

Power-Aware Architecting
for data-dominated applications

by

Power-Aware Architecting
for data-dominated applications

Maarten Ditzel

The Netherlands

Wouter A. Serdijn

The Netherlands

and

Eindhoven University of Technology
The Netherlands

Netherlands Organisation for Applied Scientific Research TNO

Delft University of Technology

Ralph H.J.M. Otten

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

www.springer.com

© 2007 Springer

ISBN 978-1-4020-6419-7 (HB)

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

ISBN 978-1-4020-6420-3 (e-book)

Preface

The complexity of embedded systems-on-a-chip is rapidly growing. Different experts are involved in
the design process: application software designers, programmable core architects, on-chip commu-
nication engineers, analog and digital designers, deep submicron specialists and process engineers.
In order to arrive at an optimum implementation compromises are needed across boundaries of
the different domains of expertise.

Therefore, the authors of this book take the point of view of the system architect who is a
generalist rather than an expert. He is responsible for the definition of a high level architecture,
which is globally optimal. Finding an optimum requires a proper balance between area, performance
and last but not least energy consumption. The challenge is not only the size of the design space
but also the fact that the most important decisions are taken during the early design phases. The
advantage of an early decision is that the impact on area, performance and energy consumption
is large. But the disadvantage is that the available information is often limited, incomplete and
inaccurate. The task of the system architect is to take the correct early decisions despite the
uncertainties.

This book provides a systematic way to support the system architect in this job. Therefore,
an iterative system-level design approach is defined where iterations are based on fast and ac-
curate estimations or predictions of area, performance and energy consumption. This method is
illustrated with a concrete real life example of multi-carrier communication. This book is the re-
sult of a Ph.D. thesis, which is part of the UbiCom project at Delft University of Technology. I
strongly recommend it to any engineer, expert or specialist, who is interested in designing embed-
ded systems-on-a-chip.

Eindhoven, The Netherlands, Prof. dr. ir. Jef van Meerbergen
April 2007 Eindhoven University of Technology

Fellow Philips Research Eindhoven

Contents

1 Introduction . 1
1.1 High-level system design . 1

1.1.1 Hardware–software partitioning . 2
1.1.2 Hardware specification . 3
1.1.3 Design flow . 4

1.2 Power as design constraint . 5
1.3 Application . 7
1.4 Outline . 7

2 Design trade-offs . 9
2.1 Introduction . 9
2.2 Area estimation . 9

2.2.1 Gate area estimation . 9
2.2.2 Interconnect estimation . 12

2.3 Delay estimation . 12
2.3.1 Resource delay estimation . 13
2.3.2 System level delay estimation . 15

2.4 Power estimation . 16
2.4.1 Static power dissipation . 17
2.4.2 Dynamic power dissipation . 17
2.4.3 Activity-based power estimation . 18
2.4.4 System level power estimation . 21

2.5 Area, delay, power trade-offs . 21
2.5.1 Area versus delay . 21
2.5.2 Delay versus power . 23
2.5.3 Area versus delay versus power . 24

2.6 Summary . 25

3 Architecting with uncertainties . 27
3.1 Introduction . 27
3.2 Application model . 28
3.3 Architecture class . 30
3.4 Hardware–software partitioning . 31

3.4.1 Selection constraints . 31
3.4.2 Cost constraints . 34
3.4.3 Mixed integer linear programming formulation . 38

3.5 Extension to multiple algorithms . 38
3.5.1 Multiple algorithm support . 38
3.5.2 Algorithm selection support . 39

VIII Contents

3.5.3 Combined solution . 39
3.6 Dealing with uncertainty . 40
3.7 C to SystemC conversion . 41

3.7.1 SystemC language . 41
3.7.2 Conversion approach . 42
3.7.3 Behavioral conversion . 43
3.7.4 Structural conversion . 44
3.7.5 Conversion alternatives . 45

3.8 Summary . 47

4 Multi-carrier communications . 49
4.1 Introduction . 49
4.2 Multi-path channels . 50

4.2.1 Channel impulse response . 50
4.2.2 Delay spread . 50
4.2.3 Inter-symbol interference . 51
4.2.4 Frequency-selective fading . 52

4.3 Principles of multi-carrier modulation . 52
4.3.1 Orthogonal FDM . 53
4.3.2 Guard interval . 54
4.3.3 OFDM demodulation . 55

4.4 Optimal energy assignment . 57
4.4.1 Channel model . 57
4.4.2 System model . 57
4.4.3 Optimization problem . 58
4.4.4 Comparison . 60

4.5 Quantization level . 62
4.5.1 System model . 62
4.5.2 Performance of quantized OFDM systems . 65
4.5.3 Verification . 67

4.6 Clipping level . 68
4.6.1 System model . 68
4.6.2 Noise modeling . 68
4.6.3 Performance of soft-limited OFDM systems . 69
4.6.4 Verification . 71

4.7 Summary . 71

5 Application . 73
5.1 Introduction . 73
5.2 Transceiver specification . 73

5.2.1 Frequency band . 73
5.2.2 Gross bit rate . 74
5.2.3 Symbol format . 76
5.2.4 Sub-symbol encoding scheme . 77
5.2.5 Time and frequency synchronization . 78
5.2.6 Multiple access . 78
5.2.7 Summary. 79

5.3 Implementation alternatives . 80
5.3.1 Building blocks . 81
5.3.2 Processor alternatives . 84
5.3.3 Cost estimates . 85
5.3.4 Implementation alternatives . 86
5.3.5 Partitioning results . 87

Contents IX

5.4 Summary . 93

6 Conclusions . 95

A Ubiquitous Communications . 99
A.1 Applications . 99
A.2 Necessities and consequences . 99
A.3 Preliminary choices . 100

A.3.1 Carrier frequency and OFDM modulation . 100
A.3.2 Infrastructure . 100

B Mixed integer programming . 103
B.1 Linear programming . 103
B.2 Mixed integer programming . 104
B.3 Boolean algebra . 104

B.3.1 Boolean inversion . 104
B.3.2 Boolean and . 105
B.3.3 Boolean or . 105

C Possibilistic linear programming . 107
C.1 Introduction . 107
C.2 Fuzzy objective coefficients . 107
C.3 Fuzzy objective, constraint and limit coefficients . 108

Bibliography . 111

References . 111

Index . 115

1

Introduction

Worldwide, the demand for portable, hand-held devices is increasing strongly. More and more
cellphones, personal digital assistants (PDAs), MP3 players and Game Boys are bought. At the
same time, there is an increase in the number of different tasks such devices are expected to be
capable of doing, ranging from image processing to data communications. Thus, an overall trend is
visible towards ever smaller devices integrating ever more functions. Furthermore, most processing
tasks tend to be data-centric, i.e., most computational effort is put in processing data streams. As
such, the operating cores can be seen as data stream processors.

The tendency of cramming more functionality in smaller devices is enabled by the continuing
growing capabilities of semi-conductor technology. Ever smaller devices can operate on ever higher
frequencies, at lower operating supply voltages. Unfortunately, the advances in semi-conductor
technology do not solve all of our problems, because we do not want to do the same with improved
devices; we want to do more with less. Therefore, the tools used to design and create the chips
have to be improved, so that the increasing design gap between ideas and silicon realizations can
be bridged.

The call for portable devices, especially in telecommunication applications, imposes increasingly
strict requirements on, for instance, the dimensions and the energy consumption of the apparatus.
Ideally, your cellphone should be able to operate for months on a single lightweight battery. Unfor-
tunately, the energy storage capacity of batteries is only being improved slowly [58, 67]. Therefore,
already at the design stage, care must be taken to reduce the energy consumption of the devices as
much as possible, but this should not affect the performance of the device or the required silicon
area. A designer must find a balance between these competing design objectives.

In this book, a high-level design method is presented that aids the designer in finding that
balance. Furthermore, design automation tools are implemented to test and verify this method
for the design of an OFDM (orthogonal frequency-division multiplexing) transceiver. This chapter
introduces the ideas and concepts underlying the method and tools.

1.1 High-level system design

As device sizes shrink, the complexity of a chip increases. To describe the complex designs, design-
ers have to make use of languages at higher levels of abstraction in order to meet time-to-market
deadlines. Current hardware description languages (HDLs) such as VHDL (very high speed inte-
grated circuit hardware description language) and Verilog are not equipped to handle these levels
of abstraction. As a result, designers resort to general programming languages to start with the
functional exploration of their designs.

High-level exploration of the design space is crucial when one must design an embedded
system with competing objectives while limited design time is available. Significant changes to the
functionality or the architecture at lower levels are extremely expensive and should be avoided in all

2 1 Introduction

cases. Furthermore, choices made at a high level tend to have a huge impact on the performance and
costs of the final design. For example, given an ultra low-power multiplier, a change in algorithm
that doubles or triples the number of multiplications still causes a large increase in the power
consumption. In figure 1.1, the trade-offs between abstraction level, the cost of changes, the impact
of design decisions and the available information is depicted in a so-called abstraction pyramid,
originally introduced in [35]. A similar representation of the “reachability” can be found in [13].

expensive

cheap

back-of-the-envelope

mathematical

executable

cycle-accurate

synthesizable

idea

co
st

of
ch

an
ge

s

low

high
design space

low

high

le
ve

l
of

ab
st

ra
ct

io
n

d
es

ig
n

im
p
ac

t

av
ai

la
b
le

in
fo

rm
at

io
n

Figure 1.1. The abstraction pyramid represents the trade-offs between the abstraction level, the cost of
changes, the impact of design decisions and available information.

Because of their popularity as general-purpose programming languages, and the corresponding
abundance of libraries and tools, C and C++ are commonly used to construct an executable spec-
ification of the functional part of the design. The desired functionality is described by a set of
functions that together implement the algorithm. Functions are expressed purely sequentially and
an explicit notion of time is lacking. Hence, timing can only be expressed as the order in which the
functions are called.

However, the high abstraction level of these programming languages allows for a very terse de-
scription of the algorithm. Moreover, changes to the algorithm are easily incorporated and, because
of the high simulation speeds, quickly verified. These properties make programming languages like
C or C++ the de facto standard for the initial, high-level specification of a complex design, even
though originally these languages were never intended for this purpose.

1.1.1 Hardware–software partitioning

Once the initial specification of the algorithm is fixed, one of the first questions that arises is,
which parts of the algorithm should be implemented in hardware and software in order to find an
implementation that best suits the design’s requirements (see figure 1.2). A key problem is that
at this stage, usually only insufficient or at least inaccurate information to make a proper decision
is available to the designer. Moreover, the partitioning problem is a multi-objective optimization
problem and although methods for multi-objective optimization exist, normally the designer wants
to have a firm control over the decision process. In the end, it is up to the designer to prioritize
the design objectives.

1.1 High-level system design 3

specification
executable

algorithm design

hardware
description description

software

synthesis
placement & routing linking

compilation

?

embedded system

idea

Figure 1.2. Once the algorithm is fixed, the design flow of an embedded system starts with an executable
specification. Subsequently, it is decided which parts to implement in software and which in hardware.

The overwhelming number of options and the pace with which they change, render it impossible
for a human to make a sound decision about today’s complex designs. We simply cannot predict the
consequences of a particular choice accurately. Therefore, a tool to quickly identify the trade-offs
is indispensable in making well-founded partitioning decisions. Such a tool should be able to cope
with the inherent uncertainties due to the high level of design.

In addition to the aforementioned uncertainties, there is another complicating factor: the pre-
cise algorithm or the set of algorithms to be implemented may not even be given yet. Several
implementations and alternatives may be available, out of which the best should be selected and
for which an optimal architecture should be constructed.

In support of the partitioning tool, additional instruments should be available to quickly gen-
erate estimates of cost and performance figures, if not absolute then at least relative numbers. If
all these tools are available, a designer can quickly explore different partitionings and select the
one that best suits his needs. In this book, a solution to the partitioning problem is presented. Its
workings are verified by implementing the solution in a partitioning tool and applying it to a test
case.

The partitioning tool takes as input a series of algorithms specified as data flow graphs (DFGs).
The possible architectures are specified by data processing blocks, such as processing cores and
memories, and data transfer elements such as busses. The optimization problem itself is formulated
as a mathematical programming problem, more precisely, as a mixed integer linear program. In
order to deal with the imprecise nature of the cost and performance figures, the linear program
uses fuzzy instead of crisp numbers to represent the coefficients. The necessary fuzzy solver is
constructed in such a way that it optimizes the most probable outcome, while minimizing the
chances of finding a worse solution and maximizing the chances of a better one.

1.1.2 Hardware specification

After establishing the functional correctness, one has to create a high-level hardware description
of the design for the parts of the design to be implemented in hardware. That is, one must model

4 1 Introduction

the system as concurrently executing processes. Also the notion of time has to be introduced. To
represent the system at this level, one can use a hardware description language.

A hardware description language typically supports different description models for hardware.
These commonly include a register transfer level (RTL) model and a behavioral model.

• Register transfer level: Formally speaking an RTL model describes hardware as state elements
(registers) together with the combinatorial logic connecting them. The resulting description is
cycle accurate, both at the interfaces and internally.
RTL is best suited for a design if the design is best conceived by its structure. The structure is
usually divided into a data path and a a finite state machine (FSM) as controller. Because RTL
specifies a structural view of hardware, algorithms are difficult to express. However, RTL allows
the designer complete control over the architecture, enabling very high-performance designs.

• Behavioral model: A behavioral model describes a design algorithmically. Although the internal
behavior of the design is not described cycle accurate, the input–output behavior is.
Behavioral languages commonly allow for higher levels of abstraction with respect to an RTL
description. Hence, more concise descriptions are possible.

Today, Verilog and VHDL are the most popular HDLs. Numerous tools are available for simulation
and synthesis, either directed to ASICs (application-specific integrated circuit) or FPGAs (field
programmable gate array).

Difficulties arise when one tries to translate the executable specification into a hardware descrip-
tion, because of the differences in representation: sequential versus concurrent. Current solutions
that automatically convert the executable specification to an HDL either extend the language with
specific constructs for hardware description or target a predefined fixed architecture. Examples of
these solutions are Ocapi [73] from IMEC, and A|RT Designer from Adelante Technologies (former
Frontier Design), respectively. Serious drawbacks of these solutions are that the designer either
must learn the specific extensions to standard C or C++, or has to restrict himself to the particular
architecture targeted. Other approaches, such as SA-C [68] and Handel-C [43] use variants of the
C language, thus also forcing the designer to learn a new language.

As a final resort, the conversion can be done manually by rewriting the system model from
scratch. The major drawback is the time-consuming and error-prone nature of this process. Fur-
thermore, discrepancies between the executable specification and the hardware description are
easily introduced. This significantly increases the risk that the final product does not meet its
specifications. In that case, an expensive re-design would be necessary, introducing a delay in the
time-to-market of the product.

Moreover, at this stage it is often still unclear which parts of the design should be implemented
in software and which in hardware. Therefore, the time and effort invested in the conversion should
be kept to a minimum, as some of this work might become obsolete in a later stage.

With the introduction of SystemC as a modeling language, an alternative trajectory has become
possible. Now, the executable specification is translated into SystemC instead of into a conventional
HDL. SystemC offers the same modeling properties as these, but additionally it provides a higher
level of abstraction, effectively offering all features of the high-level programming language C++.
Of course not all constructs are synthesizable, but the translated code offers a good starting point
for further refinement towards synthesis.

1.1.3 Design flow

In accordance with the arguments raised in the previous sections, we come to the design flow
presented in figure 1.3. First, the algorithm to be implemented is described in a high-level pro-
gramming language, in particular in C. Then, a partitioning has to be made, deciding which parts
to implement in hardware and which parts to implement in software. The original C code can
directly be used to describe the software, and additional steps are not needed. In contrast, the C
code describing the functionality of the hardware parts has to be converted into an HDL, either
an RTL or a behavioral description. For both descriptions, we choose to use SystemC.

1.2 Power as design constraint 5

executable
code

linking

object
code

assembly
compilation

program

RTL
code

behavioral
synthesis

logic synthesis

behavioral
code

netlist
gate-level

algorithm

Figure 1.3. Design flow used throughout the book; the dashed arrows denote missing tools in the flow.

It is apparent that a number of steps cannot be done automatically yet. The first is the decision
how to divide the design into hardware and software parts. The second is the automatic generation
of the hardware descriptions, either using a structural (RTL) or a behavioral representation. The
focus of this book is on partial automation of these steps, in order to quickly guide a designer
towards a feasible solution that meets the requirements.

To test and verify the ideas and the design flow presented thus far, several design tools have
been written to aid a chip designer in making architectural decisions at a high level. Because these
decisions are made at a high level, they have a large impact on the performance and costs of the
final design. In particular, attention is paid to the energy consumption of a device, and therefore,
power is incorporated into the design flow as one of the primary design constraints.

1.2 Power as design constraint

In general, is defined as the conversion rate of energy. In the context of this book, a more restricted
definition is used because it focuses on integrated circuits (ICs). In this restricted context, power
is defined as the rate at which electrical energy is converted into some other form, usually heat
(dissipation). Equivalently, it is defined as the rate at which an IC consumes energy from an
electrical power source.

It is important to note that the terms “power” and “energy” are often used interchangeably,
although they are not the same quantities. To be precise, if at time instance τ0 a system has
energy E(τ0), and at τ1 only E(τ1) is left, then the power P is defined as the amount of energy
∆E = E(τ1) − E(τ1) consumed in that particular time interval ∆t = τ1 − τ0

P =
∆E

∆t
=

E(τ1) − E(τ0)
τ1 − τ0

. (1.1)

Taking the limit ∆t → 0 leads to the definition of the instantaneous power consumption p(t) at
time t

6 1 Introduction

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
10

−1

10
0

10
1

10
2

year

re
la

tiv
e

gr
ow

th

chip frequency
supply voltage
battery power
power dissipation

Figure 1.4. Predicted relative growth (data taken from [3]).

p(t) =
d
dt

E(t), (1.2)

where E(t) is the energy present in the system at time t.
Power has been a constraint in the design of analog systems for a long time, for instance in

medical applications such as pacemakers and hearing aids. However, power was not an issue in
the design of digital systems. Area and timing were by far the most important design constraints.
However, recently power has become a more and more important constraint, for a number of
reasons.

• Rapidly growing complexity: The current trend towards higher operating frequencies, higher
integration densities and higher performance still continues in accordance with Moore’s law
[46].

• Application in mobile devices: The rapidly growing demand for mobile devices, such as per-
sonal digital assistants (PDAs) and cellular phones, increases the need for battery-powered
devices.

• Slowly increasing battery capacity: Unfortunately, progress in battery technology cannot keep
pace with advances in electronics circuits [58, 67], thereby increasing the gap between supply
and demand.

• Reduced lifetimes because of heating: With the higher frequencies and the increasing integra-
tion densities, operating temperatures rise, thereby increasing the failure rate of electronic
devices.1

• Problematic power supply: The required energy must be transported from an external source
(for instance a battery) onto the chip via its pins and bonding pads. Because of the large
currents involved, many pins are required in order to reduce the current per pin.

A number of these effects are depicted in figure 1.4. Plotted are the relative predicted increase of
frequency, supply voltage, battery power and power dissipation. The data for the graphs originate
from [3]. The increase in dissipation is apparent, as is the lagging of the battery power.

Depending on the application, power consumption varies from a marginal design constraint to
the most important one. It can nearly be neglected in low-performance designs connected to a fixed
power grid, while in high-performance battery-powered mobile devices, it is crucial. Furthermore,

1 The failure rate can be estimated using the Arrhenius equation λ = λ0e
− Ea

kT , where λ is the failure rate,
λ0 a reference value, Ea the activation energy of the failure mechanism, and k Boltzmann’s constant
[40]. With an increase of 10◦C at an operating temperature of 70◦C, the failure rate increases by a factor
of 1.8–6.6 for typical values of the activation energy.

1.4 Outline 7

power consumption is a dominant factor for systems which are hard to access, such as satellites,
and medical systems implanted in the human body.

Various aspects of the power consumption of a system have already been investigated. In [57], a
classification is given of current power management solutions for operating systems. A framework
is presented, which allows the implementation of cooperating power management policies at this
level. Additionally, a novel scheduling algorithm is described that finds an energy-efficient setting
for modern microprocessors exploiting voltage scaling. In [44], a classification is given of the sources
of power dissipation in deep submicron CMOS logic. Reduction techniques are presented for each
source of dissipation. Also a new technique to reduce the weak-inversion current is presented. This
book focuses on the effects of design choices on, among others, the energy consumption of a design
and how to make these effects quickly visible to the designer.

1.3 Application

To check whether the tools created operate properly, and whether the design flow is complete, we
need a representative application to serve as a test case. For this, an OFDM transceiver is selected.
The tools and design flow are applied to design the baseband processing of the OFDM modulator
and demodulator used in the Ubiquitous Communications (UbiCom) program [37].

In the UbiCom scenario, a user is equipped with a wearable device consisting of a terminal and
a see-through display. Text, graphics, images and video can be displayed before the user’s eyes,
properly aligned and consistent with the real world, thereby enhancing the user’s view (so-called
augmented reality).

To transfer all this data to and from the user, a high-speed wireless link is necessary using an
OFDM transceiver. The design of the baseband processing of this transceiver is selected as a case
to test the design flow and tools. It is chosen because the modulation and demodulation are data-
dominated operations. Moreover, there are strongly conflicting design constraints, in particular,
the required high processing speed versus the severe restrictions on the energy consumption, and
hence it serves as a challenging test case.

1.4 Outline

This book describes several methods and tools to come to a consistent design flow, starting with a
high-level specification in C. An essential part of this flow is a new tool to automate the hardware–
software partitioning. The tool finds an optimal architecture to implement one or more algorithms.
The resulting architecture is optimal with respect to the chip area, the execution time, or the
energy consumption.

As the successful operation of the partitioning tool depends on the quick availability of accurate
estimates for area, latency and energy consumption, we need an additional tool to convert the
original C code into a hardware description language, in particular into SystemC. The automated
conversion from C to SystemC enables a closed design flow, where tedious manual rewrites are no
longer necessary. Furthermore, the automated conversion eliminates the chances of coding errors.

To test and verify the new design automation tools, we will apply the design tools to implement
an OFDM transceiver. But first, we investigate several techniques to reduce the energy consumption
of the OFDM transceiver beforehand.

In chapter 2, we give an overview of existing estimation techniques for area usage, delay and
energy consumption. Then, both the partitioning tool and the conversion tool are described in
chapter 3. In chapter 4, we describe the novel energy reduction techniques for OFDM, and in
chapter 5, we discuss the implementation of the OFDM transceiver using the presented methods
and tools. Finally, in chapter 6, we conclude.

2

Design trade-offs

2.1 Introduction

To prevent expensive re-designs in the final part of the development of a system/product, the
designer needs to obtain feedback about the performance and costs of the current design as early
as possible in the design flow. Performance feedback is already incorporated in modern design
flows, applying formal analysis, high-level functional simulations and lower-level behavioral and
structural simulations.

Cost feedback, on the other hand, is only available at the final stages of the design flow, e.g.
only when a net list is available. Yet, choices made at a high level may severely constrain the
final product. In particular, in the design of a power-limited system, power estimation early in the
design cycle is crucial.

This chapter gives an overview of cost estimation techniques, more specifically techniques for
determining area, delay and energy consumption. Of course, these three are not independent and
therefore their dependencies, i.e., the trade-offs, are discussed in the final section of this chapter.

2.2 Area estimation

In the early days of VLSI design, the area consumption was the decisive limit on what could
be integrated on a chip. Over the years, as chip area and transistor densities steadily grew, it
remained one of the primary design constraints, because of its impact on processing costs and
yield. Therefore, chips produced in large quantities are designed to be as small as possible.

The total area used for a circuit can be divided into two main categories, namely the area
used by the gates, and the area due to the interconnect. As the interconnect can be positioned on
top of the gates, these two overlap and the total area is not merely their sum. However, not all
interconnects can be placed over the gates, so some additional area is needed to accommodate the
interconnect.

2.2.1 Gate area estimation

Several techniques exist for estimating the area. Depending on the level of detail available, different
estimation methods and techniques are used. These include

• transistor counting,
• complexity-based techniques, and
• Rent’s rule.

Each technique is discussed in more detail in the following sections:

10 2 Design trade-offs

2.2.1.1 Transistor count

If a net list is available, the area of the design can be estimated by counting the number of
transistors used and by multiplying the result with the area of a single transistor. For every library
cell, the number of transistors used is available, thus calculating the total area estimate is simply
a summing operation.

Obviously, the area due to interconnect is not accounted for. Moreover, ideal placement is
assumed, i.e., gaps between cells are not taken into account. Therefore, the transistor count estimate
gives a lower bound of the total area.

If a net list is not available, a synthesis step can be made to obtain a preliminary estimate.
Depending on the complexity of the design this synthesis can be expensive in terms of computation
time. Therefore, for quick iterations when exploring the design space, this approach is not very
attractive.

2.2.1.2 Complexity-based area estimation

With complexity-based estimation techniques, it is assumed that the area needed to implement a
certain Boolean function depends on its area complexity, i.e., it is assumed that the area complexity
of a Boolean function corresponds to the minimum number of gates required to implement the
function and thus can serve as a valid estimate of the gate count. Different measures and approaches
exist to express the area complexity in terms of known properties of the function to be implemented.
Of course, once the area for the combinatorial part of a design has been estimated, the area needed
for the registers and other memory elements should also be accounted for.

In [16], the authors use the number of literals L(f) of a Boolean function f as an area com-
plexity measure. An exponential relation with the function’s entropy is found via the so-called
computational work of a function. The computational work is a measure for the computing power
of a function.

L(f) ∝ W (f) (2.1)

The computational work W (f) of an n-input combinatorial function f with m outputs is given
by [27]

W (f) = 2nH(f). (2.2)

Here, H(f) is the entropy of the function and it is defined as

H(f) =
2m∑

i=1

Pi log2

1
Pi

. (2.3)

where Pi is the probability of the ith output vector yi, given by

Pi =
nyi

2n
(2.4)

with nyi
the number of input vectors that have yi as result.

The authors show that this model is suitable for estimating the area for randomly generated
functions. However, it is argued in [49] that this measure for the area complexity does not hold for
typical VLSI circuits. Therefore, the authors suggest an extension to the model. They argue that
the model should be extended by adding information about the structure of the Boolean space of
the function, to accommodate typical VLSI circuits.

In order to capture the characteristic structure of a Boolean function, the authors introduce
the so-called linear measure L(f) for a single-output Boolean function f . It is defined as

L(f) = Lon(f) + Loff(f). (2.5)

Here, Lon(f) and Loff(f) represent the linear measure of the on-set and off-set of the function f ,
respectively.

2.2 Area estimation 11

The linear measure for the on-set1 of an n-input, single-output Boolean function f is calculated
as the weighted sum of the distinct sizes of the prime implicants in a minimal cover of the on-set
[45] of f

Lon(f) =
N∑

i=1

ci · pi. (2.6)

Here, N is the number of distinct sizes of prime implicants in the cover, {ci} is the ordered set of
distinct sizes of these implicants for i = 1 . . . N such that c1 < c2 < . . . < cN , and pi is the weight
factor on the prime implicants of size ci.

The weighing factors are defined as follows

pi =
{

P (fi) − P (fi−1), if i > 1,
P (fi), if i = 1,

(2.7)

where P (fi) is the probability that fi = 1, assuming an equal probability for all points in the
Boolean space of fi. Sub-function fi of the original function f is defined such that its on-set solely
consists of the prime implicants of the on-set of f with sizes c1, c2, . . . ci. With these definitions we
get

N∑

i=1

pi = P (f). (2.8)

Thus P (fi) is equivalent to the fraction of the Boolean space of f covered by sub-function fi.
In order to estimate the area of a Boolean function, the authors use almost-exponential relations

to translate the linear complexity measure into an area estimate. These relations are derived by
randomly generating Boolean functions for different entropies H(f), calculating the linear measure,
and finally measuring the gate count after synthesis.

