
number of times spurred the invention of a new field in which many different
hardware algorithms could execute, in turn, on a single device, just as many
different software algorithms can run on a conventional processor.

The speed advantage of direct hardware execution on the FPGA – rou-
tinely 10X to 100X the equivalent software algorithm – attracted the attention
of the supercomputing community as well as Digital Signal Processing (DSP)
systems developers. RC researchers found that FPGAs offer significant advan-
tages over microprocessors and DSPs for high performance, low volume appli-
cations, particularly for applications that can exploit customized bit widths
and massive instruction-level parallelism. An even more compelling argument
for using FPGAs as reconfigurable computers has been the commercial avail-
ability of devices that continue to track Moore’s Law. FPGAs contain large
amounts of SRAM combined with regularly tiled and interconnected logic
blocks. These devices follow the International Technology Roadmap for Semi-
conductors (ITRS) roadmap [3] for memory rather than microprocessors and
are often first on the leading new fabrication lines. Thus reconfigurable com-
puters advance technologically at a faster rate than microprocessors.

1.1 What is RC?

The speed advantage of FPGAs derives from the fact that the programmable
hardware is customized to a particular algorithm. Thus the FPGA can be
configured to contain exactly and only those operations that appear in the
algorithm. In contrast, the design of a fixed instruction set processor must
accommodate all possible operations that an algorithm might require for all
possible data types. An FPGA can be configured to perform arbitrary fixed



2 1 An Introduction to Reconfigurable Computing

precision arithmetic, with the number of arithmetic units, their type, and
their interconnection uniquely defined by the algorithm. The fixed instruction
processor contains ALUs of a specific width (16-, 32- or 64-bit) and has pre-
determined control and data flow patterns. Reconfigurable vs. fixed processors
are contrasted in Figure 1.1. In this example, the FPGA is configured to hold
an array of application-specific processing units. Each processing unit contains
four 8-bit adders and a 16-bit multiply-accumulate unit, all connected through
registers. Hardware address generators are used to access off-chip data. The
microprocessor in this example has a Harvard architecture. It accesses the
sequential instruction stream through the Instruction Cache. The data mem-
ory hierarchy includes external memory, cache and integer and floating point
register files, which supply operands to the arithmetic units [207].

8−bit Register

8−bit Register 8−bit Register

8−bit
Adder

8−bit
Adder

16−bit
Mult−Acc

I−Cache D−Cache

Fetch Decode
Integer

RegistersRegisters
FP

to
External
Memory

Dispatch

Integer FP
UnitsUnits

Microprocessor:
Control flow dominated
Sequential instruction stream

8−bit Register 8−bit Register8−bit Register

16−bit Register

Memory Address Generators, I/F to Memory Banks

Memory Address Generator, I/F to Memory Bank

Data flow dominated
Reconfigurable Computer:

Massive spatial parallelism

Fig. 1.1. Reconfigurable vs. Processor-Based Computing

The example illustrates the major differences between reconfigurable and
processor-based computing. The FPGA is configured into a customized hard-
ware implementation of the application. The hardware is usually data path
driven, with minimal control flow; processor-based computing depends on a
linear instruction stream including loops and branches. The reconfigurable
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computer’s data path is usually pipelined so that all function units are in
use every clock cycle. The microprocessor has the potential for multiple in-
structions per clock cycle (IPC) [207], but the delivered parallelism depends
on the instruction mix of the specific program, and function units are often
under-utilized. The reconfigurable computer can access many memory words
in each clock cycle, and the memory addresses and access patterns can be op-
timized for the application. The processor reads data through the data cache,
and efficiency of the processor is determined by the degree to which data is
available in the cache when needed by an instruction. The programmer only
indirectly controls the cache-friendliness of the algorithm, as access to the data
cache is hidden from the instruction set architecture. To summarize, reconfig-
urable computing is concerned with decomposing applications into spatially
parallel, tiled, application-specific pipelines, whereas the traditional general
purpose processor interprets a linear sequence of instruction, with pipelining
and other forms of spatial parallelism hidden within the microarchitecture of
the processor.

1.2 RC Architectures

FPGAs form the processing building blocks of reconfigurable computers, as
shown in Figure 1.2. The most common RC configuration is an accelerator
board that plugs into the I/O slot of a microprocessor. The plug-in board
typically contains

• one or more FPGAs,
• interface logic for the FPGAs to communicate with the conventional com-

puter’s I/O bus,
• memory local to the RC board, often double or quad data rate (DDR or

QDR) Static Random Access Memory (SRAM) and/or higher capacity
Synchronous Dynamic RAM (SDRAM),

• A/D interfaces or other serial communication links to acquire data or
communicate over a network.

As an accelerator, the RC is used in one of two scenarios. The FPGAs can
be used to process high bandwidth data streams from the external serial I/O
interface, perform data reduction, and send processed data at a lower volume
to the host processor. Alternatively, the host sends archival data to the RC
memory subsystem. The FPGAs perform compute-intensive processing of the
on-board data, and write results back into local memory, which the host then
retrieves.

A second RC scenario is as an acceleration component of a cluster su-
percomputer. In this configuration, the I/O interface on the FPGA board
communicates with the interconnection network of the supercomputer, and
gives the board access to the supercomputer’s global memory address space.
An FPGA communicates over the interconnection network with processors
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Mem

Mem

IF

Memory Subsystem

Network Serial I/O

FPGA

FPGA

I/O Bus

Disk

Data, Instruction Cache

Microprocessor

Reconfigurable Computer

Fig. 1.2. Reconfigurable Computing System

and other FPGAs. The FPGAs may themselves be connected to each other
via a private FPGA-only network through the on-chip high speed serial I/O.

1.3 How did RC originate?

While the basic notion of reconfigurable computing appeared in the 1960’s
[140], RC originated in practical terms in the late 1980’s with the emergence of
Field-Programmable Gate Arrays (FPGAs), Integrated Circuits whose hard-
ware personality could be completely re-defined simply by loading a new “con-
figuration,” just as new software modules can be loaded onto a microprocessor
or DSP. Mapping data- and compute-intensive algorithms to FPGAs could
yield the speed approaching Application Specific Integrated Circuits (ASICs)
with the flexibility of software.

Researchers in the United States and France in search of flexible, high per-
formance building blocks, envisioned a new kind of supercomputer, composed
of hardware-re-programmable components, that, by customizing the hardware
to each application in turn, could deliver one to two orders of magnitude per-
formance increase over convention fixed instruction set processors. The first
reconfigurable computers were built by the IDA Supercomputing Research
Center (SRC, re-named Center for Computing Sciences in 1994) in the USA
and the DEC Paris Research Lab (closed after Digital Equipment Corporation
was sold).

Two versions of the “Splash” systolic array were built at the SRC. The
original Splash board, built in 1989 and costing about $13,000 in parts, could
outperform an extant Cray 2 supercomputer for bit-oriented linear pattern
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matching applications [168]. The system contained 32 Xilinx 3090 series FP-
GAs connected in a linear array. Adjacent FPGA chips shared a memory
buffer. The RC was connected to a Sun workstation via VME interconnect.
Splash 1 could perform DNA sequence comparison at 45X a (1990 era) high
performance workstation.

RIGHT SPLASH ARRAY BOARD

SPLASH ARRAY BOARD(S)

LEFT SPLASH ARRAY BOARD

SPLASH INTERFACE BOARD

SUN HOST

XL

XR

X1 X2 X3 X4 X5 X6 X7 X8
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XBAR

XBAR

X8

256K x 16 RAM

Xilinx 4010

Fig. 1.3. Splash 2 Reconfigurable Logic Array

Splash 2 [60], built three years later, reduced the number of FPGAs to 16
(see Figure 1.3. However, due to rapidly increasing density of FPGAs, Splash
2, with 16 Xilinx 4010 FPGAs contained 11

2 times the logic of Splash 1. To
improve interconnect flexibility, Splash 2 augmented the linear interconnect
with a crossbar, allowing any FPGA to communicate directly with any other.
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To improve scalability, boards could be linearly interconnected, providing for
up to 8 boards. Rather than require the FPGAs to arbitrate a shared memory
buffer, each FPGA had access to a dedicated SRAM module. The I/O interface
to the host was updated to SBUS.

Concurrently with the Splash board development, the DEC PRL built a
“Programmable Active Memory” (PAM) Perle-0 [47] .Targeted toward image
processing applications, this system contained a 5×5 mesh of Xilinx 3020 FP-
GAs with a VME interface to a host processor. Applications such as 512-bit
multiplication, data compression, and image processing were benchmarked on
this early board, demonstrating speed-ups of 2–100 compared to software im-
plementations. Four generations of PAM boards were built, updating the FP-
GAs and the host interconnect as with the Splash series [48], and many novel
and high performance applications have been demonstrated on the Pamette,
the PAM successor, e.g., [364], [365].

Following the success of these early research machines, FPGA-based re-
configurable computers became commercialized, and today there are dozens of
RC accelerator board vendors as well as many custom RC boards being fabri-
cated. In Chapter 3 we will discuss the architecture of modern reconfigurable
computers in depth.

1.4 Inside the FPGA

The Field-Programmable Gate Array (FPGA) is the computational unit for
RC systems. The FPGA is a regularly tiled two-dimensional array of logic
blocks. Each logic block is a Look-Up Table (LUT), a simple memory that
can store an arbitrary n-input boolean function. The logic blocks communicate
through a programmable interconnection network that includes both nearest
neighbor as well as hierarchical and long path wires. The periphery of the
FPGA contains “I/O blocks” to interface between the internal logic blocks and
the I/O pins. This simple, homogeneous architecture has evolved to become
much more heterogeneous, including on-chip memory blocks as well as DSP
blocks such as multiply/multiply-accumulate units.

While there are several sorts of FPGAs, include those that can be pro-
grammed only once, reconfigurable computers have exclusively used SRAM-
programmable devices. This means that the configuration of the FPGA, the
“object code” defining the algorithm loaded onto the device, is stored in an
on-chip SRAM. By loading different configurations into the SRAM, different
algorithms can be executed. The configuration determines the boolean func-
tion computed by each logic block and the interconnection pattern between
logic and I/O blocks. The internal FPGA structures is described in Chapter
2.
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1.5 Mapping Algorithms to Hardware

The task of mapping an algorithm onto a collection of configurable logic blocks
is daunting indeed. FPGAs were invented for hardware prototyping and “glue
logic” functions that are in the realm of hardware engineers who create an
optimized design once and then use it for the lifetime of a product. It is
desirable to create a multitude of algorithms and to continually modify and
update them.

Unfortunately, FPGA languages and design tools are derived from the
Application Specific Integrated Circuit (ASIC) design flow. Hardware design
languages (HDL) or schematic entry tools are commonly used to create RC
configurations. The detailed clock cycle level behavior of the circuits must be
specified. The designer must trade off combinational vs. sequential circuits,
design data paths and state machines to control them, and handle I/O to
memory and external devices. The memory hierarchy is completely exposed,
so the designer must choose among levels of memory hierarchy (external mem-
ory, on-chip memory, logic blocks configured as memory, register) for logical
program variables and specify their access in the HDL. The timing behavior
of each sort of memory must be explicitly factored into the circuit, and any
changes, for example from external memory to on-chip memory, may result
in changes throughout the design. Application specific modules implementing
the desired algorithm must interface to vendor-supplied or third party Intel-
lectual Property (IP) modules, e.g., to communicate over Ethernet or access
the PCI bus. Using HDL, pipelines must be manually constructed.

Research into High Level Languages (HLL) for reconfigurable comput-
ing has been actively pursued. Emerging C and Java compilers offer a much
higher level of abstraction than HDL or schematic entry. However, quality of
compiler-generated circuits still lags the equivalent manual designs, often by
factor of 2–4 in area.

Compiling an algorithm description (either in HDL or HLL) to an FPGA
is also a complex task. Rather than a simple push button compile process,
measured in seconds or minutes, there is a long, complex tool chain whose
ultimate output, the configuration bit stream, may take hours to generate. The
very flexibility that make FPGAs universal hardware also create significant
challenges for the tools that map algorithm to logic blocks and routes.

In software, an algorithm is described in an abstraction of instruction set
architecture, and through compilation is mapped to a specific instruction set.
Not only does the algorithm description language closely model the proces-
sor architecture, but many design choices are hidden from the software pro-
grammer and the instruction set architecture. For example, virtual memory
hardware, cache, number of function units are design parameters determined
within by the processor’s micro-architecture, and are not accessible to the
programmer. On a reconfigurable computer, low level choices are available to
the synthesis tool. HLL (behavioral) compilers must select memory hierarchy,
synthesize datapath and control, and allocate function units. HDL compilers
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must perform logic synthesis from HDL descriptions. FPGA-specific tools then
map gate-level descriptions onto configurable logic blocks and perform place-
ment and routing. With a very large search space, optimization techniques
such as simulated annealing are employed in the place&route stage.

Once an algorithm has been converted to hardware, debugging it requires
the engineer to understand the low level parallel behavior of the generated cir-
cuits, at the granularity of nanoseconds. The fine grained spatial parallelism of
hardware offers many opportunities for errors through race conditions, lead-
ing to non-deterministic behavior and even deadlock or livelock. Debugging
the hardware representation of an algorithm is intrinsically more difficult than
the corresponding software. Compounding the problem is lack of visibility into
hardware state on the FPGA.

The success of reconfigurable computers ultimately hinges on how these
difficult software development challenges can be solved. Languages, compilers,
and debug tools for RC are discussed in Chapter 4.

1.6 RC Applications

Despite the formidable challenges associated with converting algorithms to
hardware, reconfigurable computing has flourished as a discipline. Interest in
RC is spurred by

• the 10–100X speedup demonstrated for certain data intensive application
classes,

• compact form factor of reconfigurable computing systems, and
• non-RC commercial drivers for continual improvement of FPGAs.

The earliest RC applications were signal and image processing. With FP-
GAs, a significant fraction of the signal processing pipeline, from A/D input
through FFTs and event detection, can be mapped onto configurable hard-
ware and process hundreds of mega-samples per second (Chapter 5). Similarly,
using pipelining and spatially tiled parallelism, RC image processing applica-
tions can maintain real-time video frame processing rates, as discussed in
Chapter 6. Network security applications, in which the reconfigurable proces-
sor can operate at the host, gateway, or router, similarly offer line rate process-
ing of encryption/decryption algorithms, packet filtering, and network intru-
sion detection. These applications, discussed in Chapter 7, exploit RC pattern
match algorithms, as do bio-informatics applications, the subject of Chapter
8. Recently, RC has even entered the realm of supercomputing (Chapter 9)
as floating point computation can be performed on large, high performance
FPGAs.
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1.7 Example: Dot Product

A simple dot product operator serves as an excellent illustration of reconfig-
urable computing applications. Dot product is the kernel operation in matrix
multiply as well as image processing convolution operators. The dot product
kernel is shown in Figure 1.4.

int acc;
int coeff[n], data[n];
for (i=0; i<n; i++)
      acc += coeff[i] * data[i];

Fig. 1.4. Dot Product

On conventional computer systems, the simple C code is sufficient to com-
pile and obtain efficient execution. On a reconfigurable computer, while com-
pilers do exist to synthesize hardware from the C code, significantly more
efficient hardware can be obtained through manual techniques. With a micro-
processor, the data type is simply “int.” On the RC, the multiply accumulate
unit, registers, and memory could be configured to several different sizes –
from 8-bit to 64-bit – with very different requirements in area on chip. On a
conventional computer, the memory hierarchy is managed within the micro-
architecture of the processor, so that loading array elements from main mem-
ory into the cache is transparent to the compiler. On the RC, data arrays could
be mapped among different off-chip memory banks in blocks or be interleaved.
Portions of the arrays might even be cached through on-chip RAMs. Design
choices on the arithmetic units include

• selection of data sizes – for example, the designer might choose 8-bit reg-
isters, a 16-bit multiplier and 16-bit accumulator

• selection of Intellectual Property (IP) blocks for the adders and multiplier
– “soft” IP cores mapped onto configurable logic blocks may be selected,
or alternatively, if available, “hard” multipliers and multiply-accumulate
units may be selected, if available on the FPGA

The loop must be separated into data path and control, which can be done by
behavioral synthesis tools. For optimal performance, the loop can be pipelined,
which implies pipelining memory accesses, inserting delay registers, and gener-
ating pipeline control. The size of the data arrays and sizes/number of external
memories, all affect the form of the loop pipeline, and the large design search
space stretches the capabilities of RC compilers. Finally, the kernel applica-
tion must interact with other components such as memory or microprocessor,
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all of which require that the designer understand the interface characteristics
and timing.

If the design has been manually created, the next step is simulation using
a test bench to insert test vectors into the design and observe waveforms.
The designer is not only debugging the core user application, but also the
interaction with external “black box” components such as memory, processor
bus, I/O device or interconnection network.

After the design behaves correctly in simulation, it can be synthesized,
placed, and routed, as outlined above. The generated configuration bit stream
is, however, only part of the overall application. RC systems are typically
controlled by conventional computers (a “host”). Therefore, a host program
must be created to load the configuration, pre-load RC memories, start the
RC, monitor progress, and retrieve results.

As can be seen from this scenario, successfully mapping an application
onto a RC system to obtain the 10–100X speedup requires a concomitant 10X
in effort.

1.8 Further Reading

While this volume is one of the first comprehensive surveys of reconfigurable
computing with FPGAs, there are many RC resources to explore. [85] pro-
vides a concise survey of configurable computing systems, with an emphasis
on architecture and compilation tools. In [400], the theory and algorithms for
dynamic reconfiguration are discussed. [60] describes the Splash 2 reconfig-
urable computer. The volume [288] concerns signal processing algorithms and
their implementation in programmable hardware. For more general texts on
FPGAs, [419] (for system design using FPGAs) and [59] (for FPGA architec-
ture) are excellent general references.

There are several conferences and workshops devoted to reconfigurable
computing. The International Conference on Field-Programmable Logic and
Applications (FPL), started in 1991, is the oldest reconfigurable comput-
ing conference, followed close behind by the IEEE Symposium on Field-
programmable Custom Computing Machines (FCCM) in 1993 and the ACM
International Symposium on Field-Programmable Gate Arrays (FPGA) in
1995. The Military and Aerospace Programmable Logic Devices Interna-
tional Conference (MAPLD), sponsored by NASA, has been held since 1998.
Other conferences and workshops are the International Conference on Field-
Programmable Technology (FPT), the International Conference on Engineer-
ing of Reconfigurable Systems and Applications (ERSA), held in conjunction
with a computer science Multi-conference, and the Reconfigurable Architec-
tures Workshop (RAW), associated with the International Conference on Par-
allel and Distributed Systems. All of these conferences provide a wealth of
original papers on all aspects of reconfigurable computing.
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Reconfigurable Logic Devices

Though Gerald Estrin [139, 141, 142] had conceived of reconfigurable com-
puting as early as 1960, the relatively recent developments in reconfigurable
computing have been fueled by the availability of logic devices that can be
quickly and easily programmed and reprogrammed to perform a large vari-
ety of functions. The first devices of this type that achieved enough density
to perform significant portions of a computation and that had significant
availability were field-programmable gate arrays (FPGAs). These chips pro-
vide the designer with arrays of simple logic functions and memories (such as
flip-flops) that can be connected through programmable interconnection net-
works. To begin with, the early FPGA devices from Xilinx, Altera, and others
provided relatively little logic, but later generations provided enough logic for
researchers to consider what might be possible through direct implementation
of computational algorithms in reconfigurable logic devices. The densities of
today’s FPGAs have exceeded 150,000 4-input look-up tables (LUTs) per de-
vice and some have developed into devices that can be used to build complete
systems on a programmable chip (SoPC), providing such specialized features
as digital signal processing (DSP) blocks, multi-gigabit serial I/O, embedded
microprocessors, and embedded SRAM blocks of various sizes.

In addition to the relatively fine-grained configurability provided by FP-
GAs and similar devices, the drive to reduce the power, area, and/or delay
costs of fine-grained reconfigurability has led to a number of what may be
called “coarse-grained” reconfigurable logic devices. Instead of providing con-
figurability at the level of individual gates, flip-flops or look-up tables (LUTs),
these coarse-grained architectures often provide arithmetic logic units (ALUs)
and other larger functions that can be combined to perform computations. In
the extreme, the functions might be as large as microprocessor cores such as
in the Raw chip [408] from MIT.

The goal of this chapter is to provide the reader with a brief overview
of what reconfigurable logic is and some of the important forms of reconfig-
urable logic that have been used in reconfigurable computing. This chapter
will discuss, in general terms, the features of both fine- and coarse-grained
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reconfigurable logic devices and will describe some significant examples of
each.

2.1 Field-Programmable Gate Arrays

With their introduction in 1985, field-programmable gate arrays (FPGAs)
have been an alternative for implementing digital logic in systems. To begin
with, FPGAs were used to provide a denser solution for glue logic within
systems, but now they have expanded their applications to the point that
it is not uncommon to find FPGAs as the central processing devices within
systems. Compared with application-specific integrated circuits (ASICs) and
mask-programmable gate arrays (MPGAs), FPGAs have several advantages
for their users, including: quick time to market, being a standard product; no
non-recurring engineering costs for fabrication; pre-tested silicon for use by
the designer; and reprogrammability, allowing designers to upgrade or change
logic through in-system programming. By reconfiguring the device with a new
circuit, design errors can be fixed, new features can be added, or the function
of the hardware can be entirely retargeted to other applications. Of course,
compared with ASICs and MPGAs, FPGAs cost more per chip to perform a
particular function so they are not good for extremely high volumes. Also, an
FPGA implementation of a function is slower than the fixed-silicon options.
Over time, though, the expense of doing custom silicon and the fact that
FPGAs now tend to use state-of-the-art CMOS processes mean that FPGAs
are performing more of the functions that ASICs and MPGAs would have
performed in many systems.

Considering the complexity of contemporary FPGA devices and the sev-
eral existing texts describing FPGA architecture and design [50,59,395], this
section will provide only a brief overview of FPGA architecture and features
as a foundation for later discussions about how FPGAs are used in reconfig-
urable computing. This overview will first discuss basic FPGA architecture,
including basic logic, routing, and input/output (I/O) structures. Then, we
will introduce some of the more advanced features that have been integrated
into FPGAs since the late 1990’s, including embedded memory, embedded
arithmetic logic, high-speed serial I/O, and embedded microprocessors. While
introduced from the perspective of FPGAs in this chapter, tightly integrated
reconfigurable logic and microprocessors will be discussed later in Chapter 3
in the context of reconfigurable computing systems. This section on FPGAs
will conclude with a discussion on FPGA programming architecture.

2.1.1 Basic Architecture

The basic architecture of FPGAs consists of three kinds of components: logic
blocks, routing, and input/output blocks. Generally, FPGAs consist of an
array of programmable logic blocks that can be interconnected to each other
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as well as to the programmable I/O blocks through some sort of programmable
routing architecture. Figure 2.1 provides a very simplified diagram of a generic
FPGA architecture.

Programmable
Routing

Programmable
I/O Blocks

Programmable
Logic/Memory
Blocks

Fig. 2.1. A Generic FPGA Architecture

With fine-grained architectures such as FPGAs, the logic operations are
mainly done at the bit or small word (≤ 4 bits) level, providing a very flexible
architecture that can be customized to the specific needs of an application.
For instance, if an application only needs a 6-bit adder for a particular op-
eration and a 23-bit adder for another, the designer does not need to use
a 32-bit adder to perform these lower precision computations—the designer
can directly implement the size of adder that is needed for the specific ap-
plication. This flexibility does comes at a significant cost compared with a
non-programmable, custom silicon implementation due to the large number of
transistors and the large amount of wiring needed to provide the fine-grained
programmability. Numbers such as 10X-100X cost in terms of silicon area and
10-100X cost in circuit speed are frequently quoted [8] for FPGA implementa-
tions as compared to custom ASICs. Designers of FPGA chips try to balance
the costs of flexibility with those of chip size and speed to give FPGA users
both the flexibility they desire while reducing chip costs and increasing chip
speeds. The next several paragraphs will describe the main three elements of
FPGAs and some typical examples of how they are constructed.
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Programmable Logic

FPGA designers have developed a large variety of programmable logic struc-
tures for FPGAs since their invention in the mid-1980’s. For more than a
decade, much of the programmable logic used in FPGAs can be generalized
as shown in Figure 2.2. The basic logic element generally contains some form
of programmable combinational logic, a flip-flop or latch, and some fast carry
logic to reduce the area and delay costs for implementing carry logic. In our
generic logic block, the output of the block is selectable between the output
of the combinational logic or the output of the flip-flop. The figure also il-
lustrates that some form of programming, or configuration, memory is used
to control the output multiplexer; of course, configuration memory is used
throughout the logic block to control the specific function of each element
within the block.

Comb.
Logic

Flip−
FlopCarry

Logic

Configuration
Memory Cell

1

Carry In

Carry Out

OutputInputs

Clock

Fig. 2.2. A Generic Programmable Logic Block

Unlike our generic logic element, commercial FPGA devices generally pro-
vide a large amount of flexibility within the logic element. For instance, a
flip-flop in many commercial FPGAs can be made to operate as a simple
latch, can be programmed to have several combinations of asynchronous or
synchronous sets and resets, and can be negative- or positive-edge triggered.
In recent Xilinx and Altera devices, the carry logic has evolved into logic that
supports additional functions. For instance, with the Xilinx Virtex FPGA,
the carry logic has been augmented to help with multiplication. In the latest
Stratix II FPGA from Altera [260], full-adders have taken the place of carry
logic.

Regarding the combinational logic portion of the logic element, many dif-
ferent implementation methods have been used. The most common way to
implement the combinational logic is with a look-up table (LUT). Figure 2.3
illustrates how a three-input look-up table is conceptually implemented—a
series of programmable memory cells with a multiplexer to select the output
of a specific memory cell. The look-up table, of course, operates as a memory
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with N address lines and 2N memory locations. To implement a specific logic
function with the memory, the truth table for the function is loaded into the
memory. For example, the look-up table in Figure 2.3 implements an three-
input AND function. Note that the LUT only produces a logic “1” when all
address lines (labeled A, B, and C ) are a logic “1”; this, of course, is due to
the fact the memory cell at address 7 is the only cell storing a “1” value. Due
to area efficiency [348], most commercial SRAM-based FPGAs use four-input
LUTs for their combinational logic elements.
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Fig. 2.3. A Three-Input Look-Up Table

Though most reprogrammable FPGAs use LUTs for combinational logic,
several architectures (e.g., [5,162,234]) have used combinations of multiplexers
and logic gates to implement programmable logic structures. An example of
this approach can be seen in the Actel ProASIC Plus logic element shown in
Figure 2.4, which can produce all three-input/one-output functions except for
the three-input exclusive OR (XOR) and can even operate as a master-slave
flip-flop of various types. Reprogrammable FPGAs using these alternative
combinational logic architectures tend to implement functions of a finer gran-
ularity (2- and 3-input functions are common) at the logic-element level than
LUT-based architectures.

To reduce the costs of using programmable routing, many reprogrammable
FPGA architectures will cluster the logic elements together using fast, short-
length routing. This clustering allows larger functions to be created using
only the faster routing of the cluster. Most recent LUT-based architectures
employ this strategy, often pairing two or more four-input LUT-based logic
elements into a cluster. Over time, due to the delay costs of general-purpose
programmable routing, commercial LUT-based FPGAs have increased the
size of the clusters to improve circuit performance. Table 2.1 illustrates this
increased clustering over time. In their Stratix II FPGA [15,260], Altera uses a
mini-cluster they call the “Adaptive Logic Module” (ALM) consisting of four
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Fig. 2.4. Actel ProASIC Plus Logic Element

three-input LUTs and two four-input LUTs to create a flexible combinational
logic structure that can handle up to a single function of 7 inputs or two
independent functions of between 3 to 5 inputs. The full cluster in Stratix II,
called a Logic Array Block (LAB), then collects 8 ALMs into a larger unit,
resulting in a cluster of 24 three-input LUTs and 16 four-input LUTs.

Device Name Year LUT Width Cluster Name Cluster Size

Xilinx XC2000 1985 4 CLB 1

Xilinx XC3000 1987 4 CLB 2

Xilinx XC4000 1990 3 & 4 CLB 1 (3LUT) & 2 (4LUT)

Altera FLEX 8000 1992 4 LAB 8

Altera FLEX 10K 1995 4 LAB 8

Xilinx Virtex 1998 4 CLB 4

Altera Apex 20K 1998 4 LAB 10

Xilinx Virtex-II 2000 4 CLB 8

Altera Apex II 2001 4 LAB 10

Altera Stratix 2002 4 LAB 10

Xilinx Virtex-4 2004 4 CLB 8

Altera Stratix II 2004 3 & 4 LAB 24 (3LUT) & 16 (4LUT)

Table 2.1. Logic Element Cluster Sizes of LUT-Based FPGAs over Time

Routing

As with logic element structures, FPGA designers have used a variety of
routing structures within their FPGAs. Various forms of routing exist through
out each FPGA architecture. Generally, some amount of routing is included
within each logic cluster so that the logic elements can be combined to form
larger functions. External to the logic clusters is the more global routing
architecture of the FPGA. In this section we will concentrate mainly on global
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routing architectures, though some general comments will be made about the
internal cluster routing.

To implement programmable routing, three basic switch types are used:
multiplexers, pass transistors, and tri-state buffers. Figure 2.5 illustrates each
of these switches with an SRAM cell controlling their outputs. Generally,
pass transistors and multiplexers are used within a logic cluster to connect
the logic elements together while all three are used for the more global routing
structure. Multiplexers are very common switch elements in FPGAs and they
come in a large variety of widths ranging from two inputs to eight or more
inputs, depending on the complexity of the routing network. Every time a
signal is routed through pass-transistor-based switches, more capacitance is
added to the load of the driving transistors. To counteract the resulting slow
down due to capacitance, most modern FPGAs include active buffering in the
routing networks.

1

0
o
s

1 0 SRAM
Cell

(b) Pass
Transistor

(c) Tri−State
Buffer

0

(a) Multiplexor

Fig. 2.5. Basic Programmable Switch Types

Within a logic cluster, routing is used for several purposes. First it is used
to determine where the inputs to the logic elements come from and where the
outputs will go. Next, programmable routing is used to determine how signals
propagate through the logic elements themselves. Further, non-programmable
routing is generally used for fast carry propagation to eliminate the extra
delays incurred when using programmable routing. Usually, these carry chain
paths extend between logic clusters as well, to support wide additions. Finally,
routing within the logic cluster is frequently used to combine the logic elements
into wider or otherwise more complex functions. Figure 2.6 illustrates different
sorts of routing within a logic cluster.

Several global routing architectures have been implemented in FPGAs,
the main four can be categorized as the island, cellular, long-line, and row
architectures [49,395]. We will briefly describe each. Note that modern FPGAs
have routing architectures which are significantly more complex than what
we describe, but these general architectures are still identifiable within these
FPGAs.

Figure 2.7 illustrates the basic island-style routing architecture. In this
routing architecture, logic clusters are surrounded by segmented horizontal
and vertical routing channels. Each cluster connects to the routing through
“connection boxes” and each segment in the routing can be connected to an-
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Fig. 2.6. Internal Logic Cluster Routing

other segment through a “switch box.” The main feature of this type of routing
is that connections between logic clusters are made through segmented rout-
ing. This architecture is found in many Xilinx FPGA architectures, though,
Xilinx provides segments in several lengths (even wires that span the entire
chip) while also providing local routing between logic clusters to make the
architecture more efficient.
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Fig. 2.7. Island Routing Architecture
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The next architecture, the long-line routing architecture, takes a different
approach. As illustrated in Figure 2.8, the long-line architecture also surrounds
logic clusters with horizontal and vertical routing channels with multiple wires
per channel, but each of the wires spans the width or height of the entire
chip. Ideally, to connect any two logic clusters in this arrangement, only one
vertical and one horizontal long line is required. The transition between a
long vertical line and a long horizontal line can be made by using the internal
routing of a logic cluster at the intersection of the two lines. This has been
the main routing architecture for Altera FPGAs, but other FPGAs such as
Actel’s ProASIC FPGAs have similar routing structures. As illustrated in the
figure, Altera’s routing architecture generally provides for horizontal, local
inter-cluster routing as well. To reduce the speed penalty for driving wires that
span the length of the chip, several of Altera’s latest architectures, such as
Stratix [261] and Stratix II [15,260], have introduced smaller length segments
in the routing channels.
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Fig. 2.8. Long-Line Routing Architecture

The cellular routing architecture, shown in Figure 2.9 is different yet from
the island and long-line architectures. In this routing architecture, the richest
connections are made locally between logic clusters and only a small amount
(if any) are made through longer wire segments. Examples of FPGAs with
this type of routing structure include the Algotronix CAL FPGA [234] (which
later became the Xilinx XC6200), the CLi/Atmel 6000 FPGAs [162], and the
Plessey/Pilkington ERA [215]. For the most part, these architectures tend to
be very fine grained (2 or 3 input functions), so logic clusters are really very
simple and have a single logic element in them. To aid with routing, the logic
cells themselves were designed so they could be used as a part of the routing
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network between other logic elements. The cellular style of routing has fallen
out of favor for several reasons:

• the delays for combinational paths can be significant for circuits that re-
quire more than nearest neighbor routing;

• CAD tools seemed to have significant difficulty efficiently mapping and
routing circuits to the architectures (though, this may be true, in part,
due to a lack of investment in the tools); and

• the area and delay costs of fine-grained architectures and routing are sig-
nificant due to the amount of programmable logic and routing required to
implement a function.

The final point can be mitigated somewhat if the design can be heavily
pipelined since each cell has a flip-flop, but few designs come maximally
pipelined. Recently, Cell Matrix [131], an FPGA-like architecture proposed
for fabrication with nano-scale technologies, has revived interest in this rout-
ing architecture partially because of its relative simplicity to fabricate due to
regularity.
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Fig. 2.9. Cellular Routing Architecture

Finally, for completeness, the row architecture for routing is illustrated in
Figure 2.10. This routing architecture is mainly found in one-time program-
mable FPGAs such as many of Actel’s anti-fuse FPGAs and is, therefore, not
commonly seen in FPGAs used for reconfigurable computing. The architec-
ture chiefly uses horizontal interconnect channels to route signals between two
logic clusters. As suggested in the figure, Actel FPGAs (and others) do gener-
ally provide some vertical routing despite the bias toward row-based routing
channels. For instance, in the Act-1 and later FPGAs, Actel used vertical
wires to route the outputs of the logic clusters to several adjacent routing
channels and provided some long wires that spanned even more row routing
channels. Though not illustrated in the figure, row-based routing architectures
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generally used segmented wires within the routing channels to reduce routing
delays for short paths.
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Programmable I/O Architectures

Unlike logic and routing architectures, the basic input/output (I/O) architec-
ture, as shown in Figure 2.11, is reasonably similar across FPGA families. In
effect, the I/O blocks have tri-state buffers for the outputs and input buffers
for the inputs. The tri-state enable signal, the output signal, and the input
signals can be individually registered within the I/O block or can be left
unregistered based on how the I/O block is programmed.

In modern FPGAs, a wide variety of additional features can be found that
significantly enhance and complicate this basic structure. For instance, the
Xilinx Virtex-4 architecture’s I/O blocks [427] provide the following features,
among others:

• more than 50 variations of I/O signaling standards some of which include
features such as:
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– digitally controlled impedance to eliminate the need for terminating
resistors to deal with transmission line effects and

– differential signaling to improve signal integrity;
• double-data rate registering with multiple modes for presenting and re-

ceiving data to and from the internal logic; and
• programmable input delays.

2.1.2 Specialized Function Blocks

Over time, the basic FPGA architectures that we have described above have
been further developed through the addition of more specialized program-
mable function blocks. These blocks—such as embedded memory, arithmetic
logic, high-speed serial I/O, and even embedded microprocessors—have been
added due to a frequent need for such resources within FPGA systems and
applications. The result is that many recent FPGAs are a more heterogeneous
mixture of resources than early FPGAs. In the next few paragraphs, we will
briefly describe the resources that have been made available in recent FPGAs.
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Embedded Memory

Memory, of course, is a basic component of most digital systems and, though
flip-flops can be used for memory, they are very inefficient for creating memo-
ries of any depth. Starting with the XC4000 series of FPGAs, Xilinx made the
LUTs used for logic flexible enough to be used as asynchronous 16x1 RAMs in
user designs. In later architectures, Xilinx has designed the LUTs so that they
can operate as synchronous RAMs, dual-ported RAMs, and shift registers (1
to 16 stages). Logic also exists in the logic clusters to compose these smaller
RAMs into wider or deeper RAMs. Being able to use LUTs for RAM is a
feature unique to Xilinx FPGAs.

Though LUT-based memory is better than using flip-flops when imple-
menting deeper memories, it was not long until most FPGA vendors started
to include more dense blocks of SRAM within the architectures, with Altera
leading the way with its FLEX 10K FPGAs [13]. Today, Altera, Xilinx, Actel,
Atmel, Quicklogic, and other FPGA vendors include these larger SRAMs that
have from hundreds to thousands of bits. Most of the RAMs tend to be on the
range of 1- to 4-Kilobits (Kb), though, in the Stratix II architecture, Altera
has three granularities of RAMs (576 Kb, 4.5 Kb, and .56 Kb) available to
the designer. In many cases, the RAMs aspect ratio can be programmed. For
instance, a Xilinx Virtex 4-Kb RAM can operate in the following possible
modes: 4096x1, 2048x2, 1024x4, 512x8, 256x16 (where the aspect ratios are
given as depth x width in bits). Besides having programmable aspect ratios,
some FPGAs’ embedded RAMs can operate as content-addressable memories
(CAMs) [14], dual-ported RAMs, and/or FIFOs.

Though the total memory available on chip may only be as much as 1
MB for the largest FPGAs, one of the key benefits of these on-chip memories
is the large number of memory ports available and the aggregate memory
bandwidth that is possible, providing a significant advantage to very parallel
applications that require significant memory bandwidth. For instance, the
largest announced Stratix II (EP2S180) theoretically can provide a maximum
aggregate memory bandwidth over 30 Gb/s through the 3414 ports of its
1707 RAMs (assuming each memory operates dual-ported and operates at
maximum frequency) [15].

Embedded Arithmetic Logic

Beyond the basic carry logic and even adders provided in the logic elements
and logic clusters, many FPGAs have started to include 18x18 multipliers
or so-called “Digital Signal Processing” (DSP) blocks as separate, additional
resources. In general, the DSP blocks provide addition/subtraction, multipli-
cation, and multiply-accumulate (MAC) operations with a high degree of con-
figurability. The MAC operations are useful in finite-impulse response (FIR)
filtering, a common DSP operation (see Chapter 5 for a discussion on FIR
filtering and FPGAs). A detailed description of these blocks for the latest
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FPGAs from Xilinx and Altera is out of the scope of this chapter, especially,
since the DSP blocks can be so flexible and complex (see [16, 429] for more
detailed information), but Table 2.2 provides a summary of some of their
features.

Features Xilinx Virtex-4 Altera Stratix II
XtremeDSP DSP Block

Multiply-accumulate 48-bit 52-bit

Multiply 18x18, 8 9x9, 4 18x18,
multi-precision (iterative) 1 36x36

Add/Subtract Yes Yes

Complex multiply support Yes Yes

Integrated FIR support Yes Yes

Saturating arithmetic No Yes

Routing arithmetic Yes Yes

Fixed point representation No Yes

Barrel Shifter Yes No

Iterative functions Extended width multiply, Possible(?)
Integer division,

Integer square root

Table 2.2. Xilinx Virtex-4 and Altera Stratix II DSP Block Features

High-Speed Serial I/O

Considering that many FPGAs are used in high-throughput telecommuni-
cations equipment, the recent addition of multi-gigabit serial transceivers
(MGSTs) as I/O blocks may not be too surprising. These blocks perform
full-duplex serialization and deserialization functions (SERDES), provide en-
coding/decoding functions (for instance, 8B/10B), and some error control
logic. The first production FPGA to have this capability was Xilinx’s Virtex-
II Pro (up to 6.25 Gb/s full-duplex per channel). Altera’s Stratix GX family
(up to 6.25 Gb/s full-duplex per channel) and Xilinx’s Virtex-4 FX family (up
to 11.1 Gb/s full-duplex per channel) of FPGAs also provide this capability.
Taking the concept of high speed communication even further, the Virtex-4
FX family of FPGAs has two or four dedicated 10/100/1000 Mb/s Ethernet
Media Access Controllers (MACs) to provide designers with a more complete
solution for Ethernet serial I/O solutions.

Embedded Microprocessors

Lastly, FPGA manufacturers have integrated full, dedicated microprocessors
with their FPGA logic to perform low-bandwidth and/or control-intensive
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functions such as implementing TCP/IP stacks. With this capability, com-
plete (or near complete) embedded systems can be implemented with a single
device. The first commercial FPGA to integrate a microprocessor with its
logic fabric was the Altera Excalibur. When announced the Excalibur was the
integration of either an ARM- or MIPS-based 32-bit RISC processor core with
an APEX-20KE-like logic fabric. Currently, only the ARM-based solution is
available from Altera. As illustrated in Figure 2.12, the processor has dedi-
cated external memory interfaces, a UART interface, a programmable inter-
rupt controller, and other resources. Two dedicated AMBA high-performance
buses (AHBs) exist in the system, providing the processor access to two differ-
ent tiers of devices. The processor communicates with the programmable logic
through the secondary AHB or through some dual-port SRAM that connects
to both buses.
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Later, with the Virtex-II Pro and Virtex-4 FPGAs, Xilinx produced FP-
GAs with integrated integer PowerPC microprocessors. One significant dif-
ference between the Xilinx approach to processor-logic integration and that
of Altera is that the Xilinx approach places the microprocessor as an island
within the FPGA logic, as illustrated in Figure 2.13, with interfaces to on-chip
SRAM but no dedicated processor or peripheral buses. These buses must be
implemented using FPGA logic, if they are desired. This provides the designer
with the flexibility to define the architecture of the embedded system, but also
means that the processor cannot perform useful work without configuring the
FPGA logic, unlike the situation with the Excalibur. Note that the processors
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in Xilinx FPGAs replace any logic functions that would have normally occu-
pied that area of the chip, but some of the routing architecture is maintained
despite the presence of the PowerPC.
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Fig. 2.13. Xilinx-Style Processor Integration

2.1.3 Programming Architecture

Reprogrammable FPGAs generally use SRAM to store the configuration data.
The programming architecture of SRAM-based FPGAs is an important factor
in the use of these FPGAs for reconfigurable computing. By programming
architecture, we mean the way in which the FPGA’s configuration data is
structured and how it is provided to the FPGA to program its resources.

Many approaches to programming architecture have been developed for
FPGAs, but the main characteristics of interest include the programming
bandwidth, the granularity of the accesses, on-line programmability, and the
ability to read out the programming data. We will discuss each briefly and
describe their impact on reconfigurable computing.

Programming bandwidth, as you might guess, is the rate at which con-
figuration data can be sent to the FPGA. When fast reconfiguration of an
FPGA is required—such as when an application is time multiplexing logic
on the hardware, the programming bandwidth is one factor that determines
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how fast the FPGA can be reprogrammed. The width of the programming
interfaces are generally either serial or 8-bit interfaces and can run at tens
of MHz. The Altera Stratix II FPGA, for example, can obtain a bandwidth
of about 800 Mb/s for configuration in the Fast Passive Parallel mode—an
8-bit interface running at 100 MHz. As another example, the Xilinx Virtex-
II Pro can operate up to 400 Mb/s. A common serial interface is the Joint
Test Action Group’s boundary scan interface (IEEE 1149.1)—which is often
referred to as simply JTAG—that has been adapted for configuration. With
JTAG, Altera’s Stratix II FPGA achieves only about 10 Mb/s, where many
Xilinx devices can have a bandwidth of up to 33 Mb/s. Some FPGAs have
proprietary serial programming interfaces as well with higher data rates.

