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Preface

This book is written to serve as either a textbook or a reference book on designing experiments
and analyzing experimental data. Our particular concern is with the methodology appropriate
in the behavioral sciences but the methods introduced can be applied in a variety of areas
of scientific research. The book is centered around the view of data analysis as involving a
comparison of models. We believe that this model comparison perspective offers significant
advantages over the traditional variance partitioning approach usually used to teach analysis
of variance. Instead of approaching each experimental design in terms of its own unique set of
computational formulas, the model comparison approach allows us to introduce a few basic
formulas that can be applied with the same underlying logic to every experimental design.
This establishes an integrative theme that highlights how various designs and analyses are
related to one another. The model comparison approach also allows us to cover topics that
are often omitted in experimental design texts. For example, we are able to introduce the
multivariate approach to repeated measures as a straightforward generalization of the approach
used for between-subjects designs. Similarly, the analysis of nonorthogonal designs (designs
with unequal cell sizes) fits nicely into our approach. Further, not only is the presentation of
the standard analysis of covariance facilitated by the model comparison perspective, but we
are also able to consider models that allow for heterogeneity of regression across conditions.
In fact, the underlying logic can be applied directly to even more complex methodologies such
as hierarchical linear modeling (discussed in this edition) and structural equation modeling.
Thus, our approach provides a conceptual framework for understanding experimental design
and it builds a strong foundation for readers who wish to pursue more advanced topics.

The focus throughout the book is conceptual, with our greatest emphasis being on promoting
an understanding of the logical underpinnings of design and analysis. This is perhaps most
evident in the first part of the book dealing with the logic of design and analysis, which touches
on relevant issues in philosophy of science and past and current controversies in statistical
reasoning. But the conceptual emphasis continues throughout the book, where our primary
concern is with developing an understanding of the logic of statistical methods. This is why
we present definitional instead of computational formulas, relying on statistical packages to
perform actual computations on a computer. This emphasis allows us to concentrate on the
meaning of what is being computed instead of worrying primarily about how to perform
the calculation. Nevertheless, we recognize the importance of doing hand calculations on

Xvii
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Xviii PREFACE

occasion to better understand what it is that is being computed. Thus, we have included a
number of exercises at the end of each chapter that give the reader the opportunity to calculate
guantities by hand on small data sets. We have also included many thought questions, which
are intended to develop a deeper understanding of the subject and to help the reader draw out
logical connections in the materials. Finally, realistic data sets allow the reader to experience
an analysis of data from each design in its entirety. These data sets are included on the CD
packaged with the book, as are all other data sets that appear in the text. Every data set is
available in three forms: a SAS system file, an SPSS system file, and an ascii file, making it
easy for students to practice their understanding by using their preferred statistical package.
Solutions to numerous selected (starred) exercises are provided at the back of the book. Answers
for the remaining exercises are available in a solutions manual for instructors who adopt the
book for classroom use.

Despite the inclusion of advanced topics such as hierarchical linear modeling, the necessary
background for the book is minimal. Although no mathematics beyond high school algebra is
required, we do assume that readers will have had at least one undergraduate statistics course.
For those readers needing a refresher, a Review of Basic Statistics is included on the book’s
CD. Even those who have had more than a single statistics course may find this Review helpful,
particularly in conjunction with beginning the development of our model comparison approach
in Chapter 3. The other statistical tutorial on the CD, which could most profitably be read upon
the completion of Chapter 3, provides a basic discussion of regression for those who have not
previously studied or need a review of regression.

There is a companion web site for the book:

www.designingexperiments.com

This web site contains examples of SAS and SPSS instructions for analyzing the data sets
that are analyzed in the various chapters of the book. The data sets themselves are contained
on the CD for ease of access, while the instructions are placed on the web site so they can be
modified as new versions of SAS and SPSS are released. Our intent is that these instructions
can serve as models for students and other readers who will usually want to apply similar
analyses to their own data. Along these lines, we have chosen not to provide SAS or SPSS
instructions for end-of-chapter exercises, because we believe that most instructors would pre-
fer that students have the opportunity to develop appropriate instructions for these exercises
themselves based on examples from the chapters instead of being given all of the answers. Thus
we have intentionally left open an opportunity for practice and self-assessment of students’
knowledge and understanding of how to use SAS and SPSS to answer questions presented in
end-of-chapter exercises.

Organization

The organization of the book allows chapters to be covered in various sequences or omitted
entirely.

Part I (Chapters 1 and 2) explains the logic of experimental design and the role of ran-
domization in the conduct of behavioral research. These two chapters attempt to provide the
philosophical and historical context in which the methods of experimental design and analysis
may be understood. Although Part I is not required for understanding statistical issues in the
remaining chapters of the book, it does help the reader see the “big picture.”

Part II provides the core of the book. Chapter 3 introduces the concept of comparing
full and restricted models. Most of the formulas used throughout the book are introduced in
Chapters 3 and 4. Although most readers will want to follow these two chapters by reading
at least Chapters 5, 7, and 8 in Part 11, it would be possible for more advanced readers to go

TLFeBOOK



PREFACE XiX

straight to Chapters 13 and 14 on the multivariate approach to repeated measures. Chapter 9,
on Analysis of Covariance, is written in such a way that it can be read either immediately
following Chapter 8 or deferred until after Part I11.

Part III describes design and analysis principles for within-subjects designs (that is, repeated
measures designs). These chapters are written to provide maximum flexibility in choosing
an approach to the topic. In our own one-semester experimental design courses, we find it
necessary to omit one of the four chapters on repeated measures. Covering only Chapters 11,
13, and 14 introduces the univariate approach to repeated measures but covers the multivariate
approach in greater depth. Alternatively, covering only Chapters 11, 12, and 13 emphasizes
the univariate approach. Advanced readers might skip Chapters 11 and 12 entirely and read
only Chapters 13 and 14.

Part IV, consisting of Chapters 15 and 16, presents a basic introduction to hierarchical linear
modeling. This methodology has several advantages over traditional ANOVA approaches,
including the possibility of modeling data at individual and group levels simultaneously as
well as permitting the inclusion of participants with incomplete data in analyses of repeated
measures designs. In a two-quarter or two-semester course, one might cover not only all
four chapters on ANOVA approaches to repeated measures but also Chapters 15 and 16.
Alternatively, these final two chapters might be used in the first part of a subsequent course
devoted to hierarchical linear modeling.

As in the first edition, discussion of more specialized topics is included but set off from
the main text in a variety of ways. Brief sections explicating specific ideas within chapters are
marked with an “Optional” heading and set in a smaller font. A more involved discussion of
methods relevant to a whole chapter are appended to the chapter and denoted as an Exten-
sion. Detailed notes on individual ideas presented in the text is provided in the Endnotes in
Appendix C.

We have taken several steps to make key equations interpretable and easy to use. The most
important equations are numbered consecutively in each chapter as they are introduced. If the
same equation is repeated later in the chapter, we use its original equation number followed by
the designation “repeated,” to remind the reader that this equation was already introduced and
to facilitate finding the point where it was first presented. Cross-references to equations in other
chapters are indicated by including the chapter number followed by a period in front of the
equation number. For example, a reference in Chapter 5 to Equation 4.35 refers to Equation 35
in Chapter 4. However, within Chapter 4 this equation is referred to simply as Equation 35.
Finally, we have frequently provided tables that summarize important equations for a particular
design or concept, to make equations easier to find and facilitate direct comparisons of the
equations to enhance understanding of their differences and similarities.

Changes in This Edition

Especially for those who used the first edition of the book, we want to highlight important
changes included in this edition. The most extensive revision is the greatly increased attention
given to measures of effects. Briefly introduced in the first edition, we now have discussion
of confidence intervals, measures of strength of association, and other measures of effect size
throughout the book. Other general changes include a more thorough integration of information
on statistical packages and an increased use of graphics.

In terms of the most important changes in individual chapters, Chapter 1 incorporates im-
portant recent discussions of validity such as those by Shadish, Cook and Campbell (2002)
and Abelson (1996), as well as alluding to recent influences on philosophy of science such as
postmodernism. Chapter 2 was extensively re-worked to address past and present controversies
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XX PREFACE

regarding statistical reasoning, including disputes ranging from Fisher’s disagreements with
Neyman and Pearson up through the recent debates about hypothesis testing that moti-
vated the formation of the APA Task Force on Statistical Inference (Wilkinson et al., 1999).
Chapter 2 is now considerably less sanguine about the pervasiveness of normally distributed
data. Also added to this chapter is an overview of experimental designs to be covered in the
book.

Chapter 3 now opens with a data plot to stress the importance of examining one’s data
directly before beginning statistical analyses. An extended treatment of transformations of
data is now presented. The treatment of power analyses was updated to include an introduction
to computerized methods. Chapters 4, 5 and 6 on contrasts, like the rest of the book, include
more on measures of effect and confidence intervals, with Chapter 5 now stressing simultaneous
confidence intervals and introducing concepts such as the false discovery rate.

Chapter 7, which introduces two-way ANOVA, extends the treatment of measures of effect
to alternative ways of accommodating the influence of the other factor included in the design
in addition to the one whose effects you wish to characterize. The greatly expanded develop-
ment of interaction contrasts is now illustrated with a realistic data set. In Chapter 8, which
discusses designs with three or more factors, the presentation of three-way interactions has
been expanded. More extensive use is now made of plots of simple interaction effects as a way
of explaining three-way interactions.

A numerical example with realistic data was added to Chapter 9 on covariates. A new
section on choosing covariates is also included.

Chapter 10 on designs with random or nested factors was revised extensively. The rationale
for the model used for testing effects in designs with random factors is contrasted with alter-
native approaches used by some computer packages. Application of rules for determining the
effects that can be tested and the appropriate error terms to use in complex designs is discussed
in greater detail. The intraclass correlation as a measure of effect size is now introduced for
use with random factors.

Chapters 11 through 14 on univariate and multivariate approaches to repeated measures
designs, like the previous chapters, now incorporate various measures of effects, both in terms
of standardized mean differences as well as measures of association such as omega squared.
Sample size considerations are also dealt with in greater detail.

Chapters 15 and 16 on hierarchical linear modeling (HL.LM) are entirely new. Chapter 15
extends Chapters 11 through 14 by developing additional models for longitudinal data. We
explicitly describe how these new models (sometimes called multilevel models, mixed models
or random coefficient models) are related to the traditional ANOVA and MANOVA models
covered in Chapters 11-14. This contrasts with many other presentations of HLM, which either
relate these new models to regression but not ANOVA or present the new models in isolation
from any form of more traditional models. Chapter 16, an extension of Chapter 10, applies
HLM to nested designs. In both Chapters 15 and 16, numerous examples of SAS syntax are
presented, and the advantages of these newer methods for dealing with designs with unequal
n or missing data are stressed.

This edition features two new appendices that discuss more global aspects of the model
comparison theme of our book. One of these (Appendix B, PartI), designed for readers who have
previously studied multiple regression, details the relationship between ANOVA and regression
models, and illustrates some advantages of the ANOVA approach. The other (Appendix B,
Part II) deals with general principles of formulating models including such considerations as
specification errors, or the implications of not having the appropriate factors included in one’s
statistical model.
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Finally, this new edition also includes a CD as well as a web site to accompany the book.
The CD contains:

(1) a Review of Basic Statistics tutorial

(2) a Regression tutorial

(3) data files in 3 formats (SAS, SPSS, and ascii) for all data sets that appear in the book
(including end-of-chapter exercises as well as data presented in the body of chapters)

The accompanying web site (www.designingexperiments.com) contains:

(1) abrief description of the research question, the design, and the data for each data set that
appears in the body of a chapter

(2) SAS and SPSS instructions (i.e., syntax or examples of menu choices) for how to perform
analyses described in the book itself
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Conceptual Bases
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Man, being the servant and interpreter of Nature, can do and understand so much, and so much
only, as he has observed, in fact or in thought, of the course of Nature. ... Human knowledge
and human power meet in one; for where the course is not known, the effect cannot be produced.
Nature, to be commanded, must be obeyed.

~—FRANCIS BACON, NOVUM ORGANUM, 1620
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1

The Logic
of Experimental Design

Methods of experimental design and data analysis derive their value from the contributions
they make to the more general enterprise of science. To appreciate what design and analysis can
and cannot do for you, it is necessary to understand something of the logic of science. Although
we do not attempt to provide a comprehensive introduction to the philosophy of science, we
believe it is necessary to present some of the difficulties involved in attempting to draw valid
inferences from experimental data regarding the truth of a given scientific explanation of a
particular phenomenon.

We begin with a discussion of the traditional view of science and mention some of the
difficulties inherent in this view. Next, we consider various responses that have been offered
to the critique of the traditional view. Finally, we discuss distinctions that can be made among
different types of validity and enumerate some specific types of threats to drawing valid
inferences from data.

THE TRADITIONAL VIEW OF SCIENCE

The perspective on science that emerged in the West around 1600 and that profoundly shaped
and defined the modern era (Whitehead, 1932) can be identified in terms of its methodology:
empirical observation and, whenever possible, experimentation. The essence of experimen-
tation, as Shadish, Cook, and Campbell (2002) note, is an attempt “to discover the effects
of presumed causes” (p. 3). It is because of their contribution to the understanding of causal
processes that experiments play such a central role in science. As Schmidt (1992) suggests,
“The major task in any science is the development of theory. . .. Theories are causal explana-
tions. The goal in every science is explanation, and explanation is always causal” {p. 1177).
The explication of statistical methods that can assist in the testing of hypothesized causes and
estimating their effects via experiments is the primary concern of this book. Such an emphasis
on technical language and tools is characteristic of modern science and perhaps contributes to
the popular perception of science as a purely objective, rule-governed process. It is useful to
review briefly how such a view arose historically and how it must be qualified.

Many trace the origins of modern science to British statesman and philosopher Sir Francis
Bacon (1561-1626). The context in which Bacon was writing was that of a culture that for
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centuries had been held in the grips of an Aristotelian, rationalistic approach to obtaining
knowledge. Although Aristotle had considered induction, the “predominant mode of his logic
was deduction, and its ideal was the syllogism” (Durant & Durant, 1961, p. 174). Bacon rec-
ognized the stagnation that had resulted in science because of this stress on deduction rather
than observation and because the ultimate appeal in scientific questions was to the authority of
“the Philosopher,” Aristotle. Bacon’s complaint was thus not so much against the ancients as
with their disciples, particularly the Scholastic philosophers of the late Middle Ages (Robinson,
1981, p. 209). Bacon’s Novum Organum (1620/1928a) proposed that this old method be re-
placed with a new organ or system based on the inductive study of nature itself. In short, what
Bacon immodestly attempted was to “commence a total reconstruction of sciences, [practical]
arts, and all human knowledge, raised upon the proper foundations” (Bacon, 1620/1928b, p. 4).
The critical element in this foundation was the method of experimentation. Thus, a deliberate
manipulation of variables was to replace the *“noting and naming” kind of empiricism that
had characterized the Aristotelian approach when it did lower itself to observation (Robinson,
1981, p. 212).

The character of Bacon’s reconstruction, however, was to have positive and negative conse-
guences for the conception of science that predominated for the next 3 centuries. The Baconian
ideal for science was as follows: At the start of their research, experimenters are to remove
from their thinking all the “‘idols’ or time-honored illusions and fallacies, born of [their]
personal idiosyncrasies of judgment or the traditional beliefs and dogmas of [their] group”
(Durant & Durant, 1961, p. 175). Thus, in the Baconian view, scientific observations are to
be made in a purely objective fashion by individuals having no loyalties to any hypotheses or
beliefs that would cause them to be blind to any portion of the empirical evidence. The correct
conclusions and explanatory principles would then emerge from the evidence relatively auto-
matically, and without the particular philosophical presuppositions of the experimenter playing
any part. Thus, the “course of Nature” could be observed clearly if the experimenter would
only look at Nature as it is. Nature, as it were, unambiguously dictated the adoption of true the-
ories. The whole process of science, it was thought, could be purely objective, empirical, and
rational.

Although this view of science is regarded as passé by some academics (cf. Gergen, 2001),
particularly in the humanities, its flaws need to be noted because of its persistence in popular
thought and even in the treatment of the scientific method in introductory texts in the sciences.
Instead of personal judgment playing no role in science, it is critical to the whole process.
Whether one considers the data collection, data analysis, or interpretation phases of a study, the
process is not purely objective and rule governed. First, the scientist’s preexisting ideas about
what is interesting and relevant undeniably guide decisions about what data are to be collected.
For example, if one is studying the effects of drug treatments on recovery of function following
brain injury, one has decided in advance that the drugs present in the bloodstream may be a
relevant factor, and one has likely also decided that the day of the week on which the drug treat-
ment is administered is probably not a relevant factor. Data cannot be collected without some
preexisting ideas about what may be relevant, because it is those decisions that determine the
variables to be manipulated or assessed in a particular experimental design. There are no logical
formulas telling the scientist which particular variables must be examined in a given study.

Similarly, the patterns observed in a set of data are influenced by the ideas the investigator
brings to the research. To be sure, a great deal can be said about what methods of analysis are
most appropriate to aid in this pattern-detection process for a particular experimental design.
In fact, much of this book is devoted to appropriate ways of describing causal relationships
observed in research. However, both experiments in cognitive psychology and examples from
the history of science suggest that, to a large extent, what one sees is determined by what
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one expects to see (see Kuhn, 1970, especially Chapter VI). Although statistical analysis can
objectify to some extent the process of looking for patterns in data, statistical methods, as
Koch (1981) and others point out, even when correctly applied, do not assure that the most
appropriate ways of organizing the data will be found. For example, in a simple four-group
experimental design, there are, at least in theory, an infinite number of comparisons of the
four group means that could be tested for significance. Thus, even assuming that the most
appropriate data had been collected, it is entirely possible that a researcher might fail to
examine the most illuminating comparison. Admittedly, this problem of correctly perceiving
at least approximately what the patterns in your data are is less serious than the problem of
collecting the relevant data in the first place or the problem of what one makes of the pattern
once itis discerned. Nonetheless, there are no absolutely foolproof strategies for analyzing data.

The final step in the inductive process is the most troublesome. Once data relevant to a
question are collected and their basic pattern noted, how should the finding be explained?
The causal explanations detailing the mechanisms or processes by which causes produce their
effects are typically much harder to come by than facts to be explained (cf. Shadish et al.,
2002, p. 9). Put bluntly, “there is no rigorous logical procedure which accounts for the birth
of theories or of the novel concepts and connections which new theories often involve. There
is no ‘logic of discovery’” (Ratzsch, 2000, p. 19). As many a doctoral candidate knows from
painful experience after puzzling over a set of unanticipated results, data sometimes do not
clearly suggest any theory, much less dictate the “correct” one.

RESPONSES TO THE CRITICISMS OF THE IDEA
OF PURE SCIENCE

Over the years, the pendulum has swung back and forth regarding the validity and implica-
tions of this critique of the allegedly pure objectivity, rationality, and empiricism of science.
We consider various kinds of responses to these criticisms. First, it is virtually universally
acknowledged that certain assumptions must be made to do science at all. Next, we consider
three major alternatives that figured prominently in the shaping of philosophy of science in the
20th century. Although there were attempts to revise and maintain some form of the traditional
view of science well into the 20th century, there is now wide agreement that the criticisms
were more sound than the most influential revision of the traditional view. In the course of this
discussion, we indicate our views on these various perspectives on philosophy of science and
point out certain of the inherent limitations of science.

Assumptions

All rational argument must begin with certain assumptions, whether one is engaged in philo-
sophical, scientific, or competitive debating. Although these assumptions are typically present
only implicitly in the practice of scientific activities, there are some basic principles essential
to science that are not subject to empirical test but that must be presupposed for science to
make sense. Following Underwood (1957, pp. 3-6), we consider two assumptions to be most
fundamental: the lawfulness of nature and finite causation.

Lawfulness of Nature

Although possibly itself a corollary of a more basic philosophical assumption, the assump-
tion that the events of nature display a certain lawfulness is a presupposition clearly required
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by science. This is the belief that nature, despite its obvious complexity, is not entirely chaotic;
regularities and principles in the outworking of natural events exist and wait to be discovered.
Thus, on this assumption, an activity like science, which has as its goal the cataloging and
understanding of such regularities, is conceivable.

There are a number of facets or corollaries to the principle of the lawfulness of nature
that can be distinguished. First, at least since the ancient Greeks, there has been agreement
on the assumption that nature is understandable, although not necessarily on the methods for
how that understanding should be achieved. In our era, with the growing appreciation of the
complexities and indeterminacies at the subatomic level, the belief that we can understand is
recognized as not a trivial assumption. At the same time, the undeniable successes of science
in prediction and control of natural events provide ample evidence of the fruitfulness of the
assumption and, in some sense, are more impressive in light of current knowledge. As Einstein
said, the most incomprehensible thing about the universe is that it is comprehensiblel (Einstein,
1936, p. 351; see Koch, 1981, p. 265).

A second facet of the general belief in the lawfulness of nature is that nature is uniform—that
is, processes and patterns observed on only a limited scale hold universally. This is obviously
required in sciences such as astronomy if statements are to be made on the basis of current
observations about the characteristics of a star thousands of years ago. However, the validity
of the assumption is questionable, at least in certain areas of the behavioral sciences. Two
dimensions of the problem can be distinguished. First, relationships observed in the psychology
of 2005 may not be true of the psychology of 1955 or 2055. For example, the social psychology
of attitudes in some sense must change as societal attitudes change. Rape, for instance, was
regarded as a more serious crime than homicide in the 1920s but as a much less serious
crime than homicide in the 1960s (Coombs, 1967). One possible way out of the apparent bind
this places one in is to theorize at a more abstract level. Rather than attempting to predict
attitudes toward the likely suitability for employment of a rapist some time after a crime, one
might instead theorize about the possible suitability for future employment of someone who
had committed a crime of a specified level of perceived seriousness and allow which crime
occupied that level to vary over time. Although one can offer such abstract theories, it is an
empirical question as to whether the relationship will be constant over time when the particular
crime occupying a given level of seriousness is changing.