In order to apply this technique to multi-output Boolean functions, a multi-output function is
transformed into an equivalent single-output function. The transformation boils down to adding a
multiplexer to the circuit and calculating the linear measure for the result. Finally, the additional
area of the multiplexer is compensated for.

2.2.1.3 Rent’s rule

An empirical method to predict the area of a circuit is based on the observation made by Rent
that the average number of terminals T per module is exponentially dependent on the number of
gates G used by the module [41]

T = t · Gp. (2.9)

Here, the Rent coefficient t is interpreted as the average number of terminals required by a single
gate and p is known as the Rent exponent. This relationship is commonly known as Rent’s rule.

Conversely, the area can be expressed in the number of pins T

G =
(

T

t

) 1
p

. (2.10)

Thus, if the technology and design parameters t and p are known, an estimate of the area can be
made based on the number of pins of the circuit.

If the Rent coefficient and exponent are not known beforehand, they have to be estimated.
As Rent’s rule is an exponential relationship, an error in the prediction of the Rent exponent can
have large impact on quantities derived using Rent’s rule. It is important to note that the Rent
coefficient and exponent cannot be regarded as independent variables [17].

1 The linear measure for the off-set is calculated similarly.

12 2 Design trade-offs

Current methods to determine the Rent coefficient and exponent are based on two approaches.
The first is to use statistical estimates from previous designs that are similar (various estimates
can be found in literature [5]). The second is to estimate the parameters from the properties of
the net list. This again requires a synthesis step. However, because of the self-similarity within the
design, the same properties apply throughout the whole design. Therefore, only small sub-circuits
have to be synthesized to obtain a representative net list.

2.2.2 Interconnect estimation

The estimation of interconnect characteristics is important as it influences the three main design
constraints directly.

• Area: Obviously, the wires have to be placed somewhere on the chip. Especially structures like
busses require a large area.

• Delay: The propagation delay is directly dependent on the length of the wires (see also
section 2.3.1.2).

• Power: The parasitic capacitance and resistance of the wires are dependent on the length of
the wires, thus longer wires require more energy to transport a signal value.

Estimation methods can be divided into a priori and a posteriori methods. As a posteriori
techniques usually require a full placement step, this method is not feasible for quick iterations.
Therefore, in the remainder of this section we will focus on a priori estimation methods only.

An a priori estimation technique for interconnects is the method introduced by Donath [19].
The author recursively applies Rent’s rule to come up with estimates for the average lengths lk and
the expected number of interconnections nk at each level k of the design hierarchy. Using these,
the average length L of the interconnect is calculated:

L =

K−1∑
k=0

nklk

K−1∑
k=0

nk

, (2.11)

where K is the top level in the hierarchy. Now, with

nk = αC4K
(
1 − 4p−1

)
4k(p−1), (2.12)

where C is the total number of gates in the design and p the Rent exponent, and with

lk =
2
9

(
7λ − 1

λ

)
, (2.13)

where λ = 2k, we have all the information we need to calculate the average interconnection length L.
As the width and the minimum separation distance of the wiring is usually known, the interconnect
area can easily be calculated.

In [78], Donath’s model is refined to accommodate additional placement information. It is
assumed that an optimal placement procedure will preferably place gates that are interconnected
close together. This results in a lower estimate of the lengths of the interconnections. Therefore,
Donath’s model can be used as an upper bound estimate, whereas the refined model gives more
accurate predictions.

2.3 Delay estimation

In many systems to be designed, timing is a critical design constraint. This is especially true for
real-time systems, i.e., systems that should generate a response within a specified maximum delay
after applying a stimulus. In the remaining systems, the temporal behavior may not be critical, but

2.3 Delay estimation 13

it still is an important performance measure. Therefore, delay estimation is a crucial aspect of a
design trajectory.

In this section we focus on delay estimation of synchronous circuits. The delay or execution
time of a synchronous circuit can be expressed by two figures of merit, namely the cycle time and
the latency of the circuit. The cycle time is the period of the fastest clock that can be applied
to the circuit, without introducing errors. The latency is the time required to execute operations,
expressed in terms of clock cycles. Herewith the product of cycle time and latency gives the overall
execution delay of the circuit.

Delay estimation techniques can be subdivided into two main categories: delay estimation for
individual resources, and system delay estimation. The methods in the first category try to estimate
the delay of relatively small building blocks. Techniques in the second category use these results
to estimate the delay of a complete system consisting of several of these building blocks.

2.3.1 Resource delay estimation

Various methods exist for estimating the delay of individual resources. They are based on different
principles.

• Measurement: An evident way to obtain a delay estimate is to measure the timing characteristic
of a circuit once it has been built. Though accurate, the method is only applicable for relatively
small designs, because of the time needed to physically build the circuit and because of the
associated costs.

• Calculus: A second method to estimate the delay of a circuit is to calculate the waveforms on
all nodes of the circuit either analytically or numerically. These waveforms are then used to
calculate the timing behavior of the circuit.
The applicability of this method is heavily influenced by the level of detail required. For instance,
in a synchronous circuit, the exact calculation of the minimum cycle time is more difficult than
the calculation of the latency of a circuit once the cycle time is known.

• Simulation: Simulation-based methods are used at different levels of detail for delay estimation.
The underlying models determine the accuracy of the estimation, and range from detailed
transistor models to behavioral gate models.

All three methods assume that the implementation of the resource is already known. Thus, a
net list or a layout specification of the resource must be available. Of course, for measuring the
delay of circuit, the circuit has to be realized already.

Calculus and simulation-based methods require knowledge and subsequent modeling of the
delay mechanisms. In digital synchronous circuits, two sources of delay can be identified: gate
delay, and propagation delay. The former is the time it takes a gate to switch from one level to
another. The latter is the time needed to transport a signal over a certain distance on a chip. Each
of these is discussed in more detail in the following paragraphs.

2.3.1.1 Gate delay

As CMOS FETs have a limited current driving capability, charging or discharging of the load
capacitance of a gate causes some delay larger than zero. In this section, a lower bound for this
delay is presented.

We consider a charged load capacitance which is discharged by a conducting NMOS transistor
(see figure 2.1). The amount of electrical charge Q∆ that has accumulated on the capacitor equals

Q∆ = CL · V∆, (2.14)

where CL is the load capacitance and V∆ is the voltage swing.
The total charge transported through the transistor is given by the integral of the transistor

current in(t). If the capacitor is to be fully discharged, this value should be equal to the accumulated
charge Q∆

14 2 Design trade-offs

in(t)

CL

Q∆

Vss

Figure 2.1. Discharging a load capacitance through an NMOS transistor.

Q∆ =
∫ τ1

τ0

in(t) dt. (2.15)

To calculate a lower bound on the delay of the gate, we assume that the transistor conducts
the maximum current given by the saturation current IDsat. Then substituting IDsat for in(t) in
equation 2.15 gives

Q∆ =
∫ τ1

τ0

IDsat dt = (τ1 − τ0) · IDsat. (2.16)

Substitution of equation 2.14 gives the lower bound of the delay τ∆ = τ1 − τ0

τ∆ =
CL · V∆

IDsat

. (2.17)

To further explore the delay bound, we need an expression to calculate the saturation current.
A widely used transistor model is the long-channel approximation. In this model, the saturation
current has a quadratic relation with the gate voltage.

However, the long-channel approximation fails to accurately model recent short-channel FETs,
primarily because it does not incorporate carrier velocity saturation effects. To overcome the short-
comings of this model, an alpha-power law model has been developed [72], which models the velocity
saturation effects by a velocity saturation index α. The value of the index varies from 2 for long-
channel transistors to ultimately 1 (linear relation) when the speed of the carriers is always at
saturation speed.

In the alpha-power law model, the saturation current has the following relation with the gate
voltage VG

IDsat = β (VG − VT)α
, (2.18)

where VT is the threshold voltage of the transistor and β a transistor-dependent parameter.
Substitution of equation 2.18 in equation 2.17 gives

τ∆ =
CL · V∆

β (VG − VT)α ≈ CL

β · γαVdd
α−1 . (2.19)

Here we used V∆ ≈ Vdd and VG − VT ≈ γVdd. Thus the gate delay is inversely proportional with
the supply voltage

τ∆ ∝ 1
Vdd

α−1 . (2.20)

Apparently the gate delay can be lowered by increasing the supply voltage, i.e., by increasing the
driving power. However, this has a serious impact on the power consumption of a circuit (see
section 2.4.3.1).

2.3.1.2 Propagation delay

With ever decreasing feature sizes and ever higher switching speeds, the propagation delay be-
comes more and more important. To model an interconnect, resistance–capacitance (RC) trees are

2.3 Delay estimation 15

commonly used. A popular and widely used RC delay metric is the Elmore delay [21] because of
its simple closed-form expression. However, the Elmore delay metric is derived for point-to-point
connections, and lacks consistent accuracy for RC trees, especially at the near end, because it
ignores resistive shielding.

It has been shown that the Elmore delay corresponds to the first moment of the impulse response
of an RC tree [71]. A natural step is to include higher-order moments to increase the accuracy. A
simple and accurate metric is the so-called D2M metric [4]. It is an empirical metric based on the
first two moments of the impulse response of the RC tree.

Given an RC tree with nodes {v0, . . . , vN}, where v0 is the source of the tree, let Ci be the
capacitance at node vi for 0 < i ≤ N . If p(vi) is the predecessor of node vi then Ri is defined as
the resistance between nodes p(vi) and vi. Now define Rki as the total resistance of the portion of
the path from v0 to vi that overlaps with the path from v0 to vk.

For j ≥ 1, the jth moment mi
j of the impulse response for node vi is recursively expressed as

mi
j = −

N∑

k=1

RkiCkmk
j−1. (2.21)

For j = 0 we have mi
0 = 1 for all nodes.

Now, the D2M delay metric is defined as

DD2M =
m1

2

√
m2

ln 2. (2.22)

Here, mj denotes the jth moment for a generic node.

2.3.2 System level delay estimation

As soon as the cycle time and latencies of the resources have been estimated, an estimate can be
made of the delay of a system composed of those resources. In most cases, the execution order of
the resources is not yet known and therefore a schedule has to be made.

Apart from the resource characteristics, the following aspects of the system should be taken
into account while defining a schedule.

• Data storage: In synchronous circuits, data should be stored in some form of memory when it
has to go from one functional resource to another.

• Wiring: To transport data from one resource to another, wires are needed. Naturally these
cause some delay.

• Steering logic: To properly guide the data from one resource to another some steering logic is
needed. Usually it consists of some form of multiplexers.

• Control unit: In order to control the resources and the data transports, one needs a control
unit. Depending on the type of circuit (data or control dominated) this unit may significantly
contribute to the total delay of the system.

In this book, we consider data-dominated systems, i.e., we assume that the control part of the
system can be neglected with respect to the data part.

Once the schedule is known, the latency of the circuit is known. Additionally, if the cycle time
is known, an estimate is available for the total delay of a system. Of course different scheduling
strategies evoke different delays.

The scheduling problem can be formulated as follows. Given a set of tasks and resources, we have
to find an ordering of tasks and assignment to resources while satisfying given constraints. Different
constraints can be applied separately or simultaneously. Constraints can be anything ranging from
minimizing total latency, restricting the number of resources, to hard deadlines for certain tasks.
Depending on the constraints, different scheduling strategies are viable. Three scheduling strategies
are covered in more detail in the next sections.

16 2 Design trade-offs

2.3.2.1 Unconstrained scheduling

In unconstrained scheduling we want to find the minimum latency schedule. There are no con-
straints, neither on the number of resources nor on time limits to be met. Unconstrained minimum
latency scheduling can be solved in polynomial time by applying the ASAP (as soon as possible)
scheduling algorithm.

2.3.2.2 Time-constrained scheduling

In time-constrained scheduling, only time constraints are set. The number of resources is not
limited. Time-constrained scheduling comes in two flavors: latency-constrained scheduling and
scheduling under timing constraints. Also a combination of the two is possible.

In latency-constrained scheduling, a global maximum latency constraint is specified. This
scheduling problem can be solved by running the ASAP algorithm and by verifying that its solution
meets the latency constraint.

When scheduling under timing constraints, one can specify additional constraints for the in-
dividual resources. These timing constraints can be either absolute or relative. Scheduling under
absolute timing constraints can be solved using the Bellman–Ford algorithm.

2.3.2.3 Resource-constrained scheduling

Resource-constrained scheduling arises from resource-limited circuits, typically incurred by con-
straints on the total chip area. The number of resources necessary to implement a circuit largely
determines the area used by the circuit. Therefore, resource-constrained scheduling can be used to
find latency versus area trade-offs.

Resource-constrained scheduling is intractable. However, several exact algorithms and heuristics
exist to come up with a, possibly approximate, solution in reasonable time. These include integer
linear programming algorithms, list scheduling and force directed scheduling.

2.4 Power estimation

In order to properly design for low power, one needs feedback in the form of power estimation
techniques. Several power estimation techniques exist for VLSI and can be applied at different
levels in the design flow. The following criteria should be taken into account when comparing
estimation techniques.

• Efficiency: The efficiency of a power estimator indicates whether the estimator can deal with
large circuits in reasonable time. Especially at the beginning of the design of a system, feedback
must be provided quickly, to aid early exploration of the design space.

• Accuracy: The accuracy of a power estimator is determined by the difference between the esti-
mated and the actual (after implementation) power usage. If absolute accuracy is not required,
the estimator should at least properly estimate the relative power consumption of design alter-
natives.

• Uncertainty: Especially in an early stage of the design trajectory, not everything is yet known
about the design and its implementation. Therefore, a power estimator should be able to cope
with these uncertainties and unknowns.

Together these three criteria determine the effectiveness of a power estimator in a particular stage
of the design trajectory.

A number of approaches is available to estimate the power consumption of a design [15, 39,
49, 64].

2.4 Power estimation 17

• Measurement: An obvious method to estimate the power usage of a circuit is to build it and
to measure the current drawn from the power supply. However, this technique is not applicable
for other designs than very small ones, as building larger designs rapidly becomes too time
consuming and too expensive.

• Calculus: A straightforward way to estimate the power dissipation of a circuit is to calculate all
currents and voltages of dissipating elements, either analytically or numerically. The product of
these gives the instantaneous power of all these elements. Finally, summing the intermediates
gives the power consumption of the whole circuit.
Calculating the exact power consumption is only feasible for relatively small circuits. For larger
circuits it is extremely complex, and for some circuits even not possible to find analytical ex-
pressions of the currents and voltages and numerical calculation is usually too time consuming.

• Probabilistic methods: If the probabilities of the input signals of a network are known, the prob-
abilities of all signals on all nodes of the network can be calculated. Using these probabilities,
activity levels can be estimated and based on these the power usage of the network can be
estimated with a charged capacitance model [70].
A drawback of this method is that the inputs must be independent. If they are not, calculating
the signal probabilities becomes very complex.

• Statistical methods: Another approach similar to the probabilistic methods is to apply a large
number of random inputs to the circuit and to statistically find the activities of the nodes.
Again a switched capacitance model can be used to estimate the power usage of the circuit.

• Simulation-based methods: Finally, a large category of power estimators is based on simulation.
These simulate a design and use some power model for its components to estimate the power
consumption. Simulation techniques can be applied at various levels; they range from methods
using detailed transistor models to techniques estimating the power usage of large sub-systems
such as full-blown Fourier transforms.

Except for the technique of direct measurement of the power consumption, all techniques rely
on models of the power dissipation in an IC. To get a better understanding of power dissipation in
CMOS circuits, we take a look at its origins. Power dissipation in CMOS ICs can be divided into
two main categories [62]: static power dissipation and dynamic power dissipation. Both categories
will be discussed shortly.

Moreover, several of these methods are based on estimating the activity of the internal signal
nodes of the network. Therefore activity-based power estimation will be discussed in more detail
in section 2.4.3.

2.4.1 Static power dissipation

Assuming ideal transistors, a CMOS circuit does not dissipate any power when it is not switching.
However, this is not a realistic assumption: a certain amount of power is always lost due to a
number of mechanisms such as leakage currents and substrate injection currents. These currents
cause a static power dissipation component in CMOS circuits.

Static power dissipation can be minimized by choosing a proper technology. Once the designer
has chosen one, there is little else he can do to influence this type of power dissipation. Therefore,
we will focus on dynamic power dissipation.

2.4.2 Dynamic power dissipation

For CMOS circuits, the dynamic power dissipation can be subdivided into two types.

• Short-circuit current: During a switching transient, for a short time, both the NMOS pull-down
network and the PMOS pull-up network of the gate will conduct simultaneously. During this
time a short circuit is formed between the voltage supply and ground, resulting in a power loss.
This loss can be minimized by carefully designing the devices and the gates.

18 2 Design trade-offs

• Capacitance charging: Every time when switching occurs, parasitic capacitances are either
charged or discharged. The discharging process does not draw any current from the power
supply. However, for the charging of the capacitors, energy is needed, which is drawn from
the power supply. Hence, power is dissipated when capacitances are charged. The amount of
dissipated power depends on the size of the parasitic capacitances and the voltage swing.

Capacitance charging is the dominating factor in power dissipation in CMOS circuits. Fur-
thermore, at the high level of design we are concerned with, we have little influence (except from
choosing a proper technology) on the short-circuit currents of individual transistors. Therefore, in
the remaining parts of this section, we will focus on power dissipation due to capacitance charging.

2.4.3 Activity-based power estimation

Activity-based power estimation is founded on the assumption that dynamic power dissipation is
the dominating factor in the total power dissipation of a circuit. Therefore, it estimates the amount
of capacitance being charged every time a node in the network switches. The energy needed to
charge these capacitances gives an estimate of the dissipation in the circuit.

2.4.3.1 Capacitance charging

The amount of capacitance charged during a transition must be translated into a power figure.
Therefore, we calculate the energy dissipation due to the charging of capacitances in complementary
MOS gates.

NMOS
pull-down

PMOS
pull-up

+
vr(t)
−

+
vc(t)
−

Vss

CL

i(t)

Vdd

inputs

Figure 2.2. Capacitance (dis)charging in CMOS gates.

The current through the capacitive load ic(t) of a CMOS gate is given by (see figure 2.2)

i(t) = CL
dvc(t)

dt
, (2.23)

where vc(t) is the voltage over the load capacitor and CL the load capacitance.2

Switching from a low level at time τ0 to a high level at τ1 results in charging the load capacitance
with energy EC

EC =
∫ τ1

τ0

i(t)vc(t)dt. (2.24)

2 The load capacitance CL is assumed to be independent of the load voltage vc(t).

2.4 Power estimation 19

Then substitution of equation 2.23 gives

EC = CL

∫ τ1

τ0

dvc(t)
dt

vc(t)dt

=
1
2
CL

(
vc(τ1)2 − vc(τ0)2

)
.

(2.25)

The energy stored in the load capacitance is lost at the consecutive discharging (switching from
high to low) of the gate.

In addition to the energy used to charge the capacitive load, the PMOS circuit dissipates energy
ER in the form of heat

ER =
∫ τ1

τ0

i(t)vr(t)dt,

where vr(t) is the voltage drop over the PMOS circuit. Substituting equation 2.23 and using
vr(t) = Vdd − vc(t) leads to

ER =
∫ τ1

τ0

i(t) (Vdd − vc(t)) dt

= CLVdd (vc(τ1) − vc(τ0)) −
1
2
CL

(
vc(τ1)2 − vc(τ0)2

)
.

(2.26)

Using equations 2.25 and 2.26, we obtain the total energy E lost during a low to high transition,
given by

E = EC + ER = CLVddV∆, (2.27)

where the voltage swing V∆ of the gate is given by

V∆ = vc(τ1) − vc(τ0). (2.28)

Assuming the voltage swing approximately equals the supply voltage, V∆ ≈ Vdd, leads to

E ≈ CLVdd
2. (2.29)

It is important to note that in this approximation the dissipated energy only depends on the
capacitive load and the supply voltage. Gate-specific and transistor-specific parameters, such as
the channel width or length of a FET do not influence the energy dissipation.

If we use the exact equation 2.27 instead, gate and device parameters do influence the energy
dissipation as they determine the voltage swing V∆ of the gate.

2.4.3.2 Load capacitance

To estimate the load capacitance CL of a gate, we use the following model. If an output of a gate
switches from a low to a high level, several capacitances have to be charged, namely:

• The output capacitance of the gate
• The input capacitances of the connected gates
• The wire capacitances of the interconnect

An example is shown in figure 2.3.
The total capacitance CL charged by the gate is given by

CL = CO
out + Cwire + Cin, (2.30)

where CO
out is the output capacitance of the driving gate, Cwire the capacitance due to the inter-

connect and Cin the total input capacitance of the gates being driven.

20 2 Design trade-offs

driving gate

CI1
in

CI1
inCI1

wire

CI1
wire

CO
out CO

wire

driven gates

Figure 2.3. Example of the switched capacitance model.

The interconnect capacitance is modeled by an output wire capacitance CO
wire and several input

wire capacitances CIi

wire. The total wire capacitance is given by

Cwire = CO
wire +

N∑

i=1

CIi

wire. (2.31)

The input capacitance of the gates being driven is given by the sum of the input capacitances of
every gate CIi

in . Then the total input capacitance is

Cin =
N∑

i=1

CIi

in . (2.32)

Substituting equations 2.31 and 2.32 into equation 2.30 leads to

CL = CO
out + CO

wire +
N∑

i=1

(
CIi

wire + CIi

in

)
. (2.33)

Here the total switched capacitance is clearly divided into capacitances related to either the driving
or the driven side. Therefore, the total switched capacitance of a circuit can be calculated by
summing the switched input, output and wire capacitances per gate.

2.4.3.3 Circuit level power estimation

The total energy dissipated in a large integrated circuit is calculated using

E =
N∑

i=1

aiCLiVdd
2 (2.34)

where N is the number of nodes in the circuit, ai the number of times the ith node switches from
a low to a high level, and CLi is the load capacitance of node i.

The load capacitance is approximated by the average load capacitance given by

CLi ≈ CL =
C

N
(2.35)

where C represents the total capacitance. Substituting equation 2.35 in equation 2.34 gives

E ≈ 1
N

N∑

i=1

aiCVdd
2 = αCVdd

2. (2.36)

2.5 Area, delay, power trade-offs 21

Here α is the average switching activity of the circuit

α =
1
N

N∑

i=1

ai. (2.37)

It should be noted that equation 2.36 is a rough estimate of the total energy used by the circuit,
based on global averages.

2.4.4 System level power estimation

A major obstacle in estimating the energy or power consumption at a high level is that in general,
detailed structural information of the design is still lacking. This kind of information is usually
only available after scheduling, and the final net list only after a full synthesis step. Although they
are more accurate, it takes too much time to compute these estimates so they cannot be used for
a quick estimate in an iterative process.

If however, a design is constructed using fixed sub-circuits, the time needed to estimate the
cost figures of a sub-circuit once may be acceptable with respect to the overall design time. If the
sub-circuits have been used in a previous design, these numbers might even be available beforehand.

Nevertheless, if only the functional description is available, simulation is currently the most
obvious way to quickly estimate the power consumption of a design. It typically involves estimating
the average activity α and the capacitive load CL of the circuit.

2.5 Area, delay, power trade-offs

Obviously, the area, delay and power of a circuit are strongly interdependent. As a result, design
constraints are often in conflict and trade-offs have to be made. Of course, trade-offs can be
made between every combination of two or more constraints. This results in four possible trade-off
combinations:

• area – delay,
• delay – power,
• power – area, and
• area – delay – power.

The third option, power versus area, is usually considered the least interesting and also mostly
covered in the last combination. Therefore, only the other three are discussed in the next sections.

2.5.1 Area versus delay

For many years area and delay were the primary cost and performance measures of a design. With
the recent rise of power usage as an important design issue, the focus has moved a little. However,
trade-offs between area and delay are still of prime importance in most designs.

This section starts with a discussion on circuit techniques. Here, a circuit is assumed to be given
and techniques are discussed to exchange area for delay and vice versa. This pragmatic approach
leads to the more fundamental question of what these techniques can achieve theoretically. Thus,
in the remainder of this section some theoretical bounds on area and time (delay), the so-called
AT bounds, are discussed.

2.5.1.1 Circuit techniques

Circuit techniques are used to modify the area and delay of a given circuit, without changing the
circuit behavior. Two alternatives are discussed: re-timing and pipelining.

22 2 Design trade-offs

Re-timing

A synchronous network can be modified by shifting, adding or deleting registers. This process is
called re-timing. The logical behavior of the circuit does not change during or after re-timing.

Re-timing can be applied to achieve different optimization goals.

• Cycle time minimization: In cycle time minimization, the delay of the longest path (not inter-
rupted by registers) in the circuit is reduced. This is done by shifting the registers such that the
longest path is shortened or replaced by another path, hereby reducing the path delay. Thus
after re-timing it is possible to reduce the cycle time to match the newly found longest path
delay.

• Area minimization: As adding or removing registers respectively increases or decreases the area
of the circuit, re-timing can also be used to minimize the area.

Obviously, cycle time and area minimization are not independent. Thus, joint optimization requires
another approach. Besides re-timing, combined area and delay optimization requires combinatorial
optimization. In this scheme, combinatorial optimization is used to remove combinatorial bottle-
necks in the circuit. Afterwards re-timing is applied to meet the cycle time requirements.

Pipelining

Pipelining is a technique used to increase the throughput of a circuit. Throughput is defined as the
number of data samples processed per clock cycle. Strictly speaking, pipelining does not reduce
the delay of a circuit. However, given an increased throughput after pipelining, the cycle time of
the circuit can be lowered to get the same overall processing rate (data samples per time unit).

Of course, pipelining is not for free and usually increases the area of the circuit because of the
extra registers and control logic needed.

2.5.1.2 Area-time (AT) bounds

Given a certain implementation of an algorithm, the area and the execution delay are known.
When another implementation is used with a different area and delay, the question arises how the
area and delay of the first implementation relate to the second and vice versa.

Lower bound arguments for three different relations are summarized in [82]. These are based
on three different observations regarding the information processing capabilities of a circuit with
a certain area A and a certain execution delay T .

• Memory limited: A circuit can only remember a limited number of bits from one time step to
the next. This number of bits is proportional to the area. Therefore,

A = constant. (2.38)

Another interpretation of this rule is that the area of the registers in the data path of a circuit
does not depend on the delay of the circuit.

• IO limited: A circuit can only process and generate a limited number of inputs and outputs.
This number is proportional to the product of the area and the delay. Thus,

AT = constant. (2.39)

For instance to read n-input ports, one needs n-input terminals for a single time unit, or only
one input port for n time units.

• Information exchange limited: The amount of information that can flow from one part of the
area to the other in a single time unit is limited to the square root of the area. Thus, the total
information flow is limited to the product of the square root of the area and the delay. Hence,

AT2 = constant. (2.40)

2.5 Area, delay, power trade-offs 23

An equivalent interpretation is that the number of interconnections (wires) is limited to the
square root of the area (i.e., the largest possible value for the shortest side of a rectangular
area).

It is assumed that the circuits considered contain a large number of operations. Furthermore it is
assumed that numerous alternative implementations can be found.

In [56], these bounds were experimentally verified. It appeared that the first two bounds can
be used as good approximations. The third, however, was not validated. Still, it was noted that
almost all experiments showed the following relationship

ATr = constant, (2.41)

where r varied between 1.2 and 1.5.

2.5.2 Delay versus power

The average power used by the circuit is defined by

P =
E

T
, (2.42)

where E is the total energy consumed by a circuit in T time. The total energy can be approximated
by (see equation 2.36)

E = αCVdd
2, (2.43)

where α is a measure of the the average switching activity of the circuit, Cav the average total
switched capacitance, and Vdd the supply voltage. This expression is similar to equation 2.29, where
the load capacitance CL is replaced by the total switched capacitance C.

