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Preface

The present book is one of the outcomes of the project DYNAD - Methods
and Draft Standards for the Dynamic Characterization and Testing of Analogue-
to-Digital Converters. This project was held between 1997 and 2000, sup-
ported by the European Commission under the Standards, Measurements and
Testing Programme, reference SMT4-CT98 2214, within the Framework IV
activities. Its consortium comprised the University of Parma - Italy, the École
Nationale Superieure d’Electronique, Informatique & Radiocommunications
de Bordeaux - France, Thales (former TTM-Thomson CSF) - France, Italtel
Spa - Italy, Infineon Technologies-Development Center Villach - Austria, and
INESC-Porto - Portugal. Besides the authors of the different chapters of this
book, other people contributed with their work to the start and success of the
initiative. We acknowledge the efforts of Hubert Pernull, Otto Wiedenbauer,
and Andreas Bertl from Infineon, Roberto Scotti from Italtel, Jorge Duarte and
Jose Matos from INESC-Porto, M. Heuber and M. Zirnheld from Thales, and
C. Rebai from ENSEIRB.

A state of the art overview of the methods and procedures employed for
characterising the dynamic performance behaviour of analogue-to-digital con-
verters using sinusoidal stimuli, is presented in this book. The three classical
methods — histogram, sine wave fitting, and spectral analysis — are thor-
oughly described, and new approaches are proposed to circumvent some of
their limitations.

This is a must-have compendium, which can be used by both academics and
test professionals, to understand the fundamental mathematics underlining the
algorithms of ADC testing, and as a handbook to help the engineer in the most
important and critical details for their implementation.

DOMINIQUE DALLET, JOS MACHADO DA SILVAÉ
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é



Contributing Authors xiii

Sousa was born in Porto, Portugal, in 1968. He received
the Licenciatura and PhD Degrees, both in Electrical and Computer Engineer-
ing from the Faculdade de Engenharia da Universidade do Porto (FEUP), Por-
tugal, in 1991 and 2004 respectively. He joined FEUP in 1994, where he is
now an Assistant Professor. He is also a Senior Researcher at Instituto de En-
genharia de Sistemas e de Computadores (INESC-Porto) since 1995. His main
research interests are digital signal processing and dynamic testing of ADCs.

MORANDI, Carlo graduated in Electronic Engineering at the University of
Bologna in 1971. He worked at the University of Bologna as a research as-
sistant, then as an associate professor of Electronic Instrumentation. Full pro-
fessor of Applied Electronics at the University of Ancona since 1986, in 1988
he moved to the Faculty of Engineering of the University of Parma. His sci-
entific interest is focused on the design and testing of mixed-signal integrated
circuits and on the development of dedicated electronic instrumentation. He
coordinated several national and international research projects, among them
the "Standards, Measurements and Testing" project DYNAD of the European
Commission concerning the definition of standard test procedures for the dy-
namic characterization of A/D converters, which originated the present book.
He is author or co-author of over 100 scientific publications on international
journals or proceedings of international conferences.

ROY, Pierre-Yves received the Engineer Diploma of the Ecole Nationale Su-
perieure De Telecommunication de Bretagne ENSTB in 1995. He started
his carreer working for Thomson-CSF (Thales now); first for Thomson-CSF
Airsys (Thales Air Defence Systems) as a radar receiver designer, and then
for Thomson-CSF Technologies and Methods (Thales research and Technol-
ogy) as an expert in data conversion. When he was in Thales, his main areas
of interest concerned high dynamic signal receivers and the functional testing
of ADCs. In 2000, he joined EADS Telecom to manage the design of the
architecture (and of the associated components) of their 3G secured radiocom-
munication terminals. He is now terminal architect for EADS Telecom.
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Introduction

ADCs are, eventually, the most pervasive analogue blocks in electronic sys-
tems. With the advent of powerful digital signal processing and digital com-
munication techniques, ADCs are fast becoming critical components for sys-
tem’s performance and flexibility. Knowing accurately all the parameters that
characterise their dynamic behaviour is crucial, on one hand to select the most
adequate ADC architectures and characteristics for each end application, and
on the other hand, to understand how they affect performance bottlenecks in
the signal processing chain.

At present, most of the signal processing performed in electronic systems is
becoming digital, and the role of the ADCs placed at the borders of the digital
domain acquires a particular relevance, since the signal degradation introduced
by these components cannot normally be recovered by subsequent processing.
Both the markets of stand-alone ADCs and of ADC macrocells to be embedded
in complex systems-on-chip, benefit from the availability of performance para-
meters accurately describing their expected behaviour, and of clearly specified
test methods to be used for their measurement.

When the project DYNAD started, the standardization of ADC test pro-
cedures was not so well developed. Two standards existed, in particular, at
that time — the IEC 60748 and the IEEE Std 1057. The former covers only
quasi-static operation, while the second deals with dynamic testing but, being
addressed at digital waveform recorders requires some adaptations to cover
ADCs. A first aim of DYNAD project was then, to contribute to the improve-
ment of the European rules concerning test methods for ADCs, by proposing an
integration within IEC 60748 addressing the parameters specifying the dy-
namic behaviour of ADCs, measurement conditions, and data processing al-
gorithms. By the end of year 2000 a working group from the IEEE Instrumen-
tation and Measurement Society Technical Committee (TC-10) completed the
IEEE 1241 Standard for Analog to Digital Converters. This standard, as well as

xv
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xvi ADC DYNAMIC CHARACTERISATION

contributions from the DYNAD project, are now being incorporated into an
IEC standard on dynamic testing of ADCs. Other initiatives have been carried-
out concerning standardization of ADC testing methods. One can also mention
EUPAS (EUropean Project for ADC-based devices Standardization), and the
IMEKO Technical Committee 4 (A/D and D/A Metrology WorkGroup).

The main objective of the DYNAD project was the study and evaluation of
ADC testing methods based on the use of sinewave test stimulus. A second
aim was to investigate and propose new test methods to circumvent the limits
of the measurement instrumentation, which is strongly challenged by today’s
high resolution, high speed converters. Techniques for the measurement of
parameters required by specific applications (e.g. audio hi-fi) and for the de-
bugging of new converter designs were also investigated. Dissemination of the
knowledge gathered during the activity was the third objective.

That work is now compiled in this book, which is structured in two main
parts. Part one comprises chapters one to six. The first one provides an
overview of the most important ADCs’ architectures and respective fields of
application. An introduction to the most relevant nomenclature and definitions
of terms is also presented. Chapter two describes the generic architecture of an
ADC test setup, and guidelines and best practice procedures are proposed in
order to guarantee reliable test results. Chapters 3, 4, and 5 are devoted to the
description of dynamic test techniques using sinewaves, respectively, sinewave
fitting (time domain data analysis), discrete Fourier transform (frequency do-
main analysis), and code histogram test (statistical domain analysis). These
techniques are thoroughly described, as well as the fundamental mathematical
background behind the equations to be used to obtain ADCs’ characterization
parameters provided in each case. A comparison among these three methods
is presented in chapter 6. The objective is not to find the best or the worst
methods, but mainly to compare how they behave when test conditions are not
ideal and to identify their requirements in terms of test time and volume of
data. Examples of ATE implementation are also included.

The second part comprises chapters 7 to 10, which provide additional infor-
mation to test for other relevant parameters, such as jitter, differential gain and
phase, step and transient response, and hysteresis.
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GLOSSARY

ε error, used for total error and error band
εG(f) gain flatness error at frequency f
ε[k] difference between T[k] and the ideal T[k] computed from G and Vos

εm(f) aliasing and first differencing magnitude errors
εθ(f) aliasing and first differencing phase errors
εq quantisation error
εrms root-mean-square value of ε

θ phase, expressed as radians
η[n] a record of noise data
ηf noise floor
π constant, ratio of the circumference to the diameter of a circle
ρ reflection coefficient
σ standard deviation; sometimes used as noise rms amplitude, which is the

standard deviation of the random component of a signal
σσ standard deviation of the standard deviation (for example, standard devi-

ation of the noise amplitude)
σjσ jitter
σt aperture uncertainty
σ2 variance; sometimes used to describe random noise power
τ sampling period, the inverse of fsf
ω angular frequency, expressed in radians per second
ωi angular input frequency in radians/second
δteq sampling time error of equivalent time sampling
δtfi input frequency inaccuracy
A sinusoidal amplitude
B test tolerance in fractions of the nominal least significant bit (Q). Also

used as an amplitude
BW frequency bandwidth
c general purpose constant
C offset
d[n] dither component of output sample y[n]
dest[n] estimate of the dither component d[n]
D general purpose integer
DFT Discrete Fourier Transform
DG differential gain
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DNL[K] differential non-linearity of code k
DNL maximum differential non-linearity over all k
DP differential phase
DR dynamic range
ENBW equivalent noise bandwidth
f frequency, Hz
f(n) sinewave component of output sample y[n]
fcoff upper frequency for which the amplitude response is -3 dB
fdff sampling frequency of a record after decimation by some integer D
feqff equivalent sampling rate
fhf frequency of an harmonic of the input frequency
fiff actual input frequency or approximate desired input frequency
fimfff frequency of intermodulation distortion products
foptff optimum input frequency for testing
fmff frequency of the mth component of a magnitude spectrum
frff input signal reference frequency or input signal repetition rate
fsf sampling frequency
fspf frequency of a persistent spurious tone
FR frequency response
G static gain of the ADC under test
G(f) dynamic gain of the ADC under test as a function of frequency
h order of harmonic frequency
H average number of histogram samples received in two code bins sharing

the same transition level
H[f] frequency response of the ADC under test
H[i] number of histogram samples in bin i
Hc[j] number in the jth bin of the cumulative histogram of samples
H[fkf ] DFT of h(n)
h(n) discrete time impulse response of a system
i general purpose index
I general purpose factor
IMD intermodulation distortion
INL integral non-linearity
INL[k] integral non-linearity at output code k
J number of cycles in a record
k code bin
L general purpose integer



xix

L(f) phase noise spectral power density
mse mean square error
M number of sequential samples in a record
M+(x), M−(x) number of measurements of the output value at the input

value x for increasing and decreasing inputs respectively
Md number of samples in a record after decimation
MD number of samples in one period of pseudo-random dither
n sample index within a record
N number of bits
Nef number of effective bits
NDR noise distortion ratio
NPR noise power ratio
p probability
PG processing gain
Q ideal code bin width, expressed in input units
r general purpose integer
R minimum number of records required
S set of samples collected over more than one record, also used as an error

parameter or as total number of samples used in a histogram
SFDR spurious free dynamic range
SINAD signal to noise and distortion ratio
SNR signal to noise ratio
SxS (f) spectral power density of quantity x
teq average equivalent time sampling period
tf top to base transition time; falltime
tr base to top transition time; risetime
tn discrete sample times
twc the center point of the aperture time associated with an output sample
T[k] code transition level between codes k-1 and k
Tnom[k] nominal code transition level between codes k-1 and k
TĤD^̂ estimate of total harmonic distortion
THD total harmonic distortion
TSD total spurious distortion
u confidence level expressed as a fraction
Vcm common mode signal
Vdm differential mode signal
Vfs full scale range

Glossary
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Vfsn nominal full scale range
Vifs full scale input signal
VOS ADC input offset, ideally = 0
VOD input signal overdrive; the amount by which an input signal exceeds

the ADC full scale range
Vrir reduced ADC input range
VSWR voltage standing wave ratio
w estimated code error rate
w’ worst-case code error rate
w[n] window function coefficient (for a DFT)
W[k] code bin width of code bin k
x ADC input signal value; or number of errors detected
X number of standard deviations of a Gaussian distribution
Xavm(fmff ) the averaged magnitude spectral component at discrete frequency

fmff after a DFT
y[n] the nth output data sample within a record
y[n] average of y[n] over M samples
yn’ best fit points to a data record
Y[k] the k-point DFT of the M-sample record y[n]
ZO transmission line impedance
Zt ADC input impedance
Zu/2 number of standard deviations that encompass 100(1-u) % of a Gaussian

distribution about the center.
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Chapter 1

ADC APPLICATIONS, ARCHITECTURES
AND TERMINOLOGY

Universidade do Porto, FEUP – INESC-Porto
Campus da FEUP, Rua Dr Roberto Frias
4200-465 Porto, Portugal

jms@fe.up.pt

Universidade do Porto, FEUP – INESC-Porto
Campus da FEUP, Rua Dr Roberto Frias
4200-465 Porto, Portugal

hsm@fe.up.pt

1. Introduction

An analogue-to-digital converter (A/D converter or ADC) takes a continu-
ous analogue input signal, most often a voltage VxVV , and converts it into an N-bit
binary number, which can then be manipulated by a computer. This func-
tionality leads ADCs to present a very important role in electronic systems
for a wide range of applications. Traditional mixed-signal implementations
comprehend high-performance analogue circuits combined with a few digital
functions for control or interface — these are the so-called register-controlled
analogue systems. With the development of semiconductors’ technology and
microprocessors, systems based in digital signal processing cores and provided
with analogue inputs and outputs — the so-called digitised analogue systems
— are becoming more and more the basis of the dominant architectures in elec-
tronic systems. The performance of the ADCs placed at these analogue/digital
interfaces acquires a particular relevance, since the effects of the ADCs’ behav-
iour on the signals being acquired, cannot easily be recovered by subsequent
processing. Additionally, the performance of most recent systems for applica-
tions in fields such as telecommunications, test and measurement, or consumer
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4 ADC DYNAMIC CHARACTERISATION

electronics require ADCs with ever increasing capabilities in terms of resolu-
tion and speed.

To optimise a system’s performance, designers using high-performance A/D
converters must thoroughly understand their test techniques and limitations.
The traditional ADCs’ performance characterisation parameters obtained with
static tests are not sufficient to fully characterise the device’s behaviour. One
such static test consists in placing the device under test within a DC servo-loop,
in order to measure each code transition level individually [1]. This method
is still quite useful to obtain the DC transfer characteristic of high resolution,
low sampling-rate converters, and then to calculate parameters like integral and
differential non-linearities, and monotonicity. However, instead of a steady DC
level, the A/D converter is in general subject to a dynamically changing input
signal. The best test approach would be to evaluate the ADC performance in
the target system, but this is not always feasible. In this case the converter
should be tested under conditions as close as possible to those required for
the final application. Dynamically testing an ADC in the frequency range that
covers the bandwidth of the application can provide that assurance, being the
ADC performance given now in terms of dynamic or AC specifications.

Three test methods are commonly used to dynamically characterize an ADC
— histogram analysis, spectrum analysis,and time-domain analysis(also known
as sine wave curve fitting). These three methods operate essentially in the
same manner, i.e., a sine wave stimulus is applied to the ADC and one or
more records of data are taken from the ADC output response, which are then
processed to extract relevant parameters. As these methods differ in the data
processing algorithms, and consequently in the type of errors detected, they
do not provide, at the first approach, the same characterisation parameters. A
fourth method — the beat frequency method — is often used as well, which is
able to provide a quick yet simple visual demonstration of the ADC dynamic
behaviour. However, as it is a qualitative test, it is not usually used as a refer-
ence method to provide numerical characterisation data.

Concerning the selection of the input stimulus waveform, the ramp is the
simplest one for testing an ADC’s linearity. This signal presents however a
drawback that comes from the fact of being hard to generate with the proper
linearity. The input stimulus ramp should have at least two to four bits of res-
olution more than that of the ADC under test, a requirement which might be
difficult to meet when testing high-speed or high-resolution converters. Al-
ternatively, a sine wave can overcome these problems, although its purity is
critical to the success of the tests. A spectrally pure sinusoid is easier to obtain
than a sharp and perfectly linear triangular wave, by taking a lower resolution
sine wave and filtering it to the required purity. Often, synthesized sources are
necessary to provide the short-term and long-term stability required by the dy-
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namic range of the ADC. Anyway, precisely controlling the absolute amplitude
and offset of a sinusoid waveform is not trivial.

A brief introduction to the problem of dynamically testing A/D converters
was given above. One of the aspects to be taken into account is the necessity
of testing the converter as much as possible under the same conditions as those
found in the final application. As this is not usually possible, a central question
concerns the identification of the ADCs’ performance characterisation para-
meters that best evaluate its ability to perform the desired function.

In fact, often the generation of ADC tests is driven by the application char-
acteristics or by the specificities of the ADC architecture, in order to adapt
specification parameters limits, the test setup, or even the test methods them-
selves. For example, for certain applications absolute converted digital code
combinations may not be as important a characteristic as relative converter re-
sponse to the adjacent code combinations. This is the case, for instance, in
digital audio applications where two important ADC performance characteris-
tics are the non-linearity causing signal distortion and the intermodulation of
high frequency tones to the baseband. The high resolution converters used in
these applications require clock jitter to be considered for it causes a signal
dependent modulation and additional noise. It is also important to avoid group
delay differences which influence focus and stability of the sound sources in a
stereo image — humans can detect time-of-arrival differences of about 7 mi-
croseconds [87]. Performance at low levels and at higher frequencies is vital
for good sound quality.

This chapter continues with an overview of different application fields for
ADCs, and the respective most critical parameters. Section 3 presents the
most commonly used ADCs’ architectures and the respective current rates
of number of bits and sampling frequencies. Sections 4 to 9 address the
non-harmonised approach seen today concerning the terminology used in the
analogue-to-digital conversion domain, present definitions for different terms,
and introduce acronyms used along this book. The information given herein
was obtained from an extensive bibliography, as well as, from manufacturers
data sheets and application notes. It is considered to be, at the time of writing
and at the best of our knowledge, an updated state of the art overview of the
technology in this domain. However, as technology is continuously develop-
ing, it is likely that part of this information becomes out-of-date.

2. ADCs’ applications

This section presents an overview on ADCs’ most significant application
fields, and for each one identifies the parameters which are the most critical for
the overall system’s performance.
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Table 1.1. Critical ADCs’ performance parameters per application.

Application Critical Performance Performance
parameters issues

Audio SINAD, Crosstalk Power consumption
Gain matching

Automatic control, Monotonicity, short term setting, Transfer function
Sensors and robotics linearity, long-term stability,

temperature offset

Data transmission SFDR, BW, SINAD Thermal noise
DR, INL, DNL Phase non-linearity

Digital high-Speed NefNN , BW, out-of-range SNR for better wide bandwith
Instrumentation recovery, Word error rate amplitude resolution, SFDR to

minimize distortion, bit error rate
thermal noise

Geophysical THD, SINAD, DR miliHz response
Long-term stability

Hard disk driving Conversion time/latency

Medical SFDR, BW, INL, DR, SNR
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Table 1.1 (continued)
Critical ADCs’ performance parameters per application.

Application Critical performance Performance
parameters issues

Military
communications

SFDR, SINAD, THD,
IMD, NPR, NDR

Linear dynamic range for detection of
low-level signals in a strong interference
environment

Electronic warfare SFDR, SINAD, NDR Sampling frequency

Mobile
telecommunications
and wireless
communications

SINAD, NPR, SFDR,
THD, SNR, IMD,
NDR

Wide input bandwidth channel bank Bit
error rate, word error rate Interchannel
crosstalk, compression, power
consumption

Monitoring, test
equipment and
instrumentation

NefNN , BW,
out-of-range recovery,
word error rate

SNR for better wide bandwidth,
amplitude resolution, SFDR to minimize
distortion, bit error rate

Radar and sonar SINAD, SFDR, INL,
BW Out-of-range
recovery

SINAD for clutter cancellation and
Doppler processing

Spectrum analysis SINAD, SFDR SINAD and SFDR for high linear
dynamic range measurements

Speech and voice
communications

SINAD, NPR

Video and television INL, DNL, FR, SNR,
DG, DP, SFDR, word
error rate, BW, THD,
SINAD

Differential gain and phase errors Power
consumption
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Table 1.1 presents a summary of ADCs’ performance characterisation pa-
rameters and other behavioural aspects which are critical for different appli-
cation fields. Regarding the selection and definition of these fields, some of
them are somewhat similar in their essence but, due to significantly different
performance requirements imposed on the ADCs used in the different applica-
tions, they were considered as distinct. This is the case, for instance, of audio
and speech and voice communications applications, in which the later places
less strict requirements (lower resolution and conversion rate) on the ADCs
to be used. Similarly, ADCs for hard-disk drives are described as belonging
to an application field of their own due to the exceptionally high conversion
rates required (much higher than those in other control applications such as
in automatic control and robotics). The same option was made for ADCs for
geophysical applications, in which the required resolution is higher but the
conversion rate lower. Also on this line, digital high-speed instrumentation,
which comprises mainly instruments such as digital oscilloscopes, was consid-
ered a different application field from other test and monitoring equipment due
to the higher performance requirements. Spectrum analysis was also consid-
ered a field apart from generic test and monitoring equipment, because it has
precise requirements regarding the accurate conversion of different frequency
components and the ability to detect even low power signals, spectral noise
density and linearity being two key specifications in these applications.

In high-speed applications, such as video and wireless communications,
whether they require undersampling or oversampling, the ADC must deliver
high levels of dynamic performance. Since it generally is the front-end of
the application, the overall system specifications will depend on the ADC’s
dynamic performance, characterized by parameters such as SFDR, THD and
SNR [20]. SFDR is important in many applications because noise (including
thermal noise) and harmonics restrict the dynamic range. In an IF (interme-
diate frequency) bandpass converter, for example, spurs may be interpreted
as adjacent-channel information, giving rise to inter-channel mixing because
different channels reside relatively close to each other.

The same can happen in military applications, such as signal intelligence
and communications intelligence, where distortion within the ADCs, can lead
to false readings [49]. High SFDR and low THD help to minimise the ADC’s
contribution to the overall distortion. In yet other applications, signals of inter-
est may not be distinguishable from harmonics and spurious signals. In echo-
cancelling modems (where the modem transmits and receives at the same time)
the ADC must have sufficient dynamic range to capture the strong echo of the
"send" signal and the weak "receive" signal (40-50 dB weaker than the "send"
echo in long lines) without clipping the echo and without loosing the weak "re-
ceive" signal in the converter’s quantisation noise. Echo clipping would cause
distortion and ruin the signal because a synthesized copy of it is subtracted
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from the complete captured signal. This may require up to 1 MHz of band-
width and up to 90 dB of dynamic range [94]. In high speed modems, where
data is coded by phase-shift keying, phase non-linearity (or delay distortion) is
also an issue.

In audio applications, particularly in stereo systems, phase non-linearity
gives place to time-delay distortion which, for an input signal consisting of two
or more frequencies, renders distortion caused by the different arrival times of
these frequency components at the output of the ADC.

Radar applications demand the best possible SFDR and SINAD in order to
prevent weak signals from being masked by harmonics or spurious signals.
The harmonics responsible for poor radar SINAD performance (typically the
second or third ones) arise due to poor INL at some particular frequency. Thus,
bandwidth and slew rate can be key factors. Sonar is another application which
also requires low noise and good SFDR. Geophysical sensor equipment re-
quires high dynamic range. The signals which result from the execution of
acoustic geophysical tests easily span dynamic ranges of over 120 dB [67].

Spread-spectrum techniques are used in both military (subject to very strong
interference) and wireless communications where there are multiple users in
the same frequency in overlapping networks. ADCs for these applications are
required to present good SINAD, IMD, SFDR, and NPR characteristics with
performance issues being low IMD for quantisation of small signals in a strong
interference environment, low SFDR for spatial filtering, and high NPR for low
interchannel crosstalk. It is important to successfully reject adjacent channels.
Medical imaging applications, such as ultrasound systems, require ADCs with
good dynamic performance at high sampling rates. Ultrasound systems’ ADCs
need wide dynamic range to prevent noise from masking subtle abnormalities
in a diagnostic image. In these applications ADCs’ useful bandwidth is deter-
mined by the amount of SFDR needed within the system.

Imaging and video applications need excellent linearity (DNL and INL). In
fact, DNL is the most important specification parameter for the ADCs used to
capture CCD (charge coupled devices) sensor signals. DNL affects intensity
fidelity and causes improper gradation of the image scale with local imper-
fections. INL corrupts the entire image with a gradual non-linearity which in
case of colour images may result in colour artifacts that may cause deceptive
results [127]. They also require good low-noise (SNR and SINAD) perfor-
mance. Some tasks require converters with a fast slew rate sample and hold
amplifier to handle a full-scale step response from pixel to pixel. SNR over a
wide bandwidth is important in the case of applications which may spread this
change over several pixels [66]. SNR is also critical in medical imaging [49] .

Low power consumption is an increasingly important specification in every
application fields, but it finds particular importance in those where portability
is required, such as in camcorders (video), cellular phones (personal communi-
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cations), walkmans (audio) and portable instrumentation (hand-held measure-
ment and monitoring equipment), where it is important to achieve ever greater
autonomy with existing batteries.

3. ADCs’ architectures

Table 1.2 presents the most commonly used ADCs’ architectures and their
respective resolution and conversion (output data) rates for the same applica-
tion fields depicted in table 1.1. Converters based on Σ∆ modulation followed
by decimation are the most popular for audio applications. Due to their conver-
sion mechanism, the Σ∆ converter is inherently monotonic and presents very
low DNL. Some of the additional advantages are modest circuit accuracy and
component matching and trimming requirements, which make them suitable
for implementation using imprecise CMOS technologies. Also, the need for
external anti-aliasing filtering is reduced by the (digital) decimation process.
The requirement for sampling rates up to 48 kHz, 96 kHz, or even 192 kHz for
more demanding applications, such as professional audio, are well within the
possibilities of even very high resolution Σ∆ converters. Some other high res-
olution low sampling rate applications, such as geophysical, make also good
use of the advantages of Σ∆ converters. In this latter case, however, the order
of the Σ∆ modulator must be increased in order to allow for lower oversam-
pling ratios. This trade-off between oversampling ratio and modulator order is
also found in Σ∆ converters for other applications that require relatively high
sampling rates (although with lower resolution), such as, sensors, instrumenta-
tion, GSM (Global System for Mobile communication), and data transmission.
Fourth order, 13-bit, 270 kS/s Σ∆ converters are used in GSM because the high
sampling rate offers the necessary bandwidth to pass the adjacent channels and
the blocking levels without aliasing them in the band of interest, and the deci-
mator filter besides providing downsampling also performs channel filtering .
The worst case blocking specs of the GSM standard require a conversion lin-
earity of 14-16 bits to avoid a weak received signal being lost due to distortion
artifacts [125]. Also, high dynamic range (≈ 80 dB) and SNR ranging from 86
to 98 dB are fundamental to allow demodulating low level signals immersed in
strong adjacent channel interfering signals [76].

Anyway, Σ∆ have somewhat high power consumption levels when com-
pared with converters of similar resolution and conversion rate using other
architectures (pipelined, for instance). Cost and power consumption issues re-
quire the use of such specific architectures to achieve high resolution and con-
version rate at minimum power consumption, especially in the case of portable,
hand-held devices. Equipment of this sort can mainly be found in applications
such as mobile and wireless communications, instrumentation, and video. La-
tency and larger size are two other disadvantages to be taken into account.
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In the first GSM generation 8 bit SAR (successive approximations) convert-
ers were used. Comparing to Σ∆ these converters present the advantage of
joining smaller size, lower power, and lower latency, but on the other hand
require stringent trimming to achieve good accuracy and more tight front-end
anti-aliasing filtering. Automatic control is a field where their fast sampling
with no latency and good resolution match well together.

Data communication is another application that demands frequently low
power. Architectures for data transmission, with the increase in resolution and
conversion rate requirements, have migrated from SAR and flash to Σ∆, and
pipeline. Σ∆ converters are used for instance in ISDN, with 3rd order archi-
tectures achieving 16 MHz sampling frequencies. In ADSL, due to the high
Nyquist rates needed (2.2 MHz conversion rate), high order (4th) Σ∆ convert-
ers are currently being used. In order to reduce power consumption pipelined
converters with 8.8 MHz sampling frequency (2.2 MHz conversion rate) will
be used in the future, the trade-off being stricter production tolerances. Σ∆
converters are not an option for VDSL due to the high speed requirements.
Full flash, subranging, folding and interpolating, and pipelined ADCs are bet-
ter alternatives, the pipelined being the best option as it is possible to attain
10-12 bits resolution at 10-100 MS/s conversion rates. Pipelined architectures
are also ideal for A/D converters requiring both high speed and high resolution
[98], thus finding preferred use in applications such as video, data communica-
tions (for ADSL and VDSL) and medical imaging. Folding and interpolating
converters, being capable of higher sampling rates but lower resolutions, are
also becoming an alternative in these areas. Folding and interpolating 8-bit 3
GS/s, and pipelined 10-bit 1.5 GS/s state-of-the-art ADCs for defense applica-
tions have been reported [107].

In wireless communications the current trend is towards moving the signal
quantisation procedure into the RF (radio frequency) stage and performing IF
filtering in a digital form (the concept of "software radio") [86, 144]. This
obviously creates the need for extremely high conversion rate converters with
high SFDR to avoid interchannel mixing because the quantiser precedes the
IF filter. This is an example of a perfect application field for parallel (flash)
or time-interleaved pipelined converters, in which several pipeline converters
sample the same signal in intermediate time instants, thus achieving a higher
sample rate than a single converter with the wide dynamic range characteristics
of slow converters.

Flash converters, from a power dissipation perspective, are acceptable only
at low resolution (up to 8 bits) levels where the number of comparators is rela-
tively small and their offset is non-critical — every extra bit requires doubling
the comparators in number and accuracy. At resolutions in the 8-12 bits range,
the only practical options for low power dissipation are multistep flash and
pipeline configurations. Multistep flash has been successfully used in low-



ADCs’ Applications and Terminology 15

power applications at the 10-bit level. Pipeline are also attractive and have
the potential advantages of inherent single-path sampling of the signal, giv-
ing good high-frequency effective bit performance, and the capability of using
non-critical purely dynamic comparators because of the amplification of the
signal in the pipeline coupled with the use of digital correction. In video, for
digitisation of the CCD sensor array information, and due to the amount and
update rate of the same, a high-speed converter is necessary — flash (in the
past) and pipeline being the preferred converter architectures.

4. Terminology

In the ADCs’ domain one can often find different terms meaning the same
thing, or to find different definitions for the same terms. Currently, differ-
ent terms and acronyms are likely to be found among data sheets from differ-
ent ADC manufacturers — e.g., while some use DNL for Differential Non-
Linearity, others use ED [126, 153]. To designate the effective number of bits
acronyms like ENB, NOEB, ENOB, E, bef are likely to be found. In this
case we suggest to use NefNN as N is already used to identify the number of bits.
In order to have a single symbol to identify common parameters, η is used to
designate parameters or quantities related to noise, ε is used for those related
to errors, and σ for those concerning deviation. For example, ηf , εG, and σjσ ,
would identify respectively, noise floor, gain flatness error, and jitter.

Also, commonly the parameters specified in ADCs’ data sheets are different
for different manufacturers, being that dynamic characterisation parameters are
not always specified. It is likely that only one of signal to noise ratio (SNR or
S/N) and signal to noise and distortion ratio (SINAD) is specified. Frequently,
the parameter total harmonic distortion plus noise (THD+N) is used instead of
SINAD. Many manufacturers define the same specification differently, or use
different methods to evaluate the parameters. For example, the range (num-
ber) of frequencies which are considered as harmonics (excluding DC) varies
— some use the first ten harmonics [6], others only the second through the
sixth harmonics [151], but specific applications may require considering all
harmonics in the frequency range of interest.

This difference among terms and definitions used by different parties can
also be found between standards. Table 1.3 presents a résumé of the terms
described in standards IEEE-STD-1241 [6] and IEC 60748-4 [3]. At a first
glance one can see that the IEC standard addresses mainly static performance
characterisation terminology.

Looking at the definitions used in these two documents one can see that, in
general, terms addressed by both are defined in a different manner. See, for

IEEE A device that converts a continuous time signal into a discrete-time discrete-amplitude
signal.

example, the definition given for analogue-to-digital converter:
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Table 1.3. Comparison between IEEE 1241 and IEC 60748-4 terminologies.

IEEE 1241 IEC 60748-4

absolute accuracy error, total error
AC-coupled ADC
alternation band

conversion code
analog-to-digital converter (ADC) analog-to-digital converter (ADC)

linear ADC, non-linear ADC
aperture delay
aperture uncertainty
common-mode rejection ratio
code bin k step
code bin width W[k] step width
ideal code bin width (Q)
code transition level
code transition level T[k] transition value
coherent sampling
common-mode out-of-range
common-mode out-of-range recovery time
common-mode signal

conversion time
crosstalk
differential input impedance to ground
differential non-linearity differential linearity error
differential signal
epoch
equivalent-time sampling
full-scale range full-scale ranges

full-scale, zero-scale
nominal full-scale value

full-scale signal
full-width-at-half-max (FWHM)

full-scale error
zero-scale error
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Table 1.3 (continued)
Comparison between IEEE 1241 and IEC 60748-4 terminologies.

IEEE 1241 IEC 60748-4

gain and offset gain, offset point, gain point
(A) (independently based)
(B) (terminal-based)

offset error, gain error
harmonic distortion
hysteresis
incoherent sampling
input impedance
integral non-linearity (end-points) linearity error

best-straight-line linearity error
kth code transition level T[k]
large signal
least-significant bit (LSB) LSB
long-term settling error
maximum common-mode signal level
maximum operating common-mode signal
maximum safe input signal level

missing code
monotonic ADC monotonicity
noise (total) noise
normal mode signal
equal to the differential signal
overshoot
out-of-range input
passband
phase non-linearity
pipeline delay
precursor
probability density function
quantization
quantization error/noise inherent quantization error
random noise
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Table 1.3 (continued)
Comparison between IEEE 1241 and IEC 60748-4 terminologies.

IEEE 1241 IEC 60748-4

record of data
relatively prime
residuals

resolution
roll-over error

root-mean-square (rms)
root-sum-square (rss)
sampling

conversion rate
settling time
short-term settling time
signal-to-noise and distortion ratio (SINAD)
signal to full scale ratio (SFSR)
signal to non-harmonic ratio (SNHR)
single-ended ADC
slew limit
spurious components
spurious-free dynamic range (SFDR)
step (or pulse) baseline
step response
step (or pulse) topline
synchronous and asynchronous sampling
timing jitter
timing phase
total harmonic distortion (THD)
total spurious distortion
transfer curve
transition duration of a step response
voltage standing wave ratio
window
word error rate

IEC A converter that uniquely represents all analogue input values within a specified total
input range by a limited number of digital output codes, each of which exclusively rep-
resents a fractional part of the total analogue input range.

Note - This quantization procedure introduces inherent errors of 1/2 LSB (LSB - least
significant bit) in the representation since, within this fractional range, only one (input)
analogue value can be represented free of error by a single digital output code.

The definition given in the IEC standard is more precise on specifying a
limited range for the input signal and for the number of digital output codes.
Anyway, this definition is at a certain extent not complete as it addresses only
the case of deterministic conversion laws. Other examples can be found in
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the definitions of full-scale range, least-significant bit, quantization error, and
offset and gain error.

The following sections of this chapter will present the terminology and de-
finitions that will be used along this book. These were adopted taking into
consideration the section Definitions of the IEEE 1241 standard [6] and the
section General terms of the IEC 60748-4 standard [3]. However, new ter-
minology and symbols were adopted whenever it was found necessary. For
example, the following terms are not found in the definitions sections of either
the IEEE or the IEC documents:

Effective number of bits

Intermodulation distortion

Decimation

Histogram

Average output code

Input units

Overdrive

Signal to full-scale ratio

Noise floor

Envelope delay distortion

Nominal code transition level

Processing gain

Reduced input range

Dither

Jitter

Noise power ratio

Gain flatness error
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5. Quantisation and A/D conversion

5.1 Analogue-to-digital conversion law

The mapping of all analogue values of the input quantity x(t) falling within
a specified full scale range VfsVV , to a finite number k of digital output codes
belonging to the set of possible output codes. The input quantity is usually a
continuous-amplitude, continuous-time signal x(t), and the mapping must be
evaluated at selected time instants, specified by a convert signal.

This term may be considered similar to Transfer characteristic, however
this one represents the particular case of the graphical representation of a de-
terministic conversion law.

5.1.1 A/D deterministic conversion law. A particular form of prob-
abilistic conversion law, where the conditional probability p(k, x) is 1 (cer-
tainty) if x belongs to one or more intervals of the x axis, and 0 when outside
of such interval(s). In other words, the x axis is partitioned into a set of adja-
cent intervals, each of which is univocally associated to a specific output code
k. The interval (or union of intervals) associated to output code k is called

This situation corresponds to the one outlined in figure 1.2. The result of
the conversion is k if and only if x belongs to code bin k. It is assumed that
the union of the possible code bins covers the entire input range VfsVV (some
result will surely be generated). Only in abnormal cases (non-monotonic con-
version curves) can the same output code be associated with non adjacent in-
tervals. Apart from such cases, it can be assumed without loss of generality
that the codes k associated with intervals corresponding to increasing values
of x represent increasing integer numbers. A common way of specifying a
deterministic conversion law is by means of the transfer characteristic.

5.1.2 A/D probabilistic conversion law. An A/D conversion law spec-
ified by the conditional probabilities p(k/x) of output code k once the value
of the input is x1.

Conditional probabilities p(k/x) are commonly referred to as channel pro-
files, with a term deriving from the nuclear instrumentation environment. The

1Note that this definition entails a memory-less model of the A/D conversion process. It is admitted that
once the value of x(t∗) at the sampling time t∗ is known, it is possible to predict the probability of each
output code. This is not true particularly at the highest sampling speeds: a real-world A/D converter is a
complex, non-linear dynamic system that does not match the memory-less model. In order to predict the
result of the conversion, it is also necessary to take the internal state of the A/D conversion circuit into
account, which in turn reflects the past history of x(t) and of the convert signal.

See also: TransferTT characteristic (5.5), Full-scale range (9.2).

code bin k or quantisation cell k (see 6.3).

See also: TransferTT characteristic (5.5), Monotonic ADC (6.10).
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shape and position along the x axis of each of the conditional probability func-
tions p(k/x) is referred to the value of full scale VfsVV . If all the p(k/x) functions
have the same shape and differ only for a translation along the x axis, the ADC

A few noteworthy shapes of p(k/x) are shown in figures 1.1, 1.2, and 1.3.
The symmetric triangular shape of figure 1.1 is typical of time interval mea-
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Figure 1.1. Triangular channel profiles

surements performed by counting the number of positive (or negative) edges of
a clock signal with period TclockTT falling within the interval. It has the property
that, in the case of repeated measurements, the expected value of the measure-
ment result is exactly the unknown duration of the time interval, so that the
arithmetic average of several measurement results is an unbiased estimator of
the interval duration.

The rectangular shape of figure 1.2 is typical of deterministic conversion laws
(see 5.1.1) where the unknown inputx is compared to a certain number of code
transition levels which partition the x axis in disjoint intervals. In real world,
due to the presence of unavoidable noise sources in the circuit, the electrical
quantities representing the code transition levels are affected by noise, so that
when the input is close to the nominal position of a transition level, there is a fi-
nite probability of misclassification, leading to the adjacent code. Thus, a more
realistic representation of p(k/x) for such a converter would be of the type
of figure 1.3, which intuitively supports the choice of defining code transition

is said to be linear (see 6.11).
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Figure 1.2. Rectangular channel profiles

level T [k] as the value of the converter input which causes half of the digital
output codes to be greater than or equal to k, and half less than k. For a more
correct and formal definition, it is necessary to refer to the theory developed
in [43].

5.2 Analogue-to-digital converter (ADC)

A device that converts a continuous amplitude, continuous- or discrete- time
signal x(t), falling within a specified full scale range VfsVV , into a discrete-
amplitude, discrete-time signal, according to an assigned A/D conversion law
that represents all analogue input values by a limited number of digital output
codes, each of which representing a fractional part of the total analogue input
range (see figures 1.1 to 1.3, for example). A typical ADC includes:

an analogue (differential or nondifferential) input port, where the physi-
cal quantity representing the input signal x is applied

a reference port, to which an external or built-in reference source VrefVV
is connected, which provides a physical quantity to be compared, after
suitable scaling, with the input

See also: Code transition level (6.5), Code error rate (7.1).
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Figure 1.3. Smoothed rectangular channel profiles

a convert command port, where the signal defining the start of the con-
version process is applied

an end of conversion port, that signals the end of the conversion process.

an output digital port, where the digital code resulting from the conver-
sion may be collected at the end of the conversion.

Central to the concept of ADC is the assumption that, despite the inherent am-
plitude and time errors introduced by the quantisation process, the information
obtained at its output is equivalent to the one fed into the input. This, however,
imposes limits. An ideal ADC is essentially an impulse sampler. This impulse
sampling process leads the frequency spectrum content of the digitised signal
to be replicated around frequencies multiples of the sampling frequency (fsf ),
as exact duplicates of the original input signal spectrum. Restricting the mini-
mum fsf to be at least two times the frequency range of the input signal allows
to position one of these replicas in the DC to one half of fsf bandwidth with
a minimum loss of information. Another source of loss of information rises
from the uncertainty associated to the level where one code changes to an ad-
jacent one. This fact requires the introduction of probability in the definition of
ADC’s models. Analogue-to-digital coder or analogue-to-digital encoder are
synonymous often found of A/D converter.
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Note:

This quantisation procedure introduces inherent errors of 1/2 LSB (Lest Significant Bit)
in the representation since, within the fractional range, only one (input) analogue value
can be represented free of error by a single digital output code

Physically an ADC may be a standalone device implanted in a single package, or a
functional core (macro-block) embedded in a larger integrated system

AC-coupled ADCs digitise only the AC component of the analogue input signal by
blocking the static DC portion

See also: Analogue-to-digital conversion law (5.1), Quantisation (5.3),
Transfer characteristic (5.5), Output coding (6), LSB (6.8), Full scale
range (9.2).

5.3 Quantisation

The division of a quantity into a discrete number of small parts, often as-
sumed to be integral multiples of a common quantity. It is a non-linear process
in which the measured amplitude of an input signal at any instant is rounded
off to the nearest of a set of predetermined values defined by the limits of non
overlapping subranges. Whenever the signal value falls within a given sub-
range, the output has the corresponding discrete value [4]. In broad terms,
quantisation is a non-linear operation that is carried out whenever a physical
quantity is represented numerically by an integer corresponding to the nearest
whole number of units. This process suggests that quantisation is like sam-
pling in amplitude, a sampling process that acts not upon the function itself,
but upon its probability density distribution (this definition does not apply to
ADCs with triangular channel profile).

5.4 Straight line

Ideal straight line In an ideal ADC transfer characteristic, a straight line be-
tween the specified points for the most-positive (least-negative) and most-
negative (least-positive) nominal code transition or code midstep values,
respectively (see figures 1.5, 1.6)2.

Fitting straight line In a real ADC transfer characteristic, a straight line through
the measured output codes which fits the transfer characteristic accord-
ing a specified criteria:

End points straight line — the fitting line connecting the two end
code transition, or the two end code midstep, values

2The ideal straight line passes through all the points for nominal code transition or code midstep values,
respectively.
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Figure 1.4. Typical transfer characteristic for a true-zero, binary coded, bipolar converter.
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Figure 1.5. Typical transfer characteristic for a non-true-zero, binary coded, bipolar converter.

Least-square fit straight line — the line which best approximates
the measured transfer characteristic according a least-square fitting
algorithm

Minimum-maximum straight line3 — the line which leads to the
most positive and the most negative deviations from the ideal straight
line to be equal in amplitude

3The minimum-maximum straight line tends to fall in disuse, however its definition is left here.
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5.5 Transfer characteristic

A graphical staircase representation (see figure 1.6) of a deterministic con-
version law, where the abscissa reports, either in absolute units or rationed to
the full scale VfsVV , the analogue input x, while the corresponding digital output
codes are reported, at a constant pace, along the vertical axis. For each code, at
the corresponding ordinate, a horizontal segment marks the interval(s) of ab-
scissa values (code bin analogue input range) which are mapped to that code.
The vertical segments of the staircase are in correspondence of the code tran-
sition levels. Mathematically, the transfer characteristic is a set of correlations
between each of the fractional parts of the total analogue input range and the
corresponding digital output codes.

5.5.1 Nominal transfer characteristic. The transfer characteristic
determined by the nominal code transition levels. A typical nominal trans-
fer characteristic for a binary coded unipolar converter is shown in figure
1.6. The nominal code transition levels are placed at abscissas TnomTT [k] =
(k − 1/2)VfsVV 2−N , where k = 1, 2, ...(2N − 1). Two typical transfer charac-
teristics for bipolar converters are shown in figures 1.4 and 1.5. The transition
levels in a real ADC differ from the nominal ones; in some of them (adjustable
ADCs) it is possible, by external trimming, to bring some of the transition
levels (typically the first and the last) close to the nominal ones.

Digital output
code

000

001

010

111

0 1 2 7 Analogue
input value

Ideal straight
line

Full-scale range (Vfs)

T[1]

W[4]

100

xVfs /2N

8

Real transfer
characteristic

Code transition
level uncertainty

Figure 1.6. Typical transfer characteristic for a binary coded unipolar converter.

5.5.2 Average transfer characteristic. The representation of the av-
erage ADC output code, ȳ, as a function of the input signal value x.
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See also: Deterministic conversion law (5.1.1), Average output code (6.1),
Code bin (6.3), Code transition level (6.5).

6. Output coding

6.1 Average output code

For a given value of input x(t), it is an estimate of the expected value E[y[k]]
of the output code y[k]. The arithmetic mean of M samples of y[k] is used as
an estimator of the output code.

6.2 Bandwidth (BW)

The band of frequencies of the input signal that the ADC under test is in-
tended to digitise with nominal constant gain. It is also designated as the half-
power bandwidth, i.e., the frequency range over which the ADC maintains a
dynamic gain level of at least −3 dB with respect to the maximum level.

6.3 Code bin or quantisation cell (k)

A code bin represents both, a fractional range of the analogue input quantity,
and the correlated digital output code (see figure 1.7). Thus, a code bin can
be defined, in a deterministic quantisation law, either as a digital output code
y[k] that corresponds to a particular set of input values x, each of which is
uniquely mapped to that code, or as the interval (intervals) of values of x which
correspond to the same output code k. The term step instead of code bin is
often used whenever a qualitative rather then quantitative description is done.

6.4 Code bin width (W [k])

In a monotonic ADC, the absolute value of the difference between the two
ends of the range of analogue input values corresponding to one code bin (fig-
ure 1.6), i.e., the code transition levels T [k] and T [k + 1] that delimit the kth
bin:

W [k] = T [k + 1] − T [k] (1.1)

Nominal code bin width (Q) In an ideal ADC, the difference between the last
and the first nominal code transition levels, divided by the total number
of code bins encompassed between the two in the nominal conversion
characteristic. In a N-bit, binary, unipolar ADC:

Q =
TnomTT [2N − 1] − TnomTT [1]

2N − 2
(1.2)

See also: Gain flatness error (7.5).

See also: Code bin width (6.4), Quantisation (5.3).
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Figure 1.7. Code bin representation.

NOTES:

Different code bin widths along the ADC transfer characteristic result in a differential
non-linearity error (DNL).

The term step width instead of code bin width may be used whenever a qualitative rather
than quantitative description is done.

See also: Quantisation (5.3), Code bin (6.3), Code transition level (6.5),

6.5 Code transition level (T [k])

In a deterministic conversion law, the analogue input value at which the
change between two adjacent digital output codes takes place. Two consecutive
code transition levels (T [k], T [k + 1]) are the extremes of an interval defining
a code bin. A N-bit deterministic ADC presents 2N − 1 code transition levels
(figure 1.6).

According to the considerations in the definition of A/D probabilistic con-
version law, a more operational definition considers a transition level as the
value of the converter input that causes half of the digital output codes to be
greater than or equal to k, and half less than k (see figure 1.3). It follows that
the transition T [k] between codes (k − 1) and k may occur at several different
input levels.

Nominal code transition level (TnomTT [k]) The code transition level specified
by the manufacturer as a function of VfsVV 4.

4A deviation of the code transition levels from their respective nominal values leads to the occurrence of an
integral linearity error in the transfer characteristic.

Monotonic ADC (6.10), DNL (7.9.2).
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Midcode bin value The analogue value for the centre of the code bin, except
for the code bins at the two ends of the total range of analogue values5.

Nominal midcode bin value A specified analogue value within a code bin
that is ideally represented free of error by the corresponding digital out-
put code.

Alternation band A property of some ADCs which identifies the input quan-
tity range whereby the output alternates between two adjacent digital
output codes.

See also: Conversion law (5.1), Code bin (6.3), Hysteresis (7.7), Inte-
gral non-linearity (7.9.1), Coherent sampling (8.2).

6.6 Effective Number of Bits (NefNN )

In a first approach the nominal resolution of an ADC is determined by its
physical number of bits. Actually the effective number of bits of an ADC
identifies the resolution of the converter after correction for the signal-to-noise
and distortion ratio. For a sinusoidal input signal, NefNN is given by:

NefNN =
SINADdBFS − 1.76dB

6.02
(1.3)

where, SINADdBFS = SINADdB − 20 log(SFDR).
The effective number of bits is a global indication of the real ADC’s ac-

curacy in terms of number of bits at a specific input frequency and sampling
rate. In an actual ADC the measured error is generated by quantisation noise
together with other sources of noise such as jitter, non-linearities, fixed pattern
noise, reference voltage noise, power supply noise, missing codes, and thermal
noise. The NefNN degrades with an increasing of the sampling frequency and its
worst-case value occurs at the maximum specified sampling frequency (fsff max)
for an input frequency close or above one half of fsff max .

6.7 Gain

Gain (G) The slope of the fitting straight line of the transfer characteristic, or
of a specified part of it, expressed as the quotient of a change in digital
output quantity (stated in the input quantity dimensions) by the change
in analogue input quantity producing it .

5For the end codes, the midcode value is defined as the analogue value that results when the analogue value
for the transition to the adjacent code is reduced or enlarged as appropriate by half the nominal value of the
code bin width (see figure 1.6).

See also: SINADNN (7.19), SFDR (7.21).
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Gain point A point in the transfer characteristic corresponding to the code
transition, or code midstep, value for which a gain error is specified, and
in reference to which a gain adjustment6 is performed (see figure 1.8).

6.8 Least-significant bit (LSB)

When referring to the input signal amplitude of a linear ADC, an LSB is
synonymous with one ideal code bin width Q, which serves as a reference unit
to express the magnitude of other analogue quantities of that same converter,
especially of analogue errors, as multiples or submultiples of the analogue res-
olution. When describing the output bits of an ADC, LSB identifies the bit that
has the lowest positional weight in a natural binary numeral.

6.9 Linear ADC

An ADC having code steps ideally of equal width excluding the code steps
at the two ends of the total range of analogue input values7.

6.10 Monotonic ADC

An ADC whose transfer characteristic is a monotonic function, i.e., which
presents a positive sign derivative. A monotonic ADC ensures that the increase
or decrease of the digital output is consistent (disregarding random noise) with
an increase or decrease of the analogue input. An intermediate increment or
decrement with the value zero does not invalidate monotonicity.

6.11 Non-linear ADC

An ADC with a specified non-linear transfer characteristic between the nom-
inal code midstep values and the corresponding code step widths8.