A second dimension of the presupposition of the uniformity of nature that must be considered
in the behavioral sciences pertains to the homogeneity of experimental material (individuals,
families) being investigated. Although a chemist might safely assume that one hydrogen atom
will behave essentially the same as another when placed in a given experimental situation, it is
not at all clear that the people studied by a psychologist can be expected to display the same sort
of uniformity. Admittedly, there are areas of psychology—for example, the study of vision—in
which there is sufficient uniformity across individuals in the processes at work that the situation
approaches that in the physical sciences. In fact, studies with very small numbers of subjects are
common in the perception area. However, it is generally the case that individual differences
among people are sufficiently pronounced that they must be reckoned with explicitly. This
variability is, indeed, a large part of the need for behavioral scientists to be trained in the areas
of experimental design and statistics, in which the focus is on methods for accommodating
to this sort of variability. We deal with the logic of this accommodation at numerous points,
particularly in our discussion of external validity in this chapter and randomization in Chapter 2.
In addition, Chapter 9 on control variables is devoted to methods for incorporating variables
assessing individual differences among participants into one’s design and analysis, and the
succeeding chapters relate to methods designed to deal with the systematic variation among
individuals.
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A third facet of the assumption of the lawfulness of nature is the principle of causality.
One definition of this principle, which was suggested by Underwood, is that “every natural
event (phenomenon) is assumed to have a cause, and if that causal situation could be exactly
reinstituted, the event would be duplicated” (1957, p. 4). At the time Underwood was writing,
there was fair agreement regarding causality in science as a deterministic, mechanistic process.
Since the 1950s, however, we have seen the emergence of a variety of views regarding what
it means to say that one event causes another and, equally important, regarding how we can
acquire knowledge about causal relationships. As Cook and Campbell put it, “the epistemology
of causation, and of the scientific method more generally, is at present in a productive state of
near chaos” (1979, p. 10).

Cook and Campbell admirably characterized the evolution of thinking in the philosophy of
science about causality (1979, Chapter 1). We can devote space here to only the briefest of
summaries of that problem. Through most of its first 100 years as an experimental discipline,
psychology was heavily influenced by the view of causation offered by the Scottish empiricist
philosopher David Hume (1711-1776). Hume argued that the inference of a causal relationship
involving unobservables is never justified logically. Even in the case of one billiard ball striking
another, one does not observe one ball causing another to move. Rather, one simply observes
a correlation between the ball being struck and its moving. Thus, for Hume, correlation is
all we can know about causality. These 18th-century ideas, filtered through the 19th-century
positivism of Auguste Comte (1798-1857), pushed early 20th-century psychology toward an
empiricist monism, a hesitancy to propose causal relationships between hypothetical constructs.
Rather, the search was for functional relationships between observables or, only slightly less
modestly, between theoretical terms, each of which was operationally defined by one particular
measurement instrument or set of operations in a given study. Thus, in 1923, Boring would
define intelligence as what an intelligence test measures. Science was to give us sure knowledge
of relationships that had been confirmed rigorously by empirical observation.

These views of causality have been found to be lacking on a number of counts. First, as every
elementary statistics text reiterates, causation is now regarded as something different from mere
correlation. This point must be stressed again here, because in this text we describe relationships
with statistical models that can be used for either correlational or causal relationships. This
is potentially confusing, particularly because we follow the convention of referring to certain
terms in the models as “effects.” At some times, these effects are the magnitude of the change
an independent variable causes in the dependent variable; at other times, the effect is better
thought of as simply a measure of the strength of the correlational relationship between two
measures. The strength of the support for the interpretation of a relationship as causal, then,
hinges not on the statistical model used, but on the nature of the design used. For example, in a
correlational study, one of the variables may be dichotomous, such as high or low anxiety, rather
than continuous. That one could carry out a f test? of the difference in depression between high-
and low-anxiety groups, rather than computing a correlation between depression and anxiety,
does not mean that you have a more secure basis for inferring causality than if you had simply
computed the correlation. If the design of the study were such that anxiety was a measured
trait of individuals rather than a variable independently manipulated by the experimenter, then
that limits the strength of the inference rather than the kind of statistic computed.

Second, using a single measurement device as definitional of one’s construct entails a variety
of difficulties, not least of which is that meters (or measures) sometimes are broken (invalid).
We have more to say about such construct validity later. For now, we simply note that, in
the behavioral sciences, “one-variable, ‘pure’ measuring instruments are an impossibility. All
measures involve many known theoretical variables, many as yet unknown ones, and many
unproved presumptions” (Cook & Campbell, 1979, p. 14).
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Finally, whereas early empiricist philosophers required causes and effects to occur in
constant conjunction—that is, the cause was necessary and sufficient for the effect—current
views are again more modest. At least in the behavioral sciences, the typical view is that
all causal relationships are contingent or dependent on the context (cf. Shadish et al., 2002).
The evidence supporting behavioral “laws” is thus probabilistic. If 90 of 100 patients in a
treatment group, as opposed to 20 of 100 in the control group, were to be cured according to
some criterion, the reaction is to conclude that the treatment caused a very large effect, instead
of reasoning that, because the treatment was not sufficient for 10 subjects, it should not be
regarded as the cause of the effect.

Most scientists, particularly those in the physical sciences, are generally realists; that is,
they see themselves as pursuing theoretical truth about hidden but real mechanisms whose
properties and relationships explain observable phenomena. Thus, the realist physicist would
not merely say, as the positivist would, that a balloon shrinks as a function of time. Rather,
he or she would want to proceed to make a causal explanation, for example, the leakage
of gas molecules caused the observed shrinkage. This is an assertion that not just a causal
relationship was constructed in the physicist’s mind, but that a causal relationship really exists
among entities outside of any human mind. Thus, in the realist view, theoretical assertions
“have objective contents which can be either right or wrong” (Cook & Campbell, 1979, p. 29).

Others have wanted to include human volition under their concept of cause, at least in
sciences studying people. For example, Collingwood (1940) suggested “that which is ‘caused’
is the free and deliberate act of a conscious and responsible agent, and ‘causing’ him to do
it means affording him a motive for doing it” (p. 285). This is the kind of attribution for the
cause of action presupposed throunghout most of the history of Western civilization, but that
came to represent only a minority viewpoint in 20th-century psychology, despite persisting
as the prevailing view in other disciplines such as history and law. In recent years, several
prominent researchers such as Roy Baumeister (Baumeister, Bratslavsky, Muraven, & Tice,
1998), Joseph Rychlak (2000), and George Howard (Howard & Conway, 1986; Howard, Curtin
& Johnson, 1991) have argued that research in experimental psychology can proceed from such
an agentic or teleological framework as well.

Thus, we see that a variety of views are possible about the kind of causal relationships that
may be discovered through experimentation: the relationship may or may not be probabilistic,
the relationship may or may not be regarded as referring to real entities, and the role of
the participant (subject) may or may not be regarded as that of an active agent. This last point
makes clear that the assumption of the lawfulness of nature does not commit one to a position of
philosophical determinism as a personal philosophy of life (Eacker, 1972). Also, even though
many regard choosing to do science as tantamount to adopting determinism as a working
assumption in the laboratory, others do not see this as necessary even there. For example,
Rychlak (2000) states that traditional research experiments provide a means of his putting
his teleological theories of persons as free agents to the test. Similarly, George Howard and
colleagues argue (Howard et al., 1991) that it is the individual’s freedom of choice that results in
the unexplained variation being so large in many experiments. Given that the algebraic models
of dependent variables we use throughout this book incorporate both components reflecting
unexplained variability and components reflecting effects of other variables, their use clearly
does not require endorsement of a strictly deterministic perspective. Rather, the commitment
required of the behavioral scientist, like that of the physicist studying subatomic particles, is
to the idea that the consistencies in the data will be discernible through the cloud of random
variation (see Meehl, 1970b).

It should perhaps be noted, before we leave the discussion of causality, that in any situation
there are a variety of levels at which one could conduct a causal analysis. Both nature and
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science are stratified, and properties of entities at one level cannot, in general, be reduced to
constellations of properties of entities at a lower level. For example, simple table salt (NaCl)
possesses properties that are different from the properties of either sodium (Na) or chloride
(C) (see Manicas & Secord, 1983). To cite another simple example, consider the question
of what causes a room to suddenly become dark. One could focus on what causes the light
in the room to stop glowing, giving an explanation at the level of physics by talking about
what happens in terms of electric currents when the switch controlling the bulb is tumed off.
A detailed, or even an exhaustive, account of this event at the level of physics would not do
away with the need for a psychological explanation of why a person flipped off the switch
(see Cook & Campbell, 1979, p. 15). Psychologists are often quick to argue against the fallacy
of reductionism when it is hinted that psychology might someday be reduced to physics or,
more often, to biology. However, the same argument applies with equal force to the limitations
of the causal relationships that behavioral scientists can hope to discover through empirical
investigation. For example, a detailed, or even an exhaustive, psychological account of how
someone came to hold a particular belief says nothing about the philosophical question of
whether such a belief is true.

Having considered the assumption of the lawfulness of nature in some detail, we now
consider a second fundamental assumption of science.

Finite Causation

Science presupposes not only that there are natural causes of events, but also that these
causes are finite in number and discoverable. Science is predicated on the belief that generality
of some sort is possible; that is, it is not necessary to replicate the essentially infinite number
of elements operating when an effect is observed initially in order to have a cause sufficient
for producing the effect again. Now, it must be acknowledged that much of the difficulty in
arriving at the correct interpretation of the meaning of an experimental finding is deciding
which elements are critical to causing the phenomenon and under what conditions they are
likely to be sufficient to produce the effect. This is the problem of causal explanation with
which much of the second half of this chapter is concerned (cf. Shadish et al., 2002).

A statistical analogy may be helpful in characterizing the principle of finite causation. A
common challenge for beginning statistics students is mastering the notion of an interaction
whereby the effect of a factor depends or is contingent on the level of another factor present.
When more than two factors are simultaneously manipulated (as in the designs we consider in
Chapter 8), the notion extends to higher-order interactions whereby the effect of a factor de-
pends on combinations of levels of multiple other factors. Using this terminology, a statistician’s
way of expressing the principle of finite causation might be to say that “the highest-order inter-
actions are not always significant.” Because any scientific investigation must be carried out at
a particular time and place, it is necessarily impossible to re-create exactly the state of affairs
operating then and there. Rather, if science is to be possible, one must assume that the effect
of a factor does not depend on the levels of all the other variables present when that effect is
observed.

A corollary of the assumption of finite causation has a profound effect on how we carry
out the model comparisons that are the focus of this book. This corollary is the bias toward
simplicity. It is a preference we maintain consistently, in test after test, until the facts in a given
situation overrule this bias.

Many scientists stress the importance of a strong belief in the ultimate simplicity of scientific
laws. As Gardner points out, “this was especially true of Albert Einstein. ‘Our experience,’
he wrote, ‘justifies us in believing that nature is the realization of the simplest conceivable
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mathematical ideas’” (Gardner, 1979, pp. 169-170; see Einstein, 1950, p. 64). However, as
neuroscientists studying the brain know only too well, there is also an enormous complexity to
living systems that at least obscures if not makes questionable the appropriateness of simple
models. Indeed, the same may be true in some sense in all areas of science. Simple first
approximations are, over time, qualified and elaborated: Newton’s ideas and equations about
gravity were modified by Einstein; Gall’s phrenology was replaced by Flourens’s views of
both the vnity and diversification of function of different portions of the brain.

Thus, we take as our guiding principle that set forward for the scientist by Alfred North
Whitehead: “Seek simplicity and distrust it”; or again, Whitehead suggests that the goal of
science “is to seek the simplest explanation of complex facts” while attempting to avoid the
error of concluding nature is simpler than it really is (1920/1964, p. 163).

Admittedly, the principle of parsimony is easier to give lip service to than to apply. The
question of how to measure the simplicity of a theory is by no means an easy one. Fortunately,
within mathematics and statistics the problem is somewhat more tractable, particularly if you
restrict your attention to models of a particular form. We adopt the strategy in this text of
restricting our attention for the most part to various special cases of the general linear model.
Although this statistical model can subsume a great variety of different types of analyses,
it takes a fundamentally simple view of nature in that such models assume the effects of
various causal factors simply cumulate or are added together in determining a final outcome.
In addition, the relative simplicity of two competing models in a given situation may easily be
described by noting how many more terms are included in the more complex model. We begin
developing these ideas in much greater practical detail in Chapter 3.

Modern Philosophy of Science

Having considered two fundamental assumptions of science, we continue our discussion of
responses to the critique of the traditional view of science by considering four alternative
philosophies of science. We begin by considering an attempt to revise and maintain the tradi-
tional view that has played a particularly important role in the history of psychology.

Positivism

In our discussion of the principle of causality as an aspect of the assumption of the lawfulness
of nature, we previously alluded to the influence of Humean empiricism and 19th-century
positivism on 20th-century psychology. This influence was so dominant over the first 75 years
of the 20th century that something more must be said about the principal tenets of the view of
science that developed out of positivism and the opposing movements that in the latter part of
the 20th century continued to grow in strength to the point of overtaking this view.

A positivistic philosophy of science was crystallized by the “Vienna Circle,” a group of
philosophers, scientists, and mathematicians in Vienna who, early in the 20th-century, set forth
a view of science known as logical positivism. Rudolph Carnap and Herbert Feigl were two
of the principal figures in the movement, with Carl Hempel and A. J. Ayer also being among
those whose writings heavily influenced psychology. Their logical positivism represented
a wedding of Comte’s positivism with the logicism of Whitehead and Russell’s Principia
Mathematica.

The aim of Auguste Comte’s positive philosophy was to advance the study of society beyond
a theological or metaphysical stage, in which explanations for phenomena were sought at the
level of supernatural volition or abstract forces, to a “positive” stage. The stage was conceived
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to be positive in two distinct senses. First, all knowledge in the positive stage would be based
on the positive (i.e., certain, sure) methods of the physical sciences. Rather than seeking
a cause or an essence, one is content with a law or an empirical generalization. Second,
Comte expected that the philosophical unity that would be effected by basing all knowledge
on one method would result in a religion of humanity uniting all men and women (Morley,
1955).

The logical positivists combined this positivism with the logicism of Bertrand Russell’s
mathematical philosophy (Russell, 1919a). Logicism maintains that mathematics is logic.
“All pure mathematics deals exclusively with concepts definable in terms of a very small
number of fundamental concepts, and . . . all its propositions are deducible from a very small
number of logical principles” (Russell, 1937, p. xv). Thus, all propositions in mathematics
can be viewed as the result of applying truth functions to interpret various combinations of
elementary or atomic propositions—that is, one determines the implications of the fundamental
propositions according to a set of strictly logical rules. The meaning or content of the elementary
propositions plays no role in the decision concerning whether a particular molecular proposition
constructed out of elementary propositions by means of operators is true or false. Thus, like
logic, mathematics fundamentally “is concerned solely with syntax, i.e., with formal relations
between symbols in accordance with precise rules” (Brown, 1977, p. 21).

The modemn logical positivism, which played such a dominant role in the way academic
psychologists thought about their field, is a form of positivism that takes such symbolic logic
as its primary analytic tool. This is seen in the central doctrine of logical positivism, known as
the Verifiability Criterion of Meaning. According to this criterion, a proposition is meaningful
“if and only if it can be empirically verified, i.e., if and only if there is an empirical method
for deciding if it is true or false” (Brown, 1977, p. 21). (The only exception to this rule is the
allowance for analytical propositions, which are propositions that assert semantic identities
or that are true just in virtue of the terms involved, e.g., “All bachelors are unmarried.”)
Thus, scientific terms that could not be defined strictly and completely in terms of sensory
observations were regarded as literally meaningless. Any meaningful statement must reduce
then to elementary propositions that can literally be seen to be true or false in direct observation.
The bias against statistical tests and in favor of black-or-white, present-or-absent judgment of
relationships in data was only one practical outworking of this philosophical view.

The goal of the logical positivists was then to subsume the rationale and practice of science
under logic. The central difficulty preventing this was that scientific laws are typically stated as
universal propositions that cannot be verified conclusively by any number of observations. One
cannot show, for example, that all infants babble simply by observing some critical number
of babbling babies. In addition, there are a number of paradoxes of confirmation about which
no consensus was ever achieved as to how they should be resolved (Brown, 1977, Chapter 2).
Hempel’s “paradox of the ravens” illustrates the most famous of these (1945). As Wesley
Salmon succinctly summarized in Scientific American,

If all ravens are black, surely non-black things must be non-ravens. The generalizations
are logically equivalent, so that any evidence that confirms one must tend to confirm the
other. Hence the observation of a green vase seems to confirm the hypothesis that all
ravens are black. Even a black raven finds it strange. (1973, p. 75)

Such paradoxes were especially troublesome to a philosophical school of thought that had

taken the purely formal analysis of science as its task, attempting to emulate Whitehead and
Russell’s elegant symbolic logic approach that had worked so well in mathematics.
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Although the dilemmas raised because the contrapositive of an assertion is logically equiv-
alent to the original assertion [i.e., (raven - black) <> (nonblack — nonraven)] may not seem
relevant to how actual scientific theories come to be accepted, this is typical of the logical
positivist approach. Having adopted symbolic logic as the primary tool for the analysis of
science, then proposition forms and their manipulation became the major topic of discussion.
The complete lack of detailed analysis of major scientific theories or research efforts is thus
understandable, but unfortunate. When psychologists adopted a positivistic approach as the
model of rigorous research in the physical sciences, they were, in fact, adopting a method that
bore virtually no relationship to the way physicists actually approached research.

The most serious failing of logical positivism, however, was the failure of its fundamental
principle of the Verifiability Criterion of Meaning. A number of difficulties are inherent in this
principle (Ratzsch, 2000, p. 31ff.), but the most critical problems include the following: First,
as we have seen in our discussion of the assumptions of science, some of the basic principles
needed for science to make sense are not empirically testable. One cannot prove that events
have natural causes, but without such assumptions, scientific research is pointless.

Second, attempts such as operationism to adhere to the criterion resulted in major difficulties.
The operationist thesis, so compatible with behaviorist approaches, was originally proposed by
P. W. Bridgman: “In general, we mean by any concept nothing more than a set of operations;
the concept is synonymous with the corresponding set of operations” (1927, p. 5). However,
this was taken to mean that if someone’s height, much less their intelligence, were to be
measured by two different sets of operations, these are not two different ways of measuring
height, but are definitional of different concepts, which should be denoted by different terms
(see the articles in the 1945 Symposium on Operationism published in Psychological Review,
especially Bridgman, 1945, p. 247). Obviously, rather than achieving the goal of parsimony,
such an approach to meaning results in a proliferation of theoretical concepts and, in some
sense, “surrender of the goal of systematizing large bodies of experience by means of a few
fundamental concepts” (Brown, 1977, p. 40). Finally, the Verifiability Criterion of Meaning
undercuts itself. The criterion itself is neither empirically testable nor obviously analytic.
Thus, either it is itself meaningless, or meaningfulness does not depend on being empirically
testable—that is, it is either meaningless or false.

Thus, positivism failed in its attempts to subsume science under formal logic, did not allow
the presuppositions necessary for doing science, prevented the use of generally applicable
theoretical terms, and was based on a criterion of meaning that was uitimately incoherent.
Unfortunately, its influence on psychology long outlived its relatively brief prominence within
philosophy itself.

Popper

An alternative perspective that we believe holds considerably more promise for appropri-
ately conceptualizing science is provided by Karl Popper’s falsificationism (1968) and sub-
sequent revisions thereof (Lakatos, 1978; Newton-Smith, 1981). These ideas have received
increasing attention of late in the literature on methodology for the behavioral sciences
(see Cook & Campbell, 1979, p. 20ff.; Dar, 1987; Gholson & Barker, 1985; Rosenthal &
Rosnow, 1991, p. 32ff.; Serlin & Lapsley, 1985; Shadish et al., 2002, p. 15ff.; see also
Klayman & Ha, 1987). Popper’s central thesis is that deductive knowledge is logically possi-
ble. In contrast to the “confirmationist” approach of the logical positivists, Popperians believe
progress occurs by falsifying theories. Although this may seem counterintuitive, it rests on the
logic of the compelling nature of deductive as opposed to inductive arguments.
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‘What might seem more plausible is to build up support for a theory by observing that the pre-
dictions of the theory are confirmed. The logic of the seemingly more plausible confirmationist
approach may be expressed in the following syllogism:

Syllogism of Confirmation

If theory T is true, then the data will follow the predicted pattern P.
The data foliow predicted pattern P.
Therefore, theory T is true.

This should be regarded as an invalid argument but perhaps not as a useless one. The error of
thinking that data prove a theory is an example of the logical fallacy known as “affirming the
consequent.” The first assertion in the syllogism states that T is sufficient for P. Although
such if-then statements are frequently misunderstood to mean that T is necessary for P
(see Dawes, 1975), that does not follow, This is illustrated in the Venn diagram in Figure 1.1(a).
As with any Venn diagram, it is necessary to view the terms of interest (in this case, theory
T and data pattern P) as sets, which are represented in the current diagram as circles. This
allows one to visualize the critical difference between a theory’s being a sufficient explanation
for a data pattern and its being necessarily correct. That theory T is sufficient for pattern P is
represented by T being a subset of P. However, in principle at least, there are a number of other
theories that also could explain the data, as illustrated by the presence of theories T,, T,, and
T, in Figure 1.1 (b). Just being “in” pattern P does not imply that a point will be “in” theory T,
that is, theory T is not necessarily true. In fact, the history of science provides ample support
for what has been termed the pessimistic induction: “Any theory will be discovered to be false
within, say 200 years of being propounded” (Newton-Smith, 1981, p. 14).

Popper’s point, however, is that under certain assumptions, rejection of a theory, as opposed
to confirmation, may be done in a deductively rigorous manner. The syllogism now is:

® ffreomy @

Data pattern
P

(b)

Data pattern
P

(a)

Data patterns
PandP'

(c)

FIG. 1.1. Venn diagrams illustrating that theory T is sufficient for determining
data pattern P (see (a)), but that data pattern P is not sufficient for concluding
theory T is correct (see (b)). The Venn diagram in (c) is discussed later in this
section of the text.

