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Preface 
 

With the alarming number of first pass silicon functional failures, it 
has become necessary for all levels of engineering companies to 
understand the verification process. This book is organized to address 

zation. The book is targeted at three somewhat distinct audiences: 
 
� Executives. The people with their jobs on the line for increa-

sing shareholder value. 
� Project, design, and verification managers. The people res-

ponsible for making sure each design goes out on time and 
perfect! 

� Verification and design engineers. The innovators respon-
sible for making sure that the project actually succeeds. 

 
The book is divided into three parts corresponding to its three 
audiences. The level of technical depth increases as the book proceeds. 
 
Part I gives an overview of the functional verification process. It 
also includes descriptions of the tools that are used in this flow and 
the people that enable it all. After outlining functional verification, 
Part I describes how the proper application of metric- driven techni-
ques can enable more productive, more predictable and higher quality 
verification projects. Part I is targeted at the executive. It is designed 
to enable executives to ask appropriate educated questions to accu-
rately measure and control the flow of a project. 
 
Part I also holds value for project managers and verification engi-
neers. It provides an overall view of the entire chip design process 
from a verification perspective. The chapters on a typical verifi-
cation project and the overview of verification technologies will be 
of use to entry level verification engineers as well. This part of the 
book also provides a unique viewpoint on why management is 
asking for process data and how that data might be used. 
 

all verification stakeholders at all levels of the engineering organi-



xvi  Preface 

Part II describes the various process flows used in verification. It 
delves into how these flows can be automated, and what metrics can 
be measured to accurately gauge the progress of each process. Part II 
is targeted at design and verification project managers. The empha-
sis is on how to use metrics within the context of standardized 
processes to react effectively to bumps in the project’s execution. 
 
Part III’s audience is the design and verification engineering team. It 
focuses on the actual verification processes to be implemented and 
executed. This section of the book is divided with respect to the 
various verification technologies. Each chapter on a given techno-
logy is further subdivided into sections on how to plan effectively, 
and how to track metrics to closure. 
 
Entire books have been written on implementing verification using 
the technologies discussed in Part III. We will not reiterate what 
those excellent volumes have already stated, nor do we intend to 
reinvent the wheel (yet, we are engineers after all). Implementation 
details will be discussed when they will make the metric- driven 
techniques discussed more effective. 
 
Part IV contains various case studies and commentaries from experts 
in the metric- driven verification field. 
 
The various parts of the book can also be described as a progression 
of process abstractions. The layers of abstractions are “Obser-
vational Processes,” “Container Processes,” and “Implementation 
Processes.” 
 
Observational Processes 

Part I looks at the verification process from an 
observational point of view. The various aspects of a 
project that should be observed are described to the 
reader along with informal suggestions about how to 

strategically manage a verification project based on these obser-
vations. 
 

 



Preface xvii 

Container Processes 

Part II looks at processes that are necessary regard-
less of the verification technology you are using; 
processes such as regression management, revision 

also discusses the inter- relations of these processes. 
 
Implementation Processes 

Part III describes each of the verification technologies and 
explores how a metric- driven methodology can be used to 
enhance the productivity, predictability, and quality offered 
by each of these technologies. 

 
Finally, Part IV leaves the world of abstraction altogether and 
presents several concrete case studies that illustrate metric- driven 
processes in action. In addition to these case studies are several 
commentaries offered by industry experts in metric- driven methodo-
logies. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

control, and debug. Part II describes how to imple-  
ment these processes using metric- driven methodologies. It also



Introduction 
 
Legend has it that 2300 years ago, Euclid walked the beaches of 
Egypt with his students. They were exploring the fundamentals of a 
new field: geometry. Each day, Euclid would draw a new problem in 
the sandy shores of the Mediterranean Sea. He’d ask his students to 
reflect on each problem and discover what they could. One day he 
sketched a diagram that would come to be known as Euclid’s 42nd 
Problem. 

 
 
One of his particularly bright students worked on the diagram and 
came back with a simple formula: 
 

a2 + b2 = c2 
 
This formula became so famous that it is now known simply by its 
discoverer’s name: the Pythagorean Formula. 
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Pythagoras thirsted for knowledge and spent most of his life traveling 

knowledge from each of them applying it to the burgeoning new field 
of geometry. 
 
Today we’re witnessing the birth of another new field, Metric-
Driven Verification. Like Euclid, we hope to layout templates that 
not only illustrate the basics of this promising new field, but also 
inspire the reader to make even greater discoveries. Like Pythagoras, 
we have traveled the world searching for the best applications of this 
knowledge. 
 
This book contains more than our basic understanding of the principles 
of metric- driven verification. The book also contains examples and 
experiences gleaned from many industry experts in verification and 
design. All of these are presented in their entirety in Part IV. 
 
The last three chapters of Part III are about emerging technologies in 
the field of metric- driven verification: 

� System verification 
� Mixed- signal verification 
� Verification of DFT hardware 

 
These chapters use a different format. Each chapter contains a 
complete case study from one of the industry leaders in each of these 
three emerging areas. 
 

the various countries of the ancient Hellenic world searching for it.  
In his travels, he encountered many cultures and gleaned valuable 
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Part I 
Analyzing and Driving 

Verification: An Executive’s 
Guide 



 

Chapter 1 
The Verification Crisis 

 
 
 

If everything seems under control, you’re not going fast enough. 
– Mario Andretti 

 
 
 
The time is at hand! This book proposes to revolutionize verification 
engineering! “It’s rote work,” you say? Can’t be done!? Well get 
ready to be surprised and even mystified! 
 
What is Verification? 
So what is verification? Simply put, it is a process that ensures the 
implemented device will match the product intent defined for the device 
prior to sending the device for manufacturing. Notice the selection of 
words in the previous sentence. It didn’t mention the device specifi-
cation, or the device requirements. Every document that corresponds to 
the device (such as a specification or requirements list), is merely a 
translation of the actual intent of the device functionality as originally 
conceived. This is an important distinction. All the methodologies in 
this book will have at their heart, the goal of ensuring that the device 
does what it was intended to do, not necessarily what it was docu-
mented to do. Quite frequently, the first defects we find are speci-
fication issues, not design defects. Figure 1.1 shows the many 
translations of intent. 
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Product Intent
Marketing, Business, Customers

Architecture Intent
System Architects

Napkins, 
Memos, 

Formalized 
Requirements 

Documents

Specification

Design Intent
Design Engineers

Software Intent
Software Engineers

Verification Intent
Verification Engineers

Hardware/Software and
Verification

 
Figure 1.1 Intent Translation 

The Crisis 

The size of designs is increasing. Market window size is decreasing. 
These factors combine to create a rapidly increasing cost of failure 
(Table 1.1). 
 
As designs become more and more complex and market windows 
become tighter and tighter, verification becomes crucial. More and 
more devices are now going directly into the mainstream consumer 
market. The mainstream consumer expects all features of a device to 
work properly. If they don’t the consumer will return the device, get 
their money back, and go with a different supplier. There’s really no 
room for error. 
 
Rapidly shrinking silicon geometries have been both a blessing and a 
curse. It is possible to build more powerful, feature rich devices than 
ever before. However, along with all the new features comes an explo-
ding multidimensional space for verification requirements. 
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Table 1.1 Design Size, Market Window, and Cost of Failure 

Design size 

 
Market window 

 
Cost of failure 

 
 
For example, consider a “simple” digital sound output port. The port 
can output sound in mono or stereo mode. In stereo mode, the sound 
frames can be transmitted with either the left channel or right 
channel first. Sound can be output in 8- , 12- , 16- , or 24- bit resolution. 
The gap between sound samples can be 0, 1, or 2 bits. In addition to 
all these specifications on the format of the output stream, the port 
can also be configured to use five different FIFO sizes for buffering 
input data and can run in either polling or interrupt- driven mode. 
This simple output port has over 240 functional combinations that 
must be verified. If even one of these combinations fails and it’s  
the combination that our key customer had to have, we’re facing a 
costly silicon respin. 
 
Respins are expensive at more than a million dollars a piece, but in 
today’s accelerated business atmosphere, there are even worse 
repercussions. A nonfunctional first tape- out can result in the loss of 
a job, the closing of a company and the ruin of a career. Clearly, it’s 
important to get verification right the first time. By getting verifi-
cation right the first time, companies can save millions of dollars on 
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respins alone. Then they can make millions more by hitting their 
market windows on time. 
 
The Need for Metric- Driven Processes 

So, how do we solve the verification crisis? How do we ensure that 
our designs will go out “first silicon clean” every time? With a 
cultural change and newly available technology, it’s actually quite 
simple. 
 
For years verification has been done in a rather haphazard manner. 
Each company or project team within a company slowly assembled 
their own best practices. Some project teams developed very success-
ful, rigorous processes for making sure verification was implemented 
and managed correctly. Others executed on their verification projects 
in a haphazard way. Still other teams did verification merely as an 
afterthought as the project started to wind up. The process- oriented 
teams had far higher success rates. 
 
Effective project closure tracking was also frequently ignored. Here 
again, many disparate techniques have been documented and used. 
Some of these techniques included bug rate tracking, code coverage, 
functional coverage, and everyone’s favorite: “Tape it out because 
management said so!” 

By objectively tracking important metrics, management 
can allocate resources more effectively, better predict 
the schedule of the project, and ensure a higher quality 

of the final product. Management and engineering productivity can 
be further enhanced if these objective metrics can be measured 
automatically. This book will show how to define what metrics are 
important to measure, how to measure those metrics automatically, 
and how to most effectively utilize those metrics to streamline 
engineering processes. 

While other disciplines have reaped great rewards in 
productivity and effectiveness by moving to well-  
documented, accepted and established methodo-
logies, ASIC design engineering is one of the few 
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engineering activities where a “cowboy” mentality is still accepted 
and even expected! In other areas where large teams integrate work 
flows, processes have been defined for years. Accounting has the 
FASBs, manufacturing has ISO standards. No one argues about the 
format of a ledger entry, they worry about more important things 
like the actual analysis of the financial data. No one argues about 
where the header block on an architectural drawing should be placed 
or on the size of the page. They concentrate their effort on the actual 
architectural design. 
 
Let’s look at a small example of why tracking progress is so crucial 
to any activity. Imagine that on your rare Sunday off, you sit down 
in front of the TV, cold beer in hand and turn on your favorite 
sporting event. As the players enter the field, we hear the commen-
tators begin to speak. 
 
“Jack, someone will definitely win this game today. Both teams 
have entered the field with that goal in mind, and we feel it will 
definitely happen.” 
 
“Folks we’re really not certain what two teams are playing today, but 
we’ve got someone looking into it and we’ll have that information to 
you as soon as we can.” 
 
“After all, what is important is that the teams play often and hard, 
right? We expect to see lots of really hard effort put in today.” 
 
“Ah, and the players have begun. There’s a really tall player (Fred 
get me his name), carrying the ball down the field. Oh! He’s been 
tackled by a rather small chap (Fred, we’re going to need another 
name!) And, the team is up and carrying the ball again! Did anyone 
think to find out how many yards to first down? Folks, we’ll get you 
more stats right after this commercial break!” 
 
When we watch sports, we want to know everything about the game 
from the first instant, right? We don’t give the teams respect for 
beginning the game immediately and running around willy- nilly 
with the ball when we know nothing about the game, do we? Then 
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why are we so content to execute on our engineering projects in this 
manner? 
 

 
 
When we watch our sporting event, we expect to have a multitude of 
information at our fingertips: 
 
� The amount of time left in the game 
� The score of the game 
� Progress toward the current goal 
� The history and statistics of the player that most recently 

carried the ball 
 
As the coach of the team, we’d expect to have all the information 
above and much more like: 
 
� What to do when the opposing team does something we 

don’t expect, like fumbling the ball 
� The statistics of each of the players on the opposing team 
� A plan for how to counter each of the other team’s plays 

Home Visitor 

Quarter

Time Remaining
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� Information about how our players match up vs. the players 
on the other team 

� How each player on both teams is playing vs. their statistics 
 
To accumulate this data, we’d employ an entire coaching staff to 
gather and analyze data both before the game and as the game prog-
ressed. Before the game, we’d build a plan of what we expected to 
do based on available data. As the game progressed we’d constantly 
adjust our plan to work with the situation at hand. And that’s exactly 
how we should be executing our engineering projects. 
 
But maybe we don’t have to hire that pricey coaching staff. Maybe 
we can automate that part. 
 
The message so far has been: 
 
� Verification is hard! Brutally hard! 
� If we’re going to successfully verify today’s designs we have 

to move to a process- oriented approach. 
� Process isn’t enough, we also have to be able to measure the 

output of our processes and use that information to adjust our 
direction. 

 
Using emerging technology, we’re going to show you how to move 
to a metric- driven, process- oriented verification flow. In Chapter 2, 
we’ll outline exactly what these processes look like and how we 
measure and use process metrics. And don’t worry, we will replace 
all those coaches with an automated system that will automatically 
capture and analyze metrics. 
 
Now we’ll spend a little bit of space explaining the logistics of the 
book so you can get the most out of it. 
 
The Verification Hierarchy of Needs 

In the year 1943, Maslow unveiled the hierarchy of needs to the 
world. This hierarchy described a set of basic needs that humans 
strive after. Each new level of needs can be reached only after the 
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level before it has been attained. Figure 1.2 shows the verification 
hierarchy of needs. 
 
Like Maslow’s hierarchy, each additional level can only be fully 
attained and appreciated once the levels below it are realized. 
 
The first level of the verification hierarchy is visibility. Visibility is 
paramount! Without it, the verification team is quite literally stumb-
ling around in the dark. As we discussed above, without metrics that 
provide data about our engineering processes and visibility into those 
metrics, we’re lost! Visible metrics make our schedules predictable 
and give us a measure of the quality of the device under verification. 
 

 
Figure 1.2 The Verification Hierarchy of Needs 

 
The second level of the pyramid is automation. Once we have a 
handle on what we’ve planned to do, and how we will measure our 
execution, the next question is how do we do verification more 
productively? The first answer is to automate verification processes 
where possible. By automating verification processes, we increase 
the productivity of our engineers and free them up to tackle harder 
tasks. We also increase the predictability of the schedule by reducing 
the time required to complete the automated tasks. Finally, because 
our engineers have more time, they can improve the quality of the 

 

Visibility & Process 
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Vertical Re-use 
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device by performing verification tasks that may have been left out 
of the schedule otherwise. 
 
Visibility is required to automate our processes. We will show how the 
metrics themselves can be used to automate several tasks. Metrics are 
also required in some cases to gauge the effectiveness of automation. 
For example, without metrics, constrained random stimulus offers an 
effective method to explore the state space of a device for bugs that 
would not have been found otherwise. But, when we use metrics in the 
form of functional coverage in conjunction with constrained random 
stimulus, we have a much more powerful automation tool that not only 
explores our state space, but also automatically creates our testcases! 
 
Once we have automated our processes, and we’re no longer 
spending our mental effort doing rote work, we start to look at how 
we can reuse our creative work. That will be the subject of the next 
book in this series! First things first!  
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Chapter 2  
Automated Metric-Driven Processes 

 
 

 
 

 

 

Introduction 
Historically, many verification projects have been performed as an 
afterthought. They have been understaffed, under- planned, and under-  
executed. With today’s complex design, it is widely agreed that 
verification consumes up to 70% of the total effort for a typical 
design project. 
 
There are several issues that plague verification efforts. Among them 
are: 
 
� Insufficient planning. High- priority issues are brought to 

light in the last stages of the project causing huge upheavals 
in resources and scheduling. 

� Lack of visibility. Projects are frequently tracked by human 
updates. This is also known as “death by status meeting.” 

� Scheduling issues. Why is it a well- excepted axiom that the 
last 20% of the work will consume 80% of the available 
time? Shouldn’t the last 20% of the effort take 20% of the 
time? 

� Inefficient use of tools. The EDA industry has promoted 
verification solutions for years. It’s well accepted that the 
verification effort required 70% of the total design cycle 
effort. Why hasn’t this number changed in years in face of 
the advanced solutions available? 
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In this chapter, we’ll outline the basis for a methodology that will 
resolve these issues. This methodology is based on automated metric-
driven processes. The methodology is enabled by a new class of tools 
called metric- driven process automation tools, or MPA tools. 
 
Processes are an important start to our solution. By using repeatable 
processes we can improve the predictability of our projects. A frame-
work for modeling processes will be described. 
 
But, processes aren’t enough. Without visibility into the workings of 
these processes we are unable to track progress and respond to issues in 
an efficient manner. We’ll describe how to identify metrics that should 
be tracked during the life of the process. These metrics will give us 
constant insight into the process’s progress. 
 
Even well- defined processes and metrics that track their progress aren’t 
enough. The nature of the metrics is also important. The classic 20/80 
situation described above is an example of a metric- driven process that 
doesn’t work. In this case the metric is an engineer’s opinion of the 
completeness of a given task. The tracking mechanism is a query from 
management. In order to be useful metrics must be objective rather than 
subjective and be capable of being automatically captured and tracked. 
We have to remove human interpretation and reporting of metrics from 
the equation. 
 
MPA tools facilitate the methodology described. They facilitate the 
planning phase by enabling users to define what metrics will be used 
while planning. They can control our verification engines removing that 
tedious time consuming task. They automatically capture the metrics 
that are produced by the verification engines. Finally, they offer 
analysis engines that can process the metric data. The analysis engines 
can be used in conjunction with the execution control aspects of MPA 
tools to completely automate some processes. 
 
Using automated metric- driven processes, we’ll be able to better 
plan our work defining exactly what needs to be done in a manner 
that’s measurable. These automated measurements will allow us to 
efficiently respond to issues as they arise. We’ll even be able to use 
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these metrics to further automate some of our manual processes and 
increase our operational efficiency. 
 
Next we’ll define the process model that will be used throughout the 
book. 

The Process Model 
For the purposes of this book, a process is any activity that can be 
modeled using the flow shown in Figure 2.1. 

Respond

Plan

Measure

Execute

 
Figure 2.1 Verification Process Model 

 
The flow consists of four phases. These are planning, execution, mea-
surement, and response. 
 

The first step of the process model is planning. 
This is where we determine what needs to be 
done and how to measure that it was in fact done. 
To efficiently execute a process, we need to know 
what the process hopes to achieve. Next, we need 
an objective way of knowing that the process has 
in fact achieved its goal. 

 
Once the process is planned, we need to make it 
happen. That brings us to the execution phase of 
the model. During the execution phase, we will act 
on our plans. Using our available human resources 
and verification engines, we’ll create the verifi-
cation environments we specified during planning. 
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These environments will create objective metric output that we’ll use to 
gauge the completeness of the plan. We will use MPA tools to control 
the execution engines. 
 

As our engines operate we need to measure the 
effectiveness of our efforts. During the planning 
phase we specified the metrics that will be used to 
gauge this effectiveness. The MPA tool will auto-
matically gather the specified metrics from our 
execution engines. Some typical metrics include: 
 

� RTL code coverage 
� Functional coverage 
� Assertion coverage 
� Software code coverage 
� Error messages and types 
� Revision control information 

 
The user specifies how these metrics are to be annotated back to the 
plan during the planning phase. 

 
In the response phase, the user acts on the 
results of the data analysis performed during the 
measure phase. This analysis will be used to 
adjust existing plans and to facilitate or in some 

The Automated Metric-Driven Process Model 
Let’s take a look at the process model in an automated metric- driven 
process. We’ll discuss each phase individually outlining how each 
phase is related to the others and how each phase is enhanced by the 
new methodologies discussed in this book and by the application of 
MPA tools. 
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cases fully automate other verification processes. 
For example, if bugs were found where none 

were expected using random testing, the user could respond by
updating the verification plan to include explicit functional coverage
that targets the areas where the bugs were found.



2 Automated Metric-Driven Processes 17 

During the planning phase we will determine what 
needs to be verified and what metrics will be measu-
red. There are many stakeholders in the verification 
process. Each stakeholder tends to have different 
concerns about the device. They each have their 

Figure 2.2 Stakeholder Perspectives 

 
Verification concerns that are raised late in the project are one of  
the main causes of schedule slips. To avoid this, we involve all 
stakeholders in the planning phase. The planning technique used in 
the MPA methodology may be a bit different than what you are used 
to. It is a collaborative brainstorming effort. All stakeholders in the 
project participate in the planning session. During the session, the 
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own perspective on verification. Some of these per-  
spectives are shown in Figure 2.2. 
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device is discussed on a feature basis. The designer presents his 
section of the device based on what it does. Each participant is 
encouraged to contribute their concerns about a given feature to the 
discussion. Along with each concern, the participant works with the 
group to identify a metric that will guarantee the concern was add-
ressed. 
 
Each of these metrics must be objectively and automatically measu-
rable. By using objective metrics, we remove human subjectivity 
from the equation. We know the exact status of our processes based 
on the metrics we have defined. By using only metrics that can be 
measured automatically, we ensure that we will always have real 
time status. Tracking process metrics is no longer an “extra” task 
that may get lost in the shifting priorities of a hurried project. 
 
Let’s illustrate capturing concerns with a few examples. A design 
engineer is concerned that his DMA engine be exercised in such a 
manner that the input and output FIFOs are full simultaneously. An 
assertion that checks for this condition will provide a metric that 
addresses the concern (assertion coverage). 
 
A verification engineer is concerned that every feature is exercised 
in every possible configuration mode. This concern can be addressed 
using functional coverage as a metric. 
 
A firmware engineer is concerned that the DMA engine can move 
the appropriate OS code from the ROM to the instruction memory. 
This concern can be addressed using functional coverage as a metric 
as well. Each of these metrics can be captured automatically from 
our verification engines. 
 
The output of the verification planning session is an executable 
verification plan. This plan will be used as the basis for determining 
what tasks should be executed as the project proceeds. 
 
An example verification plan is shown on the next page. The con-
cerns of the design, verification and software engineers are captured 
for a DMA engine in our device. The top half of the page shows the 
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plan as it is written during the verification planning interview. The 
bottom half of the page shows the plan as it appears after it has been 
read into an MPA tool and the coverage metrics have been collected 
from several runs of our verification engines (Figures 2.3 and 2.4). 
 

Features 
 
1.1 DMA Engine 
The DMA engine moves blocks of data between the various 
memories of the device and the external memory. The engine is 
configured via address mapped configuration registers. 
 
Design 
cover:  /sys/rtlcodecover/dmamod/* 
 

Verification 
cover:  /sys/verif/dma/regreadwrite/* 
 

Software 
cover:  /sys/verif/dma/scenario/instructionmove/* 
 

Figure 2.3 Verification Plan Editing View 

Figure 2.4 Verification Plan Executable View 

  
As mentioned above, the planning sessions are collaborative. The value 
offered by the resulting plan is directly proportional to the number of 
stakeholders that actually attend the session. With the hectic pace of 

 

Features 

DMA Engine 66% 

Design 88% 

Verification 90% 

Software 20% 

The DMA engine moves 
blocks of data between the 
various memories of the 
device and the external 
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chip design projects, it is often difficult to arrange for all stakeholders 
to attend these sessions. It should be stressed that these planning 
sessions are extremely valuable. They enable all the other techniques 
that will be described in the MPA methodology. Because of the colla-
borative nature of these sessions, several device bugs have been 
found while planning, without writing a single line of verification 
code. 
 
Management Planning 

As the various stakeholders are outlining their technical concerns, 
management contributes by defining priorities for completion and 
schedule milestones. These priorities and milestones are captured in 
the plan as well. Priorities can be incorporated into the verification 
plan as weights on metrics corresponding to the key- prioritized fea-
tures of the device. Most MPA tools allow milestones to be defined as 
well so that metric status data can be displayed along with defined 
milestones to make tracking the completion of the project more 
convenient. 
 
For more information on defining weights and milestones see the 
chapter on planning in Part II of the book. It is very important to 
have appropriate reporting mechanisms organized and functioning 
before the project begins. Two of the key aspects of these reports 
should be the priority of different objectives and the milestones that 
are defined for their completion. 
 

Visibility of the Plan 

One of the key requirements for metrics to actually be useful is 
visibility. That means visibility to everyone. In order for projects to 
come in on time, we need to make it impossible for anybody to 
“massage the status” either intentionally or not. Objective metrics go 
a long way in this direction. 
 
All available metrics should be made visible to all the project’s 
stakeholders. By making these metrics available, we enable each 
contributor to creatively solve problems as they arise because they 
are aware of them. How many postmortems have you been to where 
an engineer said “Well, if we’d known what was happening, we could 
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have executed the following process to solve the problem?” Wouldn’t 
it be nice if you never had to hear that statement again? 
 
By automatically collecting objective metrics and allowing each of 
the users to personally interpret them we avoid two classic problems. 
First, automatically collected metrics do not create a resource drag on 
the project. No more walking from cubicle to cubicle to collect the 
daily status. No more interminable status meetings. We let computers 
do what computers are good at. As they run our simulation and 
emulation jobs, they automatically collect the metrics that we define 
as important. Second, we remove error- prone humans from the report-
ing process. The metrics collected are exactly and only the metrics 
created by our verification tools. 
 
As discussed we’ll use automatically measured metrics to gauge the 
completeness of all our processes. In the execution phase, we’ll 
capture those metrics from our verification engines. For an in- depth 
explanation of the planning phase see Part II. 

Execution 

During the planning session, we captured every 
concern and corresponding metric in an execu-
table verification plan. In the execution phase, 
we’ll execute on those plans. There are two types 
of execution: implementation execution and verifi-
cation engine execution. Implementation execu-
tion refers to the efforts made by engineers on the 

project team to implement environments that will run on the verification 
engines. Engine execution refers to the actual runs of the verification 
environments produced by the engineers. 
 
Using a metric- driven approach allows us to improve the predictability, 
productivity, and quality of both implementation and engine execution. 
There are two opportunities that are presented by using metric- driven 
processes. First, using automatically capture metrics, we can get a better 
perspective on how our processes might be improved. Knowledge is 
power. Second, using automatically captured metrics, it is possible to 
fully automate some processes and remove the human element. 
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The execution phase at first glance seems simple, and it should. 
During this phase, we execute on our plans. During the execute and 
measure phases, our MPA tools will annotate the measured metrics 
specified in the verification plan to the metrics defined in the plan. 
Our verification plan will always have the latest status of all defined 
metrics embedded in the document. The flow for collecting metrics 
is shown in Figure 2.5. 

Executable
Plan Job Spec

MPA Tool

Verification Engines

Formal Simulation

Emulation Acceleration

Metrics

 
Figure 2.5 Automating the Execution Process 

 
Using the MPA tool, we start our verification engines. The MPA 
tool automatically tracks the metrics specified in the plan by extrac-
ting them from the outputs of the engines. These extracted metrics 
are then annotated back into the plan. 
 
It is possible to detect problems earlier and better utilize resources 
because metrics can now be automatically captured and analyzed. 
With some advanced planning, teams can begin to solve a number of 
problems by collecting data that illuminates both the causes and 
solutions of those problems. 
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Using metric- driven concepts some time consuming, tedious pro-
cesses can even be fully automated. Generation of detailed debug 
information is a good example of this. 
 
Simulation time is valuable and should be used efficiently. After 
implementing or changing a design, the engineering team runs large 
sets of simulation testcases, (called regressions), to ensure the design 
has been implemented correctly. Once the current implementation is 
deemed acceptable by passing these testcases, more implementation 
can begin. Because of the iterative nature of this implementation 
process, it is desirable that these test suites execute as quickly as 
possible. To increase execution speed, most of the debug features of 
the simulator are turned off. Typically the only failure or debug 
information available in this mode is a brief message describing the 
failure and the time that it occurred. 
 
However, to completely debug an issue, an engineer needs much 
more information, such as waveforms that illustrate the signal levels 
of interest around the time the issue was detected. To gather this 
information, an engineer will manually sort through the failing test-
cases determining which testcases produce unique failures in the 
shortest amount of time and then run these simulations again with 
the waveform generation feature of the simulator turned on. This 
process is shown in Figure 2.6 with the human intervention points 
clearly marked. 
 
By using our MPA tools to automatically analyze our captured metrics, 
we can completely automate this process. The technique is simple. The 
MPA tool captures the various unique failure types and then determines 
which testcases produced the failures in the shortest amount of time. 
Then, because the MPA tool has access to all the information required 
to start a given testcase, it can restart the pertinent simulations with 
debug features such as waveforms turned on. As a result, our engineers 
no longer spend hours analyzing failures and then waiting for the 
simulations to rerun. 
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Figure 2.6 Manual Debug Process 

 
They simply start the simulations once and then analyze the failure 
data as soon as the simulations complete as shown in Figure 2.7. 
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Figure 2.7 Automated Debug Process 



2 Automated Metric-Driven Processes 25 

Measurement 

The measurement and analysis phase of the process 
is one of the most automated phases, and provides 
the bulk of the power offered by the MPA metho-
dology. During the measurement phase, the MPA 
tool automatically captures and stores all the 
metrics that the project team has declared during the 
planning stage. MPA tools such as Cadence’s 

Incisive Enterprise Manager ship with built- in metric- capture 
mechanisms for popular verification tools such as simulators and 
emulators. These capture modules automatically scan the output of 
simulator tools and extract common metrics such as failure messages, 
the amount of CPU time consumed by the simulator and the amount of 
real time consumed by simulator execution. By building easy to 
implement metric capture plug- ins, engineering teams can capture any 
other objective metrics from the outputs of their verification tools. 
 
Using these metrics, MPA tools can automate standard analysis 
tasks as well. Using the example from the execution section earlier, 
from our simulation runs, the MPA tool captures: 
 
� Failure type  
� Failure time 
� Testcase name 

 
These metrics might be stored in a table (Table 2.1). 

Table 2.1 Simulation Failure Metrics 

Testcase Name Failure Time Failure Type 
Dmaengine1 1000 FIFO pointer assertion 
Dmaengine2 200 FIFO pointer assertion 
Dmaengine3 1025 FIFO pointer assertion 
Dmaengine4 257 Bad read/write pair 

 
Using these metrics, the MPA tool can first group on the failure type 
and then sort on the failure time to determine the shortest set of 
testcases that can reproduce all the failures with debug information 
turned on. The results of this analysis are shown in Table 2.2. 
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Table 2.2 Failure Metric Analysis Results 

Testcase Name Failure Time Failure Type 
Dmaengine2 200 FIFO pointer assertion 
Dmaengine4 257 Bad read/write pair 

 
Engineers can define and store automated analysis tasks such as the 

Response 

During the response phase, our human resources 
re- enter the picture to do what they are best at: 
develop innovative solutions to improve the status 
of the project as revealed by our automated metrics 
capture and analysis. 
 

Using our MPA tools for automated analysis, we can get project 
status such as that shown in Figure 2.8. 
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Figure 2.8 Project Wide Code Coverage vs. Project Week 
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one above. The MPA tool can then automatically perform these tasks 
where appropriate. 
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With this information, our management team might judge that every-
thing is on track. However, the data in Figure 2.9 tells a different story. 
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Figure 2.9 DMA Code Coverage vs. Project Week 
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Figure 2.10 Code Coverage and Number of Lines of Code 
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We can see that there was a large reduction in code coverage for the 
DMA block on 3/16. By itself, this should be a red flag that indicates 
action needs to be taken with respect to the DMA block to avoid 
placing the schedule at risk. Using other automatically capture metrics, 
we can gain even more insight into the project status. 
 
In Figure 2.10, we can see that the reduction in the total code cove-
rage was caused by a large increase in the number of lines of code 
implemented. This may have been caused by a new feature being 
added to the design. In such cases, management can now make 
judgments regarding the cost of adding the feature based on real data 
rather than impressions or opinions. While decision should always 
be based on real data, it is much easier to follow this axiom when the 
real data is readily available. 
 
Project Management Using Metric-Driven Data 
Hundreds of books have been written on project management. Every-
one has their favorite methodology. Almost all these methodologies 
have one thing in common: the raw material for making decisions is 
objective data collected from the execution of the project itself. This 
data is exactly what metric- driven methodologies provide. Rather than 
trying to expound on our favorite project management methodology 
here, we’ll respect your choices. This book tells readers how to deter-
mine what metrics to measure and how to objectively and automatically 
gather those metrics to enable your project management methodology 
of choice. 
 
As mentioned earlier, the paramount task before the readers is to 
make sure that their metrics are properly utilized. As part of the 
planning process, the management team should identify all status 
reports that they will need to properly evaluate and manage the 
project. These reporting mechanisms should be setup and tested 
before the project begins. This small amount of effort early in the 
project will enable all the gains discussed throughout the remainder 
of the book. 
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What Are Metrics For? 
Knowledge is power! Our metrics will increase the power of the 
project team in several ways. First, metrics give the team the chance 
to react to dynamic requirements changes. As resources and require-
ments change, subsequent changes in measured metrics allow us to 
detect and react to these changes. Second, as illustrated above, metrics 
can be used to completely automate some processes. 
 

Tactical and Strategic Metrics 
In this book, metrics will be placed in two broad categories. The first 
set of metrics is tactical metrics. These are metrics that give the team 
data about where the project stands at present. Tactical metrics, as 
their name implies, are used to make tactical decisions during the 
course of the project. Examples of tactical metrics are the number  
of testcases that failed in the most recent regression, the percentage 
of coverage completeness on the serial block, and the number of 
assertions that activated successfully for each module in the chip. 
 
The second set of metrics is strategic metrics. These are frequently 
referred to as historical metrics. Historical metrics may start out as 
tactical metrics, but in this context, they are tracked throughout a 
project and then used to make strategic decisions at a later stage of 
the project, or in a follow- on project that reuses aspects of a previous 
project. Historical metrics include the number of issues found in a 
module during development, the rate at which coverage closure was 
reached on a project, and the frequency that a module was revised 
over the course of a project. 
 
Historical metrics can also be used to shape training and career 
development plans for members of the engineering team. They can 
be used in much the same way that professional athletic coaches use 
game statistics to determine where to focus the next weeks’ practice 
sessions. We’ll talk more about this in the verification management 
chapters. 
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Summary 
In this chapter we have illustrated the evolution of and justification 
for a metric- driven verification process. This process can be divided 
into four steps as shown in Figure 2.11. 
 

Respond

Plan

Measure

Execute

 
Figure 2.11 The Verification Process 

 
We will use this diagram throughout the book to help illustrate what 
portion of the process is being described. We looked at some of the 
key points of each of these four phases, and showed how the MPA 
methodology offers improvements in each phase. 
 
 
 



 

Chapter 3 
Roles in a Verification Project 

 
 
 
 
 
Introduction 
In this chapter we will describe the various roles in a verification 
project. How each role fits into a metric- driven verification process 
will be illustrated. We’ll discuss what metrics each contributor 
produces and consumes and how they can best analyze the metrics 
that they consume. 
 
Verification teams have a number of diverse roles requiring some-
what disparate skill sets. These roles are described below. One 
person may serve in more than one role. 
 
You may be surprised to see some of the roles that are included 
below. However, each of them contributes something vital to the 
efficient completion of the project. Depending on the company 
culture and various aspects of the design project, all of the roles may 
not exist in every project. In many projects, several roles are rolled 
(pun intended) into a single individual that prefers a given title. This 
explains the preponderance of companies that “don’t have a verifi-
cation team.” They of course have one. The designers would just 
appreciate it if you didn’t call them so. 
 

The Executive 
Yes, executives actually do have a role in design and verification 
engineering! The size and nature of this role will vary based on the size 
of the company and the style of the executive. For small startups, the 
executive may be very involved in their companies’ only revenue 
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generating project. Larger, more- established companies may have 
hundreds of design projects forcing the executive into a necessarily 
more diluted role on a project by project basis. In any event, the execu-
tive is often the largest individual stakeholder in a given design project. 
 
The important thing to note for our work is that even the executive 
should be able to view an appropriate set of aggregate metrics from 
every design project. 
 
At the executive level, the metric of most interest and importance is 
the completion status of the project. There are three main compo-
nents of completion status. They are: 

� Implementation completion 
� Verification coverage 
� Activity indicators 

 
Implementation Completion 

The implementation completion metric is a measure of how much  
of the planned work is implemented. For example, if one hundred 
testcases have been defined for a given part of the design and 80 of 
them have been completed, then the implementation completion 
metric for that task is 80%. MPA tools can provide roll- ups of 
metrics so that the executive can first view results for the complete 
project and then hierarchically investigate results for each portion of 
the project individually (Figure 3.1). 
 

 
Figure 3.1 Implementation Completion 

Implementation 40% 

DMA 60% 

testcases 100% 

cover groups 20% 

USB 30% 

DSP 30% 
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Verification Coverage 

Implementation completion is a measure of how much of the speci-
fied work has been completed. Verification coverage is a measure of 
how well that completed work is verifying the design vs. the speci-
fied verification concerns. In verification planning design and verifi-
cation engineers, firmware and application engineers, and other 
interested stakeholders meet and determine what features of the chip 
must be tested and how. The verification environment is the vehicle 

 
Figure 3.2 Verification Coverage 

 
Activity Indicators 

An activity indicator tells the executive where the team is spending 
their time. Are they implementing design or verification environ-
ment code? Are they writing testcases? Are they debugging failures? 
Metrics that are produced by revision and issue- tracking systems and 
processed by an MPA tool can provide this information. The data 
can be grouped by engineer or team to determine what activity is con-
suming most of the team’s time, or it can be grouped by design 
block to determine what stage of development a given block is in. 
 

Marketing 
In- bound marketing is primarily focused on benefits to customers and 
requirements of customers in different market segments. Marketing 

 

Verification Coverage 63% 

DMA 42% 

polled/interrupt 50% 

Transfer size 33% 

USB 38% 

DSP 77% 

that will be used to verify the chip. Verification coverage is a measure
of how many of the required cases have been verified (Figure 3.2).



34 Metric-Driven Design Verification 

metrics are largely the same metrics that interest the executive. They 
may be organized differently however. Except in companies where 
marketing takes on the program management tasks as well, market-
ers may be less interested in views of project data from an engineer 
or engineering team perspective. Marketing will be more interested 
in looking at metrics with respect to the important customer- driven 
features of the device. The exact same data can be displayed in a 
different perspective so that marketers can track progress against 
their most important features. 
 

Design Manager 
The design manager leads the design team in their implementation 
of the device. Depending on the size of the project team, the design 
and verification managers may be one and the same person. 
 

Metrics Used 

Design- specific metrics are of interest to the design manager. Among 
these are: 
 
� Number of assertions written per design module 
� Trend of revisions made per design module 
� Number of comments inserted per design module 
� Issue detection rate 
� Code coverage closure 

 

Verification Manager 
The verification manager serves as the verification project coordinator 
and facilitator. The verification manager need not be the technical 
lead as well. However depending on the size of the project and the 
size of the team, the verification manager often serves as the technical 
lead. 
 
As the key custodian of verification data, the verification manager 
should be familiar with all the other stakeholders of the chip project and 
their perspectives. It is necessary for the verification manager to be 
familiar with the design, verification, and production processes. The 
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verification manager should also be aware of how each stakeholder is 
making use of the data and metrics created by their team. This 
includes stakeholders at all levels of the hierarchy. A familiarity 
with how executives such as the CEO and Business Unit Director 
are making use of the metrics produced by the verification team is 
just as important as knowledge of what the verification team mem-
bers doing with them. 
 
The verification manager will make use of both tactical and strategic 
metrics as the project proceeds from the planning to the implemen-
tation to the execution and closure stages. They will look at a more 
abstracted version of the tactical metrics that tend toward the stra-
tegic. Some of the metrics used by the verification manager are: 
 
� Utilization of verification tool resources 
� Closure rate for coverage metrics 
� Number of test scenarios created and running 
� Issue detection rate 
� Module revision rate 

 
These metrics will be used to make short- term strategic decisions 
about how to apply verification resources to best meet the schedule 
and quality requirements for the project. 

Verification Architect/Methodologist 
The verification architect lays out the abstract descriptions of the 
various verification environments and defines the verification metho-
dology for the project. The recommendations of this contributor will 
have a profound impact throughout the project. They are of key 
importance during the planning and execution stages. 
 
While the architect may not do much of the actual verification coding, 
they are one of the key contributors to the verification project. Whether 
or not the device is completed on time with high quality depends on 
good architecture and methodology as much as any other aspect of the 
project. This individual should be very experienced, and have a 
command of most if not all aspects of verification technology that are 
to be used in the project. 
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During the planning stage, the architect influences what activities 
will be executed as the project proceeds. There are several types of 
metrics that the methodologist will use to perform their job. These 
are: 
 
� Historical reuse metrics 
� Historical engineering resource metrics 

 
The information that the architect/methodologist will call on include: 
 
� Available IP and VIP 
� Available engineering resources 
� Available verification technology 
� Historical metrics attached to VIP/IP 
� Historical metrics attached to similar projects 

 
The verification methodologist should work closely with the verifi-
cation team to determine what verification technology should be 
used taking several things into account. Early in the project, histo-
rical metric data may be of the most use to the verification methodo-
logist. By using this data, they can determine what technologies, IP, and 
methodologies can be best deployed to complete the project within the 
desired schedule. 
 
As the project proceeds, the architect’s role may not be as intense as 
during the planning stages, but they still serve a very valuable pur-
pose. They can help steer the verification team members to efficient 
implementations through mentoring activities such as code reviews, 
and consulting. 
 

Design/System Architect 
The design or system architect is interested in how the architecture 
specified for the device is performing as real hardware is integrated 
into the device. Checking that real hardware performance matches 
architecturally planned performance is of particular interest to the 
design architect. In addition to simply testing performance criteria, 
an architect may also identify scenarios that place the system under 
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stressful conditions. They will be interested in seeing that these 
scenarios have been exercised. They can derive the coverage status 
of these scenarios from functional coverage. 
 
Some of the metrics used by architects are: 
 
� Performance testing results 
� Functional coverage 

 

Verification Engineer 
The verification engineer works on the day to day implementation 
and iteration of verification environments. This is one of the most 
challenging roles of the entire project (guess what the authors used 
to do for a living!). In this role, it is not enough to be technically 
literate with the given verification technologies. More than any other 
role, the verification engineer is required to have a complete under-
standing of the operation of the device and how it is to be used in 
systems. 
 
The verification engineer is forced to make the switch from code 
implementer to problem solver mid- stream in the project. The first 
portion of the project will entail implementing in the most efficient 
manner possible every kind of test that will exercise the device. As 
soon as this activity is complete, the verification engineer then swit-
ches to intensive problem solving to determine what if anything is 
wrong with the current execution of the design under the influence of 
these test scenarios. In a typical project, this abrupt mindset change 
will be required not once, but repeatedly as the project iterates from 
block to unit to chip-  and system- level activities.  
 
The verification engineer makes use of most metrics in their raw 
form. Some of the metrics used by verification engineers are: 
 
� Functional coverage 
� Assertion coverage 
� Hardware code coverage 
� Software code coverage 
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� Revision control data 
� Historical regression data 
� Tactical regression failure data 
� Historical VIP metrics 
� VIP documentation 
� IP documentation 

 
These metrics will be used on a daily basis and efficient collection of 
and access to them is essential to the verification engineer’s success. 
 

Design Engineer 
The design engineer has what might be considered the most res-
ponsible role of the entire project. They deliver the code that will 
eventually become the device that is shipped to the customer in 
return for revenue. 
 
Design engineers consume many of the same metrics that verifi-
cation engineers do, but not always for the same reason. For example, 
a verification engineer uses functional coverage information to deter-
mine where to steer random constraints so that more of the device can 
be tested. A design engineer might use the same information to 
determine how complete the verification effort is, or to determine the 
set of testcases that best exercise a given portion of the design. 
 
The metrics used by design engineers are: 
 
� Functional coverage 
� Assertion coverage 
� Hardware code coverage 
� Revision control data 
� Historical regression data 
� Tactical regression failure data 
� Historical VIP metrics 
� VIP documentation 
� IP documentation 
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Regressions Coordinator 
A regression is a set of verification environment executions performed 
to test the device. A verification environment execution can be any-
thing from running a formal verification tool, to running a dynamic 
simulation, to running a hardware- based emulation. 
 
The regressions coordinator is responsible for managing the regression 
process. Their duties include managing software and hardware licenses, 
and automating the execution of regressions and the analysis of the data 
returned from regressions. Leading edge technology can help automate 
several of these tasks. Depending on the size of the project and the 
diversity and quantity of verification resource available, this role can be 
a part- time responsibility. 
 
Regression coordinators use a different set of metrics. They are 
interested more in the overall flow of the project and less in project 
specifics. The metrics they use are: 
 
� CPU utilization 
� Emulator/Accelerator utilization 
� Software license utilization 
� Coverage gained per regressions 
� Issues found per regression 

 
The first three metrics tell the regression manager whether the resou-
rces at their disposal are being utilized efficiently. The last two give 
an indicator as to whether or not regression activities are effective. 
 

Debug Coordinator 
The debug coordinator is responsible for analyzing failure infor-
mation returned from regressions and then assigning those failures to 
various design and verification engineers for debug. This position is 
seldom a job in its own right. Frequently this duty is shared among 
the verification team members. 
 
The debug coordinator is primarily interested in failure metrics. Failure 
metrics include: 
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� Failure description 
� The verification tool that generated the failure 
� The time required to reach the failure 
� The portion of the design in which the failure took place 
� Revision control data 

 

Summary 
In this chapter we briefly outlined the responsibilities of each verifi-
cation stakeholder. We also looked at what metrics each stakeholder 
uses and how they put these metrics to use. 
 
In Chapter 4 we’ll present an overview of the activities that take 
place in a typical verification project. 



 

Chapter 4 
Overview of a Verification Project 

 

 

 

 

 

 

 

 

Introduction 
This chapter outlines the flow of a typical verification project 
(Figure 4.1). As a chip design moves through several developmental 
stages as it evolves from a concept to a finished product. These 
stages are: 
 

� Marketing definition 
� Architectural exploration and specification 
� Block- level implementation and verification 
� Integration verification 
� Chip- level verification 
� System- level verification 

 
We’ll explore what tasks are performed at each stage, what metrics 
provide visibility into the status of those tasks and who performs 
them. As we describe each task, we’ll also mention various tools and 
techniques that are available to execute the task. This chapter is 
intended to be read in conjunction with the following chapter that 
provides a deeper explanation of the various verification techno-
logies available. 
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Marketing Definition

Architectural Verification

Time

Block Verification

Integration

Chip Assembly

System Verification

 Figure 4.1 Verification Stages 

 
Marketing Definition 
In this stage, the business unit decides what features will sell the 
device. Decisions are made based on a combination of customer 
desires and engineering capabilities. The outputs of this stage are the 
device features and the intended functionality of those features. This 
is where product intent if first defined. 
 
Architectural Verification 
At this stage system architects perform simulation studies to deter-
mine what the optimal configuration of the system to be designed is. 
This is often the first translation from the intent of what the device 
will do to how it will be implemented albeit in very wide brush 
strokes. The key output of architectural modeling should be a set of 
architecture decisions embodied in a functional specification. Design 
and verification engineers will use this specification to implement 
the device and its verification environments. 
 
Architectural verification can be done at all levels of device integ-
ration. Specific studies may be made at the block level for crucial 
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portions of the device. Other studies may be made at the chip level 
to determine, for example, if the communications architecture of the 
integrated chip will offer sufficient bandwidth. As with other types 
of verification, the engineers should consider how to reuse verifi-
cation environments across integration levels. 
 
Some architectural studies such as communications bandwidth mode-
ling can be done with simple tools such as spreadsheets. For more 
detailed studies, some level of simulation is used. Transaction- level 
modeling (TLM) is used to simulate abstract models of the device very 
quickly in software. TLM models are most often written in SystemC, 
however they can be written in any behavioral programming language. 
 
When using TLM simulations, the model can be verified using tradi-
tional simulation testbenches and assertion- based techniques. The 
verification at this level is necessarily coarse. Only the details that 
influence architectural decisions such as bandwidth capacity or 
algorithm output are checked. 
 
The metrics produced by this activity are: 
 
� Functional coverage 
� Assertion coverage and/or check coverage 

 
Functional coverage is used to gauge the completion of the architec-
tural verification with respect to the scenarios that the project team 
identified during planning. Assertion and checking coverage is used 
to ensure that all checks that were defined are actually implemented 
and have been exercised. 
 
Careful planning and implementation of architectural verification IP 
leads to many reuse opportunities. The reusable IP includes: 
 

� Assertions 
� Transaction- level architectural models 
� Transaction- level testcases and testbenches 
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Assertions used at the architectural level can be remapped to be used 
for hardware verification at the block, chip, and system levels as 
well. Reusing these assertions, we can verify that architectural assump-
tions are valid as the device moves closer and closer to the final 
production stage. 
 
The models of the device used to perform architectural studies are 
frequently accurate enough to be used to check device behavior in the 
later stages of verification. For example, suppose the architecture team 
is determining how to split the various steps of a graphic decoder algo-
rithm between hardware blocks. They chose a partitioning as shown in 
Figure 4.2. 
 

 
 

Figure 4.2 Algorithm Partitioning 

 
Each step of the algorithm will be done by an individual design 
block and the design blocks will share a common communications 
bus. The architects must determine if the bus has sufficient band-
width to support the traffic that flows from block to block without 
interruptions. The block- level architecture of the device is shown in 
Figure 4.3. 
 

 
Figure 4.3 Block- Level Architecture 

Header 
Decode 

Pixel 
Creation 

Pixel 
Coloring 

Bus 

 
Header 
Decode 

 
Pixel 

 Creation 

 
Pixel 

Coloring 

Software Software Software 



4 Overview of a Verification Project 45 

To generate the data that will be transferred from block to block, 
they will actually use a software model of the algorithm. The soft-
ware model will be partitioned in the same manner and embedded in 
the transaction- level simulation models for each block as shown  
in Figure 4.3. As the simulation executes, the software model will 
create data and this data will be passed on the bus as transactions by 
the hardware models. The architectural engineers can then check the 
bandwidth usage vs. their assumptions. 
 
When the actual design is verified, it will be necessary to check that the 
design is producing the correct data for each step of the algorithm. 
Rather than writing a new checking model, the verification engineer 
can simply reuse the software models that were created for the TLM 
simulations by embedding them in their verification models. In a 
similar manner, streams of transactions that are developed for archi-
tectural simulations can be used to stimulate actual hardware devices  
as well. 
 
The tools most frequently used in architectural verification are 
software simulators that use TLM level models. As actual hardware 
blocks of the design (register transfer language, or RTL models) are 
completed, TLM blocks can be simulated in the same environment 
with them. Although emulators and accelerators are rarely used for 
architectural modeling, TLM blocks can communicate with the 
hardware blocks that are modeled by these technologies as well. 
 
Block Verification 

Once the system architects produce a basic block diagram 
of the device and a functional specification, design engi-
neers begin to implement the hardware that will become 

the device itself. Typically this hardware is created in a modeling style 
called “register transfer language” (RTL). RTL can be created in a 
number of modeling languages, including Verilog, VHDL, and System 
Verilog. The RTL models created using these languages can be 

 

� Formal assertion- based techniques 
� Dynamic assertion- based techniques 

simulated on software simulators, or accelerators and emulators. Verifi-  
cation of these models may be done using: 
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� Dynamic software simulation testbenches 
� Emulator or accelerator testbenches 

 
While some verification is performed by design engineers themselves, 
the bulk of the verification at this and subsequent stages is performed 
by verification engineers. 
 
