
Hamilton B. Carter
Shankar G. Hemmady

13

Metric Driven
Design

Verification
An Engineer’s and Executive’s

Guide to First Pass Success

Verification

An Engineer’s and Executive’s Guide
to First Pass Success

Metric- Driven Design

Hamilton B. Carter
Shankar Hemmady

Verification
An Engineer’s and Executive’s Guide
to First Pass Success

Metric- Driven Design

Hamilton B. Carter Shankar Hemmady
Cadence Design Systems, Inc. Cadence Design Systems, Inc.
San Jose, CA San Jose, CA
USA USA

Library of Congress Control Number: 2007924215

ISBN 0- 387- 38151- 1 e- ISBN 0- 387- 38152- X
ISBN 978- 0- 387- 38151- 0 e- ISBN 978- 0- 387- 38152- 7

Printed on acid- free paper.

� 2007 Springer Science+Business Media, LLC

9 8 7 6 5 4 3 2 1

springer.com

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of
trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not
to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Table of Contents

The Authors

Contributing Authors in Order of Appearance

PART I ANALYZING AND DRIVING VERIFICATION:
AN EXECUTIVE’S GUIDE 1

Chapter 1 The Verification Crisis

Chapter 2 Automated Metric- Driven Processes

The Process Model
The Automated Metric- Driven Process Model

What Are Metrics For?
Tactical and Strategic Metrics

Chapter 3 Roles in a Verification Project

The Executive

Design Manager
Verification Manager
Verification Architect/Methodologist
Design/System Architect
Verification Engineer
Design Engineer
Regressions Coordinator
Debug Coordinator

Chapter 4 Overview of a Verification Project

xi

Dedications xiii

Preface xv

Introduction xix

xxi

3

13
Introduction 13

15
16
28
29
29

Summary 30

31
Introduction 31

31
Marketing 33

34
34
35
36
37
38
39
39

Summary 40

41
Introduction 41
Summary 49

Project Management Using Metric- Driven Data

vi Table of Contents

Chapter 5 Verification Technologies

Metric- Driven Process Automation Tools
Modeling and Architectural Exploration
Assertion- Based Verification
Simulation- Based Verification
Mixed- Signal Verification
Acceleration/Emulation- Based Verification

PART II MANAGING THE VERIFICATION

Chapter 6 Verification Planning

Chapter Overview
Verification Planning

Chapter 7 Capturing Metrics

The Universal Metrics Methodology

Chapter 8 Regression Management

Early Regression Management Tasks
Regression Management
Linking the Regression and Revision Management Systems
Bring- Up Regressions
Integration Regressions
Design Quality Regressions
Managing Regression Resources and Engineering

Regression- Centric Metrics
How Many Metrics Are Too Many?

Chapter 9 Revision Control and Change Integration

The Benefits of Revision Control
Metric- Driven Revision Control

Chapter 10 Debug

PROCESS 79

81
Introduction 81

83
86

Summary 105

107
Introduction 107

109

113
Introduction 113

114
114
115
116
119
121

Effectiveness 122
123
125

Summary 127

129
Introduction 129

131
132

Summary 139

141
Introduction 141

51
Introduction 51

52
58
63
70
73
75

Summary 78

Table of Contents vii

Debug Metrics

Chapter 11 Coverage Metrics

Chapter 12 Modeling and Architectural Verification

How to Plan
Tracking to Closure
Reusing Architectural Verification Environments

Chapter 13 Assertion- Based Verification

How to Plan
Tracking to Closure
Opportunities for Reuse

Chapter 14 Dynamic Simulation- Based Verification

How to Plan
Taxonomy of Simulation- Based Verification
Tracking to Closure

Chapter 15 System Verification

Coverification Defined
Advancing SoC Verification
List of Challenges
ARM926 PrimeXsys Platform Design
Closing the Gap
DMA Diagnostic Program
Connecting the DMA Diagnostic to the Verification Environment
Connecting the Main() Function in C
Writing Stubs
Creating Sequences and Coverage

144
Summary 153

PART III EXECUTING THE VERIFICATION PROCESS 155

157

Introduction 157

163
Introduction 163

164
165
165

Summary 166

167
Introduction 167

170
175
177

Summary 179

181
Introduction 181

183
187
191

Summary 196

197
Introduction 197

199
201
202
205
207
208
212
215
216
217

Conclusion 219
References 220

viii Table of Contents

Chapter 16 Mixed Analog and Digital Verification

Traditional Mixed- Signal Verification
Verification Planning
Analog Mixed- Signal Verification Kit

Chapter 17 Design for Test

A Unified DFT Verification Methodology

Test Case

Future Work

PART IV CASE STUDIES AND COMMENTARIES

Metric- Driven Design Verification: Why Is My Customer a Better

Verification Engineer Than Me?

Section 1: The Elusive Intended Functionality
Section 2: The Ever- Shrinking Schedule
Section 3: Writing a Metric- Driven Verification Plan
Section 4: Implementing the Metric- Driven Verification Plan

Metric- Driven Methodology Speeds the Verification of a Complex

Network Processor

The Task Looked to be Complex
Discovering Project Predictability
A Coverage- Driven Approach, a Metric- Driven Environment
A New Level of Confidence

Developing a Coverage- Driven SoC Methodology

Verification Background
Current Verification Methodology

221
Abstract 222
Introduction 222

223
225
229

Conclusion 233
Reference 234

235
Introduction 236
Motivation 238

239
Planning 240
Executing 241
Automating 243

245
Benefits 248

249
Conclusions 249
References 250

253

255
Abstract 255
Introduction 256

257
265
270
274

Conclusion 277

279
280
281
282
283

285
Introduction 285

286
289

Table of Contents ix

Coverage and Checking
Results and Futures

From Panic- Driven to Plan- Driven Verification Managing

the Transition

Verification of a Next- Generation Single- Chip Analog TV

and Digital TV ASIC

The Design
Verification Challenges
Addition of New Internal Buses
Module- Level Verification
Data Paths and Integration Verification
Management of Verification Process and Data
Key Enablers of the Solution

Future Work

Management IP: New Frontier Providing Value Enterprise- Wide

Project Background
Verification Decisions
DSP Core Verification
DSP Subsystem Verification
SoC- Level Verification
Results and Future Work

to Coemulation

Introduction: Verification and Validation Challenges
Virtual SoC TLM Platform
Functional Verification: Cosimulation TLM and RTL
Validation: Coemulation TLM- Palladium
Conclusion and Future Developments

or Headed to Chaos?

292
293

297

303
Abstract 303
Introduction 304

305
306
307
309
309
309
310

Results 320
Conclusions 322

322

325

329
Abstract 330
Introduction 330

331
333
335
338
341
342

345
Abstract 346

347
348
350
352
353

355

Index 359

Adelante VD3204x Core, SubSystem, and SoC Verification

Is Your System- Level Project Benefiting from Collaboration

SystemC- based Virtual SoC: An Integrated System- Level

and Block- Level Verification Approach from Simulation

The Authors

Hamilton Carter

Hamilton Carter has been awarded 14
patents in the field of functional verification.
The patents address efficient sequencers for
verification simulators, MESI cache cohe-
rency verification and component- based re-
usable verification systems. Carter worked

on verification of the K5, K6, and K7 processors and their chipsets at
AMD. He staffed and managed the first functional verification team at
Cirrus Logic and has served as a manager, engineer, or consultant on
over 20 commercial chips and EDA projects.

Shankar Hemmady

Shankar Hemmady is a senior manager at
Cadence responsible for verification plan-
ning, methodology, and management solu-
tions. Mr. Hemmady has verified and
tested, or managed the functional closure
of over 25 commercial chips over the past
18 years during his tenure in the industry

Logic, Fujitsu, Hewlett Packard, Intel, S3, Sun, and Xerox.

as an engineer, manager, and consultant
at 12 companies, including AMD, Cirrus

Dedications

To my Parents who removed the word “cannot” from my
vocabulary!

Hamilton Carter

To Seema, Shona, & Anand who make each and every
moment a special one!

Shankar Hemmady

Preface

With the alarming number of first pass silicon functional failures, it
has become necessary for all levels of engineering companies to
understand the verification process. This book is organized to address

zation. The book is targeted at three somewhat distinct audiences:

� Executives. The people with their jobs on the line for increa-

sing shareholder value.
� Project, design, and verification managers. The people res-

ponsible for making sure each design goes out on time and
perfect!

� Verification and design engineers. The innovators respon-
sible for making sure that the project actually succeeds.

The book is divided into three parts corresponding to its three
audiences. The level of technical depth increases as the book proceeds.

Part I gives an overview of the functional verification process. It
also includes descriptions of the tools that are used in this flow and
the people that enable it all. After outlining functional verification,
Part I describes how the proper application of metric- driven techni-
ques can enable more productive, more predictable and higher quality
verification projects. Part I is targeted at the executive. It is designed
to enable executives to ask appropriate educated questions to accu-
rately measure and control the flow of a project.

Part I also holds value for project managers and verification engi-
neers. It provides an overall view of the entire chip design process
from a verification perspective. The chapters on a typical verifi-
cation project and the overview of verification technologies will be
of use to entry level verification engineers as well. This part of the
book also provides a unique viewpoint on why management is
asking for process data and how that data might be used.

all verification stakeholders at all levels of the engineering organi-

xvi Preface

Part II describes the various process flows used in verification. It
delves into how these flows can be automated, and what metrics can
be measured to accurately gauge the progress of each process. Part II
is targeted at design and verification project managers. The empha-
sis is on how to use metrics within the context of standardized
processes to react effectively to bumps in the project’s execution.

Part III’s audience is the design and verification engineering team. It
focuses on the actual verification processes to be implemented and
executed. This section of the book is divided with respect to the
various verification technologies. Each chapter on a given techno-
logy is further subdivided into sections on how to plan effectively,
and how to track metrics to closure.

Entire books have been written on implementing verification using
the technologies discussed in Part III. We will not reiterate what
those excellent volumes have already stated, nor do we intend to
reinvent the wheel (yet, we are engineers after all). Implementation
details will be discussed when they will make the metric- driven
techniques discussed more effective.

Part IV contains various case studies and commentaries from experts
in the metric- driven verification field.

The various parts of the book can also be described as a progression
of process abstractions. The layers of abstractions are “Obser-
vational Processes,” “Container Processes,” and “Implementation
Processes.”

Observational Processes

Part I looks at the verification process from an
observational point of view. The various aspects of a
project that should be observed are described to the
reader along with informal suggestions about how to

strategically manage a verification project based on these obser-
vations.

Preface xvii

Container Processes

Part II looks at processes that are necessary regard-
less of the verification technology you are using;
processes such as regression management, revision

also discusses the inter- relations of these processes.

Implementation Processes

Part III describes each of the verification technologies and
explores how a metric- driven methodology can be used to
enhance the productivity, predictability, and quality offered
by each of these technologies.

Finally, Part IV leaves the world of abstraction altogether and
presents several concrete case studies that illustrate metric- driven
processes in action. In addition to these case studies are several
commentaries offered by industry experts in metric- driven methodo-
logies.

control, and debug. Part II describes how to imple-
ment these processes using metric- driven methodologies. It also

Introduction

Legend has it that 2300 years ago, Euclid walked the beaches of
Egypt with his students. They were exploring the fundamentals of a
new field: geometry. Each day, Euclid would draw a new problem in
the sandy shores of the Mediterranean Sea. He’d ask his students to
reflect on each problem and discover what they could. One day he
sketched a diagram that would come to be known as Euclid’s 42nd
Problem.

One of his particularly bright students worked on the diagram and
came back with a simple formula:

a2 + b2 = c2

This formula became so famous that it is now known simply by its
discoverer’s name: the Pythagorean Formula.

xx Introduction

Pythagoras thirsted for knowledge and spent most of his life traveling

knowledge from each of them applying it to the burgeoning new field
of geometry.

Today we’re witnessing the birth of another new field, Metric-
Driven Verification. Like Euclid, we hope to layout templates that
not only illustrate the basics of this promising new field, but also
inspire the reader to make even greater discoveries. Like Pythagoras,
we have traveled the world searching for the best applications of this
knowledge.

This book contains more than our basic understanding of the principles
of metric- driven verification. The book also contains examples and
experiences gleaned from many industry experts in verification and
design. All of these are presented in their entirety in Part IV.

The last three chapters of Part III are about emerging technologies in
the field of metric- driven verification:

� System verification
� Mixed- signal verification
� Verification of DFT hardware

These chapters use a different format. Each chapter contains a
complete case study from one of the industry leaders in each of these
three emerging areas.

the various countries of the ancient Hellenic world searching for it.
In his travels, he encountered many cultures and gleaned valuable

Contributing Authors in Order
of Appearance

Jason Andrews

Jason Andrews is a project leader at Cadence
Design Systems, where he is responsible for
hardware/software coverification and methodo-
logy for system- on- chip (SoC) verification. He
is the author of the book “Co- Verification of
Hardware and Software for ARM SoC Design”

and holds a bachelor’s degree in electrical engineering from The
Citadel (Charleston, SC) and a master’s degree in electrical engineering
from the University of Minnesota (Minneapolis).

Monia Chiavacci

Ms. Chiavacci cofounded Yogitech in 2000. She
is responsible for the mixed signal division. She
worked as an analog designer from 1998 to 2000
after receiving her degree cum laude in electronic
engineering at the Pisa University. Her work

experiences include high- reliability systems in critical environments
such as biomedical, space, and high- voltage automotive applications.

Gabriele Zarri

Mr. Zarri is a verification engineer at Yogitech. He
is responsible for the development of verification
IPs, verification environments for many inter-
national customers, and trainings on verification

methodologies. His experience includes automotive protocols such as
LIN, CAN, and Flexray. He is expert in OCP protocol, a universal
complete socket standard for SoC design, and has recently acquired
experience in the verification of mixed signal circuits. Gabriele
specialized in Microelectronics and Telecommunications with an MS
from Nice Sophia- Antipolis University.

xxii Contributing Authors in Order of Appearance

Egidio Pescari

Egidio is a senior design and verification engineer
at Yogitech. Prior to Yogitech, Mr. Pescari deve-
loped systems in critical environments such as
automotive and space applications. He acquired

experience in many automotive protocols such as LIN and CAN. He
graduated from the University of Perugia in 1998.

Stylianos Diamantidis

Stylianos Diamantidis is the Managing Director
of Globetech Solutions. Mr. Diamantidis is
responsible for driving IP product strategy,
engineering and consulting services. Prior to
cofounding Globetech Solutions, he managed

SGI’s systems diagnostics group, spanning across servers, super-
computers, and high- end graphics product lines. His current areas of
interest include advanced design verification methodologies, embedded
systems, silicon test, debug, and diagnosis. Stylianos holds a B.Eng.
from the University of Kent at Canterbury, UK and a MS in electrical
engineering from Stanford University, USA. He is a member of the
IET, IEEE, and IEEE- DASC.

Iraklis Diamantidis

Iraklis Diamantidis is a founder and senior
verification engineer at Globetech Solutions.
His current areas of interest include Electronic
System- Level Design, Advanced Design Verifi-
cation Methodologies, Silicon Test, Debug and

Diagnosis, and System Software. Iraklis holds a B.Eng. from the
University of Kent at Canterbury, UK, and a MS in electrical engi-
neering from Stanford University. He is a member of the IET and the
IEEE.

Contributing Authors in Order of Appearance xxiii

Thanasis Oikonomou

Thanasis Oikonomou is a senior digital systems
designer and verification engineer at Globetech
Solutions. His interests include computer archi-
tecture, high- speed networks, digital design,
verification, and testing. He received BSc and
MSc in computer science from the University

of Crete, Greece.

Jean- Paul Lambrechts

Jean- Paul Lambrechts has over 20 years expe-
rience in leading hardware design in the net-
working and computer areas. His experience
covers board- level hardware design, FPGA,
and verification. Jean- Paul has now been with

Cisco for 9 years where he has been responsible for line cards, packet
forwarding engines, and layer 4–7 processor card. Jean- Paul holds a
MSEE degree from the Louvain University in Belgium.

Alfonso Íñiguez

Alfonso Íñiguez is a principal staff verification
engineer with the Security Technology Center at
Freescale Semiconductor, where he is the verifi-
cation lead responsible for developing, improving

and applying functional verification tools, and methodologies. His
work includes cryptographic hardware accelerator design. He holds a
B.S. in computer engineering from the Universidad Autónoma de
Guadalajara, México, and an MS in electrical engineering from the
University of Arizona.

xxiv Contributing Authors in Order of Appearance

Dr. Andreas Dieckmann

In 1995, after obtaining his MA at the University
of Erlangen and his Ph.D. in electronic enginee-
ring at Technical University of Munich, Dr.
Dieckmann began working at Siemens AG. He
was initially responsible for board and fault
simulation. From 1997, Dr. Dieckmann gained
expertise in system simulation and verification of
ASICs. Since 2001, he has been in charge of

coordinating and leading several verification projects employing
simulation with VHDL and Specman “e,” formal property and equiva-
lence checking, emulation, and prototyping.

Susan Peterson

Susan Peterson has been trying to escape
from the EDA industry for the past 20
years, where she has spent her time
listening to customers and trying to help
them to solve their critical problems in
various sales and marketing roles. Prior to

that, she was a practicing engineer, and earned her MBA from the
University of Denver.

Paul Carzola

Paul Carzola is a senior consulting engineer for
verification at Cadence. He received a Bachelor
of Science Degree in computer engineering at
Florida Atlantic University in 1995. Since then,
Paul has spent the last 10 years in functional
verification and the pursuit to finding effective
and powerful methods to verification while making

it easier and enjoyable to apply. For the past 5 years, he has served in a
consulting role in the area of functional verification methodology and
has seen first hand the power of a Coverage- Driven approach.

Contributing Authors in Order of Appearance xxv

YJ Patil

YJ Patil is a senior verification engineer at Genesis
Microchip, where he is responsible for managing the
verification of digital television (DTV) controller
ASICs. Prior to Genesis, Mr. Patil was a verification
engineer at several technology leaders including ATI,
Silicon Access Networks, and Philips Semiconduc-

tors. He was a board designer at Tektronix. Mr. Patil holds an MS in
software systems from BITS Pilani, India and BE in electronics and
communication from Gulbarga University, India.

Dean D’Mello

Dean D’Mello is a solutions architect at Cadence
Design Systems. He works closely with key custo-
mers worldwide to deploy advanced verification
technologies, and with R&D to plan, develop, and
introduce new methodologies and products. Prior to
Cadence, Mr. D’Mello held ASIC design and
verification roles at LSI Logic, Cogency Semicon-

ductor, and Celestica, and product and test engineering roles at IBM.
Dean holds a Masters of Applied Science (MASc) in electrical and
computer engineering, from the University of Toronto, Canada.

Steve Brown

Steve Brown is Director of Marketing for Enter-
prise Verification Process Automation at Cadence
Design Systems. He is a 20- year veteran of the
EDA verification industry and has held various
engineering and marketing positions at Cadence,

Verisity, Synopsys, and Mentor Graphics. He specializes in solving
engineering, management, and marketing challenges that arise when
new technology and products enter the market. He earned BSEE and
MSEE degrees from Oregon State University and has studied market-
ing strategy at Harvard, Stanford, Kellogg, and Wharton.

xxvi Contributing Authors in Order of Appearance

Roger Witlox

Roger Witlox joined Philips Research Labora-
tories in Eindhoven, The Netherlands in 1992,
where he has been working on optical coherent
communications systems and access networks.
Mr. Witlox was earlier involved in the develop-
ment of analog laser temperature and current

control system. In 2000, he joined the CTO organization at Philips
Semiconductors, where he was responsible for development and
support of an in- house verification tool. He has been responsible for
functional verification methodologies for hardware IP and was a
member of the Verification Technical Work Group of the SPIRIT con-
sortium. In 2004, he joined the DSP Innovation Center and is currently
focusing on DSP subsystems, both specification and verification.

Ronald Heijmans

Ronald Heijmans studied at the Hoge School
Eindhoven and graduated in 1992 in the field of
“Technical Computer Science.” He started his career
as a PCB designer at the Philips Research Laborato-
ries. Later, Mr. Heijmans focused on DSP algorithm
design and applications for multichannel audio and
speech coding. In 1999, he became a verification

engineer at ESTC Philips Semiconductors, where he focused on DSP
core and subsystems. Currently, as a verification architect, Ronald is
defining a new environment including new verification methodologies.

Chris Wieckardt

Chris Wieckardt has been a verification
engineer at Philips Semiconductors, Adelante
Technologies and NXP Semiconductors in
Eindhoven, The Netherlands since 2000.
Prior to Philips, Mr. Wieckardt was a digital

design engineer at Océ Research and Development, Venlo, The
Netherlands.

Contributing Authors in Order of Appearance xxvii

Dr. Laurent Ducousso

Laurent Ducousso has over 20 years of experience in
digital design and verification. In 1994, Dr. Ducousso
joined STMicroelectronics as the verification expert
on CPU, microcontroller and DSP projects. Since
2000, he has managed the Home Entertainment Group

verification team. Prior to STMicroelectronics, he was engaged in
mainframe CPU development at Bull S.A for 8 years. Laurent holds
a Ph.D. in computer sciences from Paris, France.

Frank Ghenassia

Frank Ghenassia is Director of the System Plat-
forms Group in the HPC (Home, Portable, and
Communication) sector at STMicroelectronics. Mr.
Ghenassia focuses on IP/SOC verification, architec-
ture definition, platform automation, and embedded
software development based on high- level modeling

approaches. He joined STMicroelectronics in 1995 and has worked
on OS development, software debuggers, and system- to- RTL design
flow activity. Mr. Ghenassia received his MS in electrical engi-
neering in Israel.

Dr. Joseph Bulone

Joseph Bulone manages a team that provides central
services in hardware emulation to STMicroelectronics
divisions. Joseph defines and provides hardware-
accelerated platforms for IP/SoC verification and
software development. He joined the Central R&D
division of STMicroelectronics in 1989, and was

initially involved in the design of ATM chips. He began working on
hardware emulation in 1993. He has been in charge of video chip
validation, and hardware software co- design. He holds a Ph.D. in
microelectronics from the Institut National Polytechnique de Grenoble,
France.

Part I
Analyzing and Driving

Verification: An Executive’s
Guide

Chapter 1
The Verification Crisis

If everything seems under control, you’re not going fast enough.
– Mario Andretti

The time is at hand! This book proposes to revolutionize verification
engineering! “It’s rote work,” you say? Can’t be done!? Well get
ready to be surprised and even mystified!

What is Verification?
So what is verification? Simply put, it is a process that ensures the
implemented device will match the product intent defined for the device
prior to sending the device for manufacturing. Notice the selection of
words in the previous sentence. It didn’t mention the device specifi-
cation, or the device requirements. Every document that corresponds to
the device (such as a specification or requirements list), is merely a
translation of the actual intent of the device functionality as originally
conceived. This is an important distinction. All the methodologies in
this book will have at their heart, the goal of ensuring that the device
does what it was intended to do, not necessarily what it was docu-
mented to do. Quite frequently, the first defects we find are speci-
fication issues, not design defects. Figure 1.1 shows the many
translations of intent.

4 Metric-Driven Design Verification

Product Intent
Marketing, Business, Customers

Architecture Intent
System Architects

Napkins,
Memos,

Formalized
Requirements

Documents

Specification

Design Intent
Design Engineers

Software Intent
Software Engineers

Verification Intent
Verification Engineers

Hardware/Software and
Verification

Figure 1.1 Intent Translation

The Crisis

The size of designs is increasing. Market window size is decreasing.
These factors combine to create a rapidly increasing cost of failure
(Table 1.1).

As designs become more and more complex and market windows
become tighter and tighter, verification becomes crucial. More and
more devices are now going directly into the mainstream consumer
market. The mainstream consumer expects all features of a device to
work properly. If they don’t the consumer will return the device, get
their money back, and go with a different supplier. There’s really no
room for error.

Rapidly shrinking silicon geometries have been both a blessing and a
curse. It is possible to build more powerful, feature rich devices than
ever before. However, along with all the new features comes an explo-
ding multidimensional space for verification requirements.

1 The Verification Crisis 5

Table 1.1 Design Size, Market Window, and Cost of Failure

Design size

Market window

Cost of failure

For example, consider a “simple” digital sound output port. The port
can output sound in mono or stereo mode. In stereo mode, the sound
frames can be transmitted with either the left channel or right
channel first. Sound can be output in 8- , 12- , 16- , or 24- bit resolution.
The gap between sound samples can be 0, 1, or 2 bits. In addition to
all these specifications on the format of the output stream, the port
can also be configured to use five different FIFO sizes for buffering
input data and can run in either polling or interrupt- driven mode.
This simple output port has over 240 functional combinations that
must be verified. If even one of these combinations fails and it’s
the combination that our key customer had to have, we’re facing a
costly silicon respin.

Respins are expensive at more than a million dollars a piece, but in
today’s accelerated business atmosphere, there are even worse
repercussions. A nonfunctional first tape- out can result in the loss of
a job, the closing of a company and the ruin of a career. Clearly, it’s
important to get verification right the first time. By getting verifi-
cation right the first time, companies can save millions of dollars on

6 Metric-Driven Design Verification

respins alone. Then they can make millions more by hitting their
market windows on time.

The Need for Metric- Driven Processes

So, how do we solve the verification crisis? How do we ensure that
our designs will go out “first silicon clean” every time? With a
cultural change and newly available technology, it’s actually quite
simple.

For years verification has been done in a rather haphazard manner.
Each company or project team within a company slowly assembled
their own best practices. Some project teams developed very success-
ful, rigorous processes for making sure verification was implemented
and managed correctly. Others executed on their verification projects
in a haphazard way. Still other teams did verification merely as an
afterthought as the project started to wind up. The process- oriented
teams had far higher success rates.

Effective project closure tracking was also frequently ignored. Here
again, many disparate techniques have been documented and used.
Some of these techniques included bug rate tracking, code coverage,
functional coverage, and everyone’s favorite: “Tape it out because
management said so!”

By objectively tracking important metrics, management
can allocate resources more effectively, better predict
the schedule of the project, and ensure a higher quality

of the final product. Management and engineering productivity can
be further enhanced if these objective metrics can be measured
automatically. This book will show how to define what metrics are
important to measure, how to measure those metrics automatically,
and how to most effectively utilize those metrics to streamline
engineering processes.

While other disciplines have reaped great rewards in
productivity and effectiveness by moving to well-
documented, accepted and established methodo-
logies, ASIC design engineering is one of the few

1 The Verification Crisis 7

engineering activities where a “cowboy” mentality is still accepted
and even expected! In other areas where large teams integrate work
flows, processes have been defined for years. Accounting has the
FASBs, manufacturing has ISO standards. No one argues about the
format of a ledger entry, they worry about more important things
like the actual analysis of the financial data. No one argues about
where the header block on an architectural drawing should be placed
or on the size of the page. They concentrate their effort on the actual
architectural design.

Let’s look at a small example of why tracking progress is so crucial
to any activity. Imagine that on your rare Sunday off, you sit down
in front of the TV, cold beer in hand and turn on your favorite
sporting event. As the players enter the field, we hear the commen-
tators begin to speak.

“Jack, someone will definitely win this game today. Both teams
have entered the field with that goal in mind, and we feel it will
definitely happen.”

“Folks we’re really not certain what two teams are playing today, but
we’ve got someone looking into it and we’ll have that information to
you as soon as we can.”

“After all, what is important is that the teams play often and hard,
right? We expect to see lots of really hard effort put in today.”

“Ah, and the players have begun. There’s a really tall player (Fred
get me his name), carrying the ball down the field. Oh! He’s been
tackled by a rather small chap (Fred, we’re going to need another
name!) And, the team is up and carrying the ball again! Did anyone
think to find out how many yards to first down? Folks, we’ll get you
more stats right after this commercial break!”

When we watch sports, we want to know everything about the game
from the first instant, right? We don’t give the teams respect for
beginning the game immediately and running around willy- nilly
with the ball when we know nothing about the game, do we? Then

8 Metric-Driven Design Verification

why are we so content to execute on our engineering projects in this
manner?

When we watch our sporting event, we expect to have a multitude of
information at our fingertips:

� The amount of time left in the game
� The score of the game
� Progress toward the current goal
� The history and statistics of the player that most recently

carried the ball

As the coach of the team, we’d expect to have all the information
above and much more like:

� What to do when the opposing team does something we

don’t expect, like fumbling the ball
� The statistics of each of the players on the opposing team
� A plan for how to counter each of the other team’s plays

Home Visitor

Quarter

Time Remaining

1 The Verification Crisis 9

� Information about how our players match up vs. the players
on the other team

� How each player on both teams is playing vs. their statistics

To accumulate this data, we’d employ an entire coaching staff to
gather and analyze data both before the game and as the game prog-
ressed. Before the game, we’d build a plan of what we expected to
do based on available data. As the game progressed we’d constantly
adjust our plan to work with the situation at hand. And that’s exactly
how we should be executing our engineering projects.

But maybe we don’t have to hire that pricey coaching staff. Maybe
we can automate that part.

The message so far has been:

� Verification is hard! Brutally hard!
� If we’re going to successfully verify today’s designs we have

to move to a process- oriented approach.
� Process isn’t enough, we also have to be able to measure the

output of our processes and use that information to adjust our
direction.

Using emerging technology, we’re going to show you how to move
to a metric- driven, process- oriented verification flow. In Chapter 2,
we’ll outline exactly what these processes look like and how we
measure and use process metrics. And don’t worry, we will replace
all those coaches with an automated system that will automatically
capture and analyze metrics.

Now we’ll spend a little bit of space explaining the logistics of the
book so you can get the most out of it.

The Verification Hierarchy of Needs

In the year 1943, Maslow unveiled the hierarchy of needs to the
world. This hierarchy described a set of basic needs that humans
strive after. Each new level of needs can be reached only after the

10 Metric-Driven Design Verification

level before it has been attained. Figure 1.2 shows the verification
hierarchy of needs.

Like Maslow’s hierarchy, each additional level can only be fully
attained and appreciated once the levels below it are realized.

The first level of the verification hierarchy is visibility. Visibility is
paramount! Without it, the verification team is quite literally stumb-
ling around in the dark. As we discussed above, without metrics that
provide data about our engineering processes and visibility into those
metrics, we’re lost! Visible metrics make our schedules predictable
and give us a measure of the quality of the device under verification.

Figure 1.2 The Verification Hierarchy of Needs

The second level of the pyramid is automation. Once we have a
handle on what we’ve planned to do, and how we will measure our
execution, the next question is how do we do verification more
productively? The first answer is to automate verification processes
where possible. By automating verification processes, we increase
the productivity of our engineers and free them up to tackle harder
tasks. We also increase the predictability of the schedule by reducing
the time required to complete the automated tasks. Finally, because
our engineers have more time, they can improve the quality of the

Visibility & Process

Automation

Horizontal Re-use

Vertical Re-use

Technology
Re-use

1 The Verification Crisis 11

device by performing verification tasks that may have been left out
of the schedule otherwise.

Visibility is required to automate our processes. We will show how the
metrics themselves can be used to automate several tasks. Metrics are
also required in some cases to gauge the effectiveness of automation.
For example, without metrics, constrained random stimulus offers an
effective method to explore the state space of a device for bugs that
would not have been found otherwise. But, when we use metrics in the
form of functional coverage in conjunction with constrained random
stimulus, we have a much more powerful automation tool that not only
explores our state space, but also automatically creates our testcases!

Once we have automated our processes, and we’re no longer
spending our mental effort doing rote work, we start to look at how
we can reuse our creative work. That will be the subject of the next
book in this series! First things first!

Respond

Plan

Measure

Execute

Chapter 2
Automated Metric-Driven Processes

Introduction
Historically, many verification projects have been performed as an
afterthought. They have been understaffed, under- planned, and under-
executed. With today’s complex design, it is widely agreed that
verification consumes up to 70% of the total effort for a typical
design project.

There are several issues that plague verification efforts. Among them
are:

� Insufficient planning. High- priority issues are brought to

light in the last stages of the project causing huge upheavals
in resources and scheduling.

� Lack of visibility. Projects are frequently tracked by human
updates. This is also known as “death by status meeting.”

� Scheduling issues. Why is it a well- excepted axiom that the
last 20% of the work will consume 80% of the available
time? Shouldn’t the last 20% of the effort take 20% of the
time?

� Inefficient use of tools. The EDA industry has promoted
verification solutions for years. It’s well accepted that the
verification effort required 70% of the total design cycle
effort. Why hasn’t this number changed in years in face of
the advanced solutions available?

14 Metric-Driven Design Verification

In this chapter, we’ll outline the basis for a methodology that will
resolve these issues. This methodology is based on automated metric-
driven processes. The methodology is enabled by a new class of tools
called metric- driven process automation tools, or MPA tools.

Processes are an important start to our solution. By using repeatable
processes we can improve the predictability of our projects. A frame-
work for modeling processes will be described.

But, processes aren’t enough. Without visibility into the workings of
these processes we are unable to track progress and respond to issues in
an efficient manner. We’ll describe how to identify metrics that should
be tracked during the life of the process. These metrics will give us
constant insight into the process’s progress.

Even well- defined processes and metrics that track their progress aren’t
enough. The nature of the metrics is also important. The classic 20/80
situation described above is an example of a metric- driven process that
doesn’t work. In this case the metric is an engineer’s opinion of the
completeness of a given task. The tracking mechanism is a query from
management. In order to be useful metrics must be objective rather than
subjective and be capable of being automatically captured and tracked.
We have to remove human interpretation and reporting of metrics from
the equation.

MPA tools facilitate the methodology described. They facilitate the
planning phase by enabling users to define what metrics will be used
while planning. They can control our verification engines removing that
tedious time consuming task. They automatically capture the metrics
that are produced by the verification engines. Finally, they offer
analysis engines that can process the metric data. The analysis engines
can be used in conjunction with the execution control aspects of MPA
tools to completely automate some processes.

Using automated metric- driven processes, we’ll be able to better
plan our work defining exactly what needs to be done in a manner
that’s measurable. These automated measurements will allow us to
efficiently respond to issues as they arise. We’ll even be able to use

2 Automated Metric-Driven Processes 15

these metrics to further automate some of our manual processes and
increase our operational efficiency.

Next we’ll define the process model that will be used throughout the
book.

The Process Model
For the purposes of this book, a process is any activity that can be
modeled using the flow shown in Figure 2.1.

Respond

Plan

Measure

Execute

Figure 2.1 Verification Process Model

The flow consists of four phases. These are planning, execution, mea-
surement, and response.

The first step of the process model is planning.
This is where we determine what needs to be
done and how to measure that it was in fact done.
To efficiently execute a process, we need to know
what the process hopes to achieve. Next, we need
an objective way of knowing that the process has
in fact achieved its goal.

Once the process is planned, we need to make it
happen. That brings us to the execution phase of
the model. During the execution phase, we will act
on our plans. Using our available human resources
and verification engines, we’ll create the verifi-
cation environments we specified during planning.

P

E

M

R

P

E

M

R

16 Metric-Driven Design Verification

These environments will create objective metric output that we’ll use to
gauge the completeness of the plan. We will use MPA tools to control
the execution engines.

As our engines operate we need to measure the
effectiveness of our efforts. During the planning
phase we specified the metrics that will be used to
gauge this effectiveness. The MPA tool will auto-
matically gather the specified metrics from our
execution engines. Some typical metrics include:

� RTL code coverage
� Functional coverage
� Assertion coverage
� Software code coverage
� Error messages and types
� Revision control information

The user specifies how these metrics are to be annotated back to the
plan during the planning phase.

In the response phase, the user acts on the
results of the data analysis performed during the
measure phase. This analysis will be used to
adjust existing plans and to facilitate or in some

The Automated Metric-Driven Process Model
Let’s take a look at the process model in an automated metric- driven
process. We’ll discuss each phase individually outlining how each
phase is related to the others and how each phase is enhanced by the
new methodologies discussed in this book and by the application of
MPA tools.

P

E

M

R

P

E

M

R

cases fully automate other verification processes.
For example, if bugs were found where none

were expected using random testing, the user could respond by
updating the verification plan to include explicit functional coverage
that targets the areas where the bugs were found.

2 Automated Metric-Driven Processes 17

During the planning phase we will determine what
needs to be verified and what metrics will be measu-
red. There are many stakeholders in the verification
process. Each stakeholder tends to have different
concerns about the device. They each have their

Figure 2.2 Stakeholder Perspectives

Verification concerns that are raised late in the project are one of
the main causes of schedule slips. To avoid this, we involve all
stakeholders in the planning phase. The planning technique used in
the MPA methodology may be a bit different than what you are used
to. It is a collaborative brainstorming effort. All stakeholders in the
project participate in the planning session. During the session, the

P

E

M

R

Planning

own perspective on verification. Some of these per-
spectives are shown in Figure 2.2.

Will we get it all
done with

quality and on
time?

How do we
minimize

resources &
lower costs

How do we
improve

response time
to changes?

System Validation
Engineers

Verification
Engineers

System
Engineers

HW Design
Engineers

Exec & Project
Manager

Embedded
Software

Developers

What bugs
are in my

logic?

Do hardware
and software

work
together?

Are system
performance
and features
as expected?

Does my
firmware work

on the HW?

How does it
react to
corner
cases?

Planning

Metrics

18 Metric-Driven Design Verification

device is discussed on a feature basis. The designer presents his
section of the device based on what it does. Each participant is
encouraged to contribute their concerns about a given feature to the
discussion. Along with each concern, the participant works with the
group to identify a metric that will guarantee the concern was add-
ressed.

Each of these metrics must be objectively and automatically measu-
rable. By using objective metrics, we remove human subjectivity
from the equation. We know the exact status of our processes based
on the metrics we have defined. By using only metrics that can be
measured automatically, we ensure that we will always have real
time status. Tracking process metrics is no longer an “extra” task
that may get lost in the shifting priorities of a hurried project.

Let’s illustrate capturing concerns with a few examples. A design
engineer is concerned that his DMA engine be exercised in such a
manner that the input and output FIFOs are full simultaneously. An
assertion that checks for this condition will provide a metric that
addresses the concern (assertion coverage).

A verification engineer is concerned that every feature is exercised
in every possible configuration mode. This concern can be addressed
using functional coverage as a metric.

A firmware engineer is concerned that the DMA engine can move
the appropriate OS code from the ROM to the instruction memory.
This concern can be addressed using functional coverage as a metric
as well. Each of these metrics can be captured automatically from
our verification engines.

The output of the verification planning session is an executable
verification plan. This plan will be used as the basis for determining
what tasks should be executed as the project proceeds.

An example verification plan is shown on the next page. The con-
cerns of the design, verification and software engineers are captured
for a DMA engine in our device. The top half of the page shows the

2 Automated Metric-Driven Processes 19

plan as it is written during the verification planning interview. The
bottom half of the page shows the plan as it appears after it has been
read into an MPA tool and the coverage metrics have been collected
from several runs of our verification engines (Figures 2.3 and 2.4).

Features

1.1 DMA Engine
The DMA engine moves blocks of data between the various
memories of the device and the external memory. The engine is
configured via address mapped configuration registers.

Design
cover: /sys/rtlcodecover/dmamod/*

Verification
cover: /sys/verif/dma/regreadwrite/*

Software
cover: /sys/verif/dma/scenario/instructionmove/*

Figure 2.3 Verification Plan Editing View

Figure 2.4 Verification Plan Executable View

As mentioned above, the planning sessions are collaborative. The value
offered by the resulting plan is directly proportional to the number of
stakeholders that actually attend the session. With the hectic pace of

Features

DMA Engine 66%

Design 88%

Verification 90%

Software 20%

The DMA engine moves
blocks of data between the
various memories of the
device and the external
memory. The engine is
configured via address
mapped configuration

i t

20 Metric-Driven Design Verification

chip design projects, it is often difficult to arrange for all stakeholders
to attend these sessions. It should be stressed that these planning
sessions are extremely valuable. They enable all the other techniques
that will be described in the MPA methodology. Because of the colla-
borative nature of these sessions, several device bugs have been
found while planning, without writing a single line of verification
code.

Management Planning

As the various stakeholders are outlining their technical concerns,
management contributes by defining priorities for completion and
schedule milestones. These priorities and milestones are captured in
the plan as well. Priorities can be incorporated into the verification
plan as weights on metrics corresponding to the key- prioritized fea-
tures of the device. Most MPA tools allow milestones to be defined as
well so that metric status data can be displayed along with defined
milestones to make tracking the completion of the project more
convenient.

For more information on defining weights and milestones see the
chapter on planning in Part II of the book. It is very important to
have appropriate reporting mechanisms organized and functioning
before the project begins. Two of the key aspects of these reports
should be the priority of different objectives and the milestones that
are defined for their completion.

Visibility of the Plan

One of the key requirements for metrics to actually be useful is
visibility. That means visibility to everyone. In order for projects to
come in on time, we need to make it impossible for anybody to
“massage the status” either intentionally or not. Objective metrics go
a long way in this direction.

All available metrics should be made visible to all the project’s
stakeholders. By making these metrics available, we enable each
contributor to creatively solve problems as they arise because they
are aware of them. How many postmortems have you been to where
an engineer said “Well, if we’d known what was happening, we could

2 Automated Metric-Driven Processes 21

have executed the following process to solve the problem?” Wouldn’t
it be nice if you never had to hear that statement again?

By automatically collecting objective metrics and allowing each of
the users to personally interpret them we avoid two classic problems.
First, automatically collected metrics do not create a resource drag on
the project. No more walking from cubicle to cubicle to collect the
daily status. No more interminable status meetings. We let computers
do what computers are good at. As they run our simulation and
emulation jobs, they automatically collect the metrics that we define
as important. Second, we remove error- prone humans from the report-
ing process. The metrics collected are exactly and only the metrics
created by our verification tools.

As discussed we’ll use automatically measured metrics to gauge the
completeness of all our processes. In the execution phase, we’ll
capture those metrics from our verification engines. For an in- depth
explanation of the planning phase see Part II.

Execution

During the planning session, we captured every
concern and corresponding metric in an execu-
table verification plan. In the execution phase,
we’ll execute on those plans. There are two types
of execution: implementation execution and verifi-
cation engine execution. Implementation execu-
tion refers to the efforts made by engineers on the

project team to implement environments that will run on the verification
engines. Engine execution refers to the actual runs of the verification
environments produced by the engineers.

Using a metric- driven approach allows us to improve the predictability,
productivity, and quality of both implementation and engine execution.
There are two opportunities that are presented by using metric- driven
processes. First, using automatically capture metrics, we can get a better
perspective on how our processes might be improved. Knowledge is
power. Second, using automatically captured metrics, it is possible to
fully automate some processes and remove the human element.

P

E

M

R

22 Metric-Driven Design Verification

The execution phase at first glance seems simple, and it should.
During this phase, we execute on our plans. During the execute and
measure phases, our MPA tools will annotate the measured metrics
specified in the verification plan to the metrics defined in the plan.
Our verification plan will always have the latest status of all defined
metrics embedded in the document. The flow for collecting metrics
is shown in Figure 2.5.

Executable
Plan Job Spec

MPA Tool

Verification Engines

Formal Simulation

Emulation Acceleration

Metrics

Figure 2.5 Automating the Execution Process

Using the MPA tool, we start our verification engines. The MPA
tool automatically tracks the metrics specified in the plan by extrac-
ting them from the outputs of the engines. These extracted metrics
are then annotated back into the plan.

It is possible to detect problems earlier and better utilize resources
because metrics can now be automatically captured and analyzed.
With some advanced planning, teams can begin to solve a number of
problems by collecting data that illuminates both the causes and
solutions of those problems.

2 Automated Metric-Driven Processes 23

Using metric- driven concepts some time consuming, tedious pro-
cesses can even be fully automated. Generation of detailed debug
information is a good example of this.

Simulation time is valuable and should be used efficiently. After
implementing or changing a design, the engineering team runs large
sets of simulation testcases, (called regressions), to ensure the design
has been implemented correctly. Once the current implementation is
deemed acceptable by passing these testcases, more implementation
can begin. Because of the iterative nature of this implementation
process, it is desirable that these test suites execute as quickly as
possible. To increase execution speed, most of the debug features of
the simulator are turned off. Typically the only failure or debug
information available in this mode is a brief message describing the
failure and the time that it occurred.

However, to completely debug an issue, an engineer needs much
more information, such as waveforms that illustrate the signal levels
of interest around the time the issue was detected. To gather this
information, an engineer will manually sort through the failing test-
cases determining which testcases produce unique failures in the
shortest amount of time and then run these simulations again with
the waveform generation feature of the simulator turned on. This
process is shown in Figure 2.6 with the human intervention points
clearly marked.

By using our MPA tools to automatically analyze our captured metrics,
we can completely automate this process. The technique is simple. The
MPA tool captures the various unique failure types and then determines
which testcases produced the failures in the shortest amount of time.
Then, because the MPA tool has access to all the information required
to start a given testcase, it can restart the pertinent simulations with
debug features such as waveforms turned on. As a result, our engineers
no longer spend hours analyzing failures and then waiting for the
simulations to rerun.

24 Metric-Driven Design Verification

Start Testcases

Simulations Execute
Failure Results

Analyze Failures Debug Simulations
Execute

Debug Failures

Figure 2.6 Manual Debug Process

They simply start the simulations once and then analyze the failure
data as soon as the simulations complete as shown in Figure 2.7.

Start Testcases

Simulations Execute
Failure Results

MPA Tool
Analyzes Failures

and Re-Runs
Simulations

Debug Simulations
Execute

Debug Failures

P

E

M

R

Figure 2.7 Automated Debug Process

2 Automated Metric-Driven Processes 25

Measurement

The measurement and analysis phase of the process
is one of the most automated phases, and provides
the bulk of the power offered by the MPA metho-
dology. During the measurement phase, the MPA
tool automatically captures and stores all the
metrics that the project team has declared during the
planning stage. MPA tools such as Cadence’s

Incisive Enterprise Manager ship with built- in metric- capture
mechanisms for popular verification tools such as simulators and
emulators. These capture modules automatically scan the output of
simulator tools and extract common metrics such as failure messages,
the amount of CPU time consumed by the simulator and the amount of
real time consumed by simulator execution. By building easy to
implement metric capture plug- ins, engineering teams can capture any
other objective metrics from the outputs of their verification tools.

Using these metrics, MPA tools can automate standard analysis
tasks as well. Using the example from the execution section earlier,
from our simulation runs, the MPA tool captures:

� Failure type
� Failure time
� Testcase name

These metrics might be stored in a table (Table 2.1).

Table 2.1 Simulation Failure Metrics

Testcase Name Failure Time Failure Type
Dmaengine1 1000 FIFO pointer assertion
Dmaengine2 200 FIFO pointer assertion
Dmaengine3 1025 FIFO pointer assertion
Dmaengine4 257 Bad read/write pair

Using these metrics, the MPA tool can first group on the failure type
and then sort on the failure time to determine the shortest set of
testcases that can reproduce all the failures with debug information
turned on. The results of this analysis are shown in Table 2.2.

P

E

M

R

26 Metric-Driven Design Verification

Table 2.2 Failure Metric Analysis Results

Testcase Name Failure Time Failure Type
Dmaengine2 200 FIFO pointer assertion
Dmaengine4 257 Bad read/write pair

Engineers can define and store automated analysis tasks such as the

Response

During the response phase, our human resources
re- enter the picture to do what they are best at:
develop innovative solutions to improve the status
of the project as revealed by our automated metrics
capture and analysis.

Using our MPA tools for automated analysis, we can get project
status such as that shown in Figure 2.8.

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

2/
3/

20
08

2/
10

/2
00

8

2/
17

/2
00

8

2/
24

/2
00

8

3/
2/

20
08

3/
9/

20
08

3/
16

/2
00

8

3/
23

/2
00

8

3/
30

/2
00

8

4/
6/

20
08

4/
13

/2
00

8

4/
20

/2
00

8

Project Week

C
od

e
C

ov
er

ag
e

Figure 2.8 Project Wide Code Coverage vs. Project Week

P

E

M

R

one above. The MPA tool can then automatically perform these tasks
where appropriate.

2 Automated Metric-Driven Processes 27

With this information, our management team might judge that every-
thing is on track. However, the data in Figure 2.9 tells a different story.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
2/

3/
20

08

2/
10

/2
00

8

2/
17

/2
00

8

2/
24

/2
00

8

3/
2/

20
08

3/
9/

20
08

3/
16

/2
00

8

3/
23

/2
00

8

3/
30

/2
00

8

4/
6/

20
08

Project Week

Co
de

 C
ov

er
ag

e

Figure 2.9 DMA Code Coverage vs. Project Week

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2/
3/

20
08

2/
10

/2
00

8

2/
17

/2
00

8

2/
24

/2
00

8

3/
2/

20
08

3/
9/

20
08

3/
16

/2
00

8

3/
23

/2
00

8

3/
30

/2
00

8

4/
6/

20
08

0

500

1000

1500

2000

2500

Code Coverage
Lines of RTL

Figure 2.10 Code Coverage and Number of Lines of Code

28 Metric-Driven Design Verification

We can see that there was a large reduction in code coverage for the
DMA block on 3/16. By itself, this should be a red flag that indicates
action needs to be taken with respect to the DMA block to avoid
placing the schedule at risk. Using other automatically capture metrics,
we can gain even more insight into the project status.

In Figure 2.10, we can see that the reduction in the total code cove-
rage was caused by a large increase in the number of lines of code
implemented. This may have been caused by a new feature being
added to the design. In such cases, management can now make
judgments regarding the cost of adding the feature based on real data
rather than impressions or opinions. While decision should always
be based on real data, it is much easier to follow this axiom when the
real data is readily available.

Project Management Using Metric-Driven Data
Hundreds of books have been written on project management. Every-
one has their favorite methodology. Almost all these methodologies
have one thing in common: the raw material for making decisions is
objective data collected from the execution of the project itself. This
data is exactly what metric- driven methodologies provide. Rather than
trying to expound on our favorite project management methodology
here, we’ll respect your choices. This book tells readers how to deter-
mine what metrics to measure and how to objectively and automatically
gather those metrics to enable your project management methodology
of choice.

As mentioned earlier, the paramount task before the readers is to
make sure that their metrics are properly utilized. As part of the
planning process, the management team should identify all status
reports that they will need to properly evaluate and manage the
project. These reporting mechanisms should be setup and tested
before the project begins. This small amount of effort early in the
project will enable all the gains discussed throughout the remainder
of the book.

2 Automated Metric-Driven Processes 29

What Are Metrics For?
Knowledge is power! Our metrics will increase the power of the
project team in several ways. First, metrics give the team the chance
to react to dynamic requirements changes. As resources and require-
ments change, subsequent changes in measured metrics allow us to
detect and react to these changes. Second, as illustrated above, metrics
can be used to completely automate some processes.

Tactical and Strategic Metrics
In this book, metrics will be placed in two broad categories. The first
set of metrics is tactical metrics. These are metrics that give the team
data about where the project stands at present. Tactical metrics, as
their name implies, are used to make tactical decisions during the
course of the project. Examples of tactical metrics are the number
of testcases that failed in the most recent regression, the percentage
of coverage completeness on the serial block, and the number of
assertions that activated successfully for each module in the chip.

The second set of metrics is strategic metrics. These are frequently
referred to as historical metrics. Historical metrics may start out as
tactical metrics, but in this context, they are tracked throughout a
project and then used to make strategic decisions at a later stage of
the project, or in a follow- on project that reuses aspects of a previous
project. Historical metrics include the number of issues found in a
module during development, the rate at which coverage closure was
reached on a project, and the frequency that a module was revised
over the course of a project.

Historical metrics can also be used to shape training and career
development plans for members of the engineering team. They can
be used in much the same way that professional athletic coaches use
game statistics to determine where to focus the next weeks’ practice
sessions. We’ll talk more about this in the verification management
chapters.

30 Metric-Driven Design Verification

Summary
In this chapter we have illustrated the evolution of and justification
for a metric- driven verification process. This process can be divided
into four steps as shown in Figure 2.11.

Respond

Plan

Measure

Execute

Figure 2.11 The Verification Process

We will use this diagram throughout the book to help illustrate what
portion of the process is being described. We looked at some of the
key points of each of these four phases, and showed how the MPA
methodology offers improvements in each phase.

Chapter 3
Roles in a Verification Project

Introduction
In this chapter we will describe the various roles in a verification
project. How each role fits into a metric- driven verification process
will be illustrated. We’ll discuss what metrics each contributor
produces and consumes and how they can best analyze the metrics
that they consume.

Verification teams have a number of diverse roles requiring some-
what disparate skill sets. These roles are described below. One
person may serve in more than one role.

You may be surprised to see some of the roles that are included
below. However, each of them contributes something vital to the
efficient completion of the project. Depending on the company
culture and various aspects of the design project, all of the roles may
not exist in every project. In many projects, several roles are rolled
(pun intended) into a single individual that prefers a given title. This
explains the preponderance of companies that “don’t have a verifi-
cation team.” They of course have one. The designers would just
appreciate it if you didn’t call them so.

The Executive
Yes, executives actually do have a role in design and verification
engineering! The size and nature of this role will vary based on the size
of the company and the style of the executive. For small startups, the
executive may be very involved in their companies’ only revenue

32 Metric-Driven Design Verification

generating project. Larger, more- established companies may have
hundreds of design projects forcing the executive into a necessarily
more diluted role on a project by project basis. In any event, the execu-
tive is often the largest individual stakeholder in a given design project.

The important thing to note for our work is that even the executive
should be able to view an appropriate set of aggregate metrics from
every design project.

At the executive level, the metric of most interest and importance is
the completion status of the project. There are three main compo-
nents of completion status. They are:

� Implementation completion
� Verification coverage
� Activity indicators

Implementation Completion

The implementation completion metric is a measure of how much
of the planned work is implemented. For example, if one hundred
testcases have been defined for a given part of the design and 80 of
them have been completed, then the implementation completion
metric for that task is 80%. MPA tools can provide roll- ups of
metrics so that the executive can first view results for the complete
project and then hierarchically investigate results for each portion of
the project individually (Figure 3.1).