TLFeBOOK



14 CHAPTER 1

Syllogism of Falsification

If theory T is true, then the data will follow the predicted pattern P.
The data do not follow predicted pattern P.
Therefore, theory T is false.

The logical point is that although the converse of an assertion is not equivalent to the assertion,
the contrapositive, as we saw in the paradox of the ravens, is. That is, in symbols (T — P)
+ (P — T),but (T = P) « (not P — not T). In terms of Figure 1.1, if a point is in P, that does
not mean it is in T, but if it is outside P, it is certainly outside T. Thus, although one cannot
prove theories correct, one can, by this logic, prove them false.

Although it is hoped that this example makes the validity of the syllogism of falsification
clear, it is important to discuss some of the assumptions implicit in the argument and raise
briefly some of the concerns voiced by critics of Popper’s philosophy, particularly as it applies
to the behavioral sciences. First, consider the first line of the falsification syllogism. The one
assumption pertinent to this, about which there is agreement, is that it is possible to derive
predictions from theories. Confirmationists assume this as well. Naturally, theories differ in
how well they achieve the desiderata of good theories regarding predictions—that is, they
differ in how easily empirical predictions may be derived and in the range and specificity of
these predictions. Unfortunately, psychological theories, particularly in recent years, tend to
be very restricted in scope. Also, unlike physics, the predictions that psychological theories
do make are typically of a nonspecific form (“the groups will differ”’) rather than being point
predictions (“the light rays will bend by x degrees as they go past the sun”) (see Meehl,
1967, 1986). However, whether specific or nonspecific, as long as it is assumed that a rather
confident judgment can be made—for example, by a statistical test—about whether the results
of an experiment are in accord with the predictions, the thrust of the argument maintains its
force.?

More troublesome than the lack of specificity or generality of the predictions of psycho-
logical theories is that the predictions depend not only on the core ideas of the theory, but also
on a set of additional hypotheses. These often have to do with the particular way in which the
theoretical constructs of interest are implemented in a given study and may actually be more
suspect than the theory itself (cf. Smedslund, 1988). As expressed in the terminology of Paul
Meehl, “[I]n social science the auxiliaries A and the initial and boundary conditions of the
system C are frequently as problematic as the theory T itself” (1978, p. 819). For example,
suppose a community or health psychologist wants to investigate the effect of perceived risk
and response efficacy on self-protection. Funding is obtained to investigate the effectiveness
of such a theoretically driven intervention in decreasing the use of alcohol and illegal drugs as
the criterion behavior in a population of at-risk youth. In her study, the psychologist attempts
to impress groups of middle school youth from local economically disadvantaged areas with
the dangers of drug use by taking them to hospitals or detention centers to talk with young
adults who have been injured or arrested as a result of their use of alcohol or illegal drugs.
She also attempts to increase the middle schoolers’ belief in their ability to avoid alcohol or
drug use by having them participate in discussion groups on the subject led by undergraduate
research assistants. A negative result (or worse yet, increased drug use in the treated group)
causes one to question if the core substantive theory (T) of the impact of risk perception
and response efficacy on self-protection has been falsified or if one or more of the auxiliary
hypotheses (A) have been falsified. For example, perhaps the visits with the hospitalized or
jailed youths served to tacitly validate them as role models to be emulated rather than increas-
ing the students’ perceived risk of drug use, or perhaps the fact that a large majority of the

TLFeBOOK



THE LOGIC OF EXPERIMENTAL DESIGN 15

undergraduate assistants leading the discussions were themselves binge drinkers or users of
illegal drugs did not facilitate their ability to persuade the middle schoolers of how easily and
efficaciously they could make responses to avoid such risky behaviors. Or perhaps even the
presumed boundary condition (C) that the motivation to avoid danger in the form of health or
legal consequences was present at a high level, particularly in comparison to other motivations
such as peer approval, was not satisfied in this population. We consider such difficulties further
when we discuss construct validity later in this chapter.

Turning now to the second line of the falsification syllogism, much also could be said about
caveats. For one thing, some philosophers of science, including Popper, have philosophical
reservations about whether one can know with certainty that a predicted pattern has not been
obtained because that knowledge is to be obtained through the fallible inductive method of
empirical observation (see Newton-Smith, 1981, Chapter III). More to the point for our pur-
poses is the manner in which empirical data are to be classified as conforming to one pattern
or another. Assuming one’s theory predicts that the pattern of the data will be that people in
general will perform differently in the treatment and control conditions, how does one decide
on the basis of a sample of data what is true of the population? That, of course, is the task
of inferential statistics and is the sort of question to which the bulk of this book is addressed.
First, we show in Chapter 2 how one may derive probability statements rigorously for very
simple situations under the assumption that there is no treatment effect. If the probability is
sufficiently small, the hypothesis of no difference is rejected. If the probability fails to reach
a conventional level of significance, one might conclude the alternative hypothesis is false.
(More on this in a moment.) Second, we show beginning in Chapter 3 how to formulate such
questions for more complicated experiments using standard parametric tests. In sum, because
total conformity with the exact null hypotheses of the social and behavioral sciences (or, for
that matter, with the exact point predictions sometimes used—e.g., in some areas of physics)
is never achieved, inferential statistics serves the function of helping scientists classify data
patterns as being confirmed predictions, falsified predictions, or, in some cases, ambiguous
outcomes.

A final disclaimer is that Popper acknowledges that, in actual scientific practice, singular
discordant facts alone rarely do or should falsify theories. Hence, in practice, as hinted at
previously, a failure to obtain a predicted data pattern may not really lead to a rejection or
abandonment of the alternative hypothesis the investigator wanted to support. In all too many
behavioral science studies, the lack of statistical power is a quite plausible explanation for
failure to obtain predicted results. Also, such statistical reasons for failure to obtain predicted
results are only the beginning. Because of the existence of the other explanations we have
considered (e.g., “Some auxiliary theory is wrong”) that are typically less painful to a theorist
than rejection of the principal theory, in practice a combination of multiple discordant facts
and a more viable alternative theory are usually required for the refutation of a theoretical
conjecture (see Cook & Campbell, 1979, p. 221f.).

We pause here to underscore some of the limitations of science that have emerged from our
consideration of Popper and then highlight some of the general utility of his ideas. Regarding
science’s limitations, we have seen that not only is there no possibility of proving any scientific
theory with logical certainty, but also that there is no possibility of falsifying one with logical
certainty. That there are no proven theories is a well-known consequence of the limits of
inductive logic. Such difficulties are also inherent to some extent in even the simplest empirical
generalization (the generalization is not logically compelled, for reasons including the fact
that you cannot be certain what the data pattern is because of limited data and potential future
counterexamples to the current pattern and that any application of the generalization requires
reliance on principles like uniformity). In short, “the data do not drive us inevitably to correct
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theories, and even if they did or even if we hit on the correct theory in some other way, we
could not prove its correctness conclusively” (Ratzsch, 2000, pp. 76—77). Furthermore, theories
cannot be proved false because of the possibility of explaining away purported refutations via
challenges based on the fallibility of statistical evidence or of the auxiliary hypotheses relied
on in testing the theory. In addition, there is the practical concern that despite the existence of
discordant facts, the theory may be the best available.

On the positive side of the ledger, Popper’s ideas have much to offer, both practically and
philosophically. Working within the limitations of science, the practical problem for the sci-
entist is how to eliminate explanations other than the theory of interest. We can see the utility
of the Popperian conceptual framework in Figure 1.1. The careful experimenter proceeds, in
essence, by trying to make the shaded area as small as possible, thereby refuting the rival
theories. We mentioned previously that the syllogism of confirmation, although invalid, was
not useless. The way in which rival hypotheses are eliminated is essentially by confirming the
predictions of one’s theory in more situations, in at least some of which the rival hypotheses
make contrary predictions. Figure 1.1(c) illustrates this. The outer circle now represents the
intersection or joint occurrence of obtaining the predicted data P and also predicted data P’.
For example, if a positive result had been obtained in the self-protection study with middle
schoolers, the interpretation that increased perception of risk was the causal variable could
be strengthened by including control conditions in which plausible other causes were oper-
ating. One possible rival hypothesis (which might be represented by T, in Figure 1.1) could
be that the increased monitoring of the middle schoolers involved in the study might itself
serve to suppress drug use regardless of the treatment received. Having a control group that
was assessed as often and in as much detail as the treatment group but that did not mani-
fest the decreased use seen in the treatment group essentially eliminates that rival explana-
tion. The plausibility of the causal explanation would be enhanced further by implementing
the construct in different ways, such as attempting to increase the perceived risk of smok-
ing or sun exposure as a means of trying to induce other self-protective behaviors in other
populations.

Indeed, part of the art of experimental design has to do with devising control conditions
for which the theory of interest would make a different prediction than would a plausible rival
hypothesis. (As another example, the rival: “The deficit is a result of simply the operation, not
the brain area destroyed” is discounted by showing no deficit in a sham surgery condition.) If
the rival hypothesis is false, part of the credo of science is that with sufficient investigation,
ultimately, it will be discovered. As Kepler wrote regarding rivals to the Copernican hypothesis
that made some correct predictions,

And just as in the proverb liars are cautioned to remember what they have said, so here
false hypotheses which together produce the truth by chance, do not, in the course of
a demonstration in which they have been applied to many different matters, retain this
habit of yielding the truth, but betray themselves. (Kepler, 1601)

Although in principle an infinite number of alternative hypotheses always remain, it is of little
concern if no plausible hypotheses can be specified. We return to this discussion of how rival
hypotheses can be eliminated in the final section of this chapter.

Regarding other, more philosophical considerations, for Popper, the aim of science is truth.
However, given that he concurs with Hume’s critique of induction, Popper cannot claim to
know the truth of a scientific hypothesis. Thus, the reachable goal for science in the real
world is to be that of a closer approximation to the truth, or in Popper’s terms, a higher
degree of verisimilitude. The method of achieving this is basically a rational one by way
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of the logically valid refutation of alternative conjectures about the explanation of a given
phenomenon. Although the details of the definition of the goal of verisimilitude and the logic
of the method are still evolving (see Popper, 1976; Meehl, 1978; Newton-Smith, 1981), we
find ourselves in basic agreement with a neo-Popperian perspective, both in terms of ontology
and of epistemology. However, we postpone further discussion of this until we have briefly
acknowledged some of the other major positions in contemporary philosophy of science.

Kuhn

Thomas Kuhn, perhaps the best-known contemporary philosopher of science, is perceived
by some as maintaining a position in The Structure of Scientific Revolutions (1970) that places
him philosophically at the opposite pole from Karl Popper. Whereas Popper insists that science
is to be understood logically, Kuhn maintains that science should be interpreted psychologically
(Robinson, 1981, p. 24) or sociologically. Once a doctoral student in theoretical physics, Kuhn
left the field to carry out work in the history and philosophy of science. Spending 1958-1959
at the Center for Advanced Studies in the Behavioral Sciences helped crystallize his views.
Whereas his major work is based on the history of the physical sciences, his rationale draws
on empirical findings in behavioral science, and others (e.g., Gholson & Barker, 1985; see also
Gutting, 1980) apply Kuhn’s views to psychology in particular.

Kuhn’s basic idea is that psychological and sociological factors are the real determinants
of change in allegiance to a theory of the world, and in some sense actually help determine the
characteristics of the physical world that is being modeled. The notion is quasi-Kantian in that
characteristics of the human mind, or at least of the minds of individual scientists, determine
in part what is observed.

Once we have described four of Kuhn’s key ideas—paradigms, normal science, anomalies,
and scientific revolutions—we point out two criticisms commonly made of his philosophy of
science.

For Kuhn, paradigms are “universally recognized scientific achievements that for a time
provide model problems and solutions to a community of practitioners” (Kuhn, 1970, p. viii).
Examples include Newton’s Principia and Lavoisier’s Chemistry, “works that served for a time
implicitly to define the legitimate problems and methods of a research field” (1970, p. 10).
The period devoted to solving the unresolved puzzles within an area following publication
of such landmark works as these is what constitutes normal science. Inevitably, such periods
of normal science turn up anomalies, or data that do not fit perfectly within the paradigm
(1970, Chapter VI). Although such anomalies may emerge slowly because of the difficulties
in perceiving them shared by investigators working within the Weltanschaung of a given
paradigm, eventually a sufficient number of anomalies are documented to bring the scientific
community to a crisis state (1970, Chapter VII). The resolution of the crisis eventually may
require a shift to anew paradigm. If so, the transition to the new paradigm is a cataclysmic event.
Although some may view the new paradigm as simply subsuming the old, according to Kuhn,
the transition—for example, from “‘geocentrism to heliocentrism, from phlogiston to oxygen,
or from corpuscles to waves. .. from Newtonian to Einsteinian mechanics”—necessitated a
“revolutionary reorientation,” a conceptual transformation that is “decisively destructive of a
previously established paradigm” (1970, p. 102).

Although his contributions have been immensely useful in stressing the historical develop-
ment of science and certain of the psychological determinants of the behavior of scientists,
there are, from our perspective, two major related difficulties with Kuhn’s philosophy. Kuhn,
it should be noted, has attempted to rebut such criticisms [see especially points 5 and 6 in the
Postscript added to The Structure of Scientific Revolutions (1970, pp. 198-207)]; however, in
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our view, he has not done so successfully. First, paradigm shifts in Kuhn'’s system do not occur,
because of the objective superiority of one paradigm over the other. In fact, such cannot be
demonstrated, because for Kuhn, paradigms are incommensurable. Thus, attempts for propo-
nents of different paradigms to talk to each other result in communication breakdown (Kuhn,
1970, p. 201). Although this view is perhaps not quite consensus formation via mob psychol-
ogy, as Lakatos (1978) characterizes it, it certainly implies that scientific change is not rational
(see Manicas & Secord, 1983; Suppe, 1977). We are too committed to the real effects of psy-
chological variables to be so rash as to assume that all scientific change is rational with regard
to the goals of science. In fact, we readily acknowledge not only the role of psychological
factors, but also the presence of a fair amount of fraud in science (see Broad & Wade, 1982).
However, we believe that these are best understood as deviations from a basically rational
model (see Newton-Smith, 1981, pp. 5-13, 148ff.).

Second, we share with many concerns regarding what appears to be Kuhn’s relativism. The
reading of his work by a number of critics is that Kuhn maintains that there is no fixed reality
of nature for science to attempt to more accurately describe. For example, he writes:

[W]e may ... have to relinquish the notion, explicit or implicit, that changes of paradigm
carry scientists and those who learn from them closer and closer to the truth. ... The
developmental process described in this essay has been a process of evolution from primi-
tive beginnings—a process whose successive stages are characterized by an increasingly
detailed and refined understanding of nature. But nothing that has been or will be said
makes it a process of evolution foward anything. (Kuhn, 1970, pp. 170-171)

Kuhn elaborates on this in his Postscript:

One often hears that successive theories grow ever closer to, or approximate more and
more closely to, the truth. Apparently generalizations like that refer not to the puzzle—
solutions and the concrete predictions derived from a theory but rather to its ontology, to
the match, that is, between the entities with which the theory populates nature and what
is “really there.”

Perhaps there is some other way of salvaging the notion of “truth” for application to
whole theories, but this one will not do. There is, I think, no theory-independent way to
reconstruct phrases like “really there”; the notion of a match between the ontology of a
theory and its “real” counterpart in nature now seems to me illusive in principle. (Kuhn,
1970, p. 206)

Perhaps it is the case, as the pessimistic induction suggests, that all theories constructed in
this world are false. However, it seems clear that some are less false than others. Does it not
make sense to say that the earth revolves around the sun is a closer approximation to the truth
of how things really are than to assert that the sun revolves around the earth or that the sun
is made of blue cheese? Is it not reasonable to believe that the population mean score on the
Wechsler Adult Intelligence Scale is really closer to 100 than it is to 70 or 130? In Kuhn’s
system, there is no standard to allow such judgments. We concur with Popper (1972) and
Newton-Smith (1981, pp. 34-37, 102-124) that this relativism about the nature of the world
is unreasonable. In recent years, it has been the postmodernists who have advanced arguments
against an objectively knowable world and against a view of science as attempting to use
language, including numerical language, to make true statements about the world (Gergen,
2001). Yet the very advancing of an argument for the truth of the position that there is no
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truth undercuts itself. One is reminded of Socrates’ refutation of the self-stultifying nature of
the Sophists’ skepticism (cf. Robinson, 1981, p. 51); in effect, you claim that no one has any
superior right to determine whether any opinion is true or false—if so, why should I accept
your position as authoritative?

Although the relativistic position of the postmodernists has certainly attracted numerous
followers since the early 1980s, particularly in the humanities, for the most part the sciences,
including academic psychology, continue to reject such views (see Haig, 2002; Hofmann,
2002) in favor of the realist perspective we consider next.

Realism

Although there are a multitude of different realist positions in the philosophy of science,
certain core elements of realism can be identified (Fine, 1987, p. 3591f.). First, realism holds
that a definite world exists, a world populated by entities with particular properties, powers,
and relations and “the way the world is” is largely independent of the observer (Harré &
Madden, 1975). Second, realist positions maintain that it is possible to obtain a substantial
amount of accurate, relatively observer-independent information about the world (Rosenthal
& Rosnow, 1991, p. 9), including information about structures and relations among entities
as well as what may be observed more superficially. Third, the aim of science is to achieve
such knowledge. Fourth, as touched on in our earlier discussion of causality, realist positions
maintain that scientific propositions are true or false by virtue of their correspondence or lack
or correspondence with the way the world is, independently of ourselves (Newton-Smith,
1981, pp. 28-29). Finally, realist positions tend to be optimistic in their view of science by
claiming that the historically generated sequence of theories of a mature science reflect an
improvement in terms of the degree of approximation to the truth (Newton-Smith, 1981,
p- 39).

These tenets of realism can be more clearly understood by contrasting these positions with
alternative views. Although there have been philosophers in previous centuries (e.g., Berkeley,
1685-1753) and in modern times (e.g., Russell, 1950) who question whether the belief in the
existence of the physical world was logically justified, not surprisingly, most find arguments for
the existence of the world compelling (Russell’s argument and rebuttals thereof are helpfully
juxtaposed by Oller, 1989). As Einstein tells it, the questioning of the existence of the world
is the sort of logical bind one gets oneself into by following Humean skepticism to its logical
conclusion (Einstein, 1944, pp. 279-291). Hume correctly saw that our inferences about causal
connections, for example, are not logically necessitated by our empirical experience. However,
Russell and others extended this skepticism to any knowledge or perception we might have of
the physical world. Russell’s point is that, assuming causality exists (even though we cannot
know it does), our perception represents the end of a causal chain. Trying to reconstruct what
“outside” caused that perception is a hazardous process. Even seeing an object such as a tree,
if physics is correct, is a complicated and indirect affair. The light reaching the eye comes
ultimately from the sun, not the tree, yet you do not say you are seeing the sun. Thus, Russell
concludes that “from what we have been saying it is clear that the relation of a percept to
the physical object which is supposed to be perceived is vague, approximate and somewhat
indefinite. There is no precise sense in which we can be said to perceive physical objects”
(Russell, 1950, p. 206). And, not only do we not know the true character of the tree we think
we are seeing, but also “the colored surfaces which we see cease to exist when we shut our
eyes” (Russell, 1914, p. 64). Here, in effect, Russell throws the baby out with the bathwater. The
flaw in Russell’s argument was forcefully pointed out by Dewey (1916). Dewey’s compelling
line of reasoning is that Russell’s questioning is based on the analysis of perception as the end
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of a causal chain; however, this presupposes that there is an external object that is initiating
the chain, regardless of how poorly its nature may be perceived.

Moving to a consideration of the other tenets of realism, the emphasis on accurate informa-
tion about the world and the view that scientific theories come to more closely approximate a
true description of the world clearly contrasts with relativistic accounts of science that see it
as not moving toward anything. In fact, one early realist, C. S. Peirce, developed an influential
view of truth and reality that hinges on there being a goal toward which scientific investigations
of a question must tend (see Oller, 1989, p. 53ff.). Peirce wrote:

The question therefore is, how is true belief (or belief in the real) distinguished from false
belief (or belief in fiction). . . . The ideas of truth and falsehood, in their full development,
appertain exclusively to the scientific method of settling opinion. ... All followers of
science are fully persuaded that the processes of investigation, if only pushed far enough,
will give one certain solution to every question to which it can be applied. . . . The opinion
which is fated to be ultimately agreed to by all who investigate, is what we mean by the
truth and the object represented in this opinion is the real. . . . Our perversity and that of
others may indefinitely postpone the settlement of opinion; it might even conceivably
cause an arbitrary proposition to be universally accepted as long as the human race should
last. Yet even that would not change the nature of the belief, which alone could be the
result of investigation, that true opinion must be the one which they wonld ultimately
come to. (Peiree, 1878, pp. 298-300)

Thus, in Peirce’s view, for any particular scientific question that has clear meaning, there was
one certain solution that would be obtained if only scientific investigation could be carried far
enough. This view of science is essentially the same as Einstein’s, who likened the process of
formulating a scientific theory to the task facing

a man engaged in solving a well designed word puzzle. He may, it is true, propose any
word as the solution; but, there is only one word which really solves the puzzle in all its
forms. It is an outcome of faith that nature—as she is perceptible to our five senses—takes
the character of such a well formulated puzzle. (Einstein, 1950, p. 64)

Scientific realism may also be contrasted with instrumentalist views. Instrumentalists argue
that scientific theories are not intended to be literally true, but are simply convenient summaries
or calculational rules for deriving predictions. This distinction is illustrated particularly well
by the preface that Osiander added to Copernicus’s The Revolutions of the Heavenly Spheres:

It is the duty of the astronomer to compose the history of the celestial motions through
careful and skillful observation. Then turning to the causes of these motions or hypotheses
about them, he must conceive and devise, since he cannot in any way attain to the true
causes, such hypotheses as, being assumed, enable the motions to be calculated correctly
from the principles of geometry, for the future as well as the past. The present author
[Copernicus] has performed both these duties excellently. For these hypotheses need not
be true nor even probable; if they provide a calculus consistent with the observations
that alone is sufficient. (Rosen, 1959, pp. 24-25)

Osiander recognized the distinction between factual description and a convenient formula for
making predictions and is suggesting that whether the theory describes reality correctly is
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irrelevant. That is the instrumentalist point of view. However, many scientists, particularly in
the physical sciences, tend to regard their theories as descriptions of real entities. This was the
case for Copernicus and Kepler regarding the heliocentric theory and more recently for Bohr
and Thomson rfcfgéa/rgigg, the electron. Besides the inherent plausibility of the realist viewpoint,
the greater explanatory power of the realist perspective is a major argument offered in support
of realism. Such explanatory power is perhaps most impressive when reference to a single set
of entities allows predictions across different domains or allows predictions of phenomena that
have never been observed but that, subsequently, are confirmed.

