

Hardware Verification with

SystemVerilog

An Object-Oriented Framework

Mike Mintz

Robert Ekendahl

Hardware Verification with
SystemVerilog

An Object-Oriented Framework

Cover art from the original painting “Dimentia #10” by John E.
Bannon, johnebannon.com

Mike Mintz Robert Ekendahl
Harvard, MA Somerville, MA
USA USA

Library of Congress Control Number: 2007923923

ISBN 0-387-71738-2 e-ISBN 0-387-71740-4
ISBN 978-0-387-71738-8 e-ISBN 978-0-387-71740-1

Printed on acid-free paper.

 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

9 8 7 6 5 4 3 2 1

springer.com

For Joan, Alan, and Brian.
Thanks again for your patience.

Mike

For Chantal.
Thanks again for your understanding,
love, and active support.

And to Newton—and now Darwin.
For many more missed walks.

Robert

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework vii

Contents
Preface . xix

Acknowledgments . xxi

C h ap t e r 1 : I n t r o d uc t i o n 1

Background . 3

What is Functional Verification?. 4

Why Focus on SystemVerilog? 5

A Tour of the Handbook . 5

For Further Reading . 6

Part I:
SystemVerilog and Verification
(The Why and How) .7

C h ap t e r 2 : W h y S y s t e m Ve r i l o g ? 9

Overview. 10

SystemVerilog as a Verification Language 11

Main Benefits of Using SystemVerilog 13

Drawbacks of Using SystemVerilog 13

SystemVerilog Traps and Pitfalls 14

SystemVerilog is not Verilog 14

Errors and run-time crashes 15

C o n t e n t s

viii Hardware Verif ication with SystemVerilog

Five languages in one! . 15

The assertions language . 15

The constraint language. 16

The coverage language . 18

SystemVerilog features not discussed 19

Summary . 20

For Further Reading . 20

C h ap t e r 3 : O O P a n d S y s t e m Ve r i l o g 23

Overview. 24

The Evolution of OOP and SystemVerilog 25

Assembly programming: The early days. 25

Procedural languages: The next big step 25

OOP: Inheritance for functionality 26

OOP: Inheritance for interface 28

A word or two about “interface” 28

The Evolution of Functional Verification 29

Verification through inspection 29

Verification through randomness 29

The emergence of
hardware verification languages 30

OOP: A current trend in verification. 31

OOP: A possible next step 31

OOP and SystemVerilog . 32

Data abstraction through classes 32

A DMA descriptor example 32

Access control . 33

Constructors . 34

Member methods and variables 35

Inheritance for functionality 36

Inheritance for code interface. 37

What’s a header file?. 39

Packages . 40

Separating HDL and testbench code 42

An Object-Oriented Framework ix

Wiggling wires: the interface concept. 42

Building and using interfaces 44

Summary . 46

For Further Reading . 46

C h ap t e r 4 : A L ay e r e d Ap p r o a c h 47

Overview. 48

A Whiteboard Drawing . 50

An “ends-in” approach. 51

Refining the whiteboard blocks 52

The “Common-Currency” Components 52

The Component Layer in Detail 53

The connection layer. 54

The agent layer . 56

The transaction layer . 57

The Top-Layer Components 58

What is a Test? . 60

The Test Component . 62

The Test Irritator . 64

A Complete Test . 65

Summary . 67

For Further Reading . 67

Part II:
An Open-Source Environment with SystemVerilog69

C h ap t e r 5 : T e a l B a s i c s 71

Overview. 72

Teal’s Main Components. 72

Using Teal . 74

A simple test . 74

Logging Output. 74

Using Test Parameters . 77

Accessing Memory . 79

C o n t e n t s

x Hardware Verif ication with SystemVerilog

A memory example . 80

Constrained Random Numbers 84

Required initialization . 84

Using random numbers. 85

Working with Simulation Events 86

Summary . 87

C h ap t e r 6 : T r u s s : A S t a n d a r d V e r i f i c a t i o n
F r a m e wo r k . 89

Overview. 90

General Considerations . 91

SystemVerilog considerations 91

Keeping it simple . 92

Major Classes and Their Roles 93

Key test algorithm: The “dance” 94

The verification_component Virtual Base Class 97

Detailed Responsibilities
of the Major Components . 98

The testbench class. 99

Watchdog timer .101

Test class .102

Test Component and Irritator Classes106

The test component virtual base class 106

An AHB example .108

Test-component housekeeping functionality 109

The irritator virtual base class 110

Using the irritator. .112

Summary .113

An Object-Oriented Framework xi

C h ap t e r 7 : T r u s s F l o w . 115

Overview. .116

About truss_verification_top.sv116

The Test Component Dance 119

The Irritator Dance .121

Compiling and Running Tests.122

The truss run script .123

Switches .124

Using “-f” files .125

The First Test: A Directed Test 125

The Second Test:
Adding Channels and Random Parameters127

The channel pseudo-templated classes128

Building the second test.129

Building the second test’s test_component 131

Adjusting the second test’s parameters 132

The Remaining Tests:
Mix-and-Match Test Components135

Summary .136

C h ap t e r 8 : T r u s s E x a m p l e 137

Overview. .138

Directory Structure .138

Theory of Operation .140

Running the Simple ALU Example142

Points of Interest .142

Power-on Reset .143

Driver and Monitor Protocol 144

The alu_test_component .145

Checking the Chip .146

Completing the Test .147

Summary .149

C o n t e n t s

xii Hardware Verif ication with SystemVerilog

Part III:
Using OOP for Verification
(Best Practices). .151

C h ap t e r 9 : T h in k in g O O P 153

Overview. .154

Sources of Complexity .155

Essential complexity vs.
implementation complexity 155

Flexibility vs. complexity156

Apparent simplicity vs.
hiding inherent complexity159

Example: How hiding complexity
can create confusion .159

Example: How apparent simplicity
leads to later problems160

Team dynamics .162

Team roles .162

Using a “code buddy” .163

Creating Adaptable Code .163

Achieving adaptability .163

Why is adaptability tricky?164

Architectural Considerations
to Maximize Adaptability .165

Changes are easy—or just plain impossible.166

Where is adaptation likely to happen? 167

Separating Interface from Implementation 168

Code Interface, Implementation, and Base Classes . . .169

Summary .170

For Further Reading .171

An Object-Oriented Framework xiii

C h ap t e r 1 0 : D es i gn in g w i t h O O P 173

Overview. .174

Keeping the Abstraction Level Consistent 174

Using “Correct by Construction” 176

The Value of Packages .178

Data Duplication—A Necessary Evil180

Designing Well, Optimizing Only When Necessary 181

Using the Protocol, Only the Protocol182

Verification Close to the Programming Model183

The Three Parts of Checking184

Separating the Test from the Testbench186

Summary .187

For Further Reading .188

C h ap t e r 1 1 : O O P C l a s s e s 189

Overview. .190

Defining Classes .191

How Much Electricity? .191

Classes .192

Packages .192

Pointers and virtual functions192

Global Services. .193

Package it up! .193

Static methods .194

Singletons—A Special Case of Static Methods 194

Packages or static methods?195

Other considerations .196

Class Instance Identifiers .197

Strings as identifiers .197

Static integers as identifiers197

Combination identifiers .198

Class Inheritance for Reuse.198

A BFM base-class example 199

C o n t e n t s

xiv Hardware Verif ication with SystemVerilog

A BFM agent class .200

Reusing the BFM class .200

Class Inheritance for Code Interfaces201

Inheritance for a verification component 201

Inheritance for a payload code interface.202

Summary .203

For Further Reading .204

C h ap t e r 1 2 : O O P C o n n e c t i o n s 205

Overview. .206

How Tight a Connection? .207

Types of Connections. .209

Peer-to-peer connections209

Master-to-slave and push-vs.-pull connections209

Two Tight Connection Techniques 211

Using pointers .211

Using inheritance .212

Threads and Connections .214

Events—explicit blocking interconnects.214

Hiding the thread block in a method 216

Fancier Connections .217

Listener or callback connections 218

Channel connections .219

Action object connections 220

Summary .221

For Further Reading .222

An Object-Oriented Framework xv

C h ap t e r 1 3 : C o d i n g O O P 223

Overview. .224

“If” Tests—A Necessary Evil 224

“If” tests and abstraction levels 225

“If” tests and code structure 226

Repeated “if” expressions 227

“If” tests and factory functions228

A factory function example 229

Coding Tricks .232

Coding only what you need to know232

Reservable resources. .233

The register: an int by any other name234

Using data members carefully234

Coding Idioms. .236

The singleton idiom. .237

Public nonvirtual methods:
Virtual protected methods238

Enumeration for Data, Integer for Code Interface240

What’s in a Name? .241

Keeping class name the same as file name 241

Keeping class and instance names related241

Coding with Style .242

Proceeding with caution.243

General syntax conventions 243

Identifying local and protected members 244

Summary .245

For Further Reading .246

C o n t e n t s

xvi Hardware Verif ication with SystemVerilog

Part IV:
Examples
(Putting It All Together)247

C h ap t e r 1 4 : B l o c k - L e v e l T e s t i n g 249

Overview. .250

Theory of Operation .251

Verification environment252

Verification IP .253

UART VIPs .253

Wishbone VIP .254

The verification dance. .255

Running the UART Example.255

Points of Interest .256

Configuration .256

VIP UART package. .257

VIP UART configuration class.258

Randomization of parameters258

UART 16550 configuration class260

Configuring the Chip .261

Register access. .262

The wishbone_memory_bank and
wishbone_driver .263

Traffic Generation .265

The generator_agent and uart_bfm_agent classes. . .265

The Checker .267

Checking the data. .268

Connecting It All Together 270

The testbench .270

Building the channels .271

Building the configuration and interface port.271

Building the component-layer objects 273

The wishbone objects .274

The test component .275

An Object-Oriented Framework xvii

The uart_basic_test_component::do_randomize()
method. .277

The basic data test .278

More Tests. .280

Summary .280

C h ap t e r 1 5 : C h i p - L e v e l T e s t i n g 281

Overview. .282

Theory of Operation .282

Verification environment283

Running the UART Example.284

The quad_uart_test_components Test 284

The quad_uart_irritators Test286

UART irritator class .286

The test .288

The quad_uart_vectors Test292

The block_uart Test .293

Summary .293

C h ap t e r 1 6 : T h i n g s t o R e m e m b er 295

Part I: Use SystemVerilog and Layers!296

Part II: An Open-Source Approach 296

Part III: OOP—Best Practices297

Part IV: Examples—Copy and Adapt!298

Conclusion to the Conclusion.298

I n d e x . 3 0 1

An Object-Oriented Framework xix

Preface

This is the second of our books designed to help the professional verifier

manage complexity. This time, we have responded to a growing interest not

only in object-oriented programming but also in SystemVerilog. The writing

of this second handbook has been just another step in an ongoing masochistic

endeavor to make your professional lives as painfree as possible.

The authors are not special people. We have worked in several companies,

large and small, made mistakes, and generally muddled through our work.

There are many people in the industry who are smarter than we are, and many

coworkers who are more experienced. However, we have a strong desire to

help.

We have been in the lab when we bring up the chips fresh from the fab, with

customers and sales breathing down our necks. We’ve been through software

bring-up and worked on drivers that had to work around bugs1 in production

chips.

What we feel makes us unique is our combined broad experience from both

the software and hardware worlds. Mike has over 20 years of experience from

the software world that he applies in this book to hardware verification.

Robert has over 12 years of experience with hardware verification, with a

focus on environments and methodology.

What we bring to the task of functional verification is over three decades of

combined experience, from design, verification, software development, and

management. It is our experiences that speak in this handbook. It is our desire

that others might learn and benefit from these experiences.

We have had heated discussions over each line of code in this book and in

our open-source libraries. We rarely agree at first, but by having to argue our

cases we arrive at what we feel are smart, efficient, flexible, and simple

solutions. Most of these we have “borrowed” from the software industry but

have applied to the field of verification.

We believe that the verification industry can benefit from the lessons learned

from the software domain. By using industry-standard languages, the verifi-

cation domain can adapt techniques and code from over twenty calendar years

1. Features.

xx Hardware Verif ication with SystemVerilog

of software effort, the scope of which is nothing short of stunning. Many

brilliant people have paved the way in the software field. Although the

field of verification is much younger, we could benefit greatly from

listening, learning, and adapting mature programming techniques to the

production of products of the highest quality.

So why do we provide open-source software at our website,

www.trusster.com? Open-source software is a key to uniting and increas-

ing the productivity of our industry. There is almost no successful closed-

source (“hard macro”) intellectual property (IP), for a good reason.

Without the ability to look at the source and edit as necessary, the task

is much more difficult and the chances for success are slim.

We hope that you enjoy this book—and better yet, find its principles

increasingly useful in daily practice. We look forward to your comments.

Please keep in touch with us at www.trusster.com.

Mike Mintz

Robert Ekendahl

Cambridge, Massachusetts, USA

March 2007

An Object-Oriented Framework xxi

A c k n o w l e d g m e n t s

Acknowledgments

It takes a village to raise a child, and it takes a village to create a book. There

is a core family, and a few relatives, and a whole lot of helpful neighbors and

friends. Once again, the authors would like to bow humbly to our village—

in particular, to the global verification village.

This, our second book, shares many of the same reviewers and adds some

new ones. They provided great comments on almost every chapter, both

detailed and “big picture,” helping to improve many sections substantially.

Michael Meyer was once again our main technical editor, turning our gib-

berish into English and making clear where we were unclear. This book would

not have been readable without him.

We are truly grateful for all the reviewers, their time, and their suggestions

during both the early and near final stages of the book. In particular, we thank

Ed Arthur, Oswaldo Cadenas, Jesse Craig, Simon Curry, Thomas Franco,

John Hoglund, Mark Goodnature, Tom Jones, James Keithan, Ajeetha

Kumari, David Long, Bryan Morris, Nancy Pratt, Joe Pizzi, Dave Rich, Henrik

Scheuer, Chris Spear, Peter Teng, Thomas Tessier, Greg Tierney, Igor

Tsapenko, Gerry Ventura, Stephanie Waters, and Andrew Zoneball.

We are also grateful for the support and encouragement of the producers of

the HDL simulators. In particular, we thank the following simulator compa-

nies—Cadence, Mentor Graphics, and Synopsys—for providing licenses to

their products, so we could confirm that the examples in this handbook work.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 1

Introduction
C H A P T E R 1

Coding is a human endeavor. Forget that and
all is lost.

Bjarne Stroustrup, father of C++

There are several books about hardware verification, so what makes

this book different? Put simply, this book is meant to be useful in your

day-to-day work—which is why we refer to it throughout as a handbook.

The authors are like you, cube dwellers, with battle scars from developing

chips. We must cope with impossible schedules, a shortage of people to

do the work, and constantly mutating hardware specifications.

We subtitled this book An Object-Oriented Framework because a major

theme of the book is how to use object-oriented programming (OOP) to

do verification well. We focus on real-world examples, bloopers, and

code snippets. Sure, we talk about programming theory, but the theme

of this book is how to write simpler, adaptable, reusable code. We focus

mainly on OOP techniques because we feel that this is the best way to

manage the ever-increasing complexity of verification. We back this up

with open-source Verification Intellectual Property (VIP), several com-

plete test systems, and scripts to run them.

C h a p t e r 1 : I n t r o d u c t i o n

2 Hardware Verif ication with SystemVerilog

We cover the following topics:

SystemVerilog as a verification language

A tour of the features and real-world facts about SystemVerilog

How to use OOP to build a flexible and adaptable verification
system

How to use specific OOP techniques to make verification code
both simpler and more adaptable, with reference to actual
situations (both good and bad) that the authors have encountered

Useful SystemVerilog code, both as snippets, complete examples,
and code libraries—all available as open source

This handbook is divided into four major sections:

Part I provides an overview of OOP concepts, then walks through
the transformation of a block-level view of a typical verification
system into code and classes.

Part II describes two free, open-source code libraries that can
serve as a basis for a verification system—or as inspiration for
your own environment. The first, called Teal, is a set of utility
classes and functions. The second, called Truss, is a complete
verification system framework. Both are available as open source
and are available at www.trusster.com.

Part III describes how to use OOP to make your team as
productive as possible, how to communicate design intent better,
and how to benefit from “lessons learned” in the software world.

Part IV describes several complete real-world examples that
illustrate the techniques described in the earlier parts of this book.
In these examples we build complete verification environments
with makefiles, scripts, and tests. These examples can serve as
starting points for your own environment.

For the curious, each of the chapters in Part I and Part III ends with a

section called “For Further Reading,” which recommends relevant land-

mark papers and books from both the hardware and software domains.1

1. The references in these sections, though not academically rigorous, should be
sufficient to help you find the most recent versions of these works on the
Internet.

An Object-Oriented Framework 3

B a c k g r o u n d

Background

The silicon revolution1 has made computers, cell phones, wireless net-

works, and portable MP3 players not only ubiquitous but in a constant

state of evolution. However, the major impediment to introducing new

hardware is no longer the hardware design phase itself, but the verifica-

tion of it.

Costs of $1M or more and delays of three to six months for new hardware

revisions of a large and complex application-specific integrated circuits

(ASICs) are common, providing plenty of incentive to get it right the

first time. Even with field-programmable gate arrays (FPGAs), upgrades

are costly, and debugging an FPGA in the lab is very complex for all but

the simplest designs.

For these reasons, functional verification has emerged as a team effort

to ensure that a chip or system works as intended. However, functional

verification means different things to different people. At the 30,000-

foot level, we write specifications, make schedules, and write test plans.

Mainly, though, we code. This handbook focuses on the coding part.

White papers are published almost daily to document some new verifi-

cation technique. Most of you probably have several papers on your desk

that you want to read. Well, now you can throw away those papers! This

handbook compresses the last ten years of verification techniques into a

few hundred pages. Of course, we don’t actually cover that decade in

detail (after all, this is not a history book), but we have picked the best

techniques we found that actually worked, and reduced them to short

paragraphs and examples.

Because of this compression, we cover a wide variety of topics. The

handbook’s sections range from talking about SystemVerilog, to intro-

ducing OOP, to using OOP at a fairly sophisticated level.

1. Moore’s law of 1965 is still largely relevant. See “Cramming more components
onto integrated circuits,” by Gordon Moore, Electronics, Volume 38, Number
8, April 19, 1965.

C h a p t e r 1 : I n t r o d u c t i o n

4 Hardware Verif ication with SystemVerilog

What is Functional Verification?

Asking “what is functional verification?” brings to mind the familiar

poster, “A View of the World from Ninth Avenue,”1 in which the streets

of New York City are predominant and everything beyond is tiny and

insignificant. Every one of us has a different perspective, all of which

are, of course, “correct.” Put simply, functional verification entails build-

ing and running software to make sure that a device under test (DUT, or

in layman’s terms, the chip) operates as intended—before it is mass-

produced and shipped.

We perform a whole range of tasks where the end goal is to create a high

degree of confidence in the functionality of the chip. Mostly we try to

find errors of logic, by subjecting the chip to a wide variety of conditions,

including error cases (where we validate graceful error handling and

ensure that the chip at least does not “lock up”). We also make sure that

the chip meets performance goals, and functions in uncommon combi-

nations of parameters (“corner cases”), and confirm that the chip’s

features—such as the register, interrupt, and memory-map interfaces—

work as specified.

As with the view of New York City, the perspectives of every company,

indeed even of the design and test teams within a company, will naturally

be slightly different. Nevertheless, as long as the chip works as a product,

there are a number of ways to achieve success. That’s why this handbook

does not focus on what the specific tasks are; you know what you have

to do. Rather, we focus on how you can write your code as effectively

as possible, to alleviate the inevitable pain of verification.

1. Saul Steinberg, cover of The New Yorker, March 29, 1976.

An Object-Oriented Framework 5

W h y F o c u s o n S y s t e m Ve r i l o g ?

Why Focus on SystemVerilog?

A major development in the field of functional verification is the increas-

ingly mainstream use of OOP techniques. Basically, those of us in the

verification field need those techniques to handle increasingly complex

tasks effectively. While most of the techniques presented in this handbook

are adaptable to any number of languages such as Vera or C++, we focus

on SystemVerilog—the marriage of the Verilog programming language

with OOP.

At its core, OOP is designed to manage complexity. All other things

being equal, simpler code is better. Because of the flexibility inherent in

using OOP, we can write code that is simpler to use, and therefore more

adaptable. In short, we can write reusable code that outlives its initial use.

This handbook is all about providing techniques, guidelines, and exam-

ples for using SystemVerilog in verification, allowing you to make more

use of some “lessons learned” by software programmers. We distill the

important bits of knowledge and techniques from the software world,

and present them in the light of verification.

A Tour of the Handbook

The four parts of this handbook provide a variety of programming tips

and techniques.

Part I walks through the main concepts of OOP, introducing how
to transform your high-level “whiteboard” idea for a verification
system into separate roles and responsibilities. The goal is to
build appropriately simple and adaptable verification systems.

Part II uses these techniques and presents two open-source code
libraries for verification, called Teal and Truss. Teal is a utility
package that is lightweight and framework agnostic. Truss is a
verification framework that encourages the use of the canonical
form described in Part I. Both are used by several companies and
run under most simulators.

C h a p t e r 1 : I n t r o d u c t i o n

6 Hardware Verif ication with SystemVerilog

Part III introduces the OOP landscape in a fair amount of detail.
OOP thinking, design, and coding are illustrated by means of code
snippets representative of problems that verification engineers
commonly have to solve.

Part IV provides several complete examples of verification test
systems, providing real-world examples and more details on how
the OOP techniques discussed are actually used. Part IV is all
about code. While a handbook may not be the best vehicle for
describing code, it can be a good reference tool. We show a
relatively simple example of how the verification of a single block
of the ubiquitous UART1 can be done. Then we show how this
block-level environment can be expanded to a larger system.

The authors sincerely hope that, by reading this handbook, you will find

useful ideas, techniques, and examples that you can use in your day-to-

day verification coding efforts.

For Further Reading

On the topic of coding well, Writing Solid Code, by Steve
McGuire, is a good tour of the lessons Microsoft has learned.

Principles of Functional Verification, by Andreas Meyer, provides
an introduction to the broad topic of chip verification.

Writing Testbenches: Functional Verification of HDL Models,
Second Edition, by Janick Bergeron, gives another view of the
process of functional verification.

1. Universal asynchronous receiver-transmitter.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 7

Part I:
SystemVerilog and
Verification
(The Why and How)

This part of the handbook explores the use of SystemVerilog for

verification and then look at the benefits and drawbacks of using Sys-

temVerilog. In the next chapter we take a brief tour of the features of

SystemVerilog.

Next, we weave three different themes together: the evolution of pro-

gramming in general, the creation of object-oriented programming (OOP)

techniques, and the evolution of functional verification. The reason we

chose to look at these three themes is to show why OOP exists and how

it can be harnessed to benefit verification.

A major theme of this handbook is to build a verification system in layers.

OOP techniques are well-suited to this approach. In the last chapter of

this section, we’ll look at a canonical verification system by using a

standard approach to building verification components.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 9

Why
SystemVerilog?
C H A P T E R 2

I f you want to do buzzword-oriented
programming, you must use a strongly
hyped language.

Mike Johns

We, in the functional verification trade, write code for a living. Well,

we do that, and also puzzle over code that has been written and that has

yet to be written. Because functional verification is a task that only gets

more complex as designs become more complex, the language we work

in determines how well we can cope with this increasing complexity.

The authors believe that SystemVerilog is an appropriate choice for

functional verification, but as with any choice, there are trade-offs. This

chapter discusses the advantages and disadvantages of using SystemVer-

ilog for functional verification. We’ll look at the following topics:

An abbreviated comparison of the languages and libraries
available for functional verification

Why SystemVerilog is an appropriate choice for verification

C h a p t e r 2 : W h y S y s t e m Ve r i l o g ?

10 Hardware Verif ication with SystemVerilog

The disadvantages of using SystemVerilog

Overview

Coding for functional verification can be separated into two parts. One

is the generic programming part, and the other is the chip testing part.

The generic part includes writing structures, functions, and interactions,

using techniques such as OOP to manage complexity. The chip testing

part includes connecting to the chip, running many threads, and managing

random variables.

The generic programming part becomes more and more crucial as the

complexity of the hardware to be tested grows. While the problem of

connecting to a more complex chip tends to grow only linearly, the overall

problem of dealing with this increased complexity grows exponentially.

The authors believe the generic part of programming is served reasonably

by SystemVerilog. The language’s features and expressive capabilities

make it usable for functional verification. As will be discussed in detail

in later sections, the downside is that the language is immature, and

compliance from one simulator to the next is inconsistent.

While SystemVerilog might be a little rough around the edges, it is a

good way for those who are mainly hardware oriented to learn OOP. As

with Verilog, threading is built in, and connection to the chip is relatively

well thought out. Realize though, that the actual percentage of code

devoted to these tasks is small.

These tasks of HDL connection and parallel execution generally increase

linearly with the complexity of the chip. In other words, there are more

wires to connect, more independent threads to run, more variables to

constrain, and so on.

By contrast, it is much more difficult to make the complexity of a chip

increase only linearly. So, as a verification system gets bigger, things

tend to get out of hand quickly. Our ability to understand a complex

verification system is often more important than how we actually connect

to the hardware description language (HDL) wires.

An Object-Oriented Framework 11

S y s t e m Ve r i l o g a s a Ve r i f i c a t i o n L a n g u a g e

So this handbook concentrates on the “How to make the code reasonable”

part of programming. Sure, our examples are multithreaded and use

virtual interfaces,1 but the bulk of this handbook is about how to write

understandable code.

SystemVerilog as a Verification Language

Several attempts have been made to move verification away from HDLs,

such as Verilog or VHDL.2 An HDL does a good job of spanning design

concepts (called the register transfer level, or RTL) down to a few

primitives that are used in great numbers to implement a design (called

the gate level). However, HDLs are not adept at “moving up” in abstrac-

tion level to handle modern programming techniques. HDLs are con-

cerned with creating silicon, not with programming. Specifically, HDLs

do not provide for object-oriented concepts.

SystemVerilog makes a step in this direction, and can be used to verify

a chip. However, it is not clear that such a large span of concepts as

SystemVerilog tries to cover can be integrated well into a single language.

This handbook provides advice and examples that the authors believe

will maximize the programming features of the language, while mini-

mizing the “clunky” parts.

Not surprisingly, there are many choices and trade-offs when you choose

a verification language. The table on the following page briefly lists the

pros and cons of various languages suitable for verification.

1. We talk about virtual interfaces in the next chapter, but for now just know that
they are the way to connect HDL wires with testbench OOP code.

2. VHSIC (Very High-Speed Integrated Circuit) HDL.

C h a p t e r 2 : W h y S y s t e m Ve r i l o g ?

12 Hardware Verif ication with SystemVerilog

As we stress repeatedly through this handbook, the team
must decide what features of which languages to use, and
how. This handbook will show how best to use SystemVerilog’s
OOP features.

Language Pros Cons

Verilog, VHDL Simple, no extra license
required

No class concept, no
separation of verification
and chip concerns

Cadence Specman
“e”

Rich feature set Effectively proprietary,
nonorthogonal language
design

OpenVera OOP—“like”, better feature
set than HDL

Effectively proprietary,
interpreted, lacking full OOP
support

SystemVerilog IEEE standard, OOP features,
one simulator does HDL and
HVL, C interface

Covers all aspects from gates
to OOP, implementation
compliance is weak,
language is large, yet lacking
full OOP support

SystemC (C++) Mature language, open
source, most often does not
need a simulator

Big footprint, focus is on
modeling, heavy use of
templating, coverage and
constraint system dominates
coding, long compile times,
clumsy connection to HDL

Teal/Truss
(C++ form)

Mature language, good use of
C++, open source, few
source files

Not a product, no inherent
automatic garbage collection

Homegrown PLI/C Free, well known Not usually multithreaded,
usually called from HDL as a
utility function

An Object-Oriented Framework 13

M a i n B e n e f i t s o f U s i n g S y s t e m Ve r i l o g

Main Benefits of Using SystemVerilog

A major benefit of SystemVerilog is that it provides a relatively painless

introduction to OOP, allowing you to use as little or much of OOP as you

feel comfortable with. To this end, SystemVerilog allows the concept of

“code interface” versus “implementation,” allowing someone reusing

code to concentrate on the features the code provides, not on how the

code is actually implemented.

SystemVerilog is well-marketed, with several books and experts. (A

quick web search for “SystemVerilog” yielded over 365,000 references.)

The language is a good stepping stone from Verilog to OOP, reusing a

fair amount of the Verilog syntax.

Furthermore, SystemVerilog vendors are developing useful debugging

tools, and because SystemVerilog can coexist with Verilog and VHDL,

existing HDL code can be integrated easily.

Many companies have behavioral c-models of their core algorithms. For

models with a simple integral interface, the DPI1 can be used to run the

code in SystemVerilog. Note that the current compliance and feature set

are spotty, so be prepared that you may have to rewrite the code in

SystemVerilog.

SystemVerilog allows a clean separation between HDL and OOP con-

cerns. As will be explained further in the next chapter, the use of the

virtual interface feature, along with new keywords such as class

and local, can be used to support the OOP concerns.

Drawbacks of Using SystemVerilog

While there are many benefits to using SystemVerilog, there are naturally

drawbacks as in any language. One drawback is that, by itself, System-

Verilog is not a solution. Even with the open-source verification libraries

of Teal and Truss, you have to write code in a new language.

1. Direct Programming Interface—SystemVerilog’s API for connecting to C, and
by extension to C++.

C h a p t e r 2 : W h y S y s t e m Ve r i l o g ?

14 Hardware Verif ication with SystemVerilog

Another drawback, ironically, is that SystemVerilog is a rich language—
with the “dangerous” power that this implies. There are many features

and even sublanguages. Figuring out which subset to use is a daunting

task.

Consequently, it can take time to learn how to use SystemVerilog effec-

tively, even with the help of good FAE1 teams from EDA2 companies

giving presentations on the language and their design methodology. You

will have to find your own techniques within SystemVerilog. This, by

the way, is not necessarily a bad thing.

The purpose of this handbook is to lessen the effects of these drawbacks—

by providing proven OOP techniques from the software world, and by

illustrating, through real examples, how they are applicable to functional

verification.

SystemVerilog Traps and Pitfalls

This section of the handbook will probably be the most controversial.

We will talk about the current state of the SystemVerilog language.

We do not advocate using every feature in the language. Perhaps, over

time, the benefits of the features will bear out. But because this language

is immature, there are some areas where caution is advised.

SystemVerilog is not Verilog

Realize that SystemVerilog and Verilog are two separate languages.

While there is movement within the language committees to join the two

languages together, this will happen in 2008 at the earliest. Why does

this affect you? SystemVerilog has, for the most part, Verilog behavior

(and its warts), but there are differences.

For example, the SystemVerilog language reserves new keywords that

are likely to make your Verilog code fail to compile. Fortunately, simu-

lator vendors provide a way to tag files as either Verilog or SystemVerilog.

1. Field applications engineer.
2. Electronic design automation.

An Object-Oriented Framework 15

S y s t e m Ve r i l o g Tr a p s a n d P i t f a l l s

Errors and run-time crashes

When you code in a new language, there will be syntax and run-time

errors. The majority of the time the compiler will be correct. However,

remember that the language is young and the compliance is evolving, so

do not spend a large amount of time debugging. Do not be shy about

calling your local FAE. To be more clear, the authors and the FAEs are

on a first-name basis.

Five languages in one!

As you start to learn SystemVerilog, it becomes clear that several lan-

guages are melded into one. SystemVerilog includes a synthesizable

subset, an assertions language, a constraint language, a coverage lan-

guage, and an OOP language. Whew!

Each of these sublanguages has its own syntax, semantics, and features,

with a limited sharing of idioms. Because this handbook is focused on

OOP for verification, we will discuss only the SystemVerilog OOP

sublanguage.

With the exception of the synthesizable subset and OOP, these other

features have not been proven universally necessary. They might work

great for specific situations but not for most others. In the next sections,

we present arguments why they may not withstand the test of time.

The assertions language

The authors have used assertions for years. Well, to be clear, we have

used nontemporal assertions. These are simple boolean expressions that

must be true, otherwise the simulation ends. The following is an example:

assert (request && grant);

This use is fairly straightforward. However, as soon as time is involved,

the assertions can become quite complex, approaching the impenetrable.1

sequence qABC; a ##1 b ##[0:5] c; endsequence : qABC

property pEnded; not (qABC.ended); endproperty : pEnded

1. This example is from a forum on www.verificationguild.com.

C h a p t e r 2 : W h y S y s t e m Ve r i l o g ?

16 Hardware Verif ication with SystemVerilog

first_match (qA23B).pEnded) |-> c;

The mental effort required to understand such constructs is large. The

mental effort to write such constructs is an order of magnitude larger.

This means that only a few engineers are able to create assertions. The

authors have worked in languages where the complexity of the language

created a “priesthood,” where only the anointed could understand the

actual meaning of the code. While this might create a sense of job security

for the priests, it is never good for accuracy and efficiency, because it

stops discussions about the code.

In addition, often the assertion-writing effort itself is equal to—or

exceeds—the actual design-coding effort. While it’s true that formal

tools1 can then be used, the effort required can be large compared to the

payoff. This was tried in the software domain, complete with formal

program proofs, but such proofs are no longer used.

Temporal assertions are complicated to write and
understand. Make sure that the HDL complexity requires
their use.

The constraint language

In verification, randomization is essential. Unfortunately, it can be dif-

ficult to control the parameters that manage the randomization. (This

topic is discussed in detail in later chapters.) It certainly is not clear that

we, as an industry, understand enough about managing randomization to

have a “best” solution. The random-number management solution used

in SystemVerilog includes a constraint language. It is unclear to the

authors that this is a benefit. Sure, at some level we have to constrain

random numbers to a range (or disjoint ranges), and possibly skew the

distribution so that it is nonuniform. However, adding a declarative

sublanguage within a procedural verification language is not an obvious

win. The declarative language may look deceptively procedural. In addi-

tion to requiring the verifier to learn an HVL, the application of hierar-

chical and overlapping constraints is not intuitive.

1. Yes, commercial assertion libraries for standard protocols—when available—
can sometimes be useful, but beware: writing your own can be tricky!

An Object-Oriented Framework 17

S y s t e m Ve r i l o g Tr a p s a n d P i t f a l l s

For example, in one company we used the recommended method of

extending a class to add constraints. This is “obvious” in theory, but in

a real system one often cannot find, or keep in mind, all the classes and

their subclasses. We kept adding constraints that conflicted at run time,

and other testers added constraints to a class that many people were

already using—even though the added constraints were applicable to

only a single test. Finally, we decided that all constraints were to be local

to a class, and not in the inherited classes.1

There are two techniques the authors have used successfully to perform

constraints. One technique uses procedural code to set up min/max

variables for constraining the random variable, and the other uses a

forward declaration on a constraint. The first technique will be used in

the examples, and so is not discussed further here. For the forward

declaration technique, we declare a constraint test, without a body, in

every class that has random behavior.

class ethernet_packet;

///method and data declarations

int packet_size;

constraint test; //no implementation in this class

endclass

class usb_generator;

int device_id;

constraint test; //no implementation in this class

endclass

Then in the actual test case, we implement the specific class’s test

constraint that we need.

//in test_<some test name>.sv we now define constraints

constraint ethernet_packet::test { packet_size == 218;}

constraint usb_generator::test {device_id == 4;}

//the rest of the test code

This allows each test case to have “knobs,” to control the code as

appropriate.

1. Don’t worry if these terms are a bit confusing in this paragraph. They will be
explained in the next chapter.

C h a p t e r 2 : W h y S y s t e m Ve r i l o g ?

18 Hardware Verif ication with SystemVerilog

Use constraints sparingly, either as a min/max bounds or as
an unimplemented constraint that a test may use.

The coverage language

In addition to using constraints to guide the randomization, SystemVer-

ilog adds a coverage sublanguage. While coverage is a good idea in theory

and is a well-marketed concept, the authors are not certain that the

industry has a clear need for it as implemented. It is a relatively simple

matter to collect data, but many questions remain:

Do you keep the time at which the coverage event occurred?

How do you fold a large coverage range (such as an integer or a
real) into coverage bins?

What is the relationship between the covered events and the
constraints that control the randomization?

These points show the difficulty in using coverage. They are inherent

issues with functional coverage, as contrasted with line, toggle or expres-

sion coverage. Since humans define what the function of a chip is, humans

need to define the coverage of these functions. In other words, it can

never be simpler than defining what the chip does, which is not an easy

task.

There is one more question:

Will your company delay the chip tape-out or FPGA1 delivery if
coverage goals are not met?

This last question is critical. Be honest in your assessment. After many

years of working on chip projects, it’s our honest assessment that most

companies would be fiscally delinquent if a product were delayed because

of the possibility of some bugs.2 The fact is that a company needs revenue,

and the chip should have been tested adequately for basic market features

at least—assuming the verification team is reasonably competent. If the

team isn’t, your company has more pressing problems to deal with.

One final point: It’s common for software drivers to have to work around

major deficiencies in a chip, as well to work around minor deficiencies

1. Field-programmable gate array.
2. Now of course, there are exceptions. The medical and space industry come to

mind.

An Object-Oriented Framework 19

S y s t e m Ve r i l o g Tr a p s a n d P i t f a l l s

in many chips. If the chip runs and even performs a subset of the features

adequately, your company will sell it and make revenue.

So why use coverage at all? Coverage is good for your configuration

parameters. There are modes, such as baud_rate, data_width, and so

on, that are set once and then used throughout the test run. By looking

at coverage data, you can see that your basic data-flow tests are properly

walking the configuration space of the chip.

Use coverage in SystemVerilog as part of your basic data-flow
tests, but be careful: This coverage does not necessarily
increase the productivity of your team. Write directed tests
(without coverage) for specific cases and data-flow patterns.

SystemVerilog features not discussed

SystemVerilog has many features, some of which are essentially vendor-

specific. Other features are just not universally implemented or well

thought out. In this section we’ll enumerate some of these features.

Within SystemVerilog, templating in the OOP sublanguage is like using

parameters in HDL. While an interesting feature, the vendor support for

templating is weak and real-world proofs are even weaker. Templating

makes SystemVerilog OOP code more complex, and does not map to

C++ templating, which is well-proven.

The bind construct is a fairly loose part of the specification at present.

It is also primarily used to connect SystemVerilog assertions to the

synthesizable subset, so it is not a focus for verification coders. It is also

a declarative construct, making it inappropriate for run-time configura-

tions.

There are many more minor features of SystemVerilog, such as wild

equality, the ref concept, clocking blocks on interfaces, and new

datatypes such as byte, shortreal, int union, enum, and string.

Searching through the SystemVerilog specification for terms such as

“SystemVerilog adds” and “SystemVerilog introduces” will produce a

fairly complete list. Because this handbook is concerned primarily with

OOP and SystemVerilog, we will not discuss these features further here.

C h a p t e r 2 : W h y S y s t e m Ve r i l o g ?

20 Hardware Verif ication with SystemVerilog

Summary

This chapter made the case for using SystemVerilog as a verification

language. We took a quick look at some other options and then enumer-

ated why SystemVerilog was appropriate.

The main point of this chapter is that SystemVerilog is a relatively easy

path from Verilog to OOP.

Because SystemVerilog is a new and evolving language, we spent a fair

amount of time presenting notes of caution. We also took note of spe-

cialized and new features that are not in the mainstream of OOP.

For Further Reading

Software Engineering: A Practitioner's Approach, by Roger S.
Pressman, has a great section on the evolution of programming.
This handbook also has references to landmark papers and books.

The SystemC and Testbuilder manuals have discussions on why
C++ is good for verification. SystemC information can be found
at www.systemc.org, and Testbuilder information can be found at
www.testbuilder.net.

Teal and Truss were initially documented in the authors’ other
book, “Hardware Verification with C++:A Practitioner’s
Approach. The current version of the source code for C++ and
SystemVerilog is available on www.trusster.com.

There are several standards for verification and simulation, such
as 1800 for SystemVerilog, IEEE 1364-1999 (for VHDL), IEEE
1995-2001 (for Verilog), IEEE 1076, and IEEE 1647 (for the
IEEE version of Cadence Specman “e”). The website
www.openvera.org provides the OpenVera specification.

There are a growing number of books devoted to coding in
SystemVerilog. One book that the authors have used is
SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features, by Chris Spear. It is a good look at most of
SystemVerilog’s features. (Note that this book is specific to
Synopsys, so caveat emptor.)

An Object-Oriented Framework 21

F o r F u r t h e r R e a d i n g

If you want to learn more about SystemVerilog assertions,
consider the SystemVerilog Assertions Handbook by Ben Cohen,
Srinivasan Venkataramanan, and Ajeetha Kumari.

If you want a detailed look at the evolution of the SystemVerilog
language, sign up for the SystemVerilog Testbench Extension
Committee mailing list, at http://eda.org/sv-ec.

Stuart Sutherland has a great paper (from SNUG1 Boston 2006)
titled “Standard Gotchas: Subtleties in Verilog and SystemVerilog
That Every Engineer Should Know,” available at http://
www.sutherland.com/papers.html.

1. Synopsis Users Group.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 23

OOP and
SystemVerilog
C H A P T E R 3

Progress has not followed a straight
ascending l ine, but a spiral with rhythms of
progress and retrogression, of evolution and
dissolution.

Johann Wolfgang von Goethe

The idea of progress in the art and science of verification seems simple

enough —until you look at how progress is made. It is rarely a single

person, technique, or language that moves us forward to simpler code,

while handling ever more-complex chips. Rather, it is a swinging, jump-

ing roller-coaster that we are on. OOP is just another of those twists and

turns along the ride of progress.

This chapter looks at why and how object-oriented programming was

developed, and reflects on why OOP is the right choice for managing the

increasing complexity of verification. It then shows how OOP is

expressed in SystemVerilog. The OOP techniques shown in this chapter

are used throughout the remainder of this handbook.

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

24 Hardware Verif ication with SystemVerilog

Overview

OOP is a programming technique that is often touted as a cure-all for

verification. While it is true that OOP is an essential tool in a program-

mer’s toolbox, it is by no means the most important one. One’s experience,

intelligence, and team environment are far more important to the success

of verification than any language feature or technique. That said, OOP

is a useful tool for communicating and enforcing design intent for large

projects and teams, in addition to being a good way to build adaptable,

maintainable, and reusable code.

This handbook is intended for those having at least some familiarity with

the concept of OOP. Many verification engineers already have some

experience with OOP through languages such as C++, Vera, Specman

“e,” or SystemC.

The first part of this chapter looks at the history of OOP and why it is

well-suited to functional verification. The second part shows how Sys-

temVerilog expresses the most common elements of OOP.

For readers with limited experience in OOP, there are a few suggestions

at the end of this chapter. If you have at least some experience with OOP,

or if some time has passed since you used it last, then don’t worry!

Some of the aspects presented in this and subsequent chapters might

seem confusing at first, but Part II of this handbook shows a complete

working verification environment. It is the authors’ hope and intent that

you will “copy and paste” from this environment as well as from the

examples provided.1 This handbook is designed to give you a jump start

on using SystemVerilog without having to design every class from

scratch.

The “basic” OOP techniques expressed in this chapter are important, and

form the basis of the fancier techniques in Part III of the handbook.

1. Code is freely available at www.trusster.com.

An Object-Oriented Framework 25

T h e E v o l u t i o n o f O O P a n d S y s t e m Ve r i l o g

The Evolution of OOP and SystemVerilog

OOP techniques have been proven to help large programming teams

handle code complexity. One key to coping with such complexity is the

ability to express the intent of the code, thus allowing individual pro-

grammers to develop their part of the code more effectively. This under-

standing of intent allows programmers to build upon already working

code, and to understand the overall structure more easily.

Assembly programming: The early days

Programming has changed a lot over the years. It started with the use of

assembly language1 as a way to express a “simple” shorthand notation

for the underlying machine language. This simple abstraction allowed

programmers to focus on the problem at hand, instead of on the menial

and error-prone task of writing each instruction as a hexadecimal or octal

integer. Simply put, abstraction allowed an individual programmer to

become more productive.

Here is an example of some assembly language:

MOV.W R3, #100
MOV.L R1, #7865DB

loop: ADDQ.W R1, #4

TST.W R1, R2
BNZ loop

Procedural languages: The next big step

With the increase in complexity of the problems programmers were asked

to handle, procedural languages such as FORTRAN,2 C, and Pascal were

developed. These procedural languages became very popular and allowed

individual programmers to become highly productive.

Here is an example of FORTRAN,3 a common procedural language:

1. The first assembly language was created by Grace Hopper in 1948.
2. For FORmula TRANslator, created by John W. Backus in 1952.
3. Okay, you got us—this is actually FORTRAN 77, the “new” FORTRAN (ANSI

X3.9, 1978).

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

26 Hardware Verif ication with SystemVerilog

DO 3, LOOP = 1, 10

READ *, MGRADE, AVERAGE
IF (.NOT. (AVERAGE .GT. 6.0 E —1)) THEN

PRINT *, 'Failing average of ', AVERAGE

STOP
ELSE

PRINT *, 'Passing average of', AVERAGE

AVERAGE = (MGRADE / 1 E 2) + AVERAGE
END IF

3 CONTINUE

Interestingly, as the size of the programs grew, the focus of programming

switched from the productivity of the individual to the productivity of

the larger team. It was found that procedural languages were not well-

suited to large programming efforts, because communicating the intent

of the code was difficult. OOP, with its ability to build classes upon

classes and define interfaces, proved an effective response to this prob-

lem.

OOP: Inheritance for functionality

By necessity, OOP developed in stages. The first stage focused on what

is often called data hiding or data abstraction. This is a way to organize

large amounts of code into more manageable pieces. With large amounts

of procedural code, it became very complicated to keep track of all

structures and the procedures that could operate on those structures. It

was also hard to expand, in an organized way, upon existing code without

directly editing the code—a process that, as we all know, is error prone.

To address these problems, a language called Simula was developed in

1967. This language is recognized as the first language to introduce

object-oriented concepts.

SystemVerilog has this lineage, with ways to organize data structures

and the functions that operate on those structures. This organizational

concept is called a class (loosely based on Simula’s class). The tasks and

functions, now scoped within a class, are called methods. In addition,

SystemVerilog included ways for one class to expand upon another

through inheritance (also from Simula).

An Object-Oriented Framework 27

T h e E v o l u t i o n o f O O P a n d S y s t e m Ve r i l o g

The very essence of OOP is the ability to specify similarities
and differences in code constructs relatively easily.

Classes allowed for the grouping of code with data, while inheritance

allowed a way to express increasingly intricate functionality through the

reuse of smaller working modules. This technique is often called inher-

itance for functionality. (Later in this chapter, we’ll show how System-

Verilog expresses both of these features—grouping into classes and reuse

through inheritance—in more detail.) This new approach was sort of like

the Industrial Revolution of the programming world, increasing team

productivity by an order of magnitude.

Classes helped improve the productivity of programming teams by orga-

nizing the code in layers—with one layer inheriting from, and enhancing

upon, a lower layer. This meant that the code could now be “reasoned

about.” With “reasonable” code, changes and bug fixes could be made

only to the appropriate lines, without the changes echoing, or propagating

undesirably, throughout all of the code.

Furthermore, as code was structured into layers through hierarchy trees,

several patterns became visible. For example, it became clear that certain

layers were not involved with manipulating the data (in the classes)

directly, but rather with ordering, structuring, and tracking events.

These framework layers became more and more important to understand-

ing the system. To get a large program to be “reasonable,” more and more

standard infrastructure was needed. These framework layers had no

“interest” in how the actual data were manipulated; rather, the important

feature was that now the data could be assumed to be manipulated in

predefined ways.

As an example, as long as each class in a particular framework layer had

a start() or a randomization() function, working with classes of that

type was reasonable. As these framework layers were written, it became

clear that they could be generalized as long as each class followed the

rules for that type of “component.”

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

28 Hardware Verif ication with SystemVerilog

OOP: Inheritance for interface

So how to get a class to “follow the rules” of a framework component?

What is needed is a language-enforced way to express the rules that a

class had to follow in order to “fit in.” The solution, known as virtual-

ization, is included in SystemVerilog. With virtualization one could

define classes called virtual base classes; these simply express the code

interface to which a component must conform, in order to fit into the

larger system.

Each developer of the actual classes that fit in a particular structure would

then inherit from this virtual base class, and implement the details for

how a particular function should be implemented for the problem at hand.

This technique of defining the code interface through virtualization, often

called inheritance for interface, is frequently used in OOP-based

projects.

The clever thing is that now one could write the code for the framework

layer using virtual base classes. This not only allowed the framework to

be implemented concurrently with the data-based classes, but it also

allowed the framework layer to be developed in a much more generic

way. This virtualization of base classes has proven to be a powerful

technique for creating and maintaining large and complex systems.

A word or two about “interface”

It is unfortunate that SystemVerilog has a keyword called interface.

This is because “interface” is a common term in OOP for expressing the

class items (data and methods) with which a user is concerned. This is

also called the public part of a class, but interface is a more wide-spread

term. We will talk more about the SystemVerilog interface at the end

of this chapter.

So, in this handbook, we will mostly use the phrase “code interface” to

refer to the public code of a class, and use interface (in that weird code

font) to indicate the SystemVerilog keyword. When we feel the context

is sufficient, we may omit the distinction here and there.

An Object-Oriented Framework 29

T h e E v o l u t i o n o f F u n c t i o n a l Ve r i f i c a t i o n

The Evolution of Functional Verification

Verification through inspection

There are similarities with the development of OOP and that of functional

verification, and while hardware verification is a younger field than

software programming, it has (not surprisingly) followed a similar path.

As readers of this handbook surely know, functional verification has

come a long way from its recent humble beginning as a (mostly manual)

process of verifying simulation waveforms. From there, it evolved into

“golden” files; a current simulation run was compared to a known-to-be-

good result file—the golden file. For this technique to work it required

fixed stimuli, often provided in simple text format. Golden files were an

acceptable technique for small designs, where the complete design could

be tested exhaustively through a few simulation runs.

Verification through randomness

The simple technique of using golden files became impossible to use as

the size of the hardware being tested grew both in size and complexity,

so other techniques were needed. For larger projects it was no longer

possible to test the “state space” of a chip completely. To do so would

require an unobtainable amount of computer time, even on the fastest

machines. To address the reality that the chips being developed could no

longer be tested exhaustively, random testing was introduced. Using

randomness in tests changes the input stimuli every time a test is run.

The goal is to cover as much of the state space as possible through ongoing

regression runs.

Unfortunately, several problems were found in using randomness with

current hardware description languages (such as Verilog or VHDL). To

begin with, the result checking became more complex as golden files

could no longer be used (because the input stimuli changed for each run).

This meant that verification models that could predict the outcome from

any set of input stimuli were needed. Writing these models has become

a major task for the verification projects of today.

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

30 Hardware Verif ication with SystemVerilog

However, this technique also posed other problems. It was discovered

that using randomness was a tricky thing. If you use random stimuli and

your testing fails because of a hardware bug, then you later would want

to rerun the exact same sequence of stimuli to verify that the bug has

been solved. This is more easily said than done.

You can record all the stimuli that generated the test run, then use some

mechanism to replay the stimuli later; alternatively, you can track the

“seed” from which the (pseudo) random generator starts and then pass

that number into your next simulation run.

Both techniques can be problematic, because storing all the generated

stimuli requires a lot of disk space and directory infrastructure, and

because controlling randomness through a seed requires good control

over your “random” generator.

The current most common solution to this problem is to control and store

the “random” seed, then use it to replay a given stimuli sequence over

and over.

The emergence of
hardware verification languages

We can see that controlling the generation of random stimuli requires

many things. We need verification models that can predict results from

any given set of stimuli. We also need control over how the random

generator works, to be able to replay a given stimuli sequence. It was

found that using HDL languages, such as Verilog and VHDL, was difficult

with respect both to writing high-level models quickly and controlling

randomness. In Verilog, for example, it was not obvious how to control

the random seed back in 1987.

As a result, people started looking at other languages for verification.

The natural first step was connecting C to Verilog, but soon languages

such as “e” and Vera were introduced. These languages made it easier

to do random testing, in turn making it possible to test much larger chips.

An Object-Oriented Framework 31

T h e E v o l u t i o n o f F u n c t i o n a l Ve r i f i c a t i o n

OOP: A current trend in verification

The problems we are facing today in verification are similar to the

problems software faced when OOP was adopted. We now have to deal

with very large amounts of code and multitudes of modules, all of which

must be compiled, instantiated, controlled, randomized, and run. This is

not an easy task, and we spend more and more time solving these basic

framework problems. Specman “e” and Vera were early and proprietary

entries in OOP-enabled hardware verification languages (HVLs). Sys-

temVerilog is the latest entry, and promises a multivendor descendency.

