

DIRECT TRANSISTOR-LEVEL LAYOUT
FOR DIGITAL BLOCKS

DIRECT TRANSISTOR-LEVEL LAYOUT
FOR DIGITAL BLOCKS

PRAKASH GOPALAKRISHNAN
Neolinear, Inc.

ROB A. RUTENBAR
Carnegie Mellon University

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-8063-8
Print ISBN: 1-4020-7665-7

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Table of Contents

Table of Contents

Preface

Chapter 1 Introduction

v

ix

1

Chapter 2 Circuit Structure And Clustering 13

1.1
1.2
1.3
1.4

1.5

Motivation: Standard Cells vs. Transistors
Our Goals
Previous Transistor-Level Approaches

Overall Strategy

Book Outline

1

5
6

9

12

2.1

2.2
2.3
2.4

2.5

2.6

Introduction

Trails
Essential Clusters and Circuit Structure
Pattern Matching

Circuit Structure Library

Benchmarks, Clustering Experiments and Results

13

14
17
20
22

24

2.6.1Benchmarks for Experiments
2.6.2Synthesis Target Library Comparison
2.6.3Circuit Structure Library Example

2.7 Summary

24
26
33

34

3.1

3.2
Introduction
Quadratic Placement and Partitioning
3.2.1Quadratic Solve
3.2.2Recursive Re-Partitioning
3.2.3Bi-Partitioning Improvement

3.3
3.4

Simulated Annealing Legalization
Global Placement Results
3.4.1Congestion during Global Placement
3.4.2Row Utilization and Congestion

3.5 Summary

4.1

4.2

4.3

4.4

4.5

Introduction
Intra-Cluster Optimizations
Inter-Cluster Optimizations
Global Routability
Local Placement Optimization
4.5.1Pair-Wise Cluster Merges
4.5.2Greedy Local Optimization
4.5.3Dynamic Programming Local Optimization

4.6

4.7

Routing Integration
Layout Results
4.7.1Simple Layout Example
4.7.2Layout Comparison Experiments
4.7.3Dynamic Programming vs. Greedy Local Optimization

35

38
38
40
40
41

44
45
45
48

49

51

54

56

56
56
64
64
67

67
67
72
74

Chapter 3 Global Placement 35

Chapter 4 Detailed Placement And Layout Results 49

vi Direct Transistor-Level Layout for Digital Blocks

4.8 Summary

5.1

5.2

Introduction

Transistor-Level Timing Analysis
5.2.1DCCs: DC-Coupled Components
5.2.2Timing Analysis
5.2.3Transistor-Level Static Timing

5.3

5.4

Delay Graphs and Critical Paths

Timing-Driven Global Placement
5.4.1Timing-Driven Placement Techniques
5.4.2Net-weights from Critical Paths
5.4.3Net-Weight / Timing-Driven Placement
5.4.4Interconnect Delays
5.4.5DCC Delay Macro-Modeling

5.5 Timing Results
5.5.1Delay Improvement Results
5.5.2Netlist Structure and Path Distribution

5.6 Summary

75

77

78
79
80
81
85

88
89
90
91
91
92
95
96
97

101

Chapter 5 Timing-Driven Placement 77

Chapter 6 Conclusion 103

Appendix 107

Bibliography 115

Index 123

Contents vii

Preface

Cell-based design methodologies have dominated layout generation
of digital circuits. Unfortunately, the growing demands for transparent
process portability, increased performance, and low-level device sizing
for timing/power are poorly handled in a fixed cell library. This moti-
vated our search for an alternative layout technique, which has resulted
in the direct transistor-level layout approach that we describe in this
book. This new approach better accommodates demands for device-
level flexibility for small blocks of custom digital logic. It captures
essential shape-level optimizations, yet scales easily to netlists with
thousands of devices, and incorporates timing optimization during
layout.

This book would not have been possible without the support from
several of our colleagues, friends and family. While we cannot mention
all of them, we are particularly grateful to our spouses Surya
Viswanathan, and Martha Baron; Prof. Larry Pileggi & Prof. Rick Car-
ley of Carnegie Mellon University and Dr. Jeff Burns of IBM for their
guidance and feedback throughout the research work; John Cohn &
Dave Hathaway of IBM and Bill Halpin & Artour Levin of Intel for
valuable discussions; Prof. Herman Schmit, Vikas Chandra, Aneesh
Koorapaty, Emrah Acar, Ravishankar Arunachalam and Anoop Iyer for
help with various experiments; colleagues and friends from Neolinear
for their understanding and support. Finally, we thank the Semiconduc-
tor Research Corporation (SRC) for having provided the financial
support for this work.

PRAKASH GOPALAKRISHNAN

NEOLINEAR, INC.

ROB A. RUTENBAR

CARNEGIE MELLON UNIVERSITY

CHAPTER 1 Introduction

1.1 Motivation: Standard Cells vs. Transistors

Standard-cell based design methodologies have dominated layout
generation of digital VLSI circuits. These methods use a library of stan-
dard cells, which are pre-characterized layouts for circuits with about
one to one hundred transistors. Standard cells have several notable vir-
tues: they hide the increasingly unpleasant details of shape-level design
rules; they arrange IO pins on individual gates in geometrically accessi-
ble locations; they assemble with relative ease into row-based blocks;
they can be pre-characterized for timing and power, providing useful
abstraction at higher levels like logic synthesis. As a result, research in
layout automation has split into two directions: (a) device-level layout
for individual cells; (b) cell-level placement and routing for large digi-
tal blocks. Figure 1 illustrates how cell-level tools arrange cells at
block-level, while special techniques are used to generate device-level
layouts for each of the cells from the standard-cell library.

2 Direct Transistor-Level Layout for Digital Blocks

FIGURE 1. Standard-cell based methodology for automatically generating
layouts for digital blocks.

Chapter 1 Introduction 3

Unfortunately, the growing demands for transparent process porta-
bility, increased performance, and low-level device sizing to optimize
block timing and power, are not easily handled in a fixed cell library.
Libraries need to be large to achieve good logic synthesis results;
today’s best libraries comprise thousands of cell variants, enough to
support multiple drive strengths and power/speed trade-offs. As a
result, cell libraries carry an enormous inertia that resists porting, cus-
tom sizing, etc. This contributes to huge library maintenance costs.

FIGURE 2. Our direct transistor-level approach to generate layout.

4 Direct Transistor-Level Layout for Digital Blocks

We propose a direct transistor-level layout approach (see Figure 2)
for small blocks of custom digital logic as an alternative that can more
easily accommodate the demands for device-level and shape-level flex-
ibility. Unfortunately, the layout quality of transistor-level algorithms
proposed to date leaves much to be desired. We argue that the essential
flaw in these prior attempts is an over-reliance on the methods and
assumptions of large-scale cell-based layout algorithms. Individual
transistors may seem simple, but they do not pack as gates do for pur-
poses of optimal layout. Careful inspection of the internal layout of any
well-designed library cell will reveal a wealth of shape-level optimiza-
tions that each shave a bit of area or delay off the overall layout. These
savings may seem negligible, but they are amplified enormously in any
layout with thousands of cells. Algorithms that capture some of these
geometric tricks usually rely on optimization frameworks that cannot
scale beyond a few tens of devices. Algorithms that ignore these shape-
level issues and pretend devices can be laid out as if they were gates
suffer the consequences when thousands of devices are poorly packed.

The lack of alternatives to timing characterization has severely hin-
dered adoption of previous transistor-level approaches in an industrial
flow. Given the importance of interconnect delays during deep sub-
micron (DSM) technologies, the effect of layout on timing closure can-
not be ignored. Pre-characterized standard cells provide useful models
for timing analysis during layout optimization. However, the recent
emergence of efficient, accurate transistor-level timing estimators
([Dartu 98], [McDonald 01]) mitigates this problem. Some of these
estimators are fast enough to be useful within a layout optimization
framework.

Chapter 1 Introduction 5

1.2 Our Goals

In this book, we develop a novel set of algorithms for direct transis-
tor-level layout that:

(a)capture the essential shape-level optimizations, yet
(b)scale easily to netlists with thousands of devices, and
(c)incorporate timing optimization during layout.

The key idea is early identification of essential diffusion-merged
MOS device groups, and their preservation in an uncommitted geomet-
ric form until the very end of detailed placement. Roughly speaking,
we extract essential groups early from the transistor-level netlist, place
them globally, optimize them locally, and then finally commit each to a
specific shape-level form while concurrently optimizing for both den-
sity and routability. This division of the netlist into essential clusters
further makes it possible to analyze the timing-behavior of the circuit,
which we use to guide placement optimization by accounting for esti-
mated timing delays due to the interconnect. We use a commercial
detailed router to complete our flow. Results to date are encouraging:
we can place/route 2000 devices in about 30 minutes, and we can con-
sistently save 15-30% on area in comparison with a standard commer-
cial cell-based flow. Our timing optimization techniques achieve about
10-20% reduction in overall circuit delays.

We now review existing transistor-level approaches and also build
the geometric foundation for our layout abstraction. We then present an
overview of our methodology, highlighting its key differences from
existing methods.

6 Direct Transistor-Level Layout for Digital Blocks

1.3 Previous Transistor-Level Approaches

Prior work on transistor-level digital layout focuses on two targets:
layout for individual library cells, and layout for larger blocks of arbi-
trary logic. We briefly look at each of these.

In the context of cell layout generation, Maziasz [Maziasz 92] pro-
vides a good review of the graph theoretical formulations and algo-
rithms for one-dimensional cell layout synthesis. Some approaches,
like Malavasi [Malavasi 95], LiB [Hsieh 91] and PicassoII [Lefebvre
92], partition the circuit into locally optimal clusters of transistors and
then place these clusters. However, it has been noted by Sadakane
[Sadakane 95] and HCLIP [Gupta 99] that techniques which generate
intra- and inter-cluster layouts in two separate stages can yield layouts
that are far from optimal. The concept of geometric options for clusters
during final placement (Sadakane [Sadakane 95]) is one we will
revisit—though we present a novel scalable formulation. Although
HCLIP does explore inter-cluster diffusion merging using a hierarchi-
cal ILP formulation, we believe that this must be exploited dynami-
cally, in the context of overall physical placement and routability.
Further, the maximum number of transistors that can be handled by any
of these methods is about 100 to 200. We aim at circuits that are an
order of magnitude larger.

Basaran [Basaran 97] begins by transferring a MOS circuit into a
diffusion graph. Formally, this graph has a node for each net and an
edge for each MOS device channel. Any trail through the graph identi-
fies a series of devices, all of whose drain/source diffusions may be
shared if the devices are placed in a row, in the same order the path vis-
its the edge associated with each device (see Figure 3). It was shown
that iterative improvement methods involving trail reordering can then
be used to search the solution space of min-width layouts for those that
minimize routing. The work by Basaran is one we will re-visit in our
discussions on shape-level optimizations. Riepe [Riepe 99] uses Basa-

Chapter 1 Introduction 7

FIGURE 3. Trails in Diffusion Graph and Layout

ran’s techniques to dynamically alter trails within a 2-D placement
using a sequence pair formulation. More recent work, AKORD [Serdar
99], uses pre-calculated optimal chaining orders to accept/reject ran-
dom moves within an annealing framework, in the style of KOAN
[Cohn 94]. These chains of transistors, called trails, are a natural
abstraction for layout optimization. However, as before, these algo-
rithms do not scale well for larger circuits.

It has been noted by Lefebvre and Chan [Lefebvre 89] that for 2-D
layouts, a solution with minimum wiring complexity is not necessarily
of minimum width. This leads us to believe that constraining transistors
too early into dense, min-width, locally optimal, clusters can hamper
placement flexibility.

In the realm of block-placement at transistor level, Tani, et al. [Tani
91] partition the circuit into sub-circuits using a temporary cell library

8 Direct Transistor-Level Layout for Digital Blocks

which they create. Each sub-circuit is a collection of cells in a row.
They then optimize each row for one-dimensional placement. They
have generated layouts with areas smaller than standard cell-based lay-
outs—but only in an older channel-based routing style. Their saving
came from allowing routing over the cell, which is the norm today.

Three recent industrial cell and block synthesis tools address
related practical problems. Cellerity [Guruswamy 97] employs anneal-
ing-based optimization for diffusion abutment, wirelength, channel
density and gate alignments during leaf cell synthesis. C5M [Burns 98]
develops hierarchical row-based macros for static CMOS logic. Sche-
matic partitioning is combined with device-size-tuning and on-the-fly
leaf-cell synthesis, accommodating multiple objectives and top-down
constraints. However, our method aims to eliminate explicit cell gener-
ation. Nevertheless, we note that pin positioning and cell image flexi-
bility are crucial to routability. LAS [Chow 92] produces flat symbolic
layouts at block-level, which are then compacted. A major drawback is
the preliminary partitioning into locally optimal clusters which are not
thereafter dynamically altered in the context of the overall placement.
We have observed empirically in our own tools that dense diffusion
merging without careful routability consideration will require excessive
white space to accommodate routing. This results in sub-optimal over-
all layouts.

In the next section, we introduce our new strategy that overcomes
the quality and scalability problems of these previous approaches. Fur-
ther, our method incorporates timing optimization that is lacking in
these prior transistor-level approaches.

Chapter 1 Introduction 9

1.4 Overall Strategy

We begin with a fundamental question: in a transistor-level layout
tool, what exactly are we placing and routing? Clearly, standard-cells
offer a rather coarse abstraction as fundamental units of placement.
Individual transistors, on the other hand, tend to be too small, espe-
cially if we want both shape-level optimization (which is very local)
and accurate routability prediction (which requires a more global
view). As mentioned in the previous section, trails (see Figure 3),
which are chains of diffusion-merged transistors, are natural device
groupings. We later show that by abstracting the netlist as groups of
trails, we can effectively support geometric optimization from shape-
level up to block-level.

FIGURE 4. Our Geometric Model

10 Direct Transistor-Level Layout for Digital Blocks

For the static CMOS style, we restrict ourselves to a row-based
geometric model that resembles a standard cell-based footprint. As
illustrated in Figure 4, we have two rows of N-type trails alternating
with two rows of P-type trails. There are two reasons for this choice: (a)
transistors from alternating rows of the same diffusion type can share a
common power rail and also the same well region; (b) transistors from
neighboring rows of opposite diffusion type can have aligned polysili-
con gates.

Transistor clustering has been a key step in many prior layout algo-
rithms. However, the aggressive clustering needed to handle flat place-
ment of thousands of devices invariably leads to locally-optimal, but
globally sub-optimal groups that limit the shape-level optimizations we
want to explore. We resolve this by initially forming only essential
clusters of devices, which are mandatory for the given circuit style. For
example, for static CMOS circuits, these are transistors that are
strongly connected and constrained to be together due to polysilicon
gate-alignment. A cluster is represented as a group of connected tran-
sistor trails. In our approach, “global” optimization focuses on these
clusters as the atomic units; “detailed” optimization focuses on the
trails inside a specific cluster.