The granularity of the FPGA’s programmability determines how many
resources are configured with the smallest block of programming data. As far
as the FPGA chip designer is concerned, this granularity has a significant
effect on the cost of the internal logic used to perform the programming.
Like with other forms of memory, the more addressability that is required
within the programming data, the more logic that is needed to provide that
addressability.

With respect to reconfigurable computing, the main interest in the gran-
ularity of the FPGA programming data is related to another aspect of an
FPGA’s programming architecture—the support provided by some FPGAs
to perform on-line programming (or dynamic configuration ) of a portion of
their logic. This allows the FPGA user to modify the circuit as it executes.
The programming granularity, then, has an impact on the smallest amount of
data and logic that can and must be affected when making small changes to
a circuit (for instance, reloading the ROMs holding coefficients used in some
arithmetic or DSP algorithm).

As an example, the Xilinx Virtex series of FPGAs (Virtex, Virtex-E,
Virtex-II, Virtex-II Pro, Virtex-4) allow partial reconfiguration of the FPGA.
The smallest amount of data that can be programmed is called a frame,
which is typically hundreds to thousands of bits. So, to partially reconfig-
ure the FPGA logic at run time (sometimes referred to as run-time recon-
figuration [417]), an entire frame of configuration data must be rewritten to
the FPGA for the smallest change. By contrast, the now unavailable Xilinx
XC6200 [81] (a later commercial version of the Algotronix CAL FPGAs [234])
allowed the user to send as few as 8, 16, or 32 bits per configuration operation
and a mask could be used to restrict the modifications of a programming data
write to a specific bit or set of bits.

The ability to read an FPGA’s programming data and other information
through the configuration interface—a capability sometimes referred to as
“readback”—has also had an impact on how FPGAs are used in reconfigurable
computing. First, it can be used to ensure that the programming data stored
in the FPGA is correct—a concern when using FPGAs in space [161] or even in
large quantities on the ground [151]. Next, it can be used as a way of sampling
the state of a user’s design, as with the Xilinx Virtex series of FPGAs as well
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as other such as the Xilinx XC6200. For instance, with the Xilinx Virtex
FPGA, the outputs of the slices and the outputs of the IOBs (to the outside
world and to the rest of the FPGA) can be sampled and read out through the
FPGA’s configuration interface along with the contents of the various RAMs.
This can be used as a means of communication between an FPGA design and
an external host (e.g., [63]) and it has been used for helping designers debug
reconfigurable computing applications [181,182,205].

In addition to above characteristics, several modern FPGAs include pro-
gramming data compression and programming data encryption capabilities.
Compression, of course, reduces the amount of data that must be sent to
the FPGA to program it, thus, reducing the storage requirements of the pro-
gramming data and reducing programming time. The encryption capabilities
have been added to FPGAs to prevent people from stealing configuration bit-
streams from an FPGA system as it is being sent to the FPGA, say over the
Internet or on the same system board. Though people can read the encrypted
configuration data freely, a decryption key is stored on the FPGA (and kept
available through battery power) before sending the system to the customer
so the FPGA can decrypt the bitstream without allowing others to easily steal
it. Readback of the configuration data is disabled when the configuration bit-
stream is encrypted to prevent unauthorized access to the actual programming
data. Bitstream encryption is one of several components necessary for secure
programming of reconfigurable computing machines through networks such
as the Internet.

As a final note on programming architecture, several research FPGA de-
vices [109, 265, 355, 396] have extended configuration in a novel way. These
FPGAs support switching among multiple configuration states stored on the
FPGA . This allows the FPGA circuit to change rapidly while the data in
the FPGA either remains in place or is itself swapped in and out of the array,
thus, emulating a much larger FPGA. Once the multiple, on-chip configu-
ration memories are loaded, this considerably reduces the external program-
ming bandwidth required to context switch among FPGA configurations since
switching between device contexts (i.e., individual device configurations) is all
done through accesses to on-chip configuration memory.

2.2 Coarse-Grained Reconfigurable Arrays

The configurability of fine-grained reconfigurable logic devices allows designers
to specialize their hardware down to the bit level, meaning that, if an applica-
tion requires 7- or 17-bit arithmetic for an operation, the hardware can directly
accommodate what is needed. The configurability makes devices, like FPGAs,
suitable to implement a large variety of functions directly. This configurability
comes at a significant cost in terms of circuit area, power, and speed. Every
level of configurability requires more multiplexing, buffering, routing, and/or
memory, thus, requiring more transistors and their interconnection.
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In recognizing these costs, many researchers [11,51,69,72,99,174,198,201,
256,280,291,294,380,408,439] have studied how to use arrays of more coarse-
grained reconfigurable operators as the basis for reconfigurable computing
machines. Besides the potential advantages in terms of circuit area, power,
and speed, many researchers have pursued the use of coarse-grained recon-
figurable arrays (CGRAs) with the hope that they would be easier targets
for higher level development tools. However, as pointed out in Hartenstein’s
brief overview of 19 different coarse-grained architectures [197], the challenge
with using CGRAs is that there is no universal form that is effective for all
applications. To be more efficient, CGRAs are optimized in terms of opera-
tors and routing for some specific problem domain or set of domains. Thus,
an application must be well matched with the array to realize dramatic im-
provements over other reconfigurable solutions. For example, an application
that performs many 8-bit operations wastes a significant amount of logic if
the CGRA uses 32-bit ALUs and operators. Considering the large number of
CGRAs, we will briefly describe just a few notable research architectures as
well as a few recent commercial architectures to illustrate some interesting
past and current examples of CGRAs.

2.2.1 Raw

The first coarse-grained architecture we will briefly describe is probably one
of the most coarse-grained—the Raw chip [386,408] from MIT. Effectively, it
is a two-dimensional array of programmable tiles, each having: a 32-bit MIPS-
like microprocessor, local instruction and data caches, and a 32-bit pipelined
floating point unit (FPU) as well as several routers and wiring channels to
support the four on-chip 2-D mesh networks. At one point, the designers had
considered putting reconfigurable logic into each of the tiles, but this option
was later abandoned. Figure 2.14 roughly illustrates a 4x4 Raw array—the
array size that has actually been fabricated [386].

Unlike a traditional bus-based multiprocessor system, the Raw machine
uses a switched network for communicating directly between the processors.
The length of wires in the architecture are bounded by the width of a tile
and each routing segment is registered on tile boundaries. Thus, to ensure
that the array can scale, the width and height of tiles are limited by the dis-
tance a signal can travel in a single clock cycle. Two of the mesh networks are
statically scheduled for predictable performance while the other two allow for
dynamic scheduling through wormhole routing. Programmable routers handle
the flow of data through the system and FIFOs help synchronize the transfer
of data between tiles. The statically scheduled networks provide the best per-
formance and significantly lower latency and lower overhead than traditional
multiprocessor communication, enabling very fine grained coordination of op-
erations between processors. For instance, an operand produced by one tile can
be processed the following cycle by its neighbor, enabling the RAW machine
to operate as a pipeline of ALUs or FPUs for a stream of data and not just
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a traditional multiprocessor system on a chip. The dynamic networks, on the
other hand, are used for less predictable or bursty forms of data movement,
such as cache misses, some forms of data I/O, and operations that happen
only occasionally.

Also unlike a more traditional multiprocessor on a chip where hardware
handles many issues, the Raw device requires that much of its internal opera-
tion be handled by the compiler. For instance, cache coherency, cache misses,
and the routing of data over the internal wiring must be handled by the com-
piler (or user).

2.2.2 PipeRench

Another example of a novel CGRA is PipeRench [174, 356], a project from
Carnegie Mellon University. The chief goal of PipeRench was to develop an
architecture that effectively employs run-time reconfiguration for hardware
virtualization. Thus, an application that does not physically fit on a partic-
ular PipeRench’s available resources can still execute. Using a coarse-grained
architecture in this case greatly reduces the amount of configuration data that
must be quickly swapped in and out of hardware regions.

Figure 2.15 illustrates the general architecture of this CGRA. The hard-
ware is organized in pipeline stages called “stripes”. Each stripe consists of 16
processing elements (or PEs) that contain 8-bit-wide logic and an 8-entry reg-
ister file. The PEs within a stripe are all interconnected, reducing placement
and routing issues. Note that the physical stripes are cleverly interleaved with
the appropriate register file interconnections to create a ring structure out of
the stripes—something that is important for virtualization. The on-chip logic
for controlling the configuration and the virtualization functions is not shown
in the figure.

With regards to PE logic, each PE contains shifters and multiplexers that
can be configured to operate on inputs and the PE’s main functional unit
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is a collection of 8 3-bit LUTs, one for each bit of the operand width and
each configured with the same function. In addition to the LUTs, specialized
carry logic is also included to support fast addition. Due to the interconnect
available, the PEs can be easily combined to form wider operations, including
wide shifts using the input shifters. Only 42 bits are required to configure a
PE while 672 bits are needed for an entire stripe.

As mentioned above, the register file provides 8 entries, but it also is a
key part of the communication of data within the architecture. A PE’s output
can be written to any of the 8 registers and those registers not written to by
the PE are overwritten by the previous stripe’s values for those registers—
basically, implementing the pipelining of operands. Further, Register 0 (R0)
plays a special role. If a stripe operates as the first stage of a virtual pipeline,
its R0 registers are loaded by the global input bus to provide the data for the
pipeline. If a stripe operates as the last stage of a virtual pipeline, then the
R0 registers’ outputs are written to the global output bus.

Regarding virtualization, if a virtual stripe must be swapped out of a
physical stripe to make room for more logic, the R0 registers for the stripe are
stored away in the R0 State Store before reconfiguring the stripe. Likewise,
when a virtual stripe is restored into a physical stripe, its configuration and R0
state are restored from the Configuration and R0 State Stores, respectively.
One pass through the virtual pipeline is made for each set of new inputs to
the first virtual pipeline stripe. With its interconnection architecture and this
state configuration/restoration support, the PipeRench architecture is thus



32 2 Reconfigurable Logic Devices

constructed to easily support PipeRench applications across a wide range of
PipeRench devices having different numbers of physical stripes. The actual
device fabricated by CMU was a 16 physical stripe device with the ability to
store 256 virtual stripes [356].

Considering the communication channels mentioned above, PipeRench
supports applications with only limited feedback. Despite this, many data-
path-oriented applications—such as FFTs, DCTs, and many encryption algo-
rithms—require only feed-forward structures and map reasonably well to the
architecture.

2.2.3 RaPiD

Another important linear CGRA architecture called RaPiD [99–101,134] (for
Reconfigurable Pipelined Datapath) was developed by the University of Wash-
ington. The goal of the architecture were to develop a high-performance
coarse-grained reconfigurable device that could be targeted to specific ap-
plication domains and could support application development at a relatively
high level (i.e., not doing hardware design as with FPGAs). To help with the
second of these two goals, RaPiD’s architecture and application development
system were co-developed to ease application development for the end user.
The RaPiD architecture and related domain-specific reconfigurable architec-
tures continues as a topic of research even today [86,327].

As illustrated in Figure 2.16, this architecture is structured so that data
is streamed through a mix of different coarse-grained function units having
a common data width (generally between 8- to 32-bits wide) and the inter-
connection between these function units is through a single, flexible rout-
ing channel. A “Streams Manager” provides the architecture with streams of
data from external memory or other sources and likewise receives the out-
put streams from the CGRA and writes the data to external devices. During
operation, the data pipeline does not need to be statically configured—the
RaPiD architecture allows some resources’ configurations (e.g., input muxes,
ALU functions, etc.) to be altered during the operation of the application
so the data flow can be somewhat dynamic, changing based on the appli-
cation’s needs. The configuration of the dynamically changeable resources is
controlled cycle by cycle using the “Instruction Generator” and “Configurable
Instruction Decoder.”

As for the function units, the mix and number of function units is chosen
based on the application domain for which the device will be used. The mix
of function units is not necessarily limited to ALUs, multipliers, registers, and
RAM, but can be any function that can be well utilized in a given application
domain. For instance, a RaPiD for the communications application domain
might have a Viterbi decoder as a function unit. A configurable delay element
providing a zero to three-stage delay exists at the output of each unit to help
with the scheduling of operations within the pipeline.
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The routing channel has segments of various lengths to support commu-
nications at different distances between function units. Further, as mentioned
above, the interconnection among modules can be dynamic such as through
selecting different inputs using the function units’ input multiplexers. Unlike
the other coarse-grained architectures we have described, some of the routing
can be driven in one of two directions, allowing for feedback and flexibility
in the mapping of applications. The direction a routing segment is driven,
though, cannot be dynamically changed.

The “Stream Manager”, which produces the input data and consumes the
output data, is essentially a memory interface with an address generator and
FIFO for each input or output stream (the FIFOs are explicitly illustrated
in Figure 2.16). The flow of data through the architecture and instruction
generation (or sequencing) are decoupled. A RaPiD array does provide a syn-
chronization mechanism, though: the RaPiD array is halted upon the read of
an empty input FIFO or the write of a full output FIFO.

2.2.4 PACT XPP

As an example of a commercial CGRA, the eXtreme Processing Platform
(XPP) [36,317] is a computing array with a data-driven processing model and
hierarchical configuration management developed by PACT Informationstech-
nologie GmbH. Like many CGRA architectures, the PACT XPP was devel-
oped to handle streaming data applications such as signal or media processing.
As a product, PACT provides the CGRA as intellectual property to their cus-
tomers for developing custom VLSI designs—a common model for commercial
CGRA products.
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Fig. 2.17. PACT’s eXtreme Processing Platform

Figure 2.17 illustrates the architecture at four different levels. The top level
is the XPP device, which consists of several Processing Array Clusters (PACs)
with their associated configuration management hardware. The configuration
management (CM) hardware includes a state-machine-based controller and
local RAM. At the device level, a supervising CM (or SCM) controls the
overall configuration of the device and this SCM can yet be controlled by
SCMs external to the device, creating a configuration management hierarchy.

At the next-level down, the PAC itself is an array of Processing Array
Elements (PAEs), connection boxes for routing between vertical and horizon-
tal busses, and switches for segmenting the horizontal busses. Each PAC also
includes I/O resources as well.

At the third level, each PAE contains three objects: a function object, a
forward register (FREG), and a backward register (BREG). In Figure 2.17, an
ALU Object is the function object, but other objects, such as RAMs are pos-
sible. The FREG and BREG objects provide vertical routing support as well
as data control flow (FREG), counters (FREG), adders/subtracters (BREG),
and barrel shifters (BREG).

At the lowest level, the ALU object can consume and produce data and
event packets that are key to the data-driven computation model used by
the architecture. Data packets, of course, contain the results of an operation
while the event packets contain the condition or state bits resulting from the
operation. The width of the data packets are the width of the basic archi-
tecture (e.g., 24 or 32 bits) while the width of event packets is only a few
bits. Note that the configuration portion of the architecture can be affected
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by ALU operations and the event packets, allowing for event-driven initiation
of configuration or reconfiguration.

The data-driven computation model is used in the XPP to ensure ease of
application development—instead of having to worry about the exact timing
of operations, the operators only process when all of their input packets are
available and their last output packet has been consumed by the next PAE.
This data-driven model has also been augmented with additional handshaking
between PAEs and CMs so that a CM knows when a PAE can be reconfigured
and when it is busy with a computation.

The hierarchical nature of configuration management has several effects.
First, it provides a way for scaling the configuration of large systems or devices.
Next, its allows configuration to be performed independently in the different
chip regions. A corresponding result is that different portions of the XPP can
be executing unrelated functions. Finally, the self-configuration capability can
also be used either locally or globally throughout the system.

2.2.5 MathStar

Another commercial example of a CGRA architecture is the Field-Program-
mable Object Array (FPOA) produced by MathStar [203]. Like RaPiD, the
MathStar architecture is intended to be optimized for a particular application
domain and customers can specify the needed mixes of function units (called
Silicon Objects) to meet their application needs. To make this a cost effective
and fast time-to-market proposition, MathStar’s FPOA is structured so that
any function unit type can fit at any position in the device’s two-dimensional
object array. The result of this engineering is that an FPOA with a custom
function unit mix can be ready for fabrication in less than a month with 1-
GHz internal operation speeds without having to solve any additional analog
signaling issues since the Silicon Objects are pre-engineered to deal with such
issues.

Figure 2.18 is a conceptual illustration of the architecture. As mentioned
before, the array can be heterogeneous or homogeneous, depending on the
particular mix of Silicon Objects chosen for the array. The array given in the
figure is a mix of register files, ALUs, and multiply/accumulate units. Note
that the architecture also supports various I/O standards (including high-
speed serial I/O) as well as internal RAM. The available Silicon Objects also
include a logic block consisting of four four-input LUTs, a CRC generator,
content addressable memories, and external memory interfaces.

As for the routing architecture, the FPOA supports 21-bit busses to com-
municate 16 data bits, a one-bit data-valid flag, and 4 control/state bits.
Generally, the data and data-valid bits are handled as a unit while the control
bits can be configured independently. Depending on the Silicon Object, the
control/state bits can provide such information as the sign of the data, a carry
bit, or a start-of-packet marker or they can be used to control the function of
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Fig. 2.18. MathStar’s FPOA Architecture

the Silicon Objects, such as selecting the function of the ALU or the modes
for the multiply-accumulate unit.

As the arrows in Figure 2.18 illustrate, each Silicon Object can communi-
cate directly with its 8 immediate neighbors with, at most, four unique values.
The values are available within a single clock cycle. The figure also illustrates
that, with one level of pipelining, a Silicon Object can route its signal to
any of 24 other cells within its extended neighborhood. Using more levels of
pipelining, a Silicon Object’s output signals can reach the rest of the array.

2.3 Summary

In this chapter, we have discussed the internal structure of FPGAs. Start-
ing from simple homogeneous tiled arrays of logic blocks, I/O blocks, and
interconnect, FPGAs have become complex systems on a chip, with elaborate
logic clusters, a rich memory hierarchy, dedicated arithmetic function units,
and high-speed serial I/O. The capacity of FPGAs has also greatly increased,
which makes possible larger reconfigurable computing applications. The abil-
ity to reprogram SRAM-based FPGAs, either entirely or partially, is also an
important feature for reconfigurable computing. Finally, we discussed how new
coarse grained architectures have been developed that trade off FPGA flexi-
bility for increased performance and lower power within specific application
domains.
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Reconfigurable Computing Systems

In this chapter, we will discuss general purpose computing systems that incor-
porate FPGAs into the system architecture. While modern FPGAs include
processors, memory blocks, and built-in I/O interfaces on-chip, reconfigurable
systems, even those with a single FPGA or tiled processor array contain off-
chip memory and I/O resources as well. Since reconfigurable computing is
concerned with parallel operations at any level of granularity, we will mo-
tivate the roles that FPGAs can play by first discussing parallel processing
models and how they might use reconfigurable logic. We will then survey the
field of reconfigurable processing systems.

3.1 Parallel Processing on Reconfigurable Computers

Reconfigurable computing systems derive high performance by exploiting par-
allelism at multiple levels of granularity, from instruction through task level
parallelism. In this section we introduce the levels of parallelism and discuss
the use of reconfigurable hardware at various granularity of parallelization.

3.1.1 Instruction Level Parallelism

The lowest level of granularity we consider is instruction-level parallelism. In
conventional microprocessors, instruction-level parallelism is exploited in the
micro-architecture of a superscalar processor. By having multiple instructions
in progress in different stages of completion, the superscalar processor is able
to complete more than one instruction in a clock cycle.

Very Long Instruction Word (VLIW) processors offer another method for
fine-grained parallel operation. A VLIW processor contains multiple function
units operating in parallel. In Figure 3.1, the instruction word contains fields
for two integer operations, two floating point operations, two memory oper-
ations, and a branch. To compile for a superscalar processor, the compiler
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simply generates a sequential instruction stream, and the processor paral-
lelizes the instruction stream at run time. In contrast, the VLIW processor
executes the instruction word generated by the compiler, requiring the com-
piler to schedule concurrent operations at compile time.

Co-processor parallelism is achieved within a single instruction stream.
A customized parallel instruction is performed by co-processor. Examples of
co-processors include MMX/SSE units or vector units. Instructions for the
co-processor are integrated into the instruction set of the processor. The co-
processor shares register files and other internal state with other arithmetic
units, such as the floating point units, as shown in Figure 3.2.

Int MemFloat MemFloatInt Br

Fig. 3.1. A VLIW Instruction Word

AG

IU

AG

IU

FP
Store

Register File, Data Cache

SSE

Instruction Fetch/Decode

FP Add FP Mul
SSE

Fig. 3.2. SSE co-processor

Instruction level parallelism is of central importance to RC systems as
well. In contrast to conventional processors in which the instruction unit is
optimized to a very large class of applications, it is possible (and necessary)
in RC systems to tailor instruction level parallelism uniquely to each specific
application. In a VLIW processor the instruction format is determined by
the number and type of parallel function units, which are are fixed when
the processor is designed. On an FPGA these units are constructed from
the configurable logic blocks. Their number, width and type are arbitrary,
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and can be optimized to the application at compile time. If partial dynamic
reconfiguration is available, the function units’ design may even be modified
at run time. Thus an “instruction” as interpreted by the reconfigurable system
is an arbitrary collection of related logic circuits, in which the number and
type of arithmetic units is optimized to each application.

Figure 3.3 illustrates the data flow within an RC instruction composed
of 11 levels of operation. At each level, multiple operations occur in parallel.
For example, the first level contains six multipliers. If the instruction itself is
pipelined, at every clock cycle, there are 23 arithmetic operation occurring in
parallel. The specific application being mapped to reconfigurable logic deter-
mines the widths and data types of the operations. Data dependencies within
the application determine to what extent the customized instruction can be
pipelined. An instruction for a reconfigurable computer is analogous to an
entire subroutine on a conventional processor.

Level 2 Level 3Level 1 Level 4 Level 5

1

Level 6 Level 7

+

+

Level 9

+

Level 10 Level 11Level 8

Fig. 3.3. An RC “Instruction”

3.1.2 Task Level Parallelism

Task level parallelism has two major categories. The relationship between
tasks can be either peer-to-peer or client/server. In a peer-to-peer parallel
system the parallel activity can be at a process level or the finer granularity
thread level. In process level peer-to-peer systems, illustrated in Figure 3.4,
each process has its own separate address space. In order to communicate
state, a process must send a message and the destination process(es) must
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explicitly receive the message. Several different sorts of messaging protocols
may be used. Messages may be buffered, asynchronous, and high latency, as
with Message Passing Interface (MPI). They may use a low latency streaming
protocol, with queues, FIFO buffers, or “valid bit” semi-synchronous com-
munication. Finally, the messages may be tightly synchronized streams, in
which delays are determined at compile time and are pre-compiled into clock-
synchronized processes. The latter protocol is typical of DSP algorithms.

At the thread level of peer-to-peer parallel processing (see Figure 3.5),
the threads share an address space, and can communicate through shared
memory or messaging. Signaling and synchronization mechanisms for thread-
based processing include critical sections and mutual exclusion, or barriers.

In a client/server parallel model, the client can request service from server,
or the client can request work from server. In the former (shown on the left in
Figure 3.6), the compute resource is centralized in the server, whereas in the
latter, shown on the right, the clients perform compute intensive tasks and
the server merely serves as repository for the task description.

Memory Memory Memory Memory

Processor Processor ProcessorProcessor

Interconnection Network

Fig. 3.4. Process Level Parallelism

Processor Processor ProcessorProcessor

Interconnection Network

Memory System

Fig. 3.5. Thread Level Parallelism



3.2 A Survey of Reconfigurable Computing Systems 41

Client Client Client

Server

Client Client Client

Server

Fig. 3.6. Client Server Model

Reconfigurable logic can play a role in these large granularity parallel
activities as well. In peer-to-peer processing, hardware processes communi-
cate with software processes. This scenario is particularly common in em-
bedded processing, in which hardware can handle data acquisition and front
end processing, while software performs data analysis and decision mak-
ing. The most common forms of hardware-to-software communications are
through memory buffers or with stream communication, which is illustrated
in Figure 3.7. In this example, two hardware processes (Processes 1 and 2)
communicate via a hardware-to-hardware stream, Process 2 and 3 commu-
nicate via a hardware-to-software stream, and Processes 3 and 4 communi-
cate via software-to-hardware stream. RC systems tend more toward static,
application-specific communication channels rather than dynamic streams as
proposed in dedicated stream processors such as Imagine [6]. This is because
statically determined stream communication paths are orders of magnitude
more efficient when mapped to FPGAs.

RC plays an important role in client/server processing, too. RC nodes may
perform data/compute tasks, for example for cryptography, bio-informatics or
network security applications. RC nodes may also serve as data acquisition
nodes, as shown in Figure 3.8. In this scenario, multiple data sources feed into
reconfigurable logic nodes that pre-process the data and supply it to other
compute nodes on a network.

3.2 A Survey of Reconfigurable Computing Systems

Parallel processors based on FPGAs first appeared in the early 1990’s and have
continued to flourish over the succeeding decades. Reconfigurable computing
systems can be grouped into four categories:

• I/O Bus Accelerator
• Massively parallel FPGA array
• Reconfigurable Supercomputer
• Reconfigurable Logic Co-processor
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Fig. 3.8. Data Acquisition

3.2.1 I/O Bus Accelerator

The earliest reconfigurable computer to emerge in the early ’90’s was the
accelerator Printed Circuit Board (PCB). In this architecture (shown in Fig-
ure 3.9), the I/O board contains FPGAs, inter-FPGA interconnect, on-board
SRAM and/or DRAM modules, high speed (serial) interfaces to external de-
vices, and an interface to the host computer’s I/O bus. There are many vari-
ations possible on inter-FPGA interconnect. If there are few enough FPGAs
and sufficient I/O pins on the FPGA chip, an all-to-all interconnect is possible.
Otherwise, a ring interconnect may be used in which each FPGA is directly
connected to its left and right neighbor. This was the interconnect used by the
Splash 1 board ( [168] with 32 Xilinx 3090 FPGAs. This board was built by
the IDA Supercomputing Research Center in 1989. A programmable crossbar
may be employed, allowing arbitrary interconnect among FPGAs, determined
on a per-application basis. This arrangement was used in Splash 2 ( [60]), a
1994-vintage board. A two-dimensional mesh interconnect was used by the
PerLe 1 board built by the Digital Equipment Corporation Paris Research
Lab ( [47] in 1989. Modern commercially available FPGA I/O boards (for ex-
ample, [305], [22], [128], [422], [403]) tend to contain a small number of large
FPGAs. With only one or two FPGAs on the board, interconnect is no longer
a major board-level architectural concern.

FPGA accelerator cards typically contain on-board buffer memory in the
form of SRAM and/or DRAM. Unlike the narrow, deep cache memory hier-
archy used on microprocessors, FPGA processors can best exploit very wide
access to independent memory banks. In fact, it is not uncommon for FPGA
boards to contain 5–10 SRAM banks, allowing, e.g., 64 ∗ 10 = 640 bits of
concurrent memory access every clock cycle.
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Serial
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Bus
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Fig. 3.9. Generic FPGA I/O Board

Since bandwidth between host processor and I/O card is high latency and
low bandwidth, use of an on-board memory sub-system allows compute– and
data– intensive tasks on the FPGAs to have direct, application-specific access
to data arrays. One common design pattern ( [108]) is for

1. the host to DMA data arrays to the board memory banks,
2. the algorithms on the FPGA to process data in those memories, perhaps

even making several passes over the data,
3. the FPGA to write results results into memory, and
4. the host to read back the results via DMA.

Another design pattern is to double buffer the memories, so that the host
can write input data to one set while the FPGA(s) process data from another
set of memories. This approach is particularly effective with a board such
as the USC/ISI Osiris PCI board (Figure 3.10) with 10 independent SRAM
modules.

Fig. 3.10. Osiris RC System
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In many cases, especially with embedded processors using the VME bus,
I/O bandwidth between host and FPGA board is not high enough to keep
up with the FPGAs’ compute rate. Instead, data is presented to the FPGA
processors directly from external devices such as A/D converters, network
interfaces, or framegrabbers. The FPGA can then process the data, often with
a dramatic reduction in bandwidth. The data can go to the host computer or
directly back on the network as in Figure 3.8.

3.2.2 Massively Parallel FPGA array

A second FPGA-based architecture generalizes the FPGA accelerator board
by putting together a very large collection of FPGA boards as a single com-
puting resource, as shown in Figure 3.11. This architecture is particularly
useful for logic emulation ( [32], [37]) or very large scale computing [382]. The
massively parallel FPGA array requires a high performance interconnect so
that communication between FPGA boards can more closely match band-
width between FPGAs on the same board. In the Virtual Wires project, the
interconnect was a virtual resource. Each FPGA board communicated with its
four nearest planar neighbors through eight bi-directional signals. To expand
to multiple boards, each row or column of FPGAs on the periphery commu-
nicated to an adjacent board. To compensate for the lack of physical routing
resource, a CAD tool automatically partitioned a large design across the FP-
GAs, time-multiplexing signals across the limited physical interconnect. This
resulted in potentially a very slow logical clock (in the KHz) so that the same
wires could be used for many connections occurring during the logical clock
period.

In contrast, the Starbridge machine allocates FPGAs explicitly for routing
and off-board communication. The Starbridge architecture has four to eight
compute FPGAs on a board, with an additional three FPGAs devoted to com-
munication. In contrast to this rich communications network on and between
boards, the Starbridge uses PCI to communicate to a host computer.

Similarly, the Berkeley Emulation Engine 2 (BEE2) is a massively parallel
FPGA array. Each board contains four compute FPGAs connected in a mesh
with an additional control FPGA for off-mesh connection, a configuration
similar to the Splash 2. Boards communicate over an Infiniband-based global
communication tree. Every 16th board serves as a tree node in the interconnect
tree.

3.2.3 Reconfigurable Supercomputer

In reconfigurable supercomputing, FPGA boards are included as acceleration
nodes into a high performance cluster. The distinguishing factor in this archi-
tecture is that the FPGA board communicates with conventional processors
as well as other FPGA boards through a high-bandwidth, low-latency inter-
connection network. Unlike the accelerator card architecture, communication
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Fig. 3.11. Massively Parallel FPGA Array

with a host computer is an order of magnitude higher bandwidth, and la-
tency is on the order of microseconds. This allows the FPGA computation
to share state with microprocessor more easily, and thus the granularity of
computation on the FPGAs can be smaller. In addition, there can be many
FPGA boards on the interconnection network, allowing the aggregate system
to solve very large supercomputing problems.

The first reconfigurable supercomputers of this form were developed by
SRC Computers, Inc. The SRC architecture (Figure 3.12) exploits the DRAM
interface of Pentium processors as a communication port to the “MAP” board
containing high end Xilinx FPGAs. The SNAP ASIC manages the protocol
and communication between a dual processor Pentium node and its associated
MAP (FPGA) board. These microprocessor/FPGA units can be combined
using commercial interconnect such as Gigabit Ethernet to form a cluster.
For higher performance, a proprietary switching network connects multiple
“MAPStations.” In addition, MAP boards can communicate directly through
chain ports, by-passing the interconnection network for large, multi-FPGA-
board designs.

Another entry into the reconfigurable supercomputer arena is Cray Re-
search, Inc., with its acquisition of Octigabay. The Cray XD1 combines AMD
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Fig. 3.12. SRC Reconfigurable Supercomputer

dual processor Opteron nodes, a proprietary “RapidArray” interconnection
network, and FPGA boards. As with SRC, the interconnect network is low
latency and high bandwidth. The Cray machine implements the network in-
terface logic in an FPGA rather than a specialized ASIC.

Characteristics of the SRC and Cray machines are described in Figure
3.13.

Vendor Proc Comm BW FPGA Memory Inter-FPGA interconnect

SRC Pentium 4 4.8 GB/s V26K 24MB Chaining 4.8 GB/s
Cray Opteron 3.2 GB/s V2Pro50 32MB RapidIO 3.125 Gb/s

Fig. 3.13. SRC and Cray Comparison

A similar approach has been followed by SGI, Inc. with their Reconfig-
urable Application-Specific Computing Platform. In the SGI architecture, the
high performance microprocessor cluster consists of IBM POWER or Intel
Itanium 2 processors interconnected through the SGI Non-Uniform Memory
Access (NUMA) network. RASC extends the standard architecture by in-
cluding special purpose accelerators such as FPGAs, which interface to the
interconnection network through an ASIC, the “TIO.” SGI reports maximum
I/O bandwidth to the TIO as 3.2GB/s in each direction. In addition, the TIO
provides direct, coherent memory access between FPGAs and system memory,
a unique feature to the SGI architecture.

3.2.4 Reconfigurable Logic Co-processor

The reconfigurable logic co-processor is the ultimate coupling of traditional
microprocessor with reconfigurable logic. As with parallel processors, it is only
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worthwhile to migrate functionality to hardware if the hardware execution
time combined with the overhead of migrating to hardware is significantly
less than the time to compute the function in software:

Thw + Toh << Tsw (3.1)

By allowing the processor and reconfigurable logic to share low level state,
the Toh component of the inequality can be greatly reduced, allowing for
smaller granularity tasks to be profitably mapped to hardware. It also makes
it feasible to dynamically reconfigure the logic during execution, analogous to
context switching in conventional processors.

This notion of dramatically reducing latency and increasing bandwidth
between microprocessor and reconfigurable logic by combining the two into a
single entity has recurred since the early days of reconfigurable computing. In
1994, two processor-coupled architectures were proposed, the DPGA by De-
Hon [107] and the PRISC [340], a RISC processor with programmable function
units. Following on these early proposals, The OneChip design from Toronto
( [418]) combined a MIPS-like basic function unit with reconfigurable func-
tion units, allowing both entities to share register files and memory. A single
instruction stream controlled both standard and reconfigurable processors.

The Garp architecture [62] extended a MIPS core with a unique column-
oriented reconfigurable logic array. The array situated between the processor
and cache could communicate with the processor via four 32-bit data busses
and one 32-bit address bus. Thus the processor’s data cache was shared with
the co-processor array. The architecture included a configuration cache to
hold recently used configuration frames. The extended instruction set included
commands to the co-processor. Simulation of the Garp processor predicted
speed-up of 2–40 over an UltraSparc.

The Garp was the first project to develop a C compiler that automatically
partitioned sequential code between software and hardware, automatically
generated hardware for the custom logic array as well as interface logic to
reconfigure the array dynamically during execution.

The first reconfigurable co-processor IC to be fabricated was the NAPA
1000 chip by National Semiconductor [350]. This chip used a 50 MHz 32-
bit RISC core along with the CLAy reconfigurable logic array from National.
The RISC processor, on-chip local memory, a reconfiguration controller, an
interconnection network controller, and the reconfigurable logic array shared
a common Core Bus (see Figure 3.14. The NAPA architecture was also the
first to provide parallel processing of the NAPA 1000: the “toggle bus trans-
ceiver” was an interface to a high performance interconnection network for
broadcast, data rotation, and data reflection communication patterns. The
reconfigurable logic array could directly access local, dedicated scratch-pad
memory. Computation on the logic array was optimized for a 32-bit linear,
pipelined datapath. 32-bit columns could be dynamically reconfigured during
operation.

Like Garp, the NAPA project included a C compiler, the NAPA C compiler
[170]. In NAPA C, the programmer used pragmas to tag regions of code to be
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placed into hardware. This methodology is most effective when the application
shows “90/10” behavior – 90% of execution time in 10% of the code. By
placing such compute intensive blocks in hardware, the NAPA could achieve
1–2 orders of magnitude performance improvement over DSP processors.
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Fig. 3.14. NAPA 1000

Following these research proposals, commercial FPGA vendors began of-
fering embedded processors in their FPGA product lines. The Triscend chip
was one of the first such products, with an 8-bit microcontroller. More re-
cently, Altera produced the Excalibur chip with an embedded ARM, and
Xilinx followed with embedded PowerPC processors. Stretch, Inc. proposes a
OneChip-like architecture in which the configurable logic shares register files
with a Tensilica processor.

3.3 Summary

Reconfigurable logic has found its way into virtually every part of the parallel
processing hierarchy. Millions of system gates are available for Instruction-
level parallelism within the reconfigurable fabric. By sharing registers or in-
ternal busses with a conventional microprocessor, co-processor performance is
even more accelerated through low latency, high bandwidth communication
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between processor and reconfigurable logic. In the I/O model, an FPGA ar-
ray can process large granularity compute- and/or data-intensive tasks for the
processor. Finally, by aggregating collections of FPGAs either as a standalone
system or as part of a reconfigurable cluster supercomputer, parallelism can
be exploited at a very large scale.
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Languages and Compilation

As we have seen, reconfigurable computers are capable of parallelism at many
levels from intra-operation parallelism (e.g., pipeline a × operation) to task
level parallelism (e.g., communicating hardware tasks and software tasks ).
It would be ideal if automatic tools could profile, partition, parallelize, and
compile existing code onto reconfigurable systems. It would be desirable to
expression computation in a high level language and use the compiler to auto-
matically detect compute-intensive portions and translate those into custom
hardware instructions, leaving inherently sequential or infrequently executed
code in software, automating the steps outlined in Figure 4.1. However, the
reality is much different. As we will see in this chapter, research projects have
attempted to realize this dream, but tools available today and in the near
future require deep understanding of reconfigurable systems’ strengths and
weaknesses, considerable manual effort to partition the code, and familiarity
with hardware design to map code segments to reconfigurable logic.

4.1 Design Cycle

In evaluating languages and compilers for RC systems, there are several cri-
teria that should be considered:

• Abstraction Level. Is the abstraction level of the language algorithmic,
behavioral, or structural? Is it textual or graphical? How is the system
level described? How is the component level described?

• Automatic parallelization and partitioning. To what extent does the com-
piler provide automatic parallelization of sequentially expressed algo-
rithms? To what extent does the compiler automatically partition com-
putation between software and hardware?

• Loop level transformations? For algorithmic languages and compilers, does
the compiler perform loop unrolling or pipelining? How do the loop level
and instruction level pipelines interact?
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          writeable−>iseedphi= iran31(writeable−>iseedphi);
          writeable−>iseedth = iran31(writeable−>iseedth );
          ixphi         = writeable−>iseedphi − 1;
          ixth          = writeable−>iseedth  − 1;
          iphi          = ifix((PHOTONFLOAT)(ixphi)*scalephi);
          ith           = ifix((PHOTONFLOAT)(ixth )*scaletha);
          exloc         = readonly−>sintab[ith]*readonly−>costab[iphi];
          eyloc         = readonly−>costab[ith];
          ex            = exloc*readonly−>eny[le] + eyloc*readonly−>enx[le];
          ey            = eyloc*readonly−>eny[le] − exloc*readonly−>enx[le];
          idead         = 0;

 for(le0 = 0; le0 < NSM; le0++)
    {
      dxcrnt   = readonly−>delx[le0]*fnplfinv;
      dycrnt   = readonly−>dely[le0]*fnplfinv;
      toffset  = (fitsk + .5)/fntasks;
      xe0      = readonly−>x1[le0] + (toffset − 1.0)*dxcrnt;
      ye0      = readonly−>y1[le0] + (toffset − 1.0)*dycrnt;

      for(i = 0; i < NPP; i++)
        {
          xe0      = xe0 + dxcrnt;
          ye0      = ye0 + dycrnt;
          xe       = xe0;
          ye       = ye0;
          le       = le0;

          while (! idead)
            {
              writeable−>kevent  = writeable−>kevent + −1;
              rhse          = ex*ye − ey*xe;
              li = le;
              for(l = 0; l < NSM; l++)
                {
                  if(l != le)
                    {
                      delxl   = readonly−>delx   [l];
                      delyl   = readonly−>dely   [l];
                      rhsl    = readonly−>rhs    [l];
                      /*c*/
                      /*c  compute intersection points*/
                      /*c*/
                      det  = ex*delyl − ey*delxl;
                      absdt= fabs(det);
                      if(absdt <= epsdet0)
                        det=  epsdet0;
                      dtinv= 1.0/det;
                      xi     = dtinv * (delxl*rhse − ex*rhsl);
                      yi     = dtinv * (delyl*rhse − ey*rhsl);
                      /*c*/
                      /*c  test for intersection between surface endpoints*/
                      /*c*/
                      x1l     = readonly−>x1     [l];
                      y1l     = readonly−>y1     [l];
                      x2l     = readonly−>x2     [l];
                      y2l     = readonly−>y2     [l];
                      sqlnl   = readonly−>sqln   [l];
                      ssq  = (xi − x1l)*(xi − x1l) + (xi − x2l)*(xi − x2l)
                        + (yi − y1l)*(yi − y1l) + (yi − y2l)*(yi − y2l);
                      if(ssq <= sqlnl)
                        {
                          li= l;
                          break;
                        }
                    }
                }

Create a hardware realization of the loop.

Identify  the compute−intensive loop.

Insert software/hardware communication.

?
?

?

Fig. 4.1. Partitioning an RC Application

• Automatic instruction level parallelism (ILP) extraction. Can the compiler
infer ILP and automatically schedule parallel activities?

• Memory hierarchy management. How are arrays and variable allocated to
memory resources both on and off chip?

• Debug Support. What tools are available to debug applications on RC
systems?

The design development cycle for RC systems includes aspects of software
compilation as well as hardware synthesis, as illustrated in Figure 4.2. When
starting from a sequential program, this may require

1. profiling to identify compute intensive kernels
2. a rough estimate of the benefit obtained from hardware acceleration on

computationally intensive kernels
3. quantification of communication costs between hardware and software to

exchange data and results

In practice these partitioning steps are performed manually. Profiling of
the software can be performed with well-established software tools to identify
potential kernels to map to hardware. It is difficult to determine the poten-
tial benefit of hardware acceleration without actually creating the hardware
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Fig. 4.2. Design Cycle

design. There have been several research efforts to provide performance esti-
mates of hardware performance from algorithmic description. [137] developed
a methodology to evaluate regular dataflow designs such as multimedia algo-
rithms. In this work, a 23-component vector is created to characterize a design.
The vector includes the I/O’s, the number of arithmetic and logical operations,
the degree of parallelism, and the number of iterations. The methodology was
applied to six benchmarks to predict area, frequency, throughput, latency,
and I/O. Area was predicted within 30% for all benchmarks, and I/O was
correctly predicted on all benchmarks. However, clock frequency, throughput,
and latency showed greater error.

[52] performs estimation based on execution traces of Matlab code. Again
the target application area is dataflow designs in signal and image processing.
The user must specify bit widths for variables. The tool builds a dataflow
graph from the execution trace. The graph is annotated with estimates of
FPGA resources consumed for each operation. Using a greedy algorithm,
the tool explores alternative schedules of the dataflow graph with differing
area/latency characteristics that meet pre-specified clock speed and execu-
tion rate constraints. Low level placement and routing are not considered in
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this tool. These tools represent first efforts at algorithm-level estimation to
quantify the benefit of hardware acceleration of software kernels.

The third step, understanding the I/O communication cost, is also dif-
ficult to quantify a priori. The communication cost depends on the amount
of data that must be transferred between hardware and software and on the
bandwidth of the communication channel. However, quantifying that cost is
difficult: the application designer may be able to overlap computation with
communication to hide the cost; the advertised bandwidth may differ from
what is actually measured in practice; the bandwidth may be asymmetric;
it may behave non-linearly in the face of congestion. All these circumstances
may cause the I/O bandwidth to vary by factors of 2–4.

Once the designer has decided how to partition the application, a revised
body of source code is produced which separates the source code into into
hardware functionality, software functionality, and communication interfaces
among them.