Figure 3.1 Implementation Completion

Implementation 40%

DMA 60%

testcases 100%

cover groups 20%

USB 30%

DSP 30%

3 Roles in a Verification Project 33

Verification Coverage

Implementation completion is a measure of how much of the speci-
fied work has been completed. Verification coverage is a measure of
how well that completed work is verifying the design vs. the speci-
fied verification concerns. In verification planning design and verifi-
cation engineers, firmware and application engineers, and other
interested stakeholders meet and determine what features of the chip
must be tested and how. The verification environment is the vehicle

Figure 3.2 Verification Coverage

Activity Indicators

An activity indicator tells the executive where the team is spending
their time. Are they implementing design or verification environ-
ment code? Are they writing testcases? Are they debugging failures?
Metrics that are produced by revision and issue- tracking systems and
processed by an MPA tool can provide this information. The data
can be grouped by engineer or team to determine what activity is con-
suming most of the team’s time, or it can be grouped by design
block to determine what stage of development a given block is in.

Marketing
In- bound marketing is primarily focused on benefits to customers and
requirements of customers in different market segments. Marketing

Verification Coverage 63%

DMA 42%

polled/interrupt 50%

Transfer size 33%

USB 38%

DSP 77%

that will be used to verify the chip. Verification coverage is a measure
of how many of the required cases have been verified (Figure 3.2).

34 Metric-Driven Design Verification

metrics are largely the same metrics that interest the executive. They
may be organized differently however. Except in companies where
marketing takes on the program management tasks as well, market-
ers may be less interested in views of project data from an engineer
or engineering team perspective. Marketing will be more interested
in looking at metrics with respect to the important customer- driven
features of the device. The exact same data can be displayed in a
different perspective so that marketers can track progress against
their most important features.

Design Manager
The design manager leads the design team in their implementation
of the device. Depending on the size of the project team, the design
and verification managers may be one and the same person.

Metrics Used

Design- specific metrics are of interest to the design manager. Among
these are:

� Number of assertions written per design module
� Trend of revisions made per design module
� Number of comments inserted per design module
� Issue detection rate
� Code coverage closure

Verification Manager
The verification manager serves as the verification project coordinator
and facilitator. The verification manager need not be the technical
lead as well. However depending on the size of the project and the
size of the team, the verification manager often serves as the technical
lead.

As the key custodian of verification data, the verification manager
should be familiar with all the other stakeholders of the chip project and
their perspectives. It is necessary for the verification manager to be
familiar with the design, verification, and production processes. The

3 Roles in a Verification Project 35

verification manager should also be aware of how each stakeholder is
making use of the data and metrics created by their team. This
includes stakeholders at all levels of the hierarchy. A familiarity
with how executives such as the CEO and Business Unit Director
are making use of the metrics produced by the verification team is
just as important as knowledge of what the verification team mem-
bers doing with them.

The verification manager will make use of both tactical and strategic
metrics as the project proceeds from the planning to the implemen-
tation to the execution and closure stages. They will look at a more
abstracted version of the tactical metrics that tend toward the stra-
tegic. Some of the metrics used by the verification manager are:

� Utilization of verification tool resources
� Closure rate for coverage metrics
� Number of test scenarios created and running
� Issue detection rate
� Module revision rate

These metrics will be used to make short- term strategic decisions
about how to apply verification resources to best meet the schedule
and quality requirements for the project.

Verification Architect/Methodologist
The verification architect lays out the abstract descriptions of the
various verification environments and defines the verification metho-
dology for the project. The recommendations of this contributor will
have a profound impact throughout the project. They are of key
importance during the planning and execution stages.

While the architect may not do much of the actual verification coding,
they are one of the key contributors to the verification project. Whether
or not the device is completed on time with high quality depends on
good architecture and methodology as much as any other aspect of the
project. This individual should be very experienced, and have a
command of most if not all aspects of verification technology that are
to be used in the project.

36 Metric-Driven Design Verification

During the planning stage, the architect influences what activities
will be executed as the project proceeds. There are several types of
metrics that the methodologist will use to perform their job. These
are:

� Historical reuse metrics
� Historical engineering resource metrics

The information that the architect/methodologist will call on include:

� Available IP and VIP
� Available engineering resources
� Available verification technology
� Historical metrics attached to VIP/IP
� Historical metrics attached to similar projects

The verification methodologist should work closely with the verifi-
cation team to determine what verification technology should be
used taking several things into account. Early in the project, histo-
rical metric data may be of the most use to the verification methodo-
logist. By using this data, they can determine what technologies, IP, and
methodologies can be best deployed to complete the project within the
desired schedule.

As the project proceeds, the architect’s role may not be as intense as
during the planning stages, but they still serve a very valuable pur-
pose. They can help steer the verification team members to efficient
implementations through mentoring activities such as code reviews,
and consulting.

Design/System Architect
The design or system architect is interested in how the architecture
specified for the device is performing as real hardware is integrated
into the device. Checking that real hardware performance matches
architecturally planned performance is of particular interest to the
design architect. In addition to simply testing performance criteria,
an architect may also identify scenarios that place the system under

3 Roles in a Verification Project 37

stressful conditions. They will be interested in seeing that these
scenarios have been exercised. They can derive the coverage status
of these scenarios from functional coverage.

Some of the metrics used by architects are:

� Performance testing results
� Functional coverage

Verification Engineer
The verification engineer works on the day to day implementation
and iteration of verification environments. This is one of the most
challenging roles of the entire project (guess what the authors used
to do for a living!). In this role, it is not enough to be technically
literate with the given verification technologies. More than any other
role, the verification engineer is required to have a complete under-
standing of the operation of the device and how it is to be used in
systems.

The verification engineer is forced to make the switch from code
implementer to problem solver mid- stream in the project. The first
portion of the project will entail implementing in the most efficient
manner possible every kind of test that will exercise the device. As
soon as this activity is complete, the verification engineer then swit-
ches to intensive problem solving to determine what if anything is
wrong with the current execution of the design under the influence of
these test scenarios. In a typical project, this abrupt mindset change
will be required not once, but repeatedly as the project iterates from
block to unit to chip- and system- level activities.

The verification engineer makes use of most metrics in their raw
form. Some of the metrics used by verification engineers are:

� Functional coverage
� Assertion coverage
� Hardware code coverage
� Software code coverage

38 Metric-Driven Design Verification

� Revision control data
� Historical regression data
� Tactical regression failure data
� Historical VIP metrics
� VIP documentation
� IP documentation

These metrics will be used on a daily basis and efficient collection of
and access to them is essential to the verification engineer’s success.

Design Engineer
The design engineer has what might be considered the most res-
ponsible role of the entire project. They deliver the code that will
eventually become the device that is shipped to the customer in
return for revenue.

Design engineers consume many of the same metrics that verifi-
cation engineers do, but not always for the same reason. For example,
a verification engineer uses functional coverage information to deter-
mine where to steer random constraints so that more of the device can
be tested. A design engineer might use the same information to
determine how complete the verification effort is, or to determine the
set of testcases that best exercise a given portion of the design.

The metrics used by design engineers are:

� Functional coverage
� Assertion coverage
� Hardware code coverage
� Revision control data
� Historical regression data
� Tactical regression failure data
� Historical VIP metrics
� VIP documentation
� IP documentation

3 Roles in a Verification Project 39

Regressions Coordinator
A regression is a set of verification environment executions performed
to test the device. A verification environment execution can be any-
thing from running a formal verification tool, to running a dynamic
simulation, to running a hardware- based emulation.

The regressions coordinator is responsible for managing the regression
process. Their duties include managing software and hardware licenses,
and automating the execution of regressions and the analysis of the data
returned from regressions. Leading edge technology can help automate
several of these tasks. Depending on the size of the project and the
diversity and quantity of verification resource available, this role can be
a part- time responsibility.

Regression coordinators use a different set of metrics. They are
interested more in the overall flow of the project and less in project
specifics. The metrics they use are:

� CPU utilization
� Emulator/Accelerator utilization
� Software license utilization
� Coverage gained per regressions
� Issues found per regression

The first three metrics tell the regression manager whether the resou-
rces at their disposal are being utilized efficiently. The last two give
an indicator as to whether or not regression activities are effective.

Debug Coordinator
The debug coordinator is responsible for analyzing failure infor-
mation returned from regressions and then assigning those failures to
various design and verification engineers for debug. This position is
seldom a job in its own right. Frequently this duty is shared among
the verification team members.

The debug coordinator is primarily interested in failure metrics. Failure
metrics include:

40 Metric-Driven Design Verification

� Failure description
� The verification tool that generated the failure
� The time required to reach the failure
� The portion of the design in which the failure took place
� Revision control data

Summary
In this chapter we briefly outlined the responsibilities of each verifi-
cation stakeholder. We also looked at what metrics each stakeholder
uses and how they put these metrics to use.

In Chapter 4 we’ll present an overview of the activities that take
place in a typical verification project.

Chapter 4
Overview of a Verification Project

Introduction
This chapter outlines the flow of a typical verification project
(Figure 4.1). As a chip design moves through several developmental
stages as it evolves from a concept to a finished product. These
stages are:

� Marketing definition
� Architectural exploration and specification
� Block- level implementation and verification
� Integration verification
� Chip- level verification
� System- level verification

We’ll explore what tasks are performed at each stage, what metrics
provide visibility into the status of those tasks and who performs
them. As we describe each task, we’ll also mention various tools and
techniques that are available to execute the task. This chapter is
intended to be read in conjunction with the following chapter that
provides a deeper explanation of the various verification techno-
logies available.

Anand
Shona
Seema
2006

42 Metric-Driven Design Verification

Marketing Definition

Architectural Verification

Time

Block Verification

Integration

Chip Assembly

System Verification

 Figure 4.1 Verification Stages

Marketing Definition
In this stage, the business unit decides what features will sell the
device. Decisions are made based on a combination of customer
desires and engineering capabilities. The outputs of this stage are the
device features and the intended functionality of those features. This
is where product intent if first defined.

Architectural Verification
At this stage system architects perform simulation studies to deter-
mine what the optimal configuration of the system to be designed is.
This is often the first translation from the intent of what the device
will do to how it will be implemented albeit in very wide brush
strokes. The key output of architectural modeling should be a set of
architecture decisions embodied in a functional specification. Design
and verification engineers will use this specification to implement
the device and its verification environments.

Architectural verification can be done at all levels of device integ-
ration. Specific studies may be made at the block level for crucial

4 Overview of a Verification Project 43

portions of the device. Other studies may be made at the chip level
to determine, for example, if the communications architecture of the
integrated chip will offer sufficient bandwidth. As with other types
of verification, the engineers should consider how to reuse verifi-
cation environments across integration levels.

Some architectural studies such as communications bandwidth mode-
ling can be done with simple tools such as spreadsheets. For more
detailed studies, some level of simulation is used. Transaction- level
modeling (TLM) is used to simulate abstract models of the device very
quickly in software. TLM models are most often written in SystemC,
however they can be written in any behavioral programming language.

When using TLM simulations, the model can be verified using tradi-
tional simulation testbenches and assertion- based techniques. The
verification at this level is necessarily coarse. Only the details that
influence architectural decisions such as bandwidth capacity or
algorithm output are checked.

The metrics produced by this activity are:

� Functional coverage
� Assertion coverage and/or check coverage

Functional coverage is used to gauge the completion of the architec-
tural verification with respect to the scenarios that the project team
identified during planning. Assertion and checking coverage is used
to ensure that all checks that were defined are actually implemented
and have been exercised.

Careful planning and implementation of architectural verification IP
leads to many reuse opportunities. The reusable IP includes:

� Assertions
� Transaction- level architectural models
� Transaction- level testcases and testbenches

44 Metric-Driven Design Verification

Assertions used at the architectural level can be remapped to be used
for hardware verification at the block, chip, and system levels as
well. Reusing these assertions, we can verify that architectural assump-
tions are valid as the device moves closer and closer to the final
production stage.

The models of the device used to perform architectural studies are
frequently accurate enough to be used to check device behavior in the
later stages of verification. For example, suppose the architecture team
is determining how to split the various steps of a graphic decoder algo-
rithm between hardware blocks. They chose a partitioning as shown in
Figure 4.2.

Figure 4.2 Algorithm Partitioning

Each step of the algorithm will be done by an individual design
block and the design blocks will share a common communications
bus. The architects must determine if the bus has sufficient band-
width to support the traffic that flows from block to block without
interruptions. The block- level architecture of the device is shown in
Figure 4.3.

Figure 4.3 Block- Level Architecture

Header
Decode

Pixel
Creation

Pixel
Coloring

Bus

Header
Decode

Pixel

 Creation

Pixel

Coloring

Software Software Software

4 Overview of a Verification Project 45

To generate the data that will be transferred from block to block,
they will actually use a software model of the algorithm. The soft-
ware model will be partitioned in the same manner and embedded in
the transaction- level simulation models for each block as shown
in Figure 4.3. As the simulation executes, the software model will
create data and this data will be passed on the bus as transactions by
the hardware models. The architectural engineers can then check the
bandwidth usage vs. their assumptions.

When the actual design is verified, it will be necessary to check that the
design is producing the correct data for each step of the algorithm.
Rather than writing a new checking model, the verification engineer
can simply reuse the software models that were created for the TLM
simulations by embedding them in their verification models. In a
similar manner, streams of transactions that are developed for archi-
tectural simulations can be used to stimulate actual hardware devices
as well.

The tools most frequently used in architectural verification are
software simulators that use TLM level models. As actual hardware
blocks of the design (register transfer language, or RTL models) are
completed, TLM blocks can be simulated in the same environment
with them. Although emulators and accelerators are rarely used for
architectural modeling, TLM blocks can communicate with the
hardware blocks that are modeled by these technologies as well.

Block Verification

Once the system architects produce a basic block diagram
of the device and a functional specification, design engi-
neers begin to implement the hardware that will become

the device itself. Typically this hardware is created in a modeling style
called “register transfer language” (RTL). RTL can be created in a
number of modeling languages, including Verilog, VHDL, and System
Verilog. The RTL models created using these languages can be

� Formal assertion- based techniques
� Dynamic assertion- based techniques

simulated on software simulators, or accelerators and emulators. Verifi-
cation of these models may be done using:

46 Metric-Driven Design Verification

� Dynamic software simulation testbenches
� Emulator or accelerator testbenches

While some verification is performed by design engineers themselves,
the bulk of the verification at this and subsequent stages is performed
by verification engineers.

The key metrics used to track verification closure at this level are:

� Functional coverage
� Code coverage
� Dynamic assertion and/or checking coverage
� Formal assertion coverage

The key output of this type of verification should be a qualified block
design that is ready to be integrated with other blocks to create sub-
systems, or the complete chip itself.

Testbench Creation Design Verification Advanced Verification

Testbench Creation

Design Verification

Advanced Verification

Time

Dynamic Verification Only

Leveraging Formal Techniques

Figure 4.4 Schedule Savings Using Formal Techniques

Using formal verification tools (Figure 4.4), the designer can begin to
verify their block before any verification infrastructure is available
from the verification engineering team. This is a huge improvement.
Previously, there was often a delay in the schedule as the designer

4 Overview of a Verification Project 47

waited for a verification environment that could exercise their device.
With formal techniques, the designer can begin verification using
assertions (concise declarations of behavioral rules), as soon as they
begin coding their module.

Formal verification techniques are best aligned to blocks of control
logic as opposed to blocks of logic that perform data transformations
such as multipliers. Because they perform state space explorations,
formal verification tools are best suited to smaller blocks of logic.

As formal tools run out of steam, verification engineers use dynamic
simulation and testbenches to further verify the device. Simulation
testbenches simulate the actual operation of the device under test and its
surrounding environment. Using simulation, engineers can model input
transactions that stimulate the device as it will be exercised in a real-
world system. They can also monitor output transactions to check for
correct device behavior. Engineers can build streams of transactions
that model real- world scenarios. The simulator also allows the engineer
to monitor or drive any signal within the device.

Emulators and accelerators can be used to simulate block- level
models. However, this is not done frequently.

Integration Verification

Integration- level verification is perfor-
med to check that subsystems within the
chip work well together. As blocks are

qualified as viable by block- level verification, they are introduced
into integration- level verification. The key difference between integ-
ration and chip- level verification is semantic. At the chip level of
verification every block is included in the device model.

The completion metrics for integration- level verification are iden-
tical to those used for block- level verification. More attention is paid
to functional coverage at this level because the scenarios of interest
are more easily modeled and tracked using functional coverage.

48 Metric-Driven Design Verification

The verification technologies used are also the same. Far less formal
verification is done at this level as the design grows in size and
begins to outstrip the capacity of formal verification engines. The
assertions written for formal verification at the block level can be
reused here though.

Dynamic simulation is used prevalently at the integration level. Depen-
ding on the size of the integration, simulation performance may
begin to slow toward unacceptable levels. Integration is the first
level that most projects begin to consider using acceleration or emula-
tion technologies.

Testbenches written for integration verification can be reused for
chip and system verification. If a simulation testbench is to be used
in an accelerator or emulator, then special considerations need to be
made to ensure that it works in both on the simulator and the accele-
rator or emulator.

Chip- Level Verification

As mentioned above, chip- level verification is a
special case of integration verification with the entire
design present. This verification activity provides us
with the first indicator of quality for the overall
chip. At this level, simulations run significantly more
slowly, and more emphasis is placed on acceleration

or emulation. Firmware routines may be tested on the device at this level
of verification.

System- Level Verification
System- level verification tests the implemented device in an environ-
ment that approximates the target environment the production- level
device will be used in. In system- level verification, we verify that
the device will work with the actual firmware and software that will
be delivered with it and that the device will work in the presence of
typical transaction streams on its inputs.

Anand
Shona
Seema
2006

4 Overview of a Verification Project 49

The metrics used to track system- level verification are:

� Functional coverage of input and output transactions
� Assertion coverage
� Code coverage of firmware and application software

Less emphasis is placed on tracking functional coverage of scenarios
within the device. These scenarios are much easier to verify and debug
at the chip level of verification and below because of visibility and
speed issues.

Assertions can be loaded into both accelerators and emulators.
However, at this level they are typically not used as completion
metrics, but rather as tools to help speed debug once an issue is
found. These are the same assertions that were used at the block,
integration and chip level, and therefore have a very fine level of
detail. They are typically turned off until an issue is detected at the
system level. They are then turned back on in an attempt to isolate
smaller issues that may have led to the system- level failure. In this
manner assertions can help engineers isolate the root cause of system-
level issues much more quickly.

System- level verification can be performed at two different levels of
abstraction. It is typically performed using the complete design in
either simulation (very slow), or acceleration or emulation. System-
level verification can also be performed using a TLM simulator. The
same TLM model that was described in the architectural verification
section sometimes offers high- enough performance to allow very
early testing of real firmware and application software. The key to
success with a TLM model for system verification is to model at a
high- enough level of abstraction to not significantly impact the speed
of the simulator.

Summary
In this chapter we have given a brief outline of the various verifi-
cation activities. We have described each activity presenting the
metrics that are used to track the activity, the tools used to produce
those metrics and the participants who are responsible for comple-
ting the activities.

Chapter 5
Verification Technologies

Introduction
This chapter deals with the execution stage of the verification process
outlined earlier and shown again below. In the execution stage we run
our verification engines to verify the correctness of our device.

Respond

Plan

Measure

Execute

Figure 5.1 The Metric- Driven Process

The purpose of this chapter is to provide a high- level overview of
each of the verification engines or technologies. This overview of
each technology will include:

� Why to use the technology
� How the technology works

52 Metric-Driven Design Verification

�

� Who utilizes the technology
� What process metrics should be analyzed
� How the technology can be leveraged

There are many different verification technologies or “engines” avai-
lable. Each technology is suited to a given domain of verification
that other technologies may not be. There is of course some overlap
between these technologies.

Each of these technologies will be covered in more detail in Part III
of the book.

Metric-Driven Process Automation Tools
This is the class of tools that enables all of the methodologies and
concepts described in this book. These tools enable the “Plan, Execute,
Measure, and Respond” metric- driven process framework shown in
Figure 5.1.

Up until now, we’ve alluded to their capabilities. Here we’ll dive
into what they can do for you, how they work, how to utilize them,
and the various use models of these tools.

What they are Used for

MPA tools enable the simple four- step process infrastructure that is
described throughout this book: Plan, Execute, Measure, and Res-
pond. They provide an automated framework that allows the user to
capture the plan, control execution resources, measure the data or
metrics created by those resources and then through either automated
means, or human analysis and feedback to respond to the current
metrics produced by iterating the plan.

How to plan using the technology and what metrics should be
tracked

5 Verification Technologies 53

Planning
There are several types of planning that are
currently in use. The purpose of all planning
procedures is to document a course of action,
and plan how the device will be verified. Two
of the most used planning strategies are:

� Specification- based planning
� Feature- based planning

In a specification- based plan, the plan is created using the device
specification as the raw material. The specification is reviewed and
each point in the specification that is deemed important is recorded
in the verification plan along with some metric to judge the comple-
tion of verification of that point. Specification- based plans may
either be created by an individual and then reviewed by the team, or
created by the team in a collaborative effort.

The difference between a specification- based plan and a feature- based
plan is subtle, but important. Feature- based plans are always created in
a collaborative way. All the stakeholders meet to create the plan. When
we say all the stakeholders, we mean not only the verification and
design engineers for a given block of the design for example, but also
the firmware and application engineers, the system architects and even
the design and verification engineers for other portions of the chip.

Take a look at Figure 5.2. It shows the various intent translations
when moving from the original design intent to actual silicon. The
original product intent is documented and then translated by one or
more system architects into the architectural intent. This is then
documented into a specification where it is translated by the hard-
ware, software, and verification engineers of the project. By the time
the actual design and verification environments are created, they are
the products of at least three individual translations. By doing

Either type of planning can be done as a one- shot process or an
iterative process. In reality, planning will always be an iterative

P

E

M

R

collaborative feature- based planning, you allow the various trans-
lators to resynch their resulting translations vs. the actual intent.

54 Metric-Driven Design Verification

process. The circumstances of the project will change, people will
hire on or leave, features will be added to or removed from the
device, etc. The one- shot planning process attempts to account for
all aspects of the project up front and then adapt to changes as
necessary. It creates a “finished” document that will be ideally used
throughout the project to define what actions are to be taken and
how to track status.

Product Intent
Marketing, Business, Customers

Architecture Intent
System Architects

Napkins,
Memos,

Formalized
Requirements

Documents

Specification

Design Intent
Design Engineers

Software Intent
Software Engineers

Verification Intent
Software Engineers

Hardware/Software and
Verification

Figure 5.2 Product Intent Translations

An iterative plan takes these project changes as given from the start.
The team creates a “good enough” plan to get everyone working and
fully loaded. The team agrees that periodically (often every two
weeks) they will meet and update the plan. This planning methodo-
logy places a lighter load on the team initially and tend to promote
the survival of the plan. Because the team knows ahead of time that
the plan will change and that the plan will be modified frequently, it
tend to actually use the plan more often because it is more accurate.

5 Verification Technologies 55

More information on the planning process can be found in Part II of
this book.

Regardless of the planning strategy used, the MPA tool allows you
to capture the plan in an executable format. What’s an executable
format? This means the metrics that are to be measured to determine
the status of the plan’s execution will be automatically annotated
back into the plan. This means we have closed the feedback loop on
status tracking. Before MPA tools were available, the project team
wrote a plan and defined how to track the status of that plan. Often
the definition of success was implicit at best. In other words, the
team didn’t define a measurable metric for completion. They simply
said that the plan was complete when all the testcases were finished.
While this was simple, it was very subjective and very susceptible to
human error.

With MPA tools, we define what metrics define completion of a
certain aspect of the plan. The only qualifier to these metrics is that
they must be automatically produced by one of our execution reso-
urces. Examples of metrics that indicate completion are:

� 100% code coverage of a design block.
� 100% functional coverage of all block- level covergroups.
� 100% coverage of all designer defined assertions.
�

passed.

Usually a combination of all these metrics is used. The important
aspect is that each of these metrics can be automatically measured.
The term “executable plan” means that the measurements can be
automatically gathered and attached to the appropriate portion of the
plan so that you only have to view the plan to know the objective
status of the project.

The excerpt (Figure 5.3) from the definition view of an executable
plan serves as an example.

100% of testcases defined for the block have been run and

56 Metric-Driven Design Verification

AHB Interface Block
 Code Coverage
Cover: /sys/ahbintf/codecover
 Covergoal: 100%
 Transaction Type Coverage
Cover: /sys/ahbintf/transtype_*
 Covergoal: 100%

Figure 5.3 Verification Plan Definition

The executable view would look something like Figure 5.4.

The job of the MPA tool with respect to executable plans is to find
the metrics specified in the definition view and display them
appropriately in the execution view.

Execution

During planning, we define not only what is to
be done and how to measure completion, but
also how the tasks are to be executed. From an
MPA point of view, this means we define what
execution engines will be used to exercise our
hardware design and verification environments.
These engines might be simulators, emulators,

linting tools, or any of the other various tools that are at the disposal
of hardware/software/verification teams. The only requirement that
MPA places on these tools is that they must be controllable via an
automated mechanism (a scripting language for example), and that
they produce metrics that can be automatically obtained by the MPA
tool.

P

E

M

R

Figure 5.4 Executable View

AHB Interface Block 85%

Code Coverage 98%

Transaction Type Coverage 73%

5 Verification Technologies 57

Depending on the MPA tool, different levels of refinement will exist.
At a minimum, the tool allows the user to specify what execution
engines are to be run and to also specify where the resulting output of
the tool will be deposited so that the MPA tool can extract metric data.

The general execution flow of MPA tools is shown in Figure 5.5. The
user supplies a set of job specifications that the tool interprets to
control the various execution resources at the user’s disposal. The tool
then automatically parses failures and coverage metrics from the

Executable
Plan Job Spec

MPA Tool

Verification Engines

Formal Simulation

Emulation Acceleration

Metrics

Figure 5.5 MPA Execution Flow

Respond
An MPA tool will provide two frameworks for
response. The most common framework relies on
human intervention and supplies a set of analysis
tools. The simplest analysis tool is the annotated
verification plan itself. By reviewing the anno-
tated plan, the user can determine what tasks have
and have not been completed. Based on this

analysis, the user might respond by shifting resources within the
project, or changing the scope of the project. A more refined MPA tool

P

E

M

R

output of these tools and annotates those metrics back into the exe-
cutable plan.

58 Metric-Driven Design Verification

might allow the user to graphically explore what functional coverage
was missing. By performing this analysis, the user can prepare reports
that engineers can use to decide which testcases to write next.

The automated response infrastructure is less common, and a bit
harder to use, but very powerful. Using this mechanism, a user can
write small programs that read in the metrics harvested by the MPA
tool, automatically analyze these metrics to create new job specifi-
cation files, and then use these job specification files to automatically
restart the execution engines to obtain better or more refined metrics.
For example, an application can be written that first groups simulation
failure types based on error messages. These grouped failures could
then be sorted to find the simulation that has the earliest occurrence of
each failure type in terms of simulation time. Finally, the application
can create a job specification file that runs these simulations again
with waveform creation turned on. This saves the verification engi-
neers the time consuming step of resimulating failed simulations to
produce useful debug information.

Now that we’ve looked at the methodology enabling engine, let’s take
a look at the other verification engines.

Modeling and Architectural Exploration
Why Perform Architectural Modeling?

Architectural modeling is in fact the first activity of design verifi-
cation. It seeks to determine if the conceived architecture of the chip
will provide the desired functionality and performance required by
the product intent for the chip as established by the end customer.

Planning for Architectural Modeling

Verification planning consists first describing
each feature of the device and then describing
exactly what it does, and how to know when it
did it.

Architectural modeling tend to be more concer-
ned with performance trade- offs as opposed to

P

E

M

R

5 Verification Technologies 59

functionality. At this level of abstraction, it is assumed that the device
will behave in a functionally correct manner. The key verification task
here is to verify that the device has the appropriate resources organized
in the appropriate manner to perform the feature correctly. Some exam-
ples of architectural “whats and whens” are:

� The device receives input data from the peripheral bus at an
average bandwidth of no less then 64 KB per second. This
average should be consistent over a time period no smaller
than a tenth of a second (in other words, shipping no data for
a second and then shipping 128 KB of data in the next
second isn’t good enough).

� The device caches intermediate data from the steps of the
algorithm in no more than 64 KB of memory while flushing
the memory in between separate executions of the algorithm.

Architectural modeling, like any other verification activity requires
three dimensions:

� Determine what stimulus needs to be provided to the model
to test architectural assumptions (stimulus).

� Determine how to measure that the stimulus and scenarios
were in fact driven to the model (coverage).

� Determine how to check that the model functioned as inten-
ded (checking).

In short, architectural modeling is no different than any other
verification activity. The level of abstraction is simply elevated to
system- level concerns.

How It Works

Architectural modeling helps architects to make
decisions regarding the basic structure (architec-
ture) of the chip. This is done by providing a very
fast, abstracted simulation platform that allows the
architect to model the behavior of the finished

P

E

M

R

device at a high- functional level without the neces-
sity of specifying all implementation details.

60 Metric-Driven Design Verification

Architectural modeling has been rather well specified by the OSCI
standard. There are several levels of abstraction that can be applied
to the process. The higher the level of abstraction, the faster the
underlying simulator will execute. The levels of abstraction defined
by the standard are:

� Algorithmic level
� Programmer’s view
� Programmer’s view + timing
� Cycle accurate level
� Register transfer level

In addition to exploring questions that relate to the hardware
architecture of the device, explorations can be made into the device
firmware and application software spaces as well. Architectural
simulations can run fast enough to give software engineers the first
taste of the device that they will be programming for. This can allow
software engineering activities to begin much earlier in the design
cycle. Traditionally, these activities begin fairly late. By starting
earlier in the design cycle, software architects can identify key issues
in the hardware that make software construction difficult and request
that those issues be resolved while it is still relatively easy.

Architectural modeling provides a fast simulation platform for model-
ing architectural and software experiments by abstracting out all ele-
ments of the design that are unnecessary for these studies. Given the
key parameters that define a bus’s bandwidth, the architectural simula-
tion can model traffic over the bus without taking into account how the
bus will be implemented in actual hardware, or the low- level details of
the drivers that will feed the bus. The simulator no longer has to spend
processor time modeling unnecessary information and can run faster.

SystemC. SystemC is built on top of C++ and encapsulates certain
design concepts such as time and signals. By using SystemC, the
architect does not need to concern themselves with modeling these

There are a number of programming languages that can be used
for architectural modeling. Perhaps the most popular of these is

5 Verification Technologies 61

low- level concepts and can simply make use of the constructs that
are already defined by the language.

Other languages have been used for architectural modeling over the
years including Verilog, VHDL, plain C/C++, and e. In addition to
these languages, some architectural studies are carried out using
readily available tools such as spreadsheets.

What Metrics to Track

architectural modeling is to determine if the
selected architecture for the device under design
will be able to provide enough functionality for
the desired feature set.

The verification plan essentially lays out a list of metrics that must
be measured to satisfy each architectural study. By tracking these
metrics to completion, we are ensured that the appropriate metrics
have been considered and that the proper architectural trade- offs
have been made.

Architectural modeling metrics will consist mostly of functional
coverage metrics. Functional coverage provides information about
what scenarios have been exercised in the modeled device.

If there are multiple architectures that are being evaluated, then the
metrics for each architecture should be tracked independently. Using
this information, architectural decisions can be re- examined later in
the project, or as the project is modified for further revisions.

Architectural models often contain complete or almost complete
descriptions of the final device’s behavior and correct operation. As
such, they can be used as reference models for the later simulation and
emulation stages of verification. One key historical metric that should
be tracked is the number of modeled behaviors. The methodology for
using each modeled behavior should be documented.

P

E

M

R

Because it is a form of verification, the goals

tracked in a verification plan. The main goal of
of architectural modeling activities should be

62 Metric-Driven Design Verification

The functional coverage of architectural modeling should track
various architectural concerns including, but not limited to:

� Performance
� Bus traffic bandwidth
� Algorithm studies and selections
� Memory size selections

Any concern that is to be resolved by an architectural study should be
tracked by functional coverage to ensure that the study was in fact
completed. Tracking the coverage is not enough however. In addition
to ensuring that the study was completed, we need to track that the
necessary architectural decisions were made using the resulting data
and how those decisions were made. Consequently, another artifact or
metric that should be tracked is documentation of decision evaluations
with specific links back to the recorded functional coverage metrics
and results.

Functional coverage metrics should trend toward 100%. Architec-
tural studies should be re- evaluated after every change of the
device’s architecture. For example, when a device peripheral is
added or removed, all architectural study simulations related to the
bus that the peripheral uses should be rerun.

How Architectural Modeling can be Leveraged
The stimulus, coverage and correctness models developed for
architectural modeling can be reused throughout the project. As

tural modeling can be reused for checking the correctness of hard-
ware models as well. Transaction- based stimulus can be reused in a
properly architected verification environment as well. Transaction-
level modeling also allows architectural coverage definitions to be
reused.

By reusing checks and coverage from the architectural stage, the
verification team can perform a sanity check of the architectural
assumptions as they are gradually translated into actual hardware.
By performing these sanity checks after each block is completed and

mentioned in Chapter 4, the correctness models used for architec-

5 Verification Technologies 63

after each new level of integration, catastrophes caused by incorrect
architectural assumptions can be avoided through early detection.

The architectural model is often used by software developers to
develop the first cut of the system’s firmware. Because of their high
level of abstraction, these models can run fast enough to provide
useful results for software developers.

Assertion-Based Verification
Why Use Assertions?

The sooner bugs are spotted in the design, the cheaper they are to
fix. It has been shown that the cost of fixing a bug in a design
increases exponentially with time.

For example, look at the design shown in Figure 5.6. It can be seen
that the DMA block moves data for the DSP, LCD driver, and the
PWM DAC. The DSP can control the operation of the DMA block.
If bugs are found in the LCD driver at the chip integration level, we
have to investigate not only the LCD driver, but also the DMA
block, and the DSP.

PWM DAC LCD
Driver

DSP

DMA Memory

Figure 5.6 Assertion Example

64 Metric-Driven Design Verification

First we would verify that the LCD driver was doing the correct
operations based on the control data it received. We would then
check the DSP to make sure that it was correctly driving the DMA
engine. Once again, we find that there are no problems. Finally, by
the process of elimination, we check the DMA engine and find the
bug. So, after checking three hardware blocks, and one piece of DSP
software, we finally arrive at the root cause of the bug.

In contrast, if we had caught the bug at the block level, we would
have investigated only one hardware block. With assertion- based
verification that’s exactly what we’ll do.

How Assertions Work

Assertions can be easily used to test block- level
functionality at the block level where it is still
easy to fix. Assertions are simple Boolean or
temporal checks that are easy for both design

 The FIFO write signal can never be
asserted when the FIFO full signal
is asserted.

Temporal assertions are slightly more complex because they can
utilize timing structures. An example of something a temporal asser-
tion might be used to check is:

When the request signal is asserted,
the grant signal must be asserted
between 10 and 15 clock cycles
later.

Assertions can be written in design languages such as Verilog,
VHDL, and SystemVerilog. That makes them easy for designers to
write. They can also be written in more verification centric
languages such as e, property specification language (PSL), and

P

E

M

R

and verification engineers to write. An example of
something a Boolean assertion would check is:

5 Verification Technologies 65

SystemVerilog Assertions (SVA) making them easily accessible to
verification engineers as well.

There are two aspects to any verification issue. They are control-
lability and observability. As was shown above, assertions and block-
level verification certainly improve design visibility and subsequently
reduce debug time. However, the design must still be exercised via
testbenches and testcases to actually verify the functionality that the
assertions were designed to check. That means that someone still has
to write some kind of a testbench and testcase to fully verify the
device even at the block level.

However, there is a class of tool that can eliminate even testbench
creation and testcase writing. It makes block- level assertion- based
verification even more effective. These tools are typically called
formal verification tools. They use formal proof engines to prove
that a given block of hardware can never violate an assertion. These
formal tools work best on small blocks of hardware because the
complexity of the resulting proofs that must be solved increases
exponentially with design size. They also work best on blocks that
contain mostly control logic such as state machines as opposed to
blocks that are used to transform data such as multipliers.

module that contains viable design code, the designer can start to
prove their assertions. Think of the value here. The designer is
writing checks for their own blocks and receiving instantaneous
feedback about the viability of their design choices. They’re
catching bugs in the design almost the instant that they are created.
Actually, if they use the planning techniques outlined in Part III,
designers can catch many bugs the instant they are created!

In order for formal assertion engines to solve their proofs, designers
need to tell the engines what behavior is allowed at the inputs of
their device and what behavior will never take place. The formal
engines will then use this information to simplify the mathematical
problem that they have to solve.

These formal assertion checkers can be used even before there is
a testbench available for the device. As soon as there is a design

66 Metric-Driven Design Verification

For example, in the request grant scenario described above, the block
may have been designed with the assumption that no two requesters
would be allowed to request the block at the same time. The designer
would write an assertion called a property or assumption at this level
to convey this information to the formal engine. It would read
something like:

asserted at a time.

As we begin to integrate blocks of the design, our formal engines
will quickly be outstripped by the designs complexity. So, is that all
we get out of our formal processes?

Not quite. The properties that bounded the input space in formal
analysis are in fact rules that the integrated blocks must follow at the
unit, chip and system integration levels of verification. By telling the
simulation tool to treat the formal properties as dynamic assertions,
we have automatically added a number of useful checks to our
verification environments without our verification engineers having
to write one line of additional code.

The picture gets a little brighter still. Remember that complex debug
cycle to determine that the DMA block was actually at fault? Well,
we’re bound to still get a few of those. As we move up in integration
levels, we typically turn off assertions to enhance simulation and
emulation performance. Now, when we find the same bug our first
step will be to turn on all our block- level assertions. Sure enough,
we find when we resimulate that the DSP software utilized the DMA
in a manner that wasn’t expected and forced a piece of the hardware
to violate one of the initial design assumptions. Rather than tracking
through three hardware blocks and a software block, our designer
merely turned his assertions back on and was led straight to the
problem.

To summarize, we have our design engineers checking device
behavior very early in the design cycle when it’s very cheap to fix
bugs. They don’t have to wait for verification engineers to create

Only one request signal may be

5 Verification Technologies 67

testbenches or testcases for them. And, in some cases, not only can
the design engineer check functionality, they can prove that the
functionality will always work based on their assumptions. Those
same assumptions can serve as additional checks that the various
blocks of the design play well together when the design is promoted
to higher levels of integration. Finally, even at the chip and system
level where we hope all is well in our individual blocks, if it’s not
we can re- enable our assertions and use them to provide precious
debug information.

What Metrics to Track

Now we know what value assertions can provide,
but how do we track that they are being imple-
mented efficiently during the project? There are a

During verification planning, the designers iden-

tify pieces of functionality that can be verified using formal analysis.
We can automatically track the status of those defined assertions.
This information can be used in conjunction with revision control
information in two ways.

First, we should see the assertions move to a proven state at roughly
the same rate that we see the number of lines of code for the given
design module increase. If there are spikes in the size of the design
module vs. the number of proven assertions, that doesn’t necessarily
mean there is a problem. Development style varies from engineer to
engineer, and some engineers like to code larger portions of their
design before starting to test. However, if we see the design block
declared complete and there are still no proven assertions as defined
in the verification plan, then there is a red flag that bears checking.

Second, every assertion of a given block should be reproven every
time the block is modified. If the assertions aren’t reproven, bugs
caused by the code modification can slip through.

P

E

M

R few objective and heuristic metrics that can help
us out.

68 Metric-Driven Design Verification

As we begin to move into simulation where dynamic assertions will
be used, there is another metric to check. Dynamic assertions are
only valuable if the functionality of the device that the assertion
checks is actually exercised. All assertions can be divided into a
qualifying portion of the assertion, and the actual check itself. Let’s
look at our temporal assertion example again.

When the request signal is asserted,
the grant signal must be asserted
between 10 and 15 clock cycles later.

The qualifying portion of the assertion is that the request signal was
asserted. The check is that given the qualifying condition, the grant
signal must be asserted properly.

We need to actually track that the assertion’s qualifier was exer-
cised. Assertion coverage tools can be used to automatically track
this information. If the qualifier is never exercised by the regression
suites, then they need to be enhanced to create the desired stimulus.
There is one caveat here. It might be determined that the assertion
was never checked because the device in fact does not operate in a
manner that ever stimulates such behavior.

Finally, there is a heuristic metric that is of most use in projects
where verification planning is not used. That metric is simply the
proportion of lines of assertion code in each design module vs. the
number of lines of design code. It is similar in nature to the old
software heuristic of requiring that twenty percent of the lines in a
given software module should be comments documenting the code.
This metric provides a rough feel for whether or not engineers are
properly utilizing the available assertion- based verification tools,

cussed here.
although it is by no means as objective as the other metrics dis-

5 Verification Technologies 69

Who Utilizes Assertions
From a tactical standpoint, designers make the
most effective use of assertions. They can use
their intimate knowledge of the underlying design
to quickly code these small checks. The rewards,
that some portions of the design are “proven”
correct and need not be further verified and that
bugs are found while they are still easy to fix,

provide suitable motivation to utilize assertions.

Verification engineers utilize assertions at the boundaries of design
blocks to reap tactical rewards on the current project and to garner
large strategic rewards in future projects. These verification- based
assertions check the rules for communication between design blocks.
When verification engineers write these assertions, they are creating
an independent contract that the disparate authors of adjacent,
communicating design blocks must adhere to. Tactically speaking,
integration of design blocks becomes much easier as communication
issues are caught in the initial stages of integration. Because these
verification assertions are independent of the design implementation,
they can be reused from project to project, either traveling with a
given design block, or being used as an implementation contract
when new design blocks with the same communication protocols are
created.

How Assertions are Leveraged

Design- based assertions can be tactically leveraged beyond block-
based verification. At the integration, chip and system levels, these
assertions can be reactivated to provide valuable information that can
greatly enhance debug speed.

Verification or protocol assertions can be leveraged strategically
across projects. These assertions can be reused either with existing
design IP as it moves from project to project, or on new design IP
that must conform to the given protocol.

Formal- based verification requires the definition of assertions that
define boundary assumptions. These assertions define the legal input

P

E

M

R

70 Metric-Driven Design Verification

behavior for a block. They can be reused as dynamic assertions when
the block that was formally verified is integrated with the adjacent
block that drives its inputs. In this manner, it is easy to find outputs
from the adjacent block that incorrectly drive the originally verified
block.

Simulation-Based Verification
Why to Use Dynamic Simulation

Formal assertion- based verification is great for proving that block-
level control logic works. Assertions also allow us to define complex
Boolean and temporal checks easily. However, once these checks
have been defined, their qualifying conditions must be created. If
these assertions are not formally proven we must use dynamic
simulation or emulation techniques.

Simulation is a software technology that allows engineers to fully
model the behavior of a semiconductor device. The device can be
modeled at a fraction of its actual speed and the input and output
waveforms are analyzed for proper behavior.

By using simulation- based testbenches, verification engineers can
create complex scenarios to test the functionality of various features
of the device. Using high- level behavioral programming languages,
verification engineers can express these complex scenarios in a
concise manner.

Several software debug and analysis tools have been developed for
the simulation arena. These allow engineers to view signals within
the simulated device as if they had the actual device and were testing
it on a workbench.

How Simulation Works

Simulation- based verification consists of three
steps. The designer develops a model of the
device in an HDL language such as Verilog,
VHDL, or SystemVerilog. In parallel, the verifi-
cation engineer develops a testbench for the

P

E

M

R

device. The testbench is used to instantiate the

5 Verification Technologies 71

There are two broad classes of simulation testcases. These are
usually denoted as directed and random testing. Directed testing is
carried out in much the same fashion that software is written. The
engineer sits down and writes a procedural description of a test
scenario that should be run on the DUT. With a directed testcase, the
engineer can create exactly the test scenario that is desired. For
simple testcases, directed testing is perfect. The engineer can easily
create a scenario that simulates the device and checks for proper
behavior. However, when complex timing relationships are invol-
ved, writing directed testcases can become quite difficult. Once a
testcase is created, a subsequent change in the design timing can
render the testcase useless. In short, an engineer can create exactly
the scenario they want with a directed testcase, but possibly not for
very long, and they only get the scenario they want.

Random testing, or as it is more properly called, constrained random
testing makes use of randomness to automatically create desired
scenarios and to create scenarios that are legal, but that were not
specified in the verification plan. There are two primary values to
this type of testing.

First, the complex testcases mentioned above can actually be
generated automatically. The engineer creates a test environment
that randomly drives stimulus to the DUT. They also create mecha-
nisms that detect the desired scenarios. These monitors are called

all the desired scenarios were created. If there are scenarios that are
not created, the engineer constrains the stimulus to create more
favorable stimulus.

The second reason for using constrained random techniques has to
do with the rapidly increasing complexity of today’s designs. As the
number of features of a device increases, the number of operational

device (create a model of the device in the computer’s memory), and
then drive the device’s inputs and read the device’s outputs.

functional coverage groups. The engineer then runs multiple simu-
lations using the randomly created stimuli and checks to see that

72 Metric-Driven Design Verification

combinations of the device increases exponentially. It has become
impossible to exhaustively test all the states of the device. Verifi-
cation efforts are usually constrained (no pun intended) to the most
important configurations of the device. Random testing will test the
device in manners that are legal (via constraints), but that were not
originally specified in the verification plan. This can lead to the
detection of bugs in the DUT where no one ever thought to look for
them.

What Metrics to Track

There are two key metrics used to track the pro-
gress of dynamic simulation activities. These are
code coverage and functional coverage. Code
coverage measures how many times each line of a
design description has been executed. Functional
coverage is defined by the verification engineer
and measures how many times a specified scena-

rio has been executed.

By itself, code coverage can tell the design engineer if all their code
has been exercised. This is certainly a necessary condition for good
verification, but by no means a sufficient one. The fact that every
line of code has been executed does not imply that all the function-
ality of the device has been exercised.

But, consider code coverage data in conjunction with functional
coverage data. This provides a whole new level of confidence. There
are four possible scenarios that are illustrated below.

If we have high- functional coverage and high- code coverage, then
probably life is pretty good. There could be one problem here, but it
is unlikely. The design engineer could have not implemented exactly
the same portions of design code that the verification designer
implemented no functional coverage for. Another way to say it
might be that the design and verification team were not aware that
new features had been added to the device. This unlikely (?) event
can be prevented by tracking both these metrics to the verification

P

E

M

R

5 Verification Technologies 73

plan and making sure that the team in charge of feature definition
has visibility into that document.

What about the other cases? What if code coverage is high, but
functional coverage is low. This could indicate that stimulus for all
the functionality of the device had not been created. It could also
indicate that portions of the design corresponding to the missing
functional coverage have not been implemented yet.

What if the code coverage is low, but the functional coverage is
high? It could be that portions of the functional coverage are not yet
implemented. It could also indicate that there are design structures
that offer no actual functionality. Perhaps a feature was cut that the
verification team was aware of, but the feature has not yet been
removed from the device.

By taking two metrics that were readily available, we went from a
simple good bad analysis (code coverage alone) to an analysis that
begins to shed light on what is actually going on.

Mixed-Signal Verification
Why to Use Mixed- Signal Verification

It’s an analog world. The real- world (ignoring quantum mechanics
and string theory) produces a rich continuum of values. The digital
world operates on ones and zeroes. In order for interesting digital
applications to work on real- world data, the two must meet. That’s
where mixed signal simulation comes into play.

Planning for Mixed- Signal Verification

From the digital point of view, planning for
mixed- signal verification is exactly the same. The
analog portion of the problem adds a few new
twists however. Now in addition to considering
what a device feature does, the engineering team
must consider the environmental conditions the
device itself lives in. Planning must take into

P

E

M

R

74 Metric-Driven Design Verification

temperatures. In addition, the plan should also account for the
different component description “decks” that describe the different
corners of the silicon manufacturing process.

Digital blocks are frequently not only the recipients of data from
analog blocks, but also control how the analog block functions. For an
example, see Figure 5.7. Here an analog preamp feeds an analog to
digital converter that supplies input data for the rest of the digital
domain.

A/D
Converter FIFO

Digital Gain Control

Figure 5.7 Digital Control of the Analog Domain

Note that the gain of the preamp is determined by a control signal
supplied by the digital domain. When planning verification it is
important to check all combinations of the digital and analog
domains that affect each other. For example, the environment shown
above should verify the different operating temperatures, in combi-
nation with the various gains that can be provided to the preamp
block.

How Mixed- Signal Verification Works

Analog simulation can be performed in much
the same manner as digital simulation. Engine-
ers construct a description of the circuit based
on the actual components within the circuit
instead of the synthesizable behavioral con-
structs used for digital logic design. These

P

E

M

R

account the analog behavior of the device at different operating

5 Verification Technologies 75

circuit models are then instantiated into an analog simulator where
the actual operation of the circuit can be simulated in a variety of
operating conditions with a variety of input stimulus.

Depending on the level of abstraction, analog simulation is much
slower than logic simulation. Historically this has resulted in fewer
testcases being run and little coverification between the analog and
digital domains.

However, with increasing design complexity both in the analog and
digital domain, it has become essential to move to a metric- driven
coverification approach.

For more information on how analog/digital coverification is imple-
mented, see the corresponding chapter in Part III.

What Metrics to Track

Trends in mixed- signal verification are tracked
with the same techniques used for tracking archi-
tectural or simulation status. One key difference
is making sure to keep analog metrics such as
manufacturing deck and operating temperature in
mind.

Acceleration/Emulation-Based Verification

Why to Use the Technology

As more of the various parts of a design are integrated, simulations
run more slowly. There are speed and memory space limitations that
are imposed on simulators by large designs. Ultimately, simulator
performance can slow to such a level as to be useless. For example,
when simulating the complete chip for an MP3 decoder, it can take
up to three days just to decode a single frame of an MP3. One MP3
frame is not long enough to be heard by the human ear.

P

E

M

R

76 Metric-Driven Design Verification

Planning for Acceleration and Emulation

Acceleration and emulation are typically used for
system- level verification. With that in mind, the
planning process is tilted toward the chip- level
integration engineers, the firmware engineers and
the application engineers. From a chip- level inte-
gration engineer’s point of view it will be impor-
tant to make sure that the chip as a whole comes

to life. The chip should behave correctly coming out of reset and the
various blocks should be able to communicate. There is less
emphasis on the correct behavior of each feature of each block of the
device because it is assumed that this has been verified in an earlier
stage of verification using dynamic simulation and/or assertions.

The firmware engineer will need to check the code that will execute
on the device and provide basic functionality for the higher level
application code. Firmware engineers sit squarely between the
hardware design and software application worlds. Planning from a
firmware point of view will focus on such issues as whether each
firmware module has been executed (software code coverage), and
whether certain hardware corner cases were encountered during the
execution of the firmware (did each type of allowable interrupt
occur during peripheral initialization?).

Application engineers are interested in verifying that the device
works with real- world application code in the target system that
customers will use. These engineers will be interested in exercising
the device using in- circuit- emulation (ICE) to attach it to real- world
target systems. For applications, verification planning will be
focused on tracking that each application was run in each legal
configuration of the device with a variety of real- world system topo-
graphies.

How the Technology Works

When simulation performance is no longer accep-
table, many organizations turn to emulators and
accelerators. Emulators and accelerators are used
to test a device in much the same way that

P

E

M

R

P

E

M

R

simulators are. Engineers download the same
device definition that was used for the simulator

5 Verification Technologies 77

Emulators and accelerators are similar in their operation and perfor-

can actually plug into the target system that the real device will be
used with. This allows engineers to verify the emulated device as part
of the real- world system that the production device will eventually
live in. Accelerators are typically somewhat easier to use and are best
suited to using the same testbench that was used in simulation with no
connections outside the accelerator hardware. These are only the
sweet spots. Of course, emulators can be used in a targetless environ-
ment and accelerators can be used for ICE.

This higher speed does come with a few limitations. Emulators and
accelerators are much more expensive than software simulators.
They typically require more initial setup effort than software
simulators. It is also typically harder to extract debug information
from these tools.

Who Utilizes the Technology?

The performance provided by these solutions

both with and without their target firmware and
application software. Emulators and accelerators
often offer the first chance to verify the hardware/
software system as a whole. Because these systems

offer real- world execution speeds and debug access, they are often used
by software teams after being setup by the design and verification teams.

P

E

M

R

onto the emulator or accelerator. While simulators are software appli-
cations, emulators and accelerators are specialized hardware solutions.
This specialization offers great performance gains. Typical emulators
and simulators run anywhere from ten to one thousand times faster
than a simulator.

mance benefits. There is one key difference between the two how-
ever. Emulators are best suited for ICE. Using ICE, the emulator

makes them ideally suited to system- level veri-
fication. They are used to verify entire chips

78 Metric-Driven Design Verification

What Metrics to Track
As with the other verification technologies,
coverage is one of the key metrics to track when
using emulation and acceleration. The coverage
metrics used change a bit on these platforms
however. Code coverage is no longer used. Func-
tional coverage is used to track system- level
concerns when using emulators and accelerators.

Concerns such as which software methods have been called are
tracked. While signal- level functional coverage can still be used, there
are performance vs. applicability trade- offs to be considered.

How the Technology can be Leveraged

Testbenches used for simulators can be reused in accelerators and
emulators if properly designed. Emulators and accelerators work
only with synthesized designs. Care must be taken to implement the
testbench in a synthesizable manner if it is intended to be reused at
this level. Assertions can also be reused in emulators and accele-
rators to provide valuable debug information in the event of a
detected failure.

Summary
In this chapter we have looked at several of the most popular
verification engines and given a brief overview of how each of them
fits into an MPA framework.