Previous approaches to clustering either completely disallowed
inter-cluster merges (like standard-cell methods), considered inter- and
intra- cluster merges in two separate stages, or ignored global place-
ment/routability issues during cluster layout optimizations. The key
components of our trail-level approach are as follows.

Minimal Essential Clustering: We initially form essential clusters
to meet circuit style-imposed layout restrictions. We keep this mini-
mal for maximum flexibility.

Circuit Structure Recognition: We recognize structure in transistor
netlists and store distinct circuit structures in a library for pattern
matching. These circuit patterns are our basis for clustering. This
creates a level of hierarchical divide-and-conquer that lets us effi-

Chapter 1 Introduction 11

FIGURE 5. Flow Overview

ciently compute all feasible trail-level layouts for any cluster (pat-
tern). This is efficient because we only need to compute essential
trail formations for a few distinct circuit structures.

Timing-Driven Global Placement : We find optimal locations for
our essential clusters while minimizing overall wirelength, conges-
tion and timing delays. The clusters, however, are not committed to
any fixed layout option (any arrangement of transistor trails) during
this phase.

Detailed Placement: We next explore dense inter-cluster diffusion
merging considering all feasible intra-cluster layout options, in the
context of global placement and routability. This is where each clus-
ter is finally bound to a physical shape-level trail layout. Global
routing is updated dynamically during this optimization.

To complete the flow, we have integrated a commercial detailed
router.

12 Direct Transistor-Level Layout for Digital Blocks

1.5 Book Outline

The remainder of this book describes our algorithms in detail and is
organized as follows.

Chapter 2, titled Circuit Structure and Clustering, describes our tech-
niques for circuit structure recognition and essential clustering,
which form the basis of our shape-level optimizations and overall
placement. We describe here the benchmarks used for various exper-
iments in this book and how they were generated. We also present
results comparing benchmarks synthesized using different libraries.

Chapter 3 describes our global placement algorithms. For simplicity,
we only describe non-timing driven algorithms here. Timing optimi-
zation is discussed in detail separately. Results demonstrating influ-
ence on congestion are presented.

Chapter 4 describes our detailed placement techniques and summa-
rizes our routing integration. We present fully routed layout results
comparing our flow with a standard cell-based flow.

Chapter 5 describes our timing optimization during global place-
ment. We present results comparing our approaches with and with-
out timing-optimization.

Chapter 6 offers concluding remarks and future work.

We have implemented our ideas in a tool called TrailBlazer. The
results presented in each of the chapters used TrailBlazer to validate the
relevant algorithmic aspects of our flow.

CHAPTER 2 Circuit Structure And
Clustering

2.1 Introduction

Our transistor-level approach abstracts the netlist as clusters that are
groups of strongly connected trails or chains of transistors. Compared
to individual transistors‚ clusters make it possible to tackle netlists with
thousands of transistors‚ while enabling geometric optimization from
shape-level up to block-level. For maximum placement flexibility and
to prevent clustering from generating locally optimal but globally sub-
optimal groups‚ we only form essential clusters of devices‚ which are
mandatory for a given circuit style. These restrictions include con-
straints that require groups of transistors forming logic stages‚ to be laid
out in a particular fashion‚ adjacent to each other. As we shall see in a
later chapter‚ such a clustering of groups of transistors is also necessary
to enable timing analysis of the circuit.

To motivate our choice of groups of trails as clusters‚ we begin this
chapter with a discussion of trails and their usefulness in transistor-
level layout. We then describe how we exploit inherent local structure

FIGURE 6. Example Eulerian Trail: (a) the circuit partition, (b) the
diffusion graph, super-edges are shown with dashed lines, (c) an
Eulerian trail and the corresponding trail cover

in netlists to form essential clusters and efficiently explore shape-level
optimization.

2.2 Trails

Trails are chains of transistors that are merged at their source/drain
terminals in the layout. In order to appreciate their utility in shape-level
layout optimization‚ we review here the work by Basaran [Basaran 97].

14 Direct Transistor-Level Layout for Digital Blocks

Basaran begins by transferring a MOS circuit into a diffusion
graph. Formally‚ this graph has a node for each net and an edge for
each MOS device channel. Hence‚ the graph only has edges between
nodes that represent transistor drains and sources. The essential utility
of the diffusion graph is that any long path through the graph identifies
a series of devices‚ all of whose drain/source diffusions may be shared
if the devices are placed in a row‚ in the same order the path visits the
edge associated with each device. Figure 6(b) shows the diffusion
graph for the circuit in Figure 6(a).

Ideally‚ we would like to be able to find a path which includes all
devices to be placed in a row and merged. Such a path through the
graph is called an Eulerian path or Eulerian trail. However‚ such a path
does not always exist. In particular‚ it cannot exist if any node in the
graph has an odd degree. Basaran showed that by adding a single dis-
tinguished node to the graph‚ called a super-vertex and edges from each
odd-degree node to this super-vertex (super-edges)‚ the modified diffu-
sion graph has an Eulerian trail. He also showed that the super-edges
correspond to gaps in the placement of the devices in a row. Also‚ any
Eulerian trail in this augmented graph maximally merges the MOS
devices when placed in a row‚ and minimizes the number of gaps where
adjacent MOS devices have drains/sources which cannot be shared.
Figure 6(c) shows an Eulerian trail corresponding to the diffusion
graph in Figure 6(b). The corresponding layout of minimum width is
shown in Figure 7.

Basaran uses this idea to suggest a novel optimization strategy for
the simple single-row MOS layout problem. Instead of representing the
geometry of the devices explicitly‚ he manipulated Eulerian trails in the
diffusion graph. The idea was to do iterative improvement to reshape
the Eulerian trail‚ thus creating a different one-dimensional placement.
The idea is also to explore only in the space of minimum-width single-
row layouts‚ using as objective function‚ the number of wiring tracks
needed to route the layout.

Chapter 2 Circuit Structure and Clustering 15

FIGURE 7. Basaran’s techniques for getting different diffusion merges:
Stacked layout for Figure 6 (c)

The solution space of all layouts of minimum width is traversed
using simulated annealing with two annealing moves. A sub-trail
modification move picks‚ at random‚ a sub-trail within the layout and
generates a new sub-trail randomly with the same terminals at its ends.
This is achieved by evaluating a new Eulerian trail in a sub-graph
formed by the elements of the sub-trail. A trail rotation move rotates
the entire trail so that the relative ordering of the sub-trails in the Eule-
rian trail change. These two moves have been proven to be complete
[Basaran 97]. Figure 7 illustrates these for the example from Figure 6.

16 Direct Transistor-Level Layout for Digital Blocks

Basaran’s techniques illustrate an important point that trails form
natural groupings of transistors. Further‚ they also demonstrate that
special techniques are required to explore trail formations for local
groups of transistors. Unfortunately‚ Basaran’s techniques do not scale
beyond netlists with few tens of transistors. In the next section‚ we
explain how circuit-style imposed constraints further restrict trail for-
mation possibilities for local groups of transistors. We then describe
how we exploit circuit structure to tackle problems with a large number
of transistors‚ while incorporating trail-level optimizations.

2.3 Essential Clusters and Circuit Structure

Most transistor netlists and their corresponding layouts have a sig-
nificant amount of important local structure. When style-specific cir-
cuit constraints are imposed‚ there are not too many ways in which the
transistors can be combined to produce routable layouts. For example‚
an important requirement for series-parallel static-CMOS circuit lay-
outs is the alignment of polysilicon gates belonging to complementary
transistors. Another performance-induced constraint is the level of
strapping required on the source/drain diffusion nodes. Guan et. al.
[Guan 95] describe techniques for creating layouts when partial/full
diffusion strapping is required. It turns out that even for the most com-
monly occurring circuit structures‚ there may not be several different
ways of combining the transistors to form trails while paying attention
to these details. For the circuit shown in Figure 8‚ there is only one such
way of combining the transistors so that the resulting placement is
routable. For some other simple circuits like that in Figure 9 there are
more trail formation options to choose from.

These complementary pairs of trails together form the essential
trail clusters that need to be together because of circuit style imposed
restrictions. We refer to the corresponding layout options for these clus-
ters as cluster layout options. Notice however that these options are still

Chapter 2 Circuit Structure and Clustering 17

FIGURE 8. Circuit with only one configuration for trails

modest in number (two for the simple NAND example in Figure 9).
Consequently‚ we argue that the cluster layout options should not be
discovered on-the-fly‚ but should instead be dynamically re-arranged
during placement.

Further‚ in large transistor-level netlists‚ there are often repetitive
circuit structures. This is especially true of control logic and data-path
circuits that are commonly synthesized by technology mapping to a
(sized transistor-level) logic library. Our key idea is to identify these
circuit structures‚ and group them‚ bottom-up via pattern matching. We
describe this in the next few sections.

18 Direct Transistor-Level Layout for Digital Blocks

FIGURE 9. Simple NAND circuit with two possible configurations for
trails.

Chapter 2 Circuit Structure and Clustering 19

2.4 Pattern Matching

We use graph isomorphism techniques for pattern matching. There
have been similar approaches to pattern matching in netlist partitioning
[Ohlrich 93]. We make use of the Graph-Matcher tool library [Messmer
95]. Graph-Matcher maintains model graphs in its database (Graph-
MatcherDatabase) that it uses for pattern-matching with input graphs
via graph isomorphism. We start by generating a circuit graph‚ that has
a one-to-one mapping with a given circuit structure. This is achieved by
having a node corresponding to each source‚ gate and drain terminal of
individual transistors. All source/drain nodes connected to the same net
can further be collapsed into a single node. For gates connected to each
other‚ we introduce a new node for the common net and connect each
such gate node to this node. We also label the power nodes (VDD/

FIGURE 10. Example Circuit Structure Graph used for pattern-
matching via graph isomorphism

20 Direct Transistor-Level Layout for Digital Blocks

GND)‚ diffusion nodes and gate nodes differently. Such a graph struc-
ture enables us to correctly match circuit structures while paying atten-
tion to the connectivity. An example circuit graph for a simple NAND
circuit is shown in Figure 10.

Figure 11 shows our algorithm for pattern matching. As shown
here‚ if there are any special circuit structures that the user cares about‚

FIGURE 11. Algorithm for circuit structure recognition via pattern-
matching.

Initialize GraphMatcherDatabase with no models
foreach special circuit structure‚ c 1

g = generate circuit graph for c 2
Insert g as new model in GraphMatcherDatabase 3

end 4
let Clusters be essential circuit clusters from netlist 5
foreach circuit in Clusters‚ c 6

g = generate circuit graph for c 7
m = No. of matches of g with GraphMatcherDatabase

models 8
if m > 0 9

Record c as instance of matched model circuit struc-
ture 10

else 11
Insert g as new model in GraphMatcherDatabase 12
Record c as new circuit structure for the new model13

end 14
end 15

Chapter 2 Circuit Structure and Clustering 21

these can be used to initialize the GraphMatcherDatabase. The netlist
is partitioned into essential circuit clusters by identifying tightly cou-
pled transistors. Any partitioning scheme can be used at this step. In
our case‚ we simply identify the transistors that are tightly connected to
each other via source/drain connections. Such groups are also referred
to as de-coupled groups or DCCs. The utility of DCCs will become
clear when we discuss timing analysis in a later chapter. Note that this
partitioning defines our minimal essential clustering. Each circuit clus-
ter is then matched with the models in the GraphMatcherDatabase as
shown. Note also that we build this database of models as we find new
structures in the netlist. This lets us discover new structures in the
netlist as well as identify structures that are repetitions of each other.

2.5 Circuit Structure Library

Having identified distinct circuit structures‚ we determine optimal
trail formation options for these circuit structures and store them in a
Circuit Structure Library. As shown in Figure 12‚ this provides a
framework that allows us to use any of the known diffusion graph algo-
rithms‚ like Basaran’s‚ or other cell layout synthesis techniques to
determine optimal trail options. This results in significant computa-
tional savings because we only need to determine optimal options for
small‚ distinct circuit structures in the netlist.

Sadakane [Sadakane 95] uses clusters and template-options for
clusters‚ but their method is extremely time-consuming and handles
only up to 80 transistors. This could be attributed to their annealing-
based intra-cluster option selection. In a later chapter‚ we explain our
novel ideas for using the circuit structure library and trail options to
explore inter-cluster diffusion merges between all feasible intra-cluster
layout options‚ exhaustively and deterministically‚ in the context of glo-
bal placement and global/detailed routability.

22 Direct Transistor-Level Layout for Digital Blocks

FIGURE 12. Circuit Structure Library

Chapter 2 Circuit Structure and Clustering 23

2.6 Benchmarks‚ Clustering Experiments and
Results

TABLE 1.1 Benchmark generation for technology

Steps
Logicdescription

Logic synthesis

Transistor-level flatten-
ing

Tools / Method
LGSynth91 bench-
marks [CBL]

Using SIS [Sentovich
92] for logic synthesis.
Simple target library
containing INVERT/
AND/NAND/OR/NOR
gates up to 4 inputs.

Using scripts and tran-
sistor-level implementa-
tions of library elements
from target library.

File Formats
Input: BLIF

Output: Functional
schematic in NETBLIF
format, using logic gates
from target library

Output: Transistor-level
netlist in TrailBlazer’s
TRAN format

In this section‚ we first discuss the benchmarks used for various
experiments in this thesis and describe our process for generating them.
We then present results comparing a set of benchmarks synthesized
using different libraries‚ in the context of the clustering techniques
described in this chapter.

2.6.1 Benchmarks for Experiments

For the various experiments in this thesis‚ we chose several stan-
dard LGSynth91 benchmarks [CBL]. The are logic descriptions (in
BLIF formats). We compile these into functional schematics using
logic synthesis‚ which we then flatten to a transistor-level netlist. For

24 Direct Transistor-Level Layout for Digital Blocks

specific algorithmic comparison‚ we have used technology parameters
from either the 0.35um HP process or the 0.18um STMicroelectronics
process. In general‚ the choice was based on the availability of certain
parameters and infrastructure. For example‚ owing to the availability of
the HCMOS8D CORELIB (full standard cell library) from STMicro-
electronics‚ we used it for library comparison and clustering experi-
ments presented in this chapter. Similarly‚ based on available CCT
routing integration‚ the HP 0.35um technology parameters were used
for layout comparison experiments. Timing-driven experiments are

TABLE 1.2 Benchmark generation for STMicroelectronics 0.18um
technology

Steps
Logic description

Intermediate AND-OR
logic

Logic synthesis

Transistor-level flatten-
ing

Tools / Method
LGSynth91 bench-
marks [CBL]

Using SIS [Sentovich
92] & scripts

Using Design Compiler
[Synopsis] for logic syn-
thesis. Target libraries
created using various
subsets of HCMOS8D
CORELIB from [STM]
and compiled using
Synopsis Library Com-
piler

Using scripts and tran-
sistor-level implementa-
tions of library elements
from HCMOS8D
CORELIB (SPI format)

File Formats
Input: BLIF

Output: Verilog AND-
OR logic

Output: Verilog func-
tional schematic using
logic gates from target
library

Output: Transistor-level
netlist in TrailBlazer’s
annotated SPICE format

Chapter 2 Circuit Structure and Clustering 25

presented using STMicroelectronics 0.18um parameters, owing to
available wiring delay estimates and simulation tool parameters.
Details of how the transistor-level benchmarks were generated from the
original logic descriptions, for the HP & STMicroelectronics technolo-
gies, are provided in Table 1.1 & Table 1.2 respectively.