Substitution of equation 2.43 in equation 2.42 gives

P = α
CVdd

2

T
. (2.44)

This expression clearly shows the dependence between the power usage, the supply voltage and
the execution delay of the circuit.

Once a circuit is implemented, its power can be reduced by either increasing the execution delay
or by decreasing the supply voltage. These methods are known as frequency and voltage scaling.

2.5.2.1 Frequency scaling

Obviously, the power can be reduced by increasing the execution delay T . This corresponds in a
synchronous circuit to decreasing the frequency f as f = 1

T . Substitution in equation 2.44 leads to
the relation

P ∝ f. (2.45)

Thus, the power linearly depends of the frequency and it can be reduced by decreasing the fre-
quency.

2.5.2.2 Voltage scaling

In frequency scaling, the power reduction is only linear in frequency. At first sight, a quadratic
reduction can be achieved by scaling down the supply voltage of the circuit

P ∝ Vdd
2. (2.46)

24 2 Design trade-offs

However, when we lower the supply voltage, the gate delay increases (see equation 2.19). As a
result, the power is even more reduced3, ultimately resulting in a cubic dependency on the supply
voltage

P ∝ Vdd
3. (2.47)

It should be noted that the voltage cannot be reduced indefinitely, because when the supply
voltage approaches the threshold voltages of the transistors, the robustness of the transistors against
noise is severely lowered and proper circuit behavior is compromised.

2.5.3 Area versus delay versus power

Above, power reduction techniques were discussed. These techniques are used for already imple-
mented circuits and consequently the area is assumed to be fixed. If we release this restriction, the
influence of the area on the capacitance and delay has also to be taken into account.

To relate area to delay, we use the lower bound specified in equation 2.40 in a slightly modified
form

ATr = γ, (2.48)

where r and γ are constants.
For the power usage we have found (see section 2.5.2)

P = α
CVdd

2

T
. (2.49)

Two options emerge; either the supply voltage is kept constant, or it is scaled, thus decreasing
the power and increasing the delay. These alternatives are discussed below.

2.5.3.1 Constant voltage

In order to come up with a solvable set of equations, we have to find an expression for the average
switched capacitance in the circuit. We assume it to linearly depend on the total area of the circuit.
Hence

C = µcA, (2.50)

with µc some constant.
Now combining equations 2.48, 2.49 and 2.50 and solving them gives the area and power as

function of the delay

A =
γ

T r
, P = αµcγ

Vdd
2

T r+1
. (2.51)

In figure 2.4 this solution is plotted for various values of γ. For the sake of clarity, all other
constants are set to unity.

2.5.3.2 Scaled voltage

Using a slightly modified version of equation 2.19, the average delay per gate Tg is given by

Tg =
Cg

βVdd
. (2.52)

Here, Cg is the average load capacitance per gate and β a constant. The total delay of the circuit
is assumed to linearly depend on the gate delay

3 It is assumed that the circuit is running as fast as possible, i.e., the gate delay directly influences the
delay of the circuit. If not, the quadratic dependency remains valid.

2.6 Summary 25

0
10

20
30

40
50

60

0

0.5

1

1.5

2

2.5

3
0

20

40

60

80

100

areadelay

po
w

er

Figure 2.4. Constant voltage area, delay, power trade-off, for various values of γ.

T = cT Tg, (2.53)

where cT is again some constant.
Also it is assumed that the total capacitance is linearly dependent on the product of the average

gate capacitance and the area
Cav = µsCgA, (2.54)

with µs a constant (different from µc).
Combining and solving equations 2.48, 2.49, 2.52, 2.53 and 2.54 gives the delay, area and power

as function of the supply voltage or delay

T =
cT Cg

βVdd
, A =

γ

T r
, P = αµsγ

(
cT

β

)2
Cg

3

T r+3
. (2.55)

In figure 2.5, this solution is plotted for various values of γ. Again, for the sake of clarity, all
other constants are set to unity.

2.6 Summary

In this chapter, we have presented a short overview of techniques to estimate the chip area,
delay and energy consumption of digital circuits. These estimates may serve as cost figures in
the hardware–software partitioning tool presented in the next chapter. Crucial for the exploration
of the design space of an algorithm (or set of algorithms) to be implemented is that the designer can
quickly iterate within the design flow presented in figure 1.3, making changes to, for example, the
original specification of the algorithm. To this end, a means to quickly get cost estimates is essential.

Fortunately, in present-day synthesis tools, area and timing prediction are commonly available.
These predictions should be used whenever possible. Otherwise one would end up characterizing
and modeling the internals of the synthesis tool. This meticulous job should then be repeated every
time a new version of the tool is released, and whenever one switches to a different synthesis tool.
Unfortunately, predicting the energy consumption of a circuit is harder than predicting the area

26 2 Design trade-offs

0
2

4
6

8
10

12

0

0.5

1

1.5

2
0

20

40

60

80

100

areadelay

po
w

er

Figure 2.5. Scaled voltage area, delay, power trade-off, for various values of γ.

and timing, as it strongly depends on the particular characteristics of the processed data. As a
consequence, synthesis tools still lack this feature and therefore, one of the methods discussed in
section 2.4 should be applied.

Another issue discussed in this chapter is the possible trade-off between area, time and energy
consumption. These trade-offs can be used to quickly find a range of costs estimates, given the cost
figures of only a few realizations of a circuit (ultimately only one). Moreover, they give insight in
what can be realistically expected within reasonable time.

As a final remark, we note that it would be interesting to investigate whether or not the entropy-
based area estimation techniques described in section 2.2.1.2 can be extended to accurately estimate
the energy consumption of any given function.

3

Architecting with uncertainties

3.1 Introduction

As argued in section 1.1.3, we need to decide which parts of an algorithm should be implemented
in hardware and which in software. These decisions are governed by competing desires and needs:

• The desire to keep the development costs low; these costs include among others the design time
and the production costs

• The need to meet the required performance, otherwise the resulting chip might become useless
or worthless

• At least in case of battery-operated devices1, the goal to keep the energy consumption low

These can be translated into the following opposing design goals:

• Keep the chip small (the smaller, the better): A chip with a larger area is more expensive to
produce and furthermore has a lower yield.

• Make the chip fast (the faster, the better): Often, the performance of a chip is measured by the
time it takes to execute an algorithm or by a derivative thereof, such as the data rate. If so,
reducing the execution time increases the performance of the chip.

• Consume little energy (the cooler, the better): Obviously, to increase uninterrupted device op-
eration times, the device should use as little energy as possible to accomplish its task.

A partitioning tool should come up with a feasible solution, while clarifying to what extent the
design goals are met. This allows the designer to explore the design space and to make a well-
founded decision.

The basic operation of the partitioning tool is to map an algorithm onto an architecture instance.
From the set of all specified possible architectures to implement the algorithm, it should give the
best instance with respect to given constraints. This approach was originally introduced in [33],
and forms the basis of the work presented in the first part of this chapter.

In figure 3.1, the partitioning process is depicted. The start is an executable specification of
the algorithm. Subsequently, this specification is first translated into a combined control data
flow graph (CDFG), and then into a data flow graph (DFG). To implement the DFG, a set
of architectures is specified, using the components specified in a library. For the DFG, the best
architecture instance is selected, and simultaneously the algorithm is optimally divided into a
hardware and a software part; this division is optimal with respect to one of the design constraints,
which include the maximum allowed chip area, the maximum execution time and the maximum
energy consumption.

1 In case of devices connected to a power grid, high energy consumption might still be unacceptable
because of undesirable side effects, such as reduced lifetime, expensive heat sinks, noisy fans, etc.

28 3 Architecting with uncertainties

architecture
class

library

algorithm

CDFG

DFG

embedded
code

mappingdesign
constraints

architecture
instance

Figure 3.1. Design flow to map an algorithm to an architecture instance.

Once a solution has been found for the partitioning problem a single algorithm, the solution is
extended to support multiple algorithms. Subsequently, a method is introduced to enable the use
of inexact, i.e., fuzzy, numbers in the mathematical formulation, both for the single-algorithm case
and for the multiple-algorithm case.

The second part of this chapter deals with the generation of synthesizable code from the original
specification in C. The generated code is used to quickly come up with cost estimates to feed the
optimization problem. The underlying thought is that without such a tool, the whole optimization
procedure becomes only an exercise in linear programming, and no longer useful, as it cannot rely
on reasonably accurate estimates (even though they are represented by fuzzy numbers).

3.2 Application model

In this book, we consider data-dominated algorithms. Therefore, we model the algorithms with a
DFG. A DFG G = {V,E} is a directed graph where the nodes v ∈ V represent processing and
storage elements and the edges e ∈ E represent data flowing to and from these elements.

The nodes (or vertices) V of the DFG G can be one of two types.

• Processing elements v ∈ Vb: Processing elements or processing blocks are vertices representing
operations performed on the incoming data (incoming edges). The results of the operation are
sent to storage elements (outgoing edges).

• Storage elements v ∈ Vs: Storage elements or (data) symbols are nodes representing pieces of
stored data (variables or constants).

All nodes are either processing elements (blocks) or storage elements (symbols)

V = Vb ∪ Vs (3.1)

and no other types exist.
To construct the DFG from the C description of the algorithm, one needs to take a number of

steps (see figure 3.1).

• Create the combined CDFG: The C-description of the algorithm is used to construct a graph
representing both the control and the data flow of the algorithm.

3.2 Application model 29

/* dummy functions */
int f(int x) { return x; }
int g(int x) { return x; }
int h(int x) { return x; }

/* main algotithm */
void main() {
 /* control variables */
 int i;

 /* data variables */
 int u, v, w, x;

 /* input data */
 x = 1;

 /* static control */
 for (i=0; i<10; i++) {

u = f(x);
v = g(x);

/* dynamic control */
if (u > v)
w = h(v);

else
w = h(u);

 }
}

(a) original C-code

begin

store

end

for-cond

return f

if-cond

hh

if-end

x

g

u v

w

constant-0

(b) extracted CDFG

store

x

f

u

g

v

h

w

h

constant-0

(c) extracted DFG

Figure 3.2. Example of a combined control data flow graph (CDFG) and the extracted data flow
graph (DFG).

• Annotate the combined CDFG: Running the algorithm, profiling information is generated and
used to annotate the combined graph.

• Extract the DFG: The data flow is extracted from the combined CDFG. The control flow is
discarded.

• Annotate the DFG: The sizes of the variables used in the algorithm and other profiling infor-
mation are taken to annotate the DFG.

In the remainder of this section, each of these steps is discussed in more detail.
First, from the C-description of the algorithm, the combined CDFG is constructed. In the

algorithm, both control flow and data flow statements are identified. The control flow represents
the sequential behavior of the program. The data flow represents the flow of data and the operations
performed on that data.

The C-code is parsed and the statements are analyzed. With every statement analyzed, the
graph is extended: functions are mapped to processing elements and variables to storage elements.
An example of a CDFG is depicted in figure 3.2(b) together with the original C-code fragment in
figure 3.2(a).

The newly created CDFG does not contain profiling information yet. Therefore, the original
C-description is compiled and run using a representative input data set. During the execution of
the algorithm, a sequence is generated that contains the names and order of the functions called.
This profiling information is used to annotate the CDFG with:

• The number of times a processing block (function) is executed
• The number of times a storage element (variable) is accessed
• The number of times a flow is activated

These numbers are used during the mapping to calculate the latency and the energy usage of the
algorithm.

To extract the DFG from the CDFG, one simply removes the nodes and edges associated with
control flow from the graph. This results in a graph representing the data flow of the algorithm.
An example of an extracted DFG is depicted in figure 3.2(c).

30 3 Architecting with uncertainties

general purpose
processor cores

dedicated
hardware units

processing
unit

processing
unit

processor
core memory

memory

memories

interfaces

Figure 3.3. Example of an architecture class C = {P, U, M, I}, defined by the available processor cores
P , dedicated hardware units U , memories M and interfaces I.

At this stage the only information missing in the DFG is the sizes of the variables used. The
sizes cannot be extracted automatically yet, therefore, they are manually specified in a list separate
from the algorithm. This list is used to annotate the DFG with the sizes of the variables.

3.3 Architecture class

The algorithm should be mapped to an architecture. As the optimal architecture is not known yet,
a class of architectures is specified, out of which the optimal architecture should be fabricated. An
architecture class C = {P,U,M, I} is defined by its components.

• Processor cores p ∈ P : A processor core is capable of executing code, which implements various
functions (processing elements). Additionally, it acts as the controller of the architecture. Only
one processor core can be used in the final architecture instance.

• Processing units u ∈ U : A processing unit can be either a hardware unit or a software unit. A
hardware unit is an additional specialized piece of hardware connected to the processor core
implementing a specific function. A software unit is a code fragment to be run on the processor
core which implements a certain functionality.

• Memories m ∈ M : A memory is capable of storing the variables and constants (symbols) used
in the algorithm.

• Interfaces i ∈ I: An interface models the connections between the processor core, the additional
hardware units and the memories. The same interface can be used to connect multiple units, thus
modeling busses. Interfaces can be either hardware interfaces or mixed interfaces. A hardware
interface connects a hardware processing unit with a memory. A mixed interface connects a
software processing unit on a processor with a memory.

An example of an architecture class is depicted in figure 3.3.
The building blocks of an architecture class are used to construct the architecture instance (see

figure 3.4) that best suits the algorithm to be implemented. The building blocks are divided into
the subsets listed in table 3.1. This leads to the following relations

∀v∈V Uv = UH

v ∪
⋃

p∈P

USp
v , (3.2)

∀e∈E Ie = IH

e ∪
⋃

p∈P

IMp
e . (3.3)

3.4 Hardware–software partitioning 31

processor
core memory

memoryprocessing
unit

Figure 3.4. Example of an architecture instance.

Table 3.1. Sets of building blocks defining an architecture class

Symbol Description

Uv All available processing units for node (processing element) v
UH

v Available hardware processing units for node v

U
Sp
v Available software processing units on processor p for node v

Mv Available memories for node (storage element) v

Ie All available interfaces for edge (flow) e
IH

e Available hardware interfaces for edge e

I
Mp
e Available mixed interfaces for processor p for edge e

3.4 Hardware–software partitioning

To map the algorithm to an architecture (see figure 3.5), we formulate the mapping as a mixed
integer linear programming problem (MILP) (see appendix B). The variables in this linear pro-
gramming problem (see table 3.2) are binary valued variables which determine whether an imple-
mentation unit, memory or interface is used for a particular node (processing and storage elements)
or edge (data flows). The constraints can be split up in two parts:

• General selection constraints: These constraints guarantee that a valid mapping is found. The
mapping is not optimized in any way.

• Cost constraints: In addition to the general constraints, cost constraints are added in order to
optimize the mapping. The cost constraints can be used as an optimization goal (maximize or
minimize) or as boundary conditions.

These constraints are discussed in more detail in the next sections.

3.4.1 Selection constraints

The general selection constraints ensure that a valid solution is found for the mapping of the
algorithm to an architecture.

3.4.1.1 Unit selection constraints

Every processing block v ∈ Vb has to be implemented with either a hardware unit or a software
unit. Only one implementation unit is selected for each block

∀v∈Vb

∑

u∈Uv

sv
u = 1. (3.4)

32 3 Architecting with uncertainties

v = g(x);
w = f(u, v);

processor
core memory

memoryprocessing
unit

architecture

algorithm

u v

w

f

x

g

Figure 3.5. Example of mapping an algorithm on an architecture. During this mapping the optimal
architecture is selected from the class of architectures.

Table 3.2. Binary valued decision variables (true = 1, false = 0)

Symbol Description

su True if unit u is used
sm True if memory m is used
si True is interface i is used

sv
u True if unit u is used for block v

sv
m True if memory m is used for symbol v
se

i True if interface i is used for flow e

sv
H True if a hardware processing element or memory is used for node v

sv
Sp

True if a software processing element with processor p is used for node v

se
H True if a hardware interface is used for edge e

se
HSp

True if a hardware → software interface with processor p is used for edge e

se
SHp

True if a software → hardware interface with processor p is used for edge e

sp True if processor p is used

3.4.1.2 Memory selection constraints

Every symbol v ∈ Vs has to be assigned to a memory. Only one memory is selected for every
symbol

∀v∈Vs

∑

m∈Mv

sv
m = 1. (3.5)

Furthermore, a memory has a maximum size. Therefore, the combined size of the symbols assigned
to a memory should not exceed the maximum size Sm of the memory

∀m∈M

∑

v∈Vs

Svsv
m ≤ Sm. (3.6)

3.4 Hardware–software partitioning 33

3.4.1.3 Interface selection constraints

All edges e ∈ E in the DFG have to be assigned to an interface. Interfaces represent connections
between processing blocks and storage elements. Therefore, the type of an interface is dependent
on the type of the source and target of the flow (a hardware unit or a software unit). With the
convenience variables

∀v∈V sv
H =

∑

u∈UH
v

sv
u, (3.7)

∀v∈V sv
Sp

=
∑

u∈U
Sp
v

sv
u, (3.8)

the proper type is selected using

∀e∈E se
H = s

vs(e)
H · svt(e)

H , (3.9)

∀e∈E ∀p∈P se
HSp

= s
vs(e)
H · svt(e)

Sp
, (3.10)

∀e∈E ∀p∈P se
SHp

= s
vs(e)
Sp

· svt(e)
H , (3.11)

where vs(e) and vt(e) denote the source and target node of edge e, respectively. The · operator
denotes a Boolean “and”. It can be translated into integer programming constraints as described
in Appendix B.3.

Obviously, only one type of interface is allowed per edge

∀e∈E se
H +

∑

p∈P

(
se

SHp
+ se

HSp

)
= 1. (3.12)

The equal sign ensures that exactly one interface type is selected per edge.
The only thing left is to select an interface once the proper type is known

∀e∈E

∑

i∈IH
e

se
i = se

H , (3.13)

∀e∈E ∀p∈P

∑

i∈I
Mp
e

se
i = se

SHp
+ se

HSp
. (3.14)

Since only one type is selected, only one interface is selected per edge with these constraints.

3.4.1.4 Processor selection constraints

For every processing block implemented in software, the appropriate processor is selected

∀v∈Vb
∀p∈P sp ≥

∑

u∈U
Sp
v

sv
u. (3.15)

This constraint guarantees that the appropriate processor is selected if a processing block is im-
plemented in software on that particular processor.

To ensure that exactly one processor is selected for all blocks, the following constraint is added:
∑

p∈P

sp = 1. (3.16)

Constraints for the selection of a processor for the interfaces are not necessary, because the
interfaces are selected such that they match the source and target implementations.

34 3 Architecting with uncertainties

3.4.2 Cost constraints

In addition to the general constraints, specific cost constraints can be added to express costs, such
as memory size, code size, etc.. If necessary, maximum or minimum values can be specified to limit
these costs.

The main cost objectives implemented are area, latency, energy and the global clock period.
Either one can be selected for direct minimization or maximization. Also the execution time can
be given as an optimization goal, although not directly, as explained in section 3.4.2.5.

For convenience, we introduce the selection variables listed in table 3.3. They determine whether
a unit, memory or interface is used anywhere

∀u∈U su =
∨

v∈Vb

sv
u, (3.17)

∀m∈M sm =
∨

v∈Vs

sv
m, (3.18)

∀i∈I si =
∨

e∈E

se
i , (3.19)

where the
∨

operator refers to a Boolean inclusive “or”. A Boolean “or” can be translated into
integer programming constraints as described in Appendix B.3.

Table 3.3. Convenience variables (true = 1, false = 0)

Symbol Description

su True if unit u is selected
sm True if memory m is selected
si True if interface i is selected

3.4.2.1 Area

The area cost is the amount of chip area that is necessary for the processor core, the additional
hardware units, the memories, plus the connecting interfaces. For every processor, unit, memory
and interface, area estimates are given (see table 3.4).

Table 3.4. Area cost estimates

Symbol Description

Au Area for processing unit u
Ao

m Minimum required area for memory m

Ad
m Additional area per byte for memory m

Ai Area for interface i
Ap Area needed for processor core p

The area costs for the processor core, the hardware units, the memories and interfaces are
given by

3.4 Hardware–software partitioning 35

AP =
∑

p∈P

Apsp, (3.20)

AU =
∑

u∈UH
v

Ausu, (3.21)

AM =
∑

m∈M

Ao
msm +

∑

v∈Vs

Sv

∑

m∈Mv

Ad
msv

m, (3.22)

AI =
∑

i∈IH
e

Aisi +
∑

p∈P

∑

i∈I
Mp
e

Aisi, (3.23)

respectively. From equation 3.22 one can see that the area for the memories is split into two
respective parts: independent and dependent of the size of the symbols Sv stored in the memories.

Because we use the variables su and si in equations 3.21 and 3.23, these equations express the
area cost for shared resources. If the resources are not shared, they have to be duplicated for every
instance. Then, the aforementioned equations should be modified to use sv

u and se
i instead and

iterate over all nodes and edges.
The total area cost is calculated using

AT = AP + AU + AM + AI , (3.24)

where AT is the total chip area needed.

3.4.2.2 Latency

The total latency is expressed by the number of cycles necessary to execute the complete algorithm.
Hence, for every unit, memory and interface, latency estimates are provided (see table 3.5).

Table 3.5. Latency cost estimates (latency is expressed by the number of cycles necessary to complete an
operation)

Symbol Description

Lu Latency of processing unit u
LA

m Latency for accessing data in memory m
LT

m Latency for transferring data to or from memory memory m
Li Latency per byte of data transferred via interface i

The latencies per unit, memory and interface are given by

LU =
∑

v∈Vb

Fv

∑

u∈Uv

Lusv
u, (3.25)

LM =
∑

v∈Vs

∑

m∈Mv

⎛

⎝FvLA
m +

∑

e∈e(v)

FeSeL
T
m

⎞

⎠ sv
m, (3.26)

LI =
∑

e∈E

FeSe

∑

i∈Ie

Lis
e
i , (3.27)

respectively, where e(v) denotes all incoming and outgoing edges of node v. The total latency is
calculated using

LT = LU + LM + LI , (3.28)

where LT is the total number of cycles necessary to complete the algorithm.

36 3 Architecting with uncertainties

3.4.2.3 Energy

The energy cost is the total amount of energy used during execution of the algorithm on the selected
hardware. It includes energy used by the processor core to run the processing blocks implemented
in software and the energy consumed by the hardware units, memories and interfaces. For every
processor, unit, memory and interface, energy estimates are given (see table 3.6).

Table 3.6. Energy cost estimates

Symbol Description

Eu Energy usage of unit u
EA

m Energy usage for accessing data in memory m
ET

m Energy usage for transferring data to or from memory m
Ei Energy usage per byte of data transferred via interface i
Ep Energy usage per cycle for processor p

The energy usage per unit, memory and interface is given by

EU =
∑

v∈Vb

Fv

⎛

⎝
∑

u∈UH
v

Eusv
u +

∑

p∈P

Ep

∑

u∈U
Sp
v

Lusv
u

⎞

⎠ , (3.29)

EM =
∑

v∈Vs

∑

m∈Mv

⎛

⎝FvEA
m +

∑

e∈e(v)

FeSeE
T
m

⎞

⎠ sv
m, (3.30)

EI =
∑

e∈E

FeSe

⎛

⎝
∑

i∈IH
e

Eis
e
i +

∑

p∈P

∑

i∈I
Mp
e

(Ei + EpLi) se
i

⎞

⎠ , (3.31)

respectively. The total energy cost is calculated using

ET = EU + EM + EI , (3.32)

where ET is the total energy used to run the algorithm on the selected architecture.

3.4.2.4 Clock period

Another important optimization objective is the global clock period. It is assumed that in the final
architecture, all blocks are governed by a single clock. For every processor, hardware unit, memory
and interface, the minimum clock period is specified (see table 3.7).

The global clock period C is lower bounded by

∀u∈UH C ≥ Cusu, (3.33)
∀m∈M C ≥ Cmsm, (3.34)
∀i∈IH C ≥ Cisi, (3.35)
∀p∈P C ≥ Cpsp, (3.36)

where UH =
⋃

v∈Vb
UH

v and IH =
⋃

e∈E IH
e denote the available hardware units and hardware inter-

faces, respectively. Software units and mixed interfaces do not impose any additional constraints,
because these execute with the same clock period as the processor core they are executing on or
connected to.

3.4 Hardware–software partitioning 37

Table 3.7. Minimum clock period estimates

Symbol Description

Cu Minimum clock period for unit u
Cm Minimum clock period for memory m
Ci Minimum clock period for interface i
Cp Minimum clock period for processor p

3.4.2.5 Execution time

As the total execution time T is the product of the total latency and the overall clock period
T = LT C, i.e., the product of two variables, it cannot be expressed directly in a linear form
necessary for MILP formulation. Therefore, the following procedure is applied to circumvent this
problem.

An upper bound for the global clock period is obtained using

C ≤
∑

x∈X

Cxsx (3.37)

and
∑

x∈X

sx = 1, (3.38)

where X is the set of clock estimates, Cx the estimated clock period and sx a binary valued variable
indicating whether clock estimate x is selected or not. The latter constraint is introduced to ensure
that only one clock estimate is selected.

Once an estimate is available, the maximum execution time can be translated into a maximum
number of cycles (latency). Thus, the maximum execution time can be guaranteed to be less than
the desired maximum execution time Tmax by means of

LT ≤
∑

x∈X

Tmax

Cx
sx. (3.39)

These linear equations suit the MILP formulation. Obviously, this formulation does not allow the
execution time to be an optimization objective.

To enable execution time optimization, we introduce the local optimization variables λx to
replace the selection variables sx in equation 3.39

LT ≤
∑

x∈X

Tmax

Cx
λx. (3.40)

Now, by minimizing the global optimization variable λ

λ =
∑

x∈X

λx, (3.41)

we minimize the execution time T provided that λx = 0 if sx = 0. Therefore, we add

∀x∈X λx ≤ sx, (3.42)

which ensures a correct optimization.

38 3 Architecting with uncertainties

3.4.3 Mixed integer linear programming formulation

The selection and cost constraints can be reordered and summarized in matrix form as

Asxs ≤ bs (3.43)

and
Acxc ≤ bc. (3.44)

With these definitions we can define several MILP problems, each of which aims at minimizing a
different objective under different constraints

minimize
AT , ET or λ,

subject to [
As 0
0 Ac

] [
xs

xc

]
≤
[
bs

bc

]
,

bounded to
AT ≤ Amax,
ET ≤ Emax,
LT ≤ Lmax,
C ≤ Cmax,
T ≤ Tmax.

(3.45)

In equation 3.45, Amax, Lmax, Emax, Cmax and Tmax are the maximum values for the area,
latency, energy, clock period, and execution time, respectively. These bounds can be updated in
sequential optimization runs, which each change the optimization objective and lower the maximum
allowed costs.

3.5 Extension to multiple algorithms

In the approach presented so far, an optimal architecture instance was selected for a single algo-
rithm. This approach does not suffice for solving more general problems.

• How to implement multiple algorithms using the same hardware: Often, a device has to per-
form different tasks. These tasks should preferably be implemented on the same hardware to
save chip area. Therefore, the partitioning tool should be able to find an optimal mapping for
a set of algorithms to be implemented on the same hardware.

• How to select the best algorithm: In case multiple algorithms are available to implement a sys-
tem, there may not yet be an algorithm of choice. Hence, the partitioning tool should be able
to select the best algorithm (in terms of cost) out of many.
Obviously, the tool does not take into account the performance of the algorithms. It is still up
to the designer to evaluate and compare the relative performance of the algorithms.

To address these problems, we have to modify the partitioning tool in several ways. In the next
sections, the above two problems are first addressed individually and finally a combined solution
is presented.

3.5.1 Multiple algorithm support

The extension of the partitioning tool to support a set of algorithms to be implemented is rela-
tively straightforward. All it requires is replacing the original single DFG by a combined DFG by
compounding the nodes and edges of the DFGs of the individual algorithms in the set.