P

E

M

R

Part II
Managing the Verification

Process

Preface to Part II

In Part II we describe in more detail how to apply a metric- driven
methodology to our every day processes. We move down a level of
abstraction form Part I and discuss how to actually implement
metric- driven processes. We’ll discuss implementing the “container
processes.” Container processes are the processes that apply regard-
less of what underlying verification methodologies we are using;
processes such as regression management and revision control.
Working within the plan, execute, measure, and respond framework
described throughout Part I, we’ll first describe in detail how to plan
verification projects.

Next, we’ll look at a layered methodology for capturing metrics
independent of the source of the metrics in Chapter 7. Presenting a
methodology to capture metrics breaks away from the plan–execute–
measure flow, but it makes sense in the context. Even as we start our
execution engines, we need to capture metrics, not only metrics
returned from our executions engines, but also metrics about how
and when they are used. We actually need to have our metric capture
apparatus in place, functional, and visible before the execution phase
of the project begins.

In Chapters 8–10 we’ll discuss the “container” processes of regres-
sion management, revision control and debug.

Chapter 6
Verification Planning

Introduction
Two little boys sat on the front porch of their house one morning.
One looked at the other and said:

“We need to learn how to swear today.”

“OK,” said the second little boy, “I’ll say damn and you say hell.”

After awhile, their mother came out and said, “What would you boys
like for breakfast?”

“Well damn! I think I’ll have some cereal!” said the first little boy.

His mother grabbed him by the back of the neck and dragged him
into the house. For several minutes after that, all the other little boy
could hear was screaming.

Soon the mother returned looked at the second little boy and said,
“What do you want for breakfast?”

The little boy replied, “I don’t know, but I sure as hell don’t want
any cereal!”

2

System
Intent

Design

Verification

Firmware

Applications

Whiteboard

Interviewer

Executable
Plan

Metric Manager

82 Metric-Driven Design Verification

Getting chip verification right is all about understanding each stake-
holder’s translation of product intent correctly. It’s all about under-
standing what was originally intended for the chip and about
matching everyone’s understanding. That’s why the verification
planning methodology described here is collaborative. One of the
foundations of this methodology is to gather EVERYONE for the
planning process. That means that the design engineers, the verifi-
cation engineers, firmware engineering, apps, and management all
need to spend some time in the same room together.

Verification planning is the lynch- pin of everything else in the
verification process. This is what will enable us to catch bugs earlier.
This is how we will set our objective goals so we know when we are
finished. This will be the basis of our automated status reporting that
will be visible to all stakeholders in the project. This is not where we
will spend a lot of time! We need to do just enough planning to
make sure that the project is constructive and then get started on the
real work, the project!

We’re starting with metric- based planning for a few reasons. First it
will enable us to make the most effective use of automation tools
moving forward. By planning and implementing our coverage first,
we immediately know what is being accomplished by each of our
activities, methodologies and tools. Without the coverage in place,
we can turn these tools on, but we have no way of knowing what
they have done.

Second, metrics makes the project more interesting, safer, and more
secure. Ever watched a ball game and not cared about the score?
Metrics give us visibility into what is being accomplished on the
project at each given instant. It answers questions like:

� How far along is the verification of the serial block?
� Has anyone used the IIS block in stereo mode?
� Have we tried back to back cycles on each of the AHB

busses?

The project is more interesting to all the stakeholders involved
because they can see what is happening in their area of concern at

6 Verification Planning 83

any given time. We hook the interest of everyone involved in the
project and keep it. There’s something to watch all the time.
Stakeholders don’t wander off, and work on other tasks for days or
weeks at a time and come back only to be amazed that the wrong
things or nothing has happened in their area of concern.

The project becomes a safer place. By properly designing and parsing
our coverage into chunks, we completely avoid that status meeting
phenomenon that we’re all so familiar with. “Well, it’s coming along
and I’ll have it done soon” repeated week after week with no real
evidence of what is coming along or how. We have a measurement
every day of what has been accomplished. The project is safer for
leaders because they’re not at the mercy of ambiguous status. It’s safer
for the team members, because if there is an issue that is inhibiting
progress, it becomes obvious earlier, and the entire team can work as a
team to resolve the issue and move on.

Finally, the project consistently maintains a higher quality. Our plan-
ning and the visibility it provides will remove opportunities for
undetected failures in the device or the execution of verification. The
objective measurements we’re making project- wide visible will focus
the proper stakeholders on the proper aspects of the project so there are
no surprise requests for verification in the ninth hour. With these
concerns removed, the verification and design teams can concentrate on
the job at hand.

Chapter Overview
In this chapter we outline the process of verification planning. There
are two purposes for verification planning. The first is to ensure that
everyone involved in the design project (design, verification, firm-
ware, etc.) have the same interpretation of the product intent.

The second purpose is to capture in a single document, the concerns
of each stakeholder with respect to design verification. First, we’ll
capture the aspects of each system feature that concerns the stake-
holder. Then we’ll define how to automatically measure that their
concern has been answered in a satisfactory manner. For example,

84 Metric-Driven Design Verification

concerns in Table 6.1 might arise during a verification planning ses-
sion for a DMA block.

Table 6.1 Concerns and Measurements

Stakeholder Concern How Measured?
Application
engineer

The LCD controller
should receive 60% of all
available bandwidth
when multiple requestors
contend for the DMA
controller.

Use a functional cover
group to show that
multiple requestors
contended for the DMA
controller. Use a
checker trigger to show
that the bandwidth
requirement was
checked.

Design
engineer

The input FIFO of the
DMA controller
generates an interrupt on
a write request when it is
full.

Use an assertion trigger
to show that a write
request arrived when
the input FIFO was
full.

Design
engineer

The DMA controller
code should be
sufficiently exercised.

Measure 100% code
coverage for the DMA
controller module.

Verification
engineer

The DMA controller
should move blocks of
memory between 1 and
1024 bytes between
different memory
addresses.

Use functional
coverage to show that
every transfer size has
been exercised within a
suitable range of input
and output addresses.
Use a check trigger to
show that each transfer
was checked.

Firmware
engineer

The DMA block should
copy the interrupt
handling code from the
embedded ROM to the
instruction cache.

Use functional
coverage to show that
transfers of the
appropriate size from
the ROM to the
instruction cache have
been executed.

6 Verification Planning 85

Using these captured concerns and measurements, we will create an
executable verification plan. The purpose of this plan will be to auto-
matically track each measurement (or metric) during the life of the
project. The results of each measurement will be automatically
annotated into the plan so that stakeholders can continuously track
the status of their concerns as the project progresses.

To accomplish the first goal of verification planning (product intent
interpretation convergence), we’ll use a collaborative brainstorming
process. All the stakeholders will meet to discuss their verification
concerns and a facilitator will capture these concerns in a document
that will become the executable verification plan discussed above.
Figure 6.1 graphically outlines the verification planning process.

System
Intent

Design

Verification

Firmware

Applications

Whiteboard

Interviewer

Executable
Plan

Metric Manager

Figure 6.1 The Verification Planning Process

This chapter will describe how to perform a successful verification
planning session. It will outline how to best organize and execute the
collaborative brainstorming/interview sessions required. We will
discuss the process from several points of view. First, we’ll look at

86 Metric-Driven Design Verification

the generic interview process. Next, we’ll look at how each stake-
holder can be interviewed. We’ll focus on pertinent questions to ask
each type of stakeholder, how each type of stakeholder can add

Finally, we’ll take one last look at the process from the perspective
of each design integration level. We’ll explore how the process
should be performed for different phases of the project such as
block- level design, unit integration and chip- level integration.

This chapter will contain the following sections:

� Overview
� The planning brainstorming/interview process
� Identifying system features
� Identifying system feature attributes
� Planning with respect to verification
� Planning with respect to design
� Planning with respect to software
� Planning with respect to architecture
� Planning for block- level design
� Planning for unit- level integration
� Planning for chip- level integration
� Planning for system- level integration
� Decorating the plan: goals, weights, and milestones

Verification Planning
Verification planning will be done in several different stages and in
several different perspectives over the course of the project. It is also
a very iterative “living” process, so we won’t worry about getting it
perfect the first time. The stages of verification planning are:

Coverage Planning: “What to Verify and How Do We Know It
Happened?”

Checking Planning: “How Do We Know It Worked?”

value to the process, and how each stakeholder’s concerns might
be converted into automated measurements as mentioned above.

6 Verification Planning 87

Stimulus Planning: “How Do We Make It Happen?”

The coverage planning stage is performed first because the other two
stages can and should be derived from the coverage planning.

Determining what to verify is the most important stage and the only
stage that we’ll discuss here. During the verification planning sessions
described here, the participants should be particularly careful not to get
wrapped up in how to check the correctness of a feature. The verifi-
cation technology that will be used may be defined, but no effort should
be put into determining exactly how to do the checking or provide the
stimulus. We’ll do that later. During verification planning we want
the focus to be purely on what should be verified.

The Planning/Brainstorming Process

The verification planning session follows the familiar brainstorming
format. As with all brainstorming, there are a few ground rules. There
is one moderator and one note taker. It is the job of the moderator to
keep the session on track according to the agreed upon rules. The note
taker is to collect all output from the meeting so that when partici-
pants wrap- up the session, the first draft of the verification plan exists
and can be distributed.

The purpose of the brainstorming session is to capture all the fea-
tures of the given device and also to capture each stakeholder’s
concerns about that feature. The rules are:

� The majority of brainstorming should be done on a white-

board and the information should be derived from the
participants’ experience. The specification is only to be used
to clarify issues where there is no agreement.

� The participants are to discuss what the feature does, what to
measure about the feature, and how to detect when the
feature has been exercised. They are not to discuss how to
check the feature. Discussions of how to do checking can
quickly become too involved and sidetrack the discussion.
Remember, all we want to do here is capture all the features
and each stakeholder’s concerns as quickly as possible. We’ll
architect the verification environment later.

88 Metric-Driven Design Verification

All the stakeholders should be present for at least a portion if not all
of the session. Participants should be reminded that the ROI on their
time in the planning session will be huge! Among other great
benefits, this is their get out of jail free card for the endless series of
status meetings that plague the last stages of most design projects.
The planning session should consist of participants from:

� Verification
� Design
� Architecture
� Firmware
� System Applications
� Product Definition

One participant that is familiar with the verification planning process
should be designated as the moderator. It will be the moderator’s
responsibility to maintain the flow of the session. Another partici-
pant or a rotating queue of participants should be appointed as the
session’s stenographers. In reality, this person does not need to have a
command of the design. An administrative assistant could be utilized
here. The key consideration is that this person needs to be able to
capture all concerns in our planning template without interrupting the
flow of the session. The stenographer will be constantly redirected
within the document and should keep in mind that they are for the
most part capturing information, and, as with all brainstorming, the
participants should not be inhibited from remapping the document.

In addition to the participants, a small modicum of equipment is
required as well. A whiteboard is essential. Obviously, the steno-
grapher will need a laptop or other device to record the document on.
In addition, the team may find it useful to have a digital camera to
capture whiteboard shots with. Access to the specification of the
device is helpful. However, the specification document is by no
means meant to be used as a key input to the process. This is a
communications and brainstorming process, not a document review!
Finally, in order to facilitate recording milestones, access to the
current version of the project schedule is helpful.

6 Verification Planning 89

The Planning Session

The output of a planning session will be a feature- oriented verifi-
cation plan. To this end, it is the job of the moderator to lead the
group to discuss each feature of the given device.

A feature is something that the device under verification does. A
feature is a verb or activity. Examples of features are:

� A device provides data to a read request.
� A device consumes data from a write request.
� A device routes a transaction from one port to another.
� A device decodes an MP3 stream and provides audio output

The brainstorming process begins with an interview of the designer
responsible for the given design unit of the system that is to be
verified. The designer first draws a block diagram of the design
under verification (DUV) on the whiteboard being careful to include
all input and output ports and any internal architectural features of
the device (such as FIFOs, state machines etc.) that they feel are
important.

The moderator will begin by asking the designer questions about the
features of the design. The discussion usually begins with the various
interfaces to the design. The moderator should ask questions regar-
ding how the device is accessed, and how the device outputs data.
Questions during this stage might be:

� “What protocol is used to configure the device?”
� “Is the entire protocol used, or are there transactions types

that the device legally ignores such as burst transactions?”

The moderator is trying to create conversations about what commu-
nication protocols are used by the device and how they are utilized.
The end goal is to determine what interface functionality needs to be
exercised and checked.

Once the basic interface features are established, the moderator will
focus on corner cases. Questions such as the following will arise:

90 Metric-Driven Design Verification

� “What is the correct behavior for the device if the serial input
port is driven before the device is configured?”

� “What happens to an output transaction if a reset is asserted
before the transaction is complete?”

As the discussion moves from feature to feature, the moderator encou-
rages each participant to comment on what significance that feature
holds for them. For interface features, the designers of adjacent
blocks might have unique concerns about what protocol transactions
are to be implemented. Meanwhile, the system architect may be
interested in the required bandwidth for the device. It is this
discussion of concerns that provides convergence of the translation
of product intent of the various stakeholders.

Once the block interface features have been defined, the discussion
proceeds into the other features implemented by the design. During
this portion of the interview, the conversation focuses on what the
design does. The moderator first asks the designer to describe a
given feature. The moderator then opens up the floor for discussion
of the feature. The moderator should ask questions that inspire each
participant to contribute their own understanding of the feature, how
they intend to use that feature, and what the most important attri-
butes of the feature are to them.

The important attributes that are identified for each feature lead us
directly to the metrics that we will need to capture from our verifi-
cation engines. When a facilitator begins to capture feature attri-
butes, there are three essential questions that must be asked:

� “What is important to measure about this attribute?”
� “How do we know when this feature has been utilized so that

we can measure the attribute?”
� “How do we measure this attribute”

With these three basic questions, the moderator now has the infor-
mation necessary to create the metric definitions that will be used to
observe the progress of the verification of this feature. The interview
is a simple process of asking each stakeholder for each feature,
“what, when, and how.”

6 Verification Planning 91

Let’s take a look at a sample interview:

Facilitator: What’s another feature of the device’s input interface?

Designer: It can be operated in burst mode.

Facilitator: What’s important to measure about the burst mode?

Designer: We need to make sure that all three burst sizes have been
tested. They are 2, 4, and 8 word bursts.

Facilitator: When can we tell that a burst is complete and how do we
measure the burst size?

Designer: When the burst_n signal goes high, a burst transaction has
completed and the size can be read from the bsize bus.

Facilitator: How can we best measure and record this attribute?

Verification engineer: I can capture that information in a functional
cover group.

As the questions were being asked and answered, the session’s note
taker would have captured the information in a document that looks
like Figure 6.2.

Device Input Interface
 Burst Transactions

The device can accept burst transactions in sizes of 2, 4, and 8
words. When the burst_n signal transitions to high, a burst transac-
tion has been completed. By sampling the bsize bus, the burst size
can be determined.

cover: /sys/interfaces/dma_in/burst_trans

Figure 6.2 Verification Plan Excerpt

92 Metric-Driven Design Verification

The “cover” directive will tell the MPA tool which cover group in
the verification environment provides the coverage metric that will
be used to measure progress on the verification of this feature.

That’s it! It’s that simple! Now, let’s look at the planning interview
in a little more detail with respect to each of the stakeholders. The
following sections will point out the value that each stakeholder can
contribute to the planning process. They will also point out key
considerations to keep in mind when interviewing these stake-
holders.

Planning with Verification Engineers

The verification engineer will tend to look at the device based on
its black- box functionality. They will be very interested in how the
device can be configured and what operations (features) the device
will exercise in each configuration. The verification engineer will
tend to be very thorough in pointing out all the features of a device.
This thoroughness, combined with input from the applications and
firmware engineers, can be used to define a set of features that must
be verified for the device to be declared usable.

Verification engineers should be very adept at attribute specification.
There is a tendency among verification engineers to immediately bore
down to the implementation of checkers for the various features. This
tendency must be avoided. The checker design will come soon enough.
For the planning session remember that the main goal is to capture the
metrics that will be used to measure the progress of the project.

Planning with Respect to Design

Design engineers are very concerned with how their block, sub-
system, or chip implements various features of the design. Design
engineers are the best source for information regarding what white-
box coverage and checks should be included in the verification
environment. Many of the concerns raised by design engineers can be
addressed by assertions that they themselves can place in the design.
This is one place where the line between coverage and checking
emphasized in this process begins to blur. Using the example from the
overview, a design engineer may identify a feature:

6 Verification Planning 93

“When the input FIFO is full an interrupt should be generated.”

This feature can be easily checked by a design assertion. The trigger
of the design assertion, “when the input FIFO is full,” can serve as
the coverage of this feature. In simple examples like this it is per-
missible and even advisable to discuss the feature, its coverage and
its check all at once.

Design engineers are very specification driven when it comes to the
features of the design, as they should be. It is important to balance
the design engineer’s understanding of a feature with how the users
of the feature, such as firmware and applications engineers, intend to
make use of it. It is at this juncture that many bugs can be discovered
before the design or verification work ever begins.

While a designer of a given block is often the focal point of a
verification planning session, don’t forget to include the designers of
other blocks within the system as planning participants. Designers of
blocks that either provide input to the block under consideration or
consume output from that same block are of particular value. It is
these designers that can point out key attributes of the features that
are important to their blocks. By having all the design engineers
concerned involved in a single session, major integration bugs can
be avoided before the verification environment even exists.

Planning with Respect to Software

Software engineers, both firmware and applications engineers, have
one of the best perspectives on how the device will ultimately be
used. They contribute planning content that will need to be trans-
lated based on the level of integration. At the chip and system level
of verification when the entire device is complete, their input can be
taken as is and added to the plan. At the block and unit levels, the
software engineer and the moderator will have to work a bit more to
translate the software engineer’s concerns into measurable metrics.

For example, when discussing a single DMA engine within a design,
the software engineer may at first feel that their presence at a block-
level planning session is unnecessary. It is the job of the moderator

94 Metric-Driven Design Verification

to elicit useful information from the software engineer and keep
them involved. Questions such as the following will illuminate key
attributes that should be covered by objective metrics as the device
is verified:

� “How will your software make use of this device?”
� “Is there a configuration mode that your software will use

most often for this device?”
� “What is the most important configuration of this device with

respect to initial software testing?”
� “What will be the most important configuration mode used

by our customers?”
� “What is the default configuration mode that will be used by

your software after a restart?”

As the design integration level moves up, the questions to the soft-
ware engineers become more direct and less inferred. For example,
at the system level of verification, the software engineer may very
well be the engineer that is interviewed for the planning session as
opposed to the design engineer who was interviewed for the earlier
block and unit- level planning sessions.

Careful attention to the differences in descriptions of a feature by the
software and verification or design engineers can produce very
valuable insights that can significantly reduce the amount of effort
required to verify a device.

Verification engineers interpret a specification literally without always
having a good perspective about how an end- user will eventually
use a feature. This can lead to coverage and checkers that are far more
detailed than they need to be. An experienced moderator will encou-
rage the software and verification engineers to reconcile thier under-
standings of a given feature. For example, consider the partial
specification of a debug block feature in Figure 6.3.

6 Verification Planning 95

Floating Point Profiler
The floating point profiler will provide data
to the users that allows them to determine how
much of their firmware execution time is being
spent executing floating point instructions.
When a floating point instruction is decoded, a
counter will begin to increment on every clock
cycle, and when the results for the instruction
are stored, the counter will stop incrementing.
The counter will be reset to 0 when the pro-
filing feature is enabled and maintain its last
stored count once the feature is disabled. The
user can determine the number of cycles counted
by reading a register named FPTMCNSMP.

Figure 6.3 Floating Point Profiler Feature Specification

Left to their own devices (without any further information from mar-
keting and product definition), a verification engineer might decide
that the checker specification given in Figure 6.4 must be
implemented.

Floating Point Profiler Checker
The checker will model the floating point pro-
filer. When a floating point instruction is
decoded as it is read in on the instruction
data bus, the checker’s counter will begin to
increment on every clock cycle. This incre-
menting will be stopped when the results of
the floating point instruction are stored. If
any reads to the FPTMCNSMP register are
detected, the contents of the returned read
will be compared to the reference model’s coun-
ter. Any discrepancy between the two counts
will be flagged as an error.

Figure 6.4 Verification Checker Specification

There are several difficulties that are inherent in the above feature
specification and checker specification. The feature specification
states that the counter will begin to increment after a floating point

96 Metric-Driven Design Verification

instruction has been decoded by the DUT’s internal decoder. The
checker is a black- box checker that is detecting floating point instruc-
tions by decoding them from the instruction bus. Depending on the
pipeline depth of the device’s decoder, several cycles of inaccuracy
could be inserted here. There are similar concerns for the pipeline
depth of the store unit.

The marketing contributor may reveal during the planning process
that the user is only interested in statistical data sets accumulated
over thousands of floating point instructions. They may also reveal
that accuracy within fifty cycles of how long the operation actually
took is sufficient for the customer. Depending on the length of the
pipelines within the DUT, the verification engineer’s job just became
much simpler. Rather than trying to determine how to compensate for
various pipeline depths within the device, the engineer builds a much
simpler checker that merely counts the number of cycles from the
inception of the floating point instruction on the instruction data bus
to the completion of the instruction when its results are stored back to
memory.

Planning with Respect to Architects

Architectural engineers tend to be more concerned with dataflow
through the device and the operation of the device as a system than
design engineers. Architectural engineers have a more abstract view
of the system and are far more concerned with usability and
performance issues. The features they identify will have more to do
with how the system operates than with how a given block operates.
As with software engineers, the moderator may have to work to
translate the architect’s input during block or unit- level planning
sessions. However, just as in the case of the software engineers, this
input is very valuable.

Because architects tend to think more in terms of the overall ope-
ration of the system, the attributes they identify for each feature will
often be of a more complex and statistical nature. Keep in mind that
while these attributes may be more complex and somewhat harder
to implement as objectively measurable metrics, it is these same

6 Verification Planning 97

attributes that will enable us to avoid very hard- to- fix system- level
bugs late in the design process.

For example, when discussing a device input interface, a verification
engineer may identify an attribute such as transaction type and then
measure that attribute by simply defining a functional coverage
group that measures how many times each transaction type has been
received by the device. A system architect on the other hand might
identify an attribute having to do with available input bandwidth.
They may identify the feature given in Figure 6.5 for the device.

The device must service input requests, how-
ever, it can stall the bus for processing.
The device must not stall the bus more than 10
cycles out of every 100.

Figure 6.5 Architectural Feature Description

This device feature may not have been evident without the system
architect present. While it will be more difficult to implement the
metrics that measure the attributes of this feature, the development
time spent now will save the time required to debug the device when
system- level simulations discover the feature was not properly imple-
mented.

An experienced moderator will compare and contrast the architect’s
understanding of a given feature to the design engineer’s under-
standing of the same feature. In fact, in projects where verification
begins at the architectural level, great benefits can be reaped by
performing architectural verification planning sessions. The session
is a bit of a role reversal compared to the design- centric planning
session described above. In an architectural planning session, the
system architect diagrams the system and is the key engineer being
interviewed. The design engineers present at the planning session
come away with a greater insight into how each of their blocks fits
into the system as a whole.

Now that we’ve considered the planning process with respect to
each of the contributors, let us take a look at how the process

98 Metric-Driven Design Verification

changes with regard to each level of system integration. But before
that, let’s take a quick look at reuse opportunities as the level of integ-
ration changes during the course of the project.

Reuse Considerations for Planning Over Different Integration

Levels

As we move from one level of integration to another during the course
of the project, our coverage concerns will change. For example, we
will need to verify that we have 100% coverage of each available
transaction type on a device’s input bus during block- level verifi-
cation. However, as we move to unit and chip level, this consideration
which was verified at the block level will have less importance. At the
unit level, we may be more concerned that the interfaces between our
block and the blocks adjacent to it have all been exercised in their
most common customer usage modes.

By taking these considerations into account at the planning phase, we
can construct more effective plans and utilize our verification engines
more efficiently. As we identified above, not every feature attribute
carries the same weight over the entire course of the project. By
applying uniquely specifiable goals to each feature attribute for each
phase of design integration we can keep the plan in better perspective.
Using the example above, we might attach a coverage goal to the
transaction type of 100% at the block level of verification. However,
we might specify a goal of only 30% integration verification. We
know that all transaction types have been verified at the block level.
At the integration level, this metric may serve only as a second check
that the device is being sufficiently exercised.

In this case, our sample verification plan would look like Figure 6.6.

In the above verification plan, we have specified two different views
into the available metric data. The views will display the annotated
coverage information described in the section of the verification plan
that they reference. The views will grade that data based on a
separate goal defined by the “‘goal” directive. In this manner, we will
see different completion grades for the project based on what phase of
the project we are currently executing.

6 Verification Planning 99

Device Input Interface
 Burst Transactions
The device can accept burst transactions in
sizes of 2, 4, and 8 words. When the burst_n
signal transitions to high, a burst transac-
tion has been completed. By sampling the bsize
bus, the burst size can be determined.

cover: /sys/interfaces/dma_in/burst_trans

View: Block Level Verification
reference: Device Input Interface/Burst Tran-
sactions
goal: 100%

View: Unit Level Verification
reference: Device Input Interface/Burst Tran-
sactions
goal: 30%

Figure 6.6 Verification Plan Excerpt with Views

Finally, it should be recognized that some metrics will be of no
value during certain phases of integration. For example, transaction
type coverage may be of little or no value during system integration
when the key focus is on testing the integration of the device and its
associated firmware and application software. Likewise, coverage of
the firmware routines that have been executed is probably meaning-
less at the block level of integration.

With this in mind, care should be taken to architect verification
environments so that coverage metrics can be added or removed at
the appropriate levels of integration. This ability will serve both to
reduce the complexity of the verification environment and to improve
the performance of the various verification engines used. This recom-
mendation can be realized in several different ways dependent on the
verification tools and languages being used.

100 Metric-Driven Design Verification

Now, let’s look at how the focus of the planning process changes for
each level of design integration.

Planning for Block- Level Design

Block- level verification uses the finest level of detail. At this level
we have the most observability and controllability of the design. It is
here that we can most easily verify the smallest details of product
intent. Consequently it is at the block level the most white- box fea-
tures will be revealed. Be careful to dig for them if necessary. Don’t
forget to query all stakeholders about any corner cases of function-
ality that concern them.

The moderator should remember not only to focus on what the block
under verification will do (what features it implements), but also to
focus on how those features will be used. The tendency may be to
focus mostly on the design and verification engineers at this level of
planning. Be certain to involve the architects and software engineers
as well because of the uniquely valuable perspectives they offer.

Keep in mind the verification tools that can be brought to bear on
this phase of the project and the contributors that drive these tools.
The tools typically available for block- level verification are:

� Assertion- based formal verification
� Simulation- based dynamic verification and testbenches
� Assertion- based dynamic verification
� Reusable libraries of verification IP for interface protocols
� Reusable libraries of verification IP for device features
� Accelerators
� Emulators

Accelerators and emulators are less- frequently used and are included
here for completeness.

As the planning session proceeds, query the originator of each attri-
bute or verification concern as to how their concern might be most
easily measured. Keep in mind that we want to have as much of the
team working in parallel as possible. Look for opportunities to start

6 Verification Planning 101

design engineers on verification by using formal tools before a
testbench is even available. Look for concerns that might already
have metrics implemented in a reusable verification IP library. At a
planning session, you have the collective mind behind the project
assembled in one room. Don’t forget to query them all as to how a
metric might be most easily measured. But, once again, be careful to
never let a verification planning session evolve into a discussion of
how to verify a feature.

Planning for Integration Verification

At this level of verification, we are testing an assemblage of blocks
for correct behavior. There are two major concerns here. First, do the
blocks communicate with each other in an appropriate and correct
manner? Second, does the subsystem of blocks correctly implement
the features as they were intended?

When integration planning, it is important to have the designers of
each of the blocks in attendance. The facilitator should question the
designers in a way that ensures they have the same understanding of
the interfaces between their blocks.

At this level, it is also crucial that the system architects and the
software engineers are in attendance. This will be our first oppor-
tunity to verify that the subsystems operate as intended by these two
groups. They can add insight into the intended operation of the sub-
system that we can’t get from the design or verification engineers.

The planning session’s emphasis should be on the features of the
integration as a whole. The features of each individual block should
be considered less if at all at this level. By using the status reported
by our block- level verification plan we can show that these features
have been verified at the block level of integration. This focus will
make implementation more efficient and will also improve the
efficiency of our verification engines because we are using them
only to verify the current important focus rather than taking the entire
project into account.

102 Metric-Driven Design Verification

Planning for Chip- Level Integration

Chip- level planning focuses on communication between the differ-
rent subsystems, and the features that are implemented by the chip
as a whole. Chip- level planning should focus on the system archi-
tects and the software engineers. These are the stakeholders that can
tell us the highest priorities and device configuration to be verified.
With the explosion of possible usage combinations at the chip level
it becomes essential to prioritize our activities in this manner.

The moderator should try to reveal corner cases that are exacerbated
by different design subsystems acting concurrently. These concur-
rency cases should be tracked using functional coverage. When
constrained random testing is used, appropriate coverage is of the
utmost importance. With functional coverage metrics the team can
detect corner cases that have been exercised without having to write
specific directed testcases to target them.

Planning for System- Level Integration

The focus of system- level integration planning should be on the
interaction between the device, the firmware and the application
software that run on the device, and the other devices that will either
drive or be driven by the device. Once again we focus on the system
architects and the software engineers. In addition to these stake-
holders, we may also include marketing representatives in the session
because of the unique perspective they have on how customers will
make use of the device in their systems.

Feature attributes are most often described in terms of the

We’ve looked at what each stakeholder can contribute and how the
plan changes as the stage of integration changes. At this point, we
have a plan almost ready to be executed on. But first, let’s make it a
more meaningful plan by attaching goals, milestones, and views.

applications that will most typically be executed with the device. The
metrics are measured in terms of software coverage, and assertion
coverage.

6 Verification Planning 103

Decorating the Plan: Views, Goals, and Milestones

Now we know what we want to verify and how to measure that the
job is complete. But, what are we going to measure our progress
against? It’s time to add goals, milestones, and views to the plan.

Each stakeholder will have different concerns regarding our verifi-
cation projects and should be able to view the plan’s metrics based
on their concerns. This variety of views is shown in Figure 6.7. In
order to keep all stakeholders involved with the project, we’ll want
to enable each of them to view the data that is important to them in
the format that they desire.

Will we get it all
done with

quality and on
time?

How do we
minimize

resources &
lower costs

How do we
improve

response time
to changes?

Scaling to System & Enterprise
Levels

System Validation
Engineers

Verification
Engineers

System
Engineers

HW Design
Engineers

Exec & Project
Manager

Embedded
Software

Developers

What bugs
are in my

logic?

Do hardware
and software

work
together?

Are system
performance
and features
as expected?

Does my
firmware work

on the HW?

How does it
react to
corner
cases?

Planning

Metrics

Figure 6.7 Stakeholder Views

Remember, we can look at the plan from multiple perspectives, or
views. After the planning is complete, we need to define a view for
each stakeholder so they can easily track their concerns and provide
feedback as necessary. To define a view, we just declare the view in
the plan document and then add references to the metrics that we

104 Metric-Driven Design Verification

want to be included in a view. The plan snippet in Figure 6.8
illustrates this.

View: Designer Verification
reference: “Device Input Interface/ CodeCoverage”
goal: 93%

Figure 6.8 Verification Plan View with a Goal

A view called “Designer Verification” has been defined. The only
metric data that will be displayed in this view is the code coverage
results for the “Device Input Interface” block. Similar views can be
defined for each stakeholder.

We have placed a goal of 93% coverage on this metric. We have a
goal, but when does the goal need to be completed by? We can add a
completion milestone to the plan with another annotation shown in
Figure 6.9.

View: Designer Verification
reference: sys/Device Input Interface/CodeCoverage
goal: 93%
milestone: 4/06/2008

Figure 6.9 Verification Plan View With a Milestone

Now with a goal and a milestone, we can track our progress over the
life of the project. We can chart graphs like the one shown in Figure
6.10.

Here we see the status of code coverage collected from every weekly
regression. The goal for code coverage is shown by the horizontal
line at 93%. The deadline or milestone is shown by the vertical line
at 4/06/08.

6 Verification Planning 105

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2/
3/

20
08

2/
10

/2
00

8

2/
17

/2
00

8

2/
24

/2
00

8

3/
2/

20
08

3/
9/

20
08

3/
16

/2
00

8

3/
23

/2
00

8

3/
30

/2
00

8

4/
6/

20
08

4/
13

/2
00

8

4/
20

/2
00

8

Project Week

C
od

e
Co

ve
ra

ge

Figure 6.10 Tracking Design Completion

Summary
In this chapter we learned how to perform metric- driven verification
planning. We walked through the fundamentals of the brainstorming
session that provides the raw data for our executable verification
plan. Then, we looked at how the brainstorming process should be
modified keeping each stakeholder and each level of project integ-
ration in mind. Finally, we learned how to partition metrics into
views and attach goals and milestones to them.

Chapter 7
Capturing Metrics

Excited about the ability to use metrics to automate your verification
processes? Tired of waiting on a standard to arrive so you can
organize all your coverage metrics in one place? A methodology is
presented for aggregating all your metrics now so your verification
projects can benefit today!

Metric process automation (MPA) tools are offering huge gains in
the productivity, predictability, and quality of today’s verification
projects. These tools automatically collect the metrics that are gene-
rated by your verification engines such as simulators, emulators, and
accelerators. Using these metrics you can track the status of your
project and automate processes such as debug triage, coverage
ranking, and status reporting (Figure 7.1).

Using a top- down verification planning technique, you can deter-
mine what metrics each team member associates with each feature
of the device. Using this customizable metric selection, each user
can track the project based on their concerns. Each team member
cares about different metrics lots of metrics. Let’s take a look at
some of those metrics. How about just the coverage metrics:

� Code coverage
� Functional coverage
� Assertion coverage

Introduction

108 Metric-Driven Design Verification

Executable
Plan Job Spec

MPA Tool

Verification Engines

Formal Simulation

Emulation Acceleration

Metrics

Figure 7.1 Automating Verification with Metrics

Each of these metrics can come from a different tool. Each of these
tools could come from a different vendor. How do you merge all this
data? Will the different formats from different vendors match? This
is exactly what’s being addressed by the universal coverage database
standardization effort. There are other questions though. If a vendor
has already optimized an analysis engine for their coverage data,
shouldn’t you be able to take advantage of those optimizations?
What if a new kind of coverage emerges that nobody thought of?

OK, for now, let’s hope the standard will straighten some things out
(at least for coverage metrics). But you have a project to complete
today. Wouldn’t it be nice to use the most advanced techniques right
now? No matter what metrics you choose? What if you could
preserve the optimized performance of the tools you’re running right
now without modification? This chapter presents a methodology that
will let you do just that.

7 Capturing Metrics 109

The Universal Metrics Methodology

Using our MPA tools, we’d like to:

� Automatically collect metrics from a variety of tools.
� Display those metrics in a manner that is meaningful to each

stakeholder.
� Use those metrics to automate appropriate processes.

The value of a metric process automation tool is in the collection,
and utilization of metrics. Where the metrics come from should be
transparent. Analysis of the metrics can be handled by the tool.
However, the tool should be able to take advantage of existing
analysis engines as well. There’s no need for the MPA tool to take
over all the analysis tasks.

The idea of using multiple applications to handle tasks has been
around for awhile. Consider the way a web browser handles image
and animation data. There are at least two ways the browser can
display the image. First, the browser could read all the bits of the
image and store them internally. Accessing the image bit by bit, the
browser developers could implement image display code. The browser
implementers probably wouldn’t want to create a new image display
module for each new image format. Perhaps they could force all image
providers to conform to a single image format standard. And when a
more compact image format comes along that allows faster surfing?
Well, let the standards board worry about that!

There’s an easier way though. By implementing a well- defined
interface, the browser can defer the image display to another appli-
cation. The browser simply forwards the image bits and a reference to

allotted. Using this methodology, the web browser’s implementers
don’t have to implement new image- processing functionality. They can
benefit from the effort of others through application reuse. And, that’s
exactly what we’ll do with our MPA tool.

an available screen area to an image display application. That appli-
cation interprets the data and displays the image in the space

110 Metric-Driven Design Verification

First, we’ll define the set of operations that we’d like to perform on
coverage data:

� Display coverage data as a completion percentage along with
the size of the coverage space and the number of hits within
that space.

� Correlate coverage data back to its source. In the case of
simulation for example, we’d like to correlate coverage data
back to the testcase that created it.

� Rank coverage data against its source so that we can find the
most efficient sources for creating unique coverage data.
Using this information, we can create efficient regression
suites.

Now, we’ll define a standard interface for our MPA tool to talk to
other applications that can create metrics. Once we have this
standard interface in place, we can immediately start to benefit from
our efforts. Based on our list of operations above, our interface
might look like Table 7.1.

Table 7.1 Metric Linking Interface

Method Explanation
list of coveritems
get_cover_items()

Returns a list of structures
that describe coverage items.
Each cover item struct
consists of a name, and a set
of dimensions

get_coveritem(name: string) Returns the number of hits for
an individual item

list of source
correlatecoveritem(name: string)

Returns a list of source structs
that describe the simulation
that produced the coveritems

list of source
rankcoveritem(name: string)

Returns a list of sources
sorted by the number of
unique buckets hit within the
coveritem’s coverage space

7 Capturing Metrics 111

Now, as new metrics are defined that come from new sources, we
simply have to provide a small interface of functions that translate
the metric data from existing applications into a format that our
MPA tool can understand. In object- oriented programming circles,
this is known as the proxy design pattern. This proxy interface is
easy to implement. It’s much easier than modifying our MPA tools
every time a new metric is required. And, it’s certainly much easier
than asking all our existing vendors to update their applications to
conform to a standardized data format. In fact, any existing tool that
produces ASCII- formatted output reports can be easily adapted to
this interface by an end- user with reasonably proficient program-
ming skills. Figure 7.2 shows a graphical representation of this metho-
dology.

Figure 7.2 The Metric Adapter Interface

This is a simple concept that’s been used for years in office auto-
mation software. Using this concept we’ve shown how to reap the
benefits of the optimized analysis engines you’ve already purchased
in combination with the latest MPA tools available today.

Chapter 8
Regression Management

0

20

40

60

Introduction
Our definition of regression is any execution of
verification processes that certifies the quality
level of a portion of the design. Regression is
the key mechanism for gathering the objective
metrics that drive all our verification processes.
Regression management is the task of launching

verification jobs using the appropriate metrics and tracking the
metrics that are returned from those jobs. These metrics can then be
processed and analyzed to facilitate a metric- driven process auto-
mation flow.

Regression management is intertwined with revision management.
We discuss revision management in depth in the following chapter.
Simply put, revision management is the process of managing relea-
sed design code to ensure that the project team can back up to earlier
revisions of the code and to ensure that code that meets certain
quality criteria can be easily accessed.

In this work, regressions are divided into the two rather broad cate-
gories of revision management regressions and design quality regres-
sions. Revision management regression as discussed below are used
to check the design’s base level of functionality before releasing it to
the general engineering community. Design quality regressions are

P

E

M

R

114 Metric-Driven Design Verification

Early Regression Management Tasks
You should run regressions at the same times your local crooked

The second advantage is more pragmatic and applies to projects just
beginning to use metric- driven processes. By starting early the regres-
sion apparatus itself is tested at an early stage of the project when its
proper operation is not crucial. The project team can detect and fix
problems in the regression system before they impact more crucial
stages of the project.

Among the metrics that should be tracked almost immediately are:

� Number of lines of design code checked into the revision

control system.
� Number of changes made to released design code.
� Number of lines of verification environment code checked

into the revision control system.
� Code coverage of the simulated design.
� Functional coverage.
� Formal assertion- based coverage.

Regression Management
Regression management is crucial to the success of the project.
Regression technology is rather benign and it’s not rocket science.
However, as with most simple aspects of a project, if regression
management is ignored or mishandled, it can consume man- weeks of
project time. Several regression strategies have been outlined in other

tion release.
intended to exhaustively qualify the quality of the design for produc-

politician would like you to vote: Early and Often! Regression manage-
ment is crucial. This is where the majority of metrics that will be used
to adjust the verification process will be gathered. Regressions should
be started as early as possible. There are two advanctages to this.
First, we gain visibility into the progress of the project via measurable
metrics at an early stage. This visibility makes stakeholders more
engaged in the project on a day to day basis.

8 Regression Management 115

sources. Several tool vendors sell regression management solutions.
They all work relatively well. It is very important to standardize on a
regression management framework as early as possible in the project
and then stick with it. Regression management can become a religious
issue quickly. All engineers have worked with systems they did or
did not like. Everyone has an opinion. However, the true value of
your design and verification team is the stellar work they can do on
your chip design, not the value they can add by picking the perfect
regression management system. Listen to their input and weigh its
value once. Then, pick a system and get busy with the important
work of designing the chip.

The regression management framework we show here is simplified
to demonstrate what metrics should be tracked in regard to “typical”
regression and revision management activities. The true core value
of the content is intended to be the proper application of metrics to
the regression process. The infrastructure presented here is not meant
to be taken as an authoritative representation of the “best” system, it
is merely provided as a demonstration vehicle.

Linking the Regression and Revision Management Systems
Regression management is tightly linked with and supported by revi-
sion management. Figure 8.1 shows the layers of revision manage-
ment used for the linked revision/regression management strategy
discussed here.

The engineers develop code in their own insulated personal revision
areas. Within these areas users are free to experiment with different
version of source files as necessary. When engineers believe their
code is ready for integration, they run a bring- up regression to
qualify their code for release into the integration revision area. In the
integration revision area, the engineer’s code is further qualified to
ensure that it “plays well with the other children” and can be relea-
sed to the general population. After a set of integration regressions,
the code is promoted to the released revision area where it is
available to other users and can be tested for production readiness.
Code is promoted from area to area with the use of associated
revision management regressions that are discussed below.

116 Metric-Driven Design Verification

Figure 8.1 Revision Control Areas

Bring-Up Regressions
Bring- up regressions are used as a base- line to certify that new
design modules are basically functional before releasing them to the
rest of the project. Some aspects that should be checked in a bring-
up regression are:

� Does the code compile and simulate?
� Is the basic interface functionality of the block alive?
� Do all formal assertions defined for the block still pass?

These regressions should be run every time the module is modified
and before the new module code is checked into the integration revi-
sion control area. Because they may have to be run very frequently,
these regressions should, of necessity, be very brief in nature.

Bring- up regressions should be run in the developer’s personal
revision area. In this manner, the rest of the project is insulated from
changes made to the module until the module passes bring- up
regression and is promoted to the integration revision area.

8 Regression Management 117

Metrics should be tracked for these regressions. Some of the key metrics
are shown in Table 8.1 along with the trends that should be observed
for these metrics over time.

Table 8.1 Bring- Up Regression Metrics and Trends

Percentage of code exercised, (simple
code coverage)

70

85

100

Length of regression

Functional coverage 100%

Number of nonsynthesizable warnings
per regression

0

20

40

60

Code Coverage

Code coverage is a simple metric that can be used to gauge bring- up
regression completeness. Its purpose is merely to ensure that the test
suite continues to check the entire block as new features are added.
Code coverage doesn’t need to be 100% at this stage, but should
wiggle around a relatively high percentage.

Regression Length
As mentioned, the length of a bring- up regression should be relati-
vely short. If it runs too long, its usefulness is reduced and may
ultimately be eliminated if engineers opt not to run the regression at
all in favor of accelerating the release process by simply checking
their code in untested. The regression length should remain short
over the duration of the project. This metric should be checked with

118 Metric-Driven Design Verification

each regression. As blocks grow in feature count, the simulator can
slow down, noticeably increasing the total regression time.

Functional Coverage
With the use of a verification plan perspective or view, the func-
tional coverage of these regressions should always be 100%. There
is a certain base level of functionality that must be guaranteed before
a block should be released to the general population. A sample verifi-
cation plan for a bring- up regression is shown in Figure 8.2.

DMA Block Reset Behavior

All signals should be set to their reset
value and all FIFOs should be flushed.
cover: /sys/dma/reset_beh/*

DMA Registers

All registers should be readable and
writable. All masked bits (write only, read only,
etc.) should behave appropriately.
cover: /sys/dma/register/*

DMA Configurations

Top Customers
DMA transactions should work in the top three
customer configurations of the DMA engine.
cover: /sys/dma/top_cust_conf/traffic/*
Others
All other configurations should be exercised.
cover: sys/dma/other_conf/traffic/*

View: DMA Bring-Up Regression
reference: DMA Block Reset Behavior
reference: DMA Registers
reference: DMA Configurations/Top
 Customers

Figure 8.2 Bring- Up Regression Verification Plan View

8 Regression Management 119

The verification plan above shows the use of a view to only refe-
rence the portions of the plan that are important for bring- up
regression qualification. For example notice that we have restricted
our bring- up view to only show the “Top Customer” configuration.
The functional coverage for this view should be 100% on each bring-
up regression.

Nonsynthesizable Warnings per Regression
Early in the design cycle some behavioral constructs are acceptable to
accelerate the modeling process. However, as the design approaches
production release near the end of the project these constructs should
be eliminated. By automatically measuring warning messages about
behavioral nonsynthesizable constructs provided by linting tools, the
team can verify that they have been removed.

Integration Regressions
Integration regressions should take place in the integration staging
area of your revision control system. These regressions are crucial.
They ensure that each module of the design will play nicely with all
the other modules and at the very least not break the released
simulation and regression flow. Countless man weeks of progress
have been lost on many projects because this simple regression step
was skipped by developers eager to get their “fixed” module back
into the regression flow.

Table 8.2 Integration Regression Metrics and Trends

Functional coverage of available trans-
action types between connected blocks.

100%

Functional coverage of scenarios that
are executed by a combination of
blocks. Especially where one block
makes use of specific data provided by
another in performing its function.

100%

Length of regression

120 Metric-Driven Design Verification

The integration regression asks the question “Does this block integ-
rate well enough to not break the integrated design?” Less emphasis
is placed on the individual functionality of the block (presumably
that was tested in the bring- up regression), and more emphasis is
placed on the interactions between the block and other blocks in the

Functional Coverage of Bus Traffic

One of the key questions during integration is, “Do the blocks talk?”
This can be easily answered at a basic level by using functional
coverage to track the types of bus cycles that are transmitted bet-
ween blocks during the integration regression. It is important to
capture every type of bus transaction that can be propagated between
blocks in the executable verification plan. Also keep in mind that
blocks do not have to actually share signals to be in communication
with each other. One of the important cases in which traffic needs to
be tracked is the case where many masters can communicate with
many slaves over an arbitrated, address decoded bus as shown in
Figure 8.3.

Master 1

Master 2

Master 3

Master 4

Slave 1

Slave 2

Slave 3

Slave 4

Arbiter/
Decoder

Figure 8.3 Masters Slave Cross Traffic

design. Functional coverage is more meaningful and easier to inter-
pret with respect to these interactions than code coverage. However,
code coverage can still give us a guarantee that all blocks involved
were indeed activated. Some of the metrics that should be tracked for
this type of regression are given in Table 8.2.

8 Regression Management 121

Integrated Block Scenarios
Most of the block- level functionality should be tested elsewhere.
However, it is important to check interblock scenarios in these regres-
sions. Two of the inter- block scenarios that should be considered
are:

� Scenarios where one block is dependent on accurate, correctly
formatted data from another block to perform its function.

� Scenarios that stress bus bandwidth where blocks are depen-
dent on a guaranteed flow of input data.

Length of Regressions
Here again, the regression team is forced to walk the fine line
between testing enough functionality to guarantee successful integ-
rations, and keeping the regression short enough that it will be
effective. By historically tracking the length of the regression, teams
can modify the regression suite as necessary as total regression time
increases.

Design Quality Regressions
Design quality regressions are intended to exhaustively verify relea-
sed functionality. In design quality regressions, the goal is to fully
populate the executable verification plan with complete coverage of
all identified stakeholder concerns.

There are a number of coverage metrics that should be measured
with respect to this type of regression. These metrics will be des-
cribed in much greater detail along with the various technologies
they are associated with in Part III of the book. They are included
here as a reminder of what metrics to consider when performing
verification planning and setting up the regression and metric
tracking apparatus for the project (Table 8.3).

122 Metric-Driven Design Verification

Table 8.3 Some of the Metrics and Trends for Design Quality

Regressions

Percentage of code exercised, (simple code
coverage)

Functional coverage of block- level concerns

Passing directed testcases 100%
Passing formal assertions 100%

Coverage of activation clauses of dynamic
assertions.

Managing Regression Resources and Engineering
Effectiveness
Engineers often perform their tactical testing using the same com-
pute resources that support regression tasks. It is important to remem-
ber to allocate sufficient compute resources to our engineers so they
can efficiently perform tactical regressions such as revision promotion

Table 8.4 Metrics Used to Track Tactical Regression Effectiveness

Utilization of compute servers

Wait time for tactical job start.

8 Regression Management 123

regressions and debug regressions. The metrics that are provided by
our metric- driven processes can be used to gauge this allocation.
Two of the metrics that should be monitored are given in Table 8.4.

Regression managers need to make sure that compute servers are as
fully utilized as possible while also ensuring that no engineer has to
wait an unreasonable amount of time to start a tactical regression job.
By tracking the above metrics, the regression manager can respond to

metric-driven processes is to fix problems before they arise!

Regression-Centric Metrics
So far we have discussed what metrics should be collected from our
execution engines during a regression. There are metrics created by
our regression engines that should be captured as well. Among these
metrics are:

� Frequency of regressions run grouped by regression type
� Number of issues found per regression
� Machine utilization
� Software utilization

Frequency of Regression Runs Grouped by Regression Type
This metric can be used as a tactical indicator. As the project pro-
ceeds, the number of design quality regressions should increase and
the number of revision management regressions should decrease.
Sharp increases in the number of revision management regressions
can indicate that the design has become more volatile. This is not

If the frequency of design quality regression decrease as the project
proceeds, this could indicate that the regression apparatus is broken,
or that significant amounts of time are being spent on other activities
such as adding features, or debugging existing issues. Again, the point
is to use these metrics as triggers to ask appropriate questions to
understand the project status and then respond effectively.

necessarily a bad indicator. The key thing is to ask the right ques-
tions to determine why the design volatility has increased.

balance compute server utilization. Remember, one of the key values of

124 Metric-Driven Design Verification

Number of Issues Found per Regression
This is one of the oldest metrics and also one of the most abused.
Historically, this metric was often used to determine when a chip
development project was complete. If the number of issues detected
were trending toward zero per regretssion, then the reasoning was
that the device under test must be approaching full functionality. Of
course, this ignored the possibility that the verification environment
might simply be looking in the wrong places for bugs.

This metric should however, still be measured and does serve some
useful purposes. When used in conjunction with coverage metrics,
the number of issues found per revision can add to the confidence
that a device has been properly verified. When used in conjunction
with revision control information, the number of issues detected can
point out blocks that may need to be re- engineered. Figure 8.4 shows
issue tracking metrics displayed with revision metrics for the DMA
block of a design under test. Using this data it can be seen that the
design was plagued with issues after the large code change in the
fourth revision. This data may lead the engineering team to decide to
revert to revision three and start over. As with all metrics, interpre-
tations should be made carefully and involve plenty of communi-
cations between the engineering team. The peak in issues after
revision four could just as easily have been caused by added features
that were not available for testing before that revision.

0

5

10

15

20

25

30

1 2 3 4 5 6 7

Revision Number

Is
su

es
 F

ou
nd

0

20

40

60

80

100

120

Li
ne

s
C

ha
ng

ed

Issues found
Lines Changed

Figure 8.4 Issues Found vs. Lines Changed

8 Regression Management 125

Machine Utilization

This simple metric gives an indication of the utilization of compute
resources on the project. Ideally, this metric should oscillate near
100%, indicating that your compute resources are being applied to
their fullest value. This metric should be tempered with the wait
time for an individual user to start a compute job as mentioned
above. Both of these metrics can be extracted from commonly used
job distribution systems.

Software Utilization

This metric is similar in nature to machine utilization, but tracks the
usage of your verification software. The intent is to maximize the
return on software investments. Even more importantly, this is an
indirect indicator of the utilization and productivity of your enginee-

know how to utilize the full value of the software and therefore may
need training. It could also indicate that the software is too hard to
use or of little value. The key ingredient that must be mixed with
objective metrics is continuous communication. Therein lays the key
to discovering the root causes of observed metric trends.

How Many Metrics Are Too Many?
Historically, when running regressions, one of the key metrics that
was fretted over was simulation speed. Prior to metric- driven verifi-
cation, speed was king. Because some metric collection is done
during simulation, it can slow down the cycle per second perfor-
mance of the simulator. This consequence led many early design
teams to delay metric collection till near the end of the project. This
late collection led to several interesting surprises as design teams
only a few weeks away from the scheduled completion date of their
project discovered that half of their design had never been verified!

There is certainly a trade off between the metrics collected and
simulation speed. If too many metrics are collected and not used, the
value of the verification environment can be reduced. However, the

ring resources. If productivity enhancing software isn’t being utili-
zed, it may be an indicator that the engineering team does not

126 Metric-Driven Design Verification

opposite is also true. If no metrics are collected and simulations are
blazingly fast, we may be accomplishing nothing quickly!

There are new verification techniques such as constrained random
testing that can significantly increase productivity through the effect-
tive use of metrics. In the case of constrained random test genera-
tion, the price of metric collection is easily offset by the increase in
productivity that is gained by not writing testcases. This subject is
covered in much more depth in a later chapter.

We can actually use metrics to determine how much our metric
collection is costing us. First, by measuring the CPU time used per
simulation, we have a simulator/verification environment perfor-

contribute to our decision process of how often to collect metrics.

Objective results regarding simulation speed with and without metric
collection should be considered in the context of verification closure
speed. If verification on the project is completing within the allotted
schedule, then there may be no need to optimize simulator speed.
However, if verification is lagging behind, and there are true
advantages to be gained by simulating more quickly, then these
measurements should be considered.

Once it has been determined that there are valuable gains available
by turning metric collection off, we can develop a strategy for effect-
tive metric collection. Keep in mind, for example, that it doesn’t
make sense to measure all metrics all the time. If a given block has
been declared to have satisfactory closure on verification and the
block has not been further modified, then metric collection for that
block can be turned off.