It seems clear that adopting OOP techniques should help make these

problems more manageable. Unfortunately, there are still not enough

people in the field of verification who have sufficient experience and

understanding of how to develop an appropriate OOP infrastructure.

Engineers in our field are just starting to adopt OOP techniques. The

main reason for this book is to show verification techniques through

“OOP glasses.”

OOP: A possible next step

The field of verification is young; not long ago we were staring at

waveforms on a screen. By using modern verification languages we have

developed the field into something better. However, today we are facing

even harder problems, one of which is the issue of the framework. To do

a job that is increasingly complex, we need a framework for how our

verification environment is interconnected. This is no longer an easy

thing to achieve. In this handbook we show many techniques for how to

manage this and other problems. We also introduce an open-source

verification framework, called Truss, which collects our best experience

in OOP into a working environment.

It is our belief that if enough people adopt a powerful open-source

infrastructure, many great innovations will result. The problem we face

today cannot be solved by the features of individual languages alone;

rather, we need an agreed-upon framework. Even if this framework were

modified by each team, it still provides the opportunity for best practices

to evolve. This handbook, and the associated open-source code, is our

attempt to start the discussion.

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

32 Hardware Verif ication with SystemVerilog

However, we are getting ahead of ourselves, so before we dive into the

practical problem of verification, let’s look at how SystemVerilog

expresses OOP techniques.

OOP and SystemVerilog

This section shows how SystemVerilog expresses the OOP concepts

described above. It describes some of the techniques we use to build a

successful verification environment in later chapters. For engineers expe-

rienced with other OOP languages such as C++, Vera or “e,” this chapter

can serve as a way to map concepts from one language to another.

Data abstraction through classes

Using classes to express data abstraction is an important technique in

building large verification systems. Data abstraction, by grouping the

data and the operations together, allows engineers to reason about the

code.

We will look at a direct memory access (DMA) descriptor class to show

how a class can be constructed, then evolved by means of inheritance.

A DMA descriptor example

DMA is a common hardware feature for transferring data from one

memory location to another without putting a load on the CPU. In this

example, we verify a DMA chip that accepts DMA descriptors, puts them

into an on-chip memory array, and then executes them. Each descriptor

has a source and destination memory address, as well as the number of

bytes (called “length”) to transfer.

In the verification environment, a DMA descriptor could be represented

by a small class. The DMA generator is then responsible for building,

or instantiating, DMA descriptors and “pushing” them to the chip and

to the checker.

An Object-Oriented Framework 33

O O P a n d S y s t e m Ve r i l o g

The following code describes the DMA descriptor class:

class descriptor;
//Constructor

extern function new (int src, int dest,

int length, int status);
//Code (or Public) Interface:

extern virtual function void print();

int source_address_; //public as an example!
extern virtual function bit equal(descriptor d);

//Implementation (or local and protected) interface:

extern local virtual function int unique_id ();
protected int destination_address_;

protected int length_;

protected int status_;
protected int verif_id_;

endclass

The descriptor class is divided into the code (or public) interface and the

implementation (or local and protected) interface, as shown by the access

control level on each line. The next section will explain what access

control labels are for.

Access control

The keywords protected and local, as used in the descriptor class,

are SystemVerilog access control labels. They indicate how methods and

variables following the statements can be used. The absence of a label

indicates that the methods and variables that follow are publicly acces-

sible by any code that has access to an instance of the class.1 A local

label indicates that only the code inside the class itself can access the

variable or method.

The keyword protected indicates a private variable or method that can

be modified through inheritance. Public, local, and protected can be used

to express and enforce the intent of the class quite clearly.

1. This is an unfortunate default, as a vast majority of classes will have far fewer
public methods and variables compared to the local and protected code used to
implement the class. Be prepared to type “local” and “protected” a lot.

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

34 Hardware Verif ication with SystemVerilog

Access control is needed to help separate the user or code interface from

both the internal methods and the data needed to implement the class.

Consequently, the public section of a class declaration is the “code

interface.” These are the interesting methods and variables to look at

when you want to use a new class. When you implement a class, on the

other hand, you also need a space to store the “state” of your class between

method calls. This is done in local or protected scope.

Implementing a class is similar to implementing a state machine, where

each method call changes the state of the state machine (that is, modifies

the data members of the class). This “change of state” must be recorded

somehow. Variables for tracking the state as well as intermediate methods

should be put in the local scope, not only to indicate to users that they

shouldn’t focus on these methods and variables, but also to protect these

variables from accidentally being modified. When a class is instantiated,

only the public methods and calls can be accessed. Trying to access local

scope results in an error during compilation. This is an example of how

language enforces the “intent” of the class.

Enforcing intent can (and should) go beyond protecting state variables.

For example, instead of printing an error message during run-time, when

the code calls internal implementation-detail methods, one should

declare those methods to be in local scope, so that a compile error occurs

instead.1

Constructors

When a class is instantiated, the special function new() is called. This

special function is the constructor. A constructor is used to initialize

member variables, reserve memory, and initialize the class.

So how do you actually create an instance of a class? Consider our

descriptor class for a moment. The class could be instantiated as follows:

1. Note that SystemVerilog does access checking first, then resolution checking.
This is unfortunate, as it means the code can behave differently when the
access control is changed. This problem is discussed in detail in the book The
Design and Evolution of C++.

An Object-Oriented Framework 35

O O P a n d S y s t e m Ve r i l o g

descriptor descriptor1 = new (source_addr,
destination_addr,

source, length);

descriptor descriptor2;
descriptor2 = descriptor1;//point to the same object!

descriptor descriptor3; //Careful: null pointer!

The first line declares descriptor1, and calls the constructor method

as declared above, passing in variables as necessary. Next, descriptor2

is created and then is just assigned the pointer to descriptor1, meaning

that descriptor2 is exactly the same as descriptor1. Note that the

next descriptor, descriptor3, is not initialized at all, so SystemVerilog

assigns a special keyword, null, to the variable, because constructors

are not automatically called in SystemVerilog.

Each line is valid SystemVerilog, but this might not be what you intended.

Be aware that there are different ways of initializing an
instance pointer.

When writing a class, try to express the intent of the class so that an

unintended use of your class generates a compile error. Though annoying,

compile errors are much easier to understand than run-time errors. Sim-

ilarly, when you get an unexpected compile error, don’t see it as an

annoyance, but rather realize that the person who wrote the class may be

trying to tell you something.

Member methods and variables

In the descriptor class example, a few member variables and member

methods are declared. The member variables are simply integers for the

fields of the DMA transaction. The print() method will simply print

all the current fields of the projects. Member variables and methods can

be accessed like this:

descriptor d1 = new (‘h68000, ‘h20563, 39, 0);

d1.source_address_ = ‘h586;

d1.print ();

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

36 Hardware Verif ication with SystemVerilog

Inheritance for functionality

By using class inheritance, you can create larger and larger functional

blocks, building upon existing functionality. By inheriting from another

class, you are saying, “I want to start from the functionality of an existing

class and expand upon or change it with the features I define in my new

class.”

Consider our DMA project again. In the first generation of the product

(as described above), the chip would simply store DMA descriptors in

an array and signal when the array was full. For the second generation,

this has been improved and the chip now implements a linked list, storing

each descriptor in off-chip memory.

To enable this functionality, a hardware pointer field must be added for

each descriptor. As a technique, the pointer can be set to 0 to stop the

chip from processing, or it can be set to the first descriptor to implement

a ring.

Instead of copying and editing the descriptor class, we can simply inherit

from and expand upon the base descriptor class. This is called inheritance

for functionality.

To create our new, fancy linked_list_descriptor class, we could

declare it like this:

//in linked_list_descriptor.svh

'include "descriptor.svh"

class linked_list_descriptor extends descriptor;

extern function new (uint32 src, uint32 dest,

 uint32 length, uint32 next);

extern virtual function void print();
local uint32 next_descriptor_; //Pointer to DMA memory

endclass

The extends keyword from the first line of the class states that the

linked_list_descriptor class inherits from the descriptor class. Now

the linked_list_descriptor class has all the functionality of the

original descriptor class, and adds the next_descriptor variable.

An Object-Oriented Framework 37

O O P a n d S y s t e m Ve r i l o g

Note that in an extended class, you must manually call the base class

constructor:

//in linked_list_descriptor.sv

function linked_list_descriptor::new

(uint32 src, uint32 dest, uint32 length, uint32 next);

super.new (src, dest, length, 0);
next_descriptor_ = next;

endfunction

Inheritance for code interface

As we have seen, inheritance for code interface means using a base class,

with virtual methods, to describe the class framework. This base class

identifies some or all of the methods as virtual; classes extending from

the base class can, and sometime must, implement those virtual methods.

With this technique, standard code interfaces for similar, but different,

components can be used. This is very useful in creating a verification

framework, because in a large verification environment you must keep

track of a large number of components—for example, verification com-

ponents [such as bus functional models (BFMs), generators, checkers,

and monitors], and test components. By defining a code interface to

which each type of component must conform, the ability to reason about

the environment increases.

It should be noted that defining appropriate virtual base classes is not

easy. Overly complicated or overly generic base classes tend to make the

problem of verification more confusing instead of less. In Part III of this

handbook we’ll talk about the trade-offs.

As an example of inheritance for code interface, let’s consider building

a virtual base class for a BFM for a verification project. The team could

decide that all verification components need certain phases (expressed

as method calls), including do_randomize(), out_of_reset(),

start(), and final_report().

These methods ensure that a verification component is randomized, has

time to program its part of the chip, starts up any threads needed to run,

and has a way to print its status once the simulation is done. This can be

done by creating a virtual base class from which all actual drivers inherit.

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

38 Hardware Verif ication with SystemVerilog

A virtual1 base class in our example could look something like the

following:

virtual class verification_base;

virtual task out_of_reset ();/*do nothing */
endtask

virtual task do_randomize (); /*do nothing */

endtask
'PURE2 virtual task start (); //NO implementation

'PURE virtual task final_report ();
//NO implementation

endclass

What makes the class virtual is the fact that the class starts with the

virtual keyword, and at least one member method is declared by means

of the keywords pure and virtual. In this example, the class declares

how the verification system framework expects any verification compo-

nents to behave, by enforcing that all verification component have at

least these methods.

There are two types of virtual functions: virtual and pure virtual. In the

example above, the first two methods are virtual, the last two are pure

virtual. Virtual functions have a “default” implementation (in our case

they do nothing), while pure virtual functions have no implementation

and are indicated by “pure.” A pure virtual function is one that a derived

class is obliged to implement. For virtual methods, the original method

is used if no same-named method is declared.

Consider an Ethernet driver, which is inherited from the class

verification_base.

class ethernet_driver extends verification_base;

task out_of_reset();

set_up_dut();

endtask

task start();

task final_report();

endclass

1. In SystemVerilog, the keywords virtual class mean “abstract base
class” in an OOP sense.

2. Because pure is not yet a keyword in SystemVerilog, Truss uses the macro
`PURE , which will work now and in the future.

An Object-Oriented Framework 39

O O P a n d S y s t e m Ve r i l o g

In our Ethernet driver, do_randomize() is not declared, so the default

method specified in verification_base is used.

This technique of using inheritance for code interface is very important

for creating a flexible, yet reasonable, verification structure. In our

verification domain, many objects must be initialized through many

phases, synchronized, and run. This is not easy for anything but the

smallest projects. However, by using inheritance for code interface and

virtual methods, one can create a powerful and flexible verification

environment.

What’s a header file?

Throughout this handbook we refer to header files and source files. This

is a widely used convention where the class declaration has all methods

declared with the keyword extern, which means there is no body of code

statements to the method. The file that has the class declaration like this

is called a header file and usually has the extension .svh. There is a

corresponding source file, which contains all the method definitions and

usually has the extension .sv. Note the following:

//in bfm.svh...

class a_bfm;

extern function new (string name,

virtual interface_wires pins);

extern task write (int address, int data);

extern task read (int address, out int data);

endclass

//in bfm.sv

a_bfm::new (string name, virtual interface_wires pins);

//cache string and the interface

endfunction

task a_bfm::write (int address, int data);

//perform a write to the bus

endtask

task a_bfm::read (int address, int data);

//perform a read from the bus

endtask

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

40 Hardware Verif ication with SystemVerilog

Why go to the trouble of creating both a header file and an implementation

file? To make it easier for other users of your code to reason about the

class. They should spend their effort learning what the code interface is,

from the header file, and not how you actually implemented the class in

the source file.

Use header files (*.svh) and implementation files (*.sv) to
improve the readability of your code.

Packages

It happens in every large verification project. You try to link all compiled

files together and run into conflicting variable names; it seems that there

is always more than one module called “generator” or “driver.” It’s

frustrating, because now you have to go back and rename the conflicting

classes and files. Furthermore, the “new rules to follow” probably

becomes “you must insert interface name before variable name,” so you

end up with uart_generator and ethernet_driver.

But how do you deal with code from Intellectual Property (IP) vendors?

How do you know what names they use?

SystemVerilog has a solution to this common problem: the use of pack-

ages. A package is the placement of related classes and global functions

in a logical group. For example, if you are testing an Ethernet protocol,

all your classes and components might go into the ethernet package.

If you are testing a UART interface, consider using the uart package,

and so on.

A package is simply declared as follows:

package pci_x;
class master;

...

endclass
endpackage

Any class or variable wrapped inside the package/endpackage is now

in the pci_x package. When you later want to instantiate a pci_x master,

you simply declare what package you are using and what module you

want.

An Object-Oriented Framework 41

O O P a n d S y s t e m Ve r i l o g

Note, for example, the following:

pci_x::master my_master = new ("master pci_x");

The pci_x:: indicates that you want to instantiate the master class from

the pci_x package. If you are using a lot of components from a certain

package, you can declare that you want to have access to that package

throughout your file1 by means of the keyword import, as follows:

import pci_x::*;

From that point on, you have access to all components in the pci_x

package.

However, be careful about putting an import clause in a header file (a

file with an .svh extension). This is almost always a mistake. The reason

is that the import clause has now been added to every file that directly

or indirectly includes this header file. So, the fact that some code was in

a package is now lost to code that includes this header file. The authors

have been on projects where using import in header files caused the very

name collisions that packages were designed to avoid.

There are a number of caveats about working with packages. One is that

there can be only a single package/endpackage declaration. This means

that you often end up including all the header files in a meta-header file.

package pci_x;

'include "pcix_master.svh"

'include "pcix_slave.svh"
'include "pcix_generator.svh"

'include "pcix_monitor.svh"

'include "pcix_driver.svh"
endpackage

Also, while you can use the extern keyword on class methods included

in a package, their definition must also be within the package/endpack-

age. This is clumsy and can cause difficulties because of 'include file

dependency order. As a convention, the authors put the 'include of the

implementation file as the last line of the corresponding header file.

1. The exact term would be “compilation unit.”

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

42 Hardware Verif ication with SystemVerilog

Packages can use other packages, but you cannot declare a package within

a package. In addition, while packages are still useful, they do have the

same limitations as interfaces, as we will describe later in this chapter.

In SystemVerilog, enumerations and constants are in either compilation

or $root scope. What that means in normal terms is that you should put

enumerations, constants, and even parameters into a package.

Although packages have a number of unnecessary limitations,
they are still a useful grouping construct.

Separating HDL and testbench code

Have you noticed that the OOP features are different from the synthe-

sizable subset of SystemVerilog? The sublanguages are different because

the focus of HDL code is to create silicon, whereas the focus of verifi-

cation code is to test that HDL code. HDL code is concerned with wires,

nets, modules, and loads. Verification is concerned with class hierarchies,

randomization, stimuli, BFMs, and checkers.

This handbook makes a distinction between the two code types, clarifying

the reasoning behind when to use a given feature. You will not find

modules in any of the code snippets or examples (other than in the HDL

code and the testbench top). The authors feel that although the “language”

may be the same, the goals are vastly different.

So how do you cross the border between HDL and testbench code? The

only way SystemVerilog makes the connection between HDL code and

testbench code is through an interface.

Wiggling wires: the interface concept

So what is an interface in SystemVerilog? At its core, an interface

is a declaration of wires that logically go together. They are the “pins”

of the chip, put into containers that make sense to your team. An inter-

face is a SystemVerilog aggregation construct, similar to module, pro-

gram, or class. An interface allows you to bundle a large variety of

wires and registers into a single named entity that can be easily worked

with.

An Object-Oriented Framework 43

O O P a n d S y s t e m Ve r i l o g

For example, a protocol consisting of address, data lines, control, and

clocking could form an interface as follows:

interface basic_inside;

wire [7:0] address;

wire [31:0] data;

wire clock;

wire address_latch_enable;

endinterface

So why use an interface? This is the only way to connect to “real”

HDL wires. You could make an interface for every wire, but that would

be clumsy and would not give a single name to related wires.

For each signal in an interface, you have a choice to make. The

interface can either create the signal, or it can just refer to an existing

signal in the testbench.

The basic_inside shown above defines all the signals as originating

from inside the interface. Here is what an interface looks like when

all the signals are passed in as parameters.

interface basic_outside (//note the "(" instead of ";"

wire [7:0] address, //use "," instead of ";"

wire [31:0] data,

wire clock,

wire address_latch_enable

); //end of parameters

endinterface

When to use “inside” versus “outside” is both a matter of what language

the HDL code is written in and your style. In our examples we have

assumed that the HDL code is Verilog, not SystemVerilog, so it is more

natural to have the testbench’s top.v create the wires. Then the inter-

face takes in all the wires, using the “outside” interface technique when

it is constructed.

There are many variants of “inside” versus “outside,” including having

the interface generate the clocks (they can have initial blocks) and

having the interface have some utility methods (they can have tasks

and functions). An interface can be a good singleton (see the OOP

Classes chapter) and can simplify the testbench top; it can also be a good

way to stub modules. An interface can also be used to solve the age-

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

44 Hardware Verif ication with SystemVerilog

old problem of when to sample and when to drive. On the downside, an

interface cannot be “new’d,” extended, or randomized, and it is cum-

bersome when used in an array.

Interfaces are THE way to connect the HDL code with the
testbench code. Be cautious of using them for more than that.

Building and using interfaces

Okay, now that we can declare an interface, how do we create and use

one? Interfaces can be created only in an HDL module or in a program

block.1 The authors prefer using a module, for several reasons. One is

that we have a module of interfaces for each chip in the testbench. We

can then either build a module with stub interfaces or a module with

“real” interfaces, and the SystemVerilog testbench code is unaware of

the change. The other reason we use a module is that we use the same

program block for all of our testing. (This is explored in the Truss Basics

chapter.)

Interfaces are made just like ordinary variables:

module real_interfaces;

basic_outside outside_1 (top.adr, top.data, top.clk,

 top.ale);

endmodule

To use an interface, you must put the keyword virtual before the

interface name. The real interface will be passed in when the class is built:

class basic_bfm;

function new (string name, virtual basic_outside bo);

name_ = name;

basic_outside_ = bo;

endfunction

extern task write (bit [7:0] ad, bit [31:0] data);

local string name_;

local basic_outside basic_outside_;

endclass

1. Creating interfaces is a little weird, because of both the language’s immaturity
and the vendors’ lack of conformance.

An Object-Oriented Framework 45

O O P a n d S y s t e m Ve r i l o g

In the program block, you would create a basic_bfm and pass it a real

instance of the interface:

program a_program;

initial begin

basic_bfm a_basic_bfm;

a_basic_bfm = new ("First BFM",

 real_interfaces.outside_1);

a_basic_bfm.write ('h100, 'h02192007);

//other code for the test...

end

endprogram

The actual reading and writing of the HDL values is quite straightforward:

task basic_bfm::write (bit [7:0] ad, bit [31:0] data);

@ (posedge (basic_outside_.clock);

basic_outside_.address_latch_enable <= 1;

basic_outside_.address <= ad;

@ (posedge (basic_outside_.clock);

basic_outside_.address_latch_enable <= 0;

basic_outside_.data <= data;

endtask;

All these steps may seem a little confusing, but once you’ve done this a

few times, it becomes formulaic. The far trickier parts of verification are

the OOP parts.

First create a module to hold the “real” interfaces of the
chip, then connect these interfaces to your BFMs, monitors,
and so on, in the program block.

C h a p t e r 3 : O O P a n d S y s t e m Ve r i l o g

46 Hardware Verif ication with SystemVerilog

Summary

This chapter wove together three themes: the evolution of OOP, the

evolution of verification, and the way SystemVerilog expresses OOP

features.

We spent some time looking at the class declaration, with its accessor

labels, constructors, data members, and tasks and functions.

We then took a look at inheritance and its two main techniques: inherit-

ance for implementation, and inheritance for code interface.

We discussed packages as a way to avoid name collisions. We pointed

out the usefulness of packages, as well as their warts.

Finally, we talked about interfaces, the way to connect testbench code

with HDL code.

For Further Reading

Again, we invite you to read SystemVerilog for Verification: A
Guide to Learning the Testbench Language Features, by Chris
Spear.

The web has a some good introductory information about
SystemVerilog. Some good sites are www.doulos.com and
www.asic-world.com.

The official standard for SystemVerilog is IEEE 1800. While dry
reading, it is a must read, at least for the basic data-type sections.
It is also a required reference for what the compiler might be
complaining about.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 47

A Layered Approach
C H A P T E R 4

It is tempting, if the only tool you have is a
hammer, to treat everything as if it were a
nail.

Abraham Maslow

For longer than we know, humans have organized themselves into

layers. From the family and tribe all the way up to national governments,

we have created roles and responsibilities. Closer to the hardware domain,

both VHDL and Verilog also use a layering concept, employing entities

or modules to break up a task. The software domain uses the related

concepts of procedures (methods) and data structures (classes). A reason

we humans make layers, with associated roles and responsibilities, is to

simplify our lives.

This chapter looks at how using layers can organize the task of verifying

a chip. We look at a generic chip, albeit one with a “System-on-a-Chip”

bias, and come up with a set of standard, well-defined layers, roles, and

responsibilities. We leave this chapter with definitions of standard ver-

ification layers and detailed diagrams of functional “boxes” and how

they are interconnected. Part II of this handbook will show a fully

implemented SystemVerilog environment that uses this approach. Part III

C h a p t e r 4 : A L a y e r e d A p p r o a c h

48 Hardware Verif ication with SystemVerilog

will talk about general object-oriented programming techniques for

implementing these classes and connections. These techniques, applica-

ble to most of the languages used for verification, express the reasoning

behind the layered approach discussed below.

Overview

Throughout this chapter, little distinction is made among architecture,

design, and coding. This is because these activities are interrelated, and

occur at most stages in a project. Also, even with the initial architectural

efforts, you should have a plausible implementation in mind; otherwise,

the architecture may create problems when you are coding.

At many layers, verification environments tend to have the same set of

problems. The essence of this chapter is to show how these common

problems can lead to common solutions. By reusing solutions, the team

can be more productive.

Specifically, this chapter covers the following topics:

The importance of code layers, roles, and responsibilities

How to go from a whiteboard verification system to classes and
interconnects, using a standard framework

Some common components, roles, and responsibilities of a
verification system

There are many successful hardware products. Because success demands

more success, the hardware produced in the next revision of a product

will be more complex than the current version. In addition, the sales staff

wants the product in the shortest possible time. The three competing

factors of quality, functionality, and time to market create stress on the

verification team. You are expected to produce more in less time—and

with increased quality.

So how do you do that? You could add members to your team. While it

is certainly true that there is an appropriate number of people for every

task, adding people creates several issues. One is the need for increased

communication; adding a team member increases the need for each

member to interact with the rest of the team, decreasing productivity.

An Object-Oriented Framework 49

O v e r v i e w

Another issue with adding members is team dynamics; each time new

people are added to a team, it takes time for the team to become fully

productive again. Finally, there is the fact that a well-integrated team can

outperform an average team by a huge margin.

Okay, so adding people is a difficult way to build a quality verification

system faster. The authors believe that a good way to do more quality

work in less time is to increase productivity. As humans have done in

the past, productivity can be increased by using layers. Now, we are not

saying a government is a superefficient operation, but rather that a small

team can be more efficient if the verification system is divided into layers.

In addition, the resulting system is more likely to be simpler and able to

be “warmed-over” for the next project.

A major tenet of this handbook is that the most productive
individuals and teams use a layered approach.

By using layers to separate the tasks of verification, common techniques

and solutions can be seen. This allows the team to build up a library of

standard solutions to common problems. Each of these solutions can be

given a name (sometimes as a base class), along with a defined role and

responsibility.

In this chapter we use layers to create a verification system. Starting with

a whiteboard block diagram, we define layers, roles, and responsibilities

and (in theory) arrive at a well-designed system. This technique is used

to show how to move a verification system quickly from a whiteboard

block diagram to classes and functional code.

We do not talk much about language specifics in this chapter, because

the technique of using layers is applicable to almost any language. The

next part of this handbook, Part II, shows specific implementations in

SystemVerilog.

C h a p t e r 4 : A L a y e r e d A p p r o a c h

50 Hardware Verif ication with SystemVerilog

A Whiteboard Drawing

Most verification systems start on a whiteboard or something similar.

Some engineers get together and discuss how they are going to test some

part of the chip or maybe the entire new product. This initial effort results

in an understandable and “clean” block diagram. However, transforming

this whiteboard sketch to a similarly clear code architecture and imple-

mentation is difficult. This chapter outlines a layered approach to this

transformation.

Note that the layering process occurs in one form or another at many

levels of a verification system, from the full system level down to

individual functional blocks. In addition, the classes and code are con-

stantly refined and modified as the project progresses, so the use of these

techniques is both fractal and recursive. This section focuses on this OOP

process at the outermost level—in other words, from a system perspec-

tive.

A top-level whiteboard drawing might look something like this:
:

The verification top block is responsible for instantiating and
ordering the events of other components.

The test block is responsible for controlling and synchronizing
each component.

Whiteboard Drawing

verification top

test watchdog timer

testbench

PCI Express component ethernet component

chip

SystemVerilog
HDL

An Object-Oriented Framework 51

A W h i t e b o a r d D r a w i n g

The watchdog timer is a time-out module that ends the simulation
should something unexpected occur that would make a test run
forever.

The testbench block is responsible for instantiating each
component block. The PCI Express and Ethernet components here
are important, because they transform test commands into bus
transactions on the chip. They include methods for data
generation and randomization, as well as drivers and monitors, as
will be discussed in greater detail below.

An “ends-in” approach

So where should you start after the first whiteboard drawing is done? A

common approach involves starting at the lowest level of abstraction (the

connection layer) and coding the next layer up, continuing upward until

every layer—including the test layer—has been designed. This is called

the “bottom-up” approach.

However, there is another approach. This alternate approach still starts

with the lowest layer of abstraction (because this is the best-defined

layer), but then builds the top layer next and saves the middle layers for

last. This approach is called an “ends-in” design, because you start by

working on the connection layer and the top-most layer, and then build

your way inward. This is the authors’ preferred approach, because it

maximizes what you already know. You know what the connections of

the chip are (or at least most of them). You have an idea what a standard

test looks like. You can therefore build these layers so that they are

“reasonable” (that is, others—on the team or off—can reason intelligently

about them). It’s then an engineering effort to make trade-offs between

complexity and adaptability, in order to connect the ends together into a

system that is reasonable at all layers. This is not simple, and it requires

a lot of experience, but the next part of this handbook contains a working

example of how to do it. Part III of the handbook discusses techniques

to evaluate the trade-offs.

C h a p t e r 4 : A L a y e r e d A p p r o a c h

52 Hardware Verif ication with SystemVerilog

Refining the whiteboard blocks

It would be tempting to define a class for each block in the whiteboard

drawing shown in the preceding section. While it is possible to do so,

this is not a good solution, because each block, especially a component

block, contains too much functionality to fit well into a single class.

Having classes that are too large leads to a brittle and often complex

design that is not adaptable, or even maintainable.

Instead, it is a good idea to look closer at each block and define another

set of layers. This makes sense, because most blocks can have several

well-defined abstraction layers. This is what the rest of the chapter will

address. Each major section below introduces the general roles and

responsibilities of a block or abstraction level. The sections even get a

bit more specific, suggesting common names for classes at each level.

Some of these names are already common in our industry.

The “Common-Currency” Components

The first step in transforming a whiteboard diagram to code is to focus

on the chip connections. The authors call the set of resulting classes the

connection layer. In the whiteboard drawing above, there was a PCI

Express component and an Ethernet component. Because these compo-

nent blocks cover a lot of functionality, there needs to be a set of classes

for each block, as discussed below.

The resulting classes are an example of a design pattern that the authors

call the common currency of a verification system, because they are used

so frequently. In fact, the classes are an implementation of the common-

currency pattern, because the chip can have most of the components

running for every test. Put simply, common currency can be considered

a concept or pattern, of which component classes (such as PCI Express

and Ethernet) are specific instances. These classes are the “money” of

the verification system’s “economy.” Every team member should be able

to identify the currency—in other words, the roles and responsibilities

of the various connections of your chip.

There are many ways to identify a common-currency class in an OOP

language. One way is to have the class inherit from a common-currency

An Object-Oriented Framework 53

T h e C o m p o n e n t L a y e r i n D e t a i l

base, such as class pci_express_monitor extends monitor. In this

case the monitor base class has a set of methods that pci_express1 is

expected to implement. Another way is to use a naming convention, such

as class ethernet_monitor. Note the absence of the base class. While

the “monitor-ness” of the class is not enforced by the compiler, you can

bet the team will have expectations about what this class does.

Sometimes this naming-convention approach is best if the base class has

no methods, or has just light-weight ones such as start(), stop(), and

report(). The art of deciding what is a class, a convention, or a base

class is up to you. Part III of the handbook discusses the various options

and trade-offs.

The Component Layer in Detail

As mentioned above, each component can be divided into more layers

and classes. This promotes adaptability and makes sense, because a

component straddles abstraction layers; at the highest abstraction layer

it consumes transactions, and at the lowest it wiggles wires.

The approach used by the authors is to break each component into three

sublayers. The lower a class is in the component, the more the chip details

that are handled. This layering process is a technique to manage com-

plexity by allowing higher-level code (such as generators or monitors)

to describe the problem in a more abstract way, thus providing a simpler

code interface to the tests and making them both clearer and more

portable.

The following figure shows how the component layer is in turn broken

down.

1. Or any other class that extends the monitor base class.

C h a p t e r 4 : A L a y e r e d A p p r o a c h

54 Hardware Verif ication with SystemVerilog

There are three abstraction layers.

The transaction layer consists of fairly high-level classes, such as
generators and checkers.

The next layer down in detail is the agent layer. This is the layer
that implements the connection policy and converts between high-
level transactions and low-layer method calls.

The lowest layer is the connection layer, in that the objects in this
layer drive and sense the chip wires.

Let’s look at the connection layer first.

The connection layer

The most detailed layer of the common-currency classes is where the

monitor, drivers, and bus functional models (BFMs) exist.1 This is shown

in the highlighted section of the following figure.

generator checker

BFM monitor

chip

driver

BFM agent monitor agentdriver agent agent

connection

transaction

Component Classes

virtual interface(s) SystemVerilog
HDL

generator agent checker agent

1. With multilayered protocols, the fractal nature of a layer must be considered.
Depending on the test to be run, there will be monitors, drivers, and so on at
each level of the protocol.

An Object-Oriented Framework 55

T h e C o m p o n e n t L a y e r i n D e t a i l

In this handbook, monitors and drivers are considered one-way connec-

tions,1 while BFMs are considered two-way connections. These classes

are generally the only ones that drive or sense the wires.

The connection-layer classes are complex and have a broad footprint. In

other words, they have lots of methods, encompassing everything you

want to exercise. The classes are extremely portable, because, by defi-

nition, the protocol from one chip to the next is well-specified. If, on

another project, you have that same protocol, the monitor/driver/BFM

from the connection layer should be easily adaptable.

The connection-layer classes have only a set of task and function meth-

ods. Their role is to take procedure calls and execute the wire dance that

is specified by the protocol. These classes are responsible for the mapping

between a method call and wire-change sequencing. Whether, and in

what order, these methods are called is the concern of the next layer.

generator checker

BFM monitor

chip

driver

BFM agent monitor agentdriver agent agent

connection

transaction

Component Classes – Connection Layer

virtual interface(s) SystemVerilog
HDL

generator agent checker agent

1. A driver sends data and a monitor receives data. Note that the driver or monitor
may both drive and sense wires to do this function.

C h a p t e r 4 : A L a y e r e d A p p r o a c h

56 Hardware Verif ication with SystemVerilog

The agent layer

The next layer up is called the agent layer, as shown here:

The agent layer is responsible for using various connection-layer classes

to implement the upper layer’s requests. It is called the agent layer

because it acts as a go-between for two relatively well-defined compo-

nents. Commonly, the classes in this layer add some sort of queue, for

data or control actions, depending on what the upper layers generate or

check.

This layer may also have several implementations. For example, many

chips have multiple ways to send the same data. There could be register,

FIFO, and DMA ways to interact with a chip. You could have three

different connection classes, one for each of these methods. The test

could randomly pick which method to use, and would still look the same.

Because the agent layer is the transaction layer’s view down into the

chip, it also implements the connection policy. For example, you could

use a simple direct connection, thus forcing the generator and driver to

act in tandem. Alternatively, you could implement a multipoint connec-

tion, using events or other broadcast mechanisms, to connect several

generator checker

BFM monitor

chip

driver

BFM agent monitor agentdriver agent agent

connection

transaction

Component Classes – Agent Layer

virtual interface (s) SystemVerilog
HDL

generator agent checker agent

An Object-Oriented Framework 57

T h e C o m p o n e n t L a y e r i n D e t a i l

drivers to a single generator. The same concepts can be used for the

monitor-to-checker connections.

The transaction layer

The uppermost layer is called the transaction layer, as shown in the

following figure.

The transaction layer uses the previously discussed layers to exercise

some component or feature of the chip and validate the response. The

exercising (or driving) part of this layer is called a generator. The

response validating (or receiving) part is called a checker. Note that there

may be more than one generator or checker if different types of traffic

are to be exercised on a component. There is a trade-off between making

a single, flexible and capable generator or checker, and having several,

fixed-function simple classes. Choosing which to use is a judgment call

for your team.

These three layers are portable code and can be used for almost any chip.

Of course, the generators will have to be constrained, randomized, and

started. Also, the checker will have to be waited on until it has checked

generator checker

BFM monitor

chip

driver

BFM agent monitor agentdriver agent agent

connection

transaction

Component Classes – Transaction Layer

virtual interface (s) SystemVerilog
HDL

generator agent checker agent

C h a p t e r 4 : A L a y e r e d A p p r o a c h

58 Hardware Verif ication with SystemVerilog

all the expected chip responses. These activities are the responsibility of

the higher test components, as will be described in later sections.

One interesting property of the common currency of component classes

is that each generator and checker probably has at least one thread of

execution. This is because hardware is massively parallel, and can operate

multiple protocols independently. In addition, the rate at which the

generation and checking occurs is only indirectly tied to the behavior of

the chip’s wires. For example, a single generated “packet” may require

many bytes to be transferred at the wires, or several data bytes may be

gathered from the wires before the checker is called.

So this is how a test component is broken down into classes that are

manageable and adaptable. The process of examining each chip protocol,

and then implementing a set of interacting common-currency classes to

handle the generating/checking and driving/monitoring, is now repeated

for each protocol. If this method of using layers and the underlying

protocol is well-defined, then there is a good chance that these classes

will be used again in later projects.

The Top-Layer Components

The whiteboard drawing is now pretty much converted to code for the

chip protocols. Because we are using an “ends-in” approach, we will

tackle the components at the top before we look at the middle layers.

The top layer has standard form, roles, and responsibilities, just as the

component layer did. The following figure shows the top layer with its

standard classes.

At the very top is the verification top, shown in the following figure.

This component builds the other top-level components and sequences

the initialization, randomization, execution, and shutdown of the simu-

lation. It would be easy to mistake this for the test itself—but wait.

It is better to abstract the functionality of the verification top into an

independent function. In this way, the specifics of the current project’s

tests and testbench are removed from the more generic build, startup,

An Object-Oriented Framework 59

T h e To p - L a y e r C o m p o n e n t s

and shutdown sequence. The verification top can then be used on multiple

projects.

Also at this layer, the three main workhorses of the verification system

are the testbench, the test, and the watchdog timer. Like the verification

top, the watchdog timer is most likely a generic implementation. Its role

is to shut down the system if too much time has elapsed.

The testbench is probably specific to a project, but it is the same for most

tests. Its role is to contain the component objects and perform chip-wide

initialization and possibly configuration. The test is responsible for

constraining and sequencing the component objects. (This process is

described further in the next section.)

Note that the test changes with each scenario you want to run. The

testbench and test implementations differ between projects and runs, yet

their code interfaces (by definition, the public class methods) remain

constant. At this high level of abstraction, the concepts of building,

configuring, running, and shutting down a verification test are uniform.

It’s up to the team to decide how to design the class methods for these

standard top-level classes, as well as how to design the build/configure/

Top-Layer Verification Components

verification top

test watchdog timer

testbench

PCI Express interface
generator checker

BFM monitor

Ethernet interface

chip

BFM agent monitor agent

generator agent checker agent

generator checker

BFM monitor

BFM agent monitor agent

generator agent checker agent

virtual interface(s) SystemVerilog
HDL

C h a p t e r 4 : A L a y e r e d A p p r o a c h

60 Hardware Verif ication with SystemVerilog

run sequence for a simulation. The Truss Basics chapter has base classes

for these standard classes.

What is a Test?

The previous section went quickly over the roles and responsibilities of

a test. Because a test is an important concept in verification, let’s be a

bit more thorough. A test is one of the main top-layer classes. It is

responsible for exercising some subset of the features of a chip while

background traffic or other activity is occurring. The test’s main partner

is the testbench. Before we talk about the test, let’s review the role of

the testbench and see how the test uses it.

The testbench contains the connection-layer objects for each of the chip’s

protocols. In general, the testbench only holds these objects; it’s up to

the test to use them. However, there is a small exception: when the chip

has mutually exclusive features or protocols. In this case, the testbench

might have an object or two that “chooses” an appropriate configuration.

The test is responsible for “deciding” which features of the chip are to

be tested. Because most chips are massively parallel devices, a well-

designed test focuses on some part of the chip—but it also exercises other

functions or protocols of the chip simultaneously. Often there is a primary

protocol or feature to be tested, and a number of independent, secondary

protocols or features.

After a test has “decided” on a protocol or feature to focus on, it must

constrain the random behavior of those features. The test selects and

writes a configuration to the chip, probably by interacting with the

connection BFMs. After that, the test starts up all the component gener-

ators and runs them until some end condition is met and the end of the

test is signaled. This end condition could be either elapsed simulation

time or whenever the primary component exercise has completed. Finally,

the test waits for all the other components and then reports success or

failure.

Because a chip may have several protocols, it can become tedious and

clumsy to work with the component-layer generators, BFMs, and check-

ers directly. The test may become cluttered with management code, and

An Object-Oriented Framework 61

W h a t i s a Te s t ?

it may be difficult (for all but the original writer) to figure out the point

of the test. Also, many tests will use many combinations of chip protocols

and features, so that much of the code is replicated. For these reasons,

it’s better to group a chip’s component-layer test into a concept the authors

call a test component. In addition, the other protocols that are just

exercising the chip as background traffic are packaged into irritator

components. These components are “middle layers”—that is, they con-

nect the connection layer to the top layer.

Here is an example of what the components of a simple PCI Express test

might look like:

The test component is described in the next section, and the test irritator

is described after that.

To summarize, a testbench holds the component-layer objects, which the

test selects, constrains, and controls. It is good practice to break a test

into test components, one for each protocol or feature of the chip. For a

specific test, a few test components are the main components, while other

components—the irritators—provide background traffic.

Example PCI Express Test

PCI Express test component
Main test part

Ethernet irritator
Background traffic

USB irritator
Background traffic

UART irritator
Background traffic

C h a p t e r 4 : A L a y e r e d A p p r o a c h

62 Hardware Verif ication with SystemVerilog

The Test Component

The whiteboard drawing probably does not include information about

the middle layers. This section details some of the questions and decisions

related to the middle layer. It is at this middle layer where common

questions such as “What object should set what parameters?,” “What

should be randomized and when?,” and “How do we know when we are

done?” are answered. In some sense this is the hard part of the verification

system, where a lot of mental energy is spent.

The implementation of the middle layer starts with listing the types of

exercises you want to perform on a protocol or feature of the chip. Often

these test requirements take the form of sequences that exercise the basic

data paths and functionality of the chip, including error cases.

Once you have this list, you create a middle-layer class to represent each

exercise. The authors call these classes the test components of a test. A

test component does not just represent a stimulus or a scenario for a

protocol; it also includes the end condition. In a sense, a test component

has a code interface like that of the verification top, evidence of the

fractal nature of a layered approach.

A test component is used to exercise some specific functionality of the

chip. In fact, a test component is often used with other test components

to create a rich test, with the other test components acting as “background

noise” generators (irritators). This is a benefit of designing test compo-

nents as a separate class, instead of directly implementing the exercise

in the test.

Another benefit of separating the test from test components is that the

test is a layer above the test components, creating them, giving them the

appropriate parts of the testbench, and setting their parameters. This

allows different tests to drive the same test components differently,

perhaps letting a test component “roam” on its parameters, or maybe

constraining it to hit a corner case.

In general, a test component, on construction, gets references to a gen-

erator, a driver/BFM, and a checker of a chip protocol. The references

come from the testbench.

An Object-Oriented Framework 63

T h e Te s t C o m p o n e n t

Why not take in the entire testbench? By not just referencing an entire

testbench, but instead taking the pointers it needs, each test component

manages complexity by minimizing the assumptions on the environment.

In addition, the test component maximizes the chance that it can be

adapted to other testbenches. By having a test component itself perform

an exercise, instead of directly implementing the exercise in a test, you

have a better chance of ensuring the adaptability of the exercise.

Let’s look at a concrete example. Suppose you are driving packets into

a chip from one protocol and collecting processed packets on another

protocol. To test this data path, your test system will look something like

this:

The packet test component class gets a pointer to both BFMs, a generator,

and a checker. The role of the packet test component is to exercise some

part of the chip by using these other components.

For some methods the test component may just relay calls from the test.

In this example, a start() method calls start() on the generator,

checker, driver, and monitor. Recall that the test could have called all the

component layer objects directly; the test component layer just makes

the test clearer.

One nonrelay task that the test component performs is to sequence the

generator. For example, the packet test component mentioned above

would probably tell the generator to generate a certain number of packets.

Test Component Connections

packet test componentstart()

start()

st
ar

t(
)

st
ar

t(
)

generator

chip

checker

BFM/driver BFM/monitor

start()

from the
test

C h a p t e r 4 : A L a y e r e d A p p r o a c h

64 Hardware Verif ication with SystemVerilog

This number might be set by a randomized parameter, or it could be fixed.

There may be other component-layer parameters that the test component

controls, such as packet size or protocol configuration parameters. This

is where the test component implements what is in the test plan.1

The test component is essentially an aggregator. Given
pointers to a component’s generator, BFM/driver, and
checker, the aggregator sequences these.

The Test Irritator

We have only one more part to consider before we complete the conver-

sion from a whiteboard drawing to a verification system. This last part

addresses how to write background traffic components. Recall that a

robust test has a test component and several other background traffic

components. The idea is to ensure that the chip can function in a real-

world scenario.

When you start writing tests, you will probably start with test compo-

nents. Then, after the tests are stable, you’ll want to add auxiliary test

components.The name the authors use for these auxiliary components is

irritators. An irritator is most likely to have “evolved” from one of your

test components for that chip interface.

When converting a test component to a background traffic generator, you

must alter the component so that it addresses not an internally governed

amount of traffic but rather an externally controlled one—so that, for

example, it does not use a fixed-length group of packets but instead an

infinitely repeating sequence of packets. In other words, you want the

nonessential irritators to continue doing whatever chip exercise they do

until your test says to stop.

The Truss chapter has an irritator base class that is inherited from

the test_component base class. If you write your test irritators so that

1. A discussion of a test plan is beyond the scope of this handbook, but basically
the plan is a list of the exercises you need to perform on the chip.

An Object-Oriented Framework 65

A C o m p l e t e Te s t

they use these base classes, irritators can be implemented with very little

effort.

By adding irritators, you can write tests that are
understandable yet reasonably complex.

A Complete Test

Let’s take a step back and look at what we have accomplished. We have

progressed from refining a whiteboard drawing to defining responsibil-

ities for classes and code. We now have definitions for sets of classes for

each protocol of the chip. We have a testbench that contains instances of

each of these classes. We also have a set of test components and irritators

that can be combined like building blocks to create a diverse set of tests.

At the top-most layer are the tests. These tests should not only exercise

a main function, but also leverage the work of the other team members

by using irritators as nonessential traffic. These tests should exercise the

chip fairly well.

Shown below is an example of a test that uses the layers we have talked

about, an example UART test with several irritators added.

C h a p t e r 4 : A L a y e r e d A p p r o a c h

66 Hardware Verif ication with SystemVerilog

This example test includes a “main” test component, called UART test

component, which probably walks a range of configurations and sends

some amount of data. The test also includes Ethernet and PCI Express

irritators.

Many choices still remain, such as exactly how to sequence the bring-

up, running, and shutdown of these test components. The next part of

this handbook provides a standard framework to help you make these

choices.

You must still decide how to randomize and constrain the test parameters.

For example, there are implementation choices regarding what control

variables to include in the test components and the irritators, as opposed

to control variables in the generator and configuration for the connection

layer. Although these are not simple choices, the next few chapters should

help to clarify the trade-offs.

This completes our first pass at converting from a whiteboard drawing

to code. As mentioned earlier, this exercise is essentially repeated con-

tinually, even as code is written. In other words, reality happens when

you write the code.

UART Test Example

verification top

test watchdog
timer

testbench

chip

Ethernet
interface

PCI Express
interface

UART interface UART test component

PCI Express irritator

Ethernet irritator

SystemVerilog

HDL

An Object-Oriented Framework 67

S u m m a r y

Summary

This chapter talked about layers. We talked about using layers to increase

productivity, by managing the complexity of a verification system.

We talked about “ends-in” coding, where you start at the bottom and top

of the test and code towards the middle. We considered this technique

of looking at the chip and creating component layers as the first step in

creating a verification system. We then went to the top layer, and talked

about the verification top and the three top components: the watchdog

timer, the test, and the testbench.

Next, we entered the middle layer, where we talked about using a test

component to exercise a particular configuration or data path of a chip

protocol. The idea that a test really should have several components

exercised at once formed the reasoning behind the irritator layer.

We ended the chapter with a quick tour of a completed test, noting that

there are still more decisions to be made as the implementation of the

verification system proceeds.

For Further Reading

The Mythical Man-Month, by Fred Brooks, is the classic
handbook that talks about why one should not put additional
people on a team to solve a problem. He argues, as we did in this
chapter, for a more productive team.

A Few Good Men from UNIVAC, by David E. Lundstrom, talks
about the concept of a focused and productive team. This book is
about the origin of supercomputers.

On the Criteria To Be Used in Decomposing Systems into
Modules, by D.L. Parnas, is a 1972 landmark paper on how to go
from a problem statement to a design. The fancy name for this
process is called decomposition. The current fancy terms for
thinking about design are “design patterns” or “factory objects.”
However, be careful with these recent concepts; they refer to good

C h a p t e r 4 : A L a y e r e d A p p r o a c h

68 Hardware Verif ication with SystemVerilog

high-level solution templates, but those templates must be applied
with care and experience.

The concept of design directions came from Harlan Mills and
Niklaus Wirth at IBM in the 1970s. Their original idea was to use
a “top-down” approach, but all variants have been popular at
various times. The authors believe that an “ends-in” approach is
the best for the class of problems encountered in verification.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 69

Part II:
An Open-Source
Environment with
SystemVerilog

The previous part of the handbook was a high-level look at System-

Verilog and how to architect a verification system by using layers. Now

we focus on a specific implementation of such a system.

This part of the handbook introduces two open-source libraries, called

Teal and Truss, that together implement a verification environment. The

authors and others have used these libraries at several companies to verify

real projects.

The libraries are free and open source because the authors feel strongly

that this is the only way to unite and move the industry forward. Locking

up people’s “infrastructure” is not the way to encourage innovation and

standardization—both of which are needed if the verification industry is

to improve.

Consequently, you’ll find no simulator-company bias in these libraries.

These libraries work on all major simulators.

In this part we discuss the following:

70 Hardware Verif ication with SystemVerilog

Teal, a set of utility classes and functions for verification

Truss, a layered verification framework that defines roles and
responsibilities

How to use Teal and Truss to build a verification system

A first example, showing how all the parts we talk about fit
together

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 71

Teal Basics
C H A P T E R 5

Coming together is a beginning. Keeping
together is progress. Working together is
success.

Henry Ford

Building a verification system is a daunting task, but build we must.

That is why we use the technique of layering, to break the problem down.

By starting with the lowest layer—that is, the one that directly drives and

senses the wires—we can start to get some real work done. That is covered

by SystemVerilog’s interface feature. The next layer is the basic building

blocks, such as loggers, parameters, and memory access. Teal is a col-

lection of building blocks. Teal tries to be as unobtrusive as possible,

allowing you and your team to make framework decisions as you see fit.

This chapter introduces Teal and shows how to use it. We’ll talk a bit

about the main parts of Teal—for example, how you can get and set

memory or registers in the chip, and how you can create a flexible, yet

simple log messages.

C h a p t e r 5 : Te a l B a s i c s

72 Hardware Verif ication with SystemVerilog

Overview

Teal is a set of utilities implemented in a package. Teal is tiny, consisting

of only a handful of source files, yet it provides the necessary minimum

features for verification. (Teal is freely available at www.trusster.com.)

Teal is unobtrusive; it does not get in the way of your verification

structure. Teal provides the general functions that most verification

systems use.

The authors realize that many companies have developed their own

version of a “Teal.” We encourage those companies to contact us and

share their experiences, so Teal can be made better. This is one of the

reasons why Teal is open source.

Teal’s functionality provides the basis for functional verification, but it

serves as only a small part of a verification project. You must still write

code that stimulates the design, checks the output, and controls the

randomness. That is the real work of a verification project. (The next

chapter talks about an open-source verification environment.)

Teal’s Main Components

It is important to decide on a “common currency” when designing a class

library. The rest of this chapter describes the common currency of the

Teal system—that is, the fundamental building blocks of Teal-based

verification.

The following is a summary of the most important classes and functions

of Teal; more detail is given in the following sections.

The vout class—This Teal class is used for logging, to help trace
what happens during a simulation. The vout class provides the
ability to report, for example, debug, error, and other informative
messages in a consistent format that is coordinated with HDL
outputs.

The vlog class—This class is a global resource that coordinates
all the logging from your code. It receives all vout messages from
the simulation and implements a filter chain, so you can add

An Object-Oriented Framework 73

Te a l ’ s M a i n C o m p o n e n t s

useful features such as replicating output to a file and removing
messages or parts of messages.

The memory functions—These functions provide an abstract
interface for reading and writing memory. Internally, a group of
memory banks are used to handle memory read and write
requests, providing great flexibility.

The vrandom class—Because using random numbers for test
values is a staple of modern verification, this class is Teal’s stable
random-number generator. Though SystemVerilog provides a
sophisticated rand/constraint capability, this class is small and
completely under your control. The class provides independent
streams of stable random numbers that are guided by a single
master seed. Of course, the numbers all have their own seed as
well, based on what you provide. This allows these numbers to be
stable and create a new stream of numbers only when you change
their local seed or the master seed.

The dictionary functions —These functions are a global service
that abstracts how to set parameters in your test. They provide the
functionality to get and retrieve parameters from code, the
command line, or external “scenario” files.

The latch class—This class provides a latchable/resettable event,
so that you do not have to worry about thread execution order, or
about missing an event that occurred during previous forks. You’ll
use this whenever you have two classes that want to communicate
a status, such as a generator or monitor, to a higher level to
indicate completion. The examples show several uses of a latch.

All of these classes and functions are described in the following sections.

C h a p t e r 5 : Te a l B a s i c s

74 Hardware Verif ication with SystemVerilog

Using Teal

It’s time to dive into some details regarding how Teal can be used for

functional verification. This walk-through of Teal makes it easier to

understand the “real world” examples presented in subsequent chapters,

while illustrating how Teal can be used in your environment.

A simple test

When the simulation begins, your program block is executed. The pro-

gram block could be as simple as the following:

'include "teal.svh"

program verification_top();

initial begin

teal::vout log = new ("first code");

log.info ("Hello Verification World");

end

endprogram

Logging Output

Because a lot of debugging is done by reading simulation log files, in

order to see a progression it is important to organize simulations well.

In other words, to enable postprocessing, error counting, messaging, and

possibly filtering, it is important to have a consistent message format.

Fortunately, the logging facility in the Teal classes encourages such

uniformity. Teal comes with a standardized, customizable logging mech-

anism, called vout.

Teal uses a two-level logging scheme, as shown in the following figure.