The key metrics used to track verification closure at this level are: 

� Functional coverage 
� Code coverage 
� Dynamic assertion and/or checking coverage 
� Formal assertion coverage 

 
The key output of this type of verification should be a qualified block 
design that is ready to be integrated with other blocks to create sub-
systems, or the complete chip itself. 

Testbench Creation Design Verification Advanced Verification

Testbench Creation

Design Verification

Advanced Verification

Time

Dynamic Verification Only

Leveraging Formal Techniques

 
Figure 4.4 Schedule Savings Using Formal Techniques 

 
Using formal verification tools (Figure 4.4), the designer can begin to 
verify their block before any verification infrastructure is available 
from the verification engineering team. This is a huge improvement. 
Previously, there was often a delay in the schedule as the designer 
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waited for a verification environment that could exercise their device. 
With formal techniques, the designer can begin verification using 
assertions (concise declarations of behavioral rules), as soon as they 
begin coding their module. 
 
Formal verification techniques are best aligned to blocks of control 
logic as opposed to blocks of logic that perform data transformations 
such as multipliers. Because they perform state space explorations, 
formal verification tools are best suited to smaller blocks of logic. 
 
As formal tools run out of steam, verification engineers use dynamic 
simulation and testbenches to further verify the device. Simulation 
testbenches simulate the actual operation of the device under test and its 
surrounding environment. Using simulation, engineers can model input 
transactions that stimulate the device as it will be exercised in a real-
world system. They can also monitor output transactions to check for 
correct device behavior. Engineers can build streams of transactions 
that model real- world scenarios. The simulator also allows the engineer 
to monitor or drive any signal within the device. 
 
Emulators and accelerators can be used to simulate block- level 
models. However, this is not done frequently. 
 
Integration Verification 

Integration- level verification is perfor-
med to check that subsystems within the 
chip work well together. As blocks are 

qualified as viable by block- level verification, they are introduced 
into integration- level verification. The key difference between integ-
ration and chip- level verification is semantic. At the chip level of 
verification every block is included in the device model. 
 
The completion metrics for integration- level verification are iden-
tical to those used for block- level verification. More attention is paid 
to functional coverage at this level because the scenarios of interest 
are more easily modeled and tracked using functional coverage. 
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The verification technologies used are also the same. Far less formal 
verification is done at this level as the design grows in size and 
begins to outstrip the capacity of formal verification engines. The 
assertions written for formal verification at the block level can be 
reused here though. 
 
Dynamic simulation is used prevalently at the integration level. Depen-
ding on the size of the integration, simulation performance may 
begin to slow toward unacceptable levels. Integration is the first 
level that most projects begin to consider using acceleration or emula-
tion technologies. 
 
Testbenches written for integration verification can be reused for 
chip and system verification. If a simulation testbench is to be used 
in an accelerator or emulator, then special considerations need to be 
made to ensure that it works in both on the simulator and the accele-
rator or emulator. 
 
Chip- Level Verification 

As mentioned above, chip- level verification is a 
special case of integration verification with the entire 
design present. This verification activity provides us 
with the first indicator of quality for the overall  
chip. At this level, simulations run significantly more 
slowly, and more emphasis is placed on acceleration 

or emulation. Firmware routines may be tested on the device at this level 
of verification. 
 
System- Level Verification 
System- level verification tests the implemented device in an environ-
ment that approximates the target environment the production- level 
device will be used in. In system- level verification, we verify that 
the device will work with the actual firmware and software that will 
be delivered with it and that the device will work in the presence of 
typical transaction streams on its inputs. 
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The metrics used to track system- level verification are: 

� Functional coverage of input and output transactions 
� Assertion coverage 
� Code coverage of firmware and application software 

 
Less emphasis is placed on tracking functional coverage of scenarios 
within the device. These scenarios are much easier to verify and debug 
at the chip level of verification and below because of visibility and 
speed issues. 
 
Assertions can be loaded into both accelerators and emulators. 
However, at this level they are typically not used as completion 
metrics, but rather as tools to help speed debug once an issue is 
found. These are the same assertions that were used at the block, 
integration and chip level, and therefore have a very fine level of 
detail. They are typically turned off until an issue is detected at the 
system level. They are then turned back on in an attempt to isolate 
smaller issues that may have led to the system- level failure. In this 
manner assertions can help engineers isolate the root cause of system-
level issues much more quickly. 
 
System- level verification can be performed at two different levels of 
abstraction. It is typically performed using the complete design in 
either simulation (very slow), or acceleration or emulation. System-
level verification can also be performed using a TLM simulator. The 
same TLM model that was described in the architectural verification 
section sometimes offers high- enough performance to allow very 
early testing of real firmware and application software. The key to 
success with a TLM model for system verification is to model at a 
high- enough level of abstraction to not significantly impact the speed 
of the simulator. 

Summary 
In this chapter we have given a brief outline of the various verifi-
cation activities. We have described each activity presenting the 
metrics that are used to track the activity, the tools used to produce 
those metrics and the participants who are responsible for comple-
ting the activities. 



 

Chapter 5 
Verification Technologies 

 

 

 

 

 

 

Introduction 
This chapter deals with the execution stage of the verification process 
outlined earlier and shown again below. In the execution stage we run 
our verification engines to verify the correctness of our device. 

Respond

Plan

Measure

Execute

 
Figure 5.1 The Metric- Driven Process 

 
The purpose of this chapter is to provide a high- level overview of 
each of the verification engines or technologies. This overview of 
each technology will include: 
 
� Why to use the technology 
� How the technology works 
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� 

� Who utilizes the technology 
� What process metrics should be analyzed 
� How the technology can be leveraged 

 
There are many different verification technologies or “engines” avai-
lable. Each technology is suited to a given domain of verification 
that other technologies may not be. There is of course some overlap 
between these technologies. 
 
Each of these technologies will be covered in more detail in Part III 
of the book. 
 

Metric-Driven Process Automation Tools 
This is the class of tools that enables all of the methodologies and 
concepts described in this book. These tools enable the “Plan, Execute, 
Measure, and Respond” metric- driven process framework shown in 
Figure 5.1. 
 
Up until now, we’ve alluded to their capabilities. Here we’ll dive 
into what they can do for you, how they work, how to utilize them, 
and the various use models of these tools. 
 

What they are Used for 

MPA tools enable the simple four- step process infrastructure that is 
described throughout this book: Plan, Execute, Measure, and Res-
pond. They provide an automated framework that allows the user to 
capture the plan, control execution resources, measure the data or 
metrics created by those resources and then through either automated 
means, or human analysis and feedback to respond to the current 
metrics produced by iterating the plan. 
 

 

 

 

 

How to plan using the technology and what metrics should be 
tracked 
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Planning 
There are several types of planning that are 
currently in use. The purpose of all planning 
procedures is to document a course of action, 
and plan how the device will be verified. Two 
of the most used planning strategies are: 

� Specification- based planning 
� Feature- based planning 

 
In a specification- based plan, the plan is created using the device 
specification as the raw material. The specification is reviewed and 
each point in the specification that is deemed important is recorded 
in the verification plan along with some metric to judge the comple-
tion of verification of that point. Specification- based plans may 
either be created by an individual and then reviewed by the team, or 
created by the team in a collaborative effort. 
 
The difference between a specification- based plan and a feature- based 
plan is subtle, but important. Feature- based plans are always created in 
a collaborative way. All the stakeholders meet to create the plan. When 
we say all the stakeholders, we mean not only the verification and 
design engineers for a given block of the design for example, but also 
the firmware and application engineers, the system architects and even 
the design and verification engineers for other portions of the chip. 
 
Take a look at Figure 5.2. It shows the various intent translations 
when moving from the original design intent to actual silicon. The 
original product intent is documented and then translated by one or 
more system architects into the architectural intent. This is then 
documented into a specification where it is translated by the hard-
ware, software, and verification engineers of the project. By the time 
the actual design and verification environments are created, they are 
the products of at least three individual translations. By doing 

 
Either type of planning can be done as a one- shot process or an 
iterative process. In reality, planning will always be an iterative 
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collaborative feature- based planning, you allow the various trans-  
lators to resynch their resulting translations vs. the actual intent. 
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process. The circumstances of the project will change, people will 
hire on or leave, features will be added to or removed from the 
device, etc. The one- shot planning process attempts to account for 
all aspects of the project up front and then adapt to changes as 
necessary. It creates a “finished” document that will be ideally used 
throughout the project to define what actions are to be taken and 
how to track status. 
 

Product Intent
Marketing, Business, Customers

Architecture Intent
System Architects

Napkins, 
Memos, 

Formalized 
Requirements 

Documents

Specification

Design Intent
Design Engineers

Software Intent
Software Engineers

Verification Intent
Software Engineers

Hardware/Software and
Verification

 
Figure 5.2 Product Intent Translations 

An iterative plan takes these project changes as given from the start. 
The team creates a “good enough” plan to get everyone working and 
fully loaded. The team agrees that periodically (often every two 
weeks) they will meet and update the plan. This planning methodo-
logy places a lighter load on the team initially and tend to promote 
the survival of the plan. Because the team knows ahead of time that 
the plan will change and that the plan will be modified frequently, it 
tend to actually use the plan more often because it is more accurate. 
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More information on the planning process can be found in Part II of 
this book. 
 
Regardless of the planning strategy used, the MPA tool allows you 
to capture the plan in an executable format. What’s an executable 
format? This means the metrics that are to be measured to determine 
the status of the plan’s execution will be automatically annotated 
back into the plan. This means we have closed the feedback loop on 
status tracking. Before MPA tools were available, the project team 
wrote a plan and defined how to track the status of that plan. Often 
the definition of success was implicit at best. In other words, the 
team didn’t define a measurable metric for completion. They simply 
said that the plan was complete when all the testcases were finished. 
While this was simple, it was very subjective and very susceptible to 
human error. 
 
With MPA tools, we define what metrics define completion of a 
certain aspect of the plan. The only qualifier to these metrics is that 
they must be automatically produced by one of our execution reso-
urces. Examples of metrics that indicate completion are: 
 

� 100% code coverage of a design block. 
� 100% functional coverage of all block- level covergroups. 
� 100% coverage of all designer defined assertions. 
� 

passed. 
 
Usually a combination of all these metrics is used. The important 
aspect is that each of these metrics can be automatically measured. 
The term “executable plan” means that the measurements can be 
automatically gathered and attached to the appropriate portion of the 
plan so that you only have to view the plan to know the objective 
status of the project. 
 
The excerpt (Figure 5.3) from the definition view of an executable 
plan serves as an example. 
 
 

100% of testcases defined for the block have been run and 
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AHB Interface Block 
 Code Coverage 
Cover: /sys/ahbintf/codecover 
 Covergoal:  100% 
 Transaction Type Coverage 
Cover: /sys/ahbintf/transtype_* 
 Covergoal: 100% 

Figure 5.3 Verification Plan Definition 

 
The executable view would look something like Figure 5.4. 

 

 
The job of the MPA tool with respect to executable plans is to find 
the metrics specified in the definition view and display them 
appropriately in the execution view. 
 
Execution 

During planning, we define not only what is to 
be done and how to measure completion, but 
also how the tasks are to be executed. From an 
MPA point of view, this means we define what 
execution engines will be used to exercise our 
hardware design and verification environments. 
These engines might be simulators, emulators, 

linting tools, or any of the other various tools that are at the disposal 
of hardware/software/verification teams. The only requirement that 
MPA places on these tools is that they must be controllable via an 
automated mechanism (a scripting language for example), and that 
they produce metrics that can be automatically obtained by the MPA 
tool. 
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Figure 5.4 Executable View 

AHB Interface Block 85% 

Code Coverage 98% 

Transaction Type Coverage 73% 
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Depending on the MPA tool, different levels of refinement will exist. 
At a minimum, the tool allows the user to specify what execution 
engines are to be run and to also specify where the resulting output of 
the tool will be deposited so that the MPA tool can extract metric data. 
 
The general execution flow of MPA tools is shown in Figure 5.5. The 
user supplies a set of job specifications that the tool interprets to 
control the various execution resources at the user’s disposal. The tool 
then automatically parses failures and coverage metrics from the 

Executable
Plan Job Spec

MPA Tool

Verification Engines

Formal Simulation

Emulation Acceleration

Metrics

 
Figure 5.5 MPA Execution Flow 

 

Respond 
An MPA tool will provide two frameworks for 
response. The most common framework relies on 
human intervention and supplies a set of analysis 
tools. The simplest analysis tool is the annotated 
verification plan itself. By reviewing the anno-
tated plan, the user can determine what tasks have 
and have not been completed. Based on this 

analysis, the user might respond by shifting resources within the 
project, or changing the scope of the project. A more refined MPA tool 
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output of these tools and annotates those metrics back into the exe-  
cutable plan. 
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might allow the user to graphically explore what functional coverage 
was missing. By performing this analysis, the user can prepare reports 
that engineers can use to decide which testcases to write next. 
 
The automated response infrastructure is less common, and a bit 
harder to use, but very powerful. Using this mechanism, a user can 
write small programs that read in the metrics harvested by the MPA 
tool, automatically analyze these metrics to create new job specifi-
cation files, and then use these job specification files to automatically 
restart the execution engines to obtain better or more refined metrics. 
For example, an application can be written that first groups simulation 
failure types based on error messages. These grouped failures could 
then be sorted to find the simulation that has the earliest occurrence of 
each failure type in terms of simulation time. Finally, the application 
can create a job specification file that runs these simulations again 
with waveform creation turned on. This saves the verification engi-
neers the time consuming step of resimulating failed simulations to 
produce useful debug information. 
 
Now that we’ve looked at the methodology enabling engine, let’s take 
a look at the other verification engines. 
 

Modeling and Architectural Exploration 
Why Perform Architectural Modeling? 

Architectural modeling is in fact the first activity of design verifi-
cation. It seeks to determine if the conceived architecture of the chip 
will provide the desired functionality and performance required by 
the product intent for the chip as established by the end customer. 
 
Planning for Architectural Modeling 

Verification planning consists first describing 
each feature of the device and then describing 
exactly what it does, and how to know when it 
did it. 
 
Architectural modeling tend to be more concer-
ned with performance trade- offs as opposed to 
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functionality. At this level of abstraction, it is assumed that the device 
will behave in a functionally correct manner. The key verification task 
here is to verify that the device has the appropriate resources organized 
in the appropriate manner to perform the feature correctly. Some exam-
ples of architectural “whats and whens” are: 

� The device receives input data from the peripheral bus at an 
average bandwidth of no less then 64 KB per second. This 
average should be consistent over a time period no smaller 
than a tenth of a second (in other words, shipping no data for 
a second and then shipping 128 KB of data in the next 
second isn’t good enough). 

� The device caches intermediate data from the steps of the 
algorithm in no more than 64 KB of memory while flushing 
the memory in between separate executions of the algorithm. 

 
Architectural modeling, like any other verification activity requires 
three dimensions: 

� Determine what stimulus needs to be provided to the model 
to test architectural assumptions (stimulus). 

� Determine how to measure that the stimulus and scenarios 
were in fact driven to the model (coverage). 

� Determine how to check that the model functioned as inten-
ded (checking). 

 
In short, architectural modeling is no different than any other 
verification activity. The level of abstraction is simply elevated to 
system- level concerns. 
 
How It Works 

Architectural modeling helps architects to make 
decisions regarding the basic structure (architec-
ture) of the chip. This is done by providing a very 
fast, abstracted simulation platform that allows the 
architect to model the behavior of the finished 
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device at a high- functional level without the neces-  
sity of specifying all implementation details. 
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Architectural modeling has been rather well specified by the OSCI 
standard. There are several levels of abstraction that can be applied 
to the process. The higher the level of abstraction, the faster the 
underlying simulator will execute. The levels of abstraction defined 
by the standard are: 

� Algorithmic level 
� Programmer’s view 
� Programmer’s view + timing 
� Cycle accurate level 
� Register transfer level 

 
In addition to exploring questions that relate to the hardware 
architecture of the device, explorations can be made into the device 
firmware and application software spaces as well. Architectural 
simulations can run fast enough to give software engineers the first 
taste of the device that they will be programming for. This can allow 
software engineering activities to begin much earlier in the design 
cycle. Traditionally, these activities begin fairly late. By starting 
earlier in the design cycle, software architects can identify key issues 
in the hardware that make software construction difficult and request 
that those issues be resolved while it is still relatively easy. 
 
Architectural modeling provides a fast simulation platform for model-
ing architectural and software experiments by abstracting out all ele-
ments of the design that are unnecessary for these studies. Given the 
key parameters that define a bus’s bandwidth, the architectural simula-
tion can model traffic over the bus without taking into account how the 
bus will be implemented in actual hardware, or the low- level details of 
the drivers that will feed the bus. The simulator no longer has to spend 
processor time modeling unnecessary information and can run faster. 
 

SystemC. SystemC is built on top of C++ and encapsulates certain 
design concepts such as time and signals. By using SystemC, the 
architect does not need to concern themselves with modeling these 

There are a number of programming languages that can be used   
for architectural modeling. Perhaps the most popular of these is 
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low- level concepts and can simply make use of the constructs that 
are already defined by the language. 
 
Other languages have been used for architectural modeling over the 
years including Verilog, VHDL, plain C/C++, and e. In addition to 
these languages, some architectural studies are carried out using 
readily available tools such as spreadsheets. 
 
What Metrics to Track 

architectural modeling is to determine if the 
selected architecture for the device under design 
will be able to provide enough functionality for 
the desired feature set. 

 
The verification plan essentially lays out a list of metrics that must 
be measured to satisfy each architectural study. By tracking these 
metrics to completion, we are ensured that the appropriate metrics 
have been considered and that the proper architectural trade- offs 
have been made. 
 
Architectural modeling metrics will consist mostly of functional 
coverage metrics. Functional coverage provides information about 
what scenarios have been exercised in the modeled device. 
 
If there are multiple architectures that are being evaluated, then the 
metrics for each architecture should be tracked independently. Using 
this information, architectural decisions can be re- examined later in 
the project, or as the project is modified for further revisions. 
 
Architectural models often contain complete or almost complete 
descriptions of the final device’s behavior and correct operation. As 
such, they can be used as reference models for the later simulation and 
emulation stages of verification. One key historical metric that should 
be tracked is the number of modeled behaviors. The methodology for 
using each modeled behavior should be documented. 
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Because it is a form of verification, the goals  

tracked in a verification plan. The main goal of 
of architectural modeling activities should be 
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The functional coverage of architectural modeling should track 
various architectural concerns including, but not limited to: 

 
� Performance 
� Bus traffic bandwidth 
� Algorithm studies and selections 
� Memory size selections 

 
Any concern that is to be resolved by an architectural study should be 
tracked by functional coverage to ensure that the study was in fact 
completed. Tracking the coverage is not enough however. In addition 
to ensuring that the study was completed, we need to track that the 
necessary architectural decisions were made using the resulting data 
and how those decisions were made. Consequently, another artifact or 
metric that should be tracked is documentation of decision evaluations 
with specific links back to the recorded functional coverage metrics 
and results. 
 
Functional coverage metrics should trend toward 100%. Architec-
tural studies should be re- evaluated after every change of the 
device’s architecture. For example, when a device peripheral is 
added or removed, all architectural study simulations related to the 
bus that the peripheral uses should be rerun. 
 
How Architectural Modeling can be Leveraged 
The stimulus, coverage and correctness models developed for 
architectural modeling can be reused throughout the project. As 

tural modeling can be reused for checking the correctness of hard-
ware models as well. Transaction- based stimulus can be reused in a 
properly architected verification environment as well. Transaction-
level modeling also allows architectural coverage definitions to be 
reused. 
 
By reusing checks and coverage from the architectural stage, the 
verification team can perform a sanity check of the architectural 
assumptions as they are gradually translated into actual hardware. 
By performing these sanity checks after each block is completed and 

mentioned in Chapter 4, the correctness models used for architec-
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after each new level of integration, catastrophes caused by incorrect 
architectural assumptions can be avoided through early detection. 
 
The architectural model is often used by software developers to 
develop the first cut of the system’s firmware. Because of their high 
level of abstraction, these models can run fast enough to provide 
useful results for software developers. 

Assertion-Based Verification 
Why Use Assertions? 

The sooner bugs are spotted in the design, the cheaper they are to 
fix. It has been shown that the cost of fixing a bug in a design 
increases exponentially with time. 
 
For example, look at the design shown in Figure 5.6. It can be seen 
that the DMA block moves data for the DSP, LCD driver, and the 
PWM DAC. The DSP can control the operation of the DMA block. 
If bugs are found in the LCD driver at the chip integration level, we 
have to investigate not only the LCD driver, but also the DMA 
block, and the DSP. 

PWM DAC LCD
Driver

DSP

DMA Memory

Figure 5.6 Assertion Example 
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First we would verify that the LCD driver was doing the correct 
operations based on the control data it received. We would then 
check the DSP to make sure that it was correctly driving the DMA 
engine. Once again, we find that there are no problems. Finally, by 
the process of elimination, we check the DMA engine and find the 
bug. So, after checking three hardware blocks, and one piece of DSP 
software, we finally arrive at the root cause of the bug. 
 
In contrast, if we had caught the bug at the block level, we would 
have investigated only one hardware block. With assertion- based 
verification that’s exactly what we’ll do. 
 
How Assertions Work 

Assertions can be easily used to test block- level 
functionality at the block level where it is still 
easy to fix. Assertions are simple Boolean or 
temporal checks that are easy for both design 

 The FIFO write signal can never be 
asserted when the FIFO full signal 
is asserted. 

 
Temporal assertions are slightly more complex because they can 
utilize timing structures. An example of something a temporal asser-
tion might be used to check is: 
 

When the request signal is asserted, 
the grant signal must be asserted 
between 10 and 15 clock cycles 
later. 

 
Assertions can be written in design languages such as Verilog, 
VHDL, and SystemVerilog. That makes them easy for designers to 
write. They can also be written in more verification centric 
languages such as e, property specification language (PSL), and 

P

E 

M 

R 

and verification engineers to write. An example of 
something a Boolean assertion would check is:
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SystemVerilog Assertions (SVA) making them easily accessible to 
verification engineers as well. 
 
There are two aspects to any verification issue. They are control-
lability and observability. As was shown above, assertions and block-
level verification certainly improve design visibility and subsequently 
reduce debug time. However, the design must still be exercised via 
testbenches and testcases to actually verify the functionality that the 
assertions were designed to check. That means that someone still has 
to write some kind of a testbench and testcase to fully verify the 
device even at the block level. 
 
However, there is a class of tool that can eliminate even testbench 
creation and testcase writing. It makes block- level assertion- based 
verification even more effective. These tools are typically called 
formal verification tools. They use formal proof engines to prove 
that a given block of hardware can never violate an assertion. These 
formal tools work best on small blocks of hardware because the 
complexity of the resulting proofs that must be solved increases 
exponentially with design size. They also work best on blocks that 
contain mostly control logic such as state machines as opposed to 
blocks that are used to transform data such as multipliers. 
 

module that contains viable design code, the designer can start to 
prove their assertions. Think of the value here. The designer is 
writing checks for their own blocks and receiving instantaneous 
feedback about the viability of their design choices. They’re 
catching bugs in the design almost the instant that they are created. 
Actually, if they use the planning techniques outlined in Part III, 
designers can catch many bugs the instant they are created! 
 
In order for formal assertion engines to solve their proofs, designers 
need to tell the engines what behavior is allowed at the inputs of 
their device and what behavior will never take place. The formal 
engines will then use this information to simplify the mathematical 
problem that they have to solve. 

These formal assertion checkers can be used even before there is 
a testbench available for the device. As soon as there is a design 
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For example, in the request grant scenario described above, the block 
may have been designed with the assumption that no two requesters 
would be allowed to request the block at the same time. The designer 
would write an assertion called a property or assumption at this level 
to convey this information to the formal engine. It would read 
something like: 
 

asserted at a time. 
 
As we begin to integrate blocks of the design, our formal engines 
will quickly be outstripped by the designs complexity. So, is that all 
we get out of our formal processes? 
 
Not quite. The properties that bounded the input space in formal 
analysis are in fact rules that the integrated blocks must follow at the 
unit, chip and system integration levels of verification. By telling the 
simulation tool to treat the formal properties as dynamic assertions, 
we have automatically added a number of useful checks to our 
verification environments without our verification engineers having 
to write one line of additional code. 
 
The picture gets a little brighter still. Remember that complex debug 
cycle to determine that the DMA block was actually at fault? Well, 
we’re bound to still get a few of those. As we move up in integration 
levels, we typically turn off assertions to enhance simulation and 
emulation performance. Now, when we find the same bug our first 
step will be to turn on all our block- level assertions. Sure enough, 
we find when we resimulate that the DSP software utilized the DMA 
in a manner that wasn’t expected and forced a piece of the hardware 
to violate one of the initial design assumptions. Rather than tracking 
through three hardware blocks and a software block, our designer 
merely turned his assertions back on and was led straight to the 
problem. 
 
To summarize, we have our design engineers checking device 
behavior very early in the design cycle when it’s very cheap to fix 
bugs. They don’t have to wait for verification engineers to create 

Only one request signal may be 
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testbenches or testcases for them. And, in some cases, not only can 
the design engineer check functionality, they can prove that the 
functionality will always work based on their assumptions. Those 
same assumptions can serve as additional checks that the various 
blocks of the design play well together when the design is promoted 
to higher levels of integration. Finally, even at the chip and system 
level where we hope all is well in our individual blocks, if it’s not 
we can re- enable our assertions and use them to provide precious 
debug information. 
 

What Metrics to Track 

Now we know what value assertions can provide, 
but how do we track that they are being imple-
mented efficiently during the project? There are a 

 
During verification planning, the designers iden-

tify pieces of functionality that can be verified using formal analysis. 
We can automatically track the status of those defined assertions. 
This information can be used in conjunction with revision control 
information in two ways. 
 
First, we should see the assertions move to a proven state at roughly 
the same rate that we see the number of lines of code for the given 
design module increase. If there are spikes in the size of the design 
module vs. the number of proven assertions, that doesn’t necessarily 
mean there is a problem. Development style varies from engineer to 
engineer, and some engineers like to code larger portions of their 
design before starting to test. However, if we see the design block 
declared complete and there are still no proven assertions as defined 
in the verification plan, then there is a red flag that bears checking. 
 
Second, every assertion of a given block should be reproven every 
time the block is modified. If the assertions aren’t reproven, bugs 
caused by the code modification can slip through. 
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As we begin to move into simulation where dynamic assertions will 
be used, there is another metric to check. Dynamic assertions are 
only valuable if the functionality of the device that the assertion 
checks is actually exercised. All assertions can be divided into a 
qualifying portion of the assertion, and the actual check itself. Let’s 
look at our temporal assertion example again. 
 

When the request signal is asserted, 
the grant signal must be asserted 
between 10 and 15 clock cycles later. 

 
The qualifying portion of the assertion is that the request signal was 
asserted. The check is that given the qualifying condition, the grant 
signal must be asserted properly. 
 
We need to actually track that the assertion’s qualifier was exer-
cised. Assertion coverage tools can be used to automatically track 
this information. If the qualifier is never exercised by the regression 
suites, then they need to be enhanced to create the desired stimulus. 
There is one caveat here. It might be determined that the assertion 
was never checked because the device in fact does not operate in a 
manner that ever stimulates such behavior. 
 
Finally, there is a heuristic metric that is of most use in projects 
where verification planning is not used. That metric is simply the 
proportion of lines of assertion code in each design module vs. the 
number of lines of design code. It is similar in nature to the old 
software heuristic of requiring that twenty percent of the lines in a 
given software module should be comments documenting the code. 
This metric provides a rough feel for whether or not engineers are 
properly utilizing the available assertion- based verification tools, 

 

 

 

 

 

cussed here. 
although it is by no means as objective as the other metrics dis-  
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Who Utilizes Assertions 
From a tactical standpoint, designers make the 
most effective use of assertions. They can use 
their intimate knowledge of the underlying design 
to quickly code these small checks. The rewards, 
that some portions of the design are “proven” 
correct and need not be further verified and that 
bugs are found while they are still easy to fix, 

provide suitable motivation to utilize assertions. 
 
Verification engineers utilize assertions at the boundaries of design 
blocks to reap tactical rewards on the current project and to garner 
large strategic rewards in future projects. These verification- based 
assertions check the rules for communication between design blocks. 
When verification engineers write these assertions, they are creating 
an independent contract that the disparate authors of adjacent, 
communicating design blocks must adhere to. Tactically speaking, 
integration of design blocks becomes much easier as communication 
issues are caught in the initial stages of integration. Because these 
verification assertions are independent of the design implementation, 
they can be reused from project to project, either traveling with a 
given design block, or being used as an implementation contract 
when new design blocks with the same communication protocols are 
created. 
 

How Assertions are Leveraged 

Design- based assertions can be tactically leveraged beyond block-
based verification. At the integration, chip and system levels, these 
assertions can be reactivated to provide valuable information that can 
greatly enhance debug speed. 
 
Verification or protocol assertions can be leveraged strategically 
across projects. These assertions can be reused either with existing 
design IP as it moves from project to project, or on new design IP 
that must conform to the given protocol. 
 
Formal- based verification requires the definition of assertions that 
define boundary assumptions. These assertions define the legal input 

P

E 

M 

R 



70 Metric-Driven Design Verification 

behavior for a block. They can be reused as dynamic assertions when 
the block that was formally verified is integrated with the adjacent 
block that drives its inputs. In this manner, it is easy to find outputs 
from the adjacent block that incorrectly drive the originally verified 
block. 
 

Simulation-Based Verification 
Why to Use Dynamic Simulation 

Formal assertion- based verification is great for proving that block-
level control logic works. Assertions also allow us to define complex 
Boolean and temporal checks easily. However, once these checks 
have been defined, their qualifying conditions must be created. If 
these assertions are not formally proven we must use dynamic 
simulation or emulation techniques. 
 
Simulation is a software technology that allows engineers to fully 
model the behavior of a semiconductor device. The device can be 
modeled at a fraction of its actual speed and the input and output 
waveforms are analyzed for proper behavior. 
 
By using simulation- based testbenches, verification engineers can 
create complex scenarios to test the functionality of various features 
of the device. Using high- level behavioral programming languages, 
verification engineers can express these complex scenarios in a 
concise manner. 
 
Several software debug and analysis tools have been developed for 
the simulation arena. These allow engineers to view signals within 
the simulated device as if they had the actual device and were testing 
it on a workbench. 
 

How Simulation Works 

Simulation- based verification consists of three 
steps. The designer develops a model of the 
device in an HDL language such as Verilog, 
VHDL, or SystemVerilog. In parallel, the verifi-
cation engineer develops a testbench for the 
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device. The testbench is used to instantiate the 
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There are two broad classes of simulation testcases. These are 
usually denoted as directed and random testing. Directed testing is 
carried out in much the same fashion that software is written. The 
engineer sits down and writes a procedural description of a test 
scenario that should be run on the DUT. With a directed testcase, the 
engineer can create exactly the test scenario that is desired. For 
simple testcases, directed testing is perfect. The engineer can easily 
create a scenario that simulates the device and checks for proper 
behavior. However, when complex timing relationships are invol-
ved, writing directed testcases can become quite difficult. Once a 
testcase is created, a subsequent change in the design timing can 
render the testcase useless. In short, an engineer can create exactly 
the scenario they want with a directed testcase, but possibly not for 
very long, and they only get the scenario they want. 
 
Random testing, or as it is more properly called, constrained random 
testing makes use of randomness to automatically create desired 
scenarios and to create scenarios that are legal, but that were not 
specified in the verification plan. There are two primary values to 
this type of testing. 
 
First, the complex testcases mentioned above can actually be 
generated automatically. The engineer creates a test environment 
that randomly drives stimulus to the DUT. They also create mecha-
nisms that detect the desired scenarios. These monitors are called 

all the desired scenarios were created. If there are scenarios that are 
not created, the engineer constrains the stimulus to create more 
favorable stimulus. 
 
The second reason for using constrained random techniques has to 
do with the rapidly increasing complexity of today’s designs. As the 
number of features of a device increases, the number of operational 

device (create a model of the device in the computer’s memory), and 
then drive the device’s inputs and read the device’s outputs. 

functional coverage groups. The engineer then runs multiple simu-  
lations using the randomly created stimuli and checks to see that 



72 Metric-Driven Design Verification 

combinations of the device increases exponentially. It has become 
impossible to exhaustively test all the states of the device. Verifi-
cation efforts are usually constrained (no pun intended) to the most 
important configurations of the device. Random testing will test the 
device in manners that are legal (via constraints), but that were not 
originally specified in the verification plan. This can lead to the 
detection of bugs in the DUT where no one ever thought to look for 
them. 
 
What Metrics to Track 

There are two key metrics used to track the pro-
gress of dynamic simulation activities. These are 
code coverage and functional coverage. Code 
coverage measures how many times each line of a 
design description has been executed. Functional 
coverage is defined by the verification engineer 
and measures how many times a specified scena-

rio has been executed. 
 
By itself, code coverage can tell the design engineer if all their code 
has been exercised. This is certainly a necessary condition for good 
verification, but by no means a sufficient one. The fact that every 
line of code has been executed does not imply that all the function-
ality of the device has been exercised. 
 
But, consider code coverage data in conjunction with functional 
coverage data. This provides a whole new level of confidence. There 
are four possible scenarios that are illustrated below. 
 
If we have high- functional coverage and high- code coverage, then 
probably life is pretty good. There could be one problem here, but it 
is unlikely. The design engineer could have not implemented exactly 
the same portions of design code that the verification designer 
implemented no functional coverage for. Another way to say it 
might be that the design and verification team were not aware that 
new features had been added to the device. This unlikely (?) event 
can be prevented by tracking both these metrics to the verification 

P

E 

M 

R 



5 Verification Technologies 73 

plan and making sure that the team in charge of feature definition 
has visibility into that document. 
 
What about the other cases? What if code coverage is high, but 
functional coverage is low. This could indicate that stimulus for all 
the functionality of the device had not been created. It could also 
indicate that portions of the design corresponding to the missing 
functional coverage have not been implemented yet. 
 
What if the code coverage is low, but the functional coverage is 
high? It could be that portions of the functional coverage are not yet 
implemented. It could also indicate that there are design structures 
that offer no actual functionality. Perhaps a feature was cut that the 
verification team was aware of, but the feature has not yet been 
removed from the device. 
 
By taking two metrics that were readily available, we went from a 
simple good bad analysis (code coverage alone) to an analysis that 
begins to shed light on what is actually going on. 
 

Mixed-Signal Verification 
Why to Use Mixed- Signal Verification 

It’s an analog world. The real- world (ignoring quantum mechanics 
and string theory) produces a rich continuum of values. The digital 
world operates on ones and zeroes. In order for interesting digital 
applications to work on real- world data, the two must meet. That’s 
where mixed signal simulation comes into play. 
 
Planning for Mixed- Signal Verification 

From the digital point of view, planning for 
mixed- signal verification is exactly the same. The 
analog portion of the problem adds a few new 
twists however. Now in addition to considering 
what a device feature does, the engineering team 
must consider the environmental conditions the 
device itself lives in. Planning must take into 
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temperatures. In addition, the plan should also account for the 
different component description “decks” that describe the different 
corners of the silicon manufacturing process. 
 
Digital blocks are frequently not only the recipients of data from 
analog blocks, but also control how the analog block functions. For an 
example, see Figure 5.7. Here an analog preamp feeds an analog to 
digital converter that supplies input data for the rest of the digital 
domain. 

A/D
Converter FIFO

Digital Gain Control

Figure 5.7 Digital Control of the Analog Domain 

 
Note that the gain of the preamp is determined by a control signal 
supplied by the digital domain. When planning verification it is 
important to check all combinations of the digital and analog 
domains that affect each other. For example, the environment shown 
above should verify the different operating temperatures, in combi-
nation with the various gains that can be provided to the preamp 
block. 
 
How Mixed- Signal Verification Works 

Analog simulation can be performed in much 
the same manner as digital simulation. Engine-
ers construct a description of the circuit based 
on the actual components within the circuit 
instead of the synthesizable behavioral con-
structs used for digital logic design. These 
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account the analog behavior of the device at different operating 
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circuit models are then instantiated into an analog simulator where 
the actual operation of the circuit can be simulated in a variety of 
operating conditions with a variety of input stimulus. 
 
Depending on the level of abstraction, analog simulation is much 
slower than logic simulation. Historically this has resulted in fewer 
testcases being run and little coverification between the analog and 
digital domains. 
 
However, with increasing design complexity both in the analog and 
digital domain, it has become essential to move to a metric- driven 
coverification approach. 
 
For more information on how analog/digital coverification is imple-
mented, see the corresponding chapter in Part III. 
 
What Metrics to Track 

Trends in mixed- signal verification are tracked 
with the same techniques used for tracking archi-
tectural or simulation status. One key difference 
is making sure to keep analog metrics such as 
manufacturing deck and operating temperature in 
mind. 
 

 
Acceleration/Emulation-Based Verification 
 

Why to Use the Technology 

As more of the various parts of a design are integrated, simulations 
run more slowly. There are speed and memory space limitations that 
are imposed on simulators by large designs. Ultimately, simulator 
performance can slow to such a level as to be useless. For example, 
when simulating the complete chip for an MP3 decoder, it can take 
up to three days just to decode a single frame of an MP3. One MP3 
frame is not long enough to be heard by the human ear. 
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Planning for Acceleration and Emulation 

Acceleration and emulation are typically used for 
system- level verification. With that in mind, the 
planning process is tilted toward the chip- level 
integration engineers, the firmware engineers and 
the application engineers. From a chip- level inte-
gration engineer’s point of view it will be impor-
tant to make sure that the chip as a whole comes 

to life. The chip should behave correctly coming out of reset and the 
various blocks should be able to communicate. There is less 
emphasis on the correct behavior of each feature of each block of the 
device because it is assumed that this has been verified in an earlier 
stage of verification using dynamic simulation and/or assertions. 
 
The firmware engineer will need to check the code that will execute 
on the device and provide basic functionality for the higher level 
application code. Firmware engineers sit squarely between the 
hardware design and software application worlds. Planning from a 
firmware point of view will focus on such issues as whether each 
firmware module has been executed (software code coverage), and 
whether certain hardware corner cases were encountered during the 
execution of the firmware (did each type of allowable interrupt 
occur during peripheral initialization?). 
 
Application engineers are interested in verifying that the device 
works with real- world application code in the target system that 
customers will use. These engineers will be interested in exercising 
the device using in- circuit- emulation (ICE) to attach it to real- world 
target systems. For applications, verification planning will be 
focused on tracking that each application was run in each legal 
configuration of the device with a variety of real- world system topo-
graphies. 
 
How the Technology Works 

When simulation performance is no longer accep-
table, many organizations turn to emulators and 
accelerators. Emulators and accelerators are used 
to test a device in much the same way that 
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simulators are. Engineers download the same 
device definition that was used for the simulator 
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Emulators and accelerators are similar in their operation and perfor-

can actually plug into the target system that the real device will be 
used with. This allows engineers to verify the emulated device as part 
of the real- world system that the production device will eventually 
live in. Accelerators are typically somewhat easier to use and are best 
suited to using the same testbench that was used in simulation with no 
connections outside the accelerator hardware. These are only the 
sweet spots. Of course, emulators can be used in a targetless environ-
ment and accelerators can be used for ICE. 
 
This higher speed does come with a few limitations. Emulators and 
accelerators are much more expensive than software simulators. 
They typically require more initial setup effort than software 
simulators. It is also typically harder to extract debug information 
from these tools. 
 

Who Utilizes the Technology? 

The performance provided by these solutions 

both with and without their target firmware and 
application software. Emulators and accelerators 
often offer the first chance to verify the hardware/ 
software system as a whole. Because these systems 

offer real- world execution speeds and debug access, they are often used 
by software teams after being setup by the design and verification teams. 
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onto the emulator or accelerator. While simulators are software appli-  
cations, emulators and accelerators are specialized hardware solutions.
This specialization offers great performance gains. Typical emulators
and simulators run anywhere from ten to one thousand times faster
than a simulator. 

mance benefits. There is one key difference between the two how-  
ever. Emulators are best suited for ICE. Using ICE, the emulator 

makes them ideally suited to system- level veri-  
fication. They are used to verify entire chips 
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What Metrics to Track 
As with the other verification technologies, 
coverage is one of the key metrics to track when 
using emulation and acceleration. The coverage 
metrics used change a bit on these platforms 
however. Code coverage is no longer used. Func-
tional coverage is used to track system- level 
concerns when using emulators and accelerators. 

Concerns such as which software methods have been called are 
tracked. While signal- level functional coverage can still be used, there 
are performance vs. applicability trade- offs to be considered. 
 
How the Technology can be Leveraged 

Testbenches used for simulators can be reused in accelerators and 
emulators if properly designed. Emulators and accelerators work 
only with synthesized designs. Care must be taken to implement the 
testbench in a synthesizable manner if it is intended to be reused at 
this level. Assertions can also be reused in emulators and accele-
rators to provide valuable debug information in the event of a 
detected failure. 
 

Summary 
In this chapter we have looked at several of the most popular 
verification engines and given a brief overview of how each of them 
fits into an MPA framework. 
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Part II 
Managing the Verification 

Process 



Preface to Part II 
 
In Part II we describe in more detail how to apply a metric- driven 
methodology to our every day processes. We move down a level of 
abstraction form Part I and discuss how to actually implement 
metric- driven processes. We’ll discuss implementing the “container 
processes.” Container processes are the processes that apply regard-
less of what underlying verification methodologies we are using; 
processes such as regression management and revision control. 
Working within the plan, execute, measure, and respond framework 
described throughout Part I, we’ll first describe in detail how to plan 
verification projects. 
 
Next, we’ll look at a layered methodology for capturing metrics 
independent of the source of the metrics in Chapter 7. Presenting a 
methodology to capture metrics breaks away from the plan–execute–
measure flow, but it makes sense in the context. Even as we start our 
execution engines, we need to capture metrics, not only metrics 
returned from our executions engines, but also metrics about how 
and when they are used. We actually need to have our metric capture 
apparatus in place, functional, and visible before the execution phase 
of the project begins. 
 
In Chapters 8–10 we’ll discuss the “container” processes of regres-
sion management, revision control and debug. 



 

Chapter 6 
Verification Planning 

 
 
 
 
 
 
 
 
Introduction 
Two little boys sat on the front porch of their house one morning. 
One looked at the other and said: 
 
“We need to learn how to swear today.” 
 
“OK,” said the second little boy, “I’ll say damn and you say hell.” 
 
After awhile, their mother came out and said, “What would you boys 
like for breakfast?” 
 
“Well damn! I think I’ll have some cereal!” said the first little boy. 
 
His mother grabbed him by the back of the neck and dragged him 
into the house. For several minutes after that, all the other little boy 
could hear was screaming. 
 
Soon the mother returned looked at the second little boy and said, 
“What do you want for breakfast?” 
 
The little boy replied, “I don’t know, but I sure as hell don’t want 
any cereal!” 
 
 

2

System
Intent

Design

Verification

Firmware

Applications

Whiteboard

Interviewer

Executable
Plan

Metric Manager



82 Metric-Driven Design Verification 

Getting chip verification right is all about understanding each stake-
holder’s translation of product intent correctly. It’s all about under-
standing what was originally intended for the chip and about 
matching everyone’s understanding. That’s why the verification 
planning methodology described here is collaborative. One of the 
foundations of this methodology is to gather EVERYONE for the 
planning process. That means that the design engineers, the verifi-
cation engineers, firmware engineering, apps, and management all 
need to spend some time in the same room together. 
 
Verification planning is the lynch- pin of everything else in the 
verification process. This is what will enable us to catch bugs earlier. 
This is how we will set our objective goals so we know when we are 
finished. This will be the basis of our automated status reporting that 
will be visible to all stakeholders in the project. This is not where we 
will spend a lot of time! We need to do just enough planning to 
make sure that the project is constructive and then get started on the 
real work, the project! 
 
We’re starting with metric- based planning for a few reasons. First it 
will enable us to make the most effective use of automation tools 
moving forward. By planning and implementing our coverage first, 
we immediately know what is being accomplished by each of our 
activities, methodologies and tools. Without the coverage in place, 
we can turn these tools on, but we have no way of knowing what 
they have done. 
 
Second, metrics makes the project more interesting, safer, and more 
secure. Ever watched a ball game and not cared about the score? 
Metrics give us visibility into what is being accomplished on the 
project at each given instant. It answers questions like: 
 

� How far along is the verification of the serial block? 
� Has anyone used the IIS block in stereo mode? 
� Have we tried back to back cycles on each of the AHB 

busses? 
 

The project is more interesting to all the stakeholders involved 
because they can see what is happening in their area of concern at 
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any given time. We hook the interest of everyone involved in the 
project and keep it. There’s something to watch all the time. 
Stakeholders don’t wander off, and work on other tasks for days or 
weeks at a time and come back only to be amazed that the wrong 
things or nothing has happened in their area of concern. 
 
The project becomes a safer place. By properly designing and parsing 
our coverage into chunks, we completely avoid that status meeting 
phenomenon that we’re all so familiar with. “Well, it’s coming along 
and I’ll have it done soon” repeated week after week with no real 
evidence of what is coming along or how. We have a measurement 
every day of what has been accomplished. The project is safer for 
leaders because they’re not at the mercy of ambiguous status. It’s safer 
for the team members, because if there is an issue that is inhibiting 
progress, it becomes obvious earlier, and the entire team can work as a 
team to resolve the issue and move on. 
 
Finally, the project consistently maintains a higher quality. Our plan-
ning and the visibility it provides will remove opportunities for 
undetected failures in the device or the execution of verification. The 
objective measurements we’re making project- wide visible will focus 
the proper stakeholders on the proper aspects of the project so there are 
no surprise requests for verification in the ninth hour. With these 
concerns removed, the verification and design teams can concentrate on 
the job at hand. 

Chapter Overview 
In this chapter we outline the process of verification planning. There 
are two purposes for verification planning. The first is to ensure that 
everyone involved in the design project (design, verification, firm-
ware, etc.) have the same interpretation of the product intent. 
 
The second purpose is to capture in a single document, the concerns 
of each stakeholder with respect to design verification. First, we’ll 
capture the aspects of each system feature that concerns the stake-
holder. Then we’ll define how to automatically measure that their 
concern has been answered in a satisfactory manner. For example, 
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concerns in Table 6.1 might arise during a verification planning ses-
sion for a DMA block. 
 

Table 6.1 Concerns and Measurements 

Stakeholder Concern How Measured? 
Application 
engineer 

The LCD controller 
should receive 60% of all 
available bandwidth 
when multiple requestors 
contend for the DMA 
controller. 

Use a functional cover 
group to show that 
multiple requestors 
contended for the DMA 
controller. Use a 
checker trigger to show 
that the bandwidth 
requirement was 
checked. 

Design 
engineer 

The input FIFO of the 
DMA controller 
generates an interrupt on 
a write request when it is 
full. 

Use an assertion trigger 
to show that a write 
request arrived when 
the input FIFO was 
full. 

Design 
engineer 

The DMA controller 
code should be 
sufficiently exercised. 

Measure 100% code 
coverage for the DMA 
controller module. 

Verification 
engineer 

The DMA controller 
should move blocks of 
memory between 1 and 
1024 bytes between 
different memory 
addresses. 

Use functional 
coverage to show that 
every transfer size has 
been exercised within a 
suitable range of input 
and output addresses. 
Use a check trigger to 
show that each transfer 
was checked. 

Firmware 
engineer 

The DMA block should 
copy the interrupt 
handling code from the 
embedded ROM to the 
instruction cache. 

Use functional 
coverage to show that 
transfers of the 
appropriate size from 
the ROM to the 
instruction cache have 
been executed. 
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Using these captured concerns and measurements, we will create an 
executable verification plan. The purpose of this plan will be to auto-
matically track each measurement (or metric) during the life of the 
project. The results of each measurement will be automatically 
annotated into the plan so that stakeholders can continuously track 
the status of their concerns as the project progresses. 
 
To accomplish the first goal of verification planning (product intent 
interpretation convergence), we’ll use a collaborative brainstorming 
process. All the stakeholders will meet to discuss their verification 
concerns and a facilitator will capture these concerns in a document 
that will become the executable verification plan discussed above. 
Figure 6.1 graphically outlines the verification planning process. 
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Figure 6.1 The Verification Planning Process 

 
This chapter will describe how to perform a successful verification 
planning session. It will outline how to best organize and execute the 
collaborative brainstorming/interview sessions required. We will 
discuss the process from several points of view. First, we’ll look at 
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the generic interview process. Next, we’ll look at how each stake-
holder can be interviewed. We’ll focus on pertinent questions to ask 
each type of stakeholder, how each type of stakeholder can add 

Finally, we’ll take one last look at the process from the perspective 
of each design integration level. We’ll explore how the process 
should be performed for different phases of the project such as 
block- level design, unit integration and chip- level integration. 
 
This chapter will contain the following sections: 
 
� Overview 
� The planning brainstorming/interview process 
� Identifying system features 
� Identifying system feature attributes 
� Planning with respect to verification 
� Planning with respect to design 
� Planning with respect to software 
� Planning with respect to architecture 
� Planning for block- level design 
� Planning for unit- level integration 
� Planning for chip- level integration 
� Planning for system- level integration 
� Decorating the plan: goals, weights, and milestones 

 

Verification Planning 
Verification planning will be done in several different stages and in 
several different perspectives over the course of the project. It is also 
a very iterative “living” process, so we won’t worry about getting it 
perfect the first time. The stages of verification planning are: 
 
Coverage Planning: “What to Verify and How Do We Know It 
Happened?” 
 
Checking Planning: “How Do We Know It Worked?” 

value to the process, and how each stakeholder’s concerns might  
be converted into automated measurements as mentioned above. 
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Stimulus Planning: “How Do We Make It Happen?” 
 
The coverage planning stage is performed first because the other two 
stages can and should be derived from the coverage planning. 
 
Determining what to verify is the most important stage and the only 
stage that we’ll discuss here. During the verification planning sessions 
described here, the participants should be particularly careful not to get 
wrapped up in how to check the correctness of a feature. The verifi-
cation technology that will be used may be defined, but no effort should 
be put into determining exactly how to do the checking or provide the 
stimulus. We’ll do that later. During verification planning we want 
the focus to be purely on what should be verified. 

The Planning/Brainstorming Process 

The verification planning session follows the familiar brainstorming 
format. As with all brainstorming, there are a few ground rules. There 
is one moderator and one note taker. It is the job of the moderator to 
keep the session on track according to the agreed upon rules. The note 
taker is to collect all output from the meeting so that when partici-
pants wrap- up the session, the first draft of the verification plan exists 
and can be distributed. 
 