The hardware part of the algorithm can be expressed at a level of ab-
straction ranging from algorithmic to structural. It must be compiled into the
target FPGA, which is a very complex, computationally intensive process. The
compiled hardware code is then tested through simulation. There is usually
iteration at this stage (compile–test–revise) to verify the functional correct-
ness of the code. To generate the final hardware there are additional steps: the
compiled code is then synthesized, placed, and routed to the target FPGA and
tested on the hardware itself. The low level Computer Aided Design (CAD)
tool stage itself has a number of sub-components and a complete sequence of
steps, described in Section 4.4. Synthesis, place, and route expose issues in
low level hardware timing, routing, area consumed, clock frequency achieved,
power draw, and system interactions.

4.2 Languages

In this section, we discuss the problem of expressing computation that is par-
titioned among hardware and software components. Languages for program-
mable processors are algorithmic in nature, building on the Turing machine
formalism of fetch, decode, and execute of a sequential stream of instructions
that read and write memory. In contrast, mapping computation to reconfig-
urable hardware design entails fabrication of arbitrary logic circuits, exposing
the maximal amount of parallelism consistent with hardware resource con-
straints.

For traditional hardware design, especially for circuits that must interface
to external I/O devices and meet stringent timing constraints, it is desirable
to use tools that mirror an abstraction of the underlying hardware resources.
Modules such as shift registers, comparators, multiplexers, adders and other
function units are convenient building blocks that the designer can combine,
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either graphically or through textual commands, to create a hierarchical, spa-
tially parallel hardware circuit. Tools to simulate module interactions at the
clock cycle level are desirable, as are tools to control and analyze the mapping,
placement, and routing of the modules onto the underlying FPGA fabric.

In contrast, a reconfigurable computing problem to be mapped onto hard-
ware is initially expressed as a sequential algorithm. There are many different
ways that the algorithm can be partitioned between hardware and software,
and further, many functionally equivalent hardware circuits that can be gen-
erated from the algorithm. Thus the search space in which to optimize parti-
tioning choices, area, frequency, and throughput is very large.

Since the vast majority of FPGA applications fall in the domain of tra-
ditional hardware design, the greatest choice and capability in languages and
compilers is skewed toward hardware description languages, schematic layout
editors, hardware circuit simulation and synthesis. Most of these Computer
Aided Design (CAD) tools are expensive ($10K’s – $100K’s), requiring use
of high performance workstations. At the lowest level, the designer may di-
rect the functionality and interconnect of logic blocks on the FPGA, creating
dense chip-specific designs that optimize features of the particular chip being
targeted. “Intellectual Property (IP)” blocks are designed at this level and of-
ten provided by the chip vendor as optimized building blocks for higher level
designs. The next level of abstraction is to combine IP blocks with application-
specific logic. This is called structural design. At the next level of abstraction,
Register-Transfer Level (RTL), registers, function modules, control structure,
and timing are all specified by the designer. Finally algorithmic and behav-
ioral languages provide for high level functional description of computation.
We now discuss each level of expression, starting with the highest level, algo-
rithmic languages.

4.2.1 Algorithmic RC Languages

Perhaps the most straightforward approach to compiling algorithms to re-
configurable systems is to compile to the co-processor model. In this model,
compute-intensive kernels within a sequential program are mapped to hard-
ware, while the remaining program executes in software.

Using the co-processor model, hardware compilers have been developed
for sequential C. The PRISM compiler by Athanas was the first to demon-
strate hardware compilation of sequential C kernels for reconfigurable com-
puting [29]. In [173], the NAPA C compiler used a pragma-driven approach to
identifying compute intensive kernels, and automatically compiled the kernels
to configurable logic. In [55], the design environment partitioned a sequential
program between software and compute-intensive hardware kernels according
to a parameterized architectural model, with automatic compilation to hard-
ware. The compiler of [62] provided perhaps the ultimate in hardware/software
co-compilation. The Garp-C compiler generated both hardware and software
versions of compute-intensive kernels that were identified through automatic
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profiling. It also generated code to partially and dynamically reconfigure the
Garp logic array so that hardware kernels could be loaded on demand during
execution.

Given the opportunities for parallel processing at many levels of granular-
ity, parallel C variants have also been investigated. Typically, acceleration of
compute-intensive kernels within sequential programs yields overall speedup
of 2–3X. By creating a parallel algorithm and mapping parallel processes to
a combination of software and hardware, speedups of 10–100 times can be
realized. This is because a parallel algorithm exposes large granularity par-
allelism. Within a sequential algorithm it is difficult to parallelize at more
than the instruction level. In addition, because of Amdahl’s Law, the overall
speedup is limited by the sequential portions of the code, regardless of the
kernel code speedup.

The earliest parallel C compiler was derived from the Occam communicat-
ing parallel process model with explicit parallel and sequential blocks [318],
and has resulted in a commercial product Handel-C. The dbC compiler of [169]
configured the FPGA as a Single Instruction Multiple Data (SIMD) parallel
processor controlled by a microprocessor. The Streams-C compiler [171] sup-
ports parallel processes that can either run on hardware and software along
with buffered FIFO stream communication between processes. Streams-C also
includes in the language, through pragma directives, the notion of multiple
named memory banks, and allows the programmer to map arrays to memory
banks. Streams-C has been commercialized into the Impulse C product. The
Streams-C compiler is also available in open source code on the Los Alamos
reconfigurable computing web site [248]. The SA-C of [54] was a single as-
signment variant of C optimized for image processing operations. The SA-C
language introduced the notion of a convolution window, and the compiler
generated a bank of shift registers to provide efficient pixel neighborhood ac-
cess for local convolutions over a sliding window. The MAP compiler from
SRC Computer (see Chapter 3 Section 3.2.3) translates C and Fortran to
SRC-specific hardware.

Java compilers have also been developed, such as the Forge compiler from
Xilinx, and the SC compiler [397] from BYU. The Forge compiler generates
hardware from sequential Java bytecode. The SC compiler, like Streams-C,
provides a parallel processing model with channel communication between
processes. The Java bytecode of each process in a program is synthesized to
hardware, and FIFO communications channels may be read or written by
processes.

In the signal processing domain, a Matlab compiler was introduced by [192]
which has been also been commercialized. Another project from Leiden Uni-
versity translates static nested loop programs written in Matlab into Kahn
Process Networks. Communications channels between processes are synthe-
sized and the process bodies invoke pre-built IP cores ( [383], [440]). At
the Simulink level, Xilinx Corp. markets the System Generator tool to map
Simulink blocks onto modules from the System Generator library. The Viva
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graphical programming environment [382] is another schematic-oriented visual
interface for composing hardware blocks.

Algorithmic Language Example

Figure 4.3 shows a small algorithmic description in Streams-C [159]. This
module is the first step of a phase modulation sorter that locates binary phase
shift keying (BPSK) signals in wide-band data. The example illustrates many
attributes of algorithmic RC languages. The initial “pragma SC memory”
lines assign arrays to memories. Reconfigurable computing systems offer a
rich collection of memory types, such as SRAM or DRAM external to the
chip, on-chip RAM blocks, or even logic blocks configured as memories. This
example uses external memory “mem 1” and configurable logic block memory
“DP FFT 1”

The first command in the outer loop uses a synchronization construct, the
“sc wait” intrinsic, which allows a process to signal a condition to another
process. In this case, the bpsk process waits for the completion of an FFT
module that performs four FFTs and returns the result into “sum.” The next
line calculating the “Threshold” uses the C type casting mechanism to specify
a 24-bit integer. Since there isn’t a defined word size in configurable logic, RC
algorithms often use non-standard integer sizes, and RC languages extend
the underlying type system with additional integer sizes. Calculation of the
threshold uses a divide by a power of two and a multiply by a power of 2.
Using a power of two for multiplies and divides means that the compiler can
convert an operation that is expensive in configurable logic into a simple shift
operation.

The next pragma asks the compiler to pipeline the loop over “L.” Loop
pipelining allows multiple loop iterations to be overlapped, increasing paral-
lelism and decreasing loop execution time. The next loop checks the input
data (read into “squared data” from the input stream) for the value 1 cast
as a 2-bit integer. If it is a 1, the array “data out” is indexed in six different
frequency bins, and all six bins are concatenated together to form a 12-bit
integer “check’.” If this is non-zero, the event is recorded as the “k’th” event
in an array and the counter “k” is incremented.

In Section 4.3 we will see how the compiler synthesizes this algorithm into
a Register-Transfer-Level hardware description.

4.2.2 Hardware Description Languages (HDL)

Hardware description languages can be used to express computation at the
behavioral, RTL, structural, or even device specific level.

Behavioral hardware description languages allow the designer to describe
the behavior of a circuit, from which many alternative circuit realizations
can be generated. While behavioral languages share many similarities with



58 4 Languages and Compilation

#pragma SC memory mem_1 data_out
#pragma SC memory mem_1 event_data
#pragma SC memory DP_FFT_1 x

for(j=0; j<Q; j++){
// external IP core generates 4 ffts
// when fft IP core ’finishes’ processing, 
// it returns the sum of 4 ffts
  sum = sc_wait(input_signal);

// calculate the threshold
Threshold = (sum/(sc_int24)2048)*(sc_int24)4;

   if (x[i] < Threshold )
    data_out[i] = 0;
   else
    data_out[i] = 1; //strong value
}
// check for BPSK
// if squared_data = 1 check six frequency bins of the
// non squared data for a 1
  for(j=0; j<L; j++){
    squared_data = sc_stream_read(input_stream);
    if (squared_data == (sc_int2)1){
       tmp0 = data_out[j];
       tmp1 = data_out[j/(sc_int32)2 + (sc_int32)1];
       tmp2 = data_out[j/(sc_int32)2 − (sc_int32)1];
       tmp3 = data_out[(FFTSize−j)/(sc_int32)2];
       tmp4 = data_out[(FFTSize−j)/(sc_int32)2 + (sc_int32)1];
       tmp5 = data_out[(FFTSize−j)/(sc_int32)2 − (sc_int32)1];
       check = sc_catenate(tmp5,tmp4,tmp3,tmp2,tmp1,tmp0);
        if ((sc_int12)check != (sc_int12)0){
           event_data[k] = (sc_int32)j; //peak detection
           k++;
        }

  for(i=0; i<L; i++){
#pragma SC pipeline

Fig. 4.3. Phase Modulation Sorter Excerpt in Streams-C
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algorithmic languages described in Section 4.2.1, the term “behavioral lan-
guage” generally refers to the high level modeling and simulation constructs
of existing hardware description languages such as VHDL and Verilog. Like
high level language RC compilers, behavioral compilers synthesize datapath
and control state machines from algorithmic source code, resolving clock cycle
level timing and application-specific micro-architecture. Behavioral languages
include many features of algorithmic languages including function call, loop-
ing constructs, and a sequential instruction stream. The synthesizable subset
of behavioral HDLs usually does not include hardware synthesis of generalized
pointer references (e.g., function pointers) or dynamic memory allocation.

Using the RTL or structural level of hardware description language, the de-
signer can control the selection, instantiation, and interconnection of hardware
modules. The designer can specify the instruction level parallelism within the
circuits, direct the unrolling of loops, and manually pipeline a design. Hard-
ware description languages include VHDL, Verilog, System C, and Handel-C.

VHDL and Verilog are mature, industry standard HDLs, with many ven-
dors offering simulation and synthesis tools. Behavioral, RTL, and structural
levels of description can be used inter-changeably in these languages. System
C is a C++-based library used for modeling system level behavior. As the
base language is C++, software processes can be more easily modeled than in
a more traditional HDL. Synthesis tools for System C are emerging, but do
not approach the maturity of VHDL or Verilog synthesis products. Handel-C
is also a relatively new product in comparison to VHDL or Verilog. Derived
from the hardware Occam compilation research effort from Oxford Univer-
sity [318], Handel-C follows the Communicating Sequential Process (CSP)
model. Handel-C requires the designer to explicitly delineate parallel process-
ing blocks within a process. It includes intrinsics for inter-process communi-
cation, as does System C 2.0.

A VHDL Example

To illustrate characteristics of hardware description languages, we show in
Figures 4.4 and 4.5 a portion of RTL VHDL for the BPSK example. The code
was generated by the Streams-C compiler. The code fragment in Figure 4.4
starts with an “entity” declaration, preceded by references to libraries used
by the entity. Certain standard IEEE libraries for standard logic and numeric
standard data types and operations are provided with VHDL compilers. De-
signers may also include their own libraries. In this example, two additional
libraries “pipeControl” and “strmshift” in the current library (“work”) are
also included. The purpose of the entity declaration is to define the I/O in-
terface of the module. Each port may be either input, output, or both. The
data type of each port must be defined. In this example, there are several
control lines entering the module, such as Clk, Reset and various handshake
signals, as well as interfaces to the FFT, a memory, and an input stream of
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data. The 9-bit “Instruction” input from a controller tells the datapath which
instruction to execute.

In VHDL, there may be many different architectures that implement an
entity. Figure 4.5 shows a fragment of the RTL architecture for BPSK. Within
the architecture, registers may be defined using the signal keyword. A VHDL
process appears next. The process’s parameters are called its sensitivity list.
Each time one of the parameters changes, the process is activated. In this
example, the process is activated at each change to the clock signal or the
reset signal. Within the process body, the bulk of the work is done on the
rising edge of the clock. The code fragment shows a portion of the BPSK
pipeline, which is performed in Instruction 6. There are many pipe stages; the
code shows only 4 of them. Within a pipe stage, all signal assignments occur
concurrently during the clock period. At the end of the clock period the signal
assignments are complete.

Figure 4.6 shows how structural components are expressed in VHDL. The
top level BPSK entity has a “Structure” architecture. There are two com-
ponents, which must be declared first, and whose port list must match their
entity declarations. For example the component bpsk dp’s port list as de-
clared within the Structure architecture must be the same as was declared
in the bpsk dp entity declaration in Figure 4.4. In this example, there is a
second component, a sequencer bpsk seq. The sequencer component declara-
tion illustrates the use of generics in VHDL. The instruction width InstWidth
is a parameter to the sequencer entity. When the sequencer is instantiated,
the “generic map” assigns constant values to the generic parameters. In the
example, the width of the Instruction bus is 9. When each component is
instantiated, there is a “port map” that assigns names defined within the ar-
chitecture Structure to ports of the component. In this case, the same names
have been used for the clock, reset signal, etc. in Structure as were used for
the port names in the bpsk dp and bpsk seq entities.

VHDL is a large and complex language. The intent of this example is
to illustrate a few VHDL concepts (entities, architectures, ports, processes,
components). The reader is referred to VHDL texts such as [28] for a compre-
hensive language tutorial.

The lowest level of description actually specifies and instantiates logic
blocks on the FPGA. This level is typically used by the FPGA vendor who
provides highly optimized hardware macros for use as building blocks. Such a
building block, a logic block configured as a random access memory, is invoked
in Figure 4.7, in the Electronic Design Interchange Format (EDIF) .

4.3 High Level Compilation

Compiling for reconfigurable computers is considerably more difficult than
compiling for conventional processors. With conventional processors, the in-
struction set architectures (ISA) is given. The problem is to map an abstrac-
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LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.all;

use work.pipeControl.all;

use work.strmshift.all;

ENTITY bpsk_dp is

port (

Clk : in std_ulogic; -- System clock

Reset : in std_ulogic; -- System reset

NewInst : in std_ulogic; -- New instruction issued

iBool : out unsigned(0 downto 0); -- instruc cond flag

iDone : out unsigned(0 downto 0); -- instruc done flag

DP_FFT_0_MAR: OUT unsigned(11-1 downto 0);

DP_FFT_0_MDR_I: IN std_logic_vector(24-1 downto 0);

DP_FFT_0_MDR_O: OUT std_logic_vector(24-1 downto 0);

DP_FFT_0_W_EN: OUT unsigned(0 downto 0);

DP_FFT_0_R_EN: OUT unsigned(0 downto 0);

DP_FFT_0_Stall: IN unsigned(0 downto 0);

mem_1_MAR: OUT unsigned(32-1 downto 0);

mem_1_MDR_I: IN std_logic_vector(64-1 downto 0);

mem_1_MDR_O: OUT std_logic_vector(64-1 downto 0);

mem_1_W_EN: OUT unsigned(0 downto 0);

mem_1_R_EN: OUT unsigned(0 downto 0);

mem_1_Stall: IN unsigned(0 downto 0);

input_stream_data : IN std_logic_vector(1 downto 0);

input_stream_en: OUT unsigned(0 downto 0);

input_stream_err: IN unsigned(0 downto 0);

input_stream_open: OUT unsigned(0 downto 0);

input_stream_close: OUT unsigned(0 downto 0);

input_stream_rdy: IN unsigned(0 downto 0);

input_stream_eos: IN unsigned(0 downto 0);

input_signal_data: IN std_logic_vector(23 downto 0);

input_signal_rdy: IN unsigned(0 downto 0);

input_signal_ack: OUT unsigned(0 downto 0);

output_signal_data: OUT std_logic_vector(31 downto 0);

output_signal_en: OUT unsigned(0 downto 0);

standard_initiate_insignal_data:

IN std_logic_vector(0 downto 0);

standard_initiate_insignal_rdy: IN unsigned(0 downto 0);

standard_initiate_insignal_ack: OUT unsigned(0 downto 0);

Instruction : in unsigned(8 downto 0);

Stall : out std_logic

);

end bpsk_dp;

Fig. 4.4. BPSK Entity Declaration in RTL VHDL
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architecture RTL of bpsk_dp is

signal sum_p5: signed(23 downto 0);

signal Threshold_p6: signed(23 downto 0);

signal j_p11: signed(31 downto 0);

signal k_p12: signed(31 downto 0);

signal squared_data_p13: signed(1 downto 0);

signal tmp0_p14: unsigned(1 downto 0);

...

begin

dp_clocked_process: process(Clk, Reset)

begin

if (Reset = ’1’) then

...

elsif rising_edge(Clk) then

...

if Instruction(16#6#) = ’1’ then

iDone <= PipeDone_i;

if pipeEnable_i(16#0#) = ’1’ then

squared_data_p13 <= signed(input_stream_data);

end if;

if pipeEnable_i(16#1#) = ’1’ then

if unsigned(squared_data_p13) = unsigned(to_signed(1, 2)) then

suif_tmp8_p48 <= to_unsigned(1, 1);

else suif_tmp8_p48 <= to_unsigned(0, 1);

end if;

end if;

if pipeEnable_i(16#2#) = ’1’ then

if suif_tmp8_p48 = 1 then

suif_tmp_p39 <= sc_asr (j_p11,

to_integer(to_unsigned(1, 32)) );

end if;

if suif_tmp8_p48 = 1 then

suif_tmp14_p54 <= to_signed(4096, 32) - j_p11;

end if;

end if;

if pipeEnable_i(16#3#) = ’1’ then

if suif_tmp8_p48 = 1 then

suif_tmp3_p43 <= suif_tmp_p39 + to_signed(1, 32);

end if;

if suif_tmp8_p48 = 1 then

suif_tmp4_p44 <= suif_tmp_p39 - to_signed(1, 32);

end if;

if suif_tmp8_p48 = 1 then

suif_tmp0_p40 <= sc_asr (suif_tmp14_p54,

to_integer(to_unsigned(1, 32)) );

end if;

if suif_tmp8_p48 = 1 then

suif_tmp11_p51 <= signed(mem_1_MDR_I(31 downto 0));

...

end if;

end if;

end if;

end process;

Fig. 4.5. BPSK Pipeline in RTL VHDL
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ENTITY bpsk_top is

port (

Clk : in std_ulogic; -- System clock

Reset : in std_ulogic;

...

);

architecture Structure of bpsk_top is

COMPONENT bpsk_dp

port (

...

);

COMPONENT bpsk_seq

generic (

InstWidth : Positive -- Instruction width in bits

);

port (

...

);

...

begin -- Structure

seq: bpsk_seq

generic map (

InstWidth => 9)

port map (

Clk => Clk,

Reset => reset,

NewInst => NewInst,

iBool => iBool,

iDone => iDone,

Inst => inst);

dp: bpsk_dp

port map (

Clk => Clk,

Reset => reset,

...

);

end Structure;

Fig. 4.6. BPSK Structure Instantiation in VHDL
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(cell RAM16X1D (cellType GENERIC)

(view view_1 (viewType NETLIST)

(interface

(port D (direction INPUT))

(port WE (direction INPUT))

(port WCLK (direction INPUT))

(port A0 (direction INPUT))

(port A1 (direction INPUT))

(port A2 (direction INPUT))

(port A3 (direction INPUT))

(port DPRA0 (direction INPUT))

(port DPRA1 (direction INPUT))

(port DPRA2 (direction INPUT))

(port DPRA3 (direction INPUT))

(port SPO (direction OUTPUT))

(port DPO (direction OUTPUT))

)

)

)

Fig. 4.7. Instantiating a RAM Block, EDIF format

tion of the ISA as represented by a high level programming language onto
a concrete ISA. With superscalar architectures particularly, much of the op-
timization occurs at run time in the micro-architecture that implements an
ISA, simplifying the job of the compiler.

In contrast, the FPGA has no instruction set architecture. The task of the
algorithmic/behavioral compiler is to devise a micro-architecture customized
to the specific application, including datapath (the arithmetic units and reg-
isters), memory hierarchy, I/O, and sequencer (to control the sequence of
datapath operations, memory access, and I/O). From the data types used
and the operations within a program, the compiler must generate function
units to execute the primitive operations. Often there is a very large module
library from which to select function units: should the adder be 8-, 16-, 32- or
64-bit? Fixed precision, fixed point, floating point? Should a serial, pipelined,
or parallel implementation be chosen? Trade-offs between area and clock speed
affect pipeline generation strategy.

Given the arrays and other variables in a HLL program, the compiler must
decide where each variable resides. As seen in Chapter 3, reconfigurable com-
puting systems include a complex memory hierarchy ranging several orders
of magnitude in size and latency, making the trade-off space very large. Once
variables have been assigned locations, the compiler must generate hardware
to read and write memory to/from on-chip registers and function units. High
speed I/O such as a data stream from an A/D converter, imposes hard real-
time constraints on the design.



4.3 High Level Compilation 65

The combination of these constraints and choices makes compiling algo-
rithmic languages to reconfigurable systems a very difficult multi-objective
combinatorial optimization problem. Equally difficult tasks are required for
RTL synthesis to logic gates, mapping gates onto configurable logic blocks,
placing virtual logic blocks to physical resource, and routing among the logic
blocks.

In this section we discuss high level compilation. RTL synthesis and low
level mapping, placement and routing are described in Section 4.4.

4.3.1 Compiler Phases

RTL/
Structural

Spec

Code Generation

Code
Algorithmic

Parsing

Scheduling

Optimization

Analysis

Fig. 4.8. Steps of Algorithmic/Behavioral Synthesis

Figure 4.8 outlines the compilation steps from algorithmic code to RTL
level. The first phase simply parses the high level language syntax into an
Intermediate Representation (IR) that includes symbol tables to store the
program’s variables and data types, and an Abstract Syntax Tree (AST) rep-
resentation of the executable code. In the analysis/optimization phase, control
and data flow graphs are created for each subroutine. Data and control depen-
dencies are identified among statements within a subroutine. Optimizations
are then applied to the graph, which may require additional analysis. The
scheduling phase uses the optimized flow graphs to define the datapath and
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associated control, typically at a subroutine granularity. The scheduled graph
is then output to a target language, often a RTL/structural HDL.

We next discuss in more detail the analysis/optimization and scheduling
phases of compilation.

4.3.2 Analysis and Optimizations

The analysis phase creates a control/data flow graph representation of each
subroutine. The control flow graph captures the sequence of operations. For
example, if-statements and loops are converted into a graph whose edges
model the flow of control through the conditionals and branches. The nodes of
the control flow graph are data flow graphs that model the data dependencies
of basic blocks, the straight line code segments. Many compilers use a Static
Single Assignment (SSA [23]) representation, in which re-assignments to the
same variable within a block are replaced by assignments to new temporaries.
At the end of the block, a “phi-node” is inserted for each variable that was re-
assigned in the block. The phi-node selects among all possible re-assignments
to the variable, so that the correct value is propagated out of the block. The
use of SSA exposes additional instruction level parallelism into the data flow
graph.

Another technique to expose additional instruction-level parallelism is
called if-conversion. Rather than representing an if-statement with a control
flow graph, the if-statement is converted to a straight-line sequence of guarded
(or “predicated”) statements. The guard is the if-condition for all statements
within the true-branch of the if-statement, and the negation of the if-condition
for the else-branch statements. When there are nested if-statements, the if-
condition at the inner levels of nesting can become quite complex. Often a
Binary Decision Diagram (BDD [402]) format is used to express complex con-
ditional expressions.

Once the AST has been translated into a control/data flow graph in a
format that exposes instruction level parallelism, standard compiler optimiza-
tions can be performed ( [301]). Optimizations are semantics-preserving trans-
formations that (hopefully) improve the quality of the generated hardware.
These optimizations,examples of which are shown in Figure 4.9, include con-
stant propagation, common sub-expression elimination, strength reduction,
dead code elimination, and code motion to move loop invariant code outside
the loop.

Another parallelism-exposing transformation is loop unrolling, as shown in
Figure 4.10. Loop unrolling, in conjunction with other transformations such
as constant propagation, dead code elimination, and the transformation of the
arrays A and B into register banks, can transform the loop into four simple
assignment statements that can occur in parallel.
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Constant Propagation
C = 1; . . . C + D =⇒ C = 1; . . . 1 + D

Common Sub-expression Elimination
A = C + D; B = E × (C + D) =⇒ A = C + D; B = E × A

Strength Reduction
A ∗ 2 =⇒ A << 1

Dead Code Elimination
A = 5 . . . A = 6;=⇒ A = 6

Loop Invariants
for(i . . .){A = 10; . . .} =⇒ A = 10; for(i . . .){. . .}

Fig. 4.9. Standard Compiler Optimizations

i < 4?

i = i+1

A[i] = B[i]

yes

no

i = i+1

A[i] = B[i]

i = i+1

A[i] = B[i]

i = i+1

A[i] = B[i]

i = i+1

A[i] = B[i]

A_1 = B_1 A_2 = B_2 A_3 = B_3 A_4 = B_4

Fig. 4.10. Loop Unrolling

4.3.3 Scheduling

Scheduling is the process of assigning an ordering, clock cycle by clock cycle, to
the operations of the control/data flow graph. The earliest that an operation
can be scheduled is after all operations on which it depends (either in control
flow or data dependence) have been scheduled (As Soon As Possible – ASAP
– scheduling). Ideally it should be scheduled before operations that depend on
it could initiate (As Late As Possible – ALAP – scheduling). . The classical
technique of force-directed scheduling [322] attempts to find the best time to
schedule an operation within that window.

The scheduling of an operation also depends on the number of clock cycles
required by that operation to complete. Many operations, such as comparisons
or small adders, complete within a clock cycle. Other operations take multiple
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clock cycles. Often multi-cycle operations are pipelined, so that new operands
can be introduced every clock cycle, and after an initial latency, a result is
available every cycle. The instruction selection phase within the scheduler
chooses among available alternative implementations of the operators.

To complicate the scheduling process even further, the length of a clock
cycle is not a single fixed time for each different sort of FPGA. The flexibility
inherent in the FPGA architecture makes it possible to create circuits that
range from 5 up to 500 MHz. For a given design, the amount of work scheduled
within a clock cycle determines the clock cycle length. Unfortunately, the final
clock cycle length is only determined in the last phase of physical synthesis
during Place and Route. At the relatively high level of the compiler in which
scheduling of behavioral code occurs, heuristics must be used to select opera-
tors such that appropriate trade-offs are made between clock frequency, area,
and throughput. Often directives from the programmer or circuit designer are
used to help navigate this complex optimization space.

The most important optimizations a reconfigurable computing compiler
can perform for FPGA-based designs are instruction level parallelization, us-
ing transformations discussed above, and pipelining. This is because attainable
clock frequency on an FPGA lag modern microprocessors by at least a factor
of ten. Spatial parallelism must be exploited to compensate for the slow clock
speed.

When instruction level parallelism is exposed, the compiler can sched-
ule many operations in parallel. Similarly, when a sequence of operations is
pipelined, many levels of the pipeline operate in parallel. Pipelining can occur
within individual operations, as for example, with a pipelined multiplier or
floating point unit. Pipeline stages can be inserted by the compiler in order
to increase clock rate – when fewer interdependent operations are scheduled
in the same clock cycle, the frequency can be increased. The trade-off is in
area: pipelining introduces registers to hold intermediate values.

Pipelining can also be applied at the loop level. The goal of loop level
pipelining is to initiate a new loop iteration before the previous iteration is
complete. It is of course desirable to start a new iteration every clock cycle.
This may be possible if the loop iterations are independent and enough delay
registers are introduced. Iterative modulo scheduling [249] is a well known
technique for pipelining loop iterations.

4.4 Low Level Design Flow

The purpose of low level design flow is to pass the register transfer level or
structural code through a Computer Aided Design (CAD) tool chain that
ultimately generates the FPGA’s configuration bit stream (see Figure 4.11).



4.4 Low Level Design Flow 69

4.4.1 Logic Synthesis

The first step in that sequence is logic synthesis, which translates the register-
transfer level description of a hardware design into an optimized gate level
representation. Since the mid-eighties, logic synthesis has emerged as an es-
sential part of the CAD tool suite, and is the subject of many texts, e.g., [289].
A brief overview of the logic synthesis function follows.

In logic synthesis, two broad categories of digital circuits may be syn-
thesized, combinational or sequential. The outputs of a combinational circuit
depend only on current inputs. Multiplexers, decoders, and boolean equations
are examples of combinational logic. A sequential circuit requires feedback, as
it retains state after the inputs have been removed. The state is updated based
on a clock. Latches and flip-flops are the building blocks of sequential circuits,
from which registers, counters, and state machines can be constructed.

For combinational circuits, the logic synthesis problem is to

• generate a set of boolean equations from the RTL/structural specification
• transform the equations into two level (sum of products or product or

sums) logic or multi-level logic
• minimize the two (multi) level circuit relate to a cost model.

Sequential circuit synthesis is concerned with finite state machines. The
logic synthesis algorithms must

• specify or identify state machines in the RTL/structural description
• minimize the number of states
• encode the states in a compact binary representation
• optimize the resulting two (multi) level logic

The challenge of logic synthesis is to optimize trade-offs in area, speed,
and power in order meet design constraints of the system. Optimization can
occur at the technology-independent level or be targeted to a particular im-
plementation technology.

Technology independent optimizations define an area cost model based
on the number of literals in the set of boolean equations, and a delay cost
model based on the length of the longest dependency chain in the set of equa-
tions. They attempt to reduce redundant logic and common sub-expressions.
Technology dependent optimization use the cost models associated with a par-
ticular library of mappings from general logic gates into a set of pre-defined
modules.

Technology dependent optimizations are often performed during the tech-
nology mapping phase in which the general logic gates are mapped to k-input
Look Up Tables (LUT), the basic logic cell of FPGAs. Conventional tech-
nology mapping uses a limited set of library cell elements. Each cell has a
cost, and optimization algorithms look for optimal covering of the general
logic gates onto the library cells. However, since a k-input configurable logic
block can be configured into an arbitrary boolean function of k inputs, the
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conventional approach would lead to a very large library of cells. Therefore,
algorithms specifically designed to map gates onto k-input LUTs have been
developed (see, for example, [156]).

Once a design has been expressed in terms of a library specific to an
FPGA, the next several stages of the design flow include technology mapping,
logic placement, the routing of connections among the physical logic resources,
and programming data generation. Figure 4.11 illustrates this low-level design
flow. Though a detailed description of these particular design operations are
out of the scope of this book, the remainder of this section will describe each
phase in general terms.

Signal Routing

Programming Data Generation

Logic Placement

Configuration
Bitstream

Technology Mapping

RTL/
Structural

Spec

Logic Synthesis

Fig. 4.11. Low-Level Design Flow for FPGA Design Mapping

For a detailed discussion of this process, we recommend [50], which pro-
vides an excellent overview of the subject and then provides considerable
details on each design flow step from technology mapping to routing. Further,
they describe how to represent FPGA resources for use in CAD algorithms,
how to estimate circuit timing and costs, and how they implemented their own
FPGA tool framework (VPACK, T-VPACK, VPR) and FPGA architectural
exploration tools—tools that continue to be used by academia [430] and the
commercial sector [260,261].

4.4.2 Technology Mapping

When a design has been synthesized automatically or manually into a set of
design primitives that the low-level FPGA tools understand, the first phase
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of converting a design expressed in these primitives into programming data
for a particular reconfigurable logic device is called technology mapping. The
technology mapping tools convert the netlist of library primitives into a netlist
of physical device resources that efficiently implement equivalent functions.

The technology mapping approaches vary depending on the specific archi-
tecture used by a reconfigurable logic device, but a commonly used approach
used for FPGAs is as follows. First, conventional logic optimization tech-
niques are used to prune redundant logic from a design as well as to simplify
the logic. Even though some level of optimization may have been performed
during design synthesis, frequently additional optimization may be possible,
especially, if multiple design units that have been independently synthesized
are being integrated together. For instance, a pre-synthesized module that
performs many functions may be hard-wired to perform a single function for
a given design, often resulting in redundant logic that can be optimized away
by the low-level FPGA tools.

Next, the mapping software uses an algorithm to cover the netlist of library
primitives with a set of logic resources that perform an equivalent function.
Several effective algorithms for performing the netlist covering operation using
four-input LUT logic elements have been developed, including Chortle [158],
Chortle-crf [157], DF-Map [88], FlowMap [87], and DAG-Map [232]. These
algorithms consider how to pack logic functions in LUTs based on constraints
such as area, circuit speed, and algorithm speed. As a recent article [233] by
Kao and Lai illustrates, research in the area of technology mapping continues
to progress.

Finally, the tools perform a clustering process on the netlist of FPGA
physical resources to determine how to map the used resources to the larger
clusters of logic found in FPGA logic blocks. This is done to maximize the
utilization of the FPGA logic blocks as well as to take advantage of internal
logic block routing and thus minimize the use of slower, less efficient general
programmable routing structures. As with LUT mapping, a significant amount
of research has been and continues to be performed in this area [10, 89–91,
191,354]

4.4.3 Logic Placement

During the next phase, logic placement, CAD tools determine an efficient
placement for each mapped logic block among all of the possible physical loca-
tions for that block within the reconfigurable logic device. This placement can
be driven by constraints such as minimizing wire length, ensuring routability
within the array, and/or maximizing circuit performance (i.e., timing-driven
placement). As discussed in [50], min-cut, analytic, and simulated annealing
approaches are commonly used to perform placement.

Simulated annealing [361] appears to be the algorithm of choice for most
FPGA implementation tools [388]. With this method, the algorithm is given
an initial placement and then swaps the placement of pairs of logic blocks,



72 4 Languages and Compilation

evaluating the swaps using some predefined cost function. With simulated
annealing, an annealing schedule is used to determine the rate at which more
costly moves will be accepted as a way of avoiding local minima. As the
schedule progresses in time, fewer and fewer moves that lead to a higher
cost will be accepted. This technique produces good placement quality at
the expense of long execution times [387]. Further, the technique does not
take advantage of circuit hierarchy to improve placement. In [352], a recursive
clustering processes performed before annealing improved executing time, but,
again, the natural design hierarchy was not used.

In an effort to improve design time through design reuse, many FPGA
designs have started to use pre-defined macros, but simple simulated annealing
techniques do not effectively deal with these circuit blocks. Tessier developed
a placement system for the Frontier tool [388] that performs floorplanning
of macro blocks through clustering and bin placement techniques and then
uses low-temperature simulated annealing on individual macro blocks only if
routability or circuit performance problems exist.

4.4.4 Signal Routing

The final step in low-level FPGA design implementation is routing the signals
between inputs and outputs of the placed logic blocks by appropriately con-
figuring pass transistors, buffers, and multiplexers. As pointed out in [50], two
generals styles of routers exist. The first style performs the routing process in
two steps. First, a global routing process is performed which determines the
logic block pins to be used for a net and the routing channels to be used. A
detailed routing process—the second step—then selects the actual wires used
within the routing channels for each net.

The second general style performs both global and detailed routing as a
single combined step. [50] suggests that this second style of routing is more
appropriate for FPGAs since it tends to avoid the constraints that a separate
detailed routing step encounters. Unlike ASICs, FPGAs’ routing resources are
predefined so the detailed routers have limited flexibility in how to perform
routing within the FPGAs’ routing channels chosen by the global routers.

Routers can be driven by different constraints. Some of the more successful
algorithms tend to consider both timing and routing congestion constraints.
Many of these routers internally have some form of maze router [253] which
implements Dijkstra’s shortest (or minimum cost) path algorithm [123] to
route between logic resources where the costs of each route are related to some
balance of timing and congestion or routability constraints. The PathFinder
algorithm [133] is an excellent example of such a router and has been used
as the basis other routing algorithms, including the one used in the VPR
timing-driven router described in [50]. With this router, timing critical nets
are allowed to take the shortest paths despite congestion. Less critical nets are
forced to take less congested paths. During each iteration of the algorithm, all
of the nets are ripped up and rerouted in the same order, but the costs assigned
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to each net are modified to balance the needed speed of the connection with
the congestion found in the routing resources. The router completes when all
routes are valid and timing constraints have been met.

4.4.5 Configuration Bitstreams

The final step in the low-level design flow is the generation of the actual data
used for programming the FPGA or other reconfigurable logic device. These
configuration bitstreams, as described in Chapter 2, dictate how the various
resources are configured—turning off or on pass gates, turning off or on routing
buffers, selecting specific multiplexer inputs, determining the contents of LUTs
and RAMs, etc. The programming data itself may also contain checksums
or CRC values for checking data integrity and, in the case of Xilinx and
possibly other families, commands for controlling the configuration process
and parameters are intermingled with the data.

Though the above function is not challenging when compared with the
previous steps of the design flow, some interesting opportunities exist for
tools that can create and manipulate configuration bitstreams. An excellent
example of this are the JBits tools and application programming interface
(API) [186] created by Xilinx for their XC4000, Virtex, and Virtex-II FPGA
families. The JBits API allows Java programmers to generate bitstreams by
directly specifying how individual resources can be configured. For instance,
the values for a specific LUT could be set, a specific input to a multiplexer
could be selected, buffers and pass transistors could be turned on or off, etc.
For Virtex, Xilinx also provided an additional API on top of JBits called
JRoute [235] that would allow Java programmers to automatically create and
remove connections between logic inputs and outputs. Though not a sophisti-
cated, timing-driven router, the JRoute router greatly simplified the creation
of circuit designs when operating at the low-level of abstraction provided by
JBits.

Besides providing a way to create new bitstreams or modify existing ones,
JBits also provided a method for creating partial bitstreams for Virtex and
Virtex-II, enabling designers to craft hardware designs that could be dynam-
ically reprogrammed during execution. For instance, with JBits, constants
located in LUTs or Block RAMs could easily be changed to other values by
loading the chip with a series of partial bitstreams that affected only those
areas of the chip—a method employed in [321] for changing keys or modes
in a high-speed DES encryption/decryption module implemented in a Xilinx
Virtex FPGA. Likewise, parts of circuits can be added or removed while the
hardware is executing. One of the more exotic uses of run-time reconfigura-
tion and JBits that actually adds and removes circuitry is described in [269],
where the temperature of the FPGA die was being monitored by dynami-
cally configuring, operating, and then removing individual instances or arrays
of specialized thermal sensor circuits after executing some function on the
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FPGA. JBits has also been coupled with evolutionary algorithms to evolve
circuits in hardware (e.g., [250,259,268,367]).

4.5 Debugging Reconfigurable Computing Applications

Like any other hardware or software system, reconfigurable computing appli-
cations will often fail to operate as expected. Traditional symbolic debuggers
and other software tools can be used to debug problems with the software
portion of a reconfigurable computing application, but the hardware portion
of the application will require different tools. Over the short history of re-
configurable computing, several significant, though largely unnoticed, efforts
have striven to provide some level of debugging support for reconfigurable
computing applications. We will provide only a brief overview of these efforts.
The reader is encouraged to refer to [182] for a more complete overview.

4.5.1 Basic Needs for Debugging

Several features are required to provide a productive debugging environment
for hardware. These include:

Observability: The ability to determine the values of signals and state ele-
ments in a circuit.

Controllability: The ability to set the state of circuit to a desired value.
Execution Control: The ability to control the design’s clock or clocks as

well as control the design’s inputs.

Observability provides the designer with the current state of the circuit so
its operation can be understood. Controllability allows the designer to force
the circuit into specific states so the designer can experiment with how the
circuit behaves as well as allowing checkpointing for restarting the circuit at
specific points in its execution. Execution control is important for efficient
debugging since it can provide the designer with precise, interactive control
over how many cycles a design executes, making it possible for the designer
to more readily localize design errors temporally. Another possible form of
execution control, hardware breakpointing, can allow the designer to stop a
design’s execution when certain conditions occur that may be related to a
design problem.

In addition to these specific features, the effectiveness of a debugging sys-
tem for hardware also depends on several other features including:

Debugging Data Bandwidth: This affects how much design state can be
transferred between the reconfigurable computing system and its host. As
an example of how this can be important, consider a system with with poor
debugging data bandwidth. With this system, very little design state can
reasonably be observed without significantly slowing system execution.
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System Execution Speed: This quality is a relevant issue since it clearly
impacts how long the debugging task will take to complete as well as
how realistic the execution environment appears to the application being
debugged.

Instrumentation Costs: These refer to the costs in terms of extra hardware
required for providing the observability, controllability, and execution con-
trol features to the debugging system. This instrumentation can be done
within the reconfigurable logic device’s design, within the application’s
design itself, or at the configurable computing system level. When the
devices and systems do not provide enough observability, controllability,
and/or execution control, the configurable computing application itself
can be instrumented to provide improvements in these areas, but often at
significant cost in terms of circuit area and/or speed.

Ease of Use: Ease of use for debugging features must be high, otherwise, a
designer will not be very productive. This includes automating the map-
ping of hardware state to the designer’s hardware design and displaying
the information in a intuitive way. Automation can also help the designer
by automatically instrumenting circuits to improve some debugging char-
acteristic, significantly reducing the designer’s burden.

4.5.2 Debugging Facilities

A number of devices, systems, and design tools used in reconfigurable com-
puting have included some support for debugging. This section will provide a
brief overview of this work, focusing mainly on features of devices, systems,
and design tools that provide improved observability, controllability, and/or
execution control to the designer. Again, refer to [182] for a more complete
discussion of many of these debugging helps.

Devices

With regards to devices and observability, two main features are worth not-
ing. First, the boundary scan feature (IEEE Std. 1149.1) provided in many
of todays ICs can provide observability for the I/O pins of devices. Often re-
ferred to as JTAG for the people who defined the standard (the Joint Test
Action Group), FPGA vendors have extended the interface to allow for con-
figuring FPGAs devices, reading back this programming data once the device
is programmed, and for providing another interface for interacting with the
device’s user logic. The JTAG interface to user logic has become a common
way for logic analyzers embedded within FPGA circuits to communicate with
external equipment [12, 423] (see the “Hardware Debugging Tools” section
below). JTAG and special debugging interfaces have been added to FPGAs
to support debugging of the on-chip embedded processors as well [426,428].

One of the most beneficial observability features built into FPGA devices
has been Xilinx’s configuration readback feature. Not only does it allow the
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device’s programming data to be read out but it also can be used to sample
the state of RAMs and flip-flops within the devices.

With regards to controllability, the JTAG interfaces allow the I/O signals
to be forced to certain states, but this is fairly limited since most of the
flip-flops and signals reside internal to the design. The device programming
or configuration interface provides some level of controllability for on-chip
RAMs for most FPGAs. Flip-flop state can be altered using configuration
and flip-flop resets in most FPGAs, but the ability of Virtex-II [424] and later
Xilinx FPGAs to initialize flip-flop state independently from the set-reset logic
provides a significantly improved degree of controllability for FPGAs since the
design itself does not have to be altered in some way to force flip-flops to a
chosen state.