In any code that needs to print information, a vout object is created. As

many vout objects as needed can be created—which is good, because

each vout object can have a relevant instance name.

An Object-Oriented Framework 75

L o g g i n g O u t p u t

Each vout object “under the covers” calls a global service vlog object.

This is done so that there is a single point of control where the reordering,

changing, or deletion of parts of any message can be done.1

Note that vout simply takes a string. By calling the appropriate func-

tion—info(), error(), fatal(), debug()—vout can provide this

information to the vlog class. This information is not just sent as a string,

but is passed as metadata that can be useful for further processing. This

is described more fully below.

When you create a vout, you give it a string that represents the functional

area it is in. You can then build any number of message statements. For

example, note the following:

'include "teal.svh"

program verification_top();
initial begin

teal::vout log = new ("a test");

log.info ($psprintf2 ("val 0x%0x", 207218);
end

endprogram

This example prints the following (assuming a simulation time of 77 ns):

[77 ns] [a test] val 64 0x32972

1. Although describing this capability completely is beyond the scope of this
handbook, subsequent chapters show several examples.

2. Note that while $psprintf() is not a part of the standard, all the major
vendors provide this call.

pci_bfm

uart_checker verification_top

i2c_stimulus

vlog

vout vout

vout

vout

vout and vlog Objects in Teal

C h a p t e r 5 : Te a l B a s i c s

76 Hardware Verif ication with SystemVerilog

Note that when you call one of the display methods—info(), error(),

fatal(), debug()—the vout instance adds the simulation time and the

functional area to the message, then sends the message to the vlog global

service. It does not send the message as a text string, which would not

allow the efficient modification of the message; rather, it sends the

message as a set of pairs of IDs and strings. This allows you to instruct

the vlog instance to modify messages with respect to their components—

for example, to demote errors to a warning, or stop all output from a file

or a functional area.

However, you often do not need to use the global filtering mechanisms

of vlog. Instead, you can turn off the display of parts of a message

direct ly, a t the vout instance. This is done by cal l ing the

message_display() function with the ID of the item you want to display

(or not). By default, all items are displayed.

Most verification systems have several levels, or types, of messages.

Teal, being no exception, uses the following general categories:

info(msg)— Used for standard messages.

debug(msg)/debug_n(<level>, msg)—Used when a test wants
to display a little more diagnostic information. This is a level-
sensitive output; the vout class has level-setting methods and
accepts a level for debug messages. The message is displayed only
if the level of the message is less than or equal to the level that is
set. The debug(msg) method uses a level of 1.

error(msg)—The error type is used when the chip’s actual
behavior is different from the expected.

fatal(msg)—This more-severe error type ends the simulation
after displaying the message.

Examples of the above are provided in later examples.

An Object-Oriented Framework 77

U s i n g Te s t P a r a m e t e r s

Using Test Parameters

It is often important in functional verification to provide test parameters.

These are frequently used, among other things, as bounds for random

tests. For example, a single test case may have several different sets of

test parameters—including, say, the maximum number or errors before

the test is forced to terminate, or the maximum amount of time the test

is allowed to run. Sets of test parameters can also be used to direct a test

into interesting corner cases.

Because such parameters are commonly used, Teal provides a standard,

flexible way of working with them. Test parameters can be defined by

means of text files, code, or command line entries. Teal handles simple

integer and string parameters as well as complex parameters.

Teal’s dictionary functions are used to access test parameters. Teal

maintains a list of parameter names and values, so that a test, for example,

can query the dictionary and recover the value.

When you call the dictionary_read(string) function, Teal reads a

text file, takes the first word on each line as the parameter name, and

saves the rest of the line as data for that parameter. A special keyword,

#include, is used to open other files from within files. If a parameter is

repeated, the last definition is saved.

In addition to using files, you can also use code to add parameters. When

you do this, you have the option of replacing an entry or not.

Parameters can also be entered on the command line. In this case, they

override any parameter set by a file or the code. In this way, a parameter

can have a default value but still be overridden by a script.

As an example, let’s suppose we are testing a UART interface. We have

a default parameter file that sets up default constraints, and then each

specific test overrides a few values as well as defines its own parameters.

The default parameter file could look like this:

//in default_parameters.txt:

force_parity_error 0

dma_enable 1

baud_rate 115200 921600

C h a p t e r 5 : Te a l B a s i c s

78 Hardware Verif ication with SystemVerilog

A specific parity-error test case could use the default parameter file and

override the force_parity_error setting like this:

//in parity_error_test_parameters.txt:

stop_error_probability_range 32.81962 75.330

#include default_test_parameters.txt

force_parity_error 1

The #include default_test_parameters.txt line above tells the

dictionary to open the default_test_parameters.txt file. The

force_parity_error 1 repeats the force_parity_error parameter

and overrides the default value.

It is not always appropriate to use files to pass parameters. Using files

can be good if you need to have many different test parameters and a few

basic tests. However, it can be clumsy to make sure the files stay with

the respective test code. Therefore, the examples later in this handbook

use the code mechanism. Nevertheless, including such files, or even

passing parameters on the command line, can be done after most of the

test is written, without having to modify the test itself.

So how do we pick up the parameters? The following is a complete basic

example of how these parameters could be retrieved:

'include "teal.svh"

import teal::*;

program verification_top();

initial begin

//reads file shown above

 dictionary_read ("default_parameters.txt");

 vout log = new ("first_parameter_example");

 log.info ($psprtintf ("force_parity_error is %0d",

 dictionary_find_integer ("force_parity_error"));

end

endprogram

Because most parameters are not strings, Teal provides a function,

find_integer(), to convert parameters to the correct variable format.

The find function always returns a string—either an empty string ("")

if the parameter is not found, or the actual string associated with the

parameters. The find_integer() returns an integer if the string is found,

or returns the passed-in default if it isn’t.

An Object-Oriented Framework 79

A c c e s s i n g M e m o r y

If using find() or find_integer() is not appropriate for your appli-

cation, you can use the $sscanf(). This allows the code to create a

stream from a string, from which you can then extract the chars, ints,

doubles, and so on, as needed.

For example, to read the stop_error_probability_range (from the

example above), you would use the following:

'include "teal.svh"

import teal::*;

program verification_top();

initial begin

dictionary_read ("parity_error_test_parameters.txt");

//reads "32.81962 75.330" from file into s

string s = dictionary_find("stop_error");

real stop_error_min = 0;

real stop_error_max = 0;

int foo = $sscanf (s, “%f, %f”, stop_error_min,

stop_error_max;

teal::vout log = new ("showing double double reads");

log.info ($psprinf ("Stop error range is %0f to %0f",<<

 stop_error_min, stop_error_max));

end
endprogram

Accessing Memory

For most verification projects it is important to be able to access memory.

Sometimes you want to do this in zero simulation time. Allowing “back-

door” accesses of memory improves simulation performance, allows the

monitoring of memory for automatic checking, and makes it possible to

insert errors into memory for test purposes. Teal provides such a “back-

door” mechanism but also, of course, supports “front-door” access, which

can map some memory address ranges to a transactor-based model.

Teal defines each accessible memory (transactor model or memory array)

as a memory_bank object. A memory_bank object can be accessed

direct ly through member functions called to_memory() and

from_memory(), but each memory can also be associated with an address

C h a p t e r 5 : Te a l B a s i c s

80 Hardware Verif ication with SystemVerilog

range, through the add_map() function. In this way, memory can be

accessed through addressing by means of read() and write() functions.

Working with address ranges has many advantages, because it creates

code that is easier to understand.

When writing a memory transactor, you must define your own

memory_bank object, using virtual interfaces or pointers or channels to

BFM transactors.

The following example shows how HDL memory arrays can be associated

with an address range and accessed. An example of how to write memory

transactors is in the UART example chapter.

A memory example

The following diagram shows a small part of a larger testbench structure.

This environment verifies a graphics chip that saves graphical texture

information in its memory cache. In order to speed up simulation, back-

door loading of the texture into the chips memory is used.

To support direct memory access you need to do a few things. First, you

need to create an interface to the memory register bank. Then you need

to define a subclass of teal::memory_bank that takes in a virtual

interface of that type and performs the from_memory() and

to_memory() functions. After that, you need to create an instance of

memory_1

memory_2

memory_3

memory_cache

hdl

GPU

memory_bank

SV

read() write()map()

Your verification code

memory_bank

memory_bank

Memory bank lookup

Memory Bank Objects

An Object-Oriented Framework 81

A c c e s s i n g M e m o r y

that class and give it to Teal’s memory manager by means of the

teal::add_memory_bank() function. Then you need to define an

address range for each memory instance to be used, allowing Teal to

translate from an address to a specific memory. Finally, once the address

range is established, you access that memory through read() and

write() functions. Whew! That sounds like a lot of work, but it really

isn’t. It’s just that describing code is clumsy.

To do this in the environment pictured above, an interface and a memory

class is defined (that is, the memory model is instantiated as memory1,

memory2, and memory3, above). So part of the memory model looks like

this:

//In Verilog HDL, here is what the actual memory arrays are

reg[31:0] memory_bank_1[1024:0]; //Actual memory array

reg[31:0] memory_bank_2[1024:0];

reg[31:0] memory_bank_3[1024:0];

//now in a SystemVerilog header file,

//perhaps chip_interfaces.svh, define the interface and

// class

interface gpu_ram (output reg[31:0] bank[1024:0]);

endinterface

class gpu_memory_bank extends teal::memory_bank;

function new (virtual gpu_ram g);

super.new ("gpu ram");

gpu_ram_ = g;

endfunction

//now override the access tasks

virtual task from_memory (bit [63:0] address,

output bit [teal::MAX_DATA - 1:0] value,

input int size);

value = gpu_ram_.bank[address];

log_.info ($psprintf ("Read[%0d] is %0d", address,

 value));

endtask

virtual task to_memory (bit [63:0] address,

input bit [teal::MAX_DATA - 1:0] value,

input int size);

gpu_ram_.bank[address] = value;

log_.info ($psprintf ("Write[%0d] is %0d",

address, value));

endtask

C h a p t e r 5 : Te a l B a s i c s

82 Hardware Verif ication with SystemVerilog

local virtual gpu_ram gpu_ram_;

endclass

Now the real interfaces of the chip must be created. The way the authors

like to do this is in a separate module from the top.v (testbench top).

The reason for this is to support building “dummy interfaces” if parts of

the chip are not built yet or are stubbed out for some reason.

module interfaces_dut;

gpu_ram gpu_ram_1 (top.memory_cache.memory_1);

gpu_ram gpu_ram_2 (top.memory_cache.memory_2);

gpu_ram gpu_ram_3 (top.memory_cache.memory_3);

endmodule

As can be seen in the code below, the memory model gets instantiated

t h r e e t i m e s a s memory1 , memory2 , a n d memory3 . I n t h e

verification_top() program, the three memories get address ranges

declared like this:

program verification_top();

initial begin

 gpu_memory_bank gpu_memory_1 =

 new ("top.dut.gpu.memory_cache.memory_1",

 interfaces_dut.gpu_ram_1);

 gpu_memory_bank gpu_memory_2 =

 new ("top.dut.gpu.memory_cache.memory_1",

interfaces_dut.gpu_ram_2);

gpu_memory_bank gpu_memory_3 =

 new (“gpu_memory_3”,
interfaces_dut.gpu_ram_3);

memory::add_memory_bank (gpu_memory_1);

memory::add_memory_bank (gpu_memory_2);

memory::add_memory_bank (gpu_memory_3);

memory::add_map
("top.dut.gpu.memory_cache.memory_1",

 'h100, 'h200);

//The following assumes the subpath memory_2
//is unique

memory::add_map ("memory_2", 'h201, 'h400);

memory::add_map ("memory_3", 'h401, 'h600);

end

endprogram

An Object-Oriented Framework 83

A c c e s s i n g M e m o r y

Now any test can access these memory spaces through simple read and

write function calls. Furthermore, neither reading nor writing memory

consumes any simulation time.

So why bother with all this machinery? First, most of the machinery

would have to have been built anyway. SystemVerilog needs a virtual

interface if it is actually going to poke the HDL. So you need to define

a virtual interface and its real instance. Then you need to have the

assignment statements that are within the memory bank. The benefit that

the memory bank and map machinery add is to abstract the pin manipu-

lation, or reach inside the DUT, with a simple read/write interface. Once

memory banks are in place, this interface can be used to access any part

of the DUT. The test writer is freed from figuring out how to perform

access, and simply needs to look at the register/memory map specification

for the chip in order to read/write. The power of this simplicity cannot

be overstated.

Note that this technique can also be used to simplify register access. The

examples use this technique, so you can see how it makes the driver code

easier to write and understand.

In addition, should the testing team want to switch to front-door access,

such as going through PCIe or a I2C protocol, this can be done without

any changes to the “user” code.

A basic memory access would look like this:

teal::uint32 actual;

teal::write('h10a, 22, 32); //'ha in memory_1 = 22

teal::read('h10a, actual);

if (actual != 22)
begin

teal::vlog log = new ("memory_example_1");

log.error (

$psprintf
("At memory_1['ha] got 'h%0x expected 'h%0x",

actual , 22));

end

Note that while the memory is written and read at 'h10A, the actual

memory is accessed at 'h0A. This is because of the add_map() that we

performed, which allows the rest of the verification system to read and

write memory as specified in the chip’s memory map. Teal takes care of

C h a p t e r 5 : Te a l B a s i c s

84 Hardware Verif ication with SystemVerilog

finding the correct memory bank to access, and then removing the

mapping offset.

Constrained Random Numbers

It is important to have a stable, repeatable, seeded random-number

generator. While SystemVerilog provides an extensive random feature

and a constraint language, sometimes more is not always better. For

example, not knowing what SystemVerilog uses as the local seed can

lead to a test that changes its random behavior when you do not want it

to. The constraint language is another consideration. While vast, it is

still declarative, and it’s up to the constraint solver to pick among the

universe of acceptable random numbers. This can lead to confusing

behavior and contradictions in the solver. Finally, sometimes it’s easier

to express the constraints on the random behavior as just a procedure.

The examples in the book sometimes use Teal’s random and sometimes

SystemVerilog’s, just to show that a problem can be solved several ways.

As usual, it’s up to your team to decide what it wants to use.

Teal’s vrandom class provides independent streams of random numbers

that can be initialized from a string or file. There are also convenient

macros for the most common random calls, such as getting a random

integer value or getting a value from within a range.

The rest of this section describes the required initialization of the random

generator and some simple examples.

Required initialization

Before using any random numbers you must initialize the random-number

generator. This is done by calling the init_with_seed() function and

passing it a 64-bit seed value. It is recommended that higher-level code

keep track of this seed value and pass it to the random number generator.

To initialize the random seed generator you would call the following:

teal::uint64 master_seed;

...

// master seed gets initialized by higher layer

An Object-Oriented Framework 85

C o n s t r a i n e d R a n d o m N u m b e r s

teal::vrandom_init_with_seed(master_seed);

After the random-number generator is initialized, it is ready to be used.

The examples in this handbook use the dictionary to get the master seed.

Also, the examples use the same seed as SystemVerilog, so there is only

one master seed.

Using random numbers

Because integers are so commonly used here, Teal provides a couple of

macros to deal with integers. After you have initialized the random-

number generator you can call these macros directly. The most often

used macros are RAND_32 and RANDOM_RANGE, which generate a 32-bit

random value and a 32-bit value within a range, respectively.

Here are some examples:

'include "teal.svh"

program verification_top();

initial begin

teal::uint32 a_rand32; ‘RAND_32(a_rand32)

teal::uint32 a_random_range;

'RAND_RANGE(a_random_range, 0, 'h030837);

teal::vout log = new (" random number test");

log.info ($psprintf (

"a_rand32 is %0d a_random_range is %0d",

a_rand32, a_random_range));

end

endprogram

When you want to create more-elaborate random numbers, you need to

work with the vrandom class directly. The vrandom class is a simple

class that you can draw numbers from after it is created. This gives you

more direct control over the generation of random numbers. The base

vrandom class provides a uniform distribution, but you can create your

own classes to have segmented, logarithmic, or other distributions.

You would create an object for your inherited class and draw a number

like this:

my_vrandom a_random = new ("some string", some_integer);

teal::uint32 a_random_value = a_random.draw();

C h a p t e r 5 : Te a l B a s i c s

86 Hardware Verif ication with SystemVerilog

These parameters are hashed with the master seed and are used to

initialize this particular random-number generator. You may want to pass

in your own values.

Working with Simulation Events

SystemVerilog provides events to allow threads of execution to commu-

nicate. Unfortunately, there are some restrictions on the event handling.

One of the most tricky is that the events do not latch, so if an event

happens and a receiving thread is not waiting, the event never “hap-

pened.1” This can be desirable, but most often is not what one wants. So

Teal provides a latchable event.

The latch class just includes a bit with the event, so that the “tree

falling” event is remembered. When another thread goes to wait on the

event, it will either pause the execution and wait for the event, or, if it

already occurred, just return.

The latch can be “one-shot,” that is, automatically resetting after being

read, or it can wait for a manual clear. Sometimes it doesn’t matter, if

the event will happen only once in the simulation. This is generally the

case with checkers and their “done” event.

'include "teal.svh"

program verification_top();

initial begin

teal::latch latch_1 = new ("latch for checker");

fork begin

 begin

$display ("do checking");

#10;

latch_1.trigger ();

end

begin

#11; //thread "misses” the event

latch_1.pause ()

$display ("checking is done");

1. Like the tree falling, unheard, in the forest.

An Object-Oriented Framework 87

S u m m a r y

end

end

join

$display ("test is done");

end

endprogram

Now obviously this example is contrived, but the point is that sometimes

you cannot guarantee that a thread is waiting before the event is issued.

It’s safer to use this little object than to debug a race condition that might

change with the seed.

Later in this handbook there are many examples of how to use latches.

Summary

This chapter introduced an open-source package called Teal. We talked

a bit about what Teal provides and its components.

Logging is a very important capability of a verification system. Teal’s

vout class and the global service class vlog provide a uniform, yet very

flexible, logging capability.

Almost all tests need to have control parameters set by code or files.

Teal’s dictionary provides a global service for managing parameters.

The memory functions of Teal can be used for both register access and

internal chip memory accesses. If reads and writes are extracted from

the actual underlying mechanism, different transactors can be used.

Random numbers are essential in verification systems. Teal provides the

vrandom class, a stable, independent random-number generator.

We ended the chapter with a look at Teal’s latch class, and considered

why you might need to use it.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 89

Truss: A Standard
Verification Framework
C H A P T E R 6

Truss, and verify.

Anon.

Have you ever watched a building being constructed? Early in the

project, when the frame of the building is just a skeleton, it’s not clear

what the finished building will look like. However, as construction

continues, from the windows down to the cubicles that are our workplaces,

the intent of the framework becomes clear. In fact, a large part of the

building’s presence depends on the fundamental structure.

This same basic process occurs when we build a verification system.

Early in the project, the application framework is built. The result of

years of best practices from both the verification and software fields,

Truss is an application framework for verification. It is an implementa-

tion, and therefore makes some decisions about how things should be

structured. With verification as with construction, the framework sets

the tone for the system.

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

90 Hardware Verif ication with SystemVerilog

Truss is a layered architecture, so you can choose how to implement the

layers. Although it makes very minimal assumptions, Truss does provide

some base classes and conventions as a guide.

Overview

This chapter presents three main topics:

The roles and responsibilities of the various major Truss
components

How these components work together

How you adapt this framework for your verification system

This chapter builds on the two previous chapters of the handbook. It

implements an open-source verification infrastructure based on the dis-

cussion in the Layered Approach chapter. It also uses the Teal library

described in the previous chapter.

Teal provides the fundamental elements of a verification system and

supports a wide array of methodologies. Truss, on the other hand, pro-

vides the infrastructure layers above Teal, adding a set of classes, pseudo-

templates, idioms, and conventions to facilitate the construction of an

adaptable verification system.

One of the tricks in building a reasonable infrastructure is to find the key

algorithm. The rest of the algorithms can usually fit around that key

algorithm. For example, in a video editing program the key algorithm is

all about getting the pace of the edits right. When you watch a movie,

that happy, sad, or scared feeling you get comes from how well-timed

and precise the changes in scene are.1 The authors, having developed

software for video editing systems, know that in this domain the key

algorithm is implemented by adjusting the edit points of a few seconds

of video while the video is constantly looping around those edits. This

is not a trivial thing to do, because multiple streams of video and audio,

possibly with software algorithms to implement effects, are changing as

the user is adjusting the edit points.

1. Okay, emotions also come from the music, but everything works together.

An Object-Oriented Framework 91

G e n e r a l C o n s i d e r a t i o n s

So what’s our point? Well, in the verification domain, the key algorithm

is the sequencing of the various components of the system. The authors

refer to this as “the dance,” as there are usually a few interacting com-

ponents involved. As we talked about in the Layered Approach chapter,

the top-level dance takes place between the test, the testbench, and the

watchdog timer. Truss implements this dance in the verification_top

program—but Truss does not stop there. The authors believe that this

dance is the key algorithm in several layers of the system, so we created

a verification_component base c lass . Also , we c rea ted

test_component and irritator base classes to be the “top” at the

component layers of the system. Recognizing and reusing the dance is a

significant part of Truss.

This chapter explains the major components of Truss, providing code

examples where appropriate. Subsequent chapters provide more-detailed

examples.

General Considerations

The authors have worked on several different implementations of veri-

fication systems before Truss was available. While at a high level veri-

fication systems can be described uniformly, the language used to build

them has a lot to do with how a specific framework is constructed.

SystemVerilog considerations

SystemVerilog is an evolving standard, and vendor compliance with the

current standard is also evolving. However, Truss can be used with

multiple vendors. Although it’s possible to build a “better” OOP-based

verification framework by supporting only one vendor, single-vendor

support would have made Truss a verification novelty. Truss represents

an appropriate cross-vendor SystemVerilog framework that many years

of software and verification experience can create.

SystemVerilog does not have copy constructors, or operator overloading.

However, it does provide object-instance reference counting, and Truss

relies on this by passing around objects liberally. SystemVerilog does

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

92 Hardware Verif ication with SystemVerilog

not have a concept of interface versus implementation. It does allow

'include and extern on methods, which Truss uses to create the illusion

of interface files. Truss also uses pure virtual functions to communicate

a code interface.

Not all vendors support static methods, so Truss uses a function in a

package to implement a singleton. SystemVerilog does not allow task

calls in functions, so Truss has a fair number of void functions.

The point of the above is to show that Truss is carefully architected to

minimize the impact of vendor and language constraints, while providing

a basis for verification efforts.

Keeping it simple

A stated goal with both Teal and Truss is to avoid unnecessarily compli-

cated code. SystemVerilog has many legacy and new features, but many

times they are not appropriate. It is easy to get distracted with language

techniques and forget that the real goal is to keep the whole team

productive.

For example, implementing a generic interface for a verification com-

ponent, such as a transactor, as a template can be tricky. Sometimes using

a template can be more complicated than simply replicating code.

Sometimes only a convention should be used. An example of this is the

generator concept. One could define a virtual base class, yet the common

methods come down to just start(), stop(), report(), and a few

others. It turns out that this concept of start(), stop(), and so on is

common to a large set of verification tasks, and is represented in Truss

as the virtual base class verification_component. However, the con-

crete subclasses are inherited from verification_component only if

they use the bulk of the methods. Any smaller subset uses the same named

methods as a convention instead.

In this way, the framework is not warped to fit a generic
class. Even more important, your design is not warped to fit
the generic class.

Truss implements a specific methodology for functional verification. As

in any endeavor to generalize, the terrain is fraught with peril. Never-

An Object-Oriented Framework 93

M a j o r C l a s s e s a n d T h e i r R o l e s

theless, as writing code entails making judgments about what is the

“right” decision, Truss attempts to generalize a style of verification.

Deciding on the right balance between generic and specific is a judgment

call for the team. The idea behind Truss is to foster a small, usable,

portable, and adaptable methodology for beginners through experts. As

such, Truss provides an example of the techniques presented in Part III

of this handbook.

Major Classes and Their Roles

Truss is an implementation of the layers talked about in the Layered

Approach chapter. Consequently, there are only a few top-level compo-

nents—the verification top, the testbench, the test, and the watchdog

timer. Each component has a specific role. These components and their

roles have been architected to allow a large amount of flexibility with a

relatively simple interface. These top-level components (and those the

next level down) are shown below:

The top-most component is the verification_top() program, whose

role is to create and sequence the other components through a standard

Verification Component Hierachy

verification top

test watchdog
timer

testbench

test
component irritator

chip

SV Testbench Features
HDL

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

94 Hardware Verif ication with SystemVerilog

test algorithm. (The algorithm is explained in detail in the next section.)

In addition, verification_top() initializes all global services, such

as logging, randomization, and the dictionary.

The watchdog timer is a component created by verification_top().

This component’s role is to shut down a simulation after a certain amount

of time has elapsed, to make sure the simulation does not run forever.

The testbench top-level component is the bridge between the System-

Verilog verification world and the HDL chip world. As such, the test-

bench’s role is to isolate the tests (and test writers!) from having to know

how transactors, traffic generators, monitors, and so on interact with the

chip. Whether a bus functional model (BFM) writes to registers or forces

wires should not be of concern to the test writer.

In addition, the testbench holds the configuration objects of the chip.

This is needed by the BFMs, transactors, and similar agents to be able

to configure the chip correctly. There is probably a configuration object

for each protocol of the chip. For chips that contain internal functions,

such as direct memory access (DMA), there may be a configuration object

for each function.

The last, but certainly not the least, top-level component is the test itself,

whose role is to execute a specific functionality of the chip. It does this

by using the testbench-created BFMs, monitors, and generators. The test

is responsible for choosing among the testbench’s many configurations

and capabilities and exercising some subset of the chip’s functionality.

In general, the test contains very little code. This is because any code it

contains may need to be used in other tests as well. To support code that

is more adaptable, a test normally consists of several test components,

as will be discussed later. The exception is for directed tests, in which

case registers may be overwritten, specific traffic patters sent, or specific

corner cases exercised directly in the test component.

Key test algorithm: The “dance”

The top-level components of the previous section have a complex, yet

necessary, set of interactions. This ensures the maximum flexibility for

a test, while providing a known set of interactions. This is one of the

tricky parts of a verification system. This section discusses this standard

algorithm, which we call the “dance.”

An Object-Oriented Framework 95

M a j o r C l a s s e s a n d T h e i r R o l e s

In general, the top-level components are created, randomized, and then

started. Then verification_top() waits for the test and testbench to

be completed. This is called the “polite” path. If the watchdog timer

decides that a timeout has occurred, the “impolite” path is taken and the

simulation ends.

The order of these calls can be better visualized on an event diagram, as

shown below. The four columns show the main components. Execution

starts at the top left line, and the arrows represent function calls to the

other components.

new()

WatchdogTest Testbenchverification_top()

do_randomize()

time_zero_setup()

out_of_reset()

start()

wait_for_completion()

report(“final”)

report(“timeout”)

Create
top
objects

Build and
configure

Main
test
run

Timeout
path

Test
results

The Dance

write_to_hardware()

start() //watchdog only

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

96 Hardware Verif ication with SystemVerilog

The first thing that verification_top() does is build the global

logging objects. These provide for logging, as well as for shutting down

the simulation after a threshold number of errors have been logged. (See

truss_vout.svh in the index.)

Then verification_top() reads the dictionary file (if it exists). This

is to allow the test constraints file to override any default settings put

there during the construction of the test, the testbench, and their subor-

dinate components.

Then, after the global logging objects have been created, and the dictio-

nary read, verification_top() allocates the top-level objects. The

test is given a pointer to the testbench, so that it can interact with the

testbench. It is also given a pointer to the watchdog timer, in case a part

o f t h e t e s t w a n t s t o f o r c e a s h u t d ow n o r o v e r r i d e t h e

verification_top() default timeouts. The watchdog is given a pointer

to an object so that it can call the final report method with a “watchdog

timeout” string prefix.

At this point, all the top-level objects are constructed. As part of their

construction they are expected to have established default constraints.

After initializing the random-number generator, verification_top()

calls test.do_randomize(). Once the test is randomized, then

testbench.do_randomize() is called.

At this point, it is expected that the test and testbench have built their

respective subcomponents and are ready to run the test. The first step is

the time_zero_setup() method, which is used to force wires and

initialize interfaces prior to bringing the chip out of reset.

As expected, the next step is out_of_reset(), which is used to bring

the chip out of its reset state and set it for initialization through the back-

door or register writes.

The next step, write_to_hardware(), is where the BFMs are called to

initialize the chip. This can be done by either the test, the testbench, or

a combination of the two. What is appropriate depends on your situation,

as discussed in subsequent sections.

At this point the system is ready for traffic flow. The start() method

directs the testbench and test to start running. The testbench is started

first, to allow monitors and BFMs to start, followed by the watchdog

An Object-Oriented Framework 97

T h e v e r i f i c a t i o n _ c o m p o n e n t V i r t u a l B a s e C l a s s

timer. Finally, the test is told to start(), which generates the actual

traffic.

Next, verification_top calls wait_for_completion() on the test-

bench. If your design makes the testbench aware of what checkers are in

use, this call waits for the testbench checkers to complete. If not, this

method simply returns.

Then verification_top calls the test’s wait_for_completion(). If

your design makes the test aware of what checkers are in use, this call

waits for them to complete. (This is the style used in the examples.)

At this point, the test is almost finished. The testbench and test are called

to report their final status.

Then verification_top() checks to see if any errors were reported.

If none were reported, the test is considered to have passed. It may seem

weak to accept that the absence of errors is sufficient to consider a test

passing. In practice, however, there is no other choice. At the top level,

one must trust that the lower-level objects do their jobs. Note that this

usually means that in-flight data must be weeded out as the checker

proceeds.

Now if the watchdog timer triggers, a different path is taken. The watch-

dog immediately calls the report method on verification_top. Note

that the watchdog itself uses an HDL-based timeout, so that if the report

method hangs, the simulation still ends.

The verification_component Virtual Base Class

While the test and the testbench are completely different classes as far

as their roles and responsibilities are concerned, their code interface to

verification_top is the same. For this reason a common class was

created. This common class, used as a base for both the test and testbench,

is called the verification_component.

The verification_component is a virtual base class. As such, it pro-

vides pure virtual methods for the dance described in the previous section.

In addition, verification_component provides a constant name and a

logger. The interface for verification_component is shown below.

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

98 Hardware Verif ication with SystemVerilog

package truss;
typedef enum {cold, warm} reset;

virtual class verification_component;
protected teal::vout log_;
protected string name_;
extern function new (string n);
'PURE virtual function void do_randomize();
'PURE virtual task time_zero_setup();
'PURE virtual task out_of_reset(reset r);
'PURE virtual task write_to_hardware();
'PURE virtual task start();
'PURE virtual task wait_for_completion();
'PURE virtual function void report(string prefix);
function string name();

endclass
endpackage

Although verification_component is a base for the test and the test-

bench, it is also useful as a base for other objects.

Detailed Responsibilities

of the Major Components

The previous sections discussed the roles of the major components and

how they were sequenced to run a test scenario. This section dives down

a level, discussing in more detail the specifications of the major compo-

nents. (Because verification_top was discussed in detail in the pre-

vious section, it is not discussed further here.)

An Object-Oriented Framework 99

D e t a i l e d R e s p o n s i b i l i t i e s o f t h e M a j o r C o m p o n e n t s

The testbench class

The testbench class has two main responsibilities. One is to isolate the

test writers from the actual wire interfaces. The other is to provide “one-

stop shopping” for all the generators, checkers, monitors, configuration

objects, and BFMs/drivers in the system. The reason to put all of your

components into a single object is to facilitate the adaptation of compo-

nents into multiple tests. In this way, a test writer can see all of the

possible “building blocks” that are available.

The testbench class can be a passive collection point for all these

components, or it can play an active role in bringing the chip out of reset,

generating traffic, and knowing when the test is done. In theory, only the

global functionality should be handled by the testbench. For example,

the testbench probably should bring the entire chip out of reset, while

the test can bring separate functionality out of reset. In practice, the test

and the testbench share the work.

In general, it is better to let the test or test components control the

simulation. This is because a test or test component can then be adapted

for several different types of tests.

A more active testbench may, as a counterpoint, simplify a large number

of tests in a way that a test base class cannot, because the testbench has

direct access to all the chip’s wires.

Understand that the more test knowledge a testbench has, the more all

tests must act the same or have control over that testbench’s functions.

This can be good or bad. The specific responsibilities for control and

functionality—test or testbench—are, of course, up to the verification

team.

As an implementation detail, Truss provides only a testbench_base

class. What verification_top builds, however, is a testbench object.

You must provide a testbench.svh. This file declares a testbench

class, which should be inherited from truss::testbench_base. You

will probably also have a testbench.sv, which contains the implemen-

tation.

The testbench is passed a helper object, called interfaces_dut. This

is because, in SystemVerilog, classes are not allowed to make cross-

hierarchical references. What does that mean? It means that the testbench

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

100 Hardware Verif ication with SystemVerilog

can access the ch ip wires on ly th rough an in te r face . The

interfaces_dut class is where all those interfaces reside!

But each chip will have different interfaces, so how can we make a generic

program that builds a specific testbench? The answer is to have you write

a func t ion, ca l led build_interfaces(), tha t i s ca l led by

verification_top. Truss creates the virtual base class.

virtual class interfaces_dut; endclass

Then you define a function to build your specific derived class.

function interfaces_dut build_interfaces ();

Note that the truss testbench_base constructor receives this pointer as

the base class.

virtual class testbench_base

extends verification_component;

function new (string n, interfaces_dut dut);
endclass

In your testbench you must downcast1 the interfaces_dut to recover

the derived class you created in your build_interfaces().

interface alu_input (

output reg [31:0] operand_a,

output reg [31:0] operand_b

);

endinterface

class interfaces_alu extends truss::interfaces_dut;

virtual alu_input alu_input_1;

endclass

//MUST be in file build_interfaces.svh!

function interfaces_dut build_interfaces ();

interfaces_alu alu = new ();

alu.alu_input_1 = real_interfaces.alu_input_1;

endfunction

class testbench extends truss::testbench_base;

function new (string n,
truss::interfaces_dut dut);

1. Generally, downcasting is a bad thing, but we cannot think of a better solution
given the context.

An Object-Oriented Framework 101

D e t a i l e d R e s p o n s i b i l i t i e s o f t h e M a j o r C o m p o n e n t s

interfaces_alu alu_dut;

super.new (top_path, dut_base);

//Note: Downcast to recover pointer

truss_assert ($cast (alu_dut, dut_base));

endfunction

endclass

The authors generally declare the virtual interfaces of a chip in a file

called interfaces_<chip_name>.svh, and then put the instances of the

“real” interfaces in a file called interfaces_<chip_name>.sv.

Finally, these “real” interfaces must be in a module cal led

real_interfaces. This is because some vendors require you to name

all the top-level modules in a simulation, and the truss script uses that

module name.

The authors realize this is a fair amount of structure. The good part is

that you would probably need most of this structure anyway. We are just

providing a naming framework for these methods and classes so that a

generic program and script can be used.

You must implement a function called
build_interfaces() in a file called
build_interfaces.svh. You must also have a top-level
module called real_interfaces.

Watchdog timer

The watchdog timer component is responsible for providing an “impo-

lite” shutdown if the test has executed for too long. The timer has two

timeout mechanisms: one triggers when the watchdog HDL timer trig-

gers, and the other triggers after the first trigger has occurred.1

The watchdog timer uses the dictionary to get its timeout values, which

are sent to the HDL on time_zero_setup(). The start() method starts

1. The watchdog timer is simple in theory, but often hard to execute correctly. To
be sure, it must have a clock and a countdown time, but even this basic level
can be problematic. Should you use wall clock time, simulation time, or both?
Should the HDL timer be internal or external? What resolution should it have?
Should the test be able to extend or communicate the expected time of the run?

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

102 Hardware Verif ication with SystemVerilog

the timers. The HDL watchdog uses an internal timer. If it were to use a

passed-in clock, that clock may inadvertently be shut off.

Once either timer triggers, the watchdog HDL timer is notified and a

second timer is started. If this timer expires, $finish is called. This

might happen, for example, if there is some code in the report that is still

reading registers, but the chip is unable to respond.1

After the watchdog is notified of an HDL timeout, the report() method

in verification_top is called. This allows the test to report which

checkers have completed and which have not, helping to provide a clue

as to why the simulation ran too long.

The watchdog interface must be put in your derivation of
the interfaces_dut class. In addition, a real interface
must be created and passed to the watchdog in its
constructor.

Test class

The test class is responsible for selecting, configuring, and running all

the appropriate generators, BFMs, monitors, and checkers. It is also

responsible for selecting the configuration of the chip to be used.

While you could directly implement the above responsibilities in the test

class, Truss encourages another style. In Truss the test is intended to

consist of a number of independent, smaller components called test

components. These components are the ones that actually do the work;

the test’s role is to create, constrain, configure, and sequence the com-

ponents, as appropriate for the test at hand. The reasoning behind having

multiple independent components is that this is close to the real operation

of the chip, where each feature is expected to operate simultaneously. In

reality, the chip has common resources that must sequence or arbitrate

the use of features. It is in these common resources where the more tricky

bugs lurk.

1. The authors worked on a project where the final report code read the status
registers to make sure that functional area of the chip did not have any errors.
However, when we added a power-down test irritator, the read hung the
system. It took us a while to find the offending code.

An Object-Oriented Framework 103

D e t a i l e d R e s p o n s i b i l i t i e s o f t h e M a j o r C o m p o n e n t s

Using this method, the test’s direct responsibility is to map the features

of the chip (as presented by the testbench’s data members) to a set of

classes inherited from the test_component base class. The test would

then add constraints to adapt the test component to the test at hand, as

in the following example:

class ethernet_basic_packet extends truss::test_base;

local ethernet_test_component ethernet_data_1_;

local ethernet_test_component ethernet_data_2_;

local pci_irritator pci_express_1_;

function new ethernet_basic_packet(testbench t,

 truss::watchdog w);

ethernet_data_1_ = new (t.e_generator_1, t.e_bfm_1,

 t.e_checker_1);

ethernet_data_2_ = new (t.e_generator_2, t.e_bfm_2,

 t.e_checker_2);

pci_express_1_ = new (t.pci_generator_1, t.pci_bfm_1,

 t.pci_checker_1);

endfunction

task time_zero_setup();

ethernet_data_1_.time_zero_setup();

ethernet_data_2_.time_zero_setup();

pci_express_1_.time_zero_setup();

endtask

task out_of_reset(reset r);

ethernet_data_1_.out_of_reset(r);

ethernet_data_2_.out_of_reset(r);

pci_express_1_.out_of_reset(r);

endtask

task write_to_hardware ();

ethernet_data_1_.write_to_hardware();

ethernet_data_2_.write_to_hardware();

pci_express_1_.write_to_hardware();

endtask

 task start ();

ethernet_data_1_.start();

ethernet_data_2_.start();

pci_express_1_.start();

endtask

 task wait_for_completion ();

ethernet_data_1_.wait_for_completion();

ethernet_data_2_.wait_for_completion();

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

104 Hardware Verif ication with SystemVerilog

pci_express_1_.wait_for_completion();

endtask

 function void report (string prefix);

ethernet_data_1.report(prefix);

ethernet_data_2.report(prefix);

pci_express_1.report(prefix);

endfunction

 function void do_randomize ();

ethernet_data_1.do_randomize ();

ethernet_data_2.do_randomize ();

pci_express_1.do_randomize ();

endfunction

endclass

In the above example, the ethernet_basic_packet test uses three test

components, two of which are identical. It connects up the appropriate

testbench objects and forwards to every test component the following

test calls:

time_zero_setup() , out_of_reset() , start() ,

wait_for_completion(), do_randomize(), and report()

So why do testing in this more complicated manner? In addition to the

previously mentioned idea of simulating close to real-world conditions,

an important reason is to maximize the adaptability of the test compo-

nents. In the example above, we used the same test component for both

Ethernet ports. Also, when the test components take in only the parts of

the testbench that they need, they (1) make explicit what they are using,

and (2) minimize the assumptions on the rest of the chip. This, as will

be highlighted in the single UART example in Part IV, allows a test

component to be reused for other chips that have only a subset of the

original chip’s functionality.

Test components are critical to the adaptability of a verification system.

In general, the test components themselves do not know whether they

are running in parallel with other test components or are part of a series.

Thus, the most adaptable components are these test components, as will

be discussed further in the following sections.

As an implementation trick, verification_top builds a test by using

a define called TEST. This trickery, set up by the truss run script, allows

the script to compile in a different test, while leaving the rest of the build

An Object-Oriented Framework 105

D e t a i l e d R e s p o n s i b i l i t i e s o f t h e M a j o r C o m p o n e n t s

image the same for all tests. This allows each test to be its own class

(inherited from test_base). This cleverness helps one avoid a bad

experience in the future. Assume that your team had written on the order

of 50 tests, and then a new test was created that required a new subphase

to be added to the dance. Although the other tests did not need this new

method, you cannot add the default method. This is because all the tests

are implemented as a test class. There is only one header test.svh, and

50 different test.sv files. By defining a base class, and then having the

actual test be an inherited class (with a different header file), one can

add methods to the base without affecting the existing tests.

There is one more part to a test that needs to be discussed. Often a test

is made better by the addition of random background traffic. This traffic,

be it register reads and writes, memory accesses, or just the use of other

interfaces, can uncover corner cases, such as bus contention, that would

not be found otherwise.

These background-traffic test components are called irritators and inherit

from the test_component class. They differ from the standard test

component in that they continue their traffic generation until told to stop

by the test. Test components, by contrast, decide themselves when they

are done, as determined by specified metrics, such as a stop time or the

number of packets to send. (Irritators will be describe in more detail later

in this chapter.)

With background traffic irritators, the test is written essentially as before.

The exception is that the wait_for_completion() of the test calls the

primary test components’ wait_for_completion(). When the primary

component returns, the test calls stop_generation() on all the irritators

and waits for them by means of their wait_for_completion(). Then

the test returns control to verification_top. (This is explained further

in subsequent sections and in the examples in the chapters that follow.)

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

106 Hardware Verif ication with SystemVerilog

Test Component and Irritator Classes

As discussed in the previous section, test component-based design is

central to a Truss-based test system. The authors have found that sepa-

rating the test scenarios into test components has maximized the adapt-

ability of the system. By using test components and irritators, test writers

have been able to minimize their assumptions and distractions and con-

centrate on exercising the chip. Furthermore, other test writers can adapt

what was done in other functional areas and inherit irritators (if they are

not already present) for use as background traffic.

This section describes the responsibilities and interfaces of the

test_component and irritator virtual base classes.

The test component virtual base class

The test_component is an virtual base class whose role is to exercise

some interface of the chip. As discussed above, this functionality has

traditionally been included in the test. The test_component describes

the interface that all concrete implementations must follow.

In fact, you may have several types of test_component for a single

interface, for example, a register read/write one, a basic data path one,

and an error case one. The fact that these different exercises implement

the same interface simplifies reasoning about them.

In practice, most test components use a generator and a connection-level

object. Sometimes they may also be given a checker, depending on the

designer’s intent.

The test_component class is a verification_component, and has all

the same phases. The test_component breaks down some of the

verification_component methods into finer detail, as one would

expect of a lower-level object.

Below is the interface for the test_component base class.

package truss;

virtual class test_component

extends verification_component;

function new (string n);

An Object-Oriented Framework 107

Te s t C o m p o n e n t a n d I r r i t a t o r C l a s s e s

task void start();

task void wait_for_completion();

function void report(string prefix);

//protected interface

'PURE protected virtual task start_();
'PURE protected virtual task

run_component_traffic_();

'PURE protected virtual task start_components_();
'PURE protected virtual task do_generate();
'PURE protected virtual task wait_for_completion_();
protected bit completed_;

endclass

endpackage

As before, the methods time_zero_setup(), out_of_reset(), and

write_to_hardware() are provided to allow the test component to

interact with a BFM or driver. Note that a different, but equally valid,

architecture would keep the connection-layer components private in the

testbench and sequence them by means of the top-level dance. This

assumes that the testbench knows what subset of the BFMs, drivers, and

monitors, to start up.

The start() method is used to start the test_component’s generator,

BFM, and so on. This method is implemented by a Truss utility class

called thread. A thread class runs another virtual method, start_(),

in a separate thread or execution. This allows a test class to do the obvious

thing and just call start() on all the test components the test uses.

Let’s look at the start_() method, as it is the main starting point for

an interface of the chip. The start_() method runs two methods: a

start_components() pu re v i r tu a l me t hod , an d a v i r tua l

run_component_traffic_() with a default implementation. The idea

behind the start_components_() method is that you call start() on

your generators, BFMs, and so on, as appropriate. (The examples part

of this handbook contains examples of test_component.)

T h e d e f a u l t run_component_traffic_() m e t h o d c a l l s

do_randomize() (to randomize the test component and its components),

and then calls do_generate(). In your do_randomize() method, ran-

domize the data members that will be used by do_generate() to cause

some traffic to be generated. In your do_generate(), take these data

members and make the appropriate calls to the generators in the testbench.

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

108 Hardware Verif ication with SystemVerilog

An AHB example

An example might make the roles a little clearer. (Remember that there

are several fully implemented examples in Part IV.) Suppose you are

creating a test component to test an AHB1 arbiter. The test component

acts as a master, generating read and write requests to a number of slaves.

The generator in the testbench can generate a burst of reads or writes to

a given slave, using a specific burst length. Assume that the generator

has a channel interface that can take in an AHB transaction object. The

randomize function of your ahb_test_component might look like this:

task ahb_test_component::do_randomize();

burst_length_ = generate_burst_length(min,max);
is_read_ = generate_type(min_type, max_type);

slave_ = generate_slave(min_slave, max_slave);

endtask

The corresponding do_generate() might look like this:

task ahb_test_component::do_generate();

//addresses are picked by the generator

generator_.queue_burst (
new (burst_length_, is_read_,slave_));

done_.signal(); //Signals that test_component is done

endtask

Notice that by nature these calls are executed in a one-shot manner. That

is, together they perform a single transaction. This is useful to allow an

irritator to inherit from this test component later, to sequence this

pattern any number of times and possibly change the randomization

constraints as well.

So why have two separate methods?

By separating the randomization from the generation phases, one can

inherit different classes that either (1) have different randomization

characteristics (for example, logarithmic distributions of the burst length,

or a pattern); or (2) send the data through a filter first, then to the generator.

1. AMBA (Advanced Microcontroller Bus Architecture) high-performance bus.

An Object-Oriented Framework 109

Te s t C o m p o n e n t a n d I r r i t a t o r C l a s s e s

So now that the transaction has been generated, what should the

wait_for_completion() method do? Because the generation is occur-

ring in another thread, there should be a condition variable to commu-

nicate when it is done.

So the code might look like this:

task ahb_test_component::wait_for_completion_();

 done_.pause();

endtask

Test-component housekeeping functionality

The test_component class also provides a basic housekeeping bit that

tracks when you return from the wait_for_completion_() method.

This allows the report() method to determine whether you have con-

sidered the work of the component to have been completed or not. This

can be very useful in a timeout situation, to see which components have

not completed.

What you decide to do in the wait_for_completion_() depends on

how you view your test_component. One view is that it is a traffic

generator only, which can complete when the generation of traffic has

been queued. It is then up to the testbench or test to determine when the

chip has processed all the data. This will most likely involve a checker

or monitor.

Another view is that your test_component represents a generate and

check path through the chip. In this case, the completion of

test_component signifies the completion of the entire exercise. (The

examples in this handbook use this view.)

As always, the team must decide which view is better for
their project.

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

110 Hardware Verif ication with SystemVerilog

The irritator virtual base class

As discussed above, the test_component is set up as a one-shot traffic

generator. This works for tests that are directed, and for tests where the

completion event is predetermined—that is, tests that know before the

start() call what the end conditions are.

However, sometimes it is not good design to have the test_component

determine when completion is achieved. This is the case when, for

example, you want to achieve a certain metric, and the measurement is

not appropriate information for the test_component.

For example, you may want to send 100 bursts of some AHB traffic.

While this could be included in the ahb_test_component, you might

not want to measure completion by 100 bursts all the time. Instead, you

might want to write a test that looks at the number of hits each slave

device gets, and stop the test when all slave devices have been targeted.

As another alternative, you might want a test to run until some goal is

met; a goal could be any of the previous goals, or could involve some

internal state in the arbiter.

The irritator, inherited from test_component, is used for situations

such as these. The interface is shown below.

package truss;

class irritator extends test_component;
 extern function new (string n);

 task stop_generation(); generate_ = 0; endtask

 extern virtual protected task start_();
 extern virtual protected task

run_component_traffic_();
 extern virtual protected bit continue_generation();

 'PURE virtual protected task inter_generate_gap();

 local bit generate_;
 endclass

endpackage

The i r r i ta tor overrides the run_traffic_() method of the

test_component base class. It sets up a loop, calling the one-shot

r a n d o m i z a t i o n a n d g e n e r a t i o n i n t h e test_component ’s

run_component_traffic_() methods. The implementation is shown

below.

An Object-Oriented Framework 111

Te s t C o m p o n e n t a n d I r r i t a t o r C l a s s e s

task void irritator::run_component_traffic_();

while (continue_generation()) begin
super::run_component_traffic_();

inter_generate_gap();

end
endtask

The method continue_generation() just looks at a bit, which is

toggled to 0 by a call to the stop_generation() method. This allows

an external class to stop the continual loop of randomization and gener-

ation.

Note that there is a new virtual method in the irritator class, called

inter_generate_gap(). Because the irritator is continually generating

traffic, you might need a delay mechanism to prevent the generator from

flooding the chip.

There are many ways to get this delay. For example, in one solution the

generator and attached BFM/driver could execute the generate request

as soon as it is called and thus take simulation time. In another solution,

the way to get a delay would be to have a fixed-depth generator and BFM/

driver channel.1 This would put back-pressure on this generate loop. In

still another solution, the generator could have a delay in clock cycles

before returning.

Any of the above solutions is acceptable, but there is yet another choice.

That option is to have the irritator itself provide the delay mechanism.

The inter_generate_gap() is a virtual method allowing you to imple-

ment an irritator-based delay. This allows the irritator to decide on the

throttle mechanism. Different subclasses could implement different pol-

icies. For example, an irritator could wait for a variable number of clock

cycles. Another example would be to measure some parameter on the

checker (such as packets in flight).

As always, the team must decide what is appropriate.

1. This method is supported in Truss’s channel class.

C h a p t e r 6 : Tr u s s : A S t a n d a r d Ve r i f i c a t i o n F r a m e w o r k

112 Hardware Verif ication with SystemVerilog

Using the irritator

T h e i r r i t a t o r c o n t i n u e s t h i s g e n e r a t e / w a i t l o o p u n t i l a

stop_generation() is called. But how do you decide when to stop the

irritator? The answer, of course, is “When the test reaches its goal.” One

goal could be that the “main reason” for the test has been achieved. For

example, you can have the main goal be a test component, perhaps one

that generates a fixed, but randomized, number of packets through a

particular chip interface. The global goal in this case would be for the

test component to achieve completion. Here is how the test code might

look:

task noisy_packet_test::wait_for_completion();

basic_packet_exerciser_.wait_for_completion();
//'for_each is a macro from the quad_uart example

'for_each(irritators_, stop_generation());

'for_each(irritators_, wait_for_competion());
endtask

Ignoring the nontrivial constraining, selecting, and creating of the test

component and irritators, what is accomplished in a few lines of code is

a shutdown sequence that is powerful, while being a fairly simple idiom.

Note that a verification team could decide to use only irritators in their

implementation. In that way, when to stop the test can then be determined

by looking either at a checker or possibly at elapsed simulation time.

The complex part of the test would then become the randomization and

selection of irritators. The authors have worked on a variant of this

methodology, and the resulting verified chip was a first silicon success.

An Object-Oriented Framework 113

S u m m a r y

Summary

This chapter introduced Truss, an open-source application framework.

We revisited the benefits of an OOP language such as SystemVerilog.

We also stressed the need to keep things simple despite the features of

this language, to avoid writing code that is unnecessarily complicated.

We talked about the key algorithm of verification, which the authors

called the “dance.” We showed how the dance is used by the

verification_top program to run a test. We discussed the roles and

responsibilities of the test, testbench, and watchdog timer, the main parts

of the top-level dance.

We discussed the verification_component virtual base class, which

provides pure virtual methods for the dance.

We then discussed the test_component and irritator classes, includ-

ing their responsibilities and interfaces.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 115

Truss Flow
C H A P T E R 7

Expensive solutions to all kinds of problems
are often signs of mediocrity.

Ingvar Kamprad, founder of IKEA

Have you ever bought and assembled a piece of furniture from IKEA?