No other modifications are necessary, since in the original MILP formulation, resource sharing
was already enabled. The resulting architecture instance will be optimal for the combination of
algorithms and not necessarily optimal for a single algorithm.

3.5 Extension to multiple algorithms 39

Table 3.8. Additional sets and variables for the extended MILP formulation

(a) Sets

Symbol Description

G Set of algorithm groups (sets)
A Complete set of algorithms
Ag Set of algorithms in group g

Va Set of nodes representing processing elements or memories in algorithm a
V a

b Set of nodes representing processing elements in algorithm a
V a

s Set of nodes representing data symbols in algorithm a

Ea Set of edges representing data flows in algorithms a

(b) Variables

Symbol Description

sa True if algorithm a is selected
sg True if algorithm group g is selected

3.5.2 Algorithm selection support

In order to support algorithm selection, we modify the original MILP formulation in two ways. First,
the same extension is applied as presented in the previous section to support sets of algorithms.
Second, an algorithm selection variable is introduced and the selection constraints given by 3.4,
3.5 and 3.12 are modified such that they only enable the selection of blocks when the algorithm is
selected (algorithm selection variable is true). To ensure that exactly one algorithm is selected, we
need one extra constraint.

3.5.3 Combined solution

The modifications presented in the previous sections are combined to address the more general case
of selecting the best set of algorithms to be implemented on the same hardware. The additional
sets and variables necessary are listed in table 3.8(a) and 3.8(b), respectively.

First, the DFG G is replaced by a combination of the DFGs of all algorithms

G =

{
⋃

a∈A

Va,
⋃

a∈A

Ea

}
. (3.46)

Second, the selection constraints are modified to support the selection of algorithms

∀a∈A ∀v∈V a
b

∑

u∈Uv

sv
u = sa, (3.47)

∀a∈A ∀v∈V a
s

∑

m∈Mv

sv
m = sa, (3.48)

∀a∈A ∀e∈Ea
se

H +
∑

p∈P

(
se

SHp
+ se

HSp

)
= sa. (3.49)

Third, if a group is selected, all algorithms in that group should be selected as well

∀g∈G

∑

a∈Ag

sa = |Ag| sg, (3.50)

and finally only one group of algorithms should be selected

40 3 Architecting with uncertainties

∑

g∈G

sg = 1. (3.51)

Together, these modifications ensure that the group of algorithms with the lowest costs is selected.
At the same time they determine the optimum architecture instance for the group as a whole.

As the area, energy, latency and clock period costs are all computed solely using selection
variables, only calculation and optimization of the the execution time have to be modified to
support multiple algorithms. Thereto, the λx variables in equations 3.40 and 3.41 are replaced by
λa

x, which yields

LT ≤
∑

a∈A

∑

x∈X

Tmax

Cx
λa

x (3.52)

and

λ =
∑

a∈A

∑

x∈X

λa
x. (3.53)

To ensure that λa
x is annulled, when an algorithm is not selected, λa

x is limited, not only by sx,
but now also by the algorithm selection variable sa

∀a∈A ∀x∈X λa
x ≤ sa, (3.54)

∀a∈A ∀x∈X λa
x ≤ sx. (3.55)

Minimizing λ reduces the combined execution time of a group of algorithms to a minimum.

3.6 Dealing with uncertainty

In the MILP formulation of the partitioning problem presented in previous sections, exact cost
estimates are assumed. These numbers might be available if IP-blocks are reused, but for many
units and memories, the exact numbers will not be available and one has to use estimates for the
area, latency and energy usage per instance. Inherent to the design process is that the higher level
one starts the design process, the more inaccurate the initial estimates will be.

A drawback of the MILP formulation of the partitioning problem is that the optimal solution
will be found on a boundary of the solution space. As a consequence, a small error in an estimate
might result in an infeasible solution that crosses the boundary and thus violates a constraint.

Hence, it would be desirable if the cost estimates could be entered as inexact or non-crisp
numbers, i.e., fuzzy numbers. If we use triangular fuzzy numbers, the resulting fuzzy MILP can
be solved using Zimmermann’s [87] fuzzy programming method with the normalization process
described in [38].

A triangular fuzzy number is an imprecise number with a triangular possibility distribution as
depicted in figure 3.6. A triangular number c̃ is specified by its most possible value cm and its least
possible values cl and cu

c̃ = {cl, cm, cu} , (3.56)

where cl and cu are the lower bound and the upper bound of c̃, respectively and thus cl ≤ cm ≤ cu.
First, the single-objective MILP with fuzzy (triangular) coefficients is translated into a multi-

objective MILP with crisp coefficients, which is subsequently translated into a crisp single-objective
MILP. Finally, a solution is determined using a standard solver for a single-objective MILP with
crisp coefficients. Solving a single fuzzy MILP is equivalent to solving seven crisp MILPs of
approximately the same size. For a detailed description, see Appendix C.

3.7 C to SystemC conversion 41

πc

c
cl cm cu

0

1

Figure 3.6. Fuzzy (imprecise) number c̃ = {cl, cm, cu} with triangular possibility distribution πc.

3.7 C to SystemC conversion

As discussed earlier in section 1.1, the design of an ASIC usually starts with a functional specifi-
cation of the algorithm to be implemented in a high-level programming language like C, C++ or
Matlab, because of the high level of abstraction and the high simulation speeds. However, these
languages are typically purely sequential and lack constructs to express timing.

In order to use this specification to design an ASIC, we have top map it to a hardware description
language (HDL). Current tools to map a specification in C to an HDL such as VHDL or Verilog
either support only a small subset of the programming language or restrict a designer in other

ways, e.g. by targeting a predefined architecture. These difficulties arise because of the previously
mentioned differences in representation between a programming language like C and an HDL:
sequential versus concurrent (see section 1.1.2).

With the growing maturity of SystemC [42] as modeling language, resulting in the approval of
the IEEE 1666-2005 SystemC Standard [29] by the Standards Association of the IEEE in Decem-
ber 2005, followed by its approval by the American National Standards Institute in March 2006,
combined with the availability of SystemC synthesis tools (for instance the CoCentric SystemC
Compiler of Synopsys), another approach has become attractive, namely to create a SystemC model
of the design from the original specification in C or C++. This SystemC model can subsequently
be refined to a final synthesizable description. The approach still suffers from the conversion diffi-
culties mentioned earlier. However, since SystemC is based on C++, the majority of the code can
directly be incorporated in the SystemC model. This greatly simplifies the conversion process.

3.7.1 SystemC language

SystemC was first introduced to the general public in September 1999 with the release of SystemC
v1.0. It consisted of a C++ class library providing the necessary constructs for hardware modeling,
such as modules, ports, processes and events and a simulation kernel. In addition, it included basic
data types such as bits, bit vectors, arbitrary precision integers and fixed-point numbers. At that
time, the functionality of SystemC roughly matched the functionality offered by VHDL or Verilog.

With the subsequent release of SystemC v2.0 in October 2001 the core language was extended
with the abstract notion of communication channels and interfaces. Furthermore, a master–slave
library and a verification library were added. At this stage, the functionality of SystemC clearly
superseded VHDL and Verilog, offering gradual refinement from a high abstract level towards
synthesizable code within a single language.

On December 12, 2005, the IEEE approved the IEEE 1666-2005 standard for SystemC, which
was based on the SystemC v2.1 release. It was followed by the approval of the American National
Standards Institute, 28 March 2006. At the time of this writing, SystemC is supported by various

42 3 Architecting with uncertainties

behavioral
modules

structural
module

memories

Figure 3.7. Example of the targeted SystemC model, consisting of structural and behavioral modules
communicating via dedicated memories.

EDA (electronic design automation) companies for simulation and synthesis purposes, including
Synopsys and Cadence.

3.7.2 Conversion approach

The major difference with the original executable specification is that the system is now modeled
as concurrently executing processes. In SystemC, these processes correspond to SystemC modules.
Each module consists of one or more concurrently executing threads. Of course these modules have
to interface with other modules. Therefore, ports are added to communicate data between modules.
To break the dependency between reading and writing of data between two modules, dedicated
memories are inserted between the modules, acting as buffers. In this way, a module can generate
and output its results without having to wait for the next module to be ready to accept input. An
example of this model is depicted in figure 3.7. Each module has either a structural or a behavioral
description. A structural module is composed of several nested modules.

In essence we fit the sequential C code into a data flow model. However, since generic C does
not necessarily match a data flow model, we impose a number of restrictions on the C code.

• Only static memory allocation is allowed: Dynamic memory allocation (via calls to malloc()
and free()) requires a memory allocation unit and a shared memory [75], which is undesirable.

• Pointers may only be used as references: For the same reason, pointer arithmetic is disallowed.
Pointers may be used as references to variables, however.

• Only local variables are allowed: Global variables require a shared memory. Hence, only vari-
ables with a local scope are allowed.

• Arrays passed via function arguments must have predefined sizes: In order to reserve storage
space within a module, it must be known explicitly what the size of an array passed to a
function via its arguments is.

It must be noted that these restrictions are necessary to enable the conversion step. When we
target synthesizable code, additional restrictions arise, imposed by the synthesis tools used (see
also section 3.7.5.4).

To construct the SystemC model, we need a module hierarchy. For this, we adhere to the hier-
archy of the C code. Good programming practice is to divide the global function to be implemented
into several sub-functions, which in turn may again be divided, and so on. Hence, we exploit this
common practice to decompose the overall algorithm hierarchically. The hierarchy forms a so-
called call graph, a directed graph where the nodes represent the functions, and the edges the
function calls (see figure 3.8).

A function (node in the call graph) has to be mapped to one of three alternatives:

• A structural description for the corresponding SystemC module

3.7 C to SystemC conversion 43

C code

call graph

r
S

v
B

u
B

t
S

s
B

w
F

SystemC model

s t

r

v

u

void

int

r() {

x = s();

t(x);

}

void intt(x) {

u(x);

v(x);

}

void int

int

u(x) {

tmp = w();

}

void intv(x) {

}

int s() {

w();

}

return

int w() {

0;

}

return

Figure 3.8. Example of mapping a call graph (S = structural module, B = behavioral module, F =
supporting function), with the original C code and its corresponding SystemC model.

• A behavioral description for the corresponding SystemC module, or
• A supporting function of a behavioral module.

Furthermore, two mapping rules have to be obeyed:

• Only structural modules can incorporate other modules (either behavioral or structural mod-
ules)

• Only behavioral modules can use supporting functions.

An example of a possible mapping and the corresponding C code and SystemC model are shown
in figure 3.8.

Implicitly, the mapping rules result in an important constraint for functions, which are converted
into either structural or behavioral modules: recursive function calls, either direct or indirect ones,
are not allowed. This requirement ensures that nodes in the call graph corresponding to structural
and behavioral modules are not part of any cycle.

The requirements and restrictions to the C code presented so far are easily met: just follow a
limited set of simple programming rules. The designer does not need to learn any extensions or
annotate the C code in any other way.

The selection of a mapping together with the one-to-one correspondence between functions and
modules give the designer full control over the granularity of the final SystemC model. Selecting
a mapping is not done automatically, but left to the designer. To our opinion the mapping is a
design decision that the designer has to take. Furthermore, it is very difficult to make a sensible
decision automatically without prior knowledge of the target.

3.7.3 Behavioral conversion

A behavioral module consists of input and output ports for control and data signals, and methods
specifying at least the functional behavior of the module. In the generated modules, three methods
are defined: input(), output() and exec(). The first two manage the reading and writing of data
from and to the input and output ports, respectively. The third contains the main functionality of
the module.

44 3 Architecting with uncertainties

The function’s body specifies its behavior and can be incorporated directly into the SystemC
module, into the exec() method. To enable the tracing2 of variables, all variable declarations are
stripped from the function’s body and the variables are declared as data members of the SystemC
module. Any pointers are detected and replaced by references.

The remaining problem in constructing a behavioral module involves translating the input
and output arguments of the function to their port equivalents. In the C language, no explicit
mechanisms exist to uniquely identify whether an argument is an input or an output of a function.
However, implicitly some information is available.

• Variables passed by value to the function cannot be modified by the called function and thus
these arguments are always inputs.

• Constant arguments (whether variables are passed by value or by reference) are inputs by
definition.

• Arguments passed by reference (through pointers or array constructs) can serve both as input
and output.

• A non-void return value of the function serves as an output.

Summarizing, the only ambiguity arises when arguments are passed by reference. Several options
exist to remove this ambiguity.

• Interpret these arguments as a combined input and output.
• Annotate the original code (for instance via a dedicated #pragma directive3).
• Parse and analyze the body of the function to see whether arguments are read or written to.
• Make sure that the programmer declares all inputs passed by reference as constant.

The first option introduces unnecessary overhead in many cases. The second is unattractive, because
it is error prone. It might introduce a discrepancy between the executable specification, which does
not use the annotated information, and the generated SystemC model, which does. The third is the
most general, but is difficult to implement. Finally, the fourth does not cause overhead, because
combined input and output ports are no longer possible. It is easy to implement and guarantees
equivalent C and SystemC models. Therefore, the fourth option is chosen to remove the ambiguity.
If the designer erroneously does not declare an input passed by reference as constant, this error is
detected when the generated SystemC model is executed.

3.7.4 Structural conversion

As depicted in figure 3.9, a two-step approach is used to convert a C function into a structural
SystemC module. First, a combined CDFG is derived from the C source. Second, the CDFG is
used to construct a structural module of the function. The CDFG is a directed graph where the
nodes represent either variables or operations. The edges represent either the data or control flow.

To derive the CDFG from a C function, we use the SUIF system [1, 84]. The SUIF tools are
used to parse the source code of the function and to generate the SUIF intermediate representation
(IR) of the program, a tree. Subsequently, a pass is written that traverses the IR tree and generates
the CDFGs of the functions encountered.

Next, the DFG is extracted from the CDFG. The nodes are translated into modules and memo-
ries, the edges to signal connections between them. The modules correspond to the functions called
by the function and the memories to its variables and arguments.

2 SystemC supports the tracing of a data member of a module, i.e., it logs all value changes of that data
member.

3 The #pragma directive is a preprocessing construct like #include, which causes implementation-
dependent behavior if the token sequence following the directive is recognized. Unrecognized pragmas
are ignored.

3.7 C to SystemC conversion 45

g

f

controller

begin

f

end

for-cond

open-scope

g

close-scope

y

z

x

2

void int

int

int int int

void

int

const

return

for

f(in[2],
out[2]) {

out[0] = in[0] + in[1];
out[1] = in[0] - in[1];

}

g(in1, in2) {

in1 + in2;
}

main() {

x[2], y[2], z[2], i;

f(x, y);

(i=0; i<2; i++) {

z[i] = g(y[i], 2);
}

}

C code

SystemC model

CDFG

x y

z

Figure 3.9. Two-step structural conversion approach: C into a control data flow graph (CDFG) and the
CDFG into a SystemC module.

Each module has a controller, which orchestrates the execution of the underlying modules. The
information stored in the CDFG allows for basic scheduling optimizations [45], but these have not
been implemented yet. For now, we use profiling information to construct a valid schedule for the
controller of the module.

3.7.5 Conversion alternatives

The designer is offered a set of features and alternatives to influence the conversion process. For
example, he can choose to alter the timing scheme or to target synthesizable SystemC code. The
conversion alternatives at the designer’s discretion are discussed in the next sections.

3.7.5.1 Timing scheme

The designer has the possibility to select one of two alternative timing schemes.

• Self-timed: In this scheme, modules are allowed to execute as soon as they have gathered enough
data at their data input ports. The modules do not have explicit control ports to trigger the
execution of the module.

• Scheduled: Modules are started explicitly by a controller unit. They have explicit control ports
to trigger their execution.

46 3 Architecting with uncertainties

An advantage of the first scheme is that the central controller can be removed from the structural
modules. However, if this timing scheme is applied, the SystemC module is not guaranteed to have
the same behavior as its corresponding C function. For instance, if a function is originally called
twice using the same inputs, the absence of new data at the input ports of the self-timed module
will cause the second function call to be missed. The second scheme requires explicit control, but
guarantees the same behavior for the SystemC module and its equivalent C function.

3.7.5.2 Pipelining

In normal operation, the generated behavioral modules have a single thread of execution. The
thread calls the input(), exec() and output() methods sequentially.

To increase the throughput of the modules, pipelined modules are supported. These mod-
ules have three concurrently executing threads. Each thread calls one of the input(), exec(), or
output() methods. As a consequence, the methods can be called concurrently. Of course the data
passed between the thread has to be buffered with additional registers.

3.7.5.3 Limited-precision data types

An important step in the refinement of C code to a hardware description is the conversion of stan-
dard data types like integers and doubles into limited-precision data types. To this end, SystemC
supports various limited-precision data types, both integer types and fixed-point types. For each
type the number of bits must be chosen, and for the fixed-point types also the position of the
fractional point.

Optionally, the conversion tool can convert all integer and floating-point variables into their
SystemC equivalents. The exact formats of the numbers must be supplied by the designer. The
formats can be derived using methods based on the analysis or simulation of the data flow model
or they can be derived of the original executable specification [36, 79, 83].

Another possibility is to use an external software tool to convert either the original C code or
the generated SystemC code such that is uses limited-precision data types only. Several packages
are available for this, such as FRIDGE [34] or the commercial package CoCentric Fixed-Point
Designer from Synopsys [80].

3.7.5.4 Synthesis-oriented conversion

So far, we have not considered generating synthesizable SystemC code specifically. In this section,
we concentrate on a particular synthesis tool: CoCentric SystemC Compiler from Synopsys. There-
fore, the considerations regarding synthesizable code presented in this section apply to this synthesis
tool. Similar considerations may arise for tools from other vendors.

The Synopsys synthesis tool requires synchronous modules. Therefore, clocked processes are
applied and a clock input port is added to the modules, introducing time into the model. Conse-
quently, we have to solve a number of timing issues [81]:

• To prevent zero-delay between consecutive port accesses
• To prevent zero-delay loops.

These issues only affect behavioral modules.
The first issue is readily solved by adding a wait() statement4 after each port access, causing

the module to suspend until the next clock cycle after each read or write from or to a port. As ports

4 The SystemC wait() statement causes the module to suspend process execution until an event occurs
on one of the signals the process is sensitive to. In a clocked process, one such signal is the module’s
clock.

3.8 Summary 47

are only accessed in the input() and output() methods, the main functionality in the exec()
method is left unmodified.

To solve the second issue, the main functionality of the module (the exec() method) has to be
modified. In every loop statement, a wait() statement is inserted. (For now, we only support for
and while loop constructs.)

3.8 Summary

In this chapter, we discussed a mathematical programming solution to the hardware–software
partitioning problem. First, a formulation was introduced for mapping a single algorithm to an
optimal architecture. Subsequently, the formulation was extended to support the mapping and
selection of multiple algorithms.

To deal with the uncertainty inherent to high-level design, triangular numbers were introduced
to describe the cost estimates, leading to a fuzzy optimization problem. The optimization method
used optimizes the most probable outcome, while minimizing the chances of finding a worse solution
and maximizing the chances of a better one.

Apart from the solution for the partitioning problem, we described a procedure to quickly
generate a synthesizable description of the original specification in order to get the initial cost
estimates. The description language used is SystemC, as it has a large syntactic resemblance to the
C language, used for the initial specification of the algorithms. Existing approaches to translate C
into VHDL or Verilog did not provide a satisfactory solution.

The methods introduced in this chapter have all been implemented. To test and verify the ideas
we will apply these design tools in chapter 5, to implement an OFDM transceiver. But first, to
get a better understanding for this kind of transceiver, the next chapter discusses multi-carrier
communications in general, and OFDM in particular.

4

Multi-carrier communications

4.1 Introduction

In a multi-path channel, data transmission suffers from frequency-selective fading. At high symbol
rates, this results in severe inter-symbol interference. An approach to overcome this problem is
to divide the available bandwidth into many independent narrow sub-bands and to assign each
sub-band to a so-called subchannel [9]. As a result the symbols are not transmitted serially over a
single channel, but in parallel over the subchannels. This lowers the symbol rate per subchannel,
effectively reducing the inter-symbol interference while maintaining the overall symbol rate. Ad-
ditional measures, such as the use of a cyclic prefix, effectively annul the remaining inter-symbol
interference.

Orthogonal frequency-division multiplexing (OFDM), also known as multi-carrier modulation
(MCM) or discrete multi-tone (DMT), is a popular transmission scheme, in which such a technique
is used. It enables reliable transmission over frequency-selective fading channels. It is adopted
in several international standards such as digital audio broadcasting (DAB) [23], digital video
broadcasting (DVB-T) [66], asymmetric digital subscriber lines (ADSL) [10] and more recently in
the IEEE 802.11a and 802.11g standards [28]. Furthermore, it has been proposed for the universal
mobile telecommunications system (UMTS) [25] standard.

In the first part of this chapter, we will introduce multi-carrier communications and in particular
OFDM, starting with an explanation of the effects encountered in high data rate communications.
Next, multi-carrier modulation is explained, which mitigates these effects, and finally we derive
classical OFDM.

Before optimizing the implementation of a system with respect to area, latency and energy
costs, one should first investigate the possibilities to reduce these costs beforehand. This means
modifying the functionality of the system itself, of course within its specifications.

In multi-carrier systems, such as OFDM, it is possible to assign different energy levels to each
subchannel. This property can be exploited to minimize the total energy necessary to realize a
desired average bit error rate. In this way, the transmission power can be reduced while still
meeting the desired performance.

To reduce the costs even further, we use fixed-point or integer arithmetic instead of floating-
point calculations for the baseband processing. Of course, we aim to use as few bits as possible in
order to keep the area, latency and energy usage as low as possible.

When implementing OFDM systems on integer digital signal processors (DSPs) or on fixed-
point dedicated hardware, one has to decide how many bits to assign for the integer and fractional
part of a fixed-point number. The main design constraint governing this decision is the performance
desired of the resulting quantized OFDM system. Usually the relationship between the number of
integer or fractional bits used and the resulting performance is found using Monte Carlo simula-
tions. This would take a prohibitive amount of time in our approach to architecting. Therefore,
in the second part of this chapter, simple analytical expressions are derived for the performance

50 4 Multi-carrier communications

of uniformly quantized and soft-limited OFDM systems, so that the design space can be quickly
explored, and the minimum number of integer and fractional bits needed to achieve the desired
performance can be determined.

4.2 Multi-path channels

When a radio wave is transmitted from one antenna to another, multiple propagation paths may
exist. A line-of-sight path may or may not be present. Other propagation paths are caused by
various propagation effects.

• Reflection: Reflection occurs when an electromagnetic wave strikes an object which is very
large in comparison with the wavelength of the propagating wave.

• Scattering: Scattering occurs when many small objects (in comparison with the wavelength of
the propagating wave) obstruct the propagation path of the radio wave.

• Diffraction: Diffraction occurs when the radio wave hits a surface with sharp edges. The surface
irregularities cause the wave to be deflected in all directions, and can even cause the wave to
bend around the obstructing object.

As the wavelengths of the radio waves get smaller for higher frequencies, objects with small di-
mensions which did not obstruct the signal for lower frequencies start to interfere with the radio
wave.

4.2.1 Channel impulse response

Each propagation path has its own characteristic propagation delay, amplitude attenuation and
phase rotation. Consequently, the propagation effects of a multi-path channel can be modeled by
its complex low-pass equivalent impulse response h(τ)

h(τ) =
L−1∑

i=0

αiejθiδ(τ − τi). (4.1)

Here, αi, θi and τi are the amplitude attenuation, phase rotation and relative time delay of the ith
propagation path, respectively, and L is the number of propagation paths. Without loss of generality
the L paths are assumed to be ordered according to their path lengths (and thus according to their
delay times).

As a physical channel must have a causal response, all delay times are larger than or equal to
zero. Furthermore, because the absolute arrival times of the waves are not relevant, the delay of
the shortest path is set to zero (τ0 = 0).

4.2.2 Delay spread

The root mean square (RMS) delay spread τRMS of a multi-path channel is defined as the second
central moment of the channel’s normalized delay power spectrum φc(τ) [31]

τRMS =

√∫ ∞

−∞
(τ − τm)2φc(τ)dτ , (4.2)

where τm is the average excess delay time defined by

τm =
∫ ∞

−∞
τ · φc(τ)dτ. (4.3)

The channel’s normalized delay power spectrum is given by

4.2 Multi-path channels 51

φc(τ) =
1
A

L−1∑

i=0

α2
i δ(τ − τi), (4.4)

where α2
i is the power attenuation of the ith propagation path and A is given by

A =
L−1∑

i=0

α2
i , (4.5)

which is the average power response or power gain of the channel.
The multi-path delay spread of a channel, Tm, is defined as the maximum path delay of the

delay power spectrum. If the channel impulse response is known, it is equal to the longest path
delay Tm = τL−1. If the impulse response is not fully known, the multi-path delay spread is often
taken as

Tm ≈ γ · τRMS, (4.6)

where γ is a constant depending on the channel model assumed (usually between 3 and 5).

4.2.3 Inter-symbol interference

As data rates increase, symbol periods decrease (the symbol period is inversely related to the data
rate). At very high data rates or in channels with a large delay spread, the symbol period becomes
smaller than the delay spread. As a result, delayed versions of the transmitted symbols (or echoes)
start to interfere with subsequent symbols. This effect is known as inter-symbol interference and
is illustrated in figure 4.1.

symbol rate

impulse response h(τ)

25×
5×

1× time

Figure 4.1. Multiple echoes cause inter-symbol interference.

Even within a single symbol interval, the echoes can distort the signal. As each echo has its
own amplitude attenuation and phase rotation, the echoes can either behave constructively or
destructively.

Of course, in the presence of multiple propagation paths, there is always inter-symbol interfer-
ence between two consecutive symbols. However, for long symbol periods, this interference is only
a small fraction of the symbol period and the effect is usually negligible. In contrast, for short
symbol periods, the interference may span several symbols and affects the whole symbol; it cannot
be neglected anymore.

52 4 Multi-carrier communications

4.2.4 Frequency-selective fading

In the frequency domain, the inter-symbol interference can be viewed as frequency-selective fading,
that is, the frequency response of the channel changes significantly within the bandwidth of the
transmitted signal. This in contrast with flat fading where the frequency response of the channel
is approximately constant within the bandwidth of the transmitted signal.

Where the symbol period decreases with higher data rates, the symbol bandwidth increases.
Thus at low symbol rates, where the signal has a narrow bandwidth, the signal only experiences flat
fading, but as the bandwidth increases, the signal starts to suffer from frequency-selective fading.
This effect is shown in figure 4.2.

frequency

channel response

signal bandwidth

(a) High data rate: Frequency-selective fading

frequency

channel response

signal bandwidth

(b) Low data rate: Flat fading

Figure 4.2. At high data rates the transmitted signal suffers from frequency-selective fading.

4.3 Principles of multi-carrier modulation

Sequential equalizers are often used to mitigate the inter-symbol interference. However, many
taps are needed when the interference spans many symbols at high data rates. In a time-variant
environment, the equalizer becomes even more complex, because many tap coefficients have to be
estimated quickly.

4.3 Principles of multi-carrier modulation 53

Another method to prevent inter-symbol interference is to enlarge the symbol period until the
echoes of a single symbol do no longer span multiple symbols, i.e., the symbol period must be
much larger than the delay spread of the channel. In the frequency domain, this can be seen as
decreasing the bandwidth of the transmitted symbols until they only suffer from flat fading and no
longer from frequency-selective fading. Further, interference reduction is achieved by using a guard
interval between two consecutive symbols. A guard interval is a short protective period inserted
between two symbols to prevent that echoes from the first symbol corrupt the second.

Expansion of the symbol period effectively lowers the symbol rate. To preserve the data rate,
multiple symbols are transmitted simultaneously at different frequencies, known as sub-carriers.
This can be achieved by applying a form of frequency-division multiplexing (FDM). In its simplest
form FDM utilizes filter banks to separate the individual bands.