6Gain adjustment causes only a change of the slope of the transfer characteristic straight line (as defined
above), without changing the offset.
7Ideally, the width of each end code step is one half of the width of any other code step.
8The function may be continuously non-linear or piece-wise linear.

See also: Code bin width (6.4).

See also: Linearity error (7.9).

See also: TransferTT characteristic (5.5), Missing code (7.10).

See also: Linearity error (7.9).

See also: Gain and offff set error (7.4).
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7. Errors, non-linearity, noise, and distortion

7.1 Code error rate (w)

Ratio of the number of erroneous output codes to the total number of out-
put codes in a record of data of specified length M . This ratio identifies the
probability of the ADC incorrectly converting an input. This measure assumes
that correction was made for gain, offset, and linearity errors, and noise floor
amplitude is known. Possible causes for the occurrence of erroneous output
codes are missing codes, noise interference, crosstalk, timing jitter, and aper-
ture uncertainty. A common equivalent term is word error rate.

Jitter (8.7).

7.2 Dynamic range (DR)

Dynamic range is usually expressed in dB and describes the range of input
signal levels that can be reliably measured simultaneously, in particular the
ability to accurately measure small signals in the presence of large signals. In
this sense, dynamic range can be defined as the ratio of the ADC full scale
input range to the amplitude of the highest harmonic or peak noise floor. For
an N-bit ideal ADC its value is equal to the ideal SINAD ( DR = 10 log(4) ×
N + 10 log(1.5) ) as the only noise present in the output is quantisation noise.

For audio applications, and for sinusoidal inputs, it is common to consider
the smallest input amplitude that which results for the case of a 0 dB SINAD.
In this case, dynamic range is thus defined as

DR = 10 log
Pinput signalPP

Pinput signalPP @SINAD=0
(1.4)

Dynamic range identifies the range of input signal amplitudes that can be re-
liably converted simultaneously to a specified accuracy, expressed as the max-
imum ratio of the two signal levels. Considering the presence of noise floor,
the minimum amplitude of a signal present at the ADC input which allows to
detect the presence of this signal in the ADC output spectrum, is restricted by
the peak amplitude of the noise floor.

See also: SINADNN (7.19), Full-scale range (9.2).

7.3 Fixed-pattern noise

Noise due to localised non-uniformities in the transfer characteristic of an
ADC, e.g., a missing code, which may originate spurious tones in its output
spectrum.

See also: Missing code (7.10), Noise (7.11), Aperture uncertainty (8.1),
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Figure 1.8. Gain error (after correction for the offset error).

7.4 Gain (G) and offset error (VosVV )

From code transition levels The values by which the specified code transi-
tion, or code midstep, values are multiplied and then to which the re-
scaled code transition, or code midstep, values are added, respectively:

to cause the deviations from the nominal code transition, or code
midstep, values to be zero at the terminal points, that is, the first and
the last levels in the transfer characteristic — end-points straight
line.

to minimise the mean squared deviation of the actual code transi-
tion, or code midstep, values (measured fitting straight line) from
the nominal code transition, or code midstep, values (ideal straight
line) — least squares fit definition.

to cause the most positive and the most negative deviation from
the nominal transition levels to be equal in magnitude — min-max
definition.

According to Mahoney [92] (page 119) using the two end points (only) to
determine gain error should not be trusted for accurate slope measurement,
especially in dynamic testing. The slope of the best fit line is a better indicator.

7.5 Gain flatness error (εG(f))

The difference between the gain of the ADC at a given frequency in the
ADC bandwidth, and its gain at a specified reference frequency, expressed as
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a percentage of the gain at the reference frequency. The reference frequency is
typically the frequency where the bandwidth of ADC presents the maximum
gain. For DC-coupled ADCs the reference frequency is usually frefff = 0.

The gain flatness measures the variation of gain over a specified bandwidth,
given by the maximum peak to peak gain variation at all output frequencies
within this frequency range, under all specified conditions.

7.6 Harmonic distortion

For a pure sine wave input , it is the set of output components at frequen-
cies that are an integer multiple of the applied sine wave frequency f1 up to
the frequency fmff = m × f1, where m is application dependent. Harmonic
distortion is due to the presence of frequencies in the output signal that are not
seen in the input signal. It is caused by non-linearities within the device. As
the importance of these harmonics in the output signal varies from application
to application, the harmonic specification parameters should be calculated con-
sidering all the harmonics in the frequency range of interest for the application.

7.7 Hysteresis

The maximum difference in values of a code transition level, when the tran-
sition level is approached by a changing input signal from either side of the
transition. The specified measurement conditions must include at least the
shape and amplitude of the input signal and the sampling frequency9.

7.8 Intermodulation distortion (IMD)

For an input signal composed of two or more pure sinewaves, output com-
ponents at frequencies that are the sum and difference frequencies for all pos-
sible integer multiples of the input frequency tones. For example, for an input
signal composed of two sinewaves, f1 = J1JJ fsff

M and f2ff = J2JJ fsf
M , the intermod-

ulation distortion terms are those given by fimfff = |jJ1JJ ± iJ2JJ | × fsff
M where

i, j = 1, 2, 3, · · · , and J1JJ and J2JJ are chosen to be relative prime to M . IMD is
given by the ratio of the rms sum of the individual distortion components to the
rms amplitude of the input signal expressed in dB. Intermodulation distortion
characterises non-linear distortion due to the appearance, in the output of the

9The presence of hysteresis phenomena is clearly inconsistent with the memory-less ADC model which is
at the basis of both the probabilistic and deterministic conversion laws defined in, respectively, 1.5.1.2 and
1.5.1.1, and as a consequence with the definition chosen for code transition levels.

See also: Bandwidth (6.2).

See also: TotalTT harmonic distortion (7.23).

See also: Code transition level (6.5), Coherent sampling (8.2).
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an ADC, of frequencies that are linear combinations of the fundamental fre-
quencies and all harmonics that may eventually be present in the input signals.
If input harmonic components are present they are not usually considered to
characterise intermodulation distortion. When the harmonics are considered to
be part of the distortion, a statement to that effect should be made.

7.9 Linearity error

7.9.1 Integral non-linearity (INL[k]). The measure of the devia-
tion of the code transition, or code midstep, levels from the ideal straight line,
when an AC signal of specified shape, frequency (f ), and amplitude (A), is
converted at a specified sampling frequency (fsff ) high enough to fully charac-
terise the test frequency. The integral non-linearity error INL[k] associated
with code transition level k is the difference between the measured and nomi-
nal code transition levels, or the respective code midstep levels, after correcting
the measured levels for gain and offset. It is usually expressed in LSB. When
the code transition level is not specified, the absolute value of the maximum
difference observed among all the possible values of k is reported. When the
integral non-linearity is given as one number without code bin specification, it
is the maximum integral non-linearity of the entire range.

Integral non-linearity is a measure of the ADC’s accuracy. When spanning
a converter over its full-scale range, its INL determines the deviation of its
transfer characteristic from the expected ideal straight line of the converter.
Some measures of INL take as a reference not the ideal straight line, but
instead the straight line that best fits the transfer characteristic of the ADC.
INL values calculated taking as a reference a best fit line are likely to be twice
better than the values given by the end points measure. After correcting for
offset and gain the end-points defined straight line is coincident with the ideal
straight line. To ensure monotonicity INL ≤ 0.5 LSB is required [20].

7.9.2 Differential non-linearity (DNL[k]). The difference, after
correcting for gain error, between the k-th code bin width W [k] and the nomi-
nal code bin width Q, divided by the nominal code bin width, when a sinewave
of specified frequency (f ), and amplitude (A), is converted at a specified sam-
pling frequency (fsff ) high enough to fully characterise the test frequency. When
the code k is not specified, the absolute value of the maximum difference ob-
served out of all code bin widths deviations is reported.

Differential non-linearity is a measure of the linearity between code transi-
tions. A DNL value different from zero identifies any deviation of the differ-
ence between two consecutive analogue code transition levels from the nomi-
nal code bin width.
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7.9.3 Phase non-linearity. A measure, in degrees, of the deviation
of the ADC phase response from a straight line, as a function of frequency. It
measures the ADC phase response that results when the rate of change of phase
delay with input signal frequency over a specified bandwidth is not constant.
This can cause signal distortion when different components of a signal arrive
out of phase. It is usually expressed as one-half of the difference between the
delays at the two extremes of the bandwidth being considered. If the worst
case deviation value is provided, the frequency at which it occurs should be
mentioned. It is also known as envelope delay distortion.

7.10 Missing code

An intermediate code that is absent when the changing analogue input to an
ADC causes a multiple code change at the digital output. In general it can be
defined as a code to which a differential non-linearity error DNL[k] = −1 is
associated10.

7.11 Noise (total) (η)

Any deviation between the output signal (converted to input units) and the
input signal, except deviations caused by linear time invariant system response
(gain and phase shift) or a DC level shift. Noise is caused by either phase
or amplitude noise like, quantization, thermal noise, fixed-pattern errors, non-
linearities, aperture uncertainty, and jitter.

7.12 Noise floor (ηf)

The spectrum of frequencies observed in an ADC output response, exclud-
ing the fundamental frequency, its harmonics up to frequency fmff (being m
application dependent), or DC level shift. This definition of noise comes from
the fact that two parameters characterize the signal to noise ratio (SNR and
SINAD) whose difference from each other relies on the separation between
harmonic distortion and noise. All the harmonics from the fundamental up to
frequency fmff (to be defined in each case) are taken into account for harmonic
distortion evaluation. The remaining frequencies above the specified fmff are
included in the broad classification of noise. Noise floor amplitude restricts
the lowest input signal level which will produce a detectable digitally coded

10In [8] a DNL value smaller than -0.85 LSB is considered as giving origin to missing codes. An ADC
having a DNL greater than 1 LSB is not guaranteed to have a missing code, though with all probability a
missing code will occur.

See also: Differentialff non-linearity (7.9.2).

certainty (8.1), Jitter (8.7).
See also: Fixed-pattern noise (7.3), Random noise (7.17), Aperture un-



36 ADC DYNAMIC CHARACTERISATION

equivalent information content at the output of the ADC. The noise floor limits
the sensitivity to low level signals, since any signal with an amplitude smaller
than the noise floor amplitude will result in an output signal with a SNR ≤ 1
making it difficult, or even impossible to recover.

See also: Fixed-pattern noise (7.3), Random noise (7.17), Aperture un-
certainty (8.1), Jitter (8.7).

7.13 Noise power ratio (NPR)

The ratio, expressed in dB, of the average power spectral density magnitude
of an ADC output spectrum within a specified frequency range in response to a
broad bandwidth signal, to the average power spectral density magnitude of the
ADC output spectrum in the same frequency range when a specified frequency
range is notch filtered from the broad bandwidth signal. The noise power ratio
measures the difference in noise power measured at the output of the ADC un-
der test, before and after inserting a bandstop notch filter between a broadband
noise source and the ADC. The notch filter allows to remove selected bands of
noise within which NPR is measured.

7.14 Offset

Offset The systematic deviation between ideal and actual code transition lev-
els. It may be expressed in fractional LSB, or as the equivalent shift of
the mean analogue input quantity required to eliminate the output de-
viation, expressed as an absolute value or as a percentage of full-scale
range. Usually it is specified for code zero.

Offset point A point in the transfer characteristic corresponding to the code
transition, or code midstep, value for which the offset error is specified,
and by reference to which the offset adjustment must be performed11.

7.15 Phase noise

Any fluctuation of the zero crossing instants of a waveform. It could include
both long-term and short-term phase or frequency fluctuations. The long-term
ones are generally specified in terms of frequency drift, being only the short-
term ones those considered as phase noise. In the frequency domain phase

11Offset adjustment causes only a parallel displacement of the transfer characteristic, without changing its
slope.

See also: Gain and offsetff error (7.4).
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noise is expressed, in dB, as

L(f)dB = 20 log[
VNVV (1HzH BW )

VCVV
] (1.5)

where, VNVV (1HzH BW) is the rms noise level in a 1 Hz bandwidth at a frequency
separated from the waveform frequency (carrier) by f Hz (frequency offset),
and VCVV is the rms amplitude of the waveform.

7.16 Quantisation noise / quantisation error
Noise caused by the error of approximating a variable having a continuous

range of values to a quantised form having only discrete values. Quantisation
noise depends on the particular analogue-to-digital conversion process used,
and the statistical characteristics of the quantised signal. The inherent quan-
tisation error of an ideal ADC (within a code), is the maximum (positive or
negative) possible deviation of the actual analogue input value from the nomi-
nal midcode value. It can be shown [146] that this noise has the characteristics
of white noise which has a rectangular probability distribution.
NOTES:

This error is inherently due to quantisation. For a linear ideal ADC, its value equals ±
1/2 LSB (see figure 1.4).

The term "resolution error" for the "inherent quantisation error" is deprecated, because
"resolution" as a design parameter has a nominal value only.

7.17 Random noise

In general is an unpredictable (non-deterministic) disturbance interfering
with a signal, described by its frequency spectrum and its amplitude statistical
properties. In an ADC the disturbed signal may be either the input or the output
signals.

7.18 Residuals

In a sine wave curve fitting procedure the residuals result from the difference
between the recorded data and the fitted function.

7.19 Signal to noise and distortion ratio (SINAD)

For a pure sinewave input of specified amplitude and frequency, the ratio of
the rms amplitude of the ADC output fundamental tone to the rms amplitude of
the output noise, where noise is defined as to include not only random errors but
also non-linear distortion and the effects of sampling time errors, i.e., the sum
of all non-fundamental components in the range from DC (excluded) up to half

See also: Jitter (section 8.7).

See also: Quantisation (5.3).
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the sampling frequency (fsff
2 ). In different words SINAD describes the quality

of an ADC’s dynamic range expressed as the ratio of the maximum amplitude
output signal to the smallest increment of output signal that the converter can
produce. In some glossaries it is also designated as Signal-to-THD plus noise.

namic range (7.21), TotalTT harmonic distortion (7.23).

7.20 Signal to noise ratio (SNR)

Signal-to-noise ratio is a measure of the broadband noise and spurious that
are introduced into the signal by the sampling and analogue-to-digital conver-
sion processes. It is given by the ratio expressed in dB of the rms amplitude
of the ADC output fundamental tone to the rms amplitude of the output noise,
where noise is defined as the sum of all frequencies in the Nyquist band (fsf

2 )
excluding DC, fundamental, harmonics, and spurious components.

The SNR expresses the ratio of signal power to noise power in a speci-
fied frequency range. For an ideal ADC, i.e., which presents only a noise
floor established by its quantisation process and no distortion, the SNR value
is equal to SINAD. Assuming a sinusoidal input with a peak-to-peak ampli-
tude equal to the full-scale range, the maximum achievable SNR is SNR =
6.021N + 1.763 + 10log fsf

2.fmaxff . Thus for sampling frequencies above the
Nyquist rate of twice the maximum input frequency the SNR increases accord-
ingly. This SNR improvement is often designated as “processing gain”, and oc-
curs because of a spreading of the quantisation noise power (assumed constant
and independent of the bandwidth) as the sampling frequency is increased, that
is, the noise that falls within the range from DC to fmaxff is minimised.

In the context of ADCs, the parameters SINAD (1.7.6) and SFDR (1.7.21)
should be used instead.

See also: Dynamic range (7.2), Noise (7.11), Signal to noise and dis-
tortion ratio (7.19), Spurious free dynamic range (7.21), Total harmonic
distortion (7.23).

7.21 Spurious-free dynamic range (SFDR)

SFDR expresses the range, in dB, of input signals lying between the av-
eraged amplitude of the ADC’s output fundamental tone, fiff , to the averaged
amplitude of the highest frequency harmonic or spurious spectral component
observed over the full Nyquist band, for a pure sinewave input of specified
amplitude and frequency, i.e., max{|Y (fhff )|, |Y (fspff )|}:

SFDR(dB) = 20 log
|YavgYY (fiff )|

maxfspff ,fh
[|YavgYY (fhff )| , |Xavg(fspff )|] (1.6)

where:

See also: Noise (7.11), Signal to noise ratio (7.20), Spurious free dy-



ADCs’ Applications and Terminology 39

Yavg is the averaged spectrum of the ADC output,

fiff is the input signal frequency,

fhf and fspf are the frequencies of the set of harmonic and spurious spectral
components.

SFDR defines the difference in signal strength between the signal of interest
and any other present in the band of interest. As generally harmonics limit
SFDR, the worst case harmonic distortion is often specified to indicate SFDR.

7.22 Spurious tones

Undesired signal components usually at frequencies fspff unrelated to the
input signal frequency or its harmonic or intermodulation frequencies. One
such frequency is considered a spurious tone if its spectral line amplitude is at
least 10 dB higher than the noise floor in the averaged power spectrum.

7.23 Total harmonic distortion (THD)

The ratio of the rss (root-sum-of-squares) of all the harmonic distortion
components, including their aliases in the spectral output of the ADC, to the
rms amplitude of the output fundamental component, expressed in dB. The in-
put stimulus is assumed a pure sinewave of specified amplitude and frequency.

THD(dB) = 20log

√∑m
h=2 X(fhff )2

X(1)
(1.7)

Unless otherwise specified, THD is estimated considering the second through
the tenth harmonics, inclusive.

Usually the first three harmonics represent most of the ADC output distor-
tion. However, it is common that the range of harmonics considered to compute
THD is not specified in the data sheets, or that this range varies from manufac-
turer to manufacturer. If a single harmonic is considered for calculating THD
then we have a Single Harmonic Distortion.

See also: Harmonic distortion (7.6).

7.24 Total spurious distortion (TSD)

The root of the sum of the powers of the spurious components in the range
from DC (excluded) up to half the sampling frequency (fsff

2 ), expressed as a dB
ratio to the rms amplitude of the output component at the input frequency, for
a pure sinewave of specified amplitude and frequency stimulus.

See also: Spurious tones (7.22).
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As the parameters described in this section express the dynamic perfor-
mance in a specified frequency range and are dependent of the amplitude figure
used for the signals under consideration, the bandwidth as well as the ampli-
tude of the signal (if different from the full-scale range), harmonics, and noise
should be specified together with the parameters’ values.

8. Data acquisition and processing

8.1 Aperture uncertainty

In a sample-and-hold or ADC, aperture is the time elapsing between the
activation of the “Hold” control signal and the instant when the input signal is
disconnected from the retention mechanism. Aperture uncertainty is the total
time uncertainty spanning from the sampling / converting pulse instant, and
the instant the input signal is actually sampled / converted, due to causes such
as noise, signal amplitude dependent delay variation (as in a flash ADC), and
temperature. It is often used interchangeably with aperture jitter. It is specified
as a rms value which represents the standard deviation of the sample instant in
time.

While the aperture time leads to a time error which renders a phase change
of the ADC output signal, the aperture uncertainty limits the maximum input
signal frequency that can be accurately converted. During the aperture uncer-
tainty time the input signal amplitude should not change more than a value
which does not leads to an error in the output code (usually ±1/2 LSB).

See also: Jitter (8.7).

8.2 Coherent sampling

The sampling of a periodic waveform such that the total number of samples
(M ) in the data record, correspond to an integer number of cycles (J) of the
input waveform. If the data record comprises a number of sample sets, their
respective end points are continuous. Coherent sampling prevents leakage and
ensures that the acquired samples are not redundant. M and J should be rela-
tive prime numbers, being M a power of 2 to allow for the use of fast Fourier
transform algorithms. Coherent sampling requires satisfying the following re-
lationship:

J × fsff = M × fiff (1.8)

where fsff is the sampling frequency and fiff is the input waveform frequency.
See also: Sampling frequency (8.15).

8.3 Decimation

Act of collecting every Dth sample from an ADC output sequence of M
samples, leading a decimated record to comprise MdMM samples. When output
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decimation is used, the decimated sample rate, fdff = fsff
D , should be used for

any equations relating sample rate to input frequency (e.g., for equivalent time
sampling), but the actual ADC sample rate fsff should be quoted as the sample
rate in the test results.

See also: Sampling frequency (8.15).

8.4 Equivalent-time sampling

The sampling of a periodic waveform such that consecutive samples are
captured at different relative instants over various cycles, and assembled in
order that the record of samples represents a single observation of the wave-
form. Equivalent-time sampling exploits the aliasing phenomenon to virtually
increase the usable bandwidth of the sampling process.

8.5 Histogram, Distribution

8.5.1 Code histogram. An ensemble reporting the total number of
samples received in each code bin k, H[k], as a function of k.

See also: Code bin (6.3), Cumulated code histogram (8.5.2).

8.5.2 Cumulated code histogram. An histogram reporting the total
number of samples HcHH [k] received in the bins corresponding to codes smaller
or equal to k, as a function of k.

See also: Code bin (6.3), Code histogram (8.5.1).

8.5.3 Probability density function. A function that defines how likely
it is to find an ADC output code y[k] between code transition levels T [k] and
T [k + 1]. More meaningfully, for a continuous signal x(t), it is the probability
px(ξ)dξ of x being in the neighbourhood of ξ.

8.6 Incoherent sampling

The sampling of a waveform such that the coherent sampling condition is
not meet.

See also: Coherent sampling (8.2).

8.7 Jitter (σj)

Any fluctuation in the time domain of the instant at which an event occurs.
When applied to the sampling frequency, any modulation of the sampling clock
time (random clock-to-clock timing errors) which leads the sampling frequency
to deviate from its nominal value. The presence of jitter renders a stochastic
change in a series of measurements of the code transition level between two
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adjacent digital output codes. It can be designated also as phase noise, and
used interchangeably with aperture uncertainty.

Jitter is due to rapid, short-term, random fluctuations in the phase of a wave,
caused by time-domain instabilities. It leads to short-term frequency variations
in the clock (or input signal) frequency which appear as energy at frequencies
other than the carrier. It is usually expressed in dB relative to carrier power
(dBc) on a 1-Hz bandwidth, which is given by σjσ = 10log[0.5 × S(f)] where
S(f) is the spectral density of phase fluctuations, or as a rms deviation in a
specified frequency from the carrier.

See also: Code transition level (6.5), Aperture uncertainty (8.1), Sam-
pling frequency (8.15).

8.8 Processing gain (PG)

When applied to a window, the ratio of the output signal to noise floor ratio,
to the input signal to noise ratio. It is the inverse of the normalised Equivalent
Noise Bandwidth (ENBW). It is usually expressed in dB.

This processing gain identifies actually a signal processing gain, which is the
ratio of the signal to noise ratio of the processed signal to the signal to noise
ratio of the unprocessed signal. The processing gain concept can be applied
in general to the signal gain, signal-to-noise ratio, signal shape, or other signal
improvement obtained from the input to the output of the processing element.

8.9 Record of data

The sequential collection of M samples acquired at the ADC output, which
compose the vector y[n], with n = 0, 1, . . .M .

8.10 Record time length

The time length of a data record. For instance, for an M-sample record
acquired at the uniform sampling period Ts, the record time length is MTs.

8.11 Relatively prime

Two integers are relatively prime when their ratio is irreducible, i.e., their
greatest common divisor is 1.

8.12 Root-mean-square (rms)

The square root of the average of the squares of all data values in a record.

See also: WindowWW (8.17).
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8.13 Root-sum-square (rss)

The square root of the sum of the squares of all data values in a record.

8.14 Sampling

The process of converting a continuous-time signal into a signal defined
only at discrete values of time.

8.15 Sampling frequency (fsff )

The frequency of the convert command. It determines the conversion rate
(the number of conversions per unit time) performed by the ADC.

Although the Nyquist sampling theorem states that the sampling frequency
must be at least twice the maximum frequency included in the input signal,
sampling rates lower than twice the maximum input frequency can still allow
for an exact reconstruction of the information content if the input signal is a
bandpass one. This technique is designated as “undersampling” or “bandpass”
sampling.
NOTES:

The maximum conversion rate shall be specified for full resolution.

The conversion rate is usually expressed as the number of conversions per second.

8.16 Synchronous and asynchronous sampling

Synchronous sampling occurs when an input signal is sampled maintaining
its phase locked with the ADC sampling frequency, otherwise it is said that the
sampling is asynchronous.

8.17 Window

A set of coefficients to be multiplied by the corresponding samples in a time
data record to modify their relative weights giving, usually, more emphasis to
the samples in the centre of the record, in order to increase the accuracy of the
parameters extracted from the time data record which characterise the signal.
Generally, windowing is used when estimating frequency domain properties.

See also: Record of data (1.8.9).

9. Input characteristics

9.1 Dither, or Source dither

Random noise added to the ADC input signal prior conversion , with the pur-
pose of shaping the power density spectrum of the quantisation noise, moving

See also: Coherent sampling (8.2), Decimation (8.3).

See also: Sampling frequency (8.15).
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its energy towards higher frequencies. Normally its amplitude is made smaller
than 1

2LSB, to prevent the increasing of noise floor amplitude. Although there
is a slight increase in noise level, and hence a decrease of the signal-to-noise
ratio, spectrally shaped dither can minimise this apparent increase. Noise is
less objectionable than distortion, and allows low-level signals to be observed
more clearly.

9.2 Full-scale range (VfsVV )

The difference between the maximum and the minimum convertible in-
put values defined by the ideal straight line, according to the specified trans-
fer characteristic, expressed as a function of reference voltage VrefVV , VfsVV =
VrefVV (2N − 1)/(2N ).

Nominal full-scale range (VfsnVV ) The total range in analogue values that the-
oretically can be coded with constant accuracy by the total number of
steps. A typical reported nominal value of the full scale range for an
N-bit binary unipolar converter (see figures 1.5 - 1.6) is:

VfsnVV =
2N

2N − 2
(TnomTT [2N − 1] − TnomTT [1]) = 2N × Q (1.9)

9.3 Full-scale signal (VifsVV )

One whose peak-to-peak amplitude spans the entire range of input values
recordable by the ADC under test.

9.4 Input units

The measurement units for the physical quantity representing the input sig-
nal x(t).

9.5 Reduced input range (VrirVV )

The ADC’s input quantity range spanning between code transition levels
T [1] and T [2N − 1].

9.6 Signal to Full Scale Ratio (SFSR)

For a pure sinewave input of specified amplitude and frequency, the ratio of
the ADC’s output fundamental tone to the amplitude of a full scale sinewave
at the same frequency.

See also: Full-scale range (9.2).
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9.7 Overdrive (VODVV )

The magnitude of the difference between the positive/negative peaks of the
input sinewave and the first/last code transition level of the transfer character-
istic.

See also: Code transition level (6.5).
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1. Test Setup description

All the dynamic test methods using sinewaves described in this book make
use of a test setup of the type described in figure 2.1. A distinct advantage of
sinewave testing is that it is relatively easy to evaluate the purity of a sinewave,
for instance using a spectrum analyzer, and it is also easy to improve this pu-
rity by suitable filtering. In addition, high quality sinewave synthesizers are
available on the market.

The ADC under test is stimulated with the sinewave provided by a high
purity sinewave generator. Generally, the spectral purity of the generator alone
is not adequate to the purpose of testing. In that case, a bandpass filter has to
be inserted between the source and the ADC in order to reduce noise and/or
harmonic distortion. In some cases, level adapters and unbalanced to balanced
signal converters have to be added. All this extra electronics is preferably
placed between the source and the bandpass filter, so that its contributions to
distortion and noise are filtered out. Finally, an impedance matching network
is frequently required between the bandpass filter and the ADC.

For intermodulation distortion (IMD) testing, figure 2.2 describes the test
setup for two-tone measurements. If additional tones are needed, the same
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Figure 2.1. Test Setup for Sine Wave Testing.

type of setup can be used by combining the output of the required number of
sinewave synthesizers. For IMD testing, an additional bandpass filter may be
required after the combination of the tones in order to reduce the IMD of the
input signal. As for single tone testing, an impedance matching network is fre-
quently required between the bandpass filter and the ADC. The sampling clock
is preferably derived from a second sinewave synthesizer: if this is indeed the
case, the two synthesizers can be phase-locked, to guarantee that the sampling
instants are placed in precise phase relationship with the input sinewave. This
offers several advantages for the subsequent processing of the data, in partic-
ular by eliminating beat patterns which may render the measurement results
unreliable.

The filter before the comparator/driver has the purpose of removing additive
noise superposed to the sinewave, so as to reduce jitter at the output of the clock
driver. A relevant advantage of using a sinewave generator to deliver the clock
signal is related to the quieter EMC environment of the test bench: the high
frequency harmonic contents related to the presence of a digital clock signal
are confined to a small portion of the test board, between the comparator/clock
driver and the ADC under test. Frequently it may be advisable to smooth the
edges of the clock signal, to avoid leakages to other sensitive parts of the test
board.

Note that an external frequency divider may be inserted in the clock chain,
with the aim of achieving more closely the desired frequency ratio and/or re-
ducing the phase noise of the sampling signal.
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Figure 2.2. Test Setup for two-tone IMD Testing.

2. Specification of the clock and input signal

2.1 Harmonic distortion considerations

2.1.1 THD measurements. The harmonic distortion of the input
sinewave must be related to the THD of the ADC under test in order to mini-
mize the errors in the measurements of the THD and also of the SINAD and/or
of the SFDR.

In the worst case, the THD of the ADC under test and the input sinewave
distortion are dominated by the same harmonic component (same frequency
and same phase). In the case of one dominant harmonic component, the THD
of the ADC can be approximated by

THDADC =
AHADC

A

THDADCdB
= 20log

AHADC

A

(2.1)

where AHADC
is the amplitude of the dominant harmonic component created

by the ADC and A is the amplitude of the fundamental component.
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The THD of the input sinewave can be defined by

THDinput =
AHinput

A

THDinputdB
= 20log

AHinput

A

(2.2)

where AHinput is the dominant harmonic component of the input sinewave and
A is the amplitude of the input sinewave.

As the dominant harmonic component created by the ADC and the input
harmonic distortion have the same frequency and the same phase, the measured
THD is

THDmeasureddB
= 20log

AHADC
+ AHinput

A

= 20log

[
AHADC

A

(
1 +

AHinput

AHADC

)]

= THDADCdB
+ 20log

(
1 +

THDinput

THDADC

) (2.3)

In that case, the error on the measurement of the THD is

20log

(
1 +

THDinput

THDADC

)

For an error lower than 0.5 dB on the measurement of the THD, the harmonic
distortion of the input sinewave must be at least 25 dB better than the THD of
the ADC.

In all the other cases, the THD of the ADC as well as the distortion of
the input sinewave result from a distortion over many harmonic components.
These components have not necessary the same frequency and/or the same
phase. In that case, the THD of the ADC is defined by

THDADC =

√∑
i

A2
HiADC

A

THDADCdB
= 20log

√∑
i

A2
HiADC

A

(2.4)

where A2
HiADC

is the power of the ith harmonic component created by the
ADC and A is the amplitude of the fundamental component.
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The THD of the input sinewave can be defined by

THDinput =

√∑
i

A2
Hiinput

A

THDinputdB
= 20log

√∑
i

A2
Hiinput

A

(2.5)

where A2
Hiinput

and A are respectively the power of the ith harmonic compo-

nent and the amplitude of the fundamental component of the input sinewave.
In that case, the powers of the harmonic components must be added and the

measured THD is

THDmeasureddB
= 20log

√∑
i

A2
HiADC

+
∑
i

A2
Hiinput

A

= 10log

⎡
⎣
⎡⎡∑

i
A2

HiADC

A2

⎛
⎝
⎛⎛

1 +

∑
i

A2
Hiinput∑

i
A2

HiADC

⎞
⎠
⎞⎞⎤

⎦
⎤

= THDADCdB
+ 20log

√
1 +

THD2
input

THD2
ADC

(2.6)

In the cases where the THD of the ADC and the distortion of the input sinewave
result from a distortion over many harmonic components, the error on the mea-
surement of the THD is

20log

√
1 +

THD2
input

THD2
ADC

For an error lower than 0.5 dB on the measurement of the THD, the harmonic
distortion of the input sinewave must be at least 9 dB better than the THD of
the ADC.

Given the case considered and knowing the harmonic distortion of the input
sinewave synthesizer, the rejection of the bandpass filter inserted between the
source and the ADC can be calculated.

2.1.2 IMD measurements. If the IMD of the ADC and the IMD of the
input signal are dominated by the same intermodulation tone (IM tone) (same
frequency and same phase), the same reasoning than the one used for the worst
case THD measurement leads to an error on the measured IMD equal to

εIMD = −20log

(
1 +

IMDADC

IMDinput

)
(2.7)
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Where

IMDADC =
A

AIMtoneADC

(2.8)

and

IMDinput =
A

AIMtoneinput

(2.9)

with AIMtoneADC
is the amplitude of the dominant IM tone created by the

ADC, A the amplitude of the lower input tone, and AIMtoneinput the amplitude
of the dominant IM tone of the input signal.

For an error lower than 0.5 dB on the measurement of the IMD, the inter-
modulation distortion of the input signal must be at least 25 dB better than the
one of the ADC.

If the IMD of the ADC and the IMD of the input signal are not dominated
by the same IM tone, the difference between the IMD of the input signal and
the one of the ADC can be lower than 25 dB for an error of 0.5 dB on the
measurement of the IMD of the ADC. This difference depends on the configu-
ration of the IM tones at the input of the ADC and on the configuration of the
IM tones created by the ADC, that is why it is impossible to give a general rule
in that case. Nevertheless, the error given in (2.7) is a worst case one and for a
given value of the error, the ratio between the IMD of the input signal and the
IMD of the ADC calculated from this equation will ensure that, in any case,
the IMD is always measured with the accuracy wanted.

2.2 Jitter considerations

The phase noise of the signal and clock sources produce errors for many
dynamic test methods. The phase noise of a signal source is usually described
by the SSB phase noise spectral power density L(foff ) (measured in dBc/Hz) as
a function of the offset foff from the carrier (in Hz), see figure 2.3. The variance
(power) of the phase noise is calculated by1

σ2
θ = 2

∫ fHff

f

∫∫
Lff

L(foff )dfoff (2.10)

where fLff and fHff depend of the application in which the generator is used.
In the setup described in figure 2.1, a selective bandpass filter is placed

between the ADC and the generator for the signal and the clock sources. If the
filters’ 3 dB bandwidth are BWfW inff for the input signal and BWfW sff for the clock

signal, the upper bound of the integral in (2.10) is fHff =
BWfW

in
2 for the input

signal and fHff = BWfW s
2 for the clock signal.

1see equations (22.9) and (22.10) in [38].
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Figure 2.3. Typical SSB phase noise power density of a sinewave generator.

If we consider the acquisition of M samples at the sampling frequency fsff ,
the lower bound of the integral in (2.10) is fLff = fsf

M for both signals.
So for the test setup described in figure 2.1, the variances of the phase noise

of the input signal and of the clock signal can be calculated by

σ2
θsig

= 2
∫ BWfW

in
2

f

∫∫
s

M

∫∫
Lsig(foff )dfoff

σ2
θclk

= 2
∫ BWfW

s
2

f

∫∫
s

M

∫∫
Lclk(foff )dfoff

(2.11)

Note that if
BWfW

in
2 (respectively BWfW s

2 ) is lower than or equal to fsff
M , no phase

noise is added to the input (respectively clock) signal.
The timing jitter variance is related to the phase noise variance by

σ2
TsigTT =

σ2
θsig

(2πfinff )2

σ2
TclkTT =

σ2
θclk

(2πfsff )2

(2.12)
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Table 2.1. Error (in dB) on SNR measurement due to timing jitter(1/2)

N ↓ \ finff σT → 5E-4 1E-4 5E-5 1E-5 5E-6 1E-6

6 0.3 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
7 0.9 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
8 2.9 0.2 < 0.1 < 0.1 < 0.1 < 0.1
9 6.9 0.6 0.2 < 0.1 < 0.1 < 0.1
10 > 10 2.1 0.6 < 0.1 < 0.1 < 0.1
11 > 10 5.4 2.1 0.1 < 0.1 < 0.1
12 > 10 > 10 5.4 0.4 0.1 < 0.1
13 > 10 > 10 > 10 1.5 0.4 < 0.1
14 > 10 > 10 > 10 4.1 1.5 0.1
15 > 10 > 10 > 10 8.7 4.1 0.3
16 > 10 > 10 > 10 > 10 8.7 1.0
17 > 10 > 10 > 10 > 10 > 10 3.0
18 > 10 > 10 > 10 > 10 > 10 7.0

The variance of the total timing jitter of the test setup is

σ2
T = σ2

TsigTT + σ2
TclkTT (2.13)

Note that the contribution of the clock driver to the total timing jitter has been
neglected in (2.13). For most high speed ADCs, no external clock driver is
required and (2.13) is valid. When an external clock driver is required, the
phase noise of the clock signal must be measured after the clock driver in order
to take into account its effects on the phase noise of the clock signal. In that
case, σ2

TclkTT is replaced by σ2
TclkTT +driver

in (2.13). Nevertheless, the contribution
of the external clock driver to the total timing jitter is often negligible and
(2.13) can be used.

The total timing jitter, causes a non-uniform sampling of the input signal,
which results in an error on the measurement of dynamic parameters like SNR,
SINAD, DNL, and INL.

For an ideal N-bit ADC, the SNR is

SNRideal = 10log(22N−1 × 3) = 6.02N + 1.76 (2.14)

If the SNR of this N-bit ideal ADC is measured with a non-ideal test setup,
the presence of timing jitter leads the measured value to be lower than the
value calculated by (2.14). An expression of the measured SNR in presence of
a timing jitter with a variance σ2

T is found in [130]

SNRmeasured = −10log

(
1

3 × 22N−1
+ (2πfinff σT )2

)
(2.15)
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Table 2.2. Error (in dB) on the SNR measurement due to timing jitter (2/2)

N ↓ \ finff σT → 5E-7 1E-7 5E-8 1E-8 5E-9 1E-9

15 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
16 0.3 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
17 1.0 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
18 3.0 0.2 < 0.1 < 0.1 < 0.1 < 0.1
19 7.0 0.7 0.2 < 0.1 < 0.1 < 0.1
20 > 10 2.2 0.7 < 0.1 < 0.1 < 0.1
21 > 10 5.6 2.2 0.1 < 0.1 < 0.1
22 > 10 > 10 5.6 0.4 0.1 < 0.1
23 > 10 > 10 > 10 1.5 0.4 < 0.1
24 > 10 > 10 > 10 4.3 1.5 0.1

The error on the SNR measurement due to the timing jitter of the test setup is

εSNR = 6.02N + 1.76 + 10log

(
1

3 × 22N−1
+ (2πfinff σT )2

)
(2.16)

The SNR error measurement expressed in dB is listed in Tables 2.1 and 2.2,
for diferent error ranges, as a function of N and finff σT . It can be seen that very
large errors can occur when the timing jitter of the test setup is not low enough.

The error calculated in the tables can also be expressed as

εSNR = 6.02N + 1.76

+ 10log

(
1

3 × 22N−1
+ σ2

φsig
+

(
finff

fsff

)2

σ2
φclk

)
(2.17)

For a given ADC, the only way to reduce this error is to lower the variance
of the phase noise of the input signal and of the clock signal. In (2.17) the

variance of the clock phase noise is multiplied by
(

finff
fsff

)2
. That reduces the

effect of the clock phase noise for the measurements performed with an input
signal in the 2 first Nyquist zones and increases its effect otherwise.

The value of the variance of the phase noise results from the integration
of the SSB phase noise spectral power density of the generator (see (2.11)).
The lower bound of the integral ( fsff

M ) is defined by the ADC under test. The
upper one is half the bandwidth of the bandpass filter, that is why very narrow
bandpass filters allow the power of the phase noise to be reduced.

Knowing the SSB phase noise spectral power density of generators and the
input and clock frequencies, the bandwidth of the filters of the setup described
in figure 2.1 can be specified in order to measure the SNR of the ADC with the
accuracy wanted.
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Using filters with a bandwidth such that BWfW s
2 ≤ fsf

M and
BWfW

in
2 ≤ fsff

M pro-
vides a reduced timing jitter test setup which does not affect SNR measurement
errors. Unfortunately, it is often impossible to reach such a narrow bandwidth
or it requires very expensive filters. However, thanks to the performances of
the high purity sinewave generators available on the market, it is often not
necessary to use bandpass filters with such narrow bandwidths.

For a given ADC, in order to reach the required accuracy on the SNR mea-
surement, the maximum tolerable total timing jitter value is given in Tables
2.1 and 2.2. After that value, the generator’s SSB phase noise spectral power
density, and input and clock frequencies, the clock and signal bandwidths
((BWclkWW ) and BWsigWW ) can be determined. It is very important to specify pre-
cisely the filters’ bandwidths and not to overestimate them, because they often
determine the filters’ technology and thus there cost.

3. Example of filter specification

Let’s consider a 12-bit 50 MS/s ADC to be measured with an accuracy of 0.1
dB on the SNR and 0.5 dB on the THD. The typical value of the SNR given
by the manufacturer is 68 dBFS for finff = 10MHz, the typical THD at the
same frequency is -80 dBFS. The record size for the characterization is 16384
samples. The synthesizers used for the clock and input signals are identical
and their SSB phase noise power density is given in table 2.3.

Table 2.3. SSB phase noise power density of the clock and signal generators.

Offset from the carrier (Hz) L(foff ) (dBc/Hz)

1 -78
10 -108
100 -126
1000 -132
3000 -135
5000 -138
10000 -138
100000 -139

The highest harmonic generated by the synthesizer is the second one and its
amplitude is 30 dB below the carrier. Let’s consider that the THD of the ADC is
also determined by the second harmonic. As described in 2.1, the THD of the
input signal, being THDADC=-80 dBFS, must be at least -105 dB to reach the
desired accuracy. That leads to specify the minimum rejection of the signal BP
filter to -75 dB at 20 MHz. To get a maximum SNR measurement error of 0.1
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dB with this ADC (68 dBFS), line N=12 of table 2.1 gives a maximum value
for finff σT of 5.10−6, that is to say a maximum timing jitter of σT ≤ 0.5ps.

The bandwidth of the clock and signal band-pass filters must then be speci-
fied to limit the total jitter to 0.5ps. As the signal synthesizers are the same for
the clock and input signals, and as the clock frequency is five times the input
signal frequency, the bandwidth of the clock filter can be wider than the one of
the signal filter. Even if there are many bandwidth combinations that can lead
to the correct setup, the more apropriate combinations of filter bandwidths are
the ones that allow the lowest cost filters to be used. In this case, assuming that
the timing jitter induced by the signal is 0.92 ps and the jitter induced by the
clock is 0.4 ps (sqrt(0.922 +0.42) = 1), a good bandwidth specification could
be, according 2.11 and 2.12,

3 dB BW of the signal filter — BWfW inff = 56, 2 kHz (0.6%)

3 dB BW of the clock filter — BWfW sff = 711 kHz (1.4%)

The percentage figures between brackets give the ratio between the band-
width of the filter and its central frequency, which is sometimes called the
relative bandwidth of the filter. When specified as described above, the two
filters can be manufactured with a low cost technology (LC).

Another filters’ combination still limiting jitter to 0.5 ps could be

3 dB BW of the signal filter — BWfW inff = 24 kHz (0.24%)

3 dB BW of the clock filter — BWfW sff = 1520 kHz (3%)

Now, the timing jitter induced by the signal is 0.24 ps and the clock induced
jitter is 0.44 ps. This filters’ specification leads to a much narrower signal filter,
which might not be the best choice in terms of filters’ costs.

4. Filter selection

The explanations and tables given in section 2 allow the value of the re-
jection and of the bandwidth of the bandpass filters to be calculated. From
these values, the feasibility and the technology adopted to design the filters
can be determined. Table 2.4 lists the narrowest 3 dB bandwidths and the
highest reachable rejections for filter technologies suitable for the frequencies
commonly used in the dynamic testing of ADCs.

The relative 3 dB BW is the value of the 3 dB BW divided by the central
frequency and the rejection is the difference between the stopband attenuation
and the insertion loss.

The values in table 2.4 define rather standard filters for most of the very
narrow and very high selectivity bandpass filter manufacturers. Nevertheless,
some manufacturers can design specific filters with higher performances.
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Table 2.4. Filters performances

Technology Center Frequency Relative 3 dB BW Rejection

L, C DC → 1 GHz 1 % 70 dB

Quartz 10 kHz → 100 MHz 0.01 % 90 dB

Surface Acoustic Wave (SAW) 10 MHz → 2 GHz 0.02 % 60 dB

Tubular 50 MHz → 6 GHz 2 % 70 dB

Printed line 50 MHz → 18 GHz 3 % 60 dB

Dielectric Resonator 400 MHz → 3 GHz 1 % 60 dB

4.1 LC filters design

For the dynamic testing of ADC using sinewaves, band-pass filters are used
in order to filter the noise and/or the harmonics. Generally, the parameters re-
quired for the filters used in sinewave test setups are a narrow 3 dB bandwidth
and a high stop-band rejection. The most suitable filters to provide these char-
acteristics are Chebyshev filters. Moreover, for sinewave testing, the ripple of
that kind of filter is not a problem as it can be for wide-band signal testing.

The harmonic distortion and jitter considerations allow the value of the stop-
band width, the stop-band attenuation and the 3 dB bandwidth to be deter-
mined. To design the filter, the input and the output impedances must also be
known. Most of the time, with LC filters, these impedances equal 50 Ω and a
impedance matching network is used to match the filter impedance to the ADC
impedance.

Knowing the stop-band width and the stop-band attenuation, the order of
the filter can be determined as shown in figure 2.4. The curves of figure 2.4 are
reproduced from [150] and show the pass-band and stop-band attenuation as a
function of the frequency normalized to the 3 dB bandwidth. Once the order
of the filter is determined, [150] gives the normalized value of the inductors
and capacitors to use to build the filter. The last step is to denormalize these
coefficients using the central frequency, the 3 dB bandwidth and the input and
the output impedances in order to get the real values of the components to use.

Today, this analysis is performed automatically with the filter synthesis soft-
wares available on the market. Moreover, these softwares can take into account
the quality factors of the inductors and capacitors and thus simulate the exact
response curve of the filters that will be manufactured.
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Figure 2.4. Attenuation characteristics for Chebychev filter with 0.1 dB ripple.

5. Taking a record of data

A record of data is a sequential series of samples acquired by the logic
state analyzer (or embedded processing element in the case of built-in self test)
interfaced to the ADC. Once acquired, the record of data is transferred to a
computer for analysis.

5.1 Use of Output Decimation in Taking a Record of Data

In the case of ADCs with very high sampling rate, it may become impracti-
cal to store in real time all the samples acquired by the ADC. In this case, it is
still possible to operate the ADC at the high sampling rate, while storing only
one sample out of D acquired in sequence (1/D output decimation). The set of
samples thus collected takes the name of decimated record.

In order to acquire a decimated record, the ADC sampling clock is also
used to drive a divide-by-d counter, whose output triggers the acquisition of
the sample by the logic analyzer (or by the equivalent hardware).

In the case of output decimation, the decimated sample rate, fsff /D, shall
be used in all the equations relating the sampling rate to the input frequency
(e.g., for equivalent time sampling), but the actual ADC sampling rate fsff shall
be quoted as the sampling rate in the test report. When a decimator factor D
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is applied, this implies a test time multiplied by D. So, in that case, the lower
bound of the integrals used in (2.11) must be changed to fsff

M.D .
Output decimation may also be used for tests that do not require waveform

reconstruction, such as histogram tests, or for servo-loop tests. In general, it
should be remembered that decimation involves a loss of information, which
may occasionally hide relevant phenomena, such as hysteresis effects.
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1. Introduction

The time-domain analysis ADC testing method is based on the sinewave
curve fitting algorithm, which uses linear or nonlinear least square method
as function of the knowledge of the input frequency value. In this chapter
algorithms to estimate the spectral parameters like SINAD, SNR, THD
and ENOB in time domain are proposed. Basic theorectical background is
provided here, but for a more extended description of all mathematical details
see [44], [62], [63], [64], [65].
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2. Calculation of the dynamic parameters

In order to measure A/D converter dynamic parameters, a clock signal of
frequency fsff and a pure sinewave

x(t) = A cos(2πfiff t + φ) + C (3.1)

are applied to the input of the ADC evaluation board. Then, M samples

y = [y0, . . . , yM−1]T (3.2)

are acquired. The objective is to evaluate the signal-to-noise and distortion
ratio and the effective number of bits from the ADC output data by a sinewave
fitting procedure.

3. Definitions

The signal-to-noise and distortion ratio (SINAD) is the power of the test
signal to the power of noise and harmonics (see ADC terminology). It is gen-
erally expressed in dB and calculated using the equation

SINAD [dB] = 10 log10

(A2

2 )
η2

rms

(3.3)

where

η2
rms =

1
M

M−1∑
n=0

(y[n] − x[n])2 with x[n] = x(
n

fsff
) (3.4)

The effective number of bits is given by

NefNN [Bits] = N − log2

ηrms

σεq
(3.5)

where N is the the ADC number of bits, and σεq is the ideal quantisation noise
root mean square (rms). This latter is usually set equal to Q√

12
, Q being the

nominal code bin width.
Thus, the ADC parameters require the knowledge of the test sinewave para-

meters. These are latter estimated in the time-domain by minimising the least
squares cost function

χ(xpx ) =
1
2

M−1∑
n=0

(y[n] − x[n])2 (3.6)

with respect to the four parameters

xpx = [A cos(φ), A sin(φ), C, ωin]T (3.7)
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where ωin is the normalised angular frequency

ωin =
2πfiff

fsff
(3.8)

We will distinguish two cases depending on whether ωin is known or not.

4. The fixed-frequency method

If ωin is known with a good accuracy, then we have only to estimate the
three parameters

xpx = [A cos(φ), A sin(φ), C]T (3.9)

The estimates of the linear parameters xpx are determined by minimising the
function χ(xpx ). This is done by noting that χ(xpx ) can be rewritten as

χ(xpx ) =
1
2

[
(y − Ex̂px )T (y − Ex̂px ) + (xpx − x̂px )TETE(xpx − x̂px )

]
(3.10)

where
x̂px = (ETE)−1ETy (3.11)

and E is the M × 3 matrix

E =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

1 0 1
cos(ωin) − sin(ωin) 1
cos(2ωin) − sin(2ωin) 1
...