Some reasons to turn the block- level coverage back on are:

� Any modification of the RTL for the block no matter how
trivial.

mance metric. We can then measure simulation performance infor-
mation with metric collection turned on and off. This data will

8 Regression Management 127

� Modification of blocks that communicate with the block
whose coverage has been turned off.

� Addition of new coverage groups into the block based on
new or modified features of the device.

� Detection of new failures within the block.

Summary
In this chapter we have reviewed the various types of regressions,
their importance and some of the metrics that should be tracked
during regression activities. We have also outlined the basic relation-
ship between regression management and revision control activities.

In Chap. 9 we will look at revision management and the metrics it
produces and consumes.

Chapter 9
Revision Control and Change Integration

Introduction
When discussing revision control systems there are a few key terms
that will be frequently used. These terms are defined here to avoid
ambiguity.

Revision Control System: A revision control system is any appli-
cation that allows the user to save multiple versions of a file so that
older version of the file can be easily retrieved. Examples of revision
control systems include full- blown systems like CVS (which
interestingly enough is freeware), and the revision control system
built into Microsoft Word that allows authors to monitor changes
made to a document (which was used in the creation of this book).

Revision: A version of a single file. The user creates a specific
version of a file by “checking it in” to a revision control system.
Each revision is a unique version of the file that corresponds to a
development step in the project. Revisions are used to allow deve-
lopers to access design files when they were in an earlier or alter-
native stage of the development. Revision control systems allow the
user to insert a brief message that describes the version of the file
(Figure 9.1).

USB_Rev3

USB_Rev3.1

USB_Rev3.2

USB_Rev3.11 USB_Rev3.12

USB_Rev4

130 Metric-Driven Design Verification

USB_Rev3 USB_Rev4 USB_Rev5 USB_Rev6

Time

Initial
Release

Fixed
Config

Bug

Added
P2P

Added
Comments

Figure 9.1 File Revisions

Branch: Frequently it is necessary to create multiple versions of a
development file at the same level of the development process. One
example of this is for functional debug. A developer may have
several independent code changes that need to be tested to isolate the
cause of a functional bug. The developer can edit the code indepen-
dently for each change and then check each change into a different
branch of the same revision of the file (Figure 9.2).

USB_Rev3

USB_Rev3.1

USB_Rev3.2

USB_Rev3.11 USB_Rev3.12

USB_Rev4

Figure 9.2 Revision Branching

9 Revision Control and Change Integration 131

Revision Tag: A revision tag is a label that is applied to a given set
of file versions by the revision control system. The tag is used to
link sets of files together at a common development point. One
example of using a tag is to label a set of files that have successfully
passed an integration regression (Figure 9.3).

Rev 1 Rev 2 Rev 3 Rev 4 Rev 5

usb.v

dma.
v

dsp.v

Tag: Integration_1

Figure 9.3 Revision Tagging

The Benefits of Revision Control

key benefits are:

� Retrieve earlier revisions of the design or verification

environment

This is crucial for debug activities. Being able to easily try the same
testcase with earlier versions of the design can provide key debug
information.

� Manage multiple versions of the same code for debug and
development experiments

Today’s large compute farms allow some innovative debug and deve-
lopment opportunities. Rather than trying one debug or development
experiment at a time in simulation, developers can try multiple
plausible experiments at once. The revision control system can be
used to create multiple “branches” of a given revision. One experi-
ment can be tested on each branch. Once the decision is made about

Revision control provides several pragmatic benefits. Two of the

132 Metric-Driven Design Verification

which branch will be used to proceed, the branches are collapsed
into the next released version of the file. The revision control system
allows the user to revert back to any of the experimental files if
necessary.

Metric-Driven Revision Control
Revision control tools were among the first metric- driven process
automation tools. Using these tools, an engineer can automatically
revert back to any execution stage of the design and eliminate unpro-
fitable changes or perform experiments.

While engineering teams have been using these tools to various
degrees for years, they have rarely received the full value that these
tools offer. To reap this value, engineering teams must treat revision
control just like any other metric- driven process. They must first
plan, and then execute on those plans.

Planning for Revision Control: It’s Not Just for Source Code

Anymore

Planning for revision control means determining
what will be revision controlled. Some of the plan-
ning steps are simple. For example, source files
are typically revision controlled while the resulting
binary executables created from the source files
are not. Other aspects of revision planning are not
as obvious.

One of the goals of revision control is to be able to return to a
previous stage of the project and recreate the target code and
environments exactly as they existed at that stage. While the user

and other metrics that aren’t contained in the source code can throw
a wrench into the works. But, effective planning can pull it right
back out. As we said, the source code itself is certainly the necessary
basic material that must be revision controlled, but teams should also
revision control an environment definition file along with the source

P

E

M

R

can easily recreate the same source code, recreating the same exe-
cution environment is a different matter. Changing tool versions

9 Revision Control and Change Integration 133

code. This environment definition file should contain information
such as:

� Version numbers of the tools used. Tools include such things
as simulators, C++ compilers and linkers, add- on verification
engines, etc.

� For random testing, the random seeds that created a given
constrained random verification environment

� Operating system version
� And so on

Using this environment definition file we can recreate the exact
environment that was in place when the revision was stored. When
planning the environment definition, it is important to consider all
aspects of both the tools and the source materials that compose a
design verification environment.

The planning done to define the environment’s
definition is identical to the planning required for
the “process metric package” described in Chapter
10. Keep in mind that while the team needs to
define what should be recorded in the environment
definition file, it is not necessary or even benefi-
cial for them to record that information manually.

MPA tools can extract and record some if not all of this information
for us automatically. For instance, all of the metrics listed in the
bulleted list above can be automatically extracted by MPA tools. The
benefit of this is twofold, first, we don’t have to spend our own time
recording these metrics. This is a huge contributor to the success of
these processes. Any time a person has to streamline their operations,
record keeping is usually the first task to be ignored. By letting the
MPA tool extract these metrics, we remove it from the engineer’s list
of tasks permanently. The second benefit is that we always document
the exact environment that the simulation was run in. We don’t
document the environment that we thought we ran in, or the one we
intended to run in. The MPA tool extracts these values directly from
the output of the tools used to execute the verification task.

P

E

M

R

134 Metric-Driven Design Verification

Revision Control and Documentation

Future users of the revision control system also
need to be able to easily comprehend the intent of
the project team, and that means they need docu-
mentation. There are several documents that need
to be revision controlled on any project. Among

them are:

� Marketing requirements
� Device specification
� Architectural study specifications
� Hypothetical debug spreadsheets as described in Chapter 10
� Individual design and verification notes
� Many, many others depending on the project team

Revision controlling these documents performs two functions. First, it
protects the documents for posterity. No more looking around in old
cast- out directories for a hint of what was going on during the project.
Second, revision control also preserves a temporal element that allows

Tagging the Revision

This is a partial list. The user should spend time carefully consi-
dering their revision tagging plan.

us to track how decisions were made and how the design and veri-
fication of the device evolved. This information can provide valuable
clues for refactoring our design during a project and for streamlining
our processes in future projects.

Tagging is the process of marking a set of revision- con-
trolled files so that a snapshot of the project as it existed
at a point in time can be easily retrieved. The project
eam should plan what events should trigger tagging.

Some events that should trigger tagging a snapshot are shown in
Table 9.1.

9 Revision Control and Change Integration 135

Table 9.1 Tagging Triggers

Event Material to tag
Passing a bring- up
regression

All block material

An integration of
blocks passes an
integration regression

All integration material and all material
for the component blocks

The discovery of a bug All the material for the environment that
found the bug. This should include
design and verification material.

The resolution of a bug The same material that was tagged for
the discovery along with documentation
created during debug.

The design passes a
quality regression

The entire design and all supporting
material

Reporting

Finally, the project team should determine ahead
of time what reports they would like to generate
from their revision control metrics. This planning
should be done at the start of the project like all
other planning activities. Once the planning is

done, the reporting mechanisms should be put in place immediately.
Like all other planning and reporting activities, this will seem trivial
and low priority, however, it is of the utmost importance to setup the
reporting mechanisms as early as possible. The value that revision
control metrics provide can only be fully realized if the metrics can
be analyzed. And the metrics will be best analyzed through the
effective use of automatically generated reports.

Metric- driven process automation tools provide built- in, automated
reporting capabilities. Take advantage of these to easily create the
planned reports. Some reports that should be considered are:

� Volatility of the code for each block, integration and chip-
level environment.

� Debug tags created per design entity per revision.

136 Metric-Driven Design Verification

� Historic reports of engineers’ changes to revision- controlled
material. These can be organized with different granularities
from file level to design block level.

Now that we have our plans in place for how to execute our revision
control activities, let’s look at a brief example that utilizes those
metrics.

Visibility, Visibility, Visibility!

The most crucial aspect of revision control is
visibility. With enough visibility into the status
of a project, most revision control pitfalls can be
avoided. What needs to be visible? The user
should be able to see, at a glance, the status of all
the files in the project, whether or not the file is
checked in, or being edited, who last edited the

file, and the identity of all the users who are currently editing the
file.

The information that revision control tools can provide can be
grouped into the following categories:

� Volatility of the code base.
� Links from code changes to engineers.
� Links between revisions and project history. Especially links

between revision tags, regression success/failure data, and
debug data.

Effective tracking of this information means the difference between
groping in the dark with respect to what’s happening with today’s
revision of the design, and being able to react in an effective and
adept manner to changes. A veteran of even a single semiconductor
design project has their share of horror stories of hours or days of
regression and engineering time lost because of broken code being
checked into the revision control repository.

The first sign of trouble usually comes about 8:30 in the morning
when the first verification engineer arrives. The engineer, slowly

P

E

M

R

9 Revision Control and Change Integration 137

coming to life with his first cup of coffee leans back and leisurely
checks the results from last night’s regressions. To his dismay, he
discovers that every testcase the night before failed! He begins to
review failure messages and discovers one of a number of failure
mechanisms. A nonexhaustive collection of these might be:

� Compilation errors from a given unit (“Everything might be
OK, this might be isolated to a single module”)

� Elaboration or linking errors of the simulation model (“things
are looking kind of dim, I might have an intermodule failure”)

� The simulations all run, but there are inexplicable failures all
over the chip- level regression (“it’s going to take all day to
figure out what caused this”)

Without using revision control metrics the engineer will have to play
out a tried and true routine that always follows the same steps:

� Isolate the block with the most errors and call the responsible
engineer.

� “John, did you change your xyz block last night?”
“Well, I tried a few experiments, why?”
“Did you check it into revision control without running a
bring- up regression?”
“No, of course not!”

� Repeat.

Of course, the difficulty of this procedure will be compounded by
engineers stopping by every 30 min or so to ask if the situation is
rectified yet.

This situation becomes much easier if the engineer makes use of the
metrics provided by the revision control systems to view the contri-
butors that have changed various design blocks since the last success-
ful regression. One useful display of this information is shown in
Figure 9.4.

138 Metric-Driven Design Verification

Figure 9.4 Revised Blocks

Once the regression manager has isolated a list of usual suspects, they
can begin to ask more subtle questions. For example, they might pull
up a timeline of revision changes including the revisions tagged as suc-
cessful regression revisions. A view of this data is shown in Figure 9.5.

Day 1 Day 2 Day 3 Day 4

Good Regression
Regression Crash

Day 5

USB Revision History

20 lines changed

40 lines changed

35 lines changed

Figure 9.5 Revision History

9 Revision Control and Change Integration 139

From this data the debug engineer can see that the regression broke
after the USB block was changed by Larry after the last good reg-
ression. With appropriate visibility, provided by preplanned reporting
mechanisms, the debug engineer was able to quickly isolate the
cause of the issue.

Summary
In this chapter, we have studied how revision control should be
treated as a metric- driven process. We showed how planning for
revision control as a metric- driven process ensures the best return on
investment for this important activity. We also showed how effect-
tive use of our planned metric- driven reports can streamline existing
processes by simply making available information visible!

In Chapter 10 we’ll apply metric- driven techniques to debug.

Chapter 10
Debug

Introduction
Debug as a process? Absolutely! Of course, it’s given, that to a large
extent, debug effectiveness is based on raw talent. A hunch can lead
one engineer in the right direction within minutes while another
engineer might flounder in the forest of possibilities for days before
bringing a bug to light. However, like any other talent- based activity
(baseball, football, piano virtuoso, etc.), when talent peters out or
lapses, or was never there in the first place, a return to fundamentals
guarantees the most reliable road to success. And fundamentals
always mean process.

Just like all good engineers, we would of course like to automate the
debug process. Our objective, automatically collected metrics serve
to make debug processes more efficient, and can completely auto-
mate some of them.

This chapter will describe a number of metric- driven techniques that
can be used to facilitate, and in some cases completely automate,

Verification Process Cloning

Engineers performing functional debug of a logic design usually
engage in a process similar to that shown in Figure 10.1.

various debug tasks. While these processes offer great gains in debug
efficiency, they are really only the tip of the iceberg. Many other pro-
cesses can and certainly will be developed in this emerging field.

142 Metric-Driven Design Verification

The verification engineer first categorizes and investigates detected
failures to determine which failing testcases are best suited to rapid
debug. They then rerun the testcase with debug information turned
on to gather more information about the failure. After getting a
better level of detail, the engineer studies the failure in earnest to
determine if it is an actual design failure, or a failure of the surroun-
ding verification environment. If an actual design failure is found,
then the testcase is passed along with appropriate debug information
to the design engineer.

Start

Detect promising
failures

Re-run Failing
test with

Debug information

Qualify Failure

Actual Failure
? Stop

Pass Failure
to Design

N

Y

Modify Design and
Test

Fixed
? N

Y

Stop

Figure 10.1 Debug Flow

This seemingly simple handoff is where a couple of hours of engi-
neering time can be lost. Usually there’s some confusion as to which
version of the source code the testcase was run on. Then, there may
be confusion about how environment variables were set for the
simulator and the testbench. What was the LD_LIBRARY_PATH
value? Where did we store the prebuilt library files for this test-
bench? All of this information can change from engineer to engineer.

10 Debug 143

All of these pieces of information also happen to be metrics. Today,
these metrics are stored as what is known as cultural knowledge, or
as part of what Jung called the “group mind”. But when part of the
group goes out for lunch, or you’re not as in- tune with the culture as
you could be, debug can grind to a halt.

By capturing this cultural information as a package of process metrics
and storing that metric package, we guarantee that the knowledge
will always be available. If we go one step further and control our
processes with this metric package, the above handoff becomes
completely automated. Using verification process automation tools

First, we plan for the process. We need to determine what metrics

our process will consume and what metrics it
will produce. For our purposes we’re interested
in the metrics that the process will consume.
What metrics does our simulation engine need
to successfully complete its job? A partial list of
these metrics follows:

� Settings of environment variables that effect the simulation

process including:
� Various path variables
� Tool- specific environment variables
� Tool command line arguments
� Tool version
� Paths to the tools that are used. Not only the simulator, but

the memory modeler, the verification tool, etc.
� Revision control information. The release tag for the design

and for the verification environment

This is a partial list. There may be several other metrics depending
on your specific verification tool and environment setup. We use
these metrics as shown in Figure 10.2.

P

E

M

R

such as Enterprise Manager from Cadence Design, we can do exactly
that by metric- enabling our processes today.

144 Metric-Driven Design Verification

Design Revision:
Tool Version:
$ENV_VAR =

Simulator

VPA Tool

Design Revision:
Tool Version:
$ENV_VAR =

start_time

Figure 10.2 Process Cloning

The planned metrics are first encapsulated into a package that can be
read by our MPA tool. The MPA tool in turn uses these metrics to
drive our simulator, passing the correct command line arguments
and setting the appropriate environment variables. As the simulation
runs, the MPA tool creates a copy of our original metric package and
adds output metrics that are specific to this simulation run.

This newly created metrics package is what we use to automate the
hand- off. Using this package and an MPA tool, the design engineer
can run the identical simulation on their workstation, the first time,

Debug Triage

Debug triage is performed after every regression. With the size of
today’s design projects, regressions can consist of thousands of
simulation and emulation runs. Debug triage is the process of sifting

every time. They also have all the other simulation- specific infor-
mation from the original run at their fingertips, no more searching
the hallways for the verification engineer.

10 Debug 145

through this data to determine the most promising failures to debug
first. There are several qualifications that make a failure promising
such as a failure happening early in the simulation, a failure happen-
ing as the only failure in the simulation, or a unique set of failures
happening in a single simulation that don’t occur together in any
other simulation. To sort through the immense amounts of data
produced by today’s massively parallel regressions, an MPA tool is
often used. The first step in analyzing the regression data is to sort the
failures that were discovered. Effective error messages are crucial to
this process. These error messages become yet another tracked metric.
Other metrics that should be tracked per failures include:

� Failure time
� Failure module
� Failure type (assertion, check, compilation error, etc.)
� Failure description
� Testcase that created the failure
� Process metric package used to recreate the failure

These metrics can be grouped and sorted to facilitate the debug
triage process.

Before debug triage is performed we can have innumerable
unprocessed failure metrics. An example of raw failure metrics is
shown in Table 10.1.

Table 10.1 Raw Failure Metrics

Failure

Description Type Time Module Testcase

Write to full FIFO Assertion 100 DMA DMA_tes1

Data not written
Verification
check 2000 DMA_env DMA_test1

Write to full FIFO Assertion 250 DMA ALU_test33

Data not written
Verification
check 3000 DMA_env ALU_test33

Bad addition
Verification
check 275 ALU ALU_test33

Bad addition
Verification
check 543 ALU ALU_test47

146 Metric-Driven Design Verification

By grouping on failure types and then choosing the earliest failure
for each failure type, we get the subset of testcases shown in Table
10.2.

Table 10.2 Grouped First Failures

Failure

Description Type Time Module Testcase

Write to full FIFO Assertion 100 DMA DMA_tes1

Data not written
Verification
check 2000 DMA_env DMA_test1

Bad addition
Verification
check 275 ALU ALU_test33

This view of failure metrics shows what simulations can be most
efficiently rerun to perform initial debug on each failure type. The
advantage of using metric- driven processes and MPA tools is that
this report can be generated automatically after each regression.

Automatic Waveform Generation

For verification engineers, a chronological text trace of the transac-
tions within a simulation is often enough for debug. However, when
the verification engineer has to communicate the issue to a design
engineer, there’s nothing quite like good old waveforms!

Detailed dumps of waveforms are expensive in terms of simulation
performance. For this reason, the first time a regression is run the
waveform output is turned off. The only messages that are output are
error message generated by the various checkers in the verification
environment. After promising failures are found by debug triage
then waveform generation should be turned back on. This generation
of waveforms is often a manual “morning after” process that follows
a regression. This manual procedure is shown in Figure 10.3.

In the previous section, we showed how metric- driven processes can
be used to automate the failure analysis step shown in Figure 10.3.
In this section, we’ll go one step further and automate the entire
waveform generation process.

10 Debug 147

Start Testcases

Simulations Execute
Failure Results

Analyze Failures Debug Simulations
Execute

Debug Failures

 Figure 10.3 Manual Waveform Generation

Let’s dive back into genetics for just a moment.
Remember that using packages of process- specific
metrics we can clone processes. These cloned proces-
ses can be run anywhere and will be identical to the
original process. Well, as long as we’re duplicating
DNA why not tweak a protein sequence or two?

When we clone the metrics package as shown in
Figure 10.2, while we’ve got the hood open,
we’re free to tweak any of the metrics we like. In
order to automate waveform generation, we’ll
first plan by defining a metric in the package

called “waveform_gen.” When simulations are run the first time, we’ll
give waveform_gen a default value of OFF to increase simulation
speed and get more done with our regression resources. After debug
triage, to automate waveform generation, we simply modify the process
package for each simulation identified to have a waveform_gen
value of ON. The process metric packages of these simulations are
passed back to the execution engine and the waveform generation

148 Metric-Driven Design Verification

process is started with no intervention from our valuable engineers!
The automated process is shown in Figure 10.4.

Start Testcases

Simulations Execute
Failure Results

MPA Tool
Analyzes Failures

and Re-Runs
Simulations

Debug Simulations
Execute

Debug Failures

P

E

M

R

Figure 10.4 Automated Waveform Generation

Hypothetical Debug

An engineer goes to work in the morning, pulls up the automatically
created trace information from a regression failure the night before,
and immediately recognizes that a simple protocol rule has been
violated. She fires off an e- mail to the responsible design engineer,
logs the issue in the issue tracking system and moves on to the next
failure. Time spent: five minutes. Great!

That’s the ideal case and we all love the way it feels when we can

control actually caused part of the problem? What if the issue is just
unbearably complex? How does the engineer keep from getting
helplessly lost and losing days of productivity?

get it. But what happens when everything goes wrong? What hap-
pens when there are multiple modules involved? What if revision

10 Debug 149

Many debug sessions end in a morass of confusion and deleted files
because of the tendency to try one thing after another in an undisci-
plined manner. Before long, it is unclear if the device behavior is truly a
symptom of the original issue, or an artifact of a previous experiment.
This is where a process- based metric- driven approach can save the day.
The process is a hypothesis- driven debug process. This process is
executed with the use of a spreadsheet, and ideally, a branching
revision management system. In a complex debug situation, the engi-
neer may have several initial hypotheses as to what has gone wrong.
Some of these will naturally seem more valuable than others. The
engineer captures all the available hypotheses in a miniature, individual
brainstorming session. The engineer then ranks each of their hypo-
theses and briefly documents an experiment to prove the hypothesis
correct. Each hypothesis is then proved or disproved in an iterative

Table 10.3 Example Debug Spreadsheet

Problem description:
Data is lost from the FIFO every fiftieth frame of transmitted packets. This
only occurs when the device is configured in the extended DMA mode.

Hypothesis Experiment Likelihood Results Revision
Tag

Log
Pointer

The
configuration
register for the
extended DMA

on the latest
revision

Use the
previous
version of
the

M The issue is
still detected

Iss179_Ex1 /regr/exp
179_ex1/
logs

The FIFO is
mishandling an
overflow corner
case caused by
the size of the
transmitted
packets

Check the
size of the
transmitted
packets and
modify if
necessary

H The issue
goes away
when the
packet are
made smaller

Iss179_Ex2 /regr/exp
179_ex2/
logs

configuration
bridge

mode was broken

150 Metric-Driven Design Verification

process based on the initial ranking. Any new hypotheses are recorded
and ranked during each iteration. Iterations are repeated until the root
cause of the bug under study is determined. This process is illustrated
in Table 10.3.

By using a revision tracking system, the classical experimental
method of making a single change and collecting data can be more
effectively implemented. By procedurally requiring that each indivi-
dual experiment takes place along an independent revision branch, the
confusion described above can be completely avoided. Of course,
some experiments naturally lead to others and require that additional
steps be taken. These can be facilitated by iterating version numbers
along a revision branch (Figure 10.5).

Iss179_Ex1 Iss179_Ex2

Iss179_Ex1a

Iss179_Ex1b

USB_Rev3

Figure 10.5 Revision Branching Hypotheses

In addition to keeping experiments along easily manageable ortho-
gonal branches, the revision control techniques mentioned above
allow a more effective use of the parallel debug resources that are
often available. Quite often compute resource speed is a limiting

10 Debug 151

factor of debug. The verification engineer creates their experiment,
and submits it to the debug job dispatch queue. Half an hour later,
the engineer returns to a completed simulation and continues the
debug process. The intervening half hour may or may not have been
utilized effectively, but quite often, it is not utilized on the same
issue. The technique described here can be utilized to allow the
engineer to parallelize their experiments. As soon as one job is kicked
off, the engineer can begin creating the test environment for the next
experiment and submit it along an independent revision branch on a
parallel computing resource.

The resulting spreadsheet should be captured as a historical metric
of the debug process that will travel along with the block or blocks
of IP that were debugged. Other metrics that are useful to capture
during this process are:

� Revision branch tag used to independently test each
hypothesis or chain of hypotheses

� Pointer to the log files for each hypothesis
� Start time of issue debug
� Finish time of issue debug

Querying Coverage for Debug

Many verification metrics have unexpected, but valuable uses. For
example, debug can often be facilitated by an innovative use of
coverage metrics. One useful debug technique is to first find a testcase
where the device is configured in the same manner as in the failing
testcase, but is exhibiting the correct behavior. The engineer can find
this testcase using functional coverage. First the engineer determines
how the device in the failing testcase was configured. For example,
the DMA block was configured to run with a granularity of 1 KB
transfers. They then correlate functional coverage on the DMA
granularity setting from the entire regression’s aggregated functional
coverage back to the testcases that created it. This creates a list of
testcases that configured the device in the same manner. If a testcase
can be located that passed while the device was configured in this
manner, it can be used as a baseline to compare the behavior of the
failing testcase.

152 Metric-Driven Design Verification

The utility doesn’t stop at functional coverage either. Any type of
coverage metric can be used in the same manner. For example,
consider Table 10.4.

Table 10.4 Coverage Usage for Debug

Coverage type Usage example
Assertions When was a given corner case

exercised successfully?
Code coverage When was a given module

heavily exercised?
Software coverage When was the device

exercised in a given usage
model?

This coverage correlation technique can be most effectively used
with an efficient rerun scheme.

Debug Metrics
Like all other processes, debug itself creates metrics that should be
tracked. Metrics tracked for debug tend to fall into the historical
category of metrics that you hope you’ll never need, but that you’ll
be really glad you have when you do need them. Among the metrics
that should be stored are:

� Time taken to debug each issue.
� Number of reported issues per device feature.
� Number of issues reported per verification intellectual pro-

perty package used.

Time Taken to Debug Each Issue

This metric can be used to check the efficiency of various debug
techniques. It can also serve to point out blocks or block integrations
that may be too complex and require refactoring.

Number of Reported Issues per Device Feature
This metrics can also be used to find portions of the design that
might need extra attention. It can also indicate that there are portions

10 Debug 153

of the verification environment that need extra attention depending
on how the issue was ultimately resolved.

Number of Issues Reported per Verification Intellectual Property

Package Used

This metric can be used as an indicator of the value of various VIP
packages.

Summary
In this chapter, we have shown how metrics can be used to
streamline many verification debug processes. We have shown only
a few examples. However, even these examples can reap great gains
in productivity. There are many other opportunities for streamlining
debug processes using metrics. The user is urged to explore!

Part III
Executing the Verification

Process

Chapter 11
Coverage Metrics

Introduction
There are several different coverage metrics that will be used to
track each of the verification technologies described in this part of
the book to closure. Because several of the metrics are used for more
than one of the technologies, their descriptions have all been
summarized here at the beginning of Part III.

Functional Coverage

Functional coverage is used to measure the number
of interesting scenarios that the device under test
has been simulated in. It is a modeled form of
coverage and as such, it must be implemented by a
verification engineer. Functional coverage design is

derived directly from the features, events, and attributes laid out in
the verification plan.

Let’s look at functional coverage in the context of the collaborative
planning process described earlier in the book. The planning process
consisted of a few basic steps. They were:

� Describe a feature of the device.
� Describe how to detect that the feature has been exercised.
� Describe attributes of the device are interesting to measure in

conjunction with the feature being exercised.

158 Metric-Driven Design Verification

For example, we may be interested in the snoop feature of a
processor. First, we describe the feature in generic terms.

Snooping
The processor has a snoop signal that allows
other devices in the system to request memory
whose latest copy is contained within the cache
of the processor. The processor can respond to
a snoop signal by doing nothing, or by
flushing the contained memory back out to the
system memory.

Next, we describe how to detect a snoop has been issued to the
processor.

A rising edge on the ‘snoop’ input signal
starts the snoop state machines within the
processor.

Because the feature will cause instructions to fetch their operands
from different locations, we’d like to know that each instruction has
been executed in the presence of an external snoop signal. The
timing of these events is shown in Figure 11.1.

add reg,imm

snoop

Figure 11.1 Snoop Signal Coincident With Instruction Executes

We might also like to know that each instruction has been executed
while accessing each address of contained in our 1- bit address space

11 Coverage Metrics 159

(yes this is a toy example!). So, our final description of what we
would like to measure is:

On the execution of each external snoop, we’ll
measure the instruction executed and the
address that each of its operands accessed.

All that remains is to code the functional coverage group from our
verification plan. The example below is coded in the e language. A
similar implementation could be performed in SystemVerilog.

event snoop is rise(‘top.snoop’)@clk;
cover snoop {
 item instruction.opcode
 item instruction.addrs1
 item instruction.addrs2
 item instruction.addrt1
};

The preceding cover group description will measure and record the
instruction op- code, its two source addresses, and its target address
when each snoop signal is detected in the execution engine. The
output results of the cover group would look something like those
shown in Table 11.1. The count indicates the number of times that
the triggering event has been observed for the attribute values shown
in that row.

Table 11.1 Functional Coverage Results

Op- Code Src Addr1 Src Addr2 Tgt Addr1 Count
Add 0 0 0 23
 0 0 1 1
 0 1 0 2
 0 1 1 2
 1 1 1 0
Sub 0 0 0 0
 0 0 1 1
 0 1 0 25
And So On

160 Metric-Driven Design Verification

By viewing our functional coverage results, we can tell whether or
not the snooping feature has been exercised in every manner that
we’re interested in.

Even better! Using a constrained random testing methodology with
functional coverage as a closure metric as shown below, we can get
out of writing some of the testcases required to exercise this feature.

Code Coverage

Code coverage simply measures the lines of RTL code
that were executed by the simulation. This is implicit or
automated coverage and is often called “implementation

coverage.” Most modern simulators include a code coverage tool.

By using both functional and implementation coverage a set of
checks and balances can be set up. Table 11.2 shows the matrix that
can be used to draw inferences from these two sets of data.

Table 11.2 Implementation vs. Functional Coverage

 Low- functional
coverage

High- functional
coverage

Low- implementation
coverage

High- implementation
coverage

A combination of low- implementation and low- functional coverage
may indicate that the project is in its bring- up phase. There simply
isn’t enough simulation infrastructure in place to provide adequate
coverage in either of these spaces.

High- functional coverage results in conjunction with low-
implementation coverage results could indicate:

� An incomplete functional verification plan
� Blocks of the design that are not used

11 Coverage Metrics 161

High- implementation coverage in conjunction with low- functional
coverage could indicate:

� There are blocks of the design that are unimplemented

High- implementation coverage in conjunction with high- functional
coverage is fundamentally a good indicator. However care should be
taken to review the verification plans and perform more random
simulations. There are of course opportunities for false positives
here. If holes in the verification plan happen to coincide with
unimplemented blocks good implementation coverage and high-
functional coverage may still be achieved.

Test- Based Coverage

Test- based coverage is related to directed testing. In a
directed testing strategy, the verification plan consists of a
series of directed testcases that are to be written to exercise
the device in the manner that verification stakeholders are
interested in. Coverage is considered complete when all the
testcases have been written and are passing. Some tools are

currently available to automatically track the implementation of
directed testcases against a verification plan in this manner.

Assertion and Checker Coverage

Most assertions consist of two clauses, an initial clause that activates
the assertion and a test clause that specifies what is to be evaluated
once the assertion is activated. While failures should trend toward
zero, every dynamic assertion should be activated. In this fashion,
dynamic assertion activations serve in the same sense as functional
coverage of input stimulus. If an assertion has not been activated,
then the stimulus required for the activation has not been introduced
to the device.

Chapter 12
Modeling and Architectural Verification

Introduction
In larger, more complex projects, such as the massively integrated
SoC designs commonly produced today, exploration of various
architectural solutions is often performed first. The purpose of
architectural explorations is to analyze the tradeoffs between
different possible architectures of the chip based on criteria such as
performance and power consumption.

These explorations are typically done using transaction- level
modeling (TLM). By modeling the device at the transaction level,
enough of the device complexity is removed so that simulations with
different architectural parameters can be performed easily.
Transaction- level modeling is often done using SystemC.

TLM can be executed at a variety of abstraction levels. The various
abstraction levels provide trade- offs between performance and
accuracy. The algorithmic level allows the user to test algorithms to
be implemented by the device without regard to the performance of
the device or timing information. Resources available to the device
are also not taken into account here. This level of abstraction is
simply used to determine if the algorithm to be performed is feasible
and produces correct results.

The programmer’s view adds the conceptual limitations of the
memory spaces available to the device and any master or slave
devices used by the algorithms. In this manner, the model takes into

164 Metric-Driven Design Verification

account limitations of the resources required by the algorithm. The
architect can now make decisions about reimplementing the
algorithm, or adding more or faster resources to the planned device.

The programmer’s view plus timing adds information about the bus
architecture. It adds general information about the amount of time
required to access resources from the bus and models bus contention
as well. This is where the first performance testing takes place.

The cycle- accurate level breaks transactions down into the atomic
bus- level transactions that they are constructed from. The user can
do accurate architectural studies of bus traffic. At this level, the
power required to model these small transactions begins to erode the
performance of the model in general.

Finally, the register transfer or RT- level models the device down to
the signal and bit accurate level. The performance at this level is
similar to the performance offered by RTL simulation. This model
provides the most accurate results with respect to how the planned
device will actually perform.

How to Plan
There are several aspects of architectural level
verification that might be important to verify.
Some of these are:

� Algorithm correctness
� Necessary performance
� Memory footprint
� Bus congestion

Planning and the Project Stakeholders
The key stakeholders for planning architectural verification are:

� System architects
� Verification engineers

Other stakeholders that can benefit from attending the planning
session are:

P

E

M

R

12 Modeling and Architectural Verification 165

� Design engineers
� Firmware engineers
� Application engineers

These stakeholders benefit by being exposed at a very early stage to
the design intent in its near original form.

Architectural verification may be performed by either the system
architect or the verification engineer. The planning session should
follow the collaborative process outlined in the chapter on
verification planning. Architects should describe each feature of the
device, how it should be exercised, and what aspects of the feature
are important to verify. A performance or behavioral check should
be identified for each feature.

One of the key benefits that the verification engineer can offer is
insight into how to make the architectural verification constructs
described in the planning session portable to the other abstraction
levels of the project.

Tracking to Closure
It is important to track that the architectural
models have been suitably exercised using
functional coverage and that they have been
suitably verified using assertion and checker
coverage. It is of even more importance to
verify that these architectural requirements are
still met as the design is implemented in

hardware. Using a suitable reuse methodology we can easily deploy
the coverage and checking metrics described here in our hardware
verification environments as well.

Reusing Architectural Verification Environments
With some up- front planning, we can reuse the following aspects of
our architectural verification environments throughout the project:

� Transaction stream generators (also known as bus functional
models (BFMs) or scenario drivers)

P

E

M

R

166 Metric-Driven Design Verification

� Correctness checkers and assertions
� Functional coverage
� Checker and assertion coverage

The architectural pattern used (verification environment architecture
in this context, not device architecture) is the proxy pattern familiar
to object- oriented programmers. The basic principle of the proxy
pattern is to build our complex operations on abstract inputs so that
they can be easily reused. Figure 12.1 illustrates this concept.

Complex Operation, (Checks, Coverage, Stimulus…)

Translator (Proxy)

Concrete Models, (Architectural, RTL, Gates)

Figure 12.1 The Proxy Pattern

For more information and specific examples on how to implement
this pattern there are several good reuse methodology volumes
available including the Incisive Plan to Closure Methodology
Manual from Cadence Design Systems.

Summary
In this chapter we briefly explored the application of metric- driven
techniques to architectural verification. We described the various
stakeholders and how they should be involved in planning. We also
pointed out the reuse concerns for ensuring that architectural
concerns continue to be met as the device moves from an
architectural concept to production ready hardware.

Chapter 13
Assertion-Based Verification

Introduction

Assertion- based verification is the first chance that the design and
verification teams have to verify the functionality of the design vs.
the functional specification and the implementation specification.
While assertion- based verification can be very simple, it is one of
the best opportunities to make sure that the verification project is
effective and completed on schedule.

Properly executed assertion- based verification environments provide
the following benefits:

� Assertions provide a formal means for designers to

encapsulate their knowledge about their design intent at a
higher abstraction level than the implemented RTL.

� Assertions reduce debug time throughout the project.
� Assertions ensure smooth integration of design blocks.
� Assertions can be used to prove that portions of the design

work as specified in the assertion.
� Assertions catch bugs early in the project that will become

exponentially more expensive to debug as the project
proceeds.

� Assertions can be reused from the block all the way to the
system level. Starting in static, formal environments, moving
into dynamic simulation environments, and finally into
emulation/acceleration environments.

� Assertions provide coverage of important internal design
states.

168 Metric-Driven Design Verification

Assertions are Boolean and temporal checks that monitor signal
values from the DUV. Assertions can be written in a number of
languages including Verilog, SystemVerilog, e, VHDL, and PSL.

The e language assertion in Figure 13.1 demonstrates a simple
Boolean check. This assertion checks that a grant is always received
within four cycles of a request. The Boolean expression is activated
and evaluated each time the event “clk” is detected as denoted by the
“@clk” clause.

expect req_after_gnt is @req => {[0..4]; @gnt}

@clk;

Figure 13.1 e Language Boolean Assertion

Assertions can be used for verification in one of two ways. An
engineer may simulate their design with the assertions (dynamic
assertion- based verification), or they may prove the correctness of
the design using formal techniques (static assertion- based
verification). In the case of dynamic assertion- based verification
(ABV), the assertions will check for proper operation during the
simulation.

Using formal analysis techniques, assertions can actually be proven
to always be correct. This is a very powerful technique because it
guarantees that the functionality checked by the assertion is correct.
These formal proofs are best leveraged on relatively small portions
of the design that contain state machines and control logic.

While formal verification was once the domain of
the Ph.D. formal analysis expert, recent advances
in technology have made this technique
accessible to everyone. Engineers simply submit
their synthesizable design and assertions to the
formal verification tool. These tools, such as IFV
from Cadence Design Systems, will attempt to

prove that the assertion can never be violated. They will generate
one of three answers. If the assertion can be proven, the tool will
simply declare that the assertion was proven. If the assertion can be

P

E

M

R

13 Assertion-Based Verfication 169

violated by the DUV, the tool will issue an error message and
display a set of waveforms that illustrate the sequence of signals that
induce the design to violate the assertion. Finally, if the tool cannot
prove the assertion in an allotted amount of time, it will issue a
warning stating that it could neither prove the assertion, nor find a
counter- example that illustrated the design violating the assertion.

Formal ABV requires the use of a second class of assertions called
properties. Formal proof engines work best on relatively small well-
constrained blocks of logic, such as those found at the block level of
a design. To keep the problem that the formal engine has to solve
well bounded, it is necessary for the engineer to define boundary
conditions at the edge of the module. These boundary conditions are
called properties and are declared using the same assertion
constructs that are used for the assertions that are to be proven.

Formal ABV is of particular value because it allows the design
engineer to begin verification before any testbench apparatus is
available (Figure 13.2).

Testbench Creation Design Verification Advanced Verification

Testbench Creation

Design Verification

Advanced Verification

Time

Dynamic Verification Only

Leveraging Formal Techniques

Figure 13.2 Formal Schedule Savings

Without formal techniques, the design engineer must either create a
testbench, or wait for the testbench that the verification team will
create for advanced verification, before any testing of the design can
be done. Using formal techniques, the designer can begin checking
the design as soon as a synthesizable module is available.

170 Metric-Driven Design Verification

The sooner a bug is found the easier it is to debug. Several studies
have found that the amount of time required to debug an issue
increases exponentially with the amount of project time that passes
before the issue is detected. By performing block- level verification
before a testbench is available using formal techniques, many issues
can be corrected immediately by the designer before they are
detected by more costly simulations.

How to Plan
Extreme Programming and Design Assertion Planning

One concern that is frequently raised when
planning design assertions is: “How do we know
that we wrote assertions that correspond to all of
the behavior of the device?” In other words, how
do we know we have a complete set of checks for
the features implemented by the design block?

The answer is actually quite simple. Taking a page from software
engineering, we’ll use an extreme programming concept. Put
concisely, this is an edict that says:

“No implementation will be performed until a testcase exists for the
planned implementation”

As implementers determine what features to implement and how to
implement them, they first determine how those features will be

design, we’ll use assertions instead of software testcases to verify
each piece of hardware functionality. When all our assertions pass,
we’ll have our first level indication that the design is ready to go. No
more subjective estimations: if the assertions pass, then every
feature has been implemented and tested.

There is a second powerful edict of extreme programming. It is:

“Nobody programs or tests alone! Always take a buddy!”

P

E

M

R

tested. Only after implementing the testcase, they begin imple-
mentation of the feature itself. In the case of hardware- based

13 Assertion-Based Verfication 171

It’s simply too tempting to dive straight into implementation with no
testing. The implementation seems short. What could go wrong? Just
bang out the code and get it done, right? Never mind that
“verification takes 70% of project effort” quote you keep hearing in
the hallways. Everything will be fine!

With a development partner, the temptation to skip the rules is
highly diminished. Two engineers are much more likely to follow a
system than one. It’s just human nature. You’ll have more fun.

There is a second advantage to having a codeveloper. It might seem
really sexy right now to be the “sole” developer of that shiny new
hardware block. It might seem to imply importance and job security
if you’re the only one that knows the blocks inner- workings. But,
especially with today’s bent toward reuse, when you get the 500th
support call from yet another engineer that just picked up your
hardware block, the gleam will definitely be off the rose.

For assertion- based verification planning, we’re going to work two
at a time and we’re going to identify an assertion for each feature
before we implement it. Let’s see what this process looks like in
practice.

We’ll start with some raw material, an empty HDL module, some
form of design intent, and an empty executable verification plan. As
we declare functionality, we’ll begin to declare the registers, inputs,
outputs, and wires that are needed to implement it. We won’t go any
further on implementation though. Before we implement, we’ll write
the assertion that verifies the functionality we’re about to implement.
We define the necessary signals so that at any given moment, the
design shell and its associated assertions should compile and execute
in a simulator or formal proof engine.

automatically create the tracking mechanism that we will use to tell
ourselves and the rest of the team that the design is ready. In addition,
we’re creating a document that will tell future users of the device

As we’re writing our assertions, we will add descriptions of them to
a hierarchical executable verification plan. In this manner, we

172 Metric-Driven Design Verification

exactly what is tested. This documentation will come in handy for
debug at higher levels of integration as well. As we kick off simu-
lations, we’ll track results back into the executable verification plan.
When the verification plan says we have 100% coverage of assertions,
our design is complete.

Let’s look at an arbiter for example. First, we construct our empty
arbiter module as shown in Figure 13.3.

module my_arbiter{
begin module;

input reset;
input clk;
input req1;
input req2;
input req3;
output grant1;
output grant2;
output grant3;

end module;
}

Figure 13.3 Arbiter Module

Our first feature for the arbiter will be its reset behavior. We know
that when the reset signal transitions to low that all grant signals
should be forced to their de- asserted state. We can write an assertion
to check this:

my_assertion: assert (GNT1 && GNT2&& GNT3 &&
!RST);

And finally, we’ll add the feature to the verification plan (Figure
13.4).

Now when we run our simulation, all of our assertions will of course
fail and we’ll get an executable view of our verification plan like
Figure 13.5.

13 Assertion-Based Verfication 173

Arbiter

Reset
The grant signals should all be de- asserted when reset is asserted.
/sys/arbiter/reset_assert

Figure 13.4 Verification Plan Source

Arbiter

Reset – 0%
The grant signals should all be de- asserted when reset is asserted.
/sys/arbiter/reset_assert – 0%

Figure 13.5 Verification Plan Executable View

The flow just described is shown in Figure 13.6.

Start

Declare necessary
Signals and registers

Write Assertions for
Functionality

Add to
Verification Plan

Implement HDL
And Test

100% Passing
?

100% Implemented
?

Stop

Figure 13.6 Assertion- Based Planning Flow

174 Metric-Driven Design Verification

As we implement the functionality, we’ll see the 0% indicator move
to 100%. By repeating this process for each piece of functionality,
we are guaranteed to have assertions corresponding to each
operation of the device. In fact, the assertions actually define the
operation of the device.

The verification plan and assertion library will grow after each
implementation round. As the plan begins to grow we might see
Figure 13.7.

Arbiter

Reset – 50%
The grant signals should all be de- asserted when reset is asserted.
/sys/arbiter/reset_assert – 100%

The grant signal must assert within 15 cycles of the assertion of the request
signal.
/sys/arbiter/gnt_req – 0%

Figure 13.7 Executable Verification Plan

The plan will continue to grow in this manner until all behaviors of
the module have been tested and implemented. Notice the word
order there, it’s important. Tested and then implemented, not
implemented and tested.

Where Do We Go From Here
Using the planned assertions described here, the design team can be
confident that their creation plays well. Now it’s time to make sure it
plays well with others by handing the design over to the functional
verification and integration teams. These teams begin their tasks
with planning. Planning at this level is a collaborative effort between
the design, verification, and software engineers for the device. The
design engineer presents a block diagram of their design and

13 Assertion-Based Verfication 175

describes the features of the design. Each stakeholder (designers of
adjacent blocks, integration engineers, verification specialists, firmware
developers, etc.) then specifies how they intend to use the feature
and what they need to see verified to feel confident the feature is
implemented correctly.

The basis for the conversation is the feature set identified by the
designer. Using the planning methodology shown here, the design
engineer has a well- documented set of features which he can use to
lead the discussion. Not only do they have an exhaustive list of
features, but proof that each of the features has been exercised and
verified. This can make verification planning sessions much more
productive and efficient.

Tracking to Closure
The tracking process for design- based assertions
follows closely from the planning process. The
basic metrics that should be tracked are:

� Number of assertion failures
� Number of assertion activations
� Number of complete proofs
� Total count of assertions

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11

Work Day

A
ss

er
tio

n
Fa

ilu
re

s

Assertion Failures
Assertion Count

P

E

M

R

Figure 13.8 Assertion Failures and Count

176 Metric-Driven Design Verification

If the planning methodology outlined above is followed, then the
initial number of assertion failures should be high at the beginning
of each implementation iteration and then trend downward as
hardware is actually implemented. An example of this is shown in
Figure 13.8.

Metrics can be used to assure that the proper “test then implement”
methodology is being followed. We generate a report like the one in
Table 13.1 that shows the number of failures detected per assertion.

Table 13.1 Errors Detected By Assertions

Errors detected
Assertion name Error triggers
ar_bandwidth_ch 2
Dn_FIFO_Empty 0
Dn_FIFO_RW 3

If the suggested methodology is followed, all assertions should
initially fail because no functionality is implemented. It can be seen
that the dn_FIFO_Empty assertion either checks nothing, or was
added after the initial code was implemented. Keep in mind that
later in the project this may indicate that unexpected bugs were
found and new assertions were added to provide more detailed
checks for these issues.

If the assertion failure number does not initially start high, it is an
indication that the planning methodology is not being followed.

Assertions are only valuable in dynamic simulation if the design is
properly stimulated. For this reason, when assertions are used in this
“dynamic” mode, it is important to link coverage of their activating
event into the executable verification plan. If less than 100%
assertion activation is achieved, the project team should continue to
generate stimulus to activate the uncovered assertions.

13 Assertion-Based Verfication 177

The formal proof results should be tracked as well. The team should
expect to see all formal proofs trend to the proven state. In the event
that counter- examples are detected, the engineering team should fix
either the DUV or the assertion if it contains errors. In the event that
the third inconclusive state is encountered, the engineer has two
choices. First, they can instruct the formal proof engine to expend
more effort proving the assertion. If the proof results are still
inconclusive, then the assertion should be utilized as a dynamic
assertion in conjunction with functional coverage to make sure that
the assertion was sufficiently exercised.

Most assertions consist of two clauses, an initial clause that activates
the assertion and a test clause that specifies what is to be evaluated
once the assertion is activated. While failures should trend toward
zero, every dynamic assertion should be activated. In this fashion,
dynamic assertion activations serve in the same sense as functional
coverage of input stimulus. If an assertion has not been activated,
then the stimulus required for the activation has not been introduced
to the device.

Some formal assertion tools provide built- in assertions that are
common to all hardware designs and point out such design issues as
intrinsic race conditions. Another simple metric is to ensure that
these tools have been used on each design block.

Formal tools also offer facilities that report how many of the design
inputs, outputs, and logic are not touched by defined assertions. This
gives a measure of the completeness of the assertions defined for the
design.

Opportunities for Reuse
Assertions can be used at all levels of verification
from architectural studies to block- level verifica-
tion to system- level integration. If the assertions
are properly constructed, they can be significantly
reused from level to level.

Much has been written about assertion reuse.

P

E

M

R

There are several references in the bibliography on this subject. For

178 Metric-Driven Design Verification

our purposes however, it is important to track how effectively
assertions in the project have been reused. Using this information,
the project team can adjust their methodology to make more
effective reuse of available verification IP. The verification project
manager should track how assertions were reused between the
architectural, block, integration, and system level of verification.
This can be done by using a standardized assertion naming scheme
and then tracking which assertions found errors at each level of
verification. This metric illustrates not only which assertions were
reused effectively, but also which assertions were most effective in
pointing out design issues. An example of an assertion tracking
metric table is shown in Table 13.2.

Table 13.2 Assertion Metrics

Assertion Catalog
Assertion Name Verification Level Errors
ar_bandwidth_ch Architectural 2
ar_bandwidth_ch Dynamic Simulation 1
ar_bandwidth_ch Dynamic Emulation 1
dn_FIFO_Empty Formal 0
dn_FIFO_Empty Dynamic Simulation 2
dn_FIFO_RW Dynamic Simulation 3
dn_FIFO_RW Dynamic Emulation 1

This raw metric data can be consolidated and analyzed to yield
results such as the reuse table (Table 13.3).

Table 13.3 Assertion Reuse Metrics

Assertion reuse
Assertion name Levels used Errors
ar_bandwidth_ch 3 2
dn_FIFO_Empty 2 0
dn_FIFO_RW 2 3

13 Assertion-Based Verfication 179

Alternatively, reports might be created that show where the largest
opportunities lie for improvement. Such a report is given in Table
13.4.

Table 13.4 Assertions Used Only Once

One use assertions
Assertion name Levels used
ar_intrpts 1
dn_opcode 1
dn_onehot 1

Summary
We have seen how assertions can be leveraged to jumpstart our
verification efforts. A new planning methodology that leverages
designers was outlined and it was shown how the output of this
planning can be taken as the input for the feature- based verification
planning described earlier in the book. We also saw how to track
metrics from assertions to gauge project status and also to gauge
reuse opportunities.

In Chapter 14 we’ll look at metric- driven simulation- based techniques.

Chapter 14
Dynamic Simulation-Based Verification

Introduction
This is the classic bread and butter of functional verification.
Mention functional verification in most semiconductor companies
and simulation- based verification is what comes to mind.

Conceptually, this is one of the simpler flavors of verification to
grasp. An application called a simulator runs on a workstation and
allows the user to simulate a device as it would actually work in a
real system. The user can describe dynamic stimulus that is to be
applied to the device and then monitor the response of the device as
the stimulus is applied over time. The user can specify signals that
are to be driven to produce the stimulus. The user also has access to
the values driven on each signal within the device at any given time
during the simulation. Using values of these signals, the user can
check for proper operation of the device under verification.

A design engineer creates a model of the device in RTL (register
transfer language) using a language such as Verilog or VHDL. Both
languages offer procedural programming constructs similar to those
available in C. They can therefore be used not only to create the

add reg,imm

snoop

snoop

Stage 1
Prefetch

Stage 2
Decode

Stage 3
Execute

Stage 4
Finalize

182 Metric-Driven Design Verification

model of the device, but also to create the testbench that will be used
to test the device. Verilog and VHDL are both structured languages
that allow models to be divided into subsystems. This ability to
organize models into subsystems encourages reuse of both designs
and their testbenches.

In addition to Verilog and VHDL, most simulators provide
interfaces to verification- specific languages such as SystemC, e, and
SystemVerilog. These languages offer various levels of object and
aspect orientation that facilitate reuse of verification intellectual
property (VIP).

Simulation- based verification systems typically mirror the
implementation of the design. For example, if a design is built as a
number of design blocks, and the blocks are then integrated to the
chip level, there will typically be an independent verification
environment for each design block, and an integrated verification
environment that tests the integrated chip as a whole (Figure 14.1).

Block B

Verification Environment

Block C

Verification Environment

Block A

Verification Environment

Chip

Verification Environment

A
B

C

Figure 14.1 Block and Chip Verification

14 Dynamic Simulation-Based Verification 183

How to Plan
Planning for simulation- based verification uses the
collaborative techniques described in Part 2. To
reiterate here, a feature- based planning approach
should be used to determine what coverage metrics
should be collected from the verification environ-
ment. In simulation- based verification, three types
of coverage are widely used. They are:

� Functional Coverage
� Code Coverage
� Test- based Coverage

Planning and the Project Stakeholders

The stakeholders that should be involved in planning for simulation-
based verification are:

� Verification engineers
� Design engineers
� System architects
� Firmware engineers
� Application engineers
� Design lead and/or manager
� Verification lead and/or manager

Each of these stakeholders is important first for the perspective they
can offer to a holistic understanding of the device under verification
as described in the chapter on verification planning. Remember,
design intent is translated differently by each stakeholder, and the
planning session is our opportunity to align these translations
(Figure 14.2).

P

E

M

R

184 Metric-Driven Design Verification

Product Intent
Marketing, Business, Customers

Architecture Intent
System Architects

Napkins,
Memos,

Formalized
Requirements

Documents

Specification

Design Intent
Design Engineers

Software Intent
Software Engineers

Verification Intent
Verification Engineers

Hardware/Software and
Verification

Figure 14.2 Translations of Device Intent

In addition to contributing their unique viewpoint to the team, each
contributor needs to specify and discuss which aspects of each feature
are important to them. In some cases, they will help to define metrics
that will objectively measure verification closure vs. their concerns. In
other cases, they will note metrics that have already been defined and
add them to their individually defined “view” of the verification plan.
Let’s take a look at some of the concerns each stakeholder might
have.