We now compare benchmarks using different combinations of syn-
thesis target libraries for the STMicroelectronics 0.18 technology and
present results from clustering.

2.6.2 Synthesis Target Library Comparison

We compare the results of logic synthesis for a set of five bench-
marks, synthesized using different target libraries. We generated five
target libraries of varying sizes, using the full HCMO8D CORELIB
standard cell library and some arbitrarily chosen subsets, as shown in
Table 1.3.

Figure 13 shows the sizes of the various libraries in terms of the
number of cells in the library and also its effect on the total number of
gates in each of the five benchmarks. Note that as the library size
increases, the number of gates in the netlists decreases, since synthesis
has the option of choosing from complex cells. This is one of the
advantages of having flexibility during synthesis, in the form of a larger
library.

For the benchmarks synthesized above, Figure 14 compares the
number of unique library cells that actually get used in the various
netlists, with the increasing library sizes. Notice here that the number
of unique cells that got used during synthesis is almost an order of mag-
nitude smaller than the number of unique cells available in the library,
as the library size increases.

26 Direct Transistor-Level Layout for Digital Blocks

TABLE 1.3 Elements in various libraries that are subsets of
HCMOS8D CORELIB

Library
lib-0

lib-1

lib-2

lib-3

lib-4

Elements
IVLL, ND2LL, ND3LL, ND4LL, NR2LL, NR3LL,
NR4LL

lib-0 elems + AN2LL, AN3LL, AN4LL, OR2LL,
OR3LL, OR4LL, AO10LL, AO12LL, AO13LL,
AO14LL, AO15LL, AO16NLL, ...

(See Appendix for full list)

lib-0 elems + AN2LL, AN2LLP, AN2LLX3,
AN2LLX4, AN3LL, AN3LLP, AN3LLX3, AN3LLX4,
AN3LLX8, AN4LL, AN4LLP, AN4LLX3, AN4LLX4,
IVLLP, IVLLX05, IVLLX16, IVLLX3, IVLLX32,
IVLLX4, IVLLX5, IVLLX8, ND2LLP, ND2LLX05,
ND2LLX3, ND2LLX4, ND3ALL, ND3ALLP,
ND3ALLX3, ND3ALLX4, ND3LLP, ND3LLX05,
ND3LLX3, ND3LLX4, ...

(See Appendix for full list)

lib-2 elems + AO10LL, AO10LLX05, AO10NLL,
AO10NLLP, AO11LL, AO11LLP, AO11LLX05,
AO11NLL, AO11NLLP, AO12LL, AO12NLL,
AO12NLLP, AO13LL, AO13LLX05, AO13NLL,
AO13NLLP, AO14LL, AO14NLL, AO14NLLP,
AO15LL, AO15LLX05, AO15NLL, AO15NLLP,
AO16LL, AO16NLL, AO16NLLP, AO17LL,
AO17LLX05, AO17NLL, AO17NLLP, AO18LL,
AO18LLX05, AO18NLL, ...

(See Appendix for full list)

Entire library

Chapter 2 Circuit Structure and Clustering 27

FIGURE 13. Number of gates in benchmarks for various library sizes

28 Direct Transistor-Level Layout for Digital Blocks

FIGURE 14. Number of unique cells used in benchmarks for various
library sizes

Chapter 2 Circuit Structure and Clustering 29

FIGURE 15. Comparing unique cells used with unique circuit
structures in the benchmarks, across various libraries.

30 Direct Transistor-Level Layout for Digital Blocks

FIGURE 16. Number of gates compared to unique circuit structures
across varying benchmark sizes, synthesized using various libraries.

Chapter 2 Circuit Structure and Clustering 31

For the transistor-level netlists that resulted from the synthesis
experiments‚ we now look at the circuit structures identified using the
techniques described in this chapter. For each target library‚ Figure 15
compares the number of unique cells from the library that got used in
the various benchmarks with the number of unique circuit structures in
the netlist. As before‚ these numbers are a property of the target library
used. For the simple library (lib-0)‚ the number of cells equals the num-
ber of circuit structures. As the library size increases‚ complex gates
like ANDs & AOIs break up into multiple individual circuit structures.
However‚ different cells of varying sizes could map to the same circuit
structure. Notice that in our experiments‚ as the library size increased‚
the number of unique circuit structures were smaller than the number of
unique cells from the library that got used.

This is significant because we just showed that these numbers are
far fewer than the total number of elements in the library‚ for large
libraries.

In Figure 16‚ we have sorted the benchmarks based on their sizes.
Notice that as the benchmark size increases‚ while the total number of
logic gates in the netlist rises (and consequently the number of transis-
tors increases)‚ the number of unique circuit structures in the netlist
does not scale significantly. This is the reason we use these circuit
structures as the basis of our divide-and-conquer strategy.

The trends we observe in our experiments are in tune with other
published work related to synthesis and technology mapping. Early
work comparing transistor implementations of logic cells and trade-offs
on the cell library composition was done by Rudell [Rudell 89]. It was
shown in [Detjens 98] that significant improvement can be achieved by
having a larger‚ more complex library‚ where the number of series and
parallel transistors‚ in the static CMOS cells‚ is varied. [Guan 96] later
showed that even though the total number of such complex cells can
get to the order of billions‚ the technology mapper only selected on the

32 Direct Transistor-Level Layout for Digital Blocks

FIGURE 17. Circuit Structure Library for circuit C432

order of 100 of these cells to implement each of their logic synthesis
benchmark circuits.

2.6.3 Circuit Structure Library Example

For one of the benchmarks from the experiments above‚ namely
C432 with 113 gates synthesized using lib-2 above‚ the resulting tran-
sistor-level netlist had 578 transistors and 133 clusters but only 7 dis-
tinct circuit structures. The resulting circuit structure library is
illustrated in Figure 17‚ showing the number of instances of each of
those circuit structures in the netlist and also the number of trail pattern
options for each of them. Notice that each of the elements has a very
small number of trail pattern options to choose from. This is the reason
for reduced computational effort during layout generation.

Chapter 2 Circuit Structure and Clustering 33

2.7 Summary

In this chapter, we discussed the importance of trails in shape-level
layout and showed how groups of strongly connected transistors and
their trail formations can be abstracted as clusters. We showed the
necessity for clustering and the need to keep it minimal. We then
described strategies for identifying these clusters in a netlist and using
pattern matching to recognize groups of clusters with the same circuit
structure. Such a strategy helps us efficiently compute trail formation
options. The results presented in this chapter demonstrate that while the
libraries used for synthesis may be large, the resulting netlists make use
of a very small subset of cells from the library. Consequently, we end
up with a very small number of distinct circuit structures. Further, even
though the number of transistors in the netlists goes up, the number of
distinct circuit structures does not scale significantly, justifying our
choice of circuit structures as the basis for divide-and-conquer.

In the next few chapters, we describe how these essential clusters
and their trail formation options form the basis of our placement algo-
rithms. We first place these clusters globally while minimizing wire-
length, congestion and timing. These clusters however remain
uncommitted to any shape-level layout until our detailed placement
step, where we explore various shape-level layout options, in the con-
text of local optimality.

34 Direct Transistor-Level Layout for Digital Blocks

CHAPTER 3 Global Placement

3.1 Introduction

While clustering forms the essence of our divide and conquer
approach, the novel idea in our placement technique is to find an
approximate placement for these clusters before committing each clus-
ter to a specific shape-level layout. Such a two phase approach is
appropriate because global aspects of the placement like wirelength,
congestion, area, row-densities and timing, depend on the overall loca-
tions of these clusters, while the detailed shape-level optimizations are
affected by inter-cluster interactions in the context of local optimality.
In this chapter, we focus on our techniques for global placement of
uncommitted clusters, while optimizing for wirelength, congestion,
area and row-densities. In a later chapter, we explain how this method
is extended to handle timing optimization.

Placement is a well researched topic. Macro-placement methods
like quadratic placement, combined with min-cut partitioning strategies
([Tsay 88], [Kleinhans 91], [Eisenmann 98]), have proven to be very
effective in reducing overall congestion. On the other hand, iterative

36 Direct Transistor-Level Layout for Digital Blocks

improvement techniques that use simulated annealing ([Sechen 86])
have useful hill-climbing abilities that allow for multi-objective optimi-
zation. While our techniques are not limited by the choice of a place-
ment algorithm, we have chosen a combination of some of these
standard techniques to explicitly address our placement objectives. As
shown in Figure 18, we use a combination of quadratic placement and
partitioning techniques to quickly optimize for wirelength, congestion
& area. This is followed by simulated annealing based iterative
improvement to optimize for row-densities and legal non-overlapping
cluster placement, while also accounting for area and wirelength. In the
rest of this chapter, we describe these techniques in detail and also
present some results to demonstrate their utility. During this phase,
clusters, that are the placeable objects, are modeled using an approxi-
mation for their widths & heights. This approximation does not affect
the final result significantly, since the next placement phase (detailed
placement) handles shape-level optimization. Also, as a convenient
simplification, we assume the input/output pins are located along the
boundary of the block.

FIGURE 18. Global Placement Strategy

Chapter 3 Global Placement 37

FIGURE 19. Quadratic Partitioning

38 Direct Transistor-Level Layout for Digital Blocks

3.2 Quadratic Placement and Partitioning

We employ recursive re-partitioning-based quadratic placement, in
the style of PROUD [Tsay 88]. This involves three major components:
(a) quadratic solve, (b) recursive re-partitioning, (c) bi-partitioning
improvement. A quadratic solve gives us initial locations for the clus-
ters. This is used as a starting point for partitioning. During the parti-
tioning phase, a horizontal (or vertical) cut line is located, via sorting
on Y (or X), so that about half the cluster area is on each side of the cut.
A physical cutline is then placed at the actual center of the partition.
For each partition thus formed, quadratic optimization is carried on, for
clusters within the partition, after projecting the coordinates of all clus-
ters/pins outside the partition onto the cutline. Applying this idea recur-
sively (see Figure 19), we create a sequence of increasingly smaller
(but increasing in number), wide and narrow regions in which we con-
fine and re-place the enclosed modules. In this section, we briefly look
at some of the highlights of these steps. The reader is recommended to
refer to relevant publications for further details.

3.2.1 Quadratic Solve

As in [Tsay 88] & [Kleinhans 91], a quadratic programming prob-
lem is derived from the circuit connectivity and is solved to generate an
initial location for each of the clusters. During this solve, the clusters
are modeled as point-modules and the nets are modeled as two-point
connections between all the modules connected to them. The objective
function is the weighted sum of the squared rubber-band lengths of
nets:

Chapter 3 Global Placement 39

The vectors x and y represent the coordinates of the various clusters
for the movable modules. The matrix C, also referred to as the modified
connectivity matrix, and the vectors & are populated by the proce-
dure set_up_objective_function, described in Figure 20. Here,

FIGURE 20. Setting up objective function for quadratic solve

procedure set_up_objective_function

Initialize C=0,

foreach net in Netlist, n
wt = net_wt(n) * 2 / (num_pads(n) +
num_modules(n))

foreach module connected to net n,

16

17

18

19

20

foreach pad connected to net n, 21

end

end
end

end

22

23

24

25
26
27

40 Direct Transistor-Level Layout for Digital Blocks

num_mods(n) refers to the number of movable modules connected to
net n and num_pads(n) refers to the number of pads connected to net n.
The pads here correspond to either the input-output pins along the
boundaries, or the modules in other partitions that are considered fixed
for the purposes of the solve within a given partition. pad_x_location
and pad_y_location refer to the locations of the pads projected onto the
boundary of the current partition. The parameter net_wt is an optional
multiplier to scale the net’s importance. This is used, later on, for tim-
ing-driven placement. The x and y optimizations are separable and the
solution is found by solving the following set of linear equations:

We solved these equations using conjugate-gradient based methods
provided in the LASPack library [Skalicky 96].

3.2.2 Recursive Re-Partitioning

In the style of PROUD, the quadratic solve & partitioning tech-
niques are applied recursively to the resulting smaller partitions. In
order to capture the effect of modules in other partitions to the place-
ment of modules in the current partition, we resort to terminal propaga-
tion, where modules & pins outside the current partition are treated like
pads and their locations are projected to the boundaries of the current
partition as illustrated in Figure 21.

3.2.3 Bi-Partitioning Improvement

Quadratic solves invariably result in many modules placed very
close to the cutline, making it difficult for the partitioning step to make
intelligent decisions. GORDIAN [Kleinhans 91] introduced the idea of
using bipartitioning to resolve which side of the cut these objects

Chapter 3 Global Placement 41

FIGURE 21. PROUD-style terminal propagation during recursive re-
partitioning

should be bound to. Hence, we formulate a similar bipartitioning prob-
lem that is allowed to relocate a specified fraction of the clusters on
each side of the physical partition, that are near the cutline. This is also
shown in Figure 19. The remaining clusters are assigned to partitions
based on their quadratic solve-based locations. Varying this fraction
lets us control the emphasis on bipartitioning relative to that on pure
quadratic placement. As suggested in [Kleinhans 91], a fraction of
about 0.5 gives us good results on average. For bipartitioning, we used
hMetis [Karypis 97].

3.3 Simulated Annealing Legalization

The final step during global placement is a phase of simulated
annealing ([Kirkpatrick 83], [Sechen 85], [Sechen 86], [Rutenbar 89]).
The result of quadratic partitioning does not necessarily place all mod-

42 Direct Transistor-Level Layout for Digital Blocks

FIGURE 22. Simulated Annealing legalization

ules in rows or in a non-overlapping fashion. Iterative improvement is
therefore necessary for legalization, local minimization of wirelength
and distributing modules appropriately amongst the various rows, as
illustrated in Figure 22.

The following are the four major components of our annealing for-
mulation:

State Representation: The layout area is divided into a grid where
the horizontal grid-lines correspond to the various rows in the lay-
out. The vertical grid-lines are drawn such that a particular grid-
location can hold a few modules. The distribution of the modules
amongst the various grid-locations defines a state in our optimiza-
tion.

Move Set: This comprises random re-allocations of modules
between the various grid-locations. It includes both swapping of
module locations and moving modules to other grid locations. To
keep the optimization local, the moves are range-limited to a few
grid-locations.

Chapter 3 Global Placement 43

Cost Function: There are three essential terms in our cost function.