...
...

cos((M − 1)ωin) − sin((M − 1)ωin) 1

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ (3.12)

The columns of E are linearly independent and hence E is a full rank matrix
and hence ETE is positive definite 1. Hence, the second term in (3.10) is
nonnegative. Because the first term is positive and does not depend on xpx , χ is
minimized by choosing xpx = x̂px . This is equivalent to solve the 3 × 3 linear
system

Ax̂px = b (3.13)

with A = ETE and b = ETy, leading to :

A =
M−1∑
n=0

⎡
⎣
⎡

cos2(nωin) −0.5 sin(2nωin) cos(nωin)
−0.5 sin(2nωin) sin2(nωin) − sin(nωin)
cos(nωin) − sin(nωin) 1

⎤
⎦
⎤⎤

(3.14)

1A matrix A is positive definite if zT Az > 0 whatever the column vector z. In our case : zT Az =
(Ez)T (Ez) = ‖Ez‖2 > 0.
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b =
M−1∑
n=0

⎡
⎣
⎡

y[n] cos(nωin)
−y[n] sin(nωin)
y[n]

⎤
⎦
⎤

(3.15)

The matrix A is symmetric and non-singular and its elements have the follow-
ing analytical expressions⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪

⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

a11 = M
2 + cos((M−1)ωin) sin(Mωin)

2 sin(ωin)

a12 = − sin((M−1)ωin) sin(Mωin)
2 sin(ωin)

a13 = cos(M−1
2

ωin) sin( M
2

ωin)

sin(
ωin
2

)

a22 = M
2 − a11

a23 = − sin(M−1
2

ωin) sin( M
2

ωin)

sin(
ωin
2

)

a33 = M

(3.16)

This will reduce the round-off errors and the computation time.
The solution of the linear system (3.13) is given by⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪

⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

x̂px [1] = b1[M(M−a11)−a2
23]−b2[Ma12−a13a23]+b3[a12a23−a13(M−a11)]

∆

x̂px [2] = −b1[Ma12−a12a23]+b2[Ma11−a2
13]−b3[a11a23−a12a13]

∆

x̂px [3] = b1[a12a23−a13(M−a11)]−b2[a11a23−a12a13]+b3[a11(M−a11)−a2
12]

∆
(3.17)

where bj are the elements of b and ∆ is the determinant of A

∆ = a11[M(M − a11) − a2
23] − a12[Ma12 − a13a23]

+ a13[a12a23 − a13(M − a11)]
(3.18)

This algorithm could be simplified tacking into account the coherent sampling
properties. Indeed, coherent sampling occurs when the sampling and test fre-
quencies satisfy the relationship

fiff =
J

M
fsff (3.19)

where J is an integer relatively prime to M . This formula means that there is
an integer number of the input sinewave cycles within the data record. If M is
a power of two, then it is sufficient to set J equal to an odd integer.
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In the case of coherent sampling, the matrix (3.14) is diagonal

A =
M

2

⎡
⎣
⎡⎡

1 0 0
0 1 0
0 0 2

⎤
⎦
⎤⎤

(3.20)

and the solution of (3.13) becomes

x̂px =
1
M

M−1∑
n=0

⎡
⎣
⎡

2y[n] cos(nωin)
−2y[n] sin(nωin)
y[n]

⎤
⎦
⎤⎤

(3.21)

5. The four-parameter method

When ωin is unknown, then we have to determine the four parameters (3.7)
. This is done by minimising (3.6) using the Gauss-Newton method [44]

xpx n = xpx c − F−1(xpx c)g(xpx c) (3.22)

where xpx c and xpx n are the current and next estimates of xpx ; g and F are the
gradient and the Gauss-Newton approximation of the hessian of the function
(3.6). The calculation gives

g =
M−1∑
n=0

⎡
⎢
⎡⎡
⎢⎢⎢⎣⎢⎢

(x[n] − y[n]) cos(nωin)
−(x[n] − y[n]) sin(nωin)
x[n] − y[n]
−n(x[n] − y[n])vn

⎤
⎥
⎤⎤
⎥⎥⎥⎦⎥⎥ (3.23)

F =
M−1∑
n=0

⎡
⎢
⎡⎡
⎢⎢⎢⎣⎢⎢

cos2(nωin) −0.5 sin(2nωin)
−0.5 sin(2nωin) sin2(nωin)
cos(nωin) − sin(nωin)
−nvn cos(nωin) nvn sin(nωin)

cos(nωin) −nvn cos(nωin)
− sin(nωin) nvn sin(nωin)
1 −nvn

−nvn n2v2
n

⎤
⎥
⎤⎤
⎥⎥⎥⎦⎥⎥

(3.24)

where

x[n] = xpx [1] cos(nωin) − xpx [2] sin(nωin) + xpx [3] (3.25)

and

vn = xpx [1] sin(nωin) + xpx [2] cos(nωin) (3.26)
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The matrix F is symmetric positive definite and hence non-singular. Its
elements have the following expressions⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪

⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

f11 = M
2 + 1

2Sc,0(2ωin)
f12 = −1

2Ss,0(2ωin)
f13 = Sc,0(ωin)
f14 = −1

4xpx [2]M(M − 1) − xp[1]
2 Ss,1(2ωin) − xp[2]

2 Sc,1(2ωin)
f22ff = M

2 − f11

f23ff = −Sc,0(ωin)
f24ff = 1

4xpx [1]M(M − 1) + xp[2]
2 Ss,1(2ωin) − xp[1]

2 Sc,1(2ωin)
f33ff = M
f34ff = −xpx [1]Ss,1(ωin) − xpx [2]Sc,1(ωin)
f44ff = xp[1]2+xp[2]2

12 M(M − 1)(2M − 1)
+ xp[2]2−xp[1]2

2 Sc,2(2ωin) + xpx [1]xpx [2]Ss,2(2ωin)
(3.27)

where

Sc,m(θ) =
M−1∑
n=0

nm cos(nθ)

Ss,m(θ) =
M−1∑
n=0

nm sin(nθ)

m = 0, 1, 2. θ = ωin, 2ωin

(3.28)

Useful relationships that avoid the summation of (3.28) are

m = 0

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎩⎪⎪

Sc,0(θ) = cos(M−1
2

θ) sin( M
2

θ)

sin( θ
2
)

Ss,0(θ) = sin(M−1
2

θ) sin( M
2

θ)

sin( θ
2
)

m = 1

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎩⎪⎪

Sc,1(θ) = M sin([M−0.5]θ)−Ss,0(θ) cos( θ
2
)

2 sin( θ
2
)

− Sc,0(θ)
2

Ss,1(θ) = −M cos([M−0.5]θ)+Sc,0(θ) cos( θ
2
)

2 sin( θ
2
)

− Ss,0(θ)
2

m = 2

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎩⎪⎪

Sc,2(θ) = M(M−1) sin([M−0.5]θ)−2Ss,1(θ) cos( θ
2
)

2 sin( θ
2
)

Ss,2(θ) = −M(M−1) cos([M−0.5]θ)+2Sc,1(θ) cos( θ
2
)

2 sin( θ
2
)

(3.29)

As in A/D converter testing the residual (y−x) is small, the Gauss-Newton
method is fast linearly locally convergent [44]. Thus, the choice of good start-
ing values xpx 0 will guarantee the convergence to the global minimum.
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5.1 Influence of the initial frequency

Here we intend to find by means of computer simulations an estimate of the
initial frequency accuracy required by the four-parameter method . Then, we
will show that the interpolated FFT frequency estimation method guarantees
the global convergence of the four-parameter method.

Figure 3.1. (a)-The four-parameter residual RMS versus the initial frequency uncertainty. (b,
c, d, e)-Effect of SNR, THD, M , and ωin on δc. (f)-The accuracy of the initial frequency
estimation method as a function of the number of samples.
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Figure 3.1.a shows the variation of the estimated residual RMS

1
M

M−1∑
n=0

(y[n] − x[n])2 (3.30)

as a function of the initial frequency uncertainty

δ =
M

2π
|ωin0 − ω�

in| (3.31)

A critical value δc appears and two intervals can be distinguished:

The convergence range [0, δc] where the algorithm converges to the
global minimum;

The failure range δ > δc where the algorithm diverges or converges to a
local optimum. In this range, we have sometimes a global convergence
but in random way.

The variation of δc as a function of SNR, THD, M and ωin has been inves-
tigated. The obtained results are shown in Figures 3.1.(b, c, d, e). As it can be
seen, these parameters have practically no effect on δc and 0.7 is a reasonable
worst case value. From (3.31), the required initial frequency estimate accuracy
is

∆ωin0 < 2π
0.7
M

(3.32)

Figure 3.1.f shows the variation of the estimation error ∆ωin = |ωin − ω�
in|

of the interpolated FFT and windowing based method versus the number of
samples. Worst-case values have been chosen for SNR and THD. It can be
seen that for M ≥ 512

∆ωin < 2π
0.0012

M
(3.33)

Hence, the criterion (3.32) is largely satisfied and the four-parameter method
will converge to the global minimum.

5.2 Estimation of the initial values

The iterative process (3.22) requires good initial values xpx 0 which can be
estimated as follows:

1 Provide an initial value for ωin;

2 Compute the remaining initial values from (3.17).
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For this methodology, the Gauss-Newton method requires an initial frequency
accuracy of about

∆ωin0

2π
≤ 0.7

M
(3.34)

in order to converge to the global minimum.
In order to satisfy the frequency accuracy (3.34), ωin0 can be estimated by

the following interpolated FFT and windowing method [68]:

1 Multiply the data y by the Hanning window

w[n] = 0.5[1 − cos(2π
n

M
)], n = 0, . . . , M − 1 (3.35)

2 Compute the amplitude spectrum ywf of the windowed data y[n]w[n];

3 Find the index J corresponding to the peak of the fundamental compo-
nent, then evaluate

δ =
2max(ywf [J + 1],ywf [J − 1]) − ywf [J ]
ywf [J ] + max(ywf [J + 1],ywf [J − 1])

(3.36)

4 Finally, the initial frequency value is given by

ωin0 =
2π

M
(J + δ) (3.37)

5.3 The algorithm

The Gauss-Newton based method described above can be implemented as
follows.

Input:

ε the tolerance at which the distance between two successive
iterates is considered close enough to zero to stop the

algorithm. Default value: [machine accuracy]
2
3.

kmax maximum number of iterations. Default value: 30.

Output:

xpx estimated parameters

kf number of iterations

1 Estimation of the initial values xpx 0
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(a) Compute ωin0 from (3.37);

(b) Compute the remaining initial values from (3.17);

2 Gauss-Newton algorithm
Initialisation: set xpx c = xpx 0;
FOR k = 1 : kmax

(a) Compute g(xpx c) and F(xpx c) from (3.23) and (3.27);

(b) Compute the next iterate xpx n from (3.22);

(c) If max
{∣∣∣∣∣∣∣xpn[i]−xpc[i]

xpn[i]

∣∣∣∣∣∣∣}
1≤i≤4

< ε, return from here;

(d) Update xpx c: xpx c = xpx n;

END

xpx = xpx n; kf = k.

6. Definitions of THD and SNR

The signal-to-noise ratio (SNR) is equal to the ratio of the test signal power
to the noise power

SNR [dB] = 10 log10

A2

2

1
M

M−1∑
n=0

(y[n] − x[n] − h[n])2
(3.38)

where y are the data, x and h represent the input sinewave and the harmonics
due to the ADC nonlinearity

x[n] = A cos(nωin + φ) + C (3.39)

h[n] =
P∑

h=2

Ah cos(nhωin + φh), n = 0, . . . , M − 1 (3.40)

The total harmonic distortion (THD) is equal to the ratio of the harmonic
power to the test signal power

THD [dB] = 10 log10

P∑
h=2

A2
h

A2
(3.41)
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7. The multi-harmonic sine-wave fitting method

The basic idea consists of reducing the problem complexity by separating
the linear and nonlinear parameters of the model . The measurement of SNR
and THD requires the knowledge of the test signal and harmonic parameters
which are: the nonlinear parameter ωin and the linear parameters

xpx = [A cos(φ), A2 cos(φ2), . . . , AP cos(φP ),

A sin(φ), A2 sin(φ2), . . . , AP sin(φP ), C]T

(3.42)

The estimates xpx and ωin are obtained by minimising the least-squares cost
function

χ(xp, ωx in) =
M−1∑
n=0

(y[n] − x[n] − h[n])2 (3.43)

by a variable-separation method [65]: firstly, one estimates the nonlinear pa-
rameter ωin. Then, the linear parameters xpx are calculated by solving a linear
set of equations.

7.1 Frequency estimation

The data y can be modelled by the sum of the input sine wave, harmonics
and additive noise. As the THD of A/D converters is small, its effect on the
frequency accuracy is negligible. Thus, for frequency estimation , one can only
consider the input sine wave

s[n] = xpx [1] cos(nωin) − xpx [2] cos(nωin) + xpx [3] (3.44)

where
xpx = [A cos(φ), A sin(φ), C]T (3.45)

For any fixed ωin, χ is minimised by (see paragraph 3.4)

x̂px (ωin) = A−1(ωin)b(ωin) (3.46)

Analytical expressions for the elements of A are given in section 3.8. Finally,
ωin is obtained by minimising the one-variable function

L(ωin) = χ(x̂px (ωin), ωin) = yTy − bT (ωin)A−1(ωin)b(ωin) (3.47)

Figure 3.2 shows the variation of L(ωin) around the global minimum ω�
in.

In order to converge to this global minimum, the iterative method used for
minimising L(ωin) requires that the initial value ωin0 must be in the main
lobe, otherwise the routine fails. The main lobe width depends mainly on the
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Figure 3.2. A plot of L(ωin) near the global minimum.

data length M and is equal to 2M . The necessary condition over ωin0 can be
expressed by

|ω�
in − ωin0| < 2π

1
M

(3.48)

ωin0 being in the main lobe, the sufficient condition for global convergence is
that the routine step (ω(k+1)

in − ωk
in) must be in a descent direction

(ω(k+1)
in − ωk

in)L′(ωk
in) < 0 (3.49)

For the modified Newton method (3.55) given in section 3.8, this condition
becomes

L′(ωk
in) > 0 (3.50)

Simulations show that this condition is satisfied when the initial frequency
uncertainty |ω∗

in − ωin0| is less than 2π 0.3
M .
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8. Estimation of the normalised angular frequency

The normalised angular frequency ωin is estimated by minimising the one-
variable function

L(ωin) = yTy − bT (ωin)A−1(ωin)b(ωin) (3.51)

where

b(ωin) =
M−1∑
n=0

y[n][cos(nω), − sin(nω), 1]T (3.52)

A(ωin) =

⎡
⎣
⎡

M
2 + 1

2Sc,0(2ωin) −1
2Ss,0(2ωin) Sc,0(ωin)

� M
2 − 1

2Sc,0(2ωin) −Ss,0(ωin)
� � M

⎤
⎦
⎤⎤

(3.53)

Matrix A is symmetric positive definite and hence non-singular. The functions

Sc,m(θ) =
M−1∑
n=0

nm cos(nθ)

Ss,m(θ) =
M−1∑
n=0

nm sin(nθ)

m = 0, 1, 2. θ = ωin, 2ωin

(3.54)

have analytical expressions given by (3.29).
The minimisation of (3.51) is achieved by the following Newton method

ω
(k+1)
in = ωk

in − L′(ωk
in)

L′′(ωk
in)

(3.55)

where the derivatives of the function L(ωin) are given by

L′(ωin) = −[b′TA−1b + bT (A−1)′b + bTA−1b′] (3.56)

L′′(ωin) = −[b′′TA−1b + bT (A−1)′′b + bTA−1b′′+
2(b′T (A−1)′b + b′TA−1b′ + bT (A−1)′b′)] (3.57)

The derivatives of A−1 as a function of those of A are obtained by using the
fact that AA−1 is equal to the identity matrix

(A−1)′ = −A−1A′A−1 (3.58)

(A−1)′′ = −[(A−1)′A′A−1 + A−1A′′A−1 + A−1A′(A−1)′] (3.59)

The derivatives of A and b have the following expressions

b′(ωin) =
M−1∑
n=0

ny[n][− sin(nω), − cos(nω), 0]T (3.60)
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b′′(ωin) =
M−1∑
n=0

n2y[n][− cos(nω), sin(nω), 0]T (3.61)

A′ =

⎡
⎣
⎡⎡ −Ss,1(2ωin) −Sc,1(2ωin) −Ss,1(ωin)

� Ss,1(2ωin) −Sc,1(ωin)
� � 0

⎤
⎦
⎤⎤

(3.62)

A′′ =

⎡
⎣
⎡ −2Sc,2(2ωin) 2Ss,2(2ωin) −Sc,2(ωin)

� 2Sc,2(2ωin) Ss,2(ωin)
� � 0

⎤
⎦
⎤

(3.63)

In order to converge to the global minimum, this frequency estimation method
requires an initial frequency accuracy of about

∆ωin0

2π
<

0.3
M

(3.64)

This condition is largely satisfied by the interpolated FFT method described in
3.5.2.

9. Estimation of the linear parameters

The estimation of THD and SNR requires the knowledge of the input
sinewave and harmonics parameters. In this case, the model to be estimated is

s[n] =
P∑

h=1

Ah cos(nhωin + φh) + C, n = 0, . . . , M − 1 (3.65)

The normalised angular frequency being determined, the minimisation of the
function (3.43) with respect to the linear parameters (3.42) yields

ET
P (ωin)EP (ωin)x̂px = ET

P (ωin)y (3.66)

where EP is a M -by-(2P + 1) matrix whose elements are given by

eij =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎩⎪⎪

cos(j[i − 1]ωin) 1 ≤ j ≤ P
− sin([i − 1][j − P ]ωin) P + 1 ≤ j ≤ 2P
1 j = 2P + 1
i = 1, . . . ,M

(3.67)

In practice, the matrix ET
PEP is practically always nonsingular, and hence

the linear system (3.66) can be solved by the Cholesky decomposition tech-
nique [120]. The solution of (3.66) should be implemented so as to avoid the
storage of the large size matrix EP

(ET
PEP )[i, j] =

M−1∑
k=0

ekiekj , i, j = 1, . . . , 2P + 1 (3.68)
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(ET
Py)[j] =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

M−1∑
n=0

yn cos(njωin) 1 ≤ j ≤ P

−
M−1∑
n=0

yn sin(n(j − P )ωin) P + 1 ≤ j ≤ 2P

M−1∑
n=0

yn j = 2P + 1

(3.69)

Analytical expressions for the elements of ET
PEP can be obtained from (3.29).

An other solution consists of solving the overdetermined system EP (ωin)x̂px =
y by the singular value decomposition [120]. This method may be slow, espe-
cially when the number of samples is large, but works even when EP is rank
deficient.

10. On the rank of EP

Here we show that the matrix EP (ωin) has full rank 2P + 1 if ωin leads at
least 2P + 1 to distinct complex numbers zn = exp(jnωin), 0 ≤ n ≤ M − 1.
This situation occurs in particular when ωin < π

P or in the case of coherent
sampling: ωin = 2π J

M where J is an integer relatively prime with M .

Suppose that there exist constants λk such that
2P+1∑
k=1

λkck = 0, where ck

are the columns of EP . From (3.67), this implies that

P∑
k=1

[λk cos(knωin) − λk+P sin(knωin)] + λ2P+1 = 0 (3.70)

for all n = 0, . . . , M − 1. (3.70) can be rewritten as

2P∑
k=0

γkz
k
n = 0, 0 ≤ n ≤ M − 1 (3.71)

with

γk =

⎧⎨⎧⎧
⎩
⎨⎨ λ(P−k) − jλ(2P−k) 0 ≤ k ≤ P − 1

2λ(2P+1) k = P
λ(k−P ) + jλk P + 1 ≤ k ≤ 2P

(3.72)

From (3.71), the polynomial Q(z) =
2P∑
k=0

γkz
k has M zeros zn while its degree

is 2P . It is only possible when γk = 0 for all k, if we assume that there are at
least 2P + 1 distinct roots zn. From (3.72), one obtains that all λk are equal to
zero. As a result, the columns of EP are linear independent and hence its rank
is equal to 2P + 1.
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If ωin < π
P , then nωin < π for all 0 ≤ n ≤ P and hence the corresponding

P + 1 roots zn are distinct. The polynomial Q(z) is complex, then it has also
the following distinct roots z∗n = z(−n), 1 ≤ n ≤ P . Thus, we have 2P + 1
distinct roots and hence EP has full rank for any ωin < π

P .
Suppose that there exist n1 > n2 such that their corresponding roots are

equal: exp(jn1ωin) = exp(jn2ωin). This implies that ωin = 2π k
n1−n2

with
k = 1, . . . , (n1 − n2) (because 0 < ωin ≤ π). It is only possible when ωin

does not satisfy the coherent sampling condition. This equation also gives the
form of the values of ωin which result in a rank deficient matrix.

11. The algorithm

The parameter estimation method described above can be implemented as
follows .
Input Parameters:

ε the tolerance at which the distance between two successive
iterates is considered close enough to zero to stop the

algorithm. Default value: [machine accuracy]
2
3.

kmax maximum number of iteration. Default value: 30.

Output parameters:

ωin estimated normalised angular frequency

xpx estimated linear parameters

kf number of iterations

1 Determine the initial frequency ωin0 as explained in
section 3.5;

2 Frequency estimation:
Set ωc

in = ωin0;
FOR k = 1 : kmax

(a) Compute A(ωc
in),A′(ωc

in), A′′(ωc
in), b(ωc

in), b′(ωc
in), b′′(ωc

in),
from (3.53), (3.62), (3.63), (3.52), (3.60), (3.61);

(b) Compute (A−1)′(ωc
in) and(A−1)′′(ωc

in) from (3.58), (3.59);

(c) Calculate L′(ωc
in) and L′′(ωc

in) from (3.56), (3.57);

(d) Calculate the next iterate ωn
in from (3.55);

(e) If |ωn
in − ωc

in| < εωn
in, return from here;

(f) Update ωc
in: ωc

in = ωn
in;
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END
ωin = ωn

in, kf = k;

3 Estimate the linear parameters xpx from (3.66);

12. Multitone test to circumvent signal purity problems

The A/D converter test in single-tone mode requires a spectrally pure input
signal test . This condition is no longer fulfilled for high resolution converters.
The solution which consists of using an analogue filter can be a costly hard-to-
apply method. An other alternative based on the use of a dual-tone test signal
is proposed [19].

12.1 Test method

The setup of this dual-tone procedure is similar to that of the intermodu-
lation distortion measurement. Assume that we want to characterize the con-
verter in single-tone mode with a sine wave whose amplitude and frequency
are respectively equal to 2A and f0ff . The equivalent dual-tone test procedure
consists of stimulating the converter by a sum of two sine waves with equal
amplitudes but with different frequencies f1 and f2ff . The amplitude of each
sine wave equals A and the frequencies f1 and f2ff are close to f0ff and chosen
so as to satisfy the coherent sampling condition.

12.2 Relation between single-tone and dual-tone
parameters

From the ADC output data compute the intermodulation distortion IMD.
For signal generators whose harmonic distortion is less −30 dBc, which is
usually the case, IMD is an intrinsic characteristic of the converter under test,
since the effect of the the generator distortion is negligible. The total harmonic
distortion in single-tone mode is equal to the intermodulation distortion thus
obtained with an approximation of about 0.5 dB. Also the effective number of
bits in single-tone mode is equal to that in dual-tone mode with an error less
than 0.5 bits. The effective number of bits (NDT

efN ) and the signal-to-noise and
distortion ratio (SINADDT ) in dual-tone mode are related by the following
relationship

NDT
efN =

SINADDT + 1.25
6.02

(3.73)

SINADDT is equal to the ratio of the dual-tone test signal power to the noise
and distortion (including intermodulations) power expressed in dB. In the spec-
tral domain SINADDT is given by

SINADDT [dB] = 10 log
(

P (f1) + P (f2ff )
PndPP

)
(3.74)
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where P (f1 and P (f2ff ) are the spectral powers of the fundamental components;
PndPP is the spectral power of the noise and distortion obtained by setting the
spectral lines corresponding to the fundamental components and DC offset
equal to zero.

When the test signal is not full scale, i.e. A is less than a quarter of the full-
scale range (FSR), SINADDT value must be corrected by subtracting from
it 10 log( 4A

FSR). For the issues concerning the leakage effect and windowing
refer to the Frequency-Domain Data Analysis chapter.

12.3 Parameter calculation in the time domain

The estimation of the ADC parameters by the spectral analysis suffers from
the leakage effect. In order to overcome this problem, we propose here a time-
domain algorithm for estimating the ADC parameters in dual-mode. We con-
sider the general case where the amplitudes of the input sine waves are dif-
ferent. In the time domain the estimation of the ADC parameters amounts to
the identification of harmonic and intermodulation tones in noise. The use of
the variable projection method [65] reduces the identification problem to a 2-
dimensional nonlinear least squares (NLS) estimation of the two normalised
angular frequencies (NAFs) ωin1 and ωin2 of the inputsine waves, followed by
solving a linear system in order to estimate the amplitudes and phases of the
different tones.

The NLS frequency estimation problem complexity can be reduced by ne-
glecting the distortion terms. This approximation is reasonable since the dis-
tortion of A/D converters is small and in general the contribution of the noise is
dominant compared to that of the distortion. In this case the NLS cost function
to be minimised in order to estimate the NAFs is given by

L(w) = yTy − bT (w)A−1(w)b(w) (3.75)

with w = [ωin1, ωin2]T , b(w) = ET (w)y, A(w) = ET (w)E(w) where T
denotes the transpose operator; y is a M ×1 column vector whose components
are the data samples, M being the number of samples.
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E is the following M × 5 matrix

E(w) =

⎛
⎜
⎛⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 0
cos(ωin1) sin(ωin1)
cos(2ωin1) sin(2ωin1)

...
...

cos((M − 1)ωin1) sin((M − 1)ωin1)

1 0 1
cos(ωin2) sin(ωin2) 1
cos(2ωin2) sin(2ωin2) 1

...
...

...
cos((M − 1)ωin2) sin((M − 1)ωin2) 1

⎞
⎟
⎞⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

(3.76)

The matrix E is full rank and hence A is nonsingular.

12.3.1 Frequency estimation algorithm. The use of the Newton
method to minimise the cost function L(w) leads to the following iterative
scheme [44]

⎧⎨⎧⎧
⎩
⎨⎨ ωk+1

in1 = ωk
in1 + ∆ωk

in1

ωk+1
in2 = ωk

in2 + ∆ωk
in2

(3.77)

where the frequency steps ∆ωk
in1 and ∆ωk

in2 are given by

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

∆ωk
in1 =

(
∂2L

∂ωin1∂ωin2

∂L
∂ωin2

)
−

(
∂2L

∂ω2
in2

∂L
∂ωin1

)
(

∂2L

∂ω2
in1

∂2L

∂ω2
in2

)
−

(
∂2L

∂ωin1∂ωin2

)2

∆ωk
in2 =

(
∂2L

∂ωin1∂ωin2

∂L
∂ωin1

)
−

(
∂2L

∂ω2
in1

∂L
∂ωin2

)
(

∂2L

∂ω2
in1

∂2L

∂ω2
in2

)
−

(
∂2L

∂ωin1∂ωin2

)2

(3.78)
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The partial derivatives of the cost function are evaluated at wk = [ωk
in1, ωk

in2]
T

and given by

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

− ∂L
∂ωin,i

=
(

∂b
∂ωin,i

)T
A−1b + bT ∂A−1

∂ωin,i
b + bTA−1 ∂b

∂ωin,i

− ∂2L
∂ω2

in,i
=

(
∂2b

∂ω2
in,i

)T

A−1b + bT ∂2A−1

∂ω2
in,i

b + bTA−1 ∂2b
∂ω2

in,i
+

2
[(

∂b
∂ωin,i

)T
∂A−1

∂ωin,i
b +

(
∂b

∂ωin,i

)T
A−1 ∂b

∂ωin,i
+

bT ∂A−1

∂ωin,i

∂b
∂ωin,i

]

− ∂2L
∂ωin1∂ωin2

= bT ∂2A−1

∂ωin1∂ωin2
b +

(
∂b

∂ωin1

)T
∂A−1

∂ωin2
b

+
(

∂b
∂ωin1

)T
A−1 ∂b

∂ωin2
+

(
∂b

∂ωin2

)T
∂A−1

∂ωin1
b

+bT ∂A−1

∂ωin1

∂b
∂ωin2

+
(

∂b
∂ωin2

)T
A−1 ∂b

∂ωin1

+bT ∂A−1

∂ωin2

∂b
∂ωin1

(3.79)
with i = 1, 2. The vector b and its partial derivatives have the following
expressions

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

b =
M−1∑
n=0

yn[cos(nωin1) sin(nωin1) 0 0 0]T

∂b
∂ωin1

=
M−1∑
n=0

nyn[− sin(nωin1) cos(nωin1) 0 0 0]T

∂b
∂ωin2

=
M−1∑
n=0

nyn[0 0 − sin(nωin2) cos(nωin2) 0]T

∂2b
∂ω2

in1
=

M−1∑
n=0

n2yn[− cos(nωin1) − sin(nωin1) 0 0 0]T

∂2b
∂ω2

in2
=

M−1∑
n=0

n2yn[0 0 − cos(nωin2) − sin(nωin2) 0]T

(3.80)

The partial derivatives of A−1 as a function of those A are obtained by using
the fact that AA−1 equals the identity matrix. The derivation of this equality
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yields

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

∂A−1

∂ωin,i
= −A−1 ∂A

∂ωin,i
A−1

∂2A−1

∂ω2
in,i

= −
[

∂A−1

∂ωin,i

∂A
∂ωin,i

A−1 + A−1 ∂2A
∂ω2

in,i
A−1

+ A−1 ∂A
∂ωin,i

∂A−1

∂ωin,i

]
∂2A−1

∂ωin1∂ωin1
= −

[
∂A−1

∂ωin2

∂A
∂ωin1

A−1 + A−1 ∂2A
∂ωin1∂ωin2

A−1

+ A−1 ∂A
∂ωin1

∂A−1

∂ωin2

]

(3.81)

The matrix A has the following expression

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

M
2 + 0.5Sc,0(2ωin1) −0.5Ss,0(2ωin1)

� M
2 − 0.5Sc,0(2ωin1)

� �
� �
� �

0.5[Sc,0(ωin1 − ωin2) + Sc,0(ωin1 + ωin2)]
0.5[Ss,0(ωin1 − ωin2) + Ss,0(ωin1 + ωin2)]

M
2 + 0.5Sc,0(2ωin2)

�
�

0.5[Ss,0(−ωin1 + ωin2) + Ss,0(ωin1 + ωin2)] Sc,0(ωin1)
0.5[Sc,0(ωin1 − ωin2) + Sc,0(ωin1 + ωin2)] Ss,0(ωin1)

0.5Ss,0(ωin2) Sc,0(ωin2)
M
2 − 0.5Sc,0(2ωin2) Ss,0(ωin2)

� M

⎤
⎥
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥

(3.82)

The elements denoted by the symbol � are obtained by using the fact that A
is symmetric; the functions Sc,m and Ss,m, m = 0, 1, 2, are given by (3.29).
The partial derivatives of A are obtained from (3.82) by using the following
simple derivation rules

∂Sc,m(αωin,i+βωin,j)
∂ωin,i

= −αSs,m+1(αωin,i + βωin,j)
∂Ss,m(αωin,i+βωin,j)

∂ωin,i
= αSc,m+1(αωin,i + βωin,j)

with i �=�� j = 1, 2; m = 0, 1

(3.83)



82 ADC DYNAMIC CHARACTERISATION

Given initial values ω0
in1 and ω0

in2, the process (3.77) is iterated until the
following condition is satisfied

max

{∣∣∣∣∣∣∣∣∣∣∆ωk
in1

ωk
in1

∣∣∣∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣∣∣∆ωk
in2

ωk
in2

∣∣∣∣∣∣∣∣∣∣
}

≤ (machine accuracy)
2
3 (3.84)

Use the interpolated fast Fourier transform method described in [68] and
summarized in 5.2 in order to generate the frequency initial values. The
accuracy of this method is sufficient to guarantee the convergence to the global
minimum of the frequency estimation algorithm.

Once the frequency estimates ω̂in1 and ω̂in2 are obtained, calculate the
power of the noise plus distortion by

PndPP =
1
M

L(ω̂in1, ω̂in2) (3.85)

12.3.2 Amplitudes and phases of input sine waves. Let A1, A2,
φ1 and φ2 be the amplitudes and phases of the test sine waves. Consider the
column vector

xp = [A1 cos(φ1), −A1 sin(φ1), A2 cos(φ2), −A2 sin(φ2), C]T (3.86)

where C is the DC offset. The least squares (LS) estimate of xp is obtained by
solving the following linear system

A(ω̂in1, ω̂in2)x̂p = b(ω̂in1, ω̂in2) (3.87)

where b and A are given by (3.80) and (3.82). The power of the test signal is
given by

PtPP =

4∑
k=1

x̂2
p[k]

2
(3.88)

12.3.3 Calculation of SINADDT and NDT
efN . By definition, SINADDT

is equal to the ratio of the test signal power to the noise and distortion power

SINADDT [dB] = 10 log
(

PtPP

PndPP

)
(3.89)

where PndPP and PtPP are given by (3.85) and (3.88). In the time domain the
effective number of bits is defined by

NDT
efN [Bits] = N − log2

√
12PndPP (3.90)

where N is the ADC number of bits.
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The algorithm thus described for estimating SINADDT and NDT
efN is accu-

rate (because the signal to noise ratio is high) and fast even when the number
of samples is large, that is, when dealing with medium-high resolution ADCs.
The speed of the algorithm is due to

1 All the matrices and vectors used in the algorithm are of small size and
independent from the number of samples;

2 The fast convergence of the Newton method;

3 The interpolated FFT method generates good frequency starting values.

12.3.4 Amplitudes and phases of harmonic and intermodulation tones.
The test signal parameters being determined, remove it from the ADC output

data y. One obtains new data ỹ which consists of harmonic and intermodula-
tion tones in noise. For the tone with NAF ω, amplitude A and phase φ, we
consider the new parameters

α(ω) = A cos(φ), β(ω) = −A sin(φ) (3.91)

Let P1PP and P2PP be the largest harmonic orders corresponding to ωin1 and ωin2,
and let P denote the largest intermodulation term order taken into account. The
intermodulation NAFs are given by

⎧⎨⎧⎧
⎩
⎨⎨ ω+

in,ij = iωin1 + jωin2, ω−
in,ij = |iωin1 − jωin2|

with i > 0, j > 0, 2 ≤ i + j ≤ P
(3.92)

The linear parameters of harmonic and intermodulation tones are

x̃p = [α(2ωin1) · · ·α(P1PP ωin1), β(2ωin1) · · ·β(P1PP ωin1),
α(2ωin2) · · ·α(P2PP ωin2), β(2ωin2) · · ·β(P2PP ωin2),{

α(ω+
in,ij)

}
i+j=2

,
{

β(ω+
in,ij)

}
i+j=2

{
α(ω−

in,ij)
}

i+j=2
,{

β(ω−
in,ij)

}
i+j=2

,
{

α(ω+
in,ij)

}
i+j=P

,{
β(ω+

in,ij)
}

i+j=P

{
α(ω−

in,ij)
}

i+j=P
,
{

β(ω−
in,ij)

}
i+j=P

]T

(3.93)
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Let Ẽ(ŵ) be the matrix defined as follows⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

Ẽ = [B(ω̂in1),C(ω̂in2),D(ŵ)] , with

B =
[
{cos(hω̂in1t)}2≤h≤P1PP , {sin(hω̂in1t)}2≤h≤P1PP

]

C =
[
{cos(hω̂in2t)}2≤h≤P2PP , {sin(hω̂in2t)}2≤h≤P2PP

]

D = [D2, D3, · · · , DP ]

(3.94)

where t is the column vector [0, 1, · · · , M − 1]T and

Dq(ŵ) =
[{

cos(ω+
in,ijt)

}
i+j=q

,
{

sin(ω+
in,ijt)

}
i+j=q

,{
cos(ω−

in,ijt)
}

i+j=q
,
{

sin(ω−
in,ijt)

}
i+j=q

] (3.95)

with 2 ≤ q ≤ P .
The least squares estimate of x̃p is given by

ˆ̃xp = Ẽ+(ŵ)ỹ (3.96)

where Ẽ+ is the pseudo-inverse of Ẽ. In order to save execution time, espe-
cially when the number of samples is large, calculate Ẽ+ as follows. If ẼT Ẽ is
well-conditioned Ẽ+ = [ẼT Ẽ]−1ẼT , otherwise compute Ẽ+ by the singular
value decomposition (SVD) [120].

The power of the intermodulation tones is given by

PimPP =
1
2

∑
k≥2P1PP +2P2PP −3

ˆ̃x2
p[k] (3.97)

12.3.5 Calculation of IMD. The intermodulation distortion is defined
as the ratio of the power of the intermodulation tones to that of the dual-tone
test signal

IMD [dB] = 10 log
(

PimPP

PtPP

)
(3.98)

where PtPP and PimPP are given by (3.88) and (3.97).
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1. Discrete Fourier Transform and Fast Fourier
Transform

The Discrete Fourier Transform (DFT) of a record of data y[n] that is M
samples long, is defined by

Y [k] =
M−1∑
n=0

y[n] e−i2πn k
M k = 0 . . .M − 1 (4.1)

The reverse DFT is

y[n] =
1
M

M−1∑
k=0

Y [k] e+i2πk n
M n = 0 . . .M − 1 (4.2)

The evaluation of an ADC in the frequency domain consists in performing a
DFT of the record of data captured at the ADC output, in order to calculate the
ADC parameters after the corresponding spectral content. In practice, the DFT
is usually implemented as an FFT and the number of samples M in the record
is a power of two (log2M is an integer) because in that case, the algorithm
used to perform the FFT is much more simple.
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As only real input signals are considered, the frequency spectrum resulting
from the DFT at the output of an ADC is symmetrical (even for the amplitude
and odd for the phase), that is why only half of the discrete spectrum is con-
sidered

(
k ∈ [0, M

2 ]
)
. Note that both lines Y [0] and Y [M

2 ] must be included in
order to avoid any lack of information.

2. Choice of input and clock frequencies

When applying a DFT to process the data at the output of an ADC, coherent
sampling provides a spectrum that exhibits only frequencies corresponding to
the input frequencies and their harmonics . Coherent sampling is defined by

Mfiff = Jfsff (4.3)

where

M = number of samples in the data record,
fiff = frequency of the input waveform,
J = integer number of cycles of the input waveform in the data record,
fsff = sampling frequency.

Whenever this relationship is not met, the record is processed using a win-
dow weighting function prior to performing the DFT, to minimise spectral
leakage effects.

3. Windowing

Windowing consists in multiplying the data record by a window function
(w[n]) in the time domain prior to the DFT process. Then the DFT is performed
on w[n]y[n],

Y [k] =
M−1∑
n=0

w[n]y[n] e−i2πn k
M k = 0 . . .M − 1 (4.4)

As mentioned in section 2, windowing is required when using incoherent
sampling. This is due to the fact that the frequency spectrum obtained when
a DFT is applied to process M data values sampled at fsff , can only exhibit
discrete frequencies with a step of fsf

M . If relationship (4.3) is met, the input

frequency as well as its harmonics are integer multiples of fsf
M . In that case,

these frequencies correspond exactly to discrete lines in the spectrum. On the
other hand, if (4.3) is not met, the input frequency as well as its harmonics
do not correspond to single discrete lines in the spectrum, and thus spectral
leakage is observed. Windowing reduces the spectral leakage effects.

3.1 Processing Gain (PG) of a window

Let the input data of a windowed DFT be defined by

y[n] = A ei2πn J
M + η[n] n = 0 . . . M − 1 (4.5)
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where η[n] is a white noise sequence with variance σ2
T . The noiseless signal

power of the output spectrum is given by the power of the spectral line Y [J ],

|Y [J ]|2 = A2

[
M−1∑
n=0

w[n]

]2

(4.6)

The output amplitude of the noiseless signal is the input amplitude multiplied
by a term which is the sum of the window terms. This term is called the
coherent gain of the window.

The noise power of the spectral line Y [J ] is given by

E
{
|Y [J ]|2

}
= σ2

T

M−1∑
n=0

w2[n] (4.7)

where E is the expectation operator. As additive noise is assumed to be white,
the value σ2

T

∑M−1
n=0 w2[n] represents the noise floor level (or the noise power

spectral density).
The Processing Gain (PG), of the window is defined as the ratio of the

output signal to noise floor ratio to the input signal to noise ratio

PG =

A2

[
M−1∑
n=0

w[n]

]2

σ2
T

M−1∑
n=0

w2[n]

A2

σ2
T

=

[
M−1∑
n=0

w[n]

]2

M−1∑
n=0

w2[n]

(4.8)

The inverse of PG is called the normalised Equivalent Noise Band Width
(ENBW), which is defined by

ENBW =

M.

M−1∑
n=0

w2[n]

[
M−1∑
n=0

w[n]

]2 (4.9)

The PG of a window as described above neglects the effects resulting from
the input frequency value called the picket-fence effect or scalloping loss. For
more details, see [71] which also describes the properties of many window
functions. Additional window functions with very low sidelobes are presented
in [111].
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The choice of the window depends on the application but usually, for ADC
evaluation, it is preferable to use window functions exhibiting low sidelobes.
More detailed explanations on windowing are reported in section 6.9. Note
that a non-windowed DFT can be considered as a windowed DFT using a rec-
tangular window (w[n] = 1, n = 0 . . .M − 1). The Processing Gain of an M
samples long rectangular window is M .

4. Comment on the accuracy of the input frequency

The aim of this section is to determine the maximum deviation between the
ideal input frequency and the real input frequency beyond which windowing
is necessary . As explained in section 3, if the coherence relationship (4.3)
is not met, spectral leakage is observed. That means that instead of being
concentrated in a single line of the frequency spectrum, the power of the input
sinewave is spread across all the lines of the spectrum. Thus the inaccuracy
of the input frequency of an ADC degrades the measurement of the signal to
noise ratio at the output of the ADC because the part of the signal power that
is spread across all lines of the spectrum is added to effective noise.

Let the input data of a non-windowed DFT be

y[n] = A ei2πn
J±εj

M + η[n] n = 0 . . .M − 1 (4.10)

where η[n] is a white noise sequence with variance σ2
T , and εj is the number

of cycles inaccuracy in the input frequency, that is

fiff = (J ± εj)
fsff

M
(4.11)

The signal to noise ratio at the input of the DFT is then

SNRin =
A2

σ2
T

(4.12)

The noiseless amplitudes of the spectral lines of the spectrum are

|Y [k]| = A
sin[π(J ± εj − k)]

sin
[

π
M (J ± εj − k)

] k = 0 . . .M − 1 (4.13)

From (4.13), if εj = 0, then the coherence relationship is met and |Y [k]|2 =
A2 × M2 for k = J and 0 for k �=�� J . In that case, all power of the input
noiseless signal is concentrated in a single line and the noise power calculated
from all the other lines of the normalised spectrum is σ2

T × M2. The signal to
noise ratio calculated from the spectrum equals the signal to noise ratio at the
input of the DFT.
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If εj �= 0�� , the coherence relationship is no longer met and the signal power
calculated from the line J of the spectrum is

|Y [J ]|2 = A2

(
sin(πεj)

sin
(

π
M εj

)
)2

(4.14)

and the noise power is given by

noise power = M2 σ2
T + A2

⎛
⎝
⎛⎛

M2 −
(

sin(πεj)
sin

(
π
M εj

)
)2

⎞
⎠
⎞⎞

(4.15)

In that case, due to frequency inaccuracy, the signal to noise ratio calculated
from the spectrum is smaller than the signal to noise ratio at the input of the
DFT.

The input frequency inaccuracy introduces an error in the calculation of the
signal to noise ratio at the output of the DFT. It is possible to calculate the
maximum value of εj and thus the accuracy required for the input frequency to
estimate the signal to noise ratio with an error lower than a given value.

Let the error on the signal to noise ratio calculation e be defined by

e =
SNRin − SNRcalculated

SNRin
(4.16)

where SNRin is defined in (4.12).
The value of εj that leads to an error e in the calculation of the signal to

noise ratio, is determined by solving the following equation

1
M

sin(πεj)
sin

(
π
M εj

) =

√
(1 − e) (1 + SNRin)
1 + (1 − e)SNRin

(4.17)

Once the value of εj is determined, given the sampling frequency and the
number of samples recorded, the maximum value of the frequency inaccuracy
is calculated by

∆fiff max = ±εj fsff

M
(4.18)

The determination of the maximum input frequency deviation tolerated to
measure the SNR of an ideal N -bit ADC with a 0.5 dB error, is given in the
following table (in this example, as the ADC is ideal, the signal to noise ratio
equals the signal to quantisation error given in (4.26)).

The number of samples used to compute the values in table 4.1 is the power
of two immediately greater than the value given in (4.19), that is 2N+2. If
the accuracy of the input frequency is not sufficient to allow the calculation
of the signal to noise ratio with an error lower than the required value, then
windowing is necessary (see section 6.9.3).
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Table 4.1. Maximum ∆fiff for a 0.5 dB error on the SNR calculation.

N ∆fiff max
fsff

4 ±1.5 × 10−4

6 ±9.5 × 10−6

8 ±6.0 × 10−7

10 ±3.7 × 10−8

12 ±2.3 × 10−9

14 ±1.4 × 10−10

16 ±9.1 × 10−12

18 ±5.7 × 10−13

20 ±3.5 × 10−14

22 ±2.1 × 10−15

24 ±1.4 × 10−16

5. Record size

5.1 Number of samples required

5.1.1 Deterministic analysis. The minimum record size required to
evaluate an ADC is a record in which there is at least one sample per code bin .
For an N-bit ideal ADC in absence of random noise, the minimum record size
when applying a full-scale input sine wave is

MminMM = π( 2N − 1) ≈ π 2N (4.19)

When taking into account the ADC differential nonlinearity (DNL), the min-
imum record size is then

MminMM =
π 2N

1 − |DNLmax| (4.20)

Where |DNLmax| is the worst case DNL expressed in LSB.

5.1.2 Probabilistic considerations. In this section, the total jitter re-
sulting from the ADC, the clock signal and the input signal are taken into
account. So sampling can no longer be considered as a deterministic operation
and a probabilistic approach must be used. The minimum size of the record is
then determined so that it leads to a given probability of acquiring at least one
sample per code bin in the record.

For a full scale input sine wave, to have a probability p of having at least one
sample in every code bin in a record, the minimum size of the record MminMM
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must be chosen so that

1
2

erfc

(
π

MminMM − 1−|DNLmax|
2N

2πfiff σjσ

)
≥ p (4.21)

where

erfc = complementary error function,
MminMM = minimum size of the record,
DNLmax = worst case DNL expressed in LSB,
N = the ADC number of bits,
fiff = input frequency,
σj = worst case standard deviation of the total jitter.

The complementary error function is defined by

erfc(z) =
2√
π

∫ +∞

z

∫∫
e−t2dt (4.22)

which is related to the error function by

erfc(z) = 1 − erf(z) (4.23)

For more details on the complementary error function, see [11].

5.2 Comment on the required number of samples

The equations given in section 5.1 may result in a very large number of
samples in one record for high resolution ADCs. In that case, it may be impos-
sible to acquire the desired number of samples in a single record due to memory
depth limitations. This problem can be solved by the acquisition of multiple
records, each with a size compatible with the memory depth, associated with
averaging in the frequency domain. The first point of each record being ran-
dom, the number of records needed to reach a given probability of having at
least one sample of every code bin is not easily determined theoretically in the
case of an input sinewave.

Benkais reports [18] a simulation of the number of records required to reach
a probability p of having at least one sample of every code bin as a function of
p and of the ratio 2N

M in the case of an input sinewave, where N is the number
of bits of the ADC and M is the number of samples in each record. It is shown
that, for N ≥= 10, to obtain a 95% probability of testing all codes, 280 records
should be captured, each comprising 2N/16 samples, or 48 records comprising
2N/4 samples each.

5.3 Comment on the choice of input and clock frequencies

When coherent sampling is used (Mfiff = Jfsff ) with the additional condition
that
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J is relatively prime to M,

then, there are M distinct samples of the input sine wave on the phase axis.
These samples are uniformly distributed between 0 and 2π. So, the use of
coherent sampling with M and J mutually prime is the optimum choice of
frequency for ADC testing because the number of distinct phases sampled is
maximum. If J and M are not mutually prime and if

M

J
= L, (4.24)

then, there are only L distinct phases sampled. In practice, the DFT is usually
implemented as an FFT and M is a power of two. Consequently, choosing J
to be an odd integer ensures that J and M are mutually prime.

Summary
The use of coherent sampling with a number of cycles of the input waveform
in the data record mutually prime to the total number of samples in the data
record, avoids spectral leakage and maximises the number of distinct phases
sampled. This choice of input and clock frequency is the optimal one.

6. Calculation of ADC dynamic parameters in the
frequency domain

In the first part of this chapter, it is assumed that the input sine wave and
clock frequencies are optimum as explained in 5.3

fiff = J
fsff

M
with J and M mutually prime. (4.25)

We also consider that a non-windowed DFT is used to process the M data at the
output of the ADC. Finally only half of the resulting spectrum

(
Y [k]with k in[0; N

2 ]
)

is used for the calculation of the parameters listed in this chapter.

6.1 Quantisation error of an ideal ADC

As shown in [72], for an ideal quantiser the model of an uniformly distrib-
uted noise for the quantisation error is valid with a 1 percent accuracy if the
quantizer has a number of bits N greater than or equal to 12 . Nevertheless, for
most of the quantisers available on the market (N ≥ 6), the assumption that
the quantisation error is a uniformly distributed noise with a variance of Q2

12
does not result in great inaccuracy. That is why, in this section, the quantisa-
tion error is considered as a uniformly distributed noise with a white spectrum
[147], [136].
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For an N -bit ideal ADC, the ratio of the variance of the quantisation error
to the rms power of a full scale sine wave is

σ2(quantisation error)(
VfsVV

2
√

2

)2 = −6.02 × N − 1.76 (dBfs) (4.26)

If the DFT performed at the output of this ideal ADC takes into account an
M data length non windowed record, the Processing Gain defined in 3.1 isM
equal to M . If the entire output spectrum is considered, the noise floor to full
scale ratio is

NFl (dBfs) = −6.02 × N − 1.76 − 10 log(M) (4.27)

As mentioned at the beginning of this chapter, we will consider half of the
discrete spectrum when performing the calculations. In that case, only half of
the rms power of the full scale sine wave is taken into account. So the full scale
to noise floor ratio is

NFl (dBfs) = −6.02 × N − 1.76 − 10 log(M) + 10 log(2)
= −6.02 × N − 10 log(M) + 1.25

(4.28)

6.2 Noise Floor (NFl) evaluation

As mentioned above, the output spectrum used for the calculation ranges
from 0 to M

2 inclusive and the ADC input sine wave is located at the spectral

line J
(
fiff = J fsff

M

)
. In that case, as the ADC’s output noise is assumed to be

white, the noise floor (or the noise power spectral density) can be calculated
by

|NFl|2 =

M/2−1∑
k=1, k 
=

 J, k 
=

 hJ

|Y [k]|2 + 1
2

∣∣∣∣Y [
M
2

]∣∣∣∣2
M
2 − hmax

h = 2 . . . hmax

(4.29)
where Y [hJ ] is the hth harmonic component and hmax is the highest harmonic
to remove. Note that Y [hJ ] is a notation to represent the hth harmonic com-
ponent. If hJ > M

2 , it is the aliased line that must be used in the equation
above. To evaluate noise floor , neither the DC line nor the signal line nor the
harmonics lines have to be considered. In the equation above, the number of
harmonics to remove for the calculation of the noise floor depends on the ADC
under test and also on the accuracy required. In practice, it is often sufficient
to remove the second through the tenth harmonics. Note also that the power
of the M

2 th spectral line must be divided by 2 because its power represents the

total power of the ADC’s output signals at frequency fsff
2 (for the other spectral
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lines, as only half of the spectrum is considered, the power of a spectral line
represents half of the total power of the ADC output signals at the considered
frequency).