Some additional comments must be made about realism at this point, particularly as it
relates to the behavioral sciences. First, scientific realism is not something that is an all-or-
nothing matter. One might be a realist with regard to certain scientific theories and not with
regard to others. Indeed, some have attempted to specify the criteria by which theories should be
judged, or at least have been judged historically, as deserving a realistic interpretation (Gardner,
1987; Gingerich, 1973). Within psychology, a realistic interpretation might be given to a brain
mechanism that you hypothesize is damaged on the basis of the poor memory performance
of a brain-injured patient. However, the states in a mathematical model of memory, such as
working memory, may be viewed instrumentally, as simply convenient fictions or metaphors
that allow estimation of the probability of recall of a particular item.

A second comment is that realists tend to be emergentists and stress the existence of various
levels of reality. Nature is viewed as stratified, with the higher levels possessing new entities
with powers and properties that cannot be explained adequately by the lower levels (Bhaskar,
1982, especially Sections 2.5 and 3.3). “From the point of view of emergence, we cannot reduce
personality and mind to biological processes or reduce life to physical and chemical processes
without loss or damage to the unity and special qualities of the entity with which we began”
(Titus, 1964, p. 250). Thus, psychology from the realist perspective is not in danger of losing
its field of study to ardent sociobiologists any more than biologists would lose their object
of inquiry if organic life could be produced by certain physical and chemical manipulations
in the laboratory. Neither people nor other living things would cease to be real, no matter
what the scientific development. Elements of lower orders are just as real, no more or less,
than the comprehensive entities formed out of them. Both charged particles and thunderstorms,
single cells and single adults exist and have powers and relations with other entities at their
appropriate levels of analysis.

Because of the many varieties of realism—for example, critical realism (Cook & Campbell,
1979), metaphysical realism (Popper, 1972), and transcendental realism (Bhaskar, 1975)—
and because our concern regarding philosophy of science is less with ontology than with
epistemological method, we do not attempt to summarize the realist approach further. The
interested reader is referred to the article by Manicas and Secord (1983) for a useful summary
and references to the literature.

Summary

As is perhaps already clear, our own perspective is to hold to a realist position ontologi-
cally and a temperate rationalist position epistemologically of the neo-Popperian variety. The
perspective is realist because it assumes phenomena and processes exist outside of our expe-
rience and that theories can be true or false, and among false theories, false to a greater or
lesser extent, depending on the degree of correspondence between the theory and the reality.
Naturally, however, our knowledge of this reality is limited by the nature of induction—thus,
it behooves us to be critical of the strength of our inferences about the nature of that reality
(see Cook & Campbell, 1979).
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We endorse a rational model as the ideal for how science should proceed. Given the progress
associated with the method, there is reason to think that the methodology of science has,
in general, resulted in choices between competing theories primarily on the strength of the
supporting evidence. However, our rationalism is temperate in that we recognize that there is
no set of completely specifiable rules defining the scientific method that can guarantee success
and that weight should be given to empirically based inductive arguments even though they do
not logically compel belief (see Newton-Smith, 1981, especially p. 268ff.).

We believe the statistical methods that are the primary subject matter of this book are
consistent with this perspective and more compatible with this perspective than with some
others. For example, thinking it is meaningful to attempt to detect a difference between fixed-
population means seems inconsistent with a relativistic perspective. Similarly, using statistical
methods rather than relying on one’s ability to make immediate judgments about particular
facts seems inconsistent with a logical positivist approach. In fact, one can view the primary
role of statistical analysis as an efficient means for summarizing evidence (see Abelson, 1995;
Rosenthal & Rubin, 1985; Scarr, 1997): Rather than being a royal road to a positively certain
scientific conclusion, inferential statistics is a method for accomplishing a more modest but
nonetheless critical goal, namely quantifying the evidence or uncertainty relevant to a particular
statistical conclusion. Doing this well is certainly not all there is to science, which is part of what
we are trying to make clear, but it is a first step in a process that must be viewed from a broader
perspective. Because there is no cookbook methodology that can take you from a data summary
to a correct theory, it behooves the would-be scientist to think through the philosophical position
from which the evidence of particular studies is to be viewed. Doing so provides you with a
framework within which to decide if the evidence available permits you to draw conclusions that
you are willing to defend publicly. That the result of a statistical test is only one, albeit important,
consideration in this process of reaching substantive conclusions and making generalizations
is something we attempt to underscore further in the remainder of this chapter.

THREATS TO THE VALIDITY OF INFERENCES
FROM EXPERIMENTS

Having reviewed the perils of drawing inductive inferences at a philosophical level, we now
turn to a consideration of threats to the validity of inferences at a more practical level. The
classic treatment of the topic of how things can go wrong in attempting to make inferences from
experiments was provided in the monograph by Campbell and Stanley (1963). Generations
of graduate students around the country memorized their “threats to validity.” An updated
and expanded version of their volume addressing many of the same issues, but also covering
the details of certain statistical procedures, appeared 16 years later authored by Cook and
Campbell (1979). Very recently, the third instantiation of a volume on quasi-experimentation
co-authored by Donald Campbell appeared (Shadish et al., 2002), which Campbell worked on
until his death in 1996. Judd and Kenny (1981) and Krathwohl (1985) have provided very useful
and readable discussions of these validity notions of Campbell and his associates. Cronbach’s
(1982) book also provides a wealth of insights into problems of making valid inferences, but
like Cook and Campbell (1979), it presumes a considerable amount of knowledge on the part
of the reader. (For a brief summary of the various validity typologies, see Mark, 1986).

For our part, we begin the consideration of the practical problems of drawing valid inferences
by distinguishing among the principal types of validity discussed in this literature. Then, we
suggest a way for thinking in general about threats to validity and for attempting to avoid such
pitfalls.
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Types of Validity

When a clinician reads an article in a journal about a test of a new procedure and then contem-
plates applying it in his or her own practice, a whole series of logical steps must all be correct
for this to be an appropriate application of the finding. (Krathwohl, 1985, offers the apt analogy
of links in a chain for these steps.) In short, a problem could arise because the conclusion or
design of the initial study was flawed or because the extrapolation to a new situation is inappro-
priate. Campbell and Stanley (1963) referred to these potential problems as threats to internal
and external validity, respectively. Cook and Campbell (1979) subsequently suggested that,
actually, four types should be distinguished: statistical conclusion validity, internal validity,
construct validity, and external validity. Recently, Shadish et al. (2002) suggested refinements
but maintained this fourfold validity typology. We discuss each in turn, but first a word or two
by way of general introduction.

Validity means essentially truth or correctness, a correspondence between a proposition
describing how things work in the world and how they really work (see Russell, 1919b;
Campbell, 1986, p. 73). Naturally, we never know with certainty if our interpretations are
valid, but we try to proceed with the design and analysis of our research in such a way to make
the case for our conclusions as plausible and compelling as possible.

The propositions or interpretations that abound in the discussion and conclusion sections
of behavioral science articles are about how things work in general. As Shadish et al. (2002)
quip, “Most experiments are highly local but have general aspirations” (p. 18). Typical or
modal experiments involve particular people manifesting the effects of particular treatments
on particular measures at a particular time and place. Modal conclusions involve few, if any,
of these particulars. Most pervasively, the people (or patients, children, rats, classes, or, most
generally, units of analysis) are viewed as a sample from a larger population of interest. The
conclusions are about the population. The venerable tradition of hypothesis testing is built
on this foundational assumption: One unit of analysis differs from another. The variability
among units, however, provides the yardstick for making the statistical judgment of whether a
difference in group means is “real.”

What writers such as Campbell have stressed is that not just the units or subjects, but also
the other components of our experiments should be viewed as representative of larger domains,
in somewhat the same way that a random sample of subjects is representative of a population.
Specifically, Cronbach (1982) suggested that there are four building blocks to an experiment:
units, treatments, observations or measures, and settings. We typically want to generalize along
all four dimensions, to a larger domain of units, treatments, observations, and settings, or as
Cronbach puts it, we study “utos” but want to draw conclusions about “UTOS.” For example,
a specific multifaceted treatment program (¢) for problem drinkers could have involved the
same facets with different emphases (e.g., more or less time with the therapist) or different
facets not represented initially (e.g., counseling for family members and close friends) and
yet still be regarded as illustrating the theoretical class of treatments of interest, controlled
drinking (7). (In Chapter 10, we discuss statistical procedures that assume the treatments in a
study are merely representative of other treatments of that type that could have been used, but
more often the problem of generalization is viewed as a logical or conceptual problem, instead
of a statistical problem.)

Turning now to the third component of experiments—namely the observations or
measures—it is perhaps easier because of the familiarity of the concepts of “measurement
error’” and “validity of tests,” to think of the measures instead of the treatments used in ex-
periments as fallible representatives of a domain. Anyone who has worked on a large-scale
clinical research project has probably been impressed by the number of alternative measures
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available for assessing the various psychological traits or states of interest in that study. Fi-
nally, regarding the component of the setting in which experiments take place, our comments
about the uniformity of nature underscore what every historian or traveler knows but that writ-
ers of discussion sections sometimes ignore: What is true about behavior for one time and
place may not be universally true. In sum, an idea to remember as you read about the various
types of validity is how they relate to the question of whether a component of a study—
such as the units, treatments, measures, or setting—truly reflects the domain of theoretical
interest.

Statistical Conclusion Validity

The question to be answered in statistical conclusion validity is, “Was the original statisti-
cal inference correct?” That is, did the investigators reach a correct conclusion about whether
a relationship between the variables exists in the population or about the extent of the rela-
tionship? Thus, statistical conclusions are about population parameters—such as means or
correlations—whether they are equal or what their numerical values are. So in considering
statistical conclusion validity, we are not concerned with whether there is a causal relationship
between the variables, but whether there is any relationship, be it causal or not.

One of the ways in which a study might be an insecure base from which to extrapolate
is that the conclusion reached by that study about a statistical hypothesis it tested might be
wrong. As you likely learned in your first course in statistics, there are two types of errors or
ways in which this can happen: Type I errors, or false positives—that is, concluding there is
a relationship between two variables when, in fact, there is none—and Type II errors, or false
negatives—that is, failing to detect a relationship that in fact exists in the population. One can
think of Type I errors as being gullible or overeager, whereas Type II errors can be thought of as
being blind or overly cautious (Rosnow & Rosenthal, 1989). Because the nominal alpha level
or probability of a Type I error is fairly well established by convention within a discipline—for
example, at .05—the critical issue in statistical conclusion validity is power. The power of a
test is its sensitivity or ability to detect relationships that exist in the population, and so it is
the complement of a Type II error. As such, power in a statistical sense means sensitivity or
ability to detect what is present. Studies with low power are like “trying to read small type in
dim light” (Rosnow & Rosenthal, 1989). In conventional terms, power is the probability of
rejecting the null hypothesis when it is false and equals 1 minus the probability of a Type II
error.

The threats to the validity of statistical conclusions are then of two general kinds: a liberal
bias, or a tendency to be overly optimistic about the presence of a relationship or exaggerate
its strength; and a conservative bias, or a tendency to be overly pessimistic about the absence
of a relationship or underestimate its strength. '

As Cohen (1988) stresses, one of the most pervasive threats to the validity of the statistical
conclusions reached in the behavioral sciences is low power. It is critical in planning exper-
iments and evaluating results to consider the likelihood that a given design would detect an
effect of a given size in the population. As discussed in detail beginning in Chapter 3, there are
a variety of ways to estimate how strong the relationship is between the independent variable
and the dependent variable, and using this, to compute a numerical value of the power of
a study. Our concern here, however, is with why statistical conclusions are often incorrect;
several reasons can be enumerated.

Studies typically have low power because sample sizes used are too small for the situation.
Because the number required depends on the specifics of the research problem, one cannot
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specify in general a minimum number of subjects to have per condition. However, although
other steps can be taken, increasing the number of participants is the simplest solution, con-
ceptually at least, to the problem of low power.

Another important reason for low power is the use of an unreliable dependent variable.
Reliability, of course, has to do with consistency and accuracy. Scores on variables are assumed
to be the result of a combination of systematic or true score variation and random error variation.
For example, your score on a multiple-choice quiz is determined in part by what you know
and in part by other factors, such as your motivation and your luck in guessing answers you do
not know. Variables are unreliable, in a psychometric sense, when the random error variation
component is large relative to the true score variation component (see Judd & Kenny, 1981,
p- 111ff., for a clear introduction to the idea of reliability).

We acknowledge, as Nicewander and Price (1983) point out, that there are cases in which
the less reliable of two possible dependent variables can lead to greater power, for example,
because a larger treatment effect on that variable may more than offset its lower reliability.
However, other things being equal, the lower the reliability of a dependent measure is, the less
sensitive it will be in detecting treatment effects. Solving problems of unreliability is not easy,
in part because there is always the possibility that altering a test in an attempt to make it more
reliable might change what it is measuring as well as its precision of measurement. However,
the rule of thumb, as every standard psychometrics text makes clear (e.g., Nunnally, 1978; see
Maxwell, 1994), is that increasing the length of tests increases their reliability. The longer the
quiz, the less likely you can pass simply by guessing.

Other reasons why unexplained variability in the dependent variable and hence the prob-
ability of a Type II error may be unacceptably high include implementing the treatment in
slightly different ways from one subject to the next and failure to include important explana-
tory variables in your model of performance for the situation. Typically, in behavioral science
studies, who the participant happens to be is a more important determinant of how he or she
performs on the experimental task than the treatment to which the person is assigned. Thus,
including a measure of the relevant individual differences among participants in your statisti-
cal model, or experimentally controlling for such differences, can often greatly increase your
power. (Chapters 9 and 11-14 discuss methods for dealing with such individual differences.)

Maxwell, Cole, Arvey, and Salas (1991) provide a helpful discussion of these issues, compar-
ing alternative methods of increasing power. In particular, they focus on the relative benefits of
lengthening the posttest and including a pretest in a design. These are complementary sirategies
for reducing unexplained variability in the dependent variable. When the dependent measure
is of only moderate or low reliability, as may be the case with a locally developed assessment,
greater gains in power are realized by using a longer and hence more reliable posttest. When
the dependent measure has high reliability, then including a pretest that can be used to control
for individual differences among subjects will increase power more.

The primary cause of Type I error rates being inflated over the nominal or stated level is
that the investigator has performed multiple tests of the same general hypothesis. Statistical
methods exist for adjusting for the number of tests you are performing and are considered at
various points in this text (see, for example, Chapter 5 on multiple comparisons). Violations of
statistical assumptions can also affect Type I and Type II error rates. As we discuss at the end
of Chapter 3, violating assumptions can result in either liberal or conservative biases. Finally,
sample estimates of how large an effect is, or how much variability in the dependent variable is
accounted for, tend to overestimate population values. Appropriate adjustments are available
and are covered in Chapters 3 and 7. A summary of these threats to statistical conclusion
validity and possible remedies is presented in Table 1.1.
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TABLE 1.1
THREATS TO STATISTICAL CONCLUSIONS AND SOME REMEDIES
Threats Causing Overly Conservative Bias Remedies and References
Low power as a result of small sample size ~ Increase sample size Chapters 3ff; Cohen, 1988
Low power due to increased error because ~ Improve measurement (e.g., by Chapter 9; Maxwell, 1994;
of unreliability of measures lengthening tests) Maxwell, Cole, Arvey,
& Salas, 1991
Low power as a result of high variability Control for individual differences: Chapters 9 and 11ff.;
because of diversity of subjects In analysis by controlling for Maxwell, Delaney,
covariates & Dill, 1984

In design by blocking, matching,
or using repeated measures
Low power due to violation of statistical Transform data or use different Chapter 3; McClelland, 2000
assumptions method of analysis

Threats Causing Overly Liberal Bias

Repeated statistical tests Use adjusted test procedures Chapter 5

Violation of statistical assumptions Transform data or use different Chapter 3
method of analysis

Biased estimates of effects Use corrected values to estimate Chapters 3ff.

effects in population

Internal Validity

Statistical tests allow one to make conclusions about whether the mean of the dependent
variable (typically referred to as variable ¥) is the same in different treatment populations. If
the statistical conclusion is that the means are different, one can then move to the question
of what caused the difference, with one of the candidates being the independent variable
(call it variable X) as it was implemented in the study. The issue of internal validity is, “Is
there a causal relationship between variable X and variable Y, regardiess of what X and Y
are theoretically supposed to represent?” If variable X is a #rue independent variable and the
statistical conclusion is valid, then internal validity is to a large extent assured (appropriate
caveats follow). By a true independent variable, we mean one for which the experimenter can
and does independently determine the level of the variable that each participant experiences—
that is, assignment to conditions is carried out independently of any other characteristic of the
participant or of other variables under investigation. Internal validity is, however, a serious issue
in quasi-experimental designs in which this condition is not met. Most commonly, the problem
is using intact or self-selected groups of subjects. For example, in an educational psychology
study, one might select the fifth-grade class in one school to receive an experimental curriculum
and use the fifth-grade class from another school as a control group. Any differences observed
on a common posttest might be attributed to preexisting differences between students in the
two schools rather than your educational treatment. This threat to internal validity is termed
selection bias because subjects were selected from different intact groups. A selection bias is
an example of the more general problem of a confound, defined as an extraneous variable that
is correlated with or, literally, “found with” the levels of the variable of interest. Perhaps less
obvious is the case in which an attribute of the subjects is investigated as one of the factors in
an experiment. Assume that depressed and nondepressed groups of subjects were formed by
scores on an instrument such as the Beck Depression Inventory; then, it is observed that the
depressed group performs significantly worse on a memory task. One might like to claim that
the difference in memory performance was the result of the difference in level of depression;
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however, one encounters the same logical difficulty here as in the study with intact classrooms.
Depressed subjects may differ from nondepressed subjects in many ways besides depression
that are relevant to performance on the memory task.

Internal validity threats are typically thus “third” variable problems. Another variable
besides X and Y may be responsible for either an apparent relationship or an apparent lack of
a relationship between X and Y.

A number of other threats to internal validity arise when subjects are assessed repeatedly
over time,’ or participate in what is called a longitudinal or repeated measures design. The most
intractable difficulties in making a causal inference here arise when there is just a single group
whose performance in being monitored over time, in what Campbell has referred to as a one-
group pretest—posttest design, denoted 01 X O; to indicate a treatment intervenes between two
assessments. One of the most common threats to internal validity is attrition, or the problem
that arises when possibly different types of people drop out of various conditions of a study
or have missing data for one or more time periods. The threats to validity caused by missing
data are almost always a concern in longitudinal designs. Chapter 15 presents methodology
especially useful in the face of missing data in such designs. Cross-sectional designs or designs
that involve only one assessment of each subject can often avoid problems of missing data,
especially in laboratory settings. However, the internal validity of even cross-sectional designs
can be threatened by missing data, especially in field settings, for example, if a subject fails to
show up for his or her assigned treatment or refuses to participate in the particular treatment
or measurement procedure assigned. Attempts to control statistically for variables on which
participants are known to differ can be carried out, but face interpretational difficulties, as we
discuss in Chapter 9. West and Sagarin (2000) present a very readable account of possible
solutions for handling missing data in randomized experiments, including subject losses that
arise from noncompliance as well as attrition.

Other threats arising in longitudinal designs include testing. This threatens internal validity
when a measurement itself might bring about a change in performance, such as when assessing
the severity of participants’ drinking problem affects their subsequent behavior. Such measures
are said to be reactive. Regression is a particular problem in remediation programs in which
subjects may be selected based on their low scores on some variable. History threatens the
attribution of changes to the treatment when events outside the experimental setting occur that
might cause a change in subjects’ performance. Maruration refers to changes that are not caused
by some external event, but by processes such as fatigue, growth, or natural recovery. So, when
only one group experiences the treatment, the appropriate attribution may be that “time heals.”
Thus, the potential remedy for these last four artifacts shown in Table 1.2 that are characteristic
of one-group longitudinal designs is the addition of a similarly selected and measured but
randomly assigned group of control participants who do not experience the treatment.

Estimating the internal validity of a study is largely a thought problem in which you attempt
to systematically think through the plausibility of various threats relevant to your situation.®
On occasion, one can anticipate a given threat and gather information in the course of a study
relevant to it. For example, questionnaires or other attempts to measure the exact nature of
the treatment and control conditions experienced by subjects may be useful in determining
whether extra-experimental factors differentially affected subjects in different conditions.

Finally, a term from Campbell (1986) is useful for distinguishing internal validity from the
other types remaining to be considered. Campbell suggests it might be clearer to call internal
validity “local molar (pragmatic, atheoretical) causal validity” (p. 69). Although a complex
phrase, this focuses attention on points deserving of emphasis. The concern of internal validity
is causal in that you are asking what was responsible for the change in the dependent variable.
The view of causes is molar—that is, at the level of a treatment package, or viewing the
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TABLE 1.2
THREATS TO INTERNAL VALIDITY

Threats Definition

Selection bias  Participant characteristics confounded with treatment conditions because of use of intact or
self-selected participants; or more generally, whenever predictor variables represent measured
characteristics as opposed to independently manipulated treatments.

Attrition Differential drop out across conditions at one or more time points that may be responsible for
differences.

Testing Altered performance as a result of a prior measure or assessment instead of the assigned treatment.

Regression The changes over time expected in the performance of subjects, selected because of their extreme

scores on a variable, that occur for statistical reasons but might incorrectly be attributed to the
intervening treatment.