In the store most of their furniture looks very simple, but when you get

it home and try to assemble it, you realize that it’s built from several

smaller and often confusing pieces. Even with IKEA’s famous assembly

instructions, showing the “intent” for each piece graphically, assembly

can still be confusing. Imagine how hard it would be without instructions.

The authors have had to learn many verification environments through

the years, and this has often been a very confusing experience. What

seems like a great concept with a well-defined structure at a high level

of abstraction is often obscured by troublesome details when you first

try to implement it. Many times the confusion is increased because of a

lack of description regarding how the high-level ideas are actually imple-

mented. To help reduce the confusion around Truss, this chapter describes

the “dance” in more detail.

C h a p t e r 7 : Tr u s s F l o w

116 Hardware Verif ication with SystemVerilog

Overview

This chapter looks at how the “dance” described in the preceding chapter

is actually implemented. It shows the order in which each method is

called, and describes the files to find the method, or its base. The chapter

then looks at the structure for the major components of Truss.

First to be described is verification_top, the top-level program of

Truss and the base of the “dance.” Following this is a description of the

methods, and their class, through which files are called for each step.

Then the test component is described. This component follows a dance

similar to that of verification_top, but for a different set of classes

and files.

The irritator c lass is described next . While s imilar to a

test_component, irritators have some unique methods worth pointing

out.

The last part of the chapter talks about steps that need to be taken to build

a new Truss based project, by taking the more-abstract description of

classes and applying them to the first few tests in a new project.

About truss_verification_top.sv

When the simulator executes a program, control is passed to the initial

block in the verification_top program in verification_top.sv

under the truss/src directory. In this handbook we refer to this function-

ality as the “dance.” It is this program block that interacts with your top-

level components: the test, the testbench, and the watchdog timer.

Let’s look at the dance with respect to the code you have to write. This

is illustrated in the figure on the following page. A square box indicates

that the method has a default implementation, and a rounded box indicates

it needs to be defined for your project.

An Object-Oriented Framework 117

A b o u t t r u s s _ v e r i f i c a t i o n _ t o p . s v

your_test::new(testbench*, watchdog*, std::string)

testbench::new(string, build_interfaces())

verification_top()

your_test::do_randomize()

testbench::do_randomize()

watchdog::time_zero_setup()

testbench::time_zero_setup()

your_test::time_zero_setup()

watchdog::out_of_reset()

testbench::out_of_reset()

your_test::out_of_reset()

watchdog::write_to_hardware()

testbench::write_to_hardware()

your_test::write_to_hardware()

watchdog::start()

testbench::start()

$TRUSS_HOME/src/watchdog.sv

your_test::start()

your_test::wait_for_completion()

testbench::wait_for_completion()

your_test::report(“Final Report”)

testbench::report(“Final Report”)

$PROJECT_HOME/verification/tests/your_test.sv

$PROJECT_HOME/verification/testbench/top/testbench.sv

Hold the reset line for
the minimal amount,
then release it. Return
when registers can be
accessed

Pull wires/registers up or
down before releasing the
reset line

Perform top-level
randomization, for example,
chose interfaces or features
to be tested

testbench

Legend

your_test

watchdog

watchdog::new(std::string) Build objects,
apply constraints

Push the configurations
down to the hardware

Pause until the checkers
are finished

Print which components
have completed

Exercise the
chip

The Dance – Detailed Flow

Install safety net

C h a p t e r 7 : Tr u s s F l o w

118 Hardware Verif ication with SystemVerilog

The watchdog class is already written and should be sufficient for most

purposes. (We will not discuss the watchdog timer’s methods, because

they are relatively straightforward.) You’ll have to write the test and

testbench classes.

You will have to write a build_interfaces() function, along with the

real_interfaces module that creates the actual chip interfaces. The

object returned from the build_interfaces() function is given to the

testbench constructor.

In the testbench constructor, instantiate your generators, checkers,

BFMs, and so on. (This assumes that your team has decided to put these

objects in the testbench rather than in the test components.) Then add

your constraints by using the dictionary. These constraints will be picked

up by your generators and configuration objects to guide the randomiza-

tion. Initially, you will probably have no constraints.

The test’s constructor will create all the test components and irritators

that it needs.

In the testbench::do_randomize() method, randomize your local

variables and then call do_randomize() on lower-level components, as

appropriate. Your testbench may have configuration objects for each

protocol or feature that is used to configure the chip. You may or may

not want to use the built-in SystemVerilog randomize() method.

The test::do_randomize() method is similar, in that the test random-

izes each test_component it owns. In addition, the test may select some

subset of the components and irritators it owns.

The testbench::time_zero_setup() method is where you drive wires

prior to letting the chip out of reset. You may need to wait for the PLL

to lock, or set up “sensor” pins on the chip in this method.

The test::time_zero_setup() method usually just calls all the active

test component’s time_zero_setup(). This is to allow test components

that have a “plug-in” behavior, such as USB and PCI Express, to perform

their initial training. (To use this method is a judgment call, as you may

want to bring up a protocol later in the simulation.)

The testbench::out_of_reset() method will bring the chip to a stable

state (for example, one that can accept register access). If the team so

decides, you could use test::out_of_reset() to reset the chip.

An Object-Oriented Framework 119

T h e Te s t C o m p o n e n t D a n c e

The write_to_hardware() methods in both the test and the testbench

are where you perform register writes to move your selected configuration

to the chip. The test’s write_to_hardware() method usually just calls

the same named method on all its test components. This is because the

actual register writes will occur in the BFM or driver. One exception is

when you are writing a direct test, and it’s easier just to write the registers

at the test level.

The testbench::start() method, if it knows which protocols and

features are in use, starts up all the BFMs, monitors, and drivers. Depend-

ing on your architecture, it may also start the generators and checkers.

The test::start() method usually just calls the start() method on

all its owned test components.

The wait_for_completion() methods in the test and testbench are used

to pause the verification system until the test is finished. Although there

are many ways to do this, the examples in this handbook just allow the

checkers to say when the test is completed.

The report() method in the top-level objects is where they report their

status. For the testbench, this method is usually appropriate for reporting

the configurations selected; for the test, it usually just calls the test

components.

That’s it. This may seem like a lot of methods to write, but you probably

do not need to perform tasks in all the methods. Later in this chapter, we

will talk about the order in which you might want to implement these

methods.

The Test Component Dance

Did you notice that most of the time the test just called the same named

methods on the test component?1 That’s because verification has a fractal

structure, with repeated patterns. The top-level dance is repeated, with

a few changes, in the test. This time, instead of verification_top()

calling the steps, the test does. The test_component also plays a role,

1. Okay, so maybe remembering back to Chapter 4 is not that easy.

C h a p t e r 7 : Tr u s s F l o w

120 Hardware Verif ication with SystemVerilog

subdividing the start() method into several lower-level methods, as

shown in the following figure.

The run_component_traffic_() method has a standard implementa-

tion, which calls do_randomize() and then do_generate(). The

do_randomize() method has the same purpose it had for the top-level

components: to randomize your random variables. The next method

called, do_generate(), picks up the results of the randomization and

interacts with the generator to exercise a feature or a protocol of the chip.

Now, it may seem strange that these methods are implemented like this.

However, the idea is to separate the various concerns of the test compo-

nent: starting, randomization, and generation. This, as will be discussed

in Part III of this handbook, creates more-adaptable and less-brittle code.

your::new(generator, bfm, checker)

your::do_randomize()

your::time_zero_setup()

your::out_of_reset()

your::write_to_hardware()

test_component::start()

your::do_generate()

test_component:wait_for_completion()

test_component::final_report (“Final Report”)

Start your generator,
BFM, and checker

Performs the same
function as the
top-level components

Set up and run your
“main traffic” method

Wait for your
checker to complete

test_component::start_()

your::start_components_()

test_component::run_component_traffic_()

$PROJECT_HOME/verification/test_components/your_test_component.sv

your_test_component:wait_for_completion_ ()

$TRUSS_HOME/inc/
truss_test_component.svh

called from the same named method in test

Test Component Dance – Detailed Flow

base implementation provided

you must implement

Your
test

The test builds
your test component

Legend

An Object-Oriented Framework 121

T h e I r r i t a t o r D a n c e

The organization also sets up the irritator, making the transition from a

fixed test to an irritator relatively painless.

The Irritator Dance

The irritator is an inherited class of test_component. Its purpose is

to generate background “noise” while the test concentrates on some

specific area of the chip. In some sense, using irritators is a way to emulate

the real world, where many of a chip’s features and protocols are used

simultaneously.

So what does an irritator add to or change from the test_component?

Only one method is changed, and two methods are added. All these

changes involve the new run_traffic() method, shown in the figure

below.

your::do_randomize()

test_component::start()

your::do_generate()

Start your generator,
BFM, and checker

Set up and run your
“main traffic” method

test_component::start_()

your::start_components_()

test_component::run_component_traffic_()

$PROJECT_HOME/verification/test_components/your_irritator.sv

$TRUSS_HOME/inc/test_component.svh

The Irritator Dance – Detailed Flow

you may implement

you must implement

irritator::run_component_traffic_()

your::inter_generate_gap_() Pause the generate loop

from your_test::start()

until irritator::stop_generation() Called by test

Legend

Your
test

C h a p t e r 7 : Tr u s s F l o w

122 Hardware Verif ication with SystemVerilog

The irritator overrides the run_component_traffic_() method

f rom the test_component base , and ca l l s t he base c l a s s

run_component_traffic_() method in a loop. This is the nature of an

irritator: it just keeps on going until told to stop. The method that

stops the loop is stop_generation(), which is usually called by your

test once the main feature or protocol has finished being tested. This will

be shown in detail in the Part IV of this handbook.

O n e m e t h o d t h a t y o u w i l l h a v e t o i m p l e m e n t i s

inter_generate_gap_(). This method may be empty, for a couple of

reasons.

Your channel has a limited depth, and this limit is used to apply
back-pressure to your system.

Your generator has a built-in delay of some form.

In this handbook we use the checker to throttle the system—because we

want to keep a certain amount of data in flight, and the checker is the

only agent that knows what has been generated and what has been

received. (The chip can handle an unlimited number of back-to-back

transactions.)

That’s all there is to building an irritator. Note that you will probably

start with a test component, and then evolve it into an irritator. It will

probably be many weeks into your project before the first irritator is

built, but for coverage and finding congestion bugs, irritators are a good

choice.

In fact, your first test will probably be even more rudimentary. This first

test is the focus of the next section.

Compiling and Running Tests

The sections above described the main building blocks of Truss. The

following chapters, as well as later examples, will show how these still

somewhat abstract concepts get implemented for real projects. However,

before we start looking at more concrete examples, there is one more

problem to consider: that of compiling and running a verification envi-

ronment.

An Object-Oriented Framework 123

C o m p i l i n g a n d R u n n i n g Te s t s

All verification environments need some type of run script to compile

and build both the RTL and verification code. In a large project this is

not a simple task, because one must track a lot of code, as well as many

tools and options.

A goal for Truss is to provide a production-grade run script as open-

source components. At the moment, a run script is provided. They are a

good starting point for a run script and provide enough functionality to

handle the examples in this handbook. It is the authors’ hope that through

community effort, these scripts can be fleshed out into something better.

The truss run script

The truss run script controls which files are compiled and run. It is

written in Perl and has a number of switches that control its actions. The

script will first compile all the SystemVerilog testbench files, and then

launch the simulation. After the simulation finishes, the script checks

the status of the test run. (This script is used to build and run all the

examples that are available at www.trusster.com.) The script is located

at $TRUSS_HOME/bin/truss).

Truss uses some environment variables to “understand” its environment.

By using environment variables (instead of .tool_rc files, for example),

the system’s assumptions are both obvious and flexible. Truss uses only

a small number of environment variables, as listed below.

The file named setup in each of the bin subdirectories of each example

has default values for the TEAL_HOME, TRUSS_HOME, and

PROJECT_HOME environment variables. You’ll need to set SIM and

SIMULATOR_HOME as appropriate for your environment.

Variable Function

SIM Simulator name (such as ncsim, mti, aldec, or vcs)

SIMULATOR_HOME Path to the simulator install area

TEAL_HOME Path to Teal’s source files

TRUSS_HOME Path to Truss install area

PROJECT_HOME Path to top of the current verification project

C h a p t e r 7 : Tr u s s F l o w

124 Hardware Verif ication with SystemVerilog

Switches

The truss run script has a number of switches to control its execution.

Below is a table that expands on descriptions of the most important

switches.

For a full description of all switches from a command line, run the

following:

$TRUSS_HOME/bin/truss --help

Switch Function

--help Prints longer help message

--test <test_name> Runs the $PROJECT_HOME/testcases/<test_name>
test.

--clean [options] Cleans appropriate selection of the system. Default
selection is USER. The following options are available:
LOGS - Deletes simulation log files
HDL - Deletes user-compiled HDL code
ALL - Deletes all of the above
This switch can be repeated (--clean CPP --clean HDL)

--simulator <SIM> Selects appropriate simulator from supported list. If
switch is not used, then run script reads $SIM. If neither
$SIM or --simulator is used script will fail.

--seed <seed value> Sets random seed to integer <seed value>

--run <number> Runs the selected test a number of times

An Object-Oriented Framework 125

T h e F i r s t Te s t : A D i r e c t e d Te s t

Using “-f” files

As is customary in the HDL coding world, a file is used to help build the

objects. Truss uses a file called hdl_paths.vc, which is located in the

testbench subdirectory. Almost all of the directories in the examples

include an hdl_paths.vc file, which lists the files used in that directory.

The hdl_files.vc for a basic testbench is shown below.

+incdir+$PROJECT_HOME/rtl/uart

$PROJECT_HOME/rtl/uart/uart_transmitter.v

-f $PROJECT_HOME/verification/vip/hdl_paths.vc

-f $PROJECT_HOME/verification/test_components/hdl_paths.vc

$PROJECT_HOME/verification/testbench/top/interfaces.sv

The first line adds the rtl area to the include path. The second line

brings in the rtl source (there will be more than one of these lines). The

next lines direct the compiler to start processing commands from the vip

and test_components area. The last line brings in the real interfaces.

Of course, your hdl_paths.vc file will be different, but it probably

follows this same format.

The First Test: A Directed Test

Because starting something new is not always easy, this section helps

make the process easier by addressing how a first test can be written

using Truss. This section concentrates on the steps you need to do, and

how a test can be built up from scratch. The next chapter shows a complete

first example and focuses more on the flow.

Your first test will probably be a simple directed test, with a

test_component that does not have a generator and possibly not even

a checker. It will probably interact directly with the BFM or driver.

Focus your initial efforts on the driver and the BFM. Write a “first cut”

at the driver class, making it have the methods that seem right to you.

You may or may not need a monitor, depending on the protocol or feature

to be tested.

C h a p t e r 7 : Tr u s s F l o w

126 Hardware Verif ication with SystemVerilog

Define your interfaces to the chip. Then make a module called

real_interfaces and create the interfaces. Write a class that contains

virtual interface and build that class in build_interfaces.

Next, create a testbench that includes that driver/BFM and think about

how to get clocks to the chip and get it out of reset.

Now make a test class and get the whole thing compiling. Before moving

on to connecting the test to the driver with a test component, make sure

the chip is cleanly out of reset, as this can be done by means of the

testbench’s out_of_reset() method.

The next step is to make a simple test_component. This component

will probably just be a directed exercise, with perhaps a few reads and

writes or just a few calls to the driver. Note that you may use the

test_component’s pre-implemented methods if you are comfortable

with them, but for a first test it might be better just to override the start()

method directly. This is because that’s easier than remembering where

to put your randomization and traffic-generation code.

If there is any configuration, use the chip’s default configuration. Don’t

try to randomize anything yet.

Doing the checking can be tricky, so let’s worry about that last. We’ll

probably be looking at waveforms for the first few days anyway.

Now build a test that has your test_component as a data member.

Initially, have the test call the same named methods on your test compo-

nent.

Note that the wait_for_completion() method probably just returns,

if you implemented the start() method. However, if you used the

do_generate() method of the standard test_component, you’ll want

to trigger a condition variable at the end of your do_generate(). Then,

the wait_for_completion() would just wait for the signal to be trig-

gered, as shown below.

class your_test_component;

//...your other code here...

local teal::latch done_;

endclass

Then, in the last line of the your_test_component::do_generate_()

method, do this:

An Object-Oriented Framework 127

T h e S e c o n d Te s t : A d d i n g C h a n n e l s a n d R a n d o m P a r a m e t e r s

task your_test_component::do_generate_();

//...your directed exercise code here...

done_.signal();

endtask

Then your wait_for_completion_() would look like this:

task your_test_component::wait_for_completion_();

done_.pause ();

endtask

That’s it! You have created your first Truss-based test.

The Second Test:

Adding Channels and Random Parameters

Engineers count “one,” “two,”—and then “many.” This is because only

the first few times they use a technique are significant. After that,

everything looks like “many.” By writing the first test, we’ve counted

“one.” Now we will count “two.” The next section will cover the “many.”

In this, the second test, we’ll get more sophisticated. We’ll add the agent

layers and also add the generator and checker. These are the steps you

need in order to create more advanced, randomized tests. You will

probably create several directed tests before you need these additional

features, but because this is a book we need to keep moving along.

Remember that the generator and monitor generally have pure virtual

methods to communicate the results of their work. We’ll add our agents

to these methods. There will be an agent for the generator, the driver/

BFM, the monitor, and the checker. Why all this complexity? Because

there are many interconnection techniques, each one involving some

architectural trade-offs. These trade-offs are talked about at length in the

OOP Connections chapter in Part III of this handbook.

To make the connection between the agents, we’ll use a Truss channel.

So let’s digress a bit and look at a channel.

C h a p t e r 7 : Tr u s s F l o w

128 Hardware Verif ication with SystemVerilog

The channel pseudo-templated classes

Verification systems have a lot of producer/consumer relationships. For

example, a generator can be considered a producer and a BFM considered

a consumer. However, it is a good idea to minimize the knowledge and

assumptions of the code interface between these two loosely cooperating

objects. One way to decrease the coupling between these components is

to use an intermediary object. An intermediary object allows the two

communicating objects to be anonymous or separated in time. The con-

cept behind this object is called a pipe, mailbox, or channel. Truss uses

the term channel.

The channel class provides the storage for the actual data, as well as

the signaling and mutual-exclusion mechanisms. In addition, channel

also supports a depth concept, for designs that want to implement back-

pressure in that way. The code interface for a channel class, as well as

the base classes, are in /truss/inc/truss_channel.svh in the code

that is available at www.trusster.com.

Ideally, the channel class would be parameterized on the type of the

object in the channel. However, not all vendors support parameterized

classes, so the authors implemented the channel class on an integer type.

This is one of those cases where you just have to copy and paste.

The channel class also provides for other channel objects to be attached

to a channel. This allows the data of one put() to be replicated across

many channels. The common use for this is when a generator creates a

data item and both the checker and BFM should get the data. It is also

useful if there are multiple listeners to a channel, such as in an Ethernet

broadcast, or where there are multiple monitors for a data protocol.

Note that truss sends the data to the listeners after the put has succeeded

for the “main” connection. This is to allow the policies of the main

interconnect to throttle the listeners receiving the notification.

Note also that truss does not explicitly copy the data. This is because

the data in channels of integer types is copied and object pointers are

not. In general, the authors have found that it’s not necessary to copy the

data, as the downstream consumers usually act as readers only.

An Object-Oriented Framework 129

T h e S e c o n d Te s t : A d d i n g C h a n n e l s a n d R a n d o m P a r a m e t e r s

Building the second test

Now that we have channels, let’s use them for the agents. This section

is a bit high level, because every situation is different. We’ll give general

direction, but after you read this chapter, take a look at the next chapter

for a first complete example.

Let’s say that you are working on a chip interface called my_interface.

You might have a generator that looks like this:

typedef class my_data;

virtual class generator;

task do_generate(); //make one, then call
//done_generate_

'PURE virtual task done_generate_(my_data d);
endclass

We are concerned with the done_generate_() method. This is a pure

virtual method, so we must implement it in our inherited class. Let’s

assume we want to add a channel as the connection policy, like so:

'include "generator.svh"

'include "my_channel.svh"//cloned code from truss_channel

class generator_agent extends generator;

local my_channel out_;

extern function new (my_channel out);

task done_generate_(my_data d);

out_.put(d);

endtask

endclass

By building a generator_agent, we have abstracted how the generator

gets the created data to the driver/BFM.

A similar situation exists in the monitor:

typedef class results;

virtual class monitor;

extern function new (virtual my_interface mi);

task start();

//the connection method

'PURE virtual void data_received_(results);
endclass

C h a p t e r 7 : Tr u s s F l o w

130 Hardware Verif ication with SystemVerilog

And likewise for an agent for the monitor:

'include "monitor.svh"

'include "results_channel.svh"

class monitor_agent extends monitor;

local results_channel out_;

extern function new (results_channel out);

virtual task data_received_(results r);

out_.put(r);

endtask

endclass

But what about the other side of the channels? These objects are the

driver_agent and checker_agent, respectively. Their job is to take

the data out of a channel and act on the data.

Remember, we are discussing channels here because that’s how we

wanted to implement the agent layer. This could have easily been a more

generic producer/consumer model, or an event-driven method, but imple-

ment what feels correct for you. (All the examples in this handbook use

channels.)

Here are the classes for the driver and checker and the inherited classes

for their agents:

class driver;

extern function new (virtual my_interface mi);

extern task send_data (my_data d);

endclass

'include "data_channel.svh"

class driver_agent extends driver;

local data_channel drain_;

extern function new (data_channel drain);

//must have a start to drain the channel

task start_();

fork

forever begin

send_data(drain_.get());

end

join_none

endtask

endclass

class checker;

extern task check_data (my_data d, results r);

An Object-Oriented Framework 131

T h e S e c o n d Te s t : A d d i n g C h a n n e l s a n d R a n d o m P a r a m e t e r s

endclass

'include "data_channel.svh"

class checker_agent extends checker;

local data_channel generated_;

local results_channel checker_in_;

extern function new (data_channel generated,

results_channel checker_in);

task start();

//Check the data!

fork

forever

check_data(generated_.get(),

 checker_in.get());

join_none

endtask

endclass

The authors realize that there is a lot of code to look at, but just skim it

over to get the general idea. The general technique is to inherit a class,

add a channel, and append _agent to the name.

After the agents have been built, they should be added to the testbench.

The testbench holds the generators, drivers, monitors, and so on. The

test, on the other hand, holds the test components.

Building the second test’s test_component

The test_component is relatively straightforward. A test_component

constructor takes in the parts of the testbench you need. Remember, the

entire testbench is not taken as a parameter, because then we would have

to make assumptions about the name of the parts we needed. Also, by

taking in only the parts we need, several of our test components can be

used in the same chip.

The most likely candidates for the constructor’s parameters are the

generator, the driver, and the checker.

The rest of the test component usually just forwards its calls to the

appropriate objects. An example test component is shown below.

typedef class bfm;

typedef class generator;

typedef class checker;

C h a p t e r 7 : Tr u s s F l o w

132 Hardware Verif ication with SystemVerilog

'include "truss.svh"

class a_test_component extends truss::test_component;

local generator generator_;

 local bfm bfm_;

local checker checker_;

extern function new (string n,generator g,

bfm b, checker c);

virtual task time_zero_setup ();

 bfm_.time_zero_setup();

endtask

virtual task out_of_reset (reset r);

bfm_.out_of_reset(r);

endtask

virtual task do_randomize (); /* next section */;

virtual task write_to_hardware ();

bfm_.write_to_hardware ();

endtask

protected virtual task do_generate ();

generator_.do_generate ();

endtask

protected virtual task wait_for_completion_ ();

checker_.wait_for_completion ();

endtask

protected virtual task start_components_ ();

bfm_.start(); checker_.start ();

endtask

endclass

Although your actual test component will be a bit different from the code

above, the general form will probably be the same.

Adjusting the second test’s parameters

As soon as you introduce randomization into a test, you’ll probably want

some knobs to control the randomization. Sweeping most parameters

through an entire integer range would chew up a whole lot of simulation

time. Besides, it’s probably either (1) not interesting, or (2) unacceptable

to the register associated with the integer.

A knob is a technique that uses other variables to control the range of a

random variable, either directly or indirectly. In this example we’ll

An Object-Oriented Framework 133

T h e S e c o n d Te s t : A d d i n g C h a n n e l s a n d R a n d o m P a r a m e t e r s

concentrate on controlling the random variables directly. (The examples

in the handbook use the Teal dictionary feature to pass parameters from

a number of sources to the method that will use the knob variables.)

For example, consider a test for a CPU. Assume that a cpu_generator

class has a send_one_operation() method that is called by a

test_component to tell the cpu_generator to create one random oper-

ation. The generator is guided by dictionary variables. It is best to put

the variables to randomize in a separate function at the top of the source

file, because the seeding depends on line number. That way, the sequence

of values selected does not change if the code below is reorganized. Of

course, new random values chosen will be different for each master seed.

Here is an example function for generating the operand_a variable of

a CPU operation:

class cpu_generator;

local uint32 min_operand_a;

local uint32 max_operand_a;

local function uint32 get_operand_a(uint32 min_v,

uint32 max_v);

return $urandom (min_v, max_v);

endclass

In the cpu_generator::new(), the following lines could be used:

min_operand_a =

dictionary::find(name_ + "_min_operand_a", 0);

max_operand_a =

dictionary::find(name_ + "_max_operand_a", ~0);

In the cpu_generator::do_randomize(), the following line would be

used:

operand_a = get_operand_a(min_operand_a, max_operand_a);

This same style is used for the other operand and the operator variables.

Now SystemVerilog does have a randomization feature. Later examples

will show how you might use them. Be careful, though—randomization

tied to the object and its hierarchy can be cumbersome.

C h a p t e r 7 : Tr u s s F l o w

134 Hardware Verif ication with SystemVerilog

So who sets the knobs? There are four ways:

Use the default specified in the dictionary_find() call as the
second parameter.

Put the knob value on the command line.

Use a knob configuration file.

or

(Finally) Write code to use the dictionary_put() call, which is
the mechanism used in our example.

Note that because the Teal dictionary is used, both the command line and

the knob file can be added later without the need to modify any of the

example code.

The test constrains the test component with respect to the number of

times the generator is called. Of course, this specifies the number of

operations sent to the arithmetic logic unit (ALU). The code is shown

below.

teal::dictionary_put(test_component_.name +

"_min_operations", "4",
teal::dictionary_default_only);

teal::dictionary_put(test_component_.name +

"_max_operations", "10",
teal::dictionary_default_only);

Note that the name of the test_component is used. This allows the test

to pick any name for the test_component and still have the code work.

It also provides for different parameters for different instances of the

test_component.

However, be careful with the spelling of the knob variables. They must

be spelled the same in both the find and the put routines in order to

make a connection.

Now that the randomization and knobs are connected, we have completed

writing the second test. In some ways, this test is rather sophisticated. It

uses the Truss framework, and adds agents by using channels to connect

the wire-layer classes to the transaction-layer classes.

The testbench created and wired up the generator, driver, monitor, and

checker. The testbench can bring the chip out of reset and start the

monitor.

An Object-Oriented Framework 135

T h e R e m a i n i n g Te s t s : M i x - a n d - M a t c h Te s t C o m p o n e n t s

The test itself is rather reasonable. It creates and connects the test

component to the generator, driver, and checker in the testbench.

The Remaining Tests:

Mix-and-Match Test Components

So now what do you do after creating this second, more-sophisticated

test? You do what we verification engineers always do—create more

tests! As these tests are being written, new test components will also be

created, some of which could be used in several tests. Deciding which

test components to adapt to different tests is the major activity (besides

writing more tests) after you have written the first two tests. This is the

“many” count that we talked about earlier.

Of course, you’ll be doing other test-related activities, such as adding

randomness to the existing tests and looking over your verification test

plan to make sure you know when you’re done.

And how do you go about adapting a test component from one test into

another? You could just put the new test component in the test and wait

until both of them are completed. However, as explained in the Truss

Basics chapter, there is another way: use the Truss concept of irritators,

and warm over, or “recrystallize,” the existing test component to an

irritator.

Converting the test components to irritators usually just involves deriving

the existing test component with the truss::irritator component.

Then, the appropriate methods will be overridden and the only method

you have to write is inter_generate_gap_(). There are many ways to

implement a gap, from the simplest (pausing a number of clock cycles),

to the more complex (using back-pressure and bursty traffic). If the

checker were inherited from Truss’s checker, you can also just wait for

generated data to be checked.

This process of writing a new test continues for all the rest of the features

and protocols of the chip. Remember, the more irritators a test has, the

more likely it is to model what actually happens when the chip design is

realized in silicon.

C h a p t e r 7 : Tr u s s F l o w

136 Hardware Verif ication with SystemVerilog

Summary

This chapter tried to clear the fog of how to go about using Truss. We

started with a review of the top-level dance, and then showed that the

dance also existed in other layers of the system.

We looked at the tools provided by Truss, which is the truss execution

script.

We covered writing the first test, concluding that it will probably be a

directed test. Then, we took the test up a notch, adding connection agents

to the generator, driver, monitor, and checker. We introduced the Truss

channel as the interconnect technique, but noted that there are many other

techniques.

We looked a bit at control knobs, a technique for passing parameters to

constrain randomization. (There are many techniques for constraining

random-variable generation.) This chapter showed how to harness Teal’s

dictionary to hook up bounds for randomization.

We finally discussed what to do after the second test. The idea is to write

more tests for that protocol or feature, and also test the rest of the chip.

The key part of writing more tests is to keep an eye out for what you can

“steal” (rather, “adapt”) for other tests. By creating irritators, you can

use the functionality of other tests as background activities. In this way,

the chip is stressed more—and more faults are found prior to production.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 137

Truss Example
C H A P T E R 8

I know that you believe you understand what
you think I said, but I 'm not sure you realize
that what you heard is not what I meant.

Robert McCloskey

Coding is tricky, because we take the great ideas, techniques, and

trade-offs and actually make decisions. We put fingers to the keyboard,

and decisions are made and trade-offs are fixed in code. Furthermore,

learning a new technique only makes the coding task more difficult. An

example, or several examples, can help put the technique into perspective.

This chapter is the first example of how to use Teal and Truss in a

verification system. It’s useful to build and run some example code when

learning something new. So download and install the code from

www.trusster.com and noodle around with it a bit. You can add print-

outs and change the code a bit.

If you want, use this chapter as a guide to some of the more interesting

parts of the code examples provided. This chapter is not quite a map to

the “homes of the movie stars.” Instead, it is more like a mariner’s map.

It helps you navigate in tricky waters.

C h a p t e r 8 : Tr u s s E x a m p l e

138 Hardware Verif ication with SystemVerilog

Overview

This chapter provides a first complete example of using Truss, where

you can actually compile and run the code. The code is not as complex

as what you would encounter in a fully featured chip. However, all the

main parts are here to consider. The source files may seem silly or overly

complex for the chip we are trying to test, but we are trying to demonstrate

how to structure a verification system for a real project. Your chips will

have plenty of complexity to manage.

This chapter does not walk through every code file. We are all capable

of reading code. What it does instead is look at some of the more important

aspects of the verification system.

Directory Structure

In order to help you navigate the source files, it’s good to show the main

directories that comprise a Truss-based system (shown below). We’ve

also included only the main files we will be working with.

verificationresultsrtl

bin test_components testbench tests vip

alutop

Directory Structure

setup test_component.sv,.svh

testbench.v,.sv,.svh
hdl_paths.svh

alu_test.sv,.svh

alu_driver.sv,.svh
alu_monitor.sv,.svh
alu_generator.sv,.svh
alu_checker.sv,.svh

alu_top.v

truss

inc src

truss_verification_top.
sv,.svh

truss.svh

An Object-Oriented Framework 139

D i r e c t o r y S t r u c t u r e

The source code for the chip is in the /rtl directory. How does the

truss run script know this? The file /verification/testbench/top/

hdl_paths.vc is used to specify the paths to the RTL and the RTL

include directories and all source files. This is so that the RTL files can

be rooted in a place different from the verification directory.

The /results directory is where you run the tests from. It also can be

wherever you want. The authors generally put this directory in some non-

backed-up networked storage area that is independent of the source-code

control system. In the handbook example, the /results directory is

placed in /examples/alu, at the same level as the /verification

directory.

The /verification directory contains all the source code for the

verification system. The /bin directory is there for the project’s local

scripts. The authors usually put a setup script there and alias setup to it.

The other four subdirectories—

/tests, /testbench, /vip, and /test_components

—are where the actual source files are. The /tests directory is where

your test_name.sv and test_name.svh exist. These files are used

when you give the --test <test_name> option to the truss script.

The /testbench/top directory contains the SystemVerilog and HDL

sources for the top-level testbench. If you have more than one chip in

your simulation, it may be useful to have /testbench/<chip_name>

directories.1 The chapter on Chip-Level Testing shows an example of this.

The /vip directory is where chip protocol classes go. There should be

a subdirectory for each protocol and major feature you need to test. The

idea is that the code in these directories is fairly portable, and may contain

purchased VIP as well as project and company-created VIP. In our

example, there is only the /alu directory.

The /test_components directory contains the scenarios that you want

to run. For this example, we’ll run only one scenario, called

test_component.

1. Use the --config option to the truss script to select a directory.

C h a p t e r 8 : Tr u s s E x a m p l e

140 Hardware Verif ication with SystemVerilog

Theory of Operation

We’ll be testing a really basic ALU chip. It takes in two 32-bit operands

and performs a simple logic or arithmetic function. We’ll use a legacy

c-model for comparison with what the chip produces. The output consists

of a result and an “operation complete” status interrupt. The test-

bench.v will instantiate this ALU module and provide system clocks

for the chip and verification system.

The main objects are shown below.

Because there is only one protocol in the chip, we’ll just refer to the

components by their functionality. In other words, we’ll say “driver,”

although in a chip with many drivers we would need to say which protocol

we are talking about. (Note that we do prefix the code in an ALU string.1)

alu

C-model

alu::driver alu::monitor

alu_test

testbench.v

alu::monitor_agent

alu::generator alu::checker

alu::driver_agent

ALU Example: Objects and Connections

connection

agent

transaction

alu::generator_agent

alu::test_component

1. The authors had intended to use a package, but the SV language is fairly weak
with respect to packages. For one thing, one cannot extend a package, which
meant all the header files would have to be included from one package/
endpackage declaration.

An Object-Oriented Framework 141

T h e o r y o f O p e r a t i o n

In the testbench class, we have all the classes of the ALU component

layer. There is a connection-layer driver and monitor, with their accom-

panying agents. There is a generator and a checker. The checker is

interesting, because we have a legacy c-model of the chip, which will be

used by the checker.

There is also a test_component class, which runs a random number of

operations through the chip. And, of, course, there is an alu_test class,

which builds a test_component, giving it the generator, checker, and

driver from the testbench.

The following illustrates the wires used by the verification system:

The driver and the monitor take care of the protocol into and out of the

chip. The testbench takes care of bringing the chip out of reset.

The remaining sections highlight some specific “points of interest” in

the code. The code itself, being the first example, is not that big. If you

want to follow the code through its execution, start with the Truss

verification_top.sv, then move on to testbench.sv and test.sv.

alu

HDL testbench

ALU Example: HDL Connections

32operand_a

32operand_b

2op_code

32op_result

op_done

re
se

t_
do

ne

re
se

t_
n

1
cl

oc
k

1

alu::testbench

1op_valid

alu::driver

alu::monitor

1 1

C h a p t e r 8 : Tr u s s E x a m p l e

142 Hardware Verif ication with SystemVerilog

Running the Simple ALU Example

You might want to see the log messages on the screen, so let’s talk about

how to run the example. In the /examples/alu_tutorial/bin direc-

tory, there is a setup script. If you look at the setup file, it sets up a few

environment variables that are needed by the run tool.

First, source the setup file, then execute the following:

$TRUSS_HOME/bin/truss -—test tutorial_test

The truss command has many more options; type truss —-help for a

synopsis.

You should see the source files being compiled, and then the test should

run. When the test runs, a series of printouts will announce the flow

through the test.

Points of Interest

The next few sections address specific places in the code. These sections

follow the general way you go about hooking up a chip to a Truss-based

verification system.

For example, the first thing to be concerned with is bringing the entire

chip out of reset. After that, you’ll probably want to pick a chip protocol

and write the driver and monitor classes for it. Then, you might decide

upon some specific operations you want to perform and write the test

component to exercise the protocol or feature.

In general, the test builds the test components and ends when the last

o pe r a t i on c o m pl e te s — t h a t i s , w he n t he t e s t c o m p on e n t ’s

wait_for_completion() returns.

An Object-Oriented Framework 143

Po w e r - o n R e s e t

Power-on Reset

Most chips have a power-on reset sequence. This sequence can be basic,

or rather complicated. In this example we address a basic sequence.

The chip has a reset line, which is pulled low to initiate a reset. After

the line is asserted, the chip performs its reset sequence. This chip only

needs a fixed-duration pulse.

The testbench class is responsible for bringing the chip out of reset.

The testbench methods time_zero_setup() and out_of_reset() are

called by the top program to reset and configure the chip. In our ALU

example, we’ll use a reference clock to count a number of cycles to keep

the reset_n low.

Below are the snippets of code that perform the chip reset. The methods

are located in testbench.sv.

This method is called first by verification_top():

task testbench::time_zero_setup();

top_reset_.resetr = 0;

endtask

Note that the top_reset_ was built by the build_interfaces() func-

tion and then cached in the testbench’s constructor.

Then, this method is called:

parameter int reset_count = 10;

task testbench::out_of_reset (reset r);

top_reset_.resetr = 1;

for (int i(0); i < reset_count; ++i) begin

@ (posedge (top_reset_.clock));

end

top_reset_.resetr = 1;

endtask

That’s all there is to it. Now the chip is ready for operation.

C h a p t e r 8 : Tr u s s E x a m p l e

144 Hardware Verif ication with SystemVerilog

Driver and Monitor Protocol

Now that the chip is out of reset, we can start to drive it. This chip has

a simple protocol for sending operations to perform. Assuming op_done

is asserted, the driver puts op_code, operand_a, and operand_b on the

wire. Then it asserts do_op and waits for op_done to be asserted. The

code to do this is in alu_driver.sv and is shown below:

task alu_driver::send_operation(operation op);

alu_input_.op_code <= op.op_code;

alu_input_.operand_a <= op.operand_a;

alu_input_.operand_b <= op.operand_b;

alu_input_.op_valid <= 1;

//Now wait until accepted

@ (posedge (alu_input_.operation_done));

alu_input_.op_valid <= 1;

@ (negedge (alu_input_.operation_done));

endtask

The alu_input_ above is a virtual interface to an ALU interface, which

was passed in to the constructor. Note that in a “real” driver, you might

want to put #(drive_delay) before the first assignment.1

The monitor code is fairly simple as well. The monitor uses a local utility

class called run_loop. It consists of two methods, loop_condition_()

and loop_body_(), which are run in a thread. The idea is that a number

of monitors are just infinite loops of “wait for trigger” and then “gather

data.” This class represents that concept.

The loop_condition_() method of the monitor waits for op_done to

go high. The loop_body_() method then copies the result into a local

variable. It then calls the pure virtual method receive_completed() to

connect to the monitor agent.

1. Recall that the authors do not believe it’s a good idea to use clocking blocks.
You and your team may, however, want to use them.

An Object-Oriented Framework 145

T h e a l u _ t e s t _ c o m p o n e n t

Here is the code, in cpu_monitor.sv:

task alu_monitor::loop_condition_();

@ (posedge (alu_output_.operation_done));

endtask

task alu_monitor::loop_body_(output bit go_on);

receive_completed_(result_.to_int());

@ (negedge (alu_output_.operation_done));

go_on = 1; //continue loop

endtask

Other than the reset logic (and the watchdog timer), the monitor and

driver are the only code to interact with the chip wires.

Next we’ll look at how we come up with the operations to be sent to the

driver.

The alu_test_component

We now run a random sequence of operations through the ALU, testing

the basic operations with random operands. The start_components_()

method is used to run this exercise.

The code is shown below.

task alu_test_component::start_components_();

driver_.start();

checker_.start();

endtask

Like most test components, this one just starts the lower-level compo-

nents.

The start_components_() method is used to do select the number of

operations to perform.

task alu_test_component::start_components_();

bit [7:0]1 min_words =

dictionary_find_integer ({name_, "_min_ops"}, 10);

bit [7:0] max_words =

1. Be careful about using byte, as it is signed.

C h a p t e r 8 : Tr u s s E x a m p l e

146 Hardware Verif ication with SystemVerilog

dictionary_find_integer ({name_, "_max_ops"}, 15);

number_of_operations_ =

get_number_of_operations (min_words, max_words);

endtask

function bit [7:0] get_number_of_operations

 (bit [7:0] min_v, bit [7:0] max_v);

bit [7:0] returned;

'RAND_RANGE (returned, min_v, max_v)

return returned;

endfunction

Checking the Chip

Because we do verification for a living, the automated checking of the

chip’s results is important. In our case, we have a legacy c-model of the

ALU and will use it to check that the answer is what we expected. The

checker waits for the monitor agent to deliver a completed operation.

Then it uses the inputs sent by the generator to have the c-model come

up with the expected result.

The c-model prototype is shown below.

#if defined(__cplusplus)

extern "C" {

#endif

unsigned int alu_model(unsigned int a,unsigned int b,

 unsigned char op);

#if defined(__cplusplus)

}

#endif

Note that the ifdefs allow the code to be compiled by both C and C++

code.

This key algorithm is in checker.sv and is shown below.

task alu_checker::start_();

forever begin

operation gen;

teal::uint32 actual;

generated_.get(gen);

An Object-Oriented Framework 147

C o m p l e t i n g t h e Te s t

actual_.get(actual);

if (alu_model (gen.operand_a, gen.operand_b,

 gen.op_code) == actual) begin

log_.info ($psprintf (" EXPECTED %s == sent %d"

 gen.sreport(), actual));

end

else begin

log_.error ($psprintf (" EXPECTED %s != sent %d"

 gen.sreport(), actual));

end

int count_; generated_.count(count_);

if (!count_) begin

completed_flag_.signal();

return;

end

end

endtask

The checker works fine as long as the operation_done is in synch with

the result. However, the checker can be wrong if the monitor misses a

result or somehow inserts an extra one. We could have registered the chip

inputs at the same time as we got the results. However, by doing this we

make the assumption that there are no queuing or pipe stages in the ALU.

This assumption works fine for our example, but it is probably not valid

for most ALUs.

Completing the Test

When does the test stop? When verification_top() calls the test’s

wait_for_completion(), which in turn calls the test component’s

wait_for_completion().

In turn, the test component’s wait_for_completion() calls the

checker’s wait_for_completion(). The authors agree that this sounds

silly, but in the later examples we actually do a bit more than just forward

the call.

In the end of the forwarding chain, it’s the checker that actually decides

when the test is done. This makes sense, because the checker is best able

to “judge” what the chip did and when all the inputs have been checked.

C h a p t e r 8 : Tr u s s E x a m p l e

148 Hardware Verif ication with SystemVerilog

But how does the checker know? There are many possible ways, but in

this example the checker assumes that when the generated data channel

runs dry, the test is over. This is a valid assumption—as long as you make

sure that the generator can always be one step ahead of the checker. (If

your chip has any latency, this is not a hard assumption to sustain.1)

The checker code is shown below—

task checker::wait_for_completion();

completed_flag_.pause();

//note that the checking thread completed normally

completed_ = 1;

endtask

—and at the bottom of the main check loop:

int count_; generated_.count(count_);

if (!count)
begin

completed_flag_.signal();

return;

end

Remember that after the wait_for_completion() returns, the top calls

the report() method in the test. The test calls the test_component’s

report() method, which in turn calls the checker’s report() method.

The report() method prints the state of the completed_ boolean. In

this way, when you have multiple test components and the watchdog

timer shuts the simulation down, you can tell which checkers have not

completed.

1. Note that an intergenerate delay should not affect when the expected data are
sent to the checker. The point is that even when delays are inserted, this model
should be valid.

An Object-Oriented Framework 149

S u m m a r y

Summary

This chapter is a tutorial on the Truss framework. We exercised a simple

ALU, but implemented all the parts of a Truss-based verification system.

The main objects and their connections were shown. The directory

structure was introduced so we can find our way around the code. Then,

the chip and the HDL connections were shown.

After laying out the verification system and showing how to run the

example, we looked at how the chip was to be brought out of reset. We

did a quick side tour to talk about how to run the example. Running the

example produces many log messages, but this is probably a good thing

when one is learning.

We showed how to bring the chip out of reset and how the driver and

monitor connect with the chip. One point to note is that while this protocol

required only a few wires, many real protocols are no more complicated.

Of course, your code will be more detailed.

We looked at an important part of the verification system, the checker.

In this example, the checker used a c-model to check that the chip was

working correctly.

The last thing we looked at was how the test stopped. We looked at the

normal path, ignoring the watchdog timer. We showed how the checker

was in charge, pausing the end of the test until all the data had been

checked. The interesting point to note is that the checker may have had

errors, but it will continue until all generated data have been checked.

The Truss utility class error_threshold can be used to terminate the

s i m u l a t i o n i n t h e c a s e o f e x c e s s i v e e r r o r s . T h e Tr u s s

verification_top() also does this.

Whew! We made it through the first example. Time for a coffee break

and some foosball!

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 151

Part III:
Using OOP for
Verification
(Best Practices)

This part of the handbook explores what it means to write OOP-based

code. It’s not easy to “get it” when it comes to OOP. There are many

techniques, and experience plays an important part.

We’ll walk through the activities of programming, showing examples

and experiences that form the design and coding biases often found in

OOP-based verification systems.

We’ll end each section with a short sentence about the lesson learned

from each example or experience. This is in no way meant to be a rule.

Rather, it’s another trick, to be added to your bag of tricks you can use—

or not—as appropriate.

This part addresses the following themes:

The shift in thinking that usually occurs when you start working
with OOP

How to use OOP to manage complexity when architecting a
verification system

152 Hardware Verif ication with SystemVerilog

Techniques useful in making classes and connecting them

Code techniques useful in writing OOP-based code

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 153

Thinking OOP
C H A P T E R 9

NOBODY expects the Spanish Inquisition!
Amongst our weaponry are such diverse
elements as fear, surprise, ruthless
efficiency, an almost fanatical devotion to
the Pope, and nice red uniforms—Oh damn!

Monty Python, episode 15, 1970

Getting your brain around OOP is a challenge. You may have followed

the syntax of classes, inheritance, and so on. But when should you write

new classes or use inheritance? What about owning an instance versus

deriving from a class? A little befuddlement is okay—OOP requires a

shift in thinking, and mental fog is a natural result.

This chapter will get you “thinking OOP.” A reason OOP is all muddy

is that there are no rules. “Thinking OOP” is more about using a set of

coding biases and lessons learned than in making trade-offs. Sure, we

could have pretended there were rules, providing numbered steps such

as, “first you must blah, blah, blah,” or “you must always apply by blah,

blah, blah,” but no one would remember. Instead, this handbook tries to

teach you how to ride the “OOP bicycle.” Learning to “think OOP” is

not trivial, but once you’ve learned, you never forget.

C h a p t e r 9 : T h i n k i n g O O P

154 Hardware Verif ication with SystemVerilog

Overview

We now introduce thinking and using OOP in stages. From the first stage

(the “big picture”) to the last (coding), we introduce an “arsenal of

weaponry” that has proved useful for programmers. This arsenal requires

a few chapters. In this chapter we concentrate on framing the OOP

process. We talk about the difficulties in managing complexity and

creating adaptable code. We then discuss the difference between the

interface and the implementation of a piece of code. Subsequent chapters

cover architecture and coding.

Remember, verification is neither simple nor easy. Any serious attempt

to verify hardware will result in a complex system. Consequently, it is

important to realize that the complexity of a verification system is not

the result of poor implementation, but is largely intrinsic to the problem

of verifying a complex design.

Object-oriented programming is used to help manage complex problems,

not eliminate them. The goal is to make the complex appear simple

without introducing unexpected behavior. The trick is to keep the focus

on making things seem as simple and clear as possible, while minimizing

the use of “magic” code or confusing connections. This will nonetheless

create a bit of a conundrum, as what is simple and clean to one is often

perceived as unnecessarily complex and “sneaky” by another.

There is no “silver bullet” to slay the werewolf of complexity. Verification

complexity needs to be managed differently across different types of

projects. For example, System-on-a-Chip (SoC) designs are complex

because they often involve several independent input/output (I/O) sub-

systems. For that matter, advanced processors, especially those dedicated

to graphics and audio applications, require multistage pipelines and

interrelated computation. The best solution to this complexity is com-

munication, through understandable design and code (abstractions, min-

imal assumptions, and so on), combined with a drive toward common-

sense simplicity.

Furthermore, making the design and code adaptable adds to the difficulty

of verification—yet it is exactly this additional difficulty that OOP was

created to manage. In a fast-paced and increasingly complex product

cycle, writing adaptable code is as important as managing complexity.

An Object-Oriented Framework 155

S o u r c e s o f C o m p l e x i t y

The concept of creating and adapting code seems simple enough,

although in practice it is very difficult, for a number of reasons. This

chapter looks at some of the reasons why building adaptable code is

difficult. Don’t get discouraged; often adaptable code is a natural by-

product of a well-reasoned design.

One way to think about managing complexity and creating adaptable

code is to look at what is holding us back. In the real world of verification

development, there are rarely perfect solutions. Nevertheless, we can

build systems that make appropriate trade-offs. To this end, some sections

of this chapter include a table of trade-offs to help you make the most

appropriate choice for your code.

Sources of Complexity

When you sit down to write code, there are several constraints that slow

down the coding process. These constraints can be viewed as adding

complexity, because they make an inherently difficult problem even

harder. Some of these complexities arise from external sources such as

teamwork (that is, local personalities or working with remote sites). We’ll

touch on teamwork lightly, following our discussion of complexity.

Other complexities are created when a solution is implemented. This is

because any solution, almost by definition, involves trade-offs. The

authors call this implementation complexity, and discuss it in the next

section.

Essential complexity vs.
implementation complexity

In any verification task there are algorithms and procedures that are

required by the specification. In USB, for example, there is a process

called enumeration that has a prescribed algorithm for both the host and

the device. This is called essential complexity, because it is required.

When that protocol is implemented in classes and code, some additional

complexity is created. For example, the host and device interrupt code

must try different scenarios. The authors call these classes and code

C h a p t e r 9 : T h i n k i n g O O P

156 Hardware Verif ication with SystemVerilog

implementation complexity. The classes and code are needed, but are

more an artifact of the solution than a real part of the problem. Why is

this distinction important? Because you cannot get rid of the essential

complexity, the goal is to make the essential complexity as simple as

possible, and keep the implementation complexity as minimal as possible.

Implementation complexity is to some degree always created when you

are designing or coding essential complexity. For example, although the

PCI Express protocol specifies endpoints and a root complex (the host

node, or top of the tree), no data structures are specified to manage these

concepts. When these are coded in the verification of a root or endpoint,

they are implementation complexity.

Remember, engineering is all about building the appropriate solution to

a problem, creating problems as a result of that solution, solving those

problems, and so on. The successful engineer transforms the big problems

into a series of solutions and little problems that are acceptable for the

task at hand.

It is important, as much as possible, to use the terms and connections

identified in a protocol, chip, or system specification. This will minimize

the implementation complexity and provide a basis for a mental model

of operation. Try to minimize the implementation complexity, but under-

stand that it will always be present.

Be aware of the essential complexity of the problem, and be
even more aware of the complexity created by the solution.

Flexibility vs. complexity

To make a verification system that is flexible also appear simple is

exceedingly difficult. Flexibility and complexity are often trade-offs, and

usually flexibility wins. It often helps to keep in mind that the developers

who will read your code are intelligent, but time-limited. An overly

complex solution will do more to slow them down than a simple, but

tedious, interface.

As an example, consider a memory subsystem of a verification testbench.

Assume that this memory subsystem is on the main bus of a chip. There

are many possible questions to ask when designing the interface. For

example, should there be separate back- and front-door accesses? Is

An Object-Oriented Framework 157

S o u r c e s o f C o m p l e x i t y

randomization needed? Should all writes be checked to confirm that the

chip has accepted the data? What happens when the chip reads memory

that was not initialized? Is this an error, or should it be ignored (and

random or undefined data returned)?

The following is an example of a possible class interface. How obvious

is it that the design questions above were answered in a flexible, but not

complex, way?