6.3 Signal to Noise and Distortion Ratio (SINAD)

For a pure sine wave input, SINAD can be calculated from the power
spectrum by

SINADdB = 10 log
|Y [J ]|2 − |NFl|2

M/2−1∑
k=1, k 
=

 J

|Y [k]|2 + 2|NFl|2 + 1
2

∣∣∣∣Y [
M
2

]∣∣∣∣2 (4.30)

As noise is assumed to be white, the term 2|NFl|2 takes into account noise
in the bins 0 and J .

6.4 Effective Number of Bits (NefNN )

This is the resolution of an ideal ADC that would have a full-scale signal
to quantisation error ratio equal to the SINADdBfs calculated for the ADC
under test

NefNN =
SINADdBfs − 1.76

6.02
(4.31)

where SINADdBfs is the SINADdB measured when applying a full-scale
sine wave at the input of the ADC.

In practice, as it is difficult to use a full-scale sine wave to measure an
ADC’s dynamic parameters, a sine wave of amplitude A is used to measure
SINADdB , being SINADdBfs then deduced by

SINADdBfs = SINADdB − 20 log (SFSR) (4.32)

where SFSR is the Signal to Full Scale Ratio. This value has to be specified
and chosen as close to zero dB as possible to calculate the Effective number of
bits of an ADC.

In practice, NefNN is often given without specifying the value of SFSR, which
can lead to a misunderstanding of the performances of the ADC. Moreover,
the calculation of NefNN does not give any additional information on the ADC
comparing to SINAD, and actually NefNN is not a physical parameter of ADCs.
That is why we advise not to use NefNN to characterise an ADC.
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6.5 Signal to Noise Ratio (SNR)

For a pure sine wave input, the SNR can be calculated from the power spec-
trum by

SNRdB = 10 log
|Y [J ]|2 − |NFl|2

M/2−1∑
k=1, k 
=

 J, k 
=

 hJ

|Y [k]|2 + (hmax + 1)|NFl|2 + 1
2

∣∣∣∣Y [
M
2

]∣∣∣∣2
h = 2 . . . hmax

(4.33)

where Y [hJ ] is the hth harmonic component and hmax is the highest harmonic
to remove. Note that Y [hJ ] is a notation to represent the hth harmonic com-
ponent. If hJ > M

2 , it is the aliased line that must be used in the equation
above.

In (4.33), the number of harmonics to be removed for the calculation of
the sum in the denominator depends on the ADC under test and also on the
accuracy required. This number has to be specified. In practice, it is often
sufficient to remove the second through the tenth harmonics. Note that the
term (hmax + 1)|NFl|2 takes into account noise in the 0, J and harmonic
bins.

6.6 Total Harmonic Distortion (THD)

This parameter represents the non-linearities of the ADC transfer curve .
THD is the ratio of the sum of the squares of all the harmonics including their
aliases to the rms power of the fundamental component

THDdB = 10 log

hmax∑
h=2

|Y [hJ ]|2

|Y [J ]|2 (4.34)

where Y [hJ ] is the hth harmonic component. Note that Y [hJ ] is a notation to
represent the hth harmonic component. If hJ > M

2 , it is the aliased line that
must be used in (4.34).

The number of harmonics used in (4.34) must be specified. If not specified,
THD is estimated by using the sum of the squares of the second through the
tenth harmonics, inclusive.

6.7 Spurious Free Dynamic Range (SFDR)

The definition of a spurious tone given in the terminology is: "spurious
tones are persistent sine waves at frequencies fspff included in the range defined
as harmonic distortion other than the harmonic frequencies" . In this definition,
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it is useful to specify what persistent sine waves are: "a persistent sine wave is
a line that is at least 10 dBs higher than the noise floor in the averaged power
spectrum".

The definition of the averaged power spectrum is: "Let’s consider R records
of M data at the output of an ADC. For each record, a non windowed FFT is
performed which leads to R spectra Y1YY [k] . . . YRYY [k]". The averaged spectrum
is calculated by

|YavmYY [k]|2 =
1
R

R∑
i=1

|YiYY [k]|2 (4.35)

In practice, the number of records used to calculate the average spectrum
and thus to smooth the noise and make the spurious emerge is generally lower
than or equal to 10. Taking a number of records greater than 10 will not lead
to a great improvement of the noise smoothness.

The SFDR is then defined by

SFDRdB = 10 log
|YavmYY [J ]|2

maxfh, fsp

{
|YavmYY [fhff ]|2 , |YavmYY [fspff ]|2

} (4.36)

where fhff and fspff are, respectively, the frequencies of the set of harmonic and
spurious spectral lines present over the full Nyquist band.

6.8 Intermodulation Distortion (IMD)

Intermodulation distortion may occur whenever an ADC is sampling a sig-
nal composed of two or more sine waves .

6.8.1 Two tone intermodulation distortion. Let us assume that two
pure sine waves of frequencies f1 and f2ff are used at the input of an ADC,
which are considered to be optimum frequencies, that is

f1 = J1JJ
fsff

M

f2ff = J2JJ
fsff

M

(4.37)

with J1JJ and J2JJ relatively prime to M . In that case, the IMD spectral compo-
nents have coherent frequencies too. Indeed, their frequencies are given by

fimdff = |jJ1JJ + lJ2JJ | × fsff

M
(4.38)

where j and l ∈ Z; |j| and |l| ≥ 1. |j| + |l| is the order of the IMD.
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The two tone third order IMD is often specified. In that case, the frequencies
of the IMD spectral components are

|J1JJ ± 2J2JJ | × fsff

M
and |J2JJ ± 2J1JJ | × fsff

M
(4.39)

The measurement of the two tone qth order IMD is performed by applying
two tones of equal amplitude to the ADC. In practice, the synthesizers used to
provide the two tones are not mutually phase locked that is why the power of
each tone is set 6 dBs below the power at which the IMD is specified. If no
input power is specified, the IMD is the worst case over the full input range of
the ADC.

The value of the two tone qth order IMD is given by

IMDqdB = 10 log
min

{|Y (J1JJ )|2, |Y (J2JJ )|2}
maxj,l≥1, |j|+|l|=q

{
|Y [|jJ1JJ + lJ2JJ |]|2

} (4.40)

Where maxj,l≥1, |j|+|l|=q

{
|Y [|jJ1JJ + lJ2JJ |]|2

}
is the largest power of all the

two tone qth order IMD spectral lines over the full Nyquist band.
Note that even if the two input tones have the same amplitude, the ampli-

tudes of the output tones can be slightly different. That is why in (4.40) the
numerator is min

{|Y (J1JJ )|2, |Y (J2JJ )|2}.

6.9 Changes in the Formulas for Non Coherent Sampling

6.9.1 Effects to take into account. Windowing is necessary when
the coherent sampling relationship (4.3) is not met. In spite of that, a similar
relationship between input frequency and clock frequency can also be written
for non-coherent sampling

fiff = (J ± εj)
fsff

M
(4.41)

where J is an integer and εj is the number of cycles inaccuracy (εj ≤ 0.5).
When a DFT is performed on an M samples long record, the output spectrum

only exhibits discrete lines at integer multiples of fsf
M . In the frequency-domain

analysis, the amplitude of an input sinewave with a frequency defined as in
(4.41) is calculated by the amplitude of line J of the spectrum. As the frequency
of the sinewave is not exactly J. fsff

M , the determination of its amplitude by using
uniquely line J will not lead to a correct result.

Nevertheless, it is possible to calculate the exact value of the amplitude of a
sinewave having a frequency defined as in (4.41) by multiplying the amplitude
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of line J by the following factor

|W [0]|
|WcWW

(
εjfsff
M

)
|

(4.42)

where

W [0] =
M−1∑
n=0

w[n]

and

WcWW

(
εjfsff

M

)
=

∫ +∞

−∞

∫∫
e−i2π

εjfs

M
tw(t)dt

WcWW
(

εjfsff
M

)
can be approximated from w[n], the M samples long window, by

adding zeros to w[n] in order to obtain a new sequence wL[n] that is much
longer.
wL[n] is an L samples long sequence defined as follows

wL[n] = w[n] for n = 0 . . . M-1

wL[n] = 0 for n = M . . . L-1
(4.43)

Usually, it is considered sufficient to calculate |WcWW
(

εjfsf
M

)
| only for values

of εj multiple of 0.1, i.e., for

εj ∈ {0.1; 0.2; 0.3; 0.4; 0.5}
Indeed, for most of the windows, the calculation of the factor defined in (4.42)
for values of εj rounded to one decimal do not differ from its exact value (ob-
tained when εj is not rounded) by more than 0.3 dB.

For the different equations listed in this section, when using the value of εj

rounded to one decimal, the terminology εjr will be used.

To calculate |WcWW
(

εjrfsff
M

)
|, it is sufficient to set the length of the sequence

wL[n] to 10×M . In that case, the value of |WcWW
(

εjrfsff
M

)
| becomes |W10WW M [10.εjr]|

where W10WW M [k] is the DFT of wL[n] performed on the L = 10.M samples of
wL[n].

For the calculation of the dynamic parameters listed in the previous sections,
another important effect of windowing is the broadening of the main lobe.
Due to that broadening, to calculate noise power, it is necessary to remove, in
addition to the signal line and its harmonics, a few bins before and after these
lines.
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6.9.2 Changes in the formulas. As the explanations of the different
equations are reported above, only the changes to apply to the formulas for
non-coherent sampling are given in this section . Due to the main lobe broad-
ening, the first equation that needs to be corrected when windowing is used is
the calculation of noise floor

|NFl|2 =

M/2−1∑
k=1, k 
=

 J±l, k 
=

 rnd[h(J±εj ]±l

|Y [k]|2 + 1
2

∣∣∣∣Y [
M
2

]∣∣∣∣2
M
2 − hmax(2lmax + 1)

h = 2 . . . hmax

l = 0 . . . lmax

(4.44)

where rnd[x] is the round to the nearest integer of x, Y [hJ ] is the hth harmonic
component, 2lmax is the number of bins to remove around the signal and its
harmonics.

The number of bins to be removed depends on the window. For a given
window, the value of lmax equals the position (in number of bins) of the first
zero of the Fourier Transform of the window (lmax equals half of the width of
the main lobe). The value of lmax is reported for some classical windows in

In addition to the main lobe broadening and to signal amplitude correction,
the ENBW of the applied window must be used to correct the equation pro-
vided in section 4.6.5 for the SNR calculation

SNRdB = 10 log

|Y [J ]|2 − |NFl|2
M/2−1∑
k = 1

k 
=

 J ± l
k 
=

 rnd[h(J ± εj ] ± l

|Y [k]|2 + (hmax(2lmax + 1) + 1)|NFl|2 + 1
2

∣∣∣∣Y [
M
2

]∣∣∣∣2

+ 10 log(ENBW ) + 10 log

⎛
⎝
⎛⎛

|W [0]|2
|WcWW

(
εjrfsff
M

)
|2

⎞
⎠
⎞⎞

(4.45)

with h = 2 . . . hmax and l = 0 . . . lmax, and rnd[x] being the round to the

nearest integer of x. The calculation of WcWW
(

εjrfsf
M

)
is explained in section

6.9.1.

section 6.9.3.



100 ADC DYNAMIC CHARACTERISATION

ENBW is defined in section 4.3.1 as

ENBW =

M.

M−1∑
n=0

w2[n]

[
M−1∑
n=0

w[n]

]2 (4.46)

The same corrections are necessary for the calculation of SINAD from a win-
dowed DFT. To perform a rigorous correction, it is necessary to split the sum
used in (4.30) in order to separate the noise from the harmonics. After a win-
dowed DFT, SINAD is calculated by

SINADdB =10 log
|Y [J ]|2 − |NFl|2

A + B
+ 10 log(ENBW )

+ 10 log

⎛
⎝
⎛⎛

|W [0]|2
|WcWW

(
εjrfsf
M

)
|2

⎞
⎠
⎞⎞

(4.47)

where

A =
M/2−1∑

k=1, k 
=

 J±l, k 
=

 rnd[h(J±εj ]±l

|Y [k]|2 + (2lmax + 2)|NFl|2 +
1
2

∣∣∣∣∣∣∣∣∣∣Y
[
M

2

]∣∣∣∣∣∣∣∣∣∣
2

(4.48)
with l = 0 . . . lmax and

B = ENBW
hmax∑
h=2

|Y [rnd[h(J ± εj)]|2. |W [0]|2
|WcWW

(
fracr[h(J±εj)]fsff

M

)
|2

(4.49)

where rnd[x] is the round to the nearest integer of x, and fracr[x] is the frac-
tional part of x rounded to the first decimal.

Note that to calculate SINAD, the amplitude of the signal as well as the
amplitudes of the harmonics have to be corrected. Similarly to what has been
done for the signal amplitude, the correction factors used for the harmonic lines
are only defined for values rounded to one decimal.
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In the calculation of THD, the signal and harmonics amplitudes must be
modified due to non-coherent sampling

THDdB = 10 log

hmax∑
h=2

|Y [hJ ]|2 |W [0]|2

|WcWW

(
fracr [h(J±εj)]fs

M

)
|2

|Y [J ]|2 |W [0]|2
|WcWW

(
εjrfs

M

)
|2

= 10 log

⎛
⎜
⎛⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

hmax∑
h=2

|Y [hJ ]|2

|WcWW

(
fracr [h(J±εj)]fs

M

)
|2

|Y [J ]|2 |WcWW

(
εjrfsff

M

)
|2

⎞
⎟
⎞⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

(4.50)

where fracr[x] is the fractional part of x rounded to the first decimal.
For the calculation of SFDR, only the signal amplitude can be corrected

because the exact frequency of spurious lines are generally unknown. The
equation to be used to calculate SFDR in the case of non-coherent sampling is

SFDRdB =10 log
|YavmYY [J ]|2

maxfh, fspff

{
|YavmYY [fhff ]|2 , |YavmYY [fspff ]|2

}

+ 10 log

⎛
⎝
⎛⎛

|W [0]|2
|WcWW

(
εjrfsf
M

)
|2

⎞
⎠
⎞⎞ (4.51)

For the calculation of the two tones IMD in the case of non-coherent sam-
pling, two tones having the following frequencies are considered

f1 = (J1JJ ± εj1)
fsff

M
and f2ff = (J2JJ ± εj2)

fsff

M
(4.52)

In that case, the amplitude of the tone under consideration and the amplitude
of the intermodulation line taken into account for the calculation of the qth
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order IMD must be modified

IMDqdB = 10 log

⎛
⎜
⎛⎛
⎜⎜⎜⎜⎜⎜⎝⎜⎜

min
{|Y (J1JJ )|2, |Y (J2JJ )|2} |W [0]|2

|WcWW

(
εj(1,2)rfs

M

)
|2

maxj,l≥1, |j|+|l|=q

{
|Y [|jJ1JJ + lJ2JJ |]|2

}

× 1
|W [0]|2

|WcWW

(
fracr [j(J1±εj1)+l(J2±εj2)]fs

M

)
|2

⎞
⎟
⎞⎞
⎟⎟⎟⎟⎟⎟⎠⎟⎟

= 10 log
min

{|Y (J1JJ )|2, |Y (J2JJ )|2}
maxj,l≥1, |j|+|l|=q

{
|Y [|jJ1JJ + lJ2JJ |]|2

}

+ 10 log
|WcWW

(
fracr[j(J1±εj1)+l(J2JJ ±εj2)]fsff

M

)
|2

|WcWW
(

εj(1,2)rfsff

M

)
|2

(4.53)

where WcWW
(

εj(1,2)rfsff

M

)
equals WcWW

(
εj1rfsff

M

)
if |Y (J1JJ )|2 < |Y (J2JJ )|2 and

WcWW
(

εj2rfsff
M

)
otherwise. fracr[x] is the fractional part of x rounded to the first

decimal.

6.9.3 Selection of the window. The selection of the window depends
on the resolution of the ADC to be characterised. The higher the resolution is,
the lower the side-lobes of the window have to be. Nevertheless, lowering the
side-lobes results in increasing the main lobe width.

For some measurements configuration (two tones of very close frequencies
for example), a large increase of the main lobe width may not be tolerable and
the selection of the window is a compromise between the needed side-lobe
reduction and a tolerable increase in main lobe.

For SNR measurements, low side-lobes are necessary in order to lower the
leakage, and thus to increase SNR calculation accuracy. A simulation of the
error on the SNR calculation for some classical windows allows the window to
be chosen as a function of the resolution of ideal ADCs. For that simulation,
the worst case of the number of cycles inaccuracy was considered (εj = 0.5)

fiff = (J + 0.5)
fsff

M
(4.54)

As only ideal ADCs are considered, the SNR at the input of the DFT is

SNRdB = 6.02N + 1.76 (4.55)
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Table 4.2. Value of lmax for some classical windows.

Window lmax

Hanning (W1) 2
Hamming (W2) 2
Blackman (W3) 3
Exact Blackman (W4) 3
Windows of fig.15 in [111] (W5) 4
7 term Blackman-Harris (W6) 7

Table 4.3. Error in SNR calculation for some classical windows as a function of the number
of bits.

N W1 W2 W3 W4 W5 W6

4 -0.8 -1 -0.2 -0.2 > −10−1 > −10−1

6 -6 unusable -2.4 -2.5 > −10−1 > −10−1

8 unusable " unusable unusable > −10−1 > −10−1

8 " " " " > −10−1 > −10−1

10 " " " " > −10−1 > −10−1

12 " " " " -0.6 > −10−1

14 " " " " -5.3 > −10−1

16 " " " " unusable > −10−1

18 " " " " " > −10−1

20 " " " " " > −10−1

22 " " " " " > −10−1

24 " " " " " -0.13

where N is the ADC number of bits.
The SNR calculation is performed using (4.45) (simplified as there are no

harmonics) and the result is compared to the SNR at the input of the DFT.
When using (4.45), the value of lmax has to be specified. The table bellow

lists the values of lmax used in (4.45) for some classical windows
Table 4.3 lists the error on the SNR calculation when using (4.45) comparing

to the SNR of the ideal ADC. The names of the windows Wi in this table are
identified in Table 4.2. The error is defined as 10 log

(
SNRcalculated

SNRin

)
. In this

table, a window is said "unusable" when the absolute value of the error is
greater than 6 dB. Note that the number of samples used to perform the DFT is
not mentioned because the error on the SNR calculation is independent of this
parameter.
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1. Introduction

The histogram test is based on the assumption that the sampled input signal
V is a random variable whose distribution function is accurately known. Let
p{V } represent the probability density function (p.d.f.) of V , and

P{V } =

V∫
−∞

p[ξ]dξ

the corresponding distribution function. Then, the position of code transition
level T [k], separating code bins k−1 and k, may be determined by considering
that the probability of obtaining a code smaller than k can be experimentally
estimated by the relative frequency Φr of the event “output code < k”,

Prob{output code < k} = P{T [k]} =

T [k]∫
−∞

p[ξ]dξ ≈ Φr (5.1)

and therefore T [k] may be determined as

T [k] = P−1{Φr}, (5.2)

assuming that the inverse function of P exists.
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For static testing, an input signal with uniform p.d.f. over the input range of
the converter, such as a triangular waveform, is sometimes preferred in view of
the easier data processing. For dynamic testing, a high purity sinewave is pre-
ferred for two reasons: the first is that low distortion and low-noise sinewave
generators are readily found in the market and it is relatively easy, by filtering,
to improve distortion and noise to the desired level; the second is that it is easy
to quantitatively assess the purity of the sinewave by means, for instance, of a
spectrum analyzer. The input waveform may therefore be represented by

v(t) = A cos(ωt + φ) + C , (5.3)

where A > 0 is the amplitude, ω = 2πfiff is the angular frequency, fiff = T−1
iTT

is the frequency, φ is the initial phase and C the offset. A and C are normally
chosen so as to span all the code transition levels of the ADC.

If the sampling phase is a random variable uniformly distributed in [0, 2π) ,
the probability P{V } of collecting a sample with a value between C − A and
V , where C − A ≤ V ≤ C + A, is represented by the fraction of the period
2π in which v(t) ≤ V . In order to estimate this fraction, it may be assumed
without loss of generality that φ = 0. The inequality

A cos(ωt) + C ≤ V (5.4)

in [0, 2π) is satisfied, see Figure 5.1, for

arccos
(

V − C

A

)
≤ ωt ≤ 2π − arccos

(
V − C

A

)
(5.5)

i.e. in an interval of half width ψ(V ) =
(
π − arccos(V −C

A )
)

= arccos(C−V
A )

centered on π. Thus P{V }, the distribution function of V , is

P{V } =
2 ψ(V )

2π
=

1
π

arccos
(

C − V

A

)
. (5.6)

Let us assume that A and C are chosen so as to span all the codes of the ADC .
Then, if V = T [k], where T [k] is the kth code transition level, separating code
bins k − 1 and k, the probability of obtaining an output code smaller than k is

Prob{output code < k} = P{T [k]} =
1
π

arccos
(

C − T [k]
A

)
. (5.7)

Taking the inverse

T [k] = C − A cos(π Prob{output code < k}) = C − A cos ψk, (5.8)

where ψk = ψ(T [k]). Let us consider an experiment where a large number
of samples is acquired at random, uniformly distributed phases. Let h[i] be
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v
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C

00
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ππππ − ψψ((VV )) 22ππππ ++ ψψ((VV )) ωtωt

Figure 5.1. The region where inequality (5.4) is satisfied is marked by the thick line.

the total number of samples which yielded output code i as the result of the
conversion (the so called “code histogram”), and ch[k] =

∑k
i=0 h[i] repre-

sent the cumulative histogram. For an N bit binary ADC, the total number

of samples collected will be S =
∑2N−1

i=0 h[i]. Then, replacing probability
Prob{output code < k} by the relative frequency observed during the test,
ch[k − 1]/S, we estimate

T̂ [k] = C − A cos
(

π ch[k − 1]
S

)
. (5.9)

It may be shown that (5.9) is an asymptotically unbiased estimator of T [k],
whose bias is negligible for all values of M employed in practice [29]. The
above formula is based on the assumption that the relative frequency is a good
estimate of Prob{output code < k}, that the distribution function of V is
represented by (5.6) and that the sampling phases are random and uniformly
distributed in [0, 2π). However, the relative frequency ch[k]/S may be an inac-
curate estimate of Prob{output code < k} due to the finite size of the sample,
synchronous or quasi-synchronous deterministic sampling may be preferred to
random sampling and, finally, additive noise and distortion modify the distri-
bution function of the input signal. All these points will be reviewed in the
following sections.

Once the code transition levels are determined, it is easy to obtain all the
specification parameters which may be derived from the knowledge of the con-
version characteristic, such as gain error, offset, integral or differential non
linearity.

Provided that the amplitude and offset of the input sinewave are precisely
known, the conversion characteristic obtained from the histogram test using
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a low-frequency sinewave usually matches well the conversion characteristic
measured at DC, for instance by the servo-loop arrangement.

At the highest frequencies, however, a degradation of the conversion char-
acteristic is usually observed, revealing the rise of dynamic non-idealities.

Clearly, if this happens, revealing that the result of the conversion depends
not only on the input signal, but also on the internal state of the ADC, we can-
not expect that a conversion characteristic determined from a sinewave of given
frequency, amplitude and offset may describe the ADC operation in response
to any other different input stimulus. Nevertheless, the results obtained may
be useful for comparing the behaviour of different ADCs subject to the same
stimulus.

2. The sampling strategy and its contribution to count
variance and measurement uncertainty

2.1 Random vs coherent sampling

The approach based on sampling the input sinewave at random phases [48],
uniformly distributed in [0, 2π), is discussed in subsection 2.2. It turns out
that a very large number of samples is required in order to achieve an ac-
ceptable measurement uncertainty, and therefore the approach may be recom-
mended only when synchronization is not possible.

The required number of samples could be substantially reduced if, on the
contrary, it were possible to perfectly synchronize the input sinewave with the
sampling clock, so as to obtain a set of samples equally spaced by phase incre-
ments so small, that the number of samples falling within the less populated
code bin is sufficient to determine its width with the required uncertainty. The

A more realistic analysis, considering synchronous sinewave and clock, but

2.2 The case of random sampling

The basic assumption is that the sampling phases are uniformly distributed
in [0, 2π) .

Figure 5.2, quite similar to Figure 5.1, apart from a −π shift in the horizontal
axis, shows a possible arrangement of the sampling phases. If the phase ψ of
the sample, reduced to the range [−π, π), falls in the interval −ψk, ψk, the
sample contributes to the counts in ch[k − 1]. Clearly, the probability for a
sample to fall in [−ψk, ψk] is

p =
ψk

π
, (5.10)

case of perfect synchronization is discussed in subsection 2.3.

accounting for frequency ratio inaccuracy [28] is carried out in section 2.4.
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T [k]

ψk−ψk π−π ψ

Figure 5.2. Determination of the phase interval [−ψk, ψk] from the transition level T [k]. The
dots represent a set of sampling phases in the case of random sampling.

while 1 − p is the probability of falling outside. If S samples are extracted,
the probability that m of them fall in [−ψk, ψk], so that ch[k − 1] = m, is
represented by the binomial distribution

P{m} =
(

S
m

)
pm(1 − p)S−m, (5.11)

Thus, ch[k − 1] is a random variable with expected value and variance given
by

E{ch[k − 1]} = pS (5.12)

σ2
c,intr = Sp(1 − p), (5.13)

where the subscript “c,intr” stands to remember that it is a contribution to
count variance intrinsically arising from the counting process. From (5.9),(5.12)
and (5.13) it is then possible to infer the expected value and variance of the es-
timates of the transition levels.
The expected value of T̂ [k] is E{T̂ [k]} = C − A cos(ψk).
As for the contribution to the variance of T̂ arising from the intrinsic count
uncertainty, σ2

Tc,intrTT , by differentiating (5.9)

d T̂

d ch
=

πA

S
sin

(
π ch[k − 1]

S

)
, (5.14)

and hence

σ2
Tc,intrTT =

(
πA

S

)2

sin2

(
πch[k − 1]

S

)
σ2

c,intr ≤ (πA)2

S
p(1 − p) ≤ (πA)2

4S
(5.15)
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since the maximum of p(1 − p) is 1/4.
If the number of samples S is large, the binomial distribution may be ap-

proximated by a gaussian distribution with the same mean and standard devia-
tion. It is then easy to determine an interval about the mean value µ = E{T̂ [k]}
which contains, with confidence 1−α, the transition level T [k]. It is sufficient
to determine a number Zα/Z 2 such that

∫ µ+Z0,α/2σ

µ

∫∫
−Z0,α/2σ

1
σ
√

2π
exp

(
−(ξ − µ)2

2σ2

)
dξ = 1 − α, (5.16)

where σ = σTc,intrTT and Z0ZZ ,α/2 can be easily determined using tabulated values
of the error function erf [11].

Let Q be the nominal code bin width (1 LSB). If an extended uncertainty
(tolerance) BQ is required with confidence 1 − α, then

Z0ZZ ,α/2 σTc,intrTT ≤ BQ (5.17)

hence, from the last inequality in (5.15)

S ≥
Z2

0ZZ ,α/2π
2A2

4B2Q2
. (5.18)

Note that a very large number of samples is required. When the input signal
spans the input range, (5.18) becomes

S ≥
Z2

0ZZ ,α/2π
222(N−1)

4B2
: (5.19)

for an 8 bit converter, an uncertainty of 0.1 LSB and 99 % confidence level, S
shall be greater than 2.7 107.
Finally note that (5.19) ensures only that the estimate T̂ [k] of a single code
transition level does not differ from the expected value µ = E{T̂ [k]} by more
than BQ with confidence (1−α). If it is required that none of the code transi-
tion levels of an N -bit converter differs from the corresponding expected value
by more than BQ with confidence (1−α), Z0ZZ ,α/2 must be replaced by ZN,α/Z 2,
as discussed later in section 5.6.

2.3 The case of perfectly coherent sampling

In coherent sampling , the S samples used to build the frequency histogram
are obtained from a single record acquired at the constant sampling rate fsff =
1
TsTT . The input sinewave is sampled in correspondence of S distinct values of
phase, which appear equally spaced by ∆φ = 2π

S when they are rearranged in
the [−π, π) interval. Note that the samples may be collected either in real time,
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by choosing a sampling frequency fsff which is precisely a multiple, by the fac-
tor S, of the signal frequency fiff , or in equivalent time. In the last case, which
is analyzed in the Appendix, Figure 5.14, the signal is carefully synchronized
to the sampling clock, so that in each record of S samples there is an integer
number J of cycles of the input sinewave, and J is mutually prime to S.

The resulting situation is depicted in Figure 5.3: the width of the phase

T [k]

ψk−ψk π−π ψ

∆ϕ

ϕspep

(nk + αk)∆ϕ

Figure 5.3. Determination of the phase interval [−ψk, ψk] from the transition level T [k]. The
dots represent the sampling phases in the case of coherent sampling

interval [−ψk, ψk] is measured by counting the number of equally spaced sam-
pling phases contained therein. The problem is thus reduced to evaluating the
uncertainty associated with the measurement of the length of a segment using
a regulus with marks regularly spaced by ∆φ.

When the cumulative histogram is formed, the number of counts ch[k − 1]
falling in the cell corresponding to T [k] is the number of samples with phase
angles between −ψk and ψk. The relative position of the sampling comb with
respect to the interval [−ψk, ψk] can be defined by φspep, the smallest positive
equivalent-phase angle among the sampling points. It is assumed that φspep is
a random variable uniformly distributed between 0 and ∆φ; this is the same as
requiring that the initial phase in a record is a random variable with uniform
distribution in [0, 2π).

If the length of the phase interval [−ψk, ψk] is written in the form 2ψk =
(nk + αk)∆φ, where nk is an integer and 0 < αk < 1, the probability of
counting (nk + 1) marks is αk, the probability of counting nk is (1 − αk). If
the random variable “extra count” x is defined, which assumes the value 1 if
nk+1 is counted, 0 if nk is counted, it is apparent that x obeys a point binomial
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distribution [105], so that the expected value of the count is nk + αk, and the
count variance is σ2

c,intr = αk(1 − αk).
Now, αk depends on the code transition level: since we are interested in

obtaining estimates of uncertainty applicable to any transition level, we must
consider the maximum value of count variance, which occurs for αk = 0.5 and
equals 0.25.

The corresponding variance affecting the estimated transition level T̂ [k], is
obtained as in the previous section (see (5.14) and following).

σ2
Tc,intrTT =

(
d T

d ch

)2

σ2
c,intr ≤ 1

4

(
πA

S

)2

. (5.20)

Comparing (5.20) and (5.15) it is apparent that the r.h.s. of (5.20) is smaller
by a factor S, quite relevant. However, achieving adequate coherence between
the sampling clock and the sinusoidal signal is quite difficult in practice.

2.4 Quasi-coherent sampling

When the test signal frequency becomes comparable to the sampling fre-
quency, it is only possible to resort to equivalent time sampling . Records
containing M samples are acquired at the constant sampling rate fsff = 1

TsTT . The
input sinewave, with frequency fiff , is carefully synchronized to the sampling
clock, so that in each record of M samples there is an integer number J of
cycles of the input sinewave, and J is mutually prime to M . Normally, several
(R) records are acquired to build the histogram, so that S = RM . We shall
consider here the case where the histogram is formed using one single record,
R = 1.

In practice, the coherence condition r
�
= fiff /fsff = J/M , where J and M are

mutually prime integers, is never perfectly met, because of the finite resolution
of the synthesizers and because of the lowest frequency components of phase
noise. It is therefore convenient to represent the frequency ratio as:

fiff

fsff
=

J

M
+ ∆r, (5.21)

where ∆r is the fractional frequency deviation.
As before, the task is evaluating the length of a segment using a ruler; this

time, however, its marks are unequally spaced according to the sampling pat-
tern resulting from (5.21). The initial phase in a record is assumed as a random
variable uniformly distributed in [−π, π).

Figure 5.4 shows the sampling pattern in a quasi-coherent case defined by
J = 3, M = 16 and ∆r = 1/(2JM).

The problem was thoroughly analyzed in [28]. Leaving as usual 2ψk =

(nk + αk) 2π/M , with nk integer and 0 < αk < 1, the probabilities pi
�
=
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T [k]

ψk−ψk π−π ψ

nk + αk)∆ϕ

Figure 5.4. Determination of the phase interval [−ψk, ψk] from the transition level T [k]. The
dots represent a set of possible sampling phases in the case of quasi-coherent sampling

Prob{ch[k − 1] = nk + i} can be derived as a function of ψk and of fiff /fsff ,
as shown in the appendix. By using these probabilities, the expected value and
the variance of ch[·] are also evaluated in the Appendix. It turns out that

E{ch[k − 1]} = nk + αk, (5.22)

while the count variance is given in Table 5.1.
In the table mL (mR) is the positive (respectively, negative) solution of the

equation
mJ modM = nk, −M < m < M (5.23)

where mod represents the modulus operator. Similarly, nL and nR are the
positive, respectively negative, solutions of

nJ modM = nk + 1 − M < n < M. (5.24)

Closed form expressions for mL, mR, nL and nR are derived in the appendix.
It turns out that, if

∆r

r
≤ 1

2JM
(5.25)

the variances reported in Table 5.1 are bounded by 1/4, as it was found in the
case of perfectly coherent sampling. If condition (5.25) is not respected, the
maximum variance can be determined by numerical simulation, as reported in
[13]. So, if condition (5.25) is respected, even if a frequency-ratio error ∆r
is present, the variance affecting the estimated transition level T̂ [k] does not
increase beyond the value reported in (5.20) for perfectly coherent sampling,
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i.e.

σ2
Tc,intrTT ≤ π2A2

4M2
(5.26)

For the validity of this result, no particular relationship between J and M is
required, except that J and M must be mutually prime. So, the result can be
applied even well beyond the Nyquist limit.

Finally, if it is desired that each record contains at least one sample in each
code bin, it is worth to mention that for an assigned record length M, equal to
a power of two, tables are provided in [25] which report values of J particu-
larly tolerant of errors ∆J either in the positive direction (∆J > 0) or in the
negative direction (∆J < 0), together with a search strategy that may help in
selecting the test frequency.

3. Additional contributions to count uncertainty: additive
noise and jitter

3.1 Count uncertainty associated with additive noise

When additive noise is superimposed to the input sinewave, a sample point
whose phase falls within the interval [−ψk, ψk] corresponding to transition
level T [k], and is near one of the extremes of the interval (this means that the
sampled voltage, in the absence of noise, would be slightly lower than T [k])
has a non negligible probability of bringing no contribution to ch[k − 1] . And
vice-versa. In the following discussion, along the line of [23], it is assumed
that noise has a Gaussian distribution with zero mean and standard deviation
σn.

3.1.1 Contribution to transition level uncertainty. Let us consider
a sample, acquired at such phase that, in the absence of noise, it would be
classified in the cell ch[k − 1] of the cumulative histogram. In the presence of
noise, will it - or not - be classified in that cell?

If the voltage that would be sampled in the absence of noise is T [k]−x, with
x > 0, then, in the presence of noise, that particular sample will be classified
in cell ch[k−1] as long as the instantaneous noise amplitude is smaller than x.
That is, the probability p(x) that the acquired sample is classified in the right
cell, ch[k − 1], is

p(x) =
1

σn

√
2π

∫ x

−∞

∫∫
e
− v2

2σ2
n dv

�
= 1
� − 1

2
erfc

(
x

σn

√
2

)
. (5.27)

Let us associate, to each individual sampling point i, a random variable bi

which represents the contribution of that sampling point to the counts in ch[k−
1] and is defined by

bi = 1 if the sample is classified in cell ch[k − 1];
bi = 0 if the sample is classified in cell ch[k] or in higher cells.
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Then, the mean value of the count contribution bi is p(x) and the variance
is σ2

b (x) = p(x)(1 − p(x)).
Conversely, if the voltage that would be sampled in the absence of noise is

greater than T [k] by the amount x > 0, then that sampling point will contribute
to ch[k − 1] if the instantaneous noise value is below −x. In this case, the
mean value of the count contribution bi is (1− p(x)) and the variance is again
σ2

b (x) = p(x)(1 − p(x)).
The variance, as it may readily be verified from (5.27), is function only of

the ratio ξ = x/σn, and may be plotted in normalized form as a function of ξ,
as shown in Figure 5.5.

x/σx/σnn oror xxφφ/σ/σφφ

σσ
2 b

0.25

0.20

0.15

0.10

0.05

0
0 0.50 1.00 1.50 2.00 2.50 3.00

Figure 5.5. The variance in count σb induced by the additive noise (by the phase jitter) af-
fecting a sample point at a distance x from T [k] (respectively, at a distance xφ from ψk). The
abscissa is normalized to the standard deviation of the random variable: x is normalized to σn

in the case of additive noise, xφ is normalized to σφ in the case of jitter.

Now, the contributions to count variance of all the sampling points should be
added. However, as shown in Figure 5.5, only the sampling points within a few
σn from T [k] bring an appreciable contribution, i.e. only the sampling points
which correspond to sampling phases belonging to the four regions immedi-
ately inside or immediately outside the two extremes of the interval [−ψk, ψk].

If λ (approximately constant) is the number of sampling points per unit
voltage in these four regions, then the total contribution to count uncertainty is

σ2
c,n = 4λ

∫ ∞

0

∫∫
σ2

b (x)dx. (5.28)
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In order to convert this to a variance in voltage, considering that an increment in
counts has to be divided by 2λ in order to obtain the corresponding increment
in voltage (the points at both extremes of the interval bring their contribution),
σ2

c,n has to be divided by 4λ2.
λ may be calculated considering that M/2π sampling points per unit phase

are available, in the case of perfectly coherent sampling, and that roughly the
same number is available in conditions of quasi-coherency. Considering that
to an assigned phase interval ∆Φ around the instantaneous phase Φ = ωt + φ,
a voltage interval of width A sin(Φ)∆Φ may be associated, we find:

λ =
M

2π

1
A sin(Φ)

≥ M

2πA
. (5.29)

Considering also that∫ ∞

0

∫∫
σ2

b (x)dx = σn

∫ ∞

0

∫∫
σ2

b (ξ)dξ = 1.13
σn

4
, (5.30)

the last equality resulting from numerical evaluation of the integral. The vari-
ance of the estimate of the code transition level becomes therefore:

σ2
T,n ≤ 1.13

2
σnAπ

M
. (5.31)

3.1.2 Contribution to code bin width uncertainty. If the width of a
code bin is sensibly larger than the standard deviation of additive noise, it is
reasonable to assume that the errors affecting the estimates of the positions of
the two code transition levels which delimit the bin are independent random
variables. As a consequence, the variance of the width estimate will be twice
the variance affecting code transition levels.

For converters with medium-high resolution, however, it frequently happens
that the standard deviation of additive noise is larger than the code bin width,
so that the assumption of independence no longer holds.

Following [23], it will be shown that in this case, twice the variance affecting
code transition levels is a rather pessimistic assumption.

Let us consider, for simplicity, a code bin of width equal to the nominal
width Q, centered at voltage VbinVV . With reference to Figure 5.6, consider the
case where, in the absence of noise, the voltage ViVV would be sampled. Let v =
V − ViVV represent the additive noise associated with the sample corresponding
to the nominal sampling voltage ViVV , and let P{v} represent the p.d.f. of noise,
with zero mean and standard deviation larger than the code bin width Q. The
probability that a sampling point corresponding to the nominal sampling volt-
age ViVV falls in the considered bin may be approximated by p ≈ QP{VbinVV −ViVV }.
As in the previous section, the contribution of this specific sampling point to
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P{V }

Q

Total voltage VViVVViVV

Figure 5.6. P.d.f. of the noise associated with the nominal sampling voltage ViVV .

the count variance will be p (1 − p) ≤ p. The total count variance may be
evaluated by summing the contributions of all the sampling points.

σ2
c,n ≤

∑
i

QP{VbinVV − ViVV } (5.32)

By multiplying and dividing the r.h.s. by ∆v, the average distance between the
sampling voltages near the considered code bin,

σ2
c,n ≤ Q

∆v

∑
i

P{VbinVV − ViVV }∆v ≈ Q

∆v
(5.33)

since the sum is approximately equal to the area of the p.d.f., i.e. unity.
Considering that ∆v = 1

2λ , where λ is defined by (5.29) and that the factor 2
arises from the presence of two contributions, one for increasing and the other
for decreasing input voltages, then

σ2
c,n ≤ 2λQ (5.34)

Considering that in any case, for code bins much larger than the standard devi-
ation of noise, the variance is twice the one estimated for code transition levels,
so that for large code bins σ2

c,n ≤ 2λ 1.13 σn, it turns out that in general

σ2
c,n ≤ 2λ min{Q, 1.13σn}. (5.35)

In terms of code bin width, this yields

σ2
w,n ≤ σ2

c,n

4λ2
≤ πA

M
min{Q, 1.13σn}. (5.36)
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3.2 Uncertainty associated with sampling jitter

3.2.1 Sources of jitter. The phase-noise of a signal source is usually
described by the single-side bandwidth (SSB) phase-noise spectral power den-
sity L(foff ) (measured in dBc/Hz) as a function of the offset foff from the carrier,
see Figure 5.7 . For each signal generator, the variance σ2

θ of the short-term

Phase detector White phase-noise floor

Offset f0ff from the carrier [Hz]

L(
f 0ff

)
[d

B
c/

H
z]
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-20

-40
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-160
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Figure 5.7. Typical SSB phase noise spectral power density of a sinewave generator.

phase fluctuations should be evaluated, since it results in a nonuniform spacing
(in real-time) of the samples acquired in a single record. A quite rough estimate
of σ2

θ , in the case where a selective bandpass filter with 3dB bandwidth BW
centered on the synthesized frequency is placed before the converter input, is
provided by1

σ2
θ � 2

∫ fHff

f

∫∫
Lff

L(foff )dfoff , (5.37)

where fLff = fsff /M and fHff = BW/2. When the bandpass filter is not present or
is not properly centered, part of the phase noise is transformed into amplitude
noise [31], and the evaluation of σ2

θ should be carried out accordingly.
Short-term phase fluctuations in the two generators, together with the in-

trinsic aperture uncertainty of the ADC under test, contribute to the worst case

1see equations (22.9) and (22.10) in [38].
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phase jitter, whose variance is σ2
φ. Let σ2

θsig
be the phase noise variance of the

signal generator, operating at frequency fiff ; σ2
θck

the phase noise variance of
the sampling clock generator, operating at frequency fsff ; σ2

apu the variance of
the aperture delay (aperture uncertainty) of the ADC under test, which may be
determined as described in [10, 33]. By referring the total jitter to the input
signal frequency one obtains

σ2
φ =

(
σ2

θsig
+

σ2
θck

f2
iff

(fsff )2
+ σ2

apu (2πfiff )2
)

(5.38)

Note that other parts of the test setup may contribute to jitter, and in particular
the waveform shapers used to obtain the digital clock from the synthesized
generator and the signal amplifiers; the above equation can therefore be used
only if such contributions are negligible.

3.2.2 Effects of jitter on count variance. In the presence of jitter a
sample that would normally be classified in the cell ch[k − 1] of the cumula-
tive histogram which corresponds to T [k], has a finite probability of being not
classified in that cell.

Let φk be the phase angle, within the interval [−π, π), which would corre-
spond to sample k in the absence of jitter, and let δφk represent the deviation
from the jitter-free sampling phase φk.

We shall assume that the probability density function (p.d.f.) describing the
phase jitter δφk is the same gaussian distribution P{δφ} for any k, and that σφ

is the associated standard deviation.
Figure 5.8 shows P{δφ} for a few sampling points near the right margin

of the interval [−ψk, ψk], while Figure 5.9 shows the position of the sampling
points in real time.

Figure 5.8 demonstrates that in the case J ≥ 2 the standard deviation of phase
jitter may become comparable to the equivalent sampling interval ∆Φ = 2π

M ,
while Figure 5.9 shows that still the natural order of the samples in real time is
respected. It may well happen that the actual positions of two adjacent samples
in equivalent phase are reversed, i.e.it is possible, e.g., that sample 15 corre-
sponds to a higher voltage than sample 26, while there is no risk of such an
exchange between sample 25 and sample 26, since jitter is, by definition, a
fluctuation around the mean value of the time interval between two successive
samples. In such conditions, it may be assumed that there is negligible cor-
relation between each sample and its nearest neighbours in equivalent phase:
for example, in the case shown, two adjacent samples are displaced by about
MTsTT

3 in real time, and at such distance little correlation is expected between
them. Note however that when sampling near the Nyquist limit (J � M/2),
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Figure 5.8. The figure shows how phase noise is converted to voltage noise, and that the
labelling of adjacent points in equivalent phase corresponds to widely spaced samples in real
time (see also Figure 5.9).

44 1515 2525 2626

V

t

T [k]
M = 32 k = 11 J = 3

Figure 5.9. The figure shows, for the same case considered in Figure 5.8, the position in real
time of the sample points.

the distance in real time between two samples adjacent in equivalent phase is
so short, that the above assumption may become questionable.

Thus, considering that only those few sample points within three standard
deviations from ψk contribute to the count variance (see Figure 5.5), points
which are most likely uncorrelated for the reasons explained above, the same
theory developed in section 3.1.1 can be applied to evaluate the contribution
to count variance.
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Let p(x) represent now the probability that a sample, whose position in
the absence of jitter is near one edge of the phase interval [−ψk, ψk], at a
distance xφ from that edge is recorded in the cumulative histogram cell ch[k−
1] corresponding to T [k].

Following exactly the same line of thought as in section 3.1.1, with refer-
ence, however, to the extremes of the phase interval [−ψk, ψk] rather than to
the transition level T [k], the count variance contributed by a sampling point
immediately at the left (or at the right) of ψk, at a distance xφ from ψk is, as
before, σ2

b = p(xφ)(1 − p(xφ)), and the dependence of σ2
bn on ξ = xφ/σφ is

the same shown in Figure 5.5 after suitable relabeling of the abscissa.
Since M

2π is the average density of sampling points per unit phase, the count
variance, considering the four contributing regions, becomes

σ2
c,j = 4

M

2π

∫ ∞

0

∫∫
σ2

b (xφ)dxφ = 1.13M
σφ

2π
. (5.39)

In order to obtain the corresponding variance in the code transition voltage, the
above value is divided by 4λ2, λ being defined by (5.29).

σ2
T,j =

σ2
c,j

4λ2
=

1
4
A2 sin2 ψk

(
2π

M

)2 1.13Mσφ

2π
≤ 1.13A2 πσφ

2M
. (5.40)

4. Factors affecting the p.d.f. of the input signal

4.1 Modification of the input signal p.d.f. due to additive
noise and resulting requirements on overdrive

In this section it is shown that, by applying an input sinewave of sufficient
amplitude to trespass, by a convenient amount, the extreme code transition
levels T [1] and T [2N − 1], the systematic error, arising from the difference
between the probability density function of the sinewave alone (assumed in the
theory) and the p.d.f. of sinewave plus additive noise, can be made negligible .

4.1.1 A useful approximation. Let

v(t) = A cos(ωt + φ) + C (5.41)

be the input signal, which is assumed to cross all the code transition levels of
the ADC under test. A normalized input signal x can be defined as

x(t) =
v(t) − C

A
; −1 ≤ x ≤ 1. (5.42)

If the r.m.s. value of the additive noise is σn in input units, then in normalized
units it becomes σx = σn

A .
Following [23], it is convenient to preliminary proof the following.
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If f [x] is an arbitrary function with continuous second derivative, and p[x] is
a probability density function (p.d.f.) with zero mean and standard deviation
σx, then the convolution of f [x] with p[x], f [x]∗p[x], can be approximated by

f [x] ∗ p[x] ≈ f [x] +
σ2

x

2
f ′′[x]. (5.43)

Proof
by Taylor expansion of f [t] around t = x up to the second order terms

f [t] ≈ f [x] + f ′[x](t − x) +
1
2
f ′′[x](t − x)2. (5.44)

Therefore

f [x] ∗ p[x] =

+∞∫
−∞

f [t]p[x − t]dt

≈ f [x]
∫

p[x − t]dt + f ′[x]
∫

(t − x)p[x − t]dt

+
1
2
f ′′[x]

∫
(t − x)2p[x − t]dt . (5.45)

The first integral is one, since p[x] is a probability density function; the second
is zero because the mean value of the p.d.f. is zero, the third is the variance σ2

x.
Thus (5.43) is obtained.

4.1.2 Overdrive required for the evaluation of code bin widths. The
probability density function g[x] for signal plus noise is the convolution of
the p.d.f. f [x] of the signal with the p.d.f. p[x] of noise [114] . Therefore,
according to (5.43),

g[x] = f [x] ∗ p[x] ≈ f [x] +
σ2

x

2
f ′′[x]. (5.46)

When measuring the width W of a code bin in position x, the measured code
bin width WmWW is proportional to the number of samples falling in the code bin,
which in turn is proportional to the p.d.f. g[x] at the position x of the bin. If W
is the code bin width which would be measured in the absence of noise (p.d.f.
f [x]), then

WmWW

W
≈ g[x]

f [x]
(5.47)

and therefore the relative systematic error EWpdf is

EWpdf ≡ WmWW − W

W
≈ g[x]

f [x]
− 1 ≈ σ2

x

2
f ′′[x]
f [x]

. (5.48)
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For the normalized sinewave, the p.d.f. may be obtained by derivation of the
distribution function F [x] = (arccos(−x))/π obtained from (5.6) by convert-
ing to normalized units.

f [x] =
dF

dx
=

1
π
√

1 − x2
. (5.49)

Hence,

f ′′[x] =
1 + 2x2

π(1 − x2)5/2
(5.50)

and

EWpdf ≈ σ2
x

2
1 + 2x2

(1 − x2)2
=

σ2
x

2
1 + 2x2

(1 + x)2(1 − x)2
. (5.51)

This is an even function of x, with vertical asymptotes in x = ±1. Since
−1 ≤ x ≤ 1, the worst case can be studied by considering (5.51) near x = 1,
replacing x with 1 everywhere but in (1 − x):

EWpdf ≈ 3σ2
x

8(1 − x)2
. (5.52)

If EWpdf is sufficiently small, its contributionto the overall uncertainty,when
glected.

To this aim, for a given maximum admitted systematic error E0
Wpdf , it is

sufficient to choose x so that

(1 − x) ≥ σx

√
3

8E0
Wpdf

(5.53)

which corresponds, returning to non normalized quantities, to

(A + C − v) ≥ σn

√
3

8E0
Wpdf

. (5.54)

Considering that A + C is the maximum value of the input sinewave, and
that v is an arbitrary value defining the position of the code bin, and there-
fore a value contained within the input range of the ADC under test, the above
inequality must hold also for the code bin near the most positive code transi-
tion level T [2N − 1]. Considering the definition of positive overdrive voltage
VODVV = A + C − T [2N − 1], E0

Wpdf will not be exceeded for any code bin if

VODVV ≥ σn

√
3

8E0
Wpdf

. (5.55)

it
is combined quadratically with the other uncertainty sources, canbe ne

which demonstrates that, in order to reduce to the desired level the systematic
error, it is sufficient to adequately increase the overdrive. Note that a nega-
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tive overdrive voltage of comparable amplitude is necessary to ensure that the
widths of the code bins near T [1] are measured with negligible error. How-
ever, (5.55) is based on approximation (5.46), i.e. on neglecting terms of order
higher than two in the Taylor expansion. This approximation is questionable
when x approaches ±1, and indeed an error larger than the assigned E0

Wpdf
may be observed in such cases, even if condition (5.55) is respected. The con-
volution f [x] ∗ p[x] was therefore calculated numerically for a uniform and
a triangular p.d.f. of noise, for values of σx between 10−2 to 10−4, and for
gaussian noise down to σx = 10−6.