The purpose of the brainstorming session is to capture all the fea-
tures of the given device and also to capture each stakeholder’s 
concerns about that feature. The rules are: 
 
� The majority of brainstorming should be done on a white-

board and the information should be derived from the 
participants’ experience. The specification is only to be used 
to clarify issues where there is no agreement. 

� The participants are to discuss what the feature does, what to 
measure about the feature, and how to detect when the 
feature has been exercised. They are not to discuss how to 
check the feature. Discussions of how to do checking can 
quickly become too involved and sidetrack the discussion. 
Remember, all we want to do here is capture all the features 
and each stakeholder’s concerns as quickly as possible. We’ll 
architect the verification environment later. 
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All the stakeholders should be present for at least a portion if not all 
of the session. Participants should be reminded that the ROI on their 
time in the planning session will be huge! Among other great 
benefits, this is their get out of jail free card for the endless series of 
status meetings that plague the last stages of most design projects. 
The planning session should consist of participants from: 

� Verification 
� Design 
� Architecture 
� Firmware 
� System Applications 
� Product Definition 

 
One participant that is familiar with the verification planning process 
should be designated as the moderator. It will be the moderator’s 
responsibility to maintain the flow of the session. Another partici-
pant or a rotating queue of participants should be appointed as the 
session’s stenographers. In reality, this person does not need to have a 
command of the design. An administrative assistant could be utilized 
here. The key consideration is that this person needs to be able to 
capture all concerns in our planning template without interrupting the 
flow of the session. The stenographer will be constantly redirected 
within the document and should keep in mind that they are for the 
most part capturing information, and, as with all brainstorming, the 
participants should not be inhibited from remapping the document. 
 
In addition to the participants, a small modicum of equipment is 
required as well. A whiteboard is essential. Obviously, the steno-
grapher will need a laptop or other device to record the document on. 
In addition, the team may find it useful to have a digital camera to 
capture whiteboard shots with. Access to the specification of the 
device is helpful. However, the specification document is by no 
means meant to be used as a key input to the process. This is a 
communications and brainstorming process, not a document review! 
Finally, in order to facilitate recording milestones, access to the 
current version of the project schedule is helpful. 
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The Planning Session 

The output of a planning session will be a feature- oriented verifi-
cation plan. To this end, it is the job of the moderator to lead the 
group to discuss each feature of the given device. 
 
A feature is something that the device under verification does. A 
feature is a verb or activity. Examples of features are: 
 
� A device provides data to a read request. 
� A device consumes data from a write request. 
� A device routes a transaction from one port to another. 
� A device decodes an MP3 stream and provides audio output 

 
The brainstorming process begins with an interview of the designer 
responsible for the given design unit of the system that is to be 
verified. The designer first draws a block diagram of the design 
under verification (DUV) on the whiteboard being careful to include 
all input and output ports and any internal architectural features of 
the device (such as FIFOs, state machines etc.) that they feel are 
important. 
 
The moderator will begin by asking the designer questions about the 
features of the design. The discussion usually begins with the various 
interfaces to the design. The moderator should ask questions regar-
ding how the device is accessed, and how the device outputs data. 
Questions during this stage might be: 

� “What protocol is used to configure the device?” 
� “Is the entire protocol used, or are there transactions types 

that the device legally ignores such as burst transactions?” 
 
The moderator is trying to create conversations about what commu-
nication protocols are used by the device and how they are utilized. 
The end goal is to determine what interface functionality needs to be 
exercised and checked. 
 
Once the basic interface features are established, the moderator will 
focus on corner cases. Questions such as the following will arise: 
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� “What is the correct behavior for the device if the serial input 
port is driven before the device is configured?” 

� “What happens to an output transaction if a reset is asserted 
before the transaction is complete?” 

 
As the discussion moves from feature to feature, the moderator encou-
rages each participant to comment on what significance that feature 
holds for them. For interface features, the designers of adjacent 
blocks might have unique concerns about what protocol transactions 
are to be implemented. Meanwhile, the system architect may be 
interested in the required bandwidth for the device. It is this 
discussion of concerns that provides convergence of the translation 
of product intent of the various stakeholders. 
 
Once the block interface features have been defined, the discussion 
proceeds into the other features implemented by the design. During 
this portion of the interview, the conversation focuses on what the 
design does. The moderator first asks the designer to describe a 
given feature. The moderator then opens up the floor for discussion 
of the feature. The moderator should ask questions that inspire each 
participant to contribute their own understanding of the feature, how 
they intend to use that feature, and what the most important attri-
butes of the feature are to them. 
 
The important attributes that are identified for each feature lead us 
directly to the metrics that we will need to capture from our verifi-
cation engines. When a facilitator begins to capture feature attri-
butes, there are three essential questions that must be asked: 
 

� “What is important to measure about this attribute?” 
� “How do we know when this feature has been utilized so that 

we can measure the attribute?” 
� “How do we measure this attribute” 

 

With these three basic questions, the moderator now has the infor-
mation necessary to create the metric definitions that will be used to 
observe the progress of the verification of this feature. The interview 
is a simple process of asking each stakeholder for each feature, 
“what, when, and how.” 
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Let’s take a look at a sample interview: 
 
Facilitator: What’s another feature of the device’s input interface? 
 
Designer: It can be operated in burst mode. 
 
Facilitator: What’s important to measure about the burst mode? 
 
Designer: We need to make sure that all three burst sizes have been 
tested. They are 2, 4, and 8 word bursts. 
 
Facilitator: When can we tell that a burst is complete and how do we 
measure the burst size? 
 
Designer: When the burst_n signal goes high, a burst transaction has 
completed and the size can be read from the bsize bus. 
 
Facilitator: How can we best measure and record this attribute? 
 
Verification engineer: I can capture that information in a functional 
cover group. 
 
As the questions were being asked and answered, the session’s note 
taker would have captured the information in a document that looks 
like Figure 6.2. 
 

Device Input Interface 
 Burst Transactions 

The device can accept burst transactions in sizes of 2, 4, and 8 
words.  When the burst_n signal transitions to high, a burst transac-
tion has been completed. By sampling the bsize bus, the burst size 
can be determined. 
 
cover:  /sys/interfaces/dma_in/burst_trans 

Figure 6.2 Verification Plan Excerpt 
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The “cover” directive will tell the MPA tool which cover group in 
the verification environment provides the coverage metric that will 
be used to measure progress on the verification of this feature. 
 
That’s it! It’s that simple! Now, let’s look at the planning interview 
in a little more detail with respect to each of the stakeholders. The 
following sections will point out the value that each stakeholder can 
contribute to the planning process. They will also point out key 
considerations to keep in mind when interviewing these stake-
holders. 

Planning with Verification Engineers 

The verification engineer will tend to look at the device based on  
its black- box functionality. They will be very interested in how the 
device can be configured and what operations (features) the device 
will exercise in each configuration. The verification engineer will 
tend to be very thorough in pointing out all the features of a device. 
This thoroughness, combined with input from the applications and 
firmware engineers, can be used to define a set of features that must 
be verified for the device to be declared usable. 
 
Verification engineers should be very adept at attribute specification. 
There is a tendency among verification engineers to immediately bore 
down to the implementation of checkers for the various features. This 
tendency must be avoided. The checker design will come soon enough. 
For the planning session remember that the main goal is to capture the 
metrics that will be used to measure the progress of the project. 

Planning with Respect to Design 

Design engineers are very concerned with how their block, sub-
system, or chip implements various features of the design. Design 
engineers are the best source for information regarding what white-
box coverage and checks should be included in the verification 
environment. Many of the concerns raised by design engineers can be 
addressed by assertions that they themselves can place in the design. 
This is one place where the line between coverage and checking 
emphasized in this process begins to blur. Using the example from the 
overview, a design engineer may identify a feature: 
 



6 Verification Planning 93 

“When the input FIFO is full an interrupt should be generated.” 
 
This feature can be easily checked by a design assertion. The trigger 
of the design assertion, “when the input FIFO is full,” can serve as 
the coverage of this feature. In simple examples like this it is per-
missible and even advisable to discuss the feature, its coverage and 
its check all at once. 
 
Design engineers are very specification driven when it comes to the 
features of the design, as they should be. It is important to balance 
the design engineer’s understanding of a feature with how the users 
of the feature, such as firmware and applications engineers, intend to 
make use of it. It is at this juncture that many bugs can be discovered 
before the design or verification work ever begins. 
 
While a designer of a given block is often the focal point of a 
verification planning session, don’t forget to include the designers of 
other blocks within the system as planning participants. Designers of 
blocks that either provide input to the block under consideration or 
consume output from that same block are of particular value. It is 
these designers that can point out key attributes of the features that 
are important to their blocks. By having all the design engineers 
concerned involved in a single session, major integration bugs can 
be avoided before the verification environment even exists. 

Planning with Respect to Software 

Software engineers, both firmware and applications engineers, have 
one of the best perspectives on how the device will ultimately be 
used. They contribute planning content that will need to be trans-
lated based on the level of integration. At the chip and system level 
of verification when the entire device is complete, their input can be 
taken as is and added to the plan. At the block and unit levels, the 
software engineer and the moderator will have to work a bit more to 
translate the software engineer’s concerns into measurable metrics. 
 
For example, when discussing a single DMA engine within a design, 
the software engineer may at first feel that their presence at a block-
level planning session is unnecessary. It is the job of the moderator 
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to elicit useful information from the software engineer and keep 
them involved. Questions such as the following will illuminate key 
attributes that should be covered by objective metrics as the device 
is verified: 
 
� “How will your software make use of this device?” 
� “Is there a configuration mode that your software will use 

most often for this device?” 
� “What is the most important configuration of this device with 

respect to initial software testing?” 
� “What will be the most important configuration mode used 

by our customers?” 
� “What is the default configuration mode that will be used by 

your software after a restart?” 
 
As the design integration level moves up, the questions to the soft-
ware engineers become more direct and less inferred. For example, 
at the system level of verification, the software engineer may very 
well be the engineer that is interviewed for the planning session as 
opposed to the design engineer who was interviewed for the earlier 
block and unit- level planning sessions. 
 
Careful attention to the differences in descriptions of a feature by the 
software and verification or design engineers can produce very 
valuable insights that can significantly reduce the amount of effort 
required to verify a device. 
 

 
 
 
 

Verification engineers interpret a specification literally without always 
having a good perspective about how an end- user will eventually
use a feature. This can lead to coverage and checkers that are far more
detailed than they need to be. An experienced moderator will encou-
rage the software and verification engineers to reconcile thier under-
standings of a given feature. For example, consider the partial 
specification of a debug block feature in Figure 6.3. 
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Floating Point Profiler 
The floating point profiler will provide data 
to the users that allows them to determine how 
much of their firmware execution time is being 
spent executing floating point instructions. 
When a floating point instruction is decoded, a 
counter will begin to increment on every clock 
cycle, and when the results for the instruction 
are stored, the counter will stop incrementing.  
The counter will be reset to 0 when the pro-
filing feature is enabled and maintain its last 
stored count once the feature is disabled. The 
user can determine the number of cycles counted 
by reading a register named FPTMCNSMP. 

 

Figure 6.3 Floating Point Profiler Feature Specification 

Left to their own devices (without any further information from mar-
keting and product definition), a verification engineer might decide 
that the checker specification given in Figure 6.4 must be 
implemented. 
 
Floating Point Profiler Checker 
The checker will model the floating point pro-
filer. When a floating point instruction is 
decoded as it is read in on the instruction 
data bus, the checker’s counter will begin to 
increment on every clock cycle. This incre-
menting will be stopped when the results of 
the floating point instruction are stored. If 
any reads to the FPTMCNSMP register are 
detected, the contents of the returned read 
will be compared to the reference model’s coun-
ter. Any discrepancy between the two counts 
will be flagged as an error. 

 

Figure 6.4 Verification Checker Specification 
 

There are several difficulties that are inherent in the above feature 
specification and checker specification. The feature specification 
states that the counter will begin to increment after a floating point 
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instruction has been decoded by the DUT’s internal decoder. The 
checker is a black- box checker that is detecting floating point instruc-
tions by decoding them from the instruction bus. Depending on the 
pipeline depth of the device’s decoder, several cycles of inaccuracy 
could be inserted here. There are similar concerns for the pipeline 
depth of the store unit. 
 
The marketing contributor may reveal during the planning process 
that the user is only interested in statistical data sets accumulated 
over thousands of floating point instructions. They may also reveal 
that accuracy within fifty cycles of how long the operation actually 
took is sufficient for the customer. Depending on the length of the 
pipelines within the DUT, the verification engineer’s job just became 
much simpler. Rather than trying to determine how to compensate for 
various pipeline depths within the device, the engineer builds a much 
simpler checker that merely counts the number of cycles from the 
inception of the floating point instruction on the instruction data bus 
to the completion of the instruction when its results are stored back to 
memory. 

Planning with Respect to Architects 

Architectural engineers tend to be more concerned with dataflow 
through the device and the operation of the device as a system than 
design engineers. Architectural engineers have a more abstract view 
of the system and are far more concerned with usability and 
performance issues. The features they identify will have more to do 
with how the system operates than with how a given block operates. 
As with software engineers, the moderator may have to work to 
translate the architect’s input during block or unit- level planning 
sessions. However, just as in the case of the software engineers, this 
input is very valuable. 
 
Because architects tend to think more in terms of the overall ope-
ration of the system, the attributes they identify for each feature will 
often be of a more complex and statistical nature. Keep in mind that 
while these attributes may be more complex and somewhat harder  
to implement as objectively measurable metrics, it is these same 
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attributes that will enable us to avoid very hard- to- fix system- level 
bugs late in the design process. 

For example, when discussing a device input interface, a verification 
engineer may identify an attribute such as transaction type and then 
measure that attribute by simply defining a functional coverage 
group that measures how many times each transaction type has been 
received by the device. A system architect on the other hand might 
identify an attribute having to do with available input bandwidth. 
They may identify the feature given in Figure 6.5 for the device. 
 
The device must service input requests, how-
ever, it can stall the bus for processing.  
The device must not stall the bus more than 10 
cycles out of every 100. 

 

Figure 6.5 Architectural Feature Description 

 
This device feature may not have been evident without the system 
architect present. While it will be more difficult to implement the 
metrics that measure the attributes of this feature, the development 
time spent now will save the time required to debug the device when 
system- level simulations discover the feature was not properly imple-
mented. 
 
An experienced moderator will compare and contrast the architect’s 
understanding of a given feature to the design engineer’s under-
standing of the same feature. In fact, in projects where verification 
begins at the architectural level, great benefits can be reaped by 
performing architectural verification planning sessions. The session 
is a bit of a role reversal compared to the design- centric planning 
session described above. In an architectural planning session, the 
system architect diagrams the system and is the key engineer being 
interviewed. The design engineers present at the planning session 
come away with a greater insight into how each of their blocks fits 
into the system as a whole. 
 
Now that we’ve considered the planning process with respect to 
each of the contributors, let us take a look at how the process 
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changes with regard to each level of system integration. But before 
that, let’s take a quick look at reuse opportunities as the level of integ-
ration changes during the course of the project. 

Reuse Considerations for Planning Over Different Integration 

Levels 

As we move from one level of integration to another during the course 
of the project, our coverage concerns will change. For example, we 
will need to verify that we have 100% coverage of each available 
transaction type on a device’s input bus during block- level verifi-
cation. However, as we move to unit and chip level, this consideration 
which was verified at the block level will have less importance. At the 
unit level, we may be more concerned that the interfaces between our 
block and the blocks adjacent to it have all been exercised in their 
most common customer usage modes. 
 
By taking these considerations into account at the planning phase, we 
can construct more effective plans and utilize our verification engines 
more efficiently. As we identified above, not every feature attribute 
carries the same weight over the entire course of the project. By 
applying uniquely specifiable goals to each feature attribute for each 
phase of design integration we can keep the plan in better perspective. 
Using the example above, we might attach a coverage goal to the 
transaction type of 100% at the block level of verification. However, 
we might specify a goal of only 30% integration verification. We 
know that all transaction types have been verified at the block level. 
At the integration level, this metric may serve only as a second check 
that the device is being sufficiently exercised. 
 
In this case, our sample verification plan would look like Figure 6.6. 
 
In the above verification plan, we have specified two different views 
into the available metric data. The views will display the annotated 
coverage information described in the section of the verification plan 
that they reference. The views will grade that data based on a 
separate goal defined by the “‘goal” directive. In this manner, we will 
see different completion grades for the project based on what phase of 
the project we are currently executing. 
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Device Input Interface 
 Burst Transactions 
The device can accept burst transactions in 
sizes of 2, 4, and 8 words. When the burst_n 
signal transitions to high, a burst transac-
tion has been completed. By sampling the bsize 
bus, the burst size can be determined. 
 
cover: /sys/interfaces/dma_in/burst_trans 
 
View: Block Level Verification 
reference:  Device Input Interface/Burst Tran-
sactions 
goal: 100% 
 
View: Unit Level Verification 
reference:  Device Input Interface/Burst Tran-
sactions 
goal: 30% 

 

Figure 6.6 Verification Plan Excerpt with Views 

 
Finally, it should be recognized that some metrics will be of no 
value during certain phases of integration. For example, transaction 
type coverage may be of little or no value during system integration 
when the key focus is on testing the integration of the device and its 
associated firmware and application software. Likewise, coverage of 
the firmware routines that have been executed is probably meaning-
less at the block level of integration. 
 
With this in mind, care should be taken to architect verification 
environments so that coverage metrics can be added or removed at 
the appropriate levels of integration. This ability will serve both to 
reduce the complexity of the verification environment and to improve 
the performance of the various verification engines used. This recom-
mendation can be realized in several different ways dependent on the 
verification tools and languages being used. 
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Now, let’s look at how the focus of the planning process changes for 
each level of design integration. 

Planning for Block- Level Design 

Block- level verification uses the finest level of detail. At this level 
we have the most observability and controllability of the design. It is 
here that we can most easily verify the smallest details of product 
intent. Consequently it is at the block level the most white- box fea-
tures will be revealed. Be careful to dig for them if necessary. Don’t 
forget to query all stakeholders about any corner cases of function-
ality that concern them. 
 
The moderator should remember not only to focus on what the block 
under verification will do (what features it implements), but also to 
focus on how those features will be used. The tendency may be to 
focus mostly on the design and verification engineers at this level of 
planning. Be certain to involve the architects and software engineers 
as well because of the uniquely valuable perspectives they offer. 
 
Keep in mind the verification tools that can be brought to bear on 
this phase of the project and the contributors that drive these tools. 
The tools typically available for block- level verification are: 
 
� Assertion- based formal verification 
� Simulation- based dynamic verification and testbenches 
� Assertion- based dynamic verification 
� Reusable libraries of verification IP for interface protocols 
� Reusable libraries of verification IP for device features 
� Accelerators 
� Emulators 

 
Accelerators and emulators are less- frequently used and are included 
here for completeness. 
 
As the planning session proceeds, query the originator of each attri-
bute or verification concern as to how their concern might be most 
easily measured. Keep in mind that we want to have as much of the 
team working in parallel as possible. Look for opportunities to start 
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design engineers on verification by using formal tools before a 
testbench is even available. Look for concerns that might already 
have metrics implemented in a reusable verification IP library. At a 
planning session, you have the collective mind behind the project 
assembled in one room. Don’t forget to query them all as to how a 
metric might be most easily measured. But, once again, be careful to 
never let a verification planning session evolve into a discussion of 
how to verify a feature. 

Planning for Integration Verification 

At this level of verification, we are testing an assemblage of blocks 
for correct behavior. There are two major concerns here. First, do the 
blocks communicate with each other in an appropriate and correct 
manner? Second, does the subsystem of blocks correctly implement 
the features as they were intended? 
 
When integration planning, it is important to have the designers of 
each of the blocks in attendance. The facilitator should question the 
designers in a way that ensures they have the same understanding of 
the interfaces between their blocks. 
 
At this level, it is also crucial that the system architects and the 
software engineers are in attendance. This will be our first oppor-
tunity to verify that the subsystems operate as intended by these two 
groups. They can add insight into the intended operation of the sub-
system that we can’t get from the design or verification engineers. 
 
The planning session’s emphasis should be on the features of the 
integration as a whole. The features of each individual block should 
be considered less if at all at this level. By using the status reported 
by our block- level verification plan we can show that these features 
have been verified at the block level of integration. This focus will 
make implementation more efficient and will also improve the 
efficiency of our verification engines because we are using them 
only to verify the current important focus rather than taking the entire 
project into account. 
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Planning for Chip- Level Integration 

Chip- level planning focuses on communication between the differ-
rent subsystems, and the features that are implemented by the chip 
as a whole. Chip- level planning should focus on the system archi-
tects and the software engineers. These are the stakeholders that can 
tell us the highest priorities and device configuration to be verified. 
With the explosion of possible usage combinations at the chip level 
it becomes essential to prioritize our activities in this manner. 
 
The moderator should try to reveal corner cases that are exacerbated 
by different design subsystems acting concurrently. These concur-
rency cases should be tracked using functional coverage. When 
constrained random testing is used, appropriate coverage is of the 
utmost importance. With functional coverage metrics the team can 
detect corner cases that have been exercised without having to write 
specific directed testcases to target them. 

Planning for System- Level Integration 

The focus of system- level integration planning should be on the 
interaction between the device, the firmware and the application 
software that run on the device, and the other devices that will either 
drive or be driven by the device. Once again we focus on the system 
architects and the software engineers. In addition to these stake-
holders, we may also include marketing representatives in the session 
because of the unique perspective they have on how customers will 
make use of the device in their systems. 
 
Feature attributes are most often described in terms of the 

 
We’ve looked at what each stakeholder can contribute and how the 
plan changes as the stage of integration changes. At this point, we 
have a plan almost ready to be executed on. But first, let’s make it a 
more meaningful plan by attaching goals, milestones, and views.  

applications that will most typically be executed with the device. The  
metrics are measured in terms of software coverage, and assertion
coverage. 
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Decorating the Plan: Views, Goals, and Milestones 

Now we know what we want to verify and how to measure that the 
job is complete. But, what are we going to measure our progress 
against? It’s time to add goals, milestones, and views to the plan. 
 
Each stakeholder will have different concerns regarding our verifi-
cation projects and should be able to view the plan’s metrics based 
on their concerns. This variety of views is shown in Figure 6.7. In 
order to keep all stakeholders involved with the project, we’ll want 
to enable each of them to view the data that is important to them in 
the format that they desire. 

Will we get it all 
done with

quality and on 
time?

How do we
minimize 

resources & 
lower costs

How do we 
improve 

response time 
to changes?

Scaling to System & Enterprise 
Levels
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Engineers

Verification 
Engineers

System 
Engineers

HW Design 
Engineers

Exec & Project
Manager

Embedded 
Software 

Developers

What bugs 
are in my 

logic?

Do hardware 
and software 
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together?

Are system 
performance 
and features 
as expected?

Does my 
firmware work

on the HW?

How does it 
react to 
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cases?

Planning

Metrics

 
Figure 6.7 Stakeholder Views 

 
Remember, we can look at the plan from multiple perspectives, or 
views. After the planning is complete, we need to define a view for 
each stakeholder so they can easily track their concerns and provide 
feedback as necessary. To define a view, we just declare the view in 
the plan document and then add references to the metrics that we 



104 Metric-Driven Design Verification 

want to be included in a view. The plan snippet in Figure 6.8 
illustrates this. 
 
View: Designer Verification 
reference: “Device Input Interface/ CodeCoverage” 
goal: 93% 

 

Figure 6.8 Verification Plan View with a Goal 
 
A view called “Designer Verification” has been defined. The only 
metric data that will be displayed in this view is the code coverage 
results for the “Device Input Interface” block. Similar views can be 
defined for each stakeholder. 
 
We have placed a goal of 93% coverage on this metric. We have a 
goal, but when does the goal need to be completed by? We can add a 
completion milestone to the plan with another annotation shown in 
Figure 6.9. 
 

View: Designer Verification 
reference: sys/Device Input Interface/CodeCoverage 
goal: 93% 
milestone:  4/06/2008 

 

Figure 6.9 Verification Plan View With a Milestone 
 
Now with a goal and a milestone, we can track our progress over the 
life of the project. We can chart graphs like the one shown in Figure 
6.10. 
 
Here we see the status of code coverage collected from every weekly 
regression. The goal for code coverage is shown by the horizontal 
line at 93%. The deadline or milestone is shown by the vertical line 
at 4/06/08. 
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Figure 6.10 Tracking Design Completion 

 
 

Summary 
In this chapter we learned how to perform metric- driven verification 
planning. We walked through the fundamentals of the brainstorming 
session that provides the raw data for our executable verification 
plan. Then, we looked at how the brainstorming process should be 
modified keeping each stakeholder and each level of project integ-
ration in mind. Finally, we learned how to partition metrics into 
views and attach goals and milestones to them. 
 
 
 
 
 
 
 
 
 



 

Chapter 7 
Capturing Metrics 

 
 
 
 

Excited about the ability to use metrics to automate your verification 
processes? Tired of waiting on a standard to arrive so you can 
organize all your coverage metrics in one place? A methodology is 
presented for aggregating all your metrics now so your verification 
projects can benefit today! 
 
Metric process automation (MPA) tools are offering huge gains in 
the productivity, predictability, and quality of today’s verification 
projects. These tools automatically collect the metrics that are gene-
rated by your verification engines such as simulators, emulators, and 
accelerators. Using these metrics you can track the status of your 
project and automate processes such as debug triage, coverage 
ranking, and status reporting (Figure 7.1). 
 
Using a top- down verification planning technique, you can deter-
mine what metrics each team member associates with each feature 
of the device. Using this customizable metric selection, each user 
can track the project based on their concerns. Each team member 
cares about different metrics lots of metrics. Let’s take a look at 
some of those metrics. How about just the coverage metrics: 

� Code coverage 
� Functional coverage 
� Assertion coverage 

 

Introduction 
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Figure 7.1 Automating Verification with Metrics 

 
Each of these metrics can come from a different tool. Each of these 
tools could come from a different vendor. How do you merge all this 
data? Will the different formats from different vendors match? This 
is exactly what’s being addressed by the universal coverage database 
standardization effort. There are other questions though. If a vendor 
has already optimized an analysis engine for their coverage data, 
shouldn’t you be able to take advantage of those optimizations? 
What if a new kind of coverage emerges that nobody thought of? 
 
OK, for now, let’s hope the standard will straighten some things out 
(at least for coverage metrics). But you have a project to complete 
today. Wouldn’t it be nice to use the most advanced techniques right 
now? No matter what metrics you choose? What if you could 
preserve the optimized performance of the tools you’re running right 
now without modification? This chapter presents a methodology that 
will let you do just that. 
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The Universal Metrics Methodology 

Using our MPA tools, we’d like to: 

� Automatically collect metrics from a variety of tools. 
� Display those metrics in a manner that is meaningful to each 

stakeholder. 
� Use those metrics to automate appropriate processes. 

 
The value of a metric process automation tool is in the collection, 
and utilization of metrics. Where the metrics come from should be 
transparent. Analysis of the metrics can be handled by the tool. 
However, the tool should be able to take advantage of existing 
analysis engines as well. There’s no need for the MPA tool to take 
over all the analysis tasks. 
 
The idea of using multiple applications to handle tasks has been 
around for awhile. Consider the way a web browser handles image 
and animation data. There are at least two ways the browser can 
display the image. First, the browser could read all the bits of the 
image and store them internally. Accessing the image bit by bit, the 
browser developers could implement image display code. The browser 
implementers probably wouldn’t want to create a new image display 
module for each new image format. Perhaps they could force all image 
providers to conform to a single image format standard. And when a 
more compact image format comes along that allows faster surfing? 
Well, let the standards board worry about that! 
 
There’s an easier way though. By implementing a well- defined 
interface, the browser can defer the image display to another appli-
cation. The browser simply forwards the image bits and a reference to 

allotted. Using this methodology, the web browser’s implementers 
don’t have to implement new image- processing functionality. They can 
benefit from the effort of others through application reuse. And, that’s 
exactly what we’ll do with our MPA tool. 
 

an available screen area to an image display application. That appli-  
cation interprets the data and displays the image in the space 
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First, we’ll define the set of operations that we’d like to perform on 
coverage data: 

� Display coverage data as a completion percentage along with 
the size of the coverage space and the number of hits within 
that space. 

� Correlate coverage data back to its source. In the case of 
simulation for example, we’d like to correlate coverage data 
back to the testcase that created it. 

� Rank coverage data against its source so that we can find the 
most efficient sources for creating unique coverage data. 
Using this information, we can create efficient regression 
suites. 

 
Now, we’ll define a standard interface for our MPA tool to talk to 
other applications that can create metrics. Once we have this 
standard interface in place, we can immediately start to benefit from 
our efforts. Based on our list of operations above, our interface 
might look like Table 7.1. 
 

Table 7.1 Metric Linking Interface 

Method Explanation 
list of coveritems 
get_cover_items() 

Returns a list of structures 
that describe coverage items. 
Each cover item struct 
consists of a name, and a set 
of dimensions 

get_coveritem(name: string) Returns the number of hits for 
an individual item 

list of source 
correlatecoveritem(name: string) 

Returns a list of source structs 
that describe the simulation 
that produced the coveritems 

list of source 
rankcoveritem(name: string) 

Returns a list of sources 
sorted by the number of 
unique buckets hit within the 
coveritem’s coverage space 
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Now, as new metrics are defined that come from new sources, we 
simply have to provide a small interface of functions that translate 
the metric data from existing applications into a format that our 
MPA tool can understand. In object- oriented programming circles, 
this is known as the proxy design pattern. This proxy interface is 
easy to implement. It’s much easier than modifying our MPA tools 
every time a new metric is required. And, it’s certainly much easier 
than asking all our existing vendors to update their applications to 
conform to a standardized data format. In fact, any existing tool that 
produces ASCII- formatted output reports can be easily adapted to 
this interface by an end- user with reasonably proficient program-
ming skills. Figure 7.2 shows a graphical representation of this metho-
dology. 
 

 
Figure 7.2 The Metric Adapter Interface 

 
This is a simple concept that’s been used for years in office auto-
mation software. Using this concept we’ve shown how to reap the 
benefits of the optimized analysis engines you’ve already purchased 
in combination with the latest MPA tools available today. 
 



 

Chapter 8 
Regression Management 
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Introduction 
Our definition of regression is any execution of 
verification processes that certifies the quality 
level of a portion of the design. Regression is 
the key mechanism for gathering the objective 
metrics that drive all our verification processes. 
Regression management is the task of launching 

verification jobs using the appropriate metrics and tracking the 
metrics that are returned from those jobs. These metrics can then be 
processed and analyzed to facilitate a metric- driven process auto-
mation flow. 
 
Regression management is intertwined with revision management. 
We discuss revision management in depth in the following chapter. 
Simply put, revision management is the process of managing relea-
sed design code to ensure that the project team can back up to earlier 
revisions of the code and to ensure that code that meets certain 
quality criteria can be easily accessed. 
 
In this work, regressions are divided into the two rather broad cate-
gories of revision management regressions and design quality regres-
sions. Revision management regression as discussed below are used 
to check the design’s base level of functionality before releasing it to 
the general engineering community. Design quality regressions are 

P

E 

M
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Early Regression Management Tasks 
You should run regressions at the same times your local crooked 

 
The second advantage is more pragmatic and applies to projects just 
beginning to use metric- driven processes. By starting early the regres-
sion apparatus itself is tested at an early stage of the project when its 
proper operation is not crucial. The project team can detect and fix 
problems in the regression system before they impact more crucial 
stages of the project. 
 
Among the metrics that should be tracked almost immediately are: 
 
� Number of lines of design code checked into the revision 

control system. 
� Number of changes made to released design code. 
� Number of lines of verification environment code checked 

into the revision control system. 
� Code coverage of the simulated design. 
� Functional coverage. 
� Formal assertion- based coverage. 
 

Regression Management 
Regression management is crucial to the success of the project. 
Regression technology is rather benign and it’s not rocket science. 
However, as with most simple aspects of a project, if regression 
management is ignored or mishandled, it can consume man- weeks of 
project time. Several regression strategies have been outlined in other 

tion release. 
intended to exhaustively qualify the quality of the design for produc-  

politician would like you to vote: Early and Often! Regression manage-  
ment is crucial. This is where the majority of metrics that will be used
to adjust the verification process will be gathered. Regressions should
be started as early as possible. There are two advanctages to this.
First, we gain visibility into the progress of the project via measurable
metrics at an early stage. This visibility makes stakeholders more 
engaged in the project on a day to day basis. 
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sources. Several tool vendors sell regression management solutions. 
They all work relatively well. It is very important to standardize on a 
regression management framework as early as possible in the project 
and then stick with it. Regression management can become a religious 
issue quickly. All engineers have worked with systems they did or 
did not like. Everyone has an opinion. However, the true value of 
your design and verification team is the stellar work they can do on 
your chip design, not the value they can add by picking the perfect 
regression management system. Listen to their input and weigh its 
value once. Then, pick a system and get busy with the important 
work of designing the chip. 
 
The regression management framework we show here is simplified 
to demonstrate what metrics should be tracked in regard to “typical” 
regression and revision management activities. The true core value 
of the content is intended to be the proper application of metrics to 
the regression process. The infrastructure presented here is not meant 
to be taken as an authoritative representation of the “best” system, it 
is merely provided as a demonstration vehicle. 

Linking the Regression and Revision Management Systems 
Regression management is tightly linked with and supported by revi-
sion management. Figure 8.1 shows the layers of revision manage-
ment used for the linked revision/regression management strategy 
discussed here. 
 
The engineers develop code in their own insulated personal revision 
areas. Within these areas users are free to experiment with different 
version of source files as necessary. When engineers believe their 
code is ready for integration, they run a bring- up regression to 
qualify their code for release into the integration revision area. In the 
integration revision area, the engineer’s code is further qualified to 
ensure that it “plays well with the other children” and can be relea-
sed to the general population. After a set of integration regressions, 
the code is promoted to the released revision area where it is 
available to other users and can be tested for production readiness. 
Code is promoted from area to area with the use of associated 
revision management regressions that are discussed below. 
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Figure 8.1 Revision Control Areas 

Bring-Up Regressions 
Bring- up regressions are used as a base- line to certify that new 
design modules are basically functional before releasing them to the 
rest of the project. Some aspects that should be checked in a bring-
up regression are: 
 
� Does the code compile and simulate? 
� Is the basic interface functionality of the block alive? 
� Do all formal assertions defined for the block still pass? 

 
These regressions should be run every time the module is modified 
and before the new module code is checked into the integration revi-
sion control area. Because they may have to be run very frequently, 
these regressions should, of necessity, be very brief in nature. 
 
Bring- up regressions should be run in the developer’s personal 
revision area. In this manner, the rest of the project is insulated from 
changes made to the module until the module passes bring- up 
regression and is promoted to the integration revision area. 
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Metrics should be tracked for these regressions. Some of the key metrics 
are shown in Table 8.1 along with the trends that should be observed 
for these metrics over time. 
 

Table 8.1 Bring- Up Regression Metrics and Trends 

Percentage of code exercised, (simple 
code coverage) 

70

85

100

 
Length of regression 

 
Functional coverage 100% 

Number of nonsynthesizable warnings 
per regression 

0

20

40

60

 
 

Code Coverage 

Code coverage is a simple metric that can be used to gauge bring- up 
regression completeness. Its purpose is merely to ensure that the test 
suite continues to check the entire block as new features are added. 
Code coverage doesn’t need to be 100% at this stage, but should 
wiggle around a relatively high percentage. 
 

Regression Length 
As mentioned, the length of a bring- up regression should be relati-
vely short. If it runs too long, its usefulness is reduced and may 
ultimately be eliminated if engineers opt not to run the regression at 
all in favor of accelerating the release process by simply checking 
their code in untested. The regression length should remain short 
over the duration of the project. This metric should be checked with 
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each regression. As blocks grow in feature count, the simulator can 
slow down, noticeably increasing the total regression time. 
 
Functional Coverage 
With the use of a verification plan perspective or view, the func-
tional coverage of these regressions should always be 100%. There 
is a certain base level of functionality that must be guaranteed before 
a block should be released to the general population. A sample verifi-
cation plan for a bring- up regression is shown in Figure 8.2. 
 
 

DMA Block Reset Behavior 
  

All signals should be set to their reset  
value and all FIFOs should be flushed. 
cover: /sys/dma/reset_beh/* 
 
DMA Registers 
 
All registers should be readable and 
writable. All masked bits (write only, read only, 
etc.) should behave appropriately. 
cover: /sys/dma/register/* 
 
DMA Configurations 
 
Top Customers 
DMA transactions should work in the top three 
customer configurations of the DMA engine. 
cover: /sys/dma/top_cust_conf/traffic/* 
Others 
All other configurations should be exercised. 
cover: sys/dma/other_conf/traffic/* 
 

View: DMA Bring-Up Regression 
reference: DMA Block Reset Behavior 
reference: DMA Registers 
reference: DMA Configurations/Top  
            Customers 

Figure 8.2 Bring- Up Regression Verification Plan View 
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The verification plan above shows the use of a view to only refe-
rence the portions of the plan that are important for bring- up 
regression qualification. For example notice that we have restricted 
our bring- up view to only show the “Top Customer” configuration. 
The functional coverage for this view should be 100% on each bring-  
up regression. 
 
Nonsynthesizable Warnings per Regression 
Early in the design cycle some behavioral constructs are acceptable to 
accelerate the modeling process. However, as the design approaches 
production release near the end of the project these constructs should 
be eliminated. By automatically measuring warning messages about 
behavioral nonsynthesizable constructs provided by linting tools, the 
team can verify that they have been removed. 

Integration Regressions 
Integration regressions should take place in the integration staging 
area of your revision control system. These regressions are crucial. 
They ensure that each module of the design will play nicely with all 
the other modules and at the very least not break the released 
simulation and regression flow. Countless man weeks of progress 
have been lost on many projects because this simple regression step 
was skipped by developers eager to get their “fixed” module back 
into the regression flow. 

Table 8.2 Integration Regression Metrics and Trends 
 

Functional coverage of available trans-
action types between connected blocks. 

 

100% 

Functional coverage of scenarios that 
are executed by a combination of 
blocks. Especially where one block 
makes use of specific data provided by 
another in performing its function. 

100% 

Length of regression 
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The integration regression asks the question “Does this block integ-
rate well enough to not break the integrated design?” Less emphasis 
is placed on the individual functionality of the block (presumably 
that was tested in the bring- up regression), and more emphasis is 
placed on the interactions between the block and other blocks in the 

 

Functional Coverage of Bus Traffic 

One of the key questions during integration is, “Do the blocks talk?” 
This can be easily answered at a basic level by using functional 
coverage to track the types of bus cycles that are transmitted bet-
ween blocks during the integration regression. It is important to 
capture every type of bus transaction that can be propagated between 
blocks in the executable verification plan. Also keep in mind that 
blocks do not have to actually share signals to be in communication 
with each other. One of the important cases in which traffic needs to 
be tracked is the case where many masters can communicate with 
many slaves over an arbitrated, address decoded bus as shown in 
Figure 8.3. 

Master 1

Master 2

Master 3

Master 4

Slave 1

Slave 2

Slave 3

Slave 4

Arbiter/
Decoder

 
Figure 8.3 Masters Slave Cross Traffic 

 
 
 

design. Functional coverage is more meaningful and easier to inter-  
pret with respect to these interactions than code coverage. However,
code coverage can still give us a guarantee that all blocks involved
were indeed activated. Some of the metrics that should be tracked for
this type of regression are given in Table 8.2. 
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Integrated Block Scenarios 
Most of the block- level functionality should be tested elsewhere. 
However, it is important to check interblock scenarios in these regres-
sions. Two of the inter- block scenarios that should be considered 
are: 
 

� Scenarios where one block is dependent on accurate, correctly 
formatted data from another block to perform its function. 

� Scenarios that stress bus bandwidth where blocks are depen-
dent on a guaranteed flow of input data. 

 
Length of Regressions 
Here again, the regression team is forced to walk the fine line 
between testing enough functionality to guarantee successful integ-
rations, and keeping the regression short enough that it will be 
effective. By historically tracking the length of the regression, teams 
can modify the regression suite as necessary as total regression time 
increases. 
 

Design Quality Regressions 
Design quality regressions are intended to exhaustively verify relea-
sed functionality. In design quality regressions, the goal is to fully 
populate the executable verification plan with complete coverage of 
all identified stakeholder concerns. 
 
There are a number of coverage metrics that should be measured 
with respect to this type of regression. These metrics will be des-
cribed in much greater detail along with the various technologies 
they are associated with in Part III of the book. They are included 
here as a reminder of what metrics to consider when performing 
verification planning and setting up the regression and metric 
tracking apparatus for the project (Table 8.3). 
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Table 8.3 Some of the Metrics and Trends for Design Quality 

Regressions 

 
Percentage of code exercised, (simple code 
coverage) 

 
Functional coverage of block- level concerns 

 
Passing directed testcases 100% 
Passing formal assertions 100% 

Coverage of activation clauses of dynamic 
assertions. 

 

Managing Regression Resources and Engineering 
Effectiveness 
Engineers often perform their tactical testing using the same com-
pute resources that support regression tasks. It is important to remem-
ber to allocate sufficient compute resources to our engineers so they 
can efficiently perform tactical regressions such as revision promotion 
 

Table 8.4 Metrics Used to Track Tactical Regression Effectiveness 
 

Utilization of compute servers 

 
Wait time for tactical job start. 
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regressions and debug regressions. The metrics that are provided by 
our metric- driven processes can be used to gauge this allocation. 
Two of the metrics that should be monitored are given in Table 8.4. 
 
Regression managers need to make sure that compute servers are as 
fully utilized as possible while also ensuring that no engineer has to 
wait an unreasonable amount of time to start a tactical regression job. 
By tracking the above metrics, the regression manager can respond to 

metric-driven processes is to fix problems before they arise! 
 

Regression-Centric Metrics 
So far we have discussed what metrics should be collected from our 
execution engines during a regression. There are metrics created by 
our regression engines that should be captured as well. Among these 
metrics are: 
 

� Frequency of regressions run grouped by regression type 
� Number of issues found per regression 
� Machine utilization 
� Software utilization 

 
Frequency of Regression Runs Grouped by Regression Type 
This metric can be used as a tactical indicator. As the project pro-
ceeds, the number of design quality regressions should increase and 
the number of revision management regressions should decrease. 
Sharp increases in the number of revision management regressions 
can indicate that the design has become more volatile. This is not 

 
If the frequency of design quality regression decrease as the project 
proceeds, this could indicate that the regression apparatus is broken, 
or that significant amounts of time are being spent on other activities 
such as adding features, or debugging existing issues. Again, the point 
is to use these metrics as triggers to ask appropriate questions to 
understand the project status and then respond effectively. 

necessarily a bad indicator. The key thing is to ask the right ques-  
tions to determine why the design volatility has increased. 

balance compute server utilization. Remember, one of the key values of 
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Number of Issues Found per Regression 
This is one of the oldest metrics and also one of the most abused. 
Historically, this metric was often used to determine when a chip 
development project was complete. If the number of issues detected 
were trending toward zero per regretssion, then the reasoning was 
that the device under test must be approaching full functionality. Of 
course, this ignored the possibility that the verification environment 
might simply be looking in the wrong places for bugs. 
 
This metric should however, still be measured and does serve some 
useful purposes. When used in conjunction with coverage metrics, 
the number of issues found per revision can add to the confidence 
that a device has been properly verified. When used in conjunction 
with revision control information, the number of issues detected can 
point out blocks that may need to be re- engineered. Figure 8.4 shows 
issue tracking metrics displayed with revision metrics for the DMA 
block of a design under test. Using this data it can be seen that the 
design was plagued with issues after the large code change in the 
fourth revision. This data may lead the engineering team to decide to 
revert to revision three and start over. As with all metrics, interpre-
tations should be made carefully and involve plenty of communi-
cations between the engineering team. The peak in issues after 
revision four could just as easily have been caused by added features 
that were not available for testing before that revision. 
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Machine Utilization 

This simple metric gives an indication of the utilization of compute 
resources on the project. Ideally, this metric should oscillate near 
100%, indicating that your compute resources are being applied to 
their fullest value. This metric should be tempered with the wait 
time for an individual user to start a compute job as mentioned 
above. Both of these metrics can be extracted from commonly used 
job distribution systems. 
 
Software Utilization 

This metric is similar in nature to machine utilization, but tracks the 
usage of your verification software. The intent is to maximize the 
return on software investments. Even more importantly, this is an 
indirect indicator of the utilization and productivity of your enginee-

know how to utilize the full value of the software and therefore may 
need training. It could also indicate that the software is too hard to 
use or of little value. The key ingredient that must be mixed with 
objective metrics is continuous communication. Therein lays the key 
to discovering the root causes of observed metric trends. 
 

How Many Metrics Are Too Many? 
Historically, when running regressions, one of the key metrics that 
was fretted over was simulation speed. Prior to metric- driven verifi-
cation, speed was king. Because some metric collection is done 
during simulation, it can slow down the cycle per second perfor-
mance of the simulator. This consequence led many early design 
teams to delay metric collection till near the end of the project. This 
late collection led to several interesting surprises as design teams 
only a few weeks away from the scheduled completion date of their 
project discovered that half of their design had never been verified! 
 
There is certainly a trade off between the metrics collected and 
simulation speed. If too many metrics are collected and not used, the 
value of the verification environment can be reduced. However, the 

ring resources. If productivity enhancing software isn’t being utili-
zed, it may be an indicator that the engineering team does not 
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opposite is also true. If no metrics are collected and simulations are 
blazingly fast, we may be accomplishing nothing quickly! 
 
There are new verification techniques such as constrained random 
testing that can significantly increase productivity through the effect-
tive use of metrics. In the case of constrained random test genera-
tion, the price of metric collection is easily offset by the increase in 
productivity that is gained by not writing testcases. This subject is 
covered in much more depth in a later chapter. 
 
We can actually use metrics to determine how much our metric 
collection is costing us. First, by measuring the CPU time used per 
simulation, we have a simulator/verification environment perfor-

contribute to our decision process of how often to collect metrics. 
 
Objective results regarding simulation speed with and without metric 
collection should be considered in the context of verification closure 
speed. If verification on the project is completing within the allotted 
schedule, then there may be no need to optimize simulator speed. 
However, if verification is lagging behind, and there are true 
advantages to be gained by simulating more quickly, then these 
measurements should be considered. 
 
Once it has been determined that there are valuable gains available 
by turning metric collection off, we can develop a strategy for effect-
tive metric collection. Keep in mind, for example, that it doesn’t 
make sense to measure all metrics all the time. If a given block has 
been declared to have satisfactory closure on verification and the 
block has not been further modified, then metric collection for that 
block can be turned off. 
 
Some reasons to turn the block- level coverage back on are: 

� Any modification of the RTL for the block no matter how 
trivial. 

mance metric. We can then measure simulation performance infor-  
mation with metric collection turned on and off. This data will 
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� Modification of blocks that communicate with the block 
whose coverage has been turned off. 

� Addition of new coverage groups into the block based on 
new or modified features of the device. 

� Detection of new failures within the block. 
 

Summary 
In this chapter we have reviewed the various types of regressions, 
their importance and some of the metrics that should be tracked 
during regression activities. We have also outlined the basic relation-
ship between regression management and revision control activities. 
 
In Chap. 9 we will look at revision management and the metrics it 
produces and consumes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 9 
Revision Control and Change Integration 

 
 
 
 
 
 
Introduction 
When discussing revision control systems there are a few key terms 
that will be frequently used. These terms are defined here to avoid 
ambiguity. 
 
Revision Control System: A revision control system is any appli-
cation that allows the user to save multiple versions of a file so that 
older version of the file can be easily retrieved. Examples of revision 
control systems include full- blown systems like CVS (which 
interestingly enough is freeware), and the revision control system 
built into Microsoft Word that allows authors to monitor changes 
made to a document (which was used in the creation of this book). 
 

Revision: A version of a single file. The user creates a specific 
version of a file by “checking it in” to a revision control system. 
Each revision is a unique version of the file that corresponds to a 
development step in the project. Revisions are used to allow deve-
lopers to access design files when they were in an earlier or alter-
native stage of the development. Revision control systems allow the 
user to insert a brief message that describes the version of the file 
(Figure 9.1). 

USB_Rev3

USB_Rev3.1

USB_Rev3.2

USB_Rev3.11 USB_Rev3.12

USB_Rev4
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USB_Rev3 USB_Rev4 USB_Rev5 USB_Rev6

Time

Initial
Release

Fixed
Config

Bug

Added
P2P

Added
Comments

 
Figure 9.1 File Revisions 

 

Branch: Frequently it is necessary to create multiple versions of a 
development file at the same level of the development process. One 
example of this is for functional debug. A developer may have 
several independent code changes that need to be tested to isolate the 
cause of a functional bug. The developer can edit the code indepen-
dently for each change and then check each change into a different 
branch of the same revision of the file (Figure 9.2). 
 

USB_Rev3

USB_Rev3.1

USB_Rev3.2

USB_Rev3.11 USB_Rev3.12

USB_Rev4

 
Figure 9.2 Revision Branching 
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Revision Tag: A revision tag is a label that is applied to a given set 
of file versions by the revision control system. The tag is used to 
link sets of files together at a common development point. One 
example of using a tag is to label a set of files that have successfully 
passed an integration regression (Figure 9.3). 

Rev 1 Rev 2 Rev 3 Rev 4 Rev 5

usb.v

dma.
v

dsp.v

Tag: Integration_1

 
Figure 9.3 Revision Tagging 

The Benefits of Revision Control 

key benefits are: 
 
� Retrieve earlier revisions of the design or verification 

environment 
 
This is crucial for debug activities. Being able to easily try the same 
testcase with earlier versions of the design can provide key debug 
information. 

� Manage multiple versions of the same code for debug and 
development experiments 

 
Today’s large compute farms allow some innovative debug and deve-
lopment opportunities. Rather than trying one debug or development 
experiment at a time in simulation, developers can try multiple 
plausible experiments at once. The revision control system can be 
used to create multiple “branches” of a given revision. One experi-
ment can be tested on each branch. Once the decision is made about 

Revision control provides several pragmatic benefits. Two of the 
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which branch will be used to proceed, the branches are collapsed 
into the next released version of the file. The revision control system 
allows the user to revert back to any of the experimental files if 
necessary. 
 

Metric-Driven Revision Control 
Revision control tools were among the first metric- driven process 
automation tools. Using these tools, an engineer can automatically 
revert back to any execution stage of the design and eliminate unpro-
fitable changes or perform experiments. 
 
While engineering teams have been using these tools to various 
degrees for years, they have rarely received the full value that these 
tools offer. To reap this value, engineering teams must treat revision 
control just like any other metric- driven process. They must first 
plan, and then execute on those plans. 
 
Planning for Revision Control: It’s Not Just for Source Code 

Anymore 

Planning for revision control means determining 
what will be revision controlled. Some of the plan-
ning steps are simple. For example, source files 
are typically revision controlled while the resulting 
binary executables created from the source files 
are not. Other aspects of revision planning are not 
as obvious. 