Maturation Observed changes as a result of ongoing, naturally occurring processes rather than treatment
effects.
History Events, in addition to an assigned treatment, to which subjects are exposed between repeated

measurements that could influence their performance.

treatment condition as a complex hodgepodge of all that went on in that part of the study—
thus emphasizing that the question is not what the “active ingredient” of the treatment is.
Rather, the concem is pragmatic, atheoretical—did the treatment, for whatever reason, cause
a change, did it work? Finally, the concern is local: Did it work here? With internal validity,
one is not concerned with generalization.

Construct validity

The issue regarding construct validity is, Given there is a valid caunsal relationship, is the
interpretation of the constructs involved in that relationship correct?’ Construct validity pertains
to both causes and effects. That is, the question for both the independent and dependent variables
as implemented in the study is, Can I generalize from this one set of operations to a referent
construct? What one investigator labels as construct A causing a change in construct C, another
may interpret as an effect of construct B on construct C, or of construct A on construct D, or even
of Bon D. Showing a person photographs of a dying person may arouse what one investigator in-
terprets as death anxiety and another interprets as compassion. Threats to construct validity are
a pervasive and difficult problem in psychological research. We addressed this issue implicitly
earlier in this chapter in commenting on the meaning of theoretical terms. Since Cronbach and
Meehl’s (1955) seminal paper on construct validity in the area of assessment, something
approaching a general consensus has been achieved that the specification of constructs in
psychology is limited by the richness, generality, and precision of our theories. Given the current
state of psychological theorizing, it is understandable why a minority continue to argue for
strategies such as adopting a strict operationalism or attempting to avoid theorizing altogether.
However, the potential for greater explanatory power offered by theoretical constructs places
most investigators in the position of having to meet the problem of construct validity head-on
rather than sidestepping it by abandoning theoretical constructs.

The basic problem in construct validity is the possibility “that the operations which are
meant to represent a particular cause or effect construct can be construed in terms of more
than one construct, each of which is stated at the same level of reduction” (Cook & Campbell,
1979, p. 59). The qualifier regarding the level of reduction refers to the fact that alternative
explanations of a phenomenon can be made at different levels of analysis, and that sort of
multiplicity of explanation does not threaten construct validity. This is most clearly true across
disciplines. One’s support for a political position could be explained at either a sociological
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level or by invoking a psychological analysis, for example, of attitude formation. Similarly,
showing there is a physiological correlate of some behavior does not mean the behavioral
phenomenon is to be understood as nothing but the outworking of physiological causes.

Some examples of specific types of artifacts serve to illustrate the confounding that can
threaten construct validity. A prime example of a threat to construct validity is the experimenter-
bias effect demonstrated by Rosenthal (1976). This effect involves the impact of the researcher’s
expectancies and, in particular, the transmission of that expectancy to the subject in such a way
that performance on the dependent variable is affected. Thus, when the experimenter is not
blind to the hypothesis under investigation, the role of experimenter bias must be considered, as
well as the nominal treatment variable, in helping to determine the magnitude of the differences
between groups.

Another set of threats to construct validity arises in situations in which there are clear,
vnintended by-products of the treatment as implemented that involve causal elements that
were not part of the intended structure of the treatment (cf. Shadish et al., 2002, p. 95). One
example is treatment diffusion, which can occur when there is the possibility of communication
during the course of a study among subjects from different treatment conditions. Thus, the
mixture of effects of portions of different treatments that subjects functionally receive, filtered
through their talkative friends, can be quite different from the single treatment they were
nominally supposed to receive. This type of threat can be a particularly serious problem in long-
term studies such as those comparing alternative treatment programs for clinical populations.
Another such threat is termed resentful demoralization. For example, a waiting-list control
group may be demoralized by learning that others are receiving effective treatments while they
are receiving nothing. Furthermore, in a variety of other areas of psychology in which studies
tend to involve brief treatment interventions but in which different people may participate over
the course of an academic semester, the character of a treatment can be affected greatly by
dissemination of information over time. Students who learn from previous participants the
nature of the deception involved in the critical condition of a social psychology study may
experience a considerably different condition than naive subjects would experience. These
participants may well perform differently than participants in other conditions, but the cause
may have more to do with the possibly distorted information they received from their peers
than the nominal treatment to which they were assigned.

Two major pitfalls to avoid in one’s attempt to minimize threats to construct validity can
be cited: inadequate preoperational explication of the construct and mono-operation bias or
using only one set of operations to implement the construct (Cook & Campbell, 1979, p. 641f.;
Shadish et al., 2002, p. 73ff.). First, regarding explication, the question is, “What are the
essential features of the construct for your theoretical purposes?” For example, if you wish to
study social support, does your conceptual definition include the perceptions and feelings of
the recipient of the support or simply the actions of the provider of the support? Explicating
a construct involves consideration not only of the construct you want to assess, but also the
other similar constructs from which you hope to distinguish your construct (see Campbell
& Fiske, 1959; Judd & Kenny, 1981). Second, regarding mono-operation bias, using only a
single dependent variable to assess a psychological construct typically runs the risk of both
underrepresenting the construct and containing irrelevancies. For example, anxiety is typically
regarded as a multidimensional construct subsuming behavioral, cognitive, and physiological
components. Because measures of these dimensions are much less than perfectly correlated,
if one’s concern is with anxiety in general, then using only a single measure is likely to be
misleading. The structural equation modeling methods that have become popular since the early
1980s provide a means for explicitly incorporating such fallible indicators of latent constructs
into one’s analytical models (see Appendix B).
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External validity

The final type of validity we consider refers to the stability across other contexts of the
causal relationship observed in a given study. The issue in external validity is, “Can I generalize
this finding across populations, or settings, or time?” As mentioned in our discussion of the
uniformity of nature, this is more of an issue in psychology than in the physical sciences.

A central concern with regard to external validity is typically the heterogeneity and repre-
sentativeness of the sample of people participating in the study. Unfortunately, most research in
the human sciences is carried out using the sample of subjects that happens to be conveniently
available at the time. Thus, there is no assurance that the sample is representative of the initial
target population, not to mention some other population to which another researcher may want
to generalize. In Chapter 2, we consider one perspective on analyzing data from convenience
samples that, unlike most statistical procedures, does not rely on the assumption of random
sampling from a population.

For now, it is sufficient to note that the concern with external validity is that the effects of
a treatment observed in a particular study may not be obtained consistently. For example, a
classroom demonstration of a mnemonic technique that had repeatedly shown the mnemonic
method superior to a control condition in a sophomore-level class actually resulted in worse
performance than the control group in a class of students taking a remedial instruction course.
Freshmen had been assigned to take the remedial course in part on the basis of their poor
reading comprehension, and apparently failed to understand the somewhat complicated written
instructions given to the students in the mnemonic condition.

One partial solution to the problem of external validity is, where possible, to take steps to
assure that the study uses a heterogeneous group of persons, settings, and times. Note that
this is at odds with one of the recommendations we made regarding statistical conclusion
validity. In fact, what is good for the precision of a study, such as standardizing conditions
and working with a homogeneous sample of subjects, is often detrimental to the generality of
the findings. The other side of the coin is that although heterogeneity makes it more difficult
to obtain statistically significant findings, once they are obtained, it allows generalization of
these findings with greater confidence to other situations. In the absence of such heterogeneity
or with a lack of observations with the people, settings, or times to which you wish to apply a
finding, your generalization must rest on your ideas of what is theoretically important about
these differences from the initial study (Campbell, 1986). Much more in-depth discussion of
the issues of causal generalization across settings is presented by Shadish et al. (2002).

Conceptualizing and Controlling for Threats
to Validity

As discussed by Campbell (1969), a helpful way to think about most of the artifacts that we
have considered is in terms of incomplete designs or of designs having more factors than
originally planned. For example, consider a two-group study in which a selection bias was
operating. Because the two treatment groups involved, in essence, subjects from two different
populations, one could view the groups as but two of the four possible combinations of treatment
and population. Similarly, when a treatment is delivered, there are often some incidental aspects
of the experience that are not an inherent part of the treatment, but that are not present in the
control condition. These instrumental incidentals may be termed the vehicle used to deliver the
treatment. Once again, a two-group study might be thought of as just two of the four possible
combinations: the “pure” treatment being present or absent combined with the vehicle being
present or absent (Figure 1.2).
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FIG. 1.2. Original design.
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FIG. 1.3. Preferred designs.

In the case of such confoundings, a more valid experimental design may be achieved by
using two groups that differ along only one dimension, namely that of the treatment factor.
In the case of selection bias, this obviously would mean sampling subjects from only one
population. In the case of the vehicle factor, one conceivably could either expand the control
group to include the irrelevant details that were previously unique to the experimental group or
“purify” the experimental group by eliminating the distinguishing but unnecessary incidental
aspects of the treatment (Figure 1.3). Both options may not be available in practice. For
example, in a physiological study involving ablation of a portion of the motor cortex of a rat,
the surgical procedure of opening the skull may be a part of the ablation treatment that cannot
be eliminated practically. In such a case, the appropriate controls are not untreated animals,
but an expanded control group: animals who go through a sham surgery involving the same
anesthetic, opening of the skull, and so on, but who do not experience any brain damage.

Regarding the issues having to do with increasing the generality of one’s findings, viewing
simple designs as portions of potentially larger designs is again a useful strategy. One might
expand a two-group design, for example, by using all combinations of the treatment factor and
a factor having levels corresponding to subpopulations of interest (Figures 1.4 and 1.5). If, in
your psychology class of college sophomores, summer school students behave differently on
your experimental task than regular academic year students, include both types to buttress the
generality of your conclusions.

Finally, with regard to both construct validity and external validity, the key principle for
protecting against threats to validity is heteromethod replication (Campbell, 1969, p. 3651f.).
Replication of findings is, of course, a desirable way of demonstrating the reliability of the
effects of an independent variable on a dependent variable. Operationism would suggest that
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FIG. 1.5. Expanded design.

one should carry out the details of the original design in exactly the same fashion as was done
initially. The point we are making, however, is that construct and external validity are strength-
ened if the details of procedure deemed theoretically irrelevant are varied from one replication
to the next. (In Chapter 3, we cover how statistical tests may be carried out to determine if the
effects in one study are replicated in another.) Campbell (1969, p. 366) even goes so far as to
entertain the idea that every Ph.D. dissertation in the behavioral sciences be required to imple-
ment the treatment in at least two different ways and measure the effects of the treatment using
two different methods. Although methodologically a good suggestion for assuring construct
and external validity, Campbell rejects this idea as likely being too discouraging in practice,
because, he speculates, “full confirmation would almost never be found” (1969, p. 366).

Whether simple or complex, experimental designs require statistical methods for summa-
rizing and interpreting data, and it is toward the development and explication of those methods
that we move in subsequent chapters.

EXERCISES

*1. Cite three flaws in the Baconian view that science can proceed in a purely objective manner.

2. a. Are there research areas in psychology in which the assumption of the uniformity of nature
regarding experimental material is not troublesome? That is, in what kinds of research is it the
case that between-subject differences are so inconsequential that they can be ignored?

b. In other situations, although how one person responds may be drastically different from another,
there are still arguments in favor of doing single-subject research. Cite an example of such a
situation and suggest certain of the arguments in favor of such a strategy.

*3. Regarding the necessity of philosophical assumptions, much of 20th-century psychology has been
dominated by an empiricist, materialist monism—that is, the view that matter is all that exists—the
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only way one can come to know is by empirical observation. Some have even suggested that this
position is necessitated by empirical findings. In what sense does attempting to prove materialism
by way of empirical methods beg the question?

4. How might one assess the simplicity of a particular mathematical model?

5. Cite an example of what Meehl terms an auxiliary theory that must be relied on to carry out a test
of a particular content theory of interest.

6. Explain why, in Popper’s view, falsification of theories is critical for advancing science. Why are
theories not rejected immediately on failure to obtain predicted results?

7. Assume a study finds that children who watch more violent television programs are more violent
themselves in a playground situation than children who report watching less violent television
programs. Does this imply that watching violence on television causes violent behavior? What
other explanations are possible in this situation? How could the inference of the alleged causal
relationship be strengthened?

8. Regarding statistical conclusion validity, sample size, as noted in the text, is a critical variable.

Complete the following:

a. Increasing samplesize . the power of a test.
increases decreases does not affect

b. Increasing samplesize____the probability of a Type II error.
increases decreases does not affect

c. Increasing samplesize__ the probability of a Type I error.
increases decreases does not affect

*9. A learning theorist asserts, “If frustration theory is correct, then partially reinforced animals will
persist longer in responding during extinction than will continuously reinforced animals.” What is
the contrapositive of this assertion?

*10. A national study involving a sample of more than two thousand individuals included a comparison
of the performance of public and Catholic high school seniors on a mathematics achievement test.
(Summary data are reported by Wolfle, L. M. (1987). “Enduring cognitive effects of public and
private schools.” Educational Researcher, 16(4), 5-11.) The statistics on the mathematics test for
the two groups of students were as follows:

High School

Public  Catholic

Mean  12.13 15.13
SD 7.44 6.52

Would you conclude from such data that Catholic high schools are doing a more effective job in

educating students in mathematics? What additional information could make this explanation of
the difference in mean scores more or less compelling?
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Introduction to the
Fisher Tradition

Discussion of potential threats to the validity of an experiment and issues relating to philosophy
of science may, at first blush, seem unrelated to statistics. And, in fact, some presentations of
statistics may border on numerology—whereby certain rituals performed with a set of numbers
are thought to produce meaningful conclusions, with the only responsibility for thought by
the investigator being the need to avoid errors in the calculations. This nonthinking attitude is
perhaps made more prevalent by the ready availability of computers and statistical software.
For all their advantages in terms of computational speed and accuracy, these conveniences may
mislead some into thinking that, because calculations are no longer an issue, there is nothing
more to statistics than learning the syntax for your software or which options to “click.” It thus
becomes easier to avoid facing the central issue squarely: How do I defend my answers to the
scientific questions of interest in this situation?

However, statistical decisions, appropriately conceived, are essentially organized argu-
ments. This is perhaps most obvious when the derivations of the statistical tests themselves are
carried out in a mathematically rigorous fashion. (Although the point of the argument might
be totally obscure to all but the most initiated, that it is a highly structured deductive argument
is clear enough.) Thus, in a book on linear models, one could begin from first principles and
proceed to prove the theorems necessary for use of the F tests and the associated probability
tables. That is the approach taken in mathematical statistics texts (see, e.g., one of the standard
sources such as the book by Freund & Walpole, 1980; Hogg & Craig, 1978; Mood, Graybill, &
Boes, 1974). It is, of course, possible to derive the theory without showing that it has any prac-
tical utility for analyzing data, although certain texts attempt to handle both (e.g., Graybill,
1976). However, rigorous treatment of linear models requires mastery of calculus at a level
that not many students of the behavioral sciences have achieved. Fortunately, this does not
preclude acquiring a thorough understanding of how statistics in general and linear models in
particular can be used effectively in behavioral science research.

The view of statistics as a kind of rational argument was one that the prime mover in the area,
Sir Ronald A. Fisher (1890-1962), heartily endorsed. In fact, Fisher reportedly was dismayed
that, by the end of his life, statistics was being taught “essentially as mathematics” with an
overelaborate notation apparently designed to make it appear difficult (Cochran, 1967, p. 1461).
Fisher, however, saw statistics as being much more closely related to the experimental sciences
in which the methods actually were to be used. He developed new methods in response to the

34
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practical needs he saw in serving as a consultant to researchers in various departments related
to the biological sciences. A major portion of Fisher’s contributions to mathematical statistics
and to the design and analysis of experiments came early in his career, when he was chief
statistician at the Rothamsted Agricultural Station. Fisher, who later served as Galton Professor
at the University of London and as professor of genetics at the University of Cambridge,
was responsible for laying the foundations for a substantial part of the modern discipline of
statistics. Certainly, the development and dissemination of the analysis of variance and the
F test named for him were directly due to Fisher. His writings, which span half a century,
provide masterful insights into the process of designing and interpreting experiments. His
Design of Experiments (1935/1971) in particular can be read with great profit, regardless
of mathematical background, and illustrates very effectively the close link that should exist
between logical analysis and computations. It is the purpose of this chapter to provide a brief
introduction to the kind of statistical reasoning that characterizes the tradition that Fisher set in
motion.

We should note that the Fisherian approach has not been without its detractors, either in
his day or in ours. Although current widely used procedures of testing statistical hypotheses
represent an amalgam of Fisher’s approach with that of others (namely Jerzy Neyman and
Egon Pearson; see Gigerenzer, 1993), Fisher was the most important figure in the modern
development of statistics, if not the prime mover in the area (cf. Huberty, 1991), and thus it is
useful to gain an appreciation for some of his basic ideas regarding statistical reasoning. One
purpose in tracing the rationale of hypothesis testing to its origins is to place our presentation
of statistical methods in some broader historical context, in something of the same way that
Chapter 1 attempted to locate statistical reasoning within a broader philosophical context. By
highlighting some of the past and present controversy regarding statistical reasoning, we hope
to communicate something of the dynamic and evolving nature of statistical methodology.

We begin by examining one of the most fundamental ideas in statistics. A critical ingredient
in any statistical test is determining the probability, assuming the operation of only chance
factors, of obtaining a more extreme result than that indicated by the observed value of the test
statistic. For example, in carrying out a one-sample z test manually in an elementary statistics
course, one of the final steps is to translate the observed value of z into a probability (e.g., using
a table like that in Appendix A-12). The probability being sought, which is called a p value,
is the probability of obtaining a z score more extreme than that observed. Whenever the test
statistic follows a continuous distribution like the z, ¢, or F, any treatment of this problem that
goes deeper than “you look it up in the table” requires the use of rather messy mathematical
derivations. Fortunately, the same kind of argument can be developed in detail quite easily if
inferences are based on a discrete probabilistic analysis of a situation rather than by making
reference to a continuous distribution. Thus, we illustrate the development of a statistical test by
using an example relying on a discrete probability distribution.! First, however, let us consider
why any probability distribution is an appropriate tool for interpreting experiments.

‘INTERPRETATION AND ITS REASONED BASIS”

‘What Fisher hoped to provide was an integrated methodology of experimental design and sta-
tistical procedures that together would satisfy “all logical requirements of the complete process
of adding to knowledge by experimentation” (Fisher, 1935/1971, p. 3). Thus, Fisher was a firm
believer in the idea that inductive inferences, although uncertain, could be made rigorously,
with the nature and degree of uncertainty itself being specified. Probability distributions were
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used in this specification of uncertainty. However, as we have indicated, in Fisher’s view,
statistics was not a rarefied mathematical exercise. Rather, it was part and parcel of experimen-
tation, which in turn was viewed not merely as the concern of laboratory scientists, but also
as the prototypical avenue by which people learn from experience. Given this, Fisher believed
that an understanding of scientific inference was the appropriate concern of any intelligent
person.

Experiments, Fisher wrote, “are only experience carefully planned in advance and designed
to form a secure basis of new knowledge” (1935/1971, p. 8). The goal is to design experiments
in such a way that the inferences drawn are fully justified and logically compelled by the data,
as Fisher explained in Design of Experiments. When Fisher advised experimenters in a section
entitled “Interpretation and Its Reasoned Basis” to know in advance how they will interpret any
possible experimental outcome, he was not referring to the theoretical or conceptual mech-
anism responsible for producing an effect. The theoretical explanation for why a particular
effect should be observed in the population is quite different from the statistical conclusion
itself. Admittedly, the substantive interpretation is more problematic in the behavioral sci-
ences than in the agricultural sciences, where the experimental manipulation (e.g., application
of kinds of fertilizer) is itself the treatment of substantive interest rather than being only a
plausible representation of a theoretical construct (Chow, 1988, p. 107). However, the details
of the preliminary argument from sample observations to general statistical conclusions about
the effectiveness of the experimental manipulation had not been worked out prior to Fisher’s
time. His key insight, which solved the problem of making valid statistical inferences, was that
of randomization. In this way, one is assured that no uncontrolled factor would bias the results
of the statistical test. The details of how this works out in practice are illustrated in subsequent
sections.

For the moment, it is sufficient to note that the abstract random process and its associated
probabilities are merely the mathematical counterparts of the use of randomization in the
concrete experimental situation. Thus, in any true experiment, there are points in the procedure
when the laws of chance are explicitly introduced and are in sole control of what is to be done.
For example, one might flip a coin to determine what treatment a particular participant receives.
The probability distribution used in the statistical test makes sense only because of the use
of random assignment in the conduct of the experiment. By doing so, one assures that, if the
null hypothesis of no difference between treatments is correct, the results of the experiment
are determined entirely by the laws of chance (Fisher, 1935/1971, p. 17). One might imagine,
for example, a wide variety of factors that would determine how a particular phobic might
respond on a posttest of performance in the feared situation after receiving one of an assortment
of treatments. Assuming the treatments have no effect, any number of factors—such as the
individual’s conditioning history, reaction to the experiment, or indigestion from a hurried
lunch—might in some way affect performance. If, in the most extreme view, the particular
posttest performance of each individual who could take part in your experiment was thought
to be completely determined from the outset by a number of, for your purposes, irrelevant
factors, the random assignment to treatment conditions assures that, in the long run, these
would balance out. That is, randomization implies that the population means in the various
treatments are, under these conditions, exactly equal, and that even the form of the distribution
of scores in the various conditions is the same.