Cost = w1 . NetCost + w2 . GridCost + w3 . RowCost
NetCost is evaluated as the sum of the half-perimeters of the net-
bounding boxes for all nets. This optimizes for wirelength.
GridCost is used to legalize overlaps between the various modules.
It is a ratio of the module widths at a particular grid-location to the
capacity of the grid-location.
RowCost is used to optimize for row-raggedness and also row-utili-
zation. It is a measure of the variances between various row widths.
This helps minimize the area of the layout. It also measures the ratio
of row utilization to the targeted row-utilization, where utilization is
a measure of the sum of the widths of the all modules in a row. As
we show later in our results, row-utilization can also be exploited to
control congestion in the layout.
Cooling Schedule: We use a Modified Lam cooling schedule [Lam
88] [Swartz 90] that allows us to set preferred acceptance ratios at
the various temperature regimes of the annealer. In order to keep the
resulting placement changes minimal, we perform annealing in the
cold regime, using a very low initial temperature. This favors down-
hill optimization.

We used the Anneal++ library [Krasnicki 97], which provides a rich
set of schedule optimizations and also mechanisms that dynamically
modulate the probabilities for when each of the annealing moves is
selected, using the Hustin scheme [Hustin 87], as annealing proceeds.

In the next section, we present results from our experiments to dem-
onstrate the effectiveness of each of these techniques in optimizing for
the relevant placement goals.

44 Direct Transistor-Level Layout for Digital Blocks

3.4 Global Placement Results

For the global placement experiments (and detailed placement
experiments in next chapter), we used parameters from the HP technol-
ogy and the LGSynth91 benchmarks as described in the previous chap-
ter. While the results comparing fully routed results are presented in the

FIGURE 23. Congestion plots for C432 during global placement

Chapter 3 Global Placement 45

next chapter, we present here some insights into how congestion is min-
imized during the various stages of global placement. We also demon-
strate how congestion can be manipulated during this phase.

3.4.1 Congestion during Global Placement

In Figure 23, we present congestion diagrams for the circuit C432,
with 836 transistors and 456 nets. The congestion at a given location in
the layout is measured as the number of bounding boxes of nets cross-
ing that particular location. Notice that quadratic partitioning is very
effective at reducing the overall congestion in the layout significantly.
It also runs in a much smaller time. Notice also that our annealing step
maintains the global congestion at approximately the same level, even
improving it a little bit, while making small perturbations to the layout
to redistribute the modules.

3.4.2 Row Utilization and Congestion

As mentioned earlier, row utilization, defined as the total width of
modules in the row, can be used to control congestion in the layout.
Some large circuits, like C1908 (with 2552 transistors and 1311 nets),
result in very congested layouts, when placed as tight as possible. This
adversely affects their routability. We can relieve this congestion by
reducing the module densities in the various rows, thereby compromis-
ing on the area of the layout. Further, such reduced row densities can be
varied differently for the various rows. In our experience, rows in the
middle tend to get more congested than rows towards the top or bottom
of the layout. The densities of the modules in the rows, can be con-
trolled during the annealing phase through the rowCost cost compo-
nent. We demonstrate this with an example.

46 Direct Transistor-Level Layout for Digital Blocks

FIGURE 24. Effect of row utilization on congestion for circuit C1908

Chapter 3 Global Placement 47

In Figure 24, we show the resulting congestion plots for an example
circuit, C1908, for 3 cases: (1) equal minimum row utilization (2) small
variation in row utilization (3) large variation in row utilization. For the
row utilization variations, we have used a linear gradation as shown in
the figure, with minimum utilization at the center of the layout. Notice
that by introducing the row variation, we are able to reduce the overall
congestion for (2). In order to clearly see this difference, we compare
congestions for the three cases, at a cross-section C shown in the figure,
separately in Figure 25. This figure clearly shows the trade-off between
reduced congestion and increased row width.

Notice also in Figure 24 that as the variation is increased further,
like in (3), while congestion reduces in the middle, it starts increasing
at other locations near the top or bottom of the layout. The optimal
value by which to vary the utilization is benchmark dependent and we
deduce it by trying out a few different values.

FIGURE 25. Congestion reduction and row width increase for C1908, at
cross-section C, by varying row utilization

48 Direct Transistor-Level Layout for Digital Blocks

3.5 Summary

We described in this chapter how wirelength, congestion, area and
row-densities, which are block level concerns, are addressed by our
first phase of placement. In a later chapter, we describe how timing
optimization is incorporated into this phase. Most prior transistor-level
placers and essentially all standard-cell placers would stop here. These
approaches do not permit inter-cluster merging. This is primarily
because denser diffusion merges usually compromise routability. At
block-level, standard cell designs are routable at least in part because at
transistor level, all the internal sub-nets are fully pre-routed and suffi-
cient pin spacings have been arranged for net accessibility. Because we
do not wish to stop here, however, we must take the responsibility for
these careful shape-level optimizations. This is the purpose of the next
phase of placement, discussed in the next chapter.

CHAPTER 4 Detailed Placement And
Layout Results

4.1 Introduction

At the end of global placement‚ we have arranged device clusters in
rows‚ legalized these clusters‚ and minimized an estimate of wirelength
and congestion. However‚ none of these clusters have yet been commit-
ted to a physical trail-level layout. By deferring this binding to a sepa-
rate placement step‚ we are able to optimize each cluster carefully
against a good global model of both wirelength and congestion.

In this chapter‚ we discuss the second phase of placement‚ where
we optimize individual clusters and the boundaries between clusters for
density‚ and for routability. Attention to shape-level routability turns
out to be extremely crucial here. We use simple global routing to pre-
dict macroscopic routability during this phase. We then present a novel
technique to generate dense layouts while handling local and global
routability considerations. This chapter also describes our routing inte-
gration that creates fully routed layout results. We conclude by present-
ing layout results from experiments comparing our flow to a standard
cell-based flow.

FIGURE 26. Detailed Placement Strategy

Figure 26 gives an overview of our strategy. We start with a glob
routing step that is based on Steiner routing. This is then used to mod
global congestion during our local placement optimization and is al
dynamically updated in the process. We first discuss how density an
routability (both local & global) are addressed during intra-cluster an
inter-cluster interactions. We then describe how we optimize for the
during our local placement optimization.

al
el
so
d
d

m

50 Direct Transistor-Level Layout for Digital Blocks

Chapter 4 Detailed Placement and Layout Results 51

4.2 Intra-Cluster Optimizations

Our essential clusters are typically composed of a few transistor
trails. The cluster is “uncommitted” — it has a nominal width in the row‚
but no specific layout. To create a palette of layout alternatives for a
cluster‚ we must focus carefully on routability of individual trails‚ and
groups of adjacent trails.

To begin‚ note that a transistor trail is fully routable only if:

All sub-nets internal to the trail have enough space to be completely
routed within the trail.

All nets connecting to the outside have enough space to exit from the
trail through pin escapes.

Figure 27 illustrates this for a simple example. It is important to
ensure that pins connecting to polysilicon gate inputs are spaced appro-
priately to allow accessibility on metal layers.

FIGURE 27. Trail Routability

The same conditions apply when we need to route a set of trails. For
example‚ a pair of vertically adjacent trails in a cluster typically repre-
sent NMOS and PMOS devices sharing some poly gates; choosing the
placement so that poly gates can both align and escape to metal is criti-
cal. A pair of horizontally adjacent trails typically represent same-type
MOS devices that may be able to share diffusion and merge. Again‚ the
critical routability issue is ensuring enough tracks so that internal sub-
nets can connect to these devices‚ while not compromising any polysil-
icon gate alignments.

Our first step in generating cluster layout options is to match the
cluster circuit structure with patterns in the circuit structure library. As
described earlier‚ this gives us the various feasible combinations of
transistors to produce easily routable trails. Each of those trail forma-
tions then offers us layout alternatives for the cluster. We note here that
while some small gates (like NAND‚ NOR) map one-to-one to essential
clusters‚ other small gates (like AND‚ OR) and larger gates (like AOI‚
OAI) map to a handful of essential clusters. Relative geometric loca-
tions are then assigned to these trails while respecting shape-level
routability issues we just discussed. This is then combined with transis-
tor-size information to create a shape-level binding (see Figure 28). For
big transistors‚ various fingering options can be incorporated. This can
result in a richer set of cluster layout options‚ thereby supporting
dynamic folding during local placement optimization.

52 Direct Transistor-Level Layout for Digital Blocks

FIGURE 28. Layout formation options and shape-level binding

Chapter 4 Detailed Placement and Layout Results 53

4.3 Inter-Cluster Optimizations

Allowing adjacent clusters to merge‚ i.e.‚ to share diffusion in the
N- or P-type device rows‚ is a simple but remarkably powerful optimi-
zation. In particular‚ it is a local optimization that is amplified when we
scale to thousands of devices. We illustrate this with a simple example.
Figure 29 (left) shows the different intra-cluster layout options for a
simple circuit cluster. Given a placed cluster‚ we show (on the right)
different possibilities of inter-cluster merging between the layout
options for the uncommitted cluster and the placed cluster. Notice in
the figure that if neighboring clusters cannot merge (i.e.‚ no suitable
selection/orientation of the uncommitted cluster yields a legal geomet-
ric merge) then the resulting layout resembles a pair of standard cells:
the clusters can only abut at their boundaries. But if a suitable merge
can be found‚ the clusters can actually overlap. In this simple example‚
the best merging option allows diffusion sharing in the top device row
(and slightly extends the diffusions if necessary for design rules)‚ and
replaces one small power rail connection with a single wider strap that
is physically on the boundary between the clusters. Notice the saving in
area‚ even for a single inter-cluster merge‚ by choosing the best layout
option. Also note that all merges we consider between neighboring
clusters satisfy the detailed routability conditions: the resulting dense
layout must have enough space within‚ to accommodate all internal
sub-nets and enough space for external nets to escape out.

At block-level‚ these layouts are also subject to global routing con-
gestion. This is irrespective of whether the layout was generated using
standard cells or at transistor-level. We address this next.

54 Direct Transistor-Level Layout for Digital Blocks

FIGURE 29. Best Option Merging

Chapter 4 Detailed Placement and Layout Results 55

4.4 Global Routability

In order to estimate global routing congestion after global place-
ment‚ we replace each net with its simple Steiner representation. For
this purpose‚ we used Steiner algorithms from “The Generic C Library”
[Madden]. We then calculate wiring demand at various locations in the
layout using a coarse global routing grid. In regions that are heavily
congested‚ we provide some relief by introducing extra vertical routing
tracks‚ when we consider inter-cluster neighbor merges in that region.
This makes sense because ultimately the pin locations of the trails con-
strain global nets. The farther they are spaced‚ more the availability of
routing tracks. Horizontal routing tracks are also introduced by adjust-
ing row-spacings.

In the next sub-section‚ we present some linear-time algorithms to
find the densest inter-cluster merges considering all possible layout
options for each uncommitted cluster in the context of global and
detailed routability.

4.5 Local Placement Optimization

In this section‚ we first present an analytical model for computing
the best merge between neighboring clusters. We then present some
row-based optimizations to find the best cluster layout option for each
uncommitted cluster‚ while considering all merges between the various
neighboring clusters.

4.5.1 Pair-Wise Cluster Merges

Consider two layout options L & R‚ as shown in Figure 30. Our
goal is to compute the best merge‚ BestMerge(L‚R)‚ that is the densest
layout generated by merging layout option R to the right of layout

56 Direct Transistor-Level Layout for Digital Blocks

FIGURE 30. Variable definitions during pair-wise cluster interactions

option L. Let P be the set of all trails belonging to layout option R that
interact with L. Let be the left-boundary of the diffusion region
belonging to trail and let be the location of the left-most
pin belonging to p. Since the goal of BestMerge is to find the closest
position layout option R can get to option L, we need to minimize

and over all trails p. This minimization is however subject to
the following three sets of constraints: (a) Diffusion Merging, (b)
Routability and (c) Poly Alignment.

Chapter 4 Detailed Placement and Layout Results 57

The trails of the neighboring clusters can merge by sharing their
diffusion regions. The distances between them are governed by the
equation:

Diffusion Merging

FIGURE 31. Diffusion merging during pair-wise cluster interactions

58 Direct Transistor-Level Layout for Digital Blocks

where is the right-most diffusion boundary of the trail
belonging to layout option L that interacts with p. is the
design-rule imposed restriction. In general‚ if the interacting trails can
be merged‚ then is negative‚ otherwise is
positive. This is illustrated in Figure 31.

Routability

We capture routability using a supply and demand model. A routing
grid is overlaid on top of the layout area. Each grid location has a esti-
mate of the number of horizontal and vertical tracks available for use.
The Steiner routes are used compute the demand for global routing
tracks in a given region. In heavily congested regions‚ the demand
imposed by global routes is often larger than the supply of tracks.
Under such circumstances‚ additional vertical tracks are introduced in
between the clusters‚ in the hope that spacing them away from each
other also increases spacing between the terminals connecting to those
clusters‚ thereby relieving global congestion. In addition to the global
routing demand‚ additional tracks may also be necessary to meet the
local routing demands. We capture these by the equation:

where is the right-most location of a pin belonging to
layout Option L (see Figure 30). SubNetTracks are the number of extra
vertical routing tracks required to completely route internal sub-nets
belonging to the trail. GlobalVertTracks are the number of extra global
vertical routing tracks required in this region.

Chapter 4 Detailed Placement and Layout Results 59

Poly Alignment

In order to align the polysilicon gate inputs of neighboring N & P
trails and also the pins‚ we formulate a quadratic wirelength minimiza-
tion equation between the objects that need alignment. Consider the
example shown in Figure 32.

Variables correspond to locations of the gates connected to net i
on trail p. Variables correspond to the locations of the pins. Using a

FIGURE 32. Poly gate alignment during pair-wise cluster interactions

60 Direct Transistor-Level Layout for Digital Blocks

rubber-band model for the nets‚ the wirelength minimization objective
is:

where AlignP is the set of trails that needs to be aligned and GNets
is the set of nets connected to the gates that need to be aligned. Assum-
ing that the distances between the gate inputs are fixed‚ each can be
expressed as a sum of and a constant. Similarly‚ assuming that
the distances between the pins is fixed‚ each can be expressed as a
sum of and a constant. Thus‚ the solution to such a quadratic for-
mulation reduces to a linear constraint involving and

where and const are scalar constants computed using the dis-
tances above. This corresponds to the illustration in Figure 32 (right).

To summarize‚ the goal of BestMerge is to then:

Constraint A (Diffusion Merging)

Chapter 4 Detailed Placement and Layout Results 61

Constraint B (Routability)

Constraint C (Poly Alignment)

BestMerge thus computes the left-most positions for all trails
belonging to layout Option R while satisfying polysilicon alignment
and routability constraints. Note that Constraint B dominates in regions
that are global-routing congested‚ whereas Constraint A dominates in
other regions‚ resulting in dense inter-cluster merges.

Overall layout optimization happens in a row-based fashion. We
traverse the entire layout from bottom to top‚ while considering all
neighboring cluster interactions. Within each row‚ we present two local
optimization techniques for density and routability. These techniques
make use of the BestMerge strategy between neighboring layout
options. We now look at these two techniques.