 
One of the goals of revision control is to be able to return to a 
previous stage of the project and recreate the target code and 
environments exactly as they existed at that stage. While the user 

and other metrics that aren’t contained in the source code can throw 
a wrench into the works. But, effective planning can pull it right 
back out. As we said, the source code itself is certainly the necessary 
basic material that must be revision controlled, but teams should also 
revision control an environment definition file along with the source 
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can easily recreate the same source code, recreating the same exe-  
cution environment is a different matter. Changing tool versions 
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code. This environment definition file should contain information 
such as: 

� Version numbers of the tools used. Tools include such things 
as simulators, C++ compilers and linkers, add- on verification 
engines, etc. 

� For random testing, the random seeds that created a given 
constrained random verification environment 

� Operating system version 
� And so on 

 
Using this environment definition file we can recreate the exact 
environment that was in place when the revision was stored. When 
planning the environment definition, it is important to consider all 
aspects of both the tools and the source materials that compose a 
design verification environment. 
 

The planning done to define the environment’s 
definition is identical to the planning required for 
the “process metric package” described in Chapter 
10. Keep in mind that while the team needs to 
define what should be recorded in the environment 
definition file, it is not necessary or even benefi-
cial for them to record that information manually. 

 
MPA tools can extract and record some if not all of this information 
for us automatically. For instance, all of the metrics listed in the 
bulleted list above can be automatically extracted by MPA tools. The 
benefit of this is twofold, first, we don’t have to spend our own time 
recording these metrics. This is a huge contributor to the success of 
these processes. Any time a person has to streamline their operations, 
record keeping is usually the first task to be ignored. By letting the 
MPA tool extract these metrics, we remove it from the engineer’s list 
of tasks permanently. The second benefit is that we always document 
the exact environment that the simulation was run in. We don’t 
document the environment that we thought we ran in, or the one we 
intended to run in. The MPA tool extracts these values directly from 
the output of the tools used to execute the verification task. 
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Revision Control and Documentation 

Future users of the revision control system also 
need to be able to easily comprehend the intent of 
the project team, and that means they need docu-
mentation. There are several documents that need 
to be revision controlled on any project. Among 

them are: 

� Marketing requirements 
� Device specification 
� Architectural study specifications 
� Hypothetical debug spreadsheets as described in Chapter 10 
� Individual design and verification notes 
� Many, many others depending on the project team 

Revision controlling these documents performs two functions. First, it 
protects the documents for posterity. No more looking around in old 
cast- out directories for a hint of what was going on during the project. 
Second, revision control also preserves a temporal element that allows 

 
Tagging the Revision 

 
This is a partial list. The user should spend time carefully consi-
dering their revision tagging plan. 
 
 
 
 

us to track how decisions were made and how the design and veri-  
fication of the device evolved. This information can provide valuable 
clues for refactoring our design during a project and for streamlining
our processes in future projects. 

Tagging is the process of marking a set of revision- con-
trolled files so that a snapshot of the project as it existed
at a point in time can be easily retrieved. The project
eam should plan what events should trigger tagging.

Some events that should trigger tagging a snapshot are shown in
Table 9.1. 
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Table 9.1 Tagging Triggers 
 

Event Material to tag 
Passing a bring- up 
regression 

All block material 

An integration of 
blocks passes an 
integration regression 

All integration material and all material 
for the component blocks 

The discovery of a bug All the material for the environment that 
found the bug. This should include 
design and verification material. 

The resolution of a bug The same material that was tagged for 
the discovery along with documentation 
created during debug. 

The design passes a 
quality regression 

The entire design and all supporting 
material 

 
Reporting 

Finally, the project team should determine ahead 
of time what reports they would like to generate 
from their revision control metrics. This planning 
should be done at the start of the project like all 
other planning activities. Once the planning is 

done, the reporting mechanisms should be put in place immediately. 
Like all other planning and reporting activities, this will seem trivial 
and low priority, however, it is of the utmost importance to setup the 
reporting mechanisms as early as possible. The value that revision 
control metrics provide can only be fully realized if the metrics can 
be analyzed. And the metrics will be best analyzed through the 
effective use of automatically generated reports. 
 
Metric- driven process automation tools provide built- in, automated 
reporting capabilities. Take advantage of these to easily create the 
planned reports. Some reports that should be considered are: 

� Volatility of the code for each block, integration and chip-
level environment. 

� Debug tags created per design entity per revision. 
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� Historic reports of engineers’ changes to revision- controlled 
material. These can be organized with different granularities 
from file level to design block level. 

 
Now that we have our plans in place for how to execute our revision 
control activities, let’s look at a brief example that utilizes those 
metrics. 
 
Visibility, Visibility, Visibility! 

The most crucial aspect of revision control is 
visibility. With enough visibility into the status 
of a project, most revision control pitfalls can be 
avoided. What needs to be visible? The user 
should be able to see, at a glance, the status of all 
the files in the project, whether or not the file is 
checked in, or being edited, who last edited the 

file, and the identity of all the users who are currently editing the 
file. 
 
The information that revision control tools can provide can be 
grouped into the following categories: 

� Volatility of the code base. 
� Links from code changes to engineers. 
� Links between revisions and project history. Especially links 

between revision tags, regression success/failure data, and 
debug data. 

 
Effective tracking of this information means the difference between 
groping in the dark with respect to what’s happening with today’s 
revision of the design, and being able to react in an effective and 
adept manner to changes. A veteran of even a single semiconductor 
design project has their share of horror stories of hours or days of 
regression and engineering time lost because of broken code being 
checked into the revision control repository. 
 
The first sign of trouble usually comes about 8:30 in the morning 
when the first verification engineer arrives. The engineer, slowly 

P

E 

M

R 



9 Revision Control and Change Integration  137 

coming to life with his first cup of coffee leans back and leisurely 
checks the results from last night’s regressions. To his dismay, he 
discovers that every testcase the night before failed! He begins to 
review failure messages and discovers one of a number of failure 
mechanisms. A nonexhaustive collection of these might be: 

� Compilation errors from a given unit (“Everything might be 
OK, this might be isolated to a single module”) 

� Elaboration or linking errors of the simulation model (“things 
are looking kind of dim, I might have an intermodule failure”) 

� The simulations all run, but there are inexplicable failures all 
over the chip- level regression (“it’s going to take all day to 
figure out what caused this”) 

 
Without using revision control metrics the engineer will have to play 
out a tried and true routine that always follows the same steps: 

� Isolate the block with the most errors and call the responsible 
engineer. 

� “John, did you change your xyz block last night?” 
“Well, I tried a few experiments, why?” 
“Did you check it into revision control without running a 
bring- up regression?” 
“No, of course not!” 

� Repeat. 
 
Of course, the difficulty of this procedure will be compounded by 
engineers stopping by every 30 min or so to ask if the situation is 
rectified yet. 
 
This situation becomes much easier if the engineer makes use of the 
metrics provided by the revision control systems to view the contri-
butors that have changed various design blocks since the last success-
ful regression. One useful display of this information is shown in 
Figure 9.4. 
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Figure 9.4 Revised Blocks 

 
Once the regression manager has isolated a list of usual suspects, they 
can begin to ask more subtle questions. For example, they might pull 
up a timeline of revision changes including the revisions tagged as suc-
cessful regression revisions. A view of this data is shown in Figure 9.5. 

Day 1 Day 2 Day 3 Day 4

Good Regression
Regression Crash

Day 5

USB Revision History

20 lines changed

40 lines changed

35 lines changed

Figure 9.5 Revision History 
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From this data the debug engineer can see that the regression broke 
after the USB block was changed by Larry after the last good reg-
ression. With appropriate visibility, provided by preplanned reporting 
mechanisms, the debug engineer was able to quickly isolate the 
cause of the issue. 
 

Summary 
In this chapter, we have studied how revision control should be 
treated as a metric- driven process. We showed how planning for 
revision control as a metric- driven process ensures the best return on 
investment for this important activity. We also showed how effect-
tive use of our planned metric- driven reports can streamline existing 
processes by simply making available information visible! 
 
In Chapter 10 we’ll apply metric- driven techniques to debug. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 10 
Debug 

 
 
 
 
 
 
Introduction 
Debug as a process? Absolutely! Of course, it’s given, that to a large 
extent, debug effectiveness is based on raw talent. A hunch can lead 
one engineer in the right direction within minutes while another 
engineer might flounder in the forest of possibilities for days before 
bringing a bug to light. However, like any other talent- based activity 
(baseball, football, piano virtuoso, etc.), when talent peters out or 
lapses, or was never there in the first place, a return to fundamentals 
guarantees the most reliable road to success. And fundamentals 
always mean process. 
 
Just like all good engineers, we would of course like to automate the 
debug process. Our objective, automatically collected metrics serve 
to make debug processes more efficient, and can completely auto-
mate some of them. 
 
This chapter will describe a number of metric- driven techniques that 
can be used to facilitate, and in some cases completely automate, 

 

Verification Process Cloning 

Engineers performing functional debug of a logic design usually 
engage in a process similar to that shown in Figure 10.1. 
 

various debug tasks. While these processes offer great gains in debug 
efficiency, they are really only the tip of the iceberg. Many other pro-
cesses can and certainly will be developed in this emerging field.
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The verification engineer first categorizes and investigates detected 
failures to determine which failing testcases are best suited to rapid 
debug. They then rerun the testcase with debug information turned 
on to gather more information about the failure. After getting a 
better level of detail, the engineer studies the failure in earnest to 
determine if it is an actual design failure, or a failure of the surroun-
ding verification environment. If an actual design failure is found, 
then the testcase is passed along with appropriate debug information 
to the design engineer. 
 

Start

Detect promising
failures

Re-run Failing
test with

Debug information

Qualify Failure

Actual Failure
? Stop

Pass Failure
to Design

N

Y

Modify Design and
Test

Fixed
? N

Y

Stop

 
Figure 10.1 Debug Flow 

 
This seemingly simple handoff is where a couple of hours of engi-
neering time can be lost. Usually there’s some confusion as to which 
version of the source code the testcase was run on. Then, there may 
be confusion about how environment variables were set for the 
simulator and the testbench. What was the LD_LIBRARY_PATH 
value? Where did we store the prebuilt library files for this test-  
bench? All of this information can change from engineer to engineer.
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All of these pieces of information also happen to be metrics. Today, 
these metrics are stored as what is known as cultural knowledge, or 
as part of what Jung called the “group mind”. But when part of the 
group goes out for lunch, or you’re not as in- tune with the culture as 
you could be, debug can grind to a halt. 
 
By capturing this cultural information as a package of process metrics 
and storing that metric package, we guarantee that the knowledge 
will always be available. If we go one step further and control our 
processes with this metric package, the above handoff becomes 
completely automated. Using verification process automation tools 

 
First, we plan for the process. We need to determine what metrics 

our process will consume and what metrics it 
will produce. For our purposes we’re interested 
in the metrics that the process will consume. 
What metrics does our simulation engine need 
to successfully complete its job? A partial list of 
these metrics follows: 

 
� Settings of environment variables that effect the simulation 

process including: 
� Various path variables 
� Tool- specific environment variables 
� Tool command line arguments 
� Tool version 
� Paths to the tools that are used. Not only the simulator, but 

the memory modeler, the verification tool, etc. 
� Revision control information. The release tag for the design 

and for the verification environment 
 
This is a partial list. There may be several other metrics depending 
on your specific verification tool and environment setup. We use 
these metrics as shown in Figure 10.2. 

P

E 

M 

R 

such as Enterprise Manager from Cadence Design, we can do exactly 
that by metric- enabling our processes today. 
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Design Revision:
Tool Version:
$ENV_VAR = 

Simulator

VPA Tool

Design Revision:
Tool Version:
$ENV_VAR = 

start_time

 
Figure 10.2 Process Cloning 

 
The planned metrics are first encapsulated into a package that can be 
read by our MPA tool. The MPA tool in turn uses these metrics to 
drive our simulator, passing the correct command line arguments 
and setting the appropriate environment variables. As the simulation 
runs, the MPA tool creates a copy of our original metric package and 
adds output metrics that are specific to this simulation run. 
 
This newly created metrics package is what we use to automate the 
hand- off. Using this package and an MPA tool, the design engineer 
can run the identical simulation on their workstation, the first time, 

Debug Triage 

Debug triage is performed after every regression. With the size of 
today’s design projects, regressions can consist of thousands of 
simulation and emulation runs. Debug triage is the process of sifting 

every time. They also have all the other simulation- specific infor-  
mation from the original run at their fingertips, no more searching
the hallways for the verification engineer. 
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through this data to determine the most promising failures to debug 
first. There are several qualifications that make a failure promising 
such as a failure happening early in the simulation, a failure happen-
ing as the only failure in the simulation, or a unique set of failures 
happening in a single simulation that don’t occur together in any 
other simulation. To sort through the immense amounts of data 
produced by today’s massively parallel regressions, an MPA tool is 
often used. The first step in analyzing the regression data is to sort the 
failures that were discovered. Effective error messages are crucial to 
this process. These error messages become yet another tracked metric. 
Other metrics that should be tracked per failures include: 

� Failure time 
� Failure module 
� Failure type (assertion, check, compilation error, etc.) 
� Failure description 
� Testcase that created the failure 
� Process metric package used to recreate the failure 

 
These metrics can be grouped and sorted to facilitate the debug 
triage process. 
 
Before debug triage is performed we can have innumerable 
unprocessed failure metrics. An example of raw failure metrics is 
shown in Table 10.1. 

Table 10.1 Raw Failure Metrics 
 

Failure 

Description Type Time Module Testcase 

Write to full FIFO Assertion 100 DMA DMA_tes1 

Data not written 
Verification 
check 2000 DMA_env DMA_test1 

Write to full FIFO Assertion 250 DMA ALU_test33 

Data not written 
Verification 
check 3000 DMA_env ALU_test33 

Bad addition 
Verification 
check 275 ALU ALU_test33 

Bad addition 
Verification 
check 543 ALU ALU_test47 
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By grouping on failure types and then choosing the earliest failure 
for each failure type, we get the subset of testcases shown in Table 
10.2. 

Table 10.2 Grouped First Failures 

Failure 

Description Type Time Module Testcase 

Write to full FIFO Assertion 100 DMA DMA_tes1 

Data not written 
Verification 
check 2000 DMA_env DMA_test1 

Bad addition 
Verification 
check 275 ALU ALU_test33 

 

This view of failure metrics shows what simulations can be most 
efficiently rerun to perform initial debug on each failure type. The 
advantage of using metric- driven processes and MPA tools is that 
this report can be generated automatically after each regression. 

Automatic Waveform Generation 

For verification engineers, a chronological text trace of the transac-
tions within a simulation is often enough for debug. However, when 
the verification engineer has to communicate the issue to a design 
engineer, there’s nothing quite like good old waveforms! 
 
Detailed dumps of waveforms are expensive in terms of simulation 
performance. For this reason, the first time a regression is run the 
waveform output is turned off. The only messages that are output are 
error message generated by the various checkers in the verification 
environment. After promising failures are found by debug triage 
then waveform generation should be turned back on. This generation 
of waveforms is often a manual “morning after” process that follows 
a regression. This manual procedure is shown in Figure 10.3. 
 
In the previous section, we showed how metric- driven processes can 
be used to automate the failure analysis step shown in Figure 10.3. 
In this section, we’ll go one step further and automate the entire 
waveform generation process. 
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Start Testcases

Simulations Execute
Failure Results

Analyze Failures Debug Simulations 
Execute

Debug Failures

 Figure 10.3 Manual Waveform Generation 

Let’s dive back into genetics for just a moment. 
Remember that using packages of process- specific 
metrics we can clone processes. These cloned proces-
ses can be run anywhere and will be identical to the 
original process. Well, as long as we’re duplicating 
DNA why not tweak a protein sequence or two? 
 
When we clone the metrics package as shown in 
Figure 10.2, while we’ve got the hood open, 
we’re free to tweak any of the metrics we like. In 
order to automate waveform generation, we’ll 
first plan by defining a metric in the package 

called “waveform_gen.” When simulations are run the first time, we’ll 
give waveform_gen a default value of OFF to increase simulation 
speed and get more done with our regression resources. After debug 
triage, to automate waveform generation, we simply modify the process 
package for each simulation identified to have a waveform_gen 
value of ON. The process metric packages of these simulations are 
passed back to the execution engine and the waveform generation 
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process is started with no intervention from our valuable engineers! 
The automated process is shown in Figure 10.4. 

Start Testcases

Simulations Execute
Failure Results

MPA Tool 
Analyzes Failures 

and Re-Runs 
Simulations

Debug Simulations 
Execute

Debug Failures

P
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M
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Figure 10.4 Automated Waveform Generation 

Hypothetical Debug 

An engineer goes to work in the morning, pulls up the automatically 
created trace information from a regression failure the night before, 
and immediately recognizes that a simple protocol rule has been 
violated. She fires off an e- mail to the responsible design engineer, 
logs the issue in the issue tracking system and moves on to the next 
failure. Time spent: five minutes. Great! 
 
That’s the ideal case and we all love the way it feels when we can 

control actually caused part of the problem? What if the issue is just 
unbearably complex? How does the engineer keep from getting 
helplessly lost and losing days of productivity? 
 

get it. But what happens when everything goes wrong? What hap-  
pens when there are multiple modules involved? What if revision 
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Many debug sessions end in a morass of confusion and deleted files 
because of the tendency to try one thing after another in an undisci-
plined manner. Before long, it is unclear if the device behavior is truly a 
symptom of the original issue, or an artifact of a previous experiment. 
This is where a process- based metric- driven approach can save the day. 
The process is a hypothesis- driven debug process. This process is 
executed with the use of a spreadsheet, and ideally, a branching 
revision management system. In a complex debug situation, the engi-
neer may have several initial hypotheses as to what has gone wrong. 
Some of these will naturally seem more valuable than others. The 
engineer captures all the available hypotheses in a miniature, individual 
brainstorming session. The engineer then ranks each of their hypo-
theses and briefly documents an experiment to prove the hypothesis 
correct. Each hypothesis is then proved or disproved in an iterative 
 

Table 10.3 Example Debug Spreadsheet 

Problem description:     
Data is lost from the FIFO every fiftieth frame of transmitted packets. This 
only occurs when the device is configured in the extended DMA mode. 

Hypothesis  Experiment Likelihood Results Revision  
Tag 

Log 
Pointer  

The 
configuration 
register for the 
extended DMA 

on the latest 
revision 

Use the 
previous 
version of 
the 

M The issue is 
still detected 

Iss179_Ex1 /regr/exp
179_ex1/
logs 

The FIFO is 
mishandling an 
overflow corner 
case caused by 
the size of the 
transmitted 
packets 

Check the 
size of the 
transmitted 
packets and 
modify if 
necessary 

H The issue  
goes away 
when the 
packet are 
made smaller

Iss179_Ex2 /regr/exp
179_ex2/
logs 

 

configuration
bridge 

mode was broken 
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process based on the initial ranking. Any new hypotheses are recorded 
and ranked during each iteration. Iterations are repeated until the root 
cause of the bug under study is determined. This process is illustrated 
in Table 10.3. 
 
By using a revision tracking system, the classical experimental 
method of making a single change and collecting data can be more 
effectively implemented. By procedurally requiring that each indivi-
dual experiment takes place along an independent revision branch, the 
confusion described above can be completely avoided. Of course, 
some experiments naturally lead to others and require that additional 
steps be taken. These can be facilitated by iterating version numbers 
along a revision branch (Figure 10.5). 
 

Iss179_Ex1 Iss179_Ex2

Iss179_Ex1a

Iss179_Ex1b

USB_Rev3

 
Figure 10.5 Revision Branching Hypotheses 

 
In addition to keeping experiments along easily manageable ortho-
gonal branches, the revision control techniques mentioned above 
allow a more effective use of the parallel debug resources that are 
often available. Quite often compute resource speed is a limiting 
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factor of debug. The verification engineer creates their experiment, 
and submits it to the debug job dispatch queue. Half an hour later, 
the engineer returns to a completed simulation and continues the 
debug process. The intervening half hour may or may not have been 
utilized effectively, but quite often, it is not utilized on the same 
issue. The technique described here can be utilized to allow the 
engineer to parallelize their experiments. As soon as one job is kicked 
off, the engineer can begin creating the test environment for the next 
experiment and submit it along an independent revision branch on a 
parallel computing resource. 
 
The resulting spreadsheet should be captured as a historical metric 
of the debug process that will travel along with the block or blocks 
of IP that were debugged. Other metrics that are useful to capture 
during this process are: 
 

� Revision branch tag used to independently test each 
hypothesis or chain of hypotheses 

� Pointer to the log files for each hypothesis 
� Start time of issue debug 
� Finish time of issue debug 

Querying Coverage for Debug 

Many verification metrics have unexpected, but valuable uses. For 
example, debug can often be facilitated by an innovative use of 
coverage metrics. One useful debug technique is to first find a testcase 
where the device is configured in the same manner as in the failing 
testcase, but is exhibiting the correct behavior. The engineer can find 
this testcase using functional coverage. First the engineer determines 
how the device in the failing testcase was configured. For example, 
the DMA block was configured to run with a granularity of 1 KB 
transfers. They then correlate functional coverage on the DMA 
granularity setting from the entire regression’s aggregated functional 
coverage back to the testcases that created it. This creates a list of 
testcases that configured the device in the same manner. If a testcase 
can be located that passed while the device was configured in this 
manner, it can be used as a baseline to compare the behavior of the 
failing testcase. 
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The utility doesn’t stop at functional coverage either. Any type of 
coverage metric can be used in the same manner. For example, 
consider Table 10.4. 

 

Table 10.4 Coverage Usage for Debug 
 

Coverage type Usage example 
Assertions When was a given corner case 

exercised successfully? 
Code coverage When was a given module 

heavily exercised? 
Software coverage When was the device 

exercised in a given usage 
model? 

 
This coverage correlation technique can be most effectively used 
with an efficient rerun scheme. 
 

Debug Metrics 
Like all other processes, debug itself creates metrics that should be 
tracked. Metrics tracked for debug tend to fall into the historical 
category of metrics that you hope you’ll never need, but that you’ll 
be really glad you have when you do need them. Among the metrics 
that should be stored are: 

� Time taken to debug each issue. 
� Number of reported issues per device feature. 
� Number of issues reported per verification intellectual pro-

perty package used. 

Time Taken to Debug Each Issue 

This metric can be used to check the efficiency of various debug 
techniques. It can also serve to point out blocks or block integrations 
that may be too complex and require refactoring. 
 
Number of Reported Issues per Device Feature 
This metrics can also be used to find portions of the design that 
might need extra attention. It can also indicate that there are portions 
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of the verification environment that need extra attention depending 
on how the issue was ultimately resolved. 
 
Number of Issues Reported per Verification Intellectual Property 

Package Used 

This metric can be used as an indicator of the value of various VIP 
packages. 
 

Summary 
In this chapter, we have shown how metrics can be used to 
streamline many verification debug processes. We have shown only 
a few examples. However, even these examples can reap great gains 
in productivity. There are many other opportunities for streamlining 
debug processes using metrics. The user is urged to explore! 
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Executing the Verification 
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Chapter 11 
Coverage Metrics 

 
 
 
 
 
 
Introduction 
There are several different coverage metrics that will be used to 
track each of the verification technologies described in this part of 
the book to closure. Because several of the metrics are used for more 
than one of the technologies, their descriptions have all been 
summarized here at the beginning of Part III. 
 
Functional Coverage 

Functional coverage is used to measure the number 
of interesting scenarios that the device under test 
has been simulated in. It is a modeled form of 
coverage and as such, it must be implemented by a 
verification engineer. Functional coverage design is 

derived directly from the features, events, and attributes laid out in 
the verification plan. 
 
Let’s look at functional coverage in the context of the collaborative 
planning process described earlier in the book. The planning process 
consisted of a few basic steps. They were: 

� Describe a feature of the device. 
� Describe how to detect that the feature has been exercised. 
� Describe attributes of the device are interesting to measure in 

conjunction with the feature being exercised. 
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For example, we may be interested in the snoop feature of a 
processor. First, we describe the feature in generic terms. 
 
Snooping 
The processor has a snoop signal that allows 
other devices in the system to request memory 
whose latest copy is contained within the cache 
of the processor. The processor can respond to 
a snoop signal by doing nothing, or by 
flushing the contained memory back out to the 
system memory. 
 
Next, we describe how to detect a snoop has been issued to the 
processor. 
 
A rising edge on the ‘snoop’ input signal 
starts the snoop state machines within the 
processor. 
 
Because the feature will cause instructions to fetch their operands 
from different locations, we’d like to know that each instruction has 
been executed in the presence of an external snoop signal. The 
timing of these events is shown in Figure 11.1. 

add reg,imm

snoop

 
Figure 11.1 Snoop Signal Coincident With Instruction Executes 

 
We might also like to know that each instruction has been executed 
while accessing each address of contained in our 1- bit address space 
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(yes this is a toy example!). So, our final description of what we 
would like to measure is: 
 
On the execution of each external snoop, we’ll 
measure the instruction executed and the 
address that each of its operands accessed. 
 
All that remains is to code the functional coverage group from our 
verification plan. The example below is coded in the e language. A 
similar implementation could be performed in SystemVerilog. 
 
event snoop is rise(‘top.snoop’)@clk; 
cover snoop { 
    item instruction.opcode 
    item instruction.addrs1 
    item instruction.addrs2 
    item instruction.addrt1 
}; 
 
The preceding cover group description will measure and record the 
instruction op- code, its two source addresses, and its target address 
when each snoop signal is detected in the execution engine. The 
output results of the cover group would look something like those 
shown in Table 11.1. The count indicates the number of times that 
the triggering event has been observed for the attribute values shown 
in that row. 

Table 11.1 Functional Coverage Results 

 
Op- Code Src Addr1 Src Addr2 Tgt Addr1 Count 
Add 0 0 0 23 
 0 0 1 1 
 0 1 0 2 
 0 1 1 2 
 1 1 1 0 
Sub 0 0 0 0 
 0 0 1 1 
 0 1 0 25 
And So On 



160 Metric-Driven Design Verification 

By viewing our functional coverage results, we can tell whether or 
not the snooping feature has been exercised in every manner that 
we’re interested in. 
 
Even better! Using a constrained random testing methodology with 
functional coverage as a closure metric as shown below, we can get 
out of writing some of the testcases required to exercise this feature. 
 

Code Coverage 

Code coverage simply measures the lines of RTL code 
that were executed by the simulation. This is implicit or 
automated coverage and is often called “implementation 

coverage.” Most modern simulators include a code coverage tool. 
 
By using both functional and implementation coverage a set of 
checks and balances can be set up. Table 11.2  shows the matrix that 
can be used to draw inferences from these two sets of data. 

Table 11.2 Implementation vs. Functional Coverage 
 

 Low- functional 
coverage 

High- functional 
coverage 

Low- implementation 
coverage 

  

High- implementation 
coverage 

  

 
A combination of low- implementation and low- functional coverage 
may indicate that the project is in its bring- up phase. There simply 
isn’t enough simulation infrastructure in place to provide adequate 
coverage in either of these spaces. 
 
High- functional coverage results in conjunction with low-
implementation coverage results could indicate: 
 

� An incomplete functional verification plan 
� Blocks of the design that are not used 
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High- implementation coverage in conjunction with low- functional 
coverage could indicate: 
 

� There are blocks of the design that are unimplemented 
 
High- implementation coverage in conjunction with high- functional 
coverage is fundamentally a good indicator. However care should be 
taken to review the verification plans and perform more random 
simulations. There are of course opportunities for false positives 
here. If holes in the verification plan happen to coincide with 
unimplemented blocks good implementation coverage and high-
functional coverage may still be achieved. 
 

Test- Based Coverage 

Test- based coverage is related to directed testing. In a 
directed testing strategy, the verification plan consists of a 
series of directed testcases that are to be written to exercise 
the device in the manner that verification stakeholders are 
interested in. Coverage is considered complete when all the 
testcases have been written and are passing. Some tools are 

currently available to automatically track the implementation of 
directed testcases against a verification plan in this manner. 
 
Assertion and Checker Coverage 

Most assertions consist of two clauses, an initial clause that activates 
the assertion and a test clause that specifies what is to be evaluated 
once the assertion is activated. While failures should trend toward 
zero, every dynamic assertion should be activated. In this fashion, 
dynamic assertion activations serve in the same sense as functional 
coverage of input stimulus. If an assertion has not been activated, 
then the stimulus required for the activation has not been introduced 
to the device. 



 

Chapter 12 
Modeling and Architectural Verification 

 
 
 
 
 
 

Introduction 
In larger, more complex projects, such as the massively integrated 
SoC designs commonly produced today, exploration of various 
architectural solutions is often performed first. The purpose of 
architectural explorations is to analyze the tradeoffs between 
different possible architectures of the chip based on criteria such as 
performance and power consumption. 
 
These explorations are typically done using transaction- level 
modeling (TLM). By modeling the device at the transaction level, 
enough of the device complexity is removed so that simulations with 
different architectural parameters can be performed easily. 
Transaction- level modeling is often done using SystemC. 
 
TLM can be executed at a variety of abstraction levels. The various 
abstraction levels provide trade- offs between performance and 
accuracy. The algorithmic level allows the user to test algorithms to 
be implemented by the device without regard to the performance of 
the device or timing information. Resources available to the device 
are also not taken into account here. This level of abstraction is 
simply used to determine if the algorithm to be performed is feasible 
and produces correct results. 
 
The programmer’s view adds the conceptual limitations of the 
memory spaces available to the device and any master or slave 
devices used by the algorithms. In this manner, the model takes into 
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account limitations of the resources required by the algorithm. The 
architect can now make decisions about reimplementing the 
algorithm, or adding more or faster resources to the planned device. 
 
The programmer’s view plus timing adds information about the bus 
architecture. It adds general information about the amount of time 
required to access resources from the bus and models bus contention 
as well. This is where the first performance testing takes place. 
 
The cycle- accurate level breaks transactions down into the atomic 
bus- level transactions that they are constructed from. The user can 
do accurate architectural studies of bus traffic. At this level, the 
power required to model these small transactions begins to erode the 
performance of the model in general. 
 
Finally, the register transfer or RT- level models the device down to 
the signal and bit accurate level. The performance at this level is 
similar to the performance offered by RTL simulation. This model 
provides the most accurate results with respect to how the planned 
device will actually perform. 

How to Plan 
There are several aspects of architectural level 
verification that might be important to verify. 
Some of these are: 

� Algorithm correctness 
� Necessary performance 
� Memory footprint 
� Bus congestion 

 
Planning and the Project Stakeholders 
The key stakeholders for planning architectural verification are: 

� System architects 
� Verification engineers 

 
Other stakeholders that can benefit from attending the planning 
session are: 
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� Design engineers 
� Firmware engineers 
� Application engineers 

 
These stakeholders benefit by being exposed at a very early stage to 
the design intent in its near original form. 
 
Architectural verification may be performed by either the system 
architect or the verification engineer. The planning session should 
follow the collaborative process outlined in the chapter on 
verification planning. Architects should describe each feature of the 
device, how it should be exercised, and what aspects of the feature 
are important to verify. A performance or behavioral check should 
be identified for each feature. 
 
One of the key benefits that the verification engineer can offer is 
insight into how to make the architectural verification constructs 
described in the planning session portable to the other abstraction 
levels of the project. 

Tracking to Closure 
It is important to track that the architectural 
models have been suitably exercised using 
functional coverage and that they have been 
suitably verified using assertion and checker 
coverage. It is of even more importance to 
verify that these architectural requirements are 
still met as the design is implemented in 

hardware. Using a suitable reuse methodology we can easily deploy 
the coverage and checking metrics described here in our hardware 
verification environments as well. 

Reusing Architectural Verification Environments 
With some up- front planning, we can reuse the following aspects of 
our architectural verification environments throughout the project: 

� Transaction stream generators (also known as bus functional 
models (BFMs) or scenario drivers) 
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� Correctness checkers and assertions 
� Functional coverage 
� Checker and assertion coverage 

 
The architectural pattern used (verification environment architecture 
in this context, not device architecture) is the proxy pattern familiar 
to object- oriented programmers. The basic principle of the proxy 
pattern is to build our complex operations on abstract inputs so that 
they can be easily reused. Figure 12.1 illustrates this concept. 

Complex Operation, (Checks, Coverage, Stimulus…)

Translator (Proxy)

Concrete Models, (Architectural, RTL, Gates)

 
Figure 12.1 The Proxy Pattern 

 
For more information and specific examples on how to implement 
this pattern there are several good reuse methodology volumes 
available including the Incisive Plan to Closure Methodology 
Manual from Cadence Design Systems. 

Summary 
In this chapter we briefly explored the application of metric- driven 
techniques to architectural verification. We described the various 
stakeholders and how they should be involved in planning. We also 
pointed out the reuse concerns for ensuring that architectural 
concerns continue to be met as the device moves from an 
architectural concept to production ready hardware. 



Chapter 13 
Assertion-Based Verification 

 
 
 
 
 
 
Introduction 

Assertion- based verification is the first chance that the design and 
verification teams have to verify the functionality of the design vs. 
the functional specification and the implementation specification. 
While assertion- based verification can be very simple, it is one of 
the best opportunities to make sure that the verification project is 
effective and completed on schedule. 
 
Properly executed assertion- based verification environments provide 
the following benefits: 
 
� Assertions provide a formal means for designers to 

encapsulate their knowledge about their design intent at a 
higher abstraction level than the implemented RTL. 

� Assertions reduce debug time throughout the project. 
� Assertions ensure smooth integration of design blocks. 
� Assertions can be used to prove that portions of the design 

work as specified in the assertion. 
� Assertions catch bugs early in the project that will become 

exponentially more expensive to debug as the project 
proceeds. 

� Assertions can be reused from the block all the way to the 
system level. Starting in static, formal environments, moving 
into dynamic simulation environments, and finally into 
emulation/acceleration environments. 

� Assertions provide coverage of important internal design 
states. 
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Assertions are Boolean and temporal checks that monitor signal 
values from the DUV. Assertions can be written in a number of 
languages including Verilog, SystemVerilog, e, VHDL, and PSL. 
 
The e language assertion in Figure 13.1 demonstrates a simple 
Boolean check. This assertion checks that a grant is always received 
within four cycles of a request. The Boolean expression is activated 
and evaluated each time the event “clk” is detected as denoted by the 
“@clk” clause. 
 
expect req_after_gnt is @req => {[0..4]; @gnt} 

@clk; 

Figure 13.1 e Language Boolean Assertion 

 
Assertions can be used for verification in one of two ways. An 
engineer may simulate their design with the assertions (dynamic 
assertion- based verification), or they may prove the correctness of 
the design using formal techniques (static assertion- based 
verification). In the case of dynamic assertion- based verification 
(ABV), the assertions will check for proper operation during the 
simulation. 
 
Using formal analysis techniques, assertions can actually be proven 
to always be correct. This is a very powerful technique because it 
guarantees that the functionality checked by the assertion is correct. 
These formal proofs are best leveraged on relatively small portions 
of the design that contain state machines and control logic. 
 

While formal verification was once the domain of 
the Ph.D. formal analysis expert, recent advances 
in technology have made this technique 
accessible to everyone. Engineers simply submit 
their synthesizable design and assertions to the 
formal verification tool. These tools, such as IFV 
from Cadence Design Systems, will attempt to 

prove that the assertion can never be violated. They will generate 
one of three answers. If the assertion can be proven, the tool will 
simply declare that the assertion was proven. If the assertion can be 
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violated by the DUV, the tool will issue an error message and 
display a set of waveforms that illustrate the sequence of signals that 
induce the design to violate the assertion. Finally, if the tool cannot 
prove the assertion in an allotted amount of time, it will issue a 
warning stating that it could neither prove the assertion, nor find a 
counter- example that illustrated the design violating the assertion. 
 
Formal ABV requires the use of a second class of assertions called 
properties. Formal proof engines work best on relatively small well-
constrained blocks of logic, such as those found at the block level of 
a design. To keep the problem that the formal engine has to solve 
well bounded, it is necessary for the engineer to define boundary 
conditions at the edge of the module. These boundary conditions are 
called properties and are declared using the same assertion 
constructs that are used for the assertions that are to be proven. 
 
Formal ABV is of particular value because it allows the design 
engineer to begin verification before any testbench apparatus is 
available (Figure 13.2). 

Testbench Creation Design Verification Advanced Verification

Testbench Creation

Design Verification

Advanced Verification

Time

Dynamic Verification Only

Leveraging Formal Techniques

 
Figure 13.2 Formal Schedule Savings 

 
Without formal techniques, the design engineer must either create a 
testbench, or wait for the testbench that the verification team will 
create for advanced verification, before any testing of the design can 
be done. Using formal techniques, the designer can begin checking 
the design as soon as a synthesizable module is available. 
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The sooner a bug is found the easier it is to debug. Several studies 
have found that the amount of time required to debug an issue 
increases exponentially with the amount of project time that passes 
before the issue is detected. By performing block- level verification 
before a testbench is available using formal techniques, many issues 
can be corrected immediately by the designer before they are 
detected by more costly simulations. 

How to Plan 
Extreme Programming and Design Assertion Planning 

One concern that is frequently raised when 
planning design assertions is: “How do we know 
that we wrote assertions that correspond to all of 
the behavior of the device?” In other words, how 
do we know we have a complete set of checks for 
the features implemented by the design block? 
 

The answer is actually quite simple. Taking a page from software 
engineering, we’ll use an extreme programming concept. Put 
concisely, this is an edict that says: 
 
“No implementation will be performed until a testcase exists for the 
planned implementation” 
 
As implementers determine what features to implement and how to 
implement them, they first determine how those features will be 

design, we’ll use assertions instead of software testcases to verify 
each piece of hardware functionality. When all our assertions pass, 
we’ll have our first level indication that the design is ready to go. No 
more subjective estimations: if the assertions pass, then every 
feature has been implemented and tested. 
 
There is a second powerful edict of extreme programming. It is: 
 
“Nobody programs or tests alone! Always take a buddy!” 
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tested. Only after implementing the testcase, they begin imple-  
mentation of the feature itself. In the case of hardware- based 
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It’s simply too tempting to dive straight into implementation with no 
testing. The implementation seems short. What could go wrong? Just 
bang out the code and get it done, right? Never mind that 
“verification takes 70% of project effort” quote you keep hearing in 
the hallways. Everything will be fine! 
 
With a development partner, the temptation to skip the rules is 
highly diminished. Two engineers are much more likely to follow a 
system than one. It’s just human nature. You’ll have more fun. 
 
There is a second advantage to having a codeveloper. It might seem 
really sexy right now to be the “sole” developer of that shiny new 
hardware block. It might seem to imply importance and job security 
if you’re the only one that knows the blocks inner- workings. But, 
especially with today’s bent toward reuse, when you get the 500th 
support call from yet another engineer that just picked up your 
hardware block, the gleam will definitely be off the rose. 
 
For assertion- based verification planning, we’re going to work two 
at a time and we’re going to identify an assertion for each feature 
before we implement it. Let’s see what this process looks like in 
practice. 
 
We’ll start with some raw material, an empty HDL module, some 
form of design intent, and an empty executable verification plan. As 
we declare functionality, we’ll begin to declare the registers, inputs, 
outputs, and wires that are needed to implement it. We won’t go any 
further on implementation though. Before we implement, we’ll write 
the assertion that verifies the functionality we’re about to implement. 
We define the necessary signals so that at any given moment, the 
design shell and its associated assertions should compile and execute 
in a simulator or formal proof engine. 
 

automatically create the tracking mechanism that we will use to tell 
ourselves and the rest of the team that the design is ready. In addition, 
we’re creating a document that will tell future users of the device 

As we’re writing our assertions, we will add descriptions of them to  
a hierarchical executable verification plan. In this manner, we 
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exactly what is tested. This documentation will come in handy for 
debug at higher levels of integration as well. As we kick off simu-
lations, we’ll track results back into the executable verification plan. 
When the verification plan says we have 100% coverage of assertions, 
our design is complete. 
 
Let’s look at an arbiter for example. First, we construct our empty 
arbiter module as shown in Figure 13.3. 
 
module my_arbiter{ 
begin module; 
 
input reset; 
input clk; 
input req1; 
input req2; 
input req3; 
output grant1; 
output grant2; 
output grant3; 
 
end module; 
} 

Figure 13.3 Arbiter Module 

 
Our first feature for the arbiter will be its reset behavior. We know 
that when the reset signal transitions to low that all grant signals 
should be forced to their de- asserted state. We can write an assertion 
to check this: 
 
my_assertion: assert (GNT1 && GNT2&& GNT3 && 
!RST); 
 

And finally, we’ll add the feature to the verification plan (Figure 
13.4). 
 
Now when we run our simulation, all of our assertions will of course 
fail and we’ll get an executable view of our verification plan like 
Figure 13.5. 
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Arbiter 

Reset 
The grant signals should all be de- asserted when reset is asserted. 
/sys/arbiter/reset_assert 

Figure 13.4 Verification Plan Source 

Arbiter 

Reset – 0% 
The grant signals should all be de- asserted when reset is asserted. 
/sys/arbiter/reset_assert – 0% 

Figure 13.5 Verification Plan Executable View 

 
The flow just described is shown in Figure 13.6. 
 

Start

Declare necessary
Signals and registers

Write Assertions for
Functionality

Add to
Verification Plan

Implement HDL
And Test

100% Passing
?

100% Implemented
?

Stop

 

Figure 13.6 Assertion- Based Planning Flow 
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As we implement the functionality, we’ll see the 0% indicator move 
to 100%. By repeating this process for each piece of functionality, 
we are guaranteed to have assertions corresponding to each 
operation of the device. In fact, the assertions actually define the 
operation of the device. 
 
The verification plan and assertion library will grow after each 
implementation round. As the plan begins to grow we might see 
Figure 13.7. 

Arbiter 

Reset – 50% 
The grant signals should all be de- asserted when reset is asserted. 
/sys/arbiter/reset_assert – 100% 

The grant signal must assert within 15 cycles of the assertion of the request 
signal. 
/sys/arbiter/gnt_req – 0% 

Figure 13.7 Executable Verification Plan 

 
The plan will continue to grow in this manner until all behaviors of 
the module have been tested and implemented. Notice the word 
order there, it’s important. Tested and then implemented, not 
implemented and tested. 
 
Where Do We Go From Here  
Using the planned assertions described here, the design team can be 
confident that their creation plays well. Now it’s time to make sure it 
plays well with others by handing the design over to the functional 
verification and integration teams. These teams begin their tasks 
with planning. Planning at this level is a collaborative effort between 
the design, verification, and software engineers for the device. The 
design engineer presents a block diagram of their design and 
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describes the features of the design. Each stakeholder (designers of 
adjacent blocks, integration engineers, verification specialists, firmware 
developers, etc.) then specifies how they intend to use the feature 
and what they need to see verified to feel confident the feature is 
implemented correctly. 
 
The basis for the conversation is the feature set identified by the 
designer. Using the planning methodology shown here, the design 
engineer has a well- documented set of features which he can use to 
lead the discussion. Not only do they have an exhaustive list of 
features, but proof that each of the features has been exercised and 
verified. This can make verification planning sessions much more 
productive and efficient. 

Tracking to Closure 
The tracking process for design- based assertions 
follows closely from the planning process. The 
basic metrics that should be tracked are: 

� Number of assertion failures 
� Number of assertion activations 
� Number of complete proofs 
� Total count of assertions 
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Figure 13.8 Assertion Failures and Count 
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If the planning methodology outlined above is followed, then the 
initial number of assertion failures should be high at the beginning 
of each implementation iteration and then trend downward as 
hardware is actually implemented. An example of this is shown in 
Figure 13.8. 
 
Metrics can be used to assure that the proper “test then implement” 
methodology is being followed. We generate a report like the one in 
Table 13.1 that shows the number of failures detected per assertion. 
 

Table 13.1 Errors Detected By Assertions 

Errors detected 
Assertion name Error triggers 
ar_bandwidth_ch 2 
Dn_FIFO_Empty 0 
Dn_FIFO_RW 3 

 
If the suggested methodology is followed, all assertions should 
initially fail because no functionality is implemented. It can be seen 
that the dn_FIFO_Empty assertion either checks nothing, or was 
added after the initial code was implemented. Keep in mind that 
later in the project this may indicate that unexpected bugs were 
found and new assertions were added to provide more detailed 
checks for these issues. 
 
If the assertion failure number does not initially start high, it is an 
indication that the planning methodology is not being followed. 
 
Assertions are only valuable in dynamic simulation if the design is 
properly stimulated. For this reason, when assertions are used in this 
“dynamic” mode, it is important to link coverage of their activating 
event into the executable verification plan. If less than 100% 
assertion activation is achieved, the project team should continue to 
generate stimulus to activate the uncovered assertions. 
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The formal proof results should be tracked as well. The team should 
expect to see all formal proofs trend to the proven state. In the event 
that counter- examples are detected, the engineering team should fix 
either the DUV or the assertion if it contains errors. In the event that 
the third inconclusive state is encountered, the engineer has two 
choices. First, they can instruct the formal proof engine to expend 
more effort proving the assertion. If the proof results are still 
inconclusive, then the assertion should be utilized as a dynamic 
assertion in conjunction with functional coverage to make sure that 
the assertion was sufficiently exercised. 
 
Most assertions consist of two clauses, an initial clause that activates 
the assertion and a test clause that specifies what is to be evaluated 
once the assertion is activated. While failures should trend toward 
zero, every dynamic assertion should be activated. In this fashion, 
dynamic assertion activations serve in the same sense as functional 
coverage of input stimulus. If an assertion has not been activated, 
then the stimulus required for the activation has not been introduced 
to the device. 
 
Some formal assertion tools provide built- in assertions that are 
common to all hardware designs and point out such design issues as 
intrinsic race conditions. Another simple metric is to ensure that 
these tools have been used on each design block. 
 
Formal tools also offer facilities that report how many of the design 
inputs, outputs, and logic are not touched by defined assertions. This 
gives a measure of the completeness of the assertions defined for the 
design. 

Opportunities for Reuse 
Assertions can be used at all levels of verification 
from architectural studies to block- level verifica-
tion to system- level integration. If the assertions 
are properly constructed, they can be significantly 
reused from level to level. 
 
Much has been written about assertion reuse. 
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There are several references in the bibliography on this subject. For 
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our purposes however, it is important to track how effectively 
assertions in the project have been reused. Using this information, 
the project team can adjust their methodology to make more 
effective reuse of available verification IP. The verification project 
manager should track how assertions were reused between the 
architectural, block, integration, and system level of verification. 
This can be done by using a standardized assertion naming scheme 
and then tracking which assertions found errors at each level of 
verification. This metric illustrates not only which assertions were 
reused effectively, but also which assertions were most effective in 
pointing out design issues. An example of an assertion tracking 
metric table is shown in Table 13.2. 
 

Table 13.2 Assertion Metrics 
 

Assertion Catalog  
Assertion Name Verification Level Errors 
ar_bandwidth_ch Architectural 2 
ar_bandwidth_ch Dynamic Simulation 1 
ar_bandwidth_ch Dynamic Emulation 1 
dn_FIFO_Empty Formal 0 
dn_FIFO_Empty Dynamic Simulation 2 
dn_FIFO_RW Dynamic Simulation 3 
dn_FIFO_RW Dynamic Emulation 1 

 
This raw metric data can be consolidated and analyzed to yield 
results such as the reuse table (Table 13.3). 
 

Table 13.3 Assertion Reuse Metrics 

Assertion reuse  
Assertion name Levels used Errors 
ar_bandwidth_ch 3 2 
dn_FIFO_Empty 2 0 
dn_FIFO_RW 2 3 
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Alternatively, reports might be created that show where the largest 
opportunities lie for improvement. Such a report is given in Table 
13.4. 

Table 13.4 Assertions Used Only Once 

One use assertions 
Assertion name Levels used 
ar_intrpts 1 
dn_opcode 1 
dn_onehot 1 

 

Summary 
We have seen how assertions can be leveraged to jumpstart our 
verification efforts. A new planning methodology that leverages 
designers was outlined and it was shown how the output of this 
planning can be taken as the input for the feature- based verification 
planning described earlier in the book. We also saw how to track 
metrics from assertions to gauge project status and also to gauge 
reuse opportunities. 
 
In Chapter 14 we’ll look at metric- driven simulation- based techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Chapter 14 
Dynamic Simulation-Based Verification 

 

 

 

 

 

 
 

Introduction 
This is the classic bread and butter of functional verification. 
Mention functional verification in most semiconductor companies 
and simulation- based verification is what comes to mind. 
 
Conceptually, this is one of the simpler flavors of verification to 
grasp. An application called a simulator runs on a workstation and 
allows the user to simulate a device as it would actually work in a 
real system. The user can describe dynamic stimulus that is to be 
applied to the device and then monitor the response of the device as 
the stimulus is applied over time. The user can specify signals that 
are to be driven to produce the stimulus. The user also has access to 
the values driven on each signal within the device at any given time 
during the simulation. Using values of these signals, the user can 
check for proper operation of the device under verification. 
 
A design engineer creates a model of the device in RTL (register 
transfer language) using a language such as Verilog or VHDL. Both 
languages offer procedural programming constructs similar to those 
available in C. They can therefore be used not only to create the 
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model of the device, but also to create the testbench that will be used 
to test the device. Verilog and VHDL are both structured languages 
that allow models to be divided into subsystems. This ability to 
organize models into subsystems encourages reuse of both designs 
and their testbenches. 
 
In addition to Verilog and VHDL, most simulators provide 
interfaces to verification- specific languages such as SystemC, e, and 
SystemVerilog. These languages offer various levels of object and 
aspect orientation that facilitate reuse of verification intellectual 
property (VIP). 
 
Simulation- based verification systems typically mirror the 
implementation of the design. For example, if a design is built as a 
number of design blocks, and the blocks are then integrated to the 
chip level, there will typically be an independent verification 
environment for each design block, and an integrated verification 
environment that tests the integrated chip as a whole (Figure 14.1). 
 
 

Block B

Verification Environment

Block C

Verification Environment

Block A

Verification Environment

Chip

Verification Environment

A
B

C

 
 

Figure 14.1 Block and Chip Verification 
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How to Plan 
Planning for simulation- based verification uses the 
collaborative techniques described in Part 2. To 
reiterate here, a feature- based planning approach 
should be used to determine what coverage metrics 
should be collected from the verification environ-
ment. In simulation- based verification, three types 
of coverage are widely used. They are: 

 
� Functional Coverage 
� Code Coverage 
� Test- based Coverage 

 
Planning and the Project Stakeholders 

The stakeholders that should be involved in planning for simulation-
based verification are: 

� Verification engineers 
� Design engineers 
� System architects 
� Firmware engineers 
� Application engineers 
� Design lead and/or manager 
� Verification lead and/or manager 

 
Each of these stakeholders is important first for the perspective they 
can offer to a holistic understanding of the device under verification 
as described in the chapter on verification planning. Remember, 
design intent is translated differently by each stakeholder, and the 
planning session is our opportunity to align these translations 
(Figure 14.2). 
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Product Intent
Marketing, Business, Customers

Architecture Intent
System Architects

Napkins, 
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Formalized 
Requirements 

Documents

Specification

Design Intent
Design Engineers

Software Intent
Software Engineers

Verification Intent
Verification Engineers

Hardware/Software and
Verification

 
Figure 14.2 Translations of Device Intent 

 
In addition to contributing their unique viewpoint to the team, each 
contributor needs to specify and discuss which aspects of each feature 
are important to them. In some cases, they will help to define metrics 
that will objectively measure verification closure vs. their concerns. In 
other cases, they will note metrics that have already been defined and 
add them to their individually defined “view” of the verification plan. 
Let’s take a look at some of the concerns each stakeholder might 
have. 
 