Summarizing, instead of transmitting symbols sequentially at a high rate, they are are trans-
mitted in parallel at a lower rate. This way, the high data rate is preserved but the signal does not
suffer from inter-symbol interference (or frequency-selective fading).

4.3.1 Orthogonal FDM

FDM methods that rely on filter banks use the available bandwidth inefficiently. To remedy this, we
should space the sub-carriers as close as possible. The sub-carriers should be mutually orthogonal
to retrieve the information mapped onto them.

In general, the message signal mi(t) transmitted on the ith sub-carrier consists of the data
symbols zk

i mapped on pulses with shape g(t). It is given by

mi(t) =
∞∑

k=−∞
zk

i g(t − kT), (4.7)

with T the symbol period and k the symbol index. Applying FDM gives the complex envelope of
a multi-carrier signal x(t)

x(t) =
N−1∑

i=0

ci(t), (4.8)

where N is the number of sub-carriers and ci(t) the ith message mapped on the sub-carrier with
frequency fi

ci(t) = mi(t)ej2πfit. (4.9)

The orthogonality constraint requires that the cross correlation of two modulated sub-carriers
is zero ∫ ∞

−∞
cu(t)cv(t)dt = 0, ∀ u
= v, (4.10)

where cv(t) designates the complex conjugate of cv(t), or using equation 4.9
∫ ∞

−∞
cu(t)cv(t)dt =

∫ ∞

−∞
mu(t)ej2πfut · mv(t)e−j2πfvtdt

=
∫ ∞

−∞
mu(t)mv(t)ej2π(fu−fv)tdt = 0.

(4.11)

Now consider the special case where g(t) is a rectangular pulse

g(t) = Π
(

t

T

)
, (4.12)

with

Π(t) =
{

1 if 0 ≤ t ≤ 1,
0 elsewhere. (4.13)

54 4 Multi-carrier communications

Then the resulting integral in equation 4.11 can be split as follows:

∫ ∞

−∞
cu(t)cv(t)dt =

∞∑

k=−∞
zk

uzk
v

∫ T

0

ej2π(fu−fv)tdt. (4.14)

Thus in this special case, orthogonality is guaranteed when

∫ T

0

ej2π(fu−fv)tdt = 0, (4.15)

which leads to
1

j2π(fu − fv)
ej2π(fu−fv)t

∣∣∣∣
T

0

= 0, (4.16)

and finally gives
ej2π(fu−fv)T − 1 = 0, fu − fv
= 0. (4.17)

It follows that the frequency separation f∆ which guarantees orthogonality should be an integer
multiple of the symbol rate 1

T

f∆ = fu − fv =
k

T
, k = ±1,±2, (4.18)

Combining equations 4.8 and 4.18 gives the complex envelope of an OFDM signal with a minimum
bandwidth

x(t) =
N−1∑

i=0

mi(t)ej2π it
T . (4.19)

Here, the frequency of the ith sub-carrier is recognized as fi = i
T , which leads to a frequency

separation of f∆ = 1
T . Finally an OFDM signal transmitted on carrier frequency fc is represented by

s(t) = Re
{
x(t)ej2πfct

}

= Re

{
ej2πfct

∞∑

k=−∞

N−1∑

i=0

zk
i Π

(
t − kT

T

)
ej2π it

T

}
.

(4.20)

An OFDM signal can be represented equivalently in the time domain as well as in the frequency
domain. In the time domain, the signal can be viewed as the sum of several sines and cosines. Their
periods are a multiple of the symbol period.

In the frequency domain, an OFDM signal can be interpreted as the sum of several sinc functions
(frequency-domain representation of a rectangular pulse shape), which are spaced f∆ = 1

T apart
(see figure 4.3). This particular separation distance ensures that the maximum of one sinc occurs
exactly where all others are zero.

4.3.2 Guard interval

To combat the remaining interference between two consecutive symbols, we introduce a guard
interval. We choose a cyclic prefix as guard interval to ease the channel estimation and equalization.
A cyclic prefix is constructed by cyclically extending a symbol, i.e., by copying the last part of a
symbol and placing it in front of the symbol (see figure 4.4).

To find a representation of a cyclically extended OFDM signal, we enlarge the symbol period

T = Ts + Tg, (4.21)

4.3 Principles of multi-carrier modulation 55

f∆
frequency

magnitude

Figure 4.3. Overlapping power spectra of four sub-carriers. At the peak of a sub-carrier, the spectra of
all other carriers are zero, illustrating their orthogonality.

Tg Ts

cyclical extension

Figure 4.4. Construction of a cyclic prefix. The cyclical extension of the symbol acts as a guard interval
against inter-symbol interference while preserving the orthogonality of the sub-carriers over the original
symbol period Ts.

where Ts is the original symbol period and Tg is the duration of the cyclic prefix. Now, the complex
envelope of a cyclically extended OFDM signal is given by

x(t) =
∞∑

k=−∞

N−1∑

i=0

zk
i Π

(
t − kT

T

)
ej2π i(t−Tg)

Ts . (4.22)

This leads to

s(t) = Re

{
ej2πfct

∞∑

k=−∞

N−1∑

i=0

zk
i Π

(
t − kT

T

)
ej2π i(t−Tg)

Ts

}
. (4.23)

Here, the ith sub-carrier frequency is given by fi = i
Ts

. The frequency separation is given by

f∆ =
1
Ts

. (4.24)

To completely eliminate all inter-symbol interference, one should choose a duration of the cyclic
prefix that is longer than the multi-path delay spread Tm of the channel.

4.3.3 OFDM demodulation

The complex envelope of the received signal is represented by

r(t) = h(t) ∗ x(t), (4.25)

56 4 Multi-carrier communications

where the ∗ operator denotes the convolution with the channel impulse response.
Assuming ideal demodulation, i.e., a perfectly synchronized receiver, the demodulated data

symbol z̃k
i′ in the kth symbol and on the i′ sub-carrier is given by

z̃k
i′ =

1
T

∫ (k+1)T

kT+Tg

r(t)e−j2π i′(t−Tg)
Ts dt

=
1
T

∫ (k+1)T

kT+Tg

rk(t)e−j2π i′(t−Tg)
Ts dt,

(4.26)

where
rk(t) = h(t) ∗ xk(t) (4.27)

is the complex envelope representation of the received signal in the interval t ∈ [kT + Tg, (k + 1)T 〉.
Here, xk(t) is given by

xk(t) = Π
(

t − kT

T

)N−1∑

i=0

zk
i ej2π i(t−Tg)

Ts , (4.28)

which is the complex envelope of the cyclically extended OFDM symbol in the time interval t ∈
[kT, (k + 1)T 〉. Equation 4.27 is only valid if the guard interval duration Tg is longer than the
multi-path delay spread Tm of the channel.

Substitution of equation 4.27 in equation 4.26 gives

z̃k
i′ =

1
T

∫ (k+1)T

kT+Tg

h(t) ∗ xk(t)e−j2π i′(t−Tg)
Ts dt

=
1
T

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)xk(t − τ)dτ

]
e−j2π i′(t−Tg)

Ts dt.

(4.29)

Subsequent substitution of equation 4.28 leads to

z̃k
i′ =

1
T

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)

N−1∑

i=0

zk
i ej2π i(t−τ−Tg)

Ts dτ

]
e−j2π i′(t−Tg)

Ts dt

=
1
T

N−1∑

i=0

zk
i

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)ej2π i(t−τ−Tg)

Ts dτ

]
e−j2π i′(t−Tg)

Ts dt.

(4.30)

Moving the term ej2π i(t−Tg)
Ts out of the inner integral gives

z̃k
i′ =

1
T

N−1∑

i=0

zk
i

∫ (k+1)T

kT+Tg

[∫ ∞

−∞
h(τ)e−j2π iτ

Ts dτ

]
ej2π (i−i′)(t−Tg)

Ts dt

=
1
T

N−1∑

i=0

zk
i

∫ ∞

−∞
h(τ)e−j2π iτ

Ts dτ

∫ (k+1)T

kT+Tg

ej2π (i−i′)(t−Tg)
Ts dt

=
1
T

N−1∑

i=0

zk
i Hi

∫ (k+1)T

kT+Tg

ej2π (i−i′)(t−Tg)
Ts dt,

(4.31)

with

Hi = H

(
i

Ts

)
, (4.32)

where
H(f) =

∫ ∞

−∞
h(τ)e−j2πfτdτ, (4.33)

4.4 Optimal energy assignment 57

which is the frequency response of the channel (the Fourier-transformed channel impulse response).
Thus we arrive at

z̃k
i′ = zk

i Hi, (4.34)

where it is clearly seen that in an ideal receiver, the multi-path channel causes an amplitude
attenuation and a phase rotation given by the frequency response of the channel. This effect can
easily be compensated for, with a one-tap equalizer.

4.4 Optimal energy assignment

Multi-carrier systems such as OFDM allow the assignment of different energy levels to each sub-
carrier. This enables pre-distortion of the transmitted sub-symbols in order to improve the perfor-
mance. In [32], an optimization scheme is presented to maximize the overall bit rate in case the
total transmitter power is limited. This is achieved by an optimal division of the available power
amongst the sub-carriers, similar to the water-pouring solution known from information theory. In
this chapter however, a different approach is taken. Given a power budget, the probability of a bit
error is minimized, instead that the overall bit rate is maximized.

4.4.1 Channel model

Since the inter-symbol interference is effectively canceled, the individual sub-carriers do not suffer
from frequency-selective fading. The remaining flat fading is modeled with a power attenuation
factor Ci for every sub-carrier i. This factor is a piecewise constant approximation of the channel
transfer function H(f) (see equation 4.33) and is given by

Ci = |H(fi)|2, (4.35)

where fi is the central frequency of the ith sub-carrier.
In addition to frequency-selective fading, the channel also suffers from additive white Gaussian

noise (AWGN) which limits the transmission capacity. The noise power N0 is assumed constant
and equal for all sub-carriers.

4.4.2 System model

On every sub-carrier i an average bit energy Ebi
is used to transmit the data symbols (see figure 4.5).

The probability of a bit error on the ith sub-carrier is a function of the average bit energy, the
power attenuation factor Ci, and the average noise power N0

Pei
= F (Ebi

, Ci, N0) . (4.36)

In general, F is a strictly decreasing function with respect to Ebi
. The precise form depends on

the applied symbol mapping scheme.
For the remaining part of this chapter, we assume a uniform modulation scheme for each sub-

carrier. This assumption is made only for analytical convenience and does not limit the validity of
the model.

The total energy transmitted over the channel Eb is the sum of the energies transmitted over
all sub-carriers, i.e.,

Eb =
N−1∑

0

Ebi
, (4.37)

where N is the number of sub-carriers. The average bit error rate is given by the mean of the bit
error probabilities per sub-carrier

58 4 Multi-carrier communications

Eb

Eb1 C1 n1 Pe1

Pe

EbN
CN nN PeN

channel receivertransmitter

Figure 4.5. Model of a multi-carrier communication system.

Pe =
1
N

N−1∑

0

Pei
. (4.38)

The total number of bits B transmitted depends on the number of bits per symbol bi which, still
assuming a uniform symbol mapping scheme for all sub-carriers, is given by

B =
N−1∑

0

bi = N · b, (4.39)

where b is the number of bits per sub-carrier.

4.4.3 Optimization problem

With the definitions above, the following optimization problem can be formulated:

Find the average bit energies Ebi
∀ i = 1 . . . N , with N the number of subchannels, such

that the total energy Eb is minimized

min

[
Eb =

N∑

1

Ebi

]
,

while the average bit error probability Pe does not exceed the desired error rate Re

Pe =
1
N

N∑

1

Pei
≤ Re.

Solving this optimization problem gives the minimum amount of energy needed to transmit B
bits given a desired bit error rate Re.

Since the individual error probability functions per subchannel Pei
are strictly decreasing func-

tions of the average bit energy per subchannel Ebi
, the overall average bit error probability Pe

4.4 Optimal energy assignment 59

is also a strictly decreasing function. An optimum is reached when the partial derivatives of the
average bit error probability with respect to the average bit energy per subchannel are equal, that
is

∂Pe

∂Ebi

=
∂Pe

∂Ebj

. (4.40)

The solution to equation 4.40 gives the relative energy distribution. To find the absolute energy
per subchannel, we have to satisfy the additional boundary condition, i.e.,

Pe =
1
N

N∑

1

Pei
= Re, (4.41)

where Re is the desired average bit error rate. Solving equations 4.40 and 4.41 simultaneously gives
the optimal energy distribution to achieve the desired bit error rate at the lowest total energy cost.

4.4.3.1 QPSK optimization

In case of QPSK (quadrature phase shift keying) symbol modulation, we are able to derive a closed
formula for the relative energy distribution. The error probability per subchannel Pei

for QPSK
symbol modulation is given by [30]

Pei
= Q

(√
2
CiEbi

N0

)
. (4.42)

Q is defined, as usual, by

Q(z) =
1√
2π

∫ ∞

z

e−
1
2 λ2

dλ. (4.43)

The partial derivative with respect to the average energy per bit then boils down to

∂Pe

∂Ebi

= −1
2

√
ai

πEbi

e−aiEbi , (4.44)

with ai = Ci

N0
. Substitution of equation 4.44 in equation 4.40 gives

√
ai

Ebi

e−aiEbi =
√

aj

Ebj

e−ajEbj . (4.45)

Squaring and rearrangement lead to

aiEbj
e2ajEbj = ajEbi

e2aiEbi . (4.46)

Finally solving equation 4.46 for Ebj
, substituting ai = Ci

N0
and assuming a unity reference atten-

uation factor Ci = 1, gives the optimum normalized energy

Êbj

N0
=

1
2Cj

W

(
2C2

j

Ebi

N0
e2

Ebi
N0

)
. (4.47)

W (x) is Lambert’s W function, which obeys

W (x) eW(x) = x. (4.48)

Equation 4.47 gives the relative energy distribution over the subchannels; the absolute values
can be found by an iterative approximation of equation 4.41, using for example Newton–Raphson.

60 4 Multi-carrier communications

4.4.3.2 QAM-16 optimization

In case of QAM-16 (16-ary quadrature amplitude modulation) symbol modulation, we derive a
numerical procedure to calculate the optimal energy distribution. The bit error probability per
subchannel Pei

for QAM-16 symbol modulation is given by

Pei
=

3
4
Q

(√
1
5

CiEbi

N0

)
+

1
4
Q

(√
9
5

CiEbi

N0

)
. (4.49)

Setting the partial derivatives equal and solving the resulting equations, however, does not yield
a simple analytical solution. Therefore, the solution is calculated numerically using the following
procedure.

1. Assign Ebi
∀ i = 1 . . . N such that Pei

= Re

2. Calculate
∣∣∣ ∂Pe

∂Ebi

∣∣∣
Ebi

∀ i = 1 . . . N

3. While
∣∣∣ ∂Pe

∂Ebi

∣∣∣
Ebi

=
∣∣∣ ∂Pe

∂Ebj

∣∣∣
Ebj

∀ i = 1 . . . N, j = 1 . . . N

(a) Select the subchannels with the largest and smallest partial derivatives
∣∣∣ ∂Pe

∂Ebi

∣∣∣
Ebi

(b) Increase the energy for the subchannel with the largest partial derivative
(c) Find the new Ebi

for the subchannel with the smallest partial derivative while satisfying
Pe = Re

(d) Calculate the new partial derivatives

The procedure above can be applied for any modulation scheme with a bit error probability
Pei

per subchannel of the form

Pei
=

K∑

1

αkQ

(√
γk

CiEbi

N0

)
, (4.50)

where K is an arbitrary integer and αk and γk are modulation-dependent constants. The same pro-
cedure can also be applied for non-uniform symbol modulation schemes. If the bit error probability
per subchannel Pei

is a strictly decreasing function of Ebi
, then the procedure converges.

4.4.4 Comparison

To validate and demonstrate the effectiveness of the proposed optimal energy assignment scheme,
we compare the method with two other widely used energy assignment schemes. The first is the
traditional approach to assign all subchannels the same energy per bit (a uniform energy). The
second scheme assigns the energies in such a way that all subchannels have the same error rate (a
uniform error rate). In all cases, QPSK is used for the symbol modulation.

Obviously, the uniform energy assignment scheme does not take into account the channel condi-
tions when assigning energy to each subchannel, whereas the uniform error rate assignment scheme
does. However, the latter only locally optimizes the energy for each subchannel. The proposed
optimal method globally optimizes the energy assigned to each subchannel, making maximum use
of the channel characteristics and the available energy.

4.4 Optimal energy assignment 61

4.4.4.1 Energy distribution

Figure 4.6 shows the energy distributions for increasing energy levels for each of the assignment
methods. From the graphs, it is observed that the optimal scheme assigns relatively less energy
to the (poor) subchannels with low attenuation factors than the uniform error rate scheme and at
the same time, it assigns more energy to the (good) subchannels with higher attenuation factors.
The higher error rate for poor subchannels is compensated for by a lower error rate for good
subchannels, resulting in a decrease of the average error rate.

0 1 2
0

1

2

3

4

5

av
er

ag
e

no
rm

al
iz

ed
 e

ne
rg

y
E

b i/N
0

channel attenuation factor C
i

uniform energy
uniform error rate
optimal

(a) Eb/No = 10

0 1 2
0

2

4

6

8

10

av
er

ag
e

no
rm

al
iz

ed
 e

ne
rg

y
E

b i/N
0

channel attenuation factor C
i

uniform energy
uniform error rate
optimal

(b) Eb/No = 20

0 1 2
0

5

10

15

20

25

av
er

ag
e

no
rm

al
iz

ed
 e

ne
rg

y
E

b i/N
0

channel attenuation factor C
i

uniform energy
uniform error rate
optimal

(c) Eb/No = 50

Figure 4.6. Comparison of different energy distribution schemes for various values of the total normalized
energy Eb/N0.

For low energy levels, it is observed that the optimal scheme resembles the uniform energy
scheme. For higher levels, it behaves more like a uniform error rate assignment scheme.

62 4 Multi-carrier communications

4.4.4.2 Performance

The three assignment schemes are compared by simulation, using a Ricean fading channel model
[61]. For different numbers of subchannels, a large number of channel responses is generated rep-
resenting different channel conditions. This is achieved by changing the Ricean K-factor, which
represents the severity of multi-path effects in the channel. The lower the K-factor, the more the
multi-path effects dominate. In case the Ricean K-factor equals zero, the Ricean fading channel
model turns into a Rayleigh fading channel model.

The performance of the schemes is compared by plotting the average bit error rate Pe against the
average normalized energy per subchannel Ebi

/N0 (see figure 4.7, left-hand graphs, solid curves).
Next to the average, the performance with the best and that with the worst channel conditions
are shown (dashed curves). Additionally the energy gain G of the optimal scheme with respect to
that of the other two schemes is plotted (figure 4.7, right-hand graphs).

In all cases, the simulations show that the scheme proposed in this paper performs best. The
improvement is most significant with respect to the uniform energy distribution. The gain is moder-
ate with respect to the uniform error rate distribution scheme. The most energy is gained (compare
figure 4.7, right-hand graphs) when the channel conditions are worst, i.e., when the channel suffers
from deep fades (K ≈ 0).

4.5 Quantization level

To derive an analytical expression for the performance of quantized OFDM systems, we investigate
the effects of quantization on a, apart from that, ideal modulator–demodulator pair. Performance
degradation due to the limited precision of the arithmetic is not taken into account, but numerous
references on this topic and strategies to reduce computational noise can be found in literature,
e.g. [51, 83].

4.5.1 System model

The quantized OFDM system model under consideration is depicted in figure 4.8. It consists of
a sub-symbol encoder and an inverse discrete Fourier transform (IDFT) connected to a forward
discrete Fourier transform (DFT) and a sub-symbol decoder via a uniform quantizer Q. In this
model, the extension of the OFDM symbol with a cyclic prefix can be neglected, as ideal time
synchronization is assumed.

Channel effects and distortions, such as multi-path interference and propagation loss, are not
taken into account; we only focus on the effects of quantization on the data transmission capa-
bilities. For the same reason, we assume ideal time and frequency synchronization in the receiver.
Hence, the expressions found in section 4.5.2 give a lower bound for the bit error probability of a
quantized OFDM system.

A fixed-point number consists of a number of bits, split into an integer part and a fractional
part separated by the radix point (see figure 4.9). When uniform quantization is applied, the level
distance d of the quantizer is determined by the number of fractional bits n

d = 2−n. (4.51)

The quantization process distorts the modulated signal, causing errors in the demodulated data.

4.5.1.1 Quantization noise before transformation

We approximate the effect of quantization of the OFDM signal by adding quantization noise (see
figure 4.10). The noise is modeled as a complex uniform random variable nQ

4.5 Quantization level 63

0 5 10 15
10

−8

10
−6

10
−4

10
−2

10
0

average normalized energy E
b

i

/N
0
 (dB)

av
er

ag
e

bi
t e

rr
or

 r
at

e
P

e

uniform energy
uniform error rate
optimal

0 5 10 15

gain G (dB)

(a) K = 0 (Rayleigh fading)

0 5 10 15
10

−8

10
−6

10
−4

10
−2

10
0

average normalized energy E
b

i

/N
0
 (dB)

av
er

ag
e

bi
t e

rr
or

 r
at

e
P

e

uniform energy
uniform error rate
optimal

0 5 10 15

gain G (dB)

(b) K = 3 dB

0 5 10 15
10

−8

10
−6

10
−4

10
−2

10
0

average normalized energy E
b

i

/N
0
 (dB)

av
er

ag
e

bi
t e

rr
or

 r
at

e
P

e

uniform energy
uniform error rate
optimal

0 5 10 15

gain G (dB)

(c) K = 6 dB

Figure 4.7. Performance comparison of distribution schemes over a Ricean fading channel (K - Ricean
K-factor, number of subchannels N = 128, number of simulations n = 100).

64 4 Multi-carrier communications

inverse
Fourier

transform

forward
Fourier

transform

demodulationmodulation

Q

quantizer

Figure 4.8. Model of a quantized OFDM system.

integer part fractional part

bw−1 bw−2 · · · bn . bn−1 · · · b1 b0

radix point

Figure 4.9. Fixed-point number with n fractional bits (bi is the ith bit of a binary number with in total
w digits).

nQ = inQ
+ jqnQ

, (4.52)

where inQ
and qnQ

are the in-phase and quadrature components of the noise, respectively. The
probability density function (PDF) fnQ

(inQ
, qnQ

) of nQ is given by

fnQ
(inQ

, qnQ
) =

{(
1
d

)2 ∀(inQ
, qnQ

) : |inQ
| ≤ d

2 and |qnQ
| ≤ d

2 ,
0 elsewhere,

(4.53)

where n is the number of fractional bits and d the level distance defined in equation 4.51.

forward
Fourier

transformQ
=⇒

nQ

forward
Fourier

transform

Figure 4.10. The quantization of the signal is modeled as the addition of quantization noise nQ.

The model discussed so far does not enable us to easily deduce an expression for the performance
of a quantized OFDM system. Therefore, we try to develop the model further to come to a more
suitable framework.

4.5.1.2 Quantization noise after transformation

A quantized OFDM signal with K sub-carriers is demodulated using a K-point DFT. Because a
Fourier transform is a linear operation, the addition of quantization noise can be moved after the
DFT as long as the same transformation is applied to the noise as well.

The forward K-point DFT is given by

x̂(k) =
1√
K

K−1∑

n=0

x(n)e−
j2πkn

K for k = 1 . . . K. (4.54)

Applying this transformation to the noise can be viewed as taking the weighted sum of K phase-
rotated samples of nQ. Therefore, we introduce two new random variables, n′

Q and φ, where n′
Q is

equal to nQ except for the random phase rotation φ

4.5 Quantization level 65

n′
Q = nQeφ. (4.55)

Now, we substitute for the transformed quantization noise a weighted sum of random variable n′
Q

as depicted in figure 4.11.
Summarizing, we have replaced the original uniform quantization noise nQ before the DFT

with a weighted sum of K samples of n′
Q after the DFT. Consequently, if K is large, the central

limit theorem applies if
VAR

[
n′

Q

]
> B1 > 0 (4.56)

and
E
[∣∣n′

Q − E
[
n′

Q

]∣∣3
]

< B2, (4.57)

where B1 and B2 are positive numbers [54], and where E[·] and VAR[·] denote the expected value
and variance of a random variable, respectively. Then, the resulting sum can be approximated by
a Gaussian random variable (see figure 4.11). Hence, we introduce a new random variable NQ with
a Gaussian probability density function.

nQ

forward
Fourier

transform

=⇒

forward
Fourier

transform

n′
Q 1√

K

K−1∑

0

=⇒

forward
Fourier

transform

NQ

Figure 4.11. The addition of uniform quantization noise nQ before the Fourier transform can be modeled
as the addition of Gaussian noise NQ after the Fourier transform.

We now have arrived at a model with AWGN after transformation. In contrast to the model
with uniform noise before demodulation, the new model allows us to easily derive an expression
for the performance of the quantized OFDM system.

4.5.2 Performance of quantized OFDM systems

The noise after transformation is now modeled as a complex Gaussian random variable. Therefore,
the performance of the quantized OFDM system can be calculated easily, because the consecutive
inverse and forward DFTs are each other’s inverse and both can thus be removed from the OFDM
system model (see figure 4.12). Hence, the noise can be seen as AWGN directly added to the sub-
symbols. Therefore, the noise performance of the sub-symbol modulation scheme determines the
overall performance of the quantized OFDM system.

NQ

Figure 4.12. Collapsed model of a quantized OFDM system.

66 4 Multi-carrier communications

4.5.2.1 Analytical derivation

Usually, an analytical expression for the performance of the applied sub-symbol encoding scheme
in the presence of AWGN is known. In order to apply this expression, we must find the properties
of the Gaussian noise. Therefore, we have to derive the key parameters of the Gaussian variable
NQ, namely its mean µNQ

and its standard deviation σNQ
. To that end, we first calculate the mean

and variance of the original uniform variable nQ. Obviously, the mean of nQ is zero

E[nQ] = 0, (4.58)

and its variance is given by

VAR[nQ] = E
[
nQ

2
]
− E[nQ]2 =

1
6
4−n. (4.59)

Because the mean of nQ is zero and because a phase rotation does not influence the variance
of a random variable with zero mean, the mean and variance of n′

Q are equal to the mean and
variance of nQ, thus

E
[
n′

Q

]
= E[nQ] = 0 (4.60)

and
VAR

[
n′

Q

]
= VAR[nQ] =

1
6
4−n. (4.61)

Obviously, the variance of n′
Q is bounded and positive for n
= −∞, and the first condition (see

equation 4.56) to apply the central limit theorem is met. Now, we only have to check the second
condition (see equation 4.57), and to that end, we calculate the third central moment of n′

Q

E
[∣∣n′

Q − E
[
n′

Q

]∣∣3
]

= E
[∣∣n′

Q

∣∣3
]

= E
[
|nQ|3

]
. (4.62)

An upper bound is given by

E
[
|nQ|3

]
≤
∫ d

2

− d
2

∫ d
2

− d
2

1
d2

(
d2

2

) 3
2

dxdy =
1

2
√

2
8−n, (4.63)

which is again bounded for n
= −∞. Thus, the mean and variance of NQ can be calculated using
the central limit theorem

µNQ
= K · E

[
n′

Q

]
= 0. (4.64)

Due to the weighting factor 1√
K

in the sum, the variance of NQ equals the variance of nQ

VAR[NQ] = K · VAR
[

1√
K

nQ

]
=

1
6
4−n, (4.65)

which gives the standard deviation σNQ
of NQ

σNQ
=
√

VAR[NQ] =

√
1
6
4−n. (4.66)

As the one-dimensional noise power is given by 1
2σNQ

2, the bit error probability Pe for QPSK
sub-symbol modulation can be calculated using

Pe = Q

(√
Eb

1
2σNQ

2

)
= Q

(√
12Eb4n

)
, (4.67)

4.5 Quantization level 67

where Eb is the average energy per bit. Likewise, for QAM-16 (16-symbol quadrature amplitude
modulation), the probability of a bit error is

Pe =
3
4
Q

(√
2
5

Eb
1
2σNQ

2

)
+

1
2
Q

(√
18
5

Eb
1
2σNQ

2

)
− 1

4
Q

(√
10

Eb
1
2σNQ

2

)

=
3
4
Q

(√
24
5

Eb4n

)
+

1
2
Q

(√
216
5

Eb4n

)
− 1

4
Q
(√

120Eb4n
)

.