Figure 5.10 compares, for different values of σx, the true behaviour of g[x]
near x = −1 and the approximate expression reported in (5.46). When the
distance from −1 is larger than 3σx, the ratio between the true and the ap-
proximate expression of g(x)is always smaller than 1.44, and tends to 1 as the
number of standard deviations σx increases, so that (5.55) tends to be valid. In
any case, the error decreases for increasing overdrive.

In fact, it is convenient to refer directly to figure 5.11, which shows the exact
calculation of EWpdf ≡ g/f − 1. As the figure shows, at a distance 3σx from
−1, the relative error is EWpdf = 5%, for all the values of σx, and drops to 1%
at about 6σx.

4.1.3 Overdrive required for the evaluation of code transition levels.
If F [x] is the distribution function of the input sinewave, i.e. the probability
that the input signal is ≤ x, and p[x] is the p.d.f. of noise (all in normalized
units), then the distribution function of signal plus noise, G[x], is the convolu-
tion of F [x] and p[x]:

G[x] =
∫ ∞

−∞

∫∫
p[ξ]F [x − ξ]dξ = F [x] ∗ p[x] ≈ F [x] +

σ2
x

2
F ′′[x] (5.56)

where the last approximation is derived from (5.43), and σx is the standard
deviation of the noise. For the normalized sinewave

F [x] =
arccos(−x)

π
and F ′′[x] =

x

π(1 − x2)3/2
. (5.57)

If x is the correct position of a code transition level, the position xm which will
be calculated using (5.8) is

xm = − cos(πG[x])

≈ − cos
(
πF [x] +

π

2
σ2

xF ′′[x]
)

≈ − cos (πF [x]) + sin (πF [x])
πσ2

xF ′′[x]
2

, (5.58)
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Figure 5.10. The true g[x] compared with the approximation gapp[x] = f [x] +
σ2

x
2

f ′′[x], see
(5.46). The case of gaussian noise is considered here, which in all cases gave the largest error.

where the last was obtained by Taylor expansion. By substituting (5.57), re-
calling that − cos(πF [x]) = x and sin(πF [x]) =

√
1 − x2 it turns out

xm − x ≈ σ2
xx

2(1 − x)(1 + x)
(5.59)

which becomes

xm − x ≈ σ2
x

4(1 − x)
(5.60)

near x = 1. As in the previous section, it is desired that the error, arising from
the modification of the distribution function due to noise, is smaller than an
assigned number E0

INLpdf of code bin widths. This implies

1 − x ≥ σ2
x2N−1

4E0
INLpdf

(5.61)
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Figure 5.11. The relative systematic error as determined by numerical integration.

Returning to non normalized variables, and remembering that VODVV = A+C−
T [2N − 1], with the same considerations reported in the previous section the
following constraint is obtained:

VODVV ≥ σ2
n2N−1

4AE0
INLpdf

≈ σ2
n2N

4E0
INLpdfVrirVV

, (5.62)

where VrirVV ≡ T [2N − 1] − T [1] is the reduced input range of the converter.
As in the previous section, even if condition (5.62) is respected, the actual

error may become larger than E0
INLpdf when x approaches ±1. According to

[23], if the exact convolution is calculated numerically in the cases of gaussian
or uniform noise, for values of σx between 10−2 and 10−4, it turns out that, for
an overdrive of 2σn the maximum error EINLpdf does not exceed 1.28 times
the error predicted by 5.60.

Thus, in order to obtain an error smaller than an assigned EINLpdf , it is
sufficient to require that

VODVV ≥ max

(
2σn,

1.28σ2
n

4EINLpdfQ

)
. (5.63)

4.2 Effects of input signal distortion

4.2.1 Introduction. Let

v(t) = A cos(ωt + φ) + C (5.64)
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represent the ideal sinewave, and let

vD(t) = A cos(ωt + φ) + C +
h∑

i=2

Ai cos(iωt + φi) (5.65)

be the distorted input signal, where h−1 harmonic terms are considered (Ai >
0). A value h = 10 is normally acceptable .

If the distorting term d(t) obeys

|d(t)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣
h∑

i=2

Ai cos(iωt + φi)

∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ε, (5.66)

the probability of collecting a sample with a value smaller than or equal to V ,
PDP {V }, is bound by

P{V − ε} ≤ PDP {V } ≤ P{V + ε}, (5.67)

where P{V } is the distribution function for the undistorted signal, defined by
(5.6).

In fact, as shown in Figure 5.12, assuming a uniform distribution of the
sampling instants, PDP {V } is represented by the ratio between the time in-
terval where vD(t) < V (horizontal solid line) and the sinewave period TiTT .
Considering that the distorted waveform vD(t) is always contained in a ribbon
2ε wide around the undistorted waveform v(t), the width of this interval can
vary at most between P{V − ε}, the interval where v(t) < V − ε marked by
the dash-dotted line, and P{V + ε}, the interval where v(t) < V + ε marked
by the dashed line. Both P{V } and PDP {V } are strictly monotonic, increasing
functions of V , since vD(t) is a single-valued function of t. Thus, P{V } and
PDP {V } can be inverted.

4.2.2 Effects of distortion on INL estimates. When, in the presence
of harmonic distortion, the transition levels are estimated from (5.9), a system-
atic error has to be accounted for, contributing to the uncertainty of INL and
DNL measurements . If T [k] is the correct value of the kth transition level,
then the probability that a code smaller than k is collected is:

pk = PDP {T [k]} ≈ ch[k − 1]
S

(5.68)

and, due to (5.67),

P{T [k] − ε} < pk < P{T [k] + ε}. (5.69)

The correct value of T [k] can in principle be derived from pk using the inverse
function P−1

DP : T [k] = P−1
DP {pk}. However, since the inverse function of P
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v(t)

vD(t)

v(t) + εε

v(t) − εε
TiTT

V V + ε

V − ε

Figure 5.12. PDP {V } is represented, in units of TiTT , by the thick horizontal segment, which is
bound between P{V − ε}, dash-dotted segment, and P{V + ε}, dashed segment.

is used in (5.9), what is actually estimated is T̂ [k] = P−1{pk}. Now, since
the inverse function of a strictly monotonic, increasing function is a strictly
monotonic, increasing function, from the inequality

P{T [k] − ε} ≤ pk ≤ P{T [k] + ε} (5.70)

it follows

P−1 (P{T [k] − ε}) ≤ P−1 (pk) ≤ P−1 (P{T [k] + ε}) (5.71)

i.e.
T [k] − ε ≤ P−1 {pk} ≤ T [k] + ε. (5.72)

The difference between the estimated and the true TkTT ,

h(pk) = P−1{pk} − P−1
DP {pk} (5.73)

is therefore bounded between −ε and ε. Since the relative phases of the har-
monics are normally unknown, a conservative approach is to replace ε by the
worst-case value,

∑
Ai.

Therefore, if EINLdist represents, in code bin widths, the maximum admit-
ted systematic error affecting the considered transition level, it must be

ε ≤
h∑

i=2

Ai ≤ EINLdistQ. (5.74)
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For instance, in order to evaluate a transition level with an error below 0.1LSB
for an 8 bit converter, the ratio

∑
Ai/A must be smaller than -62dBc, or

smaller than -86dBc for a 12 bit ADC.

4.2.3 Effects of distortion on DNL estimates. For what concerns
DNL , the error induced by distortion is represented by

|h(pk+1) − h(pk)| =
∣∣∣∣h′(p̂)

∣∣∣∣ (pk+1 − pk) (5.75)

where the r.h.s. is obtained by Rolle’s theorem, p̂ being a suitable value be-
tween pk and pk+1.The problem is now reduced to developing upper bounds
for the two terms at the r.h.s. of (5.75).

For what concerns h′(p̂), let us first remark that h(p) = P−1{p}−P−1
DP {p}

represents the reconstruction error T̂ [·] − T [·]. So

∣∣∣∣h′(p̂)
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣ d

dp

(
P−1{p} − P−1

DP {p})∣∣∣∣∣∣∣∣∣∣
p=p̂

≡
∣∣∣∣∣∣∣∣∣∣∣∣∣dT̂ [·]

dp
− dT [·]

dp

∣∣∣∣∣∣∣∣∣∣∣∣∣
p=p̂

. (5.76)

The two derivatives have to be evaluated for the same value of probability,
p̂. Now, it is much easier to evaluate the derivatives of the inverse functions,

dp
dT [·] and dp

dT̂ [·] , making reference to Figure 5.13, where the distorted and the

undistorted signals are plotted vs. time. The assumption is made that at any

v(t)

vD(t)

v, vD

T [·]

T̂ [·]

−TiTT
2

+TiTT
2

τ

τ̂

Figure 5.13. The two intervals, τ̂ and τ , have the same length, and correspond therefore to
different voltages, T̂ [·] and T [·]

point the sign of the derivative of the distorted function is the same as that
of the undistorted function. The assumption is questionable near the peaks
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of the sinewave, which however are ruled out by the presence of overdrive,
so that it is not really restrictive, considering typical distortion values. With
reference to the non-distorted waveform, probability p̂ is represented by the
ratio between the duration τ̂ of the interval marked by the thick solid line, and
TiTT , the sinewave period. The same probability p̂ , in the case of the distorted
function, is represented by the length τ of the interval marked by the dashed
line. Let v−1 be the inverse function of the non distorted waveform v(t), in the
determination corresponding to [0, TiTT /2]. If T̂ [·] is incremented by dT̂ , interval
τ̂ increases by

dτ̂ ≈ 2 dT̂∣∣∣∣dv
dt

∣∣∣∣
t=v−1(T̂ [·])

, (5.77)

where the factor 2 accounts for the displacement of the two extremes of interval
τ̂ . Quite similarly, if the voltage level T [·] is incremented by dT , and v−1

Da is
the inverse function of vD(t) in the determination corresponding to [0, TiTT /2],
v−1
Db is the determination corresponding to [−TiTT /2, 0],

dτ = dT

⎡
⎢
⎡⎡
⎣⎢⎢ 1∣∣∣∣∣∣∣dvD

dt

∣∣∣∣∣∣∣
t=v−1

Da(T [·])

+
1∣∣∣∣∣∣∣dvD

dt

∣∣∣∣∣∣∣
t=v−1

Db(T [·])

⎤
⎥
⎤⎤
⎦⎥⎥ (5.78)

Thus,

dp

dT̂ [·] =
1
TiTT

dτ̂

dT̂
≈ 2

TiTT
∣∣∣∣dv

dt

∣∣∣∣
t=v−1(T̂ [·])

dp

dT [·] =
1
TiTT

⎡
⎢
⎡⎡
⎣⎢⎢ 1∣∣∣∣∣∣∣dvD

dt

∣∣∣∣∣∣∣
t=v−1

Da(T [·])

+
1∣∣∣∣∣∣∣dvD

dt

∣∣∣∣∣∣∣
t=v−1

Db(T [·])

⎤
⎥
⎤⎤
⎦⎥⎥ (5.79)

Considering now that dvD
dt = dv

dt −
∑

kωAk sin(kωt + φk) ≥ dv
dt −

∑
kωAk,∣∣∣∣∣∣∣∣∣∣dvD

dt

∣∣∣∣∣∣∣∣∣∣
t=v−1

Da(T [·])
≥

∣∣∣∣∣∣∣∣∣∣∣∣∣
[
dv

dt

]
t=v−1

Da(T [·])
−

∑
kωAk

∣∣∣∣∣∣∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣dv

dt

∣∣∣∣∣∣∣∣∣∣
t=v−1

Da(T [·])
−

∑
kωAk

∣∣∣∣∣∣∣∣∣∣∣∣∣ , (5.80)

the last arising from the triangular inequality. A similar inequality holds for
determination b.

Now, v(t) is a smooth function, so that
∣∣∣∣dv

dt

∣∣∣∣
t=v−1

Da(T [·]) ≈ ∣∣∣∣dv
dt

∣∣∣∣
t=v−1

Db(T [·]),
and therefore

dp

dT [·] ≤
1
TiTT

2∣∣∣∣∣∣∣∣∣∣∣dv
dt

∣∣∣∣
t=v−1

Da(T [·]) −
∑

kωAk

∣∣∣∣∣∣∣ . (5.81)
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The derivatives of the inverse functions are therefore:

dT̂ [·]
dp

=
TiTT

2

∣∣∣∣∣∣∣∣∣∣dv

dt

∣∣∣∣∣∣∣∣∣∣
t=v−1(T̂ [·])

dT [·]
dp

≥ TiTT

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣dv

dt

∣∣∣∣∣∣∣∣∣∣
t=v−1

Da(T [·])
−

∑
kωAk

∣∣∣∣∣∣∣∣∣∣∣∣∣ , (5.82)

and the following upper bound is determined

∣∣∣∣h′(p̂)
∣∣∣∣ ≤ TiTT

2

{∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣
[
dv

dt

]
t=v−1(T̂ [·])

∣∣∣∣∣∣∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣∣∣∣∣∣∣
[
dv

dt

]
t=v−1

Da(T [·])

∣∣∣∣∣∣∣∣∣∣∣∣∣ +
∑

kωAk

∣∣∣∣∣∣∣∣∣∣∣∣∣
}

.

(5.83)
Since v−1(T̂ [·]) is not far from v−1

Da(T [·]), see Figure 5.13, the two derivatives
cancel, so that ∣∣∣∣h′(p̂)

∣∣∣∣ ≤ ∑
kπAk. (5.84)

As for (pk+1 − pk), it represents the probability of collecting a sample in code
bin W [k], between T [k] and T [k + 1]. This is always (except possibly when
k = 2N − 2) smaller than the probability of collecting a sample with a value
between T [2] and T [1]

pk+1−pk ≤ p2−p1 = PDP {−A+VODVV +W [1]}−PDP {−A+VODVV }. (5.85)

where VODVV is the overdrive and W [1] is the width of the first quantization cell.
If the distortion is small relative to the signal, PDP {V } ≈ P{V } near the

peaks of the signal. Therefore

pk+1 − pk ≤ P{−A + VODVV + W [1]} − P{−A + VODVV }. (5.86)

Since the derivative of P{V } tends to the infinity as V tends to −A, rather
than directly attempting a Taylor expansion, it is advisable to consider the in-
verse function of P{V }:

V ≡ P−1{P{V }} = −A cos (πP{V }) ≈ −A +
1
2
A (πP{V })2 , (5.87)

where the last approximation holds near the negative peak of the sinusoid, for
V → −A and P{V } → 0.Solving for P{V }

P{V } =
√

2
π
√

A

√
V + A (5.88)

and, therefore,

P{−A+VODVV +W [1]}−P{−A+VODVV } =
√

2
π
√

A

(√
W [1] + VODVV −

√
VODVV

)
.

(5.89)



Code Histogram Test 133

Assuming W [1] ≈ Q and substituting (5.84) and (5.89) in (5.75) gives

|h(pk+1 − h(pk)| ≤
√

2Q

A

(√
1 +

VODVV

Q
−

√
VODVV

Q

)
h∑

i=2

iAi. (5.90)

Therefore, if EWdist represents, in code bin widths, the admitted systematic
error, it must be

√
2Q

A

(√
1 +

VODVV

Q
−

√
VODVV

Q

)
h∑

i=2

iAi ≤ EWdistQ. (5.91)

For instance, if we assume only second-harmonic distortion and an overdrive
VODVV = 1LSB, to evaluate a code bin width (or a DNL value) for an 8 bit con-
verter with an admitted systematic error of 0.1LSB, a source distortion smaller
than −36dBc is required, which becomes to −48dBc for a 12 bit ADC, for
the same overdrive, confidence and admitted error.

5. Required record length and number of records,
expression of measurement uncertainty

This section deals with the estimation of the uncertainty affecting INL (code
transition levels) or DNL (code bin width) measurements.

When speaking of uncertainty, it is normally assumed that a correction is
applied for each recognized systematic effect that significantly influences the
measurement result. One such effect is related to the modification of the input
signal p.d.f. due to additive noise: if the noise p.d.f. is known, it is possible,
in principle, to calculate the true p.d.f. of the input signal, and by taking the
numerical inverse of it, to derive the position of code transition levels.

Quite similarly, it is possible in principle, by spectral analysis, to accurately
evaluate the shape of the input waveform, and to compensate the presence of
distortion by the use of the corrected p.d.f. and its inverse. This however is
highly unpractical, and extremely complex from the computational point of
view. Therefore, for the applications, it is preferable to provide an expanded
combined uncertainty including systematic errors, and to define an interval
where the value of the measurand is believed to lie with a certain confidence.

To this aim, we have computed, in sections 4.1 and 4.2, upper bounds to
the errors that may result from applying no correction, bounds which must be
properly taken into account in the declaration of measurement uncertainty.

Note, in conclusion, that frequently it is not possible to design the exper-
iment so that the systematic effects are so small, that they can safely be ne-
glected in comparison with random effects, and the test engineer has to face
systematic effects comparable to the random ones.
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5.1 INL measurements

In order to evaluate the combined standard uncertainty affecting the esti-
mated position of code transition levels, and therefore INL, it is convenient to
preliminarily review the relevant contributions .

5.1.1 Systematic contributions. Let us first consider systematic ef-
fects. The systematic error in the position of code transition level T [k] arising
from the distortion of the input sinewave has an upper bound expressed by

εdist ≤
h∑

k=2

Ak (5.92)

where Ak is the amplitude of the kth harmonic and h = 10 unless differently
specified. We shall assume that, by proper filtering, εdist has been reduced
below a prefixed number EINLdist of code bin widths:

|εdist| ≤
h∑

k=2

Ak ≤ EINLdistQ (5.93)

where EINLdist is the maximum admitted error expressed in code bin widths.
In addition, the modification of the p.d.f. of the input signal resulting from

the additive noise introduces a systematic error εpdf in the position of code

εpdf ≤ EINLpdfQ (5.94)

provided that the input overdrive obeys

VODVV ≥ max

(
2σn,

0.32σ2
n

EINLpdfQ

)
. (5.95)

Both errors cannot be lowered by averaging.

5.1.2 Random effects. Taking now care of random effects, additive
noise and jitter contribute a variance of the transition levels voltage given by
(see (5.31), (5.40))

σ2
T,n + σ2

T,j = 1.13
Aπ

2M
(σn + Aσφ) . (5.96)

This must be combined with the contribution arising from the intrinsic count
uncertainty, taking into account the admitted frequency ratio error (see (5.26))

σ2
Tc,intrTT ≤

(
πA

2M

)2

. (5.97)

transition level T [k] which can be forced below (see section 4.1)
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The combined standard uncertainty, expressed in nominal code bin widths Q =
VrirVV /(2N − 2) ≈ 2−NVrirVV , is therefore obtained from

u2
INL,n+j+c ≤

1
2−2NV 2

rirVV

(
1.13

Aπ

2M
(σn + Aσφ) +

(
πA

2M

)2
)

. (5.98)

In the above expression, the term arising from additive noise can be improved
by narrowband filtering; the contribution arising from jitter can (hardly) be
reduced by narrowband filtering of the output of the synthesizer providing the
clock frequency and by careful optimization of all the jitter sources along the
clock chain (waveform shapers, delays,...). All these contributions, in addition,
can be effectively reduced by increasing the number of samples M, up to the
limit allowed by (5.25) and by the memory depth.

Our objective is to design the experiment, so that the expanded uncertainty
associated with the random contributions and corresponding to confidence level
1 − α is smaller than an assigned number B of code bin widths. To this aim,
it is necessary to determine an appropriate coverage factor ku: hence, the re-
quired combined standard uncertainty, expressed in nominal code bin widths,
is readily determined as B/ku.

The determination of the coverage factor ku is discussed in section 5.6 un-
der the assumption that the estimated position of a code transition level is a
Gaussian random variable with a variance, in code bin widths, expressed by
(5.98).

Assuming that the test board has already been optimized, a first question
is therefore whether or not the required uncertainty can be achieved with one
single record of sufficient length M . To answer the question, consider the
inequality

1
2−2NV 2

rirVV

(
1.13

Aπ

2M
(σn + Aσφ) +

(
πA

2M

)2
)

≤ B2

k2
u

. (5.99)

If it is not possible to find a value of M satisfying conditions (5.99) and (5.25)
and compatible with the available memory depth, then it is necessary to acquire
several records whose length M is compatible with (5.25).

In fact, if the position estimates obtained from R different records are uncor-
related (to this aim, the assumption was made that the initial phase in a record
is a random variable with uniform distribution), the variance is reduced by a
factor R. R can therefore be determined from the condition

1
R 2−2NV 2

rirVV

(
1.13

Aπ

2M
(σn + Aσφ) +

(
πA

2M

)2
)

≤
(

B

ku

)2

(5.100)
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which, by assuming symmetric overdrive and defining the overdrive parameter
c = 1 + 2VODVV /VrirVV , so that A = cVrirVV /2, becomes

R ≥
(

2N−1ku

B

)2 (cπ

M

) (
1.13

(
σn

VrirVV
+

c

2
σφ

)
+

( cπ

4M

))
. (5.101)

It is worth, at this point, to remark that the lowest frequency components of
the phase noise associated with the generators play a useful role when multi-
ple records are acquired. In fact, in order to be allowed to apply (5.101), the
initial phase in a record should be a random variable with uniform probabil-
ity density function. To check the validity of this assumption, it is possible to
make repeated direct measurements in the time domain, evaluating the phase
by least-squares sinewave fitting of the acquired data. This however is very
time-consuming.

Alternatively, if the SSB phase-noise spectral density of both generators is
known at very low frequency offset from the carrier, the standard deviation of
the random shift of the sampling comb with respect to the signal can be roughly
estimated as discussed below.

The clock generator phase noise contribution can be evaluated as in (5.37),
fLff being the inverse of the delay between the beginning of two subsequent
records and fHff , the smallest between fsff /M , the inverse of the record duration,
and one half the 3dB bandwidth BW of the selective filter placed at the clock
generator output. The signal generator phase noise contribution is evaluated in
the same way, considering the bandwidth BW of the filter placed at the ADC
signal input.

The two phase noise contributions are then transformed to time-domain and
quadratically added: the resulting rms value, under the assumption of normal
distribution, should be larger than one half the sampling interval in equivalent
time, in order to ensure reasonable record independence. In other terms√

2
(

1
2πfsff

)2 ∫ fHf
ck

f

∫∫
Lff

Lck(ζ)dζ + 2
(

1
2πfiff

)2 ∫ fHff
sig

f

∫∫
Lf

Lsig(ζ)dζ ≥ 1
2Jfsff

.

(5.102)
If, on the contrary, the above inequality is not satisfied, as it sometimes happens
using low-noise generators and low M , it may be necessary to deliberately
introduce random variations of the initial phase in each record by additional
circuitry.

5.1.3 Declaration of uncertainty. The uncertainty affecting the INL
measurement results from both the systematic and the random contributions,
and sometimes the systematic contributions cannot be made negligible. In fact,
the situation is different for what concerns EINLpdf and EINLdist. The former
can easily be reduced by increasing the overdrive, with negligible costs. The
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latter, on the contrary, can only be improved by hardware improvements, and
the costs of the improvement may be beyond the planned budget.

So, in what follows, we shall always assume that EINLpdf is so small, that
it does not affect the confidence in the results.

One might object, that the converter performance may be degraded by ex-
cessive overdrive: this can in any case be solved by avoiding at all to overdrive
the input. It is sufficient to limit the transfer characteristic analysis, so that
instead of the reduced input range VrirVV = T [2N − 1] − T [1] a different range,
e.g. V∗VV = T [2N − 10] − T [10] is used and declared in the test results.

Making EINLdist negligible, on the contrary, may be an hard job, and the
upper bound to distortion shall be carefully accounted for. We know in advance
that

−EINLdistQ ≤ εdist ≤ EINLdistQ (5.103)

and that, centered on εdist, an interval with half amplitude B Q must be al-
lowed to achieve the desired confidence (1 − α).

It is therefore recommended to specify the measurement uncertainty as an
interval with half-width

Q(EINLdist + B) for safety critical applications;

Q

√
1
3
E2

INLdist + B2 [2] for less critical applications. (5.104)

where the factor 1/3 can be justified by the assumption that any value between
−EINLdist and EINLdist is equally likely.

It is also strongly recommended to avoid specifying confidence levels higher
than 99%, in consideration of the many approximations underlying the devel-
oped theory.

5.2 DNL measurements

The sources of uncertainty affecting code bin width or DNL estimates are
the same listed in the previous section, but the contributions are different .

5.2.1 Systematic effects. As before, the systematic effects arising
from the modification of the input signal p.d.f. due to additive noise will be
neglected, assuming that a sufficient overdrive is used as discussed in section
5.4.1.2. On the contrary, those related to the distortion on the input sinewave
have to be considered (see (5.91)).

5.2.2 Random effects. For what concerns additive noise (section 5.3),
if its standard deviation is small in comparison with the code bin width, then
the errors in the two transition levels will be almost independent, and the noise
contribution to count variance is twice that for code transition levels. If, on the
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contrary, the standard deviation of noise is larger than a bin, a strong correlation
is expected between the counts corresponding to the two adjacent transition
levels which delimit the bin, and the count variance can be sensibly smaller
than twice that for a transition level, see (5.36).

For what concerns jitter, the estimates T̂ [k] and T̂ [k + 1] may be treated
as uncorrelated random variables. It should be stressed however that, while
for additive noise it was shown that correlation reduces variance, so that taking
twice the variance for transition levels is always conservative, we did not prove,
so far, a similar result for jitter. Thus it is advisable to take into account the
possibility of perfect anti-correlation, i.e. taking four times the variance for
transition levels, as suggested in (5.105).

For what concerns the intrinsic variance associated with the counting process,
it was shown that a sensible correlation exists between the excess counts cor-
responding to the two adjacent code transition levels. However, the computer
simulations reported in [23] adequately support the choice of neglecting such
correlation and taking twice the variance (5.26).

In summary, for one single record of length M , the variance affecting the
estimated code bin width, in units of code bin widths, is

u2
DNL,n+j+c ≤

2
2−2NV 2

rirVV

(
1.13

πA

2M
(σ∗ + 2Aσφ) +

(
πA

2M

)2
)

(5.105)

where σ∗ = min
{

σn, Q
1.13

}
.

Again, our objective is to design the experiment, so that the expanded un-
certainty corresponding to confidence level (1 − α) is smaller than B nominal
code bin widths. To this aim, it is first necessary to determine the appropri-
ate coverage factor ku; once this is known, the required combined standard
uncertainty expressed in nominal code bin widths is B/ku.

The coverage factor ku is determined under the assumption that code bin
width estimates have a gaussian distribution with a variance expressed by
(5.105).

As before, the first question is whether or not the required uncertainty can
be achieved with one single record of sufficient length M . Considering the
inequality

2
2−2NV 2

rirVV

(
1.13

Aπ

2M
(σ∗ + 2Aσφ) +

(
πA

2M

)2
)

≤ B2

k2
u

, (5.106)

if it is not possible to find a value of M satisfying conditions (5.99) and (5.25)
and compatible with the available memory depth, then it is necessary to acquire
several records.

Considering the width estimates obtained from R different records as un-
correlated, the variance is reduced by a factor R. The appropriate value of R
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can therefore be determined from

2
R 2−2NV 2

rirVV

(
1.13

Aπ

2M
(σ∗ + 2Aσφ) +

(
πA

2M

)2
)

≤
(

B

ku

)2

(5.107)

and therefore, introducing the overdrive parameter c = 1+2VODVV /VrirVV , so that
A = cVrirVV /2, the condition becomes

R ≥ 2
(

2N−1ku

B

)2
cπ

M

(
1.13

(
σ∗

VrirVV
+ cσφ

)
+

( cπ

4M

))
. (5.108)

5.3 Declaration of uncertainty

The declaration of uncertainty in the case of DNL should follow the same
guidelines as for INL.

So, the contribution of EWpdf has to be made negligible by properly choos-
Wdist shall be com-

bined with the extended uncertainty B Q either by summing the absolute val-
ues or by combining them quadratically, depending on whether the application
is safety critical or not.

6. Choice of the coverage factor

As discussed in the previous section, the position of a code transition level
(or the code bin width) estimated from R records may be considered as a ran-
dom variable whose variance σ2

Q, expressed in code bin widths, obeys

σ2
Q ≤ 1

R 2−2NV 2
rirVV

(
1.13

Aπ

2M
(σn + Aσφ) +

(
πA

2M

)2
)

(5.109)

for code transition levels, and

σ2
Q ≤ 2

R2−2NV 2
rirVV

(
1.13

Aπ

2M

(
min

{
σn,

Q

1.13

}
+ 2Aσφ

)
+

(
πA

2M

)2
)

.

(5.110)
for code bin widths.

It is then assumed that the distribution of the estimated code transition levels
(respectively, code bin widths) is Gaussian. In fact these estimates result from
the sum of many random variables, and in any case the assumption tends to be
conservative, because the Gaussian distribution is relatively wide.

The problem is now to determine the appropriate coverage factor ku in order
to ensure the desired extended uncertainty B is not exceeded, whether it is
associated with an individual transition level (individual code bin width) or
with the worst case of all the code transition levels (all the code bin widths).

ing the overdrive, as discussed in section 4.1, while E



140 ADC DYNAMIC CHARACTERISATION

Let us first consider the case of an individual transition level. Let B repre-
sent the desired extended uncertainty, expressed in nominal code bin widths Q,
and (1 − α) the associated confidence level. This means that with probability
(1−α) the position of the transition level should not differ from the estimated
value by more than BQ.

Since the displacement of a code transition level from the measured posi-
tion is a random variable with zero mean and standard deviation σ = QσQ

with normal distribution, then the problem is reduced to the individuation of
a suitable coefficient Z0ZZ ,α/2 such that with probability (1 − α) the position of
the transition level falls within an interval of amplitude 2Z0ZZ ,α/2QσQ centered
on the estimated value. Therefore

(1 − α) =
1

σ
√

2π

∫ Z0,α/2

−

∫∫
Z0,α/2

e−
x2

2σ2 dx = erf

(
Z0ZZ ,α/2

σ
√

2

)
= 1 − erfc

(
Z0ZZ ,α/2

σ
√

2

)
.

(5.111)

Thus, erfc
(

Z0,α/2

σ
√

2

)
= α, and taking the inverse

Z0ZZ ,α/2 = σ
√

2 erfc−1(α). (5.112)

Since the confidence level is known, Z0ZZ ,α/2 is readily determined. Then, since
the desired extended uncertainty is BQ, it is required that BQ ≥ Z0ZZ ,α/2QσQ,
i.e.

σQ ≤ B

Z0ZZ ,α/2
(5.113)

The same result holds for an individual code bin width, making reference to
the appropriate expression of σQ.

Let us now consider an ADC with m code transition levels (respectively,
code bins), and let (1 − α) represent the confidence that no level is displaced
from its nominal position by more than Z. If the displacements of the individ-
ual transition levels are independent random variables, the probability (1− α)
of the event "no level is displaced from its nominal position by more than Z"
is the product of the probabilities χ of events of the type "level j is displaced
from its nominal position by less than Z", j = 1, ..m. Since the events are
assumed as independent, χm = (1 − α), or χ = (1 − α)

1
m .

If the displacement of a code transition level from the measured position
is a random variable with zero mean and standard deviation σ with normal
distribution, then

χ =
1

σ
√

2π

∫ Z

−

∫∫
Z

e−
x2

2σ2 dx = erf

(
Z

σ
√

2

)
= 1 − erfc

(
Z

σ
√

2

)
. (5.114)

Hence, erfc
(

Z
σ
√

2

)
= 1 − χ, and taking the inverse

Z = σ
√

2 erfc−1(1 − χ) = σ
√

2 erfc−1
(
1 − (1 − α)

1
m

)
. (5.115)
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Table 5.2. Values of ZN,α/2 for N = 0, ..., 24.

v Z0,α/2 Z4Z ,α/2 Z8,α/2 Z12,α/2 Z16,α/2 Z20,α/2 Z24,α/2

.8 1.28 2.46 3.33 4.04 4.64 5.19 5.68

.9 1.64 2.72 3.53 4.21 4.30 5.33 5.81
.95 1.96 2.95 3.72 4.37 4.94 5.46 5.93
.98 2.33 3.22 3.95 4.57 5.12 5.62 6.08
.99 2.58 3.42 4.11 4.71 5.25 5.74 6.19

.995 2.81 3.60 4.27 4.35 5.38 5.85 6.30

For an N bit ADC, m � 2N , so that

ZN,α/Z 2 = σ
√

2 erfc−1
(
1 − (1 − α)2

−N
)

. (5.116)

In summary, when one single code transition level or one single code bin width
is of interest, the coverage factor shall be chosen as

ku = Z0ZZ ,α/2 (5.117)

while, when the specified confidence refers to the worst case code transition
level or code bin width,

ku = ZN,α/Z 2. (5.118)

Functions Z0ZZ ,α/2 and ZN,α/Z 2 are tabulated in Table 5.2 directly as a function
of v = 1 − α, i.e. of the desired confidence level.

In accordance with the general recommendations concerning the expres-
sion of uncertainty, it is strongly advised to avoid specifying confidence levels
larger than 0.99.

7. Comparing the number of samples required by
random and by synchronous sampling.

It is interesting to compare the above result with those reported in section
2.2, which refer to the case of perfectly random sampling, with uniform p.d.f.
of the sampling phase.

We shall compare INL measurements, considering only the contribution to
uncertainty arising from the counting process (σn = σφ = 0). In addition, we
shall refer to the confidence that the measured value of an individual transition
level will not deviate from the expected value by more than BQ, so that ku =
Z0ZZ ,α/2. Thus, (5.19) and (5.101) have to be compared, that is

S ≥
Z2

0ZZ ,α/2π
222(N−1)

4B2
(5.119)
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in the case of random sampling, and

S = RM ≥
(

2N−1Z0ZZ ,α/2

B

)2 (
c2π2

4M

)
(5.120)

in the case of synchronous sampling.
It turns out that the number of samples required in the case of random sam-

pling is larger by a factor M , corresponding to the record length.
This explains the great success of the synchronous sampling approach. In

the case of random sampling, it seems in fact that the total number of samples
defines the relative uncertainty which can be achieved, independently of the
size of the phase interval to be measured. Thus, if a tolerance of a fraction
of Q is specified, this is a tight requirement for INL measurements, and so a
large number of samples is required. With the synchronous approach, on the
contrary, the total number of samples seems to define somehow the absolute
uncertainty, whichever is the size of the phase interval to be measured. Thus,
less samples are required for the same tolerance.

8. Determining the transfer characteristic

As discussed in section 5.1, the code transition levels are computed from the
cumulative histogram by

T [k] = C − A cos
(

π
ch[k − 1]

S

)
for k = 1, 2, . . . , (2N − 1), (5.121)

where A is the amplitude of the sinewave, C is the offset and S = RM =
ch[2N − 1] is the total number of samples.

If the amplitude A and the offset C of the input sinewave are unknown,
they can be determined from the data, provided that the position of any two
transition levels can be measured by independent means. For instance, if T [1]
and T [2N − 1] are known, A and C may be estimated, respectively, as

A =
T [2N − 1] − T [1]

cos
(
π ch[0]

S

)
+ cos

(
π

(
1 − ch[2N−2]

S

)) , (5.122)

and

C =
T [2N − 1] cos

(
π ch[0]

S

)
+ T [1] cos

(
π

(
1 − ch[2N−2]

S

))
cos

(
π ch[0]

S

)
+ cos

(
π

(
1 − ch[2N−2]

S

)) . (5.123)

An uncorrect estimate of A and/or C will not induce any errors in the estimate
of differential or integral nonlinearity, it will only induce gain and offset errors
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in the transition levels. The transition levels, T ∗[k], calculated using the uncor-
rect estimates A∗ = A+ δA and C∗ = C + δC will be related to the transition
levels, T [k], which would be calculated using the correct values A and C, by
the relation

T ∗[k] =
(

1 +
δA

A

)
T [k] + C

(
δC

C
− δA

A

)
, (5.124)

In high speed dynamic tests, accurate estimates of the amplitude and offset of
the sinewave effectively stimulating the converter are difficult to obtain, and it
is convenient to refer to the normalized transition levels

T [k] = − cos
(

πch[k − 1]
S

)
=

T [k] − C

A
, (5.125)

which are related only to the contents of the cumulative histogram.

9. Offset error and gain

In a low-frequency test environment, when the amplitude and offset of the
input sinewave can be measured directly, the position of code transition levels
can normally be determined to within an uncertainty well below one LSB . In
such case, gain and offset error are the values by which the code transition
levels, determined using (5.121), are multiplied and then to which the rescaled
transition levels are added, respectively,

to cause the deviation from the nominal transition levels to be zero at the
terminal points (end-points definition),

to minimize the mean squared deviation from the nominal transition lev-
els (least squares fit definition),

to minimize the maximum of the absolute value of the deviation from
the nominal transition levels (min-max definition).

According to these definitions, the transfer characteristic may be represented
by

G T [k] + VosVV + ε[k] = (k − 1) Q + TnomTT [1] = TnomTT [k], (5.126)

where
T [k] = transition level between codes k and k − 1, measured by (5.121),
TnomTT [k] = nominal value corresponding to T [k],
VosVV = offset error in units of the input quantity (nominally zero),
G = gain (nominally unity),
Q = nominal code bin width,
ε[k] = residual error corresponding to the kth code transition,
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and the expression on the right side of (5.126) gives the nominal code transition
level, in input units, as a function of k.

At the highest frequencies, since the position of the transition levels cannot
be directly measured, it is convenient to transform (5.126) as follows

G T [k] + V os + ε[k] = TnomTT [k], (5.127)

so as to refer to the normalized transition levels T , which are directly de-
termined from the cumulated code histogram. Here, G ≡ GA and V os ≡
VosVV + GC are conventional gain and offset parameters, which are used only
for the evaluation of DNL and INL. So, while at low frequency the offset and
gain errors are useful specification parameters, G and V os do not bring useful
information.

Note that (5.126) and (5.127) are formally identical, and therefore the same
formulae will provide (G, VosVV ) and (G, V os) as functions of T [k] and T [k],
respectively. The equations reported below in sections 9.1, 9.2 and 9.3,
which express G and VosVV as functions of T [k] can therefore be used to evaluate
G and V os by replacing T [k] with T [k].

9.1 Gain and Offset (least squares fit definition)

Least squares fit offset and gain are defined as the values of VosVV and G that
minimize the mean squared value of ε[k] over all k . Then, by straightforward
calculations,

G =

Q (2N − 1)

⎛
⎝
⎛⎛

2N−1∑
k=1

k T [k] − 2(N−1)
2N−1∑
k=1

T [k]

⎞
⎠
⎞⎞

(2N − 1)
2N−1∑
k=1

T 2[k] −
⎛
⎝
⎛⎛

2N−1∑
k=1

T [k]

⎞
⎠
⎞⎞2 (5.128)

and

VosVV = TnomTT [1] + Q
(
2(N−1) − 1

)
− G

(2N − 1)

2N−1∑
k=1

T [k]. (5.129)

The values ε[k] which are obtained using the above values of G and VosVV repre-
sent the least squares fit integral nonlinearity (see 5.10.1).
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9.2 Gain and Offset (end-points definition)

End-points gain and offset are the values that cause ε[1] = 0 and ε[2N−1] =
0, where 2N − 1 is the highest code defined . So,

G =
TnomTT [2N − 1] − TnomTT [1]

T [2N − 1] − T [1]
, (5.130)

VosVV =
TnomTT [2N − 1] T [1] − TnomTT [1] T [2N − 1]

T [1] − T [2N − 1]
. (5.131)

Given these values for G and VosVV , ε[k] is the end-points integral nonlinearity
(see 5.10.1).

9.3 Gain and Offset (min-max definition)

Min-max gain and offset are the values of G and VosVV that minimize the
maximum of the absolute values |ε[k]|, for k ∈ [1, 2N − 1]. An example of
iterative solution is provided below in pseudo code .
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tol = 1e-9

FOR k=1:(N_code-1)
sum_T = sum_T + T[k]
sum_kT = sum_kT + k * T[k]
sum_T2 = sum_T2 + T[k] * T[k]

ENDFOR

G = (N_code-1)*(sum_kT - (N_code/2)*sum_T) / ((N_code-1)*sum_T2 - sum_T*sum_T)
Vos = Tn[1] + (N_code/2 - 1) - G*sum_T / (N_code-1)

FOR k=1:(N_code-1)
sum_err = sum_err + (Tn[k] - Vos - G*T[k])*(Tn[k] - Vos - G*T[k])

ENDFOR

sigma_G = sqrt((N_code-1)*sum_err / ((N_code-3)*((N_code-1)*sum_T2 - sum_T*sum_T)))

inc_G = 3*sigma_G

FIND k: Tn[k] - G * T[k] = max{Tn[] - G * T[]}
FIND j: Tn[j] - G * T[j] = min{Tn[] - G * T[]}
delta = Tn[k] - G * T[k] - Tn[j] + G * T[j]

WHILE (inc_G > tol)
G_L = G - inc_G
FIND k: Tn[k] - G_L*T[k] = max{Tn[] - G_L*T[]}
FIND j: Tn[j] - G_L*T[j] = min{Tn[] - G_L*T[]}
delta_L = Tn[k] - G_L*T[k] - Tn[j] + G_L*T[j]

G_R = G + inc_G
FIND k: Tn[k] - G_R*T[k] = max{Tn[] - G_R*T[]}
FIND j: Tn[j] - G_R*T[j] = min{Tn[] - G_R*T[]}
delta_R = Tn[k] - G_R*T[k] - Tn[j] + G_R*T[j]

IF ((delta_L < delta) AND (delta_L < delta_R))
G = G_L
delta = delta_L

ELSE
IF ((delta_R < delta) AND (delta_R < delta_L))

G = G_R
delta = delta_R

ENDIF
inc_G = inc_G / 2

ENDWHILE

FIND k: Tn[k] - G*T[k] = max{Tn[] - G*T[]}
FIND j: Tn[j] - G*T[j] = min{Tn[] - G*T[]}

Vos = (Tn[k] - G*T[k] + Tn[j] - G*T[j]) / 2

where Tn is the array containing the nominal code transition levels and N code
is the number of codes (N code=2N ).
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10. Linearity errors

10.1 Integral nonlinearity

The integral nonlinearity (INL) is the difference ε[k] between the ideal code
transition levels TnomTT [k] and the measured ones, after correcting for gain and
offset, GT [k] + VosVV . Integral nonlinearity is usually expressed in LSB or as a
percentage of full-scale . The INL definition depends on how gain and offset
are defined (least squares, end points or min-max).

When the integral nonlinearity is given as one number without specifying to
which code bin it refers, it is intended as the maximum of the absolute value
of integral nonlinearity over the entire range.

Once offset error and gain are evaluated in dynamic conditions, using the
preferred definition (least squares fit, end-points or min-max), the integral non-
linearity in percent of full scale is

INL[k]% = −100%
ε[k]
VfsVV

(5.132)

whereas the INL[k] in LSB is

INL[k]LSB = −ε[k]
Q

. (5.133)

where ε is obtained either from (5.126) or from (5.127), depending on whether
an independent estimate of A and C is available (low frequency testing) or not
(high frequency testing).

When specifying a value of INL, the definition chosen (end-points, least
squares fit or min-max) should obviously be indicated.

10.2 Differential nonlinearity

Differential nonlinearity (DNL[k]) is the difference, after correcting for
gain, between the width of the specified code bin k and the nominal code bin
width, divided by the nominal code bin width . When given as one number
without code bin specification, it is the maximum of the absolute value of
differential nonlinearity over the entire range.

Once the gain G has been determined, as described in section 9, using the
appropriate definition, the differential nonlinearity is given by:

DNL[k] =
G (T [k + 1] − T [k])

Q
− 1. (5.134)

Neither DNL[2N − 1] nor DNL[0] are defined. Perfect linearity is the same
as DNL = 0.
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When specifying a value of DNL, the DNL definition chosen (end-points,
least squares fit or min-max) must be indicated.

In case of high frequency measurements, DNL[k] is evaluated by replacing
G with G and T [k] with T [k] in (5.134).

From the above definition, it is apparent that a missing code should be de-
fined as a code k for which

DNL[k] = −1. (5.135)

In practice, it is usual to consider as missing a code such that the corresponding
DNL is smaller than an assigned value, e.g. −0.80.

11. Appendix

The results of section 2.4 can be derived by number theory [90], a field of
mathematics whose relevance in engineering disciplines is steadily growing.

M samples of the input sinewave are acquired at a constant pace TsTT =
1/fsff . The frequency fiff = 1/TiTT of the input sinewave is related to fsff by
fiff
fsff = J

M +∆r, where J and M are chosen as mutually prime integers, in order
to avoid repeated sampling of the input sinewave at the same phase, and ∆r is
the frequency ratio error.

Taking the origin of the time axis in correspondence of the first sample, with
index 0, the sampling instants are: 0, TsTT , 2TsTT , ...(M−1)TsTT . Let us represent by
�x� the largest integer ≤ x and by 〈x〉 the difference between x and �x�. When
the samples are rearranged in the phase domain, where the period TiTT of the in-
put sinewave corresponds to 2π, the phase of the n− th sample is represented

by 2π times the quantity
〈

nTsTT
TiTT

〉
, Note that

〈
nTsTT
TiTT

〉
=

〈
n

(
J
M + ∆r

)〉
. Neglect-

ing the factor 2π one is led to consider a vector x
�
= [0
�

x1(∆r)...xM−1(∆r)]
which defines the sampling phases normalised to 2π, where

xn(∆r)
�
=

〈
n

(
J

M
+ ∆r

)〉
, n = 0, ..., M − 1. (5.136)

Note that, with this definition, the elements of the vector are arranged in the
same order as in the acquired data record, and not in order of increasing equiv-
alent phase. This can be better appreciated by arranging the sampling points,
marked by dots, along the trigonometric circle, as shown in Figure 5.14, as-
suming as usual that phase increases in the counterclockwise direction. The
example in the figure corresponds to M = 7, J = 2, ∆r = 0.

A useful lemma

We shall first show that
if |∆r| < 1/[M(M − 1)], the magnitude of the distance in phase between

each sample and the position that the same sample would have for ∆r = 0 is
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Figure 5.14. Each sampling phase, marked by a dot, is labelled by a number which indicates
the position in the input record. The example corresponds to perfectly coherent sampling with
M = 7, J = 2.

bounded by 2π/M , i.e.

|xn (∆r) − xn(0)| <
1
M

(5.137)

Proof:
From (5.136)

|xn (∆r) − xn(0)| �
=

∣∣∣∣∣∣∣∣∣∣
〈

n

(
J

M
+ ∆r

)〉
−

〈
n

J

M

〉∣∣∣∣∣∣∣∣∣∣ n = 0, ...,M − 1

(5.138)

Since 〈x〉 �
= x − �x�, (5.138) becomes

|xn (∆r) − xn(0)| �
=

∣∣∣∣∣∣∣∣∣∣n∆r −
⌊
n

J

M
+ n∆r

⌋
+

⌊
n

J

M

⌋∣∣∣∣∣∣∣∣∣∣ (5.139)

Since |∆r| < [M(M − 1)]−1, it follows

n|∆r| ≤ (M − 1)|∆r| <
1
M

n = 0, 1, ...,M − 1 (5.140)

As a consequence, ⌊
n

J

M
+ n∆r

⌋
=

⌊
n

J

M

⌋
(5.141)

and therefore

|xn (∆r) − xn(0)| = |n∆r| <
1
M

. (5.142)

Measuring distances between sample points in the equivalent phase
domain

Figure 5.15 shows how the sampling phases are arranged in a typical case
of quasi-synchronous sampling with M = 7, J = 2 and ∆r = 1/196. It may
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Figure 5.15. Each sampling phase, marked by a dot, is labelled by a number which indicates
the position in the input record. The example corresponds to quasi-synchronous sampling with
M = 7, J = 2 and ∆r = 1/196. The thin dashes mark the distance of the sampling point from
the position corresponding to ∆r = 0 in units of 2π/196.

be noted that, when the samples are arranged in order of increasing equiva-
lent phase, the following sequence results: x0, x4, x1, x5, x2, x6, x3. The same
sequence would be found for ∆r = 0.

A first relevant question is: given a sample in the sequence, say x4, how can
I find the index of, say, the second nearest sample in the direction of increasing
equivalent phase? The obvious solution is, in this case, 5, i.e. x5 is the required
sampling phase.

The problem may be analysed with the help of Farey series [70]. The Farey
series of order M , F(M) is defined as the set of all fractions in lowest terms
between 0 and 1 whose denominators do not exceed M , arranged in increasing
order. As an example, F(7) is represented by the sequence

1
7

1
6

1
5

1
4

2
7

1
3

2
5

3
7

1
2

4
7

3
5

2
3

5
7

3
4

4
5

5
6

6
7

. (5.143)

One has to look, in the Farey series of order M , for the two terms which sur-
round J/M : in our case, where J = 2 and M = 7,

1
4

<
2
7

<
1
3

(5.144)

In general, these two terms will be represented as follows

JLJ

MLM
<

J

M
<

JRJ

MRM
, (5.145)

relationship which defines JLJ , MLM , JRJ , MRM . Coming back to our problem,
given a reference sampling phase xn, let us define the distance between the
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K − th nearest sample in the direction of increasing phases and xn as

dn,K(∆r)
�
= 〈xn+m(∆r) − xn(∆r)〉 n = 0, 1, ...,M − 1 (5.146)

where the argument ∆r stands to remember that this distance depends on the
frequency ratio error, and −M < m < M is a suitable integer depending on
K. When the error is zero, this distance is obviously K/M . So, the equation

dn,K(0) =
K

M
, n = 1, ...,M − 1 (5.147)

may be used to implicitly define m.
Let us call “target” index the index of the sample which nominally should

be at the distance 2π K
M from the reference. If the target index is larger than the

reference index, then m must be greater than 0; if the target index is smaller
than the reference index, one must choose m < 0. It turns out that there are
two solutions, mL and mR, of (5.147) in the range −M < m < M . In the
example chosen, the two solutions are mL = 1 and mR = −6, the last being
justified by the fact that subtracting 6, modulo 7 is equivalent to adding 1.
However, one should consider that n+m must be in the range 0, ...,M −1, so
mL can be retained (4 + 1 = 5), while mR has to be discarded (4 − 6 = −2).