Though devices do not directly provide execution control facilities, some
FPGAs provide clocking resources that can aid in debugging. For instance the
PLLs, DLLs, and DCMs of Altera’s and Xilinx’s latest FPGAs can be em-
ployed in on-chip circuits to provide clock single-stepping or even hardware
breakpointing [182]. Also, the introduction of clock buffers in Virtex-II that
allow clocks to be stopped in a clean, predictable manner is helpful. Addition-
ally, on-chip clock multiplexers on Virtex-II and later FPGAs, which allow
for clean switching between clock sources on chip, can potentially be used to
test a design with multiple clock sources or change back and forth from a con-
tinuously running clock to a clock that can be operated under single-stepped
control.

Reconfigurable Computing Systems

Several reconfigurable computing systems have provided some level of debug-
ging support for observability, controllability, and/or execution control. The
level of support in most reconfigurable computing (RC) systems, though, has
been minimal, adding to the challenges of developing and deploying recon-
figurable computing applications. The next several paragraphs describe the
debugging support provided with several of these systems.

RC Systems with Some Debugging Facilities

A few RC systems—including Splash 1 and 2 [26], Wildforce [21,160], Pamette
[366], and SLAAC1-V [39]—have provided observability through the ability
to read back the configuration bitstreams of the Xilinx FPGAs. As mentioned
above, this data provides user state information that can be used for debug-
ging. Reading this data back requires hardware support for performing the
configuration reads and software support in the form of at least an API for
accessing the data. Providing an additional level of help in debugging, Splash
2 and Wildforce provided tools for automatically extracting symbols related
to flip-flop state from a user’s design and associating them with locations in
the readback bitstream. As another debugging aid, the run-time systems of
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Splash 2 and Pamette also provided support for symbolically retrieving the
values of state elements and signals from configuration data readback. At the
cost of some additional logic and design speed, several of these systems also
provided direct access to the on-board memories from the host to ease ap-
plication debugging and to allow easy data communication between the host
and the application.

A large majority of RC systems provide little or no support for controllabil-
ity. As exceptions, the SLAAC1-V board (and a few others) did support Virtex
partial reconfiguration, which provides controllability of RAM elements only,
and various boards based on the Xilinx XC6200 FPGAs provided complete
controllability of the state elements (flip-flops). The support in both cases is
limited to low-level access to the configuration mechanisms of the FPGAs. No
high-level tools were included with the boards to provide users with a way of
using partial reconfiguration for debugging controllability.

Unlike more recent systems, most of the above RC boards and systems
provided some form of execution control. Typical execution controllability
features for the boards mentioned above included single-stepping, multi-step-
ping, starting, and stopping clocks. Single-stepping means that a system can
be executed one cycle at a time where, with multi-stepping, the system can
be executed for a specific number of clock cycles before stopping. SLAAC1-
V also included the ability to halt the system clock based on user signals.
The run-time environments bundled with Splash 2, Pamette, and the SLAAC
board family provided the designer with direct control over the clock so it can
be started, stopped, or stepped.

SoftProbe

Beyond single-stepping and other useful debugging features, National Semi-
conductor’s CLAy SDK board [307] provided a novel method for providing
design observability. National’s SoftProbe run-time environment allowed de-
signers to sample the outputs of internal logic cells by routing signals from
each of these outputs to a specific I/O pin on the FPGA so each value could
be sampled individually. Before a debugging session (i.e., off line), a bitstream
was created for each output signal to be sampled. Each bitstream would par-
tially configure the CLAy FPGA to route the logic cell output at run-time
to the predefined I/O pin. Since the partial reconfiguration used in this situ-
ation could change the operation of the circuit, the clock for the FPGA was
stopped during the sampling operation so that no corrupt data was latched
into any flip-flops. Further, the partial bitstreams could not route through any
cells that were being used to create latches by cross-coupling gates. If signals
were routed through these cells, the state held in the latch would be lost. To
restore the design to its original form, the FPGA was fully reconfigured with
its original bitstream.
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Teramac

The HP Teramac project [18] added several unique observability and con-
trollability features to their hardware and software system. Considering the
entire system—from the FPGAs to the run-time execution environment—was
designed at HP Labs, the designers were able to create a system that had
unprecedented levels of observability and controllability. In the HP PLASMA
FPGA, [19] the LUT outputs, register contents, and the system’s memories
were all available to the designer to observe through the tmac [208] run-time
and debugging system. The tmac system with some additional tools allowed
users to automatically correlate logical design signals and components with
their sampled state across a system with as many as 16 boards.

Going beyond simple hardware observability, the tmac run-time environ-
ment could also reconstruct logical signal values that do not have physical
counterparts. Often when using LUT-based logic, a group of signals and gates
will be mapped to a LUT and not be observable. Teramac’s run-time sys-
tem took the known state of signals and partially simulated the logical (as
opposed to the physical) design to reconstruct these signals which have been
folded into LUT logic, thus, providing the designer with a significant increase
in the design’s observability. This concept would later inspire the hardware
debugging framework for JHDL [182,223].

With these observability capabilities, tmac also provided the designer with
the ability to create custom graphical windows for interacting with the design
and displaying design state as well as the ability to filter the state information
to select interesting data. For instance, this capability was used to graphically
display the progress of a simulated annealing partitioning algorithm as it
executed. In another case, the HP designers were able to use the filtering
capability to display disassembled versions of programs as they executed on a
processor implemented on Teramac [66]; this was, of course, much easier than
observing and deciphering the machine code that the processor executed.

Unlike the run-time software provided with other RC systems, the tmac
run-time system for Teramac allowed the user to modify arbitrary flip-flop
values at run-time. Since no primary inputs to the system actually existed,
this controllability technique was necessary to provide inputs to the system. As
mentioned above, the designer could even configure the run-time environment
to provide a graphical interface for controlling state values while executing
and debugging.

In addition to these observability and controllability features, Teramac
provided the designer with the ability to specify a hardware breakpoint signal
that, when asserted, would halt system execution. This differs from other RC
systems which simply provided the API for such a feature.

InnerView

The InnerView Hardware Debugger [196] was part of the Virtual Wires [32]
logic emulation project. The system required the user to instance their designs
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into a special design wrapper to use the debugging facility. As in Splash 2, the
InnerView debugger used the configuration readback capability of the system’s
Xilinx FPGAs to sample the state of flip-flops and then display their values.
The designer could define conditions within the hardware that would trigger
readback operations. To preclude having to re-build the hardware for each
trigger condition, all of the trigger functions were inserted into the hardware
at one time and the system provided a way of masking the triggering of
readback on a trigger by trigger basis.

Hardware Debugging Tools

For the last several years, both Altera and Xilinx have provided some hard-
ware debugging tools that are independent of the system being used, assum-
ing only that the system provides access to the FPGAs’ JTAG interfaces.
Specifically, Altera and Xilinx have been offering embedded logic analyzer
systems—called SignalTap [12] and ChipScope [423], respectively—to provide
FPGA designers with the ability to sample the state of their circuits under
certain conditions. User designs are instrumented with these logic analyzers
during either design entry or the low-level tool flow. Later versions of these
tools—SignalTap II and ChipScope Pro—support incremental changes in the
signals to be monitored, requiring only a partial recompilation of the design
(SignalTap II) or a simple reroute of some signals in an already placed and
routed design (ChipScope Pro). ChipScope Pro also provides a bus analyzer
for on-chip PowerPCs or embedded Microblaze processors to help a designer
debug processor bus related issues. To minimize the impact on designs, the
FPGAs’ JTAG ports are used to communicate with and control these analyz-
ers. Though useful, these tools are not generally integrated into RC systems’
development systems or run-time environments, requiring additional burdens
to use as well as some additional hardware expertise.

Reconfigurable Computing Application Development Systems

Some of the larger challenges for debugging RC applications stem from the fact
that the application development environment and the application execution
environments are generally different and separate, complicating the design
verification and debugging processes. Designers generally use a hardware de-
scription language (HDL) or schematic capture to describe RC applications
and then use existing commercial simulators and synthesis tools for validat-
ing and implementing the designs, respectively. Then, when the hardware is
ready for execution, the designer controls the RC system using a program
and device drivers which have been developed separately from the hardware
description. These software components are ordinarily created using common
software languages (C, C++, etc.) and tools (compilers, linkers, assemblers,
etc.). The RC development environment usually comes with libraries that
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provide the developer with an application programmer’s interface (API) for
interacting with the system.

This separation between the hardware design and execution environments
results in several problems. First, the effort of validating an RC application in
simulation may not significantly contribute to the effort required for validat-
ing the application in hardware—separate validation techniques and software
must be written to perform much the same function. Second, controlling the
simulation model and the actual hardware identically may be hard due to the
differences in the simulation and hardware execution environments.

This suggests that there might be some benefit in tying the simulation and
hardware execution environments together within a single hardware debugger
for RC systems. This section will describe a few research projects that have
attempted to tie these environments together, specifically, JHDL [181,182] and
Sea Cucumber [204, 205]. We also briefly describe the debugging capabilities
of JBits—a very low-level application development tool—and a commercial
debugging tool that has been developed to integrate with HDL synthesis.

JHDL

Though JHDL was originally conceived as a design tool for run-time recon-
figurable systems [42], it later developed into a flexible, structural design tool
enabling designers to create high-performance, tightly crafted hardware such
as parameterized modules [221]. As a part of the design concept, JHDL was
organized so that it could be used for the development and simulation of RC
applications as well as an execution environment for these same applications.

Debugging support for applications was specifically included in JHDL’s
design [223]. With regards to debugging, the goal was to provide a system
that allowed users to seamlessly use either simulation or hardware execution
for debugging applications. All of the same circuit and circuit state viewers
could be used in either the simulation or hardware execution modes. This abil-
ity to use both simulation and hardware for design validation was powerful
since it provided the designer the ability to do validation before design imple-
mentation or compile the hardware and use the hardware itself for debugging.
By using hardware directly for debugging, the designer has the opportunity
to perform design validation on the final application rather than a simulation
model, which, on occasion, may not completely match the actual hardware.
Further, design errors that occur deep into an application’s execution can be
found more quickly with hardware debugging support—hardware execution
is, of course, many orders of magnitude faster than simulating the hardware’s
execution.

One key to providing seamless operation between hardware execution and
simulation was the JHDL logic simulation kernel. JHDL employed a levelized
logic simulator [176] that statically scheduled the order in which combina-
tional logic functions would be evaluated based on input/output dependencies.
With this approach, the simulation kernel can simply evaluate all sequential
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elements and primary inputs first and then propagate the values of combi-
national elements based on the static evaluation schedule, as illustrated in
Figure 4.12.

To support the seamless execution and debugging of an application in
hardware, the simulation kernel was extended for “hardware mode” as shown
in Figure 4.13. In this version of the kernel, hardware is executed for a cycle
(or several cycles) at the beginning of a kernel iteration. Then, the complete
hardware state is read—including flip-flop and on-chip RAMs—and this state
is inserted into the simulation model. Next, the synchronous elements that
were not updated from hardware are evaluated (or clocked) and, finally, the
combinational logic elements are evaluated based on the levelized schedule.
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Fig. 4.12. JHDL Logic Simulation Kernel

Clock
FPGA
System

Read
Hardware

State

Propagate
Combinational

Elements
Synchronous

Elements

Clock Other

with HW State

Update
Sim. Model

Synchronous
Elements

Reset Propagate
Combinational

Elements

Beginning of Reset End of Reset

End of CycleBeginning of Cycle

Fig. 4.13. JHDL Logic Simulation/Hardware Kernel

In contrast to a levelized logic simulator, an event-based simulator [176]
uses a more dynamic evaluation approach by evaluating circuit functions and
signal values as events happen. Though event-based simulation can be more
efficient since it only evaluates what it needs to, integration of event-based
simulation with hardware execution is more difficult than integration with
levelized simulation.

The other key to seamless simulation and hardware execution was the
support in JHDL for mapping the state from the physical hardware to the
logical view of the user’s design. As illustrated in Figure 4.14, a significant
amount of information and effort was required to perform a complete mapping.
To begin, with JHDL provided a list of all state elements to find, illustrated
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as the .rbsym file in the figure. The information provided by the Xilinx design
implementation tools were parsed to identify the physical locations of the state
elements and the locations of their state in the readback bitstream. Finally,
the technology mapping report file (.mrp file) was used to identify how signal
names were modified during the technology mapping phase to resolve how the
address signals were connected to LUT RAM address inputs. The product
of the process, .rbentry file, was effectively the symbol table used during
hardware execution for relating hardware design state with the logical circuit
representation used by JHDL.
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Fig. 4.14. Logical to Physical Design State Mapping for JHDL

Overall, this approach accomplishes what tmac did for Teramac’s execu-
tion environment in the sense that the values of signals and logic elements
that are not found in the physical design (i.e., those packed into LUTs) can
still be observed through a combination of hardware execution and simulation.
Unlike tmac, JHDL was designed to work with commercial Xilinx FPGAs and
software as well as FPGA boards from different sources, so the JHDL system
had to be able to integrate its designs with external hardware API support
and the Xilinx design tools to provide this debugging support.

As more experimental additions to JHDL, several other debugging features
were added. First, as described in [414,415], an automated method was devel-
oped to create scan chains of all design state elements in a user FPGA design.
Similar in concept to scan chains used in JTAG or other design for testability
techniques, these scan chains could be used to both sample the state of a user
design (observability) as well as to force the design to a certain state (con-
trollability). Though JHDL’s standard method of sampling a circuit’s state
was using the FPGAs’ configuration readback capability, JHDL’s hardware
execution and debugging system readily accommodated the transfer of state
to and from designs’ scan chains.

Additional work reported in [181, 182] leveraged bitstream manipulation
techniques to provide observability and controllability. For example, JHDL
was extended so that it easily allowed designers to include embedded logic
analyzers in designs as well as to quickly modify designs to connect signals to
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the logic analyzers. Users could use the schematic viewer to select the signals
to trace and to define the triggers for state capture. Once these were defined,
JBits would then be used to modify designs’ bitstreams to make these con-
nections to the logic analyzers for the current debugging session. The results
captured by the embedded logic analyzers were available within the JHDL
environment in the form of a trace buffer viewer. Instead of using JTAG to
communicate with the logic analyzers, configuration readback was used to
sample the values of the on-chip trace buffers. The benefit of modifying the
bitstreams directly when using these logic analyzers was that it performed the
modifications 5 to almost 20 times faster than by using other more conven-
tional techniques.

Sea Cucumber

Taking a higher-level approach, the debugger [205] for the Sea Cucumber (SC)
synthesizing compiler [397] provides for a more software-like debugging expe-
rience than JHDL since the design is captured as a collection of Java threads
that communicate via Communicating Sequential Process (CSP) channels. As
with JHDL, the debugger can be used to debug the design in either simulation
or hardware-execution mode—a significant improvement over the debugging
capabilities of other high-level tools such as SystemC or Handel-C where only
the software description can be debugged and not the final circuit.

The feature set desired and achieved with the SC debugger was:

1. to allow single stepping of program execution (execution control),
2. to allow arbitrary break points in the code (execution control),
3. to allow variables in the source to be set to arbitrary values (controllabil-

ity),
4. to display the current execution points while execution was paused (ob-

servability), and
5. to allow program variables to be observed (observability).

To develop a debugger with this feature set, several significant challenges
had to be overcome, including the unconstrained nature of the hardware as
compared to microprocessors, the presence of conventional and VLIW-style
compiler optimizations during synthesis that modify how the code executes
and the variable values, and the mapping of hardware state and execution to
SC design descriptions. To aid in the latter, JHDL was actually used as the
lower-level HDL to which SC compiled so that JHDL’s facility for mapping
the actual hardware state to the structural description of the hardware and
providing the hardware state during hardware execution could be used. Of
course, the SC debugger still had the difficult task of mapping the structural
hardware state to the Java programs from which the hardware was com-
piled. The project illustrated that hardware debugging support was possible
for high-level synthesis systems even in the presence of significant compiler
optimizations.
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JBits

Beyond the novel bitstream manipulation capabilities mentioned earlier, JBits
also provided a few utilities for hardware debugging. First, as with several sys-
tems already mentioned, BoardScope could be used with the configuration
readback capability of Xilinx FPGAs to sample a chip’s state. The instanta-
neous sampled state values could be displayed graphically for an entire chip
or the state values could be displayed over time using a waveform viewer. If a
design was implemented using certain JBits Core APIs, the cores themselves
could interpret and display their own state.

Using a hardware interface API called the Xilinx Hardware Interface (XH-
WIF), BoardScope and a scripting tool called DDTScript could control RC
and other FPGA-based systems. XHWIF provided the ability to reset the
system, set the board clock frequency, start and stop the clock, step the clock
a given number of cycles, configure FPGAs, read back FPGA configuration
data, and read and write the contents of FPGA system memories. Clearly, the
XHWIF interface provides little more than a software interface between the
JBits environment and existing board capabilities and APIs, thus, the board
and supporting board API must provide this functionality in some way for
XHWIF to be useful. BoardScope also provided a novel but limited facility for
simulating the execution of hardware designs using only FPGA configuration
bitstreams.

Identify

To conclude the discussion of RC application debugging, Synplicity—a com-
pany producing tools for the synthesis of VHDL/Verilog FPGA designs—has
developed a tool called Identify [385] that supports HDL debugging using
hardware. Using either a built-in JTAG interface or a user defined JTAG in-
terface, the Identify system can communicate with a user design instrumented
for debugging. The designer can set breakpoints within the HDL code based
on certain branching events, a certain sequence of events, or specific signal
conditions—providing an intuitive method for generating debugging triggers
for the HDL designer. It can handle multiple clock domains simultaneously
and can handle symbolic data instead of just bit-level data. Synplicity has
made an effort to reduce the impact of instrumentation in terms of design
area and speed.

4.5.3 Challenges for RC Application Debugging

Past tools and systems have demonstrated what is possible for debugging
reconfigurable computing applications and what can be improved, but, despite
these advances, the most advanced tools available today for debugging tend
to be trial and error, conventional logic analyzers, and tools like Identify,
SignalTap, and ChipScope. Though each of these tools can be very useful,
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they illustrate the lack of real debugging support in most RC systems, which
has a significant effect on the productivity for developing validated, complex
reconfigurable computing applications.

Part of the reason for this is that many treat the development of RC
applications for FPGAs and similar devices to be essentially the same as the
development of ASIC hardware. However, the two development cycles are
quite different. In the case of ASICs, enormous amounts of time are required
to simulate the designs because it is extremely costly to fix problems with the
hardware once it has been fabricated—it requires $1 million dollars or more
for a new mask set alone for a VLSI design. These economics do not exist, of
course, with reconfigurable computing since the hardware is often available for
use and the cost of changing the design is comparatively small. Of course, with
design recompilations taking hours for very large designs, simulation is still
important for RC application validation. On the other hand, the simulation of
thousands of cycles can take as much as a day or more for large complicated
designs, so the recompilation cycle for hardware is not always unreasonable
when justifying debugging using the actual hardware.

Another difficulty is that of economics for RC debugging systems. Unlike
the developers of conventional software debuggers that can be retargeted to
many systems somewhat easily due to the fact that the target microprocessor
(and the related system) is fixed, the developers of debuggers for reconfig-
urable computing applications are faced with having to support considerably
smaller system volumes and the costs of developing the debugging support for
each different RC system, currently, can be quite large. To help this situation,
some standardization of debugging support across reconfigurable computing
systems might encourage third-party debugging tools. Further, to generate the
information needed to support hardware debugging using commercial EDA
tools would also take the willingness and concerted effort by RTL synthesis,
FPGA, and RC systems companies. As reconfigurable computing becomes
more common, hopefully these technical and non-technical challenges can be
addressed so better debugging support exists for reconfigurable computing
applications.

4.6 Summary

Reconfigurable computing requires the description of algorithms, their expres-
sion into software and hardware circuits, and the debugging of the resulting
software/hardware systems. RC languages range from C, Fortran, and Java
variants, including parallel language variants, to graphical programming lan-
guages. Novel language features include directives to partition computation,
to allocate variables to specific memories, parallel processing directives, direc-
tives to pipeline lops. Compilers for RC languages face formidable challenges
in generating efficient hardware circuits. In contrast to fixed instruction mi-
croprocessors, micro-architecture design decisions must be resolved during
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compilation. Once an application-specific architecture has been designed, the
inherent flexibility of FPGAs make the tasks of synthesis, mapping, placement,
and routing difficult and time consuming. Finally, debugging reconfigurable
systems imposes unique challenges to gain visibility into the hardware as well
as execution control during debugging.
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Digital Signal Processing Applications

This chapter will discuss digital signal processing as an application domain for
reconfigurable computing (RC). To outline the chapter, we will first discuss
what is meant by digital signal processing (DSP) generally and then describe
why reconfigurable computing is well suited for DSP. The remaining sections
describe common operations performed for DSP as well as some example DSP
applications and their reconfigurable computing implementations. Note that
digital image processing, a subset of DSP, is covered in Chapter 6.

5.1 What is Digital Signal Processing?

As the growing number of texts [293,314,332] on the subject suggest, digital
signal processing involves the representation of signals digitally as sequences
of numbers or symbols and the processing of these sequences to extract in-
formation from the signals or to synthesize signals with desirable properties
either as completely new signals or from existing signals. Figure 5.1 illustrates
a typical DSP system that takes analog signals as inputs and produces analog
signals as outputs.
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Fig. 5.1. Simplified Digital Signal Processing System (based on [293])

For many decades, analog techniques and circuitry that deal with signals
in their natural, continuous forms were the methods of choice when processing
signals. As computers and digital hardware have advanced, the use of digi-
tal signal processing techniques has become more feasible and very common
place, being used for recording, storing, and reproducing both sound and video
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signals digitally; enabling wireless communications; enabling advanced med-
ical imaging and other diagnostic helps; and a variety of other applications.
This transition from analog to more digital techniques has been driven by the
many advantages of DSP, including [293]:

• the increased immunity to changes in external parameters such as age and
temperature as well as to variations in circuit components;

• the ease of reproducing DSP systems;
• the flexibility in precision through changing word lengths and/or numeric

representation (e.g., fixed point vs. floating point);
• the ability to use a single processing element to process multiple incoming

signals through multiplexing;
• the ease with which digital approaches can adjust their processing para-

meters, such as with adaptive signal processing; and
• the ideal characteristics that are only possible through digital techniques

(e.g., exact linear phase, multi-rate processing, the lack of loading effects
when cascaded, the ease of signal storage and reproduction, very low fre-
quency processing, etc.).

The disadvantages of using digital techniques over analog ones often in-
clude increased system complexity, power consumption, and frequency range
limitations. Regarding system complexity, DSP requires that signals be con-
verted between analog and digital forms using sample-and-hold circuits,
analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and
analog filtering. As well, DSP can employ relatively complex digital devices
for processing. By contrast, analog techniques can get by with passive com-
ponents and significantly fewer active components. This complexity issue also
directly affects power consumption—digital processing tends to require more
power. With regards to frequency range limitations, analog hardware will nat-
urally be able to work with higher frequency signals than is possible with DSP
hardware due to the limitations of performing analog to digital conversion. For
many applications, the advantages of DSP far outweigh these disadvantages.

Some common operations performed on signals using digital or analog
techniques include:

• elementary time-domain operations (amplification, attenuation, integra-
tion, differentiation, addition of signals, multiplication of signals, etc.),

• filtering,
• transforms,
• convolution,
• modulation and demodulation,
• multiplexing and demultiplexing, and
• signal generation.

Among other possibilities, combinations of these operations can be used to
remove noise from signals, prepare signals for wireless transmission, extract
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signals from wireless transmissions, or select signals of interest from a larger
collection of signals.

5.2 Why Use Reconfigurable Computing for DSP?

This section will describe why reconfigurable hardware computing can be so
well suited for DSP. Following that discussion, we will briefly describe how
reconfigurable hardware and computing approaches compare with other DSP
implementation technologies.

5.2.1 Reconfigurable Computing’s Suitability for DSP

Numerous studies in implementing DSP applications using reconfigurable
computing hardware have demonstrated that reconfigurable computing can
be well suited for digital signal processing [79, 326, 389]. The effectiveness of
reconfigurable computing for DSP is mainly due to the parallelism that can
be exploited in DSP applications. The factors contributing to this parallelism
are described below.

First of all, many DSP applications inherently have significant amounts of
both fine-grained as well as coarse-grained parallelism. As a simple example,
consider how a finite-impulse response (FIR) filter can be implemented in an
hardware. A FIR filter implements the following equation:

y(k) =
N−1∑
n=0

a(n)x(k − n) (5.1)

A signal flow graph representation of the filter is depicted in Figure 5.2. As-
suming that the filter has no symmetry, a microprocessor-based solution would
perform the computation’s N multiplications and N−1 additions sequentially.
In reconfigurable hardware, FIR filters can be implemented using pipelining
so that N multiplications and N − 1 additions are performed each cycle with
a result provided every cycle. Figure 5.3 illustrates an equivalent FIR filter
that has been highly pipelined.
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Of course, very few DSP applications consist of a single filter. Most DSP
applications require several operations such as FIR filters, transforms, etc. to
process each incoming data stream, providing the potential to exploit coarse-
grained parallelism as well. For example, Xilinx’s digital down converter [425],
illustrated in Figure 5.4, illustrates multiple coarse-grained operations (signal
multiplication and many filters), each having fine-grained parallelism inter-
nally.
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Fig. 5.4. Xilinx Coregen Digital Down Converter (V. 1.0)

As illustrated with the FIR filter, many DSP functions have relatively
regular schedules for their operations, allowing the hardware to be customized
to extract a significant amount of parallelism. This regularity also reduces
the control logic burden for applications. By contrast, applications requiring
significant amounts of nested decision logic (e.g., multiple levels of nested
if...then constructs) tend to limit the parallelism that is possible since the
computations performed depend heavily on the path through the decision
logic—a path that may not be easy to predict.

A factor that helps the exploitation of parallelism in DSP applications
is the small word widths that many DSP applications naturally use for their
data. These word widths are often the result of the data precision provided by
the analog-to-digital converters—many produce 8- to 12-bit data words. When
compared with floating-point implementations, these smaller word widths re-
quire smaller arithmetic units and less routing, resulting in higher operating
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clock rates and allowing many units to be instanced on the same chip. Of
course, internal data widths in a DSP application will grow past the input
precision and a significant amount of effort may be necessary to balance word
widths with the precision necessary for an application. If this balance can be
maintained, a single reconfigurable device can perform a significant number
of operations.

Another issue that improves the parallelism that can be exploited by re-
configurable computing is the fact that DSP applications often use fixed coeffi-
cients or constants throughout their computations. By “folding” the constants
directly into the hardware, i.e., customizing the hardware for a given constant,
the area and speed of operations can be significantly improved. For instance, a
signed 16-bit by 16-bit multiplier implemented using Virtex-II slices requires
about 184 slices (based on Xilinx ISE 6.3 Coregen’s Multiplier 7.0 core gener-
ator). If a 16-bit by 16-bit multiplier is optimized assuming one of the inputs
is forced to be -23131 (the signed decimal value of the hex constant A5A5),
the multiplier’s size reduces to only 90 slices (again, based on the same core
generator)—less than half the size. Of course the reduction can be more dra-
matic, such as the multiplication by a power of two, which results in a simple
left shift of the value (essentially some simple wiring and the addition of some
zeros in the least significant bits).

Reconfigurable computing’s ability to supply both flexible and significant
memory bandwidth also improves the possible parallelism that can be ex-
tracted in DSP applications. Referring again to the FIR example illustrated
in Figure 5.3, note that the hardware is providing 15 different data values
simultaneously each cycle, including x(k−3) to x(k), a(0) to a(3), the partial
results, and the y(k − 3) result. The storage for x(k) and the a coefficients
are not shown explicitly, but they could easily be supplied by flip-flops or
on-chip RAM. If the on-chip memory bandwidth only allowed a few values to
be manipulated at a time, only a single operation could be performed at a
time instead of all seven simultaneously.

When compared with a sequential microprocessor, which generally manip-
ulates only two input values and one output value per instruction and may
have a few instructions processed per cycle, this internal register and memory
bandwidth can be significant, especially considering entire applications. For
example, as mentioned in the Chapter 2, the Altera EP2S180 can theoret-
ically supply an aggregate memory bandwidth of over 30 Gb/s through its
3414 ports to its 1707 on-chip SRAMs, not including the contribution of its
almost 180,000 on-chip flip-flops.

Further, several reconfigurable computing systems provide ten or more
ports to external SRAM as well. These ports to deeper external memories can
provide the ability to process multiple blocks of data simultaneously, providing
the opportunity to exploit additional parallelism through partitioning a single
data set across multiple DSP computation engines or allowing the processing
of multiple input streams or data sets. Clearly, the ability to customize an ap-
plication’s memory hierarchy and the availability of on- and off-chip memory



92 5 Signal Processing Applications

bandwidth through many independent memory ports contributes significantly
to application performance and the parallelism that can be exploited by re-
configurable computing.

Similar to the issue of memory bandwidth, input/output (I/O) band-
width can also have a significant impact on DSP performance. Unlike with
microprocessor-style approaches that must retrieve the data from a system pe-
ripheral, the output of one or more analog-to-digital converters (ADCs) can be
driven directly into reconfigurable computing hardware (such as an FPGA),
significantly reducing the overhead for providing input data. Further, with the
availability of as many as 1000 or more user I/O blocks and with the addition
of multi-gigabit serial transceivers, the high I/O bandwidth available among
reconfigurable hardware devices also provides a more scalable way of using
multiple devices for a given application than is possible with conventional mi-
croprocessors. In addition to the bandwidth possible, the flexibility of this I/O
can allow designers to customize the I/O to the needs of a given application,
allowing for the better use of I/O bandwidth.

Based on the above discussion, DSP and reconfigurable computing can
be well matched due to the available parallelism and the efficiency of cus-
tom reconfigurable computing implementations. Though many reconfigurable
computers only operate at tens to a few hundred megahertz, given the above
potential for exploiting parallelism, it should be no surprise that reconfigurable
computing implementations of DSP applications can outperform microproces-
sor and programmable digital signal processors despite operating at 1/10th
or less of the clock rate.

5.2.2 Comparing DSP Implementation Technologies

Once the decision has been made to perform the signal processing digitally,
many options exist for the type of hardware used for the processing. Some
of these options include general-purpose processors (GPPs), microcontrollers,
programmable digital signal processors (PDSPs), reconfigurable logic or com-
puting hardware, and application-specific integrated circuits (ASICs). Each of
these options has its place in the spectrum of DSP systems and applications.
Table 5.1 provides a qualitative comparison of several of this implementation
technologies.

In this design space, general-purpose processors provide relatively low per-
formance due to the bottlenecks of their von-Neumann-style architectures (i.e.,
shared data and instruction memory). Because GPPs and GPP systems are
produced in volume and high-level programming is well supported, system-
design and per-chip costs are relatively low for this technology. GPPs and
their systems can require considerable amounts of power due to the support
logic required and the relatively low amount of throughput provided by the
systems. The greatest attraction besides cost to use GPPs is their flexibility.
GPPs can easily be programmed and reprogrammed to handle new tasks, as
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necessary. Compared with what is possible with custom hardware, the mem-
ory bandwidth and I/O bandwidth possible with GPPs is comparatively low.
Frequently, GPPs are used for DSP when they are already available in the
system (such as with desktop PCs) and the application does not need high
performance.

Microcontrollers, a close relative to the GPPs, are effectively lower perfor-
mance microprocessors that are used more for control applications rather than
data processing. They frequently have support hardware for doing I/O and
sometimes special instructions for performing DSP functions. For the most
part, their strengths and weaknesses are similar to those of GPPs, except
they generally require less power and provide less performance.

Programmable digital signal processors (PDSPs) are a implementation
technology that has become very popular. Their heritage is with GPPs, con-
sidering the first PDSPs were basically general-purpose processors with a few
architectural adjustments for performing filtering and transforms. Later gen-
erations have moved further away from GPPs, using a Harvard architecture
(separate instruction and data busses) to improve memory bandwidth for
computation, adding features for low-overhead looping, providing hardware
address generators, and even adopting very-long instruction word (VLIW)
architectures. As a result, modern PDSPs can easily overlap data fetches,
computation, address generation, and loop control.

With regards to the comparison of Table 5.1, PDSPs provide more perfor-
mance than GPPs and microcontrollers at lower power, but the cost of imple-
menting a DSP algorithm is higher due to the added difficulty of programming
them—a difficulty related to the specific ways their special architectural fea-
tures must be used for peak performance. High-level programming tools are
available, but they are not as effective as those for GPPs due to the DSP’s spe-
cial architectural features. This issue also affects their flexibility—they can be
retargeted to perform different applications, but not all applications map well
to PDSPs. Because of their performance and power characteristics, PDSPs
are now found in many lower-power applications such as compact-disc players
and other digital music players, conventional and DSL modems, wireless tele-
phones, and even hard-disk drives. High-end PDSPs are, of course, available
for higher performance at the expense of more power and cost.

Probably the most ideal technology for performing DSP in terms of per-
formance, power, and both memory and I/O bandwidth is the ASIC since it
can be customized to the application at hand. The biggest problems are the
costs of creating custom silicon solutions (> $1 million per mask set for state-
of-the-art CMOS processes and requiring months to a year or more to design,
fabricate, and validate) and the lack of flexibility. ASICs can be designed with
some flexibility in terms of handling different sets of coefficients or slightly dif-
ferent computations, but they tend to be considerably less flexible than all
other solutions for implementing completely different applications—once the
design is fixed in silicon, it is not going to change. ASICs are generally reserved
for very high volume applications (for example, MPEG (-1, -2, or -4) encoding
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or decoding for wireless telephones) or for mission critical applications where
the performance and other constraints are paramount (e.g., military appli-
cations). High-volume mixed-signal ASICs that integrate ADCs and DACs
directly with the DSP hardware are also common for consumer applications.

In comparison with these other technologies, reconfigurable hardware pro-
vides a performance-flexibility compromise between PDSPs and ASICs. Their
performance can often be better the PDSPs while being one-tenth the per-
formance of an ASIC implemented in the same CMOS technology. If FPGAs
are used, the cost of system development lies between that of PDSPs and
ASICs since FPGA design is hardware design, generally. Reconfigurable hard-
ware requires more power than ASICs and, sometimes, even PDSPs (assuming
the PDSP performance is adequate). FPGAs tend to be more expensive than
PDSPs or high-volume ASICs on a per chip basis, though, some higher-volume
FPGAs are now available for tens of dollars. High-end FPGAs can cost thou-
sands of dollars even as high as $10,000 or so per FPGA. FPGAs provide a
large amount of flexibility since they can be adapted effectively to wide va-
riety of new applications. Further, since the memory and I/O interfaces can
be customized, the memory and I/O bandwidth available to FPGAs can be
significantly higher than with other programmable solutions, though, not nec-
essarily as high as ASICs. For now, reconfigurable computing solutions tend
to be excellent for high-performance, low-to-mid-volume applications where
system power constraints can be met. If, in addition, reprogrammability and
flexibility are also needed, the reconfigurable hardware solution is very well
suited.

The above analysis is similar to that found in [389], but, over the last
several years, a very interesting trend has developed. With the continually
increasing costs of developing new ASICs, fewer and fewer ASIC solutions are
available except for the very high volume applications. Further, unlike during
the 1980’s and 1990’s, FPGAs now tend to lead other CMOS ICs when it
comes to the CMOS fabrication technology used. As a result, the highest per-
formance implementations available for some DSP applications may actually
be FPGA-based as FPGA technology continues to progress in terms of area
and speed.

As an example of this recent trend, we did a study in 2004 of complex
4096-point Fast-Fourier Transforms (FFTs). Table 5.2 provides a performance
comparison among the several commercial ASIC and FPGA implementations
available. As the data illustrates, the FPGA implementations were consider-
ably faster than the other fixed-point FFTs. Also, the ASICs, which performed
floating-point or block floating-point operations, were slower than the Virtex-
II- and Virtex-II-Pro-based floating-point FFTs1. Note that the fastest ASIC

1 Note that two of the numbers are actually for 2048-point transforms and, thus,
a 4096-point transform by these chips (if they were possible) might take about
twice as long. Thus, the FPGA implementation is faster for the longer transform.
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(the Eonic) employed a 180-nm CMOS process while the FPGAs employed
newer CMOS processes.

Implementation CMOS FFT Input Data Clock Time per Power
Technology Tech. Size Format Rate FFT

Dillon Eng. 130 nm 4096 2x18-bit, 200 MHz 3.84 µs [125] < 4 W [125]
(Virtex-II Pro) fixed pt.

Dillon Eng. 150 nm 4096 2x18-bit, 160 MHz 4.8 µs [125] < 4 W [125]
(Virtex-II) fixed pt.

Pentek Virtex-II 150 nm 4096 2x16-bit, 160 MHz 6.4 µs [376] 5 W [375]
(4954-404, 4 fixed pt.
overlapped FFTs)

Pentek Virtex-II 150 nm 4096 2x16-bit, 140 MHz 29.3 µs [325] 1.5 W [375]
(4954-403, fixed pt.
no overlap )

TI 320C64XX 130 nm 4096 2x16-bit, 600 MHz 48 µs [376] 1.5 W
(VLIW DSP) fixed pt. (typical) [209]

Motorola 180 nm 4096 2x16-bit, 1 GHz 53 µs [376] 8 W
MPC7455 fixed pt. (typical) [300]
(Altivec, VSIPL)

Dillon Eng. 130 nm 4096 2x32-bit, 200 MHz 30.7 µs [125] < 4 W [125]
(Virtex-II Pro) floating pt.

Dillon Eng. 150 nm 4096 2x32-bit, 160 MHz 38.4 µs [125] < 4 W [125]
(Virtex-II) floating pt.

Eonic PowerFFT 180 nm 4096 2x32-bit, 128 MHz 48 µs [138] < 2 W [138]
(ASIC) floating pt.

Radix RaCE FFT N/A 2048 2x18-bit, bl. 84 MHz 24.4 µs [336] < 3.5 W [336]
(ASIC, 2 Chips) floating pt.

CRI Pathfinder 2 250 nm 2048 2x32-bit 120 MHz 31 µs [124] < 2.5 W
(ASIC) floating pt. (estimated)

Table 5.2. Comparison of Commercial ASIC and FPGA FFT Implementations

Again, this trend does not necessarily hold for very high-volume DSP
functions implemented as ASICs, but lower volume ASICs have started to
be taken over by FPGA-based implementations. Also, as FPGAs start to
integrate fixed DSP hardware into their architectures (see Section 2.1.2), their
roles in high-performance DSP may continue to expand.

5.3 DSP Application Building Blocks

Considering the popularity of performing DSP using reconfigurable hardware,
a complete review of all the significant work implementing efficient DSP struc-
tures in FPGAs and reconfigurable hardware is beyond the scope of this chap-
ter. We refer the reader to [326, 389] for some overviews of early and more
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recent work. Instead, this section will briefly describe a few significant, basic
building blocks and techniques frequently used in reconfigurable computing
for DSP, citing a few examples of related work.

5.3.1 Basic Operations and Elements

The most basic components of most DSP applications are arithmetic opera-
tions and memory elements. The most common arithmetic operations include
addition, subtraction, and multiplication. Memory elements play a comple-
mentary role as temporary storage of results between operations, such as
delay registers and “scratch-pad” memories. In fact, one common DSP build-
ing block, the multiply-accumulate (MAC) unit, is a combination of multi-
plication, addition, and memory, as illustrated in in Figure 5.5. This section
describes a few methods that have been used in FPGAs to provide efficient
arithmetic and memory structures for DSP, considering how frequently they
are used.

A B

Result

Reg

Fig. 5.5. Multiply-Accumulate Unit for DSP

Efficient Arithmetic

Many of the hardware-efficient techniques developed and used for arithmetic
in VLSI and other hardware implementation technologies over the years can
be applied to reconfigurable hardware such as FPGAs. The book by Koren
( [243]) is a good reference for some of these techniques as well as for the
fundamentals of computer arithmetic more generally. Below, we will briefly
note a few of the many arithmetic techniques that have been utilized for
efficient FPGA implementations of arithmetic for DSP applications.
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Bit- and Digit-Serial Arithmetic

As described in [111], [326] and [389], bit-serial arithmetic has been used
for signal processing hardware for some time, especially when latency is not
as crucial as circuit area and I/O utilization. Because bit-serial arithmetic
trades computation latency for design area, the resulting circuits are very
small, need very few I/O pins, and often operate at high clock rates. Further,
a arithmetic operation using N -bit operands generally requires at least N
cycles to complete. Figure 5.6 provides an example of a bit-serial adder, which
requires only a single 1-bit adder and a register.

DQ

A B

Sum

CoutCin

Clr Clk

Fig. 5.6. Bit-Serial Adder

While common when FPGAs provided relatively few resources, bit-serial
arithmetic is rarely used now that FPGAs provide significantly more resources.
This is partly due to the complexity of correctly controlling such circuits and
partly due to the fact that most design tools do not directly support this type
of arithmetic. As an example of the control that is necessary, the flip-flop in
Figure 5.6 needs to be cleared before the operands appear at the A and B
inputs to get the proper result from the bit-serial adder. Further, the operands
must be provided least-significant bit first and properly aligned. Despite these
drawbacks, bit-serial techniques are still useful when area efficiency is required
and the latency is not crucial.

Digit-serial arithmetic [199, 320], as the name suggests, breaks up the bi-
nary representation number into N -bit digits and these N -bit blocks are pro-
vided sequentially to the arithmetic hardware for computations. Again, this
provides a trade-off between circuit area and computation latency, using ad-
ditional clock cycles and relatively little hardware to perform a computation.
While extending the possible design space for computer arithmetic and pro-
viding higher performance options than bit-serial implementations, digit-serial
arithmetic has many of the same advantages and disadvantages of bit-serial
approaches. As with bit-serial arithmetic, digital-serial arithmetic has been
used in FPGA-based DSP designs (e.g., [254]) mainly due to early FPGAs’
I/O and area constraints.
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Distributed Arithmetic

Another hardware-efficient approach to arithmetic is distributed arithmetic
(DA) [416]. This form of arithmetic received its name from the relatively un-
obvious way it implements arithmetic. Distributed arithmetic uses ROMs for
looking up partial results that are then used in the computation. Since FPGAs
utilize LUTs for logic, it is natural to apply distributed arithmetic to FPGA
hardware. DA can be used with bit-serial, digit-serial, or fully parallel number
representations and is used when the results or partial results of a computa-
tion can be pre-computed and stored in a ROM, such as when constants are
used in a computation.

For example, Figure 5.7 illustrates a parallel distributed arithmetic imple-
mentation of multiplication by a constant value. The ROMs store the results
of a 4-bit by 8-bit multiplication, where the 8-bit operand is constant. The
12-bit results of the two multiplications performed—the upper partial product
(UPP) and lower partial product (LPP)—are then combined with an adder.
As described in [326], this implementation required about 1/3 of the logic of
a multiplier with two variable operands.

Addr[3:0]

16x12 bits

Data[11:0]

ROM

Addr[3:0]

16x12 bits

Data[11:0]

ROM

Input[7:0]

Input[7:4] Input[3:0]

12−bit Adder

UPP[11:0] LPP[11:4]

LPP[3:0]

Product[15:4] Product[3:0]

Fig. 5.7. 8-bit by 8-bit Parallel Distributed Arithmetic Multiplier [326]

CORDIC

While multiplication, addition, and subtraction are common to DSP algo-
rithms, many algorithms require more complex functions. Again, enumerating
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all contributions to developing efficient hardware implementations for opera-
tions such as division and square roots would be voluminous. For this brief
overview of DSP applications, we focus on one particular technique that has
proven to be quite useful for DSP, specifically, the CORDIC algorithm.