(4.68)

The Q-function is defined, as usual, by

Q(z) =
1√
2π

∫ ∞

z

e−
1
2 λ2

dλ. (4.69)

With equations 4.67 and 4.68, we have deduced analytical expressions for the performance
of quantized OFDM systems applying QPSK and QAM-16 sub-symbol modulation schemes, re-
spectively, using the model depicted in figure 4.12. The same model and the same performance
derivations can be applied for other sub-symbol encoding schemes as well.

4.5.3 Verification

In figure 4.13, the bit error rates (dotted lines) of several quantized OFDM systems are plotted
against the number of fractional bits with a unity average energy per bit (Eb = 1) for QPSK and
QAM-16 sub-symbol modulation and different numbers of sub-carriers. These curves were found
using Monte Carlo simulations. Also plotted are the derived bit error probabilities (solid lines).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

fractional bits n
f

bi
t e

rr
or

 r
at

e
P

e

QPSK

QAM−16

 16
 64
 256
1024

Figure 4.13. Performance of quantized OFDM systems (Eb = 1).

The predicted bit error probabilities match the simulation results well, suggesting that our
assumptions and derivations are valid. Only for strongly quantized systems (region where n < −1)

68 4 Multi-carrier communications

the derived curves diverge from the simulation results. Additional simulations have shown that for
severely quantized systems, the noise can no longer be modeled as a uniform random variable. In
fact, the quantization noise for heavily quantized OFDM systems has distribution that is Gaussian
instead of the assumed uniform one. Thus, the derived expressions for the performance no longer
apply. However, the regions of interest for most systems lie well away from these extremes.

4.6 Clipping level

To derive an analytical expression for the performance of soft-limited OFDM systems, we apply
the same procedure as that presented in the previous section, but now for soft-clipped OFDM
systems. A number of authors have also investigated the performance of clipped OFDM (and other
non-linear distortions) [6, 7, 50], but they take a different approach, as they limit the envelope of
the complex OFDM signal, whereas here both the real and imaginary signal parts are limited in
amplitude.

4.6.1 System model

The clipped OFDM system model under consideration is depicted in figure 4.14. The difference
with the model presented in section 4.5.1 is that the quantizer is replaced by a soft limiter L.

inverse
Fourier

transform

forward
Fourier

transform

demodulationmodulation
limiter

L

Figure 4.14. Model of a soft-limited OFDM system.

Again channel effects and distortions, such as multi-path interference and propagation loss, are
not taken into account, in order to focus only on the effects of limiting the signal on the data
transmission capabilities.

If a signal is represented by a fixed-point number, its maximum amplitude is determined by the
number of bits used for the representation of the integer part (see figure 4.9). The clipping level c
is given by

c = 2(ni−1), (4.70)

where ni is the number of integer bits used.

4.6.2 Noise modeling

In general, one cannot model the limiting of a signal straightforwardly by using an equivalent of
quantization noise. Nevertheless, as an OFDM signal with random data sub-symbols has a complex
Gaussian distribution if the number of sub-carriers is large (central limit theorem), we assume that
the limiting can be modeled as a combination of attenuating the signal and adding clipping noise
(see figure 4.15).

This assumption is loosely based on Bussgang’s theorem [69] (a special case of Price’s theorem
[60]), which states that applying a Gaussian input to a non-linearity, such as a soft limiter, results
in an attenuated version of the input signal plus an additional noise term.

Following the same reasoning as in section 4.5.1.2, we transform the clipping noise into Gaussian
noise. Because the Fourier transform is a linear operation, we can easily move the attenuation factor
αc after the DFT. The resulting model is shown in figure 4.16.

4.6 Clipping level 69

forward
Fourier

transformL
=⇒

forward
Fourier

transform

αC

nC

Figure 4.15. The limiting of the signal is modeled as a combination of multiplying the signal with an
attenuation factor αc and adding clipping noise nC .

forward
Fourier

transform

αC

nC

=⇒
NC

αCforward
Fourier

transform

Figure 4.16. The multiplication with an attenuation factor and the addition of clipping noise nC before
the Fourier transform can be replaced by the same multiplication and the addition of the transformed
clipping noise NC after the Fourier transform.

4.6.3 Performance of soft-limited OFDM systems

The effects of limiting the OFDM signal have been modeled as the multiplication with an atten-
uation factor αC and the addition of a complex Gaussian noise term NC . The resulting model is
depicted in figure 4.17, where the inverse and forward DFTs are removed from the system model.

NC

αC

Figure 4.17. Collapsed model of a soft-limited OFDM system.

4.6.3.1 Analytical derivation

To find an analytical expression for the performance of a soft-limited OFDM system, we must find
the properties of the Gaussian noise. To derive the mean µNC

and its standard deviation σNC
we

first calculate the mean and variance of the clipping noise nC .
The PDF of an OFDM signal fs(is, qs) is Gaussian and therefore given by

fs(is, qs) =
1√

2πσs

e−
is

2+qs
2

2σs2 , (4.71)

where 2σs
2 is the energy of the signal and is and qs its in-phase and quadrature components,

respectively. For simplicity we assume symmetrical clipping, i.e., the OFDM signal is limited to
values between −c and c, where c is the clipping level. As a consequence, the mean of the clipping
noise nC equals zero

E[nC] = 0. (4.72)

70 4 Multi-carrier communications

The variance can be calculated using

VAR[nC] =E
[
nC

2
]
− E[nC]2

=
4√

2πσs

∫ ∞

c

∫ ∞

c

[
(x − c)2 + (y − c)2

]
e−

x2+y2

2σs2 dxdy +

4√
2πσs

∫ c

−c

∫ ∞

c

(x − c)2e−
x2+y2

2σs2 dxdy

=4
(
σs

2 + c2
)
Q

(
c

σs

)
− 2

√
2
π

σsce−
c2

2σs
2
.

(4.73)

Here, the first integral calculates the noise power if both the in-phase and quadrature components
are clipped. The second term calculates the power when either the in-phase or the quadrature
component is limited.

Now, the mean µNC
and standard deviation σNC

are easily determined

µNC
= E[nC] = 0 (4.74)

and

σNC
=
√

VAR[nC] =

√

4 (σs
2 + c2) Q

(
c

σs

)
− 2

√
2
π

σsce
− c2

2σs2 . (4.75)

The only thing left is to find an expression for the attenuation factor αC . If the noise power
VAR[nC] is small with respect to the signal power VAR[s], this factor can be approximated by the
square root of the power ratio of the limited signal and the original signal

αC ≈
√

VAR[sC]
VAR[s]

. (4.76)

Here, VAR[s] is the variance of the OFDM signal, which is given by

VAR[s] = 2σs
2. (4.77)

The variance of the clipped signal VAR[sC] can be calculated with

VAR[sC] =
1√

2πσs

∫ c

−c

∫ c

−c

(
x2 + y2

)
e−

x2+y2

2σs2 dxdy+

4√
2πσs

∫ ∞

c

∫ ∞

c

2c2e−
x2+y2

2σs2 dxdy+

4√
2πσs

∫ ∞

c

∫ c

−c

(
x2 + c2

)
e−

x2+y2

2σs2 dxdy

=4c2Q

(
c

σs

)
+ 2σs

2

[
1 − 2Q

(
c

σs

)]
− 2

√
2
π

σsce
− c2

2σs2 .

(4.78)

The first integral represents the power in the undistorted parts of the signal, the second the power
if both the in-phase and quadrature components are limited to c, and the third the power if only
one of the components is clipped.

Substituting equations 4.77 and 4.78 into equation 4.76 gives

αC ≈

√

1 + 2
(

c2

σs
2
− 1

)
Q

(
c

σs

)
+

√
2
π

c

σs
e−

c2

2σs2 . (4.79)

With the found expressions for σNC
and αC , we can calculate the error probability for Pe

limited OFDM systems with QPSK sub-symbol modulation as follows

4.7 Summary 71

Pe = Q

(√
αc

2Eb
1
2σNC

2

)
. (4.80)

Here, 1
2σNC

2 is the one-dimensional noise power. Similar expressions can be found for QAM-16
sub-symbol modulation and other modulation schemes.

4.6.4 Verification

In figure 4.18, the bit error rates (dotted lines) of several soft-limited OFDM systems are plotted
against the number of integer bits ni with a unity average energy per bit (Eb = 1) for QPSK and
QAM-16 sub-symbol modulation and different numbers of sub-carriers. These curves were found
using Monte Carlo simulations. Also plotted are the derived bit error probabilities (solid lines).

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

integer bits n
i

bi
t e

rr
or

 r
at

e
P

e

QPSK

QAM−16

 16
 64
 256
1024

Figure 4.18. Performance of soft-limited OFDM systems (Eb = 1).

Clearly, the derived expressions match the simulation results very well for OFDM systems with
QAM-16 sub-symbol modulation. However, the predicted error rates strongly deviate from the
simulated error rates for QPSK sub-symbol modulation, especially for low numbers of integer bits.
Obviously, the assumption that soft limiting can be modeled as an attenuation factor and the
addition of noise is invalid for extreme clipping levels, because at these levels the clipping signal
almost equals the original signal.

4.7 Summary

This chapter started with an introduction of the problems encountered in a multi-path chan-
nel, which is common to high frequency and high symbol rate radio transmission. Multi-carrier
communication was introduced as a means to overcome the frequency-selective fading caused by

72 4 Multi-carrier communications

the multi-path. Subsequently, OFDM was introduced as a particular multi-carrier communication
scheme.

As this book focuses on power optimizations, among others, we investigated a method to use
the energy assigned to the sub-carriers more efficiently. Furthermore, reckoning with a fixed-point
implementation of the OFDM transceiver, we investigated the effects of such an implementation
on the performance of the transceiver. The results can be used to determine the minimum number
of bits necessary to implement an OFDM transceiver given a desired bit error rate.

Now that we have a better understanding of multi-carrier communications in general, and
OFDM in particular, the next chapter will describe the implementation of an OFDM transceiver.
Its design will serve as a test case, in order to test and verify the design automation tools developed
in chapter 3.

5

Application

5.1 Introduction

To verify the completeness of the design flow and the correct operation of the automation tools,
we need a representative application to serve as a test case. As already mentioned in section 1.3,
the baseband processing for an OFDM transceiver was selected. The transceiver is used in an
experimental setup to supply a mobile user with augmented reality, as envisioned in the Ubiquitous
Communications program (see appendix A).

Because the baseband modulator and demodulator are not fully specified, we first have to
determine the key communication parameters, such as the number of sub-carriers, and the sub-
symbol modulation and multiple access schemes. Each time, the consequences of a particular
decision have to be evaluated, in terms of the cost and performance of the resulting transceiver.

Subsequently, several alternatives for the baseband modulation and demodulation are described
in C. This code serves as a starting point for the design flow presented in section 1.1.3, applying
the hardware–software partitioning and code generation tools described in chapter 3. Finally, the
results are presented and discussed.

5.2 Transceiver specification

As already mentioned in appendix A, a number of design choices have already been made for the
UbiCom scenario. These include the use of OFDM on a 17 GHz radio channel. To fully specify
a mobile transceiver, additional choices have to be made. These include the key parameters for
the OFDM transceiver, such as the number of sub-carriers and the frequency separation, and the
multiple-access and duplexing schemes.

To make a well-founded decision, we have to characterize the radio channel accurately and
specify the user requirements. Then, the key communication parameters for the transceiver can be
deduced. Throughout this process, the effects on the power consumption and other performance
measures should be taken into account.

5.2.1 Frequency band

As described in section A.3, for the UbiCom project initially a target carrier frequency was chosen
of roughly 17 GHz. In the frequency range from 16 to 18 GHz, only two bands are available,
according to international regulations: the 17.1–17.2 GHz band, and the 17.2–17.3 GHz band.1

1 Near 17 GHz, no ISM bands (bands internationally reserved for non-commercial use for industrial,
scientific and medical purposes) are available. The nearest ISM bands are the 5725.0–5875.0 MHz band
and the 24.0–24.25 GHz band.

74 5 Application

In the Netherlands, these bands are freely available without license for radio local area networks
(RLANs) applying short range devices (SRDs), according to the Dutch national frequency register
[48]. In Europe, the bands are recommended to be allocated to HIPERLANs (high-performance
RLANs) [24], starting from the year 2008 [22].

For UbiCom the first band was chosen, which means that the center carrier frequency is fc =
17.15 GHz and the total available bandwidth B = 100 MHz.

5.2.1.1 Radio channel measurements

To characterize the 17 GHz radio channel an extensive measurement campaign was conducted by
A. Bohdanowicz [11, 12]. Wideband channel measurements were conducted in both indoor and
outdoor environments.

• Office building: Indoor measurements were performed in an office building at several locations,
a.o. in office rooms, corridors and in a large room (canteen). Both line-of-sight (LOS) and
obstructed, non-line-of-sight (OBS) cases were studied.

• Parking area: The outdoor measurements were performed at two parking areas: one without
large obstacles and one with trees surrounding it. In both cases, line-of-sight was preserved.

The main results of the RMS delay spread measurements are shown in figures 5.1, 5.2, and 5.3
(courtesy of A. Bohdanowicz).

The typical ranges of the delay spread values were calculated for different confidence intervals.
These, together with the mean, are listed in table 5.1.

Table 5.1. Measured values for the root mean square (RMS) delay spread τRMS (in ns) for various indoor
and outdoor, line-of-sight (LOS) or obstructed (OBS) environments

Environment Place 1% 5% 95% 99% Mean

Indoor (LOS) CorridorLB 1.97 3.55 28.57 36.42 14.28
Corridor16 6.29 8.20 25.88 27.61 15.28
Canteen 2.45 4.85 29.14 40.81 13.91
OfficeRoomA 2.25 3.17 7.67 7.77 5.42
OfficeRoomB 3.82 5.34 9.99 12.58 7.73
Overall 2.54 3.90 25.30 32.69 11.32

Indoor (OBS) Corridors16 3.82 4.35 10.47 11.54 7.56
Rooms16 3.82 4.59 11.07 11.75 7.54
Overall 3.82 4.54 10.67 11.75 7.55

Outdoor (LOS) Parking A 12.74 14.41 49.14 55.37 29.63
Parking B 1.90 4.48 29.39 31.59 20.92
Overall 3.71 5.27 44.32 52.85 25.28

5.2.2 Gross bit rate

The refresh rate of the displayed graphics and the required quality depend heavily on the distance
of the user from the displayed virtual object. As nearby objects show more detail than those far
away, usually the closer the user is to the virtual object, the more detail he will require.

Usually the requirements become more stringent when a user is close to a virtual object, as a
more detailed image or graphic is required, to be acceptable to the user.

A detailed study [52] has been conducted on the effects of various level of detail (LOD) rendering
variants on the required link capacity, taking into account effects like the distance of the user from
the virtual object, and the lifetime of the object. Overall, for a graphic quality acceptable to the
user, a gross bit rate Rb is needed ranging from 1 kbit/s to 10 Mbit/s.

5.2 Transceiver specification 75

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

delay spread τ
RMS

 (ns)

cu
m

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

CorridorLB
Corridor16
Canteen
OfficeRoomA
OfficeRoomB
overall

Figure 5.1. Cumulative density function of the root mean square (RMS) delay spread τRMS for various
indoor line-of-sight (LOS) environments.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

delay spread τ
RMS

 (ns)

cu
m

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

Corridors16
Rooms16
overall

Figure 5.2. Cumulative density function of the root-mean-square (RMS) delay spread τRMS for various
indoor obstructed, non-line-of-sight (OBS) environments.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

delay spread τ
RMS

 (ns)

cu
m

ul
at

iv
e

de
ns

ity
 fu

nc
tio

n

Parking A
Parking B
overall

Figure 5.3. Cumulative density function of the root-mean-square (RMS) delay spread τRMS for various
outdoor, line-of-sight (LOS) environments.

76 5 Application

5.2.3 Symbol format

Based on the user requirements and the channel characteristics, the format of an OFDM symbol
can be specified. A proper symbol format ensures robustness against the multi-path distortions
and temporal distortions of the channel.

5.2.3.1 Inter-symbol interference

To cancel all inter-symbol interference, the guard interval should be longer than the multi-path
delay spread of the channel

Tg ≥ Tm. (5.1)

In order to prevent too large a reduction in capacity, one must choose the symbol period Ts with
useful information to be at least a few times longer than the guard interval Tg, as the guard interval
does not contain useful information. For a symbol efficiency of η = Ts

Ts+Tg
, the symbol period should

be at least
Ts ≥

η

1 − η
Tg. (5.2)

From equation 4.24 we have the sub-carrier frequency separation

f∆ =
1
Ts

. (5.3)

Substitution of equations 4.6, 5.1, and 5.2 leads to

f∆ ≤ 1 − η

γη

1
τRMS

. (5.4)

If the total bandwidth available for a user equals Bu, then the minimum number of sub-carriers
N to meet the efficiency demand is given by

N =
Bu

f∆
. (5.5)

Substitution of equation 5.4 gives a lower bound to the number of sub-carriers

N ≥ γη

1 − η
Bu · τRMS. (5.6)

5.2.3.2 Coherence bandwidth

To determine whether the individual sub-carriers can be considered narrow-band, we calculate
the coherence bandwidth Bc of the channel. The coherence bandwidth is approximated with the
reciprocal of the multi-path delay spread of the channel [61]

Bc ≈
1

Tm
. (5.7)

To prevent frequency-selective fading within a sub-carrier, one should choose the frequency
separation smaller than the coherence bandwidth

f∆ ≤ Bc. (5.8)

This again leads to a lower bound to the number of sub-carriers N

N ≥ B

B c
. (5.9)

Substitution of equations 5.7 and 4.6 gives

N ≥ γBu · τRMS. (5.10)

It should be noted that for η > 1
2 , equation 5.6 specifies a more strict requirement.

5.2 Transceiver specification 77

5.2.3.3 Coherence time

The Doppler spread of a channel is defined by [61]

Bd =
vo

λc
= vo

fc

c
, (5.11)

where vo is the maximum speed of objects interfering with the radio beam, c is the speed of light,
and λc = c

fc
the wavelength of the carrier.

The reciprocal of Bd is a measure of the coherence time tc of the channel. That is,

tc ≈
1

Bd
. (5.12)

The relative coherence time τc with respect to the symbol period is defined by

τc =
tc
T

. (5.13)

It indicates how rapidly the channel conditions are changing and can be used to determine how
often a channel estimate should be updated for proper channel equalization.

5.2.4 Sub-symbol encoding scheme

The sub-symbol encoding scheme determines the amount of bits transmitted per sub-carrier. The
data bits can be encoded in the phase or the amplitude of the symbol, or in a combination of both.
As a result, all variants of PSK (phase shift keying), ASK (amplitude shift keying) and QASK
(quadrature amplitude shift keying), also known as QAM (quadrature amplitude modulation), are
applicable.

The gross bit rate is the total number of bits transmitted on all sub-carriers per symbol period

Rb =
1
T

N−1∑

i=0

�i, (5.14)

where �i is the number of bits transmitted on the ith sub-carrier.
With a uniform sub-symbol encoding scheme, i.e., when the same encoding scheme is used for

all sub-carriers �i = �, equation 5.14 simplifies to

Rb =
N · �
T

, (5.15)

where � is the number of bits per sub-symbol. It is directly related to the number of possible
symbols M of the encoding scheme via M = 2�, or, equivalently, � = log2 M .

5.2.4.1 Channel estimation and equalization

As seen in section 4.3.3, the effects of the multi-path channel ultimately translate into multiplying
the transmitted sub-symbols by the frequency response of the channel. As a consequence, if the
frequency response of the channel is known, the equalization can be performed by multiplying by
the inverse of the channel’s frequency response.

To estimate the frequency response, one can transmit known sub-symbols. Calculating the
phase rotation and amplitude attenuation of these symbols gives the frequency response of the
channel.

For differential sub-symbol encoding schemes, it is not necessary to estimate and equalize the
channel, as the data is encoded in the difference between sub-symbols; so coherent decoding is not
necessary.

78 5 Application

5.2.5 Time and frequency synchronization

Only a demodulator that has been synchronized to the modulator, both in time and in frequency,
can correctly demodulate an OFDM symbol. Especially, frequency synchronization is crucial, as
a slight offset already disrupts the orthogonality of the sub-carriers, as depicted in figure 5.4.
Two effects occur because of the frequency offset: one is the reduction of signal strength of the
desired sub-carrier, and the second is the introduction of inter-carrier interference from the other
sub-carriers. A worse bit error rate is the result [55].

frequency

magnitude

∆f

Figure 5.4. Loss of orthogonality due to a frequency offset ∆f . Illustrated is the power spectrum of four
sub-carriers, where a frequency offset causes a reduction in the signal strength of the desired sub-carrier
(�) and introduces interference between the sub-carriers (◦).

The impact of a small timing offset is less severe, as it results in a progressive phase rotation
of the demodulated symbols. In coherent sub-symbol demodulation, this can be detected and
compensated for by properly adjusting the equalization. Differential demodulation is robust against
these phase rotations, although they can lead to a performance degradation.

Numerous synchronization schemes are known from literature, e.g. [8, 47, 74]. A comprehensive
overview can be found in [77]. Two main approaches are identified:

• Demodulators that extract the information needed for synchronization before sub-carrier
demodulation, either using a training sequence or using the specific structure of an OFDM
symbol

• Demodulators that extract the information after the demodulation of the sub-carriers using
special data symbols or symbol patterns

To keep the synchronization overhead to a minimum, we chose the synchronization method sug-
gested by Witrisal [86]. The method utilizes a training symbol constructed by modulating the odd
sub-carriers with a PN (pseudo-random noise) sequence, while setting the even sub-carriers to zero.
This leads to a symbol with, apart from the sign, identical halves. This training symbol is used to
simultaneously estimate the timing and frequency offsets.

5.2.6 Multiple access

In the UbiCom scenario, multiple users are envisioned, possibly interacting with each other. As
a consequence, a base station has to serve more than one user, and it has to divide the available
communication resources, i.e., it has to implement the multiple access of the radio channel.

In principle, OFDM supports all traditional multiple-access methods, such as TDMA (time-
division multiple access) and FDMA (frequency-division multiple access). Another possibility is to
assign different sub-carriers to different users, a technique known as OFDMA (orthogonal FDMA).

5.2 Transceiver specification 79

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

η = 0.9

η = 0.8

η = 0.7
η = 0.6

η ≤ 0.5

RMS delay spread τ
RMS

m
in

im
um

 n
um

be
r

of
 s

ub
−

ca
rr

ie
rs

 N

Figure 5.5. Minimum number of sub-carriers N as a function of the root mean square (RMS) delay spread
τRMS (channel model constant γ = 5, bandwidth Bu = 10 MHz).

The last scheme, however, requires the mobile device to demodulate all the sub-carriers in order
to retrieve the data of only a few, thus wasting energy. Furthermore, the higher the number of
sub-carriers, the more computing power is needed for the frequency multiplexing.

From equation 5.5 it is clear that the number of sub-carriers is restricted by reducing the
bandwidth per user Bu. Increasing the carrier frequency separation f∆ is not possible, since its
maximum value is determined by the channel characteristics.

Whereas with TDMA, a user gets the whole available bandwidth assigned; with FDMA, he
gets only a fraction of the total bandwidth. Hence, with FDMA, the number of sub-carriers is less
than with TDMA. Furthermore, in a TDMA scheme, the user has to wait for his turn to transmit
and receive, decreasing the responsiveness of the mobile device. Therefore, we chose FDMA. To
prevent cross-talk between transmitter and receiver, time-division duplexing (TDD) is applied as
a duplexing scheme.

In section A.3.2, the minimum number of users per base station Nu is given

Nu ≥ 10. (5.16)

The total bandwidth is equally divided over the users. Thus,

Bu =
B

Nu
≤ 10 MHz, (5.17)

gives an upper limit to the total bandwidth available to a user.

5.2.7 Summary

As both conditions formulated in equations 5.6 and 5.10 have to be fulfilled, the minimum number
of sub-carriers is given by

N ≥
{

γBu · τRMS η ≤ 1
2 ,

η
1−η γBu · τRMS otherwise. (5.18)

This relationship is depicted in figure 5.5.
Using Ts = N

B and T = 1
η Ts gives the maximum gross bit rate

Rb ≤ ηBu�. (5.19)

Obviously, the number of carriers does not influence the gross bit rate.
In table 5.2, the main communication parameters discussed so far are calculated for different

channel conditions, using the results from the radio channel measurement campaign. Overall, the

80 5 Application

Table 5.2. OFDM parameters for line-of-sight (LOS) and obstructed (OBS) indoor and outdoor envi-
ronments (channel model constant γ = 5, symbol efficiency η = 0.8, available bandwidth Bu = 10 MHz,
maximum object velocity vo = 100 km/h, carrier frequency fc = 17 GHz, τRMS values taken from [11])

Indoor (LOS) Indoor (OBS) Outdoor (LOS)
Min Mean Max Min Mean Max Min Mean Max

τRMS [ns] 2.54 11.32 32.69 3.82 7.55 11.75 3.71 25.28 52.85
Bc [MHz] 78.74 17.66 6.12 52.36 26.49 17.02 53.91 7.91 3.78
Ts [ns] 50.80 226.48 653.80 76.40 150.99 235.00 74.20 505.51 1057.00
f∆ [MHz] 19.69 4.42 1.53 13.09 6.62 4.26 13.48 1.98 0.95
N 1 2 7 1 2 2 1 5 11
τc 9917 2224 771 6594 3337 2144 6790 997 477

Table 5.3. Key parameters of the UbiCom OFDM transceiver

Number of sub-carriers N 16
Frequency separation f∆ 0.50 MHz
User bandwidth Bu 8 MHz
Symbol efficiency η 0.8
Bits per carrier � 2
Gross bit rate Rb 12.8 Mbit/s

maximum frequency separation is approximately 1 MHz and the minimum number of sub-carriers
is 11. In all cases, the relative coherence time τc is larger than 400, indicating that the channel can
be assumed quasi-static for at least 400 symbols.

At this point, we are able to specify an OFDM transceiver for the UbiCom project. This trans-
ceiver serves as a test case for the design trajectory, laid out in section 1.1.3. The key parameters
of the transceiver setup are listed in table 5.3. As argued, the setup applies FDMA in combination
with TDD to simultaneously accommodate a maximum of ten users. Its frequency spectrum is
shown in figure 5.6. The transceiver applies QPSK, possibly differentially, as a sub-symbol modu-
lation scheme.

Given these parameters, the relative coherence time τc is approximately 250. Therefore, to
estimate the channel and to synchronize the demodulator in time and frequency, we use a training
sequence. The training sequence is transmitted before the start of a series of symbols. The total
length of the series must be smaller than the relative coherence time. For instance, if we set the
series length to 32 symbols, each series contains 1 kbit of information. It should be noted that the
training overhead reduces the efficiency of the transmission scheme.

5.3 Implementation alternatives

To implement the mobile transceiver as described in section 5.2.7, we have to decide how to
partition the transceiver. Therefore, first an executable specification of the transceiver is written
in C with several different implementations of the functions. Then, cost estimates are made for
implementing these functions in hardware or in software. The costs for the hardware blocks are
estimated, using synthesizable descriptions in SystemC generated from the original C code.