Verification Engineers
Verification engineers lead the planning process. They must be
concerned with every aspect of verification and their “view” into the
verification plan should encompass everything. The verification
engineer should also elicit input from all the other contributors. A
verification engineer’s constant litany during the planning process
should be:

14 Dynamic Simulation-Based Verification 185

� “What does this feature mean to you? How will you use it?”
� “In how many different ways can this feature be configured?

How is it configured?”
� “How can we detect when that aspect of this feature has been

exercised? How can I build an event to detect that?”
� “What is important to measure about this aspect of this

feature? Should that value be captured when we detect the
feature has been exercised or at some past or future event?”

� “How many of the values must be observed for you to feel
comfortable that this feature has been completely verified?”

Design Engineers
The design engineer possesses knowledge of how the device has
actually been implemented. As such, they present the description of
each feature of the portion of the device that they were responsible
for implementing.

While their hardware enables the more complete chip- level behavior
that is of interest to most of the stakeholders, the design engineer’s
concerns may be more focused. They may want to ensure that all
their code was actually exercised using code coverage as a metric.
There may be specific complex scenarios that they know will
exercise corner cases within their design. The verification of these
scenarios might be gauged using functional coverage.

If the design engineer has used assertion- based verification
techniques as described in this book, they should enter the
verification planning session with an assertion- based plan of their
own. The design engineer should watch for opportunities to apply
preexisting assertion coverage as a useful metric for other
stakeholders’ concerns.

System Architects
The system architect may have produced the earliest translation of
the original intent for the device when they defined the system- level
specification. They should be particularly observant during the
planning session to make sure that the intent translations expressed
by all other stakeholders support the original design intent. They

186 Metric-Driven Design Verification

should be able to clarify understanding of design intent when
stakeholders have translations that conflict.

System architects should look for opportunities to apply any system-
level modeling metrics to the rest of the verification process.
Performing architectural verification to qualify the initial design
partitioning decision is a good first step on the way to a high- quality
product. However, it should also be verified that the real device
provides the performance and capabilities that the architectural level
models assumed. Often, assertions, functional coverage groups and
behavioral checkers that were created for architectural verification
can be reused directly in simulation- based verification.

Firmware and Application Engineers
Software engineers are responsible for creating the applications that
will utilize the device. They can offer another translation of the
design intent from the system view. They should carefully observe
the planning session to ensure that the device is being implemented
in a manner that will actually be usable.

The concerns of firmware and application engineers will vary based
on the level of integration of the device. At the block level, they may
only be concerned that each feature was exercised while configured
in the manners that their software will eventually use. There may
also be key scenarios of interest that they know their software will
create in the block.

Concerns will vary with the context that each block will be used in
as well. A software developer might not be interested in the internal
communication protocols that are used by a DSP. However, the
developer of the firmware for the USB port of a device might be
very interested in checking that every possible USB transaction has
been exercised and verified.

As the blocks are integrated into subsystems and eventually into the
entire chip, more elaborate concerns will emerge. Scenarios may
include the appropriate configuration of many if not all of the blocks
in the chip, the specification of specific input transactions at the

14 Dynamic Simulation-Based Verification 187

device’s periphery, and the execution of firmware or application
code.

Design and Verification Lead and/or Manager
The design and verification leads participate from a project
management point of view and can also act as expert consultants and
facilitators. They ensure that the planning session proceeds at an
efficient pace and offer their leadership where necessary to focus the
planning team.

Taxonomy of Simulation-Based Verification
There are two basic types of simulation- based
verification: directed testing and constrained
random testing. These two types of testing are
distinguished by how stimulus is generated for
the device under test, how the output behavior of
the device is checked, and how closure is tracked.

Directed Testing

In directed testing, the verification engineer creates deterministic
descriptions of the testcase to be executed using one or more of
several different verification languages.

The engineer is then responsible for writing a series of checks that
determine if the device is operating correctly. There are generally
two methods of checking.

Strengths
Directed testing for the most part is simple. It is the classic
workhorse of simulation- based verification. It can be accomplished
using standard in- line procedural programming techniques.
Procedural, nonobject oriented, programming is a style of program-
ming that is familiar to everyone.

While it may be time consuming to write testcases using this
methodology, the task is almost always straight- forward.

P

E

M

R

188 Metric-Driven Design Verification

Limitations
Directed testcases are by nature isolated from each other. The
testcase tests only what it was intended to test (at best). There is
little if any leverage with other portions of the device. Even if there
is leverage, it is not intentional and often not perceived.

In one processor verification project that used directed testcases, a
large set of testcases were created to verify the FPU. The FPU was
functionally clean on first pass silicon and everyone declared
success. About two weeks later, the testcase engineer received a call
from the production testing floor. The test engineers wanted to know
what the series of testcases labeled fpu_xxx did. As it turned out, this
was the best set of test vectors the production floor had for detecting
an issue with the instruction cache of the same device. The FPU
testcases, simply because of an unplanned fluke of their architecture,
were very well versed at thrashing the instruction cache of the
processor. Had the verification team been aware of this they could
have made use of the fact by running independent instruction cache
checkers with the FPU tests. They could have at least gained respect
from the production test team by flagging the fpu_xxx series as
producing interesting instruction cache activity.

Another limitation of directed testing is that each aspect of the
verification plan is targeted by a single testcase. The number of
testcases that must be written grows very rapidly with increasing
device functionality. This can lead to teams of testcase writers
numbered in the tens or twenties. It also leads to regressions that
contain up to tens of thousands of testcases. Directed testing is a
labor intensive technique.

Constrained Random Testing

Constrained random testing can help eliminate much of the manual
nature of directed testing. A verification apparatus is used that can
randomly stimulate the device under verification and automatically
check that the device behaved correctly based on the random
stimulus applied. The application of random stimulus to your device
might immediately bring the following three questions to mind:

14 Dynamic Simulation-Based Verification 189

� If the stimulus is random, how do I know what’s been tested?
� How can my verification environment possibly check every

random behavior?
� What keeps the randomly selected stimuli from being

gibberish?

How Do I Know What Has Been Tested?

The first question leads us right back to metrics. The metric in this
case is functional coverage. Functional coverage is used to detect
specified scenarios and measure various device states when they are
detected. By tracking the occurrence of these scenarios, we know
what random stimuli are being applied to the device. Functional
coverage will be covered in more detail in a following section.

How Can My Verification Environment Check Every Random

Behavior?

Behavioral models are used to check the behavior of the device as it
is stimulated. These models monitor the stimuli applied to the device
under verification and then produce expected results based on the
input stimuli. The expected results are compared to the actual results
produced by the device. Figure 14.3 shows the architectural setup of
these behavioral checkers.

Device Under
Verification

Monitor
(Protocol)

Behavioral Checker

Monitor
(Protocol)

Monitor
(Internal Signals)

Figure 14.3 Behavioral Checking Architecture

190 Metric-Driven Design Verification

There is one final metric- specific note on these checkers. As with
assertions, it is important to be sure that the checker checked
anything at all. In the assertion- based case, we simply made sure that
all assertions activations had fired. We use the exact same technique
to make sure that our simulation- based checkers are operating
correctly. Each check is sensitized by some event that is detected by
the verification environment. By observing the coverage for these
events, we can ensure that the device under verification was
exercised in a manner that sensitized each of our checkers.

Why Isn’t the Randomly Selected Stimuli Gibberish?

The random stimulus can’t be completely random. The space of
illegal stimulus for a given device is usually much larger than the
legal stimulus space. Constraints can be applied to limit the random
generator to generate stimulus within the legal subset that the device
can tolerate.

Care must be taken not to eliminate all illegal conditions however.
For example, network routers are designed to detect both malformed
packets and packets with bad parity. If the random environment is
overly constrained then checks for correct device behavior in the
face of erroneous external stimuli might never be exercised.

Strengths
Constrained random testing can eliminate most of the manual
drudgery associated with using directed testing on too large of a
project. It makes use of low- cost computing resources to
automatically generate stimulus that would otherwise be generated
by relatively expensive human resources. It also frees up engineers
to begin the important work of debugging at an earlier time.

The behavioral checkers shown in Figure 14.3 are passive by nature.
They only observe signals and events passed to them by the
monitors (the monitors are passive as well). Due to their passive
nature, these checkers can easily be included in verification
environments that concentrate on other portions of the chip. For
example, in the FPU example cited above, the instruction cache

14 Dynamic Simulation-Based Verification 191

checkers could have easily been included to check for proper
behavior.

Weaknesses
Constrained random testing can carry a steeper learning curve along

aspect- oriented programming techniques. Quite simply, there aren’t
as many engineering resources available that are well versed in these
programming methodologies.

For a small design project, it might be prudent to pursue a directed
testing methodology depending on the engineering resources
available.

Tracking to Closure
There are several different methods of tracking to
closure using simulation- based verification. Each
method corresponds to one of the methodologies
for simulation- based verification described above.
The simulation- based methodologies are:

� Directed testing with golden vectors
� Directed testing with self- checking testcases
� Constrained random testing

It is important to use all available metrics to track toward closure in
a simulation- based verification project. Multiple metrics provide
multiple perspectives into the project status and reduce the risk of
missing key information.

Tracking to Closure Using Directed Testing

There are several metrics that are used to gauge
the completeness of directed testing these metrics
are:

� Testcase completion
� Code coverage
� Functional coverage

P

E

M

R

P

E

M

R

with it. These systems are best implemented using object- and/or

192 Metric-Driven Design Verification

Testcase Completion

The first, most popular metric is simply to track the list of
testcases that were specified in the test plan against the
testcases declared completed by the testcase writers. This is a
highly subjective and labor intensive tracking metric. Whether
or not a testcase is complete is frequently a matter of human
interpretation. The process is labor intensive, because someone

has to gather the completion data from all the testcase writers.

Some automation and objectivity can be gained back by tracking
whether each specified testcase passes or fails. Even this level of
objectivity can fall victim to the possibility of false positives if it is
used in isolation. Testcases that actually check nothing or exercise
nothing will always pass.

Code Coverage

That brings us to the second metric which is code
coverage. Code coverage is used as an independent
metric that illustrates how much of the design was
actually exercised by a given set of testcases. Using
code coverage in conjunction with tracking testcase
completion offers some balance to prevent false

positives caused by misinterpretation of what each testcase is
actually achieving.

Functional Coverage

Functional coverage is sometimes used as a metric
when working in directed testing environments.
Occasionally it is used to gauge the advantages that
can be gained by moving to a constrained random

testing environment. Another use of functional coverage is to act as
a failsafe mechanism for ensuring the continued efficacy of testcases
in the face of design changes.

An example of this can be gleaned from the experience of a large
x86 processor manufacturer in the 1990s. A team of thirty engineers
had been assigned to custom design testcases to test the execution of
various instructions in the presence of snoop signal on the external

14 Dynamic Simulation-Based Verification 193

bus interface. The testcases were carefully crafted and timed to ensure
that the instruction in question was executing exactly when the snoop
signal arrived on the bus interface. This took quite a bit of work. The
snoop signal had to be timed to arrive at the execution pipeline stage
just as the instruction was executing there. The architecture is shown
in Figure 14.4. The team of engineers spent a month crafting these
testcases by hand and finished with a great sense of pride and sigh of
relief.

A week later, the design of the processor was changed in such a way
that all the timings were thrown off. The testcases were testing
nothing! With functional coverage, the team was alerted to the
problem immediately. They rewrote all the testcases and got the
regression suite back up and running. Without functional coverage,
they might have been using valuable regression resources to run
testcases that did nothing.

add reg,imm

snoop

snoop

Stage 1
Prefetch

Stage 2
Decode

Stage 3
Execute

Stage 4
Finalize

Figure 14.4 Timing Snoops

194 Metric-Driven Design Verification

Tracking to Closure Using Constrained Random Testing

When using constrained random testing, there are
a few key metrics to track. They are:

� Functional coverage
� Checker coverage
� Code Coverage

Functional Coverage

When tracking closure with functional coverage, the intended
integration level of the functional coverage group should be taken
into account as well. For example, let’s assume we’re verifying a
device that will be segmented into the following integration levels:

� Block
� Unit Integration
� Chip Integration
� System Integration

As we specify each functional coverage group, we should also
specify a coverage goal for that group in each of the integration
levels. For example, the coverage of every available bus transaction
for a given block might have the coverage goals given in Table 14.1.

Table 14.1 Coverage Goals vs. Integration Level

Coverage goals for block X bus transactions
Integration level Coverage goal
Block 100%
Initial integration 75%
Chip integration 30%
System integration 10%

At the block level, we have the most controllability and observability.
We want to make sure that all the functionality is verified here where
debug is the easiest. Coverage for all available bus transactions should
be 100%. In addition to checking the block for use in our present
device, we are also ensuring that the block supports all available bus
transactions in case it is used in another project.

P

E

M

R

14 Dynamic Simulation-Based Verification 195

At the integration level, our goals change. It was important to verify
all available bus traffic for the block. However, the block that it is
integrated to Block X does not support one of the transaction types.
Our coverage goal has been adjusted accordingly. We only expect to
see 75% coverage at the initial integration level.

At the chip integration level, we are now confident that the interface
to the block is fully verified and we merely want to see that the
block participated to some degree in chip- level simulations. Here,
the transaction coverage gives us a warm, fuzzy feeling that
everything is OK, but it is no longer essential.

Finally, at the system level we are even less concerned with the
exact transactions that are sent to the block in question. However,
we want to make sure some traffic is being sent to the block to
ensure that our bandwidth performance measurements are realistic.

Checker Coverage

It’s not enough to track just functional coverage. 100% functional
coverage does not guarantee that every feature was actually properly
checked. In fact, each feature can be exercised and never checked.
Once again, it’s important to track multiple metrics. In addition to
specifying functional coverage that indicates that each feature has
been exercised sufficiently, we also need to specify and implement
coverage that ensures each feature has been checked by one or more
checks in the verification environment. As functional coverage
ramps up to meet our goals, checker coverage must be tracked for
completeness as well. A divergence in these numbers indicates that
progress is not being made in either the area of stimulus or
implemented checks.

Finally, it is important to check all issues detected against the existing
functional coverage implementation. The constant question must be:
“would we have found this bug had we reached 100% coverage?”
Often times in constrained random environments, the answer is no.
That’s a good thing! The reason for using constrained random stimulus
was because it can explore state spaces that you may not have thought
of ahead of time. When an issue is exposed by “unplanned” stimulus

196 Metric-Driven Design Verification

the verification plan should be updated. The team should plan and
implement an appropriate functional coverage group that would have
indicated an incomplete verification effort had the random stimulus that
exacerbated the bug not been created.

Code Coverage
The same considerations that were outlined for code coverage vs.
functional coverage in the directed testing section above are impor-
tant here. Code coverage and functional coverage independently are
necessary but not sufficient metrics. When paired as described
above, they create a very effective system of checks and balances for
each other. This system provides more value from our constrained
random verification environment.

Summary
In this chapter we explored using metric- driven techniques to augment
the simulation- based verification process. We looked at the differences
between directed test verification and verification using constrained
random stimulus. We described the three key metrics used to track
closure of simulation- based verification:

� Code coverage
� Functional coverage
� Checker coverage

We also looked at how each of the stakeholders should contribute to
the verification planning process.

In Chapter 15, we’ll look at system- level verification using
acceleration and emulation technology.

Chapter 15
System Verification

An exciting new area in metric- driven verification is its application to
system- level verification. The following chapter by Jason Andrews
outlines how available technology can be used to apply proven
metric- driven techniques such as coverage- driven verification at the
system level.

Jason Andrews is a project leader at Cadence
Design Systems, where he is responsible for
hardware/software coverification and metho-
dology for SoC verification. He is the author of
the book “Co- Verification of Hardware and
Software for ARM SoC Design” and holds a
bachelor’s degree in electrical engineering

from The Citadel, Charleston, SC, and a master’s degree in electrical
engineering from the University of Minnesota, Minneapolis.

Coverage-Driven Methodology for Verification of
SoC Hardware and Software Corner Cases

Introduction
One of the most difficult challenges in SoC verification today is
determining how to make sure the hardware and software work
together at the SoC level. Hardware verification has advanced to the
point where the verification of individual functional blocks in a design
can be achieved with reasonable confidence using constrained random
testbenches, code coverage, assertion coverage, and functional
coverage. Challenges remain in making sure the blocks work correctly
when placed in the context of the SoC. On the other hand, the concept
of embedded software verification is mostly nonexistent in SoC projects

198 Metric-Driven Design Verification

today. The primary way to find out if the software works with the
hardware is to just run it and watch what happens.

The result is a commonly deployed three- step process for SoC
verification:

� Perform comprehensive verification of each functional block
of the design using:
o A verification plan
o Advanced simulation techniques
o A farm of workstations for parallel simulation

� Assemble the blocks together to form the SoC:
o Run some basic tests to make sure peripherals can be acc-

essed, connectivity is good, and there is no contention on
busses or interfaces

� Execute Software on the SoC:
o As much as possible before committing the design to

fabrication
o Using emulation or FPGA prototyping to provide the

needed performance

Unfortunately, this process results in many products that have subtle
problems, most of which are caused by corner cases between the
hardware and software. Many of today’s consumer electronics are
examples of this. They contain the most advanced features
constructed with complex hardware and software, but suffer from
periodic lock- ups or require periodic reboots. From wireless routers
to Bluetooth mobile phones the story is the same, there are some
conditions where the hardware and software hit functional corner
cases and the failures occur. In the end nobody really knows what is
happening because consumers have no way to debug the problem.
Technical support may offer new firmware that may or may not
address the exact problem, and most of the design engineers have
gone on to the next project and are not interested in such subtle
problems because they are very hard to find and fix and may not
even be functional problems, but could be mechanical, electrical, or
manufacturing issues.

15 System Verification 199

This paper proposes new methodology to improve the three- step SoC
verification process. The aim of this methodology is to produce higher
quality designs by exposing the hidden corner cases that are not being
found. As anticipated, the key is to apply additional stress to the
boundary conditions of the design, but do it by including the
embedded software in the process. An ARM926 PrimeXsys Platform
SoC is used to demonstrate the proposed methodology and results are
presented.

Coverification Defined
During the last 10 years the term coverification has been widely
applied to any verification technique that included both hardware
and software in an attempt to make sure each works with the other
before designs are committed for fabrication. Today, nearly all SoC
projects understand the benefits and readily admit that this is an area
of struggle for which there is no easy solution. In fact, there have
been many new products introduced in an attempt to address the
problem, but each with a set of pros and cons that has limited any
one technique from emerging as dominant. Engineers have been left
with a daunting challenge of deciding which of the products and
techniques to apply and when in the project is the best time to do it.
Using multiple techniques in a divide and conquer approach has
produced some progress, but not enough to declare victory when it
comes to SoC verification. Attendees interested in a complete
landscape of all of the products, techniques, and history should refer
to [1].

Coverification is a term that is not the best fit for the activities that
have been done so far. When engineers try to make sure hardware
and software work together it is likely they are performing
cosimulation. Historically, cosimulation meant the connection of
two simulators where one simulator executed the hardware design
and another executed the software. As many different techniques
were developed for execution it’s more general to think of
Cosimulation as the execution of software together with the
hardware, even if there is only one execution engine involved. When
engineers try to figure out what is wrong when a failure occurs they

200 Metric-Driven Design Verification

are doing codebugging. Codebugging is the process of starting and
stopping the system and observing the state of both the hardware and
the software to understand where the problem lies. Although these
activities are important they are not true coverification, but serve as
a foundation on which coverification takes place.

Verification is the process of determining a design meets
requirements. In practice, verification is the process of identifying
and removing as many functional bugs in the hardware and software
as possible. The oldest form of verification is to build it, run it, and
watch what happens. Today, manual techniques such as visual
inspection have been replaced by automated verification plans
containing a set of goal metrics that are used to measure progress
toward verification completion. By definition of the plan, if these
metrics are achieved the design is verified. In hardware verification
the process of verification planning to define the corner cases that
need to be hit and the use of automated, constrained random
stimulus to hit these corner cases is known as coverage- driven
verification (CDV). To perform CDV the corner cases are converted
into coverage points and the goal is to reach 100% coverage. The
combination of using random generation to reach coverage points
also results in new corner cases that engineers did not think of.
Considering the wide adoption of CDV for hardware verification it
is logical that Coverification should have a new definition that is
specific to the verification problem. Coverification is the use of
automated, constrained random stimulus and functional coverage
metrics applied to the hardware design, the embedded software, and
the combination of hardware and software. Performing coverification
requires a foundation of cosimulation to execute the design and code-
bugging to find the problem when things go wrong, but it’s clear
now that running software and debugging is not verification. This
hierarchy of capability is shown in Figure 15.1.

15 System Verification 201

Figure 15.1 Layers of Capability

Advancing SoC Verification
To close the gaps in the three- stage verification process it is
necessary to start to treat the embedded software more like the
hardware. In the past embedded software has always taken a back
seat in importance to hardware because software is “soft.” As long
as it can be changed and firmware updates and patches can be made
available it is not treated with the same importance as hardware. Due
to the quality issues previously discussed and the increased support
costs it is becoming more important to treat the software like
hardware, every corner case is important and every problem that can
be found early leads to a big savings later. Consider some of the
ways hardware verification is part of a rigorous process:

� Verification Planning
� Complex random generation
� Coverage points and metrics
� Tracking progress vs. a plan

202 Metric-Driven Design Verification

For the purpose of SoC verification, the most important type of
software is the low levels of software that interacts closely with the
hardware. This is where all the hidden corner case problems exist.
The application software is also important, but since it doesn’t rely
on the hardware details can rely on hardware abstraction and be
developed outside the context of hardware verification.

There are three different kinds of corner cases to consider:

1. Corner cases exclusively in hardware.
2. Corner cases exclusively in software.
3. Corner cases that involve both hardware and software.

The type 3 corner cases are the ones that are most difficult to find
and most often escape the three- step verification process. Finding
type 3 corner cases holds the most potential for improving SoC
verification.

Embedded software practices must advance beyond run and debug.
One of the main reasons it’s difficult to advance embedded software
methods is the dependency on the hardware. With no hardware and
now way to run software, the software engineers are limited in what
they can do to improve the quality of software. As a result it’s unlikely
the software engineers wring the low- level code can drive
improvements by themselves. The verification team is the glue that has
the ability to advance the process and improve results. The next section
discusses the challenges engineers face when they think about how to
improve the three- step verification process.

List of Challenges
When the functional blocks are assembled to form the SoC there is a
long list of challenges on the hardware verification front alone.
Engineers that are well trained in verification would like to continue
to use the same coverage- driven techniques they used at the block
level to do generation, checking, and coverage. Figure 15.2
summarizes the environment the verification engineer would like to
maintain. Besides the obvious problems of simulation performance,

15 System Verification 203

memory footprint, size of waveform dump files, etc. there is the all
important question of what to do about the CPU and software.
During block and subsystem verification engineers normally work
without the CPU and use verification components to generate
transactions on the CPU bus. The example presented in this paper
uses an ARM926 CPU with a dual AHB interface. Verification
engineers use the AHB eVC to perform coverage- driven verification
and produce all of the corner cases on the bus, but the question
remains about what to do at the SoC level.

 Figure 15.2 CDV Environment

There are two possibilities for the SoC simulation:

1. Continue to use the eVC
2. Use a full- functional CPU model

Working with the eVC makes it difficult to create activity that will
be similar to the way the SoC will behave with CPU and software.
For example, most eVC environments don’t include details about
interrupts such as executing instruction fetches from the interrupt
vector when an interrupt occurs. Although constraints can be used to
weight the transaction types, the transaction work load produced by

204 Metric-Driven Design Verification

the eVC is not similar to the CPU in terms of the address and data
patterns. An even more important challenge is what to about SoC
initialization. Some projects have reported thousands of
programmable registers [2] that must be configured before the SoC
is ready to do meaningful activity. Writing an initialization sequence
for all of these registers takes a very long time. Besides being a
tedious process, the motivation is somewhat low because in the end
it’s the job of the software to initialize the SoC, not the verification
engineer. This leads to a duplication of effort.

The alternative to using an eVC is to insert the CPU and run
software. Now the software can be used to initialize the SoC and the
workload on the bus is much more realistic. The trouble with using
software is to figure out what kind of software to use. There are
many types of embedded software. Some software is created by
engineers very close to the chip verification and some is created by
other organizations in the company or other companies. Some of the
common types of software include:

� System initialization software and hardware abstraction layer
(HAL)

� Hardware diagnostic test suite
� Real- time operating system (RTOS)
� RTOS device drivers
� Application software

Certainly, initialization software is very useful for verification. On
the surface the hardware diagnostic tests that are developed to run on
the final hardware appear useful, but in the end are not as useful as
originally thought for verification. Hardware diagnostics tend to be
very simplistic and for the verification engineer skilled in CDV they
tend to be too much like the directed Verilog testbenches used 10
years ago. They do something like: write, read, write, read, TEST
PASS for each peripheral in the design. The RTOS and application
software is typically not available yet and even if it is it would be
too slow to run on anything except an emulator or FPGA board. The
device drivers are interesting to run since they interact directly with
the hardware, but for a driver to execute it needs to be called by an

15 System Verification 205

application (which is not available) so there is a stimulus problem
that must be solved for the drivers to be useful.

In summary, there is currently a verification gap between the CDV

diagnostics. These gaps result in projects using CDV for block and
subsystem simulation, and then when they reach the SoC level make
an abrupt change to run diagnostic C programs that do write, read,
write, read, TEST PASS. This flow provides little or no chance to hit
the important corner cases between hardware and software. The
solution is to close the gap between CDV and the embedded
software diagnostic program. Future sections will demonstrate how
CDV can be used together with diagnostic software to provide more
stress on the design and hit more corner cases at the SoC level.

ARM926 PrimeXsys Platform Design
To investigate the proposed solution to close the gap between CDV
and diagnostic software an example SoC is used. The design is
provided by ARM Ltd and is a reference SoC available from ARM
as a starting point for a more complex SoC design. A block diagram
of the design is shown in Figure 15.3. The design is about 500 k
gates of logic plus memory. The CPU is the ARM926EJ- S which
has a dual- AHB interface for instructions and data.

The PrimeXsys platform provides all the design data to use it in a
larger SoC. Additionally, it includes verification components and
software. The investigation for this paper centers on the DMA
controller. The DMA controller is an ARM Primecell peripheral
known as PL080. Most of the details of the DMA controller are not
important, but below are a few highlights:

� 3 AHB interfaces
� 8 DMA Channels
� Memory to Memory, Memory to Peripheral, Peripheral to

Memory, and Peripheral to Peripheral transfers
� Scatter gather DMA using linked lists
� Programmable burst length

approaches used by verification engineers to verify hardware and
the embedded software, even at the lowest level of hardware

206 Metric-Driven Design Verification

� 8, 16, and 32- bit data transfers
� 66 Programmable registers

The platform is provided by ARM with three main verification
environments as described in [3]:

1. System Integration Environment: No CPU model is
instantiated. Instead, a BFM reads from files to generate
traffic on the 2 CPU AHB interfaces. The goal is to verify
connectivity of the peripherals and the memory map.

2. System Verification Environment: A CPU is instantiated and
runs a set of diagnostic software programs to initialize the
hardware test each peripheral.

3. Scenario Validation Environment: No CPU model is
instantiated. Instead the AHB eVC is used. The goal is to hit
corner cases and stress the design.

Figure 15.3 PrimeXsys Platform

ARM926EJ-S PrimeXsys Platform

Move

ARM926
CPUE

T
M

SDRAM
Controller

Application
Specific IP

DMA APB
Extensions

SSP

SIM CardU ART

DMA APB

WATCHDOG

Core APB

RTC

TIMERS

SYSTEM
CONTROL

AHB/
APB

AHB/
APB

ARM lAHB
ARMD ARB
LCD AHB

DMA 1 AHB(Periph)
DMA 2 AHB(Memory)

EXPA NSION AHB1
EXPA NSION AHB2

GP10�4

Static
Memory
Interface

Vectored
Interrupt
Control

Color
LCD

DMA
M M S

15 System Verification 207

Based on these three environments it’s clear that number 1 provides
the connectivity test to make sure the assembly is correct and there
are no conflicts on the bus or in the memory map. Environment
number 2 demonstrates the software diagnostics that are nice to run
in verification and also later on FPGA boards or the final silicon.
Although not stated, environment number 3 is likely a result of
concern that the diagnostics are not comprehensive enough and the
verification engineers understand the principles of CDV and feel like
the environment number 3 to hit more corner cases.

These three environments are an excellent example of the
verification gap between the software diagnostics (environment
number 2) and CDV (environment number 3). The next section
focuses on the solution to the gap by using the DMA controller as an
example.

Closing the Gap
Coverage- driven verification requires a high level of control of the
system. The only way to force the design into corner cases to meet
coverage goals using constrained random generation is to monitor
the state of the design and generate data that will move it to the
required state to fill the coverage. A closer look at verification
environment number 2 (diagnostic software) described in the
previous section reveals that it suffers from a lack of visibility and
coverage in the diagnostic software area. First, there is no way from
the view of the software diagnostic to tell how well the test actually
exercised the hardware. Second, there is no way to control the
diagnostic program and coordinate it with the other hardware
stimulus. Environment number 3 was developed because of these
limitations. As also previously mentioned, environment number 3
has a different set of challenges since the SoC configuration must be
done from an eVC (duplication of work) and the traffic is not as
realistic as running a real software program on the CPU. The
remainder of the paper will detail a new technique to unify
environments 2 and 3 by utilizing the software diagnostic and CDV
together. It will use the DMA controller and its diagnostic program
as an example.

208 Metric-Driven Design Verification

By reading the short description of the three verification
environments it’s clear there are limitations of what the hardware
diagnostic programs can do and the engineers determined that to do
an excellent job of verification they needed to perform CDV using
environment 3. To their credit they did not stop with the first two
environments and pass the design to software engineers as step 3 as
has been described in the three- step verification process presented in
the introduction. They saw a gap and tried to fill it with a CDV
approach, but clearly now there are two separate environments to
maintain and the situation is not ideal because of the lack of the CPU
and software in the CDV environment.

DMA Diagnostic Program
Figure 15.4 is a code fragment of the DMA diagnostic used to verify
the DMA controller functions correctly in the context of the SoC.
This diagnostic is useful because it is a program running on the
ARM926 and can easily be used again with hardware implementations
of the design such as an FPGA board or the final silicon. The diag-
nostic is also good because it will demonstrate the mix of transactions

 Figure 15.4 DMA Diagnostic Program

15 System Verification 209

on the bus, the use of interrupts, and some possible effects of the
caches on the hardware design. For a verification engineer there are
clearly some drawbacks of the DMA diagnostic.

The first thing a verification engineer notices is the deterministic
nature of the test. Verification engineers think about the interesting
parameters of a DMA controller and where are the corner cases that
need to be covered. The results of a short analysis of the DMA
diagnostic are given in Table 15.1.

Table 15.1 Analysis of DMA Diagnostic

DMA source data Fixed array:

unsigned uTestData[] = {0x12345678,
0x55555555, 0xFEDCBA98,
0xAAAAAAAA, 0x89ABCDEF,
0x5555AAAA, 0x76543210,
0xABADCAFE, 0xDEADBEEF,
0xD0D0F00D, 0xA1C0FFEE,
0xCABBA6E5, 0xA6EDBEEF,
0x0DE2F00D, 0xD06F00D5,
0xF0E1D2C3} ;

DMA source
address

Fixed at 0x20000000

Destination address Fixed at 0x08002000
Bus widths used 8, 16, and 32- bits
Length of transfers Single tests and always 16 for burst tests
Other
programmable
registers in the
DMA controller

Always fixed with the same value

DMA controller
modes used

Unknown, but complex modes of the DMA
controller such as scatter/gather appear to
always be disabled

Length of test 1 time through main() doing 6 DMA
transfers

210 Metric-Driven Design Verification

Clearly, it would be desirable to have a diagnostic program that
would more fully exercise the DMA controller. Below are three
options to improve the quality of this diagnostic program:

� Enhance the C program to be more comprehensive and cover

every combination of interesting parameters including
address and data values:
o Would probably take forever to write
o Is probably not necessary

� Take out the CPU and use an eVC to create a CDV
environment to hit more corner cases:
o Doesn’t leverage existing software (and software people)
o Utilizing a BFM results in different bus activity

� Utilize the existing C program and add the ability to call the
C functions from a CDV environment, add randomization of
the C functions called, the C data used, and add functional
coverage to measure what the test really does:
o Very little extra work to create
o Utilizes existing software (and people)
o Uses the CPU in the system
o Uses the principles of CDV including coverage in both

hardware and software

The last option is the way to close the gap in the three- step
verification process described in the introduction. It’s also the way
to close the gap in the improved verification flow proposed by ARM
in the PrimeXsys platform that used two separate verification
environments, one for diagnostics and one for CDV. By connecting
and controlling the C functions to the verification environment the
best of both world’s can be achieved, running C functions and the
generation, checking, and coverage provided by CDV.

The Generic Software Adapter

The Generic Software Adapter is a Specman adapter used to connect
to and control embedded software. Most engineers know that
Specman contains ways to connect verification environments written
in e to designs under verification (DUV) written in Verilog, VHDL,
and SystemC. GSA connects the e environment to embedded

15 System Verification 211

software, such as the DMA diagnostic from the PrimeXsys platform.
Now the verification environment can control both the hardware
design and the software running on the ARM926 CPU. GSA works
in any cosimulation environment using any type of CPU model.
Some example environments it has been used with are:

� Verilog or VHDL RTL CPU model running in a logic
simulator

� Instruction Set simulator connected to an HDL BFM in a
logic simulator

� Host- code execution where software is run on the host
machine and connected to an e BFM using the Specman
coverification link (CVL) [4]

� SystemC TLM simulation of an SoC
� Emulation Systems such as Xtreme and Palladium:

o RTL CPU models inside the emulators
o In- circuit emulation using a CPU board connected to the

emulator such as the ARM Logic Tile

GSA uses a shared mailbox memory that is located somewhere in the
memory map already defined and modeled in the SoC. The embedded
software can communicate with the memory by software instructions
and the verification environment can communicate with the mailbox
memory using the backdoor techniques such as the Verilog variable
statement already available in e or other suitable interfaces based on
the type of memory model used (such as Denali). For details of the
communication mechanisms and more examples refer to [5].

To connect to the DMA diagnostic C functions and variables to the
verification environment e ports are used. The e language has
different types of ports available to communicate with the DUV (the
embedded software in this case). GSA uses method ports to call C
functions and simple and event ports to read and write variables in
the C code.

The key to GSA is the unique ability of Specman to “generate stubs.”
The stub generation process enables the connection between the
verification environment and the embedded software to be completely
automated. GSA finds all the ports in the e environment and

212 Metric-Driven Design Verification

automatically generates the C code to provide the communication
and the user can simply link this automatically generated C code
with the DMA diagnostic. The overall process to perform CDV with
embedded software is shown in Figure 15.5. The next section shows
how this was done for the PrimeXsys DMA diagnostic.

Figure 15.5 GSA Integration Flow

Connecting the DMA Diagnostic to the Verification
Environment
To improve the verification quality of the DMA diagnostic program
the Generic Software Adapter was connected to the existing DMA C
functions. The goal is to improve verification by exposing more
corner cases using the principles of coverage- driven verification as
compared to the existing C test which is completely deterministic.
The basic steps required to connect the environment to the
embedded software are reviewed in the next section.

Memory Connection
The first step in GSA integration is to enable the verification environ-
ment to access the memory that will be used for the communication

15 System Verification 213

mailbox. This is done by creating backdoor memory access functions
that can read and write memory without advancing simulation time.
GSA defines an interface for the verification environment designer,
called a mini- adapter, to connect the appropriate memory model being
used as the mailbox. Because each design has a different memory
map and uses different types of memory models this step requires
some manual coding. In the case of the PrimeXsys platform the
tightly coupled data memory (DTCM) was used as the mailbox
memory. The ARM926 includes dedicated interfaces to fast memory
called TCM that is directly connected to the processor. Figure 15.6
shows a fragment of code used to implement the mini- adapter by
connecting to the DTCM for accesses from the verification
environment. The DTCM is modeled using a Verilog memory array
and the e Verilog variable statement is used to provide easy access
from e. It’s important to note that since the DTCM is a local instance
of memory the mini- adapter must have some knowledge about the
address in the ARM CPU memory map where the DTCM memory
resides. The mini- adapter uses this information to compute the correct
addresses of the DTCM memory instance.

Figure 15.6 Mini- adapter Code

unit vr_pwp_verilog_if {

 mem_base: uint;

 verilog variable
 'TBplatform.uPlatform.uProcSubSys.uProcCoreMod.uDRAM.
 ram.memory[8191:0][31:0]';

 read_int(a: uint): uint is {
 var address: uint;
 address = a - mem_base;
 result =
 'TBplatform.uPlatform.uProcSubSys.uProcCoreMod.uDRAM.
 ram.memory[address[31:2]]';

 };

 write_int(a: uint, data: uint) is {
 var address: uint;
 address = a - mem_base;
 'TBplatform.uPlatform.uProcSubSys.uProcCoreMod.uDRAM.
 ram.memory[address[31:2]]'= data;
 };
};

214 Metric-Driven Design Verification

Port Definitions
Once the mailbox memory is connected, the next step in GSA setup
is to define the ports that will be used. This includes the method
ports that will be used to call the C functions in the DMA diagnostic
and the simple ports that will be used in the verification
environment. The creation of ports can be automated either by the
use of an e macro or by using the Verification Builder, a GUI tool
for environment creation, but for the purposes of showing how GSA
connects the source code of the port definitions will be shown. For
simplicity only a small part of the DMA diagnostic is shown.

The first area of interest is the data used in the DMA. Recall that in
the original DMA diagnostic this data consisted of a fixed array of
data as shown in the first row of Table 15.1. To improve verification
new random data should be used for each DMA transfer. To
randomize the data a simple port is created in the verification
environment that will connect to the C variable uTestData. The
simple port is of direction inout so it can read the C data array and
also write it with new random data.

Recall from Figure 15.4 that one of the C functions in the DMA
diagnostic was DMAC_M2M_Multi_Transfer(). This C function
does a multiple word transfer between two memory locations. The
destination memory address, the number of words, and the width (8,
16, or 32 bits) are all arguments to this function. In the original
DMA test all of these arguments are fixed. To improve verification
this function should be called more than just three times and with
random arguments. To do this an out method port is created in the e
environment. A fragment of the port definitions used is shown in
Figure 15.7.

Not all of the ports are shown, but additional ports were created for
all of the C variables and functions that are accessed from the
verification environment.

15 System Verification 215

Figure 15.7 Port Definitions

Connecting the Main() Function in C
The original DMA diagnostic defined a main() function and
proceeded to call the DMA C functions. Recall, it called the two
DMA functions available for single and multiword transfers a few
times each. GSA takes care of all the calling of the C functions as
specified by the e environment. Depending on the test developed this
could mean calling the functions many times or just a few. To
improve verification sequences are used to setup interesting corner
cases to stress the DMA controller in the context of the SoC. To
facilitate the use of sequences the main() function will simply yield
to the verification environment and receive commands by the
underlying mailbox architecture. The modified main() function is
shown in Figure 15.8.

method_type DMAC_M2M_Multi_Transfer(src_addr: uint, dest: uint,
 num: uint, width: uint): uint @sys.any;

unit vr_pwp_env like any_env {

 logger : message_logger is instance;
 name : vr_pwp_name;

 short_name(): string is {
 result = append(name);
 };
 short_name_style(): vt_style is {
 result = ORANGE;
 };
 show_banner() is also {
 out("(c) Cadence 2006");
 out("vr_pwp instance : ", name);
 };
 show_status() is only {
 out("vr_pwp Verification Environment - instance : ", name);
 };

 // simple port for generating random data
 uTestData: inout simple_port of list of uint is instance;
 keep bind(uTestData, external);
 keep uTestData.hdl_path() == "uTestData";
 keep uTestData.external_type() == "unsigned int [32]";

 // C function to do multi-word DMA
 DMAC_M2M_Multi_Transfer: out method_port of
 DMAC_M2M_Multi_Transfer is instance;
 keep bind(DMAC_M2M_Multi_Transfer, external);
 keep DMAC_M2M_Multi_Transfer.hdl_path() ==
 "DMAC_M2M_Multi_Transfer";

216 Metric-Driven Design Verification

Figure 15.8 Modified main Function

The modified main() function has replaced the directed set of C
function calls with a loop that will receive much more random calls
from the e environment. The other parts of the main() function such
as #include files and global variables were not modified.

Writing Stubs

Once the environment is complete, the next step is to create the
“stubs” files. Specman users will be familiar with the stubs file for
languages such as Verilog and VHDL. The concept for GSA is the
same, but the stubs file written is in C. The automatically generated
stubs file takes care of the underlying mailbox protocol to make
GSA possible. Once generated, the C stubs file is compiled with the
DMA diagnostic and linked into the executable. Functions such as
sn_gsa_init() and sn_gsa_wait() as shown in Figure 15.8 are part of
the stubs file. Below is the command to write the stubs file for GSA
(C file) and for NC- Verilog (Verilog file).

% specman -c "load vr_pwp/examples/test1;
write stub -gsa_pwp ./vcode/gsa_pwp_specman;
write stub -ncvlog"

Notice that GSA completely automates all of the method port and
simple port connection using this automatic stubs generation.

int main(void)
{

 // Initialize GSA
 sn_gsa_init();

 // no need to modify the messages already in place
 AvUtils_DEBUG_MSG("platform_DMA_test: Starting test\n") ;

 // loop forever processing C calls from the e environment
 while (1) {
 sn_gsa_wait();
 }

}

15 System Verification 217

Creating Sequences and Coverage
The final step to put everything together is to create interesting
sequences to call the DMA C functions with random data and
arguments and collect coverage on interesting activity. Multiple
sequences were created for the PrimeXsys platform and different
coverage values were collected.

Figure 15.9 Example Sequence

extend MULTI_TRANSFER sw_sequence_item {
 errors: uint;
 src_addr: uint;
 dest: uint;
 keep soft dest in [0x08002000..0x09000000];
 keep dest[1:0] == 0;
 num: uint;
 width: vr_pwp_width;
 keep soft num in [1..16];

 activate() @driver.clock is {
 --method_type DMAC_M2M_Multi_Transfer(src_addr: uint,
 dest: uint, num: uint, width: uint) uint @sys.any;
 errors = driver.p_env.DMAC_M2M_Multi_Transfer$(src_addr,
 dest, num, width.as_a(uint));
 };
 nice_string(): string is also {
 result = "DMAC_M2M_Multi_Transfer()";
 };
};

extend ST2 sw_sequence{
 src: uint;
 keep soft src in [0x20000000..0x20001000];
 keep src[1:0] == 0;

 !setup: SETUP sw_sequence_item;
 keep setup.uDestAddr == src;

 !multi: MULTI_TRANSFER sw_sequence_item;
 !errors: uint;
 keep multi.src_addr == src;

 body() @driver.clock is only {
 do setup; // copy data to source address
 do multi; // do single DMA
 errors = multi.errors;
 };
 nice_string(): string is also {
 result = "ST2";
 };
};

218 Metric-Driven Design Verification

For simplicity, just one sequence is shown to create a multiword
DMA transfer. Figure 15.9 shows the sequence item created with
random arguments for the C function and constraints to keep the
random arguments within the memory map. This is followed by
creation of the sequence ST2 to first setup the DMA data to be used
and then call the multiword DMA sequence item to transfer the data.

The complete verification environment for the DMA diagnostic was
created to create multiple sequences of interesting scenarios calling
the DMA C functions with random and collecting coverage on the
software and combining the software coverage with the hardware
coverage. The last step is to create a test that runs a mix of
sequences. One of the tests is shown in Figure 15.10. This test
creates and runs 150 sequences using ST1 for half of them and ST2
for the other half. Given the sequence library the test writer can
choose any mix of sequences to perform verification and can also
run with a different random seed to create a unique stimulus.

Figure 15.10 Example Test

Results

After integrating CDV with the DMA diagnostic a new analysis was
done of the results of the verification environment. Augmenting the
existing C DMA diagnostic functions with GSA has brought the
concepts of generation and functional coverage to the embedded
software. The result is 1000s of DMA transfers with randomized
parameters instead of the directed test of six DMA tests and the
pass/fail message (Table 15.2).

<'
import vr_pwp/examples/vr_pwp_config.e;

extend MAIN sw_sequence {
 keep count == 150;
 keep sequence.kind == select {
 50: ST1;
 50: ST2;
 };
};

'>

15 System Verification 219

Table 15.2 Analysis of DMA Diagnostic with GSA and CDV

DMA source data Randomized

DMA source
address

Randomized within ranges of memory map

Destination address Randomized within ranges of memory map
Bus widths used Randomly generated 8, 16, and 32-bits
Length of transfers Single tests and randomly generated lengths
Other
programmable
registers in the
DMA controller

Multiple values constrained by random generation

DMA controller
modes used

Measured by functional coverage

Length of test Controlled by e environment, 1000s of DMAs with
different sequences can easily be run

The DMA example can be extended to the complete suite of
diagnostic software available with the PrimeXsys platform and many
tests can be run on in parallel to create interesting corner cases with
little effort by the verification or software teams.

Conclusion
The use of GSA has been proposed and demonstrated to be a
solution to the commonly used three- step SoC verification process
that has difficulty catching the corner case problems between
hardware and software.

� Perform comprehensive verification of each functional block
of the design

� Assemble the blocks together to form the SoC
� Execute Software on the SoC

In the past, these corner case escapes were caused by the inability to
control the embedded system software. The ARM PrimeXsys
platform was examined and it was shown that the verification team
did recognize the gap between C diagnostics and CDV, but were
forced to create two separate environments to solve it, one for
diagnostics and one for CDV. This paper has demonstrated how to
unify the existing C diagnostics with CDV and greatly increase the

220 Metric-Driven Design Verification

ability to hit corner cases while still utilizing the existing set of C
diagnostics.

References
1. Co- Verification of Hardware and Software for ARM SoC Design by

Jason Andrews (http://coverification.home.comcast.net).
2. “Extending a coverage driven verification environment with real software”

by Ernst Zwingenberger, Micronas, CDNLive! EMEA, Nice, France, June
25–27, 2006.

3. ARM PrimeXsys Virtual Component Verification Environment
Reference Manual, ARM Ltd., 2004.

4. Specman Usage and Concepts Guide for e Testbenches, Version 5.0.3,
Chapter 12, Using the Co- Verification Link (CVL).

5. Hardware Software co- verification using Coverage Driven Verification
Techniques, Giles Hall, Cadence Design Systems, 2005.

Chapter 16
Mixed Analog and Digital Verification

Coverage-Driven Verification for Mixed-Signal

Circuits

Monia Chiavacci, Egidio Pescari and Gabriele Zarri
Yogitech

Monia Chiavacci

Ms. Chiavacci cofounded Yogitech in 2000. She
is responsible for the mixed- signal division. She
worked as an analog designer from 1998 to 2000
after receiving her degree cum laude in Electronic

Engineering at the Pisa University. Her work experiences include
high- reliability systems in critical environments such as biomedical,
space and high- voltage automotive applications.

Gabriele Zarri

Mr. Zarri is a verification engineer at Yogitech.

international customers, and trainings on verifi-
cation methodologies. His experience includes automotive protocols
such as LIN, CAN, and Flexray. He is expert in OCP protocol, a
universal complete socket standard for SoC design, and has recently
acquired experience in the verification of mixed- signal circuits.
Gabriele specialized in Microelectronics and Telecommunications
with a MS from Nice Sophia- Antipolis University.

ation IPs, verification environments for many
He is responsible for the development of verific-

222 Metric-Driven Design Verification

Egidio Pescari

Egidio is a senior design & verification engineer
at Yogitech. Prior to Yogitech, Mr. Pescari deve-
loped systems in critical environments such as

automotive and space applications. He acquired experience in many
automotive protocols such as LIN and CAN. He graduated from the
University of Perugia in 1998.

Abstract

Traditional methodologies for Analog and Mixed-Signal (AMS)
verification present many drawbacks.
Analog design verification is usually subjective due to the lack of
automatic checks and the poor control on stimuli and results.
Moreover, verification of mixed-mode circuits is often incomplete
due to fact that analog and digital macros are simulated with two
different environments with insufficient interaction.
Measuring the quality of verification becomes difficult, costs esca-
late in redesign, engineer-time and market entry is unpredictable.
Moreover, lack of reuse in verification environments results in lower
levels of efficiency.

extends to the analog domain well-know concepts in the digital one,
achieving advantages in terms of completeness, effectiveness,
process control, and reusability. An introduction is given on the
basic items on which the verification methodology is built, how to
define a verification plan including analog metrics for functional
coverage evaluation is described together with a tool bridging the
analog and digital domains.

Introduction

The growth of the monolithic mixed- signal systems foreseen for the
near future drives EDA vendors and SoC solution providers to invest
huge resources to explore new verification approaches covering the
gap between the analog and the digital verification current status.
Even if mixed- signal simulator tools are already available in the

This paper describes an innovative Analog Mixed-Signal Verific-
ation methodology based on a coverage-driven approach which

16 Mixed Analog and Digital Verification 223

market linking and simulating analog and digital blocks in the same
test- bench, it is still not possible to extend to analog mixed- signal
domain the advanced techniques already available for digital verifi-
cation, such as constraints capture, randomized or pseudo- randomized
stimulus generation and self- checking results collection with coverage
analysis.

Thus, most analog designers simulate various mixed subsystems in
order to verify different functionalities of the whole device (i.e., reset
and start- up conditions, power down/up signals polarity, function-
alities of analog block configured by a digital block, test- mode, etc.):
the space of the interactions among all subcells that may be derived
from the device specifications is most of the time not completely
covered so that verification coverage is often partial and even not
quantified. Lack in methodology and automation amplifies the risk of
subjective evaluation and reduces reusability. In this paper, starting
from previous work [1–3], we are presenting an innovative analog and
mixed- signal verification approach in which both analog stimuli and
output metrics can be generated in an advanced digital verification
environment.

Traditional Mixed-Signal Verification

Analog- and digital- design processes are fully separated: different
teams, different expertise, different tool chains, and often different
cultures. Finally analog and digital sections must work together on
silicon in a mixed- signal circuit and so becomes mandatory and
more and more urgent to set up a mixed- signal approach shared bet-
ween the two sides of the same house.

Currently functional verification in analog domain has a lot of limi-
tations compared to the digital one. Mixed- signal verification comes
from the analog side and has the same amount of problems or even
more due to the multidomain nature. As shown in Figure 16.1, AMS
verification is at least two steps behind the digital one and is moving
forward slowly.

224 Metric-Driven Design Verification

 As consequence of the lack of a proven methodology and the low
control of the overall verification process, mix- mode simulations
handling in the same test- bench analog and digital blocks are mainly
driven by engineer’s experience on the specific design or appli-
cation. Such approach produces a strong limit in resource flexibility
and optimization. The low level of reuse is another negative conse-
quence which increases the effort needed at each design cycle.

In a traditional approach, mixed- signal verification is often in charge
of the analog team and based on direct tests: the analog designer
usually creates and fills a spreadsheet listing all the needed tests and
then removing part of them based on his experience on circuit
implementation. This procedure limits, by nature, the reuse level for
other circuits and increases the risk to overlook or miss something.
At this point the designer creates test- benches covering the listed
tests, performs simulations, checks results mainly by visual inspec-
tion and fills the spread sheet with measurements results. In this
approach the huge lack in automation forces high- value resources to
take care of time- consuming and repetitive tasks.

The increase of complexity and the increase of costs, both in masks
for deep- submicron technology and in time- to- market mismatch,

DIGITAL VERIFICATION ANALOG MIXED-SIGNAL
VERIFICATION

Multi-methodology
verification platform

today

today

a
u

t
o

m
a

t
i

o
m

Multi-methodology
verification platform

Handmade test Handmade test

Functional verification Functional verification

Functional verification
based on object-oriented

languages

Functional verification
based on object-oriented

languages

Trivial stimuli automation,
handmade results

elaboration

Trivial stimuli automation,
handmade results

elaboration

Figure 16.1 Comparison between Digital and Analog Mixed- signal Veri-

fication approach

16 Mixed Analog and Digital Verification 225

drive the requirements of powerful methodologies and tools able to
solve those issues.

Verification Planning

The coverage- driven verification methodology can satisfy the require-
ments also for mixed- signal circuits.

The verification plan is the key element for the circuit verification
and it enables the coverage- driven approach. It must be defined at
the very beginning and it must describe all the requirements and
results for the verification activity collecting and organizing the
contribution of the different expertise necessary to make the design
successful: analog design team, digital design team, and verification
team.

A coverage- driven verification approach uses predefined metrics to
evaluate the verification progress, i.e., to measure the amount of
covered conditions according to the defined metrics respect to the
complete set. Whatever is the mechanism to create test- cases, the
functional coverage measures the percentage of the test space covered
by the test- cases run at a certain point of the verification process.

How to define and measure metrics in a digital context is well know
[4] and the extension to the analog one could be quite straight-
forward starting from what is available in the discrete domain. To
allow the adoption of this approach in an actual project, it is
necessary to provide a tool managing analog metrics for functional
coverage definition.

Let’s consider a very simple example to better understand how the
verification plan can be created for an analog circuit and how to
define the methodology extending to the analog and mixed- signal
circuits the coverage- driven functional verification.

A peak detector is shown in Figure 16.2 with the input and output
waveform and the transfer function.

226 Metric-Driven Design Verification

The input of a verification plan is the specification document and it
is mainly composed by four sections as described in the following.

1. Definition of the primary input space and the set of device
states.
In this simple example the input space is mainly composed
by the parameters of the input sinusoidal waveform (A and f)
and some environment conditions as temperature and techno-
logy process model cards.

A � [AMIN, AMAX]
f � [freqMIN, freqMAX] (1)

T� [TMIN, TMAX]
model card= mod_0, mod_1, mod_2…..mod_n

Instead, device states are related to configurations depending
on the digital input bus. In this simple case the bus is a
primary input but in a more complex circuit it could be an
internal signal.

cfg � [0, ..., k] (2)

Parameters and their values come from the specification
documents.