Verification Engineers 
Verification engineers lead the planning process. They must be 
concerned with every aspect of verification and their “view” into the 
verification plan should encompass everything. The verification 
engineer should also elicit input from all the other contributors. A 
verification engineer’s constant litany during the planning process 
should be: 
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� “What does this feature mean to you? How will you use it?” 
� “In how many different ways can this feature be configured? 

How is it configured?” 
� “How can we detect when that aspect of this feature has been 

exercised? How can I build an event to detect that?” 
� “What is important to measure about this aspect of this 

feature? Should that value be captured when we detect the 
feature has been exercised or at some past or future event?” 

� “How many of the values must be observed for you to feel 
comfortable that this feature has been completely verified?” 

 
Design Engineers 
The design engineer possesses knowledge of how the device has 
actually been implemented. As such, they present the description of 
each feature of the portion of the device that they were responsible 
for implementing. 
 
While their hardware enables the more complete chip- level behavior 
that is of interest to most of the stakeholders, the design engineer’s 
concerns may be more focused. They may want to ensure that all 
their code was actually exercised using code coverage as a metric. 
There may be specific complex scenarios that they know will 
exercise corner cases within their design. The verification of these 
scenarios might be gauged using functional coverage. 
 
If the design engineer has used assertion- based verification 
techniques as described in this book, they should enter the 
verification planning session with an assertion- based plan of their 
own. The design engineer should watch for opportunities to apply 
preexisting assertion coverage as a useful metric for other 
stakeholders’ concerns. 
 
System Architects 
The system architect may have produced the earliest translation of 
the original intent for the device when they defined the system- level 
specification. They should be particularly observant during the 
planning session to make sure that the intent translations expressed 
by all other stakeholders support the original design intent. They 
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should be able to clarify understanding of design intent when 
stakeholders have translations that conflict. 
 
System architects should look for opportunities to apply any system-
level modeling metrics to the rest of the verification process. 
Performing architectural verification to qualify the initial design 
partitioning decision is a good first step on the way to a high- quality 
product. However, it should also be verified that the real device 
provides the performance and capabilities that the architectural level 
models assumed. Often, assertions, functional coverage groups and 
behavioral checkers that were created for architectural verification 
can be reused directly in simulation- based verification. 
 
Firmware and Application Engineers 
Software engineers are responsible for creating the applications that 
will utilize the device. They can offer another translation of the 
design intent from the system view. They should carefully observe 
the planning session to ensure that the device is being implemented 
in a manner that will actually be usable. 
 
The concerns of firmware and application engineers will vary based 
on the level of integration of the device. At the block level, they may 
only be concerned that each feature was exercised while configured 
in the manners that their software will eventually use. There may 
also be key scenarios of interest that they know their software will 
create in the block. 
 
Concerns will vary with the context that each block will be used in 
as well. A software developer might not be interested in the internal 
communication protocols that are used by a DSP. However, the 
developer of the firmware for the USB port of a device might be 
very interested in checking that every possible USB transaction has 
been exercised and verified. 
 
As the blocks are integrated into subsystems and eventually into the 
entire chip, more elaborate concerns will emerge. Scenarios may 
include the appropriate configuration of many if not all of the blocks 
in the chip, the specification of specific input transactions at the 
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device’s periphery, and the execution of firmware or application 
code. 
 

Design and Verification Lead and/or Manager 
The design and verification leads participate from a project 
management point of view and can also act as expert consultants and 
facilitators. They ensure that the planning session proceeds at an 
efficient pace and offer their leadership where necessary to focus the 
planning team. 

Taxonomy of Simulation-Based Verification 
There are two basic types of simulation- based 
verification: directed testing and constrained 
random testing. These two types of testing are 
distinguished by how stimulus is generated for 
the device under test, how the output behavior of 
the device is checked, and how closure is tracked. 
 

Directed Testing 

In directed testing, the verification engineer creates deterministic 
descriptions of the testcase to be executed using one or more of 
several different verification languages. 
 
The engineer is then responsible for writing a series of checks that 
determine if the device is operating correctly. There are generally 
two methods of checking. 

Strengths 
Directed testing for the most part is simple. It is the classic 
workhorse of simulation- based verification. It can be accomplished 
using standard in- line procedural programming techniques. 
Procedural, nonobject oriented, programming is a style of program-
ming that is familiar to everyone. 
 
While it may be time consuming to write testcases using this 
methodology, the task is almost always straight- forward. 
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Limitations 
Directed testcases are by nature isolated from each other. The 
testcase tests only what it was intended to test (at best). There is 
little if any leverage with other portions of the device. Even if there 
is leverage, it is not intentional and often not perceived. 
 
In one processor verification project that used directed testcases, a 
large set of testcases were created to verify the FPU. The FPU was 
functionally clean on first pass silicon and everyone declared 
success. About two weeks later, the testcase engineer received a call 
from the production testing floor. The test engineers wanted to know 
what the series of testcases labeled fpu_xxx did. As it turned out, this 
was the best set of test vectors the production floor had for detecting 
an issue with the instruction cache of the same device. The FPU 
testcases, simply because of an unplanned fluke of their architecture, 
were very well versed at thrashing the instruction cache of the 
processor. Had the verification team been aware of this they could 
have made use of the fact by running independent instruction cache 
checkers with the FPU tests. They could have at least gained respect 
from the production test team by flagging the fpu_xxx series as 
producing interesting instruction cache activity. 
 
Another limitation of directed testing is that each aspect of the 
verification plan is targeted by a single testcase. The number of 
testcases that must be written grows very rapidly with increasing 
device functionality. This can lead to teams of testcase writers 
numbered in the tens or twenties. It also leads to regressions that 
contain up to tens of thousands of testcases. Directed testing is a 
labor intensive technique. 

Constrained Random Testing 

Constrained random testing can help eliminate much of the manual 
nature of directed testing. A verification apparatus is used that can 
randomly stimulate the device under verification and automatically 
check that the device behaved correctly based on the random 
stimulus applied. The application of random stimulus to your device 
might immediately bring the following three questions to mind: 
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� If the stimulus is random, how do I know what’s been tested? 
� How can my verification environment possibly check every 

random behavior? 
� What keeps the randomly selected stimuli from being 

gibberish? 
 
How Do I Know What Has Been Tested? 

The first question leads us right back to metrics. The metric in this 
case is functional coverage. Functional coverage is used to detect 
specified scenarios and measure various device states when they are 
detected. By tracking the occurrence of these scenarios, we know 
what random stimuli are being applied to the device. Functional 
coverage will be covered in more detail in a following section. 
 
How Can My Verification Environment Check Every Random 

Behavior? 

Behavioral models are used to check the behavior of the device as it 
is stimulated. These models monitor the stimuli applied to the device 
under verification and then produce expected results based on the 
input stimuli. The expected results are compared to the actual results 
produced by the device. Figure 14.3 shows the architectural setup of 
these behavioral checkers. 

Device Under 
Verification

Monitor
(Protocol)

Behavioral Checker

Monitor
(Protocol)

Monitor
(Internal Signals)

 
Figure 14.3 Behavioral Checking Architecture 
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There is one final metric- specific note on these checkers. As with 
assertions, it is important to be sure that the checker checked 
anything at all. In the assertion- based case, we simply made sure that 
all assertions activations had fired. We use the exact same technique 
to make sure that our simulation- based checkers are operating 
correctly. Each check is sensitized by some event that is detected by 
the verification environment. By observing the coverage for these 
events, we can ensure that the device under verification was 
exercised in a manner that sensitized each of our checkers. 
 
Why Isn’t the Randomly Selected Stimuli Gibberish? 

The random stimulus can’t be completely random. The space of 
illegal stimulus for a given device is usually much larger than the 
legal stimulus space. Constraints can be applied to limit the random 
generator to generate stimulus within the legal subset that the device 
can tolerate. 
 
Care must be taken not to eliminate all illegal conditions however. 
For example, network routers are designed to detect both malformed 
packets and packets with bad parity. If the random environment is 
overly constrained then checks for correct device behavior in the 
face of erroneous external stimuli might never be exercised. 
 
Strengths 
Constrained random testing can eliminate most of the manual 
drudgery associated with using directed testing on too large of a 
project. It makes use of low- cost computing resources to 
automatically generate stimulus that would otherwise be generated 
by relatively expensive human resources. It also frees up engineers 
to begin the important work of debugging at an earlier time. 
 
The behavioral checkers shown in Figure 14.3 are passive by nature. 
They only observe signals and events passed to them by the 
monitors (the monitors are passive as well). Due to their passive 
nature, these checkers can easily be included in verification 
environments that concentrate on other portions of the chip. For 
example, in the FPU example cited above, the instruction cache 
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checkers could have easily been included to check for proper 
behavior. 
 
Weaknesses 
Constrained random testing can carry a steeper learning curve along 

aspect- oriented programming techniques. Quite simply, there aren’t 
as many engineering resources available that are well versed in these 
programming methodologies. 
 
For a small design project, it might be prudent to pursue a directed 
testing methodology depending on the engineering resources 
available. 

Tracking to Closure 
There are several different methods of tracking to 
closure using simulation- based verification. Each 
method corresponds to one of the methodologies 
for simulation- based verification described above. 
The simulation- based methodologies are: 
 

 
� Directed testing with golden vectors 
� Directed testing with self- checking testcases 
� Constrained random testing 

 
It is important to use all available metrics to track toward closure in 
a simulation- based verification project. Multiple metrics provide 
multiple perspectives into the project status and reduce the risk of 
missing key information. 
 

Tracking to Closure Using Directed Testing 

There are several metrics that are used to gauge 
the completeness of directed testing these metrics 
are: 

� Testcase completion 
� Code coverage 
� Functional coverage 
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with it. These systems are best implemented using object-  and/or 
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Testcase Completion 

The first, most popular metric is simply to track the list of 
testcases that were specified in the test plan against the 
testcases declared completed by the testcase writers. This is a 
highly subjective and labor intensive tracking metric. Whether 
or not a testcase is complete is frequently a matter of human 
interpretation. The process is labor intensive, because someone 

has to gather the completion data from all the testcase writers. 
 
Some automation and objectivity can be gained back by tracking 
whether each specified testcase passes or fails. Even this level of 
objectivity can fall victim to the possibility of false positives if it is 
used in isolation. Testcases that actually check nothing or exercise 
nothing will always pass. 
 
Code Coverage 

That brings us to the second metric which is code 
coverage. Code coverage is used as an independent 
metric that illustrates how much of the design was 
actually exercised by a given set of testcases. Using 
code coverage in conjunction with tracking testcase 
completion offers some balance to prevent false 

positives caused by misinterpretation of what each testcase is 
actually achieving. 
 

Functional Coverage 

Functional coverage is sometimes used as a metric 
when working in directed testing environments. 
Occasionally it is used to gauge the advantages that 
can be gained by moving to a constrained random 

testing environment. Another use of functional coverage is to act as 
a failsafe mechanism for ensuring the continued efficacy of testcases 
in the face of design changes. 
 
An example of this can be gleaned from the experience of a large 
x86 processor manufacturer in the 1990s. A team of thirty engineers 
had been assigned to custom design testcases to test the execution of 
various instructions in the presence of snoop signal on the external 
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bus interface. The testcases were carefully crafted and timed to ensure 
that the instruction in question was executing exactly when the snoop 
signal arrived on the bus interface. This took quite a bit of work. The 
snoop signal had to be timed to arrive at the execution pipeline stage 
just as the instruction was executing there. The architecture is shown 
in Figure 14.4. The team of engineers spent a month crafting these 
testcases by hand and finished with a great sense of pride and sigh of 
relief. 
 
A week later, the design of the processor was changed in such a way 
that all the timings were thrown off. The testcases were testing 
nothing! With functional coverage, the team was alerted to the 
problem immediately. They rewrote all the testcases and got the 
regression suite back up and running. Without functional coverage, 
they might have been using valuable regression resources to run 
testcases that did nothing. 
 

add reg,imm

snoop

snoop

Stage 1
Prefetch

Stage 2
Decode

Stage 3
Execute

Stage 4
Finalize

 
Figure 14.4 Timing Snoops 
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Tracking to Closure Using Constrained Random Testing 

When using constrained random testing, there are 
a few key metrics to track. They are: 

� Functional coverage 
� Checker coverage 
� Code Coverage 

 
Functional Coverage 

When tracking closure with functional coverage, the intended 
integration level of the functional coverage group should be taken 
into account as well. For example, let’s assume we’re verifying a 
device that will be segmented into the following integration levels: 

� Block 
� Unit Integration 
� Chip Integration 
� System Integration 

 
As we specify each functional coverage group, we should also 
specify a coverage goal for that group in each of the integration 
levels. For example, the coverage of every available bus transaction 
for a given block might have the coverage goals given in Table 14.1. 
 

Table 14.1 Coverage Goals vs. Integration Level 

Coverage goals for block X bus transactions 
Integration level Coverage goal 
Block 100% 
Initial integration 75% 
Chip integration 30% 
System integration 10% 

 
At the block level, we have the most controllability and observability. 
We want to make sure that all the functionality is verified here where 
debug is the easiest. Coverage for all available bus transactions should 
be 100%. In addition to checking the block for use in our present 
device, we are also ensuring that the block supports all available bus 
transactions in case it is used in another project. 
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At the integration level, our goals change. It was important to verify 
all available bus traffic for the block. However, the block that it is 
integrated to Block X does not support one of the transaction types. 
Our coverage goal has been adjusted accordingly. We only expect to 
see 75% coverage at the initial integration level. 
 
At the chip integration level, we are now confident that the interface 
to the block is fully verified and we merely want to see that the 
block participated to some degree in chip- level simulations. Here, 
the transaction coverage gives us a warm, fuzzy feeling that 
everything is OK, but it is no longer essential. 
 
Finally, at the system level we are even less concerned with the 
exact transactions that are sent to the block in question. However, 
we want to make sure some traffic is being sent to the block to 
ensure that our bandwidth performance measurements are realistic. 
 
Checker Coverage 

It’s not enough to track just functional coverage. 100% functional 
coverage does not guarantee that every feature was actually properly 
checked. In fact, each feature can be exercised and never checked. 
Once again, it’s important to track multiple metrics. In addition to 
specifying functional coverage that indicates that each feature has 
been exercised sufficiently, we also need to specify and implement 
coverage that ensures each feature has been checked by one or more 
checks in the verification environment. As functional coverage 
ramps up to meet our goals, checker coverage must be tracked for 
completeness as well. A divergence in these numbers indicates that 
progress is not being made in either the area of stimulus or 
implemented checks. 
 
Finally, it is important to check all issues detected against the existing 
functional coverage implementation. The constant question must be: 
“would we have found this bug had we reached 100% coverage?” 
Often times in constrained random environments, the answer is no. 
That’s a good thing! The reason for using constrained random stimulus 
was because it can explore state spaces that you may not have thought 
of ahead of time. When an issue is exposed by “unplanned” stimulus 
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the verification plan should be updated. The team should plan and 
implement an appropriate functional coverage group that would have 
indicated an incomplete verification effort had the random stimulus that 
exacerbated the bug not been created. 
 
Code Coverage 
The same considerations that were outlined for code coverage vs. 
functional coverage in the directed testing section above are impor-
tant here. Code coverage and functional coverage independently are 
necessary but not sufficient metrics. When paired as described 
above, they create a very effective system of checks and balances for 
each other. This system provides more value from our constrained 
random verification environment. 

Summary 
In this chapter we explored using metric- driven techniques to augment 
the simulation- based verification process. We looked at the differences 
between directed test verification and verification using constrained 
random stimulus. We described the three key metrics used to track 
closure of simulation- based verification: 
 

� Code coverage 
� Functional coverage 
� Checker coverage 

 
We also looked at how each of the stakeholders should contribute to 
the verification planning process. 
 
In Chapter 15, we’ll look at system- level verification using 
acceleration and emulation technology. 
 
 



Chapter 15 
System Verification 

 
 
An exciting new area in metric- driven verification is its application to 
system- level verification. The following chapter by Jason Andrews 
outlines how available technology can be used to apply proven 
metric- driven techniques such as coverage- driven verification at the 
system level.  
 

Jason Andrews is a project leader at Cadence 
Design Systems, where he is responsible for 
hardware/software coverification and metho-
dology for SoC verification. He is the author of 
the book “Co- Verification of Hardware and 
Software for ARM SoC Design” and holds a 
bachelor’s degree in electrical engineering 

from The Citadel, Charleston, SC, and a master’s degree in electrical 
engineering from the University of Minnesota, Minneapolis. 
 
Coverage-Driven Methodology for Verification of 
SoC Hardware and Software Corner Cases 
 

Introduction 
One of the most difficult challenges in SoC verification today is 
determining how to make sure the hardware and software work 
together at the SoC level. Hardware verification has advanced to the 
point where the verification of individual functional blocks in a design 
can be achieved with reasonable confidence using constrained random 
testbenches, code coverage, assertion coverage, and functional 
coverage. Challenges remain in making sure the blocks work correctly 
when placed in the context of the SoC. On the other hand, the concept 
of embedded software verification is mostly nonexistent in SoC projects 
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today. The primary way to find out if the software works with the 
hardware is to just run it and watch what happens.  
 
The result is a commonly deployed three- step process for SoC 
verification: 

� Perform comprehensive verification of each functional block 
of the design using: 
o A verification plan 
o Advanced simulation techniques 
o A farm of workstations for parallel simulation 

� Assemble the blocks together to form the SoC: 
o Run some basic tests to make sure peripherals can be acc-

essed, connectivity is good, and there is no contention on 
busses or interfaces 

� Execute Software on the SoC: 
o As much as possible before committing the design to 

fabrication 
o Using emulation or FPGA prototyping to provide the 

needed performance 
 
Unfortunately, this process results in many products that have subtle 
problems, most of which are caused by corner cases between the 
hardware and software. Many of today’s consumer electronics are 
examples of this. They contain the most advanced features 
constructed with complex hardware and software, but suffer from 
periodic lock- ups or require periodic reboots. From wireless routers 
to Bluetooth mobile phones the story is the same, there are some 
conditions where the hardware and software hit functional corner 
cases and the failures occur. In the end nobody really knows what is 
happening because consumers have no way to debug the problem. 
Technical support may offer new firmware that may or may not 
address the exact problem, and most of the design engineers have 
gone on to the next project and are not interested in such subtle 
problems because they are very hard to find and fix and may not 
even be functional problems, but could be mechanical, electrical, or 
manufacturing issues. 
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This paper proposes new methodology to improve the three- step SoC 
verification process. The aim of this methodology is to produce higher 
quality designs by exposing the hidden corner cases that are not being 
found. As anticipated, the key is to apply additional stress to the 
boundary conditions of the design, but do it by including the 
embedded software in the process. An ARM926 PrimeXsys Platform 
SoC is used to demonstrate the proposed methodology and results are 
presented. 
 

Coverification Defined 
During the last 10 years the term coverification has been widely 
applied to any verification technique that included both hardware 
and software in an attempt to make sure each works with the other 
before designs are committed for fabrication. Today, nearly all SoC 
projects understand the benefits and readily admit that this is an area 
of struggle for which there is no easy solution. In fact, there have 
been many new products introduced in an attempt to address the 
problem, but each with a set of pros and cons that has limited any 
one technique from emerging as dominant. Engineers have been left 
with a daunting challenge of deciding which of the products and 
techniques to apply and when in the project is the best time to do it. 
Using multiple techniques in a divide and conquer approach has 
produced some progress, but not enough to declare victory when it 
comes to SoC verification. Attendees interested in a complete 
landscape of all of the products, techniques, and history should refer 
to [1]. 
 
Coverification is a term that is not the best fit for the activities that 
have been done so far. When engineers try to make sure hardware 
and software work together it is likely they are performing 
cosimulation. Historically, cosimulation meant the connection of 
two simulators where one simulator executed the hardware design 
and another executed the software. As many different techniques 
were developed for execution it’s more general to think of 
Cosimulation as the execution of software together with the 
hardware, even if there is only one execution engine involved. When 
engineers try to figure out what is wrong when a failure occurs they 
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are doing codebugging. Codebugging is the process of starting and 
stopping the system and observing the state of both the hardware and 
the software to understand where the problem lies. Although these 
activities are important they are not true coverification, but serve as 
a foundation on which coverification takes place. 
 
Verification is the process of determining a design meets 
requirements. In practice, verification is the process of identifying 
and removing as many functional bugs in the hardware and software 
as possible. The oldest form of verification is to build it, run it, and 
watch what happens. Today, manual techniques such as visual 
inspection have been replaced by automated verification plans 
containing a set of goal metrics that are used to measure progress 
toward verification completion. By definition of the plan, if these 
metrics are achieved the design is verified. In hardware verification 
the process of verification planning to define the corner cases that 
need to be hit and the use of automated, constrained random 
stimulus to hit these corner cases is known as coverage- driven 
verification (CDV). To perform CDV the corner cases are converted 
into coverage points and the goal is to reach 100% coverage. The 
combination of using random generation to reach coverage points 
also results in new corner cases that engineers did not think of. 
Considering the wide adoption of CDV for hardware verification it 
is logical that Coverification should have a new definition that is 
specific to the verification problem. Coverification is the use of 
automated, constrained random stimulus and functional coverage 
metrics applied to the hardware design, the embedded software, and 
the combination of hardware and software. Performing coverification 
requires a foundation of cosimulation to execute the design and code-
bugging to find the problem when things go wrong, but it’s clear 
now that running software and debugging is not verification. This
hierarchy of capability is shown in Figure 15.1. 
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Figure 15.1 Layers of Capability 

 

Advancing SoC Verification 
To close the gaps in the three- stage verification process it is 
necessary to start to treat the embedded software more like the 
hardware. In the past embedded software has always taken a back 
seat in importance to hardware because software is “soft.” As long 
as it can be changed and firmware updates and patches can be made 
available it is not treated with the same importance as hardware. Due 
to the quality issues previously discussed and the increased support 
costs it is becoming more important to treat the software like 
hardware, every corner case is important and every problem that can 
be found early leads to a big savings later. Consider some of the 
ways hardware verification is part of a rigorous process: 

� Verification Planning 
� Complex random generation 
� Coverage points and metrics 
� Tracking progress vs. a plan 
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For the purpose of SoC verification, the most important type of 
software is the low levels of software that interacts closely with the 
hardware. This is where all the hidden corner case problems exist. 
The application software is also important, but since it doesn’t rely 
on the hardware details can rely on hardware abstraction and be 
developed outside the context of hardware verification. 
 
There are three different kinds of corner cases to consider: 

1. Corner cases exclusively in hardware. 
2. Corner cases exclusively in software. 
3. Corner cases that involve both hardware and software. 
 

 
The type 3 corner cases are the ones that are most difficult to find 
and most often escape the three- step verification process. Finding 
type 3 corner cases holds the most potential for improving SoC 
verification. 
 
Embedded software practices must advance beyond run and debug. 
One of the main reasons it’s difficult to advance embedded software 
methods is the dependency on the hardware. With no hardware and 
now way to run software, the software engineers are limited in what 
they can do to improve the quality of software. As a result it’s unlikely 
the software engineers wring the low- level code can drive 
improvements by themselves. The verification team is the glue that has 
the ability to advance the process and improve results. The next section 
discusses the challenges engineers face when they think about how to 
improve the three- step verification process. 
 

List of Challenges 
When the functional blocks are assembled to form the SoC there is a 
long list of challenges on the hardware verification front alone. 
Engineers that are well trained in verification would like to continue 
to use the same coverage- driven techniques they used at the block 
level to do generation, checking, and coverage. Figure 15.2 
summarizes the environment the verification engineer would like to 
maintain. Besides the obvious problems of simulation performance, 
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memory footprint, size of waveform dump files, etc. there is the all 
important question of what to do about the CPU and software. 
During block and subsystem verification engineers normally work 
without the CPU and use verification components to generate 
transactions on the CPU bus. The example presented in this paper 
uses an ARM926 CPU with a dual AHB interface. Verification 
engineers use the AHB eVC to perform coverage- driven verification 
and produce all of the corner cases on the bus, but the question 
remains about what to do at the SoC level. 

 Figure 15.2 CDV Environment 

 
There are two possibilities for the SoC simulation: 

1. Continue to use the eVC 
2. Use a full- functional CPU model 
 

 
Working with the eVC makes it difficult to create activity that will 
be similar to the way the SoC will behave with CPU and software. 
For example, most eVC environments don’t include details about 
interrupts such as executing instruction fetches from the interrupt 
vector when an interrupt occurs. Although constraints can be used to 
weight the transaction types, the transaction work load produced by 
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the eVC is not similar to the CPU in terms of the address and data 
patterns. An even more important challenge is what to about SoC 
initialization. Some projects have reported thousands of 
programmable registers [2] that must be configured before the SoC 
is ready to do meaningful activity. Writing an initialization sequence 
for all of these registers takes a very long time. Besides being a 
tedious process, the motivation is somewhat low because in the end 
it’s the job of the software to initialize the SoC, not the verification 
engineer. This leads to a duplication of effort. 
 
The alternative to using an eVC is to insert the CPU and run 
software. Now the software can be used to initialize the SoC and the 
workload on the bus is much more realistic. The trouble with using 
software is to figure out what kind of software to use. There are 
many types of embedded software. Some software is created by 
engineers very close to the chip verification and some is created by 
other organizations in the company or other companies. Some of the 
common types of software include: 

� System initialization software and hardware abstraction layer 
(HAL) 

� Hardware diagnostic test suite 
� Real- time operating system (RTOS) 
� RTOS device drivers 
� Application software 

 
Certainly, initialization software is very useful for verification. On 
the surface the hardware diagnostic tests that are developed to run on 
the final hardware appear useful, but in the end are not as useful as 
originally thought for verification. Hardware diagnostics tend to be 
very simplistic and for the verification engineer skilled in CDV they 
tend to be too much like the directed Verilog testbenches used 10 
years ago. They do something like: write, read, write, read, TEST 
PASS for each peripheral in the design. The RTOS and application 
software is typically not available yet and even if it is it would be 
too slow to run on anything except an emulator or FPGA board. The 
device drivers are interesting to run since they interact directly with 
the hardware, but for a driver to execute it needs to be called by an 
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application (which is not available) so there is a stimulus problem 
that must be solved for the drivers to be useful. 

In summary, there is currently a verification gap between the CDV 

diagnostics. These gaps result in projects using CDV for block and 
subsystem simulation, and then when they reach the SoC level make 
an abrupt change to run diagnostic C programs that do write, read, 
write, read, TEST PASS. This flow provides little or no chance to hit 
the important corner cases between hardware and software. The 
solution is to close the gap between CDV and the embedded 
software diagnostic program. Future sections will demonstrate how 
CDV can be used together with diagnostic software to provide more 
stress on the design and hit more corner cases at the SoC level. 
 

ARM926 PrimeXsys Platform Design 
To investigate the proposed solution to close the gap between CDV 
and diagnostic software an example SoC is used. The design is 
provided by ARM Ltd and is a reference SoC available from ARM 
as a starting point for a more complex SoC design. A block diagram 
of the design is shown in Figure 15.3. The design is about 500 k 
gates of logic plus memory. The CPU is the ARM926EJ- S which 
has a dual- AHB interface for instructions and data. 
 
The PrimeXsys platform provides all the design data to use it in a 
larger SoC. Additionally, it includes verification components and 
software. The investigation for this paper centers on the DMA 
controller. The DMA controller is an ARM Primecell peripheral 
known as PL080. Most of the details of the DMA controller are not 
important, but below are a few highlights: 

� 3 AHB interfaces 
� 8 DMA Channels 
� Memory to Memory, Memory to Peripheral, Peripheral to 

Memory, and Peripheral to Peripheral transfers 
� Scatter gather DMA using linked lists 
� Programmable burst length 

approaches used by verification engineers to verify hardware and  
the embedded software, even at the lowest level of hardware 
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� 8, 16, and 32- bit data transfers 
� 66 Programmable registers 

The platform is provided by ARM with three main verification 
environments as described in [3]: 
 

1. System Integration Environment: No CPU model is 
instantiated. Instead, a BFM reads from files to generate 
traffic on the 2 CPU AHB interfaces. The goal is to verify 
connectivity of the peripherals and the memory map. 

2. System Verification Environment: A CPU is instantiated and 
runs a set of diagnostic software programs to initialize the 
hardware test each peripheral. 

3. Scenario Validation Environment: No CPU model is 
instantiated. Instead the AHB eVC is used. The goal is to hit 
corner cases and stress the design. 

Figure 15.3 PrimeXsys Platform 
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Based on these three environments it’s clear that number 1 provides 
the connectivity test to make sure the assembly is correct and there 
are no conflicts on the bus or in the memory map. Environment 
number 2 demonstrates the software diagnostics that are nice to run 
in verification and also later on FPGA boards or the final silicon. 
Although not stated, environment number 3 is likely a result of 
concern that the diagnostics are not comprehensive enough and the 
verification engineers understand the principles of CDV and feel like 
the environment number 3 to hit more corner cases. 
 
These three environments are an excellent example of the 
verification gap between the software diagnostics (environment 
number 2) and CDV (environment number 3). The next section 
focuses on the solution to the gap by using the DMA controller as an 
example. 
 

Closing the Gap 
Coverage- driven verification requires a high level of control of the 
system. The only way to force the design into corner cases to meet 
coverage goals using constrained random generation is to monitor 
the state of the design and generate data that will move it to the 
required state to fill the coverage. A closer look at verification 
environment number 2 (diagnostic software) described in the 
previous section reveals that it suffers from a lack of visibility and 
coverage in the diagnostic software area. First, there is no way from 
the view of the software diagnostic to tell how well the test actually 
exercised the hardware. Second, there is no way to control the 
diagnostic program and coordinate it with the other hardware 
stimulus. Environment number 3 was developed because of these 
limitations. As also previously mentioned, environment number 3 
has a different set of challenges since the SoC configuration must be 
done from an eVC (duplication of work) and the traffic is not as 
realistic as running a real software program on the CPU. The 
remainder of the paper will detail a new technique to unify 
environments 2 and 3 by utilizing the software diagnostic and CDV 
together. It will use the DMA controller and its diagnostic program 
as an example. 
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By reading the short description of the three verification 
environments it’s clear there are limitations of what the hardware 
diagnostic programs can do and the engineers determined that to do 
an excellent job of verification they needed to perform CDV using 
environment 3. To their credit they did not stop with the first two 
environments and pass the design to software engineers as step 3 as 
has been described in the three- step verification process presented in 
the introduction. They saw a gap and tried to fill it with a CDV 
approach, but clearly now there are two separate environments to 
maintain and the situation is not ideal because of the lack of the CPU 
and software in the CDV environment. 

DMA Diagnostic Program 
Figure 15.4 is a code fragment of the DMA diagnostic used to verify 
the DMA controller functions correctly in the context of the SoC. 
This diagnostic is useful because it is a program running on the 
ARM926 and can easily be used again with hardware implementations 
of the design such as an FPGA board or the final silicon. The diag-
nostic is also good because it will demonstrate the mix of transactions 
 

 Figure 15.4 DMA Diagnostic Program 
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on the bus, the use of interrupts, and some possible effects of the 
caches on the hardware design. For a verification engineer there are 
clearly some drawbacks of the DMA diagnostic. 
 
The first thing a verification engineer notices is the deterministic 
nature of the test. Verification engineers think about the interesting 
parameters of a DMA controller and where are the corner cases that 
need to be covered. The results of a short analysis of the DMA 
diagnostic are given in Table 15.1. 
 

Table 15.1 Analysis of DMA Diagnostic 
 

DMA source data Fixed array: 
 
unsigned uTestData[] = {0x12345678, 
0x55555555, 0xFEDCBA98, 
0xAAAAAAAA, 0x89ABCDEF, 
0x5555AAAA, 0x76543210, 
0xABADCAFE, 0xDEADBEEF, 
0xD0D0F00D, 0xA1C0FFEE, 
0xCABBA6E5, 0xA6EDBEEF, 
0x0DE2F00D, 0xD06F00D5, 
0xF0E1D2C3} ; 

DMA source 
address 

Fixed at 0x20000000 

Destination address Fixed at 0x08002000 
Bus widths used 8, 16, and 32- bits 
Length of transfers Single tests and always 16 for burst tests 
Other 
programmable 
registers in the 
DMA controller 

Always fixed with the same value  

DMA controller 
modes used 

Unknown, but complex modes of the DMA 
controller such as scatter/gather appear to 
always be disabled 

Length of test 1 time through main() doing 6 DMA 
transfers 
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Clearly, it would be desirable to have a diagnostic program that 
would more fully exercise the DMA controller. Below are three 
options to improve the quality of this diagnostic program: 
 
� Enhance the C program to be more comprehensive and cover 

every combination of interesting parameters including 
address and data values: 
o Would probably take forever to write 
o Is probably not necessary 

� Take out the CPU and use an eVC to create a CDV 
environment to hit more corner cases: 
o Doesn’t leverage existing software (and software people) 
o Utilizing a BFM results in different bus activity 

� Utilize the existing C program and add the ability to call the 
C functions from a CDV environment, add randomization of 
the C functions called, the C data used, and add functional 
coverage to measure what the test really does: 
o Very little extra work to create 
o Utilizes existing software (and people) 
o Uses the CPU in the system 
o Uses the principles of CDV including coverage in both 

hardware and software 
 
The last option is the way to close the gap in the three- step 
verification process described in the introduction. It’s also the way 
to close the gap in the improved verification flow proposed by ARM 
in the PrimeXsys platform that used two separate verification 
environments, one for diagnostics and one for CDV. By connecting 
and controlling the C functions to the verification environment the 
best of both world’s can be achieved, running C functions and the 
generation, checking, and coverage provided by CDV. 
 
The Generic Software Adapter 

The Generic Software Adapter is a Specman adapter used to connect 
to and control embedded software. Most engineers know that 
Specman contains ways to connect verification environments written 
in e to designs under verification (DUV) written in Verilog, VHDL, 
and SystemC. GSA connects the e environment to embedded 
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software, such as the DMA diagnostic from the PrimeXsys platform. 
Now the verification environment can control both the hardware 
design and the software running on the ARM926 CPU. GSA works 
in any cosimulation environment using any type of CPU model. 
Some example environments it has been used with are: 

� Verilog or VHDL RTL CPU model running in a logic 
simulator 

� Instruction Set simulator connected to an HDL BFM in a 
logic simulator 

� Host- code execution where software is run on the host 
machine and connected to an e BFM using the Specman 
coverification link (CVL) [4] 

� SystemC TLM simulation of an SoC 
� Emulation Systems such as Xtreme and Palladium: 

o RTL CPU models inside the emulators 
o In- circuit emulation using a CPU board connected to the 

emulator such as the ARM Logic Tile 
 

GSA uses a shared mailbox memory that is located somewhere in the 
memory map already defined and modeled in the SoC. The embedded 
software can communicate with the memory by software instructions 
and the verification environment can communicate with the mailbox 
memory using the backdoor techniques such as the Verilog variable 
statement already available in e or other suitable interfaces based on 
the type of memory model used (such as Denali). For details of the 
communication mechanisms and more examples refer to [5].  
 
To connect to the DMA diagnostic C functions and variables to the 
verification environment e ports are used. The e language has 
different types of ports available to communicate with the DUV (the 
embedded software in this case). GSA uses method ports to call C 
functions and simple and event ports to read and write variables in 
the C code. 
 
The key to GSA is the unique ability of Specman to “generate stubs.” 
The stub generation process enables the connection between the 
verification environment and the embedded software to be completely 
automated. GSA finds all the ports in the e environment and 
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automatically generates the C code to provide the communication 
and the user can simply link this automatically generated C code 
with the DMA diagnostic. The overall process to perform CDV with 
embedded software is shown in Figure 15.5. The next section shows 
how this was done for the PrimeXsys DMA diagnostic. 

 
Figure 15.5 GSA Integration Flow 

Connecting the DMA Diagnostic to the Verification 
Environment 
To improve the verification quality of the DMA diagnostic program 
the Generic Software Adapter was connected to the existing DMA C 
functions. The goal is to improve verification by exposing more 
corner cases using the principles of coverage- driven verification as 
compared to the existing C test which is completely deterministic. 
The basic steps required to connect the environment to the 
embedded software are reviewed in the next section. 
 

Memory Connection 
The first step in GSA integration is to enable the verification environ-
ment to access the memory that will be used for the communication 
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mailbox. This is done by creating backdoor memory access functions 
that can read and write memory without advancing simulation time. 
GSA defines an interface for the verification environment designer, 
called a mini- adapter, to connect the appropriate memory model being 
used as the mailbox. Because each design has a different memory 
map and uses different types of memory models this step requires 
some manual coding. In the case of the PrimeXsys platform the 
tightly coupled data memory (DTCM) was used as the mailbox 
memory. The ARM926 includes dedicated interfaces to fast memory 
called TCM that is directly connected to the processor. Figure 15.6 
shows a fragment of code used to implement the mini- adapter by 
connecting to the DTCM for accesses from the verification 
environment. The DTCM is modeled using a Verilog memory array 
and the e Verilog variable statement is used to provide easy access 
from e. It’s important to note that since the DTCM is a local instance 
of memory the mini- adapter must have some knowledge about the 
address in the ARM CPU memory map where the DTCM memory 
resides. The mini- adapter uses this information to compute the correct 
addresses of the DTCM memory instance. 

 

Figure 15.6 Mini- adapter Code 

unit  vr_pwp_verilog_if  { 
 
   mem_base: uint; 
 
   verilog variable          
       'TBplatform.uPlatform.uProcSubSys.uProcCoreMod.uDRAM. 
                                               ram.memory[8191:0][31:0]'; 
    
   read_int(a: uint): uint is { 
      var address: uint; 
      address = a - mem_base; 
      result =  
      'TBplatform.uPlatform.uProcSubSys.uProcCoreMod.uDRAM. 
                                              ram.memory[address[31:2]]'; 
       
   }; 
    
   write_int(a: uint, data: uint) is { 
      var address: uint; 
      address = a - mem_base; 
      'TBplatform.uPlatform.uProcSubSys.uProcCoreMod.uDRAM. 
                                       ram.memory[address[31:2]]'= data; 
   }; 
}; 
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Port Definitions 
Once the mailbox memory is connected, the next step in GSA setup 
is to define the ports that will be used. This includes the method 
ports that will be used to call the C functions in the DMA diagnostic 
and the simple ports that will be used in the verification 
environment. The creation of ports can be automated either by the 
use of an e macro or by using the Verification Builder, a GUI tool 
for environment creation, but for the purposes of showing how GSA 
connects the source code of the port definitions will be shown. For 
simplicity only a small part of the DMA diagnostic is shown. 
 
The first area of interest is the data used in the DMA. Recall that in 
the original DMA diagnostic this data consisted of a fixed array of 
data as shown in the first row of Table 15.1. To improve verification 
new random data should be used for each DMA transfer. To 
randomize the data a simple port is created in the verification 
environment that will connect to the C variable uTestData. The 
simple port is of direction inout so it can read the C data array and 
also write it with new random data. 
 
Recall from Figure 15.4 that one of the C functions in the DMA 
diagnostic was DMAC_M2M_Multi_Transfer(). This C function 
does a multiple word transfer between two memory locations. The 
destination memory address, the number of words, and the width (8, 
16, or 32 bits) are all arguments to this function. In the original 
DMA test all of these arguments are fixed. To improve verification 
this function should be called more than just three times and with 
random arguments. To do this an out method port is created in the e 
environment. A fragment of the port definitions used is shown in 
Figure 15.7. 
 
Not all of the ports are shown, but additional ports were created for 
all of the C variables and functions that are accessed from the 
verification environment. 
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Figure 15.7 Port Definitions 

Connecting the Main() Function in C 
The original DMA diagnostic defined a main() function and 
proceeded to call the DMA C functions. Recall, it called the two 
DMA functions available for single and multiword transfers a few 
times each. GSA takes care of all the calling of the C functions as 
specified by the e environment. Depending on the test developed this 
could mean calling the functions many times or just a few. To 
improve verification sequences are used to setup interesting corner 
cases to stress the DMA controller in the context of the SoC. To 
facilitate the use of sequences the main() function will simply yield 
to the verification environment and receive commands by the 
underlying mailbox architecture. The modified main() function is 
shown in Figure 15.8. 

method_type DMAC_M2M_Multi_Transfer(src_addr: uint, dest: uint, 
                            num: uint, width: uint): uint @sys.any; 
  
unit vr_pwp_env like any_env { 
    
   logger : message_logger is instance; 
   name : vr_pwp_name; 
    
   short_name(): string is { 
      result = append(name); 
   }; 
   short_name_style(): vt_style is { 
      result = ORANGE; 
   }; 
   show_banner() is also { 
      out("(c) Cadence 2006"); 
      out("vr_pwp instance : ", name); 
   }; 
   show_status() is only { 
      out("vr_pwp Verification Environment - instance : ", name); 
   }; 
 
   // simple port for generating random data 
   uTestData: inout simple_port of list of uint is instance; 
   keep bind(uTestData, external); 
   keep uTestData.hdl_path() == "uTestData"; 
   keep uTestData.external_type() == "unsigned int [32]"; 
 
   // C function to do multi-word DMA 
   DMAC_M2M_Multi_Transfer: out method_port of 
                                DMAC_M2M_Multi_Transfer is instance; 
   keep bind(DMAC_M2M_Multi_Transfer, external); 
   keep DMAC_M2M_Multi_Transfer.hdl_path() == 
                                          "DMAC_M2M_Multi_Transfer"; 
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Figure 15.8 Modified main Function 
 
The modified main() function has replaced the directed set of C 
function calls with a loop that will receive much more random calls 
from the e environment. The other parts of the main() function such 
as #include files and global variables were not modified. 
 
Writing Stubs 

Once the environment is complete, the next step is to create the 
“stubs” files. Specman users will be familiar with the stubs file for 
languages such as Verilog and VHDL. The concept for GSA is the 
same, but the stubs file written is in C. The automatically generated 
stubs file takes care of the underlying mailbox protocol to make 
GSA possible. Once generated, the C stubs file is compiled with the 
DMA diagnostic and linked into the executable. Functions such as 
sn_gsa_init() and sn_gsa_wait() as shown in Figure 15.8 are part of 
the stubs file. Below is the command to write the stubs file for GSA 
(C file) and for NC- Verilog (Verilog file). 
 
% specman -c "load vr_pwp/examples/test1; 
write stub -gsa_pwp ./vcode/gsa_pwp_specman; 
write stub -ncvlog" 
 
Notice that GSA completely automates all of the method port and 
simple port connection using this automatic stubs generation. 

 
int main(void) 
{  
 
   // Initialize GSA 
   sn_gsa_init(); 
 
   // no need to modify the messages already in place 
   AvUtils_DEBUG_MSG("platform_DMA_test: Starting test\n") ; 
 
   // loop forever processing C calls from the e environment 
   while (1) { 
       sn_gsa_wait(); 
   } 
 
} 
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Creating Sequences and Coverage 
The final step to put everything together is to create interesting 
sequences to call the DMA C functions with random data and 
arguments and collect coverage on interesting activity. Multiple 
sequences were created for the PrimeXsys platform and different 
coverage values were collected. 
 

 

Figure 15.9 Example Sequence 

 
extend MULTI_TRANSFER sw_sequence_item { 
   errors: uint; 
   src_addr: uint; 
   dest: uint; 
   keep soft dest in [0x08002000..0x09000000]; 
   keep dest[1:0] == 0; 
   num: uint; 
   width: vr_pwp_width; 
   keep soft num in [1..16]; 
 
   activate() @driver.clock is { 
      --method_type DMAC_M2M_Multi_Transfer(src_addr: uint, 
                    dest: uint, num: uint, width: uint) uint @sys.any; 
      errors = driver.p_env.DMAC_M2M_Multi_Transfer$(src_addr, 
                                         dest, num, width.as_a(uint)); 
   }; 
   nice_string(): string is also { 
      result = "DMAC_M2M_Multi_Transfer()"; 
   }; 
}; 
 
extend ST2 sw_sequence{ 
   src: uint; 
   keep soft src in [0x20000000..0x20001000]; 
   keep src[1:0] == 0; 
 
   !setup: SETUP sw_sequence_item; 
   keep setup.uDestAddr == src; 
 
   !multi: MULTI_TRANSFER sw_sequence_item; 
   !errors: uint; 
   keep multi.src_addr == src; 
 
   body() @driver.clock is only { 
      do setup; // copy data to source address 
      do multi; // do single DMA 
      errors = multi.errors;  
   }; 
   nice_string(): string is also { 
      result = "ST2"; 
   };     
}; 
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For simplicity, just one sequence is shown to create a multiword 
DMA transfer. Figure 15.9 shows the sequence item created with 
random arguments for the C function and constraints to keep the 
random arguments within the memory map. This is followed by 
creation of the sequence ST2 to first setup the DMA data to be used 
and then call the multiword DMA sequence item to transfer the data. 
 
The complete verification environment for the DMA diagnostic was 
created to create multiple sequences of interesting scenarios calling 
the DMA C functions with random and collecting coverage on the 
software and combining the software coverage with the hardware 
coverage. The last step is to create a test that runs a mix of 
sequences. One of the tests is shown in Figure 15.10. This test 
creates and runs 150 sequences using ST1 for half of them and ST2 
for the other half. Given the sequence library the test writer can 
choose any mix of sequences to perform verification and can also 
run with a different random seed to create a unique stimulus. 
 

 

Figure 15.10 Example Test 
 
Results 

After integrating CDV with the DMA diagnostic a new analysis was 
done of the results of the verification environment. Augmenting the 
existing C DMA diagnostic functions with GSA has brought the 
concepts of generation and functional coverage to the embedded 
software. The result is 1000s of DMA transfers with randomized 
parameters instead of the directed test of six DMA tests and the 
pass/fail message (Table 15.2). 

<' 
import vr_pwp/examples/vr_pwp_config.e; 
 
extend MAIN sw_sequence { 
   keep count == 150; 
   keep sequence.kind == select { 
      50: ST1; 
      50: ST2; 
   }; 
}; 
 
'> 
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Table 15.2 Analysis of DMA Diagnostic with GSA and CDV 
 

DMA source data Randomized 
 

DMA source 
address 

Randomized within ranges of memory map 

Destination address Randomized within ranges of memory map 
Bus widths used Randomly generated 8, 16, and 32-bits 
Length of transfers Single tests and randomly generated lengths 
Other 
programmable 
registers in the 
DMA controller 

Multiple values constrained by random generation 

DMA controller 
modes used 

Measured by functional coverage 

Length of test Controlled by e environment, 1000s of DMAs with 
different sequences can easily be run 

 
The DMA example can be extended to the complete suite of 
diagnostic software available with the PrimeXsys platform and many 
tests can be run on in parallel to create interesting corner cases with 
little effort by the verification or software teams. 

Conclusion 
The use of GSA has been proposed and demonstrated to be a 
solution to the commonly used three- step SoC verification process 
that has difficulty catching the corner case problems between 
hardware and software. 
 

� Perform comprehensive verification of each functional block 
of the design 

� Assemble the blocks together to form the SoC 
� Execute Software on the SoC 

 
In the past, these corner case escapes were caused by the inability to 
control the embedded system software. The ARM PrimeXsys 
platform was examined and it was shown that the verification team 
did recognize the gap between C diagnostics and CDV, but were 
forced to create two separate environments to solve it, one for 
diagnostics and one for CDV. This paper has demonstrated how to 
unify the existing C diagnostics with CDV and greatly increase the 
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ability to hit corner cases while still utilizing the existing set of C 
diagnostics. 
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Abstract 

Traditional methodologies for Analog and Mixed-Signal (AMS) 
verification present many drawbacks. 
Analog design verification is usually subjective due to the lack of 
automatic checks and the poor control on stimuli and results. 
Moreover, verification of mixed-mode circuits is often incomplete 
due to fact that analog and digital macros are simulated with two 
different environments with insufficient interaction. 
Measuring the quality of verification becomes difficult, costs esca-
late in redesign, engineer-time and market entry is unpredictable. 
Moreover, lack of reuse in verification environments results in lower 
levels of efficiency. 

extends to the analog domain well-know concepts in the digital one, 
achieving advantages in terms of completeness, effectiveness, 
process control, and reusability. An introduction is given on the 
basic items on which the verification methodology is built, how to 
define a verification plan including analog metrics for functional 
coverage evaluation is described together with a tool bridging the 
analog and digital domains. 

Introduction 

The growth of the monolithic mixed- signal systems foreseen for the 
near future drives EDA vendors and SoC solution providers to invest 
huge resources to explore new verification approaches covering the 
gap between the analog and the digital verification current status. 
Even if mixed- signal simulator tools are already available in the 

This paper describes an innovative Analog Mixed-Signal Verific-
ation methodology based on a coverage-driven approach which 
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market linking and simulating analog and digital blocks in the same 
test- bench, it is still not possible to extend to analog mixed- signal 
domain the advanced techniques already available for digital verifi-
cation, such as constraints capture, randomized or pseudo- randomized 
stimulus generation and self- checking results collection with coverage 
analysis. 
 
Thus, most analog designers simulate various mixed subsystems in 
order to verify different functionalities of the whole device (i.e., reset 
and start- up conditions, power down/up signals polarity, function-
alities of analog block configured by a digital block, test- mode, etc.): 
the space of the interactions among all subcells that may be derived 
from the device specifications is most of the time not completely 
covered so that verification coverage is often partial and even not 
quantified. Lack in methodology and automation amplifies the risk of 
subjective evaluation and reduces reusability. In this paper, starting 
from previous work [1–3], we are presenting an innovative analog and 
mixed- signal verification approach in which both analog stimuli and 
output metrics can be generated in an advanced digital verification 
environment. 
 
Traditional Mixed-Signal Verification 

Analog-  and digital- design processes are fully separated: different 
teams, different expertise, different tool chains, and often different 
cultures. Finally analog and digital sections must work together on 
silicon in a mixed- signal circuit and so becomes mandatory and 
more and more urgent to set up a mixed- signal approach shared bet-
ween the two sides of the same house. 
 