The goal of these steps is to come up with design alternatives and their associated costs. This
information can be used to answer questions such as

• “How much power does it take to increase the data rate of the transceiver?” The data rate
can be raised for example by changing to a higher-order sub-symbol modulation scheme. This
probably also increments the costs, but it is unclear to what extent.

• “What is the cost difference between coherent and non-coherent (differential) sub-symbol mod-
ulation schemes?” Differential modulation increases the probability of bit errors, but it is
unknown what the gains are in terms of energy, speed and area.

5.3 Implementation alternatives 81

17.105 17.115 17.195

100 MHz

2 MHz

8 MHz

frequency (GHz)

(a) Spectrum assignment

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

frequency (MHz)

po
w

er
 s

pe
ct

ru
m

 m
ag

ni
tu

de
 (

dB
)

(b) Detailed spectrum for a single user

Figure 5.6. Spectrum assignment for the UbiCom OFDM transceiver.

• “What does pre-distortion cost?” Is it worthwhile to implement a pre-distortion scheme, as
it enables the reduction of the transmission power while maintaining the same performance
through a more effective use of the channel, as described in section 4.4?

The tools do not answer these questions directly as they cannot compare the performance and costs
qualitatively. However, they provide quickly the necessary information about the costs of certain
design choices.

5.3.1 Building blocks

A classic OFDM transceiver consists of a few basic building blocks. Each of these blocks can be
implemented in numerous ways, each resulting in different costs (area, delay, power). Furthermore,
the functionality of the block can be changed to arrive at a different transceiver setup.

5.3.1.1 Sub-symbol encoding/decoding

The sub-symbol encodings considered are all variants of QASK schemes. In particular, three
schemes are investigated: 4-ary QASK, alternatively known as QPSK (quadrature phase shift
keying), differential QPSK (DQPSK) and 16-ary QASK, alternatively known as QAM-16.

The bit error probability Pei
of QPSK for the ith sub-carrier is given by

Pei
= Q

(√
2
Ebi

N0

)
. (5.20)

82 5 Application

Differential encoding has a 3 dB penalty

Pei
= 2Q

(√
2
Ebi

N0

)
, (5.21)

and finally the bit error probability of QAM-16 is

Pei
=

3
4
Q

(√
1
5

Ebi

N0

)
+

1
4
Q

(√
9
5

Ebi

N0

)
. (5.22)

Both QPSK and QAM-16 require coherent demodulation and hence some form of channel esti-
mation and equalization. In differential QPSK, the information is encoded in the phase difference
between two consecutive sub-symbols. As a consequence, coherent demodulation is not necessary,
making channel estimation and equalization obsolete.

Differential encoding can be applied in frequency and in time. In the first case, symbols are
differentially encoded between two adjacent sub-carriers. In the latter, consecutive symbols (in
time) on the same sub-carrier are encoded differentially. Differential encoding is only possible if
the channel responses of the adjacent or the consecutive sub-carriers is approximately the same.

5.3.1.2 Fast Fourier transform

Numerous efficient implementations of the discrete Fourier transform are known in literature [14,
18, 59, 63], the so-called fast Fourier transforms (FFTs). Three implementations are taken into
consideration. The first two are different versions of the Cooley and Tukey radix-N FFT [18], and
the third is a combination of them, the so-called split-radix FFT [20].

• Radix-2 FFT: The key observation in a radix-2 implementation is that multiplication by ejπn

for n ∈ � is equal to multiplication by ±1, which are trivial operations. The order of the radix-2
FFT should be a power of 2.

• Radix-4: Additionally, in the radix-4 implementation, it is observed that multiplication by ej π
2 n

for n ∈ � is equal to multiplication with ±1 or ±j, again trivial operations. A drawback of the
radix-4 FFT is that the order of a radix-4 FFT should be a power of 4 instead of 2. However,
the number of non-trivial multiplications is lower than that when using a radix-2 FFT.

• Split-radix: The split-radix FFT combines the properties of the radix-2 and radix-4 FFTs. This
results in an implementation with an even lower number of non-trivial multiplications [76], while
the order should be a power of 2. A drawback is the slightly less regular structure.

The radix-2, radix-4 and split-radix butterfly structures are depicted in figure 5.7.

wk

x0

x1

x0 + x1

(x0 − x1)wk

(a) radix-2

x0

x1

x2

x3

x0 + x1 + x2 + x3

(x0 − x1 + x2 − x3)w2k

w3k

wk

w2k

−j

(x0 − jx1 − x2 + jx3)wk

(x0 + jx1 − x2 − jx3)w3k

(b) radix-4

x0

x1

x2

x3 w3k

wk

−j

x1 + x3

x0 + x2

(x0 + jx1 − x2 − jx3)w3k

(x0 − jx1 − x2 + jx3)wk

(c) split-radix

Figure 5.7. The butterfly structures for the radix-2, radix-4 and split-radix Fast Fourier Transforms
(FFTs).

All three implementations can be performed in-place, i.e., the intermediate results can be stored
in the same place as the original data. Consequently, the memory requirements do not increase
while performing an FFT. Other FFTs like the Winograd FFT [85] do not have this property and
require more memory space.

5.3 Implementation alternatives 83

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−2

−1

0

1

2

bit error rate P
e

fr
ac

tio
na

l b
its

 n
f

(a) QPSK – Eb = 1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−2

−1

0

1

2

bit error rate P
e

fr
ac

tio
na

l b
its

 n
f

(b) QAM-16 – Eb = 2.5

Figure 5.8. The number of fractional bits nf necessary to achieve the desired bit error probability Pe for
QPSK and QAM-16 sub-symbol modulation.

Bit reversal

A side effect of in-place calculation is that either the inputs or the outputs are bit reversed, i.e.,
they are not ordered sequentially, and thus they have to be sorted. In case of decimation in time
(DIT), the inputs have to be re-ordered and in case of decimation in frequency (DIF), the outputs.

However, if a DIT inverse Fourier transform in the modulator is followed by a DIF forward
transform in the demodulator, the re-ordering can be skipped, since the two re-ordering steps
effectively cancel each other. It should be noted that this approach leads to a different channel
assignment, which can be viewed as a scrambling step. Scrambling can be advantageous, as it
spreads localized errors.

Word length

To determine the minimum word length for the FFT, we use the expressions derived in section 4.5,
i.e., equations 4.67 and 4.68. Given a desired bit error probability, the number of fractional bits nf

can be calculated for QPSK and QAM-16 sub-symbol modulation schemes, as depicted in figures
5.8(a) and 5.8(b), respectively. Given a desired error probability of at least 10−6, both QPSK and
QAM-16 sub-symbol modulation require at least a single fractional bit (nf = 1).

To determine the number of integer bits necessary, we substitute equations 4.75 and 4.79 into
4.80. Given a desired bit error probability, the number of integer bits ni required can be calcu-
lated for QPSK and QAM-16 sub-symbol modulation schemes, as depicted in figures 5.9(a) and
5.9(b), respectively. Given a desired error probability of at least 10−6, QPSK sub-symbol mod-
ulation requires at least 2 integer bits (ni = 2) and QAM-16 modulation at least 5 integer bits
(ni = 5).

84 5 Application

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−2

−1

0

1

2

3

4

bit error rate (P
e
)

in
te

ge
r

bi
ts

 (
n i)

(a) QPSK – Eb = 1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

1

2

3

4

5

6

bit error rate (P
e
)

in
te

ge
r

bi
ts

 (
n i)

(b) QAM-16 – Eb = 2.5

Figure 5.9. The number of integer bits ni necessary to achieve the desired bit error probability Pe for
QPSK and QAM-16 sub-symbol modulation.

5.3.1.3 Cyclic prefix extension / removal

An OFDM symbol can be extended straightforwardly with a cyclic prefix by repeating the last
samples of the symbol. The cyclic prefix can be removed by discarding those samples if the correct
symbol timing is known from the timing synchronization.

5.3.1.4 Pre-distortion / equalization

As discussed in section 4.3.3, the multi-path channel causes an amplitude attenuation and a phase
rotation of each sub-symbol, given by the frequency response of the channel

z̃k
i′ = zk

i Hi. (5.23)

This effect can easily be compensated for, with a one-tap equalizer. A one-tap equalizer basically
consists of a complex multiplication to multiply the raw sub-symbol with the inverse of the estimate
of Hi.

The same approach can be used to pre-distort the sub-symbols in the modulator. A precondition
is that an accurate estimate of the channel response is available. This condition can only be met
if the channel can be considered quasi-static (which is the case, as argued in section 5.2.7).

5.3.2 Processor alternatives

To accommodate the software tasks, a processor core must be selected. Additionally, the core
has to implement the global control for the modules implemented in hardware. A prerequisite for
the selection of a suitable processor core is that a compiler, an assembler and a linker should be

5.3 Implementation alternatives 85

available in order to generate the object code for the functionality implemented in software (see
figure 1.3).

We have implemented two versions of the MIPS processor described in [53], called the µMIPS.
The µMIPS has a 32-bit RISC (reduced instruction set computer) architecture. It is selected
because of its simplicity, and because it can easily be modified. The data path of the first version
is depicted in figure 5.10. It supports all basic integer operations except division. A floating-point
unit is not included. The second version of the µMIPS has the same architecture except for the
multiplier, which has been omitted.

sign
extend

data
memory

pc

program
memory

read
register 1
read
register 2

write
register

write
data

read

read
data 1

data 2

registers

lo

hi

write
data

read
data

ALU

amount
shift

data

×

link address

address

lo

hi

��

instruction

address

Figure 5.10. Simplified data path of the µMIPS architecture. For clarity, the control path and the program
counter data path are excluded.

A compiler is constructed using the retargetable ANSI-C compiler LCC [26] originally developed
at Princeton University. For the assembler and linker, the GNU binutils are used. Instructions not
supported by the µMIPS architecture (e.g. an integer division) are emulated in software. The
compiler can either emulate integer multiplication or use the integer multiplier, if available.

Both versions of the µMIPS are described in SystemC. The code is fully synthesizable. Each
version of the µMIPS has been synthesized targeting different clock speeds. In addition, the Sys-
temC code is used to construct a cycle-accurate simulator. The simulator can execute the compiled
programs directly. It is used to estimate the cycle counts for the building blocks implemented in
software.

5.3.3 Cost estimates

All design alternatives will be constructed using a limited set of building blocks. The cost figures
for each block have to be calculated, using one (or more) of the methods presented in chapter 2.

To estimate the execution time and area of a block, a hardware description is generated. Subse-
quently, to estimate the clock period, the latency and the necessary area, we use a quick scheduling
step. The total area estimate is composed of two factors:

86 5 Application

• The combinatorial and non-combinatorial area, i.e., the area necessary to accommodate the
combinatorial and sequential gates

• The net interconnect area, i.e., the area forecasted to be used by the additional interconnect

These area estimates are used to predict the total capacitive load of the circuit. In combination
with an activity estimate obtained through simulation, these estimates are used to calculate an
estimate of the energy consumption of the block.

Of course, as absolute figures, the estimates of the energy consumption are not accurate. How-
ever, they do give a good estimate of the relative energy costs of the building blocks. Therefore,
the results of the partitioning on the energy consumption should not be interpreted in terms of
absolute numbers, i.e., quantitatively. Instead, one should see the results qualitatively: one solution
is better or worse than another in terms of energy consumption.

On the other hand, the area and delay estimates are much more accurate. We verified this by
fully synthesizing a few selected blocks and comparing the results with the estimates. All tests
show close agreement between the synthesis results and the estimates obtained after scheduling.

5.3.4 Implementation alternatives

With the building blocks presented in the previous section, we studied several alternatives to
implement an OFDM modulator, demodulator or combined transceiver.

5.3.4.1 Stand-alone modulator

Figure 5.11 shows three alternatives to implement a stand-alone OFDM modulator. They apply
QPSK, differential QPSK and QAM-16 sub-symbol modulation, respectively. Except for the differ-
ential QPSK sub-symbol modulation, pre-distortion of the sub-symbols can optionally be applied
in order to improve the performance (expressed as the probability of a bit error) as discussed in
section 4.4.

modulation demodulation

IFFT

(a) QPSK modulator

IFFT

differential

(b) differential QPSK modulator

IFFT

(c) QAM-16 modulator

FFT

(d) QPSK demodulator

FFT

differential

(e) differential QPSK demodulator

FFT

(f) QAM-16 demodulator

Figure 5.11. Stand-alone OFDM modulation and demodulation implementation alternatives.

5.3 Implementation alternatives 87

5.3.4.2 Stand-alone demodulator

Figure 5.11 also shows three alternatives to implement a stand-alone OFDM demodulator. The
first and third coherently decode QPSK-encoded or QAM-16-encoded sub-symbols and thus require
an accurate channel estimation and equalization. The second decodes differentially encoded sub-
symbols and consequently does not need coherent detection.

Synchronization aspects like coarse-grained and fine-grained frequency synchronization or time
synchronization are not taken into account, nor is channel estimation. As the relative coherence
time τc is fairly large for all environments (see table 5.2), the channel can be assumed quasi-static.
Therefore, in the current setup, synchronization and channel estimation will be performed only at
the start of a series of symbols. Thus, the impact of the synchronization and channel estimation
algorithms will be small with respect to the symbol demodulation, and these are therefore neglected.

5.3.4.3 Transceiver

A transceiver combines an OFDM modulator and a demodulator in one device. Consequently, the
device has to implement two different algorithms. Possibly, the device’s resources can be shared
between the algorithms.

A few straightforward implementations for the transceiver are constructed by combining the
modulator and demodulator alternatives presented in the previous sections. Additionally, in
figure 5.12, six alternatives are presented to implement an OFDM transceiver. The combined
QPSK, DPQSK and QAM-16 transceivers make use of a modified FFT block, which is capable of
performing both the forward and the inverse transform. Possibly, this resource sharing reduces the
area cost. In contrast, the DIT-DIF alternatives use two separate FFT blocks. However, they do
not re-order the data, as discussed in section 5.3.1.2, possibly leading to a faster implementation.

5.3.5 Partitioning results

We used the partitioning tool described in chapter 3 to find the best architecture for the OFDM
transceiver. We partitioned the transceiver several times for several optimization goals, under
different constraints. The results are used to span the three-dimensional design space (area, power
and latency). To aid the designer in identifying the trade-offs, we first partitioned the OFDM
modulator and demodulator separately. Subsequently, we applied the same procedure to partition
the combined modulator–demodulator. The results are discussed in the next sections. Moreover,
trends observed in the partitioning process are described.

5.3.5.1 Stand-alone modulator

The normalized partitioning results for the three implementation alternatives for the stand-alone
modulator are plotted in figure 5.13. It is clear that the costs for a QPSK modulator, a differential
QPSK modulator or a QAM-16 modulator do not differ significantly.

In figures 5.14 and 5.15, the results are plotted for QPSK and QAM-16 modulation with and
without pre-distortion. It is apparent that the addition of a pre-distortion unit increases all costs.
However, the possible improvement in performance caused by such a unit is not incorporated in
the figure.

5.3.5.2 Stand-alone demodulator

Figure 5.16 shows the normalized partitioning results for the three implementation alternatives
for the stand-alone demodulator. In contrast to the stand-alone modulator, the differential QPSK
demodulator is obviously less expensive than the coherent QPSK demodulator, because it does not
require an equalizer. The difference between QPSK and QAM-16 sub-symbol modulation schemes
remains small.

88 5 Application

transceiver

xFFT

(a) combined QPSK transceiver

xFFT

differential

differential

(b) combined differential QPSK transceiver

xFFT

(c) combined QAM-16 transceiver

FFT

IFFT

decimation
in time

decimation
in frequency

(d) DIT-DIF QPSK transceiver

FFT

differential

IFFT

differential decimation
in time

decimation
in frequency

(e) DIT-DIF differential QPSK transceiver

decimation
in time

decimation
in frequency

FFT

IFFT

(f) DIT-DIF QAM-16 transceiver

Figure 5.12. Transceiver (combined modulation and demodulation) implementation alternatives.

5.3.5.3 Transceiver

In figure 5.17, the normalized partitioning results for the alternatives for the combined transceiver
are plotted. Still the differential QPSK transceiver is the least expensive. In figures 5.18, 5.19
and 5.20, the results of the combined transceivers are compared with their DIT-DIF (scrambled)
equivalents for QPSK, differential QPSK and QAM-16 sub-symbol modulation respectively. The
DIT-DIF transceivers show both an improvement in execution time and in energy consumption.

5.3.5.4 General observations

Examining the partitioning results in more detail, we can identify a few trends. In general, we
have seen that when implementing a certain functionality, realizations with dedicated hardware is
faster and consumes less energy than an implementation on a general-purpose processor. It must be
noted that the processors used are probably a bit heavyweight for their purpose. Nevertheless, the
difference in cost is quite large, and an implementation with a lighter processor will probably be
still more expensive in terms of energy and execution time than an implementation with dedicated
hardware.

Moreover, we observe the following:

• Area optimization favors software implementation. This observation is quite expected, as a
processor is always required in a valid partitioning and as a consequence a trivial solution is to
implement all functionality in software using the smallest processor.

• Area optimization favors a single large memory, whereas time and energy optimization favors
dedicated distributed memories.

5.3 Implementation alternatives 89

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.13. Normalized partitioning results for the stand-alone QPSK modulator (×), the stand-alone
differential QPSK modulator (◦), and the stand-alone QAM-16 modulator (�).

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.14. Normalized partitioning results for the stand-alone QPSK modulator with (◦) and without
(×) pre-distortion.

90 5 Application

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.15. Normalized partitioning results for the stand-alone QAM-16 modulator with (◦) and without
(×) pre-distortion.

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.16. Normalized partitioning results for the stand-alone QPSK demodulator (×), the stand-alone
differential QPSK demodulator (◦), and the stand-alone QAM-16 demodulator (�).

5.3 Implementation alternatives 91

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.17. Normalized partitioning results for the combined QPSK transceiver (×), the combined
differential QPSK transceiver (◦), and the combined QAM-16 transceiver (�).

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.18. Normalized partitioning results for the combined QPSK transceiver, both the normal (×)
and the scrambled (◦) version.

92 5 Application

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.19. Normalized partitioning results for the combined differential QPSK transceiver, both the
normal (×) and the scrambled (◦) version.

0510152025

0

5

10

15

20

25

power

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

la
te

nc
y

0 1 2 3

0

5

10

15

20

25

area

po
w

er

Figure 5.20. Normalized partitioning results for the combined QAM-16 transceiver, both the normal (×)
and the scrambled (◦) version.

5.4 Summary 93

• A decimation in time radix-4 FFT in hardware gives the best results with respect to execution
time and energy consumption.

• A decimation in time split-radix FFT is always selected in software, of course except when the
decimation in frequency is explicitly required, but then still the split-radix is used.

• A combined FFT engine gives little overhead in terms of execution time and energy consump-
tion. It is practically always selected, except when maximum speed or minimum energy is
desired.

• To implement a combined modulator and demodulator, the FFT blocks without bit reordering
give the best results in terms of execution time and and energy consumption.

It must be noted that these are trends observed for specific implementations. Other implementa-
tions and different optimization settings may yield other results.

5.4 Summary

To test and verify whether the design flow introduced in chapter 3 is complete, and whether the
implemented tools work correctly, we implemented an OFDM transceiver. First, the interdependen-
cies between the key communication parameters were described. Subsequently, these parameters
could be determined quantitatively for the UbiCom scenario, given the properties of the multi-path
channel in the 17 GHz band and the graphic quality required for augmented reality.

Using the newly found specification of the OFDM transceiver, we identified various alternative
implementations. These alternatives were used to specify various algorithms, each implementing
an OFDM modulator or demodulator in a different manner. Finally, the consequences for the area,
execution time and energy consumption were evaluated using the design tools. In this process, we
explored the design spaces of a single modulator, a single demodulator, and a combined transceiver.

In the UbiCom program, we can directly apply the results of the transceiver specification and
the subsequent design space explorations. We can use their outcome to determine the best trade-off
between cost and performance for the various implementations.

6

Conclusions

Today’s designs are characterized by their ever increasing size and complexity. A key problem is
that initially a designer has only insufficient or at least inaccurate information available to make
proper decisions. Moreover, the overwhelming number of options and the pace with which they
change, render it impossible for a human to make a sound decision about the complex designs.
He simply cannot predict the consequences of a particular choice accurately. Therefore, tools to
quickly identify the trade-offs are indispensable in making well-founded design decisions.

Another problem that a designer faces is that traditional hardware description languages no
longer suffice to express the increasing complexity. Therefore, designers turn to general program-
ming languages like C or C++ for the initial high-level specification of the algorithms to be imple-
mented. This causes inconsistencies in the design flow (see figure 1.3), as these languages are not
easily translated to hardware description languages like VHDL or Verilog.

This book describes several methods and tools to come to a consistent design flow, starting
with a high-level specification in C. The resulting design flow is depicted in figure 6.1. An essential
part in the flow is a new tool to solve the hardware–software partitioning problem. The tool
finds an optimal architecture to implement one or more algorithms. The architecture is optimal
with respect to one of the design constraints, which include the maximum allowed chip area, the
maximum execution time and the maximum energy consumption. The partitioning problem is
solved using mathematical programming, more precisely, using a mixed integer linear program. To
deal with the uncertainties inherent to high-level design, the linear program uses fuzzy instead of
crisp numbers to represent the coefficients. The linear program is constructed in such a way that
it optimizes the most probable outcome, while minimizing the chances of finding a worse solution
and maximizing the chances of finding a better one.

Apart from the optimal architecture, the partitioning tool gives a prediction of the total chip
area, execution time and energy consumption. The quick operation allows us to spend more time
on the exploration of the algorithms, and ascertains that crucial decisions are based on facts and
not on mere assumptions or guesses. Ultimately, this prevents that we end up with a product that
does not meet its specifications.

As the successful operation of the partitioning tool depends on the quick availability of accurate
estimates for area, latency and energy consumption, we implemented an additional tool to convert
the original C code into, preferably synthesizable, SystemC. This novel approach was taken because
existing solutions that translate C code into an HDL were inadequate, at least for our purposes.
The automated conversion from C to SystemC enables a closed design flow where tedious manual
rewrites are no longer necessary. Furthermore, the automated conversion eliminates the chances of
coding errors. After the generation of synthesizable SystemC code, a partial synthesis step quickly
delivers reliable cost estimates. Partial synthesis was chosen to prevent the otherwise necessary
modeling of the synthesis tools.

Of course, the proof of the pudding is in the eating, and therefore, the newly crafted tools were
put to the test in the design of an OFDM transceiver as specified in the Ubiquitous Communications

96 6 Conclusions

RTL
code

behavioral
synthesis

logic synthesis

behavioral
code

netlist
gate-levelexecutable

code

linking

object
code

assembly
compilation

program

hardware-software
partitioning

algorithms

C to SystemC
conversion

cost estimates

Figure 6.1. Final design flow, using the tools developed in chapter 3.

program. Using the new methods and tools, we were able to quickly design a power-efficient OFDM
transceiver. However, before optimizing the implementation of the transceiver with respect to area,
latency and energy costs, we investigated several techniques to reduce the energy consumption of
the OFDM transceiver beforehand.

Multi-carrier systems such as OFDM allow the assignment of different energy levels to each
sub-carrier. This enables pre-distortion of the transmitted sub-symbols in order to improve the
performance. We developed an optimization scheme that either minimizes the probability of a bit
error for a given energy budget, or that minimizes the total energy necessary to attain a desired
bit error rate.

Furthermore, reckoning with a fixed-point implementation of the OFDM transceiver, we inves-
tigated the effects of such an implementation on the performance of the transceiver. The results are
simple analytical expressions for the performance of uniformly quantized and soft-limited OFDM
systems, so that the design space can be quickly explored, and the minimum number of integer
and fractional bits needed to achieve the desired performance can be determined.

Looking forward, we foresee a further increase in the (ab)use of general programming languages
as system specification languages. The ever growing complexity of the devices envisioned simply
cannot be expressed with the current languages, as they lack the level of abstraction necessary to
cope with the complexity. Of course, languages like C, C++ or even Matlab were never intended
for this purpose, but just because of their popularity and widespread use, they set the standard.

Furthermore, we expect energy consumption to become an ever more important constraint, if
not the most important constraint, for future designs. Design automation tools must take energy
consumption into account. This will require that knowledge of the data to be processed is made
available to the synthesis tools in some form or another.

6 Conclusions 97

Looking beyond single-embedded systems, a similar design methodology can be used to imple-
ment networks of embedded systems, such as wireless sensor networks [2]. In such networks, the
individual nodes collect, process and exchange information, and a balance must be found between
data processing and communication to increase the lifetime of the network as a whole. The data
flow-oriented approach introduced in chapter 3 nicely fits this emerging field, and as a consequence
similar optimization strategies can be used.

A

Ubiquitous Communications

The UbiCom program is a multidisciplinary research program at Delft University of Technol-
ogy. It aims to develop wearable systems for mobile multimedia communications, with a focus on
(i) real-time communication and processing of visual information for context-aware applications
such as augmented reality, (ii) high bit rate communication at 17 GHz and (iii) architectural issues
and performance optimization of heterogeneous communication and computation systems.

A.1 Applications

In a scenario such as that depicted in UbiCom, all kinds of applications become feasible. Apart from
applications already envisioned for GPRS (general packet radio services) devices, also applications
specifically exploiting the augmented-reality aspects become viable.

The possible applications can be divided into several categories:

• Geographical information services: A geographical information system (GIS) can provide the
user with information related to his current location. This information can be represented
graphically or textually to the user in the form of arrows, highlighted objects, text balloons
and in many other ways. Exemplary applications include
– route planners, and
– guided tours (in cities, museums, etc.).

• Remote information services: All kinds of applications requiring remote expertise or informa-
tion become possible. To name a few
– up-to-date traffic information,
– online interactive manuals, and
– maintenance supervised by remote experts.

• Entertainment: Of course, games are challenging applications, as they usually demand a high
level of responsiveness and accuracy. More than one user may play, in games like:
– 3D quake: play hide and seek and shoot in the “real” world, and
– virtual mazes.

• Military: In military applications, soldiers at a battlefield are supplied with up to date maps,
strategic overviews and targeting information.

A.2 Necessities and consequences

To enable the applications mentioned above, a number of prerequisites have to be fulfilled. The
most important are

100 A Ubiquitous Communications

• Wearable: The terminal and display should be easy to wear, and ideally the user should not be
hindered or restricted in any way by carrying and operating them. Consequently, these demands
impose two important restrictions on the devices:
– Lightweight: Of course the devices used should be lightweight, i.e., the total weight should

be less than half a kilogram, but preferably the device should weigh the same as a cellular
phone.1

– Wireless: As cables and wires severely limit the freedom of movement of a user, they cannot
be applied.

As a consequence, power cables and large and heavy battery packs are not suitable. Therefore,
the devices should not consume more than the limited amount of battery power available. Other
alternative sources of energy, such as solar panels or fuel cells, are not feasible either because
of their limited capacity or because of their weight.

• Remote information retrieval: In almost all applications envisioned, the user needs to access
data that is not available beforehand, because the user needs up to date data, specific to his
current position and current activity. As a consequence, the data required cannot be carried
along on some storage medium, but it has to be remotely requested and fetched from a distant
information source. This implies the use of some form of wireless communication.

• High-quality graphics: As the user’s view of the real world is augmented with additional visual
information, the graphics and images displayed have to be precisely aligned with the real world.
Moreover, they have to be updated frequently to adjust for minute changes in the user’s view,
caused by movement of the user himself, his head, or even his eyes. Otherwise the user might
become disoriented and dizzy, as the added visual information does not match the real world
anymore.

• Localization and determination of direction of view: Especially for GIS and military applica-
tions, the user’s position and direction of view should be known, to enhance his view with
relevant information. Therefore, positional information about the user has to be communicated
when information is requested.

A.3 Preliminary choices

In the UbiCom research program, a number of choices were already made at the start of the project.
These include: the use of a high-speed data link at a carrier frequency of 17GHz, the use of OFDM
as a modulation scheme, and the type of infrastructure used. These choices are discussed in more
detail in the next sections.