62 Direct Transistor-Level Layout for Digital Blocks

FIGURE 33. Greedy Local Placement Optimization

Chapter 4 Detailed Placement and Layout Results 63

4.5.2 Greedy Local Optimization

We present here a greedy heuristic to compute the best layout
option for each cluster within a row. As illustrated in Figure 33‚ we
traverse each row from the left to right. For every cluster‚ we find the
layout option that generates the best merge‚ given the best layout option
for the neighboring (left) cluster. Formally‚ the best layout option for
cluster i+1 is given by:

where is the set of all layout options for cluster i‚ is the
minimum row layout width up to cluster i. As mentioned above‚ the
overall algorithm optimizes each row in the layout by traversing from
bottom to top‚ left to right. At the end of processing every row‚ we
update all global nets that were affected. This lets us use the most
recent information while accounting for global congestion. During this
process‚ inter-row spacing is introduced to satisfy horizontal global
routing demand.

Even though greedy‚ this technique is very effective and fast. The
implementation has a linear complexity of O(K * n)‚ where K is the
maximum number of layout options for any cluster in the circuit and n
is the number of clusters. In the next section‚ we present a more expen-
sive‚ but optimal‚ dynamic programming approach‚ in the style of [Her
91].

4.5.3 Dynamic Programming Local Optimization

The greedy heuristic described above suffers from the drawback
that early decisions made when traversing from left to right in the rows‚

64 Direct Transistor-Level Layout for Digital Blocks

can result in overall sub-optimal results. We can overcome this by for-
mulating a dynamic programming problem, where the optimal layout
width at any cluster, for a given layout option, can be computed by con-
sidering merges with all possible layout options at the previous cluster
and their optimal layout widths (see Figure 34). In other words:

where OptWidth(i‚k) refers to the optimal layout width at the
cluster‚ when layout option k is selected. is the set of all layout
options for the cluster. BestMerge is as defined previously. The opti-
mal layout width for the row can then be computed as:

where N is the last cluster in the row. As with the greedy approach,
the overall algorithm optimizes each row in the layout by traversing
from bottom to top, while updating global routing and inter-row spac-
ing appropriately. This approach scales linearly with the number of
clusters as where K is the maximum number of layout
options for any cluster in the circuit and n is the number of clusters. An
obvious extension to both the greedy and dynamic programming
approaches would be to iterate multiple passes through the complete
row-based local optimization and global routing update.

Chapter 4 Detailed Placement and Layout Results 65

FIGURE 34. Dynamic Programming Local Placement Optimization

66 Direct Transistor-Level Layout for Digital Blocks

4.6 Routing Integration

To complete our flow‚ we have integrated the ICCraftsman router
[Cadence] at the back-end. To enable routing completion‚ we construc-
tively route the power nets‚ VDD & GND. We also place stubs of poly-
silicon corresponding to the intra-cluster gate pins. These pins are
placed in a staggered fashion to enable easy polysilicon routing. We
then invoke ICC to complete the local intra-cluster routing in Polysili-
con and Metal 1. ICC is invoked again to finish the inter-cluster routing
using multiple Metal layers as required.

In the next section‚ we present our experimental setup and results
comparing fully routed layouts generated using our tool with those gen-
erated using a standard Cadence cell-based flow.

4.7 Layout Results

Before we present our experimental setup and results‚ we take a
quick look at a simple example result illustrating various algorithmic
aspects of our flow.

4.7.1 Simple Layout Example

We describe here the results obtained for a simple benchmark‚ the
circuit C432 from [CBL]‚ synthesized using the HP technology. As
described in Chapter 2‚ to create a suitable netlist for us‚ we re-synthe-
size C432 onto a simple target cell library that comprises INVERT‚
AND‚ NAND‚ OR‚ NOR gates up to 4 inputs. Assuming standard static
CMOS‚ the circuit structure library has only 7 series-parallel circuit
patterns in it‚ e.g.‚ the AND gates end up decomposed into a combina-
tion of more simple NAND and INVERT patterns. Mapped onto this
library‚ C432 has 191 gates; after flattening it has 836 devices and 456
nets; after essential cluster recognition it has 206 clusters which are

Chapter 4 Detailed Placement and Layout Results 67

FIGURE 35. Congestion plots for circuit C432 after the two stages of

what we place in our global placer. The technology is 0.35um HP
CMOS with one poly and 3 metal layers. Placement (global and
detailed) requires 3 minutes; detail routing takes another 20 minutes.

Figure 35 shows congestion after both global and detailed place-
ment‚ estimated at each point as the number of net bounding boxes that
overlap that point. Notice that detailed placement reduces the width of
the overall layout‚ without compromising overall congestion.

Figure 36 shows the distribution of trails of various sizes‚ where the
size of a trail is the number of transistors in the trail. Detailed place-

68 Direct Transistor-Level Layout for Digital Blocks

FIGURE 36. Trail histograms for circuit C432

ment increases the number of “big” trails, i.e., it achieves significant
diffusion merging across clusters.

Figure 37 displays a snapshot of TrailBlazer showing the final
placement for C432 and the various stages of detailed routing. In the
picture displaying poly and metal 1 routing, notice dense diffusion
merging, polysilicon gate alignment, staggered gate input pin locations,
efficient metal 1 usage and fully strapped diffusion terminals. In this
picture, H is the same height as the standard cell row height. N/P refer
to the NMOS/PMOS diffusion type. The fully routed layout has the
same height as the standard cell-based layout but about 25% smaller
area.

Chapter 4 Detailed Placement and Layout Results 69

FIGURE 37. Placed and routed layout result for circuit C432

70 Direct Transistor-Level Layout for Digital Blocks

FIGURE 38. Experimental setup comparing layout areas using our flow
with using a standard cell-based flow.

Chapter 4 Detailed Placement and Layout Results 71

4.7.2 Layout Comparison Experiments

To quantify the potential advantages of transistor-based layout ver-
sus standard cells‚ we ran a series of logic netlists using our flow‚ and a
standard Cadence Silicon Ensemble (SE) flow [Cadence]‚ As shown in
Figure 38‚ and described in Chapter 2‚ we start with a logic description
(in BLIF format) which is compiled into a functional schematic (in
NETBLIF format) using logic synthesis (SIS [Sentovich 92]). We used
several standard LGSynth91 benchmarks from [CBL]. The synthesis
target library is again the simple INVERT/AND/NAND/OR/NOR
library from the previous section. It is worth noting that a new and open
question is the correct choice for this intermediate library: in our flow it
serves as a means to coerce synthesis to produce a netlist that uses
“good” device-level structures. Larger groupings for devices are dis-
covered during detailed placement. On the other hand‚ for the standard
cell design‚ this is the set of placeable objects. For the most direct com-
parison‚ we use the same synthesized gate-level netlist for each layout‚
but flatten it to transistors for our own layout flow. However‚ we do
ensure that all device sizes are the same for the both the transistor-level
and standard cell layouts.

The technology is again HP 0.35um‚ and we used an existing cell
library. There are four available routing layers. Poly is only used for
gate-input connections. Metal1 is allowed to route in either direction‚
but Metal2 is mostly vertical and Metal3 mostly horizontal.

In our first set of experiments‚ we try to normalize away the effects
of standard cell placement and routing and focus on the lowest-level
optimizations we do for the transistor layout. We fix the height of our
device rows to be the same as the standard cells‚ and fix their pitch at
the rule-legal minimum. We then fix the overall heights of both the
transistor and standard cell layouts to be equal. We describe each
benchmark‚ and compare total area of final routed layouts‚ in Table 1.4
. Note that we also compare against an absolute lower bound--the sum
of the areas of the individual standard cells in the cell layout. Note that

72 Direct Transistor-Level Layout for Digital Blocks

our layouts are 10-25% better than this absolute lower bound: this is
because detailed placement allows clusters to overlap. We are also 19-
29% better than the densest layouts generated using Silicon Ensemble
(set to 99% row utilization‚ i.e.‚ maximum placement density).

In our second set of experiments‚ we lay out a set of more difficult
benchmarks that require more attention to routing congestion. To begin‚
we place our transistor-level netlists using TrailBlazer and then route
them in Cadence. We then fix the height of the cell-based layout to be
the same as our successful device-level layout. We adjusted percent
row utilization in Silicon Ensemble until the cell layouts were just fully
routable. Table 1.5 shows the results of this experiment. We note again
that the transistor-level layouts are from 16% to 27% smaller than the
comparable cell layout. The detailed placement optimization carefully

TABLE 1.4 Maximum Density Routed Results

Bench.

frg1
b9

i2

i4

C432

apex7

example2

i6

No.
of

Trans
454

464

686

764

836

938

1140

2066

Row
s
6

5

7

7

8

8

9

12

Our
Layout
Area

6714.9

7033.5

8968.1

11084.9

12744.0

14850.0

18893.3

29224.8

Std. Cell
Lower
Bound

8934.3

9153

11321.1

12360.6

16200.0

18489.6

22404.6

34700.4

%lmpr
over

Lower
Bound
24.8%

23.12%

20.7%

10.3%

21.3%

19.7%

15.7%

15.2%

Silicon
Ensemb

le
Area

9452.7

9510.8

12606.3

13768.7

17172.0

19828.8

23874.8

35964.0

%lmpr
over
SE

28.9%

26%

28.8%

19.5%

25.7%

25%

20.9%

18.8%

Chapter 4 Detailed Placement and Layout Results 73

TABLE 1.5 Routing Congestion- Aware Routed Results

Bench.
C880

term1

x4

C1355

C1908

i9

No. of
Trans
1410

1682

1826

2164

2552

3256

Layout
Height
(um)
150

162

180

196

203

244

Our
Layout
Area

29595

34279

37620

47844

51887

67344

Silicon
Ensemble

Area

38550

47142

46800

61603

61692

83204

%lmpr
over
SE

23.2%

27.3%

19.6

22.3%

15.9%

19.1%

allocates both intra-row wiring space and inter-row wiring space‚ and
correlates quite well with the space required to actually complete the
routing. We find empirically that with these routing optimizations dis-
abled‚ it is impossible to create routable transistor-level layouts. The
layouts were also generated in reasonable time. The largest benchmark
with 3256 transistors took about 9 minutes to place and another 30 min-
utes to route on a desktop workstation.

4.7.3 Dynamic Programming vs. Greedy Local Optimization

The experiments above used greedy local placement optimization.
To demonstrate the value of our dynamic programming local optimiza-
tion‚ we compared the layout areas and trail merging for some bench-
marks from the maximum density experiments above. These are
tabulated in Table 1.6 . Notice that dynamic programming can achieve
another 4% density improvement on average. Also‚ the number of trails
reduced on average by 13.1% compared to the greedy local optimiza-
tion. This suggests that the dynamic programming formulation is very

74 Direct Transistor-Level Layout for Digital Blocks

TABLE 1.6 Dynamic Programming (DP) vs. Greedy local optimization

Bench.

frg1

i2

i4

C432

apex7

example2

i6

Layout
Width
Impr.

DP over
Greedy

3.7%

2.4%

3.9%

3.4%

3.6%

4.5%

5.7%

No. of
Trails
after

Greedy
118

116

191

226

249

297

511

No. of
Trails
after
DP

96

108

169

197

216

264

421

Trail
Reductio

nDP
over

Greedy

18.6%

6.8%

11.5%

12.8%

13.3%

11.1%

17.6%

CPU
Time

Greedy
(secs)
0.18

0.25

0.28

0.31

0.43

0.47

0.75

CPU
Time
DP

(secs)

0.57

0.74

0.86

0.96

1.36

1.41

2.31

CPU
Time

DP over
Greedy

3.2x

3.0x

3.1x

3.1x

3.2x

3.0x

3.1x

effective at detecting merges between clusters‚ which reduces the num-
ber of trails and also the layout area. Such an improvement is however
at the expense of run-time. The dynamic programming approach took
about 3 times more CPU time‚ on average‚ compared to the greedy
approach.

4.8 Summary

Detailed placement completes our placement flow by committing
each cluster to a final shape-level layout. This second phase of place-
ment pays particular attention to detailed shape-level interactions
within the clusters and between neighboring clusters‚ while accounting
for detailed and global routability concerns. Given a global placement
of clusters that meets overall wirelength‚ congestion and area require-
ments‚ local placement optimizes merges between neighboring clusters‚
while considering all feasible layout options for those clusters. Results

Chapter 4 Detailed Placement and Layout Results 75

comparing to a commercial standard cell-based layout flow demon-
strate that our tool achieves 100% routed layouts that average 23% less
area. In the next
to handle timing
cuit delays.

chapter‚ we describe how our flow is further enhanced
optimization during placement‚ to reduce overall cir-

76 Direct Transistor-Level Layout for Digital Blocks

CHAPTER 5 Timing-Driven
Placement

5.1 Introduction

Speed is of utmost importance to most digital circuits. Hence,
reducing overall circuit delays is a goal at all stages of an ASIC flow.
As technologies get smaller, the contribution from interconnect ele-
ments to the overall circuit delay increases. Optimizing for reduced cir-
cuit delays during layout synthesis is therefore very critical.

This chapter describes how we optimize for timing in our flow. In
particular, the global placement of clusters most affects the lengths of
individual wires, which in turn affects delays of critical paths in the cir-
cuit. Accounting for these net delays is therefore critical during global
placement. We address this by enhancing our global placement phase
as shown in Figure 39. The key components of our technique include:

Transistor-level timing analysis to analyze circuit timing.

Critical path analysis to find worst timing paths from timing analy-
sis.

Timing-driven placement while accounting for critical paths and
nets.

78 Direct Transistor-Level Layout for Digital Blocks

FIGURE 39. Iterative timing-optimization during Global Placement.

Modeling interconnect and cluster delays.

In this chapter, we describe each of these in detail. We also present
results demonstrating the effectiveness of these techniques.

5.2 Transistor-Level Timing Analysis

To optimize for timing during placement, we must be able to iden-
tify critical signal paths in the circuit by analyzing their timing behav-
ior. In this section, we introduce de-coupled components (DCCs) and
describe how DCCs help analyze the timing behavior of flat transistor-
level circuits. We review some of the standard techniques for timing
analysis to motivate our choice of static timing analysis, which we
describe in detail. We later describe methods for identifying timing crit-
ical paths from the results of static timing.

Chapter 5 Timing-Driven Placement 79

FIGURE 40. DC-Coupled Components

5.2.1 DCCs: DC-Coupled Components

To enable timing analysis, a flat transistor-level circuit can be bro-
ken into groups of dc-coupled components or DCCs. A DCC is com-
posed of groups of channel connected transistors and the interconnect
(RC-tree model) they feed, as shown in Figure 40. This partitioning
helps us separate the task of simulating signal propagation within these
DCCs, from the task of propagating these signals across the circuit. In
the next few sections, we describe how this is done.

80 Direct Transistor-Level Layout for Digital Blocks

Since the groups of transistors, that belong to a DCC, need to be
grouped together from a timing point-of-view, it also makes sense to
keep them together during placement. Since essential clusters are
defined as the smallest set of transistors that need to be grouped
together, clustering based on DCCs becomes essential. In our experi-
ments therefore, there is a one-to-one correspondence between essen-
tial clusters and DCCs. However, it may be necessary to further group
multiple DCCs into a single essential cluster, depending on circuit-style
restrictions.