'include "teal.svh"

import teal::*;

class memory_bus;

extern function new ();

//The zero-time memory access methods:

extern function uint32 back_door_read (uint64 address);

extern task back_door_write (uint64 address,
uint32 value);

extern function uint32 front_door_read
(uint64 address);

extern task front_door_write (uint64 address,
uint32 value);

//Will randomly select front or back door every time

function uint32 read (uint64 address);

bit front_door; 'RAND_RANGE(front_door, 0,1);

return (front_door ?

front_door_read (address) :

back_door_read (address));

endfunction

task write (uint64 address, uint32 value);

bit front_door; ‘RAND_RANGE (front_door, 0,1);

if(front_door) front_door_write (address, value);

else back_door_write (address, value);

endtask

'PURE virtual uint32 handle_DUT_unitialized_read
(uint64 address);

endclass

There is no immediate solution to the flexibility-vs.-complexity trade-

off. The “current best” answer will evolve as your team changes its

members and gains experience. The class above certainly seems com-

plete, if possibly a bit too complex. One thing to note is that there is both

front- and back-door access as well as a random method. This seems

overly complex, as the random method could be implemented in an

C h a p t e r 9 : T h i n k i n g O O P

158 Hardware Verif ication with SystemVerilog

inherited class if that is what coders want. In this case, that interface

should probably be removed from this base class.

Now suppose that team members designed their code to work indepen-

dently of whether the memory read/write method was front or back door.

In this case the random method should be the only approach, and the

front- and back-door accesses could either be moved into the private

access or left to subclasses to implement. Note that by removing the

explicit calls to front- and back-door access, we are making the code

both less clear and more flexible. This is either good or bad, depending

on whether the team wants to write code that is independent of the front-

and back-door access method.

Now take a look at the pure virtual method to handle a read to uninitialized

memory, handle_DUT_unitialized_read(). By making this method

pure, an inherited class must be created. However, even this is confusing.

Is this the method for a verification-initiated read or a chip read? Con-

sequently, there should be two methods to cover both cases. Also, while

a flexible solution requires two methods and an inherited class, it may

be appropriate to make a simplifying assumption.

Suppose that the team considered a read to uninitialized memory by the

verification system to be an error. This could simply be written into the

implementation of the read method. However, the chip side is not so

clear, so maybe just returning X’s might be the team’s preference, and

this pure virtual method could possibly be removed.

Here is an abbreviated memory class resulting from the previous discus-

sion:

'include "teal.svh"

import teal::*;

class memory_bus extends verification_component;

extern function new ();

//The zero-time memory access methods:

extern function uint32 back_door_read (uint64 address);

extern task back_door_write (uint64 address, uint32
value);

extern function uint32 read (uint64 address);

extern task write (uint64 address, uint32 value);

endclass

An Object-Oriented Framework 159

S o u r c e s o f C o m p l e x i t y

A class interface can be flexible or simple, depending on the
specific needs of the verification effort.

Apparent simplicity vs.
hiding inherent complexity

One of the goals of good coding is that there should be no surprises when

one tries to understand the code. As a counter-example, an interface may

appear simple, but in practice it may have a usage model that affects the

simplicity of the interface. This often shows up when you try to inherit

from a class or call the methods in a different, but rational, order compared

to what the original coder intended.

Example: How hiding complexity
can create confusion

Here is an example of where “hiding the complexity” actually made the

system harder to understand. In verification there are classes that manage

the top level of a subsystem, other classes that manage the transmission

of data (often called stimulus generators), and still other classes that

monitor the output of the chip. One verification team decided to put these

concepts into separate base classes that all used a common root class.

The common root class had the usual init(), start(), stop(), and

post_run() methods. All of the subsystem classes inherited from these

base classes. The constructor of the base class maintained a master list

of all the instances, with an enum, called type_id, to indicate the type.

Then, when the verification system started up, the “program” base class

would walk this master list and call the init() methods of all the “top”

(that is, type_id==top objects first, followed by the init() method

of all the “monitor” objects, in turn followed by the init() method of

all the “generator” objects, and so on. The actual system had ten different

flavors of type_id, and thus ten different passes for each method.

Not surprisingly, this “under-the-covers” magic caused significant dif-

ficulties for the team. It was hard for subsystems to control which

monitors got started in what order, except by carefully controlling which

objects were constructed when. Engineers new to the project would get

confused and fail to understand the hidden priorities. The team tried to

solve the problem by adding a special StartupClass, which would be

C h a p t e r 9 : T h i n k i n g O O P

160 Hardware Verif ication with SystemVerilog

the first to run its init() method. However, this made the effort of

moving a test from the unit level to the full chip level difficult, because

the single StartupClass could not be reused. As a result, the “simple”

system ended up adding substantially to the complexity of the verification

effort.1

Example: How apparent simplicity
leads to later problems

Here is another horror story. Almost every chip has an interrupt capability.

In one case our test team decided to have a single interrupt scoreboard

for a chip. The scoreboard would not check the reason for the interrupt;

instead, it would simply have a queue of interrupt handlers and make

sure there were not any unexpected interrupts or leftover handlers. In

practice, this simple scoreboard turned out to be inappropriate for several

of the major sources of the interrupts.

There were two main classes in this case. The first was the interrupt

handler, which was used to encapsulate the handler logic if it matched

the interrupt. This class is shown below.

class interrupt_handler extends verification_component;

extern virtual function bit match_id
(uint32 vector_id);

extern virtual task do_handler ();

endclass

The next class was the interrupt scoreboard. This class had a list of

handlers as well as a start() method to watch for interrupts. It also had

a post_run() method to make sure there were no unused interrupts.

This class is shown below.

class interrupt_scoreboard;

extern task post_handler (interrupt_handler ih);

extern virtual task start ();

extern virtual task post_run();

endclass

1. One could reasonably argue that this is just an example of a poor or
inappropriate design, yet the authors have seen it used in two different
companies.

An Object-Oriented Framework 161

S o u r c e s o f C o m p l e x i t y

When an interrupt was asserted, the scoreboard called match_id() for

every interrupt_handler on its scoreboard. The first interrupt for

which match_id() returned true would be removed from the scoreboard,

and its do_handler() would be called. It was up to the test writers to

be as specific as they wanted to be in the match_id() method. Some

test writers always returned true if the interrupt was for them, whereas

other test writers tried to be more specific as to the exact reason for the

interrupt.

This class worked fine until the team started testing chip interfaces for

which one could not reasonably predict the number of interrupts. Two

interfaces in the chip had this property—the USB and the Ethernet

subsystems.

In the USB subsystem, a start-of-frame interrupt was generated once

every millisecond. Because the USB controller initialized its start-of-

frame counter to a random value, and the test end conditions were fuzzy

(they were simply based on other data streams draining their checkers),

the number of start-of-frame interrupts could not easily be predicted (nor

was this number very interesting to know). In this case, the original

decision regarding where to put the scoreboard caused an almost impos-

sible checking algorithm for the USB subsystem.

The other example from this same chip was related to the Ethernet unit.

The generator randomly assigned masks and packet types, so predicting

where (or whether) a packet would arrive was difficult enough—let alone

predicting the interrupts that would be generated.

The final straw was that, as an optimization, the chip combined interrupt

events, so that if two interrupt-generating events on the same subsystem

occurred before these events were serviced, only one interrupt would be

generated. Accounting for all these possibilities was not only very hard,

but it was also was of little use for verification. As a result, the interrupt

scoreboard was removed and individual subsystems were called to handle

all interrupts, based on a fixed vector identifier-to-subsystem mapping.

C h a p t e r 9 : T h i n k i n g O O P

162 Hardware Verif ication with SystemVerilog

Although a resulting class interface might be too simple for
what must be accomplished—and overly simplistic models can
lead to complications in implementation—don’t stop striving
for the simplest usage model possible.

Team dynamics

It may not be obvious, but the makeup and operation of the team affect

not only how code is created, but also how well the adaptable code is

received. This, in turn, affects the success of the project. Why is this

relevant to “thinking OOP?” The addition of OOP created a much more

tightly coupled architecture—one where understanding the intent of your

fellow team members is essential to coding well. OOP is likely to bring

into focus any team issues already present.

A healthy team is better able to create well-built code and adapt existing

code. What does this have to do with a handbook on verification?

Verification systems have become as complex as production software.

As a result, team dynamics becomes a major factor in the success of the

verification effort. The sooner we, as an industry, realize this, the sooner

we can address team dynamics. Team dynamics is the current focus of

the software domain. (There are books on this in the For Further Reading

section at the end of this chapter.) As this is a new concept for verification

teams, we’ll just touch on the subject here.

Team roles

There are many team roles and responsibilities. A clear mapping of roles

to personnel is necessary for a well-functioning team. An important role

is that of the code leader. The person in this role is considered the

“godfather” of the team and usually is consulted on major and minor

architectural decisions. This person knows the language thoroughly and

is interested in the latest “best practices.” Another important role is that

of the technical leader, who knows not only the architecture, but also

the scripts, policies, and assignments of the team. This person is different

from the code leader in that the responsibility of the technical leader is

broader, with a more project-level view. The role of toolsmith is also

critical. This person provides all the scripts and “spells” that make the

day-to-day learning and writing of the code easier.

An Object-Oriented Framework 163

C r e a t i n g A d a p t a b l e C o d e

Identify and celebrate team roles—they are all equally
important to the success of the team.

Using a “code buddy”

Often an independent reviewer can find places where the code can be

made clearer and more adaptable, because the reviewer can concentrate

on the finished product, not on the failed attempts. Selecting the right

code reviewer is critical to the success of this endeavor.

It is almost always a mistake to have a team code review. This creates a

poisonous many-against-one atmosphere. Instead, let each coder pick

their personal “code buddy.” This individual will be a trusted coworker

with whom an informal walk-through of the code can be accomplished.

The focus should be on the fact that the code review happened at all, not

on the specifics of the review.

Code reviews, though necessary, must be done with care.
Otherwise, team cohesion and the project will suffer.

Creating Adaptable Code

How is a section on creating adaptable code relevant to “thinking OOP?”

Well, one of the reasons OOP has proved useful is that it really helps

create code that is adaptable. In some sense, “thinking OOP” is about

creating adaptable and reasonable code.

The term code adaptability is an informal measure of how easy it is to

move code from one use to another. Code adaptability is an acknowledg-

ment that there is more work to do, even if you purchase verification IP.

Achieving adaptability

Achieving adaptability is a fancy way of saying that you and your

programming team creates code that has proved useful for generations

of chips. Of course, there is always new code to write for each chip;

otherwise, there is little reason to create another chip. The idea is to build

C h a p t e r 9 : T h i n k i n g O O P

164 Hardware Verif ication with SystemVerilog

adaptable code that is acceptable in its complexity, can be reasoned about,

has minimal assumptions about its environment, and has minimal con-

nections to other code modules, as appropriate for your organization.

As an example of code adaptation, one company may prefer to make a

copy of some common code before starting a project. In this way they

can remove unnecessary code and complexity and, at the corporate level,

handle the management activities of common bug fixes. Another com-

pany may prefer to keep a single code base for all projects. This will

almost definitely increase the code’s complexity and size, yet common

bug fixes are automatic. Each approach is justified; as is a common theme

in this handbook, there are no absolute correct answers.

Let’s come up with some of the ways code can be adapted. You can do

the following:

Reuse existing code without any modifications, or

Copy existing code, or

Use existing code as base classes, or

Use only the test cases of existing code, or

Use only the BFMs of existing code

Here, the meaning of “existing code” includes both in-house and pur-

chased Verification Intellectual Property (VIP).

The premise of creating adaptable code is that, for the next
project or revision, it will be faster to adapt existing code
than to develop it anew. This is a major reason for using OOP
techniques.

Why is adaptability tricky?

So most people want their code to live forever. In practice, however,

creating adaptable code is difficult.

One tricky thing with adapting code is that the definition of “adaptable”

is relative. Does this mean the code can be compiled on different versions

of a compiler? Does this mean the code can be reused in a different

project? What about VIP, which can be adapted to different compilers in

different projects in different companies? As with the definition of

verification, each organization will have different metrics for what makes

An Object-Oriented Framework 165

A r c h i t e c t u r a l C o n s i d e r a t i o n s t o M a x i m i z e A d a p t a b i l i t y

code “adaptable.” The requirements will often change, depending on the

team, the individual coder, and the purpose of the code.

While the need to create adaptable code is always present, the actual use

of adapted code evolves as both a team and our industry gains experience

in reuse techniques. The growing interest in using OOP is a good example

of this evolution.

Another difficulty with adapting code is that production code is ugly. A

verification system that has made it to tapeout is often riddled with

workarounds and undocumented assumptions. It also contains features

specific to a particular chip. Moving the code to another project is not

trivial.

There are more barriers to adapting code, such as a heterogeneous team

experience, a lack of domain experience, and competing requirements

for code flexibility.

Creating adaptable code may appear difficult at first glance.
However, with the techniques presented in this handbook,
you can produce code that is adaptable to a large range of
projects, with a minimal increase in the code’s complexity.

Architectural Considerations

to Maximize Adaptability

This section looks at the reasoning behind, and techniques for, recogniz-

ing and building adaptable code. (The next chapter looks more in depth

at these considerations). To create an adaptable architecture, begin by

asking the following fundamental questions:

Where and what are the global components (such as a memory
map)?

Where do the lines of responsibility lie?

What capabilities are needed in the current—and the next—
design?

A factor affecting the ease of code adaptation is how close the next chip

is to the current one. Obviously, the closer the two chips are, the better

C h a p t e r 9 : T h i n k i n g O O P

166 Hardware Verif ication with SystemVerilog

the opportunity for adaptation. This touches on the subject of minimizing

assumptions in a functional area. The fewer the chip-specific assump-

tions, the more likely the code can be adapted. However, the resulting

code may be more complicated and take more time to develop and learn.

Building adaptable code also involves a correct by construction technique

(discussed in detail in the next chapter.) This means that, once you change

the code for the next design, it is better to have the code fail to compile,

rather than having it fall off an “if” test or just return. If the code does

not compile, there is obvious work to be done. The worst case is code

that compiles and runs, but is wrong. Code assertions, such as the

assert() function, can also help to catch the runtime errors. In other

words, use assertions for assumptions that cannot be expressed by con-

struction.

Changes are easy—or just plain impossible

An interesting phenomenon occurred when large-scale systems started

to be built by means of OOP techniques. The developers found that

changes were either quite easy or nearly impossible. They were easy if

the architecture anticipated the change, which usually meant the change

occurred along class lines. On the other hand, changes were really, really

difficult if several items of data to be changed were spread out into

multiple classes. Of course, this is code, and code can always be made

to “work,” but the very technique of hiding data and making data (objects)

drive the algorithms means that some algorithms may be spread out across

many objects.

This is relevant because it means that if a feature is not present in the

original code, it may be difficult to add that feature later. On the other

hand, it might be simple. This leads to a design bias that favors smaller

classes, with attention to the assumptions made in those classes. A few

examples illustrate this point.

Consider an object that needs to access external RAM as part of its

function. If the current design used ZBT1 RAM, a certain protocol is

used. If, in a later design, the RAM were changed to QDR2 RAM, a new

1. Zero-bus turnaround.
2. Quad data rate.

An Object-Oriented Framework 167

A r c h i t e c t u r a l C o n s i d e r a t i o n s t o M a x i m i z e A d a p t a b i l i t y

protocol would be used, but the essential function would remain the same.

If the original designer had “hidden” the actual memory interface in

another object, then it would be relatively simple to build a QDR object

and pass that into the other object’s constructor.

As another example, consider a testbench object that supports the chip

in its initial boot sequence. Suppose that a chip implementation supported

booting from a UART or USB. In this case you could code the different

protocols in the testbench directly, or implement them as specific inher-

ited classes of a generic boot_source class. Suppose, also, that later

implementations of the chip might support additional boot devices, such

as a disk or I2C interface.1 The test could then let a testbench choose the

boot source. By abstracting the concept of the boot source from the tests,

it becomes easier to adapt the tests to new environments and to introduce

randomness in testing.

As an architectural bias, making smaller classes with minimal
assumptions can lead to code that is more adaptable.

Where is adaptation likely to happen?

A fruitful place for adaptation is at the physical interface, or connection

layer, of the chip. This is because an external standard (such as PCI or

USB) often defines the behavior there. Note that programming the pro-

tocols is not as clear cut. This is where the trade-offs between flexibility

and complexity, and the use of minimal assumptions, come into play.

(Trade-offs are discussed at length in the chapter on OOP connections;

we’ll just start thinking about this issue here.)

As an example, monitors on a bus might use events to coordinate with

higher-level checkers. Because the monitor does not know whether a

checker is waiting on an event, the connection is relatively weak and thus

the code might be made more adaptable in this case. As a result, this

same monitor class could be used in several different environments, each

of which is interested in a different set of events.

1. A serial computer bus invented by Philips that is used to attach low-speed
peripherals to a motherboard, embedded system, or cell phone. The name is an
acronym for Inter-Integrated Circuit and is pronounced I-squared-C.

C h a p t e r 9 : T h i n k i n g O O P

168 Hardware Verif ication with SystemVerilog

Another good area for adaptation is when you exercise a feature of the

chip. Conceptually, the code that has to be executed to verify a subsystem

is independent of where that subsystem is located. In this case, the trick

in maximizing adaptability is to minimize the assumptions the code

makes about the testbench environment. If a common framework can be

used, including what a testbench provides and the application of a few

global objects, it is more likely that tests can be adapted.

Initially, concentrate on the lowest levels of abstraction for
creating adaptable code. Then, concentrate on the part of
the test that exercises a chip protocol or feature.

Separating Interface from Implementation

VHDL encourages a separation of the code interface of a module from

its implementation. This separation is a bit more difficult in the Verilog

language, which is usually limited to various stub implementations of

modules. SystemVerilog is like VHDL in that it supports a separation of

“what you can do” (code interface) from “how it is done” (implementa-

tion).

Why is this important? By separating these two concepts, one makes a

a design not only simpler, but also more adaptable. The design is simpler

because the roles of user and implementor are separated. The user of a

class is concerned only with the code interface. The implementor, on the

other hand, is concerned with how to accomplish the code interface.

Neither task is simple, but developers can concentrate independently on

what they need to do.

The code is more adaptable because the implementation may change or

evolve as the project goes on, or as the code is used in other projects.

However, the code that simply uses the class does not have to change.

This is particularly important when class inheritance is used, as explained

in the next section.

The separation of the code interface from its implementation is an

example of the defining of roles and responsibilities of the code. This is

An Object-Oriented Framework 169

C o d e I n t e r f a c e , I m p l e m e n t a t i o n , a n d B a s e C l a s s e s

a common theme in this handbook, one that is explored in depth in the

next chapter.

By separating the code interface from the implementation,
we make code that is both less complex and more adaptable
to different situations.

Code Interface, Implementation, and Base Classes

Part of “thinking OOP” involves using classes to express common behav-

ior. In fact, expressing one class as a derivative of another is the main

mechanism of OOP. But how can this help you write better code? It does

so in two ways: one lets you clearly specify a code interface to be

implemented, and the other lets you reuse implementations of existing

classes. (Don’t worry if this issue seems a bit hazy; it is discussed in

detail in the chapter on coding OOP.)

To create a class that is to be used in a code interface, just use pure virtual

methods. For example, to create a top-level code interface, you might

have something like this:

virtual class test;

'PURE virtual task build ();

'PURE virtual task run ();

endclass

Then, specific tests implement the build and run methods, as appropriate

for the test at hand. Note the following examples:

class dma_test extends test;

virtual task build ();

//code here to build the test...

endtask

virtual task run ();

//run the classes built by the above method

endtask

endclass

C h a p t e r 9 : T h i n k i n g O O P

170 Hardware Verif ication with SystemVerilog

The dma_test can add other methods as it sees fit; but because it derives

from test, it must implement the build() and run() methods.

The other benefit of using inheritance is to save time during implemen-

tation. The idea is to have a base class implement the bulk of some

common code. Then classes are inherited to implement the specific parts

that cannot be generalized.

For example, suppose we had a protocol that can be expressed in a

common algorithm, but the final wire-driving mechanism were specific

to an implementation of the protocol. Here’s how the base class might

look:

virtual class the_protocol;

extern task do_send(); //implemented in a source file

'PURE protected virtual drive_wire_(bit logical_value);

endclass

Now, a class can inherit from the_protocol and provide the actual

driving of the wire.

Class inheritance is a main part of OOP. Use it to specify a
code interface, as well as to reuse class implementations.

Summary

We have started “thinking OOP.” We talked about how verification is

complex, and how this complexity must be managed. We talked about

the goal of creating flexible, adaptable code, and how achieving this goal

may complicate the code.

We got into coding a bit by talking about the separation between a code

interface and its implementation. We also touched on the subject of base

classes and the different ways they can be used.

An Object-Oriented Framework 171

F o r F u r t h e r R e a d i n g

For Further Reading

The sections “A Complex Solution” and “Accidental Complexity
vs. Implementation Complexity” are drawn from the landmark
paper, “No Silver Bullet: Essence and Accidents of Software
Engineering,” by Frederick P. Brooks, Jr.

The concept of team productivity and its variability is well
documented in Peopleware: Productive Projects and Teams, 2nd
edition, by Tom DeMarco and Timothy Lister.

One of the “lessons learned” is that the social elements of the
team can affect the code you write. Although this is currently an
important topic of the software domain, we have decided to stay
focused on code techniques. However, there are several good
books on the subject of social elements if you are interested.

The grand-daddy classic is The Mythical Man-Month, by
Frederick Brooks.

Organizational Patterns of Agile Software Development, by
Jim Coplien and Neil Harrison, is a good analysis of several
years of software projects.

Lean Software Development, by Mary and Tom Poppendieck,
looks at how proven “agile” manufacturing techniques can be
applied to software development.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 173

Designing with OOP
C H A P T E R 1 0

That 's right!” shouted Vroomfondel. “We
demand rigidly defined areas of doubt and
uncertainty!”

The Hitchhiker’s Guide to the Galaxy, by Douglas Adams

What is design? How do you go about designing with objects? As

far as a CPU is concerned, you don’t need objects. You might as well put

all the code into one big function—but that code would be really, really

hard to understand. So we break up a single huge solution into a number

of smaller, understandable, and rigidly defined pieces. This is the essence

of design, regardless of the language.

When we design with OOP, this “breaking up” is really just the construc-

tion of a network of classes. However, before we dive into making classes,

we need to understand the OOP design bias. OOP designs tend to focus

on roles and responsibilities. These roles and responsibilities get broken

down further into smaller networks of classes. Ultimately, we wiggle

wires to communicate with the chip.

In this chapter we introduce some basic guidelines for design. We also

talk a bit about some common design mistakes and how to avoid them.

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

174 Hardware Verif ication with SystemVerilog

Overview

Design is so intertwined with coding that it’s artificial to separate the

two. Academic textbooks explain that first you architect, then you design,

and then you code. In the real world, however, these steps all get jumbled

together. We tend to do all three at once, having a general idea of what

we want to do, then refining and changing our idea as we start to code.

Designing with OOP is no different. We talk about “paper napkin” or

whiteboard designs. We prototype and refine class interface files and talk

about what each class should do. Just as important, we talk about how

the classes interact and exchange control and data.

Design is messy, but designing with classes can be a little cleaner. This

chapter provides some general guidelines that can help with this inher-

ently untidy process.

Keeping the Abstraction Level Consistent

A key evolution in programming came about when we started to talk

about “abstraction levels” in a design. This is somewhat expected,

because humans are abstraction machines. A child can recognize a

“chair,” from the folding chairs at school to the hydraulic ones we use

at work, and most people can operate a car, regardless of the make or

model. Our mind’s ability to abstract away the details of an object or

process is directly applicable to programming. We can solve a complex

design by using abstractions, from the big-picture operations at the top,

down to the wire protocols at the chip interface level.

To put this in fancier terms, at any layer in a design there is an associated

scope of concern and an appropriate level of detail. A scope of concern

is the role of the task. The level of detail is the responsibility of the task.

At the top level of the verification system, the scope of concern is the

entire chip, its configurations, and the traffic that will be applied to the

chip in testing or real life. Here, the level of detail should be very small.

In other words, the test should consist of “big” objects, such as the test

and testbench, and have no minutia. At the other end of the spectrum, at

An Object-Oriented Framework 175

K e e p i n g t h e A b s t r a c t i o n L e v e l C o n s i s t e n t

the bus functional model (BFM) level, the scope of concern should be

very small (for example, a handful of pins and wires), but the level of

detail should be high (for example, the precise sequencing of those pins

to implement the protocol). This is shown in the diagram below:

Unfortunately, changes in the abstraction level within an algorithm cause

confusion and increase the complexity of the code. For example, shown

below (actual code from a coworker) is a top-level algorithm with two

shifts in abstraction level. See if you can spot the shifts.

task main_process_loop(uint32 num_transfers,

IO_BFM io_unit);

for (uint32 i=0; i < num_transfers; ++i) begin

BFM_command command = new ("a_command");

assert (command.randomize());

io_unit.top.driver.process_command (command);

for (uint32 j=0; j < 300; ++j) begin

@ (posedge (iface_.clk));

end

end

endtask

Constant abstraction level

Boot Ethernet
Start Ethernet
Stop Ethernet
PostRunCheck

Scope of concern

Level of detail

 if (bit_clk < 8)
tx = data[bit_clk];

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

176 Hardware Verif ication with SystemVerilog

The first shift occurs in io_unit.top.driver. This is because the

engineer trying to understand the algorithm must now understand two

more classes, top and driver. It probably would have been clearer either

to provide a process_command() method in the io_unit, or pass in

only the driver to this function. Multiple periods in an identifier are

usually a cause for concern.

The other shift is in the @(posedge(iface_.clk)) statement—which

is too detailed for the rest of the algorithm. Is it really necessary to worry

about clocking at this level?

Object-oriented programming is all about using abstractions!
Be sure that a class provides some well-defined service at a
fixed level of detail. The implementation of the object is
one level down in abstraction, and probably uses lower classes
to get its job done, and so on ad infinitum.

Using “Correct by Construction”

As we have mentioned, building a verification system creates a large and

complicated network of classes, instances, and conventions. It’s not

always obvious how to put these building blocks together. However, the

SystemVerilog language provides strong type checking that can help to

communicate the “intent” of the construction. This strong type checking

can give clues as to what classes can go together and how they go together.

You should strive for systems that, if they can be put together (compiled),

are correct. This technique is called correct by construction.

Base classes are often used to show intent. A base class can be used to

specify a required code interface, or to manage a list of homogeneous

objects (whose actual types are inherited from the base). For example, a

base class called checker might be used to indicate that a class has

checking type behavior and has a concept of when it is done, as follows:

extern virtual class checker;

'PURE virtual task wait_for_completion ();

endclass

class ethernet_checker extends checker;

An Object-Oriented Framework 177

U s i n g “ C o r r e c t b y C o n s t r u c t i o n ”

extern virtual task wait_for_completion ();

endclass

class pci_checker extends checker;

extern virtual task wait_for_completion ();

endclass

In this case, both the ethernet_checker and pci_checker can be

assumed to have some action that takes time and has a completed concept.

(Note that in this example, it is probably not appropriate to have a list

of ethernet_checker and pci_checker objects. They are unrelated in

function, and are related only by inheritance.)

Here is an example that encourages the building of a list of base class

objects:

typedef class data;

package pci_configuration;

typedef enum {in, out} request;

endpackage

virtual class pci_endpoint;

'PURE virtual task handle_data_request(request r,
data d);

'PURE virtual task handle_data_completion ();

endclass

class configuration_endpoint extends pci_endpoint ...

class address_endpoint extends pci_endpoint ...

class power_management_endpoint extends pci_endpoint ...

PCI can be viewed as having several types of endpoints, all of which

respond to in or out requests. In addition, each endpoint has an asso-

ciated action after the data have been sent (or received). Thus, it makes

sense to have a common base class, and probably a list consisting only

of pointers to the base class, pci_endpoint. The actual data in the list

will be of the inherited classes.

Enumerations can also be used to show intent. They can be given names

that match the chip’s control/status register (CSR) field that they repre-

sent and can have values that directly map to the chip, as in the following

example:

typedef enum bit[12:0] {window_4K = 0x100,

window_64K = 0x101, window_1M = 0x102} window_size;

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

178 Hardware Verif ication with SystemVerilog

Be careful, because enumerations, once defined, cannot be extended.

Furthermore, code that uses a case statement on enumerations is a

possible sign of design trouble, and the use of enumerations may need

to be reconsidered. The warning signs are major amounts of code in the

case label, or multiple case statements on the same enumeration. In this

situation, an enumeration is being used as a control flow mechanism, not

as a simple data mapping. It’s possible that the enumeration is better

represented as a set of classes. Using an enum with a case statement is

not necessarily wrong, and it certainly is useful as a name for a bit pattern

that the chip understands, but be aware of potential problems.

This is just a quick tour of the concept of “correct by construction.”

(Many examples of these techniques can be found in the Part IV of this

handbook.)

Be careful with systems that must be validated at run time. While some

parts of a system will need to use run-time checking, this should be the

exception, not the rule. Systems that use run-time checking make it much

harder for others to understand your intent.

Base classes and enumerations are good mechanisms for
making it easier to see and enforce how a system can be put
together.

The Value of Packages

When a large amount of code is developed, there will be enumerations

or constants that have the same name. If you had access to the source

code, you could standardize the colliding names. However, changing the

code is more difficult when the code is from another work group, division,

or company. SystemVerilog helps minimize this problem by providing a

feature called a package. A package is like a class, in that the methods

(and data) in the package must be accessed with the name of the package.

By using packages, you minimize the number of global names, because

the previously defined global functions are all in packages, and now only

the package identifiers themselves are global. This decreases the prob-

ability of a collision.

An Object-Oriented Framework 179

T h e Va l u e o f P a c k a g e s

Packages are useful for grouping related parameters. A good design bias

is to place the related parameters for each verification component in your

system in their own package. For example, in a fi le called

lcd_parameters.svh, you might have something like this:

package lcd_parameters;

typedef enum {TN, S_IPS, MVA, PVA} type;

typedef enum {r_60, r_70, r_80, r_100} refresh_rate;

typedef teal::uint32 pixel_rate;

const1 pixel_rate max_pixel_rate = 'h5551212;

endpackage

You can use the enumerations and constants in a package by specifically

naming it (for example, lcd_parameters::<id>) or making it implicit

by means of the import keyword. Below is an example.

'include "lcd_display.svh"

import lcd_display::*;

//now lcd_display enumerations may be used

//without qualification

task lcd_function();

lcd_display::refresh_rate r = r_60; //can be specific

refresh_rate r1 = r_60; //or not

pixel_rate pr = max_pixel_rate;

endtask

Be extremely cautious of putting an import clause in a header file. It is

almost always a mistake, because every file that includes your header

file will inherit the import clause’s scope. In addition, every file that

includes the header file that in turn includes your header file will now

have the import clause—and so on, with possibly unintended conse-

quences. The authors have first-hand experience in trying to undo this

technique. The task was not pretty.

Another use for a package is to wrap a related set of global objects and

functions. The interface is just a collection of functions, but wrapping

them into a package creates what is called a singleton. While you want

to minimize the number of singletons in a system, they are necessary and

correct for those areas that represent global resources. Singletons are

discussed more in the Coding OOP chapter.

1. Within a package in SystemVerilog, a const is similar to a parameter.

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

180 Hardware Verif ication with SystemVerilog

Packages are very useful for grouping related enumerations
and constants. Be careful with the import clause in header
files.

Data Duplication—A Necessary Evil

There is an inherent trade-off between minimizing the complexity of

connections among verification components and duplicating the data

passed among them. The looser the connection, the more likely that there

is a duplication of data. This is talked about in detail in the next chapter,

but we’ll discuss it as a design bias here.

Let’s look at an example of duplicated data. Consider a DMA1 chip’s

view of data versus a checker’s view. A processor sends to the DMA

engine the source address, the destination address, and the length of the

transfer. When the DMA completes, selected memory contents are stored

in an object that contains a start address, an end address, a length, and a

completion status for the transaction. The chip synchronization mecha-

nism for the monitor is probably an interrupt. The class and the chip

memory both contain the data, so we have a data duplication situation.

In this design the data duplication is good, because checkers can use the

more abstract fields of a class, instead of reading memory directly. Also,

the code is more portable, because the concepts of source, destination,

and length are abstracted away from the actual memory layout.

In the previous example, the data representation changed from chip

memory to fields in a class. However, there is another place where data

are duplicated. This is a more subtle, yet useful, design technique.

We think nothing of calling a function and passing it an integer. We know

that the integer’s value will be copied. But what if this integer were the

result of some computations in the function making the call? Now the

situation is not so clear. Why? Because this integer is not just a value. It

represents the result of an algorithm that computed some data. The fancy

term for what this integer represents is derived data. This is a normal

situation, and it is used all the time when abstraction layers are crossed.

1. Direct memory access.

An Object-Oriented Framework 181

D e s i g n i n g W e l l , O p t i m i z i n g O n l y W h e n N e c e s s a r y

In fact, derived data are common in multilayer protocols. Many protocols

have a physical layer, which deals in bits and words. Then they have a

transport layer, which deals in packets. Some protocols even have a third

layer, which deals in higher-layer transfers. As each layer hands off to

the next, data are copied. The concept of derived data also exists when

abstraction layers are used in verification.

For example, consider the physical interface for Ethernet Media Access

Control) MAC. Suppose a verification component called MAC supports

both Media Independent Interface (MII) and Reduced Media Independent

Interface (RMII), and expresses this in an enumeration. These two inter-

faces are quite close, with RMII being a reduced set of the MII interface.

In order to simplify the control connections between the MAC and the

physical layer, the connection could be a single bit set to one for “full,”

to distinguish it from “reduced,” where the bit would be zero. Although

the information in a single bit is weaker and simpler than the passing of

an enumeration, the bit is more appropriate to the lower-level abstraction.

Be aware of the same data being in two places at once. This
generally happens across abstraction levels. Be very aware
when derived data must be refreshed.

Designing Well, Optimizing Only When Necessary

When hardware is designed and implemented, efficiency is critical to its

ability to be built (meeting timing, power, and size constraints). However,

in software the emphasis is often on minimizing mental complexity. This

is natural, as increasingly complex control and data structures can be

built relatively quickly with software.

In verification you must focus on clarity in your overall design and

implementation.1 This does not mean, however, that you can ignore

efficiency.

1. The authors assume, of course, that the verification of the chip is the primary
concern.

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

182 Hardware Verif ication with SystemVerilog

The speed of a functional simulation almost always depends on just a

small percentage of the actual code. You should optimize the code for

simulation speed only after you have finished profiling it thoroughly.

Premature code optimization leads to confusion. While it might run a

simulation a little faster, it will more often than not slow down the project

by being harder to understand and use.

Get the design working and understandable first. Then figure
out what needs to be optimized—and possibly made more
complicated.

Using the Protocol, Only the Protocol

The verification test system must both apply stimuli to the chip and then

check to make sure the chip generated the correct response. Consequently,

the verification system is aware of both ends of a data path—an awareness

the software does not have. In a simulation, creating both ends of a data

path is necessary, but it can lead to sloppy code that may mask chip

problems. Be aware of what information the protocol provides, and use

only that information for checking.

For example, the authors helped test a USB device. The original verifi-

cation tests preloaded the chip with the “correct” data. Then, when the

data were needed, as specified by the protocol, they were sent by the chip

to the checker. The checker confirmed the data and all was well. Upon

closer inspection by the software team, a critical parameter was found

to be missing: the length of the response. By design, this parameter was

being dropped by the chip, but because the verification code already

knew the “right” answer and length, the design error was missed. Had

the verification code been cleanly separated into a generator (the

requestor) and a checker (the interpreter) of the request, the error would

have been caught.

Another example concerned a DMA checker. The DMA checker required

the verification components to register all the memory accesses that the

chip would make. At the end of the test, the DMA checker would make

sure there were no unmatched writes. What the checker failed to test,

An Object-Oriented Framework 183

Ve r i f i c a t i o n C l o s e t o t h e P r o g r a m m i n g M o d e l

however, was the result of overlapped memory writes. There was a bug

in the cache coherency unit that was masked because the tests did not

write to the same address twice.

Minimize the assumptions made across different parts of the
verification system. Strive to use only the “knowledge” that
the production software has through the feature or interface.

Verification Close to the Programming Model

Verification is both similar to and different from the production software

that will run on the system. However, the closer the verification archi-

tecture is to the software, the better the chance you have of finding errors

in the programming model, with respect to condition status registers

(CSRs), hardware algorithms, and so on.

So while it is true that the software you use for verification is inherently

a lot more detailed than the production software, you should still strive

to keep your test algorithms as close to the production ones as possible.

This design bias not only helps the software and hardware folks commu-

nicate better, but it can also help shake out register/memory/interrupt

design and programming model.

For example, the authors had a project where the design of the DMA part

of a chip was changed after the verification team had their code reviewed

by the software team. Yes, this change was humbling. Specifically, the

chip used a bit to restart a DMA channel. The original design had made

the transition of zero to one be the enabling action. This meant that the

software would first have to set this bit to zero (it was a one from a

previous enable!), and then set it back to one. Once the software team

was aware of this issue, they asked how hard it would be just to restart

with a write of one, even if the previous value were a one. This was done,

making the DMA enable more intuitive to the software team. Another

change concerned the ability to write the DMA offset and index. The

original design allowed only a reset of the index to zero, which made

resending a DMA buffer clumsy. The software had to recopy all the buffer

descriptors in memory to the zero offset address. The hardware was

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

184 Hardware Verif ication with SystemVerilog

changed to allow the index to be written whenever the DMA unit was

paused.

A final change was in the address map. Previously, the address space for

the DMA was contiguous, which made sense to the hardware team.

However, because the various I/O subsystems were features that end

users paid for individually, the software was separated according to I/O

subsystems. Because of this division, there were two different address

spaces to manage: one for the I/O subsystem, and another for the DMA.

We changed this design and moved the specific DMA channel’s CSR

address space to the I/O subsystem that it served. While this change

seems (and probably is) simple, it shows that the hardware and software

teams viewed the chip differently. Working more closely together

improves the overall quality and helps reduce total project time. Further-

more, using a software bias allowed the two teams to look at each other’s

code without too much complaining.

Try to design your verification system to use the same
algorithms and subarchitecture as the production software.
That way, you can catch clumsy or conflicting programming
models.

The Three Parts of Checking

The major thrust of verification is checking the operation of the chip.

We send data in, or turn on features, and check that the chip produces

the correct response. A fancy term for the transmission of data and the

enabling of features is called stimulus. As a design bias, it’s a good idea

to separate the generation of the stimulus from the acting on and checking

of the stimulus. We’ll look at this further in subsequent chapters, but for

now let’s look at the checker.

Once data have been injected into the chip, the checker recovers the

actual data output from the chip’s I/O and confirms that everything is as

expected. There are three parts to this process and, to promote adaptabil-

ity, the implementations of each part should be kept separate. The success

An Object-Oriented Framework 185

T h e T h r e e P a r t s o f C h e c k i n g

of code adaptation can often be traced to how well these three parts,

summarized below, can be shaped to fit a new environment.

The first part is the gathering of the data, usually by means of a
monitor. A monitor triggers on changes in some I/O, interrupt, or
FIFO level and converts these wire changes into verification
objects. By having a monitor that is separate from the checker,
you can change how the data are gathered without affecting the
checker. Also, by converting the data from wire changes to
integers and classes, you elevate the data by an additional level of
abstraction.

The second part is a comparison of the actual data with the
generated data. This can be accomplished by providing the
method equal(). (Part IV of this handbook shows examples.)

The third part of checking uses the result of comparison and
provides an indication of expected or erroneous behavior. The
simplest example is an error message or “check passed” message,
followed by a printout of the data.

In the checker class, be aware that the form of the data generated may

not be the same as the form received by the monitor. This is because data

packets may have been combined or split for a variety of reasons (for

example, because of the protocol, error correction, or some other trans-

formation). Creating an appropriate level of abstraction for a checker

can be difficult.

Sometimes there is more than one level of checker. This is common in

multilayer protocols, such as PCI Express, Ethernet, ATM, and USB.

Again, keeping the levels separate improves the code.

Sometimes there may be several monitors on the same chip I/O. This is

common because in the verification code a one-to-one relationship

between monitor and checker is the simplest, while in the HDL there are

no simulation limits on the number of monitors on a wire.

The checker should also check for dropped or missing data. The easiest

way to do this is at the end of the test, but it’s probably better to use the

latency of the chip as a filter, and report errors as soon as possible.

Checking consists of three parts: gathering data, making a
comparison, and acting on the comparison. Separating these
three parts is a “flexibility vs. complexity” trade-off.

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

186 Hardware Verif ication with SystemVerilog

Separating the Test from the Testbench

It is common to have a few top-level parts to a verification system. These

include the HDL top, the testbench, and the test. The authors advocate

for another top-level component, the verification top (see the Layered

Verification Approach chapter earlier on). This section addresses the

roles and responsibilities of each part.

A major theme of this chapter is to show how clear roles and responsi-

bilities create simpler code. In general, for a single chip, try to have a

single verification top, one or a few HDL tops and testbenches, and many

tests. Because the verification top is the top-most component of any test,

always calling the same “dance,” it consistently executes the same steps

of creating, configuring, running, and shutting down the test.

The testbench is responsible for setting up the transactors, monitors, and

generators (under direction by the test), and building the global services.

The HDL top is responsible for the HDL wrappers around the chip, and

includes clocks, reset logic, and pin wires. In addition, the HDL top

probably contains muxes, assigns, or Verilog tranif1 statements for

connecting verification interfaces to the chip. It may also have interfaces

for “power on” (to communicate with the boot I/O devices and enable

the initial state configuration of the chip). The test is responsible for

specifying the required verification components, traffic patterns, and

verification configurations, as well as what the “run” part of the test

should do.

Having a single testbench for a specific chip or system is useful, because

it sets up a common environment for all tests to use. This increases the

adaptability of the individual tests and verification components. Also,

because unit testing differs from full system testing, it may be necessary

to have multiple HDL tops; however, effort must be taken to ensure that

as many of the tests as possible can be run with any of the HDL tops.

Because a test must specify what configuration it requires, there is some

communication between the test and testbench, possibly before the chip

can be brought out of reset. This means that, while the verification top

creates the test, the test may make several calls to the global objects,

1. The Verilog primitive tranif connects two bidirectional wires.

An Object-Oriented Framework 187

S u m m a r y

possibly including a verification components manager, to configure the

testbench.

As an implementation detail, the test may be created by a factory function.

(Factory functions are explained further in the Coding OOP chapter.)

This function, usually implemented in the source file that contains the

test, returns a base-class test pointer. The reason for using a factory

function is to incorporate unit-level tests into a full chip test, or many

tests into a single meta-test.

Sometimes this base test object contains all the verification components

and a basic structure for the test. This can be useful, but be aware of all

the types of tests, and don’t make the base test too complex.

A test can have a few standard components: the dance, the
testbench, the HDL top, and the test. Only the
implementation of the test should change.

Summary

We have started down the path of using OOP in a verification system.

We talked about the main theme, creating roles and responsibilities by

using abstraction. We talked about the common design biases used when

we design a verification system.

You probably are still surrounded by clouds of uncertainty. This is

understandable. The next chapters are more specific, talking about mak-

ing classes and the different ways to connect them.

For now, however, know that designing with OOP is about defining roles

and responsibilities and making levels of abstraction, a “layering” for

which there are many examples in our everyday lives. To achieve your

own design objectives in silicon, use your experience to guide the process.

C h a p t e r 1 0 : D e s i g n i n g w i t h O O P

188 Hardware Verif ication with SystemVerilog

For Further Reading

To help you think about how to construct a system with
abstraction levels that are logically consistent, a great book is The
Design of Everyday Things, by Donald A. Norman. Though it
does not deal with code or high-tech, it is great for thinking about
how someone else might develop a mental model of using your
code.

On the topic of connections between levels of abstraction and
within a level of abstraction, Software Engineering: A
Practitioner's Approach, by Roger S. Pressman, has several
pertinent sections. (The fancy term for these connections is
“cohesion and coupling.”)

Bjarne Stroustrup also provides a concise discussion of
abstraction in The C++ Programming Language, section 24.3.1:
“What do classes represent?”

The concept of “correct by construction” is from Edsger Dijkstra,
a pioneer in formal languages, specifications, and proofs for
computing. This concept is often used in formal verification, but
it is adapted here to show how design intent can be
communicated.

Regarding premature optimization, the original quote is from
Tony Hoare: “We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all evil.”
This was quoted in Donald E. Knuth, Literate Programming
(Stanford, California: Center for the Study of Language and
Information, 1992), 276. A web search can provide further
references.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 189

OOP Classes
C H A P T E R 1 1

Experience is a dear teacher, but fools will learn
at no other.

Benjamin Franklin

Coming up with the appropriate classes for your project is an experi-

ence-based effort. In other words, the authors made many mistakes in the

beginning. To help you in designing classes, we have collected experience

from our previous efforts.

So do what the authors did when they learned SystemVerilog: find

examples, copy, and paste!

This chapter introduces the thought process for creating classes, to

answer questions such as these:

How do I determine what is a class, and what is a method?

How should I handle global functionality?

What can inheritance do for me?

C h a p t e r 1 1 : O O P C l a s s e s

190 Hardware Verif ication with SystemVerilog

Overview

Classes are fundamental to writing in an object-oriented language. But

how do we decide what is a class? We have talked about thinking in terms

of layers of abstractions. We have talked about roles and responsibilities.

The next thing is to start to name the classes and their responsibilities.

This is not as hard as it sounds. For one thing, you make classes as you

feel they should be, and there is no right or wrong way. Let each class

do what feels right to you. There will, of course, be some spirited team

discussions.

Once you decide on some classes, you can “wire up” instances of classes

pretty much like you create and “wire up” modules in hardware. Unlike

hardware, however, classes can have more “electricity.” When designing

hardware, you are restricted to connecting blocks through wires or

signals, but with classes you have the ability, among other things, to have

pointers to other class instances or call virtual methods. This is the topic

of several sections.

This additional freedom is where the electricity comes in. This is good,

because it helps you solve complicated verification problems. As with

any technique, the challenge is to use the appropriate amount of elec-

tricity.

Not that everything has to be a class. As we learned in the previous

chapter, SystemVerilog supports tasks and functions in packages, and

for many situations, this is appropriate. The section in this chapter on

Global Services talks about various ways to use global functions.

An Object-Oriented Framework 191

D e f i n i n g C l a s s e s

Defining Classes

As object-oriented programming has been around for many years, there

have been many different attempts to explain how to define good classes.

In the end, it comes down to the usual way one learns: copy examples,

change the example a bit, and eventually start writing your own code.

After some time you will find your own way to “ride the OOP bicycle.”

That’s the reason this handbook presents lots of code snippets and

examples.

That said, a common way to define classes basically just follows the old

grammar school rules for writing a good sentence: make a class for each

noun in your design, and make a method for each verb. This means that

each block in your whiteboard design becomes one or more classes.

Drawing the lines between the blocks is a bit more tricky. At some level

these lines represent method calls, but they can also be classes them-

selves. That’s the great thing about OOP compared with HDL design;

you can use a variety of alternatives (more language constructs, more

techniques allowed by basic constructs) as you discover problems in

implementing the initial “obvious” whiteboard class design.

It is promising that the industry has finally settled on (more or less)

standard names for the most common classes. Names such as generator,

BFM, monitor, driver, and checker have become somewhat standard in

their meaning.

Making classes becomes only easier with experience. First
clone and modify existing code.

How Much Electricity?

SystemVerilog is a language that allows a reasonable amount of “elec-

tricity” in the code. The electricity in a piece of code is a measure of

how complex the code is. Recall that complexity is inherent in our world;

it’s the management of complexity that prevents complex code from

C h a p t e r 1 1 : O O P C l a s s e s

192 Hardware Verif ication with SystemVerilog

becoming complicated code (remember that complex is okay, compli-

cated is bad).

The goal of any OOP system is to design classes that have minimal

electricity. Anything more is just unnecessarily complicated.

At the lowest level of electricity are defines and macros. In order to figure

out the code, you have to figure out the value of the define. The next

level is “if” tests, which are dealt with in the chapter on Coding OOP.

The Verilog language has these capabilities as well.

Classes

The next addition of electricity consists of classes. The Verilog language

has the module concept, which is pretty close. Both modules and classes

unite data and algorithms. SystemVerilog and Verilog differ in that in

the former, the data can be classes, whereas in the latter, the data can

only be wires and registers. Furthermore, in Verilog modules represent

silicon, whereas in SystemVerilog, classes represent a wide range of

concepts.

Packages

Related to the concept of classes is packages. This is somewhat similar

to the package concepts of VHDL. Packages are useful in that they group

related enumerations, global functions, and constants together loosely.

(This was discussed in more depth in previous chapters.)

Pointers and virtual functions

Another increase in electricity relative to operator overloading is found

in pointers and virtual functions. These relatively simple features have

profound implications. The number of techniques that can be realized

with this electricity has spawned numerous books and papers. Remember

that at the implementation level, virtual functions are pretty much just

plain old pointers to a task or function. You may have used this technique

before in other languages.

An Object-Oriented Framework 193

G l o b a l S e r v i c e s

SystemVerilog provides many levels of electricity. Use
minimal electricity in your designs.

Global Services

OOP-based design is about using abstractions and defining roles and

responsibilities for specific classes. By using layers, as described in the

Layered Approach chapter in Part I, you can simplify the design and set

up a network of classes. For example, a monitor and a checker have a

neighbor relationship; the monitor takes data from the chip, and the

checker checks the data.

However, some roles and responsibilities are related to a large number

of other classes. Activities such as memory reads and writes, control and

status register (CSR) reads and writes, interrupt vector handling, and

message logging can reasonably be expected to be available to all classes.

There are many more examples. Roles and responsibilities that are

available to all classes are called global services.

A logical way to create global services would be to use a class for each

service. Then, pointers to these global service classes could be passed

to all other classes. However, in practice this is often a clumsy approach.

Passing the global service objects to the majority of all classes clouds

the code and adds little to the real information of a design. Used with

restraint, though, global service objects can extract the common compo-

nents from the mental baggage of learning a new design structure.

Package it up!

As we have seen, the authors prefer to use a package, or sometimes static

methods of a class,1 to express the intent implicit in a global service. As

a result, any class can include the header file and then use the service.

For example, consider a memory package such as the following:

1. Note that not all simulators support static functions yet.

C h a p t e r 1 1 : O O P C l a s s e s

194 Hardware Verif ication with SystemVerilog

//in the file memory.svh ...

package memory;

extern task write (uint32 address, uint32 data);

extern function uint32 read (uint32 address);

endpackage

Note that read() and write() are memory functions. For this service,

any class can include memory.svh and start accessing memory through

these functions; no special rules or objects are needed. Each class access-

ing the memory functions still needs to use the memory package, which

gives the reader a way of finding the source of these functions.

Therefore, using packages can simplify a verification system while

keeping the source available in a central place. In addition, any class can

access memory without having to know about how the memory is imple-

mented.

Static methods

Another way of presenting a global service is to use static methods. Using

the same memory example as above, you could instead declare the global

services in a class like this:

class memory;

extern static task write (uint32 address, uint32 data);

extern static function uint32 read (uint32 address);

endclass

The way to access the global service in this example is pretty much

identical to using a package, and the end results are similar.

Singletons—A Special Case of Static Methods

Instead of using all static methods in a class, you can use a single method

to get the one instance. After that single method is used to get a pointer

to the single instance, the accesses show up as with any other object.

This can be useful if you want to communicate that there is a class instance

performing the work. On the implementation side, it can make the

different implementations of the (previously declared) static methods

easier. At any rate, using this technique implies that there is more

An Object-Oriented Framework 195

G l o b a l S e r v i c e s

electricity than is the case with just a package or static methods. Let’s

look at the memory example again.

class memory;

extern static memory get ();

'PURE virtual task write (uint32 address, uint32 data);

'PURE virtual function uint32 read (unit32 address);

endclass

The single static method, get(), is used to get the single instance of the

class. This technique is called a singleton. Notice that the read and write

methods are virtual. Let’s look at how this technique might be useful in

a burst memory class.

typedef uint32 data_list[];

class burst_memory;

extern static burst_memory get ();

extern virtual task burst_write (uint32 first_address,

data_list data);

extern virtual function data_list read (uint32
first_address);

extern virtual task write (uint32 address, uint32 data);

extern virtual function uint32 read (uint32 address);

endclass

The implementations of the read and write methods are probably

simpler now that a singleton is used. Otherwise, the read and write

methods would both have to deal with gaining access to the correct

memory.

Packages or static methods?

So why prefer one technique—packages or static methods—over the

other? The reason the authors prefer using packages is that packages are

more reasonable than static methods, because they are less complex.

With static methods in a class, you run into trouble when you need to

add a new static method. Doing this requires that you inherit from the

original class and add the new static method. Although using static

methods for global services is useful for more component-like services,

using a package is often easier than using a static class method. Never-

theless, despite this advantage of simplicity, there are times when you

C h a p t e r 1 1 : O O P C l a s s e s

196 Hardware Verif ication with SystemVerilog

want to bring to the code interface the fact that the implementation is an

object. That is when singletons may be appropriate.

Using packages is a good way to provide access to global
services, and it is less complicated than using static methods.
Although singletons are a good way to implement a global
service in a code interface, be aware of where the object is
created.