More generally, by considering the definition of xn(∆r) for ∆r = 0, (5.147)
becomes 〈〈

(n + m)
J

M

〉
−

〈
n

J

M

〉〉
=

K

M
(5.148)

which becomes 〈
m

J

M

〉
=

K

M
(5.149)

considering that 〈〈x〉 ± 〈y〉〉 = 〈x ± y〉.
By assuming at first m > 0, (5.149) becomes

mJ − uM = K (5.150)

where u is the largest integer smaller than or equal to m J
M . Assuming that

0 < K < M , since we are dealing with equivalent phases, (5.150) becomes

mJ mod M = K. (5.151)

It was shown, in [27], that m = MLM is a solution of

mJ mod M = 1, (5.152)

and therefore KMLM is a solution of (5.151), and mL
�
= (
�

KMLM mod M) is a
solution of (5.147), positive and smaller than M . When looking for a negative
solution, a similar proof leads to m = mR = −(KMRM mod M).
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Having so determined mL and mR, we are now in a position to show that
dn,K(∆r), the distance of two sampling phases which should be nominally
spaced by 2π K

M can only take one of the two values:

dL,K (∆r)
�
=

K

M
+ mL∆r , dR,K (∆r)

�
=

K

M
+ mR∆r . (5.153)

Assume for instance that ∆r > 0, that is the sampling interval is larger than
due, and consider again the case of Figure 5.15 (M = 7, J = 2, ∆r = 1/196).
The sampling points for ∆r = 0 are represented by the thin radial lines; the
actual positions of the sampling points by the labelled dots. For each sampling
position, the distance from the position it would occupy in the case ∆r = 0 is
marked in units of 2π∆r.

Note that the 2π interval is covered in two sweeps, {0, 1, 2, 3} and {4, 5, 6},
in the case J = 2; in general, J sweeps are required to cover all the sampling
phases. Considering for instance as a reference x4, it is apparent that the dis-
tance between it and the target sample (kth nearest neighbour in the direction
of increasing equivalent phase) can be either greater or smaller than 2πK/M ,
always by integer multiples of 2π∆r.

Now, if the target index is larger than the reference index, then m > 0, and
one must choose m = mL; if the target index is smaller than the reference
index, then one must choose m = mR < 0. In any case, the other choice is
discarded, because it leads to an index outside the range 0, ...,M − 1.

Then, assuming a positive ∆r, if the target index is larger than the ref-
erence index, at each intermediate step moving from reference to target one
gains an extra 2π∆r, so that, when the target is reached, one has accumu-
lated an extra 2πmL∆r. The situation can be conveniently examined in the
above figure, considering sample x4 as the reference and K = 4. Here,
mL = 4MLM mod 7 = 2, and in fact, moving from x4 to x6 one gains 2∆r, so
that the overall distance becomes 2π(4

7 + 2∆r).
If one considers the same reference sample x4 and K = 3, in order to reach

the target x2 one has to move backwards in the sequence of samples, and as a
consequence the target sample is less displaced from the nominal position than
the reference sample. Here, mR = −(3MRM mod 7) = −2, and the overall
distance becomes 2π(3

7 − 2∆r).
Now, obviously the sum of the distances of all the nearest neighbours spans

2π, or, in normalized terms,

M−1∑
n=0

dn,1(∆r) = 1. (5.154)
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Quite similarly, if one sums the distances of all the second (K − th) nearest
neighbours, two (respectively K) rotations around the origin are performed

M−1∑
n=0

dn,K(∆r) = K. (5.155)

Thus,

M−1∑
n=0

dn,K(∆r) = h dL,K(∆r) + k dR,K(∆r) = K. (5.156)

where dL,K and dR,K are defined in (5.153), and h and k, with h+k = M , are
two suitable integers which represent the number of occurrences of dL,K and
dR,K , respectively, when n sweeps the range 0, ...,M − 1. From the property
of Farey series [90] it results MLM + MRM = M . It may be shown that, as a
consequence, mR = mL − M . From (5.153) and (5.156) it follows

h = −mR, k = mL. (5.157)

Derivation of the count probabilities

In this section the probabilities associated with the possible contents of
ch[k − 1] are derived, and hence the count variances reported in Table 5.1.

Let v(t) = A cos(ωt + φ) + C represent the input signal. For assigned
values of ψk, J , M and ∆r, ch[k − 1] is a deterministic function of φ, which
can be determined by counting the number of phase samples that fall inside the
angle (−ψk, ψk) as a function of φ. By normalizing phase angles to 2π, this is
the same as the number of samples inside the sector φ/(2π), (φ + 2ψk)/(2π),
with 0 ≤ φ/(2π) < 1.

The situation is represented in Figure 5.16 for the case of perfectly syn-
chronous sampling with M = 7, J = 2. The gray sector represents the
normalised angle 2ψk/2π = nk + αk, where nk = 3 and αk = 0.09, and
its position is defined by φ. In the outer ring, the number of counts in ex-
cess of nk is represented by different levels of gray as a function of φ. As
φ increases, ch[k − 1] is equal either to nk or to nk + 1. For instance, for
0 < φ/(2π) < (1 − αk)/M the number of counts is nk, and becomes nk + 1
for (1 − αk)/M < φ/(2π) < 1/M . In a complete rotation, the same pat-
tern is repeated seven times, so that, if φ is uniformly distributed in [0, 2π), he
probability of counting nk is 1 − αk, while the probability of counting nk + 1
is αk. When ∆r �= 0�� , the same approach may be adopted. Let us consider
first the case ∆r > 0. Figure 5.17 refers to the case J = 2, M = 7, nk =
3, αk = 0.09 and ∆r = 1/196, and again the levels of gray in the outer ring
indicate the counts in excess of nk. As may be noted, the sampling phases



154 ADC DYNAMIC CHARACTERISATION

+2

−1

0

0

1

2

3

4

5

6

φ

αk
M

1−αk
M

Figure 5.16. Coherent sampling. Number of counts as a function of sinewave phase, assuming
J/M = 2/7, nk = 3, αk = 0.09 and ∆r = 0. Levels of gray in the outer circle indicate counts
in excess of nk.
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Figure 5.17. Noncoherent sampling. Number of counts as a function of sinewave initial phase,
assuming J/M = 2/7, nk = 3, αk = 0.09 and ∆r = 1/(4M2). Levels of gray in the outer
circle indicate counts in excess of nk.

are no longer equally spaced. In any case, if the condition for the validity of
(5.137) is satisfied, |dL,K(∆r) − dL,K(0)| = |mL∆r| < 1/M , and similarly
|dR,K(∆r) − dR,K(0)| ≤ 1/M . From this, it follows that ch[k − 1] may only
assume values in the interval [nk−1, nk +2]. More precisely, the only possible
counts are: nk−1, nk, nk +1 or nk, nk +1 or nk, nk +1, nk +2, depending on
the value of αk. Part a) of Figure 5.18 demonstrates the possibility of counting
nk − 1 with reference to the example J = 2, M = 7, nk = 3, αk = 0.09 and
∆r = 1/196. This occurs as long as 0 ≤ φ ≤ ϑ1. Similarly, part b) of the fig-
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ure demonstrates the possibility of counting nk + 2 = 5 for the same values of
the parameters, except αk = 0.91. Five counts are obtained when Φ falls in the
phase interval marked by ϑ3. From (5.153) it results that dL,nk

(∆r) > nk/M

+1+1

+2+2

−1−1

0

0

0

0

111

222 33

444

555

66 φφφ

ϑ3

ϑ1

Figure 5.18. a): a condition where nk − 1 is counted. Choosing J = 2, M = 7, nk = 3,
αk = 0.09 and ∆r = 1/(4M2), for positions of the gray sector representing 2ψk between the
two shown, 2 counts are collected. b): a condition where nk + 2 is counted. Now αk = 0.91,
all the other parameters remaining equal. For positions of the gray sector representing 2ψk

between the two shown, 5 counts are collected.

and dR,nk
(∆r) < nk/M . It follows that ch[k − 1] = nk − 1 when

2ψk

2π
=

nk + αk

M
< dL,nk

(∆r) =
nk

M
+ mL∆r (5.158)

i.e. when αk < MmL∆r. From (5.157), dL,nk
occurs −mR times as n

increases form 0 to M −1. For each of these intervals of width dL,nk
reference

and target sampling phases are defined. Consider that nk − 1 is counted, as
the sector of width 2ψk rotates counterclockwise, from the moment when the
lagging edge of the rotating sector coincides with the reference sampling phase
until the moment when the leading edge of the rotating sector reaches the target
sampling phase, i.e. for a phase interval of width nk

M + mL∆r − (
nk+αk

M

)
=

mL∆r − αk/M . Thus, the probability of the event “ nk − 1 counts ” can be
written as

p−1 =
(αk

M
− mL∆r

)
mR. (5.159)

Quite similarly. denoting by nL and nR the two solutions of (5.24), the event
ch[k − 1] = nk + 2 may occur if

2ψk

2π
=

nk + αk

M
> dR,nk+1(∆r) =

nk + 1
M

+ nR∆r (5.160)

i.e. when αk > 1 + MnR∆r.
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When MmL∆r < αk < 1+MnR∆r, ch[k−1] equals either nk or nk +1,
as it occurs for perfectly coherent sampling.

If
MmL∆r < 1 + MnR∆r (5.161)

it is not possible for an αk to be simultaneously greater than 1 + MmL∆r and
smaller than MmL∆r, so that condition (5.161) precludes the possibility of
counting nk − 1 and nk + 2 for the same αk.

Recalling that |nR|, mL < M , condition (5.161) leads to the upper bound
∆r < 1/(2M2), i.e.

∆r

r
<

1
2JM

(5.162)

By similar reasoning the other entries in Tables 5.3 and 5.4 may be deter-
mined, and since ch[k−1] can only take on values in the range [nk−1, nk +2]
p0 may be determined from the other entries by remembering that p0 = 1 −
p−1 − p1 − p2.

Table 5.3. Probabilities of the number of counts for 0 ≤ ∆r ≤ 1/(2M2).

0 ≤ αk < MmL∆r MmL∆r ≤ αk < 1 + MnR∆r 1 + MnR∆r ≤ αk < 1

p−1

(
αk
M

− mL∆r
)
mR 0 0

p1

(
αk
M

− mR∆r
)
mL αk αk − 2p2

p2 0 0
(

αk
M

− 1
M

− nR∆r
)
nL

Table 5.4. Probabilities of the number of counts for −1/(2M2) < ∆r < 0.

0 ≤ αk < MmR∆r MmR∆r ≤ αk < 1 + MnL∆r 1 + MnL∆r ≤ αk < 1

p−1

(
mR∆r − αk

M

)
mL 0 0

p1

(
mL∆r − αk

M

)
mR αk αk − 2p2

p2 0 0
(

1
M

− αk
M

+ nL∆r
)
nR

From these, it follows that the expected value of ch[k] is nk+αk, as anticipated
in(5.22) and the contents of Table 5.1 may be derived by considering that

σ2
c,intr = (1−2nk)p−1+(1+2nk)p1+4(1+nk)p2−αk(αk +2nk). (5.163)
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1. Introduction

Several issues must be addressed when selecting a test method. Whether
performing tests in the laboratory or at the production stage, the first concern
is efficiency, that is, the capacity of providing reliable results (in fact estimates)
for the parameters being measured in the laboratory, and the capacity of accept-
ing good parts and rejecting the bad ones without errors in production, in both
cases over a large number of repeated operations. Accuracy and precision are
thus the two first key aspects to be evaluated. They are directly affected by the
test setup, as well as, by the data processing algorithms.
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The most meaningful way of specifying the accuracy of a parameter es-
timate P̂ is to determine confidence intervals P̂ l ≤ P̂ ≤ P̂ u, found from
measurement results, where the probability of finding the expected values of
the estimated parameters is high — prob[P̂ l ≤ P̂ ≤ P̂ u] ≥ (1 − ε) where
(1 − ε) is the confidence level, and ε is small.

Test equipment cost is another very important issue. Although accuracy and
precision are directly related to and determined by the quality/cost ratio of the
equipment and of the overall performance of the test setup being used, it is
important to evaluate whether a certain test or measure can be performed with
the same accuracy and precision using a different method, less demanding in
terms of the test setup performance quality. In the ADC testing domain this is
also determined by the quality of test stimulus and clock signals (distortion and
noise). If these do not satisfy the minimum required levels, filters must be used
to reduce harmonic distortion and phase variations. In the case of high resolu-
tion ADCs it is particularly necessary to reduce stimulus noise and harmonic
distortion using bandpass filters. Suitable noise reduction mechanisms are also
required on the clock path in order to reduce jitter between test stimulus and
clock signals.

Testing time is normally not an issue in laboratory tests, but in production it
is actually a critical one. Due to ATE (Automatic Test Equipment) high costs,
fast tests are crucial to increase the number of parts tested per unit of time
and consequently to reduce test equipment cost of ownership. In the ADC
testing process, testing time is determined by both data acquisition (number
of records × record duration) and data processing times, which are dependent
on the number of samples in the record (M) and on the complexity of the
algorithms used to process them. Relay switching and filter settling times are
other delays which affect data acquisition time.

According to these considerations, the accuracy and precision of the three
ADC test methods are evaluated here in terms of their sensitivity to the follow-
ing parameters

number of captured samples

stimulus distortion and noise

stimulus offset

sampling clock jitter

coherence of the sampling process

The methods were also evaluated in terms of testing time, by comparing
the number of cycles and samples required to obtain a certain accuracy and
precision, and the computation time required by the respective data processing
algorithm.
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2. General considerations

2.1 Errors introduced by the test setup

The block diagram of a typical test setup for ADC dynamic testing can be
seen in figure 6.1. The input stimulus of the ADC-UT (ADC under test) is a
sinewave, which is well known from the mathematical point of view and is eas-
ily obtainable with a reasonable purity using synthesizers and filters available
in the market.

Nonlinear effects generally increase out of proportion with the signal am-
plitude, so that some failures will only be seen with a full-scale input. The
test sine waveform has a nonuniform probability density function in the ampli-
tude domain because it presents a time variable slope. This leads the ADC-UT
transition levels to be stimulated in a different way along the transfer function
characteristic. A transition level displacement with respect to the ideal value
(a nonlinearity error) leads to an increase in distortion and quantisation noise
powers, which are dependent on the displacement location on the transfer char-
acteristic.

Σ Ideal
ADCNon-

linearity

Noise
• aperture, σapu
• thermal, σt

ADCADC )(t))Σ
Non-
linearity

Noise
• amplitude, σi
• phase, σθ Σ

EMI

DUT
Stimulus generator

x(t) y[n]

Clock
jitter

Σds
h

Sine-
wave Σdc

hσadd ση

σjσ

Figure 6.1. Sources of noise and distortion in an ADC test setup.

These aspects affect the selection of the test stimulus frequency. Testing at
a single frequency might not provide an evaluation of how the ADC behaves
in the bandwidth required for the application. However, this depends on the
parameter being evaluated. Since DNL does not change with input frequency,
so does not SNR as both parameters are related each other [74]. But, SNR
might decrease at higher frequencies due to the increase of higher frequency
harmonics which cannot be distinguished from noise floor, and thus may be
included in the SNR computation. On the other hand, THD is directly related
to the input frequency. Below a certain frequency THD is only affected by
INL, but as frequency increases INL worsens, as well as THD, due to mainly
the dynamic performance of the sample and hold operation [75].
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Performing tests at various frequencies increases significantly both testing
time and equipment cost, the latter due to the variety of filters which are even-
tually necessary.

The test setup is responsible for noise and interferences which can lead to
test errors. However, all the tests are intrinsically dependent on the quality of
the sinewave source and the overall test setup — hardware, surrounding envi-
ronment, and quality and characteristics of the instrumentation being used —
which can lead to test inaccuracy and non-repeatable results. For example in
production testing, the additional circuitry and instrumentation required to per-
form different tests might degrade noise performance. The cables which con-
nect the stimulus generator to the ADC-UT might introduce parasitics which
degrade the measurement quality.

At increasing frequencies the output response of the ADC-UT tends to be
actually a combination of device under test and test setup behaviours. Figure
6.1 illustrates the major sources of noise and distortion which are unrelated
to the ADC-UT intrinsic behaviour. These are amplitude noise, distortion and
phase jitter of the input stimulus, and sampling clock phase noise (clock jit-
ter). Power supply noise or poor voltage regulation is another source of error
which directly affects the ADC-UT performance. The signal conditioning cir-
cuitry can also introduce nonlinearities due to, for instance, phase delays and
impedance mismatch with the input of the ADC.

A number of samples (M) of the observed digital output sequence are ac-
quired through a data acquisition board, and finally processed using suitable
dedicated signal processing algorithms, in order to determine the ADC para-
meters to be evaluated. The only deviations present in the captured data should
be noise intrinsic to the ADC-UT functional behaviour, and noise and harmon-
ics caused by the ADC’s nonlinearities.

However, the actual SNR of the acquired data is

SNR = −10 log[(2πfinff σjitσ )2 + (
σin

2N
)2 + (2πfinff σapu)2+

+ (
σt

ADC

2N
)2 +

1
3.22N−1

]
(6.1)

where, σjitσ is the relative rms jitter of stimulus and clock signals, σin is the
test stimulus rms noise, σapu the standard deviation of the ADC aperture un-
certainty, σt

ADC the ADC intrinsic rms noise, and 1
3.22N−1 the ideal SNR due

to quantisation. The terms 2πfinff σjitσ and 2πfinff σapu coarsely represent upper
bounds to the amplitude uncertainty of the sampled code due to the uncertainty
in the sampling instant. They are proportional to the signal frequency and, typ-
ically, their maximum occurs for input amplitudes around the average value of
the sinewave amplitude, where the slope of the stimulus is maximum.

The distortion generated by the quantisation process presents characteristics
similar to those caused by additive noise. This assumption leads to model
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the quantiser output (y[n]) as the sum of an infinite precision input stimulus
(x[n]), a quantisation error q[n] and an an additive white Gaussian random
process w[n] with zero mean and variance σ2

add uncorrelated with the test input
stimulus, i.e., y[n] = x[n]+q[n]+w[n]. Furthermore, since q[n] and w[n] can
be considered uncorrelated, the overall error (noise) can also be modelled as a
white Gaussian process with variance σ2

η = σ2
q + σ2

add. A high random noise
content in the captured data may require the acquisition of several records of
data in order to minimise noise after averaging those records.

As we will see later coherent sampling is generally required, and thus syn-
chronisation between the sinewave synthesizer and the clock generator is nec-
essary. This requirement increases the test setup complexity and restricts the
range of test stimulus and sampling clock frequencies.

2.2 Test methods based on spectral analysis and sine
fitting

2.2.1 Spectral Analysis using the Fourier Transform. This tech-
nique applies the discrete Fourier transform (DFT) to the captured data record
in order to obtain its representation (spectra) in the frequency domain . Besides
the main line representing the input fundamental sinewave frequency, several
other features present on the spectrum provide additional information about
the ADC’s performance.

The smallest resolution bandwidth achievable with DFT is

∆f =
ENBW × fsff

M
(6.2)

ENBW = M ×
∑

w(i)2

[
∑

w(i)]2
(6.3)

where fsff is the sampling frequency and M the length of the DFT used. ENBW
(equivalent noise bandwidth) is a factor to adjust the resolution bandwidth
when a window is used, w(i) being the weights of the window.

From the frequency spectrum obtained it is possible to extract a set of pa-
rameters that make possible the characterisation of the converter in terms of
output distortion and noise. The most important ones are

SINAD - Signal to noise and distortion ratio

SNR - Signal to noise ratio

THD - Total harmonic distortion

SFDR - Spurious free dynamic range

From these it is also possible to obtain other parameters like the effective
number of bits (NefNN ). All these parameters take into account the harmonic
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distortion and/or the noise present on the captured data, and thus are prone of
being directly affected by the behaviour of the test setup. In fact, one of the
drawbacks associated with the SA method is the non-uniformity of the noise
floor of a single data record transform. As the noise floor represents a set of
reasonably well behaved random data it can be smoothed by averaging several
spectra (tens or even hundreds) obtained from successive data collections, in
order to limit the noise floor to a level suitable for measurement. By averag-
ing the power spectrum of R different data records the variance of the ADC
noise in ∆f is reduced by R. This might be computationally intensive and time
consuming compared to the data collection time.

Besides noise, spectral ADC test parameters are also sensitive to offset and
amplitude deviations of the sinusoidal test stimulus. It has been shown that a
deviation of less than one tenth of one nominal quantisation level (Q) can lead
to a deviation of 10dB or more in the measured THD. This effect outcomes
from the rounding operation that takes place in the quantisation process, which
affects particularly the low-frequency components [45]. Offset affects also the
variance of the quantisation noise [73].

Spectral analysis yields an overall performance behaviour of the ADC-UT
under the specified test conditions. Due to the discontinuous nature of the ADC
transfer characteristic it is not immediate to extrapolate the ADC response for
different input signals. Further tests have to be performed to characterise the
ADC at different frequencies.

This test method does not allows for the characterisation of the converter at
the transfer function level. Thus, e.g., errors associated with existing missing
codes will be completely diluted within the remaining errors (noise, quantisa-
tion, jitter). The parameters extracted from spectral analysis are in fact affected
by these transfer function localised errors but will not allow their identification
neither to evaluate the ADC-UT behaviour at each single code.

2.2.2 Sine wave Fitting Analysis. This method calculates a sinewave
x̂[n] that best fits the sample record using a square error minimisation criterion
. This calculation is performed by solving some nonlinear equations through
an iterative algorithm. The fitting error (residue) is then calculated after the
difference between the data record and the best fitting sinewave (η̂[n] = y[n]−
x̂[n]) and used to characterise the performance of the ADC. The actual squared
error is given by σ2

η =
∑M

n=1[y[n] − Acos(ω × tn + φ) − C]2, where y[n]
represents the data sample record, and A, ω, φ, and C are the fitted parameters
of, respectively, amplitude, frequency, phase, and offset. To find the best fitting
sinewave the values of A, ω, φ, and C have to be found.

This approach provides a global behavioural description test since all the
errors the test measures are averaged together. The standard deviation of these
errors is then compared to the one which would be given by an ideal ADC of
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the same number of bits. A global evaluation of the ADC transfer function is
provided through assessment of the effective number of bits (NefNN ) figure of
merit given by

NefNN = N − log2
actual rms error

ideal rms error
= N − log2

ση

σεq

(6.4)

The ideal rms error, assuming an ideal converter, with no linearity errors and
an uniform probability density of the input stimulus, is given by σεq = Q√

12
.

When using a sinewave, the deviation from a uniform probability density over
each single code bin is very small, except near the extremes, so that σεq does
not appreciably deviate from the above value. This is particularly true for a
high number of bits — for N ≥ 12 the accuracy is better than 1% [9]. A plot
of NefNN as a function of the input frequency can be obtained by calculating the
effective bits for a series of frequencies spanning the useful frequency range of
the ADC-UT.

From the variance of the residue it is also possible to obtain SINAD =
10log A2/2

σ2
η

. More elaborated algorithms allow to get estimates also for SNR

and THD [9]. In these algorithms the data record is approximated by the sum
of a fundamental frequency sinewave with other sinewaves at frequencies mul-
tiple of the fundamental corresponding to the h first harmonics. The algorithm
becomes however more time consuming and of more difficult convergence.

Besides requiring an input sinusoidal stimulus of high purity, these methods
present some drawbacks due to the iterative nature of the algorithms, such as

convergence is not guaranteed due, e.g., to very poor data or insufficient
computational resolution — for the algorithm presented in [26] a preci-
sion ≤ 16-bit is often inadequate to guarantee convergence

the results from different tests may not be consistent due to possible
trapping at a local minimum [149]

a long execution time is required to improve accuracy and convergence
performance

harmonic distortion can cause the parameter estimates to be biased be-
cause time truncated sinusoids of different frequencies are in general not
strictly orthogonal

The efficiency of the method, in terms of accuracy, is limited by the follow-
ing aspects

a too large ratio between the sampling frequency and the stimulus fre-
quency does not allow to memorize a sufficient number of samples
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in practice sometimes it is not possible to know in which quadrant of the
sinewave the sampling point under process is located

using an input frequency that is a submultiple of the sampling frequency
violates the local uniform probability distribution assumption [26]

the input stimulus amplitude must be carefully controlled otherwise clip-
ping occurs and large errors may result. IEEE 1057 standard recom-
mends using an amplitude ranging between 90% and 99% of Vfs; clip-
ping together with adequate data processing is however recommended
in [61] for better accuracy

Closed-form expressions linking the accuracy to the parameters describing
measurement conditions have been derived [21]. It was shown that accuracy
depends mainly on the ratio between the number of acquired samples and the
number of ADC quantisation levels. Systematic errors are introduced by inac-
curate synchronism between the generator and the digitiser and by incoherent
sampling [118].

2.2.3 Comment on the calculation of noise power. Generally, one
say that the SA and SF methods evaluate the behaviour of ADC-UT by com-
puting the noise captured at its output, i.e., both SA and SF methods pro-
vide an estimate of the ADC parameters from the estimated error sequence
η̂[n] = y[n] − x̂[n]. This error results actually from both test setup noise and
the ADC intrinsic noise. The variance of the overall conversion error, which
corresponds to the total noise power, is given by σ̂2

η = 1/(M−1)
∑M

m=1 ε̂2
q [n].

As the records include only a limited number of samples and input signal peri-
ods, random additive noise and timing jitter, cause the estimated parameters to
be themselves random variables with associated variances. In [21] it is stated
that, providing high statistical efficiency algorithms are used, the effect of the
noise power of uncertainties in the estimated sinewave parameters can be ne-
glected, and thus an unbiased estimate is obtained, even if M instead of M −1
is used in the previous equation.

Using SA and SF methods any variation among repeated measurements on
the same signal should be due to random noise . The (1−ε)×100% confidence
interval within which the expected value of noise power is located is given
by [59]

(M − 1)σ̂2
η

χ2
ε/2

≤ σ2
η ≤ (M − 1)σ̂2

η

χ2
1−ε/2

(6.5)

where χ2 represents the chi-squared distribution for (M-1) degrees of freedom.
The probability of having a measurement outside this range is ε. Similarly, the
(1 − ε) × 100% confidence interval for the SINAD measurement is [59]
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χ2
1−ε/2σ

2
s

2σ̂2
η(M − 1)

≤ SINAD ≤
χ2

ε/2σ
2
s

2σ̂2
η(M − 1)

(6.6)

If R independent records of the ADC output response are taken, the sample
mean (〈σ̂2

η〉) of these R estimates of quantisation noise gives us the accuracy of
the test method, and their variance provides its precision. Usually this precision
is given by the variance of the R values σ̂2

η(i) obtained, i.e.

σ̂2
〈σ̂2

η〉 =
1

R − 1

R∑
r=1

[σ̂2
η(i) − 〈σ2

η〉]2 (6.7)

However, this process can be considered as a nested one, i.e., one wants to
calculate the bias and variance of R measures, each one defined by an aver-
age value µη(i) and a standard variation ση(i) and thus the precision of the
measure should be given by the value SηSS calculated according to the procedure
illustrated in figure 6.2.
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⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η11 η12 . . . η1j . . . η1M

η21 η22 . . . η2j . . . η2M

...
...

. . .
...

. . .
...

...
...

. . . ηij

. . .
...

...
...

. . .
...

. . .
...

ηR1 ηR2 . . . ηRj . . . ηRM
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µη(1), σ2
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|[µη, σ2
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η〉, σ2
〈σ2

η〉]|
↓

|µη, S2
η = σ2

µ +
∑R

i=1 σ2
η(i)

R
|

ηij – error of sample j in record i
µη(i) – average of M sample errors in record i
σ2

η(i) – variance of M sample errors in record i
µη – average of all errors over the R records
σ2

µ – variance of the averages calculated for each record
〈σ2

η〉 – expected value from the variances of each record
σ2
〈σ2

η〉 – variance of the variances calculated for each record

S2
η – expected variance for the M sample errors over R records

Figure 6.2. Arrangement of R measures each one comprising M quantisation errors.

2.3 Code Histogram Analysis

Within this method a histogram of the ADC-UT output codes, that is, the
graph of the number of occurrences (probability of occurrence) of each output
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code [9], is computed . The ADC-UT is evaluated by comparing the probabil-
ity of occurrence of each code with the expected one, which is determined by
the probability density function characteristic of the input stimulus. Since the
probability density function of a sinewave is not constant over a period the re-
sulting histogram has to be corrected. To avoid large differences in code prob-
ability that occurs at the sinusoidal peaks, an amplitude is chosen to slightly
overdrive the full-scale range. Coherent sampling is mandatory in order to
avoid that some codes end up not being stimulated due to sampling always at
the same relative phase instants.

From the statistical analysis of the resulting histogram it is possible, with
a certain level of confidence, to obtain the location of the code transition lev-
els and therefore the transfer characteristic of the converter. Once the code
transition levels are known, we can calculate the integral and differential non
linearities (INL and DNL). Notice that known the transfer characteristic it is
possible, by simulation and applying spectral analysis, to get all the other pa-
rameters. The measure of INL and DNL is actually a measure of the differ-
ence between the computed transfer function and the estimated ideal one (best
straight line) of the ADC. Thus the value of INL or DNL is directly dependent
on the criterion used to find this ideal transfer function.

Providing coherent sampling is guaranteed, the uncertainty affecting code
transition levels is determined as discussed in chapter 5, sections 5.1.3 and
5.3. In the uncertainty expressions, the standard deviation of the contribu-
tions arising from count uncertainty, additive noise and phase noise decrease

with
√

M
−1

.
Concerning the ratio of stimulus and clock frequencies, to obtain a contribu-

tion to the variance of the number of counts in the cumulated histogram smaller
than 0.25, and taking into account that it is required that |∆r|

r ≤ 1
2JM , being

r = finff
fsff [9], the relative frequency error of these two generators shall be such

that |∆finff
finff − ∆fs

fsff | ≤ 1
2JM . This error takes into account the finite resolution of

the synthesizers and their stability.

2.4 Number of samples

The accuracy of all the three methods is directly affected by the number of
samples captured from the ADC response . SA and SF methods require that
at least one sample per code is present in the data record. Due to the varying
slope of the input sinewave and considering that sampling occurs at constant
intervals, acquiring 2N samples in the full scale range of the ADC, does not
guarantees acquiring a sample per output code. Depending on how sampling
is performed, for instance, a 1024 point data record may exercise only half the
codes in an 8-bit device, and clearly only stimulates a small fraction of the
codes in a 12 bit device. To obtain a sample per code from an ideal N-bit ADC
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in a single input stimulus period, the maximum sampling period must be such
that within this time increment, the maximum amplitude change of the input
stimulus is equivalent to Q, providing its peak-to-peak amplitude is equal to the
full scale range. In this case the minimum number of samples should be given
by M = π × (2N − 1). For a N-bit real ADC with a worst case differential
non linearity DNLmax (expressed in LSB), as some of the code bin widths
decrease, a minimum record size given by [9]

M =
π2N

1 − |DNLmax| (6.8)

is required. Figure 6.3 shows the variation of M with DNLmax for three dif-
ferent number of bit ADCs. Note that as DNLmax approaches 1 LSB the
record size increases significantly. This computation implies that the sampling
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Figure 6.3. Variation of M with DNLmax for ADCs with 8, 10, and 12 bit.

instants are deterministic. If total jitter (stimulus phase noise, clock jitter, and
ADC aperture uncertainty) is considered, the minimum record size required to
capture at least one sample per code bin with a given probability p is deter-
mined by [9]

1
2
erfc(

π
MminMM − 1−|DNLmax|

2N

2πfiff σJ
) ≥ p (6.9)

where erfc represents the complementary error function and σJ represents the
worst case standard deviation of total jitter. Figure 6.4 shows, for a 12-bit
converter with DNLmax = 0.5, the variation of the probability p with record
size M for three jitter values.

When using SA for low frequency measurements, the required dynamic
range also dictates the number of samples to be used. As the smallest achiev-
able resolution bandwidth is as given in 6.3, for example an 8192 point FFT
gives approximately a scale bin resolution of 6Hz at a 48kHz sampling rate.
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To resolve a -100 dB 50 Hz spurious tone, requires a window attenuation of
100 dB only 5 bins away from the 20 Hz fundamental bin. This might not be
feasible and require the data length to be increased.

In the histogram method the majority of the samples occur near the two ends
of the histogram, therefore, it is not enough to have a single sample per code
bin. In fact, to obtain each individual code transition level with a specified
confidence ν that it does not deviate more then B LSB from the real value, we
need a much higher number of samples per code bin, and therefore a longer
data record. The minimum record size M, according to chapter 5, must be
chosen such that

2
[
2N−1Kν

B

]2 [c π

M

]{
1.13

[
σ∗

VrirVV
+ cσφ

]
+

[ c π

4M

]}
≤ 1 (6.10)

for DNL, see (5.107), or that

[
2N−1Kν

B

]2 [c π

M

] {
1.13

[
σ∗

VrirVV
+

cσφ

2

]
+

[ c π

4M

]}
≤ 1 (6.11)

for INL, see (5.101), where the symbols are defined in chapter 5.
If no overdrive and noise are considered one obtains

B ≤
√

I

2
2N−1Kν

M

π√
R

(6.12)

where I is 1 for INL and 2 for DNL.
Figure 6.5 shows the variation of MminMM with uncertainty B (when the con-

fidence level is ν = 0.9) for three ADCs with different number of bits.
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Frequently the conditions represented by (6.10) or (6.11) and the condition

∆r

r
≤ 1

2MJ
(6.13)

cannot be simultaneously met. In this case it is necessary to acquire an ade-
quate number R of records with a maximum length M compatible with (6.13),
as discussed in chapter 5.

2.5 Choice of test method

These three methods are usually considered to be ADC architecture inde-
pendent methods, however the final application may dictate which method is
the best for characterising ADCs to be used in that specific application . In
fact, normally the generation of ADC tests is driven both by the application
and by the ADC architecture, in order to choose the specification parameters
to be measured, their limits, the test setup, or even the test methods themselves.

One of the critical aspects is the necessity of testing the converter as much
as possible under the same functional conditions as those found in the final ap-
plication. As this is not generally possible, a question is raised concerning the
identification of the ADC parameters which best evaluate the ADC ability to
perform the desired function. In general, the most important ADC performance
characterisation parameter is SINAD. It is critical in almost all the applications.

In control applications the most critical ADC specifications concern the
transfer function. In particular monotonicity, no-missing codes, and INL are
the most important characteristics. Linearity for these ADCs is normally fully
guaranteed. In fact, noise and harmonic distortion are not so important for
these applications, provided linearity (both differential and integral) is guaran-
teed. In fact, while it is well known that THD and SNR are directly related to
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INL and DNL, respectively, industrial processes correspond to a low-frequency
range, where SNR changes very little with input frequency (and so does DNL)
therefore SNR and THD are generally ignored in these applications.

For certain applications absolute conversion error may not be as important
a characteristic as relative response variations to small variations of the input.
This is the case, for instance, in digital audio applications, where nonlinear-
ity results both in distortion of a single sinewave, described by THD, and in
intermodulation effects, which downconvert high frequency tones to the base-
band. The high resolution converters used in these applications require careful
consideration of the clock jitter, for it causes a signal dependent modulation
and additional noise. It is also important not to introduce group delay and gain
differences which influence focus and stability of the sound sources in a stereo
image. Performance at low levels and at higher frequencies is vital for good
sound quality.

The key specification for wide-bandwidth spectral signal analysis is high
linearity. SFDR is a fundamental limitation to the linear dynamic range in the
spectral domain in order to ensure that the nonlinear behaviour of the ADC
does not mask low-level narrowband signals. In radar applications the DR
(dynamic range) is the key ADC performance, which ensures that the ADC
noise does not affect the detection of targets. Both SFDR and DR are better
measured using spectral analysis.

2.5.1 Measures provided by each method. Table 6.1 summarizes
the set of parameters obtainable with each method. Note that both SA and
SF methods do not allow the characterisation of the converter at the transfer
function level. Thus, errors associated with the existence of missing codes will
be completely diluted in the overall behaviour of the ADC, and would then be
seen as noise, quantisation error, or jitter. The parameters extracted by SA and
SF methods are affected by these transfer function localized errors but will not
allow their identification. Actually, methods have been recently proposed to
obtain an evaluation of non-linearity after spectral analysis [15, 101, 128].

It is seen that SA provides a larger capability in the analysis of noise and
distortion components than SF. In general, the values provided by SF using
the 3-parameter method are in perfect agreement with those given by SA [21]
when using coherent sampling. In the case of incoherent sampling the SF 4-
parameter method presents a better performance.

With the SA method information on noise floor, harmonics, and spurious can
be extracted. If all harmonics and spurious components are at least 6N dB be-
low the full-scale amplitude of the fundamental, then the ADC-UT is perform-
ing satisfactorily since each error component has a peak-to-peak amplitude
smaller than 1 LSB [26]. If, on the other hand, harmonic or spurious compo-
nents are higher than 6N dB below full scale, or the noise floor is elevated (e.g.
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Table 6.1. Parameters obtained with the three methods.

SA SF CH

SINAD
√ √ ‡

Nef
√ √ ‡

THD
√ † ‡

SNR
√ † ‡

SFDR
√

INL
√

DNL
√

† – using more elaborated algorithms
‡ – after simulation of the obtained transfer function

due to code discontinuities), then other tests can be performed to identify INL
or DNL errors. For instance, SA could be followed by a CH test.

Several applications require testing intermodulation distortion. As this test
implies measuring the amplitude of beat frequencies generated by a two-tone
input stimulus, SA is the most convenient method.

A CH test provides both a localized error description as well as some global
description of the ADC. Detection of missing codes and measure of gain and
phase at the test frequency can also be obtained with this method. It is thus a
convenient method to test ADCs for control applications. However, even this
may be fallacious. Codes that occur on positive going edges but not on the
negative ones are not seen. Also, the sign of the quantisation error may change
with the signal direction (a hysteresis effect) and this is not seen if a global INL
or DNL curve is obtained [106]. As the CH method is based on the evaluation
of the probability density function of the ADC output codes, it is insensitive
to out-of-phase higher harmonic components at the ADC response, fact which
can lead to nonlinearity underestimates.

The SF method is able to detect nonlinear defects (harmonic distortion), ran-
dom noise, and aperture uncertainty. Gain, offset and phase errors do not affect
the results since all the ADC errors related to parameters which are varied dur-
ing the best fit procedure are not detected. While the apparent frequency error
(due to time base frequency offset or drift of the ADC) is usually small and the
DC offset can be assessed through a static calibration, amplitude distortion and
phase nonlinearity are difficult to measure and are not easily removed [91].

The shortcoming of using the NefNN as a single measure of dynamic perfor-
mance is, that it does not separate error components uncorrelated with the sig-
nal (noise) from correlated error (distortion). Although the end result of this
process is a single figure of merit, some better understanding can be obtained
by varying the test conditions [26]
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the randomness exhibited in the residues allows to identify noise

white noise will produce the same degradation regardless of input fre-
quency or amplitude — the error term will be independent of test condi-
tions for this sort of error

aperture uncertainty is identifiable because it generates an error that is
a function of input slew rate. When this is the dominant error causing
a low NefNN , the number of effective bits will scale with both input fre-
quency and amplitude linearly. If the input waveform is sampled only at
points of constant slew rate, such as at the zero crossings, then the aper-
ture uncertainty may be correlated with the reduction in the effective bits
as a function of slew rate.

the amplitudes of the harmonics can be extracted by fitting the error
residue with best fit sinewaves of the important harmonic frequencies.
The impact of noise and aperture uncertainty in the presence of large
distortion errors can be assessed by effective bit values and error residues
after removing the fitted harmonics.

NefNN is sensitive to both the location and the magnitude of the nonlinearity
errors, but it can not discern the two components. Solutions to minimize this
drawback are discussed in [61]

the amplitude and offset of the test sinewave are chosen in such a way as
to stimulate the full-scale range of the ADC with some overdrive, while
not saturating the analogue front-end of the ADC during the acquisition
(peak to peak signal not higher than 120% of the full-scale)

take a linearized (weighted) NefNN parameter defined in such a way as to be
sensitive only to nonlinearity errors magnitude, but not to their location
on the transfer characteristic

The implementation of the three methods might require specific approaches
depending on the ADC-UT architecture. For instance, in the case of Σ∆ (over-
sampling) ADCs the noise floor is not as uniform as in other converters, thus
an accurate characterisation of the noise floor might require spectral averag-
ing using very long data records. Furthermore, the operation of these ADCs
is intrinsically dynamic. In fact, the Σ∆ modulator can be thought of as a
PCM converter with feedback, which attempts to force the output signal to be
equal to the input stimulus. For this reason it tends to be inherently linear. Due
to their high resolution, these converters require capturing a high number of
samples, making the use of the CH method prohibitive.
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2.5.2 Coherent sampling requirements. All the three methods, SA,
SF, and CH, require that not the same codes are sampled at exactly the same
voltage in each cycle, otherwise the locally uniform probability distribution
assumption is violated . To prevent this to occur the stimulus and sampling
frequencies shall be related such that Mfiff = Jfsff , being J and M mutually
prime integers. Additional requirements are discussed in the relevant chapters
of this book: chapter 3 for SF, chapter 4 for SA, and chapter 5 for CH.

The use of windowing to overcome spectral leakage when perfect coherent
sampling is not obtained is discussed in chapter 4, being the application of
some common windows described in section 4.6.9.3.

Recently, the use of zero-order discrete prolate spheroidal sequences (DPSS)
has been proposed as an alternative windowing procedure to obtain maximum
measurement accuracy when non-coherency aplies [51]. These windows, which
were firstly proposed by D. Slepian in 1978 [134], are finite length sequences
that have the property of maximally concentrating the energy in the main lobe
of the frequency response. They comprise the most spectral efficient set of
orthogonal sequences possible and have maximum energy concentration in the
frequency pass-band and minimum ringing in the time domain. The DPSS are
thus optimal regarding their energy concentration in a given frequency sub-
band. DPSSs are parameterized by the time bandwidth product MW, where W
is the normalized one-sided bandwidth in Hz, and M is the number of samples.
Choosing the time-bandwidth product to be MW = 1.84 gives a main lobe
width in the frequency domain equal to that of the Hamming window. The
Kaiser window [80] is an approximation to the zeroth order DPSS. The zeroth
order window in the Slepian sequence is an excellent data tapering window.
The subsequent windows in a Slepian series will emphasize the data better near
the edges, but they do not offer the same spectral leakage resistance and they do
not compute the true frequency. Instead, they contribute to the overall envelope
of a multitaper spectral peak. There are two important factors corresponding
to a window: its bandwidth, which determines how wide a frequency range it
allows leakage over, and its rejection, which defines how much energy is re-
duced when it is outside that frequency range. If the bandwidth W is small, the
frequency range of the allowed leakage will be small. But a smaller W leads
to a rejection degradation as more energy leaks outside the allowed range.

The class of windows proposed in [51] is defined in the frequency domain
on the basis of the Dirichelet kernel as

W [k, Λ] �
sin[M

2 arccos(γ cos(2πk) + (γ − 1))]
sin[12 arccos(γ cos(2πk) + (γ − 1))]

, k = 0, ...,M−1 (6.14)

where W [., Λ] represents the DFT of the M-sample window,

γ � (1 + cos(2π/M)/(1 + cos(2Λπ/M))) (6.15)
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and Λ is the mainlob width expressed in bins.
In case of non-coherent sampling an optimum Λ is obtained from

Λopt = 0.607 + 0.189log10MηMM + 0.378log10γ1 (6.16)

being MηMM ≥ ENBW
ε2

the number of samples associated with wideband noise —
ε is the required estimator accuracy, but usually one can use MηMM ≈ M/3. An
optimum number of samples associated to each narrow-band component, ob-
tained after a compromise among maximum estimator accuracy, maximum fre-
quency selectivity, and low computational effort, becomes MXM i = 2 �Λopt�+
1, where the operator �.� rounds to the nearest integer, and making sure that

M >
2 �Λopt� + 1

mini
=

 j |fiff − fjf |fsff , i, j = 1, h, sp (6.17)

i.e., the distance between the two closest narrow-band components is greater
than MXM i bins, for the fundamental, harmonics, and spurious components.

The window coefficients w[n] are then calculated after substituting Λopt in
(6.17) and by applying the inverse FFT to the resulting expression. It should
be verified that MηMM ≥ M − [2(nrharmonics + nrspurious) + 1]MXM i and that
the required accuracy is attained, otherwise the number of samples has to be
increased. The reader is exorted to see the published bibliography [30, 51, 116]

3. Simulation results

3.1 Simulation procedure

Simulations were carried-out in order to compare the three methods pre-
sented in previous chapters, and to evaluate how they behave in the presence of
non-ideal conditions. Results were obtained to evaluate the minimum number
of samples required by each method, the influence of total noise, harmonic dis-
tortion, and non-coherent sampling in the accuracy and precision of the meth-
ods, as well as how these are affected by the presence of offset. Finally, the
methods were compared in terms of testing time.

The following procedure was adopted. Simulations were performed with
MATLAB using the polynomial ADC transfer characteristic models depicted
in Table 6.3.1 [45].

Each parameter estimation was obtained from the results of 30 simulations,
using the average of these 30 values to calculate the expected value (accuracy),
and their standard deviation to evaluate the precision of the estimation. The
variability of the test results is obtained by introducing randomness in the initial
phase of the stimulus sinewave. The resulting data records where then processed
using each one of the three test methods to calculate the SINAD parameter.
The choice of SINAD as a figure of merit is due to the fact that it is possible to
calculate it with the three methods. All results were obtained for ideal (ADC1)
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Table 6.2. ADC model used in the simulations.

h(x) = x0 + α1x + α2x
2 + α3x

3 + α4x
4 + α5x

5

ADC1 ADC2

α0 = 0 α0 = 0
α1 = 1 α0 = 1

α2 = 0.5LSB
α3 = 1LSB
α4 = 0.25LSB
α5 = 0.75LSB

and non-ideal (ADC2) models, each one parameterized for 8 and 12 bits. Figure
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Figure 6.6. INL curve of the non-ideal converter (ADC2).

6.6 shows the INL curve which results for the non-ideal model ADC2.

3.2 Results using SA and SF

3.2.1 Number of samples. In order to find a minimum number of
samples which guarantees that the accuracy of the estimates is not affected by
the number of samples being used, SINAD values were obtained using both
SA and SF for different values of M. Table 6.3 shows the mean and standard
deviation values obtained for the four ADC models. It can be seen that for
M ≥ 16384 the precision in the estimation of SINAD is, in any case, smaller
than .05 dB. This guarantees that results can be taken accurate up to the first
decimal number. Using this indicator all results were afterwards obtained using
16384 samples.

The figures in Table 6.7 illustrate the results obtained for the ideal ADC
cases. It can be seen that for the 8-bit cases 1024 samples (log2(M) = 10)
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would be sufficient to guarantee the required accuracy. This corresponds to an
DNLmax = 0.22 as given by (6.8). The values obtained with the two methods
are similar.

3.2.2 Effects of noise, harmonic distortion and non-coherence. An-
other set of simulations was performed to evaluate the effect of additive noise
. Note that besides modelling real additive noise superimposed to the input
signal, additive noise provides a rough model of the effect of the h.f. phase
noise of the generators and of intrinsic sampling jitter.

The presence of noise was modelled by “injecting” into the test stimulus a
pseudo-random gaussian noise generated with the MATLAB command randn,
with an amplitude power in dB as given in the first column of Table 6.4. This
table presents the values obtained under these conditions. The ideal values are
presented in the last line of the table.

Again, it can be seen that whether using SA or SF, the results are similar and
so one can conclude that they behave similarly in the presence of noise. Also,
as expected, for noise levels (absolute value) higher than the SINAD of the
ideal noiseless ADC, the measured SINAD values are significantly affected,
i.e., while a 8-bit ADC tolerates a −60 dBc noise level without significant
degradation of its SINAD, a 12-bit ADC requires that the noise level does not
exceed −80 dBc. This is in accordance with the � −6N limit given for an
ideal ADC. For additive noise levels below these, the ADC intrinsic quantiza-
tion noise dominates, and obviously the SINAD of the non-ideal ADC is worse
than the one of the ideal ADC. On the other hand, for higher levels of the addi-
tive noise, the stimulus noise dominates and one can not distinguish the ideal
from the non-ideal ADC. This is true for both methods.

The effect of harmonic distortion in the input signal is demonstrated by the
results in table 6.5. These values were obtained considering an input sinewave
affected only by 3rd harmonic distortion. Besides the similarity of results given
by the two methods, it can be seen that distortion amplitudes smaller than the
ideal SINAD values do not affect the estimation accuracy. One can notice that
the standard deviation presented by the non-ideal ADC (ADC2) is much higher
than that presented by the ideal one (ADC1), particularly for the 8-bit case.
This is due to the fact that, in this specific case, 3rd order harmonic distortion is
also introduced by the ADC itself. The maximum standard deviation (ADC2)
occurs in the region where stimulus harmonic distortion is of the same order of
magnitude (absolute values) of the ADCs’ ideal SINAD — -50 dBc for the 8-
bit ADC, and -74dBc for the 12-bit one. For values below these, the harmonic
distortion introduced by the ADC dominates, the SINAD values obtained for
the non-ideal ADC being smaller than the ones of the ideal ADC. On the other
hand, for values above those the harmonic distortion of the stimulus dominates
and one can not distinguish the ideal from the non-ideal ADC. This is valid for
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both methods and allows us to conclude that the cost of filters to be used in the
test setup would be similar.

Finally, table 6.6 describes the effects of non-coherent sampling. The level
of non-coherence is given by the number of cycles inaccuracy εJ : fiff =
(J ± εJ) fsff

M . In this table mod() represents the modulus (signed remainder after
division) operation. A Blackman-Harris (7 terms) window is used in the first
four lines. The fifth line corresponds to the ideal case, i. e., coherent sampling
and no windowing used. It can be seen that, provided windowing is used,
no significant degradation can be observed in the results obtained by the SA
method in comparison with those obtained by SF (which is not affected by
repeated sampling at the same relative phase instants, once an integer number
of cycles is captured).

Concerning non-coherent sampling, there is no definite advantage in using
one method or the other, although it should be remarked that SA requires win-
dowing and SF presents always smaller standard deviations, even when non-
coherence is small. SF is, thus, not significantly affected by non-coherence.

3.2.3 Testing time. Testing time was evaluated in terms of both data
acquisition time and data processing time . For SF and SA data acquisition
time is about the same as the number of acquired samples is the same. Table
6.7 presents data processing time values obtained for these two methods. Time
is computed using the command cputime and the number of flops using flops.

Data processing time is directly determined by the number of samples, but
not by the number of bits of the ADC. In fact, with the current 32-bit PCI
data bus architectures, the memory access and arithmetic operations are the
same for any number of bits of the current ADCs. Data processing time is
higher for the SF method because the number of floating point operations is
higher. Within this method the iterative process is stopped when the differ-
ence between parameter matrix values at iteration n+1 do not differ more than
1 × 10−6 from the previous ones. This was considered a good criterion as
the precision values obtainedwith SF are similar to those obtained with SA.
The algorithms used require a number of floating point operations given by
flop = KfMlog2M in both cases, but the constant of proportionality kf is
significantly higher for the SF method. In fact, it should be borne in mind that
in the SF method the number of flops depends on the precision value which
determines the end of the iterative process. Anyway, it is worth to mention that
in general 3 iterations are enough to stop the process, and after 2 iterations the
difference between matrix values is about 1× 10−3. As far as processing time
is concerned, it cannot be proportionally related with the factor Mlog2M .