The CORDIC (COordinate Rotation Digital Computer) algorithm is an
area-efficient technique for computing some trigonometric, hyperbolic, and lin-
ear functions. First developed by Volder [405] for circular coordinate systems
and later unified by Walther [411] to also include linear and hyperbolic coor-
dinate systems, CORDIC computes the effects of rotating vectors in these co-
ordinate systems using an iterative algorithm that simply uses additions, sub-
tractions, and shifts with fixed-point data. Due to the algorithm’s simplicity,
CORDIC has been popular for VLSI and FPGA hardware for computing such
functions as sinθ, cosθ, tan−1(y/x), polar-to-rectangular and rectangular-to-
polar coordinate conversions, sinhθ, coshθ, and several other functions in its
unified form. It has formed the basis for such DSP operations as Discrete Co-
sine Transforms (DCTs) [71], Fast Fourier Transforms (FFTs) [121], sine-wave
synthesis [122], computing eigenvalue decompositions [237], and solving sin-
gular value problems [216]. Good overviews of CORDIC can be found in [217]
and [244]. For a survey of FPGA implementations of CORDIC as well as a
brief description of the algorithm refer to [20].

Figure 5.8, which is based on [217], illustrates the circular rotation of
a vector due to four CORDIC iterations. In the circular coordinate system,
rotations follow a circle centered at the origin. In the linear coordinate system,
the rotations follow a line parallel to the y axis. Likewise, the hyperbolic
rotations follow a hyperbola.

As the figure illustrates, the desire to keep the arithmetic in each iteration
simple has a few effects. First, the angles used are those that can be simply
represented in fixed point. In fact, for the circular case, the angles are those
angles φ satisfying the following relation: tan(φ) = ±2−i. Thus it takes several
iterations to approximate most angles well. The second side effect is that the
length of the resulting vector may have a gain factor. In the linear coordinate
system, there is no built-in gain that affects vector lengths, while in the other
two coordinate systems there are gains associated with each rotation itera-
tion. For example, the simple circular coordinate algorithm results in vectors
that have lengths approaching approximately 1.647 times their original size.
Frequently, to keep the computations simple, these gains are factored into
the design of algorithms and may or may not be compensated for during the
computation. Another side effect of the gain in the circular coordinate system
is the fact that the numeric representation for the quantities must also grow
to accommodate this increase.

As described in [20], these side effects of the algorithm are tolerated be-
cause of the range of commonly used functions that can be computed by such
an efficient structure. The iterative hardware requires three adder/subtracters,
shifter logic, and, possibly, a ROM. The fully unrolled CORDIC unit requires
three adder/subtracters per iteration and the shifts can simply be imple-
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v(0)

v(1)

v(2)

v(4)

v(3)

Fig. 5.8. Example of Four CORDIC Iterations in the Circular Coordinate System
[217]

mented with wiring. A fully unrolled and pipelined CORDIC unit requires
approximately as much area as an array multiplier.

Efficient Memory Structures

As FPGA architectures have evolved, the options for memory have also
evolved to favor DSP applications. On the first FPGAs, the only memory
available was in the form of flip-flops. While flip-flops are abundant in most
reconfigurable architectures, many applications (especially image processing
applications) can require additional memory for temporary data buffers. In
more recent systems, flip-flops are used for pipeline registers and short-depth
buffers when access to all values are needed.

As mentioned in Section 2.1.2, the LUTs in the logic blocks of Xilinx FP-
GAs since the XC4000 series can be used as small RAMs. In fact, these LUT
memories can easily be used as small shift registers or FIFOs to hold data.
Since the Virtex series, Xilinx has made it easier to implement shift registers
with these memories by providing the SRL16 functionality for the LUTs—
a functionality that provides a 1-bit wide shift register with a dynamically
changeable depth (from one to sixteen bits deep). Thus, for later Xilinx ar-
chitectures, a 17-bit deep shift register can be easily constructed in half of a
slice using a LUT in SRL16 mode and the associated flip-flop rather than us-
ing 17 individual flip-flops. LUT memories are thus appropriate for relatively
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shallow memories (e.g., <64 bits deep). LUT memories are also used to create
efficient delay lines where all of the data in the delay line does not need to be
accessible all of the time.

Also mentioned in Section 2.1.2 is the fact that FPGA now have larger
embedded SRAM memories with depths greater than .5 Kb and programmable
aspect ratios to allow the designer some flexibility in trading depth for width
and vice versa to better match an application’s needs. Many of these deeper
memories also provide two memory ports for better concurrency. Each of the
two ports can be driven by a different clock source and can operate with a
different memory aspect ratio. These larger memories are useful for larger
buffers and for high-speed, flexible FIFOs across clock domains.

5.3.2 Filtering

As discussed above, filtering is a common operation in digital signal process-
ing and takes many forms. Filtering, as its name suggests, is used to remove
unwanted components from signals while maintaining the components of the
signal that are desired. This function is applied in many situations. For in-
stance, there are decimating filters, which are used to reduce the effective
sample rate of signals, and interpolating filters, which are used to increase
the effective sample rate of signals. Below we will briefly discuss a few of
the common filtering structures found in DSP applications implemented with
reconfigurable computing.

The most common filter structure, the finite-impulse response (FIR) fil-
ter, was introduced earlier in Section 5.2.1. The FIR structure is an inner
product of N filter coefficients with N samples of a signal. As illustrated in
Figure 5.3, FIR filters can be implemented using a very parallel approach or
they can be constructed using more iterative approaches that employ one or
more MAC units. In the fully parallel approach, full multipliers can be re-
placed with smaller, more efficient constant-coefficient multipliers, assuming
the filter coefficients are static for an application. Early references to FIR de-
sign for FPGAs can be found in [150, 290, 326]. A few more recent examples
can be found in [64,116,126,251,257].

Unlike the FIR, the infinite-impulse response (IIR) structure employs feed-
back to implement a filter. The IIR filter may take one of many different forms.
Figure 5.9 illustrates one example. Because of the use of feedback, IIR filters
may require less hardware than FIR filters but they also require more effort to
properly design. For example, the use of feedback makes it more challenging
to understand the arithmetic precision required to avoid overflow conditions.
As with the FIR filter, constant coefficient multipliers may be used to make
the implementation more efficient. A few early and more recent examples of
IIR structures on FPGAs can be found in [240,276,335,339].

Though many applications use filters with static coefficients and thus
can optimize the hardware appropriately, more advanced filtering structures,
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Fig. 5.9. IIR Filter Example

called “adaptive filters”, are designed to automatically update their filter co-
efficients to improve their filtering capabilities as their inputs change over
time. An example of this approach using FPGAs can be found in both [392]
and [433], which provide comparisons of several implementation variations of
adaptive filters that use the least-mean-square (LMS) algorithm to modify the
coefficients of an FIR filter. Of the adaptive filtering applications reported in
the literature over the last decade, most adaptive filtering approaches have
used a variation of the LMS algorithm (e.g., [92,112,264,274]), though they are
not the only approaches that have been used or proposed (e.g., [9, 164, 404]).
This bias toward the LMS algorithm is likely due to the fact that the LMS
algorithm requires less computational complexity than many other techniques
and can be implemented without the use of floating-point arithmetic.

Finally, one popular structure used frequently for signal decimation (i.e.,
reducing the sample rate of the signal) is the cascaded integrator comb (CIC)
filter [212]. Illustrated in Figure 5.10, this filter is popular because it can
provide large sample rate changes, it does not require multiplication, and it
requires relatively little data storage. When a (CIC) filter is used for decima-
tion, truncation or rounding can be used effectively to control the growth of
data precision, reducing hardware requirements. Notice that a CIC decimator
(or downsample) filter is used in Xilinx’s digital down converter illustrated in
Figure 5.4.

5.3.3 Transforms

Much like the variety of different filters that are used, a number of different
transforms are frequently used for DSP. Transforms convert a signal from one
domain or representation to another. This is done when it is easier to manip-
ulate the signal in the transformed domain. For instance, if the frequency con-
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Fig. 5.10. CIC Filter Example

tent of a signal is desired, a Discrete Fourier Transform (DFT) is generally per-
formed to convert a time-based signal representation into a frequency-based
representation. We will mention only a few of the most common transforms,
describing their basic operations and referencing related FPGA implementa-
tions.

Fast Fourier Transform

The DFT is probably the most common transform used in DSP. The equation
for computing a DFT for a given input sequence is:

X(k) =
N−1∑
n=0

x[n]e−jk(2π/N)n (5.2)

The Fast Fourier Transform (FFT) [94] is an efficient and popular method for
computing a DFT. As an example, when using a radix-2 FFT, only Nlog2N
complex multiplications are required instead of the N2 complex multiplica-
tions in the direct computation of the DFT—a significant savings. Though
many radices are possible, we will use the radix-2 algorithm as simple exam-
ple. In the radix-2 algorithm, the basic computation kernel, called a butterfly,
is illustrated in Figure 5.11 in two of its forms. The basic form shown in
(a) requires two complex multiplications and two complex additions using
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the complex coefficients W k
N = e−j(2π/N)k and W

k+(N/2)
N = e−j(2π/N)(k+N/2);

this, of course, translates into eight real-valued multiplies and eight real-valued
additions. The modified form in (b) reduces the core computation to a single
complex multiply, a complex addition, and a complex subtraction—equivalent
to four real-valued multiplies and six real-valued additions. An early example
of a radix-4 FFT implemented on an FPGA can be found in [326].
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Fig. 5.11. Radix-2 FFT Butterflies

Noting that the complex multiplications in the butterflies are effectively
just rotations in the complex plane, CORDIC units have frequently been
employed to replace the complex multiplications—a significant savings con-
sidering that the unrolled CORDIC unit requires about the same resources as
a single real-valued array multiplier. On the downside, the built-in CORDIC
gain must be considered when taking this approach. Several FPGA implemen-
tations have taken advantage of this approach, including [35,121,353,421,438].

Discrete Cosine Transform

A transform frequently used in image processing (such as with MPEG video
compression), the Discrete Cosine Transform (DCT) is another transform that
has been regularly implemented using FPGAs and reconfigurable hardware.
The one-dimensional DCT is defined by the following equation:

Yk = αk

N−1∑
n=0

xn cos(
2π

4N
(2n + 1)k) (5.3)

where α0 = 1/
√

N and αk =
√

2/N for 1 ≤ k ≤ N − 1. The DCT has been
popular for image compression, such as that used in earlier MPEG and JPEG
standards, because of its excellent energy compaction properties for highly
correlated data [229]. Because of the interest in image compression, most of the
transforms reported in the literature are two-dimensional. Two dimensional
DCTs, like two-dimensional FFTs, are often decomposed into computing two
series of one-dimensional transforms—a series down the rows of the original
image and another series down the columns of the row-transformed image.
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A number of approaches for computing the two-dimensional DCT using
reconfigurable hardware have been proposed and implemented. A few exam-
ples include [117], which compares a polynomial-based evaluation of the DCT
to a straightforward distributed-arithmetic-based approach, and [155], which
describes an approach for performing DCTs in such a way as to balance speed,
cost, power, and precision-induced error. These techniques require little or no
multiplication, reducing the size and improving their suitability for FPGAs.
Examples of bit-serial, digit-serial, and distributed-arithmetic approaches to
the DCT are described in [153, 238]. Unlike with the FFT, the DCT imple-
mentations above do not use a common kernel for their computations.

Discrete Wavelet Transform

The final example of a common transform used in reconfigurable computing
for DSP is the Discrete Wavelet Transform (DWT) [278, 344]. DWTs have
been used for a number of signal processing applications. Probably one of
the more recent notable applications is for JPEG2000 image compression.
Wavelet transforms offer some features that other transforms, such as the
DFT, do not. For instance, the DWT can offer time-resolution information
and can handle transient signals better than the DFT. Also, the DWT can
represent the scale of signal features. Early implementations of the DWT on
FPGAs are mentioned in [358,398].

Like the DFT and DCT, the DWT transforms a time series of samples (or
an image) into a sum of weighted basis functions representing the time series
(or image). The DCT and DFT use a set of sinusoidal basis functions, but the
DWT uses a more unique set of basis functions, called wavelets. Figure 5.12
illustrates an example of a four Haar wavelet basis functions (taken from
[282]). Note that these basis functions are defined for a finite duration of time
(hence the name wavelets) and that all of the wavelets are based on time
shifts as well as dilations or contractions of the original “mother” wavelet.
The finite duration of the wave makes the implementation of the DWT a
simple FIR-style computation.

One of the advantages as well as complexities of wavelet transforms is that
the set of actual wavelet basis functions that are used is actually a parameter,
unlike with the DFT and DCT transforms. This can be an advantage because
the basis functions of the DWT can be optimized to better fit some application
or implementation method (e.g., using only integer arithmetic). To be able to
produce hardware for any DWT or many different DWTs, some parameterized
method for generating the hardware is desirable. An example of an approach
to this problem for FPGAs is given in [310].

Several approaches for implementing DWTs in hardware, of course, have
been developed. We will mention a few. The pyramidal algorithm described
in [278] is a common algorithm for implementing wavelet transforms and takes
advantage of the fact that the DWT can be defined recursively. Figure 5.13
provides examples of this filter bank approach for both the forward and inverse
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Fig. 5.12. Four Haar Wavelets

DWT . Note that pairs of quadrature mirror filters and either downsampling
(for the forward transform) or upsampling (for the inverse transform) are
used. The filters themselves are implemented as FIR structures. The FPGA
implementations described in [7,44,323] are variations of this pyramidal algo-
rithm.
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The common algorithm mentioned above has several drawbacks. It can
require a large amount of buffering for intermediate results, the processing la-
tency can be large, and results in a high computational cost. Other approaches
based on lifting-factorization (as illustrated in [24, 25, 282]) use a finite state
machine representation of the DWT and allow the transform to be performed
in place while allowing for a parallelized computation that requires relatively
little communication between computational blocks.

5.4 Example DSP Applications

As mentioned in the earlier sections of this chapter, FPGAs and reconfigurable
hardware are being applied to more and more DSP applications due to the
speed-up provided by application-specific hardware solutions. In some cases,
such as in low- to medium-volume applications, FPGAs are taking over the
role once played by ASICs as fixed application specific hardware due to the
increased cost and time-to-market ASICs require.

Beyond these fixed function applications, reconfigurable hardware can be
applied in DSP applications where reconfigurability is beneficial or even re-
quired. We will briefly describe a DSP algorithm and an application that fit
this description, namely, beamforming and software radio.

5.4.1 Beamforming

Beamforming [401] is a spatial (as opposed to temporal) filtering operation
that combines information from an array of sensors to identify a signal’s direc-
tion of arrival. It can amplify signals from specific directions relative to other
directions through simply processing the data appropriately. Basically, beam-
forming uses the fact that identical signals that are in phase with each other
add constructively to produce a signal with the maximum amplitude while
those that are out of phase will provide a signal of much smaller amplitude
due to destructive interference. Though rarely a complete application by it-
self, it has been a key component requiring flexibility and high performance in
applications areas ranging from sonar and radar to wireless communications
and software radio.

To perform this spatial filtering operation, the signals themselves can be
summed in the time domain or the frequency domain (i.e., after an FFT has
been performed). In the time domain approach (sometimes called “delay-sum”
beamforming), a history of the last N samples are kept for each sensor and a
beam is formed by selecting the proper sample from each sensor history buffer
and then summing the samples across the sensors. The sample chosen from
each sensor’s history buffer is determined by the angle of arrival for the partic-
ular beam and, hence, the relative delay expected between sensors as the signal
propagates over the sensor array. For more realistic delay-sum beamformers,
a windowing function is applied to the selected samples to better shape the
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beam response—thus, the basic operation becomes a multiply-accumulate op-
eration. Though the computational operations themselves are simple, the real
challenge often is effectively using memory bandwidth to provide the needed
samples to the MAC units for the directions of interest.

In [179], a sonar beamforming application having 10,000 beams, a 2-kHz
sampling frequency, and 400 sensors is described. The effective processing rate
required for real-time processing of the data is 16x109 operations/second. In
comparing FPGAs with a high-end commercial DSP of the time, the FPGAs
provided six to twelve times the processing capability of the DSPs. The data
parallelism that was exploitable, the pipelined operation of the RC hardware,
and the available memory bandwidth in the reconfigurable computing solution
were significant factors in this speed up.

In the frequency domain, an FFT is performed on the time domain sam-
ples for each sensor, then phases value are added to or subtracted from the
FFT data from each sensor for the frequency bins of interest and for each
of the directions of interest. Figure 5.14 illustrates a “brute force” frequency
domain beamforming operation for sonar from [180] that has 10,000 beams,
256-sample history buffers for each sensor, and 400 sensors.

Fig. 5.14. Frequency-Domain Beamforming Example for Sonar

These phase values can be added in several ways. If the complex FFT data
is in rectangular coordinate format, the rotation can be performed directly us-
ing a complex multiplication at the cost of four scalar multiplications and two
scalar additions. If the FFT data is in a magnitude-phase (i.e., polar) represen-
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tation, the phase can be simply added, but a polar-to-rectangular conversion
must be done before summing across the sensors. Figure 5.15 provides a few
examples of frequency-domain beamforming kernels described in [180]. Note
the use of CORDIC to directly perform polar-to-rectangular conversions. Fur-
ther, to reduce the storage requirements for the phase shifts for each frequency
and beam direction, the kernel in Figure 5.15(c) has been modified to com-
pute the phase shifts dynamically based on the time delay and frequency. As
reported in [180] , the frequency-domain kernel computation required 8-16x
more PDSPs than Xilinx FPGAs when comparing contemporary devices for
providing real-time beamforming for the problem illustrated in Figure 5.14.
Again, The data parallelism that was exploitable, the pipelining, and the
available memory bandwidth in the reconfigurable computing solution were
significant factors in this speed up.

A special application of the frequency domain beamforming technique—a
matched-field beamformer—is described in [224]. This sonar beamforming al-
gorithm accounts for the multiple paths a single signal can take through an
ocean environment to provide three-dimensional location information for the
signal source. In [224], the authors compare contemporary general-purpose
computing solutions with a reconfigurable computing solution. The recon-
figurable computing solution—a single SLAAC1 board using Xilinx XC4000
FPGAs—provided a computation rate of 3.8Gops/s for the problem, outper-
forming the general-purpose computing systems by a factor of 18 to 83 times.
Using 2002 technology rather than SLAAC1’s 1998 technology, a Virtex-II
reconfigurable computing solution employing an Osiris board provided a com-
putation rate of 60Gops/s for this same problem.

In addition to the above techniques, [231, 316] and other texts describe a
number of adaptive beamforming algorithms that allow the spatial filtering
operation to adapt to its environment to be more selective for the directions
of interest (e.g., cancel jammers from other directions). The following are a
sampling of the papers discussing adaptive beamforming employing FPGAs
and reconfigurable computing: [226,267,279,295,315,409,410,435].

Considering the large number of beamforming algorithms and techniques
available, reconfigurable computing can provide a high-performance digital
signal processing platform for beamforming while providing the flexibility to
support multiple beamforming algorithms for a given sensor array. This flex-
ibility, of course, enables the processing to be changed, as necessary, to meet
specific application demands. For instance, the RC hardware can be put into
a mode to search for signals using a straightforward beamforming algorithm.
Once a signal of interest has been identified, the RC hardware might be config-
ured to use an adaptive beamforming algorithm to help track a specific signal
or better amplify the signal from a given direction. Further, using a reconfig-
urable computer for beamforming may allow the same processing hardware
to support many different sensor arrays.
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(a) Complex Multiply

(b) Phase Addition

(c) Phase Addition with Phase Shift Computation

Fig. 5.15. Frequency-Domain Beamforming Data Paths
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5.4.2 Software Radio

Software radio [292] (SR) has been one of the most significant DSP applica-
tions for reconfigurable computing since the late 1990’s. A software radio is
a radio that can have its functionality substantially modified by software or
hardware reconfiguration. The desire for software radio has been driven by
many factors, including the following [341]:

• Multifunctionality: For example, a single device could be used for both
Bluetooth and 802.11 wireless networking and support the optimized
transmission and reception of different data types (voice, text, still im-
ages, video, networked game play, etc.).

• Global Mobility: A single device could be used across the globe despite the
many various wireless communication standards. Likewise, large military
organizations, such as the United States military, that have many different
internal communication standards would be able to use a single device to
seamless communicate with equipment using any of these standards.

• Compactness and Power Efficiency: Instead of needing separate hardware
for each wireless communications standard, a single device can perform the
function, potentially reducing the hardware and, thus, power requirements.

• Ease of Manufacture: As mentioned in the introduction to this chapter,
reproducing analog systems with precision can be challenging compared
with digital systems.

• Ease of Upgrades: The complexity of communication systems and their
data handling can easily lead to flaws in the system that would be ex-
pensive to fix if found late in the design flow, for example, in the field
by customers. Such flaws could be fixed in the field with a software radio
architecture. Further, as new standards develop and improved algorithms
are discovered, the customer’s radio can be upgraded to support additional
and/or improved functionality.

Figure 5.16 illustrates a general SR architecture. A software-defined ra-
dio receiver uses analog front-end hardware for providing the interface to the
antenna, analog-to-digital conversion to convert the incoming signals to the
digital domain, and then uses digital signal processing to extract the informa-
tion from incoming signals. Conversely, if the unit can perform transmission,
information is embedded in a signal digitally, the resulting digital signal is
then converted to analog, and then back-end analog electronics are used to
interface to the transmission antenna to transmit the signal. Note that in ad-
dition to DSP functions that perform channelization, sample rate conversion,
and signal demodulation, software radios often include additional functions,
such as error correction, data encryption, and data decryption.

Reconfigurable computing has been explored as an implementation tech-
nology for the digital signal processing portions of software radios due to its
reprogrammability and high performance. Considering the numerous publi-
cations on software radio with reconfigurable computing, the following para-
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Fig. 5.16. General Software Radio Architecture based on [341]

graphs will provide only a brief overview of the reconfigurable computing
literature discussing software radio.

Systems and Architectures

To begin our survey, we will first describe several papers and articles that
deal with software radio systems and architectures involving reconfigurable
computing.

One of the more complete software radio architectures supporting recon-
figurable hardware has been described in [377,378,380,381]. This architecture
has four layers: the application layer, the soft radio interface layer, the config-
uration layer, and the processing layer.The application layer is the top-level
application that provides the user interfaces with the radio. The soft radio
interface (SRI) layer provides the application with the ability to select the
function of the radio and to coordinate data I/O. The SRI layer packetizes
incoming data and commands for the lower layers and stores all algorithms
needed for the radio. The configuration layer manages the configuration of
the processing layer and maps the algorithms from the SRI layer to their low-
level configuration data, allowing the SRI layer to operate at a higher level
of design abstraction. The configuration layer passes configuration and other
control packets along with data packets to the processing layer. The process-
ing layer reconfigures its operation based on command packets and operates
on the incoming data packets. Some other notable features of this architec-
ture include: data and control information are communicated using the same
busses; the architecture supports pipelined, stream-based processing; and the
communication of data among processing elements can be bi-directional when
feedback is necessary.

In working with this architecture, researchers at Virginia Tech discov-
ered that their Stallion reconfigurable computing system [380] based on a
coarse-grained reconfigurable architecture supports this layered, streaming ar-
chitecture quite well. For instance, Stallion specifically supports stream-based
processing and provides wormhole reconfigurability where configuration data
can be added as headers to data streams sent through the architecture. The
layered architecture and Stallion have been used to build Code-Division Mul-
tiple Access (CDMA) receivers (e.g., [377,378,380]).
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In [184], Gray et al. suggest that software radio architectures must be kept
“object-oriented” to allow for easier reconfiguration both on the software and
hardware sides. Further, their suggested architecture uses “interface” objects
that are used to handle data-rate and data-format changes between hardware
and software objects. By using their modular approach, they note that chang-
ing, for example, the modulation or filtering for a specific receiver channel can
be done without affecting other channels, providing a very flexible architec-
ture. Their goal is a system that can perform dynamic reconfiguration in order
to handle changes in the environment (weather, radio motion, multipath) as
well as being compatible with various networks. They briefly describe a soft-
ware radio system they developed that supports binary phase shift keying
(BPSK) and was implemented using a PowerPC microprocessor and Xilinx
FPGA.

In [342], Revés et al. describe a DS-CDMA subsystem for software radio
targeted to a reconfigurable platform. They provide the hardware costs for
mobile-terminal and base-station functions and note the difficulty in devel-
oping software radios using FPGA design tools. In recognizing this difficulty
and the difficulty of using heterogeneous processing resources in software radio
systems, Revés et al. later developed a hardware abstraction layer for software
radio applications so that an application could be mapped to general-purpose
processors (GPPs), programmable DSPs (PDSPs), or FPGAs seamlessly [343].
The abstraction layer provides support for: seamless communication with and
among processing resources, monitoring and control interfaces, real-time syn-
chronization among processing resources, and methods for launching and map-
ping application objects to processing resources. In [343], they report on their
implementation of this layer for FPGAs, noting that such a scheme is better
suited for systems with larger FPGAs, where the area overheads would be
lower. In their example system, the area overheads were 56% for the base
station and 72% for the mobile terminal.

A number of software radio systems use reconfigurable hardware for the
high-bandwidth front-end processing and other more traditional processors
for lower bandwidth tasks. This is often due to the relative ease of devel-
oping software for GPPs and PDSPs and, sometimes, due to the need for
floating-point in later processing stages. For instance, in [368], a hybrid sys-
tem is presented that consists of a GPP, a PDSP, and an FPGA processor and
provides a software radio solution supporting both the Japanese PHS wire-
less communications standard and the IEEE 802.11 wireless LAN standard.
In this solution, the GPP provides the media access control layer and higher
functions while the PDSP and the FPGA share the processing load for the
physical layer for the wireless LAN.

A large number of papers and articles, of course, describe specific soft-
ware radio implementations using reconfigurable hardware technologies. The
following are just a few examples. In [242], Korah and McDonald describe
a software radio design that uses an adaptive antenna array (i.e., adaptive
beamforming) receiver to outperform the commonly used RAKE receiver for
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a wideband CDMA application. Due to FPGA resource limitations, all but the
beamforming was implemented in an FPGA. Harumaya et al. in [200] describe
a mixer-less architecture using a direct-conversion receiver, ADCs, FPGAs, a
GPP, memories, and DACs. The paper describes how digital processing is used
to compensate for the short comings of the direct-conversion receiver technol-
ogy and also describe how they support five modulation formats within the
system. A very brief description of a CDMA software radio receiver system is
provided in [281]. Despite the brevity they do provide information regarding
how they parameterized the design as well as some statistics regarding the
receiver’s power consumption (< 1 W for both dynamic and static power)
and some area estimates (< 88% of a Xilinx XCV300E). As a final example,
Hwang and Chu in [225] describe a very specific form of QPSK receiver they
created using Altera Stratix. By utilizing a Stratix device and its DSP blocks,
the design used relatively little logic (4%) and on-chip memory (2%) while
using 65% of the on-chip DSP blocks.

A few papers have been written describing software-radio capabilities for
space-based platforms. Caffrey et al. describe their reconfigurable comput-
ing system for space-based software radio in [61]. The system supports the
processing of two separate input channels and provides support for mitigat-
ing FPGA programming data upsets due to radiation effects. In [319], the
researchers describe the need for software radio in multimedia satellite appli-
cations and discuss a few ideas regarding the protocols and hardware support
needed.

Finally, with regards to reconfigurable computing systems for software ra-
dio, [379] provides a nice evaluation of many reconfigurable hardware systems
for their suitability to provide low-power software radio handsets. Some of the
features that were identified as desirable included:

• support for hardware paging to better utilize the hardware;
• fast reconfiguration times (< 0.2s) to avoid “dropped” calls due to recon-

figuration;
• static hardware for frequently used functions (multiplication, filtering,

etc.);
• coarser granularity than FPGAs;
• scalable architectures that easily allow algorithms to be implemented

across multiple devices or reconfigurable computers;
• strategically placed shift-registers, circular buffers, and other needed mem-

ory structures; and
• a large number of I/O pins for data throughput.

In their survey, Srikanteswara et al. also recognized several challenges for
using reconfigurable computing hardware for software radio. These included:

• the need for better high-level design tools and compilers;
• the need for designs tools to represent and manage reconfiguration explic-

itly (e.g., the tools should minimize reconfiguration time in addition to
execution time);
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• very-low-power implementations will be needed for software-radio hand-
sets2;

• the need for easy integration with PDSPs, assuming that flexible, event-
driven processing will be necessary;

• the need to carefully profile software radio designs to understand which
parameterizable cores to use in coarse-grained architectures; and

• the need to manage the various run-time control parameters for the opti-
mum implementation while allowing for changes to a system’s algorithms
and the environment in which the handset operates.

Reconfigurability

Of course, since one of the main benefits of reconfigurable computing is recon-
figurability, a number of software-radio-related articles address the reconfigu-
ration process directly. A number of the papers and articles mentioned above
address reconfigurability. For instance, the layered software radio architecture
described in [380] specifically addresses reconfiguration as part of the system,
having a layer for configuration management. The three papers addressing
space-based software radio and applications— [61], [184], and [319]—briefly
address reconfiguration and the system needs to support it. As another ex-
ample, the hardware abstraction layer of [343] explicitly accounts for recon-
figuration in the API it provides.

In addition to the previously mentioned papers, Honda et al. in [213]
consider an efficient method for transmitting configuration data for compo-
nents of an FPGA-based software radio such that the radio performance is not
significantly reduced. The researchers assume that a reduction in the radio’s
performance may result from errors in the the configuration data that the
radio receives in addition to the usual radio transmission noise that radios
experience. To achieve a 25% reduction in the number of symbols used to
transmit the configuration data without significant affects on the radio, the
researchers use two different modulation schemes for configuration data trans-
mission: they use a more reliable but expensive scheme for the most significant
bits of functions (adders, multipliers, etc.) while using a more efficient, but
less reliable scheme for the least significant bits of the function. They assume
that LUTs are used to perform logic on the FPGA.

Finally, in [110], the researchers consider a hybrid DSP-FPGA platform for
software radio. In their system, they were able to illustrate the performance
benefits of FPGA partial reconfiguration for software radio applications by
reducing FPGA reconfiguration time by 45% through partial configuration.

2 Reconfigurable hardware currently provides power efficient implementations for
high-performance systems, but this is not the same as providing a very-low-power
design.
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DSP Functions

A software radio requires many signal processing functions to perform suc-
cessfully. Many of the papers mentioned above describe some specific design
details for implementing specific software radio functions.

As a few additional examples of what has been done, Chris Dick and his
colleagues have published several papers on efficient FPGA implementations
of software radio components. These include the parts of an OFDM receiver
[118], an adaptive channel equalizer [120], and the hardware for carrier and
timing synchronization [119,122] for FPGA-based software radios.

Also, in [272], Lund et al. discuss a flexible, reconfigurable convolutional
decoding system using FPGAs. Specifically, they describe how to implement a
parameterizable decoder that can be reconfigured to decode any convolutional
code up to constraint length 9 and at any rate to a minimum of 1/6. Though
error control coding has not been emphasized as a digital signal processing
function in this chapter, it does play a very significant role in most forms of
communications.

Finally, Kim et al. in [237] describes an adaptive antenna signal processing
algorithm for improved direction-of-arrival estimation (i.e., adaptive beam-
forming). In the article, they describe their algorithm, which performs eigen-
value decompositions using CORDIC, and they discuss the estimated size and
performance of the circuit as well as the algorithm’s performance when using
an fixed-point implementation.

5.5 Summary

Digital signal processing has become a popular method for processing the sig-
nals we encounter in our daily lives and in other settings and reconfigurable
computing has become a favorite technology for implementing DSP applica-
tions due to its flexibility and performance. The key to the performance of DSP
applications on reconfigurable computers is the large amount of parallelism
that can be exploited in these applications. Factors such as pipelining, small
data widths, memory bandwidth, I/O bandwidth, and others help determine
how much parallelism can be exploited and how efficiently the reconfigurable
computing application operates.

We have also provided a small sampling of the wide variety of DSP oper-
ations and applications that have been developed using reconfigurable com-
puting. Software radio using reconfigurable computing has been one active
area of research and we expect the efficient use of reconfigurable computing
for DSP to continue as an active research topic for some time.



6

Image Processing
Reid B. Porter

The goal of image processing is to robustly extract useful, high-level informa-
tion from images and video. The type of high-level information that is useful
depends on the application. Examples of applications include object detection
and tracking for surveillance, defect detection for automated production sys-
tems, and scene classification for remote sensing and map annotation. Extract-
ing high-level information is a difficult research problem and many different
algorithms have been suggested.

6.1 RC for Image and Video Processing

Image and video processing have been significant application drivers for the
reconfigurable computing community since its inception in the early 1990’s.
Prior to modern reconfigurable devices, image and video processing were also
significant application drivers for computer architecture research and VLSI
design. There are two related reasons why this application domain has received
so much attention in the computer architecture community. The first is the
poor, often unacceptable, performance observed in general-purpose processor
implementation. This can be attributed to:

• large volumes of data
• exceptionally high memory bandwidth requirements
• real-time processing constraints

The second is the increased, often incredible, performance gains observed
in custom or application-specific implementation. This can be attributed to:

• abundant parallelism in both data and algorithms
• local and regular data dependencies
• simple fixed point arithmetic and logic operations
• relatively small bit-widths
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Reconfigurable computers have been used most widely, and successfully,
for accelerating low-level image processing algorithms. These algorithms are
typically applied close to the raw sensor data and are characterized by large
data volume. Conceptually, low-level image processing is decomposed into a
processing pipeline with raw image data (taken from a sensor) as input and
the desired information as output. Figure 6.1 depicts a typical processing
pipeline. Each stage of the pipeline can be a multiple-input, multiple-output
transformation.

Fig. 6.1. A multi-spectral image processing pipeline

• There may be multiple sources of data from multiple sensors and / or mul-
tiple points in time in which case, it can be useful to co-register the data.
The relative displacement between data sources is often useful, e.g., depth
information can be recovered from stereo pairs, and motion information
from temporal sequences.

• The image enhancement stage is concerned primarily with removing sen-
sor noise and other environmental variation in order to make subsequent
analysis easier.

• Feature extraction is a transformation from the image space, where each
pixel usually represents intensity, to a feature space where pixels represent
more abstract quantities. These quantities are typically application specific
and are chosen to make subsequent processing easier.

• Latter stages of low-level image processing include detection, classifica-
tion, and segmentation, in which abstract labels are assigned to image
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pixels. These labels are typically application specific, e.g., a non-zero label
specifies a region of interest.

Many variants and extensions of this processing pipeline exist for partic-
ular applications. In terms of reconfigurable computer implementation, it is
useful to categorize low-level image processing algorithms based on their data
dependencies. Two broad categories of algorithm are:

Local Algorithms: The algorithm depends on data from a relatively small
(compared to the image size) neighborhood that is local in spatial and tem-
poral dimensions. Examples include, point or pixel operators (such as band
arithmetic, thresholding), convolution, and motion estimation.

Global Algorithms: The algorithm depends on data from the entire image.
Examples include transforms such as the Fast Fourier Transform and principle
component analysis as well as statistical histogram techniques.

A general rule of thumb for obtaining speed-up with custom computing
architectures is to minimize the number of times the data is accessed. By de-
finition global algorithms often require multiple passes through the data and
performance compared to general purpose processors is varied and algorithm
specific. In this chapter we will concentrate on local algorithms. These algo-
rithms are found in all aspects of the low-level image processing pipeline and
they can benefit greatly from RC implementation. Reported speed-ups are
typically two orders of magnitude compared to general purpose processors.

6.2 Local Neighborhood Functions

Local neighborhood functions (also called sliding window functions and spatial
filters) are used extensively in image processing and computer vision. These
functions are applied at a particular pixel location and their output depends
on a finite spatial neighborhood. The function is applied independently at all
pixel locations and is typically constant across all pixel locations. Figure 6.2
illustrates the how a neighborhood function is applied for a 3 by 3 neighbor-
hood. When local neighborhood functions are applied at edge locations some
of the neighborhood is not defined. The undefined pixels can be assigned a
value of 0, or can be assigned the value of the closest pixel. Another common
approach is to temporarily increase the size of the input image by reflecting
pixel values across each edge.

The neighborhood function of Figure 6.2 can be generalized in several
ways to include a large number of standard image processing algorithms.
Neighborhoods can be generated from multiple input images such as color
channels or more generally, spectral dimensions. The kernel (see Section 6.3)
is 3 dimensional and the neighborhood function slides over the 2 spatial di-
mensions of the image stack. Point operators such as band arithmetic (average
of color channels), clipping, thresholding and pixel scaling can be considered
local neighborhood functions when we assume a spatial neighborhood size of 1
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Fig. 6.2. A neighborhood function is applied to all pixels in parallel

pixel. These basic operations are described in detail in most image processing
texts [229].

Local neighborhood functions can also receive multiple images over time,
and this is typical in video processing applications. This is different from re-
ceiving multiple spectral inputs associated with a single image. Similar to
FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters
encountered in signal processing the neighborhood window has a finite tem-
poral extent and slides through time as the function is applied at each time
step. The kernel is 3-dimensional and the neighborhood function slides over 3
dimensions (2 spatial and 1 temporal). Note that in the spatial dimension the
neighborhood function is applied independently at every location, but for the
temporal dimension this is not always the case as in neighborhood functions
with temporal feedback (IIR).

Local neighborhood functions demand exceptionally high bandwidth to
image data. For example, for a modest 3 band 256 pixel wide by 256 pixel
high color video sequence, a (typical) 7 by 7 spatial neighborhood size and
a 3 frame temporal window, the most general neighborhood function would
require access to 441 pixel values at each image location. To obtain real time
processing rates at 30 frames per second would require access to approxi-
mately 870 million pixels per second. As we will see, most image processing
applications are composed of large numbers of local neighborhood functions
and therefore the bandwidth requirement quickly exceeds what general pur-
pose computing can provide. Fortunately, due to the regular nature of the
memory access across the image array, there are also many opportunities to
optimize the memory access. Reconfigurable computers are ideal platforms to
tailor memory hierarchies and implement algorithm specific address genera-
tion, and therefore great performance gains are possible.

There are two main ways of achieving speedup in local neighborhood
functions using reconfigurable computers: pixel parallelism (Single Instruc-
tion Multiple Data) and instruction-level parallelism through pipelining. The
two extremes of this approach are illustrated in Figure 6.3.
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Fig. 6.3.

6.2.1 Cellular Arrays for Pixel Parallelism

Cellular arrays naturally model image data [349]. They consist of an array of
cells in two, three or more dimensions. Each cell is associated with an image
pixel and each cell has dedicated connections to its local neighborhood. This
high-bandwidth local communication is ideal for implementing neighborhood
functions; all pixels are processed in parallel, and the entire image is updated
in 1 instruction cycle. FPGAs can implement a programmable, maximally
parallel implementation of a cellular array, but can only efficiently implement
a small numbers of cells. Large arrays require multiple FPGAs and/or time
multiplexing, and the I/O required to initialize the array and read results can
dominate the computation time.

6.2.2 Image Pipelines for Instruction-Level Parallelism

In this case only one cell of the equivalent cellular architecture is implemented.
Data is provided to the cell through a continuous stream of pixels supplied to
the cell one sample at a time, and usually in raster scan order. This arrange-
ment is often suitable for real-time systems where data arrives directly from
a serial I/O sensor. Since pixels are processed sequentially, the main way to
achieve speed-up for an image pipeline is to execute multiple instructions in
parallel. As shown in Figure 6.3 instructions can be implemented either in
parallel (increasing the pipeline width) or in series (increasing the pipeline
depth). Unlike cellular architectures, accessing a local neighborhood within
an image pipeline must be carefully considered. All instructions in a pipeline
are being executed at the same time, and therefore it may be difficult to
provide data to all instructions at the right time.

We have described the two extremes of a pixel parallel verse instruction
parallel design space. In practice any combination of these two extremes may
be used. The optimal design point is dictated largely by the memory architec-
ture of the particular FPGA and reconfigurable computer. Formalizing design

versusPixel Parallel Instruction Parallel



124 6 Image Processing

choices and providing tools that can optimize among design choices is a topic
of ongoing research [262].

6.3 Convolution

Perhaps the most well known local neighborhood function is convolution,
which is defined in Equation 6.1. A multiplicative weight W is associated
with each location of the neighborhood {k, l}, collectively known as the ker-
nel K. The output F of the function is the accumulated weighted sum of the
kernel applied at each pixel location Image(i, j).

F (i, j) =
∑

k,l∈K

Wk,l ∗ Image(i − k, j − l) (6.1)

By selecting the appropriate weights, convolution can implement low-pass,
high-pass and band-pass frequency domain filters used extensively in image
enhancement and feature extraction. Low-pass filters use positive weights and
are used for image smoothing. High pass filters use a kernel with a positive
center weight and negative outer weights and are used to enhance high fre-
quency components in an image such as edges and fine detail.

One of the first reconfigurable computer implementations of convolution
was on Splash 2 [338]. The image pipeline approach was used in a linear
systolic array implementation. Local memory was used to replace multipliers
and the lack of on-chip memory meant the image width was limited to 32
pixels. Despite these limited resources the timing for a two 3× 3 convolutions
applied to a 512 by 512 image was 100 frames per second. A 3×3 convolution
implementation which is very similar to the linear systolic array is shown in
Figure 6.4. The image data is assumed to arrive one pixel each clock cycle in
raster scan order. After a fixed latency, this architecture provides access to
the entire neighborhood of data every clock cycle.

The architecture in Figure 6.4 places the lowest demand on external mem-
ory bandwidth, but the highest demand on internal memory bandwidth. Each
pixel in external memory is accessed only once but for an image width, W ,
and kernel width, M , ((M −1)×W +M) pixels must be stored on-chip. Since
around 1998, many modern FPGA devices have a the large amount of on-chip
memory and this approach has been widely adopted [230], [303], [45].

The length of the shift register in Figure 6.4 depends on the input image.
If the image is thousands of pixels wide it is unwise to buffer the entire row.
The most common approach is to choose a row length appropriate to the
hardware resources at hand (e.g., 64, 128 or 256 pixels), slice the input image
into strips of this width, and provide these strips as one long, narrow image
to the hardware. Due to the neighborhood, these strips must overlap by a
particular number of pixels in order to produce results that stitch correctly.
This overlap leads to a slight decrease in performance compared to the full
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Fig. 6.4. A systolic array for 2-D convolution

length row buffers. Bosi, Bosi and Savaria estimate that dividing a 1024 by
1024 image into 16 slices reduces the number of registers required by a factor
of 14.8 for a 3 × 3 convolution, while performance is reduced by 6% [56].

When on-chip memory is not available, row-length shift registers may not
be possible at all. To maintain the pipeline throughput at one convolution
per cycle the design needs to access more than one pixel per clock cycle from
external memory. If we can access M neighborhood pixels per cycle we can do
without the row length shift registers entirely. For example, if the data-width
of external memory is 32 bits and the pixel data width is 8 bits, we can access
up to 4 pixels per clock cycle. For a 3 by 3 convolution we need to access
three pixels from three different scan lines each clock cycle. Since an image
is typically stored in raster scan order in the external memory the memory
access must cycle between the three different scan-lines. On-chip registers can
be used to buffer the three consecutive pixels from each row and maintain
throughput at one convolution per cycle [56].

In the situation just described each pixel is read from memory three times
(once for each row in the neighborhood). To reduce the redundant I/O it is
possible to implement multiple neighborhood functions, each associated with
consecutive rows of the image. The multiple functions exploit pixel parallelism,
and also, share local neighborhood access and therefore the I/O is reduced.
This approach is described as partial loop unrolling by Draper et al. with
respect to the Single Assignment C compiler [127].