Other considerations

One last point before we move on. A global service, at the code interface

level, implies a logical single service. The actual implementation of this

service, however, may be vastly different behind the scene.

For example, to write to different memory addresses, several different

objects may be needed. This is because the memory space is probably

spread out across different chips—or at least across different interfaces

of a chip. Also, if you fold the register access into the memory access,

different register banks may communicate with different chips. Finally,

you may want front- and back-door access for the memory and registers,

which would require different objects to do the implementations. This

can all be an implementation detail for the end user. (To see an example

of this, refer to the implementation of the memory_bank class in the

teal_memory.svh file of Teal.1)

Another technique is to implement a singleton as a list of filters. This is

useful for purposes such as filtering logging messages. For example, a

logger might look to the classes that use it as a single object. The

implementation, however, may want to use a linked list of objects, where

each object is given the chance to modify the log message. This is a

powerful technique. (To see an example of this, refer to the implemen-

tation of the vlog class in the teal_vout.svh file of Teal.)

Often there are global services in a verification system. Use
either packages or static methods to express them.

1. Available at www.trusster.com.

An Object-Oriented Framework 197

C l a s s I n s t a n c e I d e n t i f i e r s

Class Instance Identifiers

When you start printing log messages, you have to decide how to identify

the object that is printing. This object identification provides a way to

trace the object through the system.

There are at least two techniques for identifying an object. One uses a

string (often the name of the instance), and a second uses some sort of

sequence counter. In practice, both techniques, as well as their combi-

nations, are used.

Strings as identifiers

As you move up in abstraction level, it will at some point be better to

have names for objects. These are most often placed in the constructor

of a class, as follows:

class fabric;

extern function new (string name);

local string name_;

endclass

With the class using a string for a name, it should be easier to print useful

status messages. Because the name is passed in, it is easier to make a

unique name reflect its use in the chip.

Static integers as identifiers

Sometimes it’s too cumbersome to use a string as an identifier for an

object. Also, the name, while unique, does not indicate a sense of

sequence between consecutive objects.

For example, often a generator creates a sequence of objects, as in, say,

a number of Ethernet packets. In this case, it may be appropriate to name

the instances with an incrementing integer, such as packet_1, packet_2,

and so on.

Having sequence numbers can be useful as a triggering mechanism for

trace types of logs, or for postprocessing the log file. This is done by

C h a p t e r 1 1 : O O P C l a s s e s

198 Hardware Verif ication with SystemVerilog

making the counting integer static; this declares a class-level “shared”

integer, and increments it for each instance of a class.

Here is an example:

class data_packet;

function new (); my_id = ++id_; endfunction

local uint32 my_id_;
//count of data_packets created,

//starting with 0

static local uint32 id_;

endclass

Then, in the data_packet.sv file, you can use the id in the name of

the object.

Combination identifiers

In practice a combination of these techniques is often used. For example,

you may want to prefix the sequence number with a name, which can

identify the higher-level sequence (such as short_packet_43, or

Device_7:_packet_10_Enumeration_Phase).

Identifying an instance should not be an afterthought. Often,
a string is sufficient. For sequential instances, a static
counter can be useful in tracing an instance in the log file.

Class Inheritance for Reuse

When you start to name and build classes, there is a tendency to find

commonalities in roles and responsibilities. While this is certainly a good

thing, resist the urge to define base classes right away. There are many

ways to express common roles and responsibilities. Use base classes only

when you have experience from several designs, or when you are actually

coding and can use base classes to solve a problem. With these caveats

in mind, let’s look at inheritance and how it can help to make code more

adaptable.

An Object-Oriented Framework 199

C l a s s I n h e r i t a n c e f o r R e u s e

In verification we have to drive and monitor the signals of the chip to

exercise a protocol with what is commonly called a bus functional model,

or BFM. One side of the BFM is connected to the data generators and

monitors; the other side is responsible for driving and monitoring the

wires of a chip’s interface.

It is good practice to separate the actual driver or monitor into two

separate code interfaces. One is the data generator or monitor code

interface, and the other is the BFM code interface. This is an inherent

separation point, because there is a conversion between abstraction layers

from “send packet #3” to the actual wiggling of the wires. This separation

minimizes the assumptions about how the BFM does its job.

This separation is a good use of inheritance.1 The authors call the base

class that wiggles the wires the BFM, and the inherited class that deals

with interfacing with the generators and monitors the BFM agent.

A BFM base-class example

Consider a chip interface for sending and receiving packets. The base

class might look something like this:

typedef class packet;

virtual class bfm;

extern function new (/*interface to the wires*/);

extern virtual task start (); //start the receive thread

//This is the driver part of the bfm ...

extern task send_packet (packet p);

//This is the monitor part of the bfm ...

'PURE virtual task packet_received(packet p);

endclass

The packet_received() is declared as a pure virtual method, so it must

be implemented by the inheriting class. This is because the BFM should

not know what to do with a completed packet, but just focus on how to

drive the data.

1. There are other techniques for this natural separation. You also might just want
to own the BFM.

C h a p t e r 1 1 : O O P C l a s s e s

200 Hardware Verif ication with SystemVerilog

A BFM agent class

Now an inherited class can add channels (one for “received” and one for

“send”) to convert from packets to commands, and vice versa. The

inherited class would look something like this:

class bfm_agent extends bfm;

extern function new (<two channels, virtual interface>);
extern virtual task start ();
//start BFM and then thread

//to get data from the send queue

extern virtual task process_send_command ();

extern virtual task packet_received (packet p);

endclass

Reusing the BFM class

We could have just lumped the bfm_agent and bfm into one class.

However, with two classes the responsibility of each is better defined,

although things can become a bit more complex.

When another project comes along with a chip that has the same BFM

interface, but that accepts only a small fixed set of packets, the new test

team can still use the bfm class and write a simpler bfm_agent. Also,

because the new bfm_agent class is so simple, they might decide to

include the checker directly as part of the agent class, and not use a

channel at all.

If the team so decides, their project can still reuse all of the existing bfm

class code by just inheriting from the BFM with a new, simpler, combined

generator/checker class. This is why dividing models into layers of

classes is a good idea.

Using inheritance to adapt code can preserve working code
and still add features.

An Object-Oriented Framework 201

C l a s s I n h e r i t a n c e f o r C o d e I n t e r f a c e s

Class Inheritance for Code Interfaces

The previous idiom of using inheritance for reuse is common. We can

take that to the extreme, and instead of reusing the implementation, reuse

the code interface only. This is more useful than it sounds. In fact, this

technique is very powerful. You can use the code interface of a class to

communicate exactly what the classes in the hierarchy can and cannot

do. This helps a reader of the code build up a “mental model” of the

system. You can only call the methods defined in the base class—no

more, no less.

For example, as shown in the Part II of this handbook, a common design

for a testbench is to have a top-level procedure that builds a number of

high-level, independent verification components (usually related to the

major interfaces or features of the chip).

In order to manage the complexity of the verification system, it is

important to have common base classes for these major components, so

that all the components in a verification system behave in a similar,

predictable way. If each major component is built in a unique way, it

soon becomes too difficult to manage the overall environment.

Inheritance for a verification component

Let’s look at the following verification_component class:

virtual class verification_component;

'PURE virtual task initialize ();

'PURE virtual task start (); //forks threads

endclass

Now lots of common verification components can express themselves as

an inherited class, like so:

class test extends verification_component ...

class bfm extends verification_component ...

class monitor extends verification_component ...

B y h av i n g a l l ve r i f i c a t i o n c o m p o n e n t s i n h e r i t f r o m t h e

verification_component class, one can understand that each class can

C h a p t e r 1 1 : O O P C l a s s e s

202 Hardware Verif ication with SystemVerilog

at least be initialized, started, and stopped, because these are pure virtual

methods that exist in the base class.

Inheritance for a payload code interface

Because using inheritance for code interfaces is so common, let’s look

at another example. In verification there is often a payload of data that

travels through the system. The data must be random, printed out at

various times, and compared with the initial data sent in. If the chip had

an Ethernet protocol, for example, there could be an inherited class that

extends the base payload data class into an Ethernet payload class.

Here is what the base payload class might look like:

virtual class payload_base;

'PURE virtual task report (string prefix);

'PURE virtual task do_randomize ();

endclass

Note that the payload_base class has no data; because this is a generic

base class with no data, there is no constructor.

The base class declares two virtual methods, one intended for printing

and another intended for randomizing the payload of any concrete class.

For an Ethernet packet the base class could be used like this:

class ethernet_data extends payload_base;

virtual task report (string prefix);

 for (int i=0; i < data.size (); ++i) begin

teal::vout log = new ("ethernet");

log.info ($psprintf ("%s data[%0d] %0d", prefix,
data[i]));

end

endtask

virtual task do_randomize ();

'for_each (data_,'RAND_8);

endtask

extern task put_to_DUT ();

local bit[7:0] data_[];

endclass

An Object-Oriented Framework 203

S u m m a r y

Shown above is an ethernet_data class that inherited from the

payload_base class. As required, this new class provides specific imple-

mentations of the print() and do_randomize() methods. It also adds

a new method, the put_to_DUT() method.

The ethernet_data class also adds the put_to_DUT() method, which

is intended to transfer the payload to the chip.

T h e s e t h r e e m e t h o d s —print() , do_randomize() , a n d

put_to_DUT()—are the only things you can do with an instance of an

ethernet_data class.

Note that you cannot restrict the use of a base class by inheritance. By

definition, anywhere a base class is used, an inherited class can also be

used.

Inheritance can be used to communicate exactly what an code
interface can or must implement.

Summary

This chapter covered a rather broad range of topics. We talked about how

to look at the verification environment and see that the nouns are classes

and the verbs are methods.

How much “electricity” your design needs was covered next. The basic

levels of electricity can be seen as defines, macros, the “if” test, classes,

packages, operator overloading, pointers, and virtual functions. Each

step increases the complexity, or electricity, of the code. The idea is to

use only the minimal amount of electricity needed.

We then moved on to meta-class-level concepts, such as global services

and static methods. Here the idea was that sometimes things really are

global.

Class inheritance was looked at in detail. Inheritance is an extremely

important OOP concept. By using class inheritance, you can both enforce

intent and extend an implementation.

C h a p t e r 1 1 : O O P C l a s s e s

204 Hardware Verif ication with SystemVerilog

For Further Reading

As we stated in the For Further Reading section of the Why SystemVer-

ilog? chapter, there is a growing number of books devoted to coding in

SystemVerilog. Skim many, buy a few, and copy code where you can.

Web searches can also be useful.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 205

OOP Connections
C H A P T E R 1 2

Oh what a tangled web we weave,
When first we practice to deceive.

Sir Walter Scott, Marmion. Canto vi, Stanza 17

Connecting classes together is more important than the classes them-

selves. How can this be? It is so because, by definition, the connecting

of classes involves jumping around in the code base. Managing this is

mentally more difficult than simply managing the code within a class.

For example, when you see a class name in a method call, you have to

think about why the method needs that class. The answer depends upon

whether the system is a tangled web or a well-architected series of

connections.

Often you have to find the header file for the class and go look at the

implementation of the method. In the worst case, the code makes no sense

whatsoever, even after you stare at the implementation. In the best case

the connections are obvious, such as when a test is passed the class name

of a testbench.

C h a p t e r 1 2 : O O P C o n n e c t i o n s

206 Hardware Verif ication with SystemVerilog

Overview

In hardware design we connect modules together and worry about clock

domain crossings. With verification, we connect instances of classes and

methods together and worry about crossing the threads of execution. In

addition, the connections in verification may be temporary (for example,

they are used only within a method), or they may be permanent (for

example, when a constructor takes in the name of a logger instance and

stores it in a data member).

Connections in your code can either form a spider web of complicated

and confusing relationships, or they can be a highway, with well-defined

points that connect to other roads. Recall that one person’s web is another

person’s highway, so picking the right connection technique may not be

universally appreciated. There are many connection techniques and con-

sequently, as this chapter shows, trade-offs to be made.

We first discuss the various types of connections, then look at implemen-

tations of these connection types. We then present the simpler connection

types first, increasing the complexity of the connections as the chapter

progresses.

We first look at how to classify connections. The type of connection is

evaluated according to how much information one class has about

another. At one end of the information scale, classes have no mechanism

to determine whether any other class instances are connected. At the

other end of the scale, a class has a pure virtual method that must be

implemented to make the connection.

The idea is to build the appropriate type of connection for the problem

at hand. Too loose a connection makes code unnecessarily complicated.

This because loose connections make few assumptions about the other

side, which in-turn makes tracking events harder. Connections that are

too tight, on the other hand, may make code harder to adapt.

While these connection techniques are general, some of them can be used

between verification components operating in different threads. Why

bring threading into the discussion? In verification systems many events

need to happen in parallel. This is normally done through threading. With

threading, however, comes a set of problems related to accessing common

data. How can a thread be given sole access to a common resource? How

An Object-Oriented Framework 207

H o w T i g h t a C o n n e c t i o n ?

can one thread synchronize with another? To solve these problems,

thread-safe connections where created. This chapter will show tech-

niques to cross thread boundaries.

How Tight a Connection?

Once a verification system has been divided into classes, the next step

is to think about how tight the connections among those classes should

be. As we have seen, this is a sliding scale, with trade-offs in complexity.

A loose connection creates good flexibility but more complex code. A

tight connection is easier to understand but harder to adapt when changes

occur. As a result, each side of the connection must make assumptions

about the other.

Let’s look at two points on this scale. Consider a generic data generator

and data checker. An obvious way to connect these two components is

to have one component have a pointer to the other. For example, you

could code the connection like this:

class data_checker;

extern task note_data_generated (uint32 some_data);

endclass

class data_generator;

extern function new (data_checker checker);

endclass

Then you can use the checker and generator like this:

data_checker checker = new ();

data_generator gen = new (checker);

The pointer example above is considered a tight connection. This is

because the actual name of one class is given to the other class. Tight

connections are obvious and direct, yet they are not always appropriate.

They make the code brittle and difficult to modify if the assumptions

about either class change. Tight connections are, however, the most

commonly used and most appropriate for the common interconnections.

C h a p t e r 1 2 : O O P C o n n e c t i o n s

208 Hardware Verif ication with SystemVerilog

Note that the situation could have been reversed, with a pointer to the

data_generator given to the data_checker. However, in practice the

assumptions regarding the number of interconnections are not the same.

Often there are several different types of generators, yet usually there is

only one checker for a given interface or feature. The number of connected

instances is something to think about when you connect classes. It is

easier to have many objects point to one than the other way around.

The looser a connection is, the fewer the assumptions that can be made

about it. For example, to continue with the above example, one could

instead use an intermediary object to manage the connection. The authors

call this a channel. In this case, you can give the channel object to both

the checker and generator, as follows:

class channel;

extern task put_data (uint32 data);

extern function uint32 get_data ();

endclass

class data_checker;

extern function new (channel expected);

endclass

class data_generator;

extern function new (channel output);

endclass

Then you can use the checker and generator like this:

channel a_channel = new ();

data_checker checker = new (a_channel);

data_generator gen = new (a_channel);

This is a loose connection, because the generator does not know that a

checker exists. The generator simply generates data for the channel.

Here is an interesting implementation complexity brought about by our

new channel connection. What does the checker do if the chan-

nel::get_data() has no data? Questions such as this are not necessarily

a bad thing; if they are asked in the early coding phase, the resulting

code tends to be well thought out. Channels are an important interconnect

technique, and are discussed in detail in a later section.

An Object-Oriented Framework 209

Ty p e s o f C o n n e c t i o n s

Sometimes tight connections are appropriate, but at other
times looser connections give the appropriate flexibility.

Types of Connections

Now that we have talked about the tightness and looseness of a connec-

tion, let’s look at the two basic types of connections. One is the peer-to-

peer connection, the other the master-slave connection.

Peer-to-peer connections

The peer-to-peer connection occurs when a group of modules are all able

to communicate with each other at any time. They may be arranged in

various topologies, such as a ring, star, or bus. This type of interconnec-

tion usually follows a message-passing scheme and can be tricky to

debug.

The Controller Area Network (CAN) protocol is an example of a peer-

to-peer interconnect. Any device can initiate a transfer, and the message

has the priority, not the sender.

Peer-to-peer connections are not often used in verification systems,

because we tend to design systems with a controller in mind. This type

of connection is discussed in the next section.

True peer-to-peer connections allow multiple masters and
shared communication.

Master-to-slave and push-vs.-pull connections

Contrary to the peer-to-peer connection, most verification components

communicate in some sort of unbalanced connection, such as master-to-

slave. The master initiates an action—either pushing some data to the

slave, or demanding/pulling some data from the slave. In either case, the

slave must respond.

A push connection occurs when one module tells another module to take

some data. A common example of this is a generator putting some data

C h a p t e r 1 2 : O O P C o n n e c t i o n s

210 Hardware Verif ication with SystemVerilog

into a queue for a BFM to send. The master, in this case the generator,

is at a higher layer of abstraction, as opposed to the BFM agent, which

“simply” directs the BFM to execute the transaction.

The pull form of the master-to-slave connection occurs when one module

calls another to get some data. For example, a generator might need to

combine data from several sources to form a complete data packet. A

specific example of this is when several logical channels share a physical

interface. Both the UTOPIA1 interface and USB interface use this

approach.

The appropriate choice of push versus pull is situation dependent. If a

connection seems awkward, often reversing the direction of the connec-

tion simplifies the code a lot. The general rule is to minimize the number

of connections, as well as the assumptions about the connections. If you

are uncertain about which type to use, bias your design towards push

connections. This is because the decision regarding what to do with the

data (for example, whether to send data through a chip interface) is often

simpler and of a lower abstraction level than the generator of the data.

Note that at the monitor level, the push is from the monitor towards the

checker, because the monitor does not need to know about the recovered

data’s eventual use. Again, the idea is to minimize the assumptions about

an interface.

The following sections are all generalizations of the push/pull intercon-

nection technique.

Most class connections are either push or pull. If the code
seems clumsy, try reversing the direction of the connection.

1. Universal Test and Operations Physical Interface for ATM.

An Object-Oriented Framework 211

Tw o T i g h t C o n n e c t i o n Te c h n i q u e s

Two Tight Connection Techniques

The tighter the connection, the simpler the connection tends to be. This

is because the techniques for these connections usually name the class

or method that is to be used. This is appropriate for a large number of

the connections in a verification system. Let’s look at two of the most

common techniques: using pointers and inheritance.

Using pointers

Pointers in a project are as common as ones and zeros. So why talk about

them? In SystemVerilog, pointers per se are not explicitly used. Rather,

class instances themselves function as pointers, and therefore can contain

data or connect different classes. Specifically, in certain cases it’s more

reasonable to have two classes implement a task than one. This is common

when you are crossing abstraction layers. In one case, one side of the

connection has some data but does not want to know how the data will

be used. In another case, one side of a layer needs more information to

complete a task. In both these cases, it might be reasonable to express

the “other half” of a task as a separate class. To clarify this, let’s look at

a specific example.

Suppose a monitor can gather some data, but because we want to separate

the data gathered from any processing of the data, we decide to use a

pointer to another class. Here, the monitor could take in a pointer to the

other class to “handle,” or manipulate, the data, as shown below:

class handler;

extern virtual task check (int data);

endclass

class child_monitor;

function new (handler p);
handler_ = p;

endfunction

task data_received (int d);
handler_.check (d);

endtask

local handler handler_;

endclass

C h a p t e r 1 2 : O O P C o n n e c t i o n s

212 Hardware Verif ication with SystemVerilog

As we can see, using a pointer to another class minimizes the assumptions

regarding what happens to the data.

Consider using pointers when abstraction layers must be
crossed. Be careful of what each side of the layer “knows.”

Using inheritance

Another way to pass the results of one function to another is to use

inheritance. While inheritance is a very tight form of connection, it can

be very clean and provide good separation between roles and responsi-

bilities. Inheritance can be used as the initial connection, while a looser

technique can be used to complete the connection. (This two-step

approach to connections is used in almost all the examples in Part IV of

this handbook.)

But let’s look more closely at the concept of using inheritance for

connections.

As an example, consider a base class that contains a verification com-

ponent’s algorithms that either consume or generate data. With this

technique there would be pure virtual methods to create or use the data;

an inherited class would be responsible for providing or consuming the

data.

Let’s look at how you might create a generic checker base class and

how you could use inheritance to make the connection to a “real” checker.

virtual class checker;

task start ();

fork begin

teal::vout log = new ("Checker");

forever begin

data expected = next_expected_data();

data actual = next_actual_data();

if (!expected.equal (actual))

 log.error ("Expected: %s != Actual %s”,

expected.sreport(), actual.sreport()));

end

end

join_none

endtask

An Object-Oriented Framework 213

Tw o T i g h t C o n n e c t i o n Te c h n i q u e s

'PURE virtual task next_expected (out data d);

'PURE virtual task next_actual (out data d);

endclass

Now you can define a “real” checker:

class uart_checker extends checker;

function new (uart_generator g, uart_monitor m);

super.new ();

generator_ = g;

monitor_ = m;

endfunction

virtual task next_expected (out data d);

d = generator_.next ();

endtask

virtual task data next_actual (out data d);

d = monitor_.wait_for_next_data ();

endtask

local uart_generator generator_;

local uart_monitor monitor_;

endclass

Note that the base class, checker, has no knowledge of how the data are

gathered. This type of connection can be good for separating the respon-

sibility of getting the data from the responsibility of checking the data.

Inheritance is well-suited for the initial connection to the classes outside

the base class. In this example, the uart_checker is connected to both

a generator and a monitor and is waiting for the data. A different imple-

mentation class could connect to queues of data. Still another implemen-

tation class could use the generator, but for the monitor it would wait for

an event and then read the received data from the HDL.

The same two-step technique could be used to minimize the connection

assumptions that need to be made for a BFM or monitor. A pure virtual

method could be used to consume the data. One subclass might put the

data into a channel, while another might filter for special packet process-

ing and then send the data to a specific checker on the basis of this

processing. The XON/XOFF processing of the UART interface is a good

candidate for this type of connection, as is the processing of Ethernet

multicast packets.

C h a p t e r 1 2 : O O P C o n n e c t i o n s

214 Hardware Verif ication with SystemVerilog

Inheritance may be a way to defer the specific
interconnection mechanism and thus be useful— or it can add
complexity, if only one type of interconnection subclass is
used in practice.

Threads and Connections

As we discussed in the overview, verification systems use threads in

proportion to the concurrent activities in the chip. Therefore, it’s natural

to build verification systems that mirror this parallelism. To make the

connection between the independent threads, we need a connection that

can pass data between threads. This is called a thread-safe connection.

We’ll talk about the base thread safety mechanism, the event, and then

move on to fancier thread-safe connection techniques.

Events—explicit blocking interconnects

We now shift our focus from the general types of interconnect to those

that can cross a thread boundary. This is important because we use threads

often in verification.

Most threads are synchronized by an underlying “wait and signal” mech-

anism. This is done by an object called an event. An event blocks a calling

thread until another thread signals that the event has occurred. This

technique is the building block of most higher-level interconnect mech-

anisms, but it can be useful as a technique by itself.

One thread waits for an event to be signaled, while another thread signals

the event. This is a good mechanism for coordination, because the waiting

thread needs to know only the name of that event. Note that the signaling

of the event generally indicates that the other thread has entered a desired

state being waited on.

For example, consider a protocol error generator. This error generator

forces the wires of an interface to an illegal value during a specific phase

of the wire protocol. In order to achieve this, the error generator needs

to know the phase of the protocol. It can do this by explicitly monitoring

the wires, but it is better to separate roles and responsibilities by using

An Object-Oriented Framework 215

T h r e a d s a n d C o n n e c t i o n s

a separate monitor. The monitor is responsible for providing events that

trigger on the beginning of the different parts of the protocol. The

generator just has to decide what part of the protocol to corrupt, and

when, then wait for the specific monitor event. After the event is signaled,

it can force the wires into an illegal state until the next protocol state is

signaled.

This is shown in the example below, which creates errors in the Cyclic

Redundancy Check (CRC) phase of the protocol.

class protocol_monitor;

teal::latch1 crc_phase_begin; //CRC is detected

endclass

class crc_corruptor;

function new (protocol_monitor pm);

protocol_monitor_ = pm;

endfunction

task start ();

forever begin

protocol_monitor_.crc_phase_begin.pause ();

//Now force the wires to corrupt the CRC

end

endtask

local protocol_monitor protocol_monitor_;

endclass

After the crc_corruptor is hooked up to the protocol_monitor, the

crc_corruptor is started. The latter then waits for the signal from the

monitor and then trashes the CRC. We have separated the protocol

specifics from the desired action.

Note that there are no data other than the fact that the event occurred.

The fact that the event occurred is all that is needed in this example.

However, this can be limiting, as threads often exchange data on the basis

of some coordinating event. This issue is solved in the following sections.

Events are useful as a form of a connection, because the data
exchange is minimal. Make sure that the triggering of the
event is all that is really needed.

1. A teal::latch is a slightly fancy event. It is described in the Teal Basics
chapter.

C h a p t e r 1 2 : O O P C o n n e c t i o n s

216 Hardware Verif ication with SystemVerilog

Hiding the thread block in a method

Instead of a just using an explicit event for the connection, consider

hiding the event behind a class method. This is called a blocking method,

because the method blocks the calling thread. By using this technique

you can associate data with the event. Also, the event is now abstracted

into a method.

Moving to a blocking call makes coding sense, because the choice of

using an event, an HDL wire, or a set of events is now up to the

implementor of the class. It also simplifies the interface, because method

calls are a standard way of communicating. The fact that the call is

blocking can almost be an implementation detail. This can make the code

clearer or more confusing, depending on whether a user of the class can

reasonably expect that the code will block. Sometimes this blocking can

be implied by the method name.

As an example, assume that a protocol monitor has the method

wait_for_start_of_frame(). Because of the “wait_for” in the name,

one can assume it will block the calling thread. Now the monitor is free

to implement the method in any way that best fits a specific design.

Perhaps it has an internal event called start_of_frame_event_ that is

triggered by an internal thread. An alternative implementation might

have an internal bit variable start_of_frame_, and poll it on the positive

edge of a clock. Still another implementation might be an internal state

machine and a single event that indicates a change in the state. The point

is to separate the interface from the implementation, minimizing the

implementation assumptions.

Another variant on the blocking method is to use an overloaded method,

commonly called pause() or trap(). There will be several

pause_<name>() methods, each with a different pointer to an object that

specifies the event desired and the data to be returned.

Continuing with our monitor example, suppose the monitor supported

three blocking methods: waiting for start of frame, waiting for start of

data, and waiting for completion of the data packet.

An Object-Oriented Framework 217

F a n c i e r C o n n e c t i o n s

The following is an example code interface:

class start_of_frame;

uint32 frame_number;

endclass

class start_of_data; //just a class, no data needed

endclass

class data_complete;

uint32 data[];

uint16 crc_16;

endclass

class monitor;

extern task wait_frame (output start_of_frame sof);

extern task wait_data (output start_of_data sod);

extern task wait_data_complete
(output data_complete dc);

endclass

This method has the advantage of using a naming convention to show

that the methods are related and that blocking semantics are used.

Using a blocking method is often better than using an explicit
event. Make sure the method name conveys the block, if the
block is not just an implementation detail.

Fancier Connections

The connection techniques discussed above provide a good basis for

fancier, more complicated connections. So why did coders invent these

fancier connections? The techniques discussed below are combinations

of the basic ones, and are used to express the coder’s intent better.

Although you might not use all these techniques all the time, it is good

to have them in your bag of tricks.

C h a p t e r 1 2 : O O P C o n n e c t i o n s

218 Hardware Verif ication with SystemVerilog

Listener or callback connections

Sometimes you do not need a two-way connection, but just need to “listen

in” on another object. A technique for this type of connection is called

the listener, and is sometimes also called the callback.

Why two names for the same thing? Programmers often used the term

“listener” when they are viewing the architecture from outside of the

class to be listened to. Programmers use the term “callback” when they

are speaking from the other side, from the class with the interesting data.

Confused? Don’t worry, this is not a technique that we recommend or

use often, as we explain below. We’ll use the term “listener” throughout

this section.

Listeners are objects that are called at specific points in another object’s

methods. Often the two objects are unrelated, although often a pointer

to the calling object (the one with the interesting data) is passed.

Remember our monitor example, which had a “start_of_frame,”

“start_of_data,” and “data_completed” thread synchronization

points? Instead of an object representing just the interesting synchroni-

zation points, there could be generic listener objects that would be called

at many points in the monitor’s state machine. An interface could be like

the following:

typedef class monitor;

virtual class action;

'PURE virtual do_action (monitor m);

//perform action, with monitor state as needed.

endclass

class monitor;

uint32 current_frame;

extern task add_start_of_frame_listener (action a);

data current_data;

extern task add_start_of_data_listener (action a);

extern task add_data_complete_listener (action a);

endclass

Note that this is functionally equivalent at a high level to what we had

in the previous section. However, in this case, instead of a blocking

method, an object’s do_action() is called. This may make the intended

task easier or harder, depending on the task.

An Object-Oriented Framework 219

F a n c i e r C o n n e c t i o n s

If the listener’s task is relatively self-contained, as with incrementing a

counter, this technique is straightforward. If, instead, the task is to

implement some high-level algorithm and that code case’d on several

of these state changes, the multiple listeners needed would be an

extremely clumsy way to express the algorithm.

This technique can also be used when the author of the original code

cannot allow an inheritance-based interconnect, or you cannot get access

to the source code.

There are several variants of this technique. The listeners could each

have their own class, be separated into pre- and postmethod listeners, or

act as filters for some data.

As a rule, use the listener/callback interconnect only when
you are relatively sure where to put the callbacks. In
addition, ensure that there are many simple, loosely
connected actions.

Channel connections

A channel is a connection technique that manages a queue of data between

two or more objects. It is a fancy way to pass the data between classes.

The technique is a loose form of connection, because both sides interact

through an intermediary.

Channels usually handle the crossing of thread boundaries. One verifi-

cation component places data into the channel, while another compo-

nent—possibly at a later simulation time and in a different thread—

consumes the data. One side of the connection has no knowledge of or

assumptions about the other.

While channels can complicate debugging, there are many situations

where they are a necessary trade-off. For example, a generator usually

has to send the data to both a BFM and a checker. This can be accom-

plished by having a channel replicate its data into two channels. As far

as the generator knows, it is sending data into only one channel.

Another example occurs when two or more verification components want

to send data to a third component, such as a transactor. You can create a

C h a p t e r 1 2 : O O P C o n n e c t i o n s

220 Hardware Verif ication with SystemVerilog

channel that takes input from any number of channels and merges the

data into a single channel.

Note that a common channel behavior is that the thread consuming the

data waits for the data to become available. In this case the channel

implementation uses an event.

A channel is specific to the data it contains. In OOP terminology, a

channel is a container class. Container classes are good candidates for

templating.1

Channel connections are very useful in verification. They are
a loose, thread-safe mechanism for connecting a number of
components together.

Action object connections

Sometimes just having a channel with data is not sufficient for what you

want to express. In this case you need to have an object that can “do”

something. Maybe the object makes some configuration calls to a BFM,

or it just sends a burst of data. In any event, this more active connection

is called an action object connection.

This method of connection combines the channel and the listener tech-

niques. Even though the data in the channel connection are objects, the

idea here is that the channel generally contains passive data. With active

object connections the channel can contain both control and data. This

can lead to code that is obscured and hard to find, and therefore hard to

reason about.

With the use of action object connections, there is a channel or queue of

objects, each with a listener type of action object, and a single method:

do_action(). Various objects create these action objects and place them

in a command queue. The owner of the queue pops the action object off

and calls its do_action() method. This method usually calls some

configuration methods in the target object and probably also a put() or

get() method. In this way arbitrary sequences of control and data can

be queued.

1. Be careful with templating, as all vendors currently support a subset of the
SystemVerilog language.

An Object-Oriented Framework 221

S u m m a r y

Action object connections can be used to synchronize control and data—

a good thing when you want to encode configuration settings, and have

a generator create sequences of configurations and data using those

configurations. However, although a large number of chips can accept

configuration changes with data flowing, make sure that capability is

intended to be used in production software.

The authors have rarely used the action-object connection technique, but

it has proved useful for complex sequencing problems.

Using action object connections in a channel for the complex
sequencing of a chip may be appropriate for testing a CPU
or graphics chip, but it is probably overly complex for testing
an interface or feature.

Summary

In this chapter we have explored various ways to connect classes. Which

technique should you use? It all depends on the problem you are trying

to solve. Different connection techniques have different trade-offs. In

general, try to use the tightest connection you can, because that will be

the most obvious connection.

We talked about the two most common forms of connection, pointers and

inheritance. Note that the pointer is an instance-based concept, while

inheritance is a class-based one. The significance of this is that the class-

based technique is static, and thus slightly simpler.

Using events is a good technique to let one thread know when another

thread has changed state. Events are fundamental to thread-safe connec-

tions.

You may decide to hide the event by using a blocking method call. This

is a good technique for loose connections, such as between monitors and

error injectors.

Not surprisingly, the most common connection technique (besides point-

ers) is to pass queues of data. A channel, a common implementation of

this technique, crosses thread boundaries and separates the producer of

C h a p t e r 1 2 : O O P C o n n e c t i o n s

222 Hardware Verif ication with SystemVerilog

some data from the consumer. It also allows for clever techniques, such

as replicating the data to another channel and filtering the data to add

errors.

The final technique we looked at was called active object connections.

These are used when you need to mix control and configuration with the

data. As with listeners or callbacks, this approach can be a slippery slope.

Although everything can be expressed in a mixed control and data

channel, just make sure you use only what is needed.

For Further Reading

On the topic of connections between levels of abstraction and
within a level of abstraction, Software Engineering: A
Practitioner's Approach, by Roger S. Pressman, has a several
relevant sections. The fancy term for the connections is called
“cohesion and coupling.”

The authors are aware of several books and papers on different
connection techniques. None are landmark or stand out as “the
best” way. As with learning SystemVerilog, this is more of an
impedance matching issue, with some books and papers better
matched to your learning style and experience level than others.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 223

Coding OOP
C H A P T E R 1 3

Beauty is in the eye of the beholder.

Common paraphrasing of Plato

Coding is a personal endeavor. For many of us it’s similar to creating

art, and as with any art, there are many styles—some loved, others

detested. Why is this relevant to coding? Well, because unlike the case

with art, our code cannot stand alone. We are in the interesting position

of creating art that, by definition, must work in a community.

Not many engineers intend to create complicated, stand-alone code. This

chapter shows techniques, tricks, and idioms that you can use to com-

municate your intent. When your code is clear and transparent, other

engineers can more easily understand, and appreciate, your intent. Code

that is appreciated is more likely to be used appropriately, adapted, and,

most important, integrated well with the rest of the system.

C h a p t e r 1 3 : C o d i n g O O P

224 Hardware Verif ication with SystemVerilog

Overview

This chapter shows some of the coding techniques we can use to create

our art. This, the last of the OOP chapters, talks about the coding going

on inside a class. Of course, what’s going on in a class is related to the

class structures and interconnects around the code, so we will not limit

our discussions to the lines of code in a method. Rather, we focus in this

chapter on coding.

Our first focus is on “if” tests, with a discussion on why this necessary

coding construct complicates the code. We’ll show some ways to mini-

mize these “if” tests.

We then discuss ways to get your point across, using coding tricks and

idioms. We also look at the touchy subject of coding conventions, and

try to point out where they help and where they hinder.

The previous part of this handbook used many different techniques, so

we figured that one more look, concentrating on when to use individual

techniques, might be useful.

“If” Tests—A Necessary Evil

The fewer “if” tests a segment of code has, the easier the code is to

understand. Code that just does step one, followed by step two, and so

on is inherently easier to reason about. An “if” test, by contrast, causes

us to think some more. Is the condition true? Will the code set something

up that I have to remember? Where was this condition set?

This section looks at ways to minimize “if” tests in your code. Of course,

there will always be “if” tests in code; the goal is to find the place to put

them so that their presence is reasonable and maybe even expected.

To put this more generally, writing code consists of procedural statements

and changes in control. The mix of these components two dramatically

affects the complexity of the code and its adaptability. Procedural state-

ments are just unconditional expressions followed by a “;”—for example,

in function calls or mathematical statements. Because the processor

An Object-Oriented Framework 225

“ I f ” Te s t s — A N e c e s s a r y E v i l

always executes the statements in order, it is not difficult to understand

the control flow.

By contrast, changes in control increase the “mental state” that must be

remembered. One must now consider two paths through a block of code.

These changes in control can be looping constructs, “if” tests, “switch”

statements, or “?” operators. This section is primarily concerned about

“if” tests. Loop constructs can be considered as combinations of an “if”

test. “Switch” statements can be considered as restricted implementations

of “if” tests, so they are simpler, but still not as simple as procedural code.

The question mark operator is somewhat like an “if” statement, but, in

practice, is best relegated to assignment statements, such as in a = (b

> 4) ? 10 : 62. In this case, because it is a common idiom, the operator

does not increase the mental complexity of the code.

“If” tests, while necessary, can complicate the code. Using
them where they make sense is tricky.

“If” tests and abstraction levels

Almost all algorithms have “if” tests as part of their definition. Algo-

rithms at the BFM/monitor level are probably best implemented with

these “if” tests. However, as the abstraction level increases, the number

of “if” tests should decrease. This is because “if” tests make it harder to

reason about the code. At the higher levels, the code should be fairly

straightforward.

If there are “if” tests at the higher levels, they should be more of a

“presence or absence” test, as in the following:

C h a p t e r 1 3 : C o d i n g O O P

226 Hardware Verif ication with SystemVerilog

if (scenario::provide_jtag_traffic ()) begin
jtag jtag_stimulus = new ();

...
end

These kinds of “if” tests still raise questions, but questions that should

be more easily answered.

At the high level, the “if” test should be rare.

“If” tests and code structure

Be careful about using “if” tests whose body exceeds a few lines. The

body is the part of the code that is affected by the “if” test. This can

complicate the understanding of the code, because the structure of the

algorithm is obscured. The authors have pondered many examples of this.

Sometimes the “if” tests are preventing the last inner code block from

executing. A common example of this occurs when you have a series of

conditions that must be met (perhaps stages in some protocol) before

you execute the inner code. In this case, consider using return statements

on the inverse of the conditions to weed out these large blocks of “if”

tests.1

Let’s look at a specific example. Here is a function that has to process a

packet of data:

task my_class::handle_packet (packet a_packet);

if (a_packet.valid()) begin

if (i_am_enabled_) begin

if (we_are_in_sync_) begin

packet_count += 1;

if (system::error_level (1)) begin

//...the algorithm here...

end

end

end

1. This is yet another case where the academics differ from the industrial coders.
You may have been taught “there is only one return from a function,” but this
rule—like all rules—works best if applied with intelligence, not dogma.

An Object-Oriented Framework 227

“ I f ” Te s t s — A N e c e s s a r y E v i l

end

endtask

Instead, consider this reorganization of the code with a negation of the

original condition:

task my_class::handle_packet (packet a_packet);

if (!a_packet.valid ()) return;

if (!i_am_enabled_) return;

packet_count_ += 1;

if (!system::error_level(1)) return;

//...the algorithm here...

end

endtask

In this case the algorithm is clearer. There are some preliminary tests,

and, if they pass, the main algorithm is performed. This allows you to

forget the “bad” cases and concentrate on the core algorithm.

However, this technique of testing is not always appropriate. As with

most things in coding, it’s a trade-off. The counter-argument against

testing for “not true” is three-fold:

Testing for the negative is sometimes counterintuitive.

Multiple returns complicate an algorithm.

Because you do not have indentation in the code syntax to help
you, you must remember what tests have passed as you read down
the function.

Avoid long “if” tests. Also, sometimes “if” test reversals
make the code easier to understand.

Repeated “if” expressions

There is a class of “if” tests that are particularly damaging to reasoning

about the code. These are the tests whose expression has already been

tested. These tests make us keep rethinking a condition and make us

nervous as to why another check is needed. Can the condition have

changed from the first test?

C h a p t e r 1 3 : C o d i n g O O P

228 Hardware Verif ication with SystemVerilog

In addition, there is a danger that the person reading the code does not

see all the repeated expressions and misses some when the expression

must be modified.

There are two solutions to this situation, assuming the repeated expres-

sion is in a single class or function. One solution is to encode the results

of the test into a bit data member and then use this data member instead

of the class. The other method is to rethink the algorithm. It is quite

possible that the algorithm needs to be “warmed over,” recrystallized, or

converted from push to pull.

Be extremely cautious about repeated “if” expressions in different

objects. This is almost always a design mistake, because the algorithm

is being spread out across several classes, making it difficult to change it.

The authors once worked on a piece of code designed to power down the

units of a chip that were not being used. However, once we changed the

code, the test hung at the end. It turned out that, by powering down the

logic block, the chip would not respond to a register read and would

hang. In retrospect, this behavior made sense.

The code that was doing the read was confirming that the module had

not raised any errors. This was fine, but the test for “module in use” was

repeated in another part of the system that the authors had missed.

In the end, this bad style of widely distributed, repeated “if” tests was

not all bad for this project. The incorrect “if” test showed that, if software

accessed a register of a powered-down module, the chip would hang. The

designers ended up adding a simple watchdog timer on the internal bus.

Retesting the same condition test is clumsy, complicated,
and error-prone.

“If” tests and factory functions

So “if” tests are dangerous. How do we make as few of them as possible?

One way of minimizing “if” tests is to encode the different algorithms

in a class hierarchy with a common base class, and use a single function

to build these inherited classes. This function, called a factory function,

is given information to help it decide what inherited class to create. The

factory function returns a base class pointer. The rest of the system would

An Object-Oriented Framework 229

“ I f ” Te s t s — A N e c e s s a r y E v i l

not know the specifics of the actual class; for all the code knows, the

object is a base class.

This is a very powerful technique for code adaptability. If the factory

function is separated from the class hierarchy, it can be adapted to

different situations without the need to change the rest of the system,

because the rest of the system knows only about the base class.

This reduces the need for “if” tests, because the mechanism of virtual

functions is taking their place. Very OOP!

A factory function example

As an example, consider a task to test a Controller Area Network (CAN)

protocol implementation. The testbench consisted of a reference model

(verification IP), a hardware implementation (which had three ways to

drive CAN, DMA, FIFO, and register), and a hardware-assisted periph-

eral interface controller (PIC) implementation (another small micropro-

cessor on the same chip). Because the CAN protocol is a multinode

protocol, several nodes were created. A factory function was used to

return a generic can_node class, even though within the factory function

one of five possible inherited classes were built.

The traffic generator did not have any knowledge about the specific CAN

implementation connected to it. The generator would simply send random

traffic. The checker also did not know about the implementation of the

nodes. It would just make sure all the nodes were in the same state (after

each bit time) and report any differences.

Here is the can_node base class that the generator and checker had access

to:

virtual class can_node;//The generic base class

function new (string name, configuration c,
virtual pins wires);
//the interface to the chip

configuration_ = c;

port_ = wires;

name_ = name;

endfunction

task init ();
init_();

endtask

C h a p t e r 1 3 : C o d i n g O O P

230 Hardware Verif ication with SystemVerilog

task start ();
start_();

endtask

task stop ();
stop_();

endtask

task send_message (message_data m);

send_message_ (m);

endtask

 task message_received (message_data m);

message_received_(m);
endtask

function string name();
return name_;

endfunction

'PURE protected virtual task init_();

'PURE protected virtual task start_();

'PURE protected virtual task stop_();

'PURE protected virtual task send_message_

(message_data m);

pure protected virtual task message_received_

(message_data m);

configuration configuration_;

virtual pins port_;

local string name_;

endclass

The base class is the foundation for all the inherited classes. In this

example, it will specify how to start and stop the node, as well as how

to get and send messages. The init_(), start_(), stop_(),

send_message_(), and receive_message_() methods are pure virtual

methods, which means that the inherited classes must provide their

implementation. This makes sense, because in our example we have

several implementations. The base class would not know how to interact

with the chip.

The local section of the base class has only the name of the instance,

and there is no inherent reason that this should be hidden from the

inherited classes. Because the name is a constant, the inherited classes

cannot change it after construction. Note that one may want to append

_fifo, _dma, _pic, or _vip to the name, but that should be done in the

constructor of the inherited classes.

An Object-Oriented Framework 231

“ I f ” Te s t s — A N e c e s s a r y E v i l

Now that the base class is defined, the inherited classes, such as

can_fifo, can be defined. They are prototyped here, but the implemen-

tation is too specific to be explained in this handbook.

A factory function to build the CAN nodes was used. First, here are the

inherited classes, without their implementations:
.

class can_node_dma extends can_node ...

class can_node_fifo extends can_node ...

class can_node_register extends can_node ...

class can_node_pic extends can_node ...

class can_node_vip extends can_node ...

Now, an enum is defined that can be used to select which specific node

type to build:

typedef enum {dma, fifo, register, pic, vip} can_type;

At this point, assuming that we randomize on what type of node we want

to build, a single function can be called to create the specified type of

node. This is shown below:

//The Factory Function -

// Returns 1 out of 5 possible implementations

function can_node build_can_node (can_type the_can_type,

string name, configuration c,

virtual pins p);

case (the_can_type)

dma: can_node_dma n = new (name, c, p); return n;

fifo: can_node_fifo n = new (name, c, p); return n;

register: can_node_register c = new (name,

 c, p); return n;

pic: can_node_pic n = new (name, c, p); return n;

vip: can_node_vip n = new (name, c, p); return n;

default: truss_assert (0);

endcase

endfunction

Given the above factory function, the top layer of the CAN test just builds

the nodes and connects them to generators. Because the chip and the PIC

were being developed at the same time, we also had separate tests that

built only one of those types and a reference node. It was only the top

layer of the CAN test that had any knowledge of the specific types of

C h a p t e r 1 3 : C o d i n g O O P

232 Hardware Verif ication with SystemVerilog

nodes that were being connected. This was later randomized to test

various combinations of nodes.

Using factory functions to build a specific inherited class is
an OOP technique to reduce “if” tests.

Coding Tricks

When we code we tend to use patterns that have helped us in the past.

This section presents a few such patterns. This section, as does the

following section on idioms, shows conventions that have helped coders

focus their thoughts and tighten their code.

Coding only what you need to know

This is perhaps the cardinal rule for creating good code. It’s based, of

course, on the same assumption that creates our profession of verification:

Code that is not verified will contain bugs.

Sure, by using this technique we write code that does not have all the

features that every situation needs—but a smaller system is easier to

reason about and thus adapt. Remember, if a coder needs to add code to

your class, it’s because they need it.

Another reason for coding only what is needed is because then the code

that exists is at least verified to some level. It’s frustrating to work on a

method, only to find out after hours of debugging that it was never used

and does not work.

If a feature is present in some code, it had better be working
code. Be cautious about implementing features you will not
use today.

An Object-Oriented Framework 233

C o d i n g Tr i c k s

Reservable resources

The majority of hardware has a bus to access configuration registers. As

the verification system we write consists of many threads, there is a

danger that two threads can start using the bus at the same time. The

hardware bus is considered a reservable resource, because code must

first request access to the resource. The trick is to make the reservation

as simple as possible for the code that uses the resource.

The simplest solution is to hide the reservation inside the implementation

of the class. This is appropriate in most cases. A simple mutual exclusion

(mutex) algorithm can be used for this purpose. A mutex only allows one

thread at a time into a section of code. The latter parts of this handbook

show examples of using a mutex in a register-access BFM.

Sometimes the hardware can process several requests at the same time.

This is probably an implementation detail when used in a full chip test,

but it is probably something you need to expose at the unit level test. In

this case there are two classes. One class exposes a key, such as an integer

tag or an instance in the interface. The other class uses this lower-level

class and hides the key from the rest of the system.

The concept of reservable resources can also exist solely in the verifica-

tion system itself. You might, for example, have a DMA descriptor queue

and need to allocate and release descriptors. Of course, the hardware

actually implements the queue, but the management of the queue is a

verification concept.

Reservable resources may be an implementation detail, and
thus use a mutex internally—or they may be an external
property, in which case a “key” must be used. This key can
be anything from an integer to an object, depending on how
safe the management must be.

C h a p t e r 1 3 : C o d i n g O O P

234 Hardware Verif ication with SystemVerilog

The register: an int by any other name

Accessing a chip’s registers is an important part of a verification system.

Register access consists of three parts: the register’s address, data, and

fields. The authors suggest that none of these be classes. Why? Because

in production software (which has only memory access and interrupts),

the register address will be an integer, the register itself will most likely

be an integer, and the field names will probably be macros.

Consider register fields. It is often a good idea to assign register fields

by using a field name, rather than hard-coded integer offsets. This makes

the code clearer and allows fields to be relocated within the register with

little pain. In Part IV of this handbook, we show some simple

'field_get() and 'field_put() macros.

When considering how to write and read registers, the authors prefer to

use an indirect, but simple, technique. We use the Teal memory functions,

which take in an integer address and a bit array for the data. The actual

protocol used is then appropriately simple (and abstract) for the test

writer. We use the testbench to attach a protocol to a specific address

range.

As another example of the utility of this approach, a verification system

may have back- and front-door register reads, and choose which to use

based on a test parameter. Also, there may be multiple front-door imple-

mentations, such as through a processor bus, a PCI, or even a JTAG1

protocol. One of these techniques could be selected randomly.

Registers are your friend, but don’t use them as exercises in
OOP. Keep it simple.

Using data members carefully

When you start building a class, there is a tendency to make many data

members. It is common to see a number of calls that have no parameters,

but that use the data members in the class as a shorthand. This is fine

when those methods are called from outside of the class. However, for

1. Joint Test Action Group, IEEE 1149.1

An Object-Oriented Framework 235

C o d i n g Tr i c k s

a protected or local method that is called by a public method, consider

using the standard parameter passing instead of a data member.

Here is an example:

class a_class;

local int value_;

local int weak_data_member_;

//called from outside the class, use data member

task method1 (int value); value_ = value; endtask

//called from outside the class, use data member

task method2 (); value += 1; endtask

task method3 ();

//Is this confusing?

weak_data_member_ = value_ + 3;

method4();

method5();

endtask

local task method4 ();
weak_data_member_ + = 10;

endtask

local method5 ();
value_ = weak_data_member_;

endtask

endclass

The reasoning is that a data member is a bit like global state and comes

into a method whether or not you want it to. As such, it makes the class

slightly more complicated. This is fine where it is necessary, but inap-

propriate if the data could have been simply passed in as a parameter.

The fancy term for all this is spatial locality. In our case this means that

the data are needed by multiple calls from outside the class.

A related fancy term is temporal locality. This refers to code that is in

different functions but is called sequentially, as follows:

begin

object1.do_method();

object2.do_another_method();
end

C h a p t e r 1 3 : C o d i n g O O P

236 Hardware Verif ication with SystemVerilog

In general, with spatial locality you want to use data
members. With temporal locality, you want to use
parameters to the calls.

Here is the example reworked to pass parameters (this example has

temporal locality, but not spatial locality):1

class a_class;

local int value_;

//other methods as before...

//less confusing?

task method3 ();
method5 (method4 (value_ + 3));

endtask

local function int method4 (int temp);

return (temp + 10);
endfunction

task method5 (int temp);
value_ = temp;

endtask

endclass

Use data members sparingly. Make sure a data member is
needed because of spatial locality.

Coding Idioms

An idiom is a fancy word for a coding trick that can be expressed not

only as a concept, but also in a well-known code structure. This section

introduces some idioms that the authors have found to be useful for

building verification systems.

1. Yes, this is from a real test system. The authors have changed the method
names to protect the original coder.

An Object-Oriented Framework 237

C o d i n g I d i o m s

The singleton idiom

Sometimes a class is meant to be instantiated only once, and it has no

clear owners. The fancy term for this is global service, as was discussed

a bit in the chapter on OOP classes. Let’s look in detail at a common

implementation of this one-off instantiation, the singleton. A singleton

uses a single static method, called get(), to return a pointer to this single

instance.

Consider the following example:

class channel_counter;

static function channel_counter get ();

assert (channel_counter_ != null);

return channel_counter_;

endfunction

static task start ();

assert (channel_counter_ == null);

channel_counter_ = new ();

endtask

static task stop();

channel_counter_ = null;

endtask

local static channel_counter channel_counter_;

endclass

Another common convention for singletons is just to have a global

function that returns a pointer to the global object. This global function

may be put into a package if it makes the idiom clearer.

Note that the creation of the internal implementation pointer is a different

matter. There are different ways to do this, from automatically creating

one on first use, to having a factory function, to having an static start()

method. Which mechanism to use is a personal choice.

Singletons are a good way to implement a global service.

C h a p t e r 1 3 : C o d i n g O O P

238 Hardware Verif ication with SystemVerilog

Public nonvirtual methods:
Virtual protected methods

When you are coding a class, there are often virtual functions. These

methods provide the implementation of either the whole interface of the

class, or perhaps just a few specific details. Your first instinct is to make

these virtual methods public, and this might be good. However, some-

times you need to do some basics things first, or perhaps afterwards.