5.2.2 Timing Analysis

There are several standard techniques to detect timing problems in
combinational logic. Broadly speaking, these techniques fall under two
categories: (a) delay simulation, and (b) static timing analysis. We
briefly compare the pros and cons of these two types of methods, to
motivate our choice of static timing analysis.

Delay simulation, also known as dynamic timing analysis, involves
simulation of the behavior of a circuit, given the input patterns at the
various primary inputs. This is useful for functional and timing verifi-
cation of circuits. While this method is most accurate, the analysis is
limited to the given set of input patterns. A complete coverage using all
sets of input patterns can be impractical for large circuits. Static timing
analysis, on the other hand, tries to account for all possible input pat-
terns at primary inputs, simultaneously. It then propagates the earliest
and latest signal arrival times, across each logic path in the circuit.
While doing so, it ignores the influence of other paths. In other words,
at each logic gate, it assumes that the gating conditions at the gate can
be set up such that signals can be propagated along any of the logic
paths through the gate. It can therefore be completely independent of
the input patterns or the function of the gate. This can fall victim to
false paths, where timing problems are reported on paths even though
those logic paths do not exist in reality. However, static timing analysis
is conservative. The set of timing problems, detected by this analysis,

Chapter 5 Timing-Driven Placement 81

includes any genuine timing problems in the circuit. The main advan-
tage is that it is much faster, and thereby more practical, than delay sim-
ulation over all input patterns.

Static timing analysis can be path or block oriented. Path oriented
methods work by propagating earliest and latest signals separately
along each path in the circuit. Such a path enumeration returns useful
information about critical signal paths and overall delay of the circuit.
Block oriented static timing analysis, on the other hand, propagates sig-
nal arrival times forward through the logic. The latest and earliest pos-
sible arrival times are maintained on each gate input and output pin.
The required arrival times are then propagated backwards to compute
slacks at each timing node. This analysis provides useful information
about slacks at individual gate outputs. As mentioned before, both
these methods are much faster than delay simulation. A more detailed
comparison can be found in [Fredrickson 97].

For timing-driven placement, the goal is to quickly determine the
worst timing critical signal paths in the circuit, independent of the input
patterns at primary inputs. Static timing analysis is therefore better
suited for such an application. We now describe our approach to static
timing analysis at transistor-level.

5.2.3 Transistor-Level Static Timing

In this section, we present our static timing approach, where we
propagate signal arrival times and slews from primary inputs to pri-
mary outputs. This is similar to the block-oriented methods. However,
the resulting delays in the circuit can be used for analyzing critical
paths using either block or path oriented techniques. In this approach,
the points of interest, for timing, are the DCC output nodes, DCC input
nodes, primary outputs and primary inputs. The method works by com-
puting signal arrival times and slews at the DCC output nodes, given all
the arrival times and slews at each of the DCC input nodes. This propa-
gation from the DCC inputs to the outputs is performed independent of

82 Direct Transistor-Level Layout for Digital Blocks

the other DCCs or other logic paths. It assumes that any of the input
signals can be propagated to the outputs, by appropriately setting up the
other inputs. The DCCs are processed in a topological order, such that
each DCC gets processed only after each of the DCCs driving it have
been processed. This ensures that the signals are propagated from the
primary inputs, forward, to the primary outputs. It also ensures that
only the latest (or earliest) arrival times and the worst (or best) slews
are propagated forward from each DCC output node.

As we can see from above, propagating these signals from DCC
inputs to the DCC outputs is crucial to the working of this method.
There are two key components involved in this process: (a) transistor-
level DCC simulation: to propagate arrival times and slews from DCC
inputs to outputs, and (b) transistor-level Boolean analysis: to compute
sensitizing values at other DCC inputs, when propagating a signal from
any given input. We now take a closer look at these two steps.

Transistor-Level DCC Simulation

The goal here is to propagate signal properties from DCC inputs to
outputs. The properties of interest to us are: early/late rise/fall signal
arrival times and fast/slow rise/fall signal slews. The properties at the
output are computed by simulating the worst-case and best-case signals
from each of the DCC inputs. For each such simulation, the other
inputs are set to their sensitizing values. This is illustrated in Figure 41.
We perform this simulation at transistor-level using TETA [Dartu 98].
TETA applies principles of successive chord iterations for simulating
nonlinear devices. By using simplified table look-up models for MOS
transistors, TETA can perform simulations of these small circuits much
faster than traditional SPICE-like simulators. This speed is critical to
our application, since we perform multiple DCC simulations.

Chapter 5 Timing-Driven Placement 83

FIGURE 41. DCC Simulation

Transistor-Level Boolean Analysis

In order to compute the sensitizing input values, when propagating
from any single input, we need to compute the Boolean logic imple-
mented by the DCC. The unateness of the logic at the output, with
respect to the input, is also required when propagating these signals.
The unateness helps us determine whether the output rises with input
rise or otherwise.

For this purpose, we make use of techniques from [Bryant 87] &
[Bryant 87a]. These methods use switch-level models to represent the
transistor circuit. Specifically, the circuit is modeled as a network of
charge storage nodes connected by resistive transistor switches. The
functionality of the network is then expressed as a series of Boolean

equations using a 4-valued logic to describe high, low and don’t-care
states. These techniques were implemented using CUDD [Somenzi 98]
for all BDD-based Boolean operations. We describe the key steps
involved, using an example.

Consider the circuit shown in Figure 42. The logic of the circuit is
represented using the 4-valued logic as:

out. 1 = a.0 + b.0, out.0 = a. 1 b. 1
Since we are only concerned with two-valued Boolean logic in our

networks, we convert this to a 2-valued logic as:

84 Direct Transistor-Level Layout for Digital Blocks

FIGURE 42. Boolean Analysis Example

Chapter 5 Timing-Driven Placement 85

This is the more familiar NAND logic. In order to find the sensitiz-
ing input value at b while propagating from input a, we compute the
Boolean derivative of the logic with respect to the propagating input
and equate this to TRUE.

This yields: b = 1 as the sensitizing value. In other words, set b to a
high voltage. The unateness of the logic output, w.r.t. input a, can be
computed as the cofactor of the logic, while setting other inputs to their
sensitizing values.

This implies that the output falls as input a rises.

By combining the results of Boolean analysis with DCC simula-
tions, we propagate the signal arrival times and slews across the DCCs,
and ultimately, across the circuit, from the primary inputs to the pri-
mary outputs. In the process, we also keep track of the worst-case and
best-case input-to-output delays for each of the DCCs. In the next sec-
tion, we describe how we use this information to find timing critical
paths in the circuit.

5.3 Delay Graphs and Critical Paths

Static timing analysis, described in the previous section, gives us
the signal arrival times at each of the nodes in the circuit. The DCC
simulation, performed during this analysis, also gives us the worst-case
and best-case delays from each of the DCC inputs to the DCC outputs.
In this section, we discuss path and block oriented techniques to find
timing critical paths using this information.

86 Direct Transistor-Level Layout for Digital Blocks

FIGURE 43. Delay Graph Example

Chapter 5 Timing-Driven Placement 87

We begin by constructing a Delay Graph that contains a node for
each DCC output, primary input and primary output. For simplicity, we
only consider the worst-case delays in the circuit. The edges in the
graph then represent the worst delays from each of the DCC inputs to
the DCC output. Figure 43 shows an example with DCCs (above) and
the corresponding Delay Graph (below). For the sake of simplicity
again, interconnect is not considered here. Interconnect delays are dis-
cussed in detail in a later section. The goal now is to determine the most
timing critical paths in this Delay Graph. These are the paths with the
worst delays. Instead of enumerating all such paths, which can be
impractical, path-oriented approaches like [Benkoski 87] use a variant
of depth first analysis to detect the top critical paths. Block-oriented
methods like [Hathaway], on the other hand, detect these problems by
using the arrival times and computing slacks based on required arrival
times.

[Hathaway] uses information about the Arrival Times (AT) at each
of the nodes, from the forward propagation during static timing analy-
sis. A second propagation, from the primary outputs, backward, com-
putes the Required Arrival Times (RAT) at each of the nodes. The
difference between the AT and RAT is defined as the slack. A partial-
path expansion strategy, using the slack values, is then used to compute
the longest-paths in the graph. [Benkoski 87] on the other hand com-
putes an “esperance” value for each node in the graph. This is a mea-
sure of the maximum delay from the node to the sink. This metric is
then used to bias partial-path expansion towards the sink. In our appli-
cation, we are interested in the most critical paths. Either of these meth-
ods can therefore be used, as they end up having the same algorithmic
complexity, when used for path reporting. For illustration purposes,

Both the methods ([Benkoski 87] & [Hathaway]), begin by aug-
menting the Delay Graph to include 0-delay edges from a common
source-node to all primary inputs and from all primary outputs to a
common sink-node. This is illustrated in Figure 44.

88 Direct Transistor-Level Layout for Digital Blocks

FIGURE 44. Critical Path Analysis Example

Figure 44 displays the arrival times, required arrival times, slacks and
esperance values for this example, using both the techniques above.
However, for our experiments, we only use the [Benkoski 87] tech-
nique. The resulting most critical paths are also shown in the figure.

5.4 Timing-Driven Global Placement

In the last section, we looked at analyzing the timing behavior of
circuits and identifying critical signal paths in the circuit. We now look
at how that information is useful during placement. The overall circuit

Chapter 5 Timing-Driven Placement 89

delay is composed of two elements: the delays of the signals within the
DCCs and the parasitic delays of the interconnect. The placement of the
DCCs determines the lengths of interconnect which directly impacts
the interconnect delay. Interconnect length also has an effect on the
delays of the DCCs. The goal of timing-driven placement is to take into
account these aspects of placement that influence the delays.

In this section, we look at some of the standard techniques for tim-
ing-driven placement. We then describe our approach, where we use
the information from static timing analysis, to reduce the lengths of
wires along critical signal paths, which in turn reduces the overall delay
of the circuit. We also discuss some ways of modeling the effects of
these wires on the delays of DCCs.

5.4.1 Timing-Driven Placement Techniques

Timing optimization during placement has typically been per-
formed in an iterative fashion. An existing placement is analyzed for
timing-problems. This information is used to improve either the current
placement or a subsequent placement run. These methods generally fall
into two categories: path-based methods and net-based methods. Path-
based methods directly optimize for reducing the lengths of critical
paths during placement, whereas the net-based methods try to reduce
the lengths of individual nets that belong to these critical paths. Net-
based methods tend to be faster because they do not have to perform
longest path analysis during placement. However, path-based methods
better capture overall timing problems and have better chances of con-
vergence. Placement algorithms like TimberWolf [Swartz 95], that are
inherently iterative in nature, have adopted the path-based approach.
This algorithm also enjoys the privilege of being able to explicitly
account for path-lengths in the cost-function. Direct placement tech-
niques like GORDIAN [Kleinhans 91] and Kraftwerk [Eisenmann 98]
use the net-based approach. A good review of various techniques can
be found in [Riess 95].

90 Direct Transistor-Level Layout for Digital Blocks

As described previously, our global placement is based on a two-
step approach. The first step uses quadratic placement & min-cut parti-
tioning. The second step is an iterative improvement technique based
on simulated annealing. We have therefore adopted a net-based
approach during the first step followed by a combination of net & path-
based approaches during the second step. For the net-based techniques,
net-weights are computed based on the critical paths. In the next sec-
tion, we describe how this is done such that it also aids timing conver-
gence. We then describe how these weights are used within our
placement algorithms.

5.4.2 Net-weights from Critical Paths

We have adopted the iterative net weighting scheme from [Eisen-
mann 98]. Based on the information about critical paths from static tim-
ing analysis, a net is critical if it belongs to a critical signal path. The
criticality of net j during iteration m is defined as

Criticality is a measure of how critical the net is, depending on
which critical paths the net belongs to. Using criticality, weights for net
j are computed as

if net j in 3 percent most critical nets

otherwise

Chapter 5 Timing-Driven Placement 91

Notice that both weights and criticality at iteration m take into
account weights and criticality at iteration m-1. This technique aids in
convergence by reducing oscillations in weights from one iteration to
the next. In the next section we describe how these weights are incorpo-
rated into our placement algorithms.

5.4.3 Net-Weight / Timing-Driven Placement

During quadratic placement, the forces between the various essen-
tial clusters are scaled by the values of net-weights. This results in a
net-weight driven quadratic solve, by using the parameter net_wt (see
Section 3.2). Bi-partitioning also includes these net-weights during
min-cut optimization. Finally, iterative improvement, via simulated
annealing, includes these net-weights in the cost function (see
Section 3.3). While we do not re-compute longest paths during place-
ment optimization, we introduce a new term in the cost function,
namely PathCost, to account for the sum of the lengths of the most crit-
ical paths.

Overall timing optimization happens in an iterative fashion. We
start with a non-timing driven placement where we optimize primarily
for area, wirelength and congestion. All the net-weights are initialized
to a value of 1. At the end of this first iteration, we get our initial global
placement, which is used to estimate interconnect lengths and delays.
We then use this information to perform static timing analysis to find
the critical signal paths and generate net-weights and path-information
for our next iteration. In the next section, we describe how we estimate
interconnect delays at the end of each global placement iteration, for
use in the subsequent iteration.

5.4.4 Interconnect Delays

At the end of each global placement iteration, the locations of
DCCs are used to generate geometric models for the interconnect. As
illustrated in Figure 45, we can either use a star model for this intercon-

92 Direct Transistor-Level Layout for Digital Blocks

FIGURE 45. Interconnect Geometry and Models

nect, or use a more accurate Steiner model. The star model is faster to
compute (can be done in linear time), whereas the Steiner route takes
longer. We combine this geometric model with necessary technology
parameters to generate an RC-tree model. In the next section, we
describe how we use this model within timing analysis, for subsequent
timing-driven placement iterations.

5.4.5 DCC Delay Macro-Modeling

Figure 46 summarizes the timing optimization flow discussed so
far. To complete the timing loop, information from the global place-
ment result is used to generate RC-tree models for interconnect, which
is then used for static timing analysis during the next iteration. One way
of doing this is to include the RC-tree directly, within each DCC simu-

Chapter 5 Timing-Driven Placement 93

lation, in TETA. We can then perform a full simulation, by simulating
each DCC, while propagating the signal arrival times and slews. This
full simulation uses the correct signal slews for each DCC simulation.
This also takes into account the effect of interconnect on DCC delays.
However, such a full simulation can be very time-consuming, espe-
cially within multiple timing iterations. In this section, we describe a
slightly different approach, that significantly reduces this time.

To reduce the number of DCC simulations and re-use as much
information as possible from the fewest simulations, we resort to some
simple macro-modeling techniques. These are based on approximations
intended to de-couple DCC transistor and interconnect delays. Such a
de-coupling permits us to characterize the DCC transistor delays based
on the loads, thereby letting us estimate their delays without the need
for further simulation.