3.2.4 Effects of stimulus amplitude and offset. It was mentioned in
section 6.2.2.1 that the presence of offset in the stimulus may affect THD and
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Table 6.7. Testing time.

SA 8 bits 12 bits

M time (s) flop time (s) flop

256 0.09 10420 0.08 10420
512 0.11 21615 0.11 21615

1024 0.16 45239 0.16 45239
2048 0.25 94968 0.26 94968
4096 0.47 199498 0.46 199498
8192 0.86 418733 0.86 418733

16384 1.69 877593 1.67 877593
32768 4.03 1836174 3.34 1836174
65536 7.09 3835148 6.79 3835148

SF 8 bits 12 bits

M time (s) flop time (s) flop

256 0.26 62679 0.26 62679
512 0.45 125076 0.45 125076

1024 0.85 251100 0.85 251100
2048 1.63 505645 1.62 505645
4096 3.19 1019783 3.20 1019783
8192 6.39 2058218 6.40 2058218

16384 12.89 4155478 12.87 4155478
32768 31.07 8390859 25.86 8390859
65536 52.81 16943433 51.79 16943433



184 ADC DYNAMIC CHARACTERISATION

SFDR measurements accuracy due to the effects on the quantisation of the
sinewave peaks. A different set of simulations was performed to evaluate
this effect. Graphics in figure 6.8 present the evolution of THD, respectively
SINAD for 6- and 12-bit ADCs, as a function of the stimulus relative ampli-
tude. Dotted lines represent the results obtained with the typical setup, while
continuous lines represent the case where “wobbling” is added. Wobbling con-
sists of adding to the input stimulus an offset value which increases along the
stimulus duration from -1/2 LSB to 1/2 LSB [45]. It can be seen that the accuracy
of the THD and SINAD check results can be significantly affected using the
typical setup. By adding “wobbling”, a better distribution of the input stimulus
along the ADC-UT input scale is obtained, leading thus to a better accuracy and
precision of the results. Notice that a variation of 2% in the stimulus amplitude
can lead to a variation of about 0.8dB in the SINAD value. It is also curious to
note that the maximum SINAD occurs for a stimulus amplitude smaller than
the full scale amplitude, and different from the amplitude that gives the best
THD (top row graphics).

Of course this effect is more pronounced in low resolution ADCs, such as
those used in video applications. The second row of figures in Table 6.8 shows
the results obtained with a 12-bit ADC. Although some differences are still
observable in THD, that is not the case in the SINAD plot.

3.3 Results using CH

The CH method was evaluated by estimating the values of THD and SINAD
for different values of uncertainty in the estimation of the code transition levels
(parameter B in (5.99)). Graphics in figure 6.9 show the evolution of these two
parameters. As it would be expected, the uncertainty on the measurements
increases with the uncertainty accepted on the estimation of code transition
levels. Using again the criterion of accepting as maximum uncertainty the one
that allows an accuracy on the parameters estimation up to the first decimal
number, an error of 0.025 LSB would be acceptable on the estimation of the
code transition levels.

Table 6.8 summarizes the uncertainty values obtained on the definition of the
code transition levels. The three columns of the total number of samples (S)
result from 10, 100, and 1000 records, and 1024 samples per record. In each
case, the uncertainty was found after the standard deviations of the transition
levels obtained by simulation comparing to the ideal values given by the curve
shown in figure 6.6. It can be seen that the observable decrease in uncertainty
is proportional to the square-root of the increase in the number of samples, as
stated before.

Comparing the SINAD values presented in figure 6.9 obtained by using the
CH method, with those presented in figure 6.7, both for the 8-bit ADC2 case,
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Table 6.8. Code transition levels estimation uncertainty.

N 8 8 8 12 12 12

S=R×M 10240 102400 1024000 10240 102400 1024000

Bsimulation 0.0636 0.0232 0.0075 1.1927 0.4158 0.1172

one can see that the precision obtained with an uncertainty B = 0.025 →
S = 102400 is similar to the one obtained with log2(M) = 10 → M = 1024
samples using the SA or SF methods. In the 12-bit case, to obtain the same
precision obtained with log2(M) = 14 → M = 16384 samples within the SA
and SF methods, the CH method would require more than 1024000 samples.
A larger number of samples is thus required by the CH method than the SA
or SF ones to obtain the same measurement accuracy. It can also be seen that
outside these limits all the methods (CH, SA and SF) demonstrate a significant
degradation both in terms of accuracy and precision.

3.3.1 Effects of noise, harmonic distortion, and non-coherence.
Table 6.9 shows the effects of additive noise, harmonic distortion, and non-
coherence on the performance of the CH method . S = R × M = 1000 ×
1024 = 1024000 samples are used in these evaluations. Only results for ADC1

are presented. The first fact one can remark is that the degradation of the
SINAD estimation is smaller using the CH method. In the 8-bit case practi-
cally no effects are observable, while in the 12-bit one only in the worst case
perturbations are noticeable. This is true for all the three perturbations stud-
ied, and indicates that CH is more robust than the other methods, particularly
concerning the non-coherent sampling situation where the difference between
maximum and minimum values is 0.0059 dB and 1.2853 dB, respectively, the
8- and 12-bit cases.

3.3.2 Testing time. Concerning testing time, although the CH method
requires a smaller data processing time, the higher number of samples makes
its data acquisition time significantly higher than the one required by the other
two methods . This can be seen in table 6.10 which was obtained for a 10-bit
ADC with a sampling frequency of 100 kHz.

4. ATE Implementation

This section provides examples of implementation of the three test methods
on a mixed-signal ATE, together with some experimental results .
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Table 6.9. SINAD accuracy and precision as a function of the noise level, harmonic distortion
and non-coherence.

CH ADC1

8 bits 12 bits

Noise (dBc) mean std mean std

-40 49.6784 0.0195 66.3306 0.1354
-60 49.9580 0.0005 73.4600 0.0650
-80 49.9587 0.0011 73.7324 0.2173
-100 49.9587 0.0013 73.7594 0.1656
-∞ 49.9588 0.0008 73.8378 0.1343

CH ADC1

8 bits 12 bits

3rd harmonic (dBc) mean std mean std

-40 49.7118 0.1553 67.8120 1.7236
-60 49.9584 0.0007 72.9426 0.3336
-80 49.9587 0.0008 73.7969 0.1951
-100 49.9591 0.0006 73.7501 0.2073
-∞ 49.9588 0.0008 73.8378 0.1343

CH ADC1

8 bits 12 bits

mod(fiff /(fsff /M)) mean std mean std

0.1 49.9529 0.0043 72.5525 0.8171
0.01 49.9539 0.0063 72.5161 1.1750
0.001 49.9579 0.0020 73.6063 0.2011

0 49.9588 0.0008 73.8378 0.1343

Table 6.10. Data acquisition and processing times required by the three methods to test a 10-
bit ADC.

Time (s) Acquisition Processing Total

CH 6.55 0.6 6.61
SA 0.08 0.99 1.07
SF 0.08 5.34 5.42
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4.1 Features

Use of ATE systems is recommended in production environment where a
large number of devices of the same model has to be tested in order to verify
the compliance of their electrical characteristics to the specifications provided.
The main feature of such macro-systems is the integration of a lot of measure-
ment sub-systems, making them available, through appropriate cables, to the
test board of the device in the form of "pogo pins" (i.e. measurement points
very close to the device to be tested). The noise and the interference of the sub-
systems can be controlled and measured by the macro-system, which, in turn,
can run proper calibration programmes in order to reach a very good perfor-
mance in terms of accuracy of the measurement and of noise on the test board.
The memory dedicated to data acquisition is usually local (per pin memory)
and thus does not use the same memory dedicated to the calculations. Another
advantage is the software control of all the measurement sub-systems and their
synchronization. The drawbacks are the high costs of both the hardware — as
the test boards have to be designed in compliance with the test-head specifica-
tions — and software, that is written in a dedicated language and thus requires
proper personnel training.

4.2 Software development

As example of implementation of the algorithms proposed, a test programme
was developed on a Synchromaster AC - LTX ATE system. The DUT (Device
Under Test) is an 8-bit A/D converter with a typical sampling frequency of 50
MHz. The operating conditions for the DUT were chosen to be: M = 16384,
fsff = 50053120.0 Hz, finff = 21088665.0 Hz, (J = 6903 - in order to satisfy
the coherence condition.)

A programme developed on an ATE allows one to test all electrical parameters
and compare them to the specification limits giving a PASS or FAIL, the later
result used to discard bad devices. Moreover a data-log file is usually associated
to each run of the programme: this maintains a hardcopy of the measurement
results for the parameters obtained from each tested device. The main target for
a good test engineer is to cover as accurately as possible, and as exhaustively
as possible, the electrical performance of the device to be tested and to do it as
fast as possible: in other words, test time and test coverage are the main issues
to be addressed. Herein follows an example of the SW implementation to test
an ADC according to the three methods exposed in previous chapters. It is
given in a simple pseudo-code format. It should be kept in mind that in reality
tricks are usually adopted to reduce as much as possible the test duration, such
as performing calculations while acquiring data: this would result in an almost
unreadable SW but rather a high performance one. In our example we consider
a straightforward programming approach, more helpful for understanding.
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4.2.1 Setup and calibration. The first task to be carried out by a
test programme during loading, is to properly set all the hardware in a safe
and known condition and to calibrate all system resources and test board hard-
ware. Calibration of the test hardware is recommended especially for high
accuracy measurements. Once the programme is loaded and calibration arrays
are stored, the programme main routine is run each time a new device has to
be tested.

Usually the first measurement performed after the power on of the device is
a continuity test (to verify the electrical integrity of the connections, without
which successive measurements on that device are useless and the device has
to be discarded) and current leakage test.

The following code script1 illustrates a typical start-up procedure.

1Courtesy of LTX Corporation - Westwood, MA.
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-------------------------------------------------------------------------
procedure on_start
-------------------------------------------------------------------------
-- This routine contains the top level calling sequence for all sections
-- of the programme.
-- See Calibrate_hw for use of debug_mode

local float : ttime_calc
local integer : R = 1 -- 24 -- number of records
body

LTX_start -- Initialisation of the ATE system Hardware
-- on first run
first_run = false
if first_run then

Initial_setup
Calibrate_hw
Digicomp_checker(DATA_BUS)
-- calibration of a system part dedicated to ADC testing

end_if
-- MEASURE INPUT AND SUPPLY RAIL CURRENTS

Meas_dc_static
Self_bias_voltage

-- FUNCTIONAL TESTS --
Init_servo_test -- initialisation of a dedicated System HW for ADC testing
Disq_bins([1..5]) -- Binning of the device for the following test
Functionality

-- pure functionality at various frequency: no parameters measure
Disq_bins([1..6]) -- Binning of the device for the following test
Test_output_levels -- digital pins output level measurement
Delay_times

-- MEASURE ACCURACY --
Measure_accuracy("0_+2v",300) -- static ADC characterisation
Measure_dynamic(21MHz,1v+VOD,1.5,R)
-- ft = 21MHz, 100KHz input sinewave da 0v a 2v

-- Input Vpeak = 1v+VOD, Input DC offset= 1.5V,
-- R = number of records
-- HISTOGRAM TEST ANALYSIS

Histogram_test(0v,2v,float(Mr),R)
-- procedure Histogram_test(T1,T255,M=number
-- of samples,R=number of records)

-- SINE FIT ANALYSIS
SineFit_test

-- FFT TEST ANALYSIS
Frequency_test

-- END OF TESTS
if first_run then

End_first_run
end_if

end_body

After these tests, more specific performance measurements are executed; in our case the CH, SA and SF
methods are implemented.
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4.2.2 Histogram method. Herein follows an example of implementation of the code
histogram analysis method .

-------------------------------------------------------------------------
procedure Histogram_test(T1,T255,M,R)
-------------------------------------------------------------------------
in float : T1 -- measured T1 transition level
in float : T255 -- measured T255 transition level
in float : M -- number of samples in each record
in integer : R --number of records
local

float : S -- total number of samples for cumulated histogram
float : kmax ,kmin -- max and min value for histogram bins
integer : k,i
set[2] : maxmin
float : A,C -- input sinewave Amplitude and Offset measured
float : e[NCODES] -- error array
float : x[4] -- temporary variables where sums are stored
float : G,Vos,INL,DNL,INLar[NCODES],DNLar[NCODES] -- parameters

-- to be measured
float : Tnom[NCODES],Q ,Vfs=2. -- nominal values
float : Hc[NCODES] -- cumulative Histogram array

end_local

body

S = M*float(R)
Tnom = 0.
T = 0.
Hc = 0.
-- NOMINAL VALUES CALCULATION
for k=1 to NCODES-1 do

Tnom[k] = (float(k)-0.5)*Vfs/float(2^NBITS)
for i=1 to k do
Hc[k] = Hc[k] + H[i] -- H array generated during acquisition

end_for
end_for
Q = (Tnom[255] - Tnom[1]) / (float(2^NBITS) -2.)

-- TRANSFER FUNCTION PARAMETERS CALCULATION
A = (T255 - T1) / ( cos(PI*Hc[1]/S) + cos(PI*(1.-( Hc[NCODES-1]/S ))) )
C = (T255*cos(PI*Hc[1]/S) + T1*cos(PI*(1.-(Hc[NCODES-1]/S)))) /
(cos(PI*Hc[1]/S) + cos(PI*(1.- (Hc[NCODES-1]/S))))

for k=1 to NCODES-1 do
T[k] = C - A* cos(PI*Hc[k]/S) -- eq. 4.14

end_for

-- BEST FIT METHOD
-- GAIN AND OFFSET ERRORS CALCULATION
Best_fit_G_Vos(8,T,Tnom,Q,G,Vos)
INL_DNL_tests_results(8,"best-fit",G,Vos,Tnom,Q)
-- END POINT METHOD
-- GAIN AND OFFSET ERRORS CALCULATION
End_point_G_Vos(8,T,Tnom,G,Vos)
INL_DNL_tests_results(8,"end-point",G,Vos,Tnom,Q)

end_body
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-------------------------------------------------------------------------
procedure Best_fit_G_Vos(NB,T,Tnom,Q,G,Vos)
-------------------------------------------------------------------------
in float : T[?],Tnom[?] -- theoretical and non theoretical arrays
in float : Q -- LSB
in integer : NB
out float : G,Vos -- calculated gain and offset errors

local
float : sTk,sT,sT2 -- temporary variables where sums are stored
integer : k
integer : NCD

end_local

body

NCD = 2^NB
sTk = 0.0
sT = 0.0
sT2 = 0.0
for k=1 to NCD-1 do

sTk = sTk + float(k)*T[k]
sT = sT + T[k]
sT2 = sT2 + T[k]*T[k]

end_for

G = Q* float(NCD-1)*(sTk - 2.^float(NB-1)*sT)/(float(NCD-1)*sT2-sT*sT)
Vos = Tnom[1] + Q*( 2.^float(NB-1) -1.) - G*sT/float(NCD-1)

end_body

procedure End_point_G_Vos(NB,T,Tnom,G,Vos)
-------------------------------------------------------------------------
in float : T[?],Tnom[?]
in integer : NB
out float : G,Vos -- gain and offset errors

body

G = (Tnom[255]-Tnom[1]) / (T[255]-T[1])
Vos = (Tnom[255]*T[1] - Tnom[1]*T[255]) / (T[1]-T[255])

end_body
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In the following subroutine the INL and DNL parameters are evaluated and compared to the specification
limits, printed to the data-log file and to the output and binning of the device is calculated.

-------------------------------------------------------------------------
procedure INL_DNL_tests_results(NB,method,G,Vos,Tnom,Q)
-------------------------------------------------------------------------
in string[10] : method -- method: best-fit or end-point
in float : G -- gain error parameter
in float : Vos -- Offset error parameter
in float : Tnom[?] -- nominal values
in float : Q -- lsb or ideal quantisation level
in integer : NB -- number of bits of the converter

local
integer : k
float : e[NCODES] -- error array
float : INLar[NCODES],INL --INL array error and INL maximum error
float : DNLar[NCODES],DNL --DNL array error and DNL maximum error
float : x[4]
string[20] : tnameI,tnameD

end_local

body

Disq_bins([1..8])
-- INL calculation
for k=1 to NCODES-1 do

e[k] = Tnom[k] - G*T[k] - Vos
INLar[k] = e[k] / Q

end_for
x = xtrm(INLar)
if abs(x[1]) > abs(x[3]) then

INL = abs(x[1])
else

INL = abs(x[3])
end_if
tnameI = method+"_INL"
test tnameI

if INL > 1.01lsb then
Fail

end_if
Bin_device
dlog(tnameI,"@t",INL!u=LSB,"@t","lim= 1LSB")

end_test
-- DNL calculation
DNLar = 0.0
for k=1 to NCODES-2 do

DNLar[k] = G*(T[k+1] - T[k])/Q - 1.
end_for
x = xtrm(DNLar)
if abs(x[1]) > abs(x[3]) then

DNL = x[1]
else

DNL = x[3]
end_if
tnameD = method+"_DNL"
test tnameD

if abs(DNL) > 0.51lsb then
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Fail
end_if
Bin_device
dlog(tnameD,"@t",DNL!u=LSB,"@t","lim= 0.5LSB")

end_test

end_body
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4.2.3 Spectral method. Here follows an example of implementation of the SA algorithm
.

-------------------------------------------------------------------------
procedure Frequency_test
-------------------------------------------------------------------------
local

boolean : coherent
integer : epsj10,lmax
double : corr_factor[10] -- correction factor for the

-- first 10 harmonics
double : ENBW

end_local

body

Coherence_check(epsj10,coherent)
-- epsj10 is calculated and coherence is verified
-- Order_it_back
Ydb = 0.
Ydb[1:(Mr/2 +1)] = mag_fft(Y[1:Mr])

Find_real_principal_component(Jc)
-- Jc = Jcalculated finding the maximum of the spectrum
-- coherent = false

-- Window, chosen by the operator interactively,
-- is applied if coherence is not met
Windowing(epsj10,coherent,lmax,corr_factor,ENBW)
YFFT = 0.
YFFT[1:(Mr/2 +1)] = mag_fft(Y[1:Mr])
-- apply fft to windowed time domain array

Frequency_parameters_tests(coherent,epsj10,lmax,corr_factor,ENBW)

end_body
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procedure Windowing(epsj10,coherent,lmax,corr_factor,ENBW)
-------------------------------------------------------------------------
in integer : epsj10
in boolean : coherent
out integer : lmax
out double : corr_factor[10]
out double : ENBW

local
integer : Wchosen
string[10] : answer

end_local

body

if coherent then
lmax = 0
corr_factor = 1.
ENBW = 1.
Y = Y

else
println(stdout,"Non-coherent condition: suggested window for 8-bit
ADC is 7terms Blackman-Harris")
println(stdout,"Do you want to use another window?")
input(stdin,answer)
if answer = "yes" or answer="YES" or answer="Yes" or answer="si"
or answer="SI" then

println(stdout,"Non-coherent condition: choose a window
to apply")

println(stdout,"1 - Hanning")
println(stdout,"2 - Hamming")
println(stdout,"3 - Blackman")
println(stdout,"4 - Exact Blackman")
println(stdout,"5 - 7terms Blackman-Harris")
input(stdin,Wchosen)
if Wchosen = 1 then

Apply_Hanning(epsj10,lmax,corr_factor,ENBW)
else_if Wchosen = 2 then

Apply_Hamming(epsj10,lmax,corr_factor,ENBW)
else_if Wchosen = 3 then

Apply_Blackman(epsj10,lmax,corr_factor,ENBW)
else_if Wchosen = 4 then

Apply_Exact_Blackman(epsj10,lmax,corr_factor,ENBW)
else_if Wchosen = 5 then

Apply_BH7(epsj10,lmax,corr_factor,ENBW)
end_if

else
Apply_BH7(epsj10,lmax,corr_factor,ENBW)

end_if
end_if

end_body
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procedure Apply_Hanning(epsj10,lmax,corr_factor,ENBW)
-------------------------------------------------------------------------
in integer : epsj10 -- number of cycles uncertainty (uncertainty on J)
-- rounded to first decimal and multiplied by 10
out integer : lmax -- maximum side-bins to be excluded in parameters’
-- computations
out double : corr_factor[10] -- correction factor for the first 10
-- harmonics
out double : ENBW -- Equivalent Noise Bandwidth of the window

local
double : SUMW,SUMW2
double : wL[10*32768],W[10*32768]
integer : i,signal_bin,Ji

end_local

body

SUMW = 0.
SUMW2 = 0.

for i=1 to Mr do
wL[i] = 0.5 - 0.5*cos(2.*PI*double(i/Mr))
Y[i] = Y[i]*wL[i]
SUMW = SUMW + wL[i]
SUMW2 = SUMW2 + (wL[i]*wL[i])

end_for

ENBW = double(Mr)*SUMW2 / (SUMW*SUMW)

lmax = 2

wL[Mr+1:10*Mr] = 0.
W =0.
Ji = round(Jc)
signal_bin = 10*Ji+ epsj10

dft(W[1:10*Mr], wL[1:10*Mr], signal_bin, integer(Fs), 10)

for i = 1 to 10 do
corr_factor[i] = W[3*i + 1]

end_for

end_body
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procedure Apply_Hamming(epsj10,lmax,corr_factor,ENBW)
-------------------------------------------------------------------------
in integer : epsj10 -- number of cycles uncertainty (uncertainty on J)
-- rounded to first decimal and multiplied by 10
out integer : lmax -- maximum side-bins to be excluded in parameters’
-- computations
out double : corr_factor[10] -- correction factor for the first
-- 10 harmonics
out double : ENBW -- Equivalent Noise Bandwidth of the window

local
double : SUMW,SUMW2
double : wL[10*32768],W[33]
integer : i,signal_bin,Ji

end_local

body

SUMW =0.
SUMW2 = 0.

for i=1 to Mr do
wL[i] = 0.54 - 0.46*cos(2.*PI*double(i/Mr))
Y[i] = Y[i]*wL[i]
SUMW = SUMW + wL[i]
SUMW2 = SUMW2 + (wL[i]*wL[i])

end_for

ENBW = double(Mr)*SUMW2 / (SUMW*SUMW)

lmax = 2

wL[Mr+1:10*Mr] = 0.
W = 0.
Ji = round(Jc)
signal_bin = 10*Ji+ epsj10

dft(W[1:10*Mr], wL[1:10*Mr], signal_bin, integer(Fs), 10)

for i = 1 to 10 do
corr_factor[i] = W[3*i + 1]

end_for

end_body
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procedure Apply_Blackman(epsj10,lmax,corr_factor,ENBW)
-------------------------------------------------------------------------
in integer : epsj10 -- number of cycles uncertainty (uncertainty on J)
-- rounded to first decimal and multiplied by 10
out integer : lmax -- maximum side-bins to be excluded in parameters’
-- computations
out double : corr_factor[10] -- correction factor for the first
-- 10 harmonics
out double : ENBW -- Equivalent Noise Bandwidth of the window

local
double : SUMW,SUMW2
double : wL[10*32768],W[33]
integer : i,signal_bin,Ji

end_local

body

SUMW =0.
SUMW2 = 0.

for i=1 to Mr do
wL[i] = 0.42-0.5*cos(2.*PI*double(i/Mr))+0.08*cos(4.*PI*double(i/Mr))
Y[i] = Y[i]*wL[i]
SUMW = SUMW + wL[i]
SUMW2 = SUMW2 + (wL[i]*wL[i])

end_for

ENBW = double(Mr)*SUMW2 / (SUMW*SUMW)

lmax = 3

W=0.
wL[Mr+1:10*Mr] = 0.
Ji = round(Jc)
signal_bin = 10*Ji+ epsj10

dft(W, wL[1:10*Mr], signal_bin, integer(Fs), 10)

for i = 1 to 10 do
corr_factor[i] = W[3*i + 1]

end_for

end_body
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procedure Apply_BH7(epsj10,lmax,corr_factor,ENBW)
-------------------------------------------------------------------------
in integer : epsj10 -- number of cycles uncertainty (uncertainty on J)
-- rounded to first decimal and multiplied by 10
out integer : lmax -- maximum side-bins to be excluded in parameters’
-- computations
out double : corr_factor[10] -- correction factor for the first
-- 10 harmonics
out double : ENBW -- Equivalent Noise Bandwidth of the window

local
double : SUMW,SUMW2
double : wL[10*32768],W[33] -- 10harmonics *3 + 3
double : a0,a1,a2,a3,a4,a5,a6 -- window coefficients
integer : i,signal_bin1,signal_bin2,Ji

end_local

body

SUMW =0.
SUMW2 = 0.
a0 = 0.271051400693424
a1 = 0.433297939234485
a2 = 0.218122999543110
a3 = 0.065925446388031
a4 = 0.010811742098371
a5 = 0.000776584825226
a6 = 0.000013887217352
for i=1 to Mr do
wL[i] = a0-a1*cos(2.*PI*double(i/Mr))+a2*cos(4.*PI*double(i/Mr))-
+ a3*cos(6.*PI*double(i/Mr))+ a4*cos(8.*PI*double(i/Mr))-
+ a5*cos(10.*PI*double(i/Mr))+a6*cos(12.*PI*double(i/Mr))

Y[i] = Y[i]*wL[i]
SUMW = SUMW + wL[i]
SUMW2 = SUMW2 + (wL[i]*wL[i])

end_for

ENBW = double(Mr)*SUMW2 / (SUMW*SUMW)

lmax = 7
W=0.
wL[Mr+1:10*Mr] = 0.
Ji = round(Jc)
signal_bin1 = 10*Ji+ epsj10
signal_bin2 = 10*Ji - epsj10
dft(W, wL, epsj10, (10*Mr),10)
corr_factor[1] = SUMW / W[4]
dft(W, wL, signal_bin1, (10*Mr),10)
for i = 2 to 10 do

corr_factor[i] = SUMW / W[3*i + 1]
end_for

end_body
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procedure Coherence_check(epsj10,coherent)
-------------------------------------------------------------------------
-- Here epsj10 is the uncertainty in J (see eq. 6.17)
-- j calculated only for multiple of 0.1 and
-- multiplied by 10, thus having epsj10 an integer =[1,2,3,4,5];
-- this was done following Subsection -- 6.9.1 indications

out integer : epsj10
out boolean : coherent

local
double : epsj
double : x

end_local

body

x = double(Mr)*double(Fi)/double(Fs)
J = round(x)
epsj = x - double(J)
epsj10 = integer(10.*epsj)

if epsj10 < 1 then
coherent = true
epsj10 = 0

else
coherent = false

end_if

end_body

procedure Find_real_principal_component(Jc)
-------------------------------------------------------------------------
out float : Jc

local
double : max_min[4]
integer : i

end_local

body

--Ydb[1] = 0. --set dc-component to zero
mag_to_dbc(Ydb[1:(Mr/2+1)],Ydb[1:(Mr/2+1)])
--Ydb = power_ratio_to_db(Ydb) -- in dBm (dB mW)
Ydb[1] = -120.
max_min = xtrm(Ydb[1:Mr/2])

Jc = float(max_min[2]) - 1. --position of the maximum in the array

end_body
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Calculation of the various parameters.

procedure Frequency_parameters_tests(coherent,epsjr,lmax,corr_factor,ENBW)
--------------------------------------------------------------------------------
in boolean : coherent
in integer : epsjr -- epsilon_j (uncertainty on frequency ratio) rounded to
-- first decimal and multiplyed by 10
in integer : lmax -- maximum number of sidelobes to be excluded in
-- parameter’s calculation
in double : corr_factor[10] -- correction factor to be applied to
-- harmonics’ components amplitude
in double : ENBW -- Equivalent Noise Bandwidth of
-- the chosen window

local
double : SNR,SINAD,NFl,NFl2,NFldb,NFdbc,NFdbFS,SUMQ,THD,Nef,SFDR,SFSR
-- parameters to be evaluated
double : dSUMQ
float : epsj
integer : k,h,l,Ji,f_h_sp,i1,i2
double : a,b,d,c,e,sf -- intermediate calculation parameters
integer : Jh[20]
integer : Mfft_max

end_local
const h_max = 10 -- maximum number of harmonics to be considered

body
epsj = float(epsjr) / 10.
set NFl = 0. SUMQ = 0. SNR = 0. THD = 0. SINAD = 0. SFDR = 0. dSUMQ = 0. Jh = 0
Ji = integer(Jc)
Mfft_max = Mr/2 + 1
Find_h_indexes(Ji,Mr,Jh)
Ji = integer(Jc) + 1
SUMQ_calculation(coherent,h_max,Jh,lmax,epsj,SUMQ)

test "Frequency An NFl"
NFl2 = (SUMQ + 0.5*YFFT[Mfft_max]*YFFT[Mfft_max]) /
( double(Mr/2) - (double(h_max)*(2.*double(lmax) + 1.)) )
NFl = sqr(NFl2)
NFdbc = 10.*log(NFl2/(YFFT[Ji]*YFFT[Ji]))
Bin_device
dlog("NFl= ",NFdbc!u=dBc)

end_test

test "Frequency An SNR"
c = 10.*log( abs((YFFT[Ji]*YFFT[Ji]) - NFl2) / NFl2 )
e = c - 10.*log( double(Mr)/2. + 1.)
SNR = e + 10.*log(ENBW) + 10.*log(corr_factor[1]*corr_factor[1])
Bin_device
dlog("Spectral analysis","@t","SNR @t",SNR!u=dB)

end_test

test "Frequency An THD"
d = 0.
for h=2 to h_max do

d = d + YFFT[Jh[h]]*YFFT[Jh[h]]*corr_factor[h]*corr_factor[h]
end_for
THD = 10.*log( d/(YFFT[Ji]*YFFT[Ji]*corr_factor[1]*corr_factor[1]) )
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Bin_device
dlog("Spectral analysis","@t","THD @t",THD!u=dB)

end_test

test "Frequency An SFDR"
Calculate_max_non_principal_spectral_component(Jh,h_max,f_h_sp)
SFDR = 10.*log( YFFT[Ji]*YFFT[Ji] / (YFFT[f_h_sp]*YFFT[f_h_sp]) ) +
+ 10.*log( corr_factor[1]*corr_factor[1] )
Bin_device
dlog("Spectral analysis","@t","SFDR @t",SFDR!u=dB)

end_test

test "Frequency An SINAD"
b = 0.
if coherent then
a = 2.*NFl2 + 0.5*YFFT[(Mfft_max)]*YFFT[(Mfft_max)]
for k = 2 to (Mfft_max-1) do

if k <> Ji then
a = a + YFFT[k]*YFFT[k]

end_if
end_for

else
a = (2.*double(lmax) + 2.)*NFl2 + 0.5*YFFT[(Mr/2+1)]*YFFT[(Mr/2+1)] + SUMQ
for h=2 to h_max do

i1 = Jh[h] + round(float(h)*epsj)
i2 = Jh[h] - round(float(h)*epsj)
if i1 < Mr/2 then

b = b + ENBW * (YFFT[i1] * YFFT[i1]) * (corr_factor[h]*corr_factor[h])
end_if
if i2 < Mr/2 then

b = b + ENBW * (YFFT[i2] * YFFT[i2]) * (corr_factor[h]*corr_factor[h])
end_if

end_for
end_if
SINAD = 10.*log( (YFFT[Jh[1]]*YFFT[Jh[1]] - NFl2)/(a+b) ) + 10.*log(ENBW) +
+ 10.*log( corr_factor[1]*corr_factor[1] )
Bin_device
dlog("Spectral analysis","@t","SINAD @t",SINAD!u=dB)

end_test

end_body
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procedure SUMQ_calculation(coherent,hmax,Jh,lmax,ej,SUMQc)
--------------------------------------------------------------------------------
in boolean : coherent
in integer : hmax,Jh[?],lmax
in float : ej
out double : SUMQc

local
double : spectrum[32769]
integer : h,k,l,i1,i2

end_local

body
spectrum = 0.
SUMQc = 0.
spectrum[1:Mr/2+1] = YFFT[1:Mr/2+1]

spectrum[1] = 0.
if coherent then

for h=1 to hmax do
spectrum[Jh[h]] = 0.

end_for
else

for l = 0 to lmax do
spectrum[(Jh[1]) + l] = 0.
spectrum[(Jh[1]) - l] = 0.

end_for
for h = 2 to hmax do

i1 = round(float(Jh[h]) - float(h)*ej)
i2 = round(float(Jh[h]) + float(h)*ej)

for l = 0 to lmax do
spectrum[i1 + l] = 0.
spectrum[i2 - l] = 0.

end_for
end_for

end_if
for k = 2 to (Mr/2) do

SUMQc = SUMQc + (spectrum[k]*spectrum[k])
end_for

end_body
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procedure Calculate_max_non_principal_spectral_component(Jh,hmax,f_h_sp)
--------------------------------------------------------------------------------
in integer : Jh[20],hmax
out integer : f_h_sp -- position of the maximum spectral component present
-- in the spectrum (except main one and DC)

local
double : max_min[4],fftarray[32769]
integer : i

end_local

body

fftarray = YFFT
fftarray[1] = 0. -- set dc component to zero level
fftarray[Jh[1]] = 0. -- set principal component to zero level

--mag_to_dbc(fftarray[1:Mr/2+1],fftarray[1:Mr/2+1])

max_min = xtrm(fftarray)
f_h_sp = integer(max_min[2]) -- found position of maximum spectral component

end_body

procedure Find_h_indexes(Ji,Mr,Jh)
--------------------------------------------------------------------------------
-- Find position of the harmonics in the FFT array

in integer : Ji -- fundamental tone index
in integer : Mr -- Mr/2 maximum spectrum length
out integer : Jh[20]

local
integer : h,Jmax[20]
double : xtrm_arr[4],pfft[32769]

end_local

body

pfft = Ydb
Jh = 0
Jmax = 0
pfft[1] = -100.

for h = 1 to 20 do
Jh[h] = Nyquist(h*Ji,Mr) + 1
-- find position of the harmonics in Nyquist Band
xtrm_arr=xtrm(pfft[1:Mr/2+1])
Jmax[h] = integer(xtrm_arr[2])
pfft[Jmax[h]] = xtrm_arr[3]

end_for

end_body
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function Nyquist(Jj,Jfs) : integer
--------------------------------------------------------------------------------
in integer : Jj -- bin of tone in spectrum array
in integer : Jfs -- bin of sampling frequency in spectrum array

local
integer : Jh -- bin of harmonic component
integer : nj

end_local

body

if Jj <= Jfs/2 then
return(Jj)

else
nj = 1
Jh = abs(Jj - nj*Jfs)
while Jh > Jfs/2 do

nj = nj+1
Jh = abs(Jj - nj*Jfs)

end_while
return(Jh)

end_if

end_body
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4.2.4 Sine Fitting method. Concerning the sine fitting method, only the known fre-
quency ratio case was considered because, when using this particular ATE, one may operate and calibrate it
in such a way to be in that condition .

procedure SineFit_test
--------------------------------------------------------------------------------
-- NB record_data array corresponds to Y array in DYNAD draft (output ADC data)
--------------------------------------------------------------------------------

local

double : xp[3]
-- input parameter vector xp[1]=Acos(teta) , xp[2]=Asin(teta), xp[3]=C
double : x[65536] --[32768]
-- discrete points of x(t) sampled at Fs x[n] = A*cos(omega_i*n + teta) + C
double : dxy[65536]
double : A , C , teta -- input signal amplitude, offset and initial phase
double : omega_i -- omega_i = 2*PI*Fin/Fs
double : x_rms,eta_rms -- intermediate calculation parameters
double : x2_rms,eta2_rms,diff
double : SINAD
integer : i,n
float : t_sinefit -- test time for sinefit algorithmic calculation
double : jf

end_local

body

start_timer

-- analytical solution for the case of known frequency ratio
jf = double(Fi)* double(Mr) / double(Fs)
J = round(jf)
omega_i = 2.*PI* double(J)/double(Mr)
xp = 0.0
x = 0.
for n = 1 to Mr do

xp[1] = ( 2.*Y[n]*cos(double(n)*omega_i) )/double(Mr) + xp[1]
xp[2] = (-2.*Y[n]*sin(double(n)*omega_i) )/double(Mr) + xp[2]
xp[3] = Y[n]/double(Mr) + xp[3]

end_for

-- initial parameter calculation: A,C,teta
teta = atn(xp[2]/xp[1])
A = xp[1] / (cos(teta))
C = xp[3]

-- x_rms and eta_rms calculation
x2_rms = 0.
eta2_rms = 2.
x = 0.
dxy = 0.
for n = 1 to Mr do

x[n] = A*cos(omega_i*double(n) + teta) + C
diff = double(x[n] - xp[3])
x2_rms = diff*diff + x2_rms
dxy[n] = double(Y[n]) - x[n]
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eta2_rms = (double(Y[n] - x[n])*double(Y[n] - x[n])) + eta2_rms
end_for
x_rms = sqr(x2_rms/double(Mr))
eta_rms = sqr(eta2_rms / double(Mr))

test "Sine Fit SINAD"
SINAD = x_rms / eta_rms
SINAD = 20.*log(SINAD) -- in dB
Bin_device
dlog("Sine Fit @t","@t", "SINAD @t",SINAD!u=dB)
println(stdout,"Sine Fit SINAD= ",SINAD!u=dB)

end_test

end_body
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4.3 Results
The results obtained are summarized in the final data-log file. However to analyse specific parameters it

is possible to visualize them in a graphical form. Herein follows the representations of the main parameters
of the histogram analysis obtained from the measurement of ADC devices. Figure 6.10 shows the histogram

Figure 6.10. Histogram obtained from 24 records with a 16384 samples length.

H[k] as a function of code bin k. Figure 6.11 illustrates the behaviour of INL[k] and DNL[k] as a
function of code k, using the best fit definition. Figure 6.12 shows the behaviour of INL[k] and DNL[k]
as a function of code k, using the end-points definition. The INL and DNL errors are defined to be the
maximum in absolute value in the corresponding arrays.

The spectrum obtained by the SA method is reported in figure 6.13. The first ten harmonic components
are indicated. All spectral parameters are calculated from this array.

Figure 6.14 shows the sinewave reconstructed after the acquisition, which can be compared to the the-
oretical input one. It is generally recommended to take a glance at the reconstructed waveform, to point
out possible errors in the test setup: the figure shows a case, where the offset of the input sinewave was not
properly chosen, and thus the waveform is clipped at code 0. The algorithm used to reconstruct a period of
the sinewave by reordering the acquired samples is given in the following sub-routine

-- REORDERING FORMULA for sub-sampling case : frecord_data[] -> record_data_ord[]

NUM_PER = 6903 -- M according Matt. Mahoney (calculated as ft/fs * N)

body
record_data_ord=0.
for k=1 to M do
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Figure 6.11. Best fit INL and DNL arrays.

record_data_ord[NUM_PER*(k-1)+1-M*integer(NUM_PER*(k-1)/M)] = frecord_data[k]
end_for
wait(0ms) -- BREAK POINT TO SEE SINEWAVE REORDERED

end_body

Then, an example of output data-log for each device tested follows.

File record out_1: (Input sinewave =< FSR)
Analog(5V)+Digital(5V)_current 7.64mA max=36ma
Analog(5V)_(dig@3.3V)_current 7.60mA max=33ma
Digital(3.3V)_(an@5V)_current 0.10mA max=3ma
Sine Fit SINAD 28.65dB
Spectral analysis SNR 30.85dB lim=38dB(fi=10MHz)
Spectral analysis THD -32.68dB
Spectral analysis SFDR 34.31dB lim=45dB (fi=10MHz)
Spectral analysis SINAD 28.66dB

File record ovrd24_1b: (Input sinewave FSR + Vod)
Analog(5V)+Digital(5V)_current 10.67mA max=36ma
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Figure 6.12. End-points INL and DNL array.

Analog(5V)_(dig@3.3V)_current 10.62mA max=33ma
Digital(3.3V)_(an@5V)_current 0.11mA max=3ma
best-fit_INL 2.15LSB
best-fit_DNL 0.65LSB
end-point_INL 3.39LSB max=1.5LSB (fi=10MHz)
end-point_DNL 0.65LSB max=0.5LSB (fi=10MHz)

4.4 Comparison
The main comparison that can be made between the three proposed methods regards the ease of im-

plementation and test duration. Once the equations are well understood, there is no particular difficulty in
their implementation. The testing time of the three methods, instead, makes a difference. The acquisition
of a single 16384 samples record at 50 MS/s takes 4.5 seconds within this ATE, using the internal Vector
Processor for parallel reordering of the record (without the Vector Processor utility the test time for a 16384
record would be about 26s). It is worth noting that reordering is not necessary for the CH analysis. The
elaboration phase duration, i.e., the time each proposed algorithm (CH, SF, and SA) takes to calculate all
the parameters mentioned from a 16384 length record, are

CH → 4s (transition levels, INL, DNL)
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Figure 6.13. Spectrum graph.

SA → 5s (SNR, THD, SFDR, SINAD)

SF → 16s (SINAD)

The overall test time of the three methods is given by the acquisition time plus the elaboration time.
Considering that for the CH analysis 24 records are necessary, we obtain then

CH → 112s (transition levels,INL,DNL)

SA → 9.5s (SNR,THD,SFDR,SINAD)

SF → 20.5s (SINAD)

Thus, the fastest method is SA. However, if information on the converter linearity is needed, CH is
the best choice, since INL and DNL cannot be directly calculated from spectrum analysis data. Finally,
a distinction should be made between characterization testing (all codes and full analysis) and production
testing where a reduced number of code transition levels are tested and record lengths are shorter.

5. Conclusions
In this chapter a comparison of the three classical sinewave dynamic ADC test methods — spectral

analysis (SA), sinewave fitting (SF), and code histogram (CH) — is presented. This comparison is performed
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Figure 6.14. Sine Fit: input sinewave from output data

in terms of the accuracy and precision obtained when estimating the Signal to Noise-and-Distortion ratio,
a parameter that can be measured with each one of these methods. These are also compared in terms of
the minimum number of samples required for a certain accuracy and precision, as well as in terms of their
sensitivity to noise and distortion of the test stimulus, testing time, and of the sampling coherence.

The SA and SF methods are similar in terms of the results’ accuracy they provide, the major differences
being the larger data processing time required by the SF method and the necessity for windowing required
by the SA one, in case coherent sampling can not be guaranteed. The main advantages of the SA method
over the other two are the shortest testing time and largest set of parameters it provides. The SF method is
more robust than SA to non-coherency, but the limited number of parameters that can be extracted might be
a handicap for its application.

The CH method requires a much larger number of samples than the other two, and thus, although its
data processing time is the shortest, the resulting total test time is the longest. However, it seems to be the
most robust when noise and harmonic distortion is present in the input stimulus, and allows characterising
accurately the transfer characteristic of the ADC which is a critical requirement for certain applications. In
fact, besides the advantages and disadvantages presented by each one of the methods, the final applications
may dictate which method (or methods) should be used. This selection is often a balance between the choice
of parameters required to be evaluated and the total allowed testing time.
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An example of implementation on an ATE of these three algorithms was given together with the results
obtained for a commercial 8bit 50 MS/s ADC. Considerations were made on mass-production criteria for
the choice of the test method.
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1. Introduction

For many new architectures of signal receivers (digital receivers) the ana-
logue to digital conversion is performed on a carrier. An ideal digital receiver
would use a high dynamic range ADC at the output of the antenna, which
means that the ADC would digitise very high frequency signals (for instance
900MHz or 1800MHz for the European standard GSM). Today, this ideal dig-
ital receiver is not feasible and analogue down-conversion is still performed
because of the performances of the ADCs.

One of the limiting factors is the degradation of the ADC performances
as the input frequency increases. The degradation can be classified in two
categories. The first one is a decrease of the SFDR of the ADC and the second
one is a decrease of the SNR. The decrease of the SNR as the input frequency
increases, can be predicted if the jitter of the ADC is accurately measured.
That is why, for the state of the art signal receivers, the accurate measurement
of ADC’s jitter is necessary in order to define the best architecture for the
receiver.

For the state of the art high speed ADCs, the traditional techniques [10],
[130] are note accurate enough to measure jitter precisely . Two methods based
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on a dual-measurement system overcome the problems of the additive noise
of the test setup and of the linearity of the ADC that limited the traditional
techniques. These two methods are described in this chapter. The first one
referred as "the double beat technique" is detailed in [88] and the second one,
"the joint probability technique" is taken from [33] and [34].

The last measurements performed with the double beat technique on a 14-bit
65 MS/s ADC are also described.

2. The double beat technique

2.1 Test setup and principle

The dual-channel setup used is depicted in figure 7.1. Two phase-locked
synthesizers are used to generate the clock and input signal. The input sine
waves as well as the clock signals are the same for the two ADCs. Band-pass
filters are used to reduce the noise generated by the synthesizers.

synthesiser

synthesiser

Sync

Clock in

Logic State
Analyzer

Computer

BP Filter

Signal in

driver

BP Filter
Impedance
Matching
Network

Impedance
Matching
Network

Figure 7.1. Test setup for the double beat technique.

The technique described in this chapter is based on a signal processing pro-
cedure that can be divided into three successive steps:

1 The double beat to eliminate systematic errors

2 The subtraction to eliminate synthesizer’s phase noise
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3 The extraction to remove the ADCs’ amplitude noise and to demodulate
the noise by the slope of the input sine wave

The different steps and the resulting signals are described in figure 7.2.
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i

Figure 7.2. Principle of the subtraction technique.

The processing described above leads to the sum of the jitters of ADCs A
and B. To calculate the jitter of each ADC (σ2

jAσ and σ2
jBσ ), a third ADC (ADC

C) is needed in order to perform three successive identical measurements. The

first one performed with ADCs A and B gives σjσ 1

√
σ2

jAσ + σ2
jBσ , the second one

with ADCs A and C gives σjσ 2

√
σ2

jAσ + σ2
jCσ , and finally the last measurement

with ADCs B and C gives σjσ 3

√
σ2

jBσ + σ2
jCσ . Then, the jitter of each ADC is

calculated by combining σjσ 1, σjσ 2, and σjσ 3.

2.2 The double beat

As described in figure 7.3, the ADCs under-sample the input sine wave in
order to get at the output of each ADC a beat sine wave whose period is half
the acquisition duration .
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To perform an accurate measurement, the input frequency must be chosen as
high as possible. Moreover, to get two periods of the beat signal in the record
length, the input frequency and the sampling frequency must satisfy:

finff = (pM + 2)
fsff

M
(7.1)

where:

finff is the input frequency,

fsff is the sampling frequency

M is the number of samples,

and p is and integer as large as possible.

The minimum number of samples to acquire is π2N , where N is the number
of bits of the ADC. In practice, M is often set to 2N+2.

The maximum value of p is derived from the maxim value of the input fre-
quency given by the input bandwidth of the ADC under test. Once the acqui-

Fin

Fsampl

21

1-2

Figure 7.3. Double beat principle.

sition is complete, the second period of the beat signal is subtracted point by
point from the first one. This processing eliminates the signal and the system-
atic errors, such as non-linearities and quantization noise, and adds quadrati-
cally the uncorrelated noises. The resulting signal on each channel is depicted
in figure 7.4. This signal is a noise composed of the ADC noise, as well as of
the noise introduced by the synthesizers.

The noise represented above indicates from its shape that it is a jitter mainly
induced noise. The superimposed amplitude noise is visible and measurable
on the A-A’ noise curve section which corresponds to the minima and maxima
of the sinusoidal signal where the slope is equal to zero.
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Figure 7.4. Resulting signal after the double beat processing.

2.3 The subtraction

The processing described in the former chapter is performed on the two
channels. On each channel, the resulting signal is a noise composed by the
ADC noise and by the noise of the synthesizers.

As both ADCs use the same input signal and the same clock signal, the
noises due to the synthesizers on channels A and B are identical. Thus, the
point to point subtraction of the signals on channels A and B removes the
synthesizers’ noises. As the noises due to the ADCs are uncorrelated, they are
quadratically added.

After this step, the signal is the quadratic sum of the noises of ADCs A and
B. Its shape is similar to the one of the signal depicted in figure 7.4.

2.4 The extraction

Two successive processing must be performed to get the value of the jit-
ter (this value equals the quadratic sum of the jitters of ADCs A and B). The
first step removes the amplitude noise of the ADCs, thus the resulting signal is
composed only by the noise due to the jitter of the ADCs. In the second step,
the slope of the input sinewave is accurately calculated and the result is used to
demodulate the noise and hence calculate the standard deviation of the jitter.

Elimination of the amplitude noise
As explained previously, the shape of the noise at this point is similar to the
one of the noise depicted in figure 7.4. As the noise on AA’ corresponds to
the zero slope of the sinewave, it is caused only by the amplitude noise of the
ADCs since jitter would not induce any noise at that point. In order to calculate
the rms value of the amplitude noise, the width of minimum slope must be
determined (figure 7.5). The number of points on the step of minimum slope
is:

∆1 = 2k1 = 2
M

4π
arccos

[
2N−1 − 1

2N−1

]
(7.2)
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where M is the number of acquisitions and N the number of bits of the ADC.

Figure 7.5. Width of amplitude noise measurement

In order to avoid introducing any kind of jitter, the amplitude noise is not
calculated on the width ∆1 but on a lower number of points (figure 7.6). The

Code

Point

2N-1 -1

2N-1

k1 k2

Figure 7.6. Exact width of amplitude noise calculation

number of points k
′

to remove from ∆1 for the calculation of the amplitude
noise depends on the jitter induced noise at point k2 (the slope of the sinewave
is considered constant between k1 and k2) and of the number of samples in
code bin 2N−1 − 1 :

k
′
=[Number of samples in code 2N−1 − 1]× Proba[jitter induced noise at

point k2 > 0.5LSB]

Indeed, if the jitter induced noise at point k2 is greater than 0.5 LSB, some
samples ideally quantized in code bin 2N−1 − 1 can be quantized in code bin
2N−1 and these samples must not be taken into account for the calculation of
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the amplitude noise.

Number of samples in code bin 2N−1 − 1
As k2 is given by

k2 =
M

4π
arccos

{
2N−1 − 2

2N−1

}
(7.3)

the number of samples in code bin 2N−1 − 1 is given by

∆2 =
M

2π

(
arccos

{
2N−1 − 2

2N−1

}
− arccos

{
2N−1 − 1

2N−1

})
(7.4)

The jitter induced noise at point k2

The slope of the input signal at point k2 is

PkPP 2 = 2N−1 × 2π
pM ± 2
M

√
2

sin
[
arccos

(
2N−1 − 1

2N−1

)]
(7.5)

The rms slope of the input signal is

PkPP 2 = 2N−1 × 2π
pM ± 2
M

√
2

(7.6)

From the rms value of the noise calculated after the subtraction step (σtot), it is
possible to calculate the rms value of the noise induced at point k2 by a pseudo
jitter:

σk2 =
σtot√

2
PkPP 2

PrmsPP
(7.7)

This is a pseudo jitter because at that point, the amplitude noise is not removed.
The probability that this noise is greater than 0.5 LSB is given by

P =
1
P

[
1 − erf

(
0.5

σk2

√
2

)]
(7.8)

Finally, k
′

is determined by

k
′
=

M

4π

(
arccos

{
2N−1 − 2

2N−1

}
− arccos

{
2N−1 − 1

2N−1

})

×
[
1 − erf

(
0.5

σk2

√
2

)] (7.9)

The rms value of the amplitude (σA) noise is calculated on ∆1 − k
′

points
and the obtained value is then subtracted from σtot, which leads to the rms value
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of the noise induced by the jitter of the two ADCs.