Next, we show how this simple idea of control of irrelevant factors by randomization works
in a situation that can be described by a discrete probability distribution. Thus, we are able to
derive (by using only simple counting rules) the entire probability distribution that can be used
as the basis for a statistical test.
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A DISCRETE PROBABILITY EXAMPLE

Fisher introduced the principles of experimentation in his Design of Experiments (1935/1971)
with an appropriately British example that has been used repeatedly to illustrate the power of
randomization and the logic of hypothesis testing (see, e.g., Kempthorne, 1952, pp. 14-17,
120-134). We simply quote the original description of the problem:

A lady declares that by tasting a cup of tea made with milk, she can discriminate whether
the milk or the tea infusion was first added to the cup. We will consider the problem
of designing an experiment by means of which this assertion can be tested. (Fisher,
1935/1971, p. 11)

[Those enamored with single-subject experimentation might be bemused to note that the prin-
ciples of group experimentation were originally introduced with an N-of-1 design. In fact,
to be accurate in assigning historical priority, it was the distinguished American philosopher
and mathematician Charles S. Peirce, working on single-subject experiments in psychophysics
in the 1880s, who first discussed the advantages of randomization (Stigler, 1999, p. 192ff.).
However, it was a half century later before Fisher tied these explicitly to methods for arriving
at probabilistic inferences.] If you try to come up with an exemplary design appropriate for
this particular problem, your first thought might be of the variety of possible disturbing factors
over which you would like to exert experimental control. That is, you may begin by asking
what factors could influence her judgment and how could these be held constant across condi-
tions so that the only difference between the two kinds of cups is whether the milk or tea was
added first. For example, variation in the temperature of the tea might be an important clue, so
you might carefully measure the temperature of the mixture in each cup to attempt to assure
they were equally hot when they were served. Numerous other factors could also influence her
judgment, some of which may be susceptible to experimental control. The type of cup used, the
strength of the tea, the use of sugar, and the amount of milk added merely illustrate the myriad
potential differences that might occur among the cups to be used in the experiment. The logic
of experimentation until the time of Fisher dictated that to have a valid experiment here, all
the cups to be used “must be exactly alike,” except for the independent variable being manip-
ulated. Fisher rejected this dictum on two grounds. First, he argued that exact equivalence was
logically impossible to achieve, both in the example and in experimentation in general. The
cups would inevitably differ to some degree in their smoothness, the strength of the tea and the
temperature would change slightly over the time between preparation of the first and last cups,
and the amounts of milk or sugar added would not be exactly equal, to mention only a few
problems. Second, Fisher argued that, even if it were conceivable to achieve “exact likeness”
or, more realistically, “imperceptible difference” on various dimensions of the stimuli, it would
in practice be too expensive to attempt. Although one could, with a sufficient investment of
time and money, reduce the irrelevant differences between conditions to a specified criterion
on any dimension, the question of whether it is worth the effort must be raised in any actual
experiment. The foremost concern with this and other attempts at experimental control is to
arrive at an appropriate test of the hypothesis of interest. Fisher argued that, because the valid-
ity of the experiment could be assured by the use of randomization, it was not the best use of
inevitably limited resources to attempt to achieve exact equality of stimuli on all dimensions.
Most causes of fluctuation in participants’ performance “ought to be deliberately ignored”
(1935/1971, p. 19).
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Consider now how one might carry out and analyze an experiment to test our British lady’s
claim. The difficulty with asking for a single judgment, of course, is that she might well
correctly classify it just by guessing. How many cups then would be needed to constitute a
sufficient test? The answer naturally depends on how the experiment is designed, as well as the
criterion adopted for how strong the evidence must be in order to be considered compelling.

One suggestion might be that the experiment be carried out by mixing eight cups of tea,
four with the milk added to the cup first (milk-first, or MF, cups) and four with the tea added
first (tea-first, or TF, cups), and presenting them for classification by the subject in random
order. Is this a sufficient number of judgments to request?

In considering the appropriateness of any proposed experimental design, it is always
needful to forecast all possible results of the experiment, and to have decided without
ambiguity what interpretation shall be placed upon each one of them. Further, we must
know by what argument this interpretation is to be sustained. (Fisher, 1935/1971 p. 12)

Thus, Fisher’s advice translated into the current vernacular might be, “If you can’t analyze
an experiment, don’t run it.” To prescribe the analysis of the suggested design, we must
consider what the possible results of the experiment are and the likelihood of the occurrence of
each. To be appropriate, the analysis must correspond exactly to what actually went on in the
experiment. Assume the subject is told that the set of eight cups consists of four MF and four
TF cups. The measure that indicates how compelling the evidence could be is the probability
of a perfect performance occurring by chance alone. If this probability is sufficiently small,
say less than 1 chance in 20, we conclude it is implausible that the lady has no discrimination
ability. There are, of course, many ways of dividing the set of eight cups into two groups of
four each, with the participant thinking that one group consists of MF cups and the other group
TF cups. However, if the participant cannot discriminate at all between the two kinds of cups,
each of the possible divisions into two groups would be equally likely.

Thus, the probability of a correct performance occurring by chance alone could be expressed
simply as the proportion of the possible divisions of the cups that are correct:

Pr (being correct by chance) = Number of divisions that 2‘1re ex?c.tl'y correct 1)
Total number of possible divisions

Naturally, only one division would match exactly the actual breakdown into MF and TF cups,
which means the numerator of the fraction in Equation 1 would be 1. The only problem, then,
is to determine the total number of ways of splitting up eight things into two groups of four
each. Actually, we can solve this by determining only the number of ways the subject could
select a particular set of four cups as being the MF cups; because once four are chosen as
being of one kind, the other four must be put into the other category. Formulating the solution
in terms of a sequence of decisions is easiest. Any one of the eight cups could be the first to
be classified as an MF cup. For each of the eight possible ways of making this first decision,
there are seven cups from which to choose the second cup to be classified as an MF cup. Given
the 8 x 7, or 56, ways of making the first two decisions, there are six ways of choosing the
third MF cup. Finally, for each of these 8 x 7 x 6 orderings of three cups, there would be
five possible ways of selecting the fourth cup to be assigned to the MF category. Thus, there
are 8 x 7 x 6 x 5, or 1680, ways of choosing four cups out of eight in a particular order.
However, each set of four particular cups would appear 4 x 3 x 2 x 1, or 24, times in a listing
of the 1680 orderings, because any set of four objects could be ordered in 24 ways. We are
not concerned with the particular sequence in which the cups in a set of four were selected,
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only with which set was selected. Thus, we can find the number of distinct sets of cups by
dividing the number of orderings, 1680, by the number of ways, 24, that each distinct set could
be ordered. In summary,

8><7x6x5_1680__

= 70 2)
4x3x2x1 24

Total number of possible divisions =
Those who have studied what is known as counting rules, or “permutations and combinations”
may recognize the above solution as the number of combinations of eight things taken four at
a time, which may be denoted 3Cj. In general, if one is selecting r objects from a larger set n,
by the reasoning followed previously, we write

nn—Dn—-2)--(n—r+1) n!

rr—D(r—2)---1 T orin —r)! ®

nCr =

The solution here, of there being 70 distinct combinations or sets of four cups, which could
possibly be designated as MF cups, is critical to the interpretation of the experiment. Following
Equation 1, because only 1 of these 70 possible answers is correct, the probability of the lady
being exactly right by chance alone is 1/70. Because this is less than the 1 /20, or .05, probability
we adopted as our criterion for being so unlikely as to be convincing, if the lady were to correctly
classify all the cups, we would have a sufficient basis for rejecting the null hypothesis of no
discrimination ability.

Notice that in essence, we have formulated a statistical test of our null hypothesis, and
instead of looking up a p value for an outcome of our experiment in a table, we have derived
that value ourselves. Because the experiment involved discrete events rather than scores on a
continuous variable, we were able simply to use the definition of probability and a counting
rule, which we also developed “from scratch” for our situation, to determine a probability that
could be used to judge the statistical significance of one possible outcome of our experiment.

Although no mean feat, we admittedly have not yet considered “all possible results of
the experiment,” deciding “without ambiguity what interpretation shall be placed on each
one.” One plausible outcome is that the lady might get most of the classifications correct, but
fall short of perfect performance. In the current situation, this would necessarily mean that
three of the four MF cups would be correctly classified. Note that, because the participant’s
response is to consist of putting four cups into each category, misclassifying one MF cup
necessarily means that one TF cup was inappropriately thought to be a MF cup. Note also that
the decision about which TF cup is misclassified can be made apart from the decision about
which MF cup is misclassified. Each of these two decisions may be thought of as a combinatorial
problem: How many ways can one choose three things out of four? How many ways can one
be selected out of four? Thus, the number of ways of making one error in each grouping of
cups is

Number of ways of making one error of each kind = 4C; - 4C;
4! 4!

=3 T =44=16 @

It may seem surprising that there are as many as 16 ways to arrive at three out of four correctly
classified MF cups. However, any one of the four could be the one to be left out, and for each
of these, any one of four wrong cups could be put in its place.

Making use again of the definition of the probability of an event as the number of ways that
event could occur over the total number of outcomes possible, we can determine the probability
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of this near-perfect performance arising by chance. The numerator is what was just determined,
and the denominator is again the number of possible divisions of eight objects into two sets of
four each, which we previously (Equation 2) determined to be 70:

C; - 4C 4.4 1
Pr (three MF and one TF classified as MF) = 4t _ T T 16 (5)
8C4 70 70

The fact that this probability of 16/70, or .23, is considerably greater than our criterion of .05
puts us in a position to interpret not only this outcome, but all other possible outcomes of the
experiment as well. Even though three out of four right represents the next best thing to perfect
performance, the fact that performance that good or better could arise (16 + 1)/70 = .24, or
nearly one fourth, of the time when the subject had no ability to discriminate between the
cups implies it would not be good enough to convince us of her claim. Also, because all
other possible outcomes would be less compelling, they would also be interpreted as provid-
ing insufficient evidence to make us believe that the lady could determine which were the
MF cups.

Let us now underscore the major point of what we have developed in this section. Although
we have not made reference to any continuous distribution, we have developed from first
principles a statistical test appropriate for use in the interpretation of a particular experiment.
The test is in fact more generally useful and is referred to in the literature as the Fisher—{rwin
exact test (Marascuilo & Serlin, 1988, p. 200ff.), or more commonly as Fisher’s exact test
(e.g., Hays, 1994, p. 863).

Many statistical packages include Fisher’s exact test as at least an optional test in analy-
ses of cross-tabulated categorical data. In SPSS, both one-tailed and two-tailed p levels for
Fisher’s exact test are automatically computed for 2 x 2 tables in the Crosstabs procedure.
Although our purpose in this section primarily is to illustrate how p values may be computed
from first principles, we comment briefly on some other issues that we develop more fully in
later chapters. In general, in actual data analysis situations it is desirable not just to carry out a
significance test, but also to characterize the magnitude of the effect observed. There are usu-
ally multiple ways in which this can be done, and that is true in this simple case of analysis of a
2 x 2 table, as will be the case in more complicated situations. One way of characterizing the
magnitude of the effect is by using the phi coefficient, which is a special case for a2 x 2 table
of the Pearson product-moment correlation coefficient, well known to most behavioral re-
searchers. For example, in the case in which one error of each kind was made in the classi-
fication of eight cups, the effect size measure could be computed as the correlation between
two numerical variables, say Actual and Judged. With only two levels possible, the particular
numerical values used to designate the level of TF or MF are arbitrary, but one would have
eight pairs of scores [e.g., (1,1), (1,1), (1,1), (1,2), (2,1), (2,2), (2,2), (2,2)], which would here
result in a correlation or phi coefficient between Actual and Judged of .50. Small, medium,
and large effect sizes may be identified with phi coefficients of .10, .30, and .50, respectively.

An alternative approach to characterizing the effect size is to think of the two rows of the
2 x 2 table as each being characterized by a particular probability of “success” or probability of
an observation falling in the first column, say p; and p;. Then, one could describe the magnitude
of the effect as the estimated difference between these probabilities, or iy — p,. However, one
difficulty with interpreting such a difference is that the relative chances of success can be very
different with small as opposed to large probabilities. For example, a difference of .1 could
mean the probability of success is 11 times greater in one condition than in the otherif p; = .01
and p, = .11, or it could mean that one probability is only 1.2 times the other if p; = .50 and
p2 = .60. To avoid this difficulty, it is useful for some purposes to measure the effect size in
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terms of the ratio of the odds of success in the two rows. The odds ratio is defined as

p1/(1 = p1)
p2/(1 — p3)

Methods for constructing confidence intervals around estimates of the odds ratio are discussed
by Rosner (1995, pp. 368-370) and Good (2000, p. 100).

Regarding power, Fisher’s exact test may be regarded as the “uniformly most powerful
among all unbiased tests for comparing two binomial populations” in a variety of situations
such as where the marginals are fixed (Good, 2000, p. 99). As is usually the case, one can
increase the power of the test by increasing the total N and by maintaining equal numbers in the
marginals under one’s control, for example, the number of TF and MF cups presented. Power
of Fisher’s exact test against specific alternatives defined by a given odds ratio can be deter-
mined by computations based on what is called the noncentral hypergeometric distribution
(cf. Fisher, 1934, pp. 48-51). A helpful discussion of the test with references to relevant liter-
ature is given in Good (2000, Chapter 6). Alternative methods of estimating power illustrated
with numerical examples are provided by O’ Brien and Muller (1993), Rosner (1995, p. 3841f.),
and Cohen (1977).

Readers wishing to determine power should be aware, as noted by O’Brien (1998), of
the large number of different methods for carrying out computations of p values and power
for the case of data from a 2 x 2 design. One common situation, different from the current
case, is that in which one carries out analyses under the assumption that one is comparing
two independent proportions, such as the proportion of successes in each of the two rows of
the table. In contrast to situations such as the present one where the subject is constrained to
produce equal numbers of responses in the two classifications, in many experimental situations
the total number of responses of a given kind is not constrained. The appropriate power analysis
can be considerably different under such an assumption.*

It perhaps should be mentioned that Fisher’s exact test, besides illustrating how one can
determine the probability of an outcome of an experiment, can be viewed as the forerunner of
a host of other statistical procedures. Recent years have seen the rapid development of such
techniques for categorical data analysis. These are particularly useful in those research areas—
for example, some types of public health or sociological research—in which all variables under
investigation are categorical. A number of good introductions to such methods are available
(see, e.g., Bishop, Fienberg, & Holland, 1975).

Although these methods have some use in the behavioral sciences, it is much more common
for the dependent variable in experiments to be quantitative instead of qualitative. Thus, we
continue our introduction to the Fisher tradition by considering another example from his
writing that makes use of a quantitative dependent variable. Again, however, no reference to a
theoretical population distribution is required.

RANDOMIZATION TEST

Assume that a developmental psychologist is interested in whether brief training can improve
performance of 2-year-old children on a test of mental abilities. The test selected is the Mental
Scale of the Bayley Scales of Infant Development, which yields a mental age in months. To
increase the sensitivity of the experiment, the psychologist decides to recruit sets of twins and
randomly assigns one member of each pair to the treatment condition. The treatment consists
simply of watching a videotape of another child attempting to perform tasks similar to those
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TABLE 2.1
SCORES ON BAYLEY MENTAL SCALE (IN MONTHS) FOR 10 PAIRS OF TWINS
Condition Difference
Twin Pair Treatment Control (Treatment — Control)
Week 1 data
1 28 32 -4
2 31 25 6
3 25 15 10
4 23 25 -2
5 28 16 12
Sum for Week 1 135 113 22
Week 2 data
6 26 30 —4
7 36 24 12
8 23 13 10
9 23 25 -2
10 24 16 8
Sum for Week 2 132 108 24
Sum for 2 weeks 267 221 46
Mean for 2 weeks 26.7 221 4.6

making up the Bayley Mental Scale. The other member of each pair plays in a waiting area as a
time-filling activity while the first is viewing the videotape. Then both children are individually
given the Bayley by a tester who is blind to their assigned conditions. A different set of twins
takes part in the experiment each day, Monday through Friday, and the experiment extends
over a 2-week period. Table 2.1 shows the data for the study in the middle columns.

Given the well-known correlations between twins’ mental abilities, it would be expected
that there would be some relationship between the mental ability scores for the two twins
from the same family, although the correlation is considerably lower at age 2 than at age 18.
{Behavior of any 2-year-old is notoriously variable from one time to another; thus, substantial
changes in even a single child’s test performance across testing sessions are common.) The
measure of treatment effectiveness that would commonly be used then in such a study is simply
the difference between the score of the child in the treatment condition and that of his or her
twin in the control condition. These are shown on the right side of Table 2.1.

A 1 test would typically be performed to make an inference about the mean of these dif-
ferences in the population. For this particular data set, some hesitation might arise because
the sample distribution is U-shaped® rather than the bell-shaped distribution that would be
expected if the assumption made by the ¢ test of a normal population were correct. The
t test might in practice be used despite this (see the discussion of assumptions at the end of
Chapter 3). However, it is not necessary to make any assumptions about the form of the pop-
ulation distribution in order to carry out certain tests of interest here. In fact, one can use all
the quantitative information available in the sample data in testing what Fisher referred to as
“the wider hypothesis” (1935/1971, p. 43) that the two groups of scores are samples from the
same, possibly nonnormal population.

The test of this more general hypothesis is based simply on the implications of the fact that
subjects were randomly assigned to conditions. Hence, the test is referred to as a randomization
test. The logic is as follows: If the null hypothesis is correct, then subjects’ scores in the
experiment are determined by factors other than what treatment they were assigned (that is,
the treatment did not influence subjects’ scores). In fact, one may consider the score for each
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subject to be predetermined prior to the random assignment to conditions. Thus, the difference
between any two siblings’ scores would have been the same in absolute value regardless of the
assighment to conditions. For example, under the null hypothesis, one subject in Pair 1 was
going to receive a score of 28 and the other subject a score of 32; the random assignment then
simply determined that the higher-scoring subject would be in the control condition here, so
that the difference of “treatment minus control” would be —4 instead of +-4. Because a random
assignment was made independently for each of the 10 pairs, 10 binary decisions were in effect
made as to whether a predetermined difference would have a plus or minus sign attached to it.
Thus, there were 2!° possible combinations of signed differences that could have occurred with
these subjects, and the sum of the signed differences could be used to indicate the apparent
benefit (or harm) of the treatment for each combination. The distribution of these 2!° sums is
the basis for our test. The sum of the differences actually observed, including the four negative
differences, was 46. A randomization test is carried out simply by determining how many of the
2% combinations of signed differences would have totals equal to or exceeding the observed
total of 46. Because under the null hypothesis each of these 2!° combinations is equally likely,
the proportion of them having sums at least as great as the observed sum provides directly the
probability to use in assessing the significance of the observed sum.

In effect, one is constructing the distribution of values of a test statistic (the sum of the
differences) over all possible reassignments of subjects to conditions. Determining where the
observed total falls in this distribution is comparable to what is done when one consults a
table in a parametric test to determine the significance of an observed value of a test statistic.
However, now the distribution is based directly on the scores actually observed rather than on
some assumed theoretical distribution.

That one uses all the quantitative information in the sample and gets a statistical test without
needing to make any distributional assumptions makes an attractive combination. There are
disadvantages, however. A major disadvantage that essentially prevented use of randomization
tests until recent years in all but the smallest data sets is the large number of computations
required. To completely determine the distribution of possible totals for even the set of 10
differences in Table 2.1 would require examining 2'° = 1024 sets of data. We summarize the
results of this process later, but illustrate the computations for the smaller data set consisting
only of the five scores from week 1.

With five scores, there are 2° = 32 possible assignments of positive and negative signs to
the individual scores. Table 2.2 lists the scores in rank order of their absolute value at the top
left. Then, 15 other sets, including progressively more minus signs, are listed along with the
sum for each. The sums for the remaining 16 sets are immediately determined by realizing
that when the largest number of 12 is assigned a negative rather than a positive sign, the sum
would be reduced by 24.

If the first week constituted the entire experiment, these 32 sums would allow us to determine
the significance of the observed total Bayley difference for the first week of 22 (= —4 + 6 +
10 — 2 + 12, see Table 2.1). Figure 2.1 shows a grouped, relative frequency histogram for the
possible sums, with the shaded portion on the right indicating the sums greater than or equal
to the observed sum of 22. (An ungrouped histogram, although still perfectly symmetrical,
appears somewhat less regular.) Thus, the probability of a total at least as large as and in the
same direction as that observed would be 5/32 (= 3/32 + 2/32), or .16, which would not be
sufficiently small for us to claim significance.

The same procedure could be followed for the entire set of 10 scores. Rather than listing the
1024 combinations of scores or displaying the distribution of totals, the information needed
to perform a test of significance can be summarized by indicating the number of totals greater
than or equal to the observed sum of 46. Fortunately, it is clear that if five or more numbers
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TABLE 2.2
POSSIBLE SUMS OF DIFFERENCES RESULTING FROM REASSIGNMENTS OF FIRST-WEEK CASES

Assignment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

10 10 10 10 10 10 10 10 -10 —-10 —-10 -10 -10 -10 -10 -10

6 6 6 —6 —6 -6 —6 6 6 6 6 —6 —6 —6 —6

4 4 —4 -4 4 4 —4 —4 4 4 —4 —4 4 4 —4 —4

2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2

Sum 34 30 26 22 22 18 14 10 14 10 6 2 2 -2 —6 -10
Assignment®

17 18 19 20 21 22 23 24 25 26 27 28 29 30 3! 32

-12 -12 -12 -12 -12 -12 -12 —-12 —-12 —-12 -12 -12 -12 -12 -12 -12

10 10 10 10 10 10 10 10 -10 -10 -10 -10 -10 -10 -10 -10

6 6 6 6 -6 —6 —6 —6 6 6 6 6 -6 —6 —6 —6

4 4 —4 —4 4 4 -4 —4 4 4 —4 -4 4 4 —4 —4

2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2

Sum 10 6 2 -2 -2 —6 —10 —14 —-10 —~14 —18 —22 -22 —26 -30 -34

@ Note that assignments 17-32 are the same as assignments 1-16 except that 12 is assigned a negative sign rather than a positive sign, and so each sum is 24 less
than the sum for the corresponding assignment above.
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6/32 —

4/32 —

Relative frequency

2/32 —

1

-34 -26 -18 -10 -2 +6 +14 +22 +30
or or or or Of of or or or
-30 -22 -14 -6 +2 +10 +18 +26 +34

Total

FIG. 2.1. Distribution of possible totals of difference scores using data from
Week 1.

TABLE 2.3
NUMBER OF COMBINATIONS OF SIGNED DIFFERENCES WITH SUMS EQUAL TO OR
GREATER THAN THE OBSERVED SUM

Number of Total Number
Negative Values of Combinations Number of Combinations with
Sum > 46 Sum = 46 Sum < 46
0 1 1
1 10 8 2
2 45 12 6 27
3 120 5 5 110
4 210 1 209
5 252 252
6 210 210
7 120 120
8 45 45
9 10 10
10 1 1
Totals 1024 26 14 984

were assigned negative signs, the total would necessarily be less than 46. Table 2.3 shows the
breakdown for the other possible combinations.