Currently functional verification in analog domain has a lot of limi-
tations compared to the digital one. Mixed- signal verification comes 
from the analog side and has the same amount of problems or even 
more due to the multidomain nature. As shown in Figure 16.1, AMS 
verification is at least two steps behind the digital one and is moving 
forward slowly. 
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 As consequence of the lack of a proven methodology and the low 
control of the overall verification process, mix- mode simulations 
handling in the same test- bench analog and digital blocks are mainly 
driven by engineer’s experience on the specific design or appli-
cation. Such approach produces a strong limit in resource flexibility 
and optimization. The low level of reuse is another negative conse-
quence which increases the effort needed at each design cycle. 
 
In a traditional approach, mixed- signal verification is often in charge 
of the analog team and based on direct tests: the analog designer 
usually creates and fills a spreadsheet listing all the needed tests and 
then removing part of them based on his experience on circuit 
implementation. This procedure limits, by nature, the reuse level for 
other circuits and increases the risk to overlook or miss something. 
At this point the designer creates test- benches covering the listed 
tests, performs simulations, checks results mainly by visual inspec-
tion and fills the spread sheet with measurements results. In this 
approach the huge lack in automation forces high- value resources to 
take care of time- consuming and repetitive tasks. 

The increase of complexity and the increase of costs, both in masks 
for deep- submicron technology and in time- to- market mismatch, 
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Figure 16.1 Comparison between Digital and Analog Mixed- signal Veri-   

fication approach 
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drive the requirements of powerful methodologies and tools able to 
solve those issues. 
 

Verification Planning 

The coverage- driven verification methodology can satisfy the require-
ments also for mixed- signal circuits. 
 
The verification plan is the key element for the circuit verification 
and it enables the coverage- driven approach. It must be defined at 
the very beginning and it must describe all the requirements and 
results for the verification activity collecting and organizing the 
contribution of the different expertise necessary to make the design 
successful: analog design team, digital design team, and verification 
team. 
 
A coverage- driven verification approach uses predefined metrics to 
evaluate the verification progress, i.e., to measure the amount of 
covered conditions according to the defined metrics respect to the 
complete set. Whatever is the mechanism to create test- cases, the 
functional coverage measures the percentage of the test space covered 
by the test- cases run at a certain point of the verification process. 
 
How to define and measure metrics in a digital context is well know 
[4] and the extension to the analog one could be quite straight-
forward starting from what is available in the discrete domain. To 
allow the adoption of this approach in an actual project, it is 
necessary to provide a tool managing analog metrics for functional 
coverage definition. 
 
Let’s consider a very simple example to better understand how the 
verification plan can be created for an analog circuit and how to 
define the methodology extending to the analog and mixed- signal 
circuits the coverage- driven functional verification. 

A peak detector is shown in Figure 16.2 with the input and output 
waveform and the transfer function. 
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The input of a verification plan is the specification document and it 
is mainly composed by four sections as described in the following. 
 

1. Definition of the primary input space and the set of device 
states. 
In this simple example the input space is mainly composed 
by the parameters of the input sinusoidal waveform (A and f) 
and some environment conditions as temperature and techno-
logy process model cards. 
 

A � [AMIN, AMAX] 
f � [freqMIN, freqMAX]                                                      (1) 

 
T� [TMIN, TMAX] 
model card= mod_0, mod_1, mod_2…..mod_n 

 
Instead, device states are related to configurations depending 
on the digital input bus. In this simple case the bus is a 
primary input but in a more complex circuit it could be an 
internal signal. 
 

cfg � [0, ..., k]                                                          (2) 
 

Parameters and their values come from the specification 
documents. 
 

2. Definition of verification items, i.e., the list of device 
functionalities to be verified according to the specification 
document. 
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Figure 16.2 Peak Detector with Sinusoidal Waveform in Input, Digital 
Configuration Word Defining Output Parameter as Gain and Offset 
and Output Waveform According to its Transfer Function 
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For each items the plan defines: 

1. Item ID 
2. Functionality description 
3. Conditions at which the item has to be verified (they 

depend on stimuli, on external environment para-
meters and on device states) 

4. Description of measurement procedure (i.e., how to 
extract the functionality) 

5. Expected results 

In our simple case, we can consider only one item. 

Output 
voltage 
value  

For each possible value of 
input amplitude and 
frequency, in each possible 
environment conditions and 
configurations 

Sample output 
voltage value when 
the input signal 
reaches the maximum 
voltage value within 
one period 

vout(Tn) = 
func(vin, 
cfg) 
 

 

3. Definition of metrics to measure functional coverage. 
In this section the attention has to be put in the definition of the 
rules to be used to measure the functional coverage. Ideally, the 
circuit has to be verified in every condition defined in the first 
step. 
There are mainly three elements to be considered in order to 
limit the space of the metrics and so the total amount of test 
cases. 

a. For a given parameters, not all the possible values are 
allowed. 
For instance, for the configuration bus at n bits the 
allowed values are only “k+1” according to the speci-
fication reported in (2) 

b. In analog domain there are continuous quantities 
(e.g., voltage values in a defined range) but conti-
guous values “normally” do not create distinguishing 
behavior of the circuit. 
For instanced, applying A = 2.1 V after A = 2 V do 
not add any information for the verification of the 
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circuit; instead, if for the nmos device Vt = 0.65 V, 
depending on circuit implementation, for A = 0.6 V 
and A = 0.7 V the circuit can behaves in a different 
way. 
So, for each continuous value parameter, it is possible 
to define subranges where, for value in the same sub-
range the behavior is expected to be the same, instead 
two values in two different ranges can produce quite 
different response. Based on that makes no sense to 
test more than one value in each range but it is 
important to test at least one value for each subrange. 

c. For some continuous quantities, based on experience, 
circuit implementation and so on, it is clear that only 
the boundaries of the defined range are critical for the 
circuit behavior. 
It is the case, for instance, for the environment temp-
erature: normally only the minimum and the maxi-
mum temperature according to the specification are 
considered in corner analysis. 

 
Coverage items are related to primary input space, device space and 
output space. 
 

Input items:

Input amplitude[AMIN, A1] , (A1, A2]  … (Ah, AMAX]AMP#1

Input frequency[fMIN, f1], (f1, f2], … (fk, fMAX]FREQ#2

DescriptionBucketsNameID

Input amplitude[AMIN, A1] , (A1, A2]  … (Ah, AMAX]AMP#1

Input frequency[fMIN, f1], (f1, f2], … (fk, fMAX]FREQ#2

DescriptionBucketsNameID

Output items:

Ouput voltage[VMIN, V1] , (V1, V2]  … (Vj, VMAX]VOUT#4

DescriptionBucketsNameID

Ouput voltage[VMIN, V1] , (V1, V2]  … (Vj, VMAX]VOUT#4

DescriptionBucketsNameID

States items:

Conf. word[0], [1], … [k]CONF#3

DescriptionBucketsNameID

Conf. word[0], [1], … [k]CONF#3

DescriptionBucketsNameID

Cross-coverage

CONF&FREQ&VOUT

AMP&FREQ&VOUT

CONF&FREQ&VOUT

AMP&FREQ&VOUT

  
Figure 16.3 Build up Coverage Items and Cross- Coverage Ones
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Metrics can be then created by the combination of coverage items. 
For instance, in our simple case we can define the items as reported 
in Figure 16.3. 

 
4. The last part of the verification plan has to describe the veri-

fication scenarios needed to check all the listed items in (2) 
and reach the target functional coverage defined in (3). 
In fact, especially in the analog domain, it is not always 
possible or optimum to perform all the checks with the same 
test- bench, with the same topology. For some verification 
items could be necessary to apply some stimuli and the gene-
ration mechanism could be incompatible with the one needed 
for others items. For instances the circuit should be normally 
powered with a DC generator to check its functionality. In 
case of start up test, the power supply voltage has to be 
provided by something like a pulse generator. In this case to 
reach stationary conditions can require some time (the tran-
sient behavior at start up has to end before to do functional 
test). It’s more convenient then to have two different topo-
logies: one for start up scenario and one for functional 
scenario. 
These test scenarios have to be identified and described in 
the verification plan in order to give defined guidelines for 
the verification environment implementation. 

 
Once the verification is ready the verification environment can be 
implemented. It is important to highlight that the methodology shortly 
described in this section helps to maintain an update and fully 
consistence specification document for the mixed- signal circuit: this 
helps to solve another weak point in mixed- signal design. 
 
Analog Mixed-Signal Verification Kit 

To introduce the proposed verification methodology for mixed-
signal circuit it is necessary to provide a tool able to support such 
methodology and providing enough automation in order to avoid 
engineer- time to be spent checking its correct usage. 
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The Yogitech Analog Mixed- Signal Verification Kit (AMSvKit) is a 
tool able to link analog and digital approach; AMSvKit extends to 
analog domain verification techniques already used in digital one 
providing a unified environment for mixed- signal verification, based 
on Cadence Specman Elite [4, 5]. 
 
As illustrated in Figure 16.4 

 
the analog mixed- signal verification kit 

is composed of three libraries (vTerminals, vComponents and 
Sequences DB) and all the necessary infrastructure to make working 
the full environment (simulator scripts, Specman “e” language 
structures/unit, etc.). 

 

 
 

The core of the kit is a library of “verification terminals” (vTer-
minals) that creates an interface between the analog and digital 
domains. The vTerminals are divided into two types: 

– Verification sources (vSources – vS), which are models of signal 
sources configured and controlled by digital commands from the 
verification environment that provide continuous and time-
continuous voltage and current signals or analog events; they 

  
Figure 16.4 AMS  vKit Scenario
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include DC, pulse and sinusoidal signal (current and voltage) 
generators, noise injectors, and parameter spread emulators;  

– Verification probes (vProbes – vP), which transfer analog infor-
mation from the mixed- signal simulator to the verification 
environment; they provide values of voltage, current, and timing 
parameters and include self- checking mechanisms (e.g., check a 
sampled voltage level within a predefined range); examples of 
vProbes are voltage/current/time detectors, linear behavior and 
total harmonic distortion calculators, AC gain extractor, etc. 

 
The verification components (vComponents) are ready- to- use to 
create verification environments (e.g., test- benches) for main blocks, 
including self- checking mechanisms and coverage evaluation based 
on analog metrics that are easy to integrate in more complex mixed-
signal scenarios. They are developed to verify basic analog blocks 
such as band gap cells, oscillators, voltage regulators, comparators, 
operational amplifiers, and buffers. 
 
For each cell, the verification plan has been defined including the 
significant parameters, conditions and procedures to measure them. 
Based on the verification plan, the verification component drives, 
monitors and processes current and voltage signals generating correct 
stimuli for the DUT and elaborates the information in order to match 
the target coverage. 
 
In order to calculate a nontrivial analog parameter it is necessary to 
properly control and configure a number of vSources and vProbes 
and to synchronize them. This is implemented using sequences: a 
structure that represents a stream of items signifying a high- level 
scenario of stimuli.  
 
The database provided with the kit (sequences DB) includes all the 
sequences needed in an analog context. For instance, in order to 
extract the total harmonic distortion of a buffer (one of the most 
important analog parameters), it is necessary to stimulate the circuit 
with a sinusoidal signal (vSource) for a defined time period depen-
ding on the frequency at which the measurement has to be done. The 
settling time and the sample period of the output signal (vProbe) 
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depend on the frequency as well. Predefined and ready to use 
sequences which create this and other kinds of test scenarios are 
available in the sequence DB library. 
 
Using AMS vKit the powerful generators of state of the art verifi-
cation tools such as Cadence Specman Elite [4, 5] can be used to 
generate also analog stimuli; checking mechanisms can be applied to 
analog verification items and functional coverage can be evaluated 
also based on analog metrics according to the defined verification 
plan. 

 
Figure 16.5 describes stages and skills set for the verification process. 
The environment creation starting from the verification plan definition 
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 Figure 16.5 Skills Set for the Verification Flow
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is a high- value step for which the complete set of expertise is needed: 
analog, digital and verification. 
 
For the verification itself, i.e., simulation run, both digital and analog 
designer are able to perform the task giving in this way a high level 
of flexibility in term of resource allocation: this is a big advantage 
on top of the whole methodology. 
 
Coming back to the simple example, the AMS vKit provides: 

� vSources to generate analog stimuli 
� vProbes to monitor and process analog information 
� Capability to handle parameters, generating random-

constrained analog values 
� Capability to implement self- checking mechanism for analog 

items 
� Capability to handle analog metrics for functional coverage 

evaluation 

Conclusion 
In summary, the AMSvKit allows the extension and the adaptation 
of the three main steps for a powerful coverage- driven functional 
verification to mixed- signal circuits verification: 
 

1. Random- constrained stimuli generation 
2. Self- checking mechanisms 
3. Functional coverage evaluation 

 
This enables and deploys the described methodology to introduce 
automation in mixed- signal verification, extending the coverage-
driven approach to analog/ mixed and increasing verification quality, 
effectiveness and reusability. 
 
Flexibility in resource allocation due to the methodology and the 
automation is another important added value of the described app-
roach: traditionally mixed- signal verification is performed by analog 
designers taking away them from pure design tasks for which 
experience and creativity is mandatory. 



234 Metric-Driven Design Verification 

The introduction of a methodology in verification forces 
development team to pay more attention to critical element like 
specification document: this is an input of the verification and it 
must be clear, complete and update. Often this is not true and the 
consequence can be dramatic. 
 
Moreover, having a supervisor as the verification tool together with 
coverage metrics allows tracing back the contribution of each 
simulation to the functional coverage. So, it is also possible to 
optimize the run time selecting the simulations which give higher 
contribution in terms of coverage respect to the defined verification 
plan. Automatic verification management tools giving such control 
for digital verification can be used also in mixed- signal context. 
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Chapter 17 
Design for Test 

 
Over the past decade, several advances in structured testing for manu-
facturability and reliability have contributed to the automation of 
verification processes. In this  chapter by Stylianos Diamantidis, Iraklis 
Diamantidis, and Thanasis Oikonomou of GlobeTech Solutions, we 
will see how verification technologies can be used to create a complete, 
fully automated unified solution from test specification to DFT closure. 
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A Unified DFT Verification Methodology 

 

Stylianos Diamantidis, Iraklis Diamantidis, and  

Thanasis Oikonomou 

Globetech Solutions 

Thessaloniki Greece 
 
In today’s fast growing SoC, incomplete or ineffective DFT support 
due to poor specification or loose design practices can quickly 
become the critical path to making market windows and delivering 
products within cost restrictions. 
 
This paper will introduce a unified DFT Verification Methodology 
(DFT- VM), aimed at providing a complete, methodical, and fully 
automated path from test specification to DFT closure. We will also 
examine the benefits of this approach, looking at how this metho-
dology can help bridge the widening gap between design and test. 
 

Introduction 
As modern IC transistor counts continue their frenzied climb accor-
ding to Moore’s Law, test infrastructures, the collection of logic 
dedicated to testing the structural integrity of silicon are also fast 
growing in both area and complexity.1 In a nanometer design era 
where silicon debug already takes up to 30% of project time and 

                                                 
1 In recent studies, DFT in ICs has been found to typically account for 20% of total logic 

gates and for as much as 30% of total design effort. 
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semiconductor test cost typically accounts for 30–50% of total 
fabrication cost, Design- For- Test, or DFT, is assuming a critical role 
in product definition, design, and delivery. 
 
Although DFT is a concept that has been around for a long time, 
semiconductor companies are today experiencing unprecedented 
pressure to provide more complex DFT features in their designs. 
This trend is largely attributed to the need for controllability and 
observability within highly integrated SoCs and is driven by the 
inevitabilities of test economics. 
 
Design verification tools and methodologies have made tremendous 
progress in the last few years, directly benefiting design quality and 
shortening development cycles. However, DFT- specific circuitry 
tends to be overlooked in most test plans. There have been a series 
of contributing factors for this oversight: 
 

� No clean test intent is specified and communicated to the 
design teams 

� Lack of formal end- goal or associated Quality of Result 
(QoR) for DFT 

� Low prioritization compared to core functionality 
� Loose IP- based design methodologies 
� A clear cultural gap between design and test teams, inclu-

ding “over- the- wall” communication breakdowns 
 

These and many more reasons are today resulting in typical DFT 
failures, manifested in a variety of forms: 

� Lack of strict protocol compliance and loose intero-
perability 

� Deviation from strict functional behavior for test imple-
mentation (e.g., accuracy in scan- based delay- path test 
setup and extraction) 

� Poor testability coverage due to logical errors in the imple-
mentation (e.g., inability to access BIST controllers or error 
status reporting registers) 
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� Decrease in test efficiency (time, test data set size) due to 
noncoherent test implementation 

Motivation 
DFT failures due to loose design practices, however, have been 
commonplace throughout the history of modern IC design. What has 
changed recently to accentuate the problem? The answer lies in the 
inevitabilities of test economics. Cost of Test (COT) in the nano-
meter era is breaking semiconductor economics: 

� COT does not scale. Although silicon fab costs have been 
steadily decreasing to accommodate industry needs, the 
capital costs of testing wafers have remained flat [1, 2] 

� Large Automated Test Equipment (ATE) system cost is 
driving capital COT, due to complexity of modern SoCs 

� Exploding test time and test vector sets combined with low 
yield are putting immense pressure on COT 

In order to deal with the inevitabilities of COT, the industry is 
beginning to turn to massive DFT implementations: 

� Enable low- cost tester deployment by partitioning test reso-
urces on- chip 

� De- compress test data and compress response data 
� Design scalability into test schemes 
� Increase controllability/observability for silicon debug 
� Implement on- chip instrumentation 

These trends are leading to highly complex and sophisticated DFT 
structures. However, associated methodologies and design practices 
have not yet caught on to this pressure: 

� Although the industry is transitioning to IP- based design to 
tackle complexity, test is still very flat 

� The developing ecosystem of IP vendors and integrators is 
leading to more heterogeneous and unpredictable test infra-
structures 

� DFT insertion at different levels of abstraction (RTL, gate, 
physical) is increasing unpredictability and making it diffi-
cult to define QoR requirements 
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� Test infrastructures are inherently heterogeneous. IP- based 
design places a new requirement to build coherent system-
level test schemes from incoherent components 

DFT has hence become too important to treat as a secondary design 
function and too complex to tackle with traditional approaches. 
Instead, design teams need to take special care to ensure the 
behavioral functionality, strict compliance, and efficient operation of 
their test infrastructures. As silicon test transitions from a design 
afterthought to a critical manufacturability requirement, companies 
need to rediscover “Design” in DFT. We start with verification. 
 
A Unified DFT Verification Methodology 
In trying to design a complete DFT verification environment [3] and 
associated methodology, one needs to define the key objectives this 
approach is trying to achieve: 

� A well- defined entry points into the design process that can 
be used as the foundation for expressing test intent and 
expected end QoR 

� Mechanisms for verifying classes of DFT components 
which will handle the stimuli generation and checking 
aspects of testing at different levels of abstraction 

� Flows for deploying and executing verification as well as 
measuring progress 

� Tracking and analyzing results 
� High levels of automation and reuse 
� Integration of Test Information Models (TIMs), such as 

Boundary Scan Description Language or Core Test 
Language (CTL) files in the verification flow 

� Methods for exchanging information with postsilicon 
applications such as silicon debug and manufacturing test 

We have hence designed a robust, unified, DFT- VM. Keeping the 
stated objectives in mind, we now proceed to describe the metho-
dology based upon three distinct foundations: Planning, executing, 
and automating. 
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Planning 
The foundation for systematic DFT verification is a well- defined set 
of goals, supported by a methodology developed to provide integ-
ration- oriented test methods into chip- level DFT, enabling compati-
bility across different embedded cores and incorporating high levels 
of reuse. 
 
But how can one proactively plan for virtually arbitrary DFT imple-
mentations that can be produced by IP- based design, particularly 
when different vendors follow completely different approaches to 
DFT? Obviously test plans need to be very modular and reusable, 
allowing for hierarchical structures to be easily constructed to des-
cribe the test infrastructure at hand. Furthermore, test plans need to 
be polymorphic, very much in the way that object- oriented metho-
dologies define classes of objects, making it possible to use them in 
a variety of different forms and shapes by specifying simple para-
meters. 
 
In our solution, we specify a plan case database, a repository of plan 
templates, or cases. Such cases contain policies for verifying DFT 
components such as a JTAG TAP controller [4], without making any 
assumptions for the nonstandard or implementation- specific aspects 
of the components. DFT planning cases have the following charac-
teristics: 

� They provide blueprints for verifying classes of DFT com-
ponents 

� They specify QoR metrics that verifiers can use to track 
progress against the plan 

� They allow different views into the verification plan data to 
be specified, allowing for better analysis of results 

Planning cases can be used to instrument the verification of both 
rudimentary DFT components and highly complex structures. This is 
achieved by dynamic planning, the process of hierarchically piecing 
together a high- level verification plan from lower level plans (see 
Figure 17.1). This modularity enables the quick and repeatable 
composition of detailed verification plans for arbitrary DFT 
infrastructures at the block, core, or system levels. Users can spend 
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time experimenting with these high- level plans for optimum results, 
setting the blueprint for a well- designed test infrastructure before a 
single design decision has been made. The ability to reuse plans at 
different levels of integration and abstraction is a huge benefit to the 
predictability and verifiability of the project. 

 
Figure 17.1 Hierarchical DFT Verification Planning 

 
Having compiled a plan case database, we now have the necessary 
building blocks for expressing high- level, complex, and, most impor-
tantly, highly configurable verification plans, maximizing reuse, and 
leveraging on existing experience. Building a dynamic chip- level 
DFT verification plan is now broken down to instantiating and 
configuring multiple DFT verification case objects. 
 

Executing 
Once the critical task of planning has been properly addressed, the 

way to achieve this is by deploying Verification IP (VIP). 
 
The concept of verification IP is fairly new in the design com-
munity. Conceptually, VIP provides a way of separating generic 
concepts of design verification from application- specific ones. When 
this separation is well designed, the direct benefits are enhanced 
reuse and leverage on existing experience. In the context of DFT, 
generic concepts can include generating pseudorandom vectors and 
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verification environment needs a scalable way of executing verific-
ation on the test infrastructure. The most complete and reusable 
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driving them into a scan chain. Application- specific concepts, for 
instance, could include using this scan chain to configure a Memory 
Built- In Self- Test (M- BIST) controller [5]. 
 
Essentially, VIP is mechanism. It provides the means and capabilities to 
perform operations and observe DUT behavior; however, it does not 
include policy. Policy, in this context, is defined as the systematic 
flow of verifying a complex design, starting with a detailed set of 
goals, adding a plan of action, and targeting a certain QoR. Hence, 
starting with a good policy, we can reach our goals by deploying 
VIP as our mechanism. 
 
We hence define a VIP Class Database. This database includes VIP 
classes which map to types of DFT components such as Test Access 
Mechanisms (TAMs), scan chain elements, BIST controllers, instru-

DFT logic [6]: 

� Constrained random stimuli generators 
� Automated, dynamic, checkers, and assertions 
� Total coverage collectors 

As with plan cases, VIP classes do not include application- specific or 
implementation- dependent aspects of the DFT component types they 
target. Rather, they are rudimentary verification environments which 
are highly reconfigurable and reusable, making it easy to put together 
complex environments in relatively small time and with reduced 
effort. Furthermore, the VIP Class Database becomes an experience 
repository for DFT, where periodic updates ensure uniform design 
policies and improved interoperability. 
 
Finally, such a repository also helps improve resource utilization and 
project management. Expert verification engineers can maintain and 
extend the repository with upgraded capabilities and new functionality 
while logic designers, usually not entirely familiar with the internal 
workings of the VIP itself, can simply use the platforms based on its 
capabilities. Conversely, using this methodology, logic designers can 
ensure that new features or design changes added directly into VIP 

ments, etc. Each VIP class includes the tools needed by the verific-
ation environment to effectively exercise its corresponding type of 
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classes are made available instantly by regenerating the environment. 
This enhanced automation of the DFT- VM is discussed next. 
 
Automating 
TIMs are schemas used to convey information about the test 
infrastructure of an IC or embedded core. They typically convey 
three types of information: 

� Intent, such as protocol, test modes, etc. 
� Architecture, such as scan chains, signals, and other design 

information 
� Data, i.e., complete test programs that the infrastructure can 

execute 

TIMs hence also serve the purpose of delivering test vectors generated 
using EDA tools to semiconductor testers (ATEs). The IEEE 1450-

(IEEE 1450.1- 2005 [8], IEEE P1450.6 [9]) support additional 
structures in test models to fully describe the DFT architecture itself, 
thus enhancing the use of such models in semiconductor design envi-
ronments. These extensions are targeted at enhanced DFT and DFM 
applications, where ATEs can also be used for analyzing failure data 
and providing feedback to EDA tools. 
 
In our DFT- VM, TIMs play a significant role. First, TIMs need to be 
considered a part of the test infrastructure itself. In fact, the recently 
published IEEE 1500- 2005 Standard for Embedded Core Test 
(SECT) [10] defines a TIM as the only mandatory test infrastructure 
element for claiming that an embedded core is compliant to the 
standard. Based on the test intent described in the TIM, designers 
can provide the necessary functionality while maintaining flexibility 
in the actual hardware implementation. Hence, TIMs need to be 
verified alongside the DFT components that implement them. 
 
Secondly, TIMs include all the necessary topology, architecture, and 
implementation- specific information that must be available to the veri-
fication environment. This way, a silicon IP vendor can communi-
cate test intent of a design core to an integrator within specified 

ing the de- facto standard. Recent extensions to TIM standards 
1999 Standard Test Interface Language (STIL) [7] is quickly becom-
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completeness, interoperability, and confidentiality requirements. This 
information, in the form of a TIM, can then be used by the integrator 
for a variety of design functions ranging from implementing certain 
DFT components to shaping the IC- level test infrastructure (Figure 
17.2). 
 
In our approach, we are extending the applicability of TIMs to design 
verification, claiming that TIMs can provide an automation link bet-
ween DFT design and verification. The argument is supported by a 
variety of technical and business conditions: 

 
 

Figure 17.2 DFT- VM Automation Flow 
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� TIMs can encompass test intent as specified by test engi-
neers without committing to design decisions and hence 
provide the grounds for an early test specification 

� TIMs bridge the gap between IP vendors and integrators 
with respect to DFT support in IP cores and hence can be 
used to verify deliverables 

� TIMs are models that can be used for early test perform-
ance exploration 

� Verification automation based on TIMs can be used to 
maintain a link between the post-  and presilicon worlds, 
allowing testbenches to be reused for debugging silicon and 
optimizing manufacturing test 

 
In order to better understand how TIMs can be used to build DFT-
verification environments quickly and effectively, let’s consider the 
following example in the context of an IEEE 1500- 2005 compliant 
embedded core. 
 

Test Case 
IEEE 1500- 2005 (SECT) defines a scalable architecture for indepen-
dent, modular test development, and test application for embedded 
design blocks. It also enables test of the external logic surrounding 
these cores. Modular testing is typically a requirement for embedded 
nonlogic blocks, such as memories, and for embedded, predesigned, 
nonmergeable IP cores. In addition, the IEEE 1500 architecture can 
also be used to partition large design blocks into smaller blocks of 
more manageable size and to facilitate test reuse for blocks that are 
reused from one SoC design to the next. 
 
A typical TIM is that of an IEEE 1450.6 CTL description of the 
IEEE 1500 test infrastructure, commonly referred to as a wrapper, 
found in a SECT compliant embedded core (for more information 
please refer to the IEEE 1500 standard). Such a model includes, 
amongst others, information in a parse- able format about: 
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� Signals. The TIM publishes information about signal names 
and sizes, as well as their default state, so they can be ini-
tialized and driven/sampled by an external agent. 

� Scan Chains. This information refers to scan structures that 
are part of DFT. That includes scan chain sizes and cells’ 
names, so other information regarding the cells like parallel 
inputs and/or output connecting signal names can also be 
inferred. 

� Scan Cells. TIMs publish all information pertaining to the 
scan chain cells, since IEEE 1500 cells follow a standard 
naming convention that fully describes their structure and 
function. 

� Test modes. The TIM also includes information about the 
various test modes that can be reached by loading 
appropriate instructions. It provides the instruction opcode 
that triggers this mode, identifies the data register to be 
used, and provides the macros used to access it. 

 
A TIM parser can parse all this information and infer: 

� IEEE 1500 control signals: 
o The instruction set used 
o Opcodes 
o Data registers referenced 

� The collection of test data registers: 
o Sizes 
o Signal connections 

� The cells contained in those registers: 
o Structure 
o Signal connections 
o Behavior during capture, update, transfer operations 

 
As an example, Figure 17.3 illustrates an example of a CTL 
description for an IEEE 1500 compliant embedded core wrapper. 
The description provides information about the wrapper, including 
the size and cell type of the instruction register (WIR). 
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Figure 17.3 IEEE 1450.6- CTL DFT Structure Example 

 

Having extracted these structures from the CTL model, one can 
envision a process by which: 

� The corresponding IEEE 1500 VIP class is selected from 
the VIP database and instantiated (see Figure 17.2) 

� The number of cells specified in the WIR structure and 
signals connecting to the parallel input of those cells are 
used to configure the VIP (see Figure 17.4) 

 

 
 

Figure 17.4 Environment Generation Based on a TIM 

// 'e' language configuration for an  
   IEEE 1500 VIP module 
 
extend WIR glbt_sect_ref_model_register { 
  keep size == 4; 
}; 
 

extend WIR glbt_sect_ref_mode_register_cell 
{ 

  keep cfi == append(“wir_fi”, “[“, 
       cell_index, “]”); 
}; 

// CTL for IEEE 1500 enabled embedded 
   core wrapper 
... 
ScanChain wir_chain{ 
  ScanLength 4; 
  ScanCells wcell[0..3]; 
} 
... 
  ... 

Internal{ 
    'wir_fi[0..3]{ DataType Functional 
                   TestData; 
      IsConnected In { 
        StateElement Scan 'wcell[0..3]'; 
        .. 
      } 

} 
    ... 
  } 
  ... 
} 



248 Metric-Driven Design Verification 

Collections of TIMs can be grouped together hierarchically to per-
form system level DFT verification. This can be done by analyzing 
the TIMs and deducing the respective topology of each embedded 
core and its corresponding DFT infrastructure in the SoC. With this 

 

Benefits 
The described verification methodology serves as a solid foundation 
for true design for test. By enforcing early verification document-
ation and planning, it aligns the perspective of different design teams 
with respect to DFT support and enhances visibility. Automating 
environment generation, it ensures that logic designers and test engi-
neers have a good auditing system for debugging and regression 
analysis, while propagation of new features and updates is centralized 
through the use of plan and VIP databases. Better project management 
and more efficient resource utilization are also achieved by providing 
clear interfaces for logic designers and verification engineers. 
 
TIM coverification introduces strong semantics into the description 
and integration of test infrastructures. DFT designed by separate 
teams or IP vendors can be merged into the IC- level reliably, while 
maintaining a link with manufacturing test deliveables. Architectural 
changes to DFT can quickly propagate to the design environment 
through fast regeneration and automatic plan updates. Vendor quali-
fication for DFT becomes possible by enforcing TIM deliverables and 
being able to quickly and reliably validate vendor claims for 
testability and interoperability. Finally, advanced DFM applications 
can also be supported through early collaboration with the fabrication 
and tester providers. 
 
Enhanced design engineering, automation, and reuse lead to increased 
predictability, better productivity, and higher overall quality. 
 

information, DFT- VM can be used to dynamically create test-  
benches and tests optimized for a specific DFT configuration. 
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Future Work 
Having successfully applied DFT- VM to functional verification, we 
are envisioning several other areas where the methodology can 
scale: 

� Overall validation of test deliverables 
The methodology described herein successfully sets the 
foundation for verifying the functionality, compliance, and 
completeness of DFT netlists. The next step would be to 
extend the methodology to include coverification of test 
sets with DFT netlists, allowing engineers to incrementally 
verify and optimize all deliverables of a comprehensive, 
systematic, test flow. Validation of test intent would also 
encompass performance aspects of semiconductor test, 
such as power profiling, ATE constraint analysis and 
related cost optimization. 

� Postsilicon test and validation 
Having created a completely DFT aware verification 
environment with QoR measurements and associated test 
sets, postsilicon validation of DFT becomes a natural step 
in the methodology. Validating DFT in silicon in a 
systematic and predictable manner can help save test time 
and improve reliability in manufacturing test. 

� DFM applications 
It is also intended to extend the methodology to some 
interesting DFM applications such as importing TIM- based 
test results from silicon test back to verification to gain 
better understanding of the functionality perspective of 
common failures and to facilitate analysis and debug. 

 

Conclusions 
We have identified the need to systematically verify DFT as part of 
the total system verification process, in order to increase the quality 
of the design and by virtue, the end product. The need becomes 
more apparent in the context of IP- based design of SoCs, where 
multiple embedded cores from different providers introduce hetero-
geneity and variation of DFT quality. 
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executable verification plans and environments. Hence we provide a 
fast and reliable way to building automated testbenches capable of 
verifying DFT designs from simple components to complete test infra-
structures. Our approach enables true design for test based on measur-
able QoR, and enhances productivity, reliability, and reusability. 
 
Finally we have demonstrated how our methodology results in a 
verification infrastructure that can be reused during silicon debug 
and test vector design for several advanced applications, forming the 
basis for future work. 
 

References 
1. International Technology Roadmap for Semiconductors, 2003 Edition, 

“Test & Test Equipment” 
2. International Technology Roadmap for Semiconductors, 2004 Update, 

“Test & Test Equipment” 
3. K. Melocco, H. Arora, P. Setlak, G. Kunselman, and S. Mardhani, “A 

Comprehensive Approach to Assessing and Analyzing 1149.1 Test 
Logic,” in the proceedings of International Test Conference, Charlotte, 
NC, USA, September 30–October 2, 2003, pp. 358–367 

4. IEEE Computer Society, “IEEE Standard Test Access Port and 
Boundary- Scan Architecture – IEEE Std. 1149.1- 2001,” New York: 
IEEE, 2001 

5. D. Appello, F. Corno, M. Giovinetto, M. Rebaudengo, and M. Sonza 
Reorda, “A P1500 compliant BIST- based approach to embedded RAM 
Diagnosis,” in the proceedings of 10th Asian Test Symposium, Kyoto, 
Japan, November 19–21, 2001, pp. 97–102 

6. I. Diamantidis, T. Oikonomou, and S. Diamantidis. “Towards an IEEE 
P1500 Verification Infrastructure: A Comprehensive Approach,” pre-
sented at the 3rd IEEE International Workshop on Infrastructure IP 
(IIP), Santa Clara, CA, USA, May 4–5, 2005 

7. Test Technology Standards Committee of the IEEE Computer Society, 
“IEEE Standard Test Interface Language (STIL) for Digital Test Vector 
Data – IEEE Std. 1450- 1999,” New York: IEEE 1999 

We have hence proposed a unified methodology for DFT verific-
ation, using TIMs to dynamically identify, instantiate, and configure 



17 Design for Test 251 

8. P1450.1 Working Group of the Test Technology Standards Committee, 
“Draft Standard for Standard Test Interface Language (STIL) for 
Digital Test Vector Data – Extensions to STIL for Semiconductor 
Design Environments – P1450.1,” New York: IEEE 2005 

Digital Test Vector Data – Core Test Language (CTL) – 
P1450.6/D1.6,” New York: IEEE 2005 

New York: IEEE 2005 
 
 

9. CTL Working Group of the Test Technology Standards Committee, 
“Draft Standard for Standard Test Interface Language (STIL) for 

10. IEEE Computer Society, “IEEE Standard Testability Method for 
Embedded Core- based Integrated Circuits – IEEE Std. 1500- 2005,” 



 

 
 
 
 
 

Part IV 
Case Studies and 

Commentaries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Metric-Driven Design Verification: Why Is 
My Customer a Better Verification Engineer 

Than Me? 
 

Alfonso Íñiguez, Freescale Semiconductor Inc. 

 
Alfonso Íñiguez is a principal staff verification 
engineer with the Security Technology Center at 
Freescale Semiconductor, where he is the verifi-
cation lead responsible for developing, improving, 
and applying functional verification tools and 
methodologies. His work includes cryptographic 

hardware accelerator design. He holds a B.S. in Computer Engineering 
from the Universidad Autónoma de Guadalajara, México, and an M.S. 
in Electrical Engineering from the University of Arizona. Due to his 
dyslexia, Alfonso did not learn how to read a full sentence until he was 
18 years old and he still does not know how to subtract. Alfonso 
commutes to work by bicycle averaging 90 miles per week. He is a 
large format photographer, bongo player, and salsa dancer. He pre-
sently lives in Mesa, Arizona with his wife, three children, and many 
chickens. 
 

Abstract  
Why is it that after months of directed and random testing you were 
not able to find a bug that your customer found within two days of 
receiving samples? Is there anything wrong with your directed and 
random testing? Should you blame it on faulty assertions? Could it be 
that you did not run your simulation long enough? Could the bug have 
been discovered by using better coverage criteria? The intention of 
this paper is to answer all those questions by analyzing past mistakes 
and proposing an effective way of writing a thorough metric- driven 
verification plan. 
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This document is a compendium of experiences, containing verifi-
cation pitfalls and prevention strategies, which the author has 
witnessed throughout his 15- year career in the fields of product 
evaluation, applications, design, and verification engineering. 
 
Traditionally verification plans are written with the design 
specification in mind. There is nothing wrong with this approach. In 
fact, it is an essential requirement, but evidently, this common practice 
is not sufficient. There is an important component called software 
validation, which is traditionally left to the software team to complete. 
Two scenarios can be described for software validation. The software 
team completes this step by using a model of the DUV or it uses the 
traditional silicon evaluation board approach. The first approach is 
highly recommended, but since the team is working with a software 
model of the DUV, it may overlook signal contention, race conditions, 
and a myriad of other timing problems. If the software team chooses 
the silicon evaluation option, then the company is relying on a very 
expensive debugging methodology, with the risk of an exorbitant shift 
in the delivery schedule and lost of credibility in the design team. To 
avoid those problems, a software validation approach should be 
included in the functional verification process. 

Introduction 
Most verification publications start with the following suggestion: 
“first write a verification plan” which by the way is an excellent 
suggestion. However, when writing a verification plan you need to 

bed in this paper should serve as a preamble to writing an effective 
verification plan. 
 
Why was my customer able to find a bug that I overlooked? I can 
assure you that I can come up with a large number of convincing 
explanations, but no matter how creative the explanations are, they 
always fall into one of the following two categories: 

(a) The customer and I had different definitions of the 
intended functionality. 

 

consider past mistakes. The collection of verification pitfalls descri-
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(b) The customer was the one who set the delivery schedule, 
not me. 

 
Although “a” and “b” are true, please do not use those reasons as 
excuses when things go wrong. I have listed them here as a starting 
point in finding a solution to the problem. 
 
Section 1: The Elusive Intended Functionality 

In order to understand the intended functionality of a given DUV, it 
is necessary to define who the customer is. As we will see in the 
next section, the definition of customer can be very extensive. 
 
Defining the Customer 

To a functional verification engineer, usually the first thing that 
comes to mind when we use the term “customer” is an external 
company building a PDA, cell phone, network card, computer, or 
any other finished product. The term customer should not be limited 
to that external company, but rather extended to anyone who is 
capable of spoiling your weekend. Your customer pipeline begins 
with the designer of the DUV, and extends all the way up to the end 
user who has found new ways of using the product and knows more 
about the capabilities of the design then the designer himself. A 
more specific definition of customer includes the following people: 
the IP Designer, the IP integrator, the software developer, the marke-
ter, and the end user. Now that we know who the customer is, we 
can proceed to define the intended functionality per customer. 
  
The IP Designer as Customer 

You, the verification engineer, are a service provider, and like in any 
other profession, the best service providers are the ones who get their 
customers involved in the process. For example, a good surgeon can 
increase her success rate by persuading her client to diet and 
exercise before the surgery, which is something that the surgeon 
cannot do for her client. Similarly, the verification engineer needs to 
get her client, in this case the designer, involved in the verification 
process. Such involvement is the remedy to prevent the following 
two pitfalls: 

Why Is My Customer a Better Verification Engineer Than Me? 



258 Metric-Driven Design Verification 

(a) Unreviewed verification plan. 
(b) Unwritten white- box assertions. 

 
Verification Pitfall #1: Unreviewed Verification Plan 
Nowadays, a typical verification engineer is on a race against the 
clock, which could lead to corner cutting the review of the verification 
plan. If you have already spent a week writing a verification plan, 
please spend an extra day reviewing the plan with the design team. 
Undermining the importance of the review could result in costly 
silicon respins. In my personal experience, failing to review the plan’s 
random constraints triggered the following consequence: A random 
test case verified a DMA block by scattering data throughout memory 
using hundreds of links, but the random constrain section of the test, 
failed to include simple scenarios that used only one or two links, 
which is where the bug was hidden. In this case, the chip- level 
integrator, who found the bug, demonstrated to be a better verification 
engineer than me. 
 
Verification Pitfall #2: Unwritten White-Box Assertions 
Not all assertions are meant to be written by the verification 
engineer, such is the case of the white- box assertions embedded in 
the RTL, which should be owned by the designer. At least every 
state machine, FIFO, data pipeline, and instruction pipeline should 
have assertion checkers. I have recently encountered a condition in 
which the FIFO, once full, delayed the assertion of its full signal by 
one cycle. Currently, this bug has not caused a problem in the field 
because the surrounding logic is incapable of reenacting the failing 
scenario, but if the FIFO is used as IP on a different design, then the 
bug could appear. This could have been prevented by writing a 
simple white- box assertion. 
 
The IP Integrator as Customer 

Two types of potential problems come to mind when I put myself 
into the IP integrator’s shoes, the possible verification pitfalls are: 

(a) Extending the definition of false- bugs. 
(b) Using adjacent blocks as checkers. 
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Verification Pitfall #3: Extending the Definition of False-Bugs 
False- bugs are the infinite number of possibilities that the DUV will 
never see because of the nature of the interface. Here is an example 
of a false- bug: The DUV generates unpredictable data when a glitch 
is injected to the address line. Is this a real bug? I do not think this is 
a bug, because the interface specification does not specify this kind 
of noise scenario. Think of the interface specification as an 
insurance policy that protects the verification engineer from an 
unlimited number of false- bugs, see Figure 1. 
 
A common verification pitfall is to overextend the definition of the 
false- bugs by using adjacent IP blocks as a false- bug protector, see 
Figure 2. The adjacent IP might provide a protection on a given 
platform configuration, but leave the DUV unprotected once it is 
integrated into a different platform configuration. 
 

Figure 1 The Interface Specification Protects the Design from an 

Unlimited Number of Absurd Signal Combinations 

 

Verification Pitfall #4: Using Adjacent Blocks as Checkers 
A BFM is capable of generating cycle- accurate signals as described 
by a given bus protocol. The most elementary purpose of a BFM is 
to verify a slave DUV by emulating a host processor connected to its 
interface. 
 

Why Is My Customer a Better Verification Engineer Than Me? 

Testbench

Slave DUV

Interface Specification
Insurance policy
against false-bugs
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Figure 2 An Adjacent Block Provides a False Sense of Security, Since 

it Does Not Protect Against False- Bugs 
 
Figure 3 shows the simplified data flow between a BFM and a slave 
DUV: 

 (1) The BFM writes data into the DUV. 
 (2) The BFM reads the result from the DUV. 
 

Figure 3 Data Flow Between a BFM and a Slave DUV 
 
There is nothing wrong with this type of verification strategy. How-
ever, when it comes to verifying a master DUV, the BFM faces a 
fundamental limitation. If we connect a BFM directly into a master 
DUV, their respective driving signals would collide. This collision 
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can be avoided by adding bus arbitration logic between the BFM and 
the DUV, but that would only solve part of the problem. In order to 
verify a master DUV effectively, we need to construct a platform. 
Figure 4 shows a simple platform and the data flow between the 
BFM and master DUV: 

 (1) The BFM writes the object code into the RAM. 
 (2) The BFM gives an execution command to the master DUV. 
 (3) The master DUV begins executing the RAM’s object code. 
 (4) The master DUV writes the result into the RAM. 
 (5) The master DUV sends a “done interrupt” signal to the BFM. 
 (6) The BFM reads the result from the RAM. 
 

 
Figure 4 Data Flow Between a BFM and a Master DUV 

 
The verification pitfall in this strategy is in using adjacent blocks as 
checkers. In the example above, the arbiter block, regardless of its IP 
quality, should not be used as the only criteria to test the DUV’s 
interface, we must introduce an independent bus monitor to verify 
the bus protocol, see Figure 5. 
 
In my personal experience, failing to use a bus monitor led to the 
following undetected bug: The master DUV equipped with an AMBA 
AHB interface failed to “walk” a burst when crossing a 2K boundary 
(to “walk” a burst is to transition from sequential to nonsequential 
transaction, as described in the AMBA specification). 
 

Why Is My Customer a Better Verification Engineer Than Me? 
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The Software Developer as Customer 

Take a software validation approach by putting yourself into the 
software developer’s shoes; this will prevent you from falling into 
the following two verification pitfalls: 
 

(a) Using the design specification as the only model to gene-
rate stimuli. 

(b) Restricting the stimuli to valid data. 
 
Verification Pitfall #5: Using the Design Specification as the Only 
Model to Generate Stimuli 
Even using a software driver’s recipe as a guideline when building a 
stimulus generator is insufficient because in the life time of a given 
design, the software driver is likely to be upgraded multiple times to 
increase functionality and improve performance. Each time the 
software driver is revised, the order in which transactions are 
executed might change. For this reason, when building a stimulus 
generator, the verification engineer must build a dynamic software 
driver that considers variable execution sequences. 
 
Verification Pitfall #6: Restricting the Stimuli to Valid Data 
When writing tests or stimulus generators, we tend to concentrate on 
predictable test case scenarios. For example, assume that a design 
specification defines a 2- bit register with the following valid modes: 
2’b00, 2’b01, 2b’10, and then it defines the value 2’b11 as reserved. 

Bus Functional Model

Master DUV

RAMArbiter
Bus

Monitor

Figure 5 The Bus Monitor is Indispensable for Bus Protocol Verification 
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How would you normally verify that register? You would probably 
create test case scenarios for all the valid modes (2’b00, 2’b01, and 
2b’10) and if it passes you are done. I have used this strategy in the 
past until one day the untested “reserved”’ value, set by the software 
driver, deadlocked the design. The moral of this story is that you 
must always verify all reserve bits and invalid modes on all Regis-
ters. 
 
The Marketer as Customer 

By using the marketer perspective, we can uncover an important 
verification pitfall: Not testing for performance. 
 
Verification Pitfall #7: Not Testing for Performance 
The performance of a given product is traditionally measured during 
silicon evaluation. There is a problem with this methodology. Dis-
appointing silicon evaluation results could spoil the launch of a new 
product, sometimes ending in product cancellation. 
 
From the point of view of functional verification, determining 
performance by measuring data throughput is feasible. Allow me to 
congratulate you if you are already including data throughput tests in 
your verification plan. Technically speaking, not meeting expected 
performance is not a functional bug. However, knowing this infor-
mation ahead of time can lead to a timely design change or conclude 
that the expected performance is unrealistic and unobtainable. 
 
The End User as Customer 

By using the end user perspective, the following verification pitfalls 
come to mind: 
 

(a) Restricting the verification plan by the limitations of the 
testbench. 

(b) Overlooking gate- level simulation. 
(c) Halting the simulation once full functional coverage is 

reached. 
 
 

Why Is My Customer a Better Verification Engineer Than Me? 
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Verification Pitfall #8: Restricting the Verification Plan by the 
Limitations of the Testbench 
The best verification plans are writing by engineers who are not 
familiarized with the testbench. As a verification engineer, you must 
be familiarized with the limitations and capabilities of the testbench, 
but do not use that information when defining the test cases. Put 
yourself into the end users’ shoes. Think about possible unintended 
use cases, experiment with error conditions, and see if you can recup-
erate gracefully without having to use the reset signal. Once the test 
cases are defined in the verification plan, make the proper modifica-
tions to the testbench to make it capable of replicating those scenarios. 
 
Verification Pitfall #9: Overlooking Gate Simulation 
LEC (Logic Equivalence Checking) ensures that the functionality of 
the gate- level netlist matches the RTL. STA (Static Timing Analysis) 
quickly examines clocking schemes and identifies timing problems up 
front. It can analyze multiple conditions in a single run, dramatically 
reducing gate- level verification time. 
 
Does it mean that we can replace gate- level simulation by running 
LEC and STA instead? In my personal experience, the answer is 
“no.” STA is especially prone to error, since it requires human 
intervention to classify true and false paths. On a simple design, all 
offending data paths can be accurately classified, but on a complex 
design, the number of paths can be overwhelmingly high and prone 
to bad judgment. This is not because the designer is incompetent, but 
because human attention span is intermittent by nature. 

 
With the arrival of large designs, rerunning the RTL tests on a gate-
level simulation has become prohibitive, but that should not prevent 
us from running a selective subset of the RTL tests on a gate- level 
simulation. 
 
Verification Pitfall #10: Halting the Simulation Once Full Functional 
Coverage is Reached 
For practical purposes, it is necessary to define a full functional 
coverage criterion. Although, on a complex design, full functional 
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coverage is practically unobtainable. Regardless of how much com-
puting power and how much available time you have, you can be 
certain that your end users will execute millions more tests than you 
ever will. For this reason, you should not stop simulating once your 
coverage goal has been reached, in fact, even after tape- out you 
should keep running your regression for a prudent time. 
 
Once full functional coverage has been reached, readjust the random 
constraints and rerun the regression. Keep in mind that running 
diverse and meaningful tests is more important than just running the 
same test with different values. 
 

Section 2: The Ever-Shrinking Schedule 
Nowadays, almost every verification article or verification tool sales 
pitch starts with the following line: “functional verification takes 
70% of the chip design cycle.” Is this guideline accurate? Unfortu-
nately, the 70% rule is only taken in to account at the beginning of 
the project, and soon after everybody ignores its existence. 
 
For the sake of argument, assume that the 70% rule is actually 
followed by every project member. In that case, a hypothetical 
dialogue between the project lead and the verification engineer could 
go as follows: 
 
Project lead: How much time do you need to verify this design? 
 
Verification engineer: It depends how long would it take to design it? 
 
Project lead: Well, I’ve just spoken to the designer; she said it would 
take three months. 
 
Verification engineer: (The engineer takes a few seconds to apply 
the 70% rule and responds) if the design takes three months to 
design it, then I will need seven months to verify it. 
 
Project lead: Very well, let me give our proposed schedule to our 
customer. 

Why Is My Customer a Better Verification Engineer Than Me? 
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Verification engineer: Wait; there is something else that you need 
to know. Once the schedule is finalized, if the customer makes 
changes the design specification, then I will need to adjust our 
delivery schedule using the 70% rule. 
 
Project lead: Very well, I will make sure that our customer is aware 
of the 70% rule. 
 
The only thing wrong with this conversation is that it can only 
happen in verification haven, it will never occur in the real world. In 
my view, the 70% rule is a nice guideline that makes good academic 
schedules, but the real schedule is more likely to be determined by 
the competitive nature of the semiconductor industry. 
 