How do you guarantee that the pre- or postcode is called?

The trick is to have a public nonvirtual method that just does the pre- or

postcode and then calls the same named method (with an identifier, such

as a trailing underscore) as a virtual protected method. This allows any

standard preamble or postamble code to be guaranteed to be executed.

Sometimes you might want to use this trick even if there is no special

code. It’s a useful technique to separate an interface method (those with

an underscore, or “_”) from an implementation method.

Here is a short code snippet:

class my_thread;

task start ();

start_(); thread_count_++;

endtask

protected virtual void start_();

local uint32 thread_count_;

endclass

In this case the public code interface is through the start() method.

The actual implementation is done through inherited classes by means

of the start_() method. This allows a reader of a class to concentrate

on the public, “nonunderscored” methods. It also allows coders that need

to inherit from this class to concentrate on the protected, “underscored”

methods.

With this technique, the nonvirtual public method is firmly in control

and calls the virtual method only after performing any desired pre or post

actions. Sometimes, though, the very nature of the call expects pre- and

postconditions. In this case it is clumsy for the inherited class to have to

remember to call the base class method. If the designer of the base class

wants to encourage, or anticipates, such usage, it’s better to add virtual

pre and post methods explicitly.

An Object-Oriented Framework 239

C o d i n g I d i o m s

Here’s a code snippet that can be used in this case:

virtual class generator;

task generate_one ();

__generate_one ();

//code here to do the standard generate_one()

packet_count++;

generate_one__ ();

endtask

'PURE protected virtual void __generate_one();

'PURE protected virtual void generate_one__();

local uint32 packet_count;

endclass

In this case the “main” method—generate_one()—is not virtual, but

the pre and post methods are. One convention the authors have used is

to write pre_ and post_ as prefixes to identify the set of methods.

However, the convention that the authors prefer is to name the pre method

the same as the main method, but with a double underscore (“__”)

prepended. The post method is similar, but with a double underscore

appended. In this convention, the reason the letters “pre_” and “post_”

are not used is that they can interfere with the semantics of the name of

the original method (which might be something like post_process, or

post_completions, or prefetch_data). As is a common theme in this

handbook, the choice is yours1.

To enforce the calling of special pre or post code, use
combinations of public nonvirtual methods and protected
virtual methods.

1. Of course, pre_randomize() and post_randomize() are
reserved methods in SystemVerilog.

C h a p t e r 1 3 : C o d i n g O O P

240 Hardware Verif ication with SystemVerilog

Enumeration for Data, Integer for Code Interface

Enumerations (enums) were introduced in programming languages to

make the code clearer. They are more powerful than defines.

Using enums when setting up parameters can increase the communication

level, but there are a few dangers. One occurs when the enum is “case”d,

or “if” tested. This is can lead to unexpected behavior when enumerations

are added. Enums should generally be used as a shorthand for integral

values.

To this end, the method that uses the enum should sometimes take in an

integer as the formal parameter. Why? Because this allows for future

expansion (enums cannot be subclassed) as the integral value of the enum

becomes the important part of the method’s implementation.

For example, consider a baud rate enumeration:

package uart_configuration;

typedef enum {b_9600 = 9600, b_19200 = 19200,

 b_921600 = 921600} baud_rate;

endpackage

class uart;

extern task new_baud_rate (uint32 new_value);

local uint32 baud_rate_;

endclass

Again, this is one of those things that you were probably not taught in

class. You would have been told to define an enum and use it in all

parameter declarations. That technique does work a fair amount of the

time, particularly if the range of the enums is fixed for all time. However,

in the messy world of coding for a living, sometimes we need to be a

little more flexible.

Sometimes you should define an enum in a package, but take
in an int for the methods that would have used the enum.
Note that mixing enumerations and integers is not always
desirable, as it weakens the abstraction. The idea is to use
this technique only when future derivations need it.

An Object-Oriented Framework 241

W h a t ’ s i n a N a m e ?

What’s in a Name?

For some reason, class names in OOP tend to be more important than

structure names in C or modules in Verilog. Maybe this is because in

OOP coding, we can enforce what operations are allowed in a class, so

we tend to pay more attention to their names. At any rate, this section

provides guidance on how to make the transitions between file, class,

and instance when finding your way around a verification system. As we

have said many times in this handbook, it’s up to you and your team to

decide what conventions to use.

Keeping class name the same as file name

A common convention is to have the class name be the same as the name

of the header file that declares the class. For example, it is much easier

to find a class or definition by using the Unix find command directly,

rather than piping it to grep.1

A corollary convention is to have only one class declaration per file.

However, there are a few exceptions to this guideline. One is when there

are small utility objects that are used only right where the main class is

used. Another exception is when you are writing VIPs and it is simpler

for a user to understand the interface as a monolithic entity. Note that in

some cases, the monolithic header file may just contain an 'include of

other header files.

Consider having a one-to-one relationship between class and
file. Exceptions are where there are tiny helper classes and
when a group of classes is more important than the individual
classes.

Keeping class and instance names related

While you can use any identifier for a typename and a variable, strive to

keep names as similar as possible. This seems like an obvious guideline,

1. What could be easier than this? find <path> -name "*.sv" -exec
egrep -l -i "your search text" {} \;

C h a p t e r 1 3 : C o d i n g O O P

242 Hardware Verif ication with SystemVerilog

but we programmers are a lazy bunch. It is simple to miss changing an

instance name when a class or enum is changed. It takes work and typing

to keep names simple. (Appreciate that we essentially type for a living.)

Consequently, when an instance of a class is created, try to name the

instance the same as the class. Sometimes, if there are several instances

of a class in the same scope, a “_<n>”, where n is an alphanumeric

variable, can be appended to the name. The reason is that this provides

a good mental link to back to the class definition, which specifies what

can be done with this instance. A counter-example is when a class

provides some generic behavior that can be used in many contexts. For

example, a register class may provide generic reads and writes, as well

as take in an address in the constructor. In this case it is the mnemonic

of the address that is the best name for the instance.

Here is another counter-example, from a project the authors worked on:

ht_vip ht_drv; //hard to remember that ht_drv is a ht_vip

//Is pex known in the project? Is mon better than monitor?

pex_mon a_pex_mon;

Note that SystemVerilog allows identifiers and typenames to have the

same string, as in my_class my_class, but the identifier shadows the

class in some contexts and can be confusing.

Instance names should be readily traceable to their class
name.

Coding with Style

Coding conventions can quickly become a “religious war,” something

that is not productive for a project, team, or individual. As a remedy, this

section presents some style conventions that have proved to be useful.

However, as with all the other sections in this handbook, the recommen-

dations made are not intended to be a set of rules.

Adhering to a single style may improve clarity, but only if the entire

system is coded by a single person (think “My style is the best!”) But

even in this case, one’s style often evolves over time and adapts to the

An Object-Oriented Framework 243

C o d i n g w i t h S t y l e

style of a team. In the general case, the industry definition of “good style”

evolves as well.

Because of the evolution of what makes “good style,”
differences in style are essential for the learning process.

Proceeding with caution

In general, coding conventions slow down good coders, and do not

necessarily increase the readability of the code created by poor coders.1

Understandable code is understandable code, independent of the conven-

tions used. The goal of a coding convention should be to increase

communication among the team members.

For teams that feel the need for a “team style,” a “guidebook” is usually

a better idea than a required coding style. This guidebook should include

guidelines, with reasoning following each guideline. In addition, counter-

arguments where the guideline may not be appropriate should also be

provided. If the entire team does not agree on some guidelines, it is a

good idea to include both the pro and the con arguments, so that locally

appropriate decisions can be made—including allowing each team mem-

ber to decide. The presence of the counter-argument also provides a

framework should some assumptions change.

The goal of a coding convention should be to increase
communication among the team members, not slow down
the fast coders.

General syntax conventions

One guideline is to use all lowercase identifiers, with underscores and

separators. Identifiers are all the nonreserved words of the language:

your variables, class names, methods, data, and enums. The reasoning

behind this convention is that there is less time spent thinking about how

to type an identifier. An exception to this guideline would be if the team

wants to capitalize three-letter acronyms (TLAs) and macros.

1. “All generalizations are false, including this one.” — Mark Twain

C h a p t e r 1 3 : C o d i n g O O P

244 Hardware Verif ication with SystemVerilog

A counter-argument to this approach is that it can create long names.

An alternative convention uses capitalization to indicate an identifier’s

scope, or class. For example, method names could begin with a capital

letter, while data members begin with a lower-case letter. The reasoning

behind this guideline is to encode the type information in the case of the

identifiers.

Consistent naming conventions can be useful, but beware of
dogma.1

Identifying local and protected members

Another convention used is to identify protected and local members (data

and methods) by using a trailing underscore. This allows one to know

quickly whether the method is “internal.” It also allows one to look at

an algorithm in a method and separate the “internal state” from the

method’s parameters.

The counter argument is that a method name may become public as the

project evolves. Because SystemVerilog uses access rules first, and then

scope rules, you can have an issue with code that compiles one day and

later does not compile should a method change its access. This issue can

also be present if the name had to be changed. Consequently, changing

the name may also cause compile errors.

Identifying local and protected members helps others learn
about a class.

1. “A fanatic is one who can't change his mind and won't change the subject.”
(Sir Winston Churchill)

An Object-Oriented Framework 245

S u m m a r y

Summary

In this chapter we looked at some of the techniques used to create our

code “art.” We talked about being careful with “if” tests; they are a

necessary evil that can complicate the code. We introduced the concept

of the factory function, useful in building inherited classes.

We offered the advice that you should code only what you need to know.

We then introduced a variety of useful coding tricks and techniques that

experienced coders use to solve programming problems, including, but

not limited to, the following:

Using reservable resources and mutex

Using register fields instead of hard-coded integers

Using data members (always carefully!)

Using idioms to provide structure

Using singletons for global services

Using virtual protected methods, to separate code interface from
implementation

Using naming and coding conventions to express intent and
understandability

We also presented reasons for considering additional techniques, such

as the following:

When to use enums or integers, and when you should mix them

Why coherent class naming is a good thing, and why the names of
classes, files, and instances should be related

Why consistent style and syntax are a good thing—if they are
applied with intelligence

So, this chapter covered a large number of techniques. Remember, you

don't have to use all of these tricks all of the time, but they are here for

reference when you need them.

C h a p t e r 1 3 : C o d i n g O O P

246 Hardware Verif ication with SystemVerilog

For Further Reading

For a list of resources applicable to this chapter, just revisit the For

Further Reading section of the Why SystemVerilog? chapter.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 247

Part IV:
Examples
(Putting It All
Together)

This is what the rest of the book has built up to. Everything discussed

earlier in this handbook is applied here to examples that better resemble

the real world. This is still a book, so examples need to be relatively

simple or they would be incomprehensible, but our goal with these

examples is to show what real hardware verification with SystemVerilog

looks like.

The examples here build on everything discussed so far. They use the

Truss verification methodology, and the Teal classes and functions. They

apply the OOP techniques discussed throughout the code.

The examples were not specifically chosen or coded to highlight the

strengths of Truss, Teal, or even SystemVerilog. Rather, they were coded

to resemble real-life projects as much as possible. Our goal is to show

realistic examples and creative solutions. We hope you can pick up an

idea or two by reading this . (The code freely avai lable a t

www.trusster.com also provides a few open-source VIPs that can come

in handy.)

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 249

Block-Level Testing
C H A P T E R 1 4

I can give you a six-word formula for success:
Think things through—then follow through.

Sir Walter Scott

In many endeavors, follow-through is everything. From sports to parent-

ing, it’s not only what you say but what you do that is important. This

chapter is the first of the “follow-through” chapters.

We use all the tools, tips, and techniques from the rest of the handbook

and apply them to something resembling a real-world example. This is

the first complete example of what a test system using SystemVerilog

might look like.

We look at a block-level verification environment. Later, we’ll adapt this

same environment to be used at the full-chip level.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

250 Hardware Verif ication with SystemVerilog

Overview

This chapter covers a block-level verification effort as part of a large

project. The goal is to verify a UART 16550 RTL block, written in Verilog.

To do this, we will build an environment that will not only verify the

block but also provide adaptable verification components for later project

stages.

The example presented here will show all verification components needed

to do UART 16550 verification as well as a fully randomized test. Several

points of interest in the code will be highlighted throughout the chapter.

(We present code in a slightly different form from the source code.1

Sometimes we merge the interface and implementation of a class together,

although they are separated in the source code. Also, we may abbreviate

a class interface or some method’s code to get straight to the point.)

This chapter differs from the Truss tutorial chapter (in Part II) in that it

focuses more on the middle layers of a verification system instead of on

the flow. The middle layers are where managing the complexity of a

verification system comes mostly into play.

If you want to look closer at execution order, it’s recommended that you

start by referring to the Truss standard test algorithm known as the

“dance” in the Truss Basics chapter. Then, with the “dance” as a refer-

ence, divide and conquer by using an ends-in approach. In other words,

take a closer look at both the top-level block_test.sv (and its related

test_components) and the protocol aggregrator, testbench.sv. This

will help show the overall structure and flow of the environment.

This chapter will talk about a few things. First, we set up the example

with a theory of operation. That section highlights the overall environ-

ment and the protocols that are used.

Then we look at several points of interest in the code. These points cover

code complexity problems of the middle layers in a verification system.

We present these middle-layer techniques in their order of execution, by

first looking at power-on reset, then at configuration and traffic genera-

tion, and then at checking.

1. Available at www.trusster.com.

An Object-Oriented Framework 251

T h e o r y o f O p e r a t i o n

Finally, we show how all the pieces are connected together through the

testbench.sv and block_test.sv. This includes details on how chan-

nels, configuration objects, and interface layers are instantiated.

Theory of Operation

Many systems have at least one UART connection. This may be for

diagnostics, software debugging, or general communication. For this

reason, a single UART serves as a good first block-level example.

Here are the main components involved in the simulation:1

The UART Verilog core2 was not developed by the authors. Many imple-

mentations of UART cores are available, and it was important to the

authors that a known-to-be working UART model be used. For this

example we chose an open-source design IP of a UART 16550 from

OPENCORES.3

This core follows the common register set of the 16550 UART, a popular

UART implementation by National Semiconductor. It is so common, in

fact, that software drivers for the UART 16550 are included with many

Linux distributions. As with all design IP, this core has its own quirks

that must be handled. We’ll talk about this in the configuration section

below.

The UART 16550 core used has two interfaces. One is the actual UART

transmit and receive lines, and the other is a local bus to read and write

registers in the UART block. In this case the local bus is a wishbone

interface, a standardized local bus for many OPENCORES models. The

wishbone interface will be described in more detail in a later section.

1. Unlike previous illustrations, this one shows the least abstract (most concrete)
layers at the top, because now we focus on the concrete layers.

2. A core is an HDL module that provides a well-bounded functionality. In our
case this is the UART16550 registers and UART wire protocol.

3. See www.opencores.org.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

252 Hardware Verif ication with SystemVerilog

Verification environment

The verification environment uses a UART BFM model to monitor the

actual data transmitted and a wishbone driver model to read and write

UART registers. For both interfaces, verification IP models, generators,

BFMs, configuration objects, and checkers will be designed.

Looking at the Verilog side, the testbench environment is fairly straight-

forward. It is shown on the following page.1

The UART module under test is called uart_top. It’s instantiated in the

testbench.v file, which also instantiates the wishbone Verilog driver

and reference clocks. The rest is driven by the testbench. The wishbone

driver has a reset wire (not shown), which is used to reset the chip. These

are the main components of the system.

Verilog
wishbone

driver
uart_uart_16550_sfm

uart_bfm

uart_basic_test_component

uart_test_0

testbench.v

uart_bfm_agent

uart_generator uart_checker

uart_uart_16550_sfm_agent

UART Example: Objects and Connections

connection

agent

transaction

wishbone_driver

teal_memory_write()

16550
UART

uart_checker_agentuart_generator_agent

1. Here we can actually use the term “wires.”

An Object-Oriented Framework 253

T h e o r y o f O p e r a t i o n

Verification IP

For this example, a Verification IP (VIP) will be adapted or developed

for the core’s interfaces. VIPs are used to highlight how adaptable

verification components can be developed and moved from one project

to another. There is always work required when adapting an existing

component to a new environment, but if the component is structured

appropriately, the work can be minimal.

UART VIPs

For the UART 16550 verification system, the authors developed a generic

UART BFM. We also developed what the authors call a software func-

tional model (SFM). An SFM is a model of some protocol or common

implementation that uses register access instead of wires for the chip

connection. An example of this is the USB Open Host Controller Interface

(OHCI). The specification for a protocol defines what registers must

exist and their meaning. It is similar to a BFM, except that instead of

connecting to a bus, we are connecting to registers.

uart_top

testbench.v

UART Example: HDL Connections

32data

32address

2op_code

TX

work_done
1

re
se

t_
n

1
cl

oc
k

uart_testbench

1do_workw
is

hb
on

e_
dr

iv
er

ua
rt_

bf
m

RX

O
rig

in
al

 V
er

ilo
g

w
is

hb
on

e
dr

iv
er

1

2select

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

254 Hardware Verif ication with SystemVerilog

The generic UART BFM is specifically designed to be separate from the

specifics of the 16550 protocol, so that the UART BFM can be used for

any UART implementation.

The UART 16550 SFM, in turn, deals with all the registers for the 16550

protocol. This SFM acts like a software driver, in that the SFM programs

the UART core’s registers.

The UART 16550 SFM actually uses the wishbone BFM to set the

registers of the Verilog core.

Wishbone VIP

The wishbone protocol is the bus used to read and write the registers of

the UART core. For the verification system, a wishbone BFM is used to

do this.

Instead of developing a new wishbone BFM from scratch, the authors

decided to reuse a Verilog verification model provided with the UART

16550 core. This verification model included Verilog tasks for reading

and writing registers over the wishbone interface.

These read and write tasks are wrapped into a BFM. When a Verilog task

is to be called (because of a higher-layer testbench call), the testbench

side sets the appropriate wires and raises do_work. The Verilog side, in

an always block, then calls the appropriate Verilog task or tasks, and

when they return, raises the work_done. This signals the testbench side

that the results from the Verilog driver are available.

Reusing existing verification models like this highlights how known-to

be-working models can be integrated with a new verification environ-

ment. This technique is talked about more in the section on reading and

writing registers.

An Object-Oriented Framework 255

R u n n i n g t h e U A R T E x a m p l e

The verification dance

The dance is the flow of events (or method calls) during simulation. It,

of course, follows the “dance” talked about in the Truss Flow chapter.

First, the chip is brought out of reset, then a configuration is chosen by

means of randomization, and the UART core is configured (by means of

register reads and writes). After this, a generator is asked to generate a

group of data words for transmission. Because the UART protocol is

bidirectional, both the ingress and egress sides have a generator and

checker. After the data have been transmitted, the test waits for the

checker to indicate that it received all the traffic. Then the test exits and

a final status is printed.

Running the UART Example

Running the example is the same as for all tests that use Truss. However,

before you run it, you’ll need to set up some environment variables.

In the directory /examples/single_uart/bin, there is a setup script.

Before you execute the script, make sure you have defined BOOK_HOME.

Then source the setup script, and it will set TRUSS_HOME and

PROJECT_HOME according to the BOOK_HOME variable.

Before you run the truss script, you must define the SIMULATOR_HOME

environment variable. In addition, you must define SIM, for the simulator

name and path to the install directory you are using. Type truss -help

to see the currently supported list of simulators.

To run the example, type the following:

$TRUSS_HOME/bin/truss --test block_uart

There are many other options to truss, but this command will compile

all the code and run the test. You should see a bunch of compiles and

then the test will run.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

256 Hardware Verif ication with SystemVerilog

Points of Interest

There are many points of interest in this first real example. There is a

UART configuration object, used to pick the various settings for the

protocol. There is a code interface, implemented as a Teal front-door

memory bank. There are agent objects, used to connect the UART BFM

and SFM to the generators and checkers.

So why are these objects important? In your verification system, you

probably will have the equivalent objects for each of these points of

interest. Understanding the machinery of their construction and connec-

tion—and the trade-offs you may have to make—will help you in building

your system.

Configuration

Most chip protocols have a number of registers to support configuration

settings. These registers control the exact behavior of the protocol; in

other words, they describe what mode it is in. This might determine how

the protocol responds to interrupts or whether it uses even or odd parity.

With any real chip verification, there is a need to randomize this setup

so that each configuration setting is tested.

By creating a configuration class for each protocol, you create a central-

ized place that controls the randomization of each instance. This config-

urations class is independent of the protocol registers, containing

protocol-generic features that are then mapped to registers by a specific

implementation.

Why do this? For two reasons. First, you will most likely have a generic

side to the protocol, which will operate outside of the chip. This code

will not have configuration registers (because it is not hardware), and it

can execute the more-generic protocol configuration directly. Second,

using a protocol-defined, but generic, class is a way to make the config-

uration adaptable to other implementations. Moving to a different core

or even to a different chip using this same protocol should not radically

change the configuration class.

An Object-Oriented Framework 257

C o n f i g u r a t i o n

The configuration class is responsible for keeping track of all parameters

of an interface, as well as for randomizing them into a “legal” configu-

ration setting.

In our UART 16550 example there are two configuration classes: a

generic class for the UART BFM, and a specialized UART 16550 class

for the specific UART protocol we are testing. The specialized one

inherits from the generic one.

Several techniques are used in the configuration objects to create adapt-

able code. These, or similar, techniques might be good to consider when

you have to write code to verify a protocol. Here we will look closer at

the different configuration classes, and highlight interesting areas.

VIP UART package

The VIP provides a generic package that contains the enumerations and

associated defines for the configuration UART. This technique of using

a package for enums solves the issue that enums are generally in global

scope.

package uart;

typedef enum {none=0, even, odd, mark, space} parity

//other parameter defines

parameter int max_uart_width = 32;

typedef bit [max_uart_width:0] data_type;

typedef enum {
b_150 = 150, b_300 = 300, b_1200 = 1200,

b_2400 = 2400, b_4800 = 4800, b_9600 = 9600,

b_19200 = 19200, b_38400 = 38400,

b_57600 = 57600, b_115200 = 115200,

b_230400 = 230400, b_921600 = 921600

} baud_rate;

endpackage;

The reason each legal parameter is defined as an enum is to help show

intent. This is important when writing adaptable code, and the idea with

this UART model is that it should be able to be reasoned about and be

adaptable to many different situations.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

258 Hardware Verif ication with SystemVerilog

VIP UART configuration class

The VIP provides a generic UART class that contains the largest legal

configuration space. This is because it has been built to be valid for any

UART core. The UART 16550 configuration object, by contrast, inherits

from this code interface, but actually limits the number of possibilities

to what our core can support.

The UART configuration class is described below. It contains an enum

definition for each parameter that describes the valid protocol domain,

as well as a variable for each parameter.

The class also contains do_randomize() and sreport() methods to set

up and print the status of the current setting.

Here are the interesting parts of the class definition:

class uart_configuration:

extern function new (string name);

uart::parity parity_;

baud_rate baud_rate_;

uart::stop_bits stop_bits_;

//other parameter instances

extern virtual task do_randomize();

extern virtual function string sreport();

endclass

The do_randomize() method is responsible for setting each parameter

to a legal value so that it can later be written to hardware or interpreted

by a generic protocol VIP. Because each parameter is an enum, some care

must be taken for randomization. Let’s look at this.

Randomization of parameters

Randomization is somewhat like logging: it appears simple and obvious,

but becomes very complex when a large system is verified. One of the

primary decisions is whether to “hook into” the randomization provided

natively in SystemVerilog. As you see in the code, we sometimes use

Teal’s randomization, and sometimes SystemVerilog’s. We just want to

show what both techniques look like.

In addition to deciding which randomization to use, you have to decide

whether a method call—either SystemVerilog’s randomize() or Truss’s

An Object-Oriented Framework 259

C o n f i g u r a t i o n

do_randomize()—should be present in the code interface. Sometimes

the fact that there are randomized parameters is just an implementation

detail. Other times, however, it is up to the caller to randomize the

instance.

In this example, we show how to keep randomization as an implementa-

tion detail and use ranges to constrain the randomization. (The next

chapter shows an example of how to bring randomization to the interface.)

A utility class, __uart_configuration_chooser, is used to do the

actual randomization. The dictionary is used to get the min/max bounds

and this information is used in the SystemVerilog constraints. The code

to choose the parity is shown here:1

class __uart_configuration_chooser;

rand parity parity_;

local parity min_parity;

local parity max_parity;

constraint valid_parity {

parity_ >= min_parity; parity_ <= max_parity;}

//...

function new (string n);

 log_ = new (n);

min_parity = parity' (teal::dictionary_find_integer

 ({n, "_min_parity"}, 0));

//...

endfunction

endclass

As can be seen, each time the helper class does the actual randomization.

This class is used by the do_randomize() method, like this:

task uart::configuration::do_randomize();

__uart_configuration_chooser chooser =
new (log_.name ());

'truss_assert (chooser.randomize ());

parity_ = chooser.parity_;

//...

endtask

1. For the complete code, see uart_configuration.sv.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

260 Hardware Verif ication with SystemVerilog

This code shows how the parity is randomly picked by the

do_randomize() method. This technique of defining a random data

member in the utility class and then setting its constraints by means of

the dictionary is repeated for each parameter. Thus, at the end of the

method, all parameters are set to a random legal value.

UART 16550 configuration class

In this project a UART 16550 core IP is used. The UART 16550 is a

common protocol, but our core puts a few restrictions on the legal UART

register values. As shown below, we created a valid UART 16550 con-

figuration by expanding upon the generic UART configuration class:

class uart_configuration_16550 extends uart_configuration;

function new (string name);

super.new (name);

endfunction

virtual task do_randomize ();

//correct cases that our core cannot handle

super.do_randomize ();

if ((stop_bits_ == configuration::two) &&
(data_size_ == 5)) begin

stop_bits_ = configuration::one_and_one_half;

log_.debug (

"Corrected stop bits from 2 down to 1.5

data_size is 5).");

end

if ((stop_bits_ ==configuration::one_and_one_half)

&& (data_size_ >= 6)) begin

stop_bits_ = configuration::two;

log_.debug ("Move stop bits from 1.5

up to 2 (data_size is 6, 7, or 8).");

end

endtask

endclass

The configuration_16550 class inherits from the VIP configuration

class. It overrides the do_randomize() method of the base configu-

ration class. As shown in the implementation of the overloaded method,

configuration_16550 calls the base class method [see the

An Object-Oriented Framework 261

C o n f i g u r i n g t h e C h i p

super.do_randomize () line above] and then checks the actual values

of a couple of registers.

If, for our core, illegal register combinations have been randomly chosen

by the base class, do_randomize() corrects it. This is done to ensure

that a legal UART 16550 configuration is picked.

Configuring the Chip

So how does an the actual chip get configured once a configuration object

has been created and randomized for an interface? The configuration

object represents the information a software driver would have to know

to set the correct registers in an actual chip.

In the Truss solution we follow this concept in the driver or BFM. A

configuration object is known by all the particular drivers, BFMs, and

monitors on a protocol. This knowledge is necessary for the connection-

layer objects to be able to drive and monitor the physical connections.

But how does the configuration get programmed to the actual chip? This

is not normally done over the same protocol. Rather, programming the

chip is normally done over one or a couple of major protocols. For

example, if a chip has an embedded processor, programming is mainly

accomplished through the processor’s external address and data wires.

If the chip does not have a processor, this is accomplished through some

standard, well-defined protocol, such as USB or I2C.

In our chip the wishbone protocol is used to program the registers in the

chip during the write-to-hardware phase of the “dance.” The

write_to_hardware() method of the uart_16550_bfm class doesn’t

access the hardware directly through its own wires. That would both

complicate the code and made it harder to adapt. Instead, it uses the

register defines on top of Teal’s memory routines. The wishbone driver

is hooked underneath these memory routines. Let’s look at the technique

of using Teal’s memory access.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

262 Hardware Verif ication with SystemVerilog

Register access

In order to be clear and to create adaptable code, we have the method

uart_16550_bfm::write_to_hardware() use register writes.

Here is the method:

task uart_16550_bfm::write_to_hardware();

teal::uint8 data;

data = 0;

//...

'truss_assert(configuration_.data_size_ >= 5);

'truss_assert(configuration_.data_size_ <= 8);

'field_put(data, data_size,

configuration_.data_size_ - 5);

'field_put(data, access_clock_divide, 1);

teal::write (UART_REG_LC, data, 8);

teal::uint8 lc_save = data;

data = divisor;

teal::write (UART_REG_DL1, data);

data = divisor >> 8;

teal::write (UART_REG_DL2, data);

'field_put(lc_save, access_clock_divide, 0);

truss::write(UART_REG_LC, lc_save);

endtask

Notice that the code is using both teal::write() and 'field_put.

What are these? The write() function uses Teal’s memory manager to

abstract away how the register will be written. The ‘field_put is a

local macro that may be useful. It is defined as follows:

'define field_put(data,field,value) \

data['field"_max:'field"_min] = value

'define field_get(data, field)\

 data['field"_max:'field"_min]

Why all this define trickery? The point is to abstract how the actual

registers and fields are accessed and manipulated. The authors are aware

of, and have created, several fancier ways of accessing registers for

verification. However, we believe that this mechanism has the appropriate

level of simplicity and opens the door for the software team to understand

the verification code.

An Object-Oriented Framework 263

C o n f i g u r i n g t h e C h i p

Notice that the register addresses are defines. This is appropriate,

although they could have been parameter const int should the team

decide that is more appropriate.

The field names are also defines, but they are named a specific way. This

is because the 'field_put() assumes a _min and a _max suffix to the

field names. This was done to minimize the parameters into the macro.

For example, the following is used for the data_size field:

'define data_size_min 0

'define data_size_max 1

Recall that the implementation of teal::write will find a memory

bank mapped to that address and use it for the actual access.

Next we will look at how an actual address resolved to the wishbone

interface.

The wishbone_memory_bank and
wishbone_driver

Now we have seen how the UART 16550 SFM writes registers. But how

does this get translated into accesses to the wishbone driver? Remember

that Teal’s memory routines use a look-up table to figure out which

memory_bank object should handle the memory access.

We’ll just add a wishbone memory bank:

typedef class wishbone_driver;

class wishbone_memory_bank extends teal::memory_bank;

extern function new (string n,

 wishbone_driver driver);

extern virtual task from_memory(teal::uint64 address,

output bit [MAX_DATA - 1:0] value, input int size);

virtual task to_memory (teal::uint64 a,

 bit [MAX_DATA - 1:0] value, input int size);

wishbone_driver_.to_memory (address, value, size);

endtask

endclass

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

264 Hardware Verif ication with SystemVerilog

The real work is done in the wishbone driver, although that, too, just

calls down to a module in the Verilog. Here is how the write method of

the driver works:

task wishbone_driver::to_memory(

bit [63:0] address,

input bit [MAX_DATA - 1:0] value, teal::uint32
size);

mutex_.get (1);

wishbone_driver_interface_.op_code_ <= 0;

wishbone_driver_interface_.address_ <= address;

'truss_assert (size <= 8) ;

//put the data on the right line

case (a % 4)

0: begin wishbone_driver_interface_.select_ <= 1;

wishbone_driver_interface_.data_ <= d; end

1: begin wishbone_driver_interface_.select_ <= 2;

wishbone_driver_interface_.data_ <= d << 8; end

2: begin wishbone_driver_interface_.select_ <= 4;

wishbone_driver_interface_.data_ <= d << 16; end

3: begin wishbone_driver_interface_.select_ <= 8;

wishbone_driver_interface_.data_ <= d << 24; end

endcase

wishbone_driver_interface_.do_work_ <= 1;

@ (posedge (wishbone_driver_interface_.work_done_));

wishbone_driver_interface_.do_work_ <= 0;

mutex_.put (1);;

endtask

By setting do_work_ to 1, we notify the Verilog of a pending transaction.

By waiting for work_done_ to be 1, we cause the code to wait until the

Verilog half of the driver signals that the transaction completed.

The Verilog code is not really interesting, as it, in turn, just calls tasks

in a module called wb_mast. This module is part of the OPENCORES

code. All these files are in the directory /verification/vip/wishbone.

This technique of adapting existing Verilog tasks is a good way to leverage

working, debugged Verilog code. There is no need to throw the code

away, nor any need to rewrite it.

An Object-Oriented Framework 265

Tr a f f i c G e n e r a t i o n

Traffic Generation

Now that we have the chip all configured, we need to send traffic through

it. The UART VIP code contained a basic generator, whose interface is

shown below:

virtual class uart_basic_generator;

extern function new (string n,

uart_configuration c);

//send one block of words to the uart bfm,

//hold off sending the block by delay

extern task send_block (teal::uint32 words,

 teal::uint32 bit_delay);

'PURE protected virtual task send_block_

(uart_block b);

endclass

The send_block() method creates a block of data, with a specific block

delay and then calls the connection virtual method send_block_(). The

data word size is fixed, because the configuration has been randomized

previously.

The send_block_() is a pure virtual method and is used as the agent

connection to the BFM or SFM. The agents are discussed next.

The generator_agent and uart_bfm_agent classes

Now that the generator is generating traffic, we have to connect it to the

BFM or SFM. There are as many ways to do this are there are stars in

the sky. The authors have chosen to have the connection agents use

channels.

'include "uart_channel.svh"

class uart_generator_agent extends uart_generator;

extern function new (string n, uart_configuration c,

 uart_channel t);

protected virtual task send_block_ (uart_block b);

out_.put (b);

endtask

local uart_channel out_;

endclass

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

266 Hardware Verif ication with SystemVerilog

This class does not contain much code. Remember, the purpose of this

class within the Truss framework is to enable a connection-policy deci-

sion, so the code size is secondary. That said, smaller is better, and this

example relies on the channel to do most of the work. It simply puts into

a channel the data to be sent.

Let’s take a look at the other half, the connection to the BFM or SFM.

We’ll only show the BFM as the SFM is strikingly similar. Of course,

these agents should use a channel as well, because the testbench connects

instances of these two classes together.

This class is shown below:

'include "uart_channel.svh"

class uart_bfm_agent extends uart_bfm;

extern function new (string name,

 virtual uart_interface ui,

 uart_configuration c,

uart_channel_to_be_transmitted,

 uart_channel received_from_wire,

 teal::uint64 clock_frequency);

virtual task receive_completed_ (uart_word w);

uart_block current_rx = new (0);

current_rx.add_word (current_rx_word);

received_from_wire_.put (current_rx);

endtask

local task do_tx_thread ();

forever begin

block current_tx;

to_be_transmitted_.get (current_tx);

if (current_tx.block_delay_) begin

pause_(one_bit_ * current_tx.block_delay_);

end

 end

for (int i = 0; (i <= current_tx.max_offset ());

 ++i) begin

send_word(current_tx.words_[i]);

end

endtask

endclass

An Object-Oriented Framework 267

T h e C h e c k e r

There are a few point of interest in the preceding code. Because UART

is a bidirectional protocol, there are two channels. One channel is used

to connect to the checker agent, and the other channel is used to connect

to the generator agent.

Another effect of the UART being a bidirectional protocol is that there

are two methods, one to support each channel. One method is the con-

nection technique of overriding a pure virtual method, in this case,

receive_completed_().

The other channel-supporting method is do_tx_thread(). As you can

probably guess, this method runs in a separate thread of execution. This

method first delays the appropriate amount. It then takes the block of

data words and sends them, one at a time, to the UART BFM.

There is one more point to make before we move on. A chip might have

several ways to drive an interface, such as register, FIFO, or DMA. One

would probably write corresponding SFMs and SFM agents.

In general, the agents implement a connection policy by overriding the

pure virtual method in the base class. In this example, we used a channel

policy.

The Checker

Now that we have the transmit side connected, let’s take a look at the

checking side. We have already done half the work. The agents will place

any received data into a channel. We just need to create the checker agent

to connect the channel to the checker, as follows:

'include "uart_channel.svh"

class checker_agent extends checker;

extern function new (string name,

uart_channel expected, uart_channel actual);

protected virtual task get_expected_

(output uart_block b);

expected_.get (b);

endtask

protected virtual task get_actual_

(output uart_block b);

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

268 Hardware Verif ication with SystemVerilog

actual_.get (b);

endtask

protected virtual task more_ (output bit value);

value=expected_.size ();

endtask

local uart_channel expected_;

local uart_channel actual_;

endclass

The checker agent is providing the connection policy for the checker. As

we have used a channel for the connection, channels are used here. The

expected channel comes from the generator (through a tee, or tap,

described in the next section), and the actual channel is the received

channel in the BFM.

The checker_agent provides the checker with three things: the

expected, the actual, and whether or not there is more checking to do.

Checking the data

Let’s take a look at the checker. It’s a little complex because the checker

must handle the fact that the expected and actual block sizes may be

different. This is normal in a real system, for several reasons. One is that

a DMA- or FIFO-based receive will “clump up” the received data,

depending on how the chip was set up (the specific FIFO interrupt trigger

points, DMA block sizes, and so on). Another reason is because a

transmission may have to be broken up into segments by the protocol.

uart::bfm_agent

uart::generator uart::checker

Detailed BFM Agent Connections

To UART SFM
and chip

From chip and
UART BFM

Channel

ActualExpected

An Object-Oriented Framework 269

T h e C h e c k e r

Here is the key algorithm in the checker. In the text below, we have

removed most of the received data code (because it is identical to the

expected code). Also, the code has been simplified just a little, but the

essence is s t i l l the same. (The actual code is avai lable at

www.trusster.com.)

task uart_checker::perform_checking_ ();

uart_block current_tx_block = new (0);

uart_block current_rx_block = new (0);

int current_tx = 0;

int current_rx = 0;

forever begin

if (current_tx == current_tx_block.size ()) begin

get_expected_ (current_tx_block);

current_tx = 0;

end

if (!current_tx.equal (current_rx)) begin

//... Long error print here!

end

//...

++current_tx;

begin

bit more; more_ (more);

if ((current_tx == current_tx_block.words_.size ())

 && (!more))

done_.signal ();

end

endtask

The algorithm compares the data words and relies on dynamic array

indexing to move through the block of words. When the array size() is

reached, a new block of data is pulled from the agent. The algorithm also

uses the uart_word::equal() to decide how to compare the block

elements.

If the agent indicates that there are no more blocks, we signal an event.

This event is used by the wait_for_completion() code, in a stunning

display of software engineering:

task uart_checker::wait_for_completion ();

 done_.pause ();

endtask

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

270 Hardware Verif ication with SystemVerilog

The test, by way of the test component, is waiting for this checker’s

wait_for_completion() to return, signifying that the test is done.

We have made it through the bulk of the code. The next thing we need

to talk about is how the objects are built and hooked together. Then we

need to talk briefly about the test component and an example test.

Connecting It All Together

The previous sections have discussed the interface components at the

various layers of abstraction. Now it’s time to put them together. The

first place we’ll start is the testbench, as it will create the instances and

connect them by means of channels. Then we’ll take a brief look at the

test component, which exercises the ingress or egress flow of traffic.

Finally, we’ll look at a basic test to send data in both directions.

The testbench

The testbench is responsible for building the protocol components and

bringing the chip out of reset. We will not discuss bringing the chip out

of reset, as it is pretty much the same as in the tutorial. Building the

components, however, is something new.

The components are built in the testbench constructor. We will look at

the constructor in stages, as several different things are happening. First,

let’s look at some naming conventions that will be used in the testbench.

Because the UART protocol is bidirectional, there is a name for the traffic

flow in each direction. We will use the industry standard terms of egress

for traffic originating from the chip and flowing outward, and ingress

for traffic flowing inward.

An Object-Oriented Framework 271

C o n n e c t i n g I t A l l To g e t h e r

Building the channels

Did you notice that the generator, BFM, and checker agents need, among

other things, a uart_channel in their constructors? Now, here in the

testbench, we build a channel, which is shown below:

uart_channel program_egress =

new uart_channel ("program_egress");

uart_channel program_egress_tap =

new uart_channel ("program egress tap");

program_egress.add_listner (program_egress_tap);

channel program_ingress =

new uart_channel ("program ingress");

channel protocol_ingress =

new uart_channel ("protocol ingress");

channel protocol_ingress_tap =

new uart_channel ("protocol ingress tap");

protocol_ingress.add_listener (protocol_ingress_tap);

channel protocol_egress =

new uart_channel ("protocol egress");

Notice the add_listener() call, which connects the put() method of

one channel to an arbitrary number of other channels. We use it here to

give the checker a copy of the generated data.

Building the configuration and interface port

After the channels have been built, there are two more things we need

to build before creating the models. They are the configuration and the

path to the pins.

Building the configuration is straightforward:

uart_configuration = new (n);

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

272 Hardware Verif ication with SystemVerilog

Building the real (signal) interface to the pins is be done in a few steps.

In this example, we first declare the interface:

interface uart_interface (

 output reg dtr,

 output reg dsr,

 input rx,

 output reg tx,

 output reg cts,

 output reg rts,

 input baud_rate_clock

);

endinterface

Next, we declare an instance of this in the real_interfaces module:

module real_interfaces;

 uart_interface uart_interface_1 (top.DSR, top.DTR,

 top.TX, top.RX, top.RTS, top.CTS,

 top.BAUD_RATE_CLOCK);

endmodule

Then we define interfaces_uart, the class that bundles together all

the interfaces of the chip. See the file interfaces_uart.svh.

Finally, we bundle the interfaces into a class, so that it can be passed into

the testbench upon construction:

function truss::interfaces_dut build_interfaces ();

 interfaces_uart uart;

 uart = new (real_interfaces.uart_interface_1,

 real_interfaces.wishbone_driver_interface_1,

 real_interfaces.uart_16550_interface_1,

 real_interfaces.top_reset_1);

 return uart;

endfunction

Once the testbench recovers this class by means of a downcast, all the

interfaces of the chip are available to the verification system.

An Object-Oriented Framework 273

C o n n e c t i n g I t A l l To g e t h e r

Building the component-layer objects

Now we are ready to build the components of the protocol, as shown

below:1

begin

uart_bfm_agent ba = new ("uart Protocol",

uart_dut.uart_interface_1, uart_configuration,

protocol_ingress, protocol_egress,

UART_CLOCK_FREQUENCY);

uart_protocol_bfm = ba;

end

begin

uart_16550_agent sfm = new (

"16550 uart",uart_dut.uart_16550_interface_1,

uart_configuration, program_egress, program_ingress

UART_CLOCK_FREQUENCY);

uart_program_sfm = ba;

end

//build and hook up the ingress and egress stimulus
//and scoreboards of the interface

begin

uart_generator_agent gen_agent = new (

"egress_generator", uart_configuration,

program_egress);

uart_egress_generator = gen_agent;

end

begin

uart_generator_agent gen_agent = new (

"ingress_generator", uart_configuration,

protocol_ingress);

uart_ingress_generator = gen_agent;

end

begin

new uart_checker_agent check_agent = new (

"ingress checker", protocol_ingress_tap,

program_ingress);

uart_ingress_checker = check_agent;

end

begin

1. In the Layered Approach chapter, we called the program side of a chip the
registers, and the protocol side the wires that follow a standard protocol.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

274 Hardware Verif ication with SystemVerilog

uart_checker_agent check_agent = new (

"egress checker", program_egress_tap,

 protocol_egress);

uart_egress_checker = check_agent;

end

The generator and checker are used for both sides of the verification

process. This is appropriate, because the generator and checker should

have no idea of the connection policy or actual implementation details

of the protocol.

Note that the testbench code interface exposes only the base class, not

the agents. This allows different connection policies to be invisible to

the rest of the verification system. This means that we have to use a trick

when we build the derived objects. The trick is to use a local variable of

the derived class type and then new() that variable. Then we assign the

variable to the base class pointer that is our data member.

We are almost done with building all the lower-layer objects. We just

need to create the register access objects.

The wishbone objects

Building the wishbone objects is just a matter of building a driver and

memory bank, and then mapping the memory bank to an address range,

as follows:

//in interfaces_uart.svh

 interface wishbone_driver_interface (

 input clock_,

 output reg [31:0] address_,

 output reg [31:0] data_in_,

 input [31:0] data_out_,

 output reg [3:0] select_,

 output reg [1:0] op_code_,

 output reg do_work_,

 input work_done_

);

endinterface

//and in interfaces_uart.sv (module real_interfaces)

 wishbone_driver_interface wishbone_driver_interface_1 (

.clock_ (top.wishbone_driver_verilog.clk),

.address_ (top.wishbone_driver_verilog.address),

An Object-Oriented Framework 275

C o n n e c t i n g I t A l l To g e t h e r

.data_in_ (top.wishbone_driver_verilog.data_in),

.data_out_ (top.wishbone_driver_verilog.data_outr),

.select_ (top.wishbone_driver_verilog.select),

.op_code_ (top.wishbone_driver_verilog.op_code),

.do_work_ (top.wishbone_driver_verilog.do_work),

.work_done_ (top.wishbone_driver_verilog.work_doner)

);

//and in testbench.svh

wishbone_driver_ = new ("WB",

 uart_dut.wishbone_driver_interface_1);

begin

wishbone_memory_bank m =
new("Wishbone",wishbone_driver_);

teal::add_memory_bank (m);

teal::add_map ("main bus",

 uart_registers_first, uart_registers_last);

end

T h e wishbone_driver i s c r e a t e d a n d h a n d e d t o t h e

wishbone_memory_bank, which caches the pointer. Then, the

wishbone_memory_bank is added into the Teal memory system. Finally,

this newly added bank is mapped to the first through the last register

address of the UART 16550 interface of our chip.

That’s it! From this point in the code and onward, any teal::write()

or teal::read() to that address range will go through the

wishbone_memory_bank and then to the driver.

Whew, that was a lot of code! However, building all the components of

a testbench is a large job. We’ll now move up a level, looking at the test

component and then the test.

The test component

Compared to the testbench, the test component is simple. The testbench

pretty much just forwards its dance calls to the appropriate generator,

model, or checker, as follows:

class uart_basic_test_component extends

truss::test_component;

extern function new (string n, uart_generator g,

truss::verification_component b, uart_checker c);

extern virtual virtual task do_randomize();

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

276 Hardware Verif ication with SystemVerilog

//shown in next section

virtual task time_zero_setup ();

bfm_.time_zero_setup ();

endtask

virtual task out_of_reset(reset r)

bfm_.out_of_reset (r);

endtask

virtual void write_to_hardware()

bfm_.write_to_hardware();

endtask

protected virtual void start_components_();

bfm_.start(); checker_.start();

endtask

protected virtual void do_generate();

 generator_.send_block (words_,block_delay_);

 endtask

protected virtual void wait_for_completion_();

checker_.wait_for_completion();

endtask

rand protected teal::uint32 words_;

local teal::uint32 min_words_;

local teal::uint32 max_words_;

rand protected teal::uint32 block_delay_;

local teal::uint32 min_block_delay_;

local teal::uint32 max_block_delay_;

endclass

We won’t go over the code above in detail; just take a look and notice

that most of the methods are one-line calls to the appropriate interface-

layer component.

The last few lines are interesting. They are the random variables that are

used by the do_generate() method to create random data. These are

the variables that will be controlled by the test (as well as by configuration

variables).

An Object-Oriented Framework 277

C o n n e c t i n g I t A l l To g e t h e r

The uart_basic_test_component::do_randomize()
method

The do_generate() method is where the test component sends traffic

through the interface. It sends only one group of data, but that group

length can be any size. The next chapter shows how this method can be

called repeatedly.

The do_generate() method does only what i t is told. The

do_randomize() method is responsible for choosing the appropriate

block length and delay for the block. Why do we separate these two

related methods? Because you may want different constraints and distri-

butions for the random parameters. Note the following:

task uart_basic_test_component::do_randomize ();

min_words_ = dictionary_find(name +

 "_min_num_words", 2);

max_words = dictionary_find(name +

 "_max_num_words", 4);

min_bit_delay = dictionary_find(name +

"_min_block_delay", 0);

max_bit_delay = dictionary_find(name +

 "_max_block_delay", 10);

'truss_assert (randomize ());

endtask

Teal’s dictionary is used to see if any high-level code (such as a test) has

overridden the parameters. Then, the built-in SystemVerilog function

randomize() is used to generate the values, subject to the minimum

and maximum specified.

That’s all there is to the test component. Once a test creates one and

follows the standard Truss dance, traffic will be sent and checked through

the UART protocol!

Now let’s take a look at the test.

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

278 Hardware Verif ication with SystemVerilog

The basic data test

The only top-most component that we have not talked about is the test.

The test, like the test component, is straightforward. That is as we expect,

because the top-most layers should be obvious.

The test is fairly unremarkable. Here is an abbreviated look at its code

interface:

class block_uart extends truss::test_base;

 extern function new (testbench tb, truss::watchdog wd,

 string name);

//... All the usual dance methods, for example...

virtual task write_to_hardware();

uart_test_component_egress_.write_to_hardware ();

uart_test_component_ingress_.write_to_hardware ();

endtask

local testbench testbench_;

local uart_basic_test_component

uart_test_component_ingress_;

local uart_basic_test_component

 uart_test_component_egress_;

endclass

The test builds two test components, one for inbound traffic and one for

outbound traffic. For each method, it just calls the same named method

on each component.

The authors realize that this can seem tedious, but at least you have all

the control. If you need to do some special pre- or postprocessing, it’s a

simple matter to add it. If you don’t want to call all the test components’

methods all the time, just leave it out. It there is a specific order you

need, or you need some extra communication between the test and the

test components, you can just add them.

One alternative, which the authors have used, is to have a global

sequencer. This is almost always a mistake, in that it makes the test

writer’s job harder. Remember the guideline—that “tedious and obvious”

is preferable to “less code and hidden.”

An Object-Oriented Framework 279

C o n n e c t i n g I t A l l To g e t h e r

The interesting part of the test is in the constructor, as shown below:

function block_uart::new (testbench tb,

 truss::watchdog w,

 string n);

super.new (n,w);

uart_test_component_ingress_ = new

("uart_ingress", tb.uart_ingress_generator,

tb.uart_program_bfm, tb.uart_ingress_checker)),

uart_test_component_egress_ = new

("uart_egress", tb.uart_egress_generator,

//add configuration default constraints

teal::dictionary_put (

{tb.uart_configuration.name, "_min_baud"}, "4800",

teal::dictionary_default_only);

teal::dictionary_put (

{tb.uart_configuration.name, "_min_data_size"}, "5",

teal::dictionary_default_only);

teal::dictionary_put (

{tb.uart_configuration.name, "_man_data_size"}, "8",

teal::dictionary_default_only);

//add generator default constraints

teal::dictionary_put (

 {tb.uart_egress_generator.name,"_min_word_delay"}, "1"

 teal::dictionary_default_only);

teal::dictionary_put (

 {tb.uart_egress_generator.name,"_max_word_delay"}, "3"

 teal::dictionary_default_only);

//...

endfunction

This code does two things. First, it creates and wires up the ingress and

egress test components. Second, the constructor adds some parameter

values to guide the configuration selected and the amount of data to be

sent.

That it! We’ve made it through the first real-world test system!

C h a p t e r 1 4 : B l o c k - L e v e l Te s t i n g

280 Hardware Verif ication with SystemVerilog

More Tests

While the test in the example is sufficient for most of the “normal” cases,

there are still several things we should do to test the core fully. Besides

the additional features of the core, like loopback and FIFO depth trig-

gering, there are a range of error tests to be performed.

For example, one can test parity errors or stop bits, or perhaps the

sampling algorithm for the data bits.

There are also the external control pins, such DTR, DSR, and so on, that

should be exercised.

All of these tests, which must be written and performed, are beyond the

scope of this handbook.

Summary

This chapter ties together the last couple of hundred pages or so. We

built a verification system to unit-test a UART.

A configuration convention was covered. Truss does not address chip

configuration, because this is chip- and feature-specific. We did show

how the Teal dictionary can be used to get and set parameters globally.

An interesting part of configuring the chip was using the Truss register

defines with the Teal memory space. This provided a generic register

interface that could be mapped to any memory bank. In our case, we

adapted a wishbone Verilog model.

The policy of channels was selected to connect the transaction-level

classes with the connection-layer ones. We used the Truss pseudotem-

plated channel.

Checking the data was a little complicated, because the packets to be

checked were possibly a different size from when they were generated.

The test component, testbench, and test were described, with an emphasis

on the testbench constructor. This was where all the protocol objects

were created and the channels connected.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 281

Chip-Level Testing
C H A P T E R 1 5

And will you succeed? Yes indeed, yes indeed!
Ninety-eight and three-quarters percent
guaranteed!

Dr. Seuss

Testing at the block level is common. Testing at the chip level—the

highest system level we care about—is necessary. As you probably know,

it’s the system-level interactions among the various blocks that must be

tested. These system-level interactions are the focus of this chapter.