We now have the needed information to address the question with which we began this sec-
tion: Does brief training improve the performance of 2-year-olds on a test of mental abilities?
Under the null hypothesis that the scores from the subjects receiving training and those not re-
ceiving training represent correlated samples from two populations having identical population
distributions, the random assignment to conditions allows us to generate a distribution of pos-
sible totals of 10 scores based on the data actually observed. As shown in Table 2.3, we find that
only 40 of 1024, or .039, of the possible combinations of signed differences result in totals as
large or larger than that actually observed. Thus, we conclude that we have significant evidence
that our training resulted in improved performance among the children tested in the experiment.

Two points about this conclusion are noteworthy. First, we performed a one-tailed test.
A one-tailed test might be warranted in an applied setting in which one is interested in the
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treatment only if it helps performance. If a two-tailed test had been performed, a different con-
clusion would have been reached. To see this, we make use of the symmetry of the distributions
used in randomization tests (every combination of signed differences is matched by one in
which every sign is reversed, so every positive total has a corresponding negative total of the
same absolute value). Thus, there would be exactly 40 cases totaling —46 or less. This yields a
combined probability of 80/1024, or .078, of observing a total as extreme or more extreme in
either direction than that observed; hence, we would fail to reject the null hypothesis in favor
of a nondirectional alternative hypothesis.

Second, it should be pointed out that the hypothesis tested by the randomization test is
not identical to that tested by the ¢ test. The hypothesis in the # test concerns the population
mean of a continuous random variable. The hypothesis in the randomization test concerns the
presumption that each of the observed difference scores could have been preceded by a positive
or negative sign with equal likelihood. The p value yielded by performing a ¢ test would be exact
only if the theoretical distribution prescribed by its density formula were perfectly matched
by the actual distribution of the test statistic given the current population, which it certainly
is not here. However, in part because of the factors summarized by the central limit theorem
(discussed in the next section), the p value in the table generally is a very good approximation to
the exact p value even with nonnormal data, such as we have in the current example. Similarly,
the p value in the randomization test is the exact probability only for the distribution arising
from hypothetical reassignments of the particular cases used in the study (Edgington, 1966,
1995). However, the closeness of the correspondence between the p value yielded by the
randomization test and that yielded by the ¢ test can be demonstrated mathematically under
certain conditions (Pitman, 1937).

We can illustrate this correspondence in the current example as well. If we perform a ¢ test
of the hypothesis that the mean difference score in the population is 0, we obtain a r value of
2.14 with 9 degrees of freedom. This observed ¢ value is exceeded by .031 of the theoretical
t distribution, which compares rather closely with the .039 we obtained from our randomization
test previously. The correspondence is even closer if, as Fisher suggested (1935/1971, p. 46),
we correct the ¢ test for the discontinuous nature of our data.® Hence, with only 10 cases, the
difference between the probabilities yielded by the two tests is on the order of 1 in 1000. In fact,
one may view the ¢ test and the randomization test as very close approximations to one another
(cf., Lehman, 1986, pp. 230-236). Deciding to reject the hypothesis of the randomization test
is tantamount to deciding to reject the hypothesis of the ¢ test.

As with the Fisher’s exact test, our purpose with the randomization test is primarily to
emphasize the meaning of p values rather than to fully develop all aspects of the methodology.
When such a method is used in actual research, one may want to construct a confidence interval
around a parameter indicating the location or central tendency of the distribution. Methods
for doing so are discussed briefly in Good (2000, pp. 34-35) and in more theoretical detail in
Lehmann (1986, pp. 245-248). Power of randomization tests is considered by Bradbury (1987),
Robinson (1973), and Good (2000, p. 36), and is often similar to that of the standard 7 test. We
consider measures of effect size and power for group comparisons in the context of the linear
models introduced in subsequent chapters. With the ready availability of increasingly powerful
computers in recent years, randomization tests have become much more feasible. A number
of specialized, commercially available programs perform such tests (e.g., StatXact, 1995,
from Cytel Software), and one has the option of obtaining programs for free from “shareware”
sources, such as NPSTAT (May, Hunter, & Masson, 1993) or from published program listings
(Edgington, 1995). Although these procedures are not yet available as of this writing in
packages such as SPSS and SAS, sets of commands that allow one to carry out these procedures
have been published for both of these packages (Chen & Dunlap, 1993; Hayes, 1998).
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OF HYPOTHESES AND p VALUES: FISHER
VERSUS NEYMAN-PEARSON

To this point, we have dealt with only a single hypothesis, namely the null hypothesis. This
was Fisher’s strong preference (Huberty, 1987). The familiar procedure of simultaneously con-
sidering a null and an alternative hypothesis, which became standard practice in psychology
in the 1940s (Huberty, 1991; Rucci & Tweney, 1980), is actually a modification of Fisherian
practice that had been advocated by statisticians Jerzy Neyman and Egon Pearson. One partic-
ularly memorable version of the historical debates regarding statistical methods and how they
manifest themselves currently is that offered in Freudian terms by Gigerenzer (1993).

In the Neyman-Pearson view, statistical inference was essentially an exercise in decision
making. Whereas Fisher had viewed significance testing as a means of summarizing data to
aid in advancing an argument for a position on a scientific question, Neyman and Pearson
emphasized the practical choice between two statistical hypotheses, the null hypothesis and its
complement, the alternative hypothesis. The benefit of this approach was to make clear that one
could not only make a Type I error (with probability ) of rejecting the null hypothesis when
it is true, but also a Type II error, or failing to reject the null hypothesis when it is false (with
probability 8). In practical situations in business or medicine, one could adjust the probabilities
of these errors to reflect the relative costs and benefits of the different kinds of errors. Of course,
determining a particular value of § required one to specify an exact alternative hypothesis
(e.g., u = 105, not just x # 100).

One disadvantage of the Neyman—Pearson approach was the overemphasis on the accept—
reject decision. Although a 5% level of significance was acknowledged as “usual and conve-
nient” by even Fisher (1935/1971, p. 13), thinking that an up-or-down decision is a sufficient
summary of the data in all situations is clearly misguided. For one, an effect of identical size
might be declared significant in one study but not another simply because of differences in
the number of subjects used. Although abandoning significance tests, as some advocate (e.g.,
Cohen, 1994; Oakes, 1986), would avoid this problem, one thereby would lose this critical
screen that prevents researchers from interpreting what could reasonably be attributed to chance
variation (cf. Frick, 1996; Hagen, 1997). However, viewing the alpha level established before
the experiment as the only probability that should be reported suppresses information. Some
researchers apparently believe that what statistical correctness requires is to report all signif-
icant p values only as significant at the alpha level established before the experiment. Thus,
the “superego” of Neyman-Pearson logic might seem to direct that if « is set at 5% before the
experiment, then .049 and .003 should both be reported only as “significant at the .05 level”
(Gigerenzer, 1993). But, as Browner and Newman (1987) suggest, all significant p values
are not created equal. Although there is value in retaining the conventions of .05 and .01 for
declaring results significant or highly significant, any published report of a statistical test, in
our view and that of groups of experts asked to make recommendations on the issue, should
be accompanied by an exact p value (Greenwald, Gonzalez, Harris, & Guthrie, 1996, p. 181;
Wilkinson & the APA Task Force on Statistical Inference, 1999, p. 599). As Fisher saw it, this
is part of the information that should be communicated to others in the spirit of freedom that
is the essence of the Western tradition. Reporting exact p values recognizes “the right of other
free minds to utilize them in making their own decisions” [Fisher, 1955, p. 77 (italics Fisher’s)].

Because we emphasize relying on and reporting p values, it is critical to be clear about what
they are and what they are not. As we tried to make clear by our detailed development of the
p values for the Fisher’s exact and randomization tests, a p value is the probability of data as
extreme or more extreme as that obtained, computed under the presumption of the truth of the
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null hypothesis. In symbols, if we let D stand for data as or more extreme as that obtained,
and H, stand for the null hypothesis, then a p value is a conditional probability of the form
Pr(D | H,).

Unfortunately, erroneous interpretations of p values by academic psychologists, including
textbook authors and journal editors, are very common and have been well documented,
often by those raising concerns about hypothesis testing. Two misunderstandings seem to
be most prevalent. The first has been termed the replication fallacy, which is erroneously
thinking that a significant p value is the complement of the probability (i.e., 1 — p) that a
replication of the study would also yield significance. However, the probability of obtaining
significance in a replication when the null hypothesis is false refers to the concept of power,
which can be computed only under the assumption of a specific alternative hypothesis, and
in any event is only indirectly related to the p value. Gigerenzer (1993) provides a number of
examples of the replication fallacy, including an example from Nunnally’s (1975) Introduction
to Statistics for Psychology and Education, which asserted “ ‘If the statistical significance is at
the 0.05 level.. . . the investigator can be confident with odds of 95 out of 100 that the observed
difference will hold up in future investigations’ (Nunnally, 1975, p. 195)” (Gigerenzer, 1993,
p. 330). More recently, one study conducted by a British psychologist of 70 university lecturers,
research fellows, and postgraduate students elicited endorsement by 60% of a statement to the
effect that a result significant at p = .01 meant that “You have a reliable experimental finding
in the sense that if, hypothetically, the experiment were repeated a great number of times,
you would obtain a significant result on 99% of occasions” (Oakes, 1986, pp. 79-80). In
point of fact, an experiment that yields a p value of .05 would lead to a probability of a
significant replication of only about .50, not .95 (Greenwald et al., 1996; Hoenig & Heisey,
2001). So, neither the exact p value nor its complement can be interpreted as the probability of
a significant replication. However, the point that some strident critics of null hypothesis testing
overlook but that contributes to the enduring utility of the methodology is “replicability of a
null hypothesis rejection is a continuous, increasing function of the complement of its p value”
(Greenwald et al., 1996, p. 181). The exact probability of a successful replication depends on
a number of factors, but some helpful guidance is provided by Greenwald et al. (1996), who
show that under certain simplifying assumptions, p values can be translated into a probability
of successful replication (power) at & = .05 as follows: p = .05 — power = .5, p = .01 —
power = .75, p = .005 — power = .8, and p = .001 — power > .9,

The second prevalent misinterpretation of p values is as indicating an inverse probability,
that is, the probability that a hypothesis is true or false given the data obtained [e.g., Pr{H, | D)],
instead of the probability of data given the null hypothesis is assumed true. Again, textbooks
as well as research psychologists provide numerous examples of this fallacy (Cohen, 1994,
p- 999, lists various sources reporting examples). For example, when hypothesis testing was
first being introduced to psychologists in the 1940s and 1950s, the leading text, Guilford’s
Fundamental Statistics in Psychology and Education, included headings such as “ ‘Probability
of hypotheses estimated from the normal curve’ (p. 160)” (cited in Gigerenzer, 1993, p. 323).
That psychologists have gotten and believe this wrong message is illustrated by Oakes’ (1986)
study, which found that each of three statements of inverse probability, such as, “You have
found the probability of the null hypothesis being true” (p. 79), were endorsed by between 36%
and 86% of academic psychologists, with 96% of his sample endorsing at least one of these
erroneous interpretations of a p value of .01 (pp. 80, 82). Although one can construct plausible
scenarios of combinations of power, alpha levels, and prior probabilities of the hypotheses
being true, where the p value turns out to be reasonably close numerically to the posterior
probability of the truth of the null hypothesis given the data (Baril & Cannon, 1995), the
conceptual difference cannot be stressed too strongly.
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However, in our view, the solution to the problem of misuse and misunderstanding of p values
is not to abandon their use, but to work hard to get things correct. The venerable methods of
null hypothesis testing need not be abandoned, but they can be effectively complemented
by additional methods, such as confidence intervals, meta-analyses, and Bayesian approaches
(Howard, Maxwell, & Fleming, 2000). The future holds the promise of the emergence of use of
multiple statistical methodologies, including even Bayesian procedures that allow statements
regarding the truth of the null hypothe-es—what the id, as Gigerenzer (1993) termed it, in
statistical reasoning really wants.

TOWARD TESTS BASED ON
DISTRIBUTIONAL ASSUMPTIONS

Although this chapter may in some ways seem an aside in the development of analysis of
variance procedures, in actuality, it is a fundamental and necessary step. First, we have shown
the possibility of deriving our own significance levels empirically for particular data-analysis
situations. This is a useful conceptual development to provide an analogy for what follows,
in which we assume normal distribution methods. Second, and perhaps more important, the
close correspondence between the results of randomization and normal theory-based tests
provides a justification for using the normal theory methods. This justification applies in two
important respects, each of which we discuss in turn. First, it provides a rationale for use of
normal theory methods regardless of whether subjects are, in fact, randomly sampled from a
population. Second, it is relevant to the justification of use of normal theory methods regardless
of the actual shape of the distribution of the variable under investigation.

Statistical Tests with Convenience Samples

The vast majority of psychological research uses subject pools that can be conveniently obtained
rather than actually selecting subjects by way of a random sampling procedure from the
population to which the experimenter hopes to generalize. Subjects may be those people at
your university who were in Psychology 101 and disposed to volunteer to participate in your
experiment, or they may be clients who happened to come to the clinic or hospital at the time
your study was in progress. In no sense do these individuals constitute a simple random sample
from the population to which you would like to generalize, for example, the population of all
adults or all mental health clinic clients in the United States.

If your goal is to provide normative information that could be used in classifying
individuals—for example, as being in the top 15% of all college freshmen on a reading com-
prehension test—then a sample obtained exclusively from the local area is of little help. You
have no assurance that the local students have the same distribution of reading comprehension
scores as the entire population. Although one can compute standard errors of the sample statis-
tics and perhaps maintain that they are accurate for the hypothetical population of students for
which the local students could be viewed as a random sample, they do not inform you of what
you probably want to know—for example, how far is the local mean from the national mean,
or how much error is probable in the estimate of the score on the test that would cut off the
top 15% of the population of all college freshmen? Such misinterpretations by psychologists
of the standard errors of statistics from nonrandom samples have been soundly criticized by
statisticians (see Freedman, Pisani, & Purves, 1998, p. 388, A-84).

The situation is somewhat, although not entirely, different with between-group comparisons
based on a convenience sample in which subjects have been randomly assigned to conditions.
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A randomization test could always be carried out in this situation and is a perfectly valid
approach. The p value yielded by such a test, as we have shown, refers to where the observed
test statistic would fall in the distribution obtained by hypothetical redistributions of subjects
to conditions. Because the p value for a ¢ test or F test is very close to that yielded by the
randomization test, and because the randomization test results are cumbersome to compute for
any but the smallest data sets,” one may compute the more standard ¢ or F test and interpret
the inference as applying either to possible reassignments of the currently available subjects
or to an imaginary population for which these subjects might be thought to be a random
sample. The generalization to a real population or to people in general that is likely of interest
is then made on nonstatistical grounds. Thus, behavioral scientists in general must make use
of whatever theoretical knowledge they possess about the stability of the phenomena under
investigation across subpopulations in order to make accurate and externally valid assertions
about the generality of their findings.

The Assumption of Normality

The F tests that are the primary focus in the following chapters assume that the population
distribution of the dependent variable in each group is normal in form. In part because the
dependent-variable distribution is never exactly normal in form, the distribution of the test
statistic is only approximately correct. However, as we discuss in Chapter 3, if the only as-
sumption violated is that the shape of the distribution of individual scores is not normal,
generally, the approximation of the distribution of the test statistic to the theoretical F is good.
Not only that, but the correspondence between the p value yielded by an F test and that de-
rived from the exact randomization test is generally very close as well. Thus, the F tests that
follow can actually be viewed as approximations to the exact randomization tests that could
be carried out. The closeness of this approximation has been demonstrated both theoretically
(Wald & Wolfowitz, 1944) and by numerical examples (Kempthorne, 1952, pp. 128-132;
Pitman, 1937) and simulations (e.g., Boik, 1987; Bradbury, 1987). In the eyes of some, it
is this correspondence of F tests to randomization tests that is a more compelling rationale
for their use than the plausibility of a hypothetical infinitely large population, for example,
“Tests of significance in the randomized experiment have frequently been presented by way
of normal law theory, whereas their validity stems from randomization theory” (Kempthorne,
1955, p. 947). Similarly, Scheffé (1959, p. 313) notes that the F test “can often be regarded
as a good approximation to a permutation [randomization] test, which is an exact test under a
less restrictive model.”

Of course, if data tend to be normally distributed, either rationale could be used. Histori-
cally, there has been considerable optimism about the pervasiveness of normal distributions,
buttressed by both empirical observations of bell-shaped data patterns as well as arguments
for why it is plausible that data should be approximately normally distributed.

Researchers have been noting since the early 1800s that data are often normally distributed.
Although the normal curve was derived as early as 1733 by Abraham De Moivre as the limit
of the binomial distribution (Stigler, 1986, pp. 70-77), it was not until the work of Laplace,
Gauss, and others in the early 1800s that the more general importance of the distribution
was recognized. A first step in the evolution of the normal curve from a mathematical object
into an empirical generalization of natural phenomena was the comparison with distributions
of errors in observations (Stigler, 1999, p. 190ff., p. 407{f.). Many of the early applications
of statistics were in astronomy, and it was an astronomer, F. W, Bessel, who in 1818 pub-
lished the first comparison of an empirical distribution with the normal. [Bessel is known
in the history of psychology for initiating the scientific study of individual differences by
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TABLE 2.4
BESSEL’S COMPARISON OF THE DISTRIBUTION OF THE
ABSOLUTE VALUES OF ERRORS WITH THE NORMAL
DISTRIBUTION FOR 300 ASTRONOMICAL OBSERVATIONS

Range in Seconds Frequency of Errors
Estimated (Based on
Observed Normal Distribution)
0.0-0.1 114 107
0.1-0.2 84 87
0.2-0.3 53 57
0.3-04 24 30
04-0.5 14 13
0.5-0.6 6 5
0.6-0.7 3 1
0.7-0.8 1 0
0.8-09 1 ]

developing “the personal equation” describing interastronomer differences (Boring, 1950).]
From a catalog of 60,000 individual observations of stars by British Astronomer Royal James
Bradley, Bessel examined in detail a group of 300 observations of the positions of a few
selected stars. These data allowed an empirical check on the adequacy of the normal curve
as a theory of the distribution of errors. The observations were records of Bradley’s judg-
ments of the instant when a star crossed the center line of a specially equipped telescope.
The error of each observation could be assessed; Table 2.4 portrays a grouped frequency
distribution of the absolute value of the errors in tenths of a second. Bessel calculated the
number of errors expected to fall in each interval by using an approximation of the propor-
tion of the normal distribution in that interval. In short, the fit was good. For example, the
standard deviation for these data was roughly 0.2 s, and thus approximately two thirds of
the cases (i.e., 200 of the 300 observations) were expected to fall within 1 standard devia-
tion of the mean (i.e., absolute values of errors <.2), and in fact they did (see Stigler, 1986,
p- 202f%.).

Two important figures in the history of psychology played pivotal roles in changing how
the normal distribution was viewed. In 1873, C. S. Peirce was apparently the first to refer to
the mathematical formula as the normal curve, with the connotation that it describes the way
errors are usually or ordinarily distributed (Stigler & Kruskal, 1999, p. 411). However, the true
believer in the ubiquity of normal distributions in nature was Francis Galton, who, extending
the pioneering work of the Belgian sociological statistician Adolpe Quetelet, became an ad-
vocate of the remarkable fit of the normal distribution to distributions of human abilities and
characteristics. At his Anthropometric Laboratory outside London in the late 1800s, Galton
amassed data showing how both physical characteristics (e.g., height) and mental characteris-
tics (e.g., examination scores) could be fit reasonably well with a normal curve (Stigler, 1986,
Chapters 5, 8). Galton’s “well-known panegyric” to the normal curve suggests the devotion
felt by him and others: “I know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the ‘Law of Frequency of Error.” The law would
have been personified by the Greeks and deified, if they had known it” (Galton, 1889a, p. 66,
cited in Stigler, 1999, p. 414).

Later psychological research also revealed many situations in which normality is reasonably
approximated (although in recent years many have argued that this is the exception rather
than the rule). We cite two historically important examples to illustrate the point, one from
experimental psychology, the other from clinical psychology.
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FIG. 2.2. Group frequency distribution of simple reaction times.

One of the most frequently used measures in current human experimental psychology is that
of reaction time. Reaction time is used, for example, in a chronometric approach to cognitive
psychology to assess the effects of manipulations such as priming (presenting a cue word
immediately before a trial) on the mean time it takes to detect the presentation of a target word.
Although over repeated trials a single individual’s reaction time tends to follow a positively
skewed distribution (more on this in a moment), it has been known for many years that across
individuals, the distribution of individual’s average reaction time conforms very closely to the
normal distribution. Figure 2.2 presents data originally reported by Fessard (1926) and cited
by Woodworth and Schlosberg (1954, p. 37). Fessard measured the reaction time to sound for
each of a group of 1000 men who were applicants for jobs as machinists in Paris. Each man
was measured on 30 trials, and the mean of these was used in determining the frequencies
shown in the figure. A few extreme cases (35 of 1000) were excluded by Fessard (1926,
p- 218) from the table reporting his data. Although the correspondence between the data as
plotted and the normal distribution is quite close, the complete data may have provided an
even better fit because of the long tails of the normal distribution. Nonetheless, allowing for
sampling variability, the data as presented correspond reasonably well to the theoretical normal
distribution.

A second empirical example of normally distributed data in psychology is provided by
scores on the Minnesota Multiphasic Personality Inventory (MMPI). Figure 2.3 shows the dis-
tribution of scores of 699 Minnesotans on the Hypochondriasis scale of the MMPI, as reported
by McKinley and Hathaway (1956). The respondents, originally described in Hathaway and
McKinley (1940), were individuals who were not ill, but who accompanied relatives or friends
to the University of Minnesota Hospital. Again, a distribution that corresponds quite closely
to a theoretical normal distribution is yielded by these test scores from “Minnesota normals.”