A.3.1 Carrier frequency and OFDM modulation

The choice for the 17 GHz band is primarily based on criteria for the analog front-end design. A
carrier frequency was targeted that would allow for integrated front-ends. Integration at higher
frequencies was not considered feasible within the life span of the project.

The choice for 17 GHz as carrier frequency also influences the choice for OFDM as modulation
scheme. At this frequency, the wavelength of the radio wave is approximately 1.7 cm. Therefore,
the channel is expected to exhibit severe frequency-selective fading at the data rates envisioned.
To combat the resulting inter-symbol interference, OFDM was selected.

A.3.2 Infrastructure

The device carried around by the user is part of a larger infrastructure. A cellular network is
envisioned like that depicted in figure A.1. It consists of four parts:

1 Other issues like form factor and esthetics are equally important, but are neglected at this point, as they
primarily impose limitations on the final construction of the device and not on the electronics within.

A.3 Preliminary choices 101

• Mobile terminal: The device carried by the user capable of both augmenting the user’s view and
communicating with the base stations to send positional information and to retrieve requested
information.

• Base stations: Each base station serves a single cell. The wearable devices communicate with
one base station at a time.

• Data servers: The data servers process the user’s requests and subsequently retrieve the infor-
mation required. For instance, the GIS databases required in some applications are implemented
in the data servers.

• Backbone: The backbone interconnects the base stations and the data servers. It also connects
to the internet if required.

A base station should be able to serve and accommodate at least ten users.

data
server

data
server

base
station

base
station

backbone

Figure A.1. Infrastructure in the UbiCom scenario.

B

Mixed integer programming

B.1 Linear programming

In general, a linear programming problem has the form

maximize
c1x1 + c2x2 + . . . + cnxn,

subject to
a11x1 + a12x2 + . . . + a1nxn ∼ b1,
a21x1 + a22x2 + . . . + a2nxn ∼ b2,
...
am1x1 + am2x2 + . . . + amnxn ∼ bm,

bounded to
l1 ≤ x1 ≤ u1,
l2 ≤ x2 ≤ u2,
...
ln ≤ xn ≤ un,

(B.1)

where ∼ can be any of ≤, ≥ or =. The upper and lower bounds ui and li may be positive or
negative infinity, or any real number. The known constants and unknown variables of this program
are

objective function coefficients c1, . . . , cn,
constraint coefficients a11, . . . , amn,
constraint limits b1, . . . , bm,
lower bounds l1, . . . , ln,
upper bound u1, . . . , un,
variables x1, . . . , xn.

Equation B.1 can be expressed in matrix form as follows:

104 B Mixed integer programming

maximize

[
c1 c2 . . . cn

]

⎡

⎢⎢⎢⎣

x1

x2

...
xn

⎤

⎥⎥⎥⎦ ,

subject to ⎡

⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

...
xn

⎤

⎥⎥⎥⎦ ∼

⎡

⎢⎢⎢⎣

b1

b2

...
bn

⎤

⎥⎥⎥⎦ ,

bounded to ⎡

⎢⎢⎢⎣

l1
l2
...
ln

⎤

⎥⎥⎥⎦ ≤

⎡

⎢⎢⎢⎣

x1

x2

...
xn

⎤

⎥⎥⎥⎦ ≤

⎡

⎢⎢⎢⎣

u1

u2

...
un

⎤

⎥⎥⎥⎦ ,

(B.2)

which leads to
maximize cT x,
subject to Ax ∼ b,
bounded to l ≤ x ≤ u.

(B.3)

In practice, general linear programming problems are solved very quickly by the Simplex algo-
rithm. The algorithm visits the corner points of the search space (the region that satisfies Ax ∼ b),
where the optimal solution is known to exist. However, the Simplex algorithm is not guaranteed to
reach a solution in polynomial time. The ellipsoid algorithm and Karmarkar’s algorithm do reach
a solution in polynomial time, however.

B.2 Mixed integer programming

In mixed integer programming, any of the variables x1, . . . , xn of a linear program can be restricted
to integer or binary values. In general, integer programming is NP-hard.

B.3 Boolean algebra

In chapter 3, Boolean algebra is used to set up the partitioning MILP. Therefore, the Boolean
equations have to be substituted by one or more arithmetical (in)equality constraints.

B.3.1 Boolean inversion

A Boolean inverse
y = x (B.4)

is replaced by a single equality
y = 1 − x, (B.5)

provided that x and y are binary-valued variables.

B.3 Boolean algebra 105

B.3.2 Boolean and

A Boolean product

y =
n∧

i=1

xi = x1 · x2 · . . . · xn (B.6)

is replaced by two inequalities ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

xi ≥ n · y,

n∑

i=1

xi ≤ y + (n − 1),

(B.7)

provided that xi and y are binary-valued variables.

B.3.3 Boolean or

A Boolean sum

y =
n∨

i=1

xi = x1 + x2 + . . . + xn (B.8)

is replaced by two inequalities ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

xi ≥ y,

n∑

i=1

xi ≤ n · y,

(B.9)

again provided that xi and y are binary-valued variables.

C

Possibilistic linear programming

C.1 Introduction

In this appendix, we try to solve a possibilistic linear program (LP) given by

minimize
c̃1x1 + c̃2x2 + . . . + c̃nxn,

subject to
ã11x1 + ã12x2 + . . . + ã1nxn ∼ b̃1,

ã21x1 + ã22x2 + . . . + ã2nxn ∼ b̃2,
...
ãm1x1 + ãm2x2 + . . . + ãmnxn ∼ b̃m,

bounded to
l1 ≤ x1 ≤ u1,
l2 ≤ x2 ≤ u2,
...
ln ≤ xn ≤ un,

(C.1)

or in short
minimize c̃T x,

subject to Ãx ≤ b̃,
bounded to l ≤ x ≤ u,

(C.2)

where c̃, Ã and b̃ are the imprecise coefficients for the objective, constraints and limits, respectively.
In case the imprecise coefficients are represented by triangular fuzzy numbers (see section 3.6),

we can solve equation C.2 using Zimmermann’s fuzzy programming method [87] with the normal-
ization process described in [38].

C.2 Fuzzy objective coefficients

First, consider the case of imprecise objective coefficients c̃ and precise (or crisp) constraint
and limit coefficients. As x is not fuzzy but crisp, minimizing c̃x is equivalent to minimizing
{clx, cmx, cux}. Instead of simultaneously minimizing these three objectives, we will minimize
cmx, maximize (cm − cl)x, and minimize (cu − cm)x, i.e.,

minimize c̃x ⇒

⎧
⎨

⎩

minimize z1 = cmx,
maximize z2 = (cm − cl)x,
minimize z3 = (cu − cm)x.

(C.3)

108 C Possibilistic linear programming

This means minimizing the most possible value of the imprecise objective, while maximizing the
possibility of a lower cost and minimizing the risk of a higher cost, respectively.

To solve equation C.3, we use Zimmermann’s fuzzy linear programming approach using the min
operator, in combination with the linear membership functions of the three objective functions

µz1 =

⎧
⎪⎪⎨

⎪⎪⎩

1 if z1 < zl
1,

z1 − zu
1

zl
1 − zu

1

if zl
1 ≤ z1 ≤ zu

1 ,

0 if z1 > zu
1 ,

(C.4)

µz2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if z2 < zl
2,

z2 − zl
2

zu
2 − zl

2

if zl
2 ≤ z2 ≤ zu

2 ,

1 if z2 > zu
2 ,

(C.5)

and µz3 similar to µz1 . The lower and upper bounds zl
i and zu

i of an objective function zi are given
by

zl
i = min

x∈X
zi, (C.6)

zu
i = max

x∈X
zi, (C.7)

for all i ∈ 1, 2, 3, and where X = {x | Ax ≤ b, l ≤ x ≤ u} is the solution space.
With Zimmermann’s method, the membership functions zi are maximized simultaneously. Thus

we arrive at the single objective crisp LP given by

maximize
λ,

subject to
µzi

≥ λ, ∀i ∈ (1, 2, 3),
Ax ≤ b,

bounded to
l ≤ x ≤ u,

(C.8)

which can be solved using a standard LP solver.

C.3 Fuzzy objective, constraint and limit coefficients

If, not only the fuzzy objective function c̃ is imprecise but also the constraint Ã and limit b̃
coefficients, the same approach as that presented in the previous section can be used. First however,
we need to convert the imprecise constraints into crisp ones using the fuzzy ranking concept. All
constraints with imprecise coefficients can be replaced by three auxiliary constraints [65]

Aα
l x ≤ bα

l , (C.9)
Aα

mx ≤ bα
m, (C.10)

Aα
ux ≤ bα

u , (C.11)

where α is the minimal acceptable possibility, specified by the designer. From figure C.1, it can be
seen that

cα
m = cm, (C.12)
cα
l = αcm + (1 − α)cl, (C.13)

cα
u = αcm + (1 − α)cu. (C.14)

Once α is known, we again have crisp constraints with a fuzzy objective.

C.3 Fuzzy objective, constraint and limit coefficients 109

πc

c
cl cucα

l cα
u

α

cα
m

0

1

Figure C.1. Minimal acceptable possibility α of a triangular fuzzy number c̃ = {cl, cm, cu}.

References

1. G. Aigner, A. Diwan, D.L. Heine, M.S. Lam, D.L. Moore, B.R. Murphy, and C. Sapuntzakis. An
overview of the SUIF2 compiler infrastructure. http://suif.stanford.edu.

2. Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102–114, August 2002.

3. A. Allan, D. Edenfeld, W.H. Joyner, Jr., A.B. Kahng, M. Rodgers, and Y. Zorian. 2001 technology
roadmap for semiconductors. Computer, 35(1):42–53, January 2002.

4. Charles J. Alpert, Anirudh Devgan, and Chandramouli V. Kashyap. RC delay metrics for performance
optimization. IEEE Transactions on Computer-Aided Design, 20(5):571–582, May 2001.

5. H.B. Bakoglu. Circuits, interconnections, and packaging for VLSI. Addison-Wesley Publishing Com-
pany, Inc., Reading, MA, 1990.

6. Paolo Banelli. Theoretical analysis and performance of OFDM signals in nonlinear fading channels.
IEEE Transactions on Wireless Communications, 2(2):284–293, March 2003.

7. Paolo Banelli and Saverio Cacopardi. Theoretical analysis and performance of OFDM signals in
nonlinear AWGN channels. IEEE Transactions on Communications, 48(3):430–441, March 2000.

8. Jan-Jaap van de Beek, Magnus Sandell, Mikael Isaksson, and Per Ola Börjesson. Low-complex frame
synchronization in OFDM systems. In Proceedings of the 4th IEEE International Conference on Uni-
versal Personal Communications, pages 982–986, November 1995.

9. J.A.C. Bingham. Multicarrier modulation for data transmission: An idea whose time has come. IEEE
Communications Magazine, 9:5–14, May 1990.

10. J.A.C. Bingham. ADSL, VDSL and multicarrier modulation. Wiley, New York, 2000.
11. A. Bohdanowicz. Wideband indoor and outdoor radio channel measurements at 17 GHz. Technical

report, Delft University of Technology, Delft, The Netherlands, February 2000.
12. A. Bohdanowicz, G.J.M. Janssen, and S. Pietrzyk. Wideband indoor and outdoor multipath channel

measurements at 17 GHz. IEEE Proceedings of Vehicular Technology Conference, pp. 1998–2003,
Amsterdam, The Netherlands, September 1999.

13. C. Bruma. Systems-on-a-chip architecting. PhD thesis, Delft University of Technology, December
1999. ISBN: 90-5326-030-7.

14. C. Sidney Burrus and Peter W. Eschenbauer. An in-place, in-order prime factor FFT algortihm. IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(4):806–817, August 1981.

15. C. Chen and M. Ahmadi. Register-transfer-level power estimation based on technology decomposition.
IEE Proceedings on Circuits, Devices and Systems, 150(5):411–415, October 2003.

16. K.-T. Cheng and V.D. Agrawal. An entropy measure for the complexity of multi-output boolean
functions. In Proceedings of the 27th ACM/IEEE Design Automation Conference, pp. 302–305, 1990.

17. P. Christie. Rent exponent prediction methods. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 8(6):679–688, December 2000.

18. James. W. Cooley and John. W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19:297–301, 1965.

19. W.E. Donath. Placement and average interconnection lengths of computer logic. IEEE Transactions
on Circuits and Systems, CAS-26(4):272–277, April 1979.

20. P. Duhamel and H. Hollmann. Split-radix FFT algorithm. Electronic Letters, 20(1):14–16, January
1984.

112 References

21. W.C. Elmore. The transient response of damped linear networks with particular regard to wideband
amplifiers. Journal of Applied Physics, 19:55–63, January 1948.

22. The European table of frequency allocations and utilisations covering the frequency range 9 kHz to
275 GHz. European Radiocommunications Committee (ERC), January 2002.

23. Radio broadcasting systems; digital audio broadcasting (DAB) to mobile, portable and fixed receivers.
ETSI, 1995.

24. Broadband radio access networks (BRAN); HIPERLAN type 2; System overview. ETSI, February
2000.

25. UMTS terrestrial radio access (UTRA); concept evaluation. ETSI, December 1997.
26. David R. Hanson and Christopher W. Fraser. A retargetable C compiler: Design and implementation.

Addison-Wesley Publishing Company, Inc., 1995.
27. Leo Hellerman. A measure of computational work. IEEE Transactions on Computers, C-22:439–446,

May 1972.
28. IEEE Std 802.11-2007, IEEE standard for information technology – telecommunications and informa-

tion exchange between systems – local and metropolitan area networks – specific requirements. IEEE,
2007.

29. IEEE Std 1666-2005, IEEE standard SystemC language reference manual. IEEE, 2005.
30. Leon W. Couch II. Digital and analog communication systems. Macmillan Publishing Company,

New York, 1993.
31. Gerard J.M. Janssen. Robust receiver techniques for interference-limited radio channels. PhD thesis,

Delft University of Technology, 1998.
32. Irving Kalet. The multitone channel. IEEE Transactions on Communications, 37(2):119–124, February

1989.
33. I. Karkowski. Performance driven synthesis of digital systems. PhD thesis, Delft University of Tech-

nology, December 1995. ISBN: 90-5326-022-6.
34. H. Keding, M. Willems, M. Coors, and H. Meyr. Fridge: a fixed-point design and simulation environ-

ment. In Proceedings of Design, Automation and Test in Europe (DATE), pp. 429–435, 1998.
35. A.C.J. Kienhuis. Design space exploration of stream-based dataflow architectures: Methods and tools.

PhD thesis, Delft University of Technology, January 1999. ISBN: 90-5326-029-3.
36. Seehyun Kim, Ki-Il Kum, and Wonyong Sung. Fixed-point optimization utility for c and C++ based

digital signal processing programs. IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, 45(11):1455–1464, November 1998.

37. R.L. Lagendijk. Ubiquitous communications (UbiCom) – updated technical annex. Technical report,
Delft University of Technology, Delft, The Netherlands, January 2000.

38. Young-Jou Lai and Ching-Lai Hwang. A new approach to some possibilistic linear programming
problems. Fuzzy Sets and Systems, 49(2):121–133, 1992.

39. M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno. Cosimulation-based power estimation for system-
on-chip design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10(3):253–266,
June 2002.

40. P. Lall. Tutorial: Temperature as an input to microelectronics-reliability models. IEEE Transaction
on Reliability, 45(1):3–9, March 1996.

41. Bernard S. Landman and Roy L. Russo. On a pin versus block relationship for partitions of logic
graphs. IEEE Transactions on Computers, C-20(12):1469–1479, December 1971.

42. S.Y. Liao. Towards a new standard for system-level design. In Proceedings of the 8th international
workshop on hardware/software codesign, pp. 2–6, 2000.

43. S.M. Loo, B.E. Wells, N. Freije, and J. Kulick. Handel-C for rapid prototyping of VLSI coprocessors
for real time systems. In Proceedings of the 34th Southeastern Symposium on System Theory, pp. 6–10,
2002.

44. P.R. van der Meer. Low-power deep sub-micron CMOS logic - sub-threshold current reduction. PhD
thesis, Delft University of Technology, January 2003. ISBN: 90-9016-408-1.

45. Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill, Inc., New York,
1994.

46. Gorden E. Moore. Cramming more components onto integrated circuits. Electronics Magazine,
38(8):53–59, April 1965.

47. Paul. H. Moose. A technique for orthogonal frequency division multiplexing frequency offset correction.
IEEE Transactions on Communications, 42(10):2908–2914, October 1994.

48. Nationaal frequentieplan 2002 (NFP). Ministerie van Verkeer en Waterstaat – Telecommunicatie en
Post, 2002.

References 113

49. M. Nemani and F.N. Najm. High-level area and power estimation for vlsi circuits. IEEE Transactions
on Computer-Aided Design, 18(6):697–713, June 1999.

50. Hideki Ochiai and Hideki Imai. Performance analysis of deliberately clipped OFDM signals. IEEE
Transactions on Communications, 50(1):89–101, January 2002.

51. S. Oraintara, Y.J. Chen, and T.Q. Nguyen. Integer fast fourier transform. IEEE Transactions on
Signal Processing, 50(3):607–618, March 2002.

52. W. Pasman and F.W. Jansen. Distributed low-latency rendering for mobile AR. IEEE and ACM
International Symposium on Augmented Reality, pages 107–113, October 2001.

53. David A. Patterson and John L. Hennessy. Computer organization & design: The hardware/software
interface. Morgan Kaufmann Publishers, Inc., second edition, 1997.

54. P.Z. Peebles, Jr. Probability, random variables, and random signal principles. McGraw-Hill, Inc., third
edition, 1993.

55. Thierry Pollet, Mark van Bladel, and Marc Moeneclaey. BER sensitivity of OFDM systems to carrier
frequency offset and wiener phase noise. IEEE Transactions on Communications, 43(2/3/4):191–193,
February/March/April 1995.

56. Miodrag Potkonjak and Jan Rabaey. Area-time high level synthesis laws: theory and practice. VLSI
Signal Processing Workshop, pages 53–62, October 1994.

57. J.A. Pouwelse. Power management for portable devices. PhD thesis, Delft University of Technology,
October 2003. ISBN: 90-6464-993-6.

58. Robert A. Powers. Batteries for low power electronics. Proceedings of the IEEE, 83(4):687–693, April
1995.

59. Robert D. Preuss. Very fast computation of the radix-2 discrete fourier transform. IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-30(4):595–607, August 1982.

60. Robert Price. A useful theorem for nonlinear devices having gaussian inputs. IRE Transactions on
Information Theory, 4(2):69–72, June 1958.

61. John G. Proakis. Digital communications. McGraw-Hill, Inc., fourth edition, 2001.
62. Jan M. Rabaey and Massoud Pedram, editors. Low power design methodologies. Kluwer Academic

Publishers, 1996.
63. Charles M. Rader and N.M. Brenner. A new principle for fast fourier transformation. IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, 24(3):264–266, June 1976.
64. A. Raghunathan, S. Dey, and N.K. Jha. High-level macro-modeling and estimation techniques for

switching activity and power consumption. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 11(4):538–557, August 2003.

65. Jaroslav Ramı́k and Josef R̆́ımánek. Inequality relation between fuzzy numbers and its use in fuzzy
optimization. Fuzzy Sets and Systems, 16:123–128, 1985.

66. Ulrich Reimers. DVB-T: the COFDM-based system for terrestrial television. Electronics & Commu-
nication Engineering Journal, pages 28–32, February 1997.

67. Michael J. Riezenman. The search for better batteries. IEEE Spectrum, 32(5):51–56, May 1995.
68. R. Rinker et al. An automated process for compiling dataflow graphs into reconfigurable hardware.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1):130–139, February 2001.
69. H.E. Rowe. Memoryless nonlinearities with gaussian inputs: Elementary results. Bell System Technical

Journal, 61(7):1519–1525, September 1982.
70. Kaushik Roy and Sharat C. Prasad. Low-power CMOS VLSI circuit design. Wiley, 2000.
71. Jorge Rubinstein, Paul Penfield, Jr., and Mark A. Horowitz. Signal delay in RC tree networks. IEEE

Transactions on Computer-Aided Design, CAD-2(3):202–210, July 1983.
72. Takayasu Sakurai and A. Richard Newton. Alpha-power law mosfet model and its applications to cmos

inverter delay and other formulas. IEEE Journal of Solid-State Circuits, 25(2):584–594, April 1990.
73. P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens. A programming environment for

the design of complex high speed ASICs. In Proceedings of the 35th Design Automation Conference
(DAC), pages 315–320, June 1998.

74. Timothy M. Schmidl and Donald C. Cox. Robust frequency and timing synchronization for OFDM.
IEEE Transactions on Communications, 45(12):1613–1621, December 1997.

75. L. Séméria, K. Sato, and G. De Micheli. Synthesis of hardware models in C with pointers and complex
data structures. IEEE Transactions on VLSI systems, 8(6):743–756, December 2001.

76. Henrik V. Sorensen, Michael T. Heideman, and C. Sidney Burrus. On computing the split-radix FFT.
IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-34(1):152–156, February 1986.

77. Michael Speth, Stefan A. Fechtel, Gunnar Fock, and Heinrich Meyr. Optimum receiver design for wire-
less broad-band systems using OFDM – Part I. IEEE Transactions on Communications, 47(11):1668–
1677, November 1999.

114 References

78. D. Stroobandt, H. van Marck, and J. van Campenhout. An accurate interconnection length estimation
for computer logic. In Proceedings of the 6th Great Lakes Symposium on VLSI, pp. 50–55, March 1996.

79. Wonyong Sung and Ki-Il Kum. Simulation-based word-length optimization method for fixed-point dig-
ital signal processing systems. IEEE Transactions on Signal Processing, 43(12):3087–3090, December
1995.

80. Synopsys, Inc. Converting ANSI-C into fixed-point using CoCentric Fixed-point Designer – methodol-
ogy backgrounder, April 2000.

81. Synopsys, Inc. CoCentric SystemC Compiler – behavioral modeling guide, August 2001.
82. Jeffrey D. Ullman. Computational aspects of VLSI. Computer Science Press, Inc., Rockville, MD,

1984.
83. P.D. Welch. A fixed-point fast fourier transform error analysis. IEEE Transactions on Audio and

Electroacoustics, AU-17:151–157, June 1969.
84. R.P. Wilson et al. SUIF: An infrastructure for research on parallelizing and optimizing compilers.

ACM SIGPLAN Notices, 29(12):31–37, 1994.
85. S. Winograd. On computing the discrete fourier transform. Mathematics of Computation, 32:175–199,

1978.
86. Klaus Witrisal. OFDM air-interface design for multimedia communications. PhD thesis, Delft Uni-

versity of Technology, April 2002. ISBN: 90-76928-03-7.
87. H.J. Zimmermann. Fuzzy programming and linear programming with several objective functions.

Fuzzy Sets and Systems, 1:45–55, 1978.

Index

µMIPS, 85

abstraction level, 2
abstraction pyramid, 2
activity, see switching activity
algorithm mapping, 27
alpha-power law, 14
application model, 28
architecture, 30
architecture class, 30
area complexity, 10
area estimation, 9

complexity-based, 10
gate area, 9
interconnect, 12
Rent’s rule, 11
transistor count, 10

area-time bounds, 22
AT bounds, see area-time bounds
augmented reality, 7

battery capacity, 1
behavioral model, 4
bit reversal, 83
butterfly, 82

capacitance charging, 18
CDFG, see control data flow graph
channel

delay spread, 51
frequency response, 57
impulse response, 50
power attenuation factor, 57
power gain, 51
power response, 51

channel equalization, 77
channel estimation, 77
channel measurements, 74
circuit level power estimation, 20
clipped OFDM, 69

performance, 70
clipping, 68

clock period, 36
coherence bandwidth, 76
coherence time, 77
complex envelope, 53
computational work, 10
concurrent model, 4
concurrent processes, 42
constraints

cost constraints, 34
selection constraints, 31

control data flow graph, 27, 44
cost constraints, 31, 34

area, 34
clock period, 36
energy, 36
execution time, 37
latency, 35

cycle time, 13
cyclic prefix, 54

D2M delay metric, 15
data flow graph, 27, 28
decimation in frequency, 83
decimation in time, 83
decomposition, see hierarchical decomposition
delay estimation, 12

gate delay, 13
propagation delay, 14
resource delay, 13
system level delay, 15

delay spread, 51
design

high-level specification, 2
design constraint

power, 5
design flow, 3, 4
design gap, 1
design space, 1

abstraction pyramid, 2
exploration, 1
reachability, 2

design trade-offs, 2

116 Index

DFG, see data flow graph
DIF, see decimation in frequency, see decimation

in time
diffraction, 50
discrete multi-tone, 49
DMT, see discrete multi-tone
dynamic power dissipation, 17

Elmore delay, 15
entropy, 10
estimation

area, 9
delay, 12
power, 16

executable specification, 2, 27
execution time, 37

fast Fourier transform, 82
FFT, see fast Fourier transform
finite precision, 46
flat fading, 52
frequency scaling, 23
frequency separation, 54, 76
frequency synchronization, 78
frequency-selective fading, 52
functional specification, 2, 41
fuzzy linear programming, 108
fuzzy number, 40
fuzzy programming, 40
fuzzy ranking, 108

gate delay, 13
gross bit rate, 77
guard interval, 53, 54

hardware description language, 4
hardware–software partitioning, 2, 31
hierarchical decomposition, 42

impulse response, 50
information exchange limited, 22
inter-carrier interference, 78
inter-symbol interference, 51, 76
interfaces, 30
IO limited, 22

latency, 13
limited precision, 46
linear measure, 10
load capacitance, 19
long-channel approximation, 14

mathematical programming, 3
MCM, see multi-carrier modulation
memories, 30
memory limited, 22
MILP, see mixed integer linear programming
minimum latency, 16

mixed integer linear programming, 3, 31, 38
module, 42

behavioral, 43
structural, 44

multi-carrier modulation, 49
multi-objective optimization, 2
multi-path channel, 49
multiple access, 78

OFDM, see orthogonal frequency-division
multiplexing

orthogonal frequency-division multiplexing, 49, 53

partitioning, see hardware–software partitioning
pipelining, 22, 46
possibilistic linear program, 107
power

definition, 5
power dissipation, 7

constant voltage, 24
dynamic, 17
scaled voltage, 24
static, 17

power estimation, 16
activity-based, 18
calculus, 17
circuit level, 20
measurement, 17
probabilistic, 17
simulation-based, 17
statistical, 17

power management, 7
pre-distortion, 57, 84
processing element, 28
processing units, 30
processor cores, 30
propagation delay, 14

quantization, 62
quantization noise, 62
quantized OFDM, 65

performance, 67

radix-2 FFT, 82
radix-4 FFT, 82
re-timing, 22
reachability, 2
reflection, 50
register transfer level, 4
relative coherence time, 77
Rent’s rule, 11
resource sharing, 35

scattering, 50
scheduling, 15

latency-constrained, 16
resource-constrained, 16
time-constrained, 16

Index 117

unconstrained, 16
selection constraints, 31

algorithms, 39
interfaces, 33
memories, 32
processors, 33
units, 31

sequential model, 2
short-circuit current, 17
soft-limited OFDM, see clipped OFDM
split-radix, 82
static power dissipation, 17
storage element, 28
sub-carriers, 53
sub-symbol encoding, 77, 81
subchannel, 49
switching activity, 21, 23
symbol efficiency, 76

system level delay, 15
SystemC, 4, 41

time synchronization, 78
timing offset, 78
trade-offs, 21

area, delay, 21
area, delay, power, 24
delay, power, 23

transceiver, 73
triangular fuzzy number, 40
triangular possibility distribution, 40

uncertainty, 16, 40

Verilog, 41
VHDL, 41
voltage scaling, 23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