Our basic idea of de-coupling DCC transistor delays from intercon-
nect delays is illustrated in Figure 47. By ignoring the resistive effects

FIGURE 46. Timing Optimization Summary

94 Direct Transistor-Level Layout for Digital Blocks

FIGURE 47. De-coupling DCC transistor and interconnect delays

of the interconnect on the DCC transistor delays, the DCC delay can be
expressed as the sum of the transistor delays and the interconnect. In
other words:

where is the delay of the DCC transistors driving the total capac-
itive load of the interconnect and the load DCCs, and is the inter-
connect delay which can be estimated using elmore delay. For DCCs
with identical transistor netlists, the transistor delay, can then be
characterized, based on the capacitive load, as suggested in [Weste 93]:

Chapter 5 Timing-Driven Placement 95

where and K are computed empirically by simulating the
DCC transistors using TETA with no load modeled and then a few
additional simulation “samples” with varying values of The values
of are chosen based on the average loading capacitance seen by the
DCC. Note that DCCs with identical transistors are clusters with the
same circuit structure and the same transistor sizes. We can therefore
exploit circuit structure recognition for divide-and-conquer. We have
already shown that such unique structures are typically very few in
number. This is where a one-to-one correspondence between DCCs and
essential clusters helps. One could also consider incorporating transis-
tor sizes into the macro-model so that we only have to simulate the
essential circuit structures.

Macro-modeling described in this section makes DCC delay evalu-
ations significantly faster. The macro-models can not only be used
across multiple DCCs in the netlist, but also during multiple timing
iterations. This however compromises the accuracy of such a delay
evaluation by excluding interconnect and also assuming similar signal
slews at each DCC. An obvious extension here is to incorporate signal
slews into the macro-model. At this rather early point in the flow, the
primary focus is to capture the right nets and paths for timing optimiza-
tion. Hence, this rather simple timing model, and the decoupling of
device and wiring delays in the style of a classical load-factor model, is
a reasonable expedient.

In the next section, we describe experimental results demonstrating
the usefulness of our techniques.

5.5 Timing Results

To demonstrate the effectiveness of timing optimizations on reduc-
ing the overall delays of the circuit, we compared global placement
results (with global routing) with and without these optimizations. Due

96 Direct Transistor-Level Layout for Digital Blocks

to the availability of some technology parameters and infrastructure,
we have used STMicroelectronics 0.18um technology. The benchmarks
were synthesized using lib-2 from Chapter 2.

For estimating interconnect parasitic delays, we assumed a capaci-
tance per length of 120 pF/m and resistance per length of
(using also some estimates for local/global interconnect and vias). For a
typical 2-input NAND circuit simulated using TETA, the max-delay

without any load was 35 ps, for one input. Using a load
capacitance of 6.2 fF, the max-delay was 55 ps, yielding a characteris-
tic K value of about 3,200.

5.5.1 Delay Improvement Results

In Table 1.7 , we compare timing delays for the various benchmarks
with and without timing-driven optimization. Delays after each of two
timing iterations are compared to the delays after placement without
timing optimization. Note that by using our timing optimization tech-
niques, the benchmarks showed an average delay improvement of
about 10% after the first timing iteration and about 10.4% after the sec-
ond timing iteration. Notice that most of the benchmarks converged to
a delay value after the first timing optimization, with delays only
changing by a few percent (increase/decrease) thereafter. However,
some benchmarks like i9 showed significant improvement even in the
second timing iteration. We observe that this behavior is related in part
to the structure of the netlist, since our technique must rely on capturing
the right critical paths. We look into this in the next section. We also
notice -- unsurprisingly -- that the largest circuit, C7552, shows the
largest timing improvement. As a practical matter, the smaller designs
with only a few hundred transistors are really device-delay dominated.
As long as we place them well, they perform well. But for the large
design, there is enough “random wiring” that a poor placement with too
many long paths can materially degrade the timing. Here, the timing-
driven optimization makes its most visible impact.

Chapter 5 Timing-Driven Placement 97

TABLE 1.7 Delay Improvement with Timing-driven optimization

Bench.

frg1
i2

i4

C432

example2

i6

i9

C7552

No.
of

Trans
384

624

692

578

998

1518

2000

7132

Delay
Without
Timing

(ns)
0.774

0.450

0.652

1.553

0.862

0.647

1.297

4.190

Delay
Timing-
Iteration

-1
(ns)
0.710

0.408

0.617

1.377

0.816

0.589

1.172

3.255

%
Improve

after
Timing
Iteration

-1
8.3%
9.3%

5.3%

11.3%
5.3%

8.9%

9.6%

22.3%

Delay
Timing-
Iteration

-2
(ns)
0.712

0.415

0.625

1.375

0.803

0.592

1.105

3.280

%
Improve

after
Timing

Iteration
-2

8.0%

7.8%

4.1%

11.5%

6.8%

8.5%

14.8%

21.7%

Finally, we note that all the experiments execute in reasonable time.
The largest benchmark with 7132 transistors took only about 15 mins to
place and global route, with two timing iterations, on a desktop work-
station.

5.5.2 Netlist Structure and Path Distribution

In Figure 48, we have drawn the delay graphs generated for two
distinctly different types of benchmarks, in order to give us some
insight into the structure of the netlist. Notice that the circuit C432
(left) is an example of random logic, where the netlist has reasonable
depth and breadth. The i9 netlist (right), on the other hand, is broader
than it is deeper, in addition to being a little more structured.

98 Direct Transistor-Level Layout for Digital Blocks

FIGURE 48. Netlist structure for C432 (left) and i9 (right), plotted via
logic depth (inputs at left, outputs at right, in
each plot)

Chapter 5 Timing-Driven Placement 99

FIGURE 49. Path distribution for C432 before and after first timing
iteration

Our method relies on capturing the right critical paths from a given
run and tries to reduce their lengths in the subsequent timing run. Spe-
cifically, our experiments look for the top 100 critical paths. This works
well for a circuit like C432, where the top 100 paths capture a majority
of the bad timing paths. We have tried to show this in Figure 49, where
we analyze the top 500 timing paths in the circuit and see where the top
100 critical paths ended up, after a timing iteration, compared to the
other 400 non-critical paths. Notice that for C432 (Figure 49), reducing
the overall delays for the top critical paths also reduces delays for all
the other paths.

100 Direct Transistor-Level Layout for Digital Blocks

FIGURE 50. Path distribution for i9 before and after first timing iteration

On the other hand, for the same experiment with circuit i9
(Figure 50), we notice that while the delays of the top critical paths
reduced significantly, the delays of some non-critical paths did not
reduce. Worse some non-critical paths from the previous run became
critical for the next iteration. This is the reason we see significant
improvement in the second iteration, as our net-weights in the second
iteration account for the new critical paths, in addition to the older
ones. This clearly shows that the right number of critical paths to con-
sider and the number of timing iterations required for convergence is
highly dependent on the benchmark.

Chapter 5 Timing-Driven Placement 101

5.6 Summary

By dividing the netlist into DCCs, we have presented an iterative
timing-driven global placement strategy. We presented static timing
analysis at transistor-level that makes use of transistor-level Boolean
analysis and delay simulation to analyze the timing behavior of the cir-
cuit. Both path and block oriented techniques can then be used to deter-
mine the worst critical paths in the circuit. These critical paths are then
optimized for, in the next placement iteration, via net weight-based and
path-based placement techniques. For faster timing analysis, we use
some macro-modeling techniques to approximate DCC delays and de-
couple DCC transistor and interconnect delays. The results show that
by using our techniques, we can reduce overall circuit delays by about
10% on average.

In the next chapter, we conclude by summarizing our research con-
tributions and identifying some areas for future research.

CHAPTER 6 Conclusion

We have presented a novel transistor-level layout flow, for blocks
of combinational logic up to a few thousand transistors in size. Our key
research contributions include:

New flow: An alternative flow for designers to get directly to layout
from a flat transistor-level netlist.
Minimal essential clustering: Early identification of essential dif-
fusion-merged MOS device clusters, but deferred binding of the
clusters to a specific shape-level layout, until the very end of place-
ment. We use pattern recognition for scalability.

Effective two-phase placement: A scalable placement approach
where global placement handles block-level concerns for area, wire-
length, congestion and timing, while detailed shape-level concerns
are addressed by a local optimization phase. The detailed placement
phase accounts for detailed and global routability concerns, while
generating dense layouts via inter-cluster diffusion merges.

104 Direct Transistor-Level Layout for Digital Blocks

FIGURE 51. Our direct transistor-level layout flow.

Timing-driven placement: We also presented timing-driven place-
ment for transistor-level layout using transistor-level static timing
analysis. The lack of such timing optimization has been a major
obstacle to the adoption of previous transistor-level approaches.

Chapter 6 Conclusion 105

A commercial router completes our flow. Experiments comparing
to a commercial standard cell-level layout flow show that, when flat-
tened to transistors, our tool consistently achieves 100% routed layouts
that average 23% less area. Our approach shows that a good divide-
and-conquer attack need not handicap the shape-level optimizations
that have always been the distinguishing features of the best custom
device-level layouts. Our emphasis on recognized circuit clusters
means that natural groups of a few connected devices always have the
optimal geometric arrangement. Global placement using only these
clusters reduces the complexity of the problem and makes timing opti-
mization feasible. Detailed placement focusing on intra-cluster alterna-
tives and inter-cluster merges allows us to do crucial shape-level
optimizations, but scale to large netlists. We have also demonstrated
that by using our timing-driven placement techniques, the overall cir-
cuit delays can be improved by about 10-20%.

Of course, there are still several open questions remaining to be
addressed, as a result of the work we have done to date, and presented
here:

Compaction: In order to complete the flow in an industrial environ-
ment, a compaction pass will be necessary at the end to convert our
symbolic transistor placement and routing information to a usable
GDSII layout. It remains to be see whether there are additional
shapes-level optimizations that should be handled exclusively sym-
bolically, with compaction as a final “legalizing” pass, or if instead
some of these optimizations should just be assigned to the compac-
tor exclusively.

Coupling And Noise-Aware Layout: While our techniques work
well for static CMOS, in order to make them useful for high perfor-
mance circuits, placement and routing will have to consider cou-
pling interactions and noise effects. For example, dynamic logic
circuit layouts need particular attention to reduce noise effects from
capacitive coupling between switching nets and sensitive nodes.

106 Direct Transistor-Level Layout for Digital Blocks

Role of Logic Synthesis: In our flow, the target libraries are an arti-
ficial and intermediate construct, intended only to guide the creation
of a well-structured transistor-level netlist. Given the ability to gen-
erate layout from a flat transistor-level netlist, the right target library
to use during logic synthesis is an open question.

Sizing, Tuning and Placement: Given recent developments in the
area of flat transistor-level device sizing and tuning to meet timing
and other performance concerns, a simultaneous optimization tech-
nique is worth considering.
ECO Placement: To be useful in an industrial environment, incre-
mental re-placement during ECO changes becomes a necessity. The
partition of our approach into a sequence of global and local layout
optimizations would seem to make the insertion of ECO optimiza-
tions quite feasible.

A. Synthesis Target Library Subsets

For the synthesis target library comparison experiments in Chapter
2, we used some arbitrarily chosen subsets of an industrial standard cell
library. In this section, we list in detail the various elements of each of
those subset libraries. Note that lib-4 is the entire library, which we do
not list.

Subset 1 :

Appendix

Library
lib-0

Elements
IVLL, ND2LL, ND3LL, ND4LL, NR2LL, NR3LL,
NR4LL

Subset 2:

Subset 3:

Library

lib-2

Elements

lib-0 elems + AN2LL, AN2LLP, AN2LLX3,
AN2LLX4, AN3LL, AN3LLP, AN3LLX3, AN3LLX4,
AN3LLX8, AN4LL, AN4LLP, AN4LLX3, AN4LLX4,
IVLLP, IVLLX05, IVLLX16, IVLLX3, IVLLX32,
IVLLX4, IVLLX5, IVLLX8, ND2LLP, ND2LLX05,
ND2LLX3, ND2LLX4, ND3ALL, ND3ALLP,
ND3ALLX3, ND3ALLX4, ND3LLP, ND3LLX05,
ND3LLX3, ND3LLX4, ND4LLP, ND4LLX05,
ND4LLX3, ND4LLX4, NR2LLP, NR2LLX05,
NR2LLX3, NR2LLX4, NR3ALL, NR3ALLP,
NR3ALLX3, NR3ALLX4, NR3LLP, NR3LLX05,
NR3LLX3, NR3LLX4, NR4LLP, NR4LLX05,
NR4LLX3, NR4LLX4, NR4LLX8, OR2LL, OR2LLP,
OR2LLX3, OR2LLX4, OR2LLX8, OR3LL, OR3LLP,
OR3LLX3, OR3LLX4, OR4LL, OR4LLP, OR4LLX3,
OR4LLX4

Library

lib-1

Elements

lib-0 elems + AN2LL, AN3LL, AN4LL, OR2LL,
OR3LL, OR4LL, AO10LL, AO12LL, AO13LL,
AO14LL, AO15LL, AO16NLL, AO17NLL, AO20LL,
AO24LL, AO2ALL, AO3ALL, AO4ALL

108 Direct Transistor-Level Layout for Digital Blocks

Appendix 109

Subset 4:

Library

lib-3

Elements
lib-2 elems + AO10LL, AO10LLX05, AO10NLL,
AO10NLLP, AO11LL, AO11LLP, AO11LLX05, AO11NLL,
AO11NLLP, AO12LL, AO12NLL, AO12NLLP, AO13LL,
AO13LLX05, AO13NLL, AO13NLLP, AO14LL,
AO14NLL, AO14NLLP, AO15LL, AO15LLX05,
AO15NLL, AO15NLLP, AO16LL, AO16NLL, AO16NLLP,
AO17LL, AO17LLX05, AO17NLL, AO17NLLP, AO18LL,
AO18LLX05, AO18NLL, AO18NLLP, AO1ALL,
AO1ALLP, AO1ANLL, AO1ANLLP, AO1ANLLX4,
AO1CLL, AO1CLLP, AO1CLLX4, AO1CNLL,
AO1CNLLP, AO1CNLLX4, AO1LL, AO1LLP,
AO1LLX05, AO1NLL, AO1NLLP, AO1NLLX4, AO20LL,
AO20LLX05, AO20NLL, AO20NLLP, AO21LL,
AO21LLP, AO21LLX05, AO21NLL, AO21NLLP,
AO21NLLX4, AO22LL, AO22LLX05, AO22NLL,
AO22NLLP, AO23LL, AO23LLX05, AO23NLL,
AO23NLLP, AO24LL, AO24LLX05, AO24NLL,
AO24NLLP, AO25LL, AO25NLL, AO25NLLP,
AO26LLX05, AO26NLL, AO26NLLP, AO27LLX05,
AO27NLL, AO27NLLP, AO2ALL, AO2ALLP,
AO2ALLX4, AO2ANLL, AO2ANLLP, AO2ANLLX4,
AO2LL, AO2LLP, AO2LLX05, AO2NLL, AO2NLLP,
AO2NLLX4, AO39LL, AO3ALL, AO3ALLP, AO3ANLL,
AO3ANLLP, AO3ANLLX4, AO3CLL, AO3CLLP,
AO3CNLL, AO3CNLLP, AO3CNLLX4, AO3LL, AO3LLP,
AO3LLX05, AO3NLL, AO3NLLP, AO3NLLX4, AO40LL,
AO40LLP, AO41LL, AO41LLP, AO4ALL, AO4ALLP,
AO4ANLL, AO4ANLLP, AO4ANLLX4, AO4LL, AO4LLP,
AO4LLX05, AO4NLL, AO4NLLP, AO4NLLX4

B. Netlist Structure

For each of the circuits we used in our experiments in Chapter 5, we
show here the netlist plotted via logic depth, inputs on the left and out-
puts on the right. Notice that netlists come in a variety of shapes, with
varying logic breadth and depth. While some of these are examples of
random logic, other netlists are more structured.