6.4 Morphology

The pipelined neighborhood cache in Figure 6.4 can be used for a much wider
class of algorithm than just convolution. Mathematical Morphology defines
a large family of image processing algorithms, which essentially replace the
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weighted sum function block with a neighborhood order statistic. The kernel
for morphological spatial filters is also called a structuring element or region of
support and defines the set of pixels from which an order statistic is derived.
The shape of the structuring element is very important. The simplest filters
are erosion and dilation. Erosion is defined as the minimum from the set
of pixels defined by the structuring element and dilation is the maximum.
Another popular morphological filter is the median.

Morphological functions are generally far cheaper to implement with digi-
tal logic than convolution type functions. First, morphology avoids the multi-
pliers that can become expensive for large neighborhood convolutions. Second,
order statistics such as maximum, minimum and median are closely related
to the digital domain. The relationship is described by a technique known as
threshold decomposition, which was first introduced to analyze the median
filter [154]. Threshold decomposition allows gray-valued pixel images to be
processed with bit-level hardware and Figure 6.5 illustrates the technique for
a 1 dimensional median filter. Pixel inputs are first thresholded at all possi-
ble quantization levels; producing a binary stack for each input whose height
is equivalent to the pixel value. Each quantization level is then processed
independently with a positive boolean function. Positive Boolean Functions
(PBFs) are a subset of Boolean logic functions in which no input may be
negated. To regain a gray-valued output we simply sum the binary outputs
from each level. There is a one-to-one correspondence between a PBF and an
order statistic, where each logical AND is replaced by a minimum and each
logical OR is replaced by a maximum.

Fig. 6.5. Threshold decomposition for the median function

Threshold decomposition at first appears to have complexity proportional
to the number of quantization levels (which may be very high) but this in
fact can be reduced to the number of inputs in the filter window. Also, each
stack (associated with both inputs and output) can only make a single tran-
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sition from one to zero i.e. within the same stack ones cannot appear above
a zero. This property, known as the stacking property, allows for extremely
efficient implementations. Chen proposes a most significant bit first, bit-serial
implementation which uses a single PBF [70]. When implementing a 3 by 3
8-bit pixel, erosion on a Xilinx 6200 series FPGA, Woolfries found that imple-
menting 8 copies of the Chen’s implementation used 75% fewer resources and
was 33% faster than implementing the threshold decomposition in Figure 6.5
directly.

The threshold decomposition approach is particular useful in reconfig-
urable computing for implementing order statistics with high complexity, such
as the median, and a large number of inputs. For simple order statistics, such
as maximum and minimum the number of comparisons is linear in the number
of inputs, and a direct sorting network can be implemented efficiently. The
direct sort can also be used for the median function if the number of inputs
is small [372].

6.5 Feature Extraction

We have described the basic neighborhood function building blocks used in
image processing. By combining these building blocks in various ways we can
implement a large number of more complex image processing algorithms that
perform feature extraction. Feature extraction often has one of two aims:

1. To produce a representation that is invariant to specific image properties
such as rotation, illumination, scale etc.

2. To produce a representation suitable for subsequent processing. These
quantities often represent things like texture or color, but they can vary
greatly depending on the application.

One of the most well known example of feature extraction is edge de-
tection. Asymmetric weight kernels suggested by Roberts, Sobel, Prewitt and
Laws estimate image gradients in specific directions. A number of these kernels
are used in convolution and the outputs are combined to produce a rotation-
ally invariant edge detection. Outputs are typically combined by the sum of
squares, however a sum of absolute values or maximum may be more appropri-
ate in RC implementations. Obtaining rotation invariance through multiple
kernels is also used in morphology. Figure 6.6a shows an example where a
linear structuring is used to probe the image for linear image features such as
roads. A maximum is used to combine multiple outputs during dilation, and
a minimum is used during erosion. For the image processing pipeline architec-
ture, multiple rotations correspond to increased pipeline width. Considerable
memory resources can be saved if multiple rotations share row buffers and
neighborhood registers.

Gabor filters also need increased image pipeline width. The Gabor kernel
is defined as a complex plane wave modulated by a Gaussian distribution.
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Fig. 6.6. Examples of feature extraction: a) rotationally invariant linear features
b) deep morphological pipelines and c) adaptive thresholding

It implements a band-pass frequency domain filter. For feature extraction,
a bank of Gabor filters are implemented, each tuned to specific spatial fre-
quencies and orientations. The quantity used in subsequent processing is often
the magnitude of the complex convolution which exhibits invariance to small
shifts of the input image. The number of filters in a Gabor filter bank can be
quite large, in which case, it may be more efficient to implement convolutions
in the frequency domain. This requires a Fast Fourier Transform (FFT) and
an Inverse FFT, which are available for most modern FPGAs as third party
IP cores [406].

Many complex morphological algorithms for feature extraction such as
opening, closing, open-close and close-open filters are built by successive ap-
plication of erosion and dilation. Usually the shape of the structuring element
is constant between successive erosions and dilations. As shown in Figure 6.6b
these algorithms can be implemented in the image pipeline architecture by
simply increasing the pipeline depth.

Another class of feature extraction algorithms are locally adaptive, which
means that a neighborhood function is dependent upon some statistic of the
local neighborhood. A popular example is adaptive thresholding in which the
center pixel is thresholded by the mean or median value of the neighborhood.
Locally adaptive functions define small sub-trees within an image process-
ing pipeline. For implementation within the image pipeline, different pipeline
paths must be latency adjusted before they can be combined pixel-wise. The
adaptive threshold example is illustrated in Figure 6.6c.

There are many other examples in feature extraction where algorithms are
implemented by cascading multiple local neighborhood functions. Reconfig-
urable computers gain a significant advantage over general purpose processors
for these types of algorithms. Apart from increased latency (which in many
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applications is not important), the pipeline throughput is constant at one pixel
per cycle. The FPGA resources limit how far this approach can be taken. De-
pending on the FPGA architecture and specific type of algorithm, this can be
logic limited or memory limited. Once the limit is reached, multiple passes of
the data or additional FPGAs are required to execute further instructions.

6.6 Automatic Target Recognition

One application where FPGA resources are often not sufficient to implement
the maximal throughput pipeline is template matching for Automatic Target
Recognition (ATR). In template matching the neighborhood function kernel
is a small sub-image from the original image or from a related image and
the neighborhood function calculates a distance metric, such as correlation,
between the sub-image and the original image at all pixel locations. Typically
there are a large number of templates, or kernels, and the problem is to find
the template with the best match at each pixel location. In practical systems
the number of templates often far exceeds what can be matched in parallel
with reconfigurable hardware. For example, an ATR algorithm developed for
synthetic aperture radar by Sandia National Laboratory has approximately
5700 templates associated with each target. With tens or hundreds of targets,
it becomes clear that a practical implementation will require a number of
passes.

The most efficient hardware utilization is gained by customizing the FPGA
for each pass with the configuration bit-stream. This is often appropriate when
each pass of the data performs a significantly different type of processing,
however the approach can also be used to generate optimal specializations of
a generic pipeline. For example, Chia et al. have produced an ATR system
called Mojave that produces specialized matching circuits for different tem-
plates [75]. They call their approach partial evaluation, and it exploits several
properties of the Sandia application:

• The templates are sparse so not all neighborhood pixels are involved in the
correlation. Chia et al. estimate that for approximately half the templates
this approach uses 5.8% of the resources used in a general purpose circuit.

• Many templates share common pixels and therefore share partial results
in the correlation.

The Mojave system provides a number of CAD tools that can automati-
cally perform the above optimizations for a given set of templates. The system
matches 8 by 8 templates against a 128 by 128 video image and was able to
achieve an improvement factor between 2 and 10 over the existing ASIC im-
plementation. Device reconfiguration is an attractive approach to multiple
pass image processing. The approach is unique to reconfigurable computing
and it can lead to significant performance improvements. One disadvantage
of the approach is that it depends on being able to rapidly reconfigure the
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FPGA. The Mojave system is based on the Xilinx 4013PG233-4 FPGA which
requires 30ms to reconfigure. In comparison, the FPGA processes 4 templates
in parallel and takes 16ms for 1 pass. The net result is a system that takes
46ms to evaluate 4 templates.

Fig. 6.7. Localized reconfiguration.

Another way to implement multiple pass hardware specializations is with
partial reconfiguration. In many image processing applications, the image
pipeline can have very similar implementation requirements from one pass
to the next. Computations are typically regular which means implementation
difference can be localized and reconfiguration time minimized. Figure 6.7 il-
lustrates the concept. This approach was used for the Sandia ATR application
by Bellows and Hutchings [43]. They targeted the rapidly reconfigurable Xil-
inx XC6200 series FPGA. Using placement constraints they arranged a 2-D
systolic array of processors with static interconnect. At run-time the function
of these processors is specialized based on a particular template that is being
matched. The hardware efficiency of this approach can be very close to that
achieved by a complete re-synthesis. The disadvantage of the approach is tied
to the limited partial reconfiguration capabilities of most commercial FPGAs.
For example, to manipulate the routing to select which inputs are supplied to
a neighborhood function is difficult with most FPGA devices.

The alternative to FPGA based partial reconfiguration is to build the
multi-pass variability into the hardware design itself. This involves increasing
the complexity of the design to include the required variability, and provide
on-chip configuration registers with an appropriate interface. Rencher and
Hutchings used this approach when implementing the Sandia ATR application
on the Splash 2. They implemented a single general purpose matching algo-
rithm for a 16 by 16 template. Each template was loaded from local memory
to on-chip registers where it was matched with the input image using a deep
image processing pipeline. A control circuit monitored the match from each
pass and maintained a record of the best template. Rencher and Hutchings
estimated their design running at 13.2 MHz outperformed a HP 770 running
at 110 MHz by two orders of magnitude. Building custom configuration cir-
cuits can be extended to any level of flexibility, e.g., configuration registers can
store program instructions for an arithmetic logic unit or a micro-controller.
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Typically, this approach will be most resource efficient when the multi-pass
variability is localized and configuration circuits are tailored to the problem
at hand.

6.7 Image Matching

Area based image matching is another class of local neighborhood algorithm
that is used extensively in low level image processing. With stereo cameras,
two cameras are used to image a scene from two different locations so that
a physical point appears in different locations in each camera image. From
the difference in location (called the disparity), the depth of the point can
be calculated. In video cameras, object or camera motion produces a similar
effect and the difference in location (called the displacement) can be used to
estimate a motion vector. The image matching problem is to find the corre-
sponding points in each image. In area based matching techniques, a point
to be matched becomes the center of a neighborhood. The matching problem
involves finding a similarly sized neighborhood in the second image that is
the best match for the neighborhood in the first image. Figure 6.8a illustrates
the matching problem for a single pixel. The procedure is repeated for every
pixel in the template image.

Some popular metrics for matching include the sum of squared (SSD) and
sum of absolute differences (SAD), as well as the normalized cross correlation
(NCC):

F (i, j) =

∑
(k,l)∈K Wk,l ∗ Image(i − k, j − l)√∑

(k,l)∈K W 2
k,l ∗

∑
(k,l)∈K Image2(i − k, j − l)

(6.2)

Several metrics have been suggested that aim to provide the accuracy of
NCC with less expense. A method that is particularly appropriate in FPGA
implementations is to use the relative ordering of the pixel intensities to cal-
culate similarity [436]. Images are first transformed according to local neigh-
borhoods. In the rank transform each pixel intensity is replaced by an integer
that represents the number of pixels within a neighborhood whose value is
less than the center pixel. The census transform replaces each pixel with a bit
string which encodes the neighborhood pixels according to their location. If a
pixel value is less than the center pixel the corresponding position in the bit
string is set to 1, otherwise it is set to 0. Once the images have been trans-
formed, points are matched by using the traditional area based methods. The
rank transform typically uses the SAD or SSD similarity metric while the
census uses a metric based on the Hamming distance between the two bit
vectors. We estimate the rank matching metric consumes approximately 50%
fewer resources than SSD and at least 75% fewer resources than NCC. This
is mainly due to the smaller data width of the rank metric output [329].
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Fig. 6.8. Searching for the best match in a) the general case and b) in the epipolar
constrained case

Image matching and template matching are in some ways similar. In both
algorithms there are a very large number of templates, and the problem is to
find the template with the best match. There are also two significant differ-
ences:

1. For image matching the template has a search window that is typically
much smaller than the original image. In template matching each template
is matched at every location in the entire image.

2. In image matching the templates are local neighborhoods taken from every
pixel location in the template image, which means consecutive templates
have overlapping values. In template matching each template may be com-
pletely different from every other template. When templates do have over-
lap (as in the Sandia application) it is template specific.

Fig. 6.9. A real-time matching architecture.

These differences suggest an alternative approach to implementation for
image matching which is illustrated in Figure 6.9. The two image pixels
streams arrive at the same time but then are displaced from one another
by varying degrees via delay elements. Images can be displaced horizontally
via registers, but require row-length shift registers to be displaced vertically.
Often in stereo matching the two cameras are mounted carefully to ensure
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that the two scan lines are in correspondence. If this is the case then the
displacement can be assumed to lie on the same horizontal line which greatly
reduces the search window as illustrated in Figure 6.8b.

Most metrics used in matching, such as SAD, SSD, NCC and the Hamming
distance, are based on a neighborhood summation which can be calculated
in two steps. We first we calculate a distance image based on a pixel wise
distance metric between the two displaced images. We then accumulate the
distance image within a local neighborhood. This can be computed with the
convolution function as in Figure 6.4, or since there are redundant additions
(due to equal weights in the convolution), it can be computed with running
totals [152]. Neighborhood summation with running totals allows much larger
neighborhoods to be accumulated and is a two-stage process:

1. Calculate row sums: A new row sum is calculated from the previous row
sum by adding the new pixel and subtracting the last pixel. The row sum
calculation is easily pipelined with a neighborhood row shift register and
an adder / subtracter.

2. Calculate column sums: This is similar to the first step but instead of ac-
cumulating and subtracting pixels we accumulate and subtract row sums.
The number of running totals is equal to the image width. Since the row
sums are being calculated in scan line order a large shift register is re-
quired to subtract the last row sum within the pipeline. One way to avoid
this shift register is to introduce redundant additions so that the last row
sum is calculated at the same time as the first row sum [130]. Figure 6.10
illustrates the main components required in calculating the column sums.
The running totals are kept in memory and accessed sequentially as new
row sums are generated.

Fig. 6.10. Calculating the running totals.

To produce the final output, the neighborhood sums from the various
distance images are compared. The displacement with the smallest sum (ex-
cept for the NCC metric for which we choose the largest) corresponds to
the best match in the search area. The implementation described has been
used by several researchers to obtain real-time depth maps from stereo cam-
eras [130], [420]. As far as we know the architecture has not been used for
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motion estimation on FPGAs. This is probably because of the large amount
of memory that is required to search for vertically displaced neighborhoods,
which until recently would have made real-time implementation infeasible. In
addition, most RC implementations for motion estimation target block match-
ing algorithms used in video compression [347]. In these algorithms, matching
neighborhoods are usually non-overlapping which means only a subset of the
pixels within the template image are matched. This leads to different oppor-
tunities for optimization and therefore different implementations.

6.8 Evolutionary Image Processing

In image processing we often define an error, or loss function that measures
how well a particular algorithm solves the problem of interest. The task is
then to find, through optimization, the algorithm that minimizes this loss
function and is therefore in some sense optimal. Optimal image processing
algorithms are generally able to outperform fixed algorithms since they are
tuned for the specific data and task at hand. Many of the standard image
processing algorithms, such as convolution, morphology and matching are
used in optimal image processing, e.g., in optimal image enhancement we
replace a fixed convolution kernel like Gaussian smoothing with convolution
weights that are optimized to minimize a mean squared error. Another much
studied optimal image processing problem is pattern recognition where the
error function is based on detection and false alarm rates.

Reconfigurable computers are particularly useful in implementing opti-
mization problems since the implementation requirements of optimization
problems vary greatly from one problem to the next [4]. Evolutionary Al-
gorithms (EA), define a family of optimization techniques for which this is
particularly true. EA include genetic algorithms, genetic programming, evo-
lutionary programming and evolutionary strategies. EA optimization is one of
the most flexible optimization techniques in use today, and has been applied
to a variety of research, industrial and commercial problem solving activi-
ties [105]. EA optimization is based on sample and test. A large number of
candidate solutions are generated randomly. Each candidate is evaluated and
assigned fitness by applying the solution to a training set and calculating the
loss function. Based on this fitness, the population of candidate solutions is
resampled, and the process repeats until candidates achieve a desired level
of performance. EA can be applied to many problems in image processing
but it is very computationally intensive. Each candidate evaluation is typi-
cally a complete pass of an image processing pipeline, and a large number of
evaluations are required.

One of the most effective ways to use a reconfigurable computer for evo-
lutionary image processing is as a fitness evaluator. The basic architecture is
shown in Figure 6.11. An application specific image pipeline is implemented in
much the same way as in conventional image processing. We then add a simple
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Fig. 6.11. A fitness evaluator architecture for evolutionary image processing.

control structure that compares the pipeline output to a desired output and
calculates the error function. Note, if the pipeline exploits pixel parallelism
it is likely that multiple error functions will be implemented in parallel. The
pipeline must be used to evaluate many different candidates and therefore
it requires a second level of configurability appropriate to the optimization
problem. Similar to the ATR example, this can be implemented with partial
reconfiguration, and/or with custom configuration circuits as illustrated in
Figure 6.11.

Apart from fitness evaluation, the evolutionary algorithm itself is a very
simple algorithm and can be implemented on the reconfigurable computing
system. Sidhu et al. describe a genetic programming pipeline implemented on a
XC6264 FPGA which obtains speed-up of 19 compared to a 200-MHz Pentium
Pro for an arithmetic regression problem, and three orders of magnitude for
a logic-based multiplexer problem [370]. For the image processing application
domain the computation time for the fitness evaluation usually far exceeds
the computation time of the EA. When the RC communicates with the host
computer over an I/O bus, it is typically not necessary to implement the EA
in hardware.

Using the reconfigurable computer as an I/O bus accelerator generally
implies a low bandwidth connection between the reconfigurable computer and
the host processor. To minimize communication across this connection it is
important to calculate the error function on chip. Figure 6.12 illustrates the
ideal arrangement. Large volume input data and training data are loaded
once at the start of optimization to the RC local memory. Communication
between host and the RC during optimization involves writing to on-chip
pipeline configuration registers, initiating the pipeline evaluation, and then
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Fig. 6.12. Hardware / software portioning for evolutionary image processing.

retrieving the output error. Only at the end of optimization, is the result
image from the lowest error pipeline retrieved for inspection.

Recently, in a field known as evolvable hardware, we observe an interesting
consequence of approaching image processing as an optimization problem. The
idea is to use evolutionary algorithms to explore non-tradition parameteriza-
tions of image processing problems to produce solutions with efficient FPGA
implementations. One of the first applications of evolvable hardware to im-
age processing involved optimizing a variable-length encoded PLD AND-OR
array to solve a binary character recognition problem [228]. Many other ex-
amples of this approach have now been published [129], [432], [362]. Evolvable
hardware researchers have developed many novel image processing algorithms
by optimizing collections of low-level building blocks similar to FPGA logic
cells. This approach can produce extremely compact solutions, but will pro-
duce little speed-up over general purpose machines unless a large number of
these functions are implemented in parallel. This observation led us to de-
velop a system called Pooka, which combines evolutionary image processing
with a reconfigurable computer to solve scene classification and terrain map-
ping problems in satellite imagery [330]. In the Pooka system we explore a
much more abstract parameterization of neighborhood functions, and focus on
finding solutions that combine multiple copies of these functions within a deep
processing pipeline. The net result is a system that can solve complex practi-
cal problems and obtain significant speed-up compared to a general purpose
processor.

The Pooka pipeline is illustrated in Figure 6.13. There are 18 highly
pipelined functions (or layers): 9 of these functions are used to combine multi-
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Fig. 6.13. A 18 layer image pipeline for multi-spectral image classification.

ple spectral channels and their spatial neighborhood is one pixel. The remain-
ing 9 functions implement functions of a 5 × 5 neighborhood. The pipeline
can have up to 16 different inputs. In the example in Figure 6.13 the input
imagery has 4 spectral channels, but in multi-spectral imagery there can be
many more. The connectivity at the pipeline input and between processing
layers is made configurable through large multiplexers which are controlled by
the on-chip configuration registers. The basic building block within the Pooka
system has two inputs (a and b) and one output which are all 8 bit 2’s com-
plement integers. A three bit configuration register dictates which one of eight
functions the building block implements. These functions are summarized in
Table 6.1.

In each spatial layer there are 24 configurable building blocks. In each
spectral layer there are 3 configurable building blocks. The connectivity be-
tween blocks is largely hard coded and is described with other implementation
details in Porter et al. [330]. Pooka has been implemented on a Firebird re-
configurable computer from Annapolis Microsystems [227]. This is a 64-bit,
66-MHz PCI co-processor that contains a Xilinx Virtex 2000E FPGA, and a
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Function Operation

Average a+b
2

Difference a−b
2

Absolute Average |a+b
2

|
Absolute Difference |a−b

2
|

Maximum Max{a, b}
Minimum Min{a, b}
Select Left a

Select Right b

Table 6.1. The Pooka configurable building block.

total of 36 MB of on-board memory distributed in 5 independent banks. The
18-layer network used 64% of the FPGA logic and 35% of the block ram post
place and route and is clocked at 50 MHz.

During evolution the Pooka system obtains speed-up of three orders of
magnitude over a software simulation running on a 500-MHz Pentium III
workstation. This is attributed to the fact that Pooka is based on a config-
urable building block that is efficiently implemented in hardware but inef-
ficiently in software. In hardware, the configurable building block network
is completely pipelined and is carefully hand designed to make the best use
of Virtex FPGA resources. In software, the 24 configurable building block
network requires many conditional assignments, all within nested loops. The
software compiler has few optimizations available to it and the performance
is poor. A possibly more meaningful measure of performance can be esti-
mated by considering a high-level approximation of Pooka components. For
each Spectral layer in the pipeline, a linear combination is calculated. For
each Spatial layer, a 5 by 5 neighborhood average is calculated. The relative
speed-up in this case was estimated at two orders of magnitude. However the
software implementation is slightly simpler (but has greater bit-widths) than
the Pooka implementation.

The speed-up achieved by RC in evolutionary image processing can be
close to that achieved in real-time reconfigurable computing systems. This is
because there is very little communication between the host and reconfigurable
computer during optimization. Image data is always on-time (since it is stored
in local memory) and the image pipeline operates almost continuously at peak
capacity. However, once the optimization is complete, the performance of the
optimized image pipeline in application depends on several factors which are
typically related to data I/O. In the Pooka system, optimized pipelines are
typically applied to large satellite images (2 to 4 Gigabyte images) that are
stored on the host computer hard disk. Therefore, the execution time for the
Pooka system must include the time required to read data and write results
to disk, as well as the time to transfer data to and from the FPGA board
across the PCI bus. We found the communications overhead reduced the 100X
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speed-up by a factor of 10. This overhead is not a factor when image frames
are acquired and processed in real time.

6.9 Summary

The local, regular nature of local neighborhood functions, which are used
extensively in image processing, provide many opportunities to exploit paral-
lelism. Image data is inherently parallel, and local neighborhoods have con-
siderable overlap from one pixel to the next. Image algorithms are inherently
parallel and are often implemented with long sequences of basic operations.
Combined, this means hardware engineers have a rich design space with many
degrees of freedom. In many ways, the high performance implementations of
image processing algorithms that have been reported are due to this flexibility
in design space. The hardware engineer can tailor the type and level or par-
allelization appropriate to a specific Reconfigurable Computer based on the
number of gates and on-chip / off-chip memory bandwidth. Not many other
applications have this luxury.

In this chapter we have described prototypical architectural solutions to
several image processing problems. In practice, the details of these implemen-
tations for specific reconfigurable computing systems can greatly affect per-
formance, and therefore, exploring the design space with the specific resource
constraints is very important. Optimization under resource constraints is of-
ten what makes hardware design hard for humans. Given the many degrees of
freedom in image processing, optimal solutions are likely to remain hard for
automated resource allocation tools and techniques as well. As computational
capacity and memory bandwidth increase, we speculate that non-optimal, but
sufficient solutions will become acceptable, simplifying the problem for both
humans and machine.
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Network Security

The need for secure communication over internetworks has increased greatly
in the past decade. In today’s networked society, it is necessary to protect
information that passes through world-wide computer networks. It is nec-
essary that data is read only by the intended recipient(s), that data is not
compromised or altered during transmission, and that the recipient can be
confident of the identity of the sender. It is necessary to make sure that unau-
thorized individuals do not gain access to private local area networks. Further,
it is necessary to ensure that the network itself remains robust in the face of
virus/worm attacks.

In this chapter, we discuss the role of reconfigurable computing to ac-
celerate security-related communication. Applications include cryptography,
network-based security protocols, and network protection.

7.1 Cryptographic Applications

Encryption ensures the secure communication of information among sender
and recipients over insecure computer networks [357]. With the widespread use
of public internetworking resources for financial transactions, electronic com-
merce, and distributed processing of confidential corporate data, bulk encryp-
tion of large data streams, especially via public key cryptography, has become
increasingly important. The volume of data combined with the computational
burden of encryption/decryption limit the utility of software cryptographic al-
gorithms. E-commerce presents a burgeoning need for secure communication
when the sender and receiver are not known to each other and raises issues
of secure key exchange as well as identity authentication. Public key cryptog-
raphy algorithms prove particularly computationally intensive, and map well
to hardware.

In this section, we survey advances in reconfigurable hardware implemen-
tations of cryptographic algorithms.
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7.1.1 Cryptography Basics

In cryptography, the original message, called plaintext, is given to a encryp-
tion algorithm along with a key to generate ciphertext (see Figure 7.1). The
ciphertext travels over an insecure communication channel to the recipient,
who applies the associated decryption algorithm using the same or a different
key.

Encryption
Algorithm

Message
(Plaintext)

Key 1

Encrypted Message

(Cyphertext)

Algorithm
Decryption

Message
(Plaintext)

Key 2

Communication Channel

Fig. 7.1. A Cryptographic System

Symmetric Algorithms

When a Secret Key – also called symmetric – encryption algorithm is used,
the encryption algorithm is public, but a single, shared key (Key 1 and Key 2
in the diagram are the same key) is kept secret between sender and recipient.
Symmetric algorithms operate over data blocks, in which a group of bits (often
128 or larger) are encrypted as a unit; or over data streams, in which each bit
in the stream is encrypted separately on the fly. Symmetric algorithms may
also operate in a variety of modes. In feedback mode, the result of encrypting
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a block Bi is input to encrypt the next block Bi+1, thus requiring sequen-
tial computation of the list of blocks. In non-feedback mode , each block is
encrypted independently, potentially in parallel.
Block Symmetric Algorithms typically consist of iterated “rounds,”
where the number of iterations depends on the size of the data block. A
round consists of a sequence of operations. Figure 7.2 illustrates the structure
of the Advanced Encryption Standard algorithm Rijndael [102].

Plaintext
Block

Block
Encrypted

Byte
Substitution

Shift
Row

Mix
Columns

Add Round
Key

For 128−bit block, 10 iterations;
Iteration 10 skips "Mix Column"

Subkey

Fig. 7.2. Rijndael Symmetric Block Algorithm

In the Byte Substitution step, each byte is replaced by its substitute from
a Substitution Table (S-Box). For each byte b, its S-Box entry is calculated by
taking b−1 in GF (28) and then applying an affine transformation over GF (2)
to b−1. GF stands for Galois Field, a finite field over a prime number. In the
Shift Rows step, rows of the block are shifted left, the shift amount depending
on the row index. In Mix Columns, columns of the block are multiplied (in
GF (28)) by a constant matrix. In the final Add Round Key step, a subkey
derived from the original key that is unique to the round is XOR’ed with the
block.

As this example shows, basic operations commonly used in block ciphers
include

• logic operations such as XOR ,
• modular arithmetic in GF (2n) operations
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• shifting
• permutation
• bit insert/extract
• table lookup

In addition to Rijndael, other well known block algorithms include 3DES,
IDEA, and Blowfish.
Stream ciphers, in which a running stream of bits (or bytes) is encrypted one
at a time, often depend on Linear Feedback Shift Registers (LFSR) in com-
bination with simple logic circuits as shown in Figure 7.3. Taps on the LFSR
are XOR’ed to generate a key stream, which is then XOR’ed the data stream
to generate ciphertext. Popular stream ciphers are RC4, A5, and SEAL.

x1 x2 x3 x4 x5 x7 x8 x9x6 Key Stream

XOR

Fig. 7.3. Linear Feedback Shift Register

Asymmetric Algorithms

In Public Key – asymmetric – encryption algorithms, two keys are used, a
public key Key 1 and a private key Key 2. Plaintext is encrypted using the
public key, and decrypted using the private key. While the private key is de-
rived from the public key, it is difficult to compute Key 2 from Key 1. This
allows anyone to encrypt a message with the public Key 1, but only those
holding private Key 2 can decrypt the message. Public key cryptography is
based on the concept of one-way functions F (k) in which the forward direc-
tion F (k) is relatively simple to compute but the inverse direction F−1(k) is
computationally intractable.

Certain public key algorithms can also be used for Digital Signature. A
digital signature authenticates the identity of the sender of a message. To
create a digital signature, the message is encrypted with the private key and
transmitted. The recipient verifies the signature by decrypting with the public
key. Public key algorithms are commonly used in combination with private key
algorithms: a public key protocol is used to transmit the private key, and then
the private key method is used during the session to exchange data. Using a
combination of private and public key algorithms is beneficial because public
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key algorithms are significantly slower than private key. Popular public key
algorithms include RSA, Diffie-Hellman, and Rabin.

A Message Digest ensures that a message is authentic and has not been
altered during transmission. A one way hash function is used to generate
a fixed size compressed representation of a message. To be used in a hash
function, an arbitrary size message is divide into fixed size blocks. The hash
algorithm iteratively hashes each block, using the previously hashed block as
a second input (see Figure 7.4). An initialization vector is used for the first
hash function application. The final output is the message digest. Most hash
functions generate a 128-bit message digest from the arbitrary length message.

Like the private keys of asymmetric encryption, one way hash functions
are easy to compute but difficult to reverse. In addition, given M , it is hard to
find another message M ′ such that H(M) = H(M ′). An additional property
of collision resistance is also necessary. It must be difficult to find two messages
M and M ′ with the same hash: H(M) = H(M ′). Well known one way hash
functions include MD5 , and the Secure Hash Algorithm (SHA). The latter is
part of the Digital Signature Standard [306].

The message digest combined with digital signature is used to create a
Message Authentication Code (MAC) as a tag appended to the message. One
way hash functions are commonly used to generate MACs by concatenating
the message with a shared, private key as a single input into the hash function.
The digital signature protocol is then used: the message digest is encrypted
with the private key and decrypted with the public key. This validates the
authenticity of the sender as well as validity of the message.

MB 2

H H

MB n

HH

MB 3MB 1

I.V.

. . .

. . .

MD

Fig. 7.4. Creating a Message Digest with a One Way Hash Function

The most common algebraic operations used to construct one-way func-
tions for asymmetric algorithms are

• factoring. It is easy to multiply a pair of prime number n = p×q, but given
only n, it is difficult to find the prime factors p and q when p and q are big.
To generate RSA keys, p and q large primes are chosen, with n = p × q.
Then e is chosen such that e is relatively prime1 to (p − 1) × (q − 1). An

1 Two integers are relatively prime if they share no common positive factors other
than 1.
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inverse of e, d, is also chosen ( e × d = 1mod (p − 1) × (q − 1). Then n, e
are published as the public key and d is the private key.

• calculating discrete logarithms and square roots modulo n. Given M,n, e,
exponentiation in a finite field C = Memod n is easy. However, knowing
only C, it is difficult to recover M = Cdmod n. Calculation of discrete logs
requires application of arithmetic operations in Galois Fields, finite fields
over prime numbers p or their powers GF (p), GF (pn). GF (2n), (n > 0)
is particularly attractive for computing in hardware.

• elliptic curve operations. Elliptic Curve Cryptosystems (ECC) have be-
come increasingly attractive for generating public/private key pairs, es-
pecially in IPsec Internet security protocols (see Section 7.2). ECCs are
similar to discrete log systems in that they utilize asymmetric operations
in a finite field. Unlike discrete log systems whose elements are integers or
polynomials, elements of ECCs are points in a 2-D Cartesian coordinate
system that fall on a particular elliptic curve y2 = x3 + ax + b.

• hash operations. These include simple logic functions (AND, NOT, and
XOR) over fixed length registers, and rotate/shift for fixed amounts.

7.1.2 RC Cryptographic Algorithm Implementations

Cryptographic algorithms are particularly well suited to reconfigurable logic
implementation. These algorithms are compute-intensive, easily pipelined, and
often use hardware-centric constructs, such as shift registers of various sizes
and permutation networks. Modular arithmetic with arbitrary size of operands
is also more efficiently implemented in hardware than with fixed width micro-
processor ALUs. Reconfigurable logic hardware designs have been created for
block and stream ciphers, public key algorithms, and one way hash functions.

A substantial body of research has been conducted on FPGA implementa-
tions of the algorithm chosen as AES standard, the Rijndael algorithm. The
highest performance software implementations (in assembly language) have
been reported at 580 Mb/s. Extremely high performance FPGA designs have
been demonstrated. A fully pipelined AES encryption processor mapped to the
Xilinx Virtex-II Pro is presented by [211] that achieves up to 21.5 Gb/s. The
implementation unrolls all ten rounds. Implementation of the S-box function
in logic using pipelined GF (4) operations is compared to the use of on-chip
Block RAM to look up the substitution bytes. A highly pipelined single-chip
design that exploits on-chip Block RAM is reported to run at a data rate of
7–12 Gb/s in [297] and [284]. The UltraSONIC video processing system uti-
lizes two Xilinx Virtex 1000E FPGAs to encrypt video at 2.1 Gb/s [297]. In
contrast, [331] develop a compact design well suited to low end FPGAs with
maximum throughput of 215 Mb/s.

The Serpent block cipher (an AES candidate) was implemented on FP-
GAs, and encryption rates greater that 4 Gb/s are shown to be feasible [136].
IDEA [74], DES [394] and 3DES have also been demonstrated on FPGAs.
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Algorithm Algorithm FPGA Area Memory Throughput
Type Name Slices BRAMs

Block Sym Rijndael Virtex 1000 12600 0 12.2 Gb/s [163]
pipelined AES

Block Sym Rijndael Virtex-II Pro 5177 84 21.54 Gb/s [211]
pipelined AES

Block Sym Rijndael Virtex 1000 2507 414.2 Mb/s [163]
iterative AES

Stream Sym RC4 Virtex-II 138 3 176 Mb/s [239]

One Way SHA-256 Virtex V200 2120 0 326 Mb/s [371]
Hash

One Way MD5 Virtex 1000 4763 2 354 Mb/s [106]
Hash

Table 7.1. Representative Cryptographic Algorithms on FPGAs

There have been several FPGA designs based on the RC4 stream cipher.
RC4 is used for encryption in wireless networking protocols. Throughput of
16–176 Mb/s using 9–19% of the available logic of a Xilinx Virtex-II have
been reported in [194] and [239]. Results of FPGA implementations of one
way hash algorithms (MD5, SHA-1, and SHA-256), as well as arithmetic
functions within elliptic curve cryptosystems have been reported. Secure hash
algorithms have also been implemented in reconfigurable logic, including SHA-
2 [391], SHACAL (using SHA for block encryption) [285], and MD5 [106]
with throughput in the range 326–480 Mb/s (SHA family) and 165–354 Mb/s
(MD5).

RC designs for Elliptic Curve Cryptosystems have also been developed.
[258] presents the design of a parameterized, microcoded elliptic curve proces-
sor in which the Arithmetic Logic Unit (ALU) performs operations in GF (2n)
(using a normal basis) and the datapath is n bits wide. The elliptic curve op-
erations of curve addition and multiplication are microcoded to use primitive
GF (2n) operations. The processor was mapped to a Virtex V300. For ECC
multiplication with n = 281, a speedup of 36X was achieved over a 270-MHz
Sun Ultra-5. The GF (2n) normal basis (n=233) ECC design of [33] optimizes
latency for a single data set rather than throughput for a larger data set.
This is because the primary application of ECC operations is for digital sig-
nature applications. This work achieves speedup of 895–1300 over a Pentium
3. In [247], a linear array architecture is proposed for efficient multiplication
in GF (2n) using a Gaussian normal basis. The work of [236] implements pa-
rameterized elliptic curve point multiplication over GF (2n) using polynomial
basis.

Throughput results for representative FPGA implementations of crypto-
graphic algorithms are summarized in Table 7.1.
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Many of the algorithms developed recently exploit the enormous flexibility
of FPGAs. Parameterized implementations allow the end user to instantiate
designs optimized for specific block and key sizes, area vs. throughput, used
of memory vs. logic. Area/delay trade-offs are considered in [437], while [308]
compares the use of lookup tables versus direct logic implementation of a
GF(256) multiplicative inverse. The effects of pipelining and other loop opti-
mizations on AES implementations are considered in [163], [68] and [351].

It is even possible to partially, dynamically reconfigure some FPGAs to
accommodate changing keys and modifying key and data block width. [286]
presents methods to develop structured datapaths for an AES core using the
Xilinx JBits tool, and then modify characteristics of the hardware circuit
dynamically during execution, while [175] exploits partial reconfiguration in
the IDEA algorithm by changing keys through dynamic reconfiguration.

7.2 Network Protocol Security

In this section we shift focus from security algorithms themselves to their
use in secure computer network communication. Network communications is
one of the earliest and largest market segments of commercial FPGA use.
FPGAs are used in switches and routers in dedicated “ASIC-replacement”
functions for high speed network backbones. The FPGAs are assembled into
single function dedicated boards optimized for the specific switching or routing
application.

Reconfigurable computing uses of FPGAs in networking combine low level
network processing functions with application level processing in the network
interface. The network interface can be used either at the router, a gateway, or
at a workstation endpoint, with data rates ranging from 40+ Gb/s (for optical
links on the backbone) to 1 Gb/s in local area networks. When a significant
compute task such as encryption/decryption is combined in line with low
level network processing, programmable hardware offers a high performance
approach that can off-load the conventional microprocessor at data rates that
exceed the capability of specialized network processors.

In this section we discuss network security applications that use recon-
figurable computing. We first describe network interface cards that include
RC processors, and then discuss two broad application areas – in-line en-
cryption/decryption for secure packet transport and signature-based network
intrusion detection. Both application domains are well suited to reconfig-
urable computing, combining low level packet assembly and transmission with
compute-intensive processing of the data stream.

7.2.1 RC Network Interface

A generic RC network interface is shown in Figure 7.5. There are two parts,
the physical layer interface and the reconfigurable computer.
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Fig. 7.5. A Generic RC Network Interface

The network interface component contains ASICs that communicate with
the physical network (labeled PHY in the Figure). Glue interface logic, often
mapped onto a dedicated fixed function FPGA, assembles packets and pushes
them onto FIFO queues. Often a dedicated memory is used to buffer packets.
Network packets may flow directly to a host processor over the I/O bus.
Alternatively, the reconfigurable computer can read the FIFO queues and
perform application-specific processing. Processed packets then can either go
to the host processor or back out onto the network via output FIFOs.

Examples of RC network interfaces include a firewall inline processor (FIP)
[283], the Field-programmable Port Extender (FPX) [57], and the Gigabit
Rate IPsec (GRIP) card [41].

The firewall inline processor interfaces to ATM networks. SONET/SDH
framing chips provide an interface between the ATM physical line interface
and the digital control and processing on the RC. There are three ports to the
network. Physical transmission of data to and from the FIP is accomplished by
HFBR-5205 optical transceiver pairs. As mentioned above, on-board SRAM is
used to buffer packets at the network interface. The reconfigurable computer,
an ORCA FPGA, filters ATM packets, sending control information to the
firewall host, while at the same time allowing friendly connections to proceed
without performance degradation. The algorithms are customized to the ATM
format and protocol. The firewall processor, built in the mid-1990’s was able
to keep up with a 155 Mb/s transmission speed of the ATM link, processing
a 53-byte ATM cell every 2.74 microseconds.

Several in-line filtering applications have been demonstrated on the Field-
programmable Port Extender, a circa-2000 implementation of a reconfigurable
computing network interface used in a router or gateway.

The network interface part of the FPX (see Figure 7.6 uses a Xilinx Vir-
tex XCV600E to interface to two multi-Gb/s line cards (Gigabit Ethernet and
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Fig. 7.6. FPX RC Network Interface

ATM). It also controls a configuration SRAM to load new packet processing
algorithms into the reconfigurable computer. Configurations can be received
over the network, allowing remote reconfiguration of the RC. The RC is a
Xilinx Virtex XCV2000E with access to off-chip SDRAM and SRAM banks.
Applications that have been implemented on the FPX include internet header
filtering using exact match or longest prefix matching. Regular expression
matching within the payload has also been implemented as well as a Bloom
filter to scan a large number of fixed-length strings in hardware. Protocol
wrappers have been developed to parse Internet Protocol (IP) and Transmis-
sion Control Protocol (TCP) format flows.

In contrast to the FPX, the GRIP network processing accelerator card is
a host-based RC network interface. Like the FPX, it uses Xilinx Virtex FP-
GAs both for network interface function as well as reconfigurable computer.
GRIP integrates into a standard Linux implementation of the TCP/IP/IPsec
protocols. It provides full-duplex gigabit-rate acceleration of a variety of cryp-
tographic algorithms operations and other application-specific kernels.

The overall GRIP system is diagrammed in Figure 7.7.
Host software to communicate with GRIP consists of a high-performance

device driver and special interactions with the operating system. The network
interface portion of GRIP is a custom Gigabit Ethernet mezzanine daughter
card on the reconfigurable computer, a SLAAC-1V FPGA co-processor board
[39]. The network interface daughter card has a Vitesse 8840 Media Access
Controller (MAC), and a Xilinx Virtex 300 FPGA which interfaces to the X0
chip through a 72-bit connector. The Virtex 300 uses 1 MB of external ZBT-
SRAM for packet buffering, and performs common off-load functions such as
filtering and IP checksumming.
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The X0 device of the SLAAC-1V acts as a dedicated packet mover and
PCI interface, The remaining two devices (X1 and X2) act as independent
transmit and receive processing pipelines, and can be loaded with arbitrary
computational modules. A number of packet-processing cores have been
developed on the GRIP platform, including AES (Rijndael), 3DES, SHA-1,
SHA-512, snort-based traffic analysis, rules-based packet filtering (firewall),
and intrusion detection.

7.2.2 Security Protocols

Ensuring secure communications over insecure public computer networks can
be provided at several different layers of the network stack. At the data link
layer, the lowest level network packets are encrypted as they leave a node
and decrypted as they are received. Since all bits – including headers – are
encrypted, decryption and encryption must be done at every intermediate
stage (router, gateway) of the network. Data link encryption is most suitable
for dedicated high value networks. At the TCP level, the Secure Socket Layer
[84] has emerged as a standard for secure web communication. SSL uses

asymmetric public key algorithms to establish a secure connection and then
symmetric algorithms such as 3DES and RC4 within a session.

The IPsec Internet Protocol Security standard [1] specifies encryption at
the IP layer of the network stack. IPsec is neutral to the encryption algo-
rithm. In fact a different algorithm may be negotiated for every session for
both private and public key applications. This requirement for flexibility has
made IPsec an attractive protocol to accelerate with reconfigurable logic. Us-
ing RC, it is possible to switch among encryption algorithms using the same
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programmable hardware. It is possible to update algorithms in the field by
dynamically reconfiguring the hardware during operation to specialize the
hardware circuit, e.g., to a particular key [321]. It is possible for some RC
implementations to exceed ASICs in performance. The work of [103] designs
an adaptive cryptographic architecture for IPsec in which hardware crypto-
graphic algorithms can be swapped into the FPGA on demand.