This chapter presents three main concepts:

The chip now has four UART interfaces.

We develop three tests, showing a progression from exercising all
of the protocols to demonstrating a generic test with irritators.

We can adapt the original block-level test to be used at the system
level.

C h a p t e r 1 5 : C h i p - L e v e l Te s t i n g

282 Hardware Verif ication with SystemVerilog

Overview

This chapter highlights Truss irritators. We’ll adapt the UART block-

level testbench to a system-level testbench that has four UARTs. One of

these UARTs will be randomly chosen to be the focus of the test, while

the other three will serve as background traffic irritators. While this

chapter uses UARTs for the irritators, the idea is generic.

Theory of Operation

This verification system builds upon the block-level UART system. We

will adapt the components developed in the last chapter, and add a few

new tests. These tests will show how irritators are used.

Here are the main components involved in the simulation:

One difference from the block-level system is that the testbench now

does not directly build each of the four UART interface’s objects (such

as the generator, checkers, agents, and so on). This is left to the

Verilog
wishbone driver

uart_basic_test_component

quad_uart_vectors

testbench.v

Quad UART Example: Objects and Connections

wishbone_driver

teal::write()

quad_uart_top

uart_basic_irritator uart_basic_irritator uart_basic_irritator

uart_interface uart_interface uart_interface uart_interface

An Object-Oriented Framework 283

T h e o r y o f O p e r a t i o n

uart_group class, which is called by the testbench. Another difference

is that three of the interfaces are exercised by irritator objects.

As with all good projects, this project steals1 code (in our case, from the

block-level UART code). The UART BFM, generators, and checkers are

reused without modification. We modify the UART 16550 SFM by adding

an integer ID, which is used to form the specific UART address.

The UART test component is also reused directly. In addition, we inherit

from the test component to create an irritator class. So, we added only a

few lines of code to the block-level test.

We will develop four tests. One is the previous chapter’s block-level test,

with modifications to select one of the four UARTs. The other three tests

exercise all four UARTs at once and show the test development progres-

sion from a simple group of test components to a single test component

and a list of irritators. Because the irritators are a Truss common base

class, this final test can be used as model for random tests in the Truss

environment.

Verification environment

Looking at the verification environment, we see that it is very similar to

that for the single UART. We still have the wishbone driver to access the

registers, this time mapped to a larger region. We still have all the main

players from the block-level UART.

Looking at the HDL side, the testbench environment is fairly straight-

forward. The only different module, quad_uart_top, instantiates four

UARTs and maps their write enable and read select according to the

upper address bits. The testbench environment is shown below.

1. Uhhh, adapts.

C h a p t e r 1 5 : C h i p - L e v e l Te s t i n g

284 Hardware Verif ication with SystemVerilog

Running the UART Example

There are four tests in the example. Running an example is simple in

Truss. To run a test, type one of the following:

$TRUSS_HOME/bin/truss --test block_uart --config block

$TRUSS_HOME/bin/truss --test quad_test_components

$TRUSS_HOME/bin/truss --test quad_uart_irritators

$TRUSS_HOME/bin/truss --test quad_uart_vectors

The quad_uart_test_components Test

The quad_uart_test_components test is the first test for the chip that

the authors wrote. We were just making sure that all the UARTs could

be addressed. This test chooses four different random configurations and

sends a random-length block (with random block delays) to each ingress

and egress channel. Here is the constructor part of the test:

qu
ad

_u
ar

t_
to

p

testbench.v

Quad UART Example: HDL Connections

32data

32address

2op_code

tx_0

work_done
1

re
se

t_
n

1
cl

oc
k

uart_testbench

1do_workw
is

hb
on

e_
dr

iv
er

ua
rt

_
bf

m

rx_0

Ve
ri

lo
g

w
is

hb
on

e
dr

iv
er

1

2select tx_1

ua
rt

_
bf

m

rx_1

tx_2

ua
rt

_
bf

m

rx_2

tx_3

ua
rt

_
bf

m

rx_3

An Object-Oriented Framework 285

T h e q u a d _ u a r t _ t e s t _ c o m p o n e n t s Te s t

function quad_uart_test_components::new (

testbench tb, truss::watchdog w, string n);

super.new (n, w);

testbench_ = tb;

'truss_assert (number_of_uarts >= 2);

for (teal::uint32 i(0); i < number_of_uarts; ++i) begin

string id = $psprintf ("%0d", i);

uart_test_component_ingress_[i] =

new ({"uart_test_component_ingress ", id},

tb_.uart_group[i].uart_ingress_generator,

tb_.uart_group[i].uart_program_sfm,

tb_.uart_group[i].uart_ingress_checker);

standard_generator(

tb_.uart_group[i].uart_ingress_generator.name);

uart_test_component_ingress_[i].do_randomize ();

uart_test_component_egress_[i] =

new ({"uart_test_component_egress ", id},

tb_.uart_group[i].uart_egress_generator,

tb_.uart_group[i].uart_protocol_bfm,

tb_.uart_group[i].uart_egress_checker);

do_generator (

tb_.uart_group[i].uart_egress_generator.name);

uart_test_component_egress_[i].do_randomize ();

do_configuration (

tb_.uart_group[i].uart_configuration.name);

end

endfunction

This example scales up nicely from the block-level tests we have seen.

The rest of the test’s methods are fairly boilerplate, and do not need any

special attention.

C h a p t e r 1 5 : C h i p - L e v e l Te s t i n g

286 Hardware Verif ication with SystemVerilog

The quad_uart_irritators Test

The quad_uart_irritators test is the second test for the chip that the

authors wrote. In this test we have randomly selected one UART as the

focus of the test (that is, by using a test_component), and we have an

array of three UART irritators. What are these uart_irritators? Let’s

take a look at the class.

UART irritator class

Remember that a Truss irritator is a way to adapt a test component to run

as background traffic. The test component’s run_traffic() method

will be called repeatedly until the test decides its time to stop. Here is

the interface for the UART test irritator:

class uart_basic_irritator extends truss::irritator;

local uart_basic_test_component basic_test_component_;

function new (string n,

 uart_generator g,

 truss::verification_component b,

 uart_checker c):

 super.new(n);

 uart_basic_test_component_ = new (n,g,b,c);

endfunction

virtual task out_of_reset()

basic_test_component_.out_of_reset();

endtask

endclass

The uart_basic_irritator class is a truss::irritator and owns

a basic_test_component. This makes sense, as the code interface will

follow the Truss irritator model and the implementation will use the

uart_basic_test_component, which is unchanged from the block-

level test. This is a major advantage of Truss: the same test component

can be reused from the block level to the system level. Also, because a

testbench is not mentioned anywhere in the test component, the test

component can be moved to different projects easily. This is not acci-

dental, but rather is a direct result of the layered approach talked about

earlier in this handbook.

An Object-Oriented Framework 287

T h e q u a d _ u a r t _ i r r i t a t o r s Te s t

Let’s take a look at the rest of the methods.

virtual function void report (string prefix);

basic_test_component_.report (prefix);

endfunction

virtual task time_zero_setup ();

basic_test_component_.time_zero_setup ();

endtask

virtual task out_of_reset (reset r);

basic_test_component_.out_of_reset (r);

endtask

virtual task write_to_hardware ();

basic_test_component_.write_to_hardware ();

endtask

virtual task wait_for_completion ();

basic_test_component_.wait_for_completion ();

endtask

virtual protected function void do_randomize ();

basic_test_component_.do_randomize ();

endfunction

virtual protected task wait_for_completion_ ();

basic_test_component_.wait_for_completion_ ();

endtask

virtual protected task start_components_ ();

basic_test_component_.start_components_ ();

endtask

virtual protected task do_generate ();

basic_test_component_.do_generat2();

endtask

virtual task inter_generate_gap ();

checker_.wait_actual_check();

endtask

N o t i c e t h a t a l l t h e m e t h o d s (s a v e o n e) j u s t c a l l t h e i r

basic_test_component method. This is a standard form, tedious

indeed, but it gives the coder the ability to add special code if needed.

Again, this is the tedious but obvious guideline coming into play.

There is one method, inter_generate_gap(), that is not just calling

the test_component’s method. This is because this method is specific

to an irritator. In our case, we know that the checker is derived from the

Truss checker, and so has a method to wait until expected or actual data

are checked. This is an appropriate throttling method for our irritator.

C h a p t e r 1 5 : C h i p - L e v e l Te s t i n g

288 Hardware Verif ication with SystemVerilog

As coded here, this method pauses the generation until a data packet is

checked. We could have done fancier things, such as have an initial

number of packets in play, or change the delay depending on the actual

data bytes generated.

That’s it for the irritator! In less than two dozen lines code, we have

added the ability to use any UART interface as background traffic.

Furthermore, the interface is that of a generic irritator, able to be plugged

into any test that has a list of truss::irritators. This is shown in

quad_uart_irritators, the first test to use irritators. Let’s take a look

at the test.

The test

Of course, we also have a test component that is the focus of the test.

This test is a little confusing, in that we use a UART for both the test

component and the irritators. Nevertheless, this is what we have to test.

Here are the interesting parts of the test’s code interface:

parameter uint32 irritator_count = number_of_uarts - 1;

class quad_uart_irritators extends truss::test_base;

 extern function new (testbench tb, watchdog w,

string name);

//...

local testbench testbench_;

//The focus of the test

local uart_basic_test_component uart_ingress_;

 local uart_basic_test_component uart_egress_;

//The background traffic components

uart_basic_irritator

 uart_irritator_ingress_[irritator_count];

uart_basic_irritator

uart_irritator_egress_[irritator_count];

endclass

This test uses a fixed array of irritators. In this test they are explicitly

called out as uart_basic_irritator. This use of a specific irritator

type will be made more generic in the next test.

An Object-Oriented Framework 289

T h e q u a d _ u a r t _ i r r i t a t o r s Te s t

Let’s take a look at the implementation of the constructor:

function quad_uart_irritators::new(testbench tb,

truss::watchdog w, string n);

 super.new (n, w);

 testbench_ = tb;

 'truss_assert(number_of_uarts >= 2);

endfunction

Where did all the code to initialize the test components go? That code

is moved into the do_randomize() method, because now the test has

some random behavior. In this case, randomization determines which

UART interface to pick for the test_component. Here is the

do_randomize() method:

task quad_uart_irritators::do_randomize();

//First, for the main point of the test...

min_index =

dictionary_find ({name_,"_min_uart_index"}, 0);

max_index =

dictionary_find ({name_,"_max_uart_index"}, 0);

'truss_assert (randomize ());

log_.info($psprintf ("Selected uart %0d", uart_index_));

begin

int i = uart_index_;

string id = $psprintf ("%0d", i);

uart_test_component_ingress_[i] =

new ({"uart_test_component_ingress ", id},

tb_.uart_group[i].uart_ingress_generator,

tb_.uart_group[i].uart_program_sfm,

tb_.uart_group[i].uart_ingress_checker);

//...

standard_generator (

testbench_.uart_group[i].uart_ingress_generator.name);

uart_test_component_ingress_[i].do_randomize ();

uart_test_component_egress_[i] =

new ({"uart_test_component_egress ", id},

tb_.uart_group[i].uart_egress_generator,

tb_.uart_group[i].uart_protocol_bfm,

tb_.uart_group[i].uart_egress_checker);

//...

do_generator (

testbench_.uart_group[i].uart_egress_generator.name);

C h a p t e r 1 5 : C h i p - L e v e l Te s t i n g

290 Hardware Verif ication with SystemVerilog

uart_test_component_egress_[i].do_randomize ();

do_configuration (

testbench_.uart_group[i].uart_configuration.name);

end

begin

//now for the irritators...

teal::uint32 count = 0;

for (teal::uint32 i(0); i < number_of_uarts; ++i)

begin

string id = $psprintf ("%0d", i);

uart_group if = tb_.uart_interface[i];

'truss_assert (count < irritator_count);

if (i != uart_index_)

begin

uart_irritator_ingress_[count] =

 new ({"irritator_ingress ",id},

if.uart_ingress_generator,

if.uart_program_sfm,

if.uart_ingress_checker);

uart_irritator_egress_[count] =

new ({"irritator_egress ",id},

if.uart_egress_generator,

if.uart_protocol_bfm,

if.uart_egress_checker);

do_generator (if.uart_egress_generator.name);

do_generator (if.uart_ingress_generator.name);

count++;

end

end

end

endfunction

Okay, that code is a bit long—but it is straightforward. First, a UART

protocol is chosen to be the focus of the test. Then it is built and

randomized. After that, the rest of the UART interfaces are packed into

test irritators and randomized.

An Object-Oriented Framework 291

T h e q u a d _ u a r t _ i r r i t a t o r s Te s t

Now that all the components have been built, let’s look at a typical test

method:

task quad_uart_irritators::start ();

 uart_test_component_ingress_.start ();

 uart_test_component_egress_.start ();

for (teal::uint32 i = 0; i < irritator_count; ++i)

begin

 uart_irritator_ingress_[i].start ();

 uart_irritator_egress_[i].start ();

 end

endtask

All the methods of the test follow this form. They first perform the action

on t he test_component , and t hen on th e i r r i t a t o r s . The

wait_for_completion() is similar:

task quad_uart_irritators::wait_for_completion();

 uart_test_component_ingress_.wait_for_completion ();

 uart_test_component_egress_.wait_for_completion ();

for (teal::uint32 i = 0; i < irritator_count; ++i)

begin

 uart_irritator_ingress_[i].stop_generation ();

 uart_irritator_egress_[i].stop_generation ();

 end

 for (teal::uint32 i = 0; i < irritator_count; ++i)

begin

 uart_irritator_ingress_[i].wait_for_completion ();

 uart_irritator_egress_[i].wait_for_completion ();

 end

endtask

Notice that wait_for_completion() first waits for the focus of the test

to complete. Then it tells the irritators to stop, and then waits for the

irritators to complete.

Remember, that after this wait_for_completion() returns, the test is

done.

C h a p t e r 1 5 : C h i p - L e v e l Te s t i n g

292 Hardware Verif ication with SystemVerilog

The quad_uart_vectors Test

The quad_uart_vectors test is the logical evolution of the previous

test. We get more fancy. Instead of a fixed array, we use a dynamic array.

Here are the relevant parts of the test header file:

class quad_uart_vectors extends truss::test_base;

extern function new (testbench tb, truss::watchdog w,

string name);

//standard Truss methods not shown

//as before:

 local testbench testbench_;

 local uart_basic_test_component uart_ingress_;

 local uart_basic_test_component uart_egress_;

//new stuff!

truss::irritator irritators_[$];

endclass

The do_randomize() method is very similar to that used in the

quad_uart_test_components test, with a small difference. Here we

build irritators, not test components.

uart_basic_irritator bi =

new ({"uart_irritator_ingress ", id},

if.uart_ingress_generator,

if.uart_program_sfm, if.uart_ingress_checker);

irritators_.push_back (bi);

The methods all follow a standard form, but for those not familiar with

the macros, they can look unnatural. Here is one example method:

'define for_each(data, method)\

 for (integer i = 0; i < data.size (); i++) \

begin \

 data[i].method (); \

 end

task quad_uart_vectors::time_zero_setup ();

 uart_test_component_egress_.time_zero_setup ();

'for_each (irritators_, time_zero_setup);

endtask

An Object-Oriented Framework 293

T h e b l o c k _ u a r t Te s t

The 'define allows us to operate on an entire array with a small amount

of code.

The methods are just a little more complicated for the Truss methods

that have a parameter:

'define for_each_1(data, method, param)\

 for (integer i = 0; i < data.size (); i++) \

begin \

 data[i].method (param); \

 end

function void quad_uart_vectors::report (string p);

 uart_test_component_ingress_.report(p);

 uart_test_component_egress_.report(p);

'for_each (irritators_, report, p);

endfunction

This last form of the test contains the fewest lines and also uses a macro.

It’s up to you to decide whether this is appropriate for your system.

The block_uart Test

The block_uart test is just a rework of the block-level test. The only

changes were to use the testbench’s uart_interface objects, and to

select a protocol to exercise.

Summary

This chapter took a look at a system-level verification system. We adapted

the components from the block-level test.

The first test just re-used the test_component from the block-level test

on all four UART protocols.

The next test brought in the concept of irritators, background traffic for

the main test.

C h a p t e r 1 5 : C h i p - L e v e l Te s t i n g

294 Hardware Verif ication with SystemVerilog

The system-level test quad_uart_vectors was used to show how

dynamic arrays and macros can be harnessed to make small, efficient,

standard-form code.

In general, this chapter showed that many block-level components could

be adapted without modification to the chip-level testbench. We did,

however, need to modify the uart_16550_sfm to handle a specific

address range.

Hardware Verif ication with SystemVerilog: An Object-Oriented Framework 295

Things to
Remember
C H A P T E R 1 6

“There goes my tail again.” —Eeyore

Paraphrased from Winnie-the-Pooh, by A.A. Milne

An ending is, by definition, a new beginning. This, the last chapter,

provides a good opportunity to review some of the handbook’s main

points. The authors sincerely hope that this is also a beginning for you

to benefit from using some of the techniques presented in the preceding

chapters.

This chapter is the 30,000-foot view of what we have covered. A wise,

experienced manager once told the authors, “If you want your team to

remember something, tell them at most three things.” We take that

advice—sort of—and present the three most important ideas of each part

in the book.

We hope that this handbook, and its accompanying code, was and will

continue to be useful. In the end, however, it is your job to verify the chip.

C h a p t e r 1 6 : T h i n g s t o R e m e m b e r

296 Hardware Verif ication with SystemVerilog

Part I: Use SystemVerilog and Layers!

In the first part of the book we introduced verification, SystemVerilog,

object-oriented programming, and what a layered verification looked

like. Here are the important points:

SystemVerilog is a good language for verification.

Use OOP techniques for verification, but not to excess.

Layering is the main technique for a verification system.

The verification world is a bit enamored with OOP. We are probably in

the early stages of settling down and using it, or not, where appropriate.

By using OOP techniques we can communicate our architectural intent

clearly.

The concept of layering, formally described as abstraction, roles, and

responsibilities, is perhaps the single most important technique we can

use. We presented terms for layers that we later implemented as classes

and conventions.

Part II: An Open-Source Approach

In this part of the handbook we presented some code that has proved

useful to us and those at other companies. That code may not have

everything you want, but it should be flexible enough for you to adapt it

to your needs. We noted specifically the following:

Teal is a set of useful classes and features for verification. These
are the building blocks of functional verification.

Truss provides a flexible, yet well-defined, application framework
for verification.

A simple, but complete, example can be useful.

This part of the handbook is what most books lack. The authors take all

the theory and lessons learned and show you how they have built verifi-

cation systems. Make no mistake, Truss is a verification methodology.

Teal is a bit more open, but any implementation of a programming concept

contains the prejudices and biases of the implementors.

An Object-Oriented Framework 297

P a r t I I I : O O P — B e s t P r a c t i c e s

The point of the example is to show how these implementations, Teal

and Truss, can be useful.

Part III: OOP—Best Practices

In this part of the handbook we took a long look at OOP. We talked about

how to “think OOP” and how to “code OOP.” Here are the three main

points of this section:

OOP is a powerful tool for managing complexity and creating
adaptable code.

There are lots of techniques, and most of them involve balancing
trade-offs.

The code should make minimal assumptions, and make those
assumptions as obvious as possible.

As the complexity of the chips increased, so did our verification systems.

OOP can be used to increase the communication among engineers.

Basically, this means creating code that others can reason about.

The hundred pages or so of the middle part presented lots of lessons

learned. There were techniques, guidelines, and horror stories. There

were no absolute right or wrong answers. You and your team must decide

what is appropriate.

If a bit of code has a well-defined purpose as well as obvious dependen-

cies, it stands a good chance of being reasoned about and eventually

understood. The objective is to minimize the assumptions about the code,

while still doing something worthwhile.

C h a p t e r 1 6 : T h i n g s t o R e m e m b e r

298 Hardware Verif ication with SystemVerilog

Part IV: Examples—Copy and Adapt!

We could have left the book with only three parts—but one example and

some code snippets are usually not enough to help you understand a set

of techniques or some new code. Consequently, we wrote some more

examples. The following summarizes the main points of these examples:

You can create portable verification IP that other projects can use.

Separating the chip-specific parts from the protocol-generic parts
shows users what they have to modify for their project.

The testbench and test components can become large, but they are
still “reasonable.”

This section of the handbook presented more examples of chips and their

verification systems, all the way to a final example that used all the

previous examples. We would not be surprised if the code has mistakes

and can be made even more clear. Yes, we’ll probably even get some

complaints, but we know of no better way for you to learn the ideas and

techniques talked about in this handbook than to see working, completed

examples.

Conclusion to the Conclusion

The authors have tried to make a handbook that is useful. We’ve combined

verification and OOP, and described techniques that have proved useful.

We did not separate the verification techniques from the language used

to express them. To do that would have made the book easier to write.

However, you would have been reading just a book, not a handbook. You

should be able to find in these pages—and on the code freely available

at www.trusster.com—enough examples that are sufficiently close to

what you want to do. Cut, copy, and paste away!

Please contact us at www.trusster.com. On this site you can also find up-

to-the-minute information about Teal and Truss, as well as discussion

boards where users share knowledge and ideas. It’s a good place to start

for any Teal or Truss questions.

An Object-Oriented Framework 299

C o n c l u s i o n t o t h e C o n c l u s i o n

It’s also where we will post errors found in this handbook. We invite

your comments and suggestions.

Please stay in touch with us, at www.trusster.com.

“ . . . and now for something completely different.1”

1. From Monty Python’s Flying Circus, episode 26, December 1971.

Hardware Verif ication with C++: A Practit ioner’s Handbook 301

Index
Symbols
"e" 30
#(drive_delay) 144
#include 77
$finish 102
$root scope 42
$SIM 124
$TRUSS_HOME/bin/truss 123
$TRUSS_HOME/bin/truss --help 124
$TRUSS_HOME/bin/truss --test block_uart --config block 284
$TRUSS_HOME/bin/truss --test quad_test_components 284
$TRUSS_HOME/bin/truss --test quad_uart_irritators 284
$TRUSS_HOME/bin/truss --test quad_uart_vectors 284
$TRUSS_HOME/bin/truss --test tutorial_test 142
'define 293
'field_get() 234
'field_put 262
'field_put() 234
'include 241
'PURE 38
*.sv 40
*.svh 40
.sv 39
.svh 39
.tool_rc files 123
/alu 139
/bin 139
/examples/alu 139
/examples/alu_tutorial/bin 142
/examples/single_uart/bin 255
/results 139
/rtl 139
/test_components 139

I n d e x

302 Hardware verif ication with C++

/testbench 139
/testbench/ 139
/testbench/top 139
/tests 139
/truss/inc/truss_channel.h 128
/verification 139
/verification/testbench/top/hdl_paths.vc 139
/verification/vip/wishbone 264
/vip 139
; 224
? operator 225
@(posedge(iface_.clk)) 176
_ 238, 242
__ 239
__uart_configuration_chooser 259
_agent 131
_dma 230
_fifo 230
_max 263
_min 263
_pic 230
_vip 230
“e,” 32

Numerics
16550 RTL 250

A
A Few Good Men from UNIVAC 67
A.A. Milne 295
Abraham Maslow 47
abstraction

layers 54, 180
level 174, 225

access 196
control 33
control labels 33
rules 244

action object connection 220
adaptability 163, 168
adaptable code 155, 257
add_listener() 271
add_map() 80, 83
address map 184
Advanced Microcontroller Bus Architecture 108
agent 127, 129

layer 54, 56, 127
agile manufacturing 171

AHB 108
ahb_test_component 110
Ajeetha Kumari 21
aldec 123
ALU 134

chip test 140
example 141

alu_driver.cpp 144
alu_input_ 144
alu_test 141
alu_test_component 145
always 254
AMBA 108
Andreas Meyer 6
Andrew Zoneball xxi
application framework 89
array 36
arsenal 154
ASICs 3
assembly language 25
assert() 166
assertion 166

language 15
nontemporal 15
SystemVerilog 19

assignment statements 225
assigns 186
ATM 185

B
back pressure 122, 128, 135
back-door mechanism 79
background

noise generators 62
traffic 105, 282
traffic components 64

base class 49, 176, 198
abstract 37
test pointer 187
virtual 37, 106

base test object 187
basic_bfm 45
basic_test_component 286, 287
baud rate 240
beauty 223
befuddlement 153
Ben Cohen 21
Benjamin Franklin 189
BFM 37, 54, 94, 175, 191, 199, 200

A Practit ioner’s Handbook 303

agent 199, 200, 210
bidirectional protocol 267
bin 123
bind construct 19
bins 18
Bjarne Stroustrup 1, 188
block length 277
block_test.sv 250, 251
blocking method 216
block-level testbench 282
BOOK_HOME 255
boot source 167
bottom-up approach 51
brittle code 207
broadcast 128

mechanisms 56
build_interfaces 126
build_interfaces() 100, 101, 118, 143
build_interfaces.svh 101
burst 195
bus 233

contention 105
functional model 37, 54, 94, 175, 199

byte 19

C
C 25, 30
C++ 24
cache coherency unit 183
Cadence Specman “e” 12, 20
callbacks 218
CAN 229
CAN node 231
can_fifo 231
can_node 229
capitalization 244
case 178
channel 127, 128, 208, 219, 266, 267, 268, 270

class 111, 128
connection 219
policy 267

channel::get_data() 208
channels 130, 265
check loop 148
checker 57, 106, 182, 184, 191, 208, 212, 213, 255,

268
agent 267

checker.sv 146
checker_agent 130, 268

checking 146, 184
checking side 267
chip programming 261
Chris Spear 20, 46
class 13, 26, 42, 190

base 49
burst memory 195
channel 128
ethernet_monitor 53
helper 259
inheritance 36, 168
library 72
middle layer 62
monitor 53
names 241
parameterized 128
pci_express_monitor 53
pseudo-templated 128
utility 259
verification_base 38
vlog 72
vout 72
vrandom 73

classes 32, 47, 192
--clean 124
clock

domain 206
clocking blocks 19, 144
c-model 13, 140, 146

prototype 146
code

adaptability 163
buddy 163
interface 28
layers 48
leader 162
reviews 163

code interface 28
coffee break 149
cohesion and coupling 188, 222
colliding names 178
common currency 52
common resource 206
compile error 35
completed_ 148
complexity 154, 155
component layer 53
condition

status register 183

I n d e x

304 Hardware verif ication with C++

variable 109, 126
--config 139
configuration

class 256
object 261
settings 256

configuration_16550 260
congestion bugs 122
connection 180

action object 220
channel 219
layer 52, 54
loose 208
peer-to-peer 209
policy 56, 267, 268
pull 210
push 209
thread-safe 207, 214
tight 207
unbalanced 209

connection-level object 106
connections 55, 206
constraint 96
constraint language 16
constructor 34
consumer 128
container class 220
continue_generation() 111
control/status register field 177
Controller Area Network (CAN) 229

protocol 209
conundrum 154
convention 92, 242
core 251, 260, 280
corner case 4, 62, 105
correct by construction 166, 176, 178, 188
counter

start-of-frame 161
coverage 18, 19

range 18
sublanguage 18

CPU operation 133
cpu_generator 133
cpu_monitor.sv 145
CRC 215
crc_corruptor 215
CSR 193

field 177
CSR (condition status register) 183

current best answer 157
Cyclic Redundancy Check (CRC) protocol 215

D
D.L. Parnas 67
dance 55, 91, 94, 115, 116, 250, 255, 261, 275
data

abstraction 26
derived 180
dropped 185
duplication 180
hiding 26
mapping 178
members 234
word size 265

data_checker 208
data_completed 218
data_generator 208
data_packet.sv 198
data_size 263
David E. Lundstrom 67
debug message 72
debugging 251
decomposition 67
define 104, 192, 240, 262, 263
delay 111, 122, 148, 277

mechanism 111
depth 128
derived data 180
descriptor 233

class 33, 34
design 173, 174

directions 68
error 182
mistakes 173
patterns 67

Design and Evolution of C++, The 34
Design of Everyday Things, The 188
device under test 4
diagnostics 251
dictionary 77, 94, 96, 118

function 73
dictionary_find() 134
dictionary_put() 134
dictionary_read(std::string) 77
directed tests 94
DMA 32, 56, 94, 180, 229, 267

block sizes 268
buffer 183

A Practit ioner’s Handbook 305

channel 183
checker 182
descriptor 32
descriptor queue 233
enable 183
engine 180
generator 32
offset 183

dma_test 170
do_action() 218, 220
do_generate() 107, 126, 276, 277
do_generate_() 120, 126
do_handler() 161
do_op 144
do_randomize() 37, 107, 120, 203, 258, 259, 260,

277, 289
do_tx_thread() 267
do_work 254
do_work_ 264
dogma 226, 244
Donald A. Norman 188
Donald E. Knuth 188
done_generate_() 129
double underscore 239
Douglas Adams 173
downcasting 100
Dr. Seuss 281
driver 191

wishbone 264
driver_agent 130
dropped data 185
DSR 280
DTR 280
duplication 180
DUT 4

E
e 30
EDA (electronic design automation) 14
Edsger Dijkstra 188
Eeyore 295
efficiency 181
egrep 241
egress 270
electricity 190, 191
embedded processor 261
end condition 62
endpoints 177
ends-in approach 51, 250

enum 19, 159, 231, 240, 258
enumeration 155, 177, 181, 240
environment variables 123
equal() 185
error

counting 74
message 72

error_threshold 149
essential complexity 155
Ethernet 185

driver 38, 39
interface 40, 52, 202
Media Access Control 181
multicast packets 213
packets 197
ports 104
subsystem 161

ethernet_basic_packet 104
ethernet_checker 177
ethernet_data 203
ethernet_monitor 53
event 214, 220, 269
exercise 63
extern 39

F
factory

function 187, 228, 237
objects 67

FAE (field application engineer) 14
fanatic 244
field name 234
field-programmable gate array (FPGA) 3
FIFO 56, 185, 229, 267

depth triggering 280
interrupt trigger points 268

file
header 39
name 241
source 39

files 78
filtering 74
filters 196
final_report() 37
find 134, 241
find() 78
foosball 149
force_parity_error 78
FORTRAN 25

I n d e x

306 Hardware verif ication with C++

FPGA 3
fractal structure 119
frame 161
framework 31

layer 28
Frederick Brooks 67, 171
function

dictionary 73
virtual 192

functional verification 3

G
gap 135
gate level 11
gather data 144
generator 57, 73, 92, 106, 182, 191, 208, 255

agent 267
generator/checker class 200
generator_agent 129
get() 195, 237
global

components 165
functionality 99
names 178
resources 179
sequencer 278
service 193, 196, 237
state 235

godfather 162
Goethe 23
golden file 29
Gordon Moore 3
Grace Hopper 25
grouping 27
guidebook 243
guidelines 243

H
hanging 228
HDL

timeout 102
wrappers 186

HDL (hardware description language) 10
HDL top 186
hdl_paths.vc 125
header file 39, 179, 205, 241
--help 124
helper class 259

helper classes 241
Henry Ford 71
hierarchy trees 27
Hitchhiker’s Guide to the Galaxy 173
host node 156
housekeeping 109

I
I/O 154
I/O subsystem 184
identifiers 198, 243
idiom 236
IEEE 20

1076, 1647 20
1076, 1800 20, 46
1364-1999 20
1995-2001 20

if test 166, 192, 224
ifdefs 146
IKEA 115
illegal state 215
implementation complexity 155, 156
import 41
import clause 179
import keyword 179
include

file 41
include directories 139
Industrial Revolution 27
in-flight data 97
ingress 270
Ingvar Kamprad 115
inheritance 26, 36, 153, 170, 177, 198, 199, 200, 212

for code interface 37
for functionality 27, 36
for interface 28

inheritance-based interconnect 219
inherited class 105
init() 159
init_() 230
init_with_seed() 84
initialization 96
inspection 29
instance

name 242
pointer 35

instantiation 32
int union 19
Intellectual Property 40

A Practit ioner’s Handbook 307

intent 25, 34, 176, 178, 257
inter_generate_gap() 111, 287
inter_generate_gap_() 122, 135
interface 42

block 51
defined 28
my_interface 129
UTOPIA 210
wishbone 251

interfaces<chip_name>.svh 101
interfaces_.svh 101
interfaces_dut 99, 100
intergenerate delay 148
Inter-Integrated Circuit 167
intermediary object 128, 208
interpreter 182
interrupt 160, 161, 180, 185

code 155
handlers 160
vector 193

interrupt_handler 161
interrupt_scoreboard 160
io_unit 176
io_unit.top.driver 176
IP 40, 251
IP (intellectual property) 1
irritator 61, 62, 64, 91, 102, 105, 106, 112, 121, 135,

282
I-squared-C interface 167

J
Janick Bergeron 6
Jim Coplien 171
John Backus 25
Joint Test Action Group 234
JTAG interface 234

K
key 233
key algorithm 90
knob 17, 132

L
language

assertions 15
constraint 16

latch 86
latency 148, 185

layer 47
abstraction 54
agent 54, 56
code 48
component 53
connection 54
middle 61, 62, 250
test 51
top 58
transaction 54, 57
upper 56

layering 47, 71
lcd_parameters.svh 179
lcd_parameters:: 179
Lean Software Development 171
legal

configuration 257
length 32
level of detail 174
libraries 5
linked_list_descriptor class 36
listener 128, 218, 220
Literate Programming 188
local 13, 33
logger 196
logging 72, 74, 94, 96
look-up table 263
loop constructs 225
loop_body() 144
loop_body_() 144
loop_condition() 144
loop_condition_() 144
loopback 280
loose connection 208

M
MAC 181
machine language 25
macro 292
macros 192, 243
magic 159

code 154
mailbox 128
Mary and Tom Poppendieck 171
master 108, 209
master-slave connection 209
master-to-slave 209
match_id() 161
Media Independent Interface 181

I n d e x

308 Hardware verif ication with C++

mediocrity 115
member

methods 35
variables 35

memory 79
access 80, 261
arrays 80
functions 73
map 165
package 194
Teal 234
transactors 80

memory.svh 194
memory_bank 196, 263
memory_bank object 79
mental

complexity 181
fog 153
state 225

message
debug 72
error 72
logging 193
passing scheme 209

method 26, 47
calls 37, 191, 216, 255
nonunderscored 238
static class 195

middle layer 61, 250
middle layer class 62
MII 181
mistake 41
mnemonic 242
module 27, 42, 192

in use 228
monitor 73, 94, 191, 215

base class 53
Monty Python 153, 299
Moore’s law 3
mti 123
multilayer protocols 181, 185
multinode protocol 229
mutex 233
mutual exclusion 233
muxes 186
My style is the best! 242
Mythical Man-Month, The 67, 171

N
name collisions 41
names 241, 242
ncsim 123
negation 227
neighbor 193
Neil Harrison 171
new() 34
noise 121
nonessential traffic 65
nontemporal assertion 15
nonunderscored methods 238
null 35

O
object-oriented

concepts 26
programming 1

OHCI 253
On the Criteria To Be Used in Decomposing Systems

into Modules 67
OOP 1
OOP bicycle 153
op_code 144
op_done 144
Open Host Controller Interface (OHCI) 253
OPENCORES 251

code 264
OpenVera 12, 20
operand 133
operand_a 133, 144
operand_b 144
operation_completed() 144
operation_done 147
operator 133
operator overloading 192
Organizational Patterns of Agile Software

Development 171
out_of_reset() 37, 96, 104, 107, 126, 143

P
package 40, 178, 192, 193

memory 194
pci_x 40

packet 58
test 63

packet_received() 199
packets in flight 111

A Practit ioner’s Handbook 309

parameterized classes 128
parity error 78, 280
Pascal 25
payload class 202
payload_base 202
PCI 177, 234
PCI Express 156, 185

interface 52
test 61

pci_checker 177
pci_endpoint 177
pci_express_monitor 53
pci_x package 40
peer-to-peer connection 209
Peopleware: Productive Projects and Teams 171
peripheral interface controller (PIC) 229
Perl 123
phases 37
physical layer 181
pipe 128
pipe stages 147
Plato 223
PLL 118
plug-in behavior 118
pointer 36, 192, 211

instance 35
portability 180
post_ 239
post_randomize() 239
post_run() 159
postamble 238
postprocessing 74
power-on reset 143
pre_ 239
pre_randomize() 239
preamble 238
premature optimization 188
presence or absence test 225
Principles of Functional Verification 6
print() 35, 203
printf 137
procedural

languages 25
process_command() 176
processor 261
producer 128
productivity 48
program 42
PROJECT_HOME 123, 255

protected 33
protocol

bidirectional 267
error generator 214

protocol_monitor 215
public 28

nonvirtual method 238
pull connection 210
pure

virtual function 38
pure virtual

method 38, 169
push connection 209
put 134
put() 271
put_to_DUT() 203

Q
QDR RAM 166
quad data rate 166
quad_uart_irritators 288
quad_uart_irritators test 286
quad_uart_test_components test 284
quad_uart_top 283
quad_uart_vectors test 292
question mark operator 225
queue 220

R
RAM 166
RAND_32 85
random

generator 30
numbers 84
testing 29

RANDOM_RANGE 85
randomization 16, 94, 126, 133, 256, 258
randomize() 27, 118, 258, 277
randomness 29
random-number generator 73, 84
read() 80, 81, 194
real_interfaces 101, 118, 126, 272
receive_completed_() 267
receive_message_() 230
Reduced Media Independent Interface 181
ref concept 19
reference

model 229

I n d e x

310 Hardware verif ication with C++

register 229, 256, 267
access 196
access objects 274
defines 261
set 251
transfer level (RTL) 11

religious war 242
report() 92, 102, 104, 119, 148
requestor 182
reservation 233
reset 96, 143
reset_n 143
resolution 34
resource 233
reuse 27
ring 36
RMII 181
roaming 62
Robert McCloskey 137
Roger S. Pressman 20, 188, 222
RTL 11, 123, 139
rtl 125
--run 124
run 142, 186

script 123
run_component_traffic_() 107, 120, 122
run_loop 144
run_traffic() 121, 286
run_traffic_() 110
run-time checking 178
run-time errors 35

S
sampling algorithm 280
Saul Steinberg 4
scenario files 73
scope 26, 34

of concern 174
rules 244

scoreboard 160
script 123
--seed 124
seed 30, 73, 85
seed value 124
send_block() 265
send_block_() 265
send_message_() 230
send_one_operation() 133
separators 243

sequence numbers 197
sequencer 278
sequential calls 235
setup 123
setup script 139, 142
SFM 253

agents 267
shortreal 19
shutdown 112
silver bullet 154, 171
SIM 123, 255
Simula 26
simulation

speed 182
time 60
waveforms 29

--simulator 124
SIMULATOR_HOME 123, 255
single method 194
singleton 43, 179, 194, 195, 237
Sir Walter Scott 205, 249
size() 269
slave 108, 209
SNUG (Synopsis Users Group) 21
SoC 154
Software Engineering

A Practitioner's Approach 20
Software Engineering: A Practitioner’s

Approach 188, 222
software functional model (SFM) 253
source file 39
spatial locality 235
Specman 24
spelling 134
spells 162
sreport() 258
Srinivasan Venkataramanan 21
standards 20, 46
start of frame 161
start() 37, 92, 96, 104, 107, 120, 126, 159, 237, 238
start_() 107, 230, 238
start_components() 107
start_components_() 145
start_of_data 218
start_of_frame 216, 218
start_of_frame_ 216
StartupClass 159
state

machine 34

A Practit ioner’s Handbook 311

space 29
variables 34

static methods 193, 194
Steve McGuire 6
stimulus 184

generators 159
stop bits 280
stop() 92, 159
stop_() 230
stop_generation() 105, 112, 122
string 19
Stuart Sutherland 21
style 242
sublanguage 16
sublayers 53
switch

statements 225
switches 124
synchronization 180
Synopsys 20
syntax 243
synthesizable subset 15
SystemC 20, 24
SystemC (C++) 12
system-level testbench 282
System-on-a-Chip 47, 154
SystemVerilog 11, 12, 20
SystemVerilog assertions 21
SystemVerilog for Verification

A Guide to Learning the Testbench Language
Features 20, 46

T
tap 268
tapeout 165
Teal 5, 12, 13, 69, 71, 90, 247

dictionary 133
library 90
memory functions 234

Teal messages
teal_debug 76
teal_error 76
teal_fatal 76
teal_info 76

teal::latch 215
teal::read() 275
teal::write() 262, 275
teal_debug 76
teal_error 76

teal_fatal 76
TEAL_HOME 123
teal_info 76
teal_memory.svh 196
teal_vout.svh 196
team

dynamics 49, 162
environment 24
roles 162
style 243

teamwork 155
technical leader 162
tee 268
template 90, 92
templating 19, 220
temporal

locality 235
TEST 104
--test 124, 139
test 59, 60, 91, 93, 278

block 50
class 102
component 61, 62, 102, 270, 275
directed 94, 125
first 125
layer 51
parameters 77
quad_uart_irritators 286
quad_uart_test_components 284
quad_uart_vectors 292
uart_test_0 293

test.randomize() 96
test.sv 105, 141
test.svh 105
test::do_randomize() 118
test::out_of_reset() 118
test::start() 119
test::time_zero_setup() 118
test_base 105
test_component 91, 106, 109, 110, 119, 126, 131,

133, 250
test_name.sv 139
test_name.svh 139
testbench 6, 59, 60, 91, 93, 94, 99, 118, 270

block 51
testbench.randomize() 96
testbench.sv 99, 141, 143, 250, 251
testbench.svh 99
testbench.v 140, 252

I n d e x

312 Hardware verif ication with C++

testbench::do_randomize() 118
testbench::out_of_reset() 118
testbench::start() 119
testbench::time_zero_setup() 118
testbench_base 99
Testbuilder 20
The C++ Programming Language 188
the_protocol 170
thread 58, 107, 206

boundaries 207
thread-safe connection 207, 214
throttle mechanism 111
throttling 122, 287
tight connection 207
time 60
time_zero_setup() 96, 101, 104, 107, 118, 143
timeout 95, 97, 109
Timothy Lister 171
TLAs 243
Tom DeMarco 171
Tony Hoare 188
toolsmith 162
top layer 58
top.v 43
traffic

generation 126
generators 94

trailing underscore 238, 244
tranif 186
transaction 53

layer 54, 57
transactor 92, 94, 219
transmit side 267
transport layer 181
trap() 216
tricks 232
trigger 215
Truss 2, 5, 31, 69, 89, 115, 122, 247

channel 127
directories 138
irritator 282, 286
run script 123
standard test algorithm 250
switches 124

truss 136
truss command 142
truss run script 123
truss::irritator 135, 286
truss::testbench_base 99

TRUSS_HOME 123, 255
truss_verification_top.sv 116
truss_vout.svh 96
type

checking 176
type_id 159
type_id==top 159
typename 241

U
UART

16550 251, 260
16550 RTL 250
16550 SFM 254, 283
BFM 253
code 251
interface 77
test 65
test component 66

uart_16550_bfm 261
uart_16550_bfm::write_to_hardware() 262
uart_basic_irritator 286, 288
uart_basic_test_component 286
uart_checker 213
uart_configuration.sv 259
uart_group 283
uart_interface 293
uart_irritators 286
uart_test_0 test 293
uart_top 252
uart_word::equal() 269
unbalanced connection 209
underscore 238, 243

methods 238
Universal Test and Operations Physical Interface for

ATM 210
unmatched writes 182
upper layer 56
USB 185

host interface 210
subsystem 161

user_main 105
utility class 259
UTOPIA interface 210

V
vcs 123
Vera 5, 24, 30, 32

A Practit ioner’s Handbook 313

verification
functional 3
languages (compared) 11
top 58, 93
top block 50

Verification Intellectual Property (VIP) 1, 139, 163,
164, 241, 247, 253, 258

verification top 186
verification_base 38, 39
verification_component 91, 92, 97, 201
verification_top() 82, 91, 93, 104, 116, 119
verification_top.sv 116, 141
Verilog 11, 12, 20, 29, 30, 47
Verilog language 168
VHDL 11, 12, 20, 29, 30, 47, 168
virtual

base class 28, 37, 106
function 38, 192, 229, 238
interface 13
keyword 38
method 38
protected method 238
pure virtual 38

virtualization 28
vlog 75, 196

class 72
vout 74

class 72
vrandom 84, 85

class 73
Vroomfondel 173

W
wait and signal 214
wait for trigger 144
wait() 216
wait_for 216
wait_for_completion() 97, 104, 105, 109, 119, 126,

142, 147, 148, 269, 291
wait_for_completion_() 109, 127
wait_for_start_of_frame() 216
war (religious) 242

watchdog timer 51, 59, 91, 93, 94, 101, 118, 228
wb_mast 264
Whew! 149
whiteboard 5, 49, 50, 52, 174

verification system 48
wild equality 19
Winnie-the-Pooh 295
wire 53
wishbone

BFM 254
driver 252, 264, 283
interface 251, 254, 263
objects 274
protocol 261

wishbone_driver 275
wishbone_memory_bank 275
work_done 254
wrapping 179
write() 80, 194, 262
write_to_hardware() 96, 107, 119, 261
writes

overlapped memory 183
write-to-hardware phase 261
Writing Solid Code 6
Writing Testbenches: Functional Verification of

HDL Models 6
www.asic-world.com 46
www.doulos.com 46
www.opencores.org 251
www.trusster.com 2
www.verificationguild.com 15

X
XON/XOFF processing 213

Y
your_test_component::generate_() 126

Z
ZBT RAM 166
Zero-bus turnaround 166

	Contents
	Preface
	Acknowledgments

	Introduction
	Background
	What is Functional Verification?
	Why Focus on SystemVerilog?
	A Tour of the Handbook
	For Further Reading

	Part I: SystemVerilog and Verification (The Why and How)
	Why SystemVerilog?
	Overview
	SystemVerilog as a Verification Language
	Main Benefits of Using SystemVerilog
	Drawbacks of Using SystemVerilog
	SystemVerilog Traps and Pitfalls
	SystemVerilog is not Verilog
	Errors and run-time crashes
	Five languages in one!
	The assertions language
	The constraint language
	The coverage language
	SystemVerilog features not discussed

	Summary
	For Further Reading

	OOP and SystemVerilog
	Overview
	The Evolution of OOP and SystemVerilog
	Assembly programming: The early days
	Procedural languages: The next big step
	OOP: Inheritance for functionality
	OOP: Inheritance for interface
	A word or two about “interface”

	The Evolution of Functional Verification
	Verification through inspection
	Verification through randomness
	The emergence of hardware verification languages
	OOP: A current trend in verification
	OOP: A possible next step

	OOP and SystemVerilog
	Data abstraction through classes
	A DMA descriptor example
	Access control
	Constructors
	Member methods and variables

	Inheritance for functionality
	Inheritance for code interface
	What’s a header file?
	Packages
	Separating HDL and testbench code
	Wiggling wires: the interface concept
	Building and using interfaces

	Summary
	For Further Reading

	A Layered Approach
	Overview
	A Whiteboard Drawing
	An “ends-in” approach
	Refining the whiteboard blocks

	The “Common-Currency” Components
	The Component Layer in Detail
	The connection layer
	The agent layer
	The transaction layer

	The Top-Layer Components
	What is a Test?
	The Test Component
	The Test Irritator
	A Complete Test
	Summary
	For Further Reading

	Part II: An Open-Source Environment with SystemVerilog
	Teal Basics
	Overview
	Teal’s Main Components
	Using Teal
	A simple test

	Logging Output
	Using Test Parameters
	Accessing Memory
	A memory example

	Constrained Random Numbers
	Required initialization
	Using random numbers

	Working with Simulation Events
	Summary

	Truss: A Standard Verification Framework
	Overview
	General Considerations
	SystemVerilog considerations
	Keeping it simple

	Major Classes and Their Roles
	Key test algorithm: The “dance”

	The verification_component Virtual Base Class
	Detailed Responsibilities of the Major Components
	The testbench class
	Watchdog timer
	Test class

	Test Component and Irritator Classes
	The test component virtual base class
	An AHB example
	Test-component housekeeping functionality
	The irritator virtual base class
	Using the irritator

	Summary

	Truss Flow
	Overview
	About truss_verification_top.sv
	The Test Component Dance
	The Irritator Dance
	Compiling and Running Tests
	The truss run script
	Switches

	Using “-f” files

	The First Test: A Directed Test
	The Second Test: Adding Channels and Random Parameters
	The channel pseudo-templated classes
	Building the second test
	Building the second test’s test_component
	Adjusting the second test’s parameters

	The Remaining Tests: Mix-and-Match Test Components
	Summary

	Truss Example
	Overview
	Directory Structure
	Theory of Operation
	Running the Simple ALU Example
	Points of Interest
	Power-on Reset
	Driver and Monitor Protocol
	The alu_test_component
	Checking the Chip
	Completing the Test
	Summary

	Part III: Using OOP for Verification (Best Practices)
	Thinking OOP
	Overview
	Sources of Complexity
	Essential complexity vs. implementation complexity
	Flexibility vs. complexity
	Apparent simplicity vs. hiding inherent complexity
	Example: How hiding complexity can create confusion
	Example: How apparent simplicity leads to later problems

	Team dynamics
	Team roles
	Using a “code buddy”

	Creating Adaptable Code
	Achieving adaptability
	Why is adaptability tricky?

	Architectural Considerations to Maximize Adaptability
	Changes are easy—or just plain impossible
	Where is adaptation likely to happen?

	Separating Interface from Implementation
	Code Interface, Implementation, and Base Classes
	Summary
	For Further Reading

	Designing with OOP
	Overview
	Keeping the Abstraction Level Consistent
	Using “Correct by Construction”
	The Value of Packages
	Data Duplication—A Necessary Evil
	Designing Well, Optimizing Only When Necessary
	Using the Protocol, Only the Protocol
	Verification Close to the Programming Model
	The Three Parts of Checking
	Separating the Test from the Testbench
	Summary
	For Further Reading

	OOP Classes
	Overview
	Defining Classes
	How Much Electricity?
	Classes
	Packages
	Pointers and virtual functions

	Global Services
	Package it up!
	Static methods
	Singletons—A Special Case of Static Methods
	Packages or static methods?
	Other considerations

	Class Instance Identifiers
	Strings as identifiers
	Static integers as identifiers
	Combination identifiers

	Class Inheritance for Reuse
	A BFM base-class example
	A BFM agent class
	Reusing the BFM class

	Class Inheritance for Code Interfaces
	Inheritance for a verification component
	Inheritance for a payload code interface

	Summary
	For Further Reading

	OOP Connections
	Overview
	How Tight a Connection?
	Types of Connections
	Peer-to-peer connections
	Master-to-slave and push-vs.-pull connections

	Two Tight Connection Techniques
	Using pointers
	Using inheritance

	Threads and Connections
	Events—explicit blocking interconnects
	Hiding the thread block in a method

	Fancier Connections
	Listener or callback connections
	Channel connections
	Action object connections

	Summary
	For Further Reading

	Coding OOP
	Overview
	“If” Tests—A Necessary Evil
	“If” tests and abstraction levels
	“If” tests and code structure
	Repeated “if” expressions
	“If” tests and factory functions
	A factory function example

	Coding Tricks
	Coding only what you need to know
	Reservable resources
	The register: an int by any other name
	Using data members carefully

	Coding Idioms
	The singleton idiom
	Public nonvirtual methods: Virtual protected methods

	Enumeration for Data, Integer for Code Interface
	What’s in a Name?
	Keeping class name the same as file name
	Keeping class and instance names related

	Coding with Style
	Proceeding with caution
	General syntax conventions
	Identifying local and protected members

	Summary
	For Further Reading

	Part IV: Examples (Putting It All Together)
	Block-Level Testing
	Overview
	Theory of Operation
	Verification environment
	Verification IP
	UART VIPs
	Wishbone VIP

	The verification dance

	Running the UART Example
	Points of Interest
	Configuration
	VIP UART package
	VIP UART configuration class
	Randomization of parameters

	UART 16550 configuration class

	Configuring the Chip
	Register access
	The wishbone_memory_bank and wishbone_driver

	Traffic Generation
	The generator_agent and uart_bfm_agent classes

	The Checker
	Checking the data

	Connecting It All Together
	The testbench
	Building the channels
	Building the configuration and interface port
	Building the component-layer objects
	The wishbone objects

	The test component
	The uart_basic_test_component::do_randomize() method

	The basic data test

	More Tests
	Summary

	Chip-Level Testing
	Overview
	Theory of Operation
	Verification environment

	Running the UART Example
	The quad_uart_test_components Test
	The quad_uart_irritators Test
	UART irritator class
	The test

	The quad_uart_vectors Test
	The block_uart Test
	Summary

	Things to Remember
	Part I: Use SystemVerilog and Layers!
	Part II: An Open-Source Approach
	Part III: OOP—Best Practices
	Part IV: Examples—Copy and Adapt!
	Conclusion to the Conclusion

	Index