2. Definition of verification items, i.e., the list of device
functionalities to be verified according to the specification
document.

vin voutpeak
detector

cfg (digital n bit bus)
vout(Tn) = func(vin, cfg)

25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

A

f

vin voutpeak
detector

cfg (digital n bit bus)
vout(Tn) = func(vin, cfg)

25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

A

f

Figure 16.2 Peak Detector with Sinusoidal Waveform in Input, Digital
Configuration Word Defining Output Parameter as Gain and Offset
and Output Waveform According to its Transfer Function

16 Mixed Analog and Digital Verification 227

For each items the plan defines:

1. Item ID
2. Functionality description
3. Conditions at which the item has to be verified (they

depend on stimuli, on external environment para-
meters and on device states)

4. Description of measurement procedure (i.e., how to
extract the functionality)

5. Expected results

In our simple case, we can consider only one item.

Output
voltage
value

For each possible value of
input amplitude and
frequency, in each possible
environment conditions and
configurations

Sample output
voltage value when
the input signal
reaches the maximum
voltage value within
one period

vout(Tn) =
func(vin,
cfg)

3. Definition of metrics to measure functional coverage.
In this section the attention has to be put in the definition of the
rules to be used to measure the functional coverage. Ideally, the
circuit has to be verified in every condition defined in the first
step.
There are mainly three elements to be considered in order to
limit the space of the metrics and so the total amount of test
cases.

a. For a given parameters, not all the possible values are
allowed.
For instance, for the configuration bus at n bits the
allowed values are only “k+1” according to the speci-
fication reported in (2)

b. In analog domain there are continuous quantities
(e.g., voltage values in a defined range) but conti-
guous values “normally” do not create distinguishing
behavior of the circuit.
For instanced, applying A = 2.1 V after A = 2 V do
not add any information for the verification of the

228 Metric-Driven Design Verification

circuit; instead, if for the nmos device Vt = 0.65 V,
depending on circuit implementation, for A = 0.6 V
and A = 0.7 V the circuit can behaves in a different
way.
So, for each continuous value parameter, it is possible
to define subranges where, for value in the same sub-
range the behavior is expected to be the same, instead
two values in two different ranges can produce quite
different response. Based on that makes no sense to
test more than one value in each range but it is
important to test at least one value for each subrange.

c. For some continuous quantities, based on experience,
circuit implementation and so on, it is clear that only
the boundaries of the defined range are critical for the
circuit behavior.
It is the case, for instance, for the environment temp-
erature: normally only the minimum and the maxi-
mum temperature according to the specification are
considered in corner analysis.

Coverage items are related to primary input space, device space and
output space.

Input items:

Input amplitude[AMIN, A1] , (A1, A2] … (Ah, AMAX]AMP#1

Input frequency[fMIN, f1], (f1, f2], … (fk, fMAX]FREQ#2

DescriptionBucketsNameID

Input amplitude[AMIN, A1] , (A1, A2] … (Ah, AMAX]AMP#1

Input frequency[fMIN, f1], (f1, f2], … (fk, fMAX]FREQ#2

DescriptionBucketsNameID

Output items:

Ouput voltage[VMIN, V1] , (V1, V2] … (Vj, VMAX]VOUT#4

DescriptionBucketsNameID

Ouput voltage[VMIN, V1] , (V1, V2] … (Vj, VMAX]VOUT#4

DescriptionBucketsNameID

States items:

Conf. word[0], [1], … [k]CONF#3

DescriptionBucketsNameID

Conf. word[0], [1], … [k]CONF#3

DescriptionBucketsNameID

Cross-coverage

CONF&FREQ&VOUT

AMP&FREQ&VOUT

CONF&FREQ&VOUT

AMP&FREQ&VOUT

Figure 16.3 Build up Coverage Items and Cross- Coverage Ones

16 Mixed Analog and Digital Verification 229

Metrics can be then created by the combination of coverage items.
For instance, in our simple case we can define the items as reported
in Figure 16.3.

4. The last part of the verification plan has to describe the veri-

fication scenarios needed to check all the listed items in (2)
and reach the target functional coverage defined in (3).
In fact, especially in the analog domain, it is not always
possible or optimum to perform all the checks with the same
test- bench, with the same topology. For some verification
items could be necessary to apply some stimuli and the gene-
ration mechanism could be incompatible with the one needed
for others items. For instances the circuit should be normally
powered with a DC generator to check its functionality. In
case of start up test, the power supply voltage has to be
provided by something like a pulse generator. In this case to
reach stationary conditions can require some time (the tran-
sient behavior at start up has to end before to do functional
test). It’s more convenient then to have two different topo-
logies: one for start up scenario and one for functional
scenario.
These test scenarios have to be identified and described in
the verification plan in order to give defined guidelines for
the verification environment implementation.

Once the verification is ready the verification environment can be
implemented. It is important to highlight that the methodology shortly
described in this section helps to maintain an update and fully
consistence specification document for the mixed- signal circuit: this
helps to solve another weak point in mixed- signal design.

Analog Mixed-Signal Verification Kit

To introduce the proposed verification methodology for mixed-
signal circuit it is necessary to provide a tool able to support such
methodology and providing enough automation in order to avoid
engineer- time to be spent checking its correct usage.

230 Metric-Driven Design Verification

The Yogitech Analog Mixed- Signal Verification Kit (AMSvKit) is a
tool able to link analog and digital approach; AMSvKit extends to
analog domain verification techniques already used in digital one
providing a unified environment for mixed- signal verification, based
on Cadence Specman Elite [4, 5].

As illustrated in Figure 16.4

the analog mixed- signal verification kit

is composed of three libraries (vTerminals, vComponents and
Sequences DB) and all the necessary infrastructure to make working
the full environment (simulator scripts, Specman “e” language
structures/unit, etc.).

The core of the kit is a library of “verification terminals” (vTer-
minals) that creates an interface between the analog and digital
domains. The vTerminals are divided into two types:

– Verification sources (vSources – vS), which are models of signal
sources configured and controlled by digital commands from the
verification environment that provide continuous and time-
continuous voltage and current signals or analog events; they

Figure 16.4 AMS vKit Scenario

16 Mixed Analog and Digital Verification 231

include DC, pulse and sinusoidal signal (current and voltage)
generators, noise injectors, and parameter spread emulators;

– Verification probes (vProbes – vP), which transfer analog infor-
mation from the mixed- signal simulator to the verification
environment; they provide values of voltage, current, and timing
parameters and include self- checking mechanisms (e.g., check a
sampled voltage level within a predefined range); examples of
vProbes are voltage/current/time detectors, linear behavior and
total harmonic distortion calculators, AC gain extractor, etc.

The verification components (vComponents) are ready- to- use to
create verification environments (e.g., test- benches) for main blocks,
including self- checking mechanisms and coverage evaluation based
on analog metrics that are easy to integrate in more complex mixed-
signal scenarios. They are developed to verify basic analog blocks
such as band gap cells, oscillators, voltage regulators, comparators,
operational amplifiers, and buffers.

For each cell, the verification plan has been defined including the
significant parameters, conditions and procedures to measure them.
Based on the verification plan, the verification component drives,
monitors and processes current and voltage signals generating correct
stimuli for the DUT and elaborates the information in order to match
the target coverage.

In order to calculate a nontrivial analog parameter it is necessary to
properly control and configure a number of vSources and vProbes
and to synchronize them. This is implemented using sequences: a
structure that represents a stream of items signifying a high- level
scenario of stimuli.

The database provided with the kit (sequences DB) includes all the
sequences needed in an analog context. For instance, in order to
extract the total harmonic distortion of a buffer (one of the most
important analog parameters), it is necessary to stimulate the circuit
with a sinusoidal signal (vSource) for a defined time period depen-
ding on the frequency at which the measurement has to be done. The
settling time and the sample period of the output signal (vProbe)

232 Metric-Driven Design Verification

depend on the frequency as well. Predefined and ready to use
sequences which create this and other kinds of test scenarios are
available in the sequence DB library.

Using AMS vKit the powerful generators of state of the art verifi-
cation tools such as Cadence Specman Elite [4, 5] can be used to
generate also analog stimuli; checking mechanisms can be applied to
analog verification items and functional coverage can be evaluated
also based on analog metrics according to the defined verification
plan.

Figure 16.5 describes stages and skills set for the verification process.
The environment creation starting from the verification plan definition

VerificationVerificationVerification
Environment

Creation Verification

Environment
Update

Extended Verification Component

Once Many

Verification language
Verification methodology

Environment set up

Verification methodology
Verification language

Verification Component build

Verification methodology
Analog/Digital expertise

Verification plan creation

Skill-setTasks

Verification language
Verification methodology

Environment set up

Verification methodology
Verification language

Verification Component build

Verification methodology
Analog/Digital expertise

Verification plan creation

Skill-setTasks

Report results

Run scenarios
Analog or

Digital expertise

Create test scenarios

Skill-setTasks

Report results

Run scenarios
Analog or

Digital expertise

Create test scenarios

Skill-setTasks

VerificationVerificationVerification
Environment

Creation Verification

Environment
Update

Extended Verification Component

Once Many

Verification language
Verification methodology

Environment set up

Verification methodology
Verification language

Verification Component build

Verification methodology
Analog/Digital expertise

Verification plan creation

Skill-setTasks

Verification language
Verification methodology

Environment set up

Verification methodology
Verification language

Verification Component build

Verification methodology
Analog/Digital expertise

Verification plan creation

Skill-setTasks

Report results

Run scenarios
Analog or

Digital expertise

Create test scenarios

Skill-setTasks

Report results

Run scenarios
Analog or

Digital expertise

Create test scenarios

Skill-setTasks

 Figure 16.5 Skills Set for the Verification Flow

16 Mixed Analog and Digital Verification 233

is a high- value step for which the complete set of expertise is needed:
analog, digital and verification.

For the verification itself, i.e., simulation run, both digital and analog
designer are able to perform the task giving in this way a high level
of flexibility in term of resource allocation: this is a big advantage
on top of the whole methodology.

Coming back to the simple example, the AMS vKit provides:

� vSources to generate analog stimuli
� vProbes to monitor and process analog information
� Capability to handle parameters, generating random-

constrained analog values
� Capability to implement self- checking mechanism for analog

items
� Capability to handle analog metrics for functional coverage

evaluation

Conclusion
In summary, the AMSvKit allows the extension and the adaptation
of the three main steps for a powerful coverage- driven functional
verification to mixed- signal circuits verification:

1. Random- constrained stimuli generation
2. Self- checking mechanisms
3. Functional coverage evaluation

This enables and deploys the described methodology to introduce
automation in mixed- signal verification, extending the coverage-
driven approach to analog/ mixed and increasing verification quality,
effectiveness and reusability.

Flexibility in resource allocation due to the methodology and the
automation is another important added value of the described app-
roach: traditionally mixed- signal verification is performed by analog
designers taking away them from pure design tasks for which
experience and creativity is mandatory.

234 Metric-Driven Design Verification

The introduction of a methodology in verification forces
development team to pay more attention to critical element like
specification document: this is an input of the verification and it
must be clear, complete and update. Often this is not true and the
consequence can be dramatic.

Moreover, having a supervisor as the verification tool together with
coverage metrics allows tracing back the contribution of each
simulation to the functional coverage. So, it is also possible to
optimize the run time selecting the simulations which give higher
contribution in terms of coverage respect to the defined verification
plan. Automatic verification management tools giving such control
for digital verification can be used also in mixed- signal context.

Reference
1. R. Mariani, M. Chiavacci, G. Bonfini “Fundamentals of a novel

approach for mixed analog- digital verification”, 9th IEEE European
Test Symposium, Informal Session, Ajaccio (Corsica), 23–26 May 2004

2. G. Bonfini, M. Chiavacci, R. Mariani, R. Saletti “A new verification
approach for mixed- signal systems”, 2005 IEEE International
Behavioral Modeling and Simulation Conference(BMAS 2005), 22–23
September 2005, San Jose, California, USA, accepted for web
publication

3. G. Bonfini, M. Chiavacci, F. Colucci, F. Gronchi, R. Mariani, E.
Pescari, A. Sterpin “Fault coverage in a new mixed- signal verification
environment”, In Proc. of 11th International Mixed-Signal Testing
Workshop (IMSTW), 27–29 June 2005, Cannes, France, pp. 148–154

4. Cadence’s Specman tool, www.cadence.com
5. IEEE 1647: http://www.ieee1647.org/index.html

Chapter 17
Design for Test

Over the past decade, several advances in structured testing for manu-
facturability and reliability have contributed to the automation of
verification processes. In this chapter by Stylianos Diamantidis, Iraklis
Diamantidis, and Thanasis Oikonomou of GlobeTech Solutions, we
will see how verification technologies can be used to create a complete,
fully automated unified solution from test specification to DFT closure.

Stylianos Diamantidis

Stylianos Diamantidis is a founder of Globe-
tech Solutions, where he currently serves as
Managing Director and CTO. With over 10
years of experience in design verification, he is
responsible for driving IP product strategy,

engineering, and consulting services. Prior to Globetech, Stylianos
managed system- level diagnostic software development at Silicon
Graphics Inc., spanning across server, supercomputer, and graphics
products. Stylianos holds a B.Eng. in Computer Systems Engineering
from the University of Kent at Canterbury, UK, and an MS in
Electrical Engineering from Stanford University.

Iraklis Diamantidis

Iraklis Diamantidis is a founder and Senior
Verification Engineer at Globetech Solutions.
His current areas of interest include electronic
system- level design, advanced design verifi-

cation methodologies, silicon test, debug and diagnosis, and system
software. Iraklis holds a B.Eng. from the University of Kent at
Canterbury, UK, and an MS in Electrical Engineering from Stanford
University. He is a member of the IET and the IEEE.

236 Metric-Driven Design Verification

Thanasis Oikonomou

Thanasis Oikonomou is a Senior Digital Systems
Designer and Verification Engineer at Globetech
Solutions. His interests include computer
architecture, high- speed networks, digital design,
verification, and testing. He received B.Sc. and

M.Sc. in Computer Science from the University of Crete, Greece.

A Unified DFT Verification Methodology

Stylianos Diamantidis, Iraklis Diamantidis, and

Thanasis Oikonomou

Globetech Solutions

Thessaloniki Greece

In today’s fast growing SoC, incomplete or ineffective DFT support
due to poor specification or loose design practices can quickly
become the critical path to making market windows and delivering
products within cost restrictions.

This paper will introduce a unified DFT Verification Methodology
(DFT- VM), aimed at providing a complete, methodical, and fully
automated path from test specification to DFT closure. We will also
examine the benefits of this approach, looking at how this metho-
dology can help bridge the widening gap between design and test.

Introduction
As modern IC transistor counts continue their frenzied climb accor-
ding to Moore’s Law, test infrastructures, the collection of logic
dedicated to testing the structural integrity of silicon are also fast
growing in both area and complexity.1 In a nanometer design era
where silicon debug already takes up to 30% of project time and

1 In recent studies, DFT in ICs has been found to typically account for 20% of total logic

gates and for as much as 30% of total design effort.

17 Design for Test 237

semiconductor test cost typically accounts for 30–50% of total
fabrication cost, Design- For- Test, or DFT, is assuming a critical role
in product definition, design, and delivery.

Although DFT is a concept that has been around for a long time,
semiconductor companies are today experiencing unprecedented
pressure to provide more complex DFT features in their designs.
This trend is largely attributed to the need for controllability and
observability within highly integrated SoCs and is driven by the
inevitabilities of test economics.

Design verification tools and methodologies have made tremendous
progress in the last few years, directly benefiting design quality and
shortening development cycles. However, DFT- specific circuitry
tends to be overlooked in most test plans. There have been a series
of contributing factors for this oversight:

� No clean test intent is specified and communicated to the
design teams

� Lack of formal end- goal or associated Quality of Result
(QoR) for DFT

� Low prioritization compared to core functionality
� Loose IP- based design methodologies
� A clear cultural gap between design and test teams, inclu-

ding “over- the- wall” communication breakdowns

These and many more reasons are today resulting in typical DFT
failures, manifested in a variety of forms:

� Lack of strict protocol compliance and loose intero-
perability

� Deviation from strict functional behavior for test imple-
mentation (e.g., accuracy in scan- based delay- path test
setup and extraction)

� Poor testability coverage due to logical errors in the imple-
mentation (e.g., inability to access BIST controllers or error
status reporting registers)

238 Metric-Driven Design Verification

� Decrease in test efficiency (time, test data set size) due to
noncoherent test implementation

Motivation
DFT failures due to loose design practices, however, have been
commonplace throughout the history of modern IC design. What has
changed recently to accentuate the problem? The answer lies in the
inevitabilities of test economics. Cost of Test (COT) in the nano-
meter era is breaking semiconductor economics:

� COT does not scale. Although silicon fab costs have been
steadily decreasing to accommodate industry needs, the
capital costs of testing wafers have remained flat [1, 2]

� Large Automated Test Equipment (ATE) system cost is
driving capital COT, due to complexity of modern SoCs

� Exploding test time and test vector sets combined with low
yield are putting immense pressure on COT

In order to deal with the inevitabilities of COT, the industry is
beginning to turn to massive DFT implementations:

� Enable low- cost tester deployment by partitioning test reso-
urces on- chip

� De- compress test data and compress response data
� Design scalability into test schemes
� Increase controllability/observability for silicon debug
� Implement on- chip instrumentation

These trends are leading to highly complex and sophisticated DFT
structures. However, associated methodologies and design practices
have not yet caught on to this pressure:

� Although the industry is transitioning to IP- based design to
tackle complexity, test is still very flat

� The developing ecosystem of IP vendors and integrators is
leading to more heterogeneous and unpredictable test infra-
structures

� DFT insertion at different levels of abstraction (RTL, gate,
physical) is increasing unpredictability and making it diffi-
cult to define QoR requirements

17 Design for Test 239

� Test infrastructures are inherently heterogeneous. IP- based
design places a new requirement to build coherent system-
level test schemes from incoherent components

DFT has hence become too important to treat as a secondary design
function and too complex to tackle with traditional approaches.
Instead, design teams need to take special care to ensure the
behavioral functionality, strict compliance, and efficient operation of
their test infrastructures. As silicon test transitions from a design
afterthought to a critical manufacturability requirement, companies
need to rediscover “Design” in DFT. We start with verification.

A Unified DFT Verification Methodology
In trying to design a complete DFT verification environment [3] and
associated methodology, one needs to define the key objectives this
approach is trying to achieve:

� A well- defined entry points into the design process that can
be used as the foundation for expressing test intent and
expected end QoR

� Mechanisms for verifying classes of DFT components
which will handle the stimuli generation and checking
aspects of testing at different levels of abstraction

� Flows for deploying and executing verification as well as
measuring progress

� Tracking and analyzing results
� High levels of automation and reuse
� Integration of Test Information Models (TIMs), such as

Boundary Scan Description Language or Core Test
Language (CTL) files in the verification flow

� Methods for exchanging information with postsilicon
applications such as silicon debug and manufacturing test

We have hence designed a robust, unified, DFT- VM. Keeping the
stated objectives in mind, we now proceed to describe the metho-
dology based upon three distinct foundations: Planning, executing,
and automating.

240 Metric-Driven Design Verification

Planning
The foundation for systematic DFT verification is a well- defined set
of goals, supported by a methodology developed to provide integ-
ration- oriented test methods into chip- level DFT, enabling compati-
bility across different embedded cores and incorporating high levels
of reuse.

But how can one proactively plan for virtually arbitrary DFT imple-
mentations that can be produced by IP- based design, particularly
when different vendors follow completely different approaches to
DFT? Obviously test plans need to be very modular and reusable,
allowing for hierarchical structures to be easily constructed to des-
cribe the test infrastructure at hand. Furthermore, test plans need to
be polymorphic, very much in the way that object- oriented metho-
dologies define classes of objects, making it possible to use them in
a variety of different forms and shapes by specifying simple para-
meters.

In our solution, we specify a plan case database, a repository of plan
templates, or cases. Such cases contain policies for verifying DFT
components such as a JTAG TAP controller [4], without making any
assumptions for the nonstandard or implementation- specific aspects
of the components. DFT planning cases have the following charac-
teristics:

� They provide blueprints for verifying classes of DFT com-
ponents

� They specify QoR metrics that verifiers can use to track
progress against the plan

� They allow different views into the verification plan data to
be specified, allowing for better analysis of results

Planning cases can be used to instrument the verification of both
rudimentary DFT components and highly complex structures. This is
achieved by dynamic planning, the process of hierarchically piecing
together a high- level verification plan from lower level plans (see
Figure 17.1). This modularity enables the quick and repeatable
composition of detailed verification plans for arbitrary DFT
infrastructures at the block, core, or system levels. Users can spend

17 Design for Test 241

time experimenting with these high- level plans for optimum results,
setting the blueprint for a well- designed test infrastructure before a
single design decision has been made. The ability to reuse plans at
different levels of integration and abstraction is a huge benefit to the
predictability and verifiability of the project.

Figure 17.1 Hierarchical DFT Verification Planning

Having compiled a plan case database, we now have the necessary
building blocks for expressing high- level, complex, and, most impor-
tantly, highly configurable verification plans, maximizing reuse, and
leveraging on existing experience. Building a dynamic chip- level
DFT verification plan is now broken down to instantiating and
configuring multiple DFT verification case objects.

Executing
Once the critical task of planning has been properly addressed, the

way to achieve this is by deploying Verification IP (VIP).

The concept of verification IP is fairly new in the design com-
munity. Conceptually, VIP provides a way of separating generic
concepts of design verification from application- specific ones. When
this separation is well designed, the direct benefits are enhanced
reuse and leverage on existing experience. In the context of DFT,
generic concepts can include generating pseudorandom vectors and

System-
level

DFT Plan

Standard
Plan (e.g.

JTAG)

Embedded
Core Plan

Standard
Plan (e.g.
IEEE1500)

Component
Plan (e.g.
MBIST)

Component
Plan (e.g.

LBIST)

verification environment needs a scalable way of executing verific-
ation on the test infrastructure. The most complete and reusable

242 Metric-Driven Design Verification

driving them into a scan chain. Application- specific concepts, for
instance, could include using this scan chain to configure a Memory
Built- In Self- Test (M- BIST) controller [5].

Essentially, VIP is mechanism. It provides the means and capabilities to
perform operations and observe DUT behavior; however, it does not
include policy. Policy, in this context, is defined as the systematic
flow of verifying a complex design, starting with a detailed set of
goals, adding a plan of action, and targeting a certain QoR. Hence,
starting with a good policy, we can reach our goals by deploying
VIP as our mechanism.

We hence define a VIP Class Database. This database includes VIP
classes which map to types of DFT components such as Test Access
Mechanisms (TAMs), scan chain elements, BIST controllers, instru-

DFT logic [6]:

� Constrained random stimuli generators
� Automated, dynamic, checkers, and assertions
� Total coverage collectors

As with plan cases, VIP classes do not include application- specific or
implementation- dependent aspects of the DFT component types they
target. Rather, they are rudimentary verification environments which
are highly reconfigurable and reusable, making it easy to put together
complex environments in relatively small time and with reduced
effort. Furthermore, the VIP Class Database becomes an experience
repository for DFT, where periodic updates ensure uniform design
policies and improved interoperability.

Finally, such a repository also helps improve resource utilization and
project management. Expert verification engineers can maintain and
extend the repository with upgraded capabilities and new functionality
while logic designers, usually not entirely familiar with the internal
workings of the VIP itself, can simply use the platforms based on its
capabilities. Conversely, using this methodology, logic designers can
ensure that new features or design changes added directly into VIP

ments, etc. Each VIP class includes the tools needed by the verific-
ation environment to effectively exercise its corresponding type of

17 Design for Test 243

classes are made available instantly by regenerating the environment.
This enhanced automation of the DFT- VM is discussed next.

Automating
TIMs are schemas used to convey information about the test
infrastructure of an IC or embedded core. They typically convey
three types of information:

� Intent, such as protocol, test modes, etc.
� Architecture, such as scan chains, signals, and other design

information
� Data, i.e., complete test programs that the infrastructure can

execute

TIMs hence also serve the purpose of delivering test vectors generated
using EDA tools to semiconductor testers (ATEs). The IEEE 1450-

(IEEE 1450.1- 2005 [8], IEEE P1450.6 [9]) support additional
structures in test models to fully describe the DFT architecture itself,
thus enhancing the use of such models in semiconductor design envi-
ronments. These extensions are targeted at enhanced DFT and DFM
applications, where ATEs can also be used for analyzing failure data
and providing feedback to EDA tools.

In our DFT- VM, TIMs play a significant role. First, TIMs need to be
considered a part of the test infrastructure itself. In fact, the recently
published IEEE 1500- 2005 Standard for Embedded Core Test
(SECT) [10] defines a TIM as the only mandatory test infrastructure
element for claiming that an embedded core is compliant to the
standard. Based on the test intent described in the TIM, designers
can provide the necessary functionality while maintaining flexibility
in the actual hardware implementation. Hence, TIMs need to be
verified alongside the DFT components that implement them.

Secondly, TIMs include all the necessary topology, architecture, and
implementation- specific information that must be available to the veri-
fication environment. This way, a silicon IP vendor can communi-
cate test intent of a design core to an integrator within specified

ing the de- facto standard. Recent extensions to TIM standards
1999 Standard Test Interface Language (STIL) [7] is quickly becom-

244 Metric-Driven Design Verification

completeness, interoperability, and confidentiality requirements. This
information, in the form of a TIM, can then be used by the integrator
for a variety of design functions ranging from implementing certain
DFT components to shaping the IC- level test infrastructure (Figure
17.2).

In our approach, we are extending the applicability of TIMs to design
verification, claiming that TIMs can provide an automation link bet-
ween DFT design and verification. The argument is supported by a
variety of technical and business conditions:

Figure 17.2 DFT- VM Automation Flow

 TIM

Plan
Cases

VIP
Classes

Execution
Platform

Verification
Environment

Test Suite

Management
Platform

Executable
Plan

Generate

Execute
& Track

17 Design for Test 245

� TIMs can encompass test intent as specified by test engi-
neers without committing to design decisions and hence
provide the grounds for an early test specification

� TIMs bridge the gap between IP vendors and integrators
with respect to DFT support in IP cores and hence can be
used to verify deliverables

� TIMs are models that can be used for early test perform-
ance exploration

� Verification automation based on TIMs can be used to
maintain a link between the post- and presilicon worlds,
allowing testbenches to be reused for debugging silicon and
optimizing manufacturing test

In order to better understand how TIMs can be used to build DFT-
verification environments quickly and effectively, let’s consider the
following example in the context of an IEEE 1500- 2005 compliant
embedded core.

Test Case
IEEE 1500- 2005 (SECT) defines a scalable architecture for indepen-
dent, modular test development, and test application for embedded
design blocks. It also enables test of the external logic surrounding
these cores. Modular testing is typically a requirement for embedded
nonlogic blocks, such as memories, and for embedded, predesigned,
nonmergeable IP cores. In addition, the IEEE 1500 architecture can
also be used to partition large design blocks into smaller blocks of
more manageable size and to facilitate test reuse for blocks that are
reused from one SoC design to the next.

A typical TIM is that of an IEEE 1450.6 CTL description of the
IEEE 1500 test infrastructure, commonly referred to as a wrapper,
found in a SECT compliant embedded core (for more information
please refer to the IEEE 1500 standard). Such a model includes,
amongst others, information in a parse- able format about:

246 Metric-Driven Design Verification

� Signals. The TIM publishes information about signal names
and sizes, as well as their default state, so they can be ini-
tialized and driven/sampled by an external agent.

� Scan Chains. This information refers to scan structures that
are part of DFT. That includes scan chain sizes and cells’
names, so other information regarding the cells like parallel
inputs and/or output connecting signal names can also be
inferred.

� Scan Cells. TIMs publish all information pertaining to the
scan chain cells, since IEEE 1500 cells follow a standard
naming convention that fully describes their structure and
function.

� Test modes. The TIM also includes information about the
various test modes that can be reached by loading
appropriate instructions. It provides the instruction opcode
that triggers this mode, identifies the data register to be
used, and provides the macros used to access it.

A TIM parser can parse all this information and infer:

� IEEE 1500 control signals:
o The instruction set used
o Opcodes
o Data registers referenced

� The collection of test data registers:
o Sizes
o Signal connections

� The cells contained in those registers:
o Structure
o Signal connections
o Behavior during capture, update, transfer operations

As an example, Figure 17.3 illustrates an example of a CTL
description for an IEEE 1500 compliant embedded core wrapper.
The description provides information about the wrapper, including
the size and cell type of the instruction register (WIR).

17 Design for Test 247

Figure 17.3 IEEE 1450.6- CTL DFT Structure Example

Having extracted these structures from the CTL model, one can
envision a process by which:

� The corresponding IEEE 1500 VIP class is selected from
the VIP database and instantiated (see Figure 17.2)

� The number of cells specified in the WIR structure and
signals connecting to the parallel input of those cells are
used to configure the VIP (see Figure 17.4)

Figure 17.4 Environment Generation Based on a TIM

// 'e' language configuration for an
 IEEE 1500 VIP module

extend WIR glbt_sect_ref_model_register {
 keep size == 4;
};

extend WIR glbt_sect_ref_mode_register_cell
{

 keep cfi == append(“wir_fi”, “[“,
 cell_index, “]”);
};

// CTL for IEEE 1500 enabled embedded
 core wrapper
...
ScanChain wir_chain{
 ScanLength 4;
 ScanCells wcell[0..3];
}
...
 ...

Internal{
 'wir_fi[0..3]{ DataType Functional
 TestData;
 IsConnected In {
 StateElement Scan 'wcell[0..3]';
 ..
 }

}
 ...
 }
 ...
}

248 Metric-Driven Design Verification

Collections of TIMs can be grouped together hierarchically to per-
form system level DFT verification. This can be done by analyzing
the TIMs and deducing the respective topology of each embedded
core and its corresponding DFT infrastructure in the SoC. With this

Benefits
The described verification methodology serves as a solid foundation
for true design for test. By enforcing early verification document-
ation and planning, it aligns the perspective of different design teams
with respect to DFT support and enhances visibility. Automating
environment generation, it ensures that logic designers and test engi-
neers have a good auditing system for debugging and regression
analysis, while propagation of new features and updates is centralized
through the use of plan and VIP databases. Better project management
and more efficient resource utilization are also achieved by providing
clear interfaces for logic designers and verification engineers.

TIM coverification introduces strong semantics into the description
and integration of test infrastructures. DFT designed by separate
teams or IP vendors can be merged into the IC- level reliably, while
maintaining a link with manufacturing test deliveables. Architectural
changes to DFT can quickly propagate to the design environment
through fast regeneration and automatic plan updates. Vendor quali-
fication for DFT becomes possible by enforcing TIM deliverables and
being able to quickly and reliably validate vendor claims for
testability and interoperability. Finally, advanced DFM applications
can also be supported through early collaboration with the fabrication
and tester providers.

Enhanced design engineering, automation, and reuse lead to increased
predictability, better productivity, and higher overall quality.

information, DFT- VM can be used to dynamically create test-
benches and tests optimized for a specific DFT configuration.

17 Design for Test 249

Future Work
Having successfully applied DFT- VM to functional verification, we
are envisioning several other areas where the methodology can
scale:

� Overall validation of test deliverables
The methodology described herein successfully sets the
foundation for verifying the functionality, compliance, and
completeness of DFT netlists. The next step would be to
extend the methodology to include coverification of test
sets with DFT netlists, allowing engineers to incrementally
verify and optimize all deliverables of a comprehensive,
systematic, test flow. Validation of test intent would also
encompass performance aspects of semiconductor test,
such as power profiling, ATE constraint analysis and
related cost optimization.

� Postsilicon test and validation
Having created a completely DFT aware verification
environment with QoR measurements and associated test
sets, postsilicon validation of DFT becomes a natural step
in the methodology. Validating DFT in silicon in a
systematic and predictable manner can help save test time
and improve reliability in manufacturing test.

� DFM applications
It is also intended to extend the methodology to some
interesting DFM applications such as importing TIM- based
test results from silicon test back to verification to gain
better understanding of the functionality perspective of
common failures and to facilitate analysis and debug.

Conclusions
We have identified the need to systematically verify DFT as part of
the total system verification process, in order to increase the quality
of the design and by virtue, the end product. The need becomes
more apparent in the context of IP- based design of SoCs, where
multiple embedded cores from different providers introduce hetero-
geneity and variation of DFT quality.

250 Metric-Driven Design Verification

executable verification plans and environments. Hence we provide a
fast and reliable way to building automated testbenches capable of
verifying DFT designs from simple components to complete test infra-
structures. Our approach enables true design for test based on measur-
able QoR, and enhances productivity, reliability, and reusability.

Finally we have demonstrated how our methodology results in a
verification infrastructure that can be reused during silicon debug
and test vector design for several advanced applications, forming the
basis for future work.

References
1. International Technology Roadmap for Semiconductors, 2003 Edition,

“Test & Test Equipment”
2. International Technology Roadmap for Semiconductors, 2004 Update,

“Test & Test Equipment”
3. K. Melocco, H. Arora, P. Setlak, G. Kunselman, and S. Mardhani, “A

Comprehensive Approach to Assessing and Analyzing 1149.1 Test
Logic,” in the proceedings of International Test Conference, Charlotte,
NC, USA, September 30–October 2, 2003, pp. 358–367

4. IEEE Computer Society, “IEEE Standard Test Access Port and
Boundary- Scan Architecture – IEEE Std. 1149.1- 2001,” New York:
IEEE, 2001

5. D. Appello, F. Corno, M. Giovinetto, M. Rebaudengo, and M. Sonza
Reorda, “A P1500 compliant BIST- based approach to embedded RAM
Diagnosis,” in the proceedings of 10th Asian Test Symposium, Kyoto,
Japan, November 19–21, 2001, pp. 97–102

6. I. Diamantidis, T. Oikonomou, and S. Diamantidis. “Towards an IEEE
P1500 Verification Infrastructure: A Comprehensive Approach,” pre-
sented at the 3rd IEEE International Workshop on Infrastructure IP
(IIP), Santa Clara, CA, USA, May 4–5, 2005

7. Test Technology Standards Committee of the IEEE Computer Society,
“IEEE Standard Test Interface Language (STIL) for Digital Test Vector
Data – IEEE Std. 1450- 1999,” New York: IEEE 1999

We have hence proposed a unified methodology for DFT verific-
ation, using TIMs to dynamically identify, instantiate, and configure

17 Design for Test 251

8. P1450.1 Working Group of the Test Technology Standards Committee,
“Draft Standard for Standard Test Interface Language (STIL) for
Digital Test Vector Data – Extensions to STIL for Semiconductor
Design Environments – P1450.1,” New York: IEEE 2005

Digital Test Vector Data – Core Test Language (CTL) –
P1450.6/D1.6,” New York: IEEE 2005

New York: IEEE 2005

9. CTL Working Group of the Test Technology Standards Committee,
“Draft Standard for Standard Test Interface Language (STIL) for

10. IEEE Computer Society, “IEEE Standard Testability Method for
Embedded Core- based Integrated Circuits – IEEE Std. 1500- 2005,”

Part IV
Case Studies and

Commentaries

Metric-Driven Design Verification: Why Is
My Customer a Better Verification Engineer

Than Me?

Alfonso Íñiguez, Freescale Semiconductor Inc.

Alfonso Íñiguez is a principal staff verification
engineer with the Security Technology Center at
Freescale Semiconductor, where he is the verifi-
cation lead responsible for developing, improving,
and applying functional verification tools and
methodologies. His work includes cryptographic

hardware accelerator design. He holds a B.S. in Computer Engineering
from the Universidad Autónoma de Guadalajara, México, and an M.S.
in Electrical Engineering from the University of Arizona. Due to his
dyslexia, Alfonso did not learn how to read a full sentence until he was
18 years old and he still does not know how to subtract. Alfonso
commutes to work by bicycle averaging 90 miles per week. He is a
large format photographer, bongo player, and salsa dancer. He pre-
sently lives in Mesa, Arizona with his wife, three children, and many
chickens.

Abstract
Why is it that after months of directed and random testing you were
not able to find a bug that your customer found within two days of
receiving samples? Is there anything wrong with your directed and
random testing? Should you blame it on faulty assertions? Could it be
that you did not run your simulation long enough? Could the bug have
been discovered by using better coverage criteria? The intention of
this paper is to answer all those questions by analyzing past mistakes
and proposing an effective way of writing a thorough metric- driven
verification plan.

256 Metric-Driven Design Verification

This document is a compendium of experiences, containing verifi-
cation pitfalls and prevention strategies, which the author has
witnessed throughout his 15- year career in the fields of product
evaluation, applications, design, and verification engineering.

Traditionally verification plans are written with the design
specification in mind. There is nothing wrong with this approach. In
fact, it is an essential requirement, but evidently, this common practice
is not sufficient. There is an important component called software
validation, which is traditionally left to the software team to complete.
Two scenarios can be described for software validation. The software
team completes this step by using a model of the DUV or it uses the
traditional silicon evaluation board approach. The first approach is
highly recommended, but since the team is working with a software
model of the DUV, it may overlook signal contention, race conditions,
and a myriad of other timing problems. If the software team chooses
the silicon evaluation option, then the company is relying on a very
expensive debugging methodology, with the risk of an exorbitant shift
in the delivery schedule and lost of credibility in the design team. To
avoid those problems, a software validation approach should be
included in the functional verification process.

Introduction
Most verification publications start with the following suggestion:
“first write a verification plan” which by the way is an excellent
suggestion. However, when writing a verification plan you need to

bed in this paper should serve as a preamble to writing an effective
verification plan.

Why was my customer able to find a bug that I overlooked? I can
assure you that I can come up with a large number of convincing
explanations, but no matter how creative the explanations are, they
always fall into one of the following two categories:

(a) The customer and I had different definitions of the
intended functionality.

consider past mistakes. The collection of verification pitfalls descri-

257

(b) The customer was the one who set the delivery schedule,
not me.

Although “a” and “b” are true, please do not use those reasons as
excuses when things go wrong. I have listed them here as a starting
point in finding a solution to the problem.

Section 1: The Elusive Intended Functionality

In order to understand the intended functionality of a given DUV, it
is necessary to define who the customer is. As we will see in the
next section, the definition of customer can be very extensive.

Defining the Customer

To a functional verification engineer, usually the first thing that
comes to mind when we use the term “customer” is an external
company building a PDA, cell phone, network card, computer, or
any other finished product. The term customer should not be limited
to that external company, but rather extended to anyone who is
capable of spoiling your weekend. Your customer pipeline begins
with the designer of the DUV, and extends all the way up to the end
user who has found new ways of using the product and knows more
about the capabilities of the design then the designer himself. A
more specific definition of customer includes the following people:
the IP Designer, the IP integrator, the software developer, the marke-
ter, and the end user. Now that we know who the customer is, we
can proceed to define the intended functionality per customer.

The IP Designer as Customer

You, the verification engineer, are a service provider, and like in any
other profession, the best service providers are the ones who get their
customers involved in the process. For example, a good surgeon can
increase her success rate by persuading her client to diet and
exercise before the surgery, which is something that the surgeon
cannot do for her client. Similarly, the verification engineer needs to
get her client, in this case the designer, involved in the verification
process. Such involvement is the remedy to prevent the following
two pitfalls:

Why Is My Customer a Better Verification Engineer Than Me?

258 Metric-Driven Design Verification

(a) Unreviewed verification plan.
(b) Unwritten white- box assertions.

Verification Pitfall #1: Unreviewed Verification Plan
Nowadays, a typical verification engineer is on a race against the
clock, which could lead to corner cutting the review of the verification
plan. If you have already spent a week writing a verification plan,
please spend an extra day reviewing the plan with the design team.
Undermining the importance of the review could result in costly
silicon respins. In my personal experience, failing to review the plan’s
random constraints triggered the following consequence: A random
test case verified a DMA block by scattering data throughout memory
using hundreds of links, but the random constrain section of the test,
failed to include simple scenarios that used only one or two links,
which is where the bug was hidden. In this case, the chip- level
integrator, who found the bug, demonstrated to be a better verification
engineer than me.

Verification Pitfall #2: Unwritten White-Box Assertions
Not all assertions are meant to be written by the verification
engineer, such is the case of the white- box assertions embedded in
the RTL, which should be owned by the designer. At least every
state machine, FIFO, data pipeline, and instruction pipeline should
have assertion checkers. I have recently encountered a condition in
which the FIFO, once full, delayed the assertion of its full signal by
one cycle. Currently, this bug has not caused a problem in the field
because the surrounding logic is incapable of reenacting the failing
scenario, but if the FIFO is used as IP on a different design, then the
bug could appear. This could have been prevented by writing a
simple white- box assertion.

The IP Integrator as Customer

Two types of potential problems come to mind when I put myself
into the IP integrator’s shoes, the possible verification pitfalls are:

(a) Extending the definition of false- bugs.
(b) Using adjacent blocks as checkers.

259

Verification Pitfall #3: Extending the Definition of False-Bugs
False- bugs are the infinite number of possibilities that the DUV will
never see because of the nature of the interface. Here is an example
of a false- bug: The DUV generates unpredictable data when a glitch
is injected to the address line. Is this a real bug? I do not think this is
a bug, because the interface specification does not specify this kind
of noise scenario. Think of the interface specification as an
insurance policy that protects the verification engineer from an
unlimited number of false- bugs, see Figure 1.

A common verification pitfall is to overextend the definition of the
false- bugs by using adjacent IP blocks as a false- bug protector, see
Figure 2. The adjacent IP might provide a protection on a given
platform configuration, but leave the DUV unprotected once it is
integrated into a different platform configuration.

Figure 1 The Interface Specification Protects the Design from an

Unlimited Number of Absurd Signal Combinations

Verification Pitfall #4: Using Adjacent Blocks as Checkers
A BFM is capable of generating cycle- accurate signals as described
by a given bus protocol. The most elementary purpose of a BFM is
to verify a slave DUV by emulating a host processor connected to its
interface.

Why Is My Customer a Better Verification Engineer Than Me?

Testbench

Slave DUV

Interface Specification
Insurance policy
against false-bugs

260 Metric-Driven Design Verification

Figure 2 An Adjacent Block Provides a False Sense of Security, Since

it Does Not Protect Against False- Bugs

Figure 3 shows the simplified data flow between a BFM and a slave
DUV:

 (1) The BFM writes data into the DUV.
 (2) The BFM reads the result from the DUV.

Figure 3 Data Flow Between a BFM and a Slave DUV

There is nothing wrong with this type of verification strategy. How-
ever, when it comes to verifying a master DUV, the BFM faces a
fundamental limitation. If we connect a BFM directly into a master
DUV, their respective driving signals would collide. This collision

Testbench

Does not provide an
insurance policy
against false-bugs.

Slave DUV

Interface Specification

Adjacent IP

1

Bus Functional Model

Slave DUV

2

261

can be avoided by adding bus arbitration logic between the BFM and
the DUV, but that would only solve part of the problem. In order to
verify a master DUV effectively, we need to construct a platform.
Figure 4 shows a simple platform and the data flow between the
BFM and master DUV:

 (1) The BFM writes the object code into the RAM.
 (2) The BFM gives an execution command to the master DUV.
 (3) The master DUV begins executing the RAM’s object code.
 (4) The master DUV writes the result into the RAM.
 (5) The master DUV sends a “done interrupt” signal to the BFM.
 (6) The BFM reads the result from the RAM.

Figure 4 Data Flow Between a BFM and a Master DUV

The verification pitfall in this strategy is in using adjacent blocks as
checkers. In the example above, the arbiter block, regardless of its IP
quality, should not be used as the only criteria to test the DUV’s
interface, we must introduce an independent bus monitor to verify
the bus protocol, see Figure 5.

In my personal experience, failing to use a bus monitor led to the
following undetected bug: The master DUV equipped with an AMBA
AHB interface failed to “walk” a burst when crossing a 2K boundary
(to “walk” a burst is to transition from sequential to nonsequential
transaction, as described in the AMBA specification).

Why Is My Customer a Better Verification Engineer Than Me?

1

2

5

4
3

6

Bus Functional Model

Master DUV

Arbiter RAM

262 Metric-Driven Design Verification

The Software Developer as Customer

Take a software validation approach by putting yourself into the
software developer’s shoes; this will prevent you from falling into
the following two verification pitfalls:

(a) Using the design specification as the only model to gene-
rate stimuli.

(b) Restricting the stimuli to valid data.

Verification Pitfall #5: Using the Design Specification as the Only
Model to Generate Stimuli
Even using a software driver’s recipe as a guideline when building a
stimulus generator is insufficient because in the life time of a given
design, the software driver is likely to be upgraded multiple times to
increase functionality and improve performance. Each time the
software driver is revised, the order in which transactions are
executed might change. For this reason, when building a stimulus
generator, the verification engineer must build a dynamic software
driver that considers variable execution sequences.

Verification Pitfall #6: Restricting the Stimuli to Valid Data
When writing tests or stimulus generators, we tend to concentrate on
predictable test case scenarios. For example, assume that a design
specification defines a 2- bit register with the following valid modes:
2’b00, 2’b01, 2b’10, and then it defines the value 2’b11 as reserved.

Bus Functional Model

Master DUV

RAMArbiter
Bus

Monitor

Figure 5 The Bus Monitor is Indispensable for Bus Protocol Verification

263

How would you normally verify that register? You would probably
create test case scenarios for all the valid modes (2’b00, 2’b01, and
2b’10) and if it passes you are done. I have used this strategy in the
past until one day the untested “reserved”’ value, set by the software
driver, deadlocked the design. The moral of this story is that you
must always verify all reserve bits and invalid modes on all Regis-
ters.

The Marketer as Customer

By using the marketer perspective, we can uncover an important
verification pitfall: Not testing for performance.

Verification Pitfall #7: Not Testing for Performance
The performance of a given product is traditionally measured during
silicon evaluation. There is a problem with this methodology. Dis-
appointing silicon evaluation results could spoil the launch of a new
product, sometimes ending in product cancellation.

From the point of view of functional verification, determining
performance by measuring data throughput is feasible. Allow me to
congratulate you if you are already including data throughput tests in
your verification plan. Technically speaking, not meeting expected
performance is not a functional bug. However, knowing this infor-
mation ahead of time can lead to a timely design change or conclude
that the expected performance is unrealistic and unobtainable.

The End User as Customer

By using the end user perspective, the following verification pitfalls
come to mind:

(a) Restricting the verification plan by the limitations of the
testbench.

(b) Overlooking gate- level simulation.
(c) Halting the simulation once full functional coverage is

reached.

Why Is My Customer a Better Verification Engineer Than Me?

264 Metric-Driven Design Verification

Verification Pitfall #8: Restricting the Verification Plan by the
Limitations of the Testbench
The best verification plans are writing by engineers who are not
familiarized with the testbench. As a verification engineer, you must
be familiarized with the limitations and capabilities of the testbench,
but do not use that information when defining the test cases. Put
yourself into the end users’ shoes. Think about possible unintended
use cases, experiment with error conditions, and see if you can recup-
erate gracefully without having to use the reset signal. Once the test
cases are defined in the verification plan, make the proper modifica-
tions to the testbench to make it capable of replicating those scenarios.

Verification Pitfall #9: Overlooking Gate Simulation
LEC (Logic Equivalence Checking) ensures that the functionality of
the gate- level netlist matches the RTL. STA (Static Timing Analysis)
quickly examines clocking schemes and identifies timing problems up
front. It can analyze multiple conditions in a single run, dramatically
reducing gate- level verification time.

Does it mean that we can replace gate- level simulation by running
LEC and STA instead? In my personal experience, the answer is
“no.” STA is especially prone to error, since it requires human
intervention to classify true and false paths. On a simple design, all
offending data paths can be accurately classified, but on a complex
design, the number of paths can be overwhelmingly high and prone
to bad judgment. This is not because the designer is incompetent, but
because human attention span is intermittent by nature.

With the arrival of large designs, rerunning the RTL tests on a gate-
level simulation has become prohibitive, but that should not prevent
us from running a selective subset of the RTL tests on a gate- level
simulation.

Verification Pitfall #10: Halting the Simulation Once Full Functional
Coverage is Reached
For practical purposes, it is necessary to define a full functional
coverage criterion. Although, on a complex design, full functional

265

coverage is practically unobtainable. Regardless of how much com-
puting power and how much available time you have, you can be
certain that your end users will execute millions more tests than you
ever will. For this reason, you should not stop simulating once your
coverage goal has been reached, in fact, even after tape- out you
should keep running your regression for a prudent time.

Once full functional coverage has been reached, readjust the random
constraints and rerun the regression. Keep in mind that running
diverse and meaningful tests is more important than just running the
same test with different values.

Section 2: The Ever-Shrinking Schedule
Nowadays, almost every verification article or verification tool sales
pitch starts with the following line: “functional verification takes
70% of the chip design cycle.” Is this guideline accurate? Unfortu-
nately, the 70% rule is only taken in to account at the beginning of
the project, and soon after everybody ignores its existence.

For the sake of argument, assume that the 70% rule is actually
followed by every project member. In that case, a hypothetical
dialogue between the project lead and the verification engineer could
go as follows:

Project lead: How much time do you need to verify this design?

Verification engineer: It depends how long would it take to design it?

Project lead: Well, I’ve just spoken to the designer; she said it would
take three months.

Verification engineer: (The engineer takes a few seconds to apply
the 70% rule and responds) if the design takes three months to
design it, then I will need seven months to verify it.

Project lead: Very well, let me give our proposed schedule to our
customer.

Why Is My Customer a Better Verification Engineer Than Me?

266 Metric-Driven Design Verification

Verification engineer: Wait; there is something else that you need
to know. Once the schedule is finalized, if the customer makes
changes the design specification, then I will need to adjust our
delivery schedule using the 70% rule.

Project lead: Very well, I will make sure that our customer is aware
of the 70% rule.

The only thing wrong with this conversation is that it can only
happen in verification haven, it will never occur in the real world. In
my view, the 70% rule is a nice guideline that makes good academic
schedules, but the real schedule is more likely to be determined by
the competitive nature of the semiconductor industry.

A more realistic dialogue between the project lead and the verifi-
cation engineer would go like this:

Project lead: We have been presented with the opportunity to deliver
this new design to one of our most important customers.

Verification engineer: Okay.

Project lead: The challenge is that the customer needs to have
samples by the end of the year.

Verification engineer: I assume you are referring to the end of next
year, right?

Project lead: No, they need them by the end of this year; we have six
months to deliver.

Verification engineer: That would be impossible.

Project lead: The customer is aware of the aggressive schedule; to
make it easier for us they have agreed on removing functionality X
and Y from the design.

267

Verification engineer: Well, even if we remove functionality X and
Y, it is still aggressive, we must move the delivery date to eight
months from today instead of six.

Project lead: Okay, that sounds reasonable.

One day later:
Project lead: The customer agreed on our proposed schedule. We
will deliver samples in eight months.

Verification engineer: Good.

A month later:
Project lead: The customer said that they absolutely need to have
functionality X. They initially said that they could live without it, but
now they are asking for it, the good news is that the customer
promised to buy twice as many parts as initially promised.

Verification engineer: Well, I am going to need more time to verify
functionality X.

Project lead: That is okay, we have already negotiated more time for
you, and we have added an extra 15 days to the delivery date.

Engineer: But I am going to need a lot more time to write test cases
and assertions.

Project lead: Well, let us just concentrate on the test cases and leave
the assertions for the next project.

Although, this dialogue is fictitious, it is not too far away from the
reality of the semiconductor industry. At the end, the pressure to
survive in this competitive industry determines the schedule and
forces the verification engineer to cut corners. The verification
engineer should speak up and preserve the quality of his or her work
by writing a metric- driven verification plan. The verification plan is
a statement of work; you are going to be in a better position to
negotiate a more reasonable schedule if you have this document. If

Why Is My Customer a Better Verification Engineer Than Me?

268 Metric-Driven Design Verification

you currently feel overworked and stressed in your present project,
maybe it is because you have not taken the time to write a metric-
driven verification plan.

The Universal Remedy to an Oppressing Schedule: The Metric-

Driven Verification plan

I know very few engineers who actually enjoy writing document-
tation. I am the first one to admit that it is not fun, but if you are not
willing to overcome this problem then your customer will always be
a better verification engineer than you. The structure of the verifi-
cation plan is a matter of personal style and sometimes company’s
style. However, it does not matter what the style it is as long as it
includes the following sections:

(a) Testbench architecture
(b) Platform architecture
(c) Directed test cases
(d) Random test cases
(e) Failure test cases
(f) Coverage, FV, STA, BIST, SCAN pre- , and postlayout

simulation

Testbench Architecture
The topic of the testbench architectures is broad enough to fill up an
entire book. Besides, it is not the intention of this document to cover
it. Assuming that you have already chosen an architecture for the
testbench, make a block diagram and include it in this section with a
brief explanation of each block, but not include implementation
details. The purpose of this section is to familiarize your reader with
the testbench and your terminology.

Platform Architecture
If you are verifying a block with master capabilities, then you need
to build a platform, as described in Section 1.3.2. Such platform
needs to be reconfigurable. Figure 6 shows a brief example of a
configurable platform, which includes a port swapping construct
using the ‘ifdef Verilog directive.

269

‘ifdef DUV_ON_PORT_1
 // BFM on port 0
 .m0_haddr (haddr),
 .m0_hwdata (hwdata),
 // DUV on port 1
 .m1_haddr (duv_haddr),
 .m1_hwdata (duv_hwdata),
‘else
 // BFM on port 1
 .m1_haddr (haddr),
 .m1_hwdata (hwdata),
 // DUV on port 0
 .m0_haddr (duv_haddr,
 .m0_hwdata (duv_hwdata),
‘endif

Figure 6 The DUV and the BFM can Swap Ports by Using the ‘Ifdef

Construct

Directed Test Cases
These are sanity checkers, i.e., reading the initial value of all
registers after reset, or conformance testing using predetermined
input and output data. The directed test cases should verify all the
basic features of the DUV. All these tests are to be executed and
debugged before performing random testing. A subset of the direc-
ted tests, if not all, can be ported to the chip level.