It should be noted that overall system performance is a function of many
factors, and that protocol overhead can reduce the benefit of the reconfigurable
computer. In [73], a virtual private network implementation using FreeS/WAN
is accelerated using the Pilchard reconfigurable computer. Pilchard communi-
cates with a host over a 64-bit DRAM interface, providing high bandwidth, low
latency communication between processor and a Virtex 1000E. The Pilchard
FPGA is configured with a 3DES core in feedback mode. The maximum
throughput of 136 Mb/s is 3X software speed. However, since encryption ac-
counts for only 50% of the total compute time for the VPN, by Amdhal’s
law2, the maximum speedup of the overall application is only 50%, not 300%.

The GRIP project incorporates IPsec processing into the network inter-
face card, enabling complex cryptographic transformation with IPsec to be
executed in hardware. The driving application of multimedia packets (such as
HDTV [40]) over the Internet differs from VPN in that almost all of the pack-
ets must be encrypted and decrypted – handshake and protocol exchange are
insignificant fractions of the overall communication – and thus the hardware
speedup is better reflected in overall system performance. From the host, raw
IP/IPsec packets are passed to the GRIP software driver with all the appropri-
ate header information but no encryption. The GRIP driver looks up security
parameters (key, Initialization Vector , algorithm, etc.) for the corresponding
IPsec session, and prefixes these parameters to each packet before handing it
off to the hardware. The X0 device fetches the packet across the PCI bus and
passes it to the transmit pipeline (X1). X1 analyzes the packet headers and
security prefix, encrypting or providing other security services as specified by
the driver. The packet, now completed, is sent to the Ethernet interface on the
daughter card. The receive pipeline is just the inverse, passing through the
X2 FPGA for decryption. Measured performance of AES-encrypted HDTV
packets transported over IP at 900 MB/s is reported.

7.2.3 Network Defense

With programmable logic available right at the network interface, it is possible
to screen packets as they enter a host, a gateway , or router/switch (see
Figure 7.8). For example, at a gateway, it is common to use network intrusion
detection software and examine each packet entering the Local Area Network.
The network administrator prepares a rule database. A rule consists of a

2 Maximum speedup S = 1/[α + (1− α)/P ] where α is the sequential fraction and
P is the hardware speed.
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condition and an action. The condition is specified as a logical expression
whose clauses are regular expressions matching fields in the IP header or in
the packet body. If the logical expression when applied to a packet evaluates
to true, the action is performed.

Internet

Gateway

Gateway

Routers and Switches

Host

Host

Fig. 7.8. Computer Networks

Researchers have exploited this capability by designing pattern match
hardware circuits to scan network packets for viruses and worms, as shown
in Figure 7.9. Using the GRIP network interface to acquire Ethernet pack-
ets, the Gigabit Rate Network Intrusion Detection Technology (GRANIDT)
project [172] configured X1 and X2 of the SLAAC-1V for header and packet
content filtering. A modified “snort” [345] software runs on the host. It parses
each rule, which consists of conjunction, disjunction, or negation of pattern
specification clauses and creates the filter database. Clauses specifying pat-
terns in headers are processed in X1 while content matching regular expres-
sions are processed by X2. Part of the FPGA is configured as a tertiary
Content-Addressable Memory (CAM), so that new clauses can be loaded with-
out having to reconfigure the device. The clause results are returned to the
host as a bit vector, and software combines the clauses according to the rule
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database to determine which rule (if any) a packet matches. Exploiting the
FPGA’s spatial parallelism, it is possible to match many clauses simultane-
ously, and thus keep up with multi-gigabit rate traffic, which is not possible
in software. Another approach to pattern matching using CAMs is reported
in [374].

Fig. 7.9. Packet Scanning on GRIP

Many methods for converting regular expressions into hardware for net-
work packet filtering and intrusion detection applications have been proposed
in the reconfigurable computing literature. Methods for generating hardware
to match specific regular expressions are presented in [222], [299], [255], [76],
[34], and [83]. Since there are hundreds to thousands of regular expressions to
match, optimizations are proposed to share logic to recognize sub-expressions.
The drawback of these approaches is that new hardware must be synthe-
sized each time the rule database changes, which is not required by the CAM
method.

In contrast to direct hardware implementation of regular expressions, [287]
designs a network processing accelerator consisting of a modified 3-level barrel
shifter network that processes data from a 32-byte or 128-byte input buffer.
Tree lookup (useful for routing) and pattern match algorithms are presented
in the form of sequences of instructions to the accelerator. Another alternative
employing Bloom filters is proposed by [115].
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7.3 Summary

We have seen that reconfigurable computing plays many different roles in se-
cure network communications. Using hardware-friendly primitives such as sim-
ple logic operation, modular arithmetic, and shift/rotate operations, a large
body of encryption algorithms have been mapped onto FPGAs. Speedup of
2X–10X over software implementations have been reported. The ability to
place these programmable hardware encrypter/decrypter in line with the net-
work interface makes it possible to off-load compute- and data-intensive func-
tions from the control processor.

Network interface cards containing reconfigurable hardware have been used
for a variety of network security applications. By scanning packets as they
arrive in real-time, RC modules can match packet headers and content for
arbitrary patterns. Patterns to be matched can be updated over time, allowing
the network interface to respond to new threats. Regular expression pattern
match of header fields enables the network interface to accelerate firewall
enforcement. When the reconfigurable hardware is used to scan packet (or
message) content, the network interface can detect worms or viruses in real
time.
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Bioinformatics Applications
Dominique Lavenier and Mathieu Giraud

8.1 Introduction

Bioinformatics refers to the analysis and the management of biological in-
formation. The term computational biology is more often used to address
physical and mathematical simulations of biological processes. The need for
bioinformatics capabilities has been precipitated by the explosion of publicly
available genomic information resulting from the Human Genome Project.
The goal was to determine the sequence of the entire human genome (ap-
proximately three billion characters named base pairs, bp). The science of
bioinformatics, which is the melding of molecular biology with computer sci-
ence, is essential to the use of genomic information in understanding human
diseases and in the identification of new molecular targets for drug discovery.

Bioinformatics covers a large field of domains ranging from text sequence
analysis to gene network modeling, 3D protein structure prediction, gene ex-
pression data analysis through DNA-chip, phylogeny, etc. But, for the last
decade, the deluge of genomic information has led to an absolute requirement
for computerized databases to store, organize, and index the data and for
specialized tools to view and analyze genomic data. It is in this last domain –
analysis of genomic data – that FPGA accelerators have exhibited extremely
good performance for time consuming bioinformatics computations over a
huge volume of data. They have demonstrated that they can be a viable al-
ternative compared to supercomputers or clusters in both industrial [441,443]
and academic projects dedicated to intensive bio-computing algorithms : in
2003 and 2004, more than ten different teams published papers on FPGA
implementations of sequence similarity search!
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Fig. 8.1. Translation of a DNA string to protein strings according to the 6 different
reading frames.

Genomic data consist of DNA or protein sequences. A DNA sequence may
be as simple as a single gene (a few thousands characters) or as complex as
a complete genome (three billions characters for the human genome). DNA
strings are sequences of nucleotides that range over the 4-letters alphabet
Σ4 = {A, C, G, T}. This alphabet leads to a compact 2-bit encoding scheme,
well suited for FPGA hardware optimization compared to a 32- or 64-bit
Von Neumann architecture. Protein sequences are shorter. They are translated
from DNA genes on 6 possible reading frames (Figure 8.1). Their length range
from a few hundred to a few thousands characters over a 20-letter alphabet
of amino acids Σ20 ={A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}.

DNA and protein sequences are stored in genomic databases. SWISS-
PROT and TREMBL [144], for example, are two well-known protein se-
quence databases containing respectively 166,000 and 1,154,000 sequences
(Dec. 2004). DNA databases GenBank and EMBL (Genbank release 145,
Dec. 2004) contain more than 40 million sequences, representing 44 billion
nucleotides [46, 146]. GenBank and EMBL are part of the International Nu-
cleotide Sequence Database Collaboration, which also comprises the DNA
Data Bank of Japan (DDBJ). These three organizations exchange data on a
daily basis and new releases are made every two months to include new data
coming from worldwide research institutes. As these banks are growing ex-
ponentially (every year the number of sequences nearly doubles), performing
computation on the growing mass of data is more and more challenging.

Most genomic computations rely on making comparisons over these se-
quences, either for highlighting common sub-sequences, computing edit dis-
tances or finding similarities. Many bioinformatic algorithms require approx-
imate string and pattern matching. The arithmetic is mostly integer opera-
tions on small data width operands. Floating point operation is generally not
required. Furthermore, many fine grained parallel implementations of string
comparison algorithms have been proposed and successfully tested on dedi-
cated architecture. In this context, FPGA-based machines are very well suited
to support bioinformatics algorithms related to DNA or protein sequence
processing.



8.2 Applications 159

The next section presents bioinformatics applications for which reconfig-
urable computing is a good candidate. Section 8.3 presents the implemen-
tation of the fundamental sequence comparison algorithm based on dynamic
programing. Section 8.4 is dedicated to BLAST-like seed-based heuristics. Sec-
tion 8.5 deals with profiles, stochastic models, and languages. Section 8.6 con-
cludes the chapter by describing some reconfigurable accelerators efficiently
supporting bioinformatics sequence processing algorithms.

8.2 Applications

In this section, we detail various applications related to genomic computations
which can benefit from FPGA technology. As the primary data sources are
DNA or protein sequences, string comparison algorithms are of great interest.
This survey is by no means exhaustive. We give some representative examples
and highlight the need for computing power.

8.2.1 Genome Assembly

Before analyzing genomes in-silico, it is necessary to sequence the long DNA
molecule contained in each cell of every living organism. The most successful
method to accomplish DNA sequencing is to break the DNA molecule into
millions of random short fragments which are then re-assembled to reconstruct
the final text of the genome. This method, called shotgun sequencing , was
introduced by Fred Sanger in 1982 [145] and is now used to sequence large
genomes such as mouse or human genomes.

Many algorithms have been proposed to rebuild text of genomes from
these short random DNA fragments [328]. A common pre-processing step for
overlap-layout-consensus algorithms is to find overlapping regions between
fragments, which requires making exhaustive pairwise comparison to detect
similarity between the beginnings and the ends of all fragments. In other
words, assembling N fragments lead to O(N2) pairwise fragment comparisons.

The quality of the sequencing depends on fragment oversampling: the
higher the number of fragments, the higher the probability of high quality
sequencing. The term coverage refers to the number of fragments that overlap
a particular position in the sequence. As an example, sequencing a genome
of length M = 3 × 109 bp (mouse) with fragments of size K = 600 bp and a
coverage C = 5 leads to N = C × M/K = 2.5 × 107 fragments. More than
3× 1014 elementary pairwise comparisons must be performed to assemble the
mouse DNA genome .

Algorithms to search textual similarities between two fragments can be
highly parallelized and efficiently mapped onto reconfigurable computing ma-
chines, resulting in faster pre-processing.
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8.2.2 Content-Based Search

Genomic banks are routinely and daily scrutinized by thousands of re-
searchers. A common task in molecular biology is to try to assign a function
to an unknown gene or an unknown protein. More precisely, proteins are syn-
thesized within the cells of plants and animals. To function, a protein must
adopt a specific 3D shape related to its sequence of amino acids. The shape
is important because it helps determine the function of the protein and how
the protein interacts with other molecules. It is assumed that two proteins
with identical functions may have similar 3D structures, and thus, a similar
sequence of amino acids. Even if this hypothesis is not always verified, a great
number of algorithms have been proposed to rapidly extract sequences (or
portions of sequences) having a high similarity with a query sequence.

When scanning genomic databases, biologists are faced with a dilemma:
speed or quality. Genomic data grow exponentially (× 2 every 12−15 months)
and at a faster rate than computing power (×2 every 18 months). On a stan-
dard computer, a high quality search may take hours while a more approx-
imate search can just be performed in a few tens of seconds. High-quality
searches are based on time consuming dynamic programming methods (Sec-
tion 8.3). Other search algorithms, such as the well-known BLAST program,
are based on seed-based heuristics that can dramatically reduce computing
time (Section 8.4).

Reconfigurable computing machines can help to speed up both types of
algorithms. Parallel implementation of dynamic programming algorithms for
genomic computation on VLSI chips or FPGA components have demonstrated
that speedup of at least two orders of magnitude can be achieved. In the
same way, hardware implementations of seed-based heuristics on reconfig-
urable computers can also decrease the computation time. This is particularly
important for BLAST servers which have to process millions of requests every
day.

8.2.3 Genome Comparison

By the end of 2004, about 240 genomes had been completely sequenced, and
about 1000 other genome sequencing projects were underway [442]. In compar-
ison, there were 650 projects referenced in December 2002, and approximately
350 in December 2000. There is no reason to expect any decline in the next
few years. More and more complete genomes will be sequenced, coming from a
large diversity of living organisms: virus, bacterium, plants, fishes, vertebrates,
etc.

This opens the door to new ways of investigating the genome structures.
The full genomic sequences of different species can be compared in order
to highlight conserved regions, duplicated or repeated zones, chromosome re-
arrangement, etc. Hence, from gene level (sequence of thousands of characters)
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we now move to genome level (sequence of hundred millions of characters)
analysis.

From a computational point of view, genome comparison algorithms do
not differ from standard string comparison algorithms, except that the length
of the sequences may limit their use. Strings of hundred of millions of charac-
ters must be processed to detect regions of interesting similarities. This is a
very time-consuming task which can be greatly accelerated by FPGA-based
reconfigurable computing machines.

Compared to gene analysis, which can be satisfactorily performed (in time)
on a standard computer, genome analysis increases the complexity by several
orders of magnitude. Generally, coarse grained parallelism through supercom-
puters, large clusters of PC or grid computing allows biologists to run large-
scale comparison on whole genomes. FPGA-based machines best exploit fine
grained parallelism and can be tailored to the requirements of DNA or protein
data structures.

8.2.4 Molecular Phylogeny

Biologists estimate that there exist millions of different species of living organ-
isms on the Earth. Morphological criteria and gene structure suggest that they
are genetically related, and their genealogical relationships can be represented
by a vast evolutionary tree. This tree represents the phylogeny of organisms,
that is the history of organism lineages as they change through time. It im-
plies that different species arise from previous forms via descent, and that all
organisms are connected by the passage of genes along the branches of the
phylogenetic tree.

To build the phylogenetic tree of a group of organisms, identical (or near
identical) genes present in all them are first systematically compared. This
aims to calculate a distance between all pairs of genes. The greater the dis-
tance, the older the relationship between genes: it is assumed that genes mu-
tate independently after speciation. Based on this matrix of distances, trees
can be constructed through different phylogenetic methods.

Again, the pre-process step involves string comparison to compute the
matrix distance. Furthermore, some methods need to periodically re-evaluate
the matrix during the tree building process. While reconfigurable computers
are mainly used to compute gene distances, efforts have also been made to
speed up the whole process on Xilinx Virtex FPGAs, especially using the
Maximum Likelihood approach [275,277].

8.2.5 Pattern Matching

Comparing several proteins to regroup them in functional families is based on
the similarity of their sequences. Most of the time, proteins from a same family
indeed come from a common ancestor and contain domains of several to tens
of amino acids that were conserved during evolution. Once those regions of
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similarity have been found, one can characterize these domains with patterns.
These patterns often represent active sites in the protein and can be considered
as a signature related to a specific function. As an example, the dog olfactory
receptors constitute a family containing more than 1100 genes sharing up to
five different specific patterns.

A pattern can be an exact word or alternatively a finite dictionary as in
the PROSITE pattern database [220] in which known families of proteins are
grouped. An example of this syntax is the pattern L-x(1,3)-M-x-[FILY]-D-R
where [FILY] is a choice between four amino acids (F, I, L and Y) and x(1,3) a
gap (of any amino acids) whose length is between 1 and 3.

Two types of computation can be considered: searching a pattern data-
base with a query, or searching a protein or a DNA database with a pattern.
The second case can be a very time-consuming task, especially when DNA
database are scanned with a protein pattern. In that case, the database need
to be searched into the six reading frames (Figure 8.1). FPGA can efficiently
parallelize this task through direct automaton implementations.

8.2.6 Protein Domain Databases

Analysis of the fast growing number of full text genomes confirms that or-
ganisms as diverse as bacteria and human share many proteins and proteins
domains. The total number of different folds that protein modules could adopt
is estimated to range between 1000 to 6000 [58]. One of the challenge of the
post-genomic era is to systematically characterize the repertory of protein do-
mains and their interaction in terms of biological function [413]. Since proteins
can be composed of one or more domains, methods for both determining these
domains and parsing the protein domain databases are of great interest.

Among the various methods to identify protein domains, homology-based
methods, such as MKDOM [178] or DOMAINATION [166], attempt to
find multiple alignments. Methods based on HMM profiles, such as HMMER
[135], have also been developed. Data from the leading protein databases
(SWISS-PROT, TREMBL [144]) are used to automatically process millions
of amino acid sequences and generate specific protein domain databases such
as PRODOM [95] or PFAM [143].

Some algorithms involved in multiple sequence alignments or HMM pro-
files are iteratively searched : the PSI-BLAST [148] program used in MKDOM,
for example, first searches the protein database with a simple query. Then,
from the results(a set of sequences), a profile is made, and the database is
again queried. This process is iterated several times: each iteration enhances
the profile with new sequences. Ideally, the process stops when no new se-
quences are detected. This must be repeated billions of times to generate the
PRODOM database.
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8.3 Dynamic Programming Algorithms

This section describes string comparison algorithms based on dynamic pro-
gramming (DP) methods and their hardware implementation. DP methods
were first proposed by Needleman and Wunsch (NW [309]) and Smith and
Waterman (SW [373]) in 1970 and 1981 respectively. The NW algorithm eval-
uates the similarity between two DNA or protein sequences (global align-
ment), while SW finds two high similarity sub-sequences (local alignment) .
Both compute an alignment cost that can be viewed as a similarity score.

8.3.1 Alignments

Genomic sequences are strings over the nucleotide alphabet Σ4 or the proteic
alphabet Σ20. However, some applications use IUPAC ambiguity codes that
allow 15 combinations of one or more nucleotides. Measuring the similarity
between two strings means to try to align them to find their similarities, and
to estimate the cost of transforming one string, character by character, to the
other. At a given position, one of three cases can occur (Figure 8.2):

• a match occurs when the same character α is present in both strings,
• a mismatch, also called a substitution, when there are two different char-

acters α and β,
• and a gap, when there is an insertion of one character in only one string,

or symmetrically a deletion in the other string.

T T G A A A T G C G – A G T
| | | | | | | | | |

T T C A T A T – C G T A G T

Fig. 8.2. Global alignment of two DNA strings with 10 matches, two mismatches
G/C and A/T, and two gaps G/– and –/T.

When dealing with amino acids (protein sequence), matches or mismatches
can be more or less significant. A score is thus assigned to each pair of amino
acids through a substitution function d(α, β) measuring the similarity be-
tween α and β. For example, the BLOSUM62 matrix refers to the substitution
probability of amino acids [206], taking into account the evolution of living
organisms over hundred of generations (Figure 8.3). In a similar way, one can
assign a penalty gpenalty for each gap that can be viewed as special cases of
the function d(α,−) = gpenalty or d(−, β) = gpenalty.
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Fig. 8.3. Extract of the BLOSUM62 matrix that assigns to every pair of amino
acids a substitution score [206].

8.3.2 Dynamic Programming Equations

More formally, let X = (x1, x2 . . . xm) and Y = (y1, y2 . . . yn) be two strings
to be compared, and H(i, j) the maximum similarity score of the two subse-
quences x1 . . . xi and y1 . . . yj . H(i, j) can be computed in a two dimensional
recursive form using the Needleman-Wunsch equation (NW, [309]):

∀i : H(i, 0) = gpenalty × i ∀j : H(0, j) = gpenalty × j

∀i, j, ij �= 0 :

H(i, j) = max

⎧⎨
⎩

H(i − 1, j − 1) + d(xi, yj) (match or substitution)
H(i − 1, j) − gpenalty (insertion)
H(i, j − 1) − gpenalty (deletion)

(8.1)

An example of a NW computation is given in Figure 8.4a. The final quan-
tity H(m,n) is the global similarity between X and Y . In many applications, it
is desirable to study local similarities and find the most similar sub-sequences
of X and Y . Now H(i, j) is the similarity score between the most similar pair
of sub-sequences ending at xi and at yj . This leads to the Smith-Waterman
equation (SW, [373]):

∀i, j : H(i, 0) = H(0, j) = 0

∀i, j, ij �= 0 :

H(i, j) = max

⎧⎪⎪⎨
⎪⎪⎩

0 (local align. starts here)
H(i − 1, j − 1) + d(xi, yj) (match or substitution)
H(i − 1, j) − gpenalty (insertion)
H(i, j − 1) − gpenalty (deletion)

(8.2)

An example of a SW computation is given on Figure 8.4b. In both NW
and SW equations, the score propagation through the DP matrix is purely
local: each (i, j) inner cell receives previous scores from three neighbors and
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Fig. 8.4. Example of global alignment computation with the NW equation (a) and
local alignment computation with the SW equation (b). Scores are +4 for a match,
−2 for a mismatch, and −3 for a gap. The solid arrows are the dependencies that
lead to the maximum of each (i, j) cell and reveal the best alignment.

sends its results to three other cells (Figure 8.5a). The total number of cells
is O(mn), but the m cells on a same anti-diagonal can be computed in the
same time (Figure 8.5b).

H(i, j)H(i, j − 1)

H(i − 1, j)H(i − 1, j − 1)

Fig. 8.5. Locality of the computation of a NW/SW cell. The solid arrows are
the scores coming from previous cells. The only other quantity the cell needs is
d(xi, yj). Dashed arrows show the data propagation for the cells following (i, j).
When computing every cell of the DP matrix, all the cells on a same anti-diagonal
can be computed simultaneously.
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8.3.3 Gap Functions

In equations (8.1) and (8.2), the penalty gpenalty is a constant. It can be viewed
as a linear function g(�) = gpenalty � involving the length � of the actual gap.
More significant gap functions reflecting a better biological reality can be con-
sidered: it is often more costly to open a new gap than to extend an existing
one. A commonly used function is the affine function g(�) = gopen + � gextend.
In this case, the recursive part of the DP equations can use several matrices,
as shown by Gotoh in 1982 [177]:

∀i, j, ij �= 0 :

H(i, j) = max

⎧⎪⎪⎨
⎪⎪⎩

0 (if SW local alignment)
H(i − 1, j − 1) + d(xi, yj) (match or substitution)
I(i, j) (insertion)
D(i, j) (deletion)

(8.3)

with:

I(i, j) = max

{
H(i − 1, j) − gopen

I(i − 1, j) − gextend
D(i, j) = max

{
H(i, j − 1) − gopen

D(i, j − 1) − gextend

With such an affine gap function, the number of operations needed to
compute all cells remains O(mn) [177].

8.3.4 Systolic DP Computation

Following the methodology of Kung [246], the DP array can be projected on
a systolic array (Figure 8.6). Lipton and Lopresti proposed in 1985 a bidi-
rectional systolic array [266] in which the two strings propagate in opposite
directions (Figure 8.6a).

Unidirectional systolic arrays dedicated to genomic computation were pro-
posed in 1991 by Chow [80] and in 1993 by Hoang [210]. One string is loaded
and stored in the systolic array, then the other is processed (Figure 8.6b).
A minimal number of min(m + 1, n + 1) systolic cells are needed and the
computation is done in O(m + n) cycles. Figure 8.8 shows the operation of
a unidirectional systolic array. Eleven time steps are illustrated. The shaded
blocks indicate times when cells are inactive. For example, in the second time
step (row 2) cells holding y3, y4, and y5 are not active.

The min(m + 1, n + 1) systolic cells of the unidirectional can be compared
to the m + n − 1 cells needed by the bidirectional array: in general, the uni-
directional array is more efficient. Nevertheless, the bidirectional array can
be more suitable for processing two large strings for a global alignment while
staying close to the main diagonal (Figure 8.7).

Both unidirectional and bidirectional systolic arrays utilize simple, locally
connected systolic cells, as illustrated in Figure 8.9.
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(b)

(a)

Fig. 8.6. Projections of a DP array to systolic cells. The diagonal projection (a)
leads to a bidirectional array. The horizontal projection (b) leads to a unidirectional
array.

Fig. 8.7. A few cells in a bidirectional systolic array can be enough to globally
align large sequences if we constrain the computations to a small zone around the
main diagonal.

8.3.5 Backtracking

The NW/SW equations give the best global or local similarity score. Although
it is sufficient in most applications, for instance when filtering a large database
with short queries, the actual problem is to reveal the alignment that produced
the best score.

In this case, backtracking information must be kept. In other words, each
cell in the DP matrix needs to remember where its score comes from. This
information, showed by the solid arrows on Figure 8.4, is one of the values
←, ↖, or ↑. The systolic cell can store the information in a local LIFO stack.
Then a backtracking phase follows the score computation phase to build the
alignment [210].
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Fig. 8.8. Run of a unidirectional systolic array similar as those of Hoang [210]
matching X = ATCGAC against Y = GTGAT. This run computes the SW matrix
described on Figure 8.4b. The string Y is supposed to be loaded before the start of
the computation. The circled values are those of the optimal local alignment (the
best score is 9).
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Fig. 8.9. Detail of a NW systolic cell. For a SW systolic cell, the maximum opera-
tor receives an additional input 0. The DP equations need only the value d(xi, yj),
and not the characters xi and yj themselves. Therefore the matching phase (com-
putation of d(xi, yj)) and the DP phase (recursive computation of H(i, j)) can be
separated [96]. Additional control logic, not shown here, manages the initialization
phase (storing CHARin in the memory yj) and the final phase (with optional back-
tracking).

8.3.6 Modulo Encoding

There are many different sorts of biological scores, but one, the −1/− 2 edit-
distance score, is of particular significance:

⎧⎨
⎩

gpenalty = −1
∀α, d(α, α) = 0
∀α, β, α �= β, d(α, β) = −2

This equation computes the minimum number of insertion and deletion
operations between two strings: a substitution counts for one insertion plus one
deletion. The edit-distance score has a very interesting property established
by Lipton and Lopresti in 1985 [266]:

H(i, j) = H(i − 1, j) ± 1 and H(i, j) = H(i, j − 1) ± 1

Thus H(i, j)−H(i− 1, j − 1) ∈ {−2, 0}. Because of this, the general NW
equation (8.1) can be rewritten as:

∀i, j, ij �= 0 :

H(i, j) =

∣∣∣∣∣∣∣∣

H(i − 1, j − 1) if H(i − 1, j) = H(i − 1, j − 1) + 1
or H(i, j − 1) = H(i − 1, j − 1) + 1
or (xi = yj)

H(i − 1, j − 1) − 2 elsewhere

(8.4)

Thus the value in the DP matrix can be represented modulo 4 with only
two bits. Since modular arithmetic is used, overflow never occurs. This modulo
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encoding was found by Lipton and Lopresti in 1985 [266] and can be extended
for amino acids scores [210]. For a global NW alignment, such an assumption
reduces the problem to the longest common subsequence (LCS) problem that
can be accelerated in software with bit-vector operations [98,132].

As stated by Dydel, recent FPGA implementations of the edit distance
score with modulo encoding should be compared to such optimized software
techniques [132]. More generally, although the modulo encoding implemen-
tation worked well on early generations of FPGAs when the available logic
resources were more limited, modulo encoding can be overly restrictive: most
of the time, biologists prefer more realistic scoring schemes.

8.3.7 FPGA Implementations

DP algorithms were first accelerated by the P-NAC systolic array, an ASIC
solution using the modulo encoding scheme proposed by Lopresti [270]. The
first FPGA implementations were on the Splash and Splash 2 FPGA sys-
tolic arrays [168, 210, 271] in the beginning of the 90’s. More recently, other
implementations have been proposed by the HokieGene team [333] and Yu,
Kwong, Lee and Leong [434]. Whereas VHDL is used for almost all imple-
mentation, Guccione and Keller used JBits to allow faster compile times and
a true run-time partial reconfigurability [185].

The first ASIC acceleration of a generic SW algorithm was the Bisp by
Chow in 1991 [80], followed by Samba [187], Kestrel [183], and Swasad [195].
FPGA implementations were proposed by Yamaguchi, Maruyama and Kona-
gaya [431] and by Dydel [132]. Weaver implemented SW matching enhanced
by Leiserson’s retiming algorithm after the placement in the FPGA to increase
the clock frequency [412]. Only a few implementations allow affine gaps, such
as those of Oliver and Schmidt [313]. In 2004, Van Court and Herbordt pro-
posed a very versatile implementation with interchangeable components al-
lowing to choice of the type of alignment (local / global), the scoring scheme,
and the usage of a backtracking procedure [96].

8.4 Seed-Based Heuristics

The previous DP equations probably provide the best way to find similari-
ties between two strings. However, their major drawback comes from their
quadratic computation time, preventing them from being used to compare
very large strings such as complete genomes. Efficient heuristics for similar-
ity searches were proposed fifteen years ago by Pearson (FASTA, [324]) and
Altschul (BLAST, [17]). Although today there are numerous other heuristic
algorithms that outperform it, the BLAST software remains the reference
(Table 8.1) algorithm.

In this section, we present these heuristics and how they have been re-
cently implemented in FPGAs. Such approaches combine the advantages of
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using efficient algorithms with highly parallel reconfigurable computing im-
plementations.

Nucleic query (Σ4) Proteic query (Σ20)

Nucleic bank (Σ4) blastn / tblastx blastn

Proteic bank (Σ20) blastx blastp

Table 8.1. BLAST flavors. The program blastn directly compares two nucleic
strings, whereas the tblastx compares the proteic translations on all the 6 reading
frames.

8.4.1 Filtering, Heuristics, and Quality Values

When scanning large banks, a DP computation can be viewed as a filtering
process that returns the positions of the best alignments (Figure 8.10): objects
(sub-sequences) are selected from a large set (complete databank).

�

Fig. 8.10. Schematic view of an heuristic process which returns some objects
(positives) among a larger set. Here the heuristic erroneously accepted two objects
(false positives) and badly rejected one object (false negative).

The objects returned are T⊕ true positives (objects that really match) and
F⊕ false positives (due to the heuristic). Similarly, the non-returned objects
are T� true negatives and F� false negatives. The selectivity S� = (T⊕ +
F⊕)/(T⊕+F⊕+T�+F�) measures the raw filtering rate. More interesting are
the two quality measures Sn = T⊕/(T⊕ +F�) and Sp = T⊕/(T⊕ +F⊕). The
sensibility Sn is the fraction of the positive results that have been returned.
The specificity Sp is the fraction of the interesting results inside the returned
results.

8.4.2 BLAST : a 3-Stages Heuristic

Seed-based heuristics massively accelerate the DP computations by omitting
certain parts of the matrix calculation. Their basic assumption is that, most
of the time, significant alignments keep small words, or seeds, conserved in



172 8 Bioinformatics Applications

a exact way (as GA in Figure 8.4b). The full DP calculations are run only
on neighborhoods of those seeds. BLAST-like algorithms proceed in 3 stages
(Figure 8.11):

• Stage 1 looks for exact seeds that appear in both strings. By default,
nucleic seeds of size w = 11 are searched. Such seeds represent a diagonal
in the DP matrix.

• Stage 2 tries to extend each seed with a limited number of substitutions.
No insertions nor deletions are allowed, so this extension is along the same
DP diagonal. Only extended seeds whose score is greater than a threshold
are retained.

• In Stage 3, full DP computations can be done on the extended seeds.

In such a heuristic, the smaller the seeds, the higher the number of hits,
and the higher the sensibility. However, using small seeds risks excessive com-
putation in Stage 2. Other methods to generate seeds such as spaced seeds or
multiple seeds improve the sensibility even for same w’s [273,312,384].

(b)

(a)

Fig. 8.11. Schematic view of the BLAST 3-stages algorithm. Stage 1: localizes
exact seeds (black). Stage 2: extends of the seeds with a few error tolerance (dark
gray). The majority of detected seeds doesn’t extend at this stage. Stage 3: performs
full DP calculations (light gray) on extremely few sequences. Here only the seed (b)
leads to a positive sequence.

8.4.3 Seed Indexing

Stage 1 is the most computationally intensive, taking from 70% to 90% of
the computing time [245, 302]. Stage 1 computes a membership problem [65]:
given a seed in the query, does it appear in the bank?

The first solution is to store all the n seeds of one string in an array (with
4w entries in the case of a nucleic string). The usual information stored in
each entry is a pointer to the position in the string, or possibly even several
sequence texts, leading to very large array size. [67] suggests methods to pack
the array to reduce storage costs.

The second solution is to accept in the membership test a few false positives
that will be hopefully discarded in later stages. Seeds are stored in a hash
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table of size N (Figure 8.12). The probability of having a false positive is then
P (F⊕) = 1 − (1 − 1/N)n. Hash table efficiency can be improved with Bloom
filters [53], as used by Krishnamurthy [245]. The idea is to replace a query in a
hash table of size M with d queries in a hash table of size N ≤ M , each query
having its own hash function. The object is found if every query succeeded.
Now the false positive probability becomes P (F⊕) = (1 − (1 − d/N)n)d.
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Fig. 8.12. Hash tables (top) and Bloom filters (bottom). In the initialization phase
(a), hashing values corresponding to seeds s1 and s2 are written to the table. In the
reading phase (b), a seed s′1 = s1 is successfully recognized. The reading phase can
have some false positives (c), with the recognition of s′2 that was not in the original
seeds.

A Bloom filter requires the computation of d different hash functions and
d different memory accesses. On an FPGA, the computation of hash functions
is efficiently parallelized, and simple XOR-based functions are sufficient [337].
Moreover, the hash table can be duplicated in order to parallelize the accesses
into it. Dharmapurikar, Attig, and Lockwood were the first to show how to
implement Bloom filters on an FPGA in a packet filtering application [114].
The on-board memory on the FPGA (such as Xilinx Block RAM) can be
configured to allow multiple concurrent accesses in the same clock cycle. With
dual-port memories, only d/2 replications of the hashing function is needed
to have d concurrent accesses.
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8.4.4 FPGA Implementations

As BLAST is very popular among biologists, many attempts have been made
to accelerate it, sometimes without asking the biological significance of the
algorithm. Surprisingly, many researchers do not question the 3-stage decom-
position that was originally designed to accelerate the software computation.
Non-FPGA accelerators with clusters of PCs have been developed such as
mpiBLAST, an open-source implementation over MPI [104]. The first ASIC
implementation of a seed-based heuristic was done by Sigh et al. in 1993 with
the BioSCAN architecture [147].

Several FPGA implementations have been independently developed since
2003. At Berkeley, Chang implemented Stages 1 and 2 on the BEE2 system
[67], as did Krishnamurthy et al. of Washington University on the Mercury
System [245]. At the University of Kansas, Muriki implemented Stage 1 with
RCBLAST [302]. The strength of these platforms is the interaction between
software and hardware parts, and well-designed pipeline networks for data
flow.

Other projects do not exactly follow the BLAST stages, including RDisk,
in Rennes (France) which uses a particular seed-based heuristic similar to
BLAST’s stage 2 [190,252]. Gardner-Stephen and Knowles (Flinders Univer-
sity, Australia) developed both a new algorithm DASH with better sensibility
than BLAST as well as an FPGA implementation to execute it [165,241].

8.5 Profiles, HMMs and Language Models

When a common family of genomic strings has been identified by pairwise
comparisons, real experiments, or human expertise, one can build a model
representing it. A model can represent a precise domain of several amino
acids associated to a function of the protein or a more general profile inferred
over all the sequences. Other models can be represented as languages that
implicitly describe some structures of the sequence. The models can generate
sequences, often with a given score or probability that will measure how well
the model matches the sequence.

8.5.1 Position-Dependent Profiles

Given a family of similar sequences, one can build a multiple alignment as
in Figure 8.13 [390]. As far as we know, such algorithms have not yet been
implemented on FPGAs, probably because the computations involved are
more sequential in nature than in the problems studied in Section 8.3.

Given such a multiple alignment, one establish a consensus pattern with
the most frequently occurring amino acid at each position. When there are
several amino acids with the same number of occurrences, choices, e.g., [PQ],
can be used (Figure 8.14a). Many pattern have been designed using such a
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FOS_RAT LVQPTLVSSVAPSQ-------TRAPHPYGLP

FOS_MOUSE LVQPTLVSSVAPSQ-------TRAPHPYGLP

FOS_CHICK LVQPTLISSVAPSQ-------NRG-HPYGVP

FOSB_MOUSE LVQPTLISSMAQSQGQPLASQPPAVDPYDMP

FOSB_HUMAN LVQPTLISSMAQSQGQPLASQPPVVDPYDMP

******:**:* **... ::. .**.:*

Fig. 8.13. ClustalW multiple alignment of five proteins [390]. On the bottom line,
* denotes a match, and : and . are weaker matches.

syntax, for example, PROSITE, whose syntax allows flexible gaps such as
x(3,5) [220].

Y L V P S H

Y L A P S H

Y L A Q S H

Y A A Q S H

Y M A A S H

=======================================

(a) Y L A [PQ] S H

=======================================

(b) Y:1 L:0.6 V:0.2 P:0.4 S:1 H:1

A:0.2 A:0.8 Q:0.4

M:0.2 A:0.2

Fig. 8.14. Consensus (a) and profile (b) from a multiple alignment. The consensus
pattern YLA[PQ]SH can be an ancestor of the family. The profile (b) assigns the
probability 0.192 to YLAPSH and 0.016 to YMVPSH : the first string is more likely
to belong to the family.

More generally, one can keep more statistical information with a profile
that records the amino acid distribution at each position (Figure 8.14b). How
adequately a string matches the profile is computed by multiplying probabil-
ities at each position. Real implementations use log values. Such profiles can
easily be encoded in reconfigurable logic with a score or a probability flowing
through an array of cells.

8.5.2 Hidden Markov Models

A process is Markovian if the probability distribution of the next states de-
pends only on the given current state (i.e. independent from past states). An
Hidden Markov Model (HMM) is a Markov process in which only the output
can be observed. A HMM is built from a family of sequences supposed to be
part of a Markov process whose parameters (transition probabilities) are un-
known, but with a fixed topology. Usual topologies include match states, delete
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states, and insertion states (figure 8.15). The knowledge of some outputs of
the HMM will reveal the parameters.

Fig. 8.15. Example of HMM topology, as initially proposed by Haussler [202].

Once the model is trained, one can assign to every sequence a score relative
to the HMM. The Viterbi algorithm reveals the best path through the HMM
and thus the alignment with the consensus.

HMM have been extensively used for twenty years in speech recognition.
The first use of HMM to parse genomic sequences was done by Haussler in
1993 [202] at the University of California.

Hughey proposed in 1993 a parallel implementation of HMM using an
array of processors [218]. In 1999, Mosanya and Sanchez proposed a FPGA
implementation of a similar model called generalized profile using a systolic
array. They showed that such an implementation can benefit from on-line
arithmetic [298]. Gupta proposed another FPGA architecture in 2004 [189].

8.5.3 Language Models

The PROSITE syntax described above can express only a subset of regu-
lar expressions. One can go further in the Chomsky language hierarchy [78]
while considering the model as a language that can be represented in some
way. Searls showed indeed that some features of more complex languages can
benefit DNA parsing [359,360].

Full regular expressions can be implemented efficiently as finite automata.
The main advantage of the FPGA is that non-deterministic automata (NFA)
can map almost directly to hardware using a linear encoding in which one state
maps to one cell. NFA derived from regular expressions were implemented by
Sidhu and Prasanna on a reconfigurable platform [369].

One extension of the usual NFA is the weighted finite automaton (WFA),
in which a weight propagates through all the states [296]. The weight can
be arbitrarily chosen and can be not probabilistic. The WFA represent non-
regular languages (Figure 8.16) and are easily implemented in FPGA [167].
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In fact, HMM as position-dependent profiles discussed above can be emulated
by WFA.

Fig. 8.16. A WFA recognizing the non-regular language {w ∈ L1 | |w|b > |w|c},
where L1 = a (b|c)∗ (ca | bc).

Other non-regular features are repeats or palindromes, that can be effi-
ciently parsed with systolic arrays [246]. Conti proposed an implementation
on FPGA that tolerates mismatch errors [93].

For generic context-free parsing, it would be possible to use pushdown au-
tomata [214]. A systematic FPGA implementation of a context-free grammar
was proposed by Ciressan [82] in a natural language processing application,
but currently FPGAs have not been used for context-free parsing in bioinfor-
matics purposes.

As the recognition of context-free grammars is quadratic and can involve
non-bounded strings, it is not clear that a generic parser will be especially
effective in reconfigurable hardware. However, future reconfigurable imple-
mentations could parse mixed patterns based primarily on simple patterns or
automata, with specific parts that could include computed stochastic parts as
HMMs or context-free features such as palindromes or repeats.

8.6 Bioinformatics FPGA Accelerators

Over the last decade, a few dedicated machines have been proposed by the
scientific community to speed up genomic computations, especially DNA or
protein string comparison. Two categories can be distinguished: VLSI and
FPGA approaches. The first category mainly refers to academic prototypes
such as, for example, the Bioscan [147], the Bisp [80], the Kestrel [183, 219]
or the Samba [187] projects. The second category includes FPGA machines
not necessarily devoted to biocomputing but well-suited to support string
matching algorithms.

We first give three examples of biosequences algorithm implementation on
general purpose reconfigurable computing architectures (Splash, Perle and
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GenStorm), then we describe in more detail an FPGA-based machine (RDisk)
specifically designed for scanning genomic databases. We end by citing two
commercial products (BioXL/H and DeCypher) which use FPGA technology
and efficiently support the principal bioinformatics algorithms.

8.6.1 Splash

In [210], Hoang presents two systolic implementations of a global distance
calculation between two DNA or protein sequences on the Splash 1 and Splash
2 machines [27]. They implemented systolic arrays discussed in the section 8.3
with modulo encoding.

For DNA sequences, 384 systolic cells fit onto a single SPLASH-2 board.
Performance of a Splash-2 board, compared to a comparable workstation
(SPARC-1), were 1000X higher.

8.6.2 Perle

In [188] the idea is to compute the first stage of the FASTA program [324] on
the Perle-1 [407] board. The FASTA heuristic is similar to BLAST and starts
by detecting seeds before combining them to construct an alignment. The two
first stages were implemented on the board.

A systolic array of 256 cells was implemented on the PERLE-1 board and
used for the hit detection step of FASTA. Depending on the length of the
query sequence, speedups ranging from 50 to 400 were observed, compared to
a SPARC-10 workstation.

8.6.3 GenStorm

The GenStorm project (EPFL, Lausanne, Switzerland) is a dedicated acceler-
ator for biological sequence processing [298]. The original contribution of this
effort was to investigate on-line arithmetic and redundant data representa-
tion for implementing biocomputing processing. From an architectural point
of view, the structure of the GenStorm board does not differ much from the
Splash or Perle boards: 9 FPGA components plus local memory are tightly
interconnected together, one FPGA being dedicated to interface the board
through a VME bus.

The main application tested on the GenStorm board was a generalized
profile search algorithm, as described in section 8.5.

8.6.4 RDisk

The RDisk project [252] mainly focuses on scanning large genomic banks. The
aim is to scan databases as fast as possible, either for content-based search,
pattern matching or profile search. Speedup is obtained by directly connecting
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Fig. 8.17. The RDisk architecture. 48 processing boards are interconnected by an
Ethernet network. A host computer send the queries and collects the results.

a filtering process near the hard disk data storage, so that filtered results can
be transferred quickly to a front-end host computer.