Circuit frg1, 384 transistors

110 Direct Transistor-Level Layout for Digital Blocks

Appendix 111

Circuit i2, 624 transistors Circuit i4, 692 transistors

Circuit C432, 578 transistors

112 Direct Transistor-Level Layout for Digital Blocks

Circuit example2
998 transistors

Appendix 113

Circuit i6, 1518 transistors Circuit i9, 2000 transistors

114 Direct Transistor-Level Layout for Digital Blocks

Bibliography

[Basaran 97]

[Benkoski 87]

[Bryant 87]

[Bryant 87a]

B. Basaran, “Optimal Diffusion Sharing in Digi-
tal and Analog CMOS Layout,” Ph.D. Disserta-
tion, Carnegie Mellon University, CMU Report
No. CMUCAD-97-21, May 1997.

J. Benkoski, E. Vanden Meersch, L. Claesen, and
H. De Man, “Efficient Algorithms for Solving
the False Path Problem in Timing Analyzers,”
IEEE-ICCAD Digest of Technical Papers, 1987.

R. E. Bryant, “Algorithmic Aspects of Symbolic
Switch Network Analysis,” IEEE Transactions
on Computer-Aided Design of Integrated Cir-
cuits and Systems, CAD-6, No. 4, July 1987, pp.
618-633.

R. E. Bryant, “Boolean Analysis of MOS,” IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, CAD-6, No. 4, July
1987, pp. 634-639.

[Burns 98]

[Cadence]

[CBL]

[Chow 92]

[Cohn 94]

[Dartu 98]

[Detjens 98]

[Eisenmann 98]

[Fredrickson 97]

J. Burns and J. Feldman, “C5M-A Control Logic
Layout Synthesis System for High-Performance
Microprocessors,” in proc. 1997 ISPD, pp. 110-
115.

http://www.cadence.com

http://www.cbl.ncsu.edu/benchmarks

S. Chow, H. Chang, J. Lam, and Y. Liao, “The
Layout Synthesizer: An Automatic Block Gener-
ation System,” in proc. 1992 CICC., pp. 11.1.1-
11.1.4.

J. M. Cohn, D. J. Garrod, R. A. Rutenbar and L.
R. Carley, “Analog Device-Level Layout Auto-
mation,” Kluwer Academic Publishers, Boston
MA., 1994.

F. Dartu, L. T. Pileggi, “TETA: Transistor-Level
Engine for Timing Analysis,” in Proc. 35th DAC,
June 1998, pp. 595-598.

E. Detjens, G. Gannot, R. Rudell, A. Sangio-
vanni-Vincentelli and A. Wang, “Technology
mapping in MIS,” Proc. Int. Conf. CAD
(ICCAD- 87), pp. 116-119, Nov. 1987.

H. Eisenmann and F. Johannes, “Generic Global
Placement and Floorplanning,” Proc. Design
Auto. Conf., June 1998.

M. S. Fredrickson, “Static Timing Analysis -
101,” IBM Internal Report, 1997.

116 Direct Transistor-Level Layout for Digital Blocks

Bibliography 117

[Guan 95]

[Guan 96]

[Gupta 99]

[Guruswamy 97]

[Hathaway]

[Her 91]

[Hsieh 91]

[Hustin 87]

B. Guan and C. Sechen, “An area minimizing
layout generator for random logic blocks,” Proc.
1995 IEEE Custom IC Conf., May 1995, pp.
23.1/1-4.

Bingzhong Guan, Carl Sechen, “Large Standard
Cell Libraries and Their Impact on Layout Area
and Circuit Performance,” ICCD 1996: 378-383.

A. Gupta and J. Hayes, “Near-Optimum Hierar-
chical Layout Synthesis of Two-Dimensional
CMOS Cells,” Proc. 12th International Confer-
ence on VLSI Design, Jan 1999, pp. 453-459.

M. Guruswamy, R. Maziasz, D. Dulitz, S.
Raman, V. Chiluvuri, A. Fernandez and L. Jones,
“CELLERITY: A Fully Automatic Layout Syn-
thesis System for Standard Cell Libraries,” in
proc. 1997 DAC, pp. 327-332.

David J. Hathaway, IBM Corp., Essex Junction,
VT. Private communications.

T. W. Her and D. F. Wong, “Optimal Module
Implementation and its Application to Transistor
Placement,” IEEE International Conference on
Computer-Aided Design, 1991, 98-101.

Y. Hsieh, C. Hwang, Y. Lin, Y. Hsu, “LiB: A
CMOS Cell Compiler,” IEEE Trans. on CAD,
10(8), August 1991, pp. 994-1005.

S. Hustin and A. Sangiovanni-Vincentelli. TIM,
“A new standard cell placement program based
on the simulated annealing algorithm,” IEEE
Physical Design Workshop on Placement and
Floorplanning. April, 1987.

[Karypis 97]

[Kirkpatrick 83]

[Kleinhans 91]

[Krasnicki 97]

[Lam 88]

[Lefebvre 89]

[Lefebvre 92]

[Madden]

G. Karypis, R. Aggarwal, V. Kumar and S. Shek-
har, “hMetis, A Hypergraph Partitioning Pack-
age, Version 1.0,” Manuscript, December 1997.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization by Simulated Annealing,” Sci-
ence, Vol. 220, No. 4598, November 83, pp. 671-
680.

J. Kleinhans, G. Siegl, F. Johannes, K. Antreich,
“GORDIAN: VLSI Placement by Quadratic Pro-
gramming and Slicing Optimization,” IEEE
Trans. CAD, vol 10 no 3, March 1991.

M. J. Krasnicki, “Generalized Analog Circuit
Synthesis,” Master’s Thesis, Carnegie Mellon
University, CMU Report CMUCAD-97-59,
December 1997.

J. Lam and J. M. Delosme, “Performance of a
New Annealing Schedule,” Proceedings of
IEEE/ACM Design Automation Conference,
pages 306-311. 1988.

M. Lefebvre and C. Chan, “Optimal Ordering of
Gate Signals in CMOS Complex Gates,” in proc.
1989 CICC, pp. 17.5.1-17.5.4.

M. Lefebvre and D. Skoll, “PicassoII: A CMOS
Leaf Cell Synthesis System,” in proc. 1992
MCNC Intl. Workshop on Layout Synth., vol. 2,
pp. 207-219.

Patrick H. Madden, “The Generic C Library,”
http://vlsicad.cs.binghamton.edu/~pmadden.

118 Direct Transistor-Level Layout for Digital Blocks

[Malavasi 95]

[Maziasz 92]

[McDonald 01]

[Messmer 95]

[Ohlrich 93]

[Riess 95]

[Riepe 99]

[Rudell 89]

E.Malavasi, D. Pandini, “Optimum CMOS Stack
Generation with Analog Constraints,” IEEE
Transactions on Computer-Aided Design, Vol.
14, No. 1, January 1995, pp. 107-122.

R.L. Maziasz, J.P. Hayes, “Layout Minimization
of CMOS Cells, ” Kluwer Academic Publishers,
Boston/Dordrecht/London, 1992.

C. B. McDonald and R. E. Bryant, “Symbolic
Functional and Timing Verification of Transistor-
Level Circuits,” IEEE Transactions on Com-
puter-Aided Design, March 2001.

B.T. Messmer and H. Bunke, “Subgraph isomor-
phism in polynomial time,” Technischer Bericht
IAM 95-003, Institut fur Informatik, Universitat
Bern, Schweiz, 1995.

M. Ohlrich, C. Ebeling, E. Ginting, L. Sather,
“SubGemini: Identifying SubCircuits using a
Fast Subgraph Isomorphism Algorithm,” Proc.
1993 DAC, pp. 31-37.

B. M. Riess and G. G. Ettelt, “Speed: Fast and
Efficient Timing Driven Placement,” Proc. Intl.
Symp. on Circuits And Systems, 1995, pp. 377-
380.

M. A. Riepe, “Transistor Level Micro Placement
and Routing for Two-Dimensional Digital VLSI
Cell Synthesis,” Ph.D. dissertation, University of
Michigan, 1999.

R. Rudell, “Logic synthesis for VLSI design,”
Technical Report UCB/ERL M89/49, University
of California, Berkeley, April 1989.

Bibliography 119

[Rutenbar 89]

[Sadakane 95]

[Sechen 85]

[Sechen 86]

[Sentovich 92]

[Serdar 99]

[Skalicky 96]

Rob A. Rutenbar, “Simulated Annealing Algo-
rithms: An Overview,” IEEE Circuits And
Devices Magazine, Vol. 5, No. 1, January 89, pp.
19-26.

T. Sadakane, H. Nakao, and M. Terai, “A new
hierarchical algorithm for transistor placement in
CMOS macro cell design,” Proceedings of
CICC-95, pp. 461-464.

C. Sechen and A. Sangiovanni-Vincentelli, “The
TimberWolf Placement and Routing Package,”
IEEE Journal of Solid-State Circuits, Vol. SC-20,
No. 2, April 1985, pp. 510-522.

C. Sechen and A. Sangiovanni-Vincentelli,
“TimberWolf 3.2: A New Standard Cell Place-
ment and Global Routing Package,” in proc. 23rd
DAC, 1986, pp. 432-439.

E. M. Sentovich, K. J. Singh, L. Lavagno, C.
Moon, R. Murgai, A. Saldanha, H. Savoj, P. R.
Stephan, R. K. Brayton, A. Sangiovanni-Vincen-
telli, “SIS: A System for Sequential Circuit Syn-
thesis,” Dept. of EECS, University of California,
Berkeley, 1992

T. Serdar, C. Sechen, “AKORD: Transistor-Level
and Mixed Transistor/Gate Level Placement Tool
for Digital Data Paths,” in Proc. 1999 ICCAD.

Tomas Skalicky, “LASPACK,” http://www.tu-
dresden.de/mwism/skalicky/laspack/
laspack.html.

120 Direct Transistor-Level Layout for Digital Blocks

[Somenzi 98]

[STM]

[Swartz 90]

[Swartz 95]

[Synopsis]

[Tani 91]

[Tsay 88]

[Weste 93]

F. Somenzi, “CUDD: CU Decision Diagram
Package - Release 2.2.0, Online User Manual,”
May 1998.

STMicroelectronics, http://www.stmicroelector-
nics.com/

W. Swartz and C. Sechen, “New Algorithms for
the Placement and Routing of Macrocells,” Pro-
ceedings of IEEE/ACM International Conference
on Computer-Aided Design, pages 336-339.
November, 1990.

W. Swartz, C. Sechen, “Timing driven placement
for large standard cell circuits,” in ACM/IEEE
DAC, 1995.

http://www.synopsys.com/

K. Tani, K. Izumi, M. Kashimura, T. Matsuda and
T. Fujii, “Two-Dimensional Layout Synthesis for
Large-Scale CMOS Circuits,” in proc. 1991
ICCAD, pp. 490-493.

R. S. Tsay, E. Kuh, C. P. Hsu, “PROUD: A Sea-
Of-gates Placement Algorithm,” IEEE Design &
Test of Computers, Dec 1988.

N.H.E. Weste and K. Eshraghian, “Principles of
CMOS VLSI Design,” Addison-Wesley Publish-
ing Company, 1993.

Bibliography 121

Index

A

area 35
arrival times 81

B

BDD 84
benchmarks 12, 26
BestMerge 56
binding 49
Bi-Partitioning 40
Boolean Analysis 83

C

cell layout 6
cell library 67
chaining 7
chains 14
circuit graph 20
Circuit Structure 17
Circuit Structure Library 22

Circuit Structure Recognition 10
cluster layout options 17
Cluster Merges 56
clustering 10, 13, 35
clusters 13
cofactor 85
Compaction 105
Congestion 45
congestion 35, 47, 49
Cooling Schedule 43
Cost Function 43
Coupling 105
Critical path 77
critical paths 100

D

dc-coupled components 78
dc-coupled groups 22
DCCs 22, 78
delay simulation 80
delays 77
Design Compiler 25

Detailed Placement 11
diffusion abutment 8
diffusion graph 6, 15
Diffusion Merging 57
diffusion-merged 9
DSM 4
Dynamic Programming 74
dynamic programming 65
Dynamic Programming Local

Optimization 64
dynamic timing analysis 80

E

ECO 106
Essential Clusters 17
essential clusters 5, 10, 11
essential trail clusters 17
Eulerian path 15
Eulerian trail 15
experiments 24

F

fingering 52

G

gates 52
Global Placement 11
global placement 44
Global routing 11
global routing 65
graph isomorphism 20
Graph-Matcher 20
Greedy Local Optimization 64, 74

H

HCLIP 6

I

ILP 6
Inter-Cluster 54
inter-cluster 50
inter-cluster diffusion merging 11
interconnect 78
intra-cluster 11, 50

L

leaf cell synthesis 8
leaf-cell synthesis 8
library 3, 26
Local Placement Optimization 56
Logic Synthesis 106
logic synthesis 26

M

Macro-placement 35
min-cut 35
Minimal Essential Clustering 10
Move Set 42

N

Noise 105

O

overlap 54

P

partitioning 45
path-based 101
Pattern Matching 20
pattern matching 18
Poly Alignment 57

124 Direct Transistor-Level Layout for Digital Blocks

Index 125

Q

quadratic placement 38

R

RC-tree 92
Re-Partitioning 40
Required Arrival Times 87
Routability 57
routability 45, 59
Row Utilization 45
row-based 1
row-densities 35

S

series-parallel 17
signal propagation 79
simulated annealing 16, 36, 41
SIS 24
slews 81
source/drain 20
SPICE 82
standard cell 72
standard cells 54
Standard-cell 1
static CMOS 10
static timing analysis 80
Steiner 50, 56
strapped 69
sub-trail modification 16
super-edges 15
super-vertex 15
synthesis 32

T

technology mapping 32
TETA 82
timing 35, 77

Timing Analysis 80
Timing-driven 77
trail rotation 16
TrailBlazer 12, 69
Trails 14
trails 7, 9
transistor-level 6
transistor-level Boolean analysis 82
transistor-level DCC simulation 82
Transistor-Level Static Timing 81

U

unateness 83, 85

W

wirelength 8, 35, 49