Random Test Cases
The entire software validation tests should be included here. Now is
the time to beat the design from every angle, the designer’s input is
crucial, get them involved when reviewing the plan. The random
simulation should continue even after tape- out.

Failure Test Cases
Examine the ten verification pitfalls and make sure that each
potential pitfall is covered. This is your opportunity to get creative,
and challenge yourself to break the design. Verify if the design
recuperates gracefully when given erroneous conditions such as

Why Is My Customer a Better Verification Engineer Than Me?

270 Metric-Driven Design Verification

interruption of burst transfers, invalid modes, uninitialized external
memory, out of sequence register configuration, and out of sequence
operations. Feel free to use the “force” statement, but use it with
caution. Always avoid creating invalid false- bugs.

Coverage, FV, STA, BIST, SCAN, Prelayout, and Postlayout
Simulation
Each one of the disciplines listed here is too broad to be described in
this document. Nevertheless, you should specify a strategy for each
one in your plan. If BIST and SCAN are outside your jurisdiction,
then, take the time to write it in the plan and specify who will be
responsible for performing those tasks.

Section 3: Writing a Metric-Driven Verification Plan
This is your opportunity to put an end to the oppressing schedule
and increase the quality of your work. When writing the verification
plan take time to include metric- driven tasks. Once all the preli-
minary information has been defined, i.e., testbench architecture,
platform architecture, directed test cases, random test cases, failure
test cases, and coverage criteria, the next step is to estimate the time
necessary to complete each of these tasks.

Estimating the Time Required to Complete Metric- Driven Tasks

The example shown in Table 1 assumes a relatively simple design that
is being verified by a single engineer. The tasks can be easily expanded
to incorporate complex designs with numerous team members.

Notice the addition of a contingency plan, which is to be used in
case of a design change. Be reasonable, if the design change is
simple, such as a register remapping or bit redefinition, it would take
a longer time to update the metric- driven task table than it would
take to make the change to the test case. Do not burden yourself or
the team with bureaucratic documentation. Only significant design
changes merit a change in the contingency section.

271

Guidelines for constructing the metric- driven task table:

(a) The testbench development task includes finding or
developing infrastructure IP such as: BFM, Monitors,
and preverified adjacent blocks.

(b) Keep it simple; use a “workweek” as the smallest unit of
measurement. This practice makes schedules easier to
develop, modify, and track.

(c) Assertions are included in the test case development
tasks. You may create a separate task depending on the
complexity of the design.

(d) The design specification and verification plan documents
shall have the same version number.

Determining the Delivery Schedule

Once the metric- driven tasks have been defined, make a delivery
schedule similar to Table 2, this will help track your progress. This
example assumes a single engineer completing each task in a sequen-
tial fashion. Make sure that project lead is aware of the requirements
to initiate each task.

Why Is My Customer a Better Verification Engineer Than Me?

272 Metric-Driven Design Verification

Table 1 Initial Metric- Driven Task Table

Tasks Time Comments
Verification plan 1.0
development

1 week Applicable only to design spec 1.0

Testbench
development

2 weeks Applicable only to design spec 1.0

Directed test case
development

2 weeks Applicable only to design spec 1.0

Random test case
development

4 weeks Applicable only to design spec 1.0

Failure test case
development

2 weeks Applicable only to design spec 1.0

Debug RTL 1.0 &
test cases

4 weeks Applicable only to design spec 1.0

Regression testing &
coverage analysis

4 weeks Applicable only to design spec 1.0

Contingency Plan
Update verification
plan to verify design
change

x To be added to schedule in case of
design change

Update directed test
cases to verify design
change

x To be added to schedule in case of
design change

Update random test
cases to verify design
change

x To be added to schedule in case of
design change

Update failure test
cases to verify design
change

x To be added to schedule in case of
design change

Write new test cases
to verify design
change

x To be added to schedule in case of
design change

Debug RTL x.x &
updated test cases

x To be added to schedule in case of
design change

Regression testing &
coverage analysis

x To be added to schedule in case of
design change

273

 R
eq

ui
re

m
en

ts

to
 In

iti
at

e
Ta

sk

 Ta
sk

s

w

e e k 1

w

e e k 2

w

e e k 3

w

e e k 4

w

e e k 5

w

e e k 6

W

e e k 7

w

e e k 8

w

e e k 9

w

e e k 10

w

e e k 11

w

e e k 12

W

e e k 13

w

e e k 14

w

e e k 14

w

e e k 15

w

e e k 16

w

e e k 17

w

e e k 18

D
es

ig
n

sp
ec

1.

0
co

m
pl

et
e

an
d

re
vi

ew
ed

.

V
er

ifi
ca

tio
n

pl
an

 1
.0

D

ev
el

op
m

en
t

Te

st
be

nc
h

de
ve

lo
pm

en
t

D

ire
ct

ed
 te

st
 c

as
e

de
ve

lo
pm

en
t

R

an
do

m
 te

st
 c

as
e

de
ve

lo
pm

en
t

Fa

ilu
re

 te
st

 c
as

e
de

ve
lo

pm
en

t

RT
L

1.
0

co
m

pl
et

ed

D
eb

ug

R
TL

 1
.0

 &
 T

es
t c

as
es

R

eg
re

ss
io

n
te

st
in

g
&

co

ve
ra

ge
 a

na
ly

si
s

Why Is My Customer a Better Verification Engineer Than Me?

T
a
b

le
 2

 D
et

er
m

in
in

g
 a

n
d

 T
ra

ck
in

g
 t

h
e

D
el

iv
er

y
 S

ch
ed

u
le

274 Metric-Driven Design Verification

Section 4: Implementing the Metric-Driven Verification
Plan
If a design change is large enough to put the delivery schedule at
risk, update the contingency section of the metric- driven table, see
example on Table 3.

Triggering the Contingency Plan

Remember that the minimum measurement unit is one workweek,
this is necessary to keep your metrics manageable.

Table 3 Making Use of the Contingency Plan

Tasks Time Comments
Update verification
plan to verify design
change

1 Additional time to verify design
spec 2.0

Update directed test
cases to verify
design change

0 Additional time to verify design
spec 2.0

Update random test
cases to verify
design change

2 Additional time to verify design
spec 2.0

Update failure test
cases to verify
design change

1 Additional time to verify design
spec 2.0

Write new test cases
to verify design
change

1 Additional time to verify design
spec 2.0

Debug RTL 2.0 &
updated Test cases

2 Additional time to verify design
spec 2.0

Regression testing &
coverage analysis

2 Additional time to verify design
spec 2.0

Adjusting the Delivery Schedule

Adjust the schedule according to the contingency plan, see Table 4.
In Table 4, the cumulative time required to verify version 2.0 have
shifted the delivery schedule by nine weeks.

275

Table 4 Shifting the Delivery Schedule According to the Contingency

Plan

Requirements
to Initiate
Task

Tasks w
e
e
k

1

w
e
e
k

2

w
e
e
k

3

w
e
e
k

4

w
e
e
k

5

w
e
e
k

6

w
e
e
k

7

w
e
e
k

8

w
e
e
k

9
Design spec
2.0 complete
and reviewed

Update
verification
plan to verify
design Spec
2.0

 Update
directed test
cases to verify
design change

 Update
random test
cases to verify
design change

 Update failure
test cases to
verify design
change

 Write new test
cases to verify
design change

RTL 2.0
completed

Debug RTL
2.0 & updated
Test cases

 Regression
testing &
coverage
analysis

Why Is My Customer a Better Verification Engineer Than Me?

276 Metric-Driven Design Verification

Table 5 Collecting Metrics for Future Reference

Tasks Estimated
Time

Actual
Time

Comments

Verification plan 1.0
development

1 week 1 week

Testbench development 2 weeks 4 weeks Had to write custom
monitor due to nonstandard
interface usage.

Directed test case development 2 weeks 2 weeks
Random test case development 4 weeks 6 weeks Compute farm unavailable

due to higher priority
project.

Failure test case development 2 weeks 2 weeks
Debug RTL 1.0 & test cases 4 weeks 4 weeks
Regression testing & coverage
analysis

4 weeks 6 weeks Had to write additional test
to meet functional coverage

Total time to verify design spec
1.0

19 weeks 25 weeks

Update verification plan to verify
design change

1 week 1 week

Update directed test cases to
verify design change

0 week 0 week

Update random test cases to
verify design change

2 week 3 week Had to modify testbench
infrastructure, need to
account for this task next
time.

Update failure test cases to verify
design change

1 week 1 week

Write new test cases to verify
design change

1 week 2 week Underestimated complexity.

Debug RTL 2.0 & updated Test
cases

2 week 1 week

Regression testing & coverage
analysis

3 week 3 week

Additional time to verify design
spec 2.0

10 weeks 11 weeks

277

Collecting Metrics

The most important part in keeping metrics is recording the actual
time it took to complete each task, see column 4 on Table 5. If your
estimated time and actual time do not match, then write the problem
that provoked the shift in the schedule.

Once you have completed your first project, you will be in a better
position to accurately estimate the time for the next one. As a rule of
thumb, the task completion time can be made proportional to the
number of gates in the design. Always factor in the time benefit of
reusing testbench and test case components. Armed with this
information, you can easily extrapolate to determine the schedule of
more complex designs.

Conclusion
When proposing a schedule, the 70% rule gives us a good guideline,
but as new changes are added to the design, the final percentage
dedicated to verification devaluates to 60%, 50%, or 40%. Regard-
less of market pressure, the time dedicated to verification should
never decrease to the point in which you are shipping untested logic.
It is your responsibility to write a metric- driven verification plan and
use it to negotiate a reasonable schedule.

In my view, the most difficult part of the plan is predicting the time
required to complete each task. Even if you become proficient at
estimating the time required to write a specific test, you still need to
factor in an elusive component, which is the debugging time. From
experience, you have probably already discovered that some problems
can be debugged within minutes, but others might take days to resolve.
Keep a log of the time spent writing tests and debugging the DUV, and
use this information to estimate schedules of future projects.

As a professional in this field, you should execute the verification
plan to its end. If a feature is untestable due to some unforeseeable
limitation, document it on the plan. If you are asked to cut corners to
speed up the sign- off process, use your plan to inform your manage-
ment and make them aware of the risks they are taking by
compromising the verification process.

Why Is My Customer a Better Verification Engineer Than Me?

Metric-Driven Methodology Speeds
the Verification

of a Complex Network Processor
Jean- Paul Lambrechts, Cisco Systems

Jean- Paul Lambrechts has over 20 years
experience in leading hardware design in the
networking and computer areas. His expe-
rience covers board- level hardware design,
FPGA, and verification. Jean- Paul has now
been with Cisco for 9 years where he has

been responsible for line cards, packet forwarding engines, and layer
4–7 processor card. Jean- Paul holds a MSEE degree from the
Louvain University in Belgium.

sync with the software schedule. Doing so requires a great deal of
resources. So it was no small feat when the verification flow for one
of our recent designs, the Programmable IP Services Accelerator
(PISA) FPGA in development, was completed ahead of schedule
and well before the system software was delivered. In fact, it’s
unprecedented and has really turned some heads within our various
groups.

Was this a reflection of mistakes made by our team working on the
software side? Absolutely not. This story really has much more to do
with what our small hardware verification team did right. What we
experienced was an interesting example of how introducing new
verification methodologies into a real- world design environment can
improve overall productivity and process management.

On the project, we employed a metric- driven process- based
approach for the functional verification of our FPGA. I’m eager to
tell you how it worked because if you want to save some time,

In my business unit, we often struggle to keep our hardware in

280 Metric-Driven Design Verification

reduce risk, and further improve your verification process, you may
want to apply some of the lessons we learned.

The Task Looked to be Complex
Ethernet IP service processors and systems tend to have wide
application- specific functionality. Ours was no exception. We were
dealing with a highly complex and custom FPGA that required a
high level of verification – one that would be a central and key
component of the full networking processor system. Our PISA
FPGA is a complex block- level packet processor designed to deliver
application- level intelligence for L4–L7 switching applications. It is
a key component of a board that goes on top of the system super-
visor in a regular routing engine.

My team was put on the project midstream and it quickly became
clear to me a tough task would lie ahead. One of the most challen-
ging parts of it would come from the verification of the FPGA and
its many interfaces. Granted, we’d be leveraging technology from a
prior project, but still, our custom design demands were significant
and put a tremendous strain on limited verification resources.

Recognizing how crucial it would be for our small verification team
to ensure the design is functionally correct well in advance of the
debugging cycle, I felt compelled to establish an aggressive sche-
dule, and thus, an effective strategy for limiting the project’s risk.
Our concern was not only risk to the specific design quality, but also
schedule risk and the team’s ability to get up to speed on the new
solutions we’d be employing.

Looking Back

Our objective was clear, but the same could not be said for our
execution strategy. I say this because while the team had a good deal
of experience in FPGA design, much of the verification metho-
dology to be introduced would pose new challenges. The team was
well acquainted with traditional Verilog- directed test verification,
but we needed a solution that introduced a whole new level of
automation. We decided to give Cadence’s Specman Elite a look.

The Verification of a Complex Network Processor 281

Our first step involved helping the members of the team get acqua-
inted with the new testbench automation solution. We did this by
applying the software to an earlier design to gain some practical
verification experience. This design was one that had already
achieved a good deal of stability, so it provided a good training
ground for mastering the solution.

We found that Specman delivered a very comprehensive environ-
ment for verification. It introduced automation levels we had not
seen before including functional testing, coverage analysis, and
much more. We discovered it is an extremely powerful tool largely
because it randomized the tests, created verification scenarios, and
sequences automatically, and it was very thorough in its ability to
find bugs in the tougher areas. It also leveraged a well thought- out
methodology for full verification closure.

With a combination of in- house resources and some additional talent,
we went to several training courses to master the tools. While we
didn’t catch any new bugs on our initial preverified design we did
gain the valuable hands- on experience we were after. Mission
accomplished.

With our newfound solution, we felt ready to apply the knowledge
we had gained on the PISA project ahead. Our training team knew
how to perform powerful functional verification on the design.
However we still needed a better way to manage the complex project
step by step.

Discovering Project Predictability
From the onset of the project we had two main objectives. First, get
the verification environment setup correctly. Second, take the
necessary steps toward implementing actual management software
that uses a metric- driven approach one that would be able to
manage, track, and measure progress of our initial plan to full
verification closure. We had heard about a solution called Verifica-
tion Manager that was supposed to work very closely with the test-
bench automation solution, so we evaluated it.

282 Metric-Driven Design Verification

On past projects, our progress reports were very informal and manual.
In fact, they were really just estimates, done for the most part on
spreadsheets, Word documents, or status updates sent via e- mail.
These approaches were no longer acceptable. We needed a way to be
accurate and pinpoint areas that needed more resources or verification
cycles. Verification management software offers better resource utili-
zation, a more predictable process, and measuring capabilities for
achieving closure in an off- the- shelf software package.

In other words, we came to realize that the ad hoc management we
had depended on in the past was only adding a greater degree of
risk. What if we got to a point very far down in the verification cycle
and bumped up against a bug that required specification changes?
We’d be in a very tight spot with limited ability to react, unless we
could let the entire schedule slip. On the PISA project, we couldn’t
have that happen. We needed a good snapshot of where we were on
the project at all times, data- driven insights into what the path
forward would look like, and insights into if and where we would
need to increase or redirect resources.

A Coverage-Driven Approach, a Metric-Driven Environment
The support team we encountered on this project was exceptional.
They responded by assigning small teams that were able to continue
our training and help us understand the valuable links between the
management solutions, testbench results, and our own design’s fea-
ture set as measured against our verification plan.

The ultimate goal was to have the management solution oversee the
process from the get- go. This way as we worked toward completing
the established verification objectives, team members could continu-
ously access the progress reports. The tools worked together seam-
lessly within the simulation environment to give us a complete view
of the project.

To get this project- level perspective from the management software
we’d call up reports that were easy- to- read HTML files. These
reports shed light on the different areas of the feature plan. As the

The Verification of a Complex Network Processor 283

design team manager, I had an interface that gave me a high- level
view of the various coverage metrics, which helped me pinpoint the
holes. This capability was extremely valuable because it helped me
determine how to prioritize tasks and allocate our limited resources
accordingly. We found the verification engineers could even do this
by themselves, which proved to be a valuable time- saver.

We found that the workflow of this new methodology was relatively
straightforward. Basically you launch the management software,
select your file, and then read the session. If you choose to, you can
look at the main window giving you a complete summary, or you
can drill down to look even more closely at each measurement and
keep track of the specific coverage metrics.

A New Level of Confidence
In the past, we worked without this level of information, or essen-
tially, without this level of confidence in the accuracy of our
verification progress and coverage. Today very little is left to chance
or speculation. We have an extremely high level of confidence in the
accuracy of the verification process. We operate with much higher
confidence not only in the functionality of the device, but in the
progress and overall management of the verification flow as well.

We’re now in the software QA phase of our project and enjoying a
more effective form of information sharing. When we identify a bug,
we can use that information relatively quickly to complete fixes
much easier and without having to blow out our entire schedule.
When we find a strange behavior or occurrence within the design as
reported by the software, we try to reproduce it with simulation first,
even before debugging in the lab. We can identify these failures with
greater detail and report our findings to the entire design team faster.

This is how we’re able to stay on schedule, or in this case, actually
do better than our schedule. I feel confident in telling you that we
have found an invaluable way to reduce our project risk – and that’s
my job. Perhaps it’s your job too.

Developing a Coverage-Driven SoC
Methodology

Andreas Dieckmann, Siemens AG

Automation and Drives

Dr. Andreas Dieckmann lives with his family
in Nürnberg, Germany. In 1995, after obtaining
his MA at the University of Erlangen and his
Ph.D. in Electronic Engineering at Technical
University of Munich, he began working
at Siemens AG. Initially he was involved in
board and fault simulation. From 1997, Dr.
Dieckmann gained expertise in system simu-
lation and verification of ASICs. Since 2001,

he has been in charge of coordinating and leading several verification
projects employing simulation with VHDL and Specman “e,” formal
property and equivalence checking, emulation and prototyping. The
case study described here is an extension of the coverage- driven
methodology developed by his team for the verification of SoC projects.

Introduction
Methodology is the key to successful verification of complex SoC
designs. There are many verification tools, techniques, and lang-
uages available today, and many of these can be quite effective if
used properly. However, effective usage requires a comprehensive
methodology to link together such seemingly disparate approaches
as simulation, formal analysis, and prototyping as well as the multiple
languages commonly used for verification.

This article describes a methodology developed by our verification
team in the Automation and Drives (A&D) group of Siemens AG.

286 Metric-Driven Design Verification

This methodology has evolved over our past few projects and has
reached its current form in the verification of two related ASIC SoC
designs, each containing about 4M logic gates and numerous small
memories totaling about 1 MB of SRAM. These two chips were
significantly more complex than previous projects and required a
multisite development team, fueling our methodology evolution.

This article provides some background on older projects and descri-
bes in detail the coverage- driven methodology in use today. While
we viewed the two chips as pilot projects to develop a methodology
that could be extended to other projects at Siemens A&D, we know
that our verification needs would continue to grow and that our
methodology would continue to evolve. Accordingly, we conclude
by discussing some likely enhancements for future projects.

Verification Background
Although the two- ASIC project added a number of new
requirements and challenges to our verification process, in fact we
have been in a process of continual improvement for many years. As
was the case for many European design teams, we long ago chose
VHDL as our RTL design language due to its early standardization
and its superior capabilities (user- defined and enumerated types,
package and generate statements, library support, etc.) over original
Verilog.

However, our choice of VHDL was also made with verification in
mind. Its advanced constructs allowed us to build more sophisticated
and more reusable testbenches than was possible with Verilog. Thus,
up until 2001, our verification environments were VHDL- centric,
with both the RTL design and the majority of the testbench code in
VHDL.

2001 saw the next major step in the evolution of our verification
process, when we chose the e language and the Incisive® Enterprise
Specman® Elite testbench automation solution (now available from
Cadence). We had found that adding randomization to our VHDL
testbenches brought great benefits in terms of finding bugs more

Developing a Coverage-Driven SoC Methodology 287

quickly; Specman Elite’s constrained random stimulus generation
capabilities made it even easier to thoroughly exercise our designs.

Our adoption of e and the constrained random approach led to a
related evolution in our methodology: Our verification plans gradu-
ally shifted from test focused to feature focused. Figure 1 shows an
example of a traditional verification plan that lists the tests to be
written for each major functional unit in a chip and tracks the status
of test completion. Such plans are often called “test plans” although
this term is probably better reserved for physical chip testing.

Functional Unit Test Name Spec
Written

Test
Written

Test
Passed

Bus Interface read_sequence_a X X X

 read_sequence_b X X X

 write_sequence X

 r_w_intermixed

Cache controller cache_hits X X X

 cache_misses

 cache_flush X

Interrupt FSM exercise_all_states X X

Figure 1 The Traditional Verification Plan

The problem with this traditional approach is that it requires a
precise mapping from functional units to specific tests. That makes
sense when the tests are hand- written to test- specific areas of the
design. However, constrained random stimulus generation may
exercise many areas of the design at once and can run as long as the
user chooses, so the notion of an individual test is no longer a useful
one.

This observation raises the question of how verification engineers
can tell what a constrained random test run is actually exercising.

288 Metric-Driven Design Verification

The answer is that some sort of coverage metric is needed in order to
provide a quantitative measure of verification effectiveness. With
such a metric in place, we can say that a test run verified all areas
that it covered and, ideally, we can combine the results from all test
runs to get an overall view of coverage.

In terms of specific coverage metrics, we have made extensive use
of functional coverage but minimal use of code coverage on our
projects. We have found that tracking functional coverage points
provides a much better measure for determining what each test run
accomplished and where we are in terms of overall verification
completeness.

As we began the project with the two 4M- gate SoCs, we decided to
add the Cadence Incisive Enterprise Manager verification manage-
ment with process automation solution to our arsenal of tools.
Enterprise Manager provides a mechanism to capture the features in
our design and – in concert with Specman Elite – reports functional
coverage results against these features. Figure 2 shows a screen shot
of one such report in HTML format.

Figure 2 A Modern Verification Plan (vPlan)

The combination of tools and techniques in our current verification
environment enables a true coverage- driven methodology. As
described in the next section, we put a great deal of effort into
defining detailed, corner- case features in our verification plans and
in specifying e functional coverage points to track the exercise of
these features. Thus, we continue constrained random test runs when
features remain uncovered, and use the composite functional cove-
rage results as a key factor is determining when to “tape out”
(release the netlist to our ASIC vendor).

Developing a Coverage-Driven SoC Methodology 289

Current Verification Methodology
Since a methodology is an abstract concept that’s hard to visualize,
we tend to think in terms of the verification flow enabled and
supported by the methodology. Figure 3 provides an overview of our
flow, starting with a functional specification for an SoC, employing
multiple methods to thoroughly exercise the design, and reporting
results against the verification plan (vPlan) defined with the help of
Enterprise Manager.

Figure 3 Coverage- Driven Verification flow

While the SoC architects complete the functional specification, our
verification process starts with a series of planning sessions for the
20–40 modules in a typical chip. These meetings usually involve
5–6 people, sometimes more for large modules, and include design
engineers, verification engineers, and the specification writers. Their
job in each session is to develop a detailed feature list for each
module and capture it online in a vPlan so that coverage results can

290 Metric-Driven Design Verification

be automatically tracked during the verification process. The session
also serves as a detailed review of the functional specification,
further motivating the design engineers and specification writers to
attend.

In order to make the tracking as precise as possible, each feature has
to be related to at least one functional coverage point. Thus, the
features are quite fine grained and often reflect important corner-
case conditions in the design. Because of this, designer involvement
in the planning process is critical. Verification engineers usually
don’t know enough about the details of the RTL implementation to
understand all the critical corner cases.

We use four major approaches to verifying the design. For exerci-
sing the features in the vPlan, we strongly rely on e - based verifi-
cation environments for individual modules and for the chip as a
whole. We develop the necessary transactors to generate constrained
random stimulus and check results, while also writing the functional
coverage code to monitor each vPlan feature. The testcases in our e
environments are almost entirely constrained random test runs; we
try to minimize the need for hand- written directed tests.

We also use HDL- based (Verilog or VHDL) simulation environ-
ments to verify some specific modules. For example, we sometimes
have IP blocks or models that have their own HDL- based test-
benches. In such cases, we may make use of code coverage metrics
in order to assess verification thoroughness since we don’t have any
functional coverage points in the HDL testbenches.

At the submodule level, we sometimes make use of Incisive Formal
Verifier (IFV) and its formal analysis to complement the simulation-
based environments. As part of our verification planning process, we
identify portions of the design for which we can specify assertions
that cover 100% of the interesting behavior and then use IFV to
target these assertions for proof. We write our assertions using the
VHDL “flavor” of the PSL.

Developing a Coverage-Driven SoC Methodology 291

Examples of our formal analysis usage include bus- multiplexing
structures and memory correction algorithms. While we targeted
capturing 100% of the intended behavior with properties, in practice
there is no way to know this for sure. However, all formally verified
submodules are also tested as part of the module’s environment, and
so we use formal analysis and simulation as complementary, rather
than contrasting, verification approaches.

At the full- chip level, we develop an e- based environment that focuses
on verifying the proper interconnection and integration of the
modules, not on verifying the functionality of the modules them-
selves. The chip- level tests are therefore fairly simple, and we do not
put a lot of effort into tracking coverage metrics at this level. All of
our e- based tests, for both modules and the full chip, are run using the
regression–automation capabilities of Enterprise Manager.

Most of our current SoCs contain at least one embedded processor
core, and in such cases we take a further step for full- chip simulation.
We develop an HDL- based environment in which we run self-
checking C testcases directly on the embedded core. This ensures that
the core can access all the functional modules and put them into
operation.

Since the speed of chip- level simulation limits the length of the tests
that we can run, we also make use of an FPGA- based prototype to
run real application code. We find that it is hard to correlate appli-
cation- level testing with specific features, so we do not currently
have a method to gather coverage data from the prototype and
combine it with simulation results. We do write some prototype tests
to exercise specific behaviors, such as taking a timer through its full
count- down range; validating that this actually occurs can be viewed
as another form of coverage.

We do collect the functional coverage data from the module- level e
environments and use Enterprise Manager to report the coverage
metrics against the features in the vPlan. This provides a coverage-
closure loop that lies at the heart of our coverage- driven verification

292 Metric-Driven Design Verification

methodology. As we will discuss in the summary, we hope to extend
this loop to include all aspects of our verification flow.

Coverage and Checking
One common area of confusion for new adopters of coverage- driven
verification is the role played by coverage metrics and the role played
by checkers. The distinction is actually rather simple: Coverage tells
whether something happened while checking tells whether something
happened correctly (per the functional specification).

Figure 4 Coverage Metrics and Checks

Figure 4 shows some important components of the overall verifi-
cation environment and how they contribute to these two areas. As
previously mentioned, we make minimal use of code coverage so our
coverage focus is on functionality. In HDL testing, we sometimes
include dedicated testbench code to check for certain desired beha-
vior and log when it occurs. This is really a type of coverage, albeit
a more informal ad hoc method.

Developing a Coverage-Driven SoC Methodology 293

In addition, the PSL properties can be monitored in simulation to
detect when they were triggered. For example, consider the follo-
wing PSL statement:

property p is always (REQ -> next
ACK) @rising_edge(CLK);

This property specifies that, whenever REQ is asserted, ACK must
be asserted in the next cycle. This property is considered triggered
whenever REQ is asserted on a rising clock, so in some sense this
property has been covered.

When we write C and assembly language testcases to run on the
FPGA- based prototype, much as we do for HDL simulations, we
sometimes include code to check for behavior and log it. Again, this
can be regarded as another form of coverage. Finally, in the results
from formal analysis, we track which properties were proven as well
as which properties were triggered even if formal was unable to
complete a proof.

As mentioned previously, we have a clear mapping between vPlan
features and e functional coverage points. The mapping from HDL,
formal, and prototype coverage information is not truly automated in
our current verification environment, and so some of the links shown
at the top of Figure 4 are more theoretical than actual.

The bottom of this figure shows the checking components. Our
simulation and prototype tests are normally self- checking so that a
definitive answer is provided in terms of correct behavior. We also
use a number of verification components in the simulation environ-
ments to check for protocol compliance, correct register and memory
contents, and passing assertion properties. These same properties are
also used in formal analysis, which reports either a proof of
correctness or a bug.

Results and Futures
We have been very pleased with the results of using the coverage-
driven verification methodology on our two latest SoC projects. One

294 Metric-Driven Design Verification

measure of this is our consistent discovery of bugs throughout the
verification process, as shown by the example in Figure 5.

Authors note to Figure 5: The legend entries directly correspond to
the level of each data band in the associated chart.

The nature of constrained random stimulus generation means that we
can continually run additional tests, experiment with different seeds
to vary the random behavior, or tweak biases to produce a better mix
of stimulus (such as the ratio of reads and writes on a bus) as long as
we keep finding bugs. Observing the bug- discovery rate and
tracking coverage metrics are both important contributors to the
tape- out decision.

 Figure 5 Defects Detected Over Time

We embraced the coverage- driven methodology with three goals in
mind:

� Better verification schedule predictability
� Design quality guarantees
� Improved reuse

Developing a Coverage-Driven SoC Methodology 295

The faster and more thorough bug discovery achieved on the two-
ASIC project satisfied our first two goals. We also met our third
goal; many components of our verification environment were reus-
able from the module level to the full- chip level, and many will be
reusable on future projects as well. We followed the Cadence e
Reuse Methodology (eRM) in developing about two dozen e Verifi-
cation Components (eVCs) for various interfaces and functions
inside these two chips. In addition, we used commercial eVCs for
standard interfaces such as PCI and USB.

As happy as we are with our results so far, we have a number of
ideas for improving and extending our methodology for future pro-
jects. As mentioned previously, we would like to find more effective
ways to bring in coverage metrics from HDL simulation, formal
analysis, and prototype testing to automatically combine them with
the e functional coverage results. Both Specman Elite and Enterprise
Manager have capabilities for importing coverage data that we have
not yet tried.

We have also not yet taken advantage of all the hierarchical planning
features of Enterprise Manager, but we plan to do so in order to
combine results from our module- level and chip- level e verification
environments more easily. Since our verification focus is different at
these two levels, it makes sense to look at a single view rather than
separate results. We believe that this will lead us to a true plan- to-
closure verification methodology, in which every step of our process
will be correlated back to a unified vPlan.

As future projects get more complex, we expect that significantly
more verification cycles will be needed. As our regression tests get
longer, we will likely need to run on server farms rather than only a
few machines, a capability supported by Enterprise Manager. Also,
we will probably want to use the test- ranking features of Specman
Elite to automatically select subsets of our full regression suites for
rapid verification of RTL changes.

In summary, the last 5 years or so have been a period of rapid
evolution for our verification team at Siemens A&D. We have

296 Metric-Driven Design Verification

moved from VHDL- based directed tests into a constrained random,
coverage- driven approach complemented by formal analysis and
prototyping, all tied together by a comprehensive methodology. Given
our planned enhancements, we are confident that our verification
methodology will continue to evolve to keep pace with our future
project demands.

From Panic-Driven to Plan-Driven
Verification Managing the Transition

Susan Peterson and Paul Carzola, Cadence Design Systems

Susan Peterson has been trying to escape
from the EDA industry for the past 20
years, where she has spent her time
listening to customers and trying to help
them to solve their critical problems in
various sales and marketing roles. Prior
to that, she was a practicing engineer, and

earned her MBA from the University of Denver. She enjoys everything
outside from her home and office in Colorado.

Paul Carzola is a Senior Consulting Engineer for
Verification at Cadence. He received a Bachelor of
Science Degree in Computer Engineering at
Florida Atlantic University in 1995. Since then,
Paul has spent the last 10 years in Functional
Verification and the pursuit to finding effective
and powerful methods to verification while making
it easier and enjoyable to apply. For the past 5

years, he has served in a consulting role in the area of functional
verification methodology and has seen first hand the power of a
coverage- driven approach.

Begin with the end in mind. Look before you leap. Eat your vege-
tables.

Sounds so right! Similarly, taking a structured, measurable approach
to making sure your design works right the first time through just
makes good sense. So why is there so much foot- dragging when it
comes to implementing a metric- driven approach to verification?

298 Metric-Driven Design Verification

“I know there’s a train wreck coming, I’m just not sure where to
look for it,” says one project manager for a 10 million+ gate
complex SoC. “We have two junior engineers pumping out directed
tests just as fast as they can over in the corner there – but I’m
concerned that this time it just won’t be enough. If this tape- out
works, it’ll be pure dumb luck.” With millions of dollars riding on a
respin and shrinking market windows, it’s no wonder that project
managers worldwide are losing sleep.

They know there’s a better way. So why don’t they take it? In
general, because it just seems like too far to go from here (two junior
engineers in the corner) to there (a metric- driven verification plan
with feedback loops all along the way to keep you on track).

Nobody likes change. But change we must if we want to regain
some peace of mind on the way to tape. So take a deep breath as you
consider the following steps to implementing the changes you know
you need.

Take Stock
Like any good problem, defining the “as is” state is a great place to
begin. How would you rate your verification process and where are
areas for improvement? Ask yourself the following questions:

� How do you make the call that you’re done with verifi-
cation? If the answer is “when we’re out of time,” don’t
worry – you’re not alone. In fact, this is overwhelmingly the
most frequent answer, and the best indicator that a change in
your verification methodology is long past due.

� Are you afraid of the bugs that are hiding in an untested
area? Do you feel overwhelmed with the amount of tests
that have to be written? Maybe all of your directed tests
have passed – but how do you know you’ve tested every
path that 13- year old user might think up? Without a closed
loop system that ties your metrics back to the original intent,
your verification is incomplete – and is another good indi-
cator that you’re going to need to upgrade your verification

From Panic-Driven to Plan-Driven Verification 299

Time Tools

Talent

Design

methodology to shut- up that nagging little voice inside of
you that keeps questioning whether you’re really done.

� What are you measuring now? How is it tied back into the
architect’s original intent? Maybe you’ve set 100% code
coverage as a metric – which is a great way to measure
whether all of your code has been tested. But how do you
know whether it does what the system architect envisioned
it would do? You’re going to need to branch out if you want
measurements that reflect on whether your design will work
as architected.

� What verification expertise do you currently have on your
team? Do you need more? Are your engineers trained up
with the latest technology and methodologies? Face it –
you’re going to need to make an investment in people and
the tools they need to solve this.

Invest in Verification
If you’re like most people, you’ll probably
say that you only spend about 20–30% of
your development process in design. After
all, you’ve invested in HDLs, Synthesis,
Timing analysis, and all the training you
can afford – it’s no wonder you have such a
nice balance between the time you spend in
design, the tools you have to do the job
right and the talented people you need to
get it done.

On the flip- side, most teams would agree
that they spend about 70–80% of their
development process in verification, and
never really feel confident in their results. Is
it really any wonder? For the most part
they’re using languages that were built for
design. Verilog, C, or Perl were never meant
for verification and so much time is spent
creating an infrastructure rather than tackling
the true problem, the chip itself. Without a

Verification

Time
Tools

Talent

300 Metric-Driven Design Verification

good methodology, verification is usually an ad hoc, “shoot from the
hip” process, and is frequently viewed as an unglorified role filled by
the most junior people on the team who haven’t earned the right to be
designers.

Thus, the time that verification takes is often grossly out of balance
due to lack of investment in tools and talent. An investment in
verification talent and tools can reap huge rewards in shortening
your overall development process and giving you confidence that
your design will work as intended the first time through.

Reuse It or Lose It

If you wanted to build a car, you wouldn’t reinvent the wheel.
Similarly, from project to project, person to person, protocol to
protocol – I’m betting that there are large blocks of your design and
verification environment that could be reused if:

� Your teams followed a consistent methodology for creating
the blocks

� Somebody took the time to make everyone aware of the IP
and how to use it

� You looked outside your company to find verification IP
and expertise for commonly used protocols

So get organized.

Begin With the End in Mind

What’s the biggest hurdle in your critical path? Don’t know? Well
maybe that tells you something. Wasn’t it Deming that said, “If you
can’t measure it, you can’t make it better?” So at the risk of being
too pedantic, you really do need to begin with the end in mind.

We’ve all heard it before: “You need to start with a plan”. And most
people would say they are using one or several plans. But after tape-
out how often does your plan reflect what you actually measured
from the device? Typically, engineers see creating a plan as a time-
consuming chore with little value. All plans begin with good
intentions but inevitably other issues arise during the verification
process and updating the plan is not viewed as important. Panic sets in.

From Panic-Driven to Plan-Driven Verification 301

It’s important to give value to the verification plan and make it a
regular part of the verification process. Have regular meeting and
reviews on where the project is with respect the verification plan.
This will allow you to redirect efforts to attack weak areas or make
adjustments to the plan to accommodate new direction.

You should consider investing in tools that allow the plan to be
executable and directly tied to the results. This will allow users to
instantaneously see the plan with their perspective in mind and make
any necessary course corrections.

Learn from the Best

So, you looked inside your organization and didn’t find anybody
who knew that much more than you do about verification? Maybe
it’s time to look outside. Sure, you can train the people you have, but
expect push- back from your senior engineers when those new
engineers you just trained come back from training bursting with
new, and sometimes foreign, ideas. And then there’s the learning
curve.

Instead, consider looking outside your team and even your
organization for some new, experienced blood. You may be surprised
to find that there are many consulting companies that offer decades of
experience leveraged by the newest tools and methodologies ready to
help springboard you from here to there. They offer great return on
your investment and leave your team re- energized and more valuable
in their wake. All you have to do is ask.

Sometimes we have to listen to the children, as
with this quote from Lewis Carroll’s “Alice in
Wonderland”:

One day Alice came to a fork in the road and saw
a Cheshire cat in a tree. “Which road do I take?”
she asked. “Where do you want to go?” was his
response. “I don’t know,” Alice answered. “Then,”
said the cat, “it doesn’t matter.”

302 Metric-Driven Design Verification

As long as you’re embarking on the road to better verification, make
it matter. Take stock. Start with a plan and make it an active
component. Invest in tools and IP. Find an expert to help you. But
by all means, take the first step.

Verification of a Next-Generation
Single-Chip Analog TV and Digital TV ASIC

YJ Patil, Genesis Microchips and Dean D’Mello, Cadence

Design Systems

YJ Patil is a senior verification engineer at
Genesis Microchip, where he is responsible for
managing the verification of Digital Television
(DTV) controller ASICs. Prior to Genesis,
Mr. Patil was a verification engineer at several
technology leaders including ATI, Silicon Access
Networks, and Philips Semiconductors. He was a

board designer at Tektronix. Mr. Patil holds an M.S in Software
Systems from BITS Pilani, India and B.Eng. in Electronics and
Communication from Gulbarga University, India.

Dean D’Mello is a Solutions Architect at
Cadence Design Systems. He works closely
with key customers worldwide to deploy advan-
ced verification technologies, and with R&D to
plan, develop, and introduce new methodologies
and products. Prior to Cadence, Mr. D’Mello
held ASIC design and verification roles at LSI
Logic, Cogency Semiconductor, and Celestica,
and product and test engineering roles at IBM.

Dean holds a Masters of Applied Science (MASc) in Electrical and
Computer Engineering from the University of Toronto, Canada.

Abstract
Consumer demand for entertainment products brings to verification
engineering teams the challenge of verifying designs which integrate
functions from multiple previous- generation products with new fea-
tures. Effective reuse of verification code combined with judicious

304 Metric-Driven Design Verification

adoption of new verification technology is needed to achieve the
productivity required to meet project schedules. From the
perspective of a verification lead, this paper presents the approach
taken by a verification team working from multiple sites to verify a
multimillion- gate ASIC which implements an Analog and Digital
TV solution. Choices made by the team to reuse existing code, build
new verification components, and adopt new technologies to meet the
needs of the project will be described, along with results achieved on
the project, for which verification was completed on schedule in half
the time and with half the engineering resources required to verify the
previous ASIC.

Introduction
High- Definition TV (HDTV) offers consumers a rich video and
audio experience. Consumers demand quality products at compete-
tive prices, and FCC mandates require consumer- electronics manu-
facturers and broadcasters to keep up. This brings the challenge of
integrating existing Analog TV (ATV) solutions with Digital TV
(DTV) to facilitate a smooth transition and address the needs of a
variety of users.

These market requirements drive architectural changes in ASIC
designs. A cost- efficient solution requires tight integration of ATV
and DTV solutions into an ASIC. The integration needs to address the
grouping of functions, sharing of resources and adding new interfaces.
For example, new interfaces need to be added to address the higher
bandwidth requirements of the combined solution. Verification chall-
enges lie in dealing with the complex design, the new interfaces,
modified blocks, and managing the huge set of test suites. Tight
schedules and limited engineering and computing resources are the
constraints to the problem domain that need to be addressed.

Previous approaches by verification teams to these problems have
been to add more engineering and computing resources, and create
custom tools to measure and track verification progress. This case
study of the verification of a next- generation single- chip ATV and
DTV ASIC with numerous analog interfaces and several embedded
processors (DSP and RISC) describes how some of these verifi-
cation challenges were dealt with on a recent project. Choices made

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 305

by the team to reuse existing code, build new verification compo-
nents, and adopt new technologies to meet the needs of the project
will be discussed in this chapter. The combination of verification
strategy, tools, and methodology enabled the completion of verifi-
cation in half the time and with half the engineering resources
required for the verification of previous ASIC, enabling delivery of
the final product within the required market window. Some of the
limitations of the approach and opportunities for further improve-
ment are also discussed.

This Chapter is organized as follows: The remainder of this section
introduces the DUV and its verification challenges. Following that,
we describe the key enablers of results achieved namely strategy,
verification planning, and verification environment implementation.
Finally, we summarize the results achieved and identify areas for
improvement on future projects.

Figure 1 The Design- Genesis FLI103XX

The Genesis P�rVIEW HD™ 300 Series IC (FLI103xx) is a single-
chip TV solution for products requiring superior video quality in the
analog and/or digital TV for ATSC, DVB, NTSC, OpenCable, and
PAL markets. This solution includes a single channel HD MPEG2
decoder, flexible analog front end with an integrated Faroudja® 3D
Video Decoder, high- performance industry standard 32- bit MIPS

The Design

306 Metric-Driven Design Verification

4Kec™ processor (250 MIPS), multistandard analog audio decoder,
digital audio decoder and post processor, three programmable
multimedia processing engines (MPE), advanced 2D graphics engine,
integrated HDMI/DVI receivers with HDCP support, unified DDR
memory controller and a very flexible and unique Video eXpansion
Interface (VXI) providing glueless connectivity to Genesis video
coprocessors, or a customer’s proprietary video processing chip.

The solution includes next generation Faroudja DCDi Cinema®
video format conversion, video enhancement, and noise reduction.
The level of video quality that could previously only be seen on an
exclusive Faroudja Home Theater System is now available in a
single- chip solution.

The interfaces of the single chip ATV–DTV are shown in Figure 1.

Verification Challenges
Some of the factors that contributed to verification complexity on the
project were the number of configurable registers (programmability),
the number of interfaces, and the number of data paths (Table 1).

Table 1 Problem Domain Description

Indicator Previous chip ATV–DTV
chip

Change

Number of
registers

1600 2600 + 63%

Number of
external
interfaces

7 12 5 NEW
interfaces

Regression size 500 1100 +120%
Number of
DUVs

TBD 24 TBD

Subsystems DTV DTV,
ATV, and
CPU

Two more
subsystems

Logic gates Not disclosed Not
disclosed

DOUBLE

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 307

Table 1 enumerates some of the contributing factors to the verifi-
cation complexity, and compares them to the previous project (DTV
ASIC) undertaken by this verification team. As shown in the table
key factors have doubled.

The generic challenges which arise from integration are Architec-
tural changes in various areas, Addition of new internal buses,
Module- level verification, Data paths and integration verification
(chip level), and Management of verification process and data.

Addition of New Internal Buses
Integration of two different designs leads to the optimization of
resources in the architecture. ATV/DTV design integration resulted
in shared memory controller. The memory controller now needs to
serve two clients which demand higher bandwidth compared to the
previous designs. This required the creation of a new low- speed
register configuration bus to offload traffic from the main system
bus. Introduction of the low- speed bus (which connects to almost
every block) required reverification/regression of those blocks and
changing the configuration sequences. The new bus- architecture also
required rearrangement of the address map and hence reverification
of address decoding logic.
Architectural Changes in Various Areas
Architectural changes are driven by two major factors. The first is
the integration of two designs and the second is the request for new
features by customers. The color coded diagram (Figure 2) shows
the modifications to the architecture.
The changes due to the integration included:

� Addition of a new low- speed bus
� Deletion of the one of embedded control processors and one

set of standard peripheral interfaces
� Addition of a new interface block between the two designs
� Modification of the memory controller
� Addition of the DTV subsystem to the set of video sources

processed by the video enhancement engine

308 Metric-Driven Design Verification

The new features driven by customer demand included adding the
ability to connect a USB device to view pictures from cameras on
the TV screen. The USB connection could also be used to do
firmware upgrades and provide an interface for On- Screen- Display
(OSD). Also added was high- quality audio, with multiple channel
audio inputs and outputs, resulted in the integration of the whole
audio subsystem from different designs.

Architectural changes which will lead to the addition/deletion/
modification of blocks affect the volume of verification jobs. These
changes also define the verification problem in an interesting way,
wherein you need to maintain the integrity of the old design while
verifying new features incrementally.

Glueless ATV/DTV System

ATV sub-systemDTV sub-system

Interface
Block

Memory Controller

H
ig

h
S

pe
ed

 B
us

Lo
w

 S
pe

ed
 B

u
s

Transport Stream

Peripherlas

USB

L
V

D
S

/T
T

L O
ut

D
D

R
 I/

 II

CPU sub-system
Audio sub-system

Aux Video

A
u

dio Inp
ut

Analog

HDMI

Audio Out

Added

Upgraded

Modified

New Version

Figure 2 Architectural Changes

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 309

Module-Level Verification
Although this project was primarily an integration of two existing
products, some new modules added to the design needed to be
verified in the context of the current design. The integration and
various modes of modules needed to be validated both by stand-
alone module qualification verification and integration testing. New
modules added to this design included an Audio subsystem and a
USB–AHB bridge. Since most old modules were changed, the newer
versions of these modules needed to be verified. For example, the
control processor CPU and video decoder cores were replaced with
new and advanced versions.

Data Paths and Integration Verification
When two systems are integrated, integration verification is critical
and must address several questions to determine its success. The
verification environment should reuse the components built around
the subsystems. If these two subsystems come from two different
verification worlds then the reuse, and hence chip- level verification,
becomes challenging. It is also required to identify what gets
verified at the chip- level and what gets verified at levels lower in the
hierarchy. The key technique is to abstract away from the full detail
of the design, just retaining the sufficient features to prove there are
no intersubsystem interconnection issues. For example, for the
feature set relating to the playing of digital video, top- level verifi-
cation was used for the playing of digital video from different sour-
ces (e.g., MPEG, HDMI), while block- level verification focused on
error handling in all different modes from a specific source.

Management of Verification Process and Data

cost of missing schedule deadlines can force teams to terminate the
verification effort prematurely. Thus, ASIC design quality can
become a function of verification schedule, rather than the
verification metrics, making it critical to track at a detailed level
which features are verified and which remain unverified, to make the
good tradeoffs between quality and schedule.

The short schedule cycle of the consumer world and tight engineer-
ing resources do not offer much flexibility in finding solutions. The

310 Metric-Driven Design Verification

The large number of DUVs and a verification team distributed
between Silicon Valley, Toronto, and India necessitated standardi-
zing the regression infrastructure. Scripts and progress- tracking
schemes across the project, equipping every engineer with the ability
to launch track and analyze their own regressions, while providing
the verification lead with the capability to assess the progress of
each of the verification subprojects.

Key Enablers of the Solution
Having defined the verification challenges in the previous section,
we now turn our attention to the key enablers of the verification
solution that resulted in on- time completion of the verification of the
DUV. This section begins with a description of the strategy adopted
for verifying the device, followed by discussion of the verification
planning and management methodology and solution, and some
elements of the verification environment implementation, namely
register verification and the considerations and choices made to
reuse or build new verification components and environments.

Verification Strategy
From the perspective of a verification lead, a sound strategy needs to
be formulated before teams in multiple sites begin work on a project
of this magnitude.

The verification strategy followed was to scope the problem, assign
the right resources, and devise a complete plan. The development
process tends to begin with a high- level understanding of the
product requirements and a first- cut at schedule, with more detail
added as the architects and designers begin their work. Verification
strategy needs to accommodate this development process. The
subsections that follow describe the process followed to devise a
strategy that quantified the problem at high level, allocated resources
accordingly, and was flexible enough to be applied iteratively as
changes were made to requirements or designs.

Scope the Problem
Based on the architectural changes (which were driven by integration
and customer needs), a delete/add/modify/no change (X/A/M/NC)
matrix was identified. Table 2 shows an example of the analysis.

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 311

Identification of the number of DUVs was done as the next step to
identify what needs to be verified and in which hierarchy (block
subsystem/chip level).

Table 2 Verification Resource Mapped to Blocks

Block Name Arch Change Verification Resources
Memory controller Add Full- time
DMA controller No change Shared
Peripherals Modify Shared
CPU bus Add Full- time
High- speed bus Modify Shared
Video memory
arbiter

Modify Full- time

186 Core Delete None

The X/A/M/NC analysis matrix helped to get the assessment of the
kind of work involved. There were options such as assigning one
dedicated resource to the block which went through modifications.
There were generic changes. For example, the “new bus” changed
the interface to all blocks. Twenty- four DUVs were identified; each
of these DUVs went through either minor modifications or major
modifications to be able to integrate in new architecture.

Resource Allocation
Exhaustive block- level verification was required to thoroughly verify
all blocks which were added or went through major modifications. The
block owner would create the block- level verification environment,
interface verification components, monitors, scoreboard, etc. The block
owner would also write the verification plan and define coverage
necessary to measure compliance to the plan and execute it to verify the
planned features

As described in Table 3, the peripheral bus and all those blocks
mapped to this bus were assigned to a single owner. The owner is
responsible for bus e- Verification Component (eVC) with master
and slave agents. The owner will go through modifications for all
the slave block environments and ensure that changes are intact.

312 Metric-Driven Design Verification

This resulted in a single owner being used efficiently to deal with
several modified blocks.

The chip was divided into two major subsystems. One owner for
each subsystem ensured all the changes in that level were intact and
the subsystem verification plan was tracked to closure. The Chip-
level/System- level owner focused on the integration of the
subsystem and verified the interconnectivity and data paths derived
from user scenarios. Each block owner owned one of the relevant
data paths at the chip level.

The compute farm used for simulations included a cluster with 12
machines at one location and another cluster with ten machines at
different location. vManager and LSF were used to dispatch the
regression jobs.

There were two major usage scenarios for simulation licenses, at least
one per engineer during development and enough to get the regression
throughput in the later stages (peak load). There was a recommendation
on the licenses but in the end the team had more than 2X licenses
available than the required amount (around 15 licenses). To manage

Table 3 Verification Resources and Tasks

Resource DUV Additional
Responsibilities

Engineer- 1 Block- M1, M2, and A1
Engineer- 2 Block- M3 and M4 Low- speed bus
Engineer- 3 Block- M5, M6, IP1 Mentor for newcomers
Engineer- 4 Block- A2, M1, chip- level
Engineer- 5 Peripherals and Chip- level

misc logic
Script and regression

Engineer- 6 Block- M7, chip- level Interrupts
Engineer- 7 Block- M8, IP1, IP2
Engineer- 8 CPU subsystem, DTV SS Chip level
Engineer- 9 ATV SS, chip- level
Engineer- 10 chip- level, progress tracking Back- up and debug

support

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 313

regressions there was one vManager license per site, but when
several engineers needed to do debugging concurrently, the license
became a bottleneck and one vManager license per engineer was
obtained.

Verification Planning and Managements

The high- level strategy described in the previous section provided a
general game- plan for verification activity. The need to manage a
large set of functional requirements verified using more than 20
environments across multiple sites and tracked using coverage- driven
verification methodology led the team to adopt vManager, a tool
from Cadence that automates and assists processes in functional
verification. This section describes how vManager was used on the
project.

Executable Verification Plan
A verification plan was created for each of the DUVs. The primary
purpose of this plan was to identify all features that needed to be
verified. This assisted with resource allocation as well as with the
tracking of verification progress using vManager.

The plan used in the verification process is termed “executable”
because although it is written in natural language using a word-
processor, the use of special paragraph formats and export as XML
allowed reading of the plan into vManager, and annotation of
coverage metrics to each feature, providing a hierarchical feature-
based view of progress as measured by coverage collected in simu-
lations. The use of natural language to create the plan allows
stakeholders from disciplines outside verification (e.g., Architects,
Designers, and Software engineers) to participate in the planning
process.

A snap- shot of section of vPlan is Figure 3. Note the hierarchical list
of features to be verified, short description of each feature, and
identification of coverage groups that measure how well the feature
is verified in simulation.

314 Metric-Driven Design Verification

Figure 3 Executable vPlan screen- shot

Regression Management and Progress Tracking
The integration of two designs into a single chip brings with it a lot
of tests from the previous development that all need to work in a
new, bigger design. Regression of these tests was the starting point.
As the project progressed, a regression was run regularly to ensure
that the X/A/M/NC features were not breaking the unmodified
portion of the design. One of the overall progress indicators was the
passing percentage of the regression.

Because of the previous designs inherited and the addition of new
tests at the block level, subsystem level and chip level, the
regression size became big. The peak time regression size was 1200
tests, each test running for an average for ½ hour. To measure the

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 315

overall progress, the numbers that needed to be tracked were how
much of the verification plan was covered. The goal was to achieve
100% functional coverage and 100% code coverage and the
exceptions had to be documented. The use of coverage- driven metho-
dology meant that results of large numbers of simulations would
need to be analyzed often by each engineer.