Calculation of the jitter
The rms value of the jitter induced noise is

σv = σjiσ ×
(

dv

dt

)
rms

(7.10)

with i = 1, 2 or 3, depending on the ADCs considered.
To determine precisely σjiσ , the rms slope of the input sinewave must be

calculated accurately, without taking into account the distortions introduced
by the ADC.

To perform that calculation, the FFT of the acquired signal is calculated for
each channel. On these two signals, only the fundamental is kept to its value,
the other lines of the spectrum are set to zero. Then a reverse FFT is performed
and the slope of the resulting signal is calculated for each channel. The slope
calculated is the slope of the beat signal, and the slope of the input signal is
then determined by

Slopein = Slopebeat
pM ± 2

2
(7.11)

Finally, the arithmetic mean of the two slopes calculated for each channel is
used to determine σjiσ .

2.5 Experimental results

To check the validity of the double beat method for state of the art convert-
ers, measurements were performed on a 14-bit 65 MS/s ADC from Analog
Devices, the AD6644AST-65. The typical rms jitter given by the manufacturer
is 0.2 ps.

All the measurements were performed on records of 65536 samples. The
sampling frequency was 65 MS/s and the input frequency was set very close to
260 MHz. The value of the input frequency was calculated with p = 3. It was
set to its highest value given the input bandwidth of the AD6644 (250 MHz
typ.).

The amplitude of the input sinewaves were set very close to FS − 0.1 dB.
For jitter measurement it is important to use a sinewave as close to Full Scale as
possible, in order to maximise the effect of the jitter. For all the measurements
performed to validate the double beat method, the jitters given are composed
by the jitters of the two ADCs.

2.6 Sensitivity to the imbalance of the channels

For that measurement the test setup is: The two channels can be perfectly
balanced by the use of the variable attenuators and of the delay lines represented
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Figure 7.7. Test set up for the testing of the sensitivity to the imbalance of the channels.

in figure 7.7.

Sensitivity to phase imbalance
First, the amplitudes of the two channels were balanced and the differential
phase was varied. The variation of the measured jitter as a function of the dif-
ferential phase is given in the following graph: The graph above shows that
the double beat method works well for a differential phase between the two
channels as high as 4 degree.

Sensitivity to the amplitude imbalance
To check the sensitivity of the method to the amplitude imbalance, the differ-
ential phase was adjusted to a value lower than 1 degree. The amplitude of
one channel was kept to FS − 0.1 dB and the amplitude of the other one was
decreased from FS − 0.1 dB. The measured jitter is plotted as a function of
the amplitude difference between the two channels: The graph above shows
that the double beat method works well for an amplitude difference between
the two channels as high as 0.5dB.
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Figure 7.8. Measured jitter as a function of the phase imbalance between the two channels.
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Figure 7.9. Measured jitter as a function of the amplitude imbalance between the two chan-
nels.

These results show that to perform correct measurements with the double
beat method, the phase imbalance and the amplitude imbalance between the
two channels must be respectively lower than 4 degree and 0.5dB. These con-
ditions are very easy to fulfill with classical splitters and cables.

2.7 Sensitivity to the noise of the testbench

The amplitude and phase imbalance were adjusted to values respectively
lower than 0.1dB and 1degree. Additive white gaussian noise was successively
coupled to the amplitude signal and to the clock signal. The noise was coupled
after the band-pass filters and before the coupler used to split the signal into
two channels. The jitter was measured as a function of the noise amplitude.
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Figure 7.10. Measured jitter as a function of the additive noise on the input signal

Noise coupled to the input signal
The variation of the measured jitter is very low even for additive noise as strong
as 43 LSB. A jitter increase of 4% was observed between the measurement
without additive noise and the measurement with an additive noise of 43LSB.

Noise coupled to the clock signal
The variation of the measured jitter is very low even for additive noise as strong
as 43 LSB. A jitter increase of 8% was noticed between the measurement
without additive noise and the measurement with an additive noise of 43LSB.

The two curves above show that the subtraction technique of this method is
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Figure 7.11. Measured jitter as a function of the additive noise on the clock signal
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Table 7.1. Jitter measurements.

ADC A ADC B ADC C

Jitter (ps) 0.33 0.33 0.40

very efficient and thus that the noise of the testbench is very well cancelled by
this method.

2.8 Measurement of the AD6644

The measurements were performed with three AD6644:

two AD6644XST-65 (prototype) referred as ADCs B and C

one AD6644AST-65 (sample) referred as ADC A.

The amplitudes of the two input signals were close to FS−0.1 dB and the am-
plitude difference was lower than 0.1 dB. The differential phase was adjusted
lower than 1 degree.

The jitters measured are listed in table 7.1

2.9 Conclusions

The measurements performed with the AD6644 ADC allowed to obtain a
jitter of 0.33 ps for two components and 0.4 ps for the other one. The accu-
racy of the double beat method was evaluated to ±0.3LSB in [88]. With the
procedure described here an accuracy of ±0.03 ps could be obtained.

For the sample version (AD6644AST), the SNR of the component was mea-
sured as a function of the input frequency with ultra low phase noise synthe-
sizers. The decrease of the SNR as the input frequency increases led to a jitter
of nearly 0.3 ps.

These different results show that the jitter of the AD6644AST tested is close
to 0.33 ps (the typical value of the jitter of the AD6644 given by Analog De-
vices is 0.2 ps).

All the measurements described previously show that the double beat method
is very well suitable for the measurement of very low jitters.

3. The joint probability technique

3.1 Setup and principle

The setup to be used with this technique is depicted in figure 7.12. A unique
synthesizer feeds the same signal to the analogue and encode paths of two
similar ADCs. Since the input and clock signals are the same, each converter
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should ideally output only one code. In the real world, additional codes spread
around a mean code because of the ADC internal noise and the additive noise
of the testbench .
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BP Filter
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A

BP Filter

Required
Optional

ADC
B

Impedance
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Network

Impedance
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Network
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Figure 7.12. Dual channel setup for the join probability technique

Neglecting quantization noise, the noise at the output of channel A is

nA = nADC,A + ns (7.12)

Where ns is the noise contribution from the test setup and nADC,A is the inter-
nal noise of ADC A.

The code variance at the output of channel A is

σ2
A = σ2

ACD,a + r2 (7.13)

where r2 is the variance of the correlated noise (due to the test bench) and
σ2

ACD,A is the variance of the ADC internal noise. σ2
ACD,A takes into account

both the jitter induced noise and the amplitude noise of the ADC. The code
variance at the output of channel B can be similarly derived.
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3.2 Determination of the ADCs’ internal noise

On each channel, assuming a gaussian distribution for the noise, the fraction
of codes higher than a reference code k is given by (for channel A)

FnAFF (µA) =
1
2

{
1 − erf

[
TkTT +1 − µA

σA

√
2

]}
(7.14)

where TkTT +1 is the transition level between the codes k and k + 1 and µA is the
mean value of the input signal.

σA and σB are determined by least-square fitting the experimental data mea-
sured for different values of µA and µB .

The joint probability that the codes from ADCs A and B are at the same
time higher than two reference codes k and j is measured. This is the joint
distribution function of the noises nA and nB , FnA,nBFF . The joint pdf is fnA,nBff .

Consider the following variables

nA + nB = 2ns + nADC,A + nADC,B (7.15)

and
nA − nB = nADC,A − nADC,B (7.16)

Their variances are respectively

σ2
nA+nB = 4r2 + σ2

ACD,A + σ2
ACD,B (7.17)

and
σ2

nA−nB = σ2
ACD,A + σ2

ACD,B (7.18)

The distribution function is

FnAFF +nB(z) =
∫ ∫

Ω

∫∫
z

fnA,nBff (µA, µB)dµAdµB (7.19)

where Ωz is the region where µA + µB < z. Similarly, the integration of
fnA,nBff over the region µA − µB < z provides the distribution function of
nA − nB . These two distribution functions can be fitted in the same way than
FnAFF and FnBFF to determine σnA+nB and σnA−nB and therefore r. Knowing
σA (respectively σB) and r, the internal noise of ADC A (respectively ADC B)
can be calculated.

3.3 Extraction of the jitter of the ADC

As explained in the previous section, the internal noise of each ADC can be
determined. The variance of this noise can be expressed as:

σ2
ADC,A = σ2

vADC,A + (2πfA cos(φ))2 σ2
jADC,Aσ (7.20)
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where A and f are respectively the amplitude and frequency of the input
sinewave and φ the sampling phase. σ2

vADC,A is the variance of the ampli-
tude noise created by the ADC and σjADC,Aσ is the aperture uncertainty (jitter)
of the ADC.

Two successive measurement of σ2
ADC,A are necessary to determine σjADC,Aσ .

The first one is performed with φ = π
2 gives σ2

vADC,A and the second one is
made for another value of φ (φ = 0 maximises the effect of the jitter, it is the
best value to use). Subtracting σ2

vADC,A from the second measurement and
knowing A and f leads to the value of σjADC,Aσ . Of course the same reasoning
for channel B leads to the jitter of ADC B, σjADC,Bσ .

4. Conclusion

The two methods presented in this chapter are based on a dual-channel block
diagram. The use of two channels allow the additive noise created by the test-
bench to be cancelled by the signal processing, which is essential to perform
accurate measurements of very low jitters.

The experimental results show that the double beat technique gives very
good results for the jitter measurement of state of the art high speed, high
resolution ADCs. This method is also very well suitable for the measurement
of very high resolution ADCs.

The joint probability technique seems to be a good solution for low-to-
medium-resolution ADCs. However, this method should be evaluated experi-
mentally for the measurement of the jitter and not only for the measurement of
the ADC noise.
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1. Introduction

Composite video encodes brightness (luminance), timing (sync), and color
(chrominance) into one channel. Luminance is the voltage offset from a ref-
erence, or “black”, level. Chrominance is encoded as a high-frequency (with
respect to the luminance signal) sub-carrier. The average value (mid-point) of
the chrominance is the luminance. The color has two “dimensions”: ampli-
tude which determines the saturation, and phase relative to a reference chromi-
nance burst which encodes the hue. Red in NTSC1 is shifted 103.7◦ from the
reference, green 241.3◦. Changes in amplitude or phase of the chrominance-
subcarrier due to non-idealities in the sampling A/D converter directly relate
to changes of color and brightness of the TV picture.

So distortion-free processing of a color signal requires that neither the am-
plitude nor the phase of the chrominance signal be altered as a function of the
associated luminance signal.

Two parameters are commonly measured to characterize the behaviour of
video ADCs - differential gain and differential phase. Differential gain is de-
fined as the percentage difference between the output amplitudes of a small

1National Television System Committee
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high-frequency sinewave at two stated levels of a low-frequency signal on
which it is superimposed. Differential phase is the difference in the out-
put phases of a small high-frequency sinewave at two stated levels of a low-
frequency signal on which it is superimposed.

2. Test setup and hardware requirements

2.1 Test signal waveform

A test signal containing the following components has to be applied at the
ADC input [7, p. 26]

A low-frequency component at line frequency (15625Hz) which varies
from blanking to 90% of the total luminance signal level (90 IRE). A
staircase waveform of five to ten equal height steps is typically used.

A high-frequency sinewave having a peak-to-peak amplitude of 40% of
the luminance signal level (40 IRE). In a PAL-system (Phase Alternate
Line), this sinewave shall be at a frequency of 4 433 618.75±5 Hz. In
an NTSC system it shall be at a frequency of 3.58MHz.

Normal synchronizing and blanking signals. The color burst may or may
not be present.

Analogue video signals are measured in an IRE (Institute of Radio Engi-
neers) scale. An IRE unit is defined as 1

100 part of the luminance (blanking
to reference white) range — an IRE unit equals 7.14 mV. Blanking level is 0
IRE units and peak white level is 100 IRE units (700 mV). IRE below blanking
level is referred to as negative values — -40 IRE to +100 IRE = 1 V [7, p. 4].

The waveform of figure 8.1 shows a possible test signal.

Figure 8.1. Ten-step modulated staircase test signal.
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Variations can occur in the number of staircase levels and in the amplitude
of the high-frequency carrier. The synchronizing and blanking signals need not
be present for ADC testing.

2.2 Test signal generation circuitry

A special circuitry is needed for driving ADC inputs. The stream of sam-
ples should not be interrupted because the phase relation of the DFT sample
set would be destroyed. A circuit suitable for differential gain and phase mea-
surement with differential inputs is shown in figure 8.2. It produces an input
waveform for the ADC by superimposing a sinewave signal on a staircase as
described above.

D/A converter

Vcc/2
Vcc

A/D converter
Transformer

10k 10k10k 10k

10k10k10k10k

5050

5050

47n

47n

1000
470
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v2
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Figure 8.2. Differential input drive circuit.

3. Analysis

3.1 Considerations concerning digitized signals

Even in an ideal system gain and phase errors occur only due to quantiza-
tion errors. Assume a standard differential gain and phase test is applied to
an ideal, noise-free digital video system. Figure 8.3 shows input sinewaves
(which should be thought of as superimposed on fixed voltages, according to
differential gain and phase testing) each sampled three times, the samples be-
ing accurately spaced by 120◦.

Each sample is now quantized, i.e., it is represented as the nearest quantiza-
tion level. It can be seen that the quantized level may differ from the true one
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Figure 8.3. The three cases of quantizing error.

by ±1
2 LSB. The resulting sinewave can differ from the applied one in three

ways2

If all three quantized levels are equally too high (all three sample values
must lie above a critical level so that its quantized value is 1

2 LSB too
high) the result is a DC shift to the waveform (see figure 8.3 A). In
television terms: chrominance to luminance crosstalk.

If the errors are symmetrical about the center of the sinewave, the result
is a change in amplitude (see figure 8.3 B). In television terms: chromi-
nance gain error.

A particular form of asymmetric error can result in a phase shift with-
out change in either amplitude or DC component (see figure 8.3 C). In
television terms: chrominance phase shift.

None of these three cases is likely to occur in a practical measurement, espe-
cially when the number of samples taken is quite high. By applying oversam-
pling, which means taking more samples per period, the chance that quanti-
zation errors accumulate to one of the three extreme cases described above,
becomes even smaller. Choosing sampling and signal frequencies as noninte-
ger multiples contributes to averaging gain and phase errors.

3.2 Measurements analysis

Figure 8.4 shows a sample test signal captured from an 11-bit ADC with
differential inputs using the circuit described above. The 8 steps show some
rounding at the beginning of each step. This is due to the settling time between
different DC levels.

2[50, p.76]
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Parameters: fiff = 4.443359375 MHz, fsff = 28 MHz, N=32768, 11 bits
8 steps, 40% fullscale peak-to-peak amplitude (approximately 819 LSB)

FFT results: NefNN =7.804 bit, SNR=48.74dB, THD=58.98dB

Figure 8.4. Test signal captured from the A/D converter and FFT plot of the first level.

The waveform is sampled coherently. This prohibits harmonics of the input
signal from sharing the same bin in the DFT result as the fundamental due to
aliasing. This could lead to amplitude and phase deviations of the fundamental
and falsify the results.

For controlling the quality of the captured signal an FFT should be done
over one single level of the staircase signal in order to assure that sample val-
ues have been taken correctly and there is enough spectral purity to get signif-
icant measurement results.
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Table 8.1. DFT test results.

level# gain [LSB] gain error [%] phase [◦] phase error [◦]

0 195.32 0 -164.06 0
1 195.50 0.092 -164.10 0.04
2 195.50 0.092 -164.14 0.08
3 195.43 0.056 -164.11 0.05
4 195.45 0.067 -164.07 0.01
5 195.43 0.056 -164.10 0.04
6 195.28 -0.020 -164.16 0.10
7 195.13 -0.097 -164.14 0.08

According to the parameters in figure 8.4, J=3253 periods are taken for DFT,
with one half of the samples per DC level as input, during each DC level. The
DFT is done only for bin 325 which is the bin of the fundamental frequency.
The result is a complex number X(k) = �e(k) + j�m(k) from which mag-
nitude (A) and phase (ϕ) can be easily calculated

ϕ = arctan
(�m(k)

�e(k)

)
ϕ = −π, · · · , +π (8.1)

A =
√
�e(k)2 + �m(k)2 (8.2)

The DFT result of the first stage is the reference for both magnitude and
phase. The other DFT results are then compared to this reference.

4. Test results

Table 8.1 gives an overview of the DFT results from the 8 DC levels. It
should be noticed that the DFT result for gain usually is not the signal ampli-
tude in LSB. Furthermore, it should be noticed that the DFT result for phase at
the first DC level is more or less random since the DFT results depend on the
absolute phase relationships between clock and signal at the start of measure-
ment.

Figure 8.6 shows graphical representations of the results listed in table 8.1.

3
(

fi
fs

M = 4.443359375
28

2048 = 325
)

see (4.3) on page 86

Simply searching minimum and maximum values in the digital output and
calculating the result from these will yield inaccurate results. Applying a DFT
on the digital samples has the advantage that most of the noise is neglected (since
the main purpose of a DFT is the separation of spectral energy, in this case the
quantization/voltage/distortion noise energy is separated from the fundamental
signal energy).
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Figure 8.5. Differential gain test results.

Figure 8.6. Differential phase test results.

Table 8.2. Differential gain and phase results.

calculation method gain error [%] phase error [◦]

peak-to-peak 0.189 0.1
RMS 0.073 0.064

endpoint 0.097 0.08

5. Calculation of differential gain and phase from the test
results

Table 8.2 shows the resulting gain and phase error. Simply giving the end-
point delta between the first and the last staircase level as a final specification
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can be misleading. It can be seen from the figure that differential gain and
phase do not behave linearly with increasing DC levels (luminance levels).

Measuring the peak-to-peak error yields 0.189% for differential gain (dif-
ference of steps 2 and 7) and 0.1◦ for differential phase (difference of steps 0
and 6).

A specification of the RMS error yields 0.073% for differential gain

(
√

0.0922+0.0922+0.0562+0.0672+0.0562+0.0202+0.0972

7 ) and 0.064◦ for differential
phase.
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1. Introduction

Step and transient response measurement provides some additional insights
in the knowledge of the behaviour of ADCs, both in the time and frequency
domains .

For instance, settling time and transition duration of step response can not
be measured by the classical sinewave test. In addition, the complex (ampli-
tude and phase) frequency response can be more quickly estimated from the
Discrete Fourier Transform of the derivative of the step response rather than
step-by-step varying the frequency of the input sinewave over the useful band-
width of the ADC.

The measurement is performed by feeding the converter with a voltage step
and by acquiring the response. The input step must be obviously as ideal as in
the case of the measurement of a step response of an analogue linear circuit,
and therefore the transition duration, the overshoot and the settling time of the
input step signal have to be smaller than one-fourth of those expected from the
ADC under test.

In the case of AC-coupled high-speed ADCs, the test circuit has to be de-
signed keeping in mind that flat-frequency response and impedance matching
must be guaranteed over a wider bandwidth than in the classical sinewave test.

Moreover, because of discrete-amplitude, discrete-time characteristics of
ADCs, particular care should be taken for the test conditions, since aliasing, jit-
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ter, non-perfectly coherent sampling, noise and ADC nonlinearities (non linear
distortion and quantization) affect the measurement accuracy.

1.1 Equivalent-time sampling

Sometimes the step response of the ADC is shorter than the minimum sam-
pling period, and only one (or none) sample is collected in the transition, be-
cause of the small ratio of the maximum allowable sampling frequency to the
ADCs’ bandwidth . Moreover, small values of the ratio give rise to substantial
aliasing errors in the frequency domain, since the input signal is not band-
limited. In this case it is necessary to increase the effective sampling rate by
using a repetitive input signal and by choosing an appropriate value for the in-
put repetition rate.

ph
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Synthesizer

Synthesizer

N bits

Clock
driver

Analyzer
Logic State

Computer
Optional

Required

ADC
Under
Test

Flat Pulse
Generator

BP Filter

BP Filter

Clock in

Signal ing

Figure 9.1. Test setup for measuring the step response.

Figure 9.1 shows a typical test setup which can be used in the equivalent-
time sampling conditions. The frequency of the second synthesizer, which
determines the pulse repetition rate and drives the flat pulse generator, has to
be coherent with the clock frequency, i.e.

r
�
=

fiff

fsff
=

J

M
(9.1)

where M is the number of samples in a record and J is an integer number
mutually prime with M . In the case of equivalent-time sampling (J �= 1�� ) the
samples have to be reorganized by reshuffling with modulo J counting as in
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(10.10). The equivalent-time becomes

ts,eq =
1

Jfsff
=

1
Mfiff

(9.2)

and the sampling-theorem requirements can be more easily satisfied.

2. Settling time and transition duration of step response

To measure time-domain parameters the step response may be acquired in
the equivalent-time domain, using a record length M and a repetition period
1/fiff sufficient to represent the desired parameter over the specified duration.

2.1 Settling time

Settling time tST is defined as the total time required , from the 50% point
of a full-scale output transition, for the output to settle to within the specified
error band εST around the final value [6]. It is a function of the SHA’s ability to
track fast slewing signals or, in sigma-delta ADCs, it depends on the fact that
when a full-scale step stimulates the ADC, the entire digital filter must fill with
the new data before the output becomes valid. Both short-term and long-term
settling times can be defined by specifying two different error bands.

The uncertainty in the settling time of the input step causes a comparable
uncertainty in the corresponding estimated ADC settling time. To achieve an
uncertainty lower than 1/B, a reasonable rule-of-thumb is that the input step
settles to within the given error bound εST in a time no greater than tST /B
and that, at tST , the input signal is within a bound ε/B around its final value
[138].

When these requirements cannot be satisfied, it is possible, for achieving
smaller uncertainties, to digitally deconvolve the output data with the known

Digitally filtering the step response before computing settling time, for in-
stance applying a moving average filter, is a reported technique for improving
measurement repeatability [6, 138]. In effect it filters out noise and quantiza-
tion errors, but it biases the estimation of settling time and should be used with
great caution [138].

2.2 Transition duration of step response

The transition duration of the step response is the duration between the 10%
point and the 90% point of the output transition, which can be determined by
linear interpolation when only few samples are available on the transition.

Since the composite transition duration of two cascaded gaussian filters is
the root-sum-of-squares of the individual transition duration

τr,OUTττ =
√

τ2
r,ττ 1 + τ2

r,ττ 2 (9.3)

input step, as described below in section 2.3.
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a rule-of-thumb is that the transition duration of the input step signal is no
greater than one fourth that expected of the ADC under test. However this
equation must be used with some caution since it is derived for gaussian sys-
tems [38] and there is the possibility of a significant error for an ADC which
has not, in general, a gaussian response.

To achieve smaller uncertainties digitally deconvolution of the output data
from the known input step can be applied, as described below.

2.3 Digital deconvolution of output step response from
step input signal

To correct for the non-idealities of the input step, digital deconvolution of
the measured output step response from the known input step can be applied.

Assuming that the ADC under test is a linear time-invariant system followed
by an ideal sampler, the measured step response y[j] (j ∈ [0, N − 1]) is the
sampled convolution of the step input signal x[t] with the impulse response
h(t) of the ADC. If x[t] is known, it is possible to obtain the complex transfer
function of the ADC, H[n], as the ratio between the discrete Fourier transform
(DFT) of the ADC’s response, Y [n], and the DFT of the input step, X[n]. In
particular, to apply the waveform deconvolution properly, the time epoch and
the pulse width must be sufficient long for essentially complete settling of the
waveform at its end. The generalized extended function fast Fourier transform
proposed in [39, 40] can be used for allowing spectral representations in term
of impulse response. A practical alternative is the Nahman-Gans technique
[55], which takes the step response out to where the settling of the waveform
is ended, and turn it off mirroring the turn on data, thus making a 2 × N
sample sequence. DFT can be then applied after removing the average value
component.

However, the direct deconvolution is an ill-posed problem, highly sensitive
to measurement noise, that, in general, leads to large deviations in the recon-
struction when the inverse DFT is calculated for estimating h. The solution
is employing a deconvolution algorithm that low-pass filters in the frequency-
domain, so as to reduce the noise-induced errors. The complex transfer func-
tion is thus estimated as

H[n] =
Y [n]
X[n]

R[n], n = 0, · · · , 2N − 1 (9.4)

where R[n] is the regularization filter, for instance [58]

R[n] =
|X[n]|2

|X[n]|2 + γ |C[n]|2 (9.5)
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where γ is the regularization parameter and |C[n]|2 is the squared magnitude
of the discrete Fourier transform of the second difference operator,

|C[n]|2 = 6 − 8 cos
2πn

2N
+ 2 cos

4πn

2N
(9.6)

In practice, the value of γ can be iteratively determined to minimize a model-
based approximation of the root sum of squares of the estimation error [41].

2.4 Jitter

To reduce the effect of noise, jitter and quasi-coherent sampling on the mea-
sure of the settling time and of the transition duration, several records can be
acquired and averaged out. Since in each record the step transition occurs at
different positions, the acquired data records must be previously synchronized
in the time-domain by a software algorithm.

Let yk[·] and yjy [·] be two different records which have to be synchronized
before averaging. A possible solution is to estimate the correlation function
Rkj [i] between yk[·] − yk and yjy [·] − yjy , where yk =

∑M−1
n=0 yk[n] (yjy =∑M−1

n=0 yjy [n]) represents the mean value of yk[·] (yjy [·], respectively).
The shift between yk and yjy can be estimated as the index τ which corre-

sponds to the maximum of Rkj [·], Rkj [τ ] = max(Rkj [i] ∀i ∈ [0, M − 1]).
However, vertical signal averaging of jittered steps will give a clean-appearing,

but distorted step. In particular the averaged step has slower transition than
the original one. In [57] it has been shown that averaging a large number of
records is equivalent to low-pass filter output data by a filter with a 3 dB band-
width given by 0.132/σjσ , where σjσ is the standard deviation of the time jitter.
Under the no realistic but simpler assumption of gaussian system, averaging a
large number of records in the presence of a time jitter adds an other term in
the root-sum-of-squares of about (0.35/0.132) × σjσ ≈ 2.65σjσ . In the most
cases of interest for the testing of ADCs, this contribution can be neglected.
In fact, up to 20 ÷ 30 ps of jitter can be tolerated for ADCs with bandwidth
smaller than 1 GHz, since the term 2.65 σjσ ∼ 80 ps is of minor importance
(∼ 5%) in a root-sum-of-squares sense. Therefore the filtering effect of jitter
must be included in the estimation of the uncertainty components evaluated by
other than statistical means (i.e. Type B [2]) [47] but, usually, it is not neces-
sary to deconvolve the probability density function (PDF) of the jitter from the
averaged step for measuring with a sufficient accuracy the settling time and the
transition duration.

If the ADC bandwidth is wider or the standard deviation of jitter is greater,
so that the averaged jitter has a significant effect on the measured step response,
the contribution of the jitter can be estimated and the PDF of the jitter can be
deconvolved from the step response as reported in [56, 57]. In particular, since
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jitter induces a voltage noise proportional to the slope of the averaged wave-
form at a certain time instant, it is possible to estimate σjσ as σ̂jσ = σV / tan ϑ,
where σV accounts for the estimated voltage noise in the step ramp and tan ϑ
is the slope of the measured step. In [56] it has been shown that this method
gives an asymptotic unbiased estimate for σjσ if applied to an ideal ramp when
no additive noise is present. However, if the pulse generator provides pulse-
like signals and jitter is significant with respect to the transition duration, an
asymptotic bias will result. Even if the bias can be removed by applying the
extended PDF deconvolution method in [143], a ringing effect in the time-
domain representation and a great amount of noise at high frequency in the
frequency-domain have been observed.

Finally, after removing the mean value of the jitter-induced noise and the
bias in the estimation of the transition duration, the jitter-induced noise can be
modeled as a non-stationary zero mean additive white noise, which affects the
measurement repeatability [42]. The uncertainty contributions of the random
component of the averaged jitter can be determined by statistical means by
measuring the variance of the noise at a certain time instance and then, by ex-
trapolating the variance of the non-stationary jitter related noise for the whole
record [47]. Finally the jitter-induced noise variance can be propagated to the
output of the inverse filter in order to obtain an estimation of the uncertainty
[42].

2.5 Quasi-coherent sampling

As observed in Section 5.2.4, perfect coherence is never met because of
the finite frequency resolution of the synthesizers, and an error is done in the
frequency ratio, ∆r = fiff /fsff − J/M , which yields a equivalent-time error
with a maximum value equal to

∆ts,eq = MJ ts,eq
∆r

r
=

M

fsff

∆r

r
if

∆r

r
<

1
J(M − 1)

(9.7)

Assume for instance that fsff is exactly known and that P points have to be
acquired in the transition τrττ ; an equivalent sampling frequency fs,eqff = P/τrττ
is needed. The maximum sampling time error becomes

∆ts,eq =
M2

P
τrττ

∆fiff

fsff
(9.8)

where ∆fiff is the frequency resolution of the second synthesizer. It is apparent
that the sampling time accuracy decreases as the number of acquired sam-
ples increases. However, when M is lowered, frequency resolution, given by
1/(ts,eqM), worsen.

Since the transition duration estimates are particularly influenced by timebase
errors [121], it is good practice to correct the data as much as possible before
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applying deconvolution, which can amplify even small errors. This can be
obtained by a calibration procedure in the time-domain. Let disconnect the
flat-pulse generator and directly feed the ADC with the sinewave provided by
the second synthesizer. A good approximation of the exact frequency ratio r̂
can be estimated by the classical time-domain sinewave technique. Once the
pulse generator is re-inserted in the step-response measurement setup, the ac-
quired data can be reshuffled by a modulo (r̂ Mˆ ) counting process. If it is not
possible to obtain an accurate estimate r̂, a computer simulation of a single
pole response with cutoff frequency equal to the nominal value of the ADC
and a frequency ratio error ∆r, can provide some guidelines for estimating the
frequency response errors due to ∆r [138].

3. Frequency response measurement

From the measurement of the step response it is possible to obtain some
insight into the frequency behaviour of the ADC, as the analog bandwidth and
the complex frequency response . The complex impulse response is necessary
for instance for evaluating linear distortion or for a correct calibration of the
ADC, since it allows knowledge of gain and phase errors versus frequency.

In [137] it has been demonstrated that the frequency response can be effec-
tively estimated from discrete-time, discrete-amplitude step response measure-
ments by numerical differentiation of the step response. Both the algorithm and
the error sources has been deeply analyzed in literature [137, 138, 46, 24].

In figure 9.2 it is shown the flow diagram of the discrete frequency response
estimation algorithm [69]. A fast step input signal x(t) is applied to the input
of the ADC and the step response y(t) is acquired in a record at the output at
the sampling time kTsTT . It is preferable to average more records for reducing
the random contribution of noise, jitter and quantization error.

∆∆V

fsff

x(t)
yy[kTsTT ]]

R-record
averagingaveraging

d·
dt

FFTADC HHHH(fhff ))

Figure 9.2. Flow diagram of the discrete frequency response estimation algorithm.

The complex frequency response H(f) is the continuous-time Fourier trans-
form of the impulse response h(t). H(f) can be estimated by applying the
discrete Fourier transform to the time derivative of the step response, h(t),
which can be obtained by convolving the step response with a differentiation
filter or by using the first difference operator. Since in the first case, if the
length of the differentiation filter is MdMM , the M samples of the step response



250 ADC DYNAMIC CHARACTERISATION

produce an impulse response with only (M−MdMM ) samples, it should be prefer-
able using the simpler first difference operator, which yields a M -sample im-
pulse response.

As stated before, care must be taken over the length of the record for es-
sentially complete settling of the waveform at its end. Constant padding (zero
padding) can be applied before (after, respectively) the derivative of the step
response, for enhancing the spectral resolution of the DFT [40]. Moreover,
when M is not an even power of two, padding allows a more efficient Fast
Fourier Transform, without affecting the accuracy of the frequency response
estimate.

The first difference of the samples provides an estimate of the impulse re-
sponse given by [137]

h[k]
�
= h(kTsTT ) =

1
∆V

d(y(kTsTT ))
dt

≈

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎩⎪⎪

(
y[k+1]−y[k]

∆V TsTT

)
for k = 0, 1, · · · , M − 2,

(
y[k]−y[k−1]

∆V TsTT

)
for k = M − 1,

(9.9)

where ∆V is the amplitude of the voltage step.
The DFT of the impulse response has to be calculated using the rectangular

window and must be multiplied by the value of the sampling period TsTT to
provide an estimate of H(f) at discrete frequencies fhff = h/(MTsTT )

Ĥ(fhff ) = TsTT
M−1∑
k=0

h[k] exp
(
−j2πh

k

M

)
, h = 0, 1, · · · ,

M

2
(9.10)

Notice that the phase spectrum provided by DFT is typically wrapped, since
only the remainder after dividing by 2π is given. This partly depends on the
position of the step transition in the original record y[k], that is an arbitrary
quantity. Since only the portion of the phase spectrum that is not linearly re-
lated to frequency gives some information about the ADC, the nonlinear phase
portion of the phase response can be highlighted by unwrapping the phase, i.e.
by subtracting 2π after each 2π discontinuity [6].

As reported above, the error sources affecting the frequency response es-
timates are aliasing, noise, jitter, quasi-coherent sampling, discrete derivative
and the non-ideal input step [138, 69, 24, 46].

3.1 Aliasing and first differencing
Because of the finite sampling density and the wide band occupation of the

input signal, aliasing is always present in the discrete frequency response mea-
surement, since the power in the input signal at frequencies above the Nyquist



Step and Transient Response Measurement 251

frequency folds back and adds to the power at lower frequencies. Moreover,
the discrete derivative of the step response provides only an approximation of
the impulse response, since differentiation corresponds to multiplying by j2πf
in the frequency domain, while the first difference operation corresponds to
multiplying by 2j sin(πfTsTT )/TsTT . It is apparent that the error decreases as the
sampling frequency increases. It is therefore desirable to increase the sampling
rate by the equivalent-time sampling method previously described.

Since the power that folds back depends on the roll-off of the frequency
response at frequencies above the Nyquist frequency, it is necessary to make
some hypothesis about the frequency response of the ADC for quantifying the
contribution of aliasing to the systematic uncertainty. A more conservative
assumption is that the ADC has a single pole frequency response, so that the
frequency response rolls-off at a rate proportional to f−1 for large f . In this
case the error in the frequency response is given by [137]

|Ĥ(f) − H(f)| ≈ 4 (BW ts,eq) (f ts,eq) (9.11)

where BW is the 3 dB bandwidth of the system in units inverse of the equivalent-
time ts,eq. In many cases this estimate is excessively conservative, since the
system has a higher order response. If, for instance, a more accurate model
is given by a two-pole system with equal time constants, the error in the fre-
quency response becomes [24]

|Ĥ(f) − H(f)| ≈ 8.4 (BW ts,eq)2 (f ts,eq) (9.12)

Figure 9.3 shows these two error bounds for BW = 128 and M = 2048.

3.2 Additive noise

Quantization and additive noise, which can be modeled as a white noise
added to the step response, are amplified and high-pass filtered by the discrete
derivative operation. If additive noise is smaller than quantization noise and
the system has a single-pole response, the error contribution is given by [137]

|Ĥ(f) − H(f)| ≈ 1
∆V

√
π

M

2
sin (πf ts,eq) (9.13)

In the case of a two-pole system with equal time constants and additive noise
with standard deviation σn greater than the quantization noise, the error be-
comes [24]

|Ĥ(f) − H(f)| ≈ σn

∆V

√
2 + (2 sin (πf ts,eq))

2 (M − 2) (9.14)

It is apparent from the above equations that the measurement uncertainty in-
creases for small input step signals. Figure 9.4 shows the effect of quantization
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Figure 9.3. The predicted error due to aliasing in the case of single-pole (solid line) or two-
pole response (dashed line). A step response with 2048 samples was assumed.

noise (additive noise is negligible with respect quantization noise) for some
different values of the input step; for instance, the estimation of the bandwidth
of the ADC is questionable for small value of the step and, due to quantization
and additive noise, large step signals seems to be preferable. However, care
must be taken that nonlinear distortion does not affect the measurement.

Averaging R records before the discrete derivation and the DFT reduces the
error by a factor

√
R.

3.3 Jitter

As reported in the previous section, time jitter leads to a systematic error that
is not removed by averaging many step response measurements. A frequency
response calculated after averaging a very large number of step responses dif-
fers from the true one since it is multiplied by the Fourier transform of the PDF
of the jitter. This error can be partially corrected if the jitter is measured. How-
ever, only a finite number of records are averaged, and a random uncertainty
contribution is still present. It has been estimated [24] that this contribution is,
for a two-pole system with equal time constants,

|Ĥ(f) − H(f)| ≈ 9.8√
R

√
(BW ts,eq)

σjσ

πts,eq
sin(πfts,eq) (9.15)
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Figure 9.4. The predicted error due to additive noise and quantization in the case of a single-
pole response.

where R is the number of step response averaged. Notice that σjσ must ac-
count also for the error due to the quasi-coherent sampling, which is uniformly
distributed between −∆ts,eq and +∆ts,eq. If the systematic contribution of jit-
ter is not corrected, it propagates to the frequency response as described below.

3.4 Effect of the uncertainty in the knowledge of the input
step

The input step signal is usually known with finite uncertainty ±u(t). The
systematic uncertainty in the knowledge of the input step signal causes an
uncertainty in the frequency response estimation at the discrete frequency fhff
which is usually lower than [46]∣∣∣∣∣∣∣∣∣∣2πh

M
U [h]

∣∣∣∣∣∣∣∣∣∣ for h = 0, 1, · · · ,
M

2
(9.16)
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where U [h] is the DFT of the uncertainty u[h]
�
= u(hts,eq).

A more conservative bound reported in the same paper is obtained by the
application of the Parseval’s Theorem and is given by∣∣∣∣∣∣∣∣∣∣2πh

M

∣∣∣∣∣∣∣∣∣∣
√

MuΣ2

2
for h = 1, 2, · · · ,

(
M

2
− 1

)
(9.17)

and ∣∣∣∣∣∣∣∣∣∣2πh

M

∣∣∣∣∣∣∣∣∣∣ √
MuΣ2 for h = 0,

M

2
(9.18)

where uΣ2
�
=

∑M−1
k=0 (u[k])2 is the summed energy of u[k].
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1. Introduction

Hysteresis accounts for the different behaviour of the converter when the
input signal has a positive or, respectively, negative slope (history dependence
or memory effect) . It is defined as the difference between the values that the
transition levels assume when they are approached from the rights side rather
than from the left side.

The histogram test method, which is classically used for estimating the con-
version characteristic, can be easily adapted for measuring also the hysteresis.
To this purpose, it is necessary to collect two different cumulative histograms
as described below; the first, HCHH ↑ , accounts for the output codes which are
acquired in the positive slope, and the second, HCHH ↓ , for those in the negative
one [106].

From the two histograms, two different conversion characteristics are ob-
tained, T↑TT and T↓T , and the hysteresis of the ith transition level is finally esti-
mated as

HY S[i] =
G(T↑TT [i] − T↓T [i])

Q

where G is the gain error, estimated as explained in section 5.9 and Q is the
nominal code bin width.
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2. Test conditions

As in the classical histogram test, a sinewave

v(t) = A cos(2πfiff t + ϕ) + C (10.1)

is applied to the input of the N-bit ADC, R records of M samples each are
collected and the code distribution is used for estimating the conversion char-
acteristic.

The algorithms used for building the two histograms will be described in
the next section. Once the two histograms have been collected, the 2N − 1
transition levels are given by

T↑TT [i] = C − A cos
(

2π
HCHH ↑ [i − 1]

S

)
(10.2)

and by

T↓T [i] = C − A cos
(

2π
HCHH ↓ [i − 1]

S

)
(10.3)

where S = RM is the total number of samples. Notice the factor 2 which
multiplies π in these equations, differently from (5.121), where the transition
level T [i] was estimated.

The amplitude A, the input-to-clock frequency ratio, fiff /fsff , the number M
of samples in a record and the number of records R have to be chosen so as to
minimize the contribution of systematic and random errors.

Systematic errors arise from distortion and additive noise which should be
reduced as more as possible by filtering, as in the classical sinewave tests.
However, their residual effects can be compensated by slightly overdriving the
ADC. Since in the hysteresis measurement two close transition levels are con-
cerned, the effect of distortion and noise on hysteresis measurement is similar
to that they have on DNL measurement.

Therefore, in order to ensure that the maximum systematic error, expressed
in non-dimensional form as a fraction of the nominal code bin width Q, does
not exceed EpdfEE , the overdrive VODVV = VODVV + = VODVV − shall be chosen so that

VODVV ≥ max

{
3σadd, σadd

√
1.43

3
8EpdfEE

}
(10.4)

where σadd is the rms value of the input referred additive B noise.

Moreover, if Edist is the maximum admitted systematic error contribution
of the harmonic distortion expressed in nominal code bin widths Q, then it is
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required that √
2

QA

(√
1 +

VODVV

Q
−

√
VODVV

Q

)
h∑

i=2

iAi ≤ Edist (10.5)

where Ai are the amplitudes of the h most relevant harmonics.
In the practical cases the most severe requirement is that of (10.4).

Once the systematic effects have been accounted for, the input and the sam-
pling frequencies (fiff and fsff , respectively), the number of samples M in a
record and the number R of records must be selected, according to the section
5.5.

In particular, in order to guarantees satisfactory coherent sampling, fiff /fsff
has to be chosen so that

fiff

fsff
=

J

M
(10.6)

with J that should be an integer number mutually prime with M . Because
of the finite frequency resolution of the two synthesizers, it is not possible to
exactly satisfy this requirement. However, it is sufficient that the ratio r =
fiff /fsff does not deviate from the above nominal value by more than

|∆r|
r

≤ 1
2JM

. (10.7)

This limit guarantees that the contribution to the variance in the number of
counts of the cumulated code histograms is smaller than 0.25, so that the below
equation (10.8) applies.

The number of records R must be finally chosen so that

R ≥ 2
[
2N−1ku

B

]2 [
c 2π

M

] {
1.13

[
σ∗

VrirVV
+

c

2
σφ

]
+ 0.25

[
c 2π

M

]}
(10.8)

where the symbols are the same of (5.101). In this equation, the factor 2 which
multiplies cπ is due to the fact that only M/2 samples per record are approxi-
matively collected in the histograms HCHH ↑ and HCHH ↓.

3. A practical case

Consider for instance a 12-bit ADC, with fsff = 100 MHz and fiff ≈ 50 MHz.
Let σadd = 1.1 LSB and σφ = 2 · 10−4 represent the total additive noise and,
respectively, the total phase noise of the system. Let suppose that the clock
signal is provided by a fixed oscillator while the input signal is synthesized by
a synthesizer with 0.01 Hz of frequency resolution, so that

∆r

r
=

∆fiff

fiff
=

0.01
50 106

= 2 10−10 (10.9)
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From (10.7) it must be verified that JM ≤ 2.5 109. A possible choice is
M = 65536 and J = 32001 (fiff = 48829650.88 Hz).
An overdrive of approximatively 5 LSB is sufficient to make negligible the
contribution of the systematic errors, as demonstrated by (10.4) and (10.5).
Finally, from (10.8), R = 30 records are sufficient for estimating the maximum
value of the hysteresis with an uncertainty approximatively of 0.2 LSB and a
confidence level of 99% (from table 5.2 ku = Z0ZZ ,.99 = 2.58).

4. Collection of samples in HC↑ and HC↓

The most intriguing problem in the measurement of hysteresis is how to sep-
arate the two histograms, since a relevant contribution to the measurement un-
certainty may be due to the possibility of classifying a sample in the histogram
HCHH ↑ rather than in HCHH ↓ and vice-versa. Therefore, the algorithm should be as
more as possible insensitive to additive noise and jitter and to finite frequency
resolution, and should be usable above the Nyquist frequency so as at low input
frequency.

In practice, it is convenient to take advantage of the characteristic of the
test setup, since the input signal synthesizer and the clock synthesizer are, in
general, phase-locked. This fact allows reorganizing the acquired samples in
a single period of the equivalent sampling phase. Reorganizing samples is in
general useful since, in some cases, it is very difficult to estimate the signal
slope by differentiating the rude data so as they are acquired. For instance in
figure 10.1 it is shown the case of fiff close to the Nyquist limit, and it is apparent
that it is not possible to argue the slope from the sign of (code[k+1]−code[k]),
since the next sample code[k + 1] belongs to the different slope.

In coherent sampling the acquired data can be reorganized by reshuffling
with a modulo J counting. Once the M samples are shuffled by the modulo J
counting, the new address of the kth sample in the vector becomes

k = k J − M floor

(
k

J

M

)
(10.10)

Figure 10.2 shows the resulting data in the particular case of M = 65536,
J = 32001.

In order to correctly reshuffle the data, it is necessary to verify (10.6) with
a sufficient accuracy. If it is not possible, the reorganized data might become
unusable, as shown in figure 10.3, where a value ∆r/r = 0.01/32001, ap-
proximately 1310 times the limit reported in (10.7), is used.

However, when (10.7) is verified, the reorganization of the data in a single
period by the modulo J counting is always correctly performed.
Once the M data in the record are reorganized in a single period, it should
be easy, in the ideal case of no noise and jitter, determining the conventional
position of the maximum (minimum) of the signal, for instance as the median
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M = 65536, J = 32001
σn = 1.1 LSB, σφ = 2 × 10−4

C
od

e

Acquired sample

4096

3072

2048

1024

0
0 32 64 96 128

Figure 10.1. For high-frequency input signals it is not possible to directly determine to which
slope a sample belongs.

index between the indexes of the highest codes (lowest codes, respectively).
However, since data are always corrupted by noise and jitter, as shown for
instance in figure 10.4, it seems better to estimate the index of the maximum
(minimum) as the centroid of the highest codes (lowest codes, respectively).

An example of pseudo-code for estimating the index of the maximum is
reported below in pseudo-code.

max = 0
count_max=0
FOR k=1:M

IF code[k] = code_max
max = max + k
count_max = count_max + 1

ENDIF
ENDFOR

max = max / count_max
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Figure 10.2. Once reshuffled according to (10.10), with k = k 32001 −
65536 floor(k 32001/65536), the samples can be easily assigned to HC↑ and HC↓.

Finally, the estimates of the indexes of the maximum and of the minimum
allow correctly classifying codes in HCHH ↑ or in HCHH ↓. In fact, all the samples
code[k] with an index k higher than the index of the minimum and lower than
the index of the maximum belong to the positive slope and must be classified
in HCHH ↑, and the others must be classified in HCHH ↓.

5. Some warning

Notice that the hysteresis has been defined as the difference between the two
output values which, on average, correspond to the same value assumed by the
input signal with positive and, respectively, negative slope. This definition
can be used without caution only in the ideal case of zero delay between the
input VINVV and the output VOUTVV . In fact, in the presence of a constant delay τ0ττ ,
hysteresis should be estimated from the input-output characteristic VOUTVV (t) =
F (VINVV (t − τ0ττ )) rather than from VOUTVV (t) = F (VINVV (t)). However, in the
dynamic test of ADCs, the input signal is not known and the delay t0 cannot be
measured. The up and down branches of the conversion characteristic provided
by the above modified histogram test, correspond to the transfer characteristic
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Figure 10.3. When a not integer number J of periods are collected in a record of M samples,
reshuffling can be unusable.

between an ideal pure sinewave and the distorted output with the maximum
(minimum) in phase with the maximum (minimum, respectively) of the input
sinusoid. Therefore, in the presence of distortion, these two branches can re-
sult in an overall elliptic shape, as shown in the part b) of figure 10.5, which
reports the measured deviation from the ideal conversion characteristic, for a
14 bit ADC stimulated by an input sinewave at a frequency very close to the
bandwidth limit of the converter.

In order to better understand this effect, consider that the response of the
converter to an input sinewave is a combination of several harmonic terms

VOUTVV (tk) = A0 +
hmax∑
h=1

Ah sin
(

2π
fiff

fsff
k + ψh

)
(10.11)

Hysteresis could be estimated in the time domain as proposed in [14], by fit-
ting the output data with (10.11) and by retaining as an estimate V̂INVV (tk) only
the fundamental tone plus the DC, A0 + A1 sin (2πfiff /fsff k + ψ1). The up and
down transition levels (T↑TT [i] and T↓T [i], respectively) are then estimated as the
two values that V̂INVV assumes when VOUTVV = TnomTT [i], where TnomTT [i] is the
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Figure 10.4. When noise and jitter are present, the correct position of the maximum of the
signal can be estimated by calculating the centroid of the highest codes.

nominal value of the ith transition level.

This measurement algorithm provides a quite different estimate of the hys-
teresis, as shown in the part a) of figure 10.5, where the solid line represents the
output error VOUTVV (tk) − V̂INVV (tk) versus the estimated input V̂INVV (tk). Since
in the time-domain the delay τ between the maxima of V̂INVV and VOUTVV can be
easily estimated, it is possible to draw also VOUTVV (tk) − V̂INVV (tk − τ), obtain-
ing a characteristic (dash-dotted line) with an elliptic shape similar to the one
reported in the part b) of the figure.

This leads into a subtle discussion on definition of hysteresis. If, for a partic-
ular architecture, it is possible to guarantee that this delay has a constant value
for all the admitted values of the input frequency and amplitude, the time-
domain approach seems to be preferable, since it is unaffected by this delay
contribution. Nevertheless, in particular for high-speed converters, it is known
that some nonlinear effects can contribute an amplitude dependent delay in ad-
dition to the harmonic distortion. For instance, the simultaneous frequency and
amplitude limitation operated by latch-comparators in flash converters yields a



Figure 10.5. The estimated error in the two branches of the conversion characteristic. a):
time-domain representation of the harmonic distortion terms as a function of the fundamental
tone (solid line) and of a sinewave with the same characteristics, but slightly delayed (dash-
dotted line). b): deviation from the nominal conversion characteristic estimated by the modified
histogram test.

delay varying with the signal slope, so that the distorted output, apart from the
quantization and the random effects, is given by [142]

VOUTVV = C + A [sin(2πfiff t + ϕ) +
8
3π

δtd2πfiff cos(2πfiff t + ϕ)

+
2
3π

δtd2πfiff cos(6πfiff t + ϕ)
] (10.12)

where δtd is the maximum delay variation. In this case, the quadrature term
represents a deviation from the ideality, since δtd nonlinearly depends on the
signal amplitude. However, the time-domain fitting approach proposed in [14]
will neglect this non-linear contribution.

Therefore, when there is the possibility that the delay depends on the ampli-
tude and frequency of the signal, it is preferable to use the described statistical

Hysteresisrr Measurementrr 26326
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technique, which is sensitive to the quadrature term also, and to analyse the
dependence of the measured hysteresis upon frequency.
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