A more realistic dialogue between the project lead and the verifi-
cation engineer would go like this: 
 
Project lead: We have been presented with the opportunity to deliver 
this new design to one of our most important customers. 
 
Verification engineer: Okay. 
 
Project lead: The challenge is that the customer needs to have 
samples by the end of the year. 
 
Verification engineer: I assume you are referring to the end of next 
year, right? 
 
Project lead: No, they need them by the end of this year; we have six 
months to deliver. 

Verification engineer: That would be impossible. 
 
Project lead: The customer is aware of the aggressive schedule; to 
make it easier for us they have agreed on removing functionality X 
and Y from the design. 
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Verification engineer: Well, even if we remove functionality X and 
Y, it is still aggressive, we must move the delivery date to eight 
months from today instead of six. 
 
Project lead: Okay, that sounds reasonable. 
 
One day later: 
Project lead: The customer agreed on our proposed schedule. We 
will deliver samples in eight months. 
 
Verification engineer: Good. 
 
A month later: 
Project lead: The customer said that they absolutely need to have 
functionality X. They initially said that they could live without it, but 
now they are asking for it, the good news is that the customer 
promised to buy twice as many parts as initially promised. 
 
Verification engineer: Well, I am going to need more time to verify 
functionality X. 
 
Project lead: That is okay, we have already negotiated more time for 
you, and we have added an extra 15 days to the delivery date. 
 
Engineer: But I am going to need a lot more time to write test cases 
and assertions. 
 
Project lead: Well, let us just concentrate on the test cases and leave 
the assertions for the next project. 
 
Although, this dialogue is fictitious, it is not too far away from the 
reality of the semiconductor industry. At the end, the pressure to 
survive in this competitive industry determines the schedule and 
forces the verification engineer to cut corners. The verification 
engineer should speak up and preserve the quality of his or her work 
by writing a metric- driven verification plan. The verification plan is 
a statement of work; you are going to be in a better position to 
negotiate a more reasonable schedule if you have this document. If 

Why Is My Customer a Better Verification Engineer Than Me? 
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you currently feel overworked and stressed in your present project, 
maybe it is because you have not taken the time to write a metric-
driven verification plan. 
 
The Universal Remedy to an Oppressing Schedule: The Metric-

Driven Verification plan 

I know very few engineers who actually enjoy writing document-
tation. I am the first one to admit that it is not fun, but if you are not 
willing to overcome this problem then your customer will always be 
a better verification engineer than you. The structure of the verifi-
cation plan is a matter of personal style and sometimes company’s 
style. However, it does not matter what the style it is as long as it 
includes the following sections: 

(a) Testbench architecture 
(b) Platform architecture 
(c) Directed test cases 
(d) Random test cases 
(e) Failure test cases 
(f) Coverage, FV, STA, BIST, SCAN pre- , and postlayout 

simulation 
 
Testbench Architecture 
The topic of the testbench architectures is broad enough to fill up an 
entire book. Besides, it is not the intention of this document to cover 
it. Assuming that you have already chosen an architecture for the 
testbench, make a block diagram and include it in this section with a 
brief explanation of each block, but not include implementation 
details. The purpose of this section is to familiarize your reader with 
the testbench and your terminology. 
 
Platform Architecture 
If you are verifying a block with master capabilities, then you need 
to build a platform, as described in Section 1.3.2. Such platform 
needs to be reconfigurable. Figure 6 shows a brief example of a 
configurable platform, which includes a port swapping construct 
using the ‘ifdef Verilog directive. 
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‘ifdef DUV_ON_PORT_1 
      // BFM on port 0            
      .m0_haddr      (haddr), 
      .m0_hwdata    (hwdata), 
      // DUV on port 1      
      .m1_haddr      (duv_haddr), 
      .m1_hwdata    (duv_hwdata), 
‘else 
      // BFM on port 1           
      .m1_haddr      (haddr), 
      .m1_hwdata    (hwdata), 
                //  DUV on port 0 
      .m0_haddr      (duv_haddr, 
      .m0_hwdata    (duv_hwdata), 
‘endif 
 

Figure 6 The DUV and the BFM can Swap Ports by Using the ‘Ifdef 

Construct 

Directed Test Cases 
These are sanity checkers, i.e., reading the initial value of all 
registers after reset, or conformance testing using predetermined 
input and output data. The directed test cases should verify all the 
basic features of the DUV. All these tests are to be executed and 
debugged before performing random testing. A subset of the direc-
ted tests, if not all, can be ported to the chip level. 
 
Random Test Cases 
The entire software validation tests should be included here. Now is 
the time to beat the design from every angle, the designer’s input is 
crucial, get them involved when reviewing the plan. The random 
simulation should continue even after tape- out. 
 
Failure Test Cases 
Examine the ten verification pitfalls and make sure that each 
potential pitfall is covered. This is your opportunity to get creative, 
and challenge yourself to break the design. Verify if the design 
recuperates gracefully when given erroneous conditions such as 

Why Is My Customer a Better Verification Engineer Than Me? 
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interruption of burst transfers, invalid modes, uninitialized external 
memory, out of sequence register configuration, and out of sequence 
operations. Feel free to use the “force” statement, but use it with 
caution. Always avoid creating invalid false- bugs. 
 
Coverage, FV, STA, BIST, SCAN, Prelayout, and Postlayout 
Simulation 
Each one of the disciplines listed here is too broad to be described in 
this document. Nevertheless, you should specify a strategy for each 
one in your plan. If BIST and SCAN are outside your jurisdiction, 
then, take the time to write it in the plan and specify who will be 
responsible for performing those tasks. 
 

Section 3: Writing a Metric-Driven Verification Plan 
This is your opportunity to put an end to the oppressing schedule 
and increase the quality of your work. When writing the verification 
plan take time to include metric- driven tasks. Once all the preli-
minary information has been defined, i.e., testbench architecture, 
platform architecture, directed test cases, random test cases, failure 
test cases, and coverage criteria, the next step is to estimate the time 
necessary to complete each of these tasks. 
 
Estimating the Time Required to Complete Metric- Driven Tasks 

The example shown in Table 1 assumes a relatively simple design that 
is being verified by a single engineer. The tasks can be easily expanded 
to incorporate complex designs with numerous team members. 
 
Notice the addition of a contingency plan, which is to be used in 
case of a design change. Be reasonable, if the design change is 
simple, such as a register remapping or bit redefinition, it would take 
a longer time to update the metric- driven task table than it would 
take to make the change to the test case. Do not burden yourself or 
the team with bureaucratic documentation. Only significant design 
changes merit a change in the contingency section. 
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Guidelines for constructing the metric- driven task table: 
 

(a) The testbench development task includes finding or 
developing infrastructure IP such as: BFM, Monitors, 
and preverified adjacent blocks. 

(b) Keep it simple; use a “workweek” as the smallest unit of 
measurement. This practice makes schedules easier to 
develop, modify, and track. 

(c) Assertions are included in the test case development 
tasks. You may create a separate task depending on the 
complexity of the design. 

(d) The design specification and verification plan documents 
shall have the same version number. 

 

Determining the Delivery Schedule 

Once the metric- driven tasks have been defined, make a delivery 
schedule similar to Table 2, this will help track your progress. This 
example assumes a single engineer completing each task in a sequen-
tial fashion. Make sure that project lead is aware of the requirements 
to initiate each task. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Why Is My Customer a Better Verification Engineer Than Me? 
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Table 1 Initial Metric- Driven Task Table 

Tasks Time Comments 
Verification plan 1.0 
development 

1 week Applicable only to design spec 1.0 

Testbench 
development 

2 weeks Applicable only to design spec 1.0 

Directed test case 
development  

2 weeks Applicable only to design spec 1.0 

Random test case 
development 

4 weeks Applicable only to design spec 1.0 

Failure test case 
development 

2 weeks  Applicable only to design spec 1.0 

Debug RTL 1.0 & 
test cases 

4 weeks  Applicable only to design spec 1.0 

Regression testing & 
coverage analysis 

4 weeks Applicable only to design spec 1.0 

Contingency Plan   
Update verification 
plan to verify design 
change 

x To be added to schedule in case of 
design change 

Update directed test 
cases to verify design 
change 

x To be added to schedule in case of 
design change 

Update random test 
cases to verify design 
change 

x To be added to schedule in case of 
design change 

Update failure test 
cases to verify design 
change 

x To be added to schedule in case of 
design change 

Write new test cases 
to verify design 
change 

x To be added to schedule in case of 
design change 

Debug RTL x.x & 
updated test cases 

x To be added to schedule in case of 
design change 

Regression testing & 
coverage analysis 

x To be added to schedule in case of 
design change 
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Section 4: Implementing the Metric-Driven Verification 
Plan 
If a design change is large enough to put the delivery schedule at 
risk, update the contingency section of the metric- driven table, see 
example on Table 3. 
 
Triggering the Contingency Plan 

Remember that the minimum measurement unit is one workweek, 
this is necessary to keep your metrics manageable. 

Table 3 Making Use of the Contingency Plan 

Tasks Time Comments 
Update verification 
plan to verify design 
change 

1 Additional time to verify design 
spec 2.0 

Update directed test 
cases to verify 
design change 

0 Additional time to verify design 
spec 2.0 

Update random test 
cases to verify 
design change 

2 Additional time to verify design 
spec 2.0 

Update failure test 
cases to verify 
design change 

1 Additional time to verify design 
spec 2.0 

Write new test cases 
to verify design 
change 

1 Additional time to verify design 
spec 2.0 

Debug RTL 2.0 & 
updated Test cases 

2 Additional time to verify design 
spec 2.0 

Regression testing & 
coverage analysis 

2 Additional time to verify design 
spec 2.0 

 

Adjusting the Delivery Schedule 

Adjust the schedule according to the contingency plan, see Table 4. 
In Table 4, the cumulative time required to verify version 2.0 have 
shifted the delivery schedule by nine weeks. 
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Table 4 Shifting the Delivery Schedule According to the Contingency 

Plan 

Requirements 
to Initiate 
Task 

Tasks w 
e 
e 
k 
 

1 

w 
e 
e 
k 
 

2 

w 
e 
e 
k 
 

3 

w 
e 
e 
k 
 

4 

w 
e 
e 
k 
 

5 

w 
e 
e 
k 
 

6 

w 
e 
e 
k 
 

7 

w 
e 
e 
k 
 

8 

w 
e 
e 
k 
 

9 
Design spec 
2.0 complete 
and reviewed 

Update 
verification 
plan to verify 
design Spec 
2.0 

         

 Update 
directed test 
cases to verify 
design change 

         

 Update 
random test 
cases to verify 
design change 

         

 Update failure 
test cases to 
verify design 
change 

         

 Write new test 
cases to verify 
design change 

         

 
RTL 2.0 
completed 

Debug RTL 
2.0 & updated 
Test cases 

         

 Regression 
testing & 
coverage 
analysis 
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Table 5 Collecting Metrics for Future Reference 

Tasks Estimated 
Time 

Actual  
Time 

Comments 

Verification plan 1.0 
development 

1 week 1 week  

Testbench development 2 weeks 4 weeks Had to write custom 
monitor due to nonstandard 
interface usage. 

Directed test case development  2 weeks  2 weeks   
Random test case development 4 weeks 6 weeks Compute farm unavailable 

due to higher priority 
project. 

Failure test case development 2 weeks  2 weeks   
Debug RTL 1.0 & test cases 4 weeks  4 weeks   
Regression testing & coverage 
analysis 

4 weeks 6 weeks Had to write additional test 
to meet functional coverage 

Total time to verify design spec 
1.0  

19 weeks 25 weeks  

Update verification plan to verify 
design change 

1 week 1 week  

Update directed test cases to 
verify design change 

0 week 0 week  

Update random test cases to 
verify design change 

2 week 3 week Had to modify testbench 
infrastructure, need to 
account for this task next 
time. 

Update failure test cases to verify 
design change 

1 week 1 week  

Write new test cases to verify 
design change 

1 week 2 week Underestimated complexity.

Debug RTL 2.0 & updated Test 
cases 

2 week 1 week  

Regression testing & coverage 
analysis 

3 week 3 week  

Additional time to verify design 
spec 2.0  

10 weeks 11 weeks  
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Collecting Metrics 

The most important part in keeping metrics is recording the actual 
time it took to complete each task, see column 4 on Table 5. If your 
estimated time and actual time do not match, then write the problem 
that provoked the shift in the schedule. 
 
Once you have completed your first project, you will be in a better 
position to accurately estimate the time for the next one. As a rule of 
thumb, the task completion time can be made proportional to the 
number of gates in the design. Always factor in the time benefit of 
reusing testbench and test case components. Armed with this 
information, you can easily extrapolate to determine the schedule of 
more complex designs. 

Conclusion 
When proposing a schedule, the 70% rule gives us a good guideline, 
but as new changes are added to the design, the final percentage 
dedicated to verification devaluates to 60%, 50%, or 40%. Regard-
less of market pressure, the time dedicated to verification should 
never decrease to the point in which you are shipping untested logic. 
It is your responsibility to write a metric- driven verification plan and 
use it to negotiate a reasonable schedule. 
 
In my view, the most difficult part of the plan is predicting the time 
required to complete each task. Even if you become proficient at 
estimating the time required to write a specific test, you still need to 
factor in an elusive component, which is the debugging time. From 
experience, you have probably already discovered that some problems 
can be debugged within minutes, but others might take days to resolve. 
Keep a log of the time spent writing tests and debugging the DUV, and 
use this information to estimate schedules of future projects. 
 
As a professional in this field, you should execute the verification 
plan to its end. If a feature is untestable due to some unforeseeable 
limitation, document it on the plan. If you are asked to cut corners to 
speed up the sign- off process, use your plan to inform your manage-
ment and make them aware of the risks they are taking by 
compromising the verification process. 

Why Is My Customer a Better Verification Engineer Than Me? 
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sync with the software schedule. Doing so requires a great deal of 
resources. So it was no small feat when the verification flow for one 
of our recent designs, the Programmable IP Services Accelerator 
(PISA) FPGA in development, was completed ahead of schedule 
and well before the system software was delivered. In fact, it’s 
unprecedented and has really turned some heads within our various 
groups. 

 
Was this a reflection of mistakes made by our team working on the 
software side? Absolutely not. This story really has much more to do 
with what our small hardware verification team did right. What we 
experienced was an interesting example of how introducing new 
verification methodologies into a real- world design environment can 
improve overall productivity and process management. 

 
On the project, we employed a metric- driven process- based 
approach for the functional verification of our FPGA. I’m eager to 
tell you how it worked because if you want to save some time, 

In my business unit, we often struggle to keep our hardware in 
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reduce risk, and further improve your verification process, you may 
want to apply some of the lessons we learned. 
 
The Task Looked to be Complex 
Ethernet IP service processors and systems tend to have wide 
application- specific functionality. Ours was no exception. We were 
dealing with a highly complex and custom FPGA that required a 
high level of verification – one that would be a central and key 
component of the full networking processor system. Our PISA 
FPGA is a complex block- level packet processor designed to deliver 
application- level intelligence for L4–L7 switching applications. It is 
a key component of a board that goes on top of the system super-
visor in a regular routing engine. 
 
My team was put on the project midstream and it quickly became 
clear to me a tough task would lie ahead. One of the most challen-
ging parts of it would come from the verification of the FPGA and 
its many interfaces. Granted, we’d be leveraging technology from a 
prior project, but still, our custom design demands were significant 
and put a tremendous strain on limited verification resources. 
 
Recognizing how crucial it would be for our small verification team 
to ensure the design is functionally correct well in advance of the 
debugging cycle, I felt compelled to establish an aggressive sche-
dule, and thus, an effective strategy for limiting the project’s risk. 
Our concern was not only risk to the specific design quality, but also 
schedule risk and the team’s ability to get up to speed on the new 
solutions we’d be employing. 
 
Looking Back 

Our objective was clear, but the same could not be said for our 
execution strategy. I say this because while the team had a good deal 
of experience in FPGA design, much of the verification metho-
dology to be introduced would pose new challenges. The team was 
well acquainted with traditional Verilog- directed test verification, 
but we needed a solution that introduced a whole new level of 
automation. We decided to give Cadence’s Specman Elite a look. 
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Our first step involved helping the members of the team get acqua-
inted with the new testbench automation solution. We did this by 
applying the software to an earlier design to gain some practical 
verification experience. This design was one that had already 
achieved a good deal of stability, so it provided a good training 
ground for mastering the solution. 
 
We found that Specman delivered a very comprehensive environ-
ment for verification. It introduced automation levels we had not 
seen before including functional testing, coverage analysis, and 
much more. We discovered it is an extremely powerful tool largely 
because it randomized the tests, created verification scenarios, and 
sequences automatically, and it was very thorough in its ability to 
find bugs in the tougher areas. It also leveraged a well thought- out 
methodology for full verification closure. 
 
With a combination of in- house resources and some additional talent, 
we went to several training courses to master the tools. While we 
didn’t catch any new bugs on our initial preverified design we did 
gain the valuable hands- on experience we were after. Mission 
accomplished. 
 
With our newfound solution, we felt ready to apply the knowledge 
we had gained on the PISA project ahead. Our training team knew 
how to perform powerful functional verification on the design. 
However we still needed a better way to manage the complex project 
step by step. 
 
Discovering Project Predictability 
From the onset of the project we had two main objectives. First, get 
the verification environment setup correctly. Second, take the 
necessary steps toward implementing actual management software 
that uses a metric- driven approach one that would be able to 
manage, track, and measure progress of our initial plan to full 
verification closure. We had heard about a solution called Verifica-
tion Manager that was supposed to work very closely with the test-
bench automation solution, so we evaluated it. 
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On past projects, our progress reports were very informal and manual. 
In fact, they were really just estimates, done for the most part on 
spreadsheets, Word documents, or status updates sent via e- mail. 
These approaches were no longer acceptable. We needed a way to be 
accurate and pinpoint areas that needed more resources or verification 
cycles. Verification management software offers better resource utili-
zation, a more predictable process, and measuring capabilities for 
achieving closure in an off- the- shelf software package. 
 
In other words, we came to realize that the ad hoc management we 
had depended on in the past was only adding a greater degree of 
risk. What if we got to a point very far down in the verification cycle 
and bumped up against a bug that required specification changes? 
We’d be in a very tight spot with limited ability to react, unless we 
could let the entire schedule slip. On the PISA project, we couldn’t 
have that happen. We needed a good snapshot of where we were on 
the project at all times, data- driven insights into what the path 
forward would look like, and insights into if and where we would 
need to increase or redirect resources. 
 

A Coverage-Driven Approach, a Metric-Driven Environment 
The support team we encountered on this project was exceptional. 
They responded by assigning small teams that were able to continue 
our training and help us understand the valuable links between the 
management solutions, testbench results, and our own design’s fea-
ture set as measured against our verification plan. 
 
The ultimate goal was to have the management solution oversee the 
process from the get- go. This way as we worked toward completing 
the established verification objectives, team members could continu-
ously access the progress reports. The tools worked together seam-
lessly within the simulation environment to give us a complete view 
of the project. 
 
To get this project- level perspective from the management software 
we’d call up reports that were easy- to- read HTML files. These 
reports shed light on the different areas of the feature plan. As the 
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design team manager, I had an interface that gave me a high- level 
view of the various coverage metrics, which helped me pinpoint the 
holes. This capability was extremely valuable because it helped me 
determine how to prioritize tasks and allocate our limited resources 
accordingly. We found the verification engineers could even do this 
by themselves, which proved to be a valuable time- saver. 
 
We found that the workflow of this new methodology was relatively 
straightforward. Basically you launch the management software, 
select your file, and then read the session. If you choose to, you can 
look at the main window giving you a complete summary, or you 
can drill down to look even more closely at each measurement and 
keep track of the specific coverage metrics. 
 
A New Level of Confidence 
In the past, we worked without this level of information, or essen-
tially, without this level of confidence in the accuracy of our 
verification progress and coverage. Today very little is left to chance 
or speculation. We have an extremely high level of confidence in the 
accuracy of the verification process. We operate with much higher 
confidence not only in the functionality of the device, but in the 
progress and overall management of the verification flow as well. 
 
We’re now in the software QA phase of our project and enjoying a 
more effective form of information sharing. When we identify a bug, 
we can use that information relatively quickly to complete fixes 
much easier and without having to blow out our entire schedule. 
When we find a strange behavior or occurrence within the design as 
reported by the software, we try to reproduce it with simulation first, 
even before debugging in the lab. We can identify these failures with 
greater detail and report our findings to the entire design team faster. 
 
This is how we’re able to stay on schedule, or in this case, actually 
do better than our schedule. I feel confident in telling you that we 
have found an invaluable way to reduce our project risk – and that’s 
my job. Perhaps it’s your job too. 
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case study described here is an extension of the coverage- driven 
methodology developed by his team for the verification of SoC projects. 
 

Introduction 
Methodology is the key to successful verification of complex SoC 
designs. There are many verification tools, techniques, and lang-
uages available today, and many of these can be quite effective if 
used properly. However, effective usage requires a comprehensive 
methodology to link together such seemingly disparate approaches 
as simulation, formal analysis, and prototyping as well as the multiple 
languages commonly used for verification. 
 
This article describes a methodology developed by our verification 
team in the Automation and Drives (A&D) group of Siemens AG. 
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This methodology has evolved over our past few projects and has 
reached its current form in the verification of two related ASIC SoC 
designs, each containing about 4M logic gates and numerous small 
memories totaling about 1 MB of SRAM. These two chips were 
significantly more complex than previous projects and required a 
multisite development team, fueling our methodology evolution. 
 
This article provides some background on older projects and descri-
bes in detail the coverage- driven methodology in use today. While 
we viewed the two chips as pilot projects to develop a methodology 
that could be extended to other projects at Siemens A&D, we know 
that our verification needs would continue to grow and that our 
methodology would continue to evolve. Accordingly, we conclude 
by discussing some likely enhancements for future projects. 
 

Verification Background 
Although the two- ASIC project added a number of new 
requirements and challenges to our verification process, in fact we 
have been in a process of continual improvement for many years. As 
was the case for many European design teams, we long ago chose 
VHDL as our RTL design language due to its early standardization 
and its superior capabilities (user- defined and enumerated types, 
package and generate statements, library support, etc.) over original 
Verilog. 
 
However, our choice of VHDL was also made with verification in 
mind. Its advanced constructs allowed us to build more sophisticated 
and more reusable testbenches than was possible with Verilog. Thus, 
up until 2001, our verification environments were VHDL- centric, 
with both the RTL design and the majority of the testbench code in 
VHDL.  
 
2001 saw the next major step in the evolution of our verification 
process, when we chose the e language and the Incisive® Enterprise 
Specman® Elite testbench automation solution (now available from 
Cadence). We had found that adding randomization to our VHDL 
testbenches brought great benefits in terms of finding bugs more 
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quickly; Specman Elite’s constrained random stimulus generation 
capabilities made it even easier to thoroughly exercise our designs. 
 
Our adoption of e and the constrained random approach led to a 
related evolution in our methodology: Our verification plans gradu-
ally shifted from test focused to feature focused. Figure 1 shows an 
example of a traditional verification plan that lists the tests to be 
written for each major functional unit in a chip and tracks the status 
of test completion. Such plans are often called “test plans” although 
this term is probably better reserved for physical chip testing. 
 

Functional Unit Test Name Spec 
Written 

Test 
Written 

Test 
Passed 

Bus Interface read_sequence_a X X X 

  read_sequence_b X  X X 

  write_sequence X     

  r_w_intermixed      

Cache controller cache_hits X X X 

  cache_misses       

  cache_flush X     

Interrupt FSM exercise_all_states X X   

Figure 1 The Traditional Verification Plan 

 
The problem with this traditional approach is that it requires a 
precise mapping from functional units to specific tests. That makes 
sense when the tests are hand- written to test- specific areas of the 
design. However, constrained random stimulus generation may 
exercise many areas of the design at once and can run as long as the 
user chooses, so the notion of an individual test is no longer a useful 
one. 
 
This observation raises the question of how verification engineers 
can tell what a constrained random test run is actually exercising. 
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The answer is that some sort of coverage metric is needed in order to 
provide a quantitative measure of verification effectiveness. With 
such a metric in place, we can say that a test run verified all areas 
that it covered and, ideally, we can combine the results from all test 
runs to get an overall view of coverage. 
 
In terms of specific coverage metrics, we have made extensive use 
of functional coverage but minimal use of code coverage on our 
projects. We have found that tracking functional coverage points 
provides a much better measure for determining what each test run 
accomplished and where we are in terms of overall verification 
completeness. 
 
As we began the project with the two 4M- gate SoCs, we decided to 
add the Cadence Incisive Enterprise Manager verification manage-
ment with process automation solution to our arsenal of tools. 
Enterprise Manager provides a mechanism to capture the features in 
our design and – in concert with Specman Elite – reports functional 
coverage results against these features. Figure 2 shows a screen shot 
of one such report in HTML format. 

Figure 2 A Modern Verification Plan (vPlan) 

 
The combination of tools and techniques in our current verification 
environment enables a true coverage- driven methodology. As 
described in the next section, we put a great deal of effort into 
defining detailed, corner- case features in our verification plans and 
in specifying e functional coverage points to track the exercise of 
these features. Thus, we continue constrained random test runs when 
features remain uncovered, and use the composite functional cove-
rage results as a key factor is determining when to “tape out” 
(release the netlist to our ASIC vendor). 
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Current Verification Methodology 
Since a methodology is an abstract concept that’s hard to visualize, 
we tend to think in terms of the verification flow enabled and 
supported by the methodology. Figure 3 provides an overview of our 
flow, starting with a functional specification for an SoC, employing 
multiple methods to thoroughly exercise the design, and reporting 
results against the verification plan (vPlan) defined with the help of 
Enterprise Manager. 

Figure 3 Coverage- Driven Verification flow 

 
While the SoC architects complete the functional specification, our 
verification process starts with a series of planning sessions for the 
20–40 modules in a typical chip. These meetings usually involve  
5–6 people, sometimes more for large modules, and include design 
engineers, verification engineers, and the specification writers. Their 
job in each session is to develop a detailed feature list for each 
module and capture it online in a vPlan so that coverage results can 
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be automatically tracked during the verification process. The session 
also serves as a detailed review of the functional specification, 
further motivating the design engineers and specification writers to 
attend. 
 
In order to make the tracking as precise as possible, each feature has 
to be related to at least one functional coverage point. Thus, the 
features are quite fine grained and often reflect important corner-
case conditions in the design. Because of this, designer involvement 
in the planning process is critical. Verification engineers usually 
don’t know enough about the details of the RTL implementation to 
understand all the critical corner cases. 
 
We use four major approaches to verifying the design. For exerci-
sing the features in the vPlan, we strongly rely on e - based verifi-
cation environments for individual modules and for the chip as a 
whole. We develop the necessary transactors to generate constrained 
random stimulus and check results, while also writing the functional 
coverage code to monitor each vPlan feature. The testcases in our e 
environments are almost entirely constrained random test runs; we 
try to minimize the need for hand- written directed tests. 
 
We also use HDL- based (Verilog or VHDL) simulation environ-
ments to verify some specific modules. For example, we sometimes 
have IP blocks or models that have their own HDL- based test-
benches. In such cases, we may make use of code coverage metrics 
in order to assess verification thoroughness since we don’t have any 
functional coverage points in the HDL testbenches. 
 
At the submodule level, we sometimes make use of Incisive Formal 
Verifier (IFV) and its formal analysis to complement the simulation-
based environments. As part of our verification planning process, we 
identify portions of the design for which we can specify assertions 
that cover 100% of the interesting behavior and then use IFV to 
target these assertions for proof. We write our assertions using the 
VHDL “flavor” of the PSL. 
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Examples of our formal analysis usage include bus- multiplexing 
structures and memory correction algorithms. While we targeted 
capturing 100% of the intended behavior with properties, in practice 
there is no way to know this for sure. However, all formally verified 
submodules are also tested as part of the module’s environment, and 
so we use formal analysis and simulation as complementary, rather 
than contrasting, verification approaches. 
 
At the full- chip level, we develop an e- based environment that focuses 
on verifying the proper interconnection and integration of the 
modules, not on verifying the functionality of the modules them-
selves. The chip- level tests are therefore fairly simple, and we do not 
put a lot of effort into tracking coverage metrics at this level. All of 
our e- based tests, for both modules and the full chip, are run using the 
regression–automation capabilities of Enterprise Manager. 
 
Most of our current SoCs contain at least one embedded processor 
core, and in such cases we take a further step for full- chip simulation. 
We develop an HDL- based environment in which we run self-
checking C testcases directly on the embedded core. This ensures that 
the core can access all the functional modules and put them into 
operation. 
 
Since the speed of chip- level simulation limits the length of the tests 
that we can run, we also make use of an FPGA- based prototype to 
run real application code. We find that it is hard to correlate appli-
cation- level testing with specific features, so we do not currently 
have a method to gather coverage data from the prototype and 
combine it with simulation results. We do write some prototype tests 
to exercise specific behaviors, such as taking a timer through its full 
count- down range; validating that this actually occurs can be viewed 
as another form of coverage. 
 
We do collect the functional coverage data from the module- level e 
environments and use Enterprise Manager to report the coverage 
metrics against the features in the vPlan. This provides a coverage-
closure loop that lies at the heart of our coverage- driven verification 
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methodology. As we will discuss in the summary, we hope to extend 
this loop to include all aspects of our verification flow. 
 
Coverage and Checking 
One common area of confusion for new adopters of coverage- driven 
verification is the role played by coverage metrics and the role played 
by checkers. The distinction is actually rather simple: Coverage tells 
whether something happened while checking tells whether something 
happened correctly (per the functional specification). 

Figure 4 Coverage Metrics and Checks 

 
Figure 4 shows some important components of the overall verifi-
cation environment and how they contribute to these two areas. As 
previously mentioned, we make minimal use of code coverage so our 
coverage focus is on functionality. In HDL testing, we sometimes 
include dedicated testbench code to check for certain desired beha-
vior and log when it occurs. This is really a type of coverage, albeit 
a more informal ad hoc method.  
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In addition, the PSL properties can be monitored in simulation to 
detect when they were triggered. For example, consider the follo-
wing PSL statement:  

 
property p is always ( REQ -> next 
ACK) @rising_edge(CLK); 
 

This property specifies that, whenever REQ is asserted, ACK must 
be asserted in the next cycle. This property is considered triggered 
whenever REQ is asserted on a rising clock, so in some sense this 
property has been covered. 
 
When we write C and assembly language testcases to run on the 
FPGA- based prototype, much as we do for HDL simulations, we 
sometimes include code to check for behavior and log it. Again, this 
can be regarded as another form of coverage. Finally, in the results 
from formal analysis, we track which properties were proven as well 
as which properties were triggered even if formal was unable to 
complete a proof. 
 
As mentioned previously, we have a clear mapping between vPlan 
features and e functional coverage points. The mapping from HDL, 
formal, and prototype coverage information is not truly automated in 
our current verification environment, and so some of the links shown 
at the top of Figure 4 are more theoretical than actual. 
 
The bottom of this figure shows the checking components. Our 
simulation and prototype tests are normally self- checking so that a 
definitive answer is provided in terms of correct behavior. We also 
use a number of verification components in the simulation environ-
ments to check for protocol compliance, correct register and memory 
contents, and passing assertion properties. These same properties are 
also used in formal analysis, which reports either a proof of 
correctness or a bug. 
 
Results and Futures 
We have been very pleased with the results of using the coverage-
driven verification methodology on our two latest SoC projects. One 
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measure of this is our consistent discovery of bugs throughout the 
verification process, as shown by the example in Figure 5. 
 
Authors note to Figure 5: The legend entries directly correspond to 
the level of each data band in the associated chart. 
 
The nature of constrained random stimulus generation means that we 
can continually run additional tests, experiment with different seeds 
to vary the random behavior, or tweak biases to produce a better mix 
of stimulus (such as the ratio of reads and writes on a bus) as long as 
we keep finding bugs. Observing the bug- discovery rate and 
tracking coverage metrics are both important contributors to the 
tape- out decision. 
 

 Figure 5 Defects Detected Over Time 

 
We embraced the coverage- driven methodology with three goals in 
mind: 
 

� Better verification schedule predictability 
� Design quality guarantees 
� Improved reuse 
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The faster and more thorough bug discovery achieved on the two-
ASIC project satisfied our first two goals. We also met our third 
goal; many components of our verification environment were reus-
able from the module level to the full- chip level, and many will be 
reusable on future projects as well. We followed the Cadence e 
Reuse Methodology (eRM) in developing about two dozen e Verifi-
cation Components (eVCs) for various interfaces and functions 
inside these two chips. In addition, we used commercial eVCs for 
standard interfaces such as PCI and USB. 
 
As happy as we are with our results so far, we have a number of 
ideas for improving and extending our methodology for future pro-
jects. As mentioned previously, we would like to find more effective 
ways to bring in coverage metrics from HDL simulation, formal 
analysis, and prototype testing to automatically combine them with 
the e functional coverage results. Both Specman Elite and Enterprise 
Manager have capabilities for importing coverage data that we have 
not yet tried. 
 
We have also not yet taken advantage of all the hierarchical planning 
features of Enterprise Manager, but we plan to do so in order to 
combine results from our module- level and chip- level e verification 
environments more easily. Since our verification focus is different at 
these two levels, it makes sense to look at a single view rather than 
separate results. We believe that this will lead us to a true plan- to-
closure verification methodology, in which every step of our process 
will be correlated back to a unified vPlan. 
 
As future projects get more complex, we expect that significantly 
more verification cycles will be needed. As our regression tests get 
longer, we will likely need to run on server farms rather than only a 
few machines, a capability supported by Enterprise Manager. Also, 
we will probably want to use the test- ranking features of Specman 
Elite to automatically select subsets of our full regression suites for 
rapid verification of RTL changes. 
 
In summary, the last 5 years or so have been a period of rapid 
evolution for our verification team at Siemens A&D. We have 
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moved from VHDL- based directed tests into a constrained random, 
coverage- driven approach complemented by formal analysis and 
prototyping, all tied together by a comprehensive methodology. Given 
our planned enhancements, we are confident that our verification 
methodology will continue to evolve to keep pace with our future 
project demands. 
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Begin with the end in mind. Look before you leap. Eat your vege-
tables. 
 
Sounds so right! Similarly, taking a structured, measurable approach 
to making sure your design works right the first time through just 
makes good sense. So why is there so much foot- dragging when it 
comes to implementing a metric- driven approach to verification? 
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“I know there’s a train wreck coming, I’m just not sure where to 
look for it,” says one project manager for a 10 million+ gate 
complex SoC. “We have two junior engineers pumping out directed 
tests just as fast as they can over in the corner there – but I’m 
concerned that this time it just won’t be enough. If this tape- out 
works, it’ll be pure dumb luck.” With millions of dollars riding on a 
respin and shrinking market windows, it’s no wonder that project 
managers worldwide are losing sleep. 
 
They know there’s a better way. So why don’t they take it? In 
general, because it just seems like too far to go from here (two junior 
engineers in the corner) to there (a metric- driven verification plan 
with feedback loops all along the way to keep you on track). 
 
Nobody likes change. But change we must if we want to regain 
some peace of mind on the way to tape. So take a deep breath as you 
consider the following steps to implementing the changes you know 
you need. 
 

Take Stock 
Like any good problem, defining the “as is” state is a great place to 
begin. How would you rate your verification process and where are 
areas for improvement? Ask yourself the following questions: 

� How do you make the call that you’re done with verifi-
cation? If the answer is “when we’re out of time,” don’t 
worry – you’re not alone. In fact, this is overwhelmingly the 
most frequent answer, and the best indicator that a change in 
your verification methodology is long past due. 

� Are you afraid of the bugs that are hiding in an untested 
area? Do you feel overwhelmed with the amount of tests 
that have to be written? Maybe all of your directed tests 
have passed – but how do you know you’ve tested every 
path that 13- year old user might think up? Without a closed 
loop system that ties your metrics back to the original intent, 
your verification is incomplete – and is another good indi-
cator that you’re going to need to upgrade your verification 
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Time Tools 

Talent 

Design 

methodology to shut- up that nagging little voice inside of 
you that keeps questioning whether you’re really done. 

� What are you measuring now? How is it tied back into the 
architect’s original intent? Maybe you’ve set 100% code 
coverage as a metric – which is a great way to measure 
whether all of your code has been tested. But how do you 
know whether it does what the system architect envisioned 
it would do? You’re going to need to branch out if you want 
measurements that reflect on whether your design will work 
as architected. 

� What verification expertise do you currently have on your 
team? Do you need more? Are your engineers trained up 
with the latest technology and methodologies? Face it – 
you’re going to need to make an investment in people and 
the tools they need to solve this. 

 

Invest in Verification 
If you’re like most people, you’ll probably 
say that you only spend about 20–30% of 
your development process in design. After 
all, you’ve invested in HDLs, Synthesis, 
Timing analysis, and all the training you 
can afford – it’s no wonder you have such a 
nice balance between the time you spend in 
design, the tools you have to do the job 
right and the talented people you need to 
get it done. 

On the flip- side, most teams would agree 
that they spend about 70–80% of their 
development process in verification, and 
never really feel confident in their results. Is 
it really any wonder? For the most part 
they’re using languages that were built for 
design. Verilog, C, or Perl were never meant 
for verification and so much time is spent 
creating an infrastructure rather than tackling 
the true problem, the chip itself. Without a 

Verification 

Time
Tools 

Talent 
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good methodology, verification is usually an ad hoc, “shoot from the 
hip” process, and is frequently viewed as an unglorified role filled by 
the most junior people on the team who haven’t earned the right to be 
designers. 
 
Thus, the time that verification takes is often grossly out of balance 
due to lack of investment in tools and talent. An investment in 
verification talent and tools can reap huge rewards in shortening 
your overall development process and giving you confidence that 
your design will work as intended the first time through. 
 
Reuse It or Lose It 

If you wanted to build a car, you wouldn’t reinvent the wheel. 
Similarly, from project to project, person to person, protocol to 
protocol – I’m betting that there are large blocks of your design and 
verification environment that could be reused if: 

� Your teams followed a consistent methodology for creating 
the blocks 

� Somebody took the time to make everyone aware of the IP 
and how to use it 

� You looked outside your company to find verification IP 
and expertise for commonly used protocols 

So get organized. 

 
Begin With the End in Mind 

What’s the biggest hurdle in your critical path? Don’t know? Well 
maybe that tells you something. Wasn’t it Deming that said, “If you 
can’t measure it, you can’t make it better?” So at the risk of being 
too pedantic, you really do need to begin with the end in mind. 
 
We’ve all heard it before: “You need to start with a plan”. And most 
people would say they are using one or several plans. But after tape-
out how often does your plan reflect what you actually measured 
from the device? Typically, engineers see creating a plan as a time-
consuming chore with little value. All plans begin with good 
intentions but inevitably other issues arise during the verification 
process and updating the plan is not viewed as important. Panic sets in. 
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It’s important to give value to the verification plan and make it a 
regular part of the verification process. Have regular meeting and 
reviews on where the project is with respect the verification plan. 
This will allow you to redirect efforts to attack weak areas or make 
adjustments to the plan to accommodate new direction. 
 
You should consider investing in tools that allow the plan to be 
executable and directly tied to the results. This will allow users to 
instantaneously see the plan with their perspective in mind and make 
any necessary course corrections. 
 

Learn from the Best 

So, you looked inside your organization and didn’t find anybody 
who knew that much more than you do about verification? Maybe 
it’s time to look outside. Sure, you can train the people you have, but 
expect push- back from your senior engineers when those new 
engineers you just trained come back from training bursting with 
new, and sometimes foreign, ideas. And then there’s the learning 
curve. 
 
Instead, consider looking outside your team and even your 
organization for some new, experienced blood. You may be surprised 
to find that there are many consulting companies that offer decades of 
experience leveraged by the newest tools and methodologies ready to 
help springboard you from here to there. They offer great return on 
your investment and leave your team re- energized and more valuable 
in their wake. All you have to do is ask. 
 

Sometimes we have to listen to the children, as 
with this quote from Lewis Carroll’s “Alice in 
Wonderland”: 
 
One day Alice came to a fork in the road and saw 
a Cheshire cat in a tree. “Which road do I take?” 
she asked. “Where do you want to go?” was his 
response. “I don’t know,” Alice answered. “Then,” 
said the cat, “it doesn’t matter.” 
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As long as you’re embarking on the road to better verification, make 
it matter. Take stock. Start with a plan and make it an active 
component. Invest in tools and IP. Find an expert to help you. But 
by all means, take the first step. 
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Abstract 
Consumer demand for entertainment products brings to verification 
engineering teams the challenge of verifying designs which integrate 
functions from multiple previous- generation products with new fea-
tures. Effective reuse of verification code combined with judicious 
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adoption of new verification technology is needed to achieve the 
productivity required to meet project schedules. From the 
perspective of a verification lead, this paper presents the approach 
taken by a verification team working from multiple sites to verify a 
multimillion- gate ASIC which implements an Analog and Digital 
TV solution. Choices made by the team to reuse existing code, build 
new verification components, and adopt new technologies to meet the 
needs of the project will be described, along with results achieved on 
the project, for which verification was completed on schedule in half 
the time and with half the engineering resources required to verify the 
previous ASIC. 
 

Introduction 
High- Definition TV (HDTV) offers consumers a rich video and 
audio experience. Consumers demand quality products at compete-
tive prices, and FCC mandates require consumer- electronics manu-
facturers and broadcasters to keep up. This brings the challenge of 
integrating existing Analog TV (ATV) solutions with Digital TV 
(DTV) to facilitate a smooth transition and address the needs of a 
variety of users. 
 
These market requirements drive architectural changes in ASIC 
designs. A cost- efficient solution requires tight integration of ATV 
and DTV solutions into an ASIC. The integration needs to address the 
grouping of functions, sharing of resources and adding new interfaces. 
For example, new interfaces need to be added to address the higher 
bandwidth requirements of the combined solution. Verification chall-
enges lie in dealing with the complex design, the new interfaces, 
modified blocks, and managing the huge set of test suites. Tight 
schedules and limited engineering and computing resources are the 
constraints to the problem domain that need to be addressed. 

 
Previous approaches by verification teams to these problems have 
been to add more engineering and computing resources, and create 
custom tools to measure and track verification progress. This case 
study of the verification of a next- generation single- chip ATV and 
DTV ASIC with numerous analog interfaces and several embedded 
processors (DSP and RISC) describes how some of these verifi-
cation challenges were dealt with on a recent project. Choices made 
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by the team to reuse existing code, build new verification compo-
nents, and adopt new technologies to meet the needs of the project 
will be discussed in this chapter. The combination of verification 
strategy, tools, and methodology enabled the completion of verifi-
cation in half the time and with half the engineering resources 
required for the verification of previous ASIC, enabling delivery of 
the final product within the required market window. Some of the 
limitations of the approach and opportunities for further improve-
ment are also discussed. 

 
This Chapter is organized as follows: The remainder of this section 
introduces the DUV and its verification challenges. Following that, 
we describe the key enablers of results achieved namely strategy, 
verification planning, and verification environment implementation. 
Finally, we summarize the results achieved and identify areas for 
improvement on future projects. 

Figure 1 The Design- Genesis FLI103XX  

The Genesis P�rVIEW HD™ 300 Series IC (FLI103xx) is a single-
chip TV solution for products requiring superior video quality in the 
analog and/or digital TV for ATSC, DVB, NTSC, OpenCable, and 
PAL markets. This solution includes a single channel HD MPEG2 
decoder, flexible analog front end with an integrated Faroudja® 3D 
Video Decoder, high- performance industry standard 32- bit MIPS 

The Design 
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4Kec™ processor (250 MIPS), multistandard analog audio decoder, 
digital audio decoder and post processor, three programmable 
multimedia processing engines (MPE), advanced 2D graphics engine, 
integrated HDMI/DVI receivers with HDCP support, unified DDR 
memory controller and a very flexible and unique Video eXpansion 
Interface (VXI) providing glueless connectivity to Genesis video 
coprocessors, or a customer’s proprietary video processing chip. 
 
The solution includes next generation Faroudja DCDi Cinema® 
video format conversion, video enhancement, and noise reduction. 
The level of video quality that could previously only be seen on an 
exclusive Faroudja Home Theater System is now available in a 
single- chip solution. 
 
The interfaces of the single chip ATV–DTV are shown in Figure 1. 

Verification Challenges 
Some of the factors that contributed to verification complexity on the 
project were the number of configurable registers (programmability), 
the number of interfaces, and the number of data paths (Table 1). 

Table 1 Problem Domain Description 
 

Indicator Previous chip ATV–DTV 
chip 

Change 

Number of 
registers 

1600 2600 + 63%  

Number of 
external 
interfaces 

7 12 5 NEW 
interfaces 

Regression size 500 1100 +120% 
Number of 
DUVs 

TBD 24 TBD 

Subsystems DTV DTV, 
ATV, and 
CPU 

Two more 
subsystems 

Logic gates Not disclosed Not 
disclosed 

DOUBLE 
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Table 1 enumerates some of the contributing factors to the verifi-
cation complexity, and compares them to the previous project (DTV 
ASIC) undertaken by this verification team. As shown in the table 
key factors have doubled. 
 
The generic challenges which arise from integration are Architec-
tural changes in various areas, Addition of new internal buses, 
Module- level verification, Data paths and integration verification 
(chip level), and Management of verification process and data. 

Addition of New Internal Buses 
Integration of two different designs leads to the optimization of 
resources in the architecture. ATV/DTV design integration resulted 
in shared memory controller. The memory controller now needs to 
serve two clients which demand higher bandwidth compared to the 
previous designs. This required the creation of a new low- speed 
register configuration bus to offload traffic from the main system 
bus. Introduction of the low- speed bus (which connects to almost 
every block) required reverification/regression of those blocks and 
changing the configuration sequences. The new bus- architecture also 
required rearrangement of the address map and hence reverification 
of address decoding logic. 
Architectural Changes in Various Areas 
Architectural changes are driven by two major factors. The first is 
the integration of two designs and the second is the request for new 
features by customers. The color coded diagram (Figure 2) shows 
the modifications to the architecture. 
The changes due to the integration included: 
 

� Addition of a new low- speed bus 
� Deletion of the one of embedded control processors and one 

set of standard peripheral interfaces 
� Addition of a new interface block between the two designs 
� Modification of the memory controller 
� Addition of the DTV subsystem to the set of video sources 

processed by the video enhancement engine 
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The new features driven by customer demand included adding the 
ability to connect a USB device to view pictures from cameras on 
the TV screen. The USB connection could also be used to do 
firmware upgrades and provide an interface for On- Screen- Display 
(OSD). Also added was high- quality audio, with multiple channel 
audio inputs and outputs, resulted in the integration of the whole 
audio subsystem from different designs. 
 
Architectural changes which will lead to the addition/deletion/ 
modification of blocks affect the volume of verification jobs. These 
changes also define the verification problem in an interesting way, 
wherein you need to maintain the integrity of the old design while 
verifying new features incrementally. 
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Figure 2 Architectural Changes 
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Module-Level Verification 
Although this project was primarily an integration of two existing 
products, some new modules added to the design needed to be 
verified in the context of the current design. The integration and 
various modes of modules needed to be validated both by stand-
alone module qualification verification and integration testing. New 
modules added to this design included an Audio subsystem and a 
USB–AHB bridge. Since most old modules were changed, the newer 
versions of these modules needed to be verified. For example, the 
control processor CPU and video decoder cores were replaced with 
new and advanced versions. 
 

Data Paths and Integration Verification 
When two systems are integrated, integration verification is critical 
and must address several questions to determine its success. The 
verification environment should reuse the components built around 
the subsystems. If these two subsystems come from two different 
verification worlds then the reuse, and hence chip- level verification, 
becomes challenging. It is also required to identify what gets 
verified at the chip- level and what gets verified at levels lower in the 
hierarchy. The key technique is to abstract away from the full detail 
of the design, just retaining the sufficient features to prove there are 
no intersubsystem interconnection issues. For example, for the 
feature set relating to the playing of digital video, top- level verifi-
cation was used for the playing of digital video from different sour-
ces (e.g., MPEG, HDMI), while block- level verification focused on 
error handling in all different modes from a specific source. 
 

Management of Verification Process and Data 

cost of missing schedule deadlines can force teams to terminate the 
verification effort prematurely. Thus, ASIC design quality can 
become a function of verification schedule, rather than the 
verification metrics, making it critical to track at a detailed level 
which features are verified and which remain unverified, to make the 
good tradeoffs between quality and schedule. 

The short schedule cycle of the consumer world and tight engineer-
ing resources do not offer much flexibility in finding solutions. The 
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The large number of DUVs and a verification team distributed 
between Silicon Valley, Toronto, and India necessitated standardi-
zing the regression infrastructure. Scripts and progress- tracking 
schemes across the project, equipping every engineer with the ability 
to launch track and analyze their own regressions, while providing 
the verification lead with the capability to assess the progress of 
each of the verification subprojects. 
 

Key Enablers of the Solution 
Having defined the verification challenges in the previous section, 
we now turn our attention to the key enablers of the verification 
solution that resulted in on- time completion of the verification of the 
DUV. This section begins with a description of the strategy adopted 
for verifying the device, followed by discussion of the verification 
planning and management methodology and solution, and some 
elements of the verification environment implementation, namely 
register verification and the considerations and choices made to 
reuse or build new verification components and environments. 
 
Verification Strategy 
From the perspective of a verification lead, a sound strategy needs to 
be formulated before teams in multiple sites begin work on a project 
of this magnitude. 
 
The verification strategy followed was to scope the problem, assign 
the right resources, and devise a complete plan. The development 
process tends to begin with a high- level understanding of the 
product requirements and a first- cut at schedule, with more detail 
added as the architects and designers begin their work. Verification 
strategy needs to accommodate this development process. The 
subsections that follow describe the process followed to devise a 
strategy that quantified the problem at high level, allocated resources 
accordingly, and was flexible enough to be applied iteratively as 
changes were made to requirements or designs. 
 
Scope the Problem 
Based on the architectural changes (which were driven by integration 
and customer needs), a delete/add/modify/no change (X/A/M/NC) 
matrix was identified. Table 2 shows an example of the analysis. 
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Identification of the number of DUVs was done as the next step to 
identify what needs to be verified and in which hierarchy (block 
subsystem/chip level). 
 

Table 2 Verification Resource Mapped to Blocks 

Block Name Arch Change Verification Resources 
Memory controller Add  Full- time 
DMA controller No change  Shared 
Peripherals Modify Shared 
CPU bus Add Full- time 
High- speed bus Modify Shared 
Video memory 
arbiter 

Modify Full- time 

186 Core Delete None 

 

The X/A/M/NC analysis matrix helped to get the assessment of the 
kind of work involved. There were options such as assigning one 
dedicated resource to the block which went through modifications. 
There were generic changes. For example, the “new bus” changed 
the interface to all blocks. Twenty- four DUVs were identified; each 
of these DUVs went through either minor modifications or major 
modifications to be able to integrate in new architecture. 
 