Execution of the verification tasks described above required
introduction of a verification management methodology given the
large number of DUVs, team members in three sites and the need for
the verification lead to track progress of all the verification sub-
projects. The main benefits sought from the verification manage-
ment methodology were:

� All engineers are able to launch and analyze their own
regression without having to create and maintain custom
scripts

� A standard view of simulation failures from each DUV is
available to allow quick analysis to determine how many
unique failure signatures were observed, and select a
simulation for debug

� Progress reports which summarize coverage results from
simulations by DUV feature are available to track progress
with respect to the verification plan and identify uncovered
areas

vManager is a product from Cadence that automates and assists
tasks and processes in functional verification, enabling verification
teams to deploy a verification management methodology to achieve
the benefits described above.

vManager provides:

� A regression runner infrastructure that provides a standard
and simple format for describing simulation sessions, dis-
patching them to a compute farm using LSF, and tracking
and controlling them from a GUI

� An environment for interactive analysis of large number of
simulation failures, with the ability to group failures with

316 Metric-Driven Design Verification

similar characteristics, identifies simulations that exhibit
each failure kind in the shortest time and launch debug
runs

� A means to read the natural language executable verifi-
cation plans described earlier, and annotate coverage to
each feature providing feature- based views of coverage for
analysis and reporting

vManager was deployed to manage regressions, enable interactive
analysis of simulation results by individual block- owner, and create
progress reports for use by the verification lead and management.

The vManager regression runner works by calling a user- script that
launches a single simulation run. This required initial investment by
one engineer to implement a basic single- run script, a simple means
for each engineer to specify how to use it for each DUV and hooks
to the vManager integration. This one- time effort paid off by
enabling the use of the required verification management methodo-
logy for all DUVs on this and future projects. Figure 4 shows how
vManager was used for verification management with the following
use model:

Figure 4 Regression management using vManager

Verification
Plans

Simulation
Sessions

vManage
Progress
Reports

Interactive
Analysis

DUV Simulation
results

Dispatch Simulations
Manage Results

Verification Env.

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 317

� Engineers created session descriptions that specified which
simulations to run, vManager launched the simulations to
the compute farm and managed the input and result files
associated with each simulation

� Analysis of simulation failures was performed interactively
in vManager

� The executable verification plans were read into vManager
and used for interactive analysis of coverage for each
feature and to create progress reports

Verification plans created in the planning process facilitated the
tracking of progress at a very detailed level while organizing the
results by feature to assess progress at a higher level of abstraction.
This was achieved by annotating coverage metrics to each feature in
the verification plan document, and using vManager to create
feature- based views of the coverage for analysis and reporting. The
snapshot of the example vPlan is Figure 5.

Figure 5 Regression results annotated to vPlan

The team lead played the progress tracking role using different stats,
the most basic one being when all the regression suites were commit-
ted and included a sanity test case. Management got a summary
report to assess which part of the chip required immediate attention,
where to divert resources, etc. The results shared on the intranet in a
standard format enabled everyone in different geographies to be in
sync and have quick and easy access to results. On one occasion, for
example, management noted the absence of block- level results for a

318 Metric-Driven Design Verification

specific block, and acceptable progress on another and diverted resour-
ces to focus on the block with less progress. The interactive analysis
of results and reproducing the specific case with a waveform dump
was quick and easy and thus, reduced the regression closure effort/
time.

Finally, the answer to the question “Is the project finished yet?” was
more reliable and was obtained without requiring excessive work by
each engineer and the project lead each time an assessment of
progress needed to be made.

Verification Environment Implementation

In this section we describe two aspects of the verification environment
implementation that contributed to the results on this project, namely
register verification and the reuse of verification environments.

Register Verification
Designs which are feature- rich and have several configuration modes
rely on configuration registers to implement key features. There are
2600 32- bit in this chip, with a variety of access types. In addition to
the more common Read/Write, Read- Only, Write- Only, and Clear-
Read- Only types, a set of “Pending- Active” registers was imple-
mented to hold configuration changes related to image processing in
a pending state until the occurrence of an activation event (such as
the start of blanking time between video frames). Each register
needed to be verified for correct access type implementation of
address, power- reset value, access- type, and function.

Automation was essential to manage the large set of registers and the
subsets used in each DUV. A spec- driven process was implemented,
whereby a custom tool extracts all the tables of the register spec
word document, creates the database of registers and provides feed-
back on missing fields, incorrect address map, etc. The requirements
for this custom tool were specified by the Design Verification (DV)
team and implemented by the Software team. The output of the tool
is various register definition files, one of which is in the format used
by the Cadence register verification package which automates the
creation of verification components for the register aspect of the

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 319

verification environments, including shadow- register files, address-
maps and register- access sequences.

Use of our custom extraction tool along with the register verification
package enabled the team to:

� Synthesize the verification components related to register
verification directly from the register specifications

� Extend the components to model the Pending- Active registers
� Create generic, self- checking stimulus sequences to verify

power- reset values, address maps, and access types of the
register set for each DUV

� Create reusable register access- sequences to configure the
DUVs for various operations. These sequences were written
at the level of abstraction of register fields

The automation and reuse afforded by this register verification scheme
greatly reduced the effort associated with verification of registers in
the block level, subsystem level and chip level. The register verifi-
cation package was found to have enough hooks to easily add custom
register access types.

Reuse of Verification Environments
When integrating two heterogeneous systems the important conside-
rations in developing the chip- level testbench needs are maximizing
the reuse of infrastructure developed at the subsystem level and
detecting the first bug. Also important is building reusability into the
new code for reuse in the bigger systems built later on.

The DTV subsystem was built using Specman Elite, the testbench
automation tool from Cadence, and the ATV subsystem was built using
a directed testbench with TCL and VHDL. Since the DTV subsystem
environments were based on the e Reuse Methodology (eRM) from
Cadence, they were far easier to reuse than the ATV subsystem
environments that had been architected for top- level use only. So it was
decided to build a Specman- based chip- level verification environment
using eRM and System Verification Methodology (sVM) guidelines,
and reuse the configuration sequences from the ATV subsystem
verification environment.

320 Metric-Driven Design Verification

There was valuable embedded knowledge in the TCL configuration
sequences built for the ATV subsystem. A path for the TCL was
built to generate configuration sequences as one of the configuration
sequences at the chip- level. The TCL was modified to generate e
code (eRM sequences) to configure the ATV subsystem at the top-
level environment. The monitor developed for the ATV subsystem
was hooked into a chip- level Specman monitor and scoreboard. This
resulted in the chip- level testbench being composed quickly from the
subsystem environments.

Chip- level tests were scoped to stress the end- to- end data paths,
interrupt structure and system- level issues. The sample high- level data
paths were playing audio, still picture on screen, playing video from
an analog source, playing video from a digital source, Picture- In-
Picture and overlaying OSD on the video screen, etc. These huge end-
to- end data paths were further broken down into smaller paths that
started or ended at memory. Small paths were debugged and stitched
incrementally to make one full data path test. This sequence- based
approach helped in the reuse of the block- level configuration
sequences to build the chip- level data paths.

Table 4 Problem Domains Compared

Indicator Previous Chip ATV–DTV
Chip

Change

Number of
registers

1600 2600 + 63%

Number of
interfaces

7 12 5 NEW
interfaces

Logic gates Not Disclosed Not
Disclosed

DOUBLE

Regression size 500 1100 +120%

The verification was completed on schedule! Tables 4–6 summarize
some key attributes of the DUV which affected verification comple-
xity, along with the results. The numbers are compared with those of
the previous project completed a year ago. The verification strategy,

Results

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 321

tools, and well- defined reuse enabled to the completion of the
verification within the scheduled tape- out date. Table 5 also identifies
which factors contributed significantly to the efficiency (Key Enablers).

Table 5 Solution Domains Compared

Indicator Previous
Chip

ATV–
DTV
Chip

Key Enabler

Number of DUVs 30 24 Verification
strategy

Team size 19 10 Verification
strategy

Number of machines 20 16 vManager and
LSF

Regression time 48 hours 60 hours vManager and
LSF

Regression closure (test
suite complete to
regression passing)

20 weeks 6 weeks vManager

Table 6 Results Summarized

Indicator Previous
Chip

ATV–DTV
Chip

Key Enabler

Spec- to- tape
out time

18
months

10 months Verification strategy,
Reuse and vManager

Number of
bugs found

230 170 Techniques, Specman
and vManager

Number of
bugs in FPGA

20 3 Strict CDV,
More regressions,
More reviews

322 Metric-Driven Design Verification

Conclusions
Verification of digital TV enabler ASICs within the required
schedules presents very interesting verification challenges. In this
case study of the verification of a single- chip ATV–DTV ASIC
discussed were the key areas that needed to be addressed, the
approaches selected, and the results presented that showed the
verification of a chip double the size of the previous chip was
completed in approximately half the time with a 50% smaller team.
Verification of this ASIC was completed on schedule with the
allocated resources.

It was determined that the right balance of strategy, methodology, and
tools will help address the verification challenges. Assessing
verification challenges and developing a strategy is the first step. A
sound verification planning and regression- management methodology
implemented with tools that support an executable verification plan,
regression- automation, and reporting was a key enabler. Verification
environments that address reuse and pay special attention to register
verification were also found to be key enablers of the success
achieved on the project.

Future Work
The challenges associated with verifying Consumer Products will
continue to intensify, and this requires verification teams to conti-
nuously improve processes and methodologies. Along with recoun-
ting successes, a review of a completed project must identify areas
for future improvement. We will briefly describe three such areas,

Adherence to the Reuse Methodology

In previous sections we described how verification components
based on the e Reuse Methodology were key to composing a chip-
level environment from components created for the module- level
verification effort. As the chip- level testbench was built, some
components were found to be noncompliant with key aspects of the
methodology that would enable reuse. This is understandable given

namely adherence to the reuse methodology, CPU- related verification
methodology, and verification of the ATV subsystem.

Verification of a Next-Generation Single-Chip ATV and DTV ASIC 323

a large team with varied experience, but the recoding required to
correct these issues required redoing work at the module level,
delayed the chip- level verification effort and diverted resources from
the team’s main goal of finding bugs.

To address this issue in the future the team plans to explore three
areas: Additional code reviews to focus on reuse, automated gene-
ration of code that is correct by construction, and the use of static
design analysis tools on the verification code to detect issues that
would impede reuse.

CPU- Related Verification Methodology

The presence of an embedded CPU in a DUV presents several
challenges. The CPU test code from the previous project had hard
coded addresses that required numerous changes for the new address
map. Considerable effort was spent to recode these tests as modular
assembly code invoked by reusable sequences. This practice will be
continued in future projects to keep this code reusable.

Another challenge experienced in this area was in reproducing in
simulation bugs found when running the application software on
silicon. The assembly code approach used in the simulation environ-
ment made this very difficult, and the team will explore the use of
more advanced Hardware–Software verification techniques in the
simulation area that would allow the use of C code rather than
assembly code, along with the use of improved hardware- emulation
techniques.

Verification of the ATV Subsystem

The ATV subsystem has evolved over several years and hence has a
legacy verification environment that is based on a directed test rather
than coverage- driven methodology, and does not have verification
components that are reusable at higher levels of integration.

While the legacy environment has been adequate for previous
generations of the product, the challenges experienced in verification
when modifying and integrating this subsystem have shown that the
verification approach needs to be updated for the current and future

324 Metric-Driven Design Verification

generations of the product. A particular area of concern was the porting
of the environment for the new product which required one full- time
engineer.

Accordingly, verification work on future projects will include creation
of eRM- compliant verification components for new modules, reco-
ding of existing verification components with advanced methodology
where benefits are expected to be worth the investment, and
interfacing between old and new verification components in environ-
ments where both are present.

Management IP: New Frontier Providing
Value Enterprise-Wide

Steve Brown, Director of Marketing, Cadence Verification

Division

Steve Brown is Director of Marketing for
Enterprise Verification Process Automation at
Cadence Design Systems. He is a 20- year vete-
ran of the EDA verification industry and has held
various engineering and marketing positions

Graphics. He specializes in solving engineering, management, and
marketing challenges that arise when new technology and products
enter the market. He earned BSEE and MSEE degrees from Oregon
State University and has studied marketing strategy at Harvard,
Stanford, Kellogg, and Wharton.

Discussion around intellectual property in EDA has long focused on
topics such as language, tool interoperability, and encryption. The

improved by advances that facilitate IP reuse and exchange. There
are changes underway that will accelerate and amplify the return
company’s realize from their investment in IP. Executives are
beginning to realize that they themselves create valuable Intellectual
property. The know- how, methods, and proven procedures they use
to operate their teams effectively under increasing market pressure is
IP that is extremely valuable. Let’s take a closer look at how this
form of IP will open up a whole new frontier of opportunities and
define processes and automation that will increases project- level
predictability and productivity.

I know managers creating anything as intelligent sounding as intel-
lectual property sounds like an oxymoron. But think of how valuable

at Cadence, Verisity, Synopsys, and Mentor

domains of IP grew from manufacturing IP, to layout GDS- II,
to designer RTL, and are rapidly entering the challenging world
of verification. The health of the electronics industry is greatly

326 Metric-Driven Design Verification

it is to know how to estimate the productivity of an engineer, to
assess the risks of various aspects of the system to be developed, and
to monitor metrics trends throughout the life of a project. With these

automated the use of that data for planning, and providing data
mining or analysis. The result would be a much more efficient

cation IP protocols that you’ve used successfully in previous designs.
This IP has been tested and proven on the job. From a user’s point of
view that specific IP was a success – but from a manager’s point of
view that IP was not only a success, but now it is also an asset to
leverage on future projects.

With experience comes various metrics that need to be gathered,

identify potential risks, and incorporate late stage design changes
will all improve by leveraging prior experiences. Enterprise level
software that captures, stores, and duplicates successful patterns for
that specific IP model or verification IP are the first major step into

projects.

different angle. IP needs to be categorized based on metrics captured
while in use within the module or system. This means spending
more time on evaluating each design and paying much more atten-
tion to the process, overall resources, and supporting methodology.
Most crucial are resource productivity metrics – those leading and
trailing indicators that are used to judge the project status. These data
points are the beginnings of a complete management IP database.

capabilities in hand management teams would be able to much bet-
ter predict time to tape out and volume shipment. Imagine if that
knowledge were captured in the form of data, in a system that

For the sake of argument, let’s take a quick look at an overly sim-
plified example. Let’s say you have an IP core or set of verifi-

stored, and managed. A manager’s ability to estimate schedules,

the world of management IP. Management IP offers a foundation
to plan and predict highly distributed resources needed on future

To get to this foundation companies need to look at it from a

running project with much higher quality. All because the manage-
ment team had previous experiences captured in a format to reuse
and leverage to make good solid management decisions.

New Frontier Providing Value Enterprise-Wide 327

This may sound simple but it’s not – it takes a commitment from
management to establish new processes and software solutions in a
design flow.

There are many examples of IP data which needs to be captured.
What if we could measure overall bug rates per engineer using a
specific protocol? Or monitor the lines of code per engineer on
average when using a specific IP module? How do you translate a
system- level specification into lines of code that can be managed?
What about change control and managing the “rippling affect” those
changes have upon introduction to the project? All are very impor-
tant data points that will greatly aid in your ability to design, sche-
dule, budget, and predict your next project – the beginnings of a true
“manageable” IP database.

Management IP may sound obvious, but the industry is showing

IP can offer, they will need to start capturing data, and develop best
practices and skills at the management level. This will require
working with companies that deliver process automation- based
solutions that include managed solutions that address IP. When a
premium is put on management IP enterprise- wide we’ll see a much
brighter outlook in the overall market, and your IP will no longer
have to be alone.

clear evidence that the obvious is being overlooked. And if com-
panies want to take full advantage of the wondrous time savings

Adelante VD3204x Core, Subsystem,
and SoC Verification

Roger Witlox, Ronald Heijmans, and Chris Wieckardt

DSP- Innovation Center NXP Semiconductors

Roger Witlox joined Philips Research Labora-
tories in Eindhoven, The Netherlands in 1992,
where he has been working on optical coherent

current control system. In 2000, he joined the
CTO organization at Philips Semiconductors, where he was responsible
for development and support of an in- house verification tool. He has
been responsible for functional verification methodologies for hardware
IP and was a member of the Verification Technical Work Group of the

verification.

Ronald Heijmans studied at the Hoge School
Eindhoven and graduated in 1992 in the field of
“Technical Computer Science.” He started his
career as a PCB designer at the Philips Research
Laboratories. Later, Mr. Heijmans focused on DSP
algorithm design and applications for multichannel
audio and speech coding. In 1999, he became a
verification engineer at ESTC Philips Semiconduc-
tors, where he focused on DSP core and subsystems.

Currently, as a verification architect, Ronald is defining a new environ-
ment including new verification methodologies.

communications systems and access net-
works Mr. Witlox was earlier involved in the
development of analog laser temperature and

SPIRIT consortium. In 2004, he joined the DSP Innovation Center
and is currently focusing on DSP subsystems, both specification and

330 Metric-Driven Design Verification

Chris Wieckardt has been a Verification
Engineer at Philips Semiconductors, Adelante
Technologies, and NXP Semiconductors in
Eindhoven, The Netherlands since 2000. Prior
to Philips, Mr. Wieckardt was a digital Design
Engineer at Océ Research and Development,

Venlo, The Netherlands.

Abstract
It is impossible to verify the complete functionality of an IP at all
levels (DSP core, subsystem, and SoC), therefore trade- offs between

(Adelante™ VD3204x from NXP semiconductors). Furthermore

Introduction
The electronics industry trade press has been talking about the
verification problem for SoC designs for a good 10 years now. The
argument is simple and compelling: As chips have grown to the size
and complexity of last generation’s complete systems, verification
becomes a challenge.

However, there has been less attention paid in the press to the pro-

As chips grow to the size of systems, cores grow to the size of chips.
Accordingly, the verification challenge for cores is also growing, and
many of the same techniques adopted for SoCs are making their way
into the development process for IP.

Perhaps nowhere is this more true than for processor cores, including
general- purpose CPUs, floating- point units, and digital signal pro-

minimizing the number of used verification methodologies and hav-
ing a quality product is a challenge. In this paper pros and cons of
the verification methodology choices, made at the various levels,
will be explained. The DUV is an embedded vector processor

some aspects of the verification process and the resulting verific-
ation plan will be discussed.

blems of verifying IP cores, which are increasingly large and com-
plex. In fact, there’s an obvious but rarely stated corollary here:

cessors (DSPs). This article focuses specifically on DSPs, using a

Adelante VD3204x Core, Subsystem, and SoC Verification 331

recent core development project at NXP Semiconductors (formerly
Philips Semiconductors) as an example. We provide some background
on the particular project, outline the challenges we faced, and describe
the tools and techniques that we used to advance the verification
process and improve the quality of our DSP core product.

Project Background
In mid- 2004, our team embarked upon a two- year project to design
and verify a completely new DSP with significant enhancements
over previous cores. This core, which is now marketed as the
Adelante™ VD3204x DSP, is built upon a Very Long Instruction

block- level architecture of the core.

The DSP core is divided into four main functional units:

� Program Control Unit (PCU)
� Address Computation Unit (ACU)
� Scalar Data Computation Unit (SDCU)
� Vector Data Computation Unit (VDCU)

Word (VLIW) architecture to support a significant degree of para-
llelism for both scalar and vector operations. Figure 1 shows the

Figure 1 The Adelante VD32040 Core Contains Four Major Functional

Units

332 Metric-Driven Design Verification

The 256- bit instruction words, as is characteristic in VLIW archi-
tectures, can encode multiple scalar and vector operations at one
time. As shown in Figure 1, the SDCU and VDCU have several sub-
units to perform different types of operations, many of which can
occur in parallel. Because of shared resources such as registers and
buses, not all types of operations can be executed in parallel. Thus,
there are complex rules about how the instruction words are
constructed by a compiler. These rules had to be mimicked in the
verification environment in order to test the DSP properly.

Figure 1 also shows an example configuration of three memories
that reside outside the core:

� Program memory (4K � 256)
� Data memory (4K � 256)
� Four- way set- associative data cache (128 � 256)

These three memories form part of the DSP subsystem (DSS), which
is shown in Figure 2. This subsystem includes a number of
peripheral functions. These include support for emulation, tracing,

Figure 2 The VD32040 DSP Subsystem (DSS) Provides Memories,

 Peripheral Functions, and AMBA Interfaces

Adelante VD3204x Core, Subsystem, and SoC Verification 333

and multicore debugging, all of which run at the 300 MHz core
clock rate, as well as several interfaces using the AMBA® 3 AXI™,
AMBA Peripheral Bus (APB™), and AMBA Trace Bus (ATB™)
on- chip bus protocols defined by ARM.

Verification Decisions
The nature of the VLIW architecture, with multiple operations in
parallel running in a multistage execution pipeline, means that there
are many corner- case conditions that must be exercised during the
verification process. Of course, corner- case conditions lead inevit-
ably to corner- case bugs, each of which must be detected and fixed
before a design is released. In the case of the DSP core, we have
many internal and external customers who depend upon receiving a
robust, high- quality core so that they can concentrate on verifying
the integration and their own logic, not on finding bugs in the core
itself.

The VD3204x was a new core designed from scratch, significantly

approach. We decided to move beyond our traditional approach of
using random- generated tests with a few functional coverage points.

Leveraging experience in NXP groups as well as in our own team,
we chose a full plan- to- closure methodology using a coverage-
driven, constrained random verification architecture. To accomplish
this, we used Cadence’s Incisive® ®

testbench automation solution and Incisive Enterprise Manager veri-
fication management.

An important component of this methodology is the executable
verification plan (vPlan), an online replacement for paper test plans
that fosters early identification of verification and coverage goals,
and enables reporting of progress against these goals throughout the
course of the project. We found the vPlan to be useful both for
verifying individual blocks and for integrating these blocks into a
major subunit or a complete chip.

more complex than older IP, and so the project offered the oppor-
tunity for – and demanded – a more sophisticated verification

 Enterprise Specman Elite test-

334 Metric-Driven Design Verification

Figure 3 shows an actual report on some of the functional coverage
points in the core. The top of the screen shot shows part of the
hierarchy of features to be verified; the bottom shows the status of
the functional coverage points associated with one specific feature
(circled). The details of this screen shot are not important; the
process is. We began by identifying specific features to be verified
as part of our verification planning process, including corner cases
that we wanted to exercise, and captured these in a Microsoft Word
document using a template compatible with Enterprise Manager.

When we wrote the functional coverage code (in the e language)
within the testbench, we added mapping information that identified
the feature associated with each functional coverage point. (We
could have added pointers to the coverage points in the vPlan
instead, but we preferred to keep the original vPlan unchanged and
link to it from our coverage code.) Throughout the verification
process, we ran reports to show which points had been hit and which
had not. Thus, our coverage metrics were always correlated back to

 Figure 3 The Reported Coverage Metrics were Correlated Back to

the Original Verification Plan

Adelante VD3204x Core, Subsystem, and SoC Verification 335

our original vPlan, a critical part of a true coverage- driven metho-
dology.

We also chose a multi- leveled verification strategy, specifically
separating the verification of the core from the rest of the DSS. We
made this decision primarily to avoid dependencies during the deve-
lopment process. We developed a BFM in e for the core that had
sufficient functionality for DSS verification, which could occur in
parallel with RTL coding and verification of the core itself.

integration of the RTL core and the other DSS components, running
actual software. Our customers perform similar tests once they have
integrated the core and DSS into their final chips. The remainder of
this chapter discusses the verification of the DSP core and the DSS.

DSP Core Verification

Prior to verification of the core as a whole, some of the RTL
designers performed basic “sanity testing” on their individual blocks.
They typically wrote some simple behavioral HDL code to stimulate
the block inputs and examined waveforms of the block outputs to
verify basic functionality. This approach was used primarily for
interface blocks; the majority of the individual blocks were tested
using a subset of the core test environment.

Our stand- alone verification of the complete core relied extensively
on an instruction- set simulator (ISS) developed by our software
development kit (SDK) team. This ISS was pipeline- execution-
cycle- accurate in terms of all registers defined in the instruction- set
architecture (ISA) for the DSP. Thus, at the end of every execution
cycle, the state of these registers defined precisely what the corres-
ponding registers in the RTL should also contain. Comparing the
state of the ISS and RTL registers cycle- by- cycle was the single
most important method used in core verification.

Figure 4 shows the complete core verification environment. We
implemented all core tests as programs running in the DSP core.
These programs were created by a test generator, written in e, which

We then entered a final verification phase that focused on the

336 Metric-Driven Design Verification

produced a series of instructions to try all the different DSP vector
and scalar operations with different operand values. The constraints
for test generation, also expressed in e, fell into two categories. Our
“hard” constraints captured the fundamental rules about the DSP
instruction set, such as which operations can be performed in paral-
lel. As mentioned previously, shared resources within the SDCU and
VDCU prohibited some types of subunit operations in parallel.

 Our “test” constraints specified which specific subunits and which
particular operations within these subunits we wanted to test. Given
the large number of operation combinations to be tested and the
limited size of the DSP’s program memory, we had numerous small
tests rather than a few very long tests that tried to verify the comp-
lete core. Having multiple tests also allowed us to execute in parallel
on a simulation server farm, reducing the total time for each regres-
sion run. The output of the test generation phase was a program

 Figure 4 The Core Verification Flow Used Components Written in e

to link the RTL and ISS Simulations

Adelante VD3204x Core, Subsystem, and SoC Verification 337

image that was loaded directly into the DSP’s program memory and
executed in RTL simulation.

Although our hard constraints captured most of the architectural
dependencies, there were more subtle resource conflicts that could
develop between multiple instructions in different stages of the
execution pipeline. We didn’t attempt to capture all of these rules
with constraints, but instead leveraged the ISS and its detailed
architectural model of the instruction set. In addition to computing
the expected results for each instruction, the ISS checked the validity
of the instruction against other instructions in the pipeline. If it
found any resource conflicts, it reported an error condition to the test
generator. The test generator had the ability to “back up” and reissue
instructions to avoid these conflicts. Only conflict- free instructions
were actually included in the final test program.

environment, the ISS ran the program in parallel with the DSP RTL.
Because these two representations were aligned, we included e
check code that compared the state of all ISA- defined registers at the
end of each pipeline execution cycle. This primary bug- finding
approach proved very effective, although it meant that we had to
wait until the ISS was complete and fairly robust before starting
RTL core verification. In the process of verifying the RTL against
the ISS we found some bugs in the ISS as well, so the verification
engineers worked closely with the architects to resolve any differ-
ences.

Given our focus on coverage- driven verification, we used Specman
Elite to collect detailed coverage metrics for each test and to merge
the results together to yield an overall view of our verification prog-
ress. All the functional coverage points were expressed by the verifi-
cation engineers as part of coding the core verification environment,

to the vPlan. For example, our architects had numerous ideas about
critical corner cases that had to be exercised in order to declare
verification complete.

When each test program was executed in the core verification

but other members of the team contributed significantly to the iden-
tification of important coverage points by contributing features

338 Metric-Driven Design Verification

Our designers also participated in the coverage process by providing
vPlan features. As they designed the microarchitecture of their
blocks and coded the RTL, they were strongly encouraged to think
of interesting states that should be checked by coverage points. This
is one case in which the executable verification plan really helped;
the designers could simply document their corner- case features in
the vPlan without worrying about how and when the corresponding
coverage points would be coded by the verification engineers. This
resulted in a much more comprehensive use of functional coverage
than had been the case on our previous DSP projects.

In addition to functional coverage points, we used traditional code
coverage metrics to help identify portions of the RTL code that were
not being sufficiently tested. We used our simulator’s native code
coverage capabilities to collect results from each simulation test and
to merge these results together. We did not link the code coverage
goals or results into the VPlan, although we did write some scripts to
combine the Specman Elite functional coverage reports with our
simulator’s code coverage reports to produce a single top- level cove-
rage view.

Before moving on to the DSS verification, it is important to note that
we focused the stand- alone core verification only on proper execu-
tion of the instructions. Certain other aspects of the DSP operation,
such as interrupt handling, were tested in the DSS verification
process and confirmed during integration verification. The next
section discusses the verification of the DSS components and the
overall subsystem in more detail.

DSP Subsystem Verification

Before verifying the entire subsystem, we verified several of the
DSS RTL components with stand- alone testbenches. We found two

Module (ETM). First, it was easier for us to exercise corner cases
from a separate testbench rather than within the entire DSS. For
example, we wanted to fully exercise the cache’s snoop- port arbiter,
which required precise control overcache accesses.

advantages to stand- alone verification of the cache logic, the
OnChip Emulation (OCE) component, and the Embedded Trace

Adelante VD3204x Core, Subsystem, and SoC Verification 339

In addition, we found that parallel testing of components avoided
dependencies that would have delayed verification. For example, the
AXI interface was under development at the same time that we were
verifying the cache logic. If we had waited for a DSS environment to
verify the cache, it could have happened only after the AXI design
was complete.

We used a classic e - based testbench, running sequences of traffic
and using a scoreboard to keep track of results, to verify the three
stand- alone DSS blocks. Figure 5 shows the testbench for the OCE,
which bridged to the core’s Internal Peripheral Bus (IPB) and a DSS
debug bus. The OCE provided access to both the core’s ISA- defined
registers and the DSS peripherals via the external APB for the
purposes of multicore debugging. This testbench used several eVCs,
including a “shareware” APB eVC and several written by our
verification engineers.

Figure 5 The Stand- Alone Testbenches for the OCE Used Interface eVCs

to Generate Bus Traffic

340 Metric-Driven Design Verification

In parallel with this component- level verification process, the
verification engineers developed the BFM for the core. In addition
to allowing an earlier start to DSS verification, the BFM provided
more fine- grained control of constrained random stimulus and
simulated faster than the full RTL implementation. Figure 6 shows
the major functions of the core BFM, as well as the entire DSS
verification environment. As was the case with the component test-
benches, this environment used eVCs and scoreboards to generate
traffic and track results.

One of the advantages of a constrained random, coverage- driven
environment built using e’s object- oriented capabilities is a high
degree of verification reuse. In fact, during full DSS verification we
were able to reuse the component- level eVCs, scoreboards, and
sequences. We were also able to use a commercial AXI eVC as well
as the shareware APB eVC, allowing us to leverage previous
verification work performed by others in the industry.

Figure 6 Most Verification of the DSS Used a BFM of the DSP Core

Adelante VD3204x Core, Subsystem, and SoC Verification 341

Coverage metrics were every bit as important for DSS verification
as they were for DSP core verification. We created a DSS vPlan
with a detailed feature list based upon recommendations from the
architects, designers, and verification engineers, and linked to these
features when writing the functional coverage code. When running
tests, we collected code coverage metrics for all the RTL DSS
components, and we again used Specman Elite to collect and merge

SoC-Level Verification
After the verification of the core and subsystem, the next step in a
verification process is verifying the integration of the subsystem in an
SoC. Normally this is a task of the integrator but the methodology used
enables an IP provider to deliver integration tests together with the IP.

The methodology used is C- based with the focus on interconnect
and interoperability verification and assumes the IP itself is func-
tionally correct. One of the advantages of using a C- based approach
is the reusability across platforms (e.g., RTL simulation, proto-
typing, or final silicon). This reuse requirement is one of the main
reasons why the verification methodology used at SoC level often
differs from the ones used at core or subsystem level.

Figure 7 shows an example of verifying interconnect and interoper-
ability of the trace part of an SoC using this methodology. A C-
program, running on the VD3204x, configures the other trace
components (funnel, ETB) in the system, using the AXI interface. In
the next step trace data will be generated and stored in the embedded
trace buffer (ETB), using the ATB busses. Finally the VD3204x can
read the content from the ETB and compare this content with the
expected value.

functional coverage results from the core BFM, the eVCs, the score-
boards, and other portions of the verification environment.

342 Metric-Driven Design Verification

Results and Future Work

Figure 8 summarizes the specific techniques used in the different
layers within our overall verification strategy. The three levels
discussed in detail in this chapter have several common themes:
extensive use of constrained random stimulus, Specman Elite
running sophisticated e - based verification environments, Enterprise
Manager’s executable verification plans, and reliance on coverage
metrics to gauge verification progress. In addition to its planning
capabilities, we found Enterprise Manager’s ability to automate
regression runs and report results in a concise manner very helpful.

Figure 7 SoC- Level Verification was Performed Using C- Based Tests

Adelante VD3204x Core, Subsystem, and SoC Verification 343

Of course, all the advanced features of our methodology required a
nontrivial investment. The setup and execution of the verification
environment required about three engineer- years, nearly as much as the
four engineer- years required to write the 60000 lines of RTL code in
the core. This investment was clearly worthwhile; the Adelante
VD3204x DSP core has already been used in successful SoC- design
products, with the first tape- outs imminent, and no major problems
have been reported by any internal or external customers.

We are very pleased that we met our goal of improved core quality,
and we are quite certain that we will continue to use our proven
methodology on derivatives of the VD3204x. We have a few ideas
for enhancing our methodology, including using assertions both for
more precise bug detection and for designers to express corner- case
coverage points directly within their RTL code. We are certain that
we will be able to use the experiences on this project as a baseline
for high- quality design and verification on future projects involving
both cores and complete SoCs.

 Figure 8 Verification of the DSP Core and its Subsystem Used Different
Techniques at Different Levels

SystemC-based Virtual SoC: An Integrated
System-Level and Block-Level Verification
Approach from Simulation to Coemulation

Laurent Ducousso, Frank Ghennassia, and Joseph Bulone

ST Microelectronics

Dr. Laurent Ducousso has over 20 years of experience
in digital design and verification. In 1994, Dr. Ducousso
joined STMicroelectronics as the verification expert
on CPU, microcontroller, and DSP projects. Since 2000,
he has managed the Home Entertainment Group verifi-
cation team. Prior to STMicroelectronics, he was enga-
ged in mainframe CPU development at Bull S.A for 8

years. Laurent holds a Ph.D. in Computer Sciences from Paris, France.

Frank Ghenassia is Director of the System Platforms
Group in the HPC (Home, Portable, and Communi-
cation) sector at STMicroelectronics. Mr. Ghenassia
focuses on IP/SOC verification, architecture defini-
tion, platform automation, and embedded software
development based on high- level modeling appro-
aches. He joined STMicroelectronics in 1995 and has

worked on OS development, software debuggers, and system- to- RTL
design flow activity. Mr. Ghenassia received his M.S. in Electrical
Engineering in Israel.

346 Metric-Driven Design Verification

Dr. Joseph Bulone manages a team that provides
central services in hardware emulation to STMicro-
electronics divisions. Joseph defines and provides
hardware- accelerated platforms for IP/SoC verifi-
cation and software development. He joined the
Central R&D division of STMicroelectronics in
1989, and was initially involved in the design of

ATM chips. He began working on hardware emulation in 1993. He
has been in charge of video chip validation, and hardware software
codesign. He holds a Ph.D. in microelectronics from the Institut
National Polytechnique de Grenoble, France.

Abstract

ST faced two daunting challenges for their next generation product
(1) to provide an advanced and fast platform for s/w development,
including ISS and hardware models described in abstraction level,

firmware component.

The Transaction- Level Modeling (TLM) capabilities of SystemC
were used to deliver a Virtual SoC and helped to resolve challenge
number (1). Though the TLM behavior was modeled with more
abstraction, there was enough accuracy for the software developers
to be able to debug their SoC design while running at 1 MHz.
Having this platform available early in the process enabled software
engineers to begin developing the embedded software for the
application. Not only did this bring in the overall project timescales,
but also the exceptionally close cooperation between the software
and hardware teams in the early phases of the project led to the
detection of significant bugs in the hardware specification of the
design. Because these bugs were found early, they were relatively
cheap to fix, and contributed to save a respin of the chip.

running at a minimum targeted rate of 1 MHz in the simulation envi-
ronment and (2) to integrate the system level and block- level verifi-
cation environments for a large RTL design with a significant

The Virtual SoC was extended to provide a block- level Verification
environment for a Low- Cost MPEG2 and more recently MPEG4

In order to accelerate the regression test of the IP, virtual SoC
environment used Cadence Incisive and the Palladium for signal-
based acceleration, by reusing SystemC high level of abstraction for
the testbench portion (simulations went from 300 Hz on Incisive up
to 10 KHz using signal- based acceleration). This performance will
improve further in the future, using TBA methodology. Incisive
capabilities included mixed language SystemC/RTL kernel, SimVision
for debugging and performance analysis thanks to TxE.2 SysProbe
methodology, dedicated to verify RTL performance and functionality,
was then built on top of TxE.

Introduction: Verification and Validation Challenges

Because of the increasing complexity of set- top- box chips, the Veri-
fication team decided to follow SystemC/TLM methodology. This
allowed SW teams to initiate their SW development early in the
design flow and provide an advanced and fast cosimulation platform
for s/w development. This included ISS models, running at a mini-
mum targeted rate of 1 MHz in the simulation environment without
the use of hardware accelerators. Figure 1 illustrates the SoC TLM
flow compared to the old flow. Section 2 describes this Virtual SoC
platform for 3 usages: SW development, HW verification and
architecture exploration, and analysis. Section 3 will present ST
verification process for RTL at block and platform levels for set- top-
box chips.

2 Transaction Explorer tool from Cadence.

design using Incisive and SystemC. Reusing the system- level environ-
ment in this way means that the tests (using images 80 � 96 pixels)
and test harness do not have to be reimplemented in a new language
and tool set. In order to speed up the RTL verification regression and
run full size conformal tests (with 1920 � 1080 and 720 1080 pixel�
images), Transaction- Based Acceleration (TBA) and emulation have
completed the validation process.

An Integrated System-Level and Block-Level Verification 347

348 Metric-Driven Design Verification

In order to complete full verification regression tests (with real
image sizes), the Virtual SoC platform was extended to include
simulation acceleration. This approach makes use of the Transac-
tion- Based Verification (TBV) methodology, which enables the ability
to mix SystemC testbench with RTL emulated on the Palladium3 H/W
emulator. This will be described in Section 4. Section 5 will sum-
marize the benefits of the Virtual SoC platform and will comment
the next steps of ST TLM methodology.

Virtual SoC TLM Platform
Transaction- Level Modeling (TLM) was pushed by industry and
research institutes through OSCI to respond to the following tasks:

– Embedded software development
– Functional verification
– Architecture analysis and exploration
– HW/SW coverification, HW validation

3 Cadence H/W accelerator & emulator.

Figure 1 Comparison Between Traditional and SystemC/TLM Flow

TLM infrastructure was developed to support modeling communi-
cation structures at three abstraction levels, i.e., Programmer’s View
(PV), Programmer’s View with Timing (PVT), and Cycle Accurate
(CA), leaving it up to the user to compromise between simulation speed
and accuracy. ST has played a major role in the OSCI- TLM working
group and deployed TLM methodology on multiple projects.

The virtual SoC TLM platform was developed at the PV level from
Specifications in order to offer fast simulations for the next phases.
This platform has been used as reference model and enabled
concurrent SW and HW engineering and close cooperation in early
phases of the project. This process led to the detection of significant
bugs early in the hardware specification. Because these bugs were
found early, they were relatively cheap to fix, and contributed to
save a respin of the chip.

SW engineers could start development before having the board. As
example, this was done on Graphic Engine Blitter and MPEG2
projects; the driver was developed before having a board, that led to
6 months time gain in comparison with traditional flow (as pointed
out in Figure 1).

HW verification group employed TLM platform because, though
more abstract, it accurately modeled the bit- level behavior of the
SoC while running at 1 MHz (this was achieved on MPEG4 decoder
project). This will be fully described in the following section.

Another domain of utility is architecture exploration and analysis
(Figure 2). The SoC TLM platform, when refined with timing
information, can provide relevant information on bus bandwidth,
peripheral accesses, interrupt latencies, memory conflicts, and
latency to the architects. The SysProbe methodology was built at ST
using the flexible transaction recording, viewing, and analysis
capabilities of Cadence’s SimVision and TXE. SysProbe could
record the transactions generated by proprietary architectural models.
It was also used for functional and timed validation. By calibrating
TLM with back- annotated data [1] it was also possible to radio the
same transactions generated by either TLM models or corresponding

An Integrated System-Level and Block-Level Verification 349

350 Metric-Driven Design Verification

Functional Verification: Cosimulation TLM and RTL
The Virtual SoC TLM platform (integrating bus, memories, CPU)

to achieve fast simulations. As an example, for MPEG4 decoder, full
RTL (including complete testbench) would take 6/7 hours. This was
reduced to few minutes with TLM backbone (tests used images
80 � 96 pixels).

RTL models and to compare the results using the environment pro-
vided by Cadence’s TXE. This technique was used to verify the per-
formance of the RTL.

was also reused for functional verification at block level and plat-
form level using Incisive and SystemC. This provided the ability

Figure 2 SimVision/TxE/SysProbe Analysis Environment

Reusing the system- level environment at block and platform views
means that the tests and test harness do not have to be reim-
plemented in a new language and tool set. A three- step approach
was used to achieve block- and platform- level verification:

� First step is to verify the block level. This step used the
TLM models of the low- cost MPEG4 already developed for
the virtual SoC. This implies that the RTL blocks can be
verified stand- alone before integrating with the rest of the
RTL. It also means that function tests used for system- level
verification can be reused for block- level verification.

� The Second step involves connecting the RTL DUT to the
TLM testbench through BFM, also known as transactors.
These transactors use the SystemC Verification Library
(SCV) to shape the timing characteristics of the traffic
across the bus, and the transaction recording and viewing

� The third step is to use the fast mixed language simulation
and debugging facilities of Incisive to verify the full RTL
design, by connecting the RTL description of the DUT to
the SystemC- based Virtual SoC Verification environment
described in previous sections.

Writing tests at the transaction level means that the tests can be used
at both system and block level. But to do effective block- level verifi-
cation, we need to stress the DUT by shaping the timing charac-
teristics of the data. ST uses SCV, the OSCI verification library
supported by Incisive, to randomize the timing characteristics of the
bus traffic. For example, we can allow the length of a burst write to
vary between a minimum and maximum number of clock cycles, or
we can specify the gap between one burst and the next. Rando-
mizing traffic characteristics in this way can trap costly bugs that the
block designer may not have been able to test for.

SysProbe methodology is used together with SimVision as a power-

capabilities of Incisive to verify the performance and func-
tionality of the Design Under Test (DUT).

ful transaction- level visualization tool. By visually looking at transac-
tions rather than individual signals in a waveform viewer, functional

An Integrated System-Level and Block-Level Verification 351

352 Metric-Driven Design Verification

Validation: Coemulation TLM-Palladium
The Validation process is incomplete without testing real condition
input to the design. Once the design was converted from SystemC to
RTL, simulation performance was reduced. In the case of the MPEG4

The traditional approach at CMG group has been to wait until fully
synthesizable and complete RTL is available, and then use the
Palladium emulator to test full RTL implementation. The TBV
methodology was adopted in order to get a head start for full- chip
verification, early in the development effort. This alleviated the need
to wait for the availability of complete RTL (including testbench).
This methodology allows the design teams to reuse the SystemC
testbench that was used in the first and second phase, while the
design is being converted into RTL. The performance gain allows
the teams to run long tests and continue to validate their system,
while the DUT is getting its final RTL representation.

The Incisive TBA solution (as illustrated in Figure 3), which is based
on the standard coemulation modeling interface (SCE- MI), enhances
simulation acceleration performance of the Palladium system by
reducing communication between the testbench running on the work-
station and the DUT in the emulation system. Productivity features
include support of variable- length messages, a faster streaming mode,
transaction recording capabilities, and support of both timed and
untimed testbench components. This solution enables full congruency
with the Incisive unified simulator to shorten bring- up time and assure
reusability of the testbench and the verification IP models. ST hopes

bugs can be identified and tracked down a lot quicker, and more
efficiently. Once the problem is identified, the verification engineer
can switch to the signal level to work out how to fix the bug.

design, full image sizes are 1920 � 1080 and 720 � 480. These image
sizes could not be fully tested during simulation.

to reach 100 kHz in comparison of 10 kHz at signal- based accele-
ration for a full image format SD.

Conclusion and Future Developments

In summary, the virtual SoC TLM platform made early SW develop-
ment possible – up to 6 months earlier than the traditional approach.
The Validation process was also pulled in by approximately 3 months –
by utilizing the TBV methodology. All this was made possible by using
SystemC/Incisive environment, which also provided the ability to
maintain same debugging and transactional environment for both RTL
and System- level verification.

The effort to create and update more and more TLM models into the
portfolio is an ongoing process at ST for efficient System- Level
Verification. TBA methodology is really beneficial if one can
enhance the speed of coemulation. While this approach has already
proven beneficial at ST, there is continued joint effort to improve
this methodology and technique.

Figure 3 Transaction- Based Acceleration

An Integrated System-Level and Block-Level Verification 353

354 Metric-Driven Design Verification

To further enhance the efficiency and throughput of the Verification
effort, Cadence Assertion- Based Verification (ABV) is also being
investigated, and will potentially be used on future projects.

1. Clouard, A., Mastrorocco, G., Carbognani, F., Perrin, A. und Ghenassia,

F. (2002). Towards Bridging the Gap between SoC Transactional and
Cycle- Accurate Levels. In Proc. of Design, Automation and Test in
Europe – Design Forum (DATE’02), Paris, France. IEEE CS Press, Los
Alamitos)

Is Your System-Level Project Benefiting

Steve Brown

Steve Brown is Director of Marketing for Enter-
prise Verification Process Automation at Cadence
Design Systems. He is a 20- year veteran of the
EDA verification industry and has held various
engineering and marketing positions at Cadence,
Verisity, Synopsys, and Mentor Graphics. He spe-

cializes in solving engineering, management, and marketing challenges
that arise when new technology and products enter the market. He
earned BSEE and MSEE degrees from Oregon State University and has
studied marketing strategy at Harvard, Stanford, Kellogg, and Wharton.

Industry trends in electronics are resulting in design and verification
schedules becoming more compact and complex. The use of SW to
implement more functionality provides flexibility, but also com-
pounds the difficulty in completing verification because of the need
to do more HW/SW coverification before silicon is available. The
emergence of effective HW/SW coverification solutions alleviates
this pressure technologically, but it creates an unanticipated burden
for many project teams: frequent daily interactions between HW and
SW teams as they converge on closure independently and
collectively.

In order to parallelize project operations and meet aggressive sche-
dules, system project teams designing both hardware and embedded
software must address the need for much higher frequency of inter-
actions. Without better forms of communication, automation enhance-
ments, and verification engines that are powerful and flexible, attempts
to parallelize flows will result in chaos and project paralysis.

from Collaboration or Headed to Chaos?

356 Metric-Driven Design Verification

In the world of software design, engineers typically try to steer clear
of the complex hardware verification process. Historically they have
presumed a stable silicon platform upon which to run and test their
drivers and applications. In some cases this results in finding
hardware bugs late. But the benefit is that most of the busy- work of
designing the hardware has been completed. As more of the hard-
ware and software is coverified, the more the software team is
exposed to the noisy, tumultuous process of reaching closure of the
hardware. While in theory parallelizing hardware and software is an
overall gain for the project, the team must address the significant

and all parallelization benefits will be lost.

Communication Barriers Torn Down

When it comes to system- wide applications the “communication
gap” is just not acceptable any longer. Hardware design and
verification has matured to a point where we regularly see predic-
table schedule success when applying verification process auto-

increase in details that will be discovered and resolved while expo-
sing the software team to the hardware development. Without an
effective plan to handle the volume of issues, the project will stall

mation. System verification projects must leverage these same appro-
aches for HW/SW coverification and system- level closure. With
more upfront planning between the hardware and software teams,
communication and understanding of what the other is doing will
bring huge benefits. The result of planning is documented intent,
and measures of success using coverage data like code converage,
assertion coverage, and functional coverage, made visible across the
team. Assumptions that each team needs to make based on the initial
system specification will be regularly reviewed, check- points will be
established continually checking for system- level bugs, and a broad-
based agreement on how the system should behave to reach full
system- level closure will be agreed upon. The metrics built into the
plan will apply to the necessary check points of the hardware and
embedded software and be tracked and managed together in a system-
wide management solutions leading to prioritization and escalation
of problems and priorities if needed.

The use of metrics is what allows introduction of automation. This
automation applies to the individual verification tasks: dispatching
jobs, analyzing results, and debugging failures. The individual
benefits of automation are only incremental in their impact on the
overall project. Most important is the automation of handling the
project- wide analysis, tracking, and decision making. These metrics
make it easy for a centralized view of either the hardware or the
software, and identification of critical problems to address first.
Communication will become much more instant and less disruptive
as the reporting and management tools take care of most of the
work. Updating of the status will be more frequent with less
overhead. Perhaps the most important improvement in the project
team’s development cycle will be the ability to adapt and react to
changes. This clarity enables the software and hardware teams to
work independently, while still rapidly uncovering and resolving
critical system- level issues. Adjustments in resource focus and
testing needs will adapt automatically based on the changes in the
initial specification and how they flow through the rest of the plans.

Without applying these important and proven concepts of planning,
metrics, and automation into your hardware and software develop-
ment process you are only setting yourself up for project, level
paralysis. Hardware and software verification have to be parallelized
within the hardware and software domains to keep up and shorten
schedules with limited resources, engines, and skill levels. The
metric- driven approach itself will comfortably bring together the
hardware and software teams by capturing common goals and check
points of operation. High- performance models and engines, quality
verification IP, coverage- driven verification approaches, and debug-
ging across both software and hardware domains will become
increasingly essential. In addition, this entire process will need to be
managed at a project level from the block to chip and full system
level. Without this collaboration I’m afraid we’ll be headed for
system- level chaos – which is exactly what we need to avoid.

Is Your System-Level Project Benefiting from Colloboration 357

Index

A

Architect

B

C

cannot, xiii

closure

D

E

engineer

engineers, xv
design, xv
entry level, xv
verification, xv

Acceleration, 75
Alfonso Íñiguez, xxiii

design, 36
verification, 35

Architectural Exploration, 58
Architectural Verification, 165
ARM926, 205
assertion, 46
Assertion based verification, 167
Assertion Based Verification, 63
Assertions, 44

black-box, 92
Block Verification, 45
brainstorming, 17, 85
Brainstorming, 87
Branch, 130
Bus Traffic, 120

cereal, 81
Chip Level Verification, 48
Chris Wieckardt, xxvi
Cloning, 141

tracking, 6
Code Coverage, 117, 160, 192
constrained random stimulus, 11

Cost of Failure, 5

Coverage, 161
Assertion, 161
Checker, 161, 195
Code, 196

Co-Verification, 197
Crisis, 4
CVS, 129

death by status meeting, 13
Debug, 141, 148

hypothetical, 148
Debug coordinator, 39
Debug triage, 144
Design Engineer, 38
Design Manager, 34
design quality, 123
Design/System Architect, 36
Directed Testing, 187

e, 64
Egidio Pescari, xxii
Emulation, 75

design, 96

environment definition file, 132
Euclid, xix
eVC, 203
executable plan, 55
executable verification plan, 18
execution, 15

Constrained Random Testing,
188, 194

360 Index

Executives, xv

F

G

Generic Software Adapter,

H

Hamilton Carter, xi

I

J

L

M

managers, xv
design, xv
verification, xv

Metric-driven Process Automation

Metrics

P

R

implementation, 21
verification, 21

Executive, 31

FASB, 7
firmware, 63
formal, 46, 65
Formal, 169
formal verification, 65
Frank Ghenassia, xxvii
functional coverage, 71
Functional coverage, 43
Functional Coverage, 118, 157,

192

Gabriele Zarri, xxi

210
Gibberish, 190
goal, 103

implementation execution, 21
Incisive Enterprise Manager, 25
integration verification, 98, 101
Integration Verification, 47
Iraklis Diamantidis, xxii
ISO, 7

Jason Andrews, xxi
Joseph Bulone, xxvii, 346

Laurent Ducousso, xxvii

Machine utilization, 125

Mario Andretti, 3
Marketing, 33
Maslow, 9
Mediterranean Sea, xix
Metric- driven Process, 6

Tools, 52
metrics, 18

too many, 125
milestone, 104
milestones, 103
Mixed Signal Verification, 73
moderator, 89
Monia Chiavacci, xxi

Paul Carzola, xxiv
planning, 15
Planning, 86
PLANNING, 240
planning session, 17, 84, 175, 185,

289
Planning Session, 89
Port, 214
postmortem, 20
process metrics, 143
product intent, 42, 58, 82
PSL, 64
Pythagoras, xx

regression, 23
bring-up, 116
design quality, 121
integration, 119
revision management, 115, 123

S

Shankar Hemmady, xi

T

track

U

V

Verification

W

Regression, 113
Regression Management, 113, 114
Regressions coordinator, 39
response, 16
Response, 26
Revision, 115, 129

Tag, 134
Revision Control System, 129
Revision Tag, 131
Roger Witlox, xxvi
roles, 31
Ronald Heijmans, xxvi

sequences, 230
Sequences, 217

Simulation, 70, 181
Snooping, 158
Software utilization, 125
Steve Brown, xxv
strategic metric, 29
Stubs, 216
Stylianos Diamantidis, xxii
Susan Peterson, xxiv
SVA, 65

SystemC, 163
System Level Verification, 48

SystemVerilog, 45

tactical metric, 29
Test- Based Coverage, 161
testbench, 70

Thanasis Oikonomou, xxiii

assertions, 67
transaction level modeling, 43

universal coverage database, 108

vComponents, 230
verification, 48

integration, 47
system level, 48

Verification, 3
block, 45

Architect/Methodologist, 35
verification engine execution, 21
verification engineer, 92
Verification Engineer, 37
Verification Hierarchy of Needs, 9
Verification Manager, 34
Verification Planning, 86, 201
Verilog, 45, 64, 181
VHDL, 45, 64, 181
view, 102
Visibility, 136
vProbes, 231

Waveform, 146
white-box, 100

Index 361