As database scans with dedicated hardware are mainly limited by the time
for accessing the data, the RDisk system parallelizes accesses by dispatching
the data among a cluster of reconfigurable disks, each of them being able
to access the data independently. Obviously, this requires that the genomic
database has been loaded onto the distributed storage system, and that each
node is able to process data independently. Fortunately, scanning applications
are highly parallelizable: a request can be broadcast and processed in parallel
across all the disks. When each node has finished, partial results are sent to
a front-end processor for further processing if needed.

The complete system is a parallel machine of 48 nodes interconnected by an
Ethernet network, as depicted in Figure 8.17. A node is essentially composed
of a hard disk and a low cost FPGA (Xilinx Spartan 2). For a cost estimated
to be 10 times smaller than a cluster of PCs, performance is ten times higher
for complex query searches.

The reconfigurable parallel disk system can be requested to perform var-
ious types of searches. It is reconfigured to use filters specifically tuned to
each different search. The primary goal of the FPGA component is to effi-
ciently implement the various filters. However, the FPGA is also responsible
for managing Ethernet communication and the IDE disk interface. These tasks
are independent of the filtering process, and common to all search database
applications.

The Spartan-II is configured as a “Reconfigurable System on Chip” (R-
SoC). Figure 8.18 shows the components: one part of the hardware resources is
devoted to common services – and thus identical for each application – while
the second part is customized to each filter request. The common services
component uses a (soft) embedded 16-bit microprocessor, connected to an
Ethernet, an IDE, and the filter interface. The common services component
has been designed to occupy minimum area (1/3 of the Spartan-II) in order
to keep the major resources for the filters.
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Fig. 8.18. Reconfigurable SoC of the RDisk node. The central component is a 16-
bit RISC processor especially designed for the Xilinx family. It is connected to an
external 32 MB SDRAM memory through a memory controller. In addition, a small
ROM memory, initialized through the bitstream, contains a boot program able to
download a larger code from the disk.

The filter is the application specific part of the R-SoC and is easily in-
tegrated or interchanged. Each filter implementation must conform to a pre-
defined interface. The internal logic of each filter depends of the algorithm
being implemented and its data structures. The embedded RISC processor
sees only three ports: an input port directly linked to the IDE channel, an
output port connected to the system bus, and a control port. To achieve a high
throughput out from the disk, the filter gets its input data stream directly
from the IDE controller.

Programming the RDisk board for a new application requires the appli-
cation designer to write (1) a C program for the embedded RISC processor
and (2) a VHDL specification of a filter. The C program is the master process
and controls all the transactions. Typically, it manages the Ethernet commu-
nication, controls the disk transfers, drives the filter, collects the results (data
transfer from the filter output to the memory), etc. A C-library of high level
primitives allows the programmer to efficiently steer the different elements of
the R-SoC system.

The VHDL specification describes the hardware structure of the filter.
The filter architectures must take into account the interface constraints: the
input port is dedicated to access data from the disk, while the output port is
expected to be used only for transferring a small amount of data to the main
memory.
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8.6.5 BioXL/H

BioXL/H is a high-end hardware accelerator marketed by the Biocceleration
Ltd. [441]. It follows previous versions (Bioccelerator) designed by Compugen

A BioXL/H accelerator can house from 4 to 32 processing boards. Each
of them contains eight Xilinx FPGA components connected in a ring and

bus. Also, attached to the PCI bus is an internal hard disk and a fast Internet
interface.

Databases are transferred to the BioXL/H accelerator through the network
interface. Databases are stored in the board memories and on the internal
disk. The search calculations are performed concurrently with the database
transfer into board memory and to the internal disk (the “streaming” mode).
Databases that can fit into the combined global memory of all boards remain
in the memory for subsequent searches (the “memory” mode). Larger sequence
databases, such as GenBank, are read from the internal disk in subsequent
searches (the “disk” mode).

8.6.6 DeCypher

This FPGA accelerator, dedicated to biocomputing, is designed by the Time-
Logic Company, who do not release architectural details of the DeCypher
FPGA boards. In general, DeCypher boards include both FPGA components
and memory, and can be plugged into standard PC stations through a PCI
bus.

Together with the hardware, new software algorithms have been tailored to
the embedded FPGA technology. Accelerated versions of BLAST or Smith and
Waterman algorithm have been developed, as well as HMM profile analysis.
Reported performance on intensive computing genomic applications such as
bank to bank comparison are impressive compared, for example, to a 32 CPU
Linux cluster.

8.7 Summary

The rapid growth of biotechnologies, especially in large sequencing projects,
has lead to an explosion of genomic data. For molecular biologists, this mass
of data is potentially a rich source of knowledge with appropriate in-silico
processes. From a computational point of view, the data being analyzed are
primarily text sequences (protein or DNA), and the main task consists of com-
puting similarities. This falls into the string processing computation family
which has been studied for a long time, and for which numerous parallel archi-
tectures have been proposed. FPGAs are well suited for implementing these

ProfileSearch, FrameSearch and HMM .
since 1993. BioXL/Haccelerates search applications, such as Smith-Waterman,

128 MB of memory. All the processing boards are connected through a PCI
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regular structures and dedicated reconfigurable accelerators have been de-
signed to speed-up key bioinformatic algorithms. Today, commercial products
using FPGAs, derived from previous academic research, exhibit impressive
performance compared to parallel microprocessor-based machines.

In this chapter, we have first introduced some important genomic appli-
cations to highlight the computer power needed. Then, we focused on the
algorithmic problems and their associated hardware implementation:

• the historical dynamic programming algorithm has been detailed together
with its systolic structure;

• more recent works on seed-based heuristics to rapidly search genomic
banks have been discussed;

• HMMs and language models to perform more complex computations have
been presented. Finally, we concluded with some realizations of FPGA
accelerators dedicated to genomic computations.
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Supercomputing Applications

Acknowledgments: The material in this chapter is derived from a paper
“Accelerating Monte Carlo Radiative Heat Transfer Simulation on a Recon-
figurable Computer: An Evaluation” by Maya Gokhale, Janette Frigo, Chris-
tine Ahrens, Justin L. Tripp and Ronald G. Minnich, published in FPL 2004;
and from material in a paper “Acceleration of Traffic Simulation on Recon-
figurable Hardware” by Justin L. Tripp, Henning S. Mortveit, Matthew S.
Nassr, Anders A. Hansson, and Maya Gokhale, presented at MAPLD 2004.

9.1 Introduction

In contrast to the application classes presented earlier, supercomputing ap-
plications are characterized by compute-intensive floating point computations
over very large data sets with irregular access patterns. Traditional supercom-
puting systems contain high performance floating point units, vector pipelines,
and/or large numbers of clustered high end workstations.

FPGA architectures with multi-million gates, embedded memory blocks,
and hardware multipliers open the door to high performance floating point
computation on these devices. Recently, new system architectures have emerged
(described in Chapter 3) that use such FPGAs in clustered supercomputers.
Applications for these reconfigurable supercomputers are still emerging (as of
mid-2005). Early efforts include n-body simulations ( [263], [193] and molecu-
lar dynamics simulations ( [31], [97]). These approaches use reduced precision
floating point formats customized to the specific application in order to obtain
speedup on FPGAs.

In this chapter we will describe two representative applications that have
been mapped to reconfigurable supercomputers. The first application simu-
lates radiative heat transfer in a many-sided 2D chamber. This is a traditional
supercomputing application with a large number of floating point calcula-
tions. However, as discussed in Section 9.2, the data access patterns are fairly
regular, making it possible to partition computation between software and
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hardware at the loop level of granularity. In this application, single precision
floating point is used.

The second application is a large scale simulation of urban road traffic.
The application is based on TRANSIMS [2], which is used by the Department
of Transportation for planning and analysis of urban road traffic patterns.
The application divides the road network into millions of road cells, forming
a cellular automaton. Small fixed point integers are used to encode road cell
state. The scale of the data sets – Houston, Portland, OH, and Chicago have
been simulated – make this a supercomputing scale computation.

9.2 Monte Carlo Simulation of Radiative Heat Transfer

As demonstrated in previous chapters, reconfigurable computing with FP-
GAs has shown speed-ups of one to two orders of magnitude on data- and
compute-intensive processing tasks involving fixed point computation on small
integers. Floating point computation was not mapped to FPGAs due to the
large operand size (32- or 64-bit) and excessive area consumed by floating
point arithmetic units on configurable logic cells. Earlier work [311] found
that FPGAs were not fast enough to be competitive with general purpose
processors for floating point. Recently, that limitation of FPGAs appears to
be receding: 3–10 million gate FPGAs with embedded processors, memories,
and arithmetic units have become available, making it feasible to consider
a broader range of applications than before, including those requiring float-
ing point operations [346]. Studies comparing floating point performance of
FPGAs vs. high performance microprocessors [399] suggest that peak FPGA
floating-point performance is growing significantly faster than peak floating-
point performance for a CPU. Other studies [77,363] also suggest that modern
FPGAs may be competitive with microprocessors on matrix operations such
as matrix multiply and LU decomposition.

FPGAs offer several advantages when used to calculate floating-point op-
erations. First, FPGAs offer a high degree of flexibility, where they can provide
a customized solution for a given floating-point algorithm. Second, due to the
available concurrency, an FPGA can provide a floating-point solution that is
faster than a general purpose processor. Third, FPGAs are based on SRAM,
and thus they track the more aggressive semiconductor fabrication improve-
ments for memory rather than microprocessors.

Offsetting those advantages are the slow clock speed relative to micro-
processors and the relatively large area required by floating point operands
and operations, which limits spatial parallelism opportunities. In addition, it
is well-known in the supercomputing community that measures of peak per-
formance and dense matrix kernel operations are far from accurate predictors
of realized performance of a complete application. Memory access patterns,
control flow, and inter-processor communication result in actual performance
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that is well below peak. For example, applications run on a cluster supercom-
puter often realize no more than 50–80% of theoretical peak [393], reducing a
30 TFLOP machine to 15 TFLOPs.

In this experiment, the performance of FPGA-based floating point com-
putation on a real application is quantified by mapping the compute-intensive
inner loop onto the Xilinx Virtex-II and Virtex-II Pro family FPGAs and
comparing performance to comparable microprocessors.

9.2.1 Algorithm Description

This algorithm models the geometry of a laser isotope separation (LIS) unit
to accurately determine the radiant exchange factors among the surfaces. This
is an important component of the isotope separation process simulation.

All temperatures (execept
the melt surface) = 350K

E−beam
Entrance

Electron beam dump

Roof

Melt surface

Fig. 9.1. Test Geometry for Radiative Heat Transfer

The simulation is a Monte Carlo application that traces a large number of
photons emitted from the surfaces of a 2-D enclosure (Figure 9.1). The simu-
lation records how many photons emitted from each surface i were absorbed
at surface j. This information is used to compute a heat transfer coefficient
between each pair of surfaces, i and j. It is a Monte Carlo application because
it uses random values to determine characteristics of an emitted photon’s path
and because it traces a large number of photons.

In the algorithm, N photons are emitted (with randomly chosen charac-
teristics) from each surface of an m-sided polygon. The algorithm follows the
path of each emitted photon. It identifies the surface of intersection, which is
the most computationally intensive portion of the algorithm. Next, a random
number determines whether the photon is absorbed into the surface, reflected
off of it, or transmitted through it. The photon is followed until it is trans-
mitted, absorbed or lost. This algorithm is designed to calculate intersections
assuming a convex chamber.

A parallel version of the algorithm distributes work at the “task” level.
The pseudo-code for each task is summarized in Figure 9.2. In loop “a”, a
task iterates through the m surfaces of the polygon and traces the N photons
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  each surface in the m−surface polygonfor

    each of N photons emitted from this surfacefor

    Emit a photon with random characteristics from this surface

     the photon is not absorbed, transmitted or lostwhile

for

if the current side is not the emitted side
a b

       each side in the polygon

          Check if the photon intersected with this side

      Randomly determine if the photon is absorbed, transmitted, reflected or lost

end if

end for

end while

end for

end for

c d

Fig. 9.2. Radiative Heat Transfer algorithm loop structure. Loop “d” is imple-
mented on the FPGA.

emitted from each surface. For each surface, a for loop (“b”) iterates through
each photon emitted, then an inner while loop (“c”) checks if the photon is
still active before following it to its next surface intersection. Inside the while
loop, the innermost for loop (“d”) computes the surface intersection, then
the random number generator determines if the photon is absorbed, reflected,
transmitted or lost.

There are several different ways that this code could be parallelized. How-
ever, most of the parallel mappings are not suitable for FPGA implementation.
Parallelism at the task or surface level is too coarse, and does not fit on cur-
rently available FPGAs. At the while loop level, tracing one photon’s path
until it is not active may be possible in terms of fitting on an FPGA, but there
are dependencies carried between loop iterations that make the implementa-
tion more complex and limit parallelism. At the inner for loop level, where the
algorithm checks for the surface of intersection, the code is straightforward to
realize on an FPGA, since the loop iterations are independent of each other
and can be spatially replicated on the FPGA.

In addition, this inner for loop is the most computationally intensive por-
tion of the program. With N=5000 and m=37, a Pentium IV Xeon 3-GHz
workstation spends 86% of the algorithm time executing the inner for loop.
The C code inside this loop is included in Figure 9.3. All the variables used
in the arithmetic computations are floating-point.

The original program was written for double precision floating-point. How-
ever, there is not a significant difference in the scientific results from the al-
gorithm when using single versus double precision. The number of photons
absorbed differed by only .0025% in the single precision version as compared
to the double precision version. Experimental results were obtained for 64, 32,
and 16-bit floating point implementations of the loop.

Several commercial [304,334] and open source [38,346] libraries are avail-
able for creating floating-point circuits. For our implementation of the ra-
diative heat transfer algorithm, we chose the FPLibrary, a VHDL library of
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float x1[NSM], x2[NSM], y1[NSM], y2[NSM], delx[NSM], dely[NSM], sqln[NSM], rhs[NSM];

delxs = delx[s]; delys = dely[s]; rhss = rhs[s];
x1s = x1[s]; y1s = y1[s]; x2s = x2[s]; y2s = y2[s]; sqlns = sqln[s];

/* compute intersection points*/
det = ex*delys - ey*delxs;
absdt = fabs(det);
if(absdt <= epsdet0) det = epsdet0;
dtinv = 1.0/det;
xi = dtinv * (delxi*rhse - ex*rhss);
yi = dtinv * (delyi*rhse - ey*rhss);

/* test for intersection between surface endpoints*/
ssq = (xi - x1s)*(xi - x1s) + (xi - x2s)*(xi - x2s)

+ (yi - y1s)*(yi - y1s) + (yi - y2s)*(yi - y2s);
if(ssq <= sqlns) {

intersect_side[s] = 1; /* s is the intersected side */
else intersect_side[s] = 0; /* break here in the software version */

}

Fig. 9.3. Radiative Heat Transfer code implemented on the FPGA

hardware operators for floating-point computation, developed by the Arénaire
project [113]. The FPLibrary meets three important qualifications. First, it is
written in VHDL in a platform-independent manner. This allows designs to
be easily targeted to different FPGA architectures. Second, the library imple-
ments add, multiply and divide floating point operations which are required
for this algorithm. Third, the modules and floating-point types have para-
meterizable bitwidths, so that we can easily program the library for single,
double or arbitrary sized floating point types. FPLibrary is used to leverage
the advantages of FPGAs to implement the core of a supercomputing appli-
cation.

9.2.2 Hardware Implementation

The hardware implementation has been mapped to the Virtex-II and Virtex-
II Pro FPGAs. An initial loop pipeline was generated from the Streams-C
compiler [171] on an integer version of the code. The generated pipeline was
then converted to use floating point modules, and manually optimized to
maximize pipelining.

As seen in Figure 9.3, each iteration of this loop performs calculations
relative to one of the surfaces of the convex shape. Some variables are invariant
across loop iterations (e.g., epsdet0) while others assume unique values for
each loop iteration, as shown by the array index s, for example, delxs, delys,
and rhss. The latter variables are assumed to reside in Block RAMs.

Figure 9.4 shows the pipelined hardware implementation of the loop. The
design is an 11 stage pipeline utilizing the floating point operators from FPLi-
brary [113]. It consists of 12 multiply, 3 add, 7 subtract, 1 divide and 2 compare
modules. Each of the floating point operators is also pipelined. The multiply
has a latency of 4 cycles, the add/subtract has three 3 cycles of latency, di-
vision has 15 cycles, and comparison has 1 cycle. The total latency of the
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Fig. 9.4. FPGA Implementation

11 stage pipeline is 41 cycles. There are 2 intermediate registers that need
pipelining from Level 4 through Level 5. This data synchronization require-
ment introduces 32 additional 34-bit registers into the design.1 For clarity,
only two registers are shown in in the Figure 9.4 in Level 5, but there are 15
registers for each operand, for a total of thirty 34-bit registers at Level 5.

For this implementation there are eleven inputs to the pipeline – six inputs
are consumed in Level 1, four at Level 7 and one at Level 10. The data is
stored in two 204-bit by 512 deep, dual-port Block RAMs. Memory reads are
scheduled so that values arrive at Level 7 and at Level 10 at exactly the cycle
they are consumed. By scheduling the reads in this way, we avoid the overhead
of fully pipelining the 5 inputs that are needed at Level 7 and Level 10. The
latter approach introduces an extra 27 cycles × 4 registers (Level 7) plus 40
cycles × 1 register (Level 10), or 112 + 40 = 152 34-bit registers into the
design. If these 152 registers were included in the design, there would be a 1%
increase in area used on the Virtex-II.

9.2.3 Performance

The performance of the inner loop hardware implementation is compared to
several Pentium IV Xeon (P4) systems. The hardware circuit was mapped to
the Virtex-II, speed grade 4 and Virtex-II Pro, speed grade 6.

Workstation Performance

For performance comparisons with the FPGA the innermost loop of the appli-
cation is timed, This loop is the iteration over m surfaces for a single photon,
searching for an intersection. The static instruction count of this loop count

1 The FPLibrary adds a 2-bit tag to each floating point register.
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is 130 instructions: 61 floating point instructions, 9 branches, 73 instructions
which reference the stack (including floating load/store to stack for locals),
and only one integer instruction (the loop counter). All the instructions and
data for this loop fit into the Level 1 cache (the fastest cache level), and hence
could be expected to run at maximum speed on the CPU.

Timing measurements of the inner loop are easily perturbed due to the
small instruction count of 130 instructions. Obtaining an accurate measure
of this loop represents a challenge, since traditional profiling tools such as
gprof are only acceptable for function-level timing, and do not provide an
extremely accurate measure of the inner loop. However, on the Pentium and
later processors there is a timer register, called the Time Stamp Counter
(TSC), which measures processor ticks at the processor clock rate. This 64-
bit read-only counter is extremely accurate, as it is implemented as a Model-
Specific Register inside the CPU. The overhead of using this register is very
low. On a 1.7-GHz P4 the TSC runs at 1.68 GHz and has a resolution of 595
picoseconds; on a 3-GHz P4 the TSC has a resolution of 333 picoseconds.

The TSC counter was used to measure the inner loop of the application. C
code was added using the gcc asm statement, which produces in-line assembly
code to read the TSC at the start and end of the loop code. We performed
measurements both in the application itself, and by extracting the inner loop
and running it many times. As expected for this loop, the performance varied
with the CPU being used, with the fastest CPU being the 3-GHz P4.

We tested both the Intel compiler v7.0 and gcc v3.2. The gcc compiler
provided the best performance results with –O3 optimization level. Timing
for one iteration of the inner loop, shown in Figure 9.5, ranges from 60 ns
to 104 ns. It is important to note that the time is an average, since in the
sequential version of the loop body, there is opportunity for early exit from
the loop.

FPGA Performance

Synplicity’s Synplify was used to synthesize the inner loop to Xilinx FPGAs.
Placement and area results were obtained using Xilinx ISE 6.1. The results
for one iteration of the inner loop on the Virtex-II and Virtex-II Pro FPGAs
are shown in Figure 9.5. On the V2-6k, only 20% of the Look Up Tables
(LUT) are used by the loop body. However, all the multipliers are used, and
therefore only one instance of the loop body can fit on this part. In contrast,
the larger Virtex-II Pro parts can fit three pipelines of the inner loop, resulting
in a higher degree of spatial parallelism. The speed up row calculates speed
up relative to a 3-GHz P4. The hardware calculation assumes a steady state
pipeline in which a result is delivered every clock cycle; with three pipelines
three results are delivered every clock cycle. These results do not include the
time to write the parameters into Block RAM, which can be hidden by double
buffering: parameter block i+1 can be loaded while the hardware is processing
parameter block i.
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V2-6k V2p100 1.7-GHz P4 2.4-GHz P4 3-GHz P4

# Pipelines 1 1 2 3 - - -

Execution Time (ns) 29.9 16.7 7.89 5.78 104 74 60

%Area (LUTs) 20 15 33 50 - - -

%Multiplers 100 32 64 97 - - -

Latency (cycles) 41 41 41 41 - - -

Speed up 2.01 3.59 7.61 10.37 0.58 0.81 1

Fig. 9.5. FPGA vs. Workstation performance for Inner Loop. Speed up compared
to the P4 3-GHz System.

In terms of technology generation, the V2-6k and 1.7-GHz P4 are compara-
ble. The V2-6k hardware implementation outperforms the 1.7-GHz Pentium
by a factor of 3.48. For the more recent generations of FPGA and micro-
processor (V2p100 and 3-GHz), the single pipeline speed up is slightly better
– 3.59×. In addition, it is possible to fit three pipelines on the V2p100, yielding
a speed up of 10.37.

As noted above, the hardware design is highly pipelined. The pipelining al-
lows a relatively high clock frequency for the design, at the cost of high latency
– 41 clock cycles before the first result appears. For a large number of surfaces,
the effect of pipeline latency diminishes. 150,000 surfaces are desirable for this
particular simulation, so the pipeline latency effect is negligible.

Lastly, if we analyze the granularity of the input data width as shown
in Figure 9.6, placement results show that for a 16-bit word width, the area
utilization across the Virtex Family is 5% to 8% which allows 10 to 20 instan-
tiations of the inner loop to run concurrently on the FPGA. For larger bit
widths, fewer parallel versions of the loop can fit onto hardware, for example
with 32-bits 3 pipelines fit. As expected, the run-time clock speeds are faster
for smaller bit widths. The results show that on the Virtex-II Pro family, 32-
bit operations are only slightly more expensive than 16-bit, while 64-bit incur
a much higher penalty both in area and clock speed. As the graphs show, the
64-bit version of the application does not fit on the V2-6k.

Discussion

The results show that FPGA hardware outperforms a comparable generation
of microprocessor by up to 10.37× on an application-specific single-precision
floating point pipeline. There are several points to note.

First, the FPGA implementation must execute all loop iterations of the
inner for loop. The software timing is an average number: many times the
software breaks out of the loop without completing all iterations, as the last
if statement of Figure 9.3 contains a break in the software version of the
loop. If all loop iterations were executed, the FPGA speed up would be even
greater.

Second, this application fits well in the L1 cache of the microprocessor. A
more data-intensive application would better use the strengths of the FPGA:
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Fig. 9.6. Placement results for a single pipeline 16, 32, and 64-bit implementations
of the inner loop.

greater memory bandwidth and better performance on data-intensive compu-
tation.

Third, the tractability of an application kernel to pipelining, especially long
pipelines, is crucial to achieve performance. The highest performance floating
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point operators are heavily pipelined, so there is substantial cost in starting up
and breaking up the pipeline. Like vector processors, the application-specific
pipeline on the FPGA shows the best performance when the algorithm has
many iterations with minimal data-dependent branching. In this application,
the vector length is very large, and thus the latency is negligible. This appli-
cation also has the advantage of little data-dependent branching. Although
predication can be used to reduce the impact of branching, area costs increase
by having both the then and else bodies instantiated on the chip.

Fourth, the floating point library we used in this experiment is neutral to
FPGA technology. In fact, we were able to synthesize it to several different
families, including the Altera Stratix. Technology-specific floating point cores
such as Quixilica yield smaller area and faster clock rate. On the minus side,
other floating point libraries, including Quixilica, have even higher operation
latencies. For best performance, embedded hard floating point units in a fabric
of reconfigurable logic would, of course, be desirable.

Finally, it is important to compare the performance of the application-
specific pipeline, with a mix of different floating point operators and branch-
ing constructs, to peak performance results cited by others. While theoretical
peak numbers are useful to gauge feasibility, a floating point intensive super-
computing application gives us more accurate performance results.

9.3 Urban Road Traffic Simulation

In addition to intensive floating point calculations, another defining feature
of supercomputing applications is the need to process large data sets. In the
road traffic simulation application we highlight the use of FPGAs on discrete
simulation problems that process large data sets.

Modern society relies on a set of complex, inter-related and inter-dependent
infrastructures. Los Alamos National Laboratory has over the past ten years
developed a sophisticated simulation suite for simulating various infrastruc-
ture components, such as road networks (TRANSIMS [2]), communication
networks (AdHopNet [30]), and the spread of disease in human popula-
tions (EpiSims [149]). These powerful simulation tools can help for example
policy-makers understand and analyze these inter-related systems and sup-
port decision-making for better planning, monitoring, and proper response
to disruptions. TRANSIMS, for example, can simulate the traffic of entire
cities, with people traveling in cars on road networks. It is based on inter-
acting cellular automata (CA), and uses large computer clusters for efficient
computation.

In this work we study the acceleration of the road network simulation
through an FPGA implementation. Since the simulation is parallel, with in-
dependent agents that make decisions based on local knowledge, it seems
natural to map to the large-scale spatial parallelism offered by FPGAs. The
high degree of regularity found in the road network is another fact making this
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a well suited application. In contrast, other networks such as ad hoc wireless
communications are much more irregular and dynamic.

9.3.1 CA Traffic Modeling

The TRANSIMS road network simulator can best be described as a cellular
automaton computation on a semi-regular grid or cell network. The simulator
consists of two parts,

• a planning/routing module that populates the simulation with cars and
decides on the route each car takes, and

• the road network micro-simulator, which actually simulates the movement
of the cars.

In this work the focus is on the micro-simulator. In the micro-simulator, the
city road network is split into nodes and links. Nodes correspond to locations
where there is a change in the road network such as an intersection or a
lane merging point. Nodes are connected by links that consist of one or more
unidirectional lanes. Each lane is divided into road cells. The TRANSIMS
road cell is 7.5 meters long. One cell can hold at most one car. A car travels
with velocity v ∈ {0, 1, 2, 3, 4, 5} cells per iteration step. The positions of the
cars are updated once every iteration step using a synchronous update. The
maximum speed of a car is cell dependent, but it is at most 5. Each iteration
step advances global time by one second. The basic driving rules for multi-

Fig. 9.7. CA traffic in TRANSIMS

lane traffic in TRANSIMS consists of four steps. In each step we consider a
single cell i in a given lane and link. Note that the model allows passing on
the left and the right. To avoid cars merging into the same lane, cars may only
change lane to left on odd time steps and only change lane to the right on
even time steps. This convention, along with the four driving rules described
below, produces realistic traffic flows as demonstrated by TRANSIMS.

Local driving rules

The four basic driving rules of the micro-simulator are given in the following.
We let ∆(i) and δ(i) denote the cell gap in front of cell i and behind cell i,
respectively.
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1. Lane Change Decision: Odd time t: If cell i has a car and a left lane change
is desirable (car can go faster in target lane) and permissible (there is space
for a safe lane change) flag the car/cell for a left lane change. The case
of even numbered time steps is analogous. If the cell is empty nothing is
done.

2. Lane Change: Odd time t: If there is a car in cell i, and this car is flagged
for a left lane change then clear cell i. Otherwise, if there is no car in cell
i and if the right neighbor of cell i is flagged for a left lane change then
move the car from the neighbor cell to cell i with probability pα. The case
of even times t is analogous.

3. Velocity Update: Each cell i that has a car updates the velocity using the
two-step sequence:
• v := min(v + 1, vmax(i),∆(i)) (acceleration)
• If [UniformRandom() < pbreak] and[v > 0] then v := v − 1 (stochastic

deceleration).
4. Position Update: If there is a car in cell i with velocity v = 0, do nothing.

If cell i has a car with v > 0 then clear cell i. Else, if there is a car δ(i)+1
cells behind cell i and the velocity of this car is δ(i) + 1 then move this
car to cell i. The velocity update pass (3) guarantees that there will be
no collisions.

All cells in a road network are updated simultaneously. The steps 1–4 are
performed for each road cell in the sequence they appear. Each step above is
thus a classical cellular automaton Φi. The whole combined update pass is a
product CA.

Φ = Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1,

where product is function composition. Note that the CAs used for the lane
change and the velocity update are stochastic CAs. The rationale for having
stochastic braking is that it produces more realistic traffic. The fact that lane
changes are done with a certain probability avoids slamming behavior where
whole rows of cars change lanes in complete synchrony.

9.3.2 Intersections and Global Behavior

The four basic rules handle the case of straight roadways. TRANSIMS uses
travel routes to generate realistic traffic from a global point of view. Each
traveler or car is assigned a route that it has to follow. Routes mainly affect
the dynamics near turn-lanes and before intersections as cars need to get into
a lane that will allow them to perform the desired turns.

To incorporate routes the road links need to have IDs assigned to them.
Moreover, to keep computations as local as possible, cells need to hold infor-
mation about the IDs of upcoming left and right turns.

The following describes the extension of the four basic driver rules to
handle turn-lanes and intersections.
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We consider a car in cell i. As before, lane changes to the left/right are
only permissible on odd/even numbered time steps. We refer to the adjacent
candidate cell as the target cell.

1. If the link ID of the target cell matches the next leg of the travel route a
lane change is desirable (desirable turn-lane).

2. Else, if the target cell has a link ID that does not match the next leg of
the route and it differs from the current link ID of the route, a lane change
is not desirable (wrong turn).

3. Else, if the current cell’s nextLeftLink (nextRightLink) ID matches the
next leg of the route and the simulation time is an odd (even) integer, a
lane change is desirable (prepare for turn-lane or intersection).

4. Else, apply the basic lane changing rule described above.

Note that this handles lane changing prior to turn-lanes as well as inter-
sections.
Intersection Logic

An intersection has a number of incoming and outgoing links associated
to it. A simplified set of turning rules (assuming a four-way intersection) are
as follows:

1. Only cars in an incoming left(right)-most lane of link can turn left(right).
A car that turns left(right) must initially use the left(right)-most lane of
the target link.

2. A car in any incoming lane can go straight. A car that goes straight must
use the same lane number in the target link as it used in the incoming
link. It is assumed that the lane counts for the relevant links agree.

More intricate intersection geometries can of course occur but the basic idea
remains the same. When intersections are close it is natural to modify the first
rule: when a left turn is followed by an immediate right turn the rightmost
lane is chosen as target lane for the left turn.

An intersection has a set of immediate adjacent road cells. We refer to
these as the intersection road cells. The intersections operate by dynamically
assigning the front and back neighbor cell IDs of the intersection road cells.
This allows us to naturally extend the driving rules for multi-lane traffic to
intersections without any modifications. The subset of the intersection road
cells that come from incoming links have their front neighbor cell set to zero
by default. The same holds for the back neighbor of the intersection cells be-
longing to outgoing links. The intersections operate by establishing front/back
pairs between cells to accommodate the routes. Stop intersections and traffic
signal intersections impose additional constraints on which cars are allowed
to drive at what times by controlling the corresponding connections.

In order to evaluate the benefit of FPGA acceleration, a subset of the road
traffic CA consisting of straight lane traffic was implemented in hardware. Two
approaches were developed, a constructive method in which each road cell is

Modification of the lane change rule:
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physically instantiated in hardware, and a streaming method, in which cell
state store in memory is streamed through a hardware update engine.

9.3.3 Constructive Approach

The constructive approach to traffic simulation instantiates a separate sim-
ulatable road cell for every road cell in the traffic network. The road cell
provides its current state to its neighbors so that all the cells in that local
neighborhood can calculate their next state. Figure 9.8 outlines the structure
of a basic road cell.

Computation
Engine

State
Machine

State

Random

Neighbor
Info

Neighbor
Info

IdVelocity

Neighbor Info: 5 forward, 5 back

(a) Cell Design

Backward
Neighborhood

Left Cell

Right Cell

Neighborhood
Forward

(b) Neighborhood

Fig. 9.8. Road Cell Design and Cell Neighborhoods

The road cell consists of three main parts: the computation engine, the
state and a state machine. The state machine drives the computation engine
using the current state and inputs from external road cells to compute the road
cell’s next state. The local driving rules define operations of the computation
engine.

The four rules for traffic simulation are executed using six different states
in the state machine. Figure 9.9 shows how the different steps in the rules are
executed in the state machine. Each rule in the computation engine requires a
single cycle to calculate except for Velocity Update. The velocity update rule
has three separate operations, each taking a cycle, to calculate its two steps.

In the LaneChange state, the computation engine calculates the lane
change decision (Rule 1). To do this the ∆(i) and δ(i) are calculated from
the forward and backward neighborhoods. Likewise the neighbors in the left
and right neighborhoods execute the same calculation. The computation en-
gine then determines whether it is permissible for a car to come to this lane
and whether the current car desires to change lanes. These results are used in
the LaneMove (Rule 2)state to actually perform the lane change. Both lanes
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have to agree that is is both permissible (where we are going) and desirable (if
the gap ahead of us is worse than our neighbors) for a lane change to happen.

Calculate delta

Collision

LaneChange

Calculate Delta
Determine
  Permission
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Fig. 9.9. Computation required for the six states

Rule 3 requires three states, Accelerate, Collision, and Stochastic. In the
Accelerate state, a car’s velocity is calculated using the following formula:
vnext = min(v + 1, vmax(i)). vmax(i) is the maximum velocity for this partic-
ular road cell, which may be lower than the global vmax (e.g., a local speed
limit).

The Accelerate state is followed by the Collision state which ensures that
the next state does not exceed the gap ahead of the car. It determines vnext =
min(vnext,∆(i)). This prevents the car from accelerating into a car in front
of it—avoiding a collision.

The final step of the velocity update determines if the car should randomly
slow down. This stochastic step provides some realism in the behavior of
drivers and makes their speeds less predictable. If a random value is less than
a threshold, pbreak, then its speed will be lowered as described in Section 9.3.1.

After the velocity update rule is finished, the state machine executes an
update of the car positions. To do this, a cell determines if a car exists in
its backward neighborhood that has a velocity that will bring it to this cell’s
location. If it does, then the cell sets its velocity and car id to the arriving
car. Otherwise, if no car is arriving at this cell, the cell sets its velocity and
car id to zero.

The FPGA implementation is written in VHDL and synthesis was per-
formed by Synplify v7.6. The resultant EDIF description was passed into
Xilinx ISE v6.2 to produce the results reported.

The results for the constructive approach for multi- and single-lane circular
traffic are described in Table 9.1. The hardware implementation of single-lane
traffic has only four states, since single-lanes do not require the extra hardware
for lane changes. The two-lane implementation that includes the hardware to
perform lane changes is 63% larger in area. As the table shows, both Xilinx
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chips can hold (at least) 650 road cells. The Virtex-II Pro could hold more
cells, but with 650 cells can operate at a faster clock speed.

Table 9.1. Constructive Method Design Results

One-lane Two-lane
V2-6k V2p100 V2-6k V2p100

Cells 650 650 400 640

LUTs/Cell 104 97 169 128

Clock(MHz) 48.68 64.17 35.53 62.8

Slices 33790 31576 33790 40973

(% of Slices) (99%) (71%) (99%) (92%)

Table 9.2 compares the results for the two-lane traffic implementation
achieved by the Xilinx XC2V6000 (V2-6k) and the XC2VP100 (V2p100) to
a software implementation running on two different Xeon processors. The
speedup reported is relative to the 3-GHz Xeon. The V2-6k simulates the
road cells at a rate 175.6× the Xeon. This speedup comes primarily from the
fact that the FPGA implementation is executing all cells concurrently, and
the software implementation, which may have instruction level parallelism,
calculates each cell individually.

Table 9.2. Constructive Method Comparison for Two Lanes

2.2-GHz
V2-6k V2p100 Opteron

Cells 400 640 2 Million

Cells/sec 2.37 × 109 6.70 × 109 5.7 × 106

Speedup 415.8 1175.4 1.0

Despite the large speedup that is possible using the constructive approach,
the FPGA can only handle a small number of road cells. Using the data
from the Portland TRANSIMS study, we know that there are roughly 6.25
million road cells. Simulating Portland would require at least 12,400 FPGAs
to simulate the entire city. The largest multi-FPGA systems provide 10’s to
100’s of FPGAs. This limitation in scalability using current technologies led to
the development of a streaming approach to calculate the traffic simulation.

9.3.4 Streaming Approach

The constructive hardware approach does not scale well because each road cell
must be physically instantiated on the FPGA, requiring a very large number
of FPGAs to simulate even a moderate size city. An alternative approach is to
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let a computational unit, an update engine, process a stream of road data and
subsequently output a stream of updated data. In this way, the update engine
sweeps across the road data, and the number of road cells is no longer limited
to available FPGA area. The streaming approach is only limited by the size
of the memory to hold road cell state and the associated access time, and the
hardware design becomes inherently scalable and can thus handle large-scale
road networks.

The streaming approach focuses on straight lane computation in hardware,
leaving intersections and merging links to be calculated in software. Most im-
portantly, this strategy means that all road plan decisions are handled by the
software, and the hardware processing is governed by a simple, homogeneous
set of traffic rules.

In a basic implementation of streaming, data representing the road network
in the previous state is loaded into the input SRAM from the host. The data
is subsequently fed into the update engine against the flow of traffic, starting
from the end of the link. In the case shown in Figure 9.10, there are four lanes
of data per link. Each lane has its own input and output SRAM, and each car
both changes lanes and moves forward inside the internal logic engine before
it is written with its new road cell and new velocity information to its new
lane’s output SRAM. Since the road cells are processed in order, and one at a
time, the address generators are counters (only enabled when valid data has
come out of the SRAM on the previous read).

Due to the large size of the data set relative to available on-chip memory,
road cell state is stored in memory external to the FPGA. To process the
straight road segments of Portland, two nodes of a Cray XD1 are required,
each with 16MB of memory on the FPGA board.

At each simulation time step, the hardware road cell processor swaps its
input and output memory banks, eliminating the need for data copy. A small
amount of data transfer between the FPGA and host is necessary for infor-
mation exchange to and from the software updating the merge nodes, inter-
sections, and overlap road segments between software and hardware.

Inside the logic engine, the road cells are first scanned for cars. If a car
is found, the car must have its position updated based on its attributes from
the previous state and the location of the surrounding cars.

The cars in the first vmax cell layers of a lane can not be updated (either by
changing lanes or by changing velocity) since there is not enough information
available. For this reason we define the overlap region as the end vmax cell
layers of a link. These cell layers are the first segments processed, and while
cars can be moved into these road segments, they cannot be moved from them.
The software driven intersection/link-merge updater will update the position
and velocity of these cars.

Changing lanes and changing velocity are executed as two separate cal-
culations. Position update must be calculated after changing lanes, since it
directly depends on the location of the cars. A pipeline calculating the lane
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Fig. 9.10. Structure of a straightforward streaming implementation.

changes and velocity updates allows results to be read and written every clock
cycle.

1. Changing Lanes: The functionality works exactly as described by the
four rules above. However, since a car must have complete information
about the road segments in front of and behind it to a distance of vmax, it
is only immediately outside of the overlap region where the cars will have
enough information to make a lane change decision. Therefore, for a car
to have enough neighbor information to make a lane change decision, the
decision must be made vmax clock cycles after the car’s information has
come out of the SRAM. Until then, the car’s information moves though
a shift register, and its existence is used as neighbor information for the
cars ahead.

2. Changing Position: To change position, the first step is calculating the
new velocity based solely on the car’s old velocity, and the existence of any
car vmax or less in front of the car in its own lane. After the new velocity
is calculated, the car does not move to the appropriate road segment
immediately. Instead, it moves into a shift register (see Figure 9.11).

It continues to move one cell per clock cycle through the shift register’s
lookup blocks (see Figure 9.12) until the point where its newly calculated
velocity matches its distance from the change state block. At this point,
the change state block imports all car information from the car designated
to be moved out of the lookup buffer to the new destination road segment.
This allows for the new destination road segment containing the moved
car data to be written into the output SRAM on the next clock edge.

The streaming implementation was written in VHDL and placed in VHDL
wrapper provided by Cray. The wrapper includes interfaces to the “RapidAr-
ray” interconnection network and the external quad data rate memories. The
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streaming design was synthesized using Xilinx XST and the bitstream gener-
ated by Xilinx ISE v6.2.

Table 9.3. Comparison of Streaming with Software Simulation

2.2-GHz
V2p50 Opteron

Slices 1857 -

Clock(MHz) 180 2199

Cells/sec 7.2 × 108 5.7 × 106

Speedup 126.3 1.0

The results shown in Table 9.3 were timed using a timer register, called the
Time Stamp Counter (TSC), which measures processor ticks at the processor
clock rate. The 64-bit read-only counter is extremely accurate, as it is imple-
mented as a Model-Specific Register, inside the CPU. The overhead of using
this register is extremely low and the TSC register on the 2.2-GHz Opteron
has a resolution of 450 picoseconds.
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The design on the FPGA includes four streaming engines (limited by the
number of available memories) and operates at a rate 126.3× the speed of a
comparable software version running on a 2.2-GHz Opteron. Table 9.4, which
includes the cost of transferring data to and from the FPGAs, gives a more
accurate speedup of 12.8× faster than software alone. This speedup has been
estimated by using 1.3 GB/s as the transfer rate, which Cray has been able
to achieve.

Although the streaming implementation is a factor of 100 slower than
the direct approach, it is still enough of an improvement to provide signifi-
cant overall speedup. Additional speedup is still possible with more FPGA
boards. The most crucial limiting factor in this implementation is the number
of memory banks on each board; additional banks would allow us to increase
the number of simultaneous data streams. In fact, with the current design,
one compute engine requires less than 2% of chip area. Since each compute
node has four concurrent memories, it is advantageous to instantiate four par-
allel engines, but already at this moderate level of parallelism, we run into a
bandwidth bottleneck.

The hardware performs extremely well with the straight lane segments,
which make up 70–90% of the road segments in a given simulation. FPGA
aided simulation done in the scalable, streaming approach may be the fastest
way to do extremely large metro-area traffic simulations, especially in light
of the advances being made in combined microprocessor/FPGA computing
systems. The cellular nature of the road segments meshes well with hardware,
and a combined hardware/software approach for the full-fledged simulation
fits each of their computational strengths.

Table 9.4. Comparison of Streaming including Communication Costs

2.2-GHz
V2p50 Opteron

Cells/sec 1.96 × 108 5.7 × 106

Speedup 34.4 1.0

Acceleration of TRANSIMS opens the door to a whole range of simula-
tions where FPGAs or other dedicated hardware can provide computational
speedup. Many simulations systems today, such as EpiSims, have similar struc-
ture to the one found in TRANSIMS: There are highly complex computations
best suited for software and a large collection of structured simple calcula-
tions as in the road network simulator. The TRANSIMS accelerator provides
a prime example as to how FPGAs can aid a large class of large-scale simula-
tions.
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9.4 Summary

While the strengths of reconfigurable computers in signal and image process-
ing applications have been apparent since their inception, reconfigurable
accelerators using multi-million gate-equivalent heterogeneous systems-on-a-
chip have expanded the application space. Supercomputing applications using
floating point data demonstrate significant speed-up over high performance
workstations. Large data sets can also be processed by these accelerators as
interconnection network bandwidth between microprocessor and FPGA are
reduced.
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