Resource Allocation 
Exhaustive block- level verification was required to thoroughly verify 
all blocks which were added or went through major modifications. The 
block owner would create the block- level verification environment, 
interface verification components, monitors, scoreboard, etc. The block 
owner would also write the verification plan and define coverage 
necessary to measure compliance to the plan and execute it to verify the 
planned features 
 
As described in Table 3, the peripheral bus and all those blocks 
mapped to this bus were assigned to a single owner. The owner is 
responsible for bus e- Verification Component (eVC) with master 
and slave agents. The owner will go through modifications for all 
the slave block environments and ensure that changes are intact. 



312 Metric-Driven Design Verification 

This resulted in a single owner being used efficiently to deal with 
several modified blocks. 
 
 

 
The chip was divided into two major subsystems. One owner for 
each subsystem ensured all the changes in that level were intact and 
the subsystem verification plan was tracked to closure. The Chip-
level/System- level owner focused on the integration of the 
subsystem and verified the interconnectivity and data paths derived 
from user scenarios. Each block owner owned one of the relevant 
data paths at the chip level. 
 
The compute farm used for simulations included a cluster with 12 
machines at one location and another cluster with ten machines at 
different location. vManager and LSF were used to dispatch the 
regression jobs. 
 
There were two major usage scenarios for simulation licenses, at least 
one per engineer during development and enough to get the regression 
throughput in the later stages (peak load). There was a recommendation 
on the licenses but in the end the team had more than 2X licenses 
available than the required amount (around 15 licenses). To manage 

Table 3 Verification Resources and Tasks 

Resource DUV Additional 
Responsibilities 

Engineer- 1 Block- M1, M2, and A1   
Engineer- 2 Block- M3 and M4 Low- speed bus 
Engineer- 3 Block- M5, M6, IP1 Mentor for newcomers 
Engineer- 4 Block- A2, M1, chip- level   
Engineer- 5 Peripherals and Chip- level 

misc logic 
Script and regression  

Engineer- 6 Block- M7, chip- level Interrupts 
Engineer- 7 Block- M8, IP1, IP2   
Engineer- 8 CPU subsystem, DTV SS Chip level 
Engineer- 9 ATV SS, chip- level   
Engineer- 10 chip- level, progress tracking Back- up and debug 

support 



Verification of a Next-Generation Single-Chip ATV and DTV ASIC 313 

regressions there was one vManager license per site, but when 
several engineers needed to do debugging concurrently, the license 
became a bottleneck and one vManager license per engineer was 
obtained. 
 
Verification Planning and Managements 

The high- level strategy described in the previous section provided a 
general game- plan for verification activity. The need to manage a 
large set of functional requirements verified using more than 20 
environments across multiple sites and tracked using coverage- driven 
verification methodology led the team to adopt vManager, a tool 
from Cadence that automates and assists processes in functional 
verification. This section describes how vManager was used on the 
project. 
 
Executable Verification Plan 
A verification plan was created for each of the DUVs. The primary 
purpose of this plan was to identify all features that needed to be 
verified. This assisted with resource allocation as well as with the 
tracking of verification progress using vManager. 
 
The plan used in the verification process is termed “executable” 
because although it is written in natural language using a word-
processor, the use of special paragraph formats and export as XML 
allowed reading of the plan into vManager, and annotation of 
coverage metrics to each feature, providing a hierarchical feature-
based view of progress as measured by coverage collected in simu-
lations. The use of natural language to create the plan allows 
stakeholders from disciplines outside verification (e.g., Architects, 
Designers, and Software engineers) to participate in the planning 
process. 
 
A snap- shot of section of vPlan is Figure 3. Note the hierarchical list 
of features to be verified, short description of each feature, and 
identification of coverage groups that measure how well the feature 
is verified in simulation. 
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Figure 3 Executable vPlan screen- shot 

 
Regression Management and Progress Tracking 
The integration of two designs into a single chip brings with it a lot 
of tests from the previous development that all need to work in a 
new, bigger design. Regression of these tests was the starting point. 
As the project progressed, a regression was run regularly to ensure 
that the X/A/M/NC features were not breaking the unmodified 
portion of the design. One of the overall progress indicators was the 
passing percentage of the regression. 
 
Because of the previous designs inherited and the addition of new 
tests at the block level, subsystem level and chip level, the 
regression size became big. The peak time regression size was 1200 
tests, each test running for an average for ½ hour. To measure the 
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overall progress, the numbers that needed to be tracked were how 
much of the verification plan was covered. The goal was to achieve 
100% functional coverage and 100% code coverage and the 
exceptions had to be documented. The use of coverage- driven metho-
dology meant that results of large numbers of simulations would 
need to be analyzed often by each engineer. 
 
Execution of the verification tasks described above required 
introduction of a verification management methodology given the 
large number of DUVs, team members in three sites and the need for 
the verification lead to track progress of all the verification sub-
projects. The main benefits sought from the verification manage-
ment methodology were: 
 

� All engineers are able to launch and analyze their own 
regression without having to create and maintain custom 
scripts 

� A standard view of simulation failures from each DUV is 
available to allow quick analysis to determine how many 
unique failure signatures were observed, and select a 
simulation for debug 

� Progress reports which summarize coverage results from 
simulations by DUV feature are available to track progress 
with respect to the verification plan and identify uncovered 
areas 

 
vManager is a product from Cadence that automates and assists 
tasks and processes in functional verification, enabling verification 
teams to deploy a verification management methodology to achieve 
the benefits described above. 
 
vManager provides: 

� A regression runner infrastructure that provides a standard 
and simple format for describing simulation sessions, dis-
patching them to a compute farm using LSF, and tracking 
and controlling them from a GUI 

� An environment for interactive analysis of large number of 
simulation failures, with the ability to group failures with 
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similar characteristics, identifies simulations that exhibit 
each failure kind in the shortest time and launch debug 
runs 

� A means to read the natural language executable verifi-
cation plans described earlier, and annotate coverage to 
each feature providing feature- based views of coverage for 
analysis and reporting 

 
vManager was deployed to manage regressions, enable interactive 
analysis of simulation results by individual block- owner, and create 
progress reports for use by the verification lead and management. 
 
The vManager regression runner works by calling a user- script that 
launches a single simulation run. This required initial investment by 
one engineer to implement a basic single- run script, a simple means 
for each engineer to specify how to use it for each DUV and hooks 
to the vManager integration. This one- time effort paid off by 
enabling the use of the required verification management methodo-
logy for all DUVs on this and future projects. Figure 4 shows how 
vManager was used for verification management with the following 
use model: 

 

Figure 4 Regression management using vManager 

 

Verification 
Plans 

Simulation 
Sessions 

vManage
Progress 
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Interactive 
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results 

Dispatch Simulations 
Manage Results 

Verification Env. 
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� Engineers created session descriptions that specified which 
simulations to run, vManager launched the simulations to 
the compute farm and managed the input and result files 
associated with each simulation 

� Analysis of simulation failures was performed interactively 
in vManager 

� The executable verification plans were read into vManager 
and used for interactive analysis of coverage for each 
feature and to create progress reports 

 
Verification plans created in the planning process facilitated the 
tracking of progress at a very detailed level while organizing the 
results by feature to assess progress at a higher level of abstraction. 
This was achieved by annotating coverage metrics to each feature in 
the verification plan document, and using vManager to create 
feature- based views of the coverage for analysis and reporting. The 
snapshot of the example vPlan is Figure 5. 

 
Figure 5 Regression results annotated to vPlan 

 
The team lead played the progress tracking role using different stats, 
the most basic one being when all the regression suites were commit-
ted and included a sanity test case. Management got a summary 
report to assess which part of the chip required immediate attention, 
where to divert resources, etc. The results shared on the intranet in a 
standard format enabled everyone in different geographies to be in 
sync and have quick and easy access to results. On one occasion, for 
example, management noted the absence of block- level results for a 
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specific block, and acceptable progress on another and diverted resour-
ces to focus on the block with less progress. The interactive analysis 
of results and reproducing the specific case with a waveform dump 
was quick and easy and thus, reduced the regression closure effort/ 
time. 
 
Finally, the answer to the question “Is the project finished yet?” was 
more reliable and was obtained without requiring excessive work by 
each engineer and the project lead each time an assessment of 
progress needed to be made. 
 
Verification Environment Implementation 

In this section we describe two aspects of the verification environment 
implementation that contributed to the results on this project, namely 
register verification and the reuse of verification environments. 
 
Register Verification 
Designs which are feature- rich and have several configuration modes 
rely on configuration registers to implement key features. There are 
2600 32- bit in this chip, with a variety of access types. In addition to 
the more common Read/Write, Read- Only, Write- Only, and Clear-
Read- Only types, a set of “Pending- Active” registers was imple-
mented to hold configuration changes related to image processing in 
a pending state until the occurrence of an activation event (such as 
the start of blanking time between video frames). Each register 
needed to be verified for correct access type implementation of 
address, power- reset value, access- type, and function. 
 
Automation was essential to manage the large set of registers and the 
subsets used in each DUV. A spec- driven process was implemented, 
whereby a custom tool extracts all the tables of the register spec 
word document, creates the database of registers and provides feed-
back on missing fields, incorrect address map, etc. The requirements 
for this custom tool were specified by the Design Verification (DV) 
team and implemented by the Software team. The output of the tool 
is various register definition files, one of which is in the format used 
by the Cadence register verification package which automates the 
creation of verification components for the register aspect of the 
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verification environments, including shadow- register files, address-
maps and register- access sequences. 
 

Use of our custom extraction tool along with the register verification 
package enabled the team to: 

� Synthesize the verification components related to register 
verification directly from the register specifications 

� Extend the components to model the Pending- Active registers 
� Create generic, self- checking stimulus sequences to verify 

power- reset values, address maps, and access types of the 
register set for each DUV 

� Create reusable register access- sequences to configure the 
DUVs for various operations. These sequences were written 
at the level of abstraction of register fields 

The automation and reuse afforded by this register verification scheme 
greatly reduced the effort associated with verification of registers in 
the block level, subsystem level and chip level. The register verifi-
cation package was found to have enough hooks to easily add custom 
register access types. 
 
Reuse of Verification Environments 
When integrating two heterogeneous systems the important conside-
rations in developing the chip- level testbench needs are maximizing 
the reuse of infrastructure developed at the subsystem level and 
detecting the first bug. Also important is building reusability into the 
new code for reuse in the bigger systems built later on. 
 
The DTV subsystem was built using Specman Elite, the testbench 
automation tool from Cadence, and the ATV subsystem was built using 
a directed testbench with TCL and VHDL. Since the DTV subsystem 
environments were based on the e Reuse Methodology (eRM) from 
Cadence, they were far easier to reuse than the ATV subsystem 
environments that had been architected for top- level use only. So it was 
decided to build a Specman- based chip- level verification environment 
using eRM and System Verification Methodology (sVM) guidelines, 
and reuse the configuration sequences from the ATV subsystem 
verification environment. 
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There was valuable embedded knowledge in the TCL configuration 
sequences built for the ATV subsystem. A path for the TCL was 
built to generate configuration sequences as one of the configuration 
sequences at the chip- level. The TCL was modified to generate e 
code (eRM sequences) to configure the ATV subsystem at the top-
level environment. The monitor developed for the ATV subsystem 
was hooked into a chip- level Specman monitor and scoreboard. This 
resulted in the chip- level testbench being composed quickly from the 
subsystem environments. 
 
Chip- level tests were scoped to stress the end- to- end data paths, 
interrupt structure and system- level issues. The sample high- level data 
paths were playing audio, still picture on screen, playing video from 
an analog source, playing video from a digital source, Picture- In-
Picture and overlaying OSD on the video screen, etc. These huge end-
to- end data paths were further broken down into smaller paths that 
started or ended at memory. Small paths were debugged and stitched 
incrementally to make one full data path test. This sequence- based 
approach helped in the reuse of the block- level configuration 
sequences to build the chip- level data paths. 
 

Table 4 Problem Domains Compared 

Indicator Previous Chip ATV–DTV 
Chip 

Change 

Number of 
registers 

1600 2600 + 63%  

Number of 
interfaces 

7 12 5 NEW 
interfaces 

Logic gates Not Disclosed Not 
Disclosed 

DOUBLE 

Regression size 500 1100 +120% 
 

The verification was completed on schedule! Tables 4–6 summarize 
some key attributes of the DUV which affected verification comple-
xity, along with the results. The numbers are compared with those of 
the previous project completed a year ago. The verification strategy, 

Results 
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tools, and well- defined reuse enabled to the completion of the 
verification within the scheduled tape- out date. Table 5 also identifies 
which factors contributed significantly to the efficiency (Key Enablers). 

 

Table 5 Solution Domains Compared 

Indicator Previous 
Chip 

ATV–
DTV 
Chip 

Key Enabler 

Number of DUVs 30 24 Verification 
strategy 

Team size 19 10 Verification 
strategy 

Number of machines 20 16 vManager and 
LSF 

Regression time 48 hours 60 hours vManager and 
LSF 

Regression closure (test 
suite complete to 
regression passing) 

20 weeks 6 weeks vManager  

 

Table 6 Results Summarized 

Indicator Previous 
Chip 

ATV–DTV 
Chip 

Key Enabler 

Spec- to- tape 
out time 

18 
months 

10 months Verification strategy,  
Reuse and vManager 

Number of 
bugs found 

230 170 Techniques, Specman 
and vManager 

Number of 
bugs in FPGA 

20 3 Strict CDV, 
More regressions, 
More reviews 
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Conclusions 
Verification of digital TV enabler ASICs within the required 
schedules presents very interesting verification challenges. In this 
case study of the verification of a single- chip ATV–DTV ASIC 
discussed were the key areas that needed to be addressed, the 
approaches selected, and the results presented that showed the 
verification of a chip double the size of the previous chip was 
completed in approximately half the time with a 50% smaller team. 
Verification of this ASIC was completed on schedule with the 
allocated resources. 
 
It was determined that the right balance of strategy, methodology, and 
tools will help address the verification challenges. Assessing 
verification challenges and developing a strategy is the first step. A 
sound verification planning and regression- management methodology 
implemented with tools that support an executable verification plan, 
regression- automation, and reporting was a key enabler. Verification 
environments that address reuse and pay special attention to register 
verification were also found to be key enablers of the success 
achieved on the project. 
 

Future Work 
The challenges associated with verifying Consumer Products will 
continue to intensify, and this requires verification teams to conti-
nuously improve processes and methodologies. Along with recoun-
ting successes, a review of a completed project must identify areas 
for future improvement. We will briefly describe three such areas, 

 
Adherence to the Reuse Methodology 

In previous sections we described how verification components 
based on the e Reuse Methodology were key to composing a chip-
level environment from components created for the module- level 
verification effort. As the chip- level testbench was built, some 
components were found to be noncompliant with key aspects of the 
methodology that would enable reuse. This is understandable given 

namely adherence to the reuse methodology, CPU- related verification
methodology, and verification of the ATV subsystem. 
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a large team with varied experience, but the recoding required to 
correct these issues required redoing work at the module level, 
delayed the chip- level verification effort and diverted resources from 
the team’s main goal of finding bugs. 
 
To address this issue in the future the team plans to explore three 
areas: Additional code reviews to focus on reuse, automated gene-
ration of code that is correct by construction, and the use of static 
design analysis tools on the verification code to detect issues that 
would impede reuse. 
 
CPU- Related Verification Methodology 

The presence of an embedded CPU in a DUV presents several 
challenges. The CPU test code from the previous project had hard 
coded addresses that required numerous changes for the new address 
map. Considerable effort was spent to recode these tests as modular 
assembly code invoked by reusable sequences. This practice will be 
continued in future projects to keep this code reusable. 
 
Another challenge experienced in this area was in reproducing in 
simulation bugs found when running the application software on 
silicon. The assembly code approach used in the simulation environ-
ment made this very difficult, and the team will explore the use of 
more advanced Hardware–Software verification techniques in the 
simulation area that would allow the use of C code rather than 
assembly code, along with the use of improved hardware- emulation 
techniques. 
 
Verification of the ATV Subsystem 

The ATV subsystem has evolved over several years and hence has a 
legacy verification environment that is based on a directed test rather 
than coverage- driven methodology, and does not have verification 
components that are reusable at higher levels of integration. 
 
While the legacy environment has been adequate for previous 
generations of the product, the challenges experienced in verification 
when modifying and integrating this subsystem have shown that the 
verification approach needs to be updated for the current and future 
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generations of the product. A particular area of concern was the porting 
of the environment for the new product which required one full- time 
engineer. 
 
Accordingly, verification work on future projects will include creation 
of eRM- compliant verification components for new modules, reco-
ding of existing verification components with advanced methodology 
where benefits are expected to be worth the investment, and 
interfacing between old and new verification components in environ-
ments where both are present. 
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Discussion around intellectual property in EDA has long focused on 
topics such as language, tool interoperability, and encryption. The 

improved by advances that facilitate IP reuse and exchange. There 
are changes underway that will accelerate and amplify the return 
company’s realize from their investment in IP. Executives are 
beginning to realize that they themselves create valuable Intellectual 
property. The know- how, methods, and proven procedures they use 
to operate their teams effectively under increasing market pressure is 
IP that is extremely valuable. Let’s take a closer look at how this 
form of IP will open up a whole new frontier of opportunities and 
define processes and automation that will increases project- level 
predictability and productivity. 
 
I know managers creating anything as intelligent sounding as intel-
lectual property sounds like an oxymoron. But think of how valuable 

at Cadence, Verisity, Synopsys, and Mentor 

domains of IP grew from manufacturing IP, to layout GDS- II, 
to designer RTL, and are rapidly entering the challenging world 
of verification. The health of the electronics industry is greatly 
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it is to know how to estimate the productivity of an engineer, to 
assess the risks of various aspects of the system to be developed, and 
to monitor metrics trends throughout the life of a project. With these 

automated the use of that data for planning, and providing data 
mining or analysis. The result would be a much more efficient 

 

cation IP protocols that you’ve used successfully in previous designs. 
This IP has been tested and proven on the job. From a user’s point of 
view that specific IP was a success – but from a manager’s point of 
view that IP was not only a success, but now it is also an asset to 
leverage on future projects. 
 
With experience comes various metrics that need to be gathered, 

identify potential risks, and incorporate late stage design changes 
will all improve by leveraging prior experiences. Enterprise level 
software that captures, stores, and duplicates successful patterns for 
that specific IP model or verification IP are the first major step into 

projects. 
 

different angle. IP needs to be categorized based on metrics captured 
while in use within the module or system. This means spending 
more time on evaluating each design and paying much more atten-
tion to the process, overall resources, and supporting methodology. 
Most crucial are resource productivity metrics – those leading and 
trailing indicators that are used to judge the project status. These data 
points are the beginnings of a complete management IP database. 

capabilities in hand management teams would be able to much bet-  
ter predict time to tape out and volume shipment. Imagine if that 
knowledge were captured in the form of data, in a system that 

For the sake of argument, let’s take a quick look at an overly sim-  
plified example. Let’s say you have an IP core or set of verifi-

stored, and managed. A manager’s ability to estimate schedules, 

the world of management IP. Management IP offers a foundation  
to plan and predict highly distributed resources needed on future 

To get to this foundation companies need to look at it from a 

running project with much higher quality. All because the manage-  
ment team had previous experiences captured in a format to reuse
and leverage to make good solid management decisions. 
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This may sound simple but it’s not – it takes a commitment from 
management to establish new processes and software solutions in a 
design flow. 
 
There are many examples of IP data which needs to be captured. 
What if we could measure overall bug rates per engineer using a 
specific protocol? Or monitor the lines of code per engineer on 
average when using a specific IP module? How do you translate a 
system- level specification into lines of code that can be managed? 
What about change control and managing the “rippling affect” those 
changes have upon introduction to the project? All are very impor-
tant data points that will greatly aid in your ability to design, sche-
dule, budget, and predict your next project – the beginnings of a true 
“manageable” IP database. 
 
Management IP may sound obvious, but the industry is showing 

IP can offer, they will need to start capturing data, and develop best 
practices and skills at the management level. This will require 
working with companies that deliver process automation- based 
solutions that include managed solutions that address IP. When a 
premium is put on management IP enterprise- wide we’ll see a much 
brighter outlook in the overall market, and your IP will no longer 
have to be alone. 
 
 
 
 
 
 
 
 
 
 
 
 
 

clear evidence that the obvious is being overlooked. And if com-  
panies want to take full advantage of the wondrous time savings 
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Abstract 
It is impossible to verify the complete functionality of an IP at all 
levels (DSP core, subsystem, and SoC), therefore trade- offs between 

(Adelante™ VD3204x from NXP semiconductors). Furthermore 

Introduction 
The electronics industry trade press has been talking about the 
verification problem for SoC designs for a good 10 years now. The 
argument is simple and compelling: As chips have grown to the size 
and complexity of last generation’s complete systems, verification 
becomes a challenge. 
 
However, there has been less attention paid in the press to the pro-

As chips grow to the size of systems, cores grow to the size of chips. 
Accordingly, the verification challenge for cores is also growing, and 
many of the same techniques adopted for SoCs are making their way 
into the development process for IP. 
 
Perhaps nowhere is this more true than for processor cores, including 
general- purpose CPUs, floating- point units, and digital signal pro-

minimizing the number of used verification methodologies and hav-
ing a quality product is a challenge. In this paper pros and cons of
the verification methodology choices, made at the various  levels,
will be explained. The DUV is an embedded vector processor 

some aspects of the verification process and the resulting verific-  
ation plan will be discussed. 

blems of verifying IP cores, which are increasingly large and com-  
plex. In fact, there’s an obvious but rarely stated corollary here: 

cessors (DSPs). This article focuses specifically on DSPs, using a 



Adelante VD3204x Core, Subsystem, and SoC Verification 331 

recent core development project at NXP Semiconductors (formerly 
Philips Semiconductors) as an example. We provide some background 
on the particular project, outline the challenges we faced, and describe 
the tools and techniques that we used to advance the verification 
process and improve the quality of our DSP core product. 
 
Project Background 
In mid- 2004, our team embarked upon a two- year project to design 
and verify a completely new DSP with significant enhancements 
over previous cores. This core, which is now marketed as the 
Adelante™ VD3204x DSP, is built upon a Very Long Instruction 

block- level architecture of the core. 

The DSP core is divided into four main functional units: 

� Program Control Unit (PCU) 
� Address Computation Unit (ACU) 
� Scalar Data Computation Unit (SDCU) 
� Vector Data Computation Unit (VDCU) 

Word (VLIW) architecture to support a significant degree of para-  
llelism for both scalar and vector operations. Figure 1 shows the 

Figure 1 The Adelante VD32040 Core Contains Four Major Functional 

Units 
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The 256- bit instruction words, as is characteristic in VLIW archi-
tectures, can encode multiple scalar and vector operations at one 
time. As shown in Figure 1, the SDCU and VDCU have several sub-
units to perform different types of operations, many of which can 
occur in parallel. Because of shared resources such as registers and 
buses, not all types of operations can be executed in parallel. Thus, 
there are complex rules about how the instruction words are 
constructed by a compiler. These rules had to be mimicked in the 
verification environment in order to test the DSP properly. 
 
Figure 1 also shows an example configuration of three memories 
that reside outside the core: 

� Program memory (4K � 256) 
� Data memory (4K � 256) 
� Four- way set- associative data cache (128 � 256) 

These three memories form part of the DSP subsystem (DSS), which 
is shown in Figure 2. This subsystem includes a number of 
peripheral functions. These include support for emulation, tracing, 

Figure 2 The VD32040 DSP Subsystem (DSS) Provides Memories, 

 Peripheral Functions, and AMBA Interfaces 



Adelante VD3204x Core, Subsystem, and SoC Verification 333 

and multicore debugging, all of which run at the 300 MHz core 
clock rate, as well as several interfaces using the AMBA® 3 AXI™, 
AMBA Peripheral Bus (APB™), and AMBA Trace Bus (ATB™) 
on- chip bus protocols defined by ARM. 

Verification Decisions 
The nature of the VLIW architecture, with multiple operations in 
parallel running in a multistage execution pipeline, means that there 
are many corner- case conditions that must be exercised during the 
verification process. Of course, corner- case conditions lead inevit-
ably to corner- case bugs, each of which must be detected and fixed 
before a design is released. In the case of the DSP core, we have 
many internal and external customers who depend upon receiving a 
robust, high- quality core so that they can concentrate on verifying 
the integration and their own logic, not on finding bugs in the core 
itself. 
 
The VD3204x was a new core designed from scratch, significantly 

approach. We decided to move beyond our traditional approach of 
using random- generated tests with a few functional coverage points. 
 
Leveraging experience in NXP groups as well as in our own team, 
we chose a full plan- to- closure methodology using a coverage-
driven, constrained random verification architecture. To accomplish 
this, we used Cadence’s Incisive® ®

testbench automation solution and Incisive Enterprise Manager veri-
fication management. 
 
An important component of this methodology is the executable 
verification plan (vPlan), an online replacement for paper test plans 
that fosters early identification of verification and coverage goals, 
and enables reporting of progress against these goals throughout the 
course of the project. We found the vPlan to be useful both for 
verifying individual blocks and for integrating these blocks into a 
major subunit or a complete chip. 
 

more complex than older IP, and so the project offered the oppor-  
tunity for – and demanded – a more sophisticated verification 

 Enterprise Specman  Elite test-  
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Figure 3 shows an actual report on some of the functional coverage 
points in the core. The top of the screen shot shows part of the 
hierarchy of features to be verified; the bottom shows the status of 
the functional coverage points associated with one specific feature 
(circled). The details of this screen shot are not important; the 
process is. We began by identifying specific features to be verified 
as part of our verification planning process, including corner cases 
that we wanted to exercise, and captured these in a Microsoft Word 
document using a template compatible with Enterprise Manager. 

When we wrote the functional coverage code (in the e language) 
within the testbench, we added mapping information that identified 
the feature associated with each functional coverage point. (We 
could have added pointers to the coverage points in the vPlan 
instead, but we preferred to keep the original vPlan unchanged and 
link to it from our coverage code.) Throughout the verification 
process, we ran reports to show which points had been hit and which 
had not. Thus, our coverage metrics were always correlated back to 

 Figure 3 The Reported Coverage Metrics were Correlated Back to  

the Original Verification Plan 
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our original vPlan, a critical part of a true coverage- driven metho-
dology.  
 
We also chose a multi- leveled verification strategy, specifically 
separating the verification of the core from the rest of the DSS. We 
made this decision primarily to avoid dependencies during the deve-
lopment process. We developed a BFM in e for the core that had 
sufficient functionality for DSS verification, which could occur in 
parallel with RTL coding and verification of the core itself. 
 

integration of the RTL core and the other DSS components, running 
actual software. Our customers perform similar tests once they have 
integrated the core and DSS into their final chips. The remainder of 
this chapter discusses the verification of the DSP core and the DSS.  
 
DSP Core Verification 

Prior to verification of the core as a whole, some of the RTL 
designers performed basic “sanity testing” on their individual blocks. 
They typically wrote some simple behavioral HDL code to stimulate 
the block inputs and examined waveforms of the block outputs to 
verify basic functionality. This approach was used primarily for 
interface blocks; the majority of the individual blocks were tested 
using a subset of the core test environment. 
 
Our stand- alone verification of the complete core relied extensively 
on an instruction- set simulator (ISS) developed by our software 
development kit (SDK) team. This ISS was pipeline- execution-
cycle- accurate in terms of all registers defined in the instruction- set 
architecture (ISA) for the DSP. Thus, at the end of every execution 
cycle, the state of these registers defined precisely what the corres-
ponding registers in the RTL should also contain. Comparing the 
state of the ISS and RTL registers cycle- by- cycle was the single 
most important method used in core verification. 
 
Figure 4 shows the complete core verification environment. We 
implemented all core tests as programs running in the DSP core. 
These programs were created by a test generator, written in e, which 

We then entered a final verification phase that focused on the 
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produced a series of instructions to try all the different DSP vector 
and scalar operations with different operand values. The constraints 
for test generation, also expressed in e, fell into two categories. Our 
“hard” constraints captured the fundamental rules about the DSP 
instruction set, such as which operations can be performed in paral-
lel. As mentioned previously, shared resources within the SDCU and 
VDCU prohibited some types of subunit operations in parallel. 

 Our “test” constraints specified which specific subunits and which 
particular operations within these subunits we wanted to test. Given 
the large number of operation combinations to be tested and the 
limited size of the DSP’s program memory, we had numerous small 
tests rather than a few very long tests that tried to verify the comp-
lete core. Having multiple tests also allowed us to execute in parallel 
on a simulation server farm, reducing the total time for each regres-
sion run. The output of the test generation phase was a program 

 Figure 4 The Core Verification Flow Used Components Written in e 

to link the RTL and ISS Simulations 
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image that was loaded directly into the DSP’s program memory and 
executed in RTL simulation. 
 
Although our hard constraints captured most of the architectural 
dependencies, there were more subtle resource conflicts that could 
develop between multiple instructions in different stages of the 
execution pipeline. We didn’t attempt to capture all of these rules 
with constraints, but instead leveraged the ISS and its detailed 
architectural model of the instruction set. In addition to computing 
the expected results for each instruction, the ISS checked the validity 
of the instruction against other instructions in the pipeline. If it 
found any resource conflicts, it reported an error condition to the test 
generator. The test generator had the ability to “back up” and reissue 
instructions to avoid these conflicts. Only conflict- free instructions 
were actually included in the final test program. 
 

environment, the ISS ran the program in parallel with the DSP RTL. 
Because these two representations were aligned, we included e 
check code that compared the state of all ISA- defined registers at the 
end of each pipeline execution cycle. This primary bug- finding 
approach proved very effective, although it meant that we had to 
wait until the ISS was complete and fairly robust before starting 
RTL core verification. In the process of verifying the RTL against 
the ISS we found some bugs in the ISS as well, so the verification 
engineers worked closely with the architects to resolve any differ-
ences. 
 
Given our focus on coverage- driven verification, we used Specman 
Elite to collect detailed coverage metrics for each test and to merge 
the results together to yield an overall view of our verification prog-
ress. All the functional coverage points were expressed by the verifi-
cation engineers as part of coding the core verification environment, 

to the vPlan. For example, our architects had numerous ideas about 
critical corner cases that had to be exercised in order to declare 
verification complete. 

When each test program was executed in the core verification 

but other members of the team contributed significantly to the iden-  
tification of important coverage points by contributing features 
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Our designers also participated in the coverage process by providing 
vPlan features. As they designed the microarchitecture of their 
blocks and coded the RTL, they were strongly encouraged to think 
of interesting states that should be checked by coverage points. This 
is one case in which the executable verification plan really helped; 
the designers could simply document their corner- case features in 
the vPlan without worrying about how and when the corresponding 
coverage points would be coded by the verification engineers. This 
resulted in a much more comprehensive use of functional coverage 
than had been the case on our previous DSP projects. 
 
In addition to functional coverage points, we used traditional code 
coverage metrics to help identify portions of the RTL code that were 
not being sufficiently tested. We used our simulator’s native code 
coverage capabilities to collect results from each simulation test and 
to merge these results together. We did not link the code coverage 
goals or results into the VPlan, although we did write some scripts to 
combine the Specman Elite functional coverage reports with our 
simulator’s code coverage reports to produce a single top- level cove-
rage view. 
 
Before moving on to the DSS verification, it is important to note that 
we focused the stand- alone core verification only on proper execu-
tion of the instructions. Certain other aspects of the DSP operation, 
such as interrupt handling, were tested in the DSS verification 
process and confirmed during integration verification. The next 
section discusses the verification of the DSS components and the 
overall subsystem in more detail. 

 
DSP Subsystem Verification 

Before verifying the entire subsystem, we verified several of the 
DSS RTL components with stand- alone testbenches. We found two 

Module (ETM). First, it was easier for us to exercise corner cases 
from a separate testbench rather than within the entire DSS. For 
example, we wanted to fully exercise the cache’s snoop- port arbiter, 
which required precise control overcache accesses. 

advantages to stand- alone verification of the cache logic, the 
OnChip Emulation (OCE) component, and the Embedded Trace 
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In addition, we found that parallel testing of components avoided 
dependencies that would have delayed verification. For example, the 
AXI interface was under development at the same time that we were 
verifying the cache logic. If we had waited for a DSS environment to 
verify the cache, it could have happened only after the AXI design 
was complete. 
 
We used a classic e - based testbench, running sequences of traffic 
and using a scoreboard to keep track of results, to verify the three 
stand- alone DSS blocks. Figure 5 shows the testbench for the OCE, 
which bridged to the core’s Internal Peripheral Bus (IPB) and a DSS 
debug bus. The OCE provided access to both the core’s ISA- defined 
registers and the DSS peripherals via the external APB for the 
purposes of multicore debugging. This testbench used several eVCs, 
including a “shareware” APB eVC and several written by our 
verification engineers. 

 
Figure 5 The Stand- Alone Testbenches for the OCE Used Interface eVCs 

to Generate Bus Traffic 
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In parallel with this component- level verification process, the 
verification engineers developed the BFM for the core. In addition 
to allowing an earlier start to DSS verification, the BFM provided 
more fine- grained control of constrained random stimulus and 
simulated faster than the full RTL implementation. Figure 6 shows 
the major functions of the core BFM, as well as the entire DSS 
verification environment. As was the case with the component test-
benches, this environment used eVCs and scoreboards to generate 
traffic and track results. 

One of the advantages of a constrained random, coverage- driven 
environment built using e’s object- oriented capabilities is a high 
degree of verification reuse. In fact, during full DSS verification we 
were able to reuse the component- level eVCs, scoreboards, and 
sequences. We were also able to use a commercial AXI eVC as well 
as the shareware APB eVC, allowing us to leverage previous 
verification work performed by others in the industry. 

Figure 6 Most Verification of the DSS Used a BFM of the DSP Core 
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Coverage metrics were every bit as important for DSS verification 
as they were for DSP core verification. We created a DSS vPlan 
with a detailed feature list based upon recommendations from the 
architects, designers, and verification engineers, and linked to these 
features when writing the functional coverage code. When running 
tests, we collected code coverage metrics for all the RTL DSS 
components, and we again used Specman Elite to collect and merge 

SoC-Level Verification 
After the verification of the core and subsystem, the next step in a 
verification process is verifying the integration of the subsystem in an 
SoC. Normally this is a task of the integrator but the methodology used 
enables an IP provider to deliver integration tests together with the IP. 
 
The methodology used is C- based with the focus on interconnect 
and interoperability verification and assumes the IP itself is func-
tionally correct. One of the advantages of using a C- based approach 
is the reusability across platforms (e.g., RTL simulation, proto-
typing, or final silicon). This reuse requirement is one of the main 
reasons why the verification methodology used at SoC level often 
differs from the ones used at core or subsystem level. 
 
Figure 7 shows an example of verifying interconnect and interoper-
ability of the trace part of an SoC using this methodology. A C-
program, running on the VD3204x, configures the other trace 
components (funnel, ETB) in the system, using the AXI interface. In  
the next step trace data will be generated and stored in the embedded 
trace buffer (ETB), using the ATB busses. Finally the VD3204x can 
read the content from the ETB and compare this content with the 
expected value. 

 

functional coverage results from the core BFM, the eVCs, the score-  
boards, and other portions of the verification environment. 
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Results and Future Work 

Figure 8 summarizes the specific techniques used in the different 
layers within our overall verification strategy. The three levels 
discussed in detail in this chapter have several common themes: 
extensive use of constrained random stimulus, Specman Elite 
running sophisticated e - based verification environments, Enterprise 
Manager’s executable verification plans, and reliance on coverage 
metrics to gauge verification progress. In addition to its planning 
capabilities, we found Enterprise Manager’s ability to automate 
regression runs and report results in a concise manner very helpful. 

 

 

 
 

Figure 7 SoC- Level Verification was Performed Using C- Based Tests 
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Of course, all the advanced features of our methodology required a 
nontrivial investment. The setup and execution of the verification 
environment required about three engineer- years, nearly as much as the 
four engineer- years required to write the 60000 lines of RTL code in 
the core. This investment was clearly worthwhile; the Adelante 
VD3204x DSP core has already been used in successful SoC- design 
products, with the first tape- outs imminent, and no major problems 
have been reported by any internal or external customers. 

We are very pleased that we met our goal of improved core quality, 
and we are quite certain that we will continue to use our proven 
methodology on derivatives of the VD3204x. We have a few ideas 
for enhancing our methodology, including using assertions both for 
more precise bug detection and for designers to express corner- case 
coverage points directly within their RTL code. We are certain that 
we will be able to use the experiences on this project as a baseline 
for high- quality design and verification on future projects involving 
both cores and complete SoCs. 

  Figure 8 Verification of the DSP Core and its Subsystem Used Different 
Techniques at Different Levels
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Abstract 

ST faced two daunting challenges for their next generation product 
(1) to provide an advanced and fast platform for s/w development, 
including ISS and hardware models described in abstraction level, 

firmware component. 
 
The Transaction- Level Modeling (TLM) capabilities of SystemC 
were used to deliver a Virtual SoC and helped to resolve challenge 
number (1). Though the TLM behavior was modeled with more 
abstraction, there was enough accuracy for the software developers 
to be able to debug their SoC design while running at 1 MHz. 
Having this platform available early in the process enabled software 
engineers to begin developing the embedded software for the 
application. Not only did this bring in the overall project timescales, 
but also the exceptionally close cooperation between the software 
and hardware teams in the early phases of the project led to the 
detection of significant bugs in the hardware specification of the 
design. Because these bugs were found early, they were relatively 
cheap to fix, and contributed to save a respin of the chip. 
 

running at a minimum targeted rate of 1 MHz in the simulation envi-  
ronment and (2) to integrate the system level and block- level verifi-
cation environments for a large RTL design with a significant 



The Virtual SoC was extended to provide a block- level Verification 
environment for a Low- Cost MPEG2 and more recently MPEG4 

 
In order to accelerate the regression test of the IP, virtual SoC 
environment used Cadence Incisive and the Palladium for signal-
based acceleration, by reusing SystemC high level of abstraction for 
the testbench portion (simulations went from 300 Hz on Incisive up 
to 10 KHz using signal- based acceleration). This performance will 
improve further in the future, using TBA methodology. Incisive 
capabilities included mixed language SystemC/RTL kernel, SimVision 
for debugging and performance analysis thanks to TxE.2 SysProbe 
methodology, dedicated to verify RTL performance and functionality, 
was then built on top of TxE. 
 

Introduction: Verification and Validation Challenges 
 
Because of the increasing complexity of set- top- box chips, the Veri-
fication team decided to follow SystemC/TLM methodology. This 
allowed SW teams to initiate their SW development early in the 
design flow and provide an advanced and fast cosimulation platform 
for s/w development. This included ISS models, running at a mini-
mum targeted rate of 1 MHz in the simulation environment without 
the use of hardware accelerators. Figure 1 illustrates the SoC TLM 
flow compared to the old flow. Section 2 describes this Virtual SoC 
platform for 3 usages: SW development, HW verification and 
architecture exploration, and analysis. Section 3 will present ST 
verification process for RTL at block and platform levels for set- top-
box chips. 
 
                                                 

2 Transaction Explorer tool from Cadence. 

design using Incisive and SystemC. Reusing the system- level environ-  
ment in this way means that the tests (using images 80 � 96 pixels)
and test harness do not have to be reimplemented in a new language
and tool set. In order to speed up the RTL verification regression and
run full size conformal tests (with 1920 � 1080 and 720  1080 pixel�
images), Transaction- Based Acceleration (TBA) and emulation have
completed the validation process. 
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In order to complete full verification regression tests (with real 
image sizes), the Virtual SoC platform was extended to include 
simulation acceleration. This approach makes use of the Transac-
tion- Based Verification (TBV) methodology, which enables the ability 
to mix SystemC testbench with RTL emulated on the Palladium3 H/W 
emulator. This will be described in Section 4. Section 5 will sum-
marize the benefits of the Virtual SoC platform and will comment 
the next steps of ST TLM methodology. 

Virtual SoC TLM Platform 
Transaction- Level Modeling (TLM) was pushed by industry and 
research institutes through OSCI to respond to the following tasks: 
 
– Embedded software development 
– Functional verification 
– Architecture analysis and exploration 
– HW/SW coverification, HW validation 
                                                 

3 Cadence H/W accelerator & emulator. 

 
Figure 1 Comparison Between Traditional and SystemC/TLM Flow 



TLM infrastructure was developed to support modeling communi-
cation structures at three abstraction levels, i.e., Programmer’s View 
(PV), Programmer’s View with Timing (PVT), and Cycle Accurate 
(CA), leaving it up to the user to compromise between simulation speed 
and accuracy. ST has played a major role in the OSCI- TLM working 
group and deployed TLM methodology on multiple projects.  
 
The virtual SoC TLM platform was developed at the PV level from 
Specifications in order to offer fast simulations for the next phases. 
This platform has been used as reference model and enabled 
concurrent SW and HW engineering and close cooperation in early 
phases of the project. This process led to the detection of significant 
bugs early in the hardware specification. Because these bugs were 
found early, they were relatively cheap to fix, and contributed to 
save a respin of the chip. 
 
SW engineers could start development before having the board. As 
example, this was done on Graphic Engine Blitter and MPEG2 
projects; the driver was developed before having a board, that led to 
6 months time gain in comparison with traditional flow (as pointed 
out in Figure 1). 
 
HW verification group employed TLM platform because, though 
more abstract, it accurately modeled the bit- level behavior of the 
SoC while running at 1 MHz (this was achieved on MPEG4 decoder 
project). This will be fully described in the following section. 
 
Another domain of utility is architecture exploration and analysis 
(Figure 2). The SoC TLM platform, when refined with timing 
information, can provide relevant information on bus bandwidth, 
peripheral accesses, interrupt latencies, memory conflicts, and 
latency to the architects. The SysProbe methodology was built at ST 
using the flexible transaction recording, viewing, and analysis 
capabilities of Cadence’s SimVision and TXE. SysProbe could 
record the transactions generated by proprietary architectural models. 
It was also used for functional and timed validation. By calibrating
TLM with back- annotated data [1] it was also possible to radio the
same transactions generated by either TLM models or corresponding
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Functional Verification: Cosimulation TLM and RTL 
The Virtual SoC TLM platform (integrating bus, memories, CPU) 

to achieve fast simulations. As an example, for MPEG4 decoder, full 
RTL (including complete testbench) would take 6/7 hours. This was 
reduced to few minutes with TLM backbone (tests used images 
80 � 96 pixels). 
 

RTL models and to compare the results using the environment pro-
vided by Cadence’s TXE. This technique was used to verify the per-
formance of the RTL. 

was also reused for functional verification at block level and plat-  
form level using Incisive and SystemC. This provided the ability 

Figure 2 SimVision/TxE/SysProbe Analysis Environment 



Reusing the system- level environment at block and platform views 
means that the tests and test harness do not have to be reim-
plemented in a new language and tool set. A three- step approach 
was used to achieve block-  and platform- level verification: 
 

� First step is to verify the block level. This step used the 
TLM models of the low- cost MPEG4 already developed for 
the virtual SoC. This implies that the RTL blocks can be 
verified stand- alone before integrating with the rest of the 
RTL. It also means that function tests used for system- level 
verification can be reused for block- level verification. 

� The Second step involves connecting the RTL DUT to the 
TLM testbench through BFM, also known as transactors. 
These transactors use the SystemC Verification Library 
(SCV) to shape the timing characteristics of the traffic 
across the bus, and the transaction recording and viewing 

� The third step is to use the fast mixed language simulation 
and debugging facilities of Incisive to verify the full RTL 
design, by connecting the RTL description of the DUT to 
the SystemC- based Virtual SoC Verification environment 
described in previous sections. 

 
Writing tests at the transaction level means that the tests can be used 
at both system and block level. But to do effective block- level verifi-
cation, we need to stress the DUT by shaping the timing charac-
teristics of the data. ST uses SCV, the OSCI verification library 
supported by Incisive, to randomize the timing characteristics of the 
bus traffic. For example, we can allow the length of a burst write to 
vary between a minimum and maximum number of clock cycles, or 
we can specify the gap between one burst and the next. Rando-
mizing traffic characteristics in this way can trap costly bugs that the 
block designer may not have been able to test for. 
 
SysProbe methodology is used together with SimVision as a power-

capabilities of Incisive to verify the performance and func-  
tionality of the Design Under Test (DUT). 

ful transaction- level visualization tool. By visually looking at transac-  
tions rather than individual signals in a waveform viewer, functional
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Validation: Coemulation TLM-Palladium 
The Validation process is incomplete without testing real condition 
input to the design. Once the design was converted from SystemC to 
RTL, simulation performance was reduced. In the case of the MPEG4 

 
The traditional approach at CMG group has been to wait until fully 
synthesizable and complete RTL is available, and then use the 
Palladium emulator to test full RTL implementation. The TBV 
methodology was adopted in order to get a head start for full- chip 
verification, early in the development effort. This alleviated the need 
to wait for the availability of complete RTL (including testbench). 
This methodology allows the design teams to reuse the SystemC 
testbench that was used in the first and second phase, while the 
design is being converted into RTL. The performance gain allows 
the teams to run long tests and continue to validate their system, 
while the DUT is getting its final RTL representation. 
 
The Incisive TBA solution (as illustrated in Figure 3), which is based 
on the standard coemulation modeling interface (SCE- MI), enhances 
simulation acceleration performance of the Palladium system by 
reducing communication between the testbench running on the work-
station and the DUT in the emulation system. Productivity features 
include support of variable- length messages, a faster streaming mode, 
transaction recording capabilities, and support of both timed and 
untimed testbench components. This solution enables full congruency 
with the Incisive unified simulator to shorten bring- up time and assure 
reusability of the testbench and the verification IP models. ST hopes 

 

bugs can be identified and tracked down a lot quicker, and more
efficiently. Once the problem is identified, the verification engineer 
can switch to the signal level to work out how to fix the bug.

design, full image sizes are 1920 � 1080 and 720 � 480. These image 
sizes could not be fully tested during simulation.  

to reach 100 kHz in comparison of 10 kHz at signal- based accele-  
ration for a full image format SD. 



Conclusion and Future Developments 

In summary, the virtual SoC TLM platform made early SW develop-
ment possible – up to 6 months earlier than the traditional approach. 
The Validation process was also pulled in by approximately 3 months – 
by utilizing the TBV methodology. All this was made possible by using 
SystemC/Incisive environment, which also provided the ability to 
maintain same debugging and transactional environment for both RTL 
and System- level verification. 
 
The effort to create and update more and more TLM models into the 
portfolio is an ongoing process at ST for efficient System- Level 
Verification. TBA methodology is really beneficial if one can 
enhance the speed of coemulation. While this approach has already 
proven beneficial at ST, there is continued joint effort to improve 
this methodology and technique. 

Figure 3 Transaction- Based Acceleration 
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To further enhance the efficiency and throughput of the Verification 
effort, Cadence Assertion- Based Verification (ABV) is also being 
investigated, and will potentially be used on future projects. 
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Industry trends in electronics are resulting in design and verification 
schedules becoming more compact and complex. The use of SW to 
implement more functionality provides flexibility, but also com-
pounds the difficulty in completing verification because of the need 
to do more HW/SW coverification before silicon is available. The 
emergence of effective HW/SW coverification solutions alleviates 
this pressure technologically, but it creates an unanticipated burden 
for many project teams: frequent daily interactions between HW and 
SW teams as they converge on closure independently and 
collectively. 

In order to parallelize project operations and meet aggressive  sche-
dules, system project teams designing both hardware and embedded
software must address the need for much higher frequency of inter-
actions. Without better forms of communication, automation enhance-
ments, and verification engines that are powerful and flexible, attempts
to parallelize flows will result in chaos and project paralysis.

from Collaboration or Headed to Chaos? 



356 Metric-Driven Design Verification 
 

In the world of software design, engineers typically try to steer clear 
of the complex hardware verification process. Historically they have 
presumed a stable silicon platform upon which to run and test their 
drivers and applications. In some cases this results in finding 
hardware bugs late. But the benefit is that most of the busy- work of 
designing the hardware has been completed. As more of the hard-
ware and software is coverified, the more the software team is 
exposed to the noisy, tumultuous process of reaching closure of the 
hardware. While in theory parallelizing hardware and software is an 
overall gain for the project, the team must address the significant 

and all parallelization benefits will be lost. 
 
Communication Barriers Torn Down 

When it comes to system- wide applications the “communication 
gap” is just not acceptable any longer. Hardware design and 
verification has matured to a point where we regularly see predic-
table schedule success when applying verification process auto-

 

increase in details that will be discovered and resolved while expo-  
sing the software team to the hardware development. Without an
effective plan to handle the volume of issues, the project will stall 

mation. System verification projects must leverage these same appro-  
aches for HW/SW coverification and system- level closure. With
more upfront planning between the hardware and software teams,
communication and understanding of what the other is doing will
bring huge benefits. The result of planning is documented intent,
and measures of success using coverage data like code converage,
assertion coverage, and functional coverage, made visible across the
team. Assumptions that each team needs to make based on the initial
system specification will be regularly reviewed, check- points will be
established continually checking for system- level bugs, and a broad-
based agreement on how the system should behave to reach full
system- level closure will be agreed upon. The metrics built into the
plan will apply to the necessary check points of the hardware and
embedded software and be tracked and managed together in a system-
wide management solutions leading to prioritization and escalation 
of problems and priorities if needed. 



The use of metrics is what allows introduction of automation. This 
automation applies to the individual verification tasks: dispatching 
jobs, analyzing results, and debugging failures. The individual 
benefits of automation are only incremental in their impact on the 
overall project. Most important is the automation of handling the 
project- wide analysis, tracking, and decision making. These metrics 
make it easy for a centralized view of either the hardware or the 
software, and identification of critical problems to address first. 
Communication will become much more instant and less disruptive 
as the reporting and management tools take care of most of the 
work. Updating of the status will be more frequent with less 
overhead. Perhaps the most important improvement in the project 
team’s development cycle will be the ability to adapt and react to 
changes. This clarity enables the software and hardware teams to 
work independently, while still rapidly uncovering and resolving 
critical system- level issues. Adjustments in resource focus and 
testing needs will adapt automatically based on the changes in the 
initial specification and how they flow through the rest of the plans. 
 
Without applying these important and proven concepts of planning, 
metrics, and automation into your hardware and software develop-
ment process you are only setting yourself up for project, level 
paralysis. Hardware and software verification have to be parallelized 
within the hardware and software domains to keep up and shorten 
schedules with limited resources, engines, and skill levels. The 
metric- driven approach itself will comfortably bring together the 
hardware and software teams by capturing common goals and check 
points of operation. High- performance models and engines, quality 
verification IP, coverage- driven verification approaches, and debug-
ging across both software and hardware domains will become 
increasingly essential. In addition, this entire process will need to be 
managed at a project level from the block to chip and full system 
level. Without this collaboration I’m afraid we’ll be headed for 
system- level chaos – which is exactly what we need to avoid. 
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