Although the data in these two examples are perhaps more nearly normal than most,
many measures of aptitude, personality, memory, and motor skill performance are often
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FIG. 2.3. MMPI hypochondriasis scores.

approximately normally distributed. In part, this has to do with the global level at which con-
structs within the behavioral sciences are typically assessed. In a sense, the further the analysis
of a phenomenon into its basic, elementary components has been carried, the less likely the
data are to follow a normal distribution. Within some areas of physiological psychology, this
is the case. The interest may, for example, be simply in the occurrence or nonoccurrence of a
discrete event: Did the neuron fire?

Perhaps the most extensively modeled nonnormal, continuous processes are temporal ones.
Mathematical psychologists theorize in detail about the specific nonnormal form of, for in-
stance, the distribution of simple reaction times within an individual to repeated presentations
of a tone, or the distribution of interresponse times in the recordings of a single nerve fiber
(see McGill, 1963). However, most areas of psychology have not progressed to having theories
about the form of distributions. Nor do we have many valid binary measures of elementary
processes. Instead, the dependent variable is most often a composite of a number of mea-
sures, for example, the total of the responses to 40 items on a questionnaire. Although the
questionnaire may be of interest because it is thought to indicate the presence or absence of
a particular psychological state such as clinical depression, the distribution of the observed
variable probably is not such that it can be indicated by the frequency of two particular scores
on the scale (for example, 0 and 40). Rather, its distribution is determined largely by the fact
that the score on the questionnaire is the sum of the responses to 40 different items, which are
far from all being perfectly correlated. Because it is not unusual for the dependent variable in
a behavioral science study to be of this composite nature, a remarkable theorem can give a
reasonable basis for expecting data in some situations to follow a bell-shaped curve.

This theorem, arguably the most important in statistics, is the central limit theorem. In
its simplest form, the theorem states that the sum of a large number of independent random
variables is approximately normally distributed. What is remarkable about the result is that
there are almost no constraints placed on the individual distributions of the original random
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variables. Some could be discrete, others continuous; some could be U-shaped, some skewed,
some flat; some could have large variances, some small; and still their sum would be normally
distributed.

This theorem can be relied on in two ways in constructing an argument for why broad
classes of behavioral science data might be expected to be normally distributed® (Bailey, 1971,
p. 1994f.). First, theory may suggest that numerous independent factors are the causes of a
particular phenomenon. For example, the keenness of an individual’s vision may be viewed
as the product of a series of partial causes, most of which are related to genetic background,
although some environmental factors such as quality of diet or amount of eyestrain experienced
might also be posited in a particular theoretical account. If these various partial causes were to
occur independently in nature and summate to determine the quality of an individual’s vision,
then the central limit theorem tells us that the distribution of visual acuity over individuals
would follow a bell-shaped distribution.

A second way in which the central limit theorem could be used to justify the expectation of a
normal distribution is through conceptualizing behavioral observations for various individuals
as being the result of a distribution of errors around one true value. This approach fits nicely
with the way in which we express statistical models in Chapter 3. Instead of there being a
distribution of true values across individuals as a result of specified causes, now there is assumed
to be one true value around which individuals vary for unspecified reasons. To continue with
another perceptual example, assume individuals are being asked to reproduce a line segment
of a given length that they are shown briefly. Then, we might say that ¥; = 7 + ¢;, where ¥; is
the measured length of the line drawn by individual /, 7 is the true length of the line, and ¢; is
the error term for individual i. Each of these ¢; scores may be viewed as each being a composite
of a number of factors that canse the measured line length for an individual to depart from the
true length. These would include both errors of measurement in recording the length of the line
the subject draws and the momentary fluctuations in the individual that affect the perception
of the length of the presented line and the exact length of the line the individual produces.
This latter category might include the effects of slight changes in the point where the eyes are
fixated at the time of exposure, fluctuations in attention, and variations in the hosts of neural
processes involved in programming a response and muscular actions required to execute it. If
each of these small factors independently contributes to the composite error score for each of
the individuals performing the task, then the central limit theorem shows that the composite
error scores, and hence the observed Y scores, will be normally distributed. [This view of errors
as themselves being composites, and hence approximately normally distributed according to
the central limit theorem, was first conceived by Laplace in 1810, and played a major role in
the development of inferential statistics (Stigler, 1986, p. 143).]

Either or both of these factors may be at work to make the data in any particular study tend
toward a normal distribution. However, there are any number of countervailing factors that
may prevent this from happening. First, although it is the case that measures in the behavioral
sciences are usually composites or totals of numerous items, and those items are generally not
perfectly correlated, they also are not independent. Indeed, psychological instruments generally
are constructed so thatitems on a scale have at least moderate positive intercorrelations. Second,
although there are situations in which individual observations are appropriately modeled as
random variation around a group mean, in fact, it is probably much more common when the
observations are coming from different people that they represent different true scores across
people as well as random measurement error. For example, scores on a Beck Depression
Inventory may be systematically different across different subgroups of participants (e.g.,
representing different personality types). The random variation model may be most appropriate
only when most important causal factors have been included in one’s model. This is just one
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of many reasons for including relevant individual difference measures as predictors in one’s
statistical model in addition to any manipulated variables in a study (more on this in Chapter 9).
Third, more mundane constraints preventing reasonable approximations to normality, such as
the fact that only a very small number of scale values are possible, say a 5-point scale is
used to rate treatment outcome, or floor or ceiling effects are operating whereby a substantial
proportion of participants receive either the lowest or highest value on the scale.

The point is that it is an empirical question as to whether data are in fact normally distributed
in any study. One extensive study of large data sets in psychology argued for the conclusion that
normal distributions are as hypothetical as the proverbial unicorn. Micceri (1989) examined
440 large-sample achievement and psychometric measures and found in every case that their
distributions were significantly nonnormal at the .01 o level. The majority of the distributions
were moderately to extremely asymmetric, and most also had a greater proportion in the tails
of the distribution than expected in a normal distribution. A variety of other problems such as
distributions that were “lumpy” (relative frequencies not consistently increasing or decreasing)
or multimodal were also noted. In short, the world certainly is not as universally normal as
reading Galton might suggest.

Yet whatever the empirical and conceptual reasons or evidence for expecting data to be
normally distributed, in the historical development of statistics, assuming normality made it
easier to solve a number of difficult mathematical problems. This increased tractability no
doubt contributed to the rise to prominence of statistical methods based on the normal distribu-
tion. For example, working independently, Gauss in 1809 showed that a particular estimation
problem could be solved if errors were assumed to be normally distributed, and Laplace’s cen-
tral limit theorem of 1810 provided good reasons for expecting normal distributions to occur.
As Stephen Stigler tells the story in his excellent book on the history of statistics, “the remark-
able circumstance that the curve that led to the simplest analysis also had such an attractive
rationale was conceptually liberating” (1986, p. 145). The result was a synthesis of ideas and
a development of techniques representing “one of the major success stories in the history of
science” (1986, p. 158).

Although behavioral data often may not be closely approximated by the normal distribution,
we have argued that normal theory-based tests are close approximations to randomization
tests regardless of the shape of the distribution. Furthermore, to anticipate a related argument
for the use of normal theory-based procedures that we explore in more detail at the end of
Chapter 3 when we discuss the statistical assumptions made in linear model tests, even when
one is sampling from extremely nonnormal distributions, such as some of those highlighted by
Micceri (1989), tests assuming normality can often still perform well [e.g., when sample sizes
are large and equal, and homogeneity of variance is satisfied (Sawilowsky & Blair, 1992)].

Even so, recent years have seen a profusion of so-called robust or sturdy statistical pro-
cedures, which are offered as an alternative to normal theory procedures. We consider some
of these in the extension at the end of Chapter 3. However, for reasons such as those discussed
regarding the reasonableness of the normal distribution assumption and the hard fact of a
historical context in which normal theory-based procedures have been dominant (Huberty,
1987, 1991), statistical methods based on the general linear model assuming normally dis-
tributed data are expected to continue as some of the most important analytic methods in the
behavioral sciences. Also, although alternative methods such as robust methods are expected to
continue to proliferate, one must understand normal theory-based methods both because they
are most powerful in situations in which their assumptions hold and as a point of departure
for considering alternative methods when their assumptions are violated in important ways.
Thus, in subsequent chapters, it is such normal theory-based methods that are our primary
focus.
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OVERVIEW OF EXPERIMENTAL DESIGNS
TO BE CONSIDERED

Having surveyed some of the conceptual considerations relevant to hypothesis testing and
statistical analysis in psychology, and having stressed that the statistical analysis of any exper-
iment must flow from the nature of the experimental design used, it is now time to provide a
brief overview of the various types of designs we consider in this book.

First, however, a word is in order about the goals of scientific investigation and distinctions
among the kinds of factors one might investigate. Science has to do with relationships among
variables. At a descriptive level, the goal might be characterized as accounting for variability by
predicting the values of one variable on the basis of the values of one or more other variables.
At a conceptual level, however, the goal is explanation. Explanations of phenomena posit not
only predictive but causal relations as well (cf. Schmidt, 1992, p. 1177ff.). Discovering causal
relationships carries the greatest import for theory and also confers the practical power of
insight into how a phenomenon may be controlled, or, as Bacon termed it, commanded.

Predictor variables or factors may be manipulated by the experimenter or simply measured.
In trying to predict scores of an undergraduate psychology major on the Psychology Area test
of the Graduate Record Exam, one may find that such scores are predicted by variables such
as the student’s cumulative grade point average (GPA), GPA in psychology courses, and the
quality of the student’s undergraduate institution. Yet, from the point of view of controlling
or increasing a student’s score on the Psychology Area test, these do not immediately give
insight into how that might be done. Perhaps much of the variance in these predictors is the
result of the intelligence of the student, which might also independently contribute to the
determination of the Graduate Record Exam (GRE) score. Thus it may be the case either that
some of these predictors could not be readily changed, or that changing one of them, such as
the value of a student’s GPA, would not cause a change in the score the student achieves on the
GRE. However, if students randomly assigned to an intensive instructional program were shown
to have significantly higher GRE Psychology test scores than students randomly assigned to a
control condition, one has gained insight into how one could increase GRE psychology scores,
even though the strength of the relationship with the dependent variable may be considerably
weaker than the relationship between the dependent variable and the continuous individual
difference variables. How to characterize such varying strength of effects is one of the major
concerns of this book, beginning with the Chapter 3.

Factors that are manipulated in studies are almost always discrete variables, whereas factors
that are measured, although sometimes discrete, are more often relatively continuous. From
the perspective only of accounting for variability in the dependent variable, the most important
factors to include in a model are usually continuous measures of preexisting individual differ-
ences among subjects. We deal with considerations bearing on incorporating such variables
into your models in Chapter 9. (For readers who have not been exposed previously to multiple
regression, we have included a tutorial on the data disk to provide a brief introduction. For
those who are familiar with multiple regression, a more in-depth discussion of the relationship
between regression and analysis of variance, as well as how they relate to more advanced
techniques, is included in Appendix B). Yet the effects of manipulated variables are clearer to
interpret theoretically and apply practically, and constitute the primary focus of this book.

Some critical distinctions among types of experimental designs are introduced now that
will structure much of the rest of the book. Designs differ in how many factors are being
investigated, the number of levels of each factor and how those levels are selected, how the
levels of different factors are combined, and whether participants in the study experience only
one treatment or more than one treatment.
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The simplest experimental design is one involving only a single factor. Among single-
factor designs, the simplest situation to model, although not to interpret, occurs when there
is only a single group of participants who may experience an experimental treatment, but
there is no similar control group and no measured variable other than the dependent variable.
This consitutes, to use Campbell and Stanley’s (1963) terminology, a one-shot case study
and permits only limited testing of hypotheses. For example, if one were to have available a
national random sample of undergraduate psychology majors and have them experience a GRE
psychology preparation course, one could compare their group mean to normative information
on a typical score on the test. Because discrepancies from past averages might be the result
either of the study program or because of differences between the participants in your study
and the individuals in the norming group used to determine the typical score on the test, such
one-shot case studies are seldom done. Instead, the more conventional design would include
one or more control groups whose performance could be compared with that of the group
of interest. When more than two groups are involved, one is typically interested not only
in whether there are differences among the groups overall, but also in specific comparisons
among combinations of group means. Designs in which the various groups are defined by the
particular level of a single factor they experience are referred to as one-way designs, because
the groups differ in one way or along one dimension. Note that this is the convention even when
the levels of the factor correspond to conditions that differ qualitatively, not just quantitatively.
A design with three groups that receive 5 hours, 10 hours, or 15 hours of classroom instruction
is a one-way design, but so is a design that involves a group that receives classroom instruction,
a group that receives a self-study manual, and a no-treatment control group.

For various practical or theoretical reasons, an experimenter may prefer to include multiple
factors in a single study rather than in separate experiments. When an added factor represents
a breakdown of participants ignored in a single-factor study (e.g., including gender along with
treatment condition as a factor), typically the result is to increase power to detect the effect of
the treatment factor, as well as to allow a check on the consistency of the effect of that factor
across male and female subgroups. When the various conditions included in a study represent
combinations of levels of two different factors, the design is referred to as a two-way design.
One-way designs can be represented with a schematic involving a group of cells differing along
one dimension, and in the usual case, two-way designs can be represented as a two-dimensional
table as shown in Figure 2.4.

In cases of designs with multiple factors, designs differ in which combinations of levels of
the different factors are used. In most cases, all possible combinations of levels of the factors

One-Way Design

Classroom Study Self-Study Control

1 l

Two-Way Design

Classroom Study Self-Study Control

Males
Females

FIG. 2.4. Schematic diagrams of one-way and two-way designs.
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Crossed Design
Rogerian Behavior Analytic

Therapist 1
Therapist 2
Therapist 3
Therapist 4

Nested Design
Rogerian Behavior Analytic

Therapist 1 missing

Therapist 2 missing

Therapist 3 missing

Therapist 4 missing

FIG. 2.5. Diagrams of crossed and nested designs.

occur. The factors in such a design are said to be crossed, with all levels of one factor occurring
in conjunction with every level of the other factor or factors. Thus, if there are a levels of
Factor A and b levels of factor B, there would be a x b combinations of levels in the design.
Each combination of levels corresponds to a different cell of the rectangular schematic of the
design. Alternatively, in certain designs, not all of the possible combinations of levels occur.
Among such incomplete designs, the most common is one where nonoverlapping subsets of
levels of one factor occur in conjunction with the different levels of the other factor. For
example, in a comparison of Rogerian and Behavior Analytic therapies, therapists may be
qualified to deliver one method or the other, but not both. In such a case, therapists would
be said to be nested within therapy methods. In contrast, if all therapists used both methods,
therapists would be said to be crossed with method. Diagrams of these structures are shown in
Figure 2.5.

Although it is not apparent from the groups that are ultimately included in a design, one
can also make distinctions based on how the levels of a particular factor were selected for
inclusion. In most instances, the levels are included because of an inherent interest in that
particular level. One might be interested in a particular drug treatment or patient group, and
thus would include the same condition in any replication of the study. Such factors are said to
be fixed, and any generalization to other levels or conditions besides those included in the study
must be made on nonstatistical grounds. Alternatively, if one wanted to provide a statistical
argument for such generalizations, one could do so by selecting the levels for inclusion in a
study at random from some larger set of levels. When this is done, the factor is designated as
random, and how the statistical analysis of the data is carried out may be affected, as well as
the interpretation.

Perhaps the most important distinction among types of design is between-subjects versus
within-subjects designs. Here, the important point is whether each subject experiences only
one or multiple experimental conditions. The basic advantage of the between-subjects design is
that one need not be concerned about possible carryover effects from other conditions, because
only one condition is experienced. However, one may be specifically interested in using the
same subjects under different conditions. For example, one may want to use each participant
as his or her own control by contrasting that participant’s performance under one condition
with his or her performance under another condition. In many cases in psychology, the various
conditions experienced by a given subject correspond to observations at different points in
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Between-subjects design

Condition 1 Condition 2 Condition 3
Si Se Su
S2 S, Sy
S3 Sg Si3
S4 Sq S1a
Ss Sio Sis

Within-subjects design

Condition 1 Condition 2 Condition 3
S Si S
Sz S2 S:
S3 Ss S3
S4 S4 S4
Ss Ss Ss

FIG. 2.6. Between-subjects vs. within-subjects designs.

time. For example, a test of clinical treatments may assess clients at each of several follow-up
time points. If so, the same subjects would serve in multiple conditions. Denoting the different
subjects in an experiment by the letter ““S” with a different subscript for each person, we can
diagram a basic between-subjects design as in Figure 2.6 and contrast that with the structure
of a within-subject design.

Part II of this book, which includes Chapters 3 through 10, concerns various between-
subjects designs, beginning with single-factor designs in Chapter 3, and considering tests of
contrasts among the levels in Chapters 4 and 5. Chapters 7 and 8 extend this to multiple-factor
designs. Chapter 9 considers the implications of having a continuous predictor variable, as well
as a grouping variable in the analysis. Chapter 10 concludes the discussion of between-subjects
designs with a consideration of designs with random and nested factors.

Part 11T of the book, which includes Chapters 11 through 16, focuses primarily on designs
involving within-subject factors. Chapters 11 and 13 consider the case in which there is only
one within-subject factor. Chapters 12 and 14 consider cases in which there are multiple
factors, either all within-subjects factors or one or more within-subjects factors in conjunction
with one or more between-subjects factors. Chapters 15 and 16 present an introduction to some
new methods developed largely since the 1980s for dealing with correlated data, such as that
obtained in repeated measures designs and with random factors to which you are introduced
in Chapter 10. Chapter 15 explains how these models, which we term multilevel hierarchical
mixed models, can be used with repeated measures designs, and Chapter 16 develops how they
can be used with nested designs.

EXERCISES

1. True or False: The observed value of a test statistic, and hence the observed p value, depend on the
data collected in a study.

2. True or False: If a p value indicates the results of a study are highly statistically significant, the null
hypothesis cannot be true.

3. True or False: Other things being equal, the smaller the p value, the stronger the evidence against
the null hypothesis.
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4. True or False: The p value in a randomization test can be 0.

*5. True or False: The p value associated with the observed value of a test statistic is the probability
the results are due to chance.

6 Assume a cognitive psychologist is planning an experiment involving brief presentations of letter
strings that satisfy certain constraints. There are 14 such letter strings that satisfy the constraints,
but only 6 can be used in a particular paradigm.

a. How many combinations of 6 letter strings can be chosen from the set of 14?
b. Given that 6 letter strings have been selected, in how many different sequences could they
conceivably be presented?

*7. Assume a staff member at the local state mental hospital who has been doing intake interviews for
years claims that he can tell on the basis of his interviews whom the psychiatrists will judge to be
sufficiently healthy to release from the hospital within the first week and whom the psychiatrists
will require to stay longer than a week. As a young clinical intern at the hospital who is taken
with actuarial as opposed to intuitive predictions, you are eager to prove the staff member wrong.
You bet him that he will perform no differently than could be explained by chance (with alpha of
.05, two-tailed) in his predictions about the next 12 patients. He agrees to the bet on the condition
that you first provide him information at the end of the week about how many of the 12 patients
were released so that he will know how many such patients to name. With this figure, he thinks
he can determine who the released patients were, just on the basis of his earlier interview (he has
no subsequent contact with the patients). To your surprise, he correctly names 5 of the 6 patients
released early. Do you owe him any money? Would it have made any difference if he had named 5
of 6 early release patients out of a set of 15 intake interviews rather than 12? Support your answers.

8. A police officer in an urban police department alleges that minorities are being discriminated against
in promotion decisions. The difference in promotion rates in 1984 is offered as evidence. In that
year, among those eligible for promotion to the rank of sergeant, 20 officers, including 7 members
of minority groups, passed an objective exam to qualify them for consideration by the review board.
The number of officers that can be promoted is determined by the number of vacancies at the higher
rank, and in 1984, there were 10 vacancies at the rank of sergeant that needed to be filled. Eight of
the 13 nonminority officers were promoted, for a promotion rate of 61.5%, whereas only 2 of the 7
minority officers were promoted, for a promotion rate of 28.5%. If one assumes that the decisions
about whom to promote were made independently of minority status, what is the probability that the
discrepancy between proportions being promoted would be at least this different by chance alone,
given the total number of officers under consideration and the total number of promotions possible?

9. Fisher (1934) illustrated his exact test for a 2 x 2 table with data on criminal twins in his first
paper read before the Royal Statistical Society. The study identified 30 male criminals known
to have a same-sex twin. The twin pairs were classified as monozygotic or dizygotic, and each
of the 30 twin brothers of the identified criminals were then classified as to whether he was also
a convicted criminal. As shown in the following table, 10 of the 13 monozygotic criminals had
brothers who had been convicted, whereas only 2 of 17 dizygotic criminals had brothers who
had been convicted. What is the probability that so large a discrepancy in proportions would have
arisen under the assumption that the difference observed is due to chance?

Convictions of Twin Brothers of Identified Criminals

Monozygotic  Dizygotic Total

Convicted 10 2 12
Not convicted 3 15 18
Total 13 17 30

*10. Biological changes that result from psychological manipulations, although typically not well
understood, have captured attention in many areas such as health psychology. One early study
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examined the effects of the social environment on the anatomy of the brain in an effort to find evi-
dence for the kinds of changes in the brain as a result of experience demanded by learning theories.
The experiments are described in Bennett, E. L., Diamond, M. C., Krech, D., & Rosenzweig, M.
R. (1964). “Chemical and anatomical plasticity of the brain” Science 146, 610-619, and some of
the raw data are presented in Freedman et al. (1998, p. 501). Pairs of male rats from a litter were
used as subjects, with one member of each litter being chosen at random to be reared with other
rats in an enriched environment, complete with playthings and novel areas to explore on a regular
basis, whereas another member of the litter was randomly selected to be reared in isolation in a
relatively deprived environment. Both groups were permitted to consume as much as they wanted
of the same kinds of food and drink. After a month, the deprived environment animals were heavier
and had heavier brains overall. Of critical interest though was the size of the cortex, or gray matter
portion, of the brain in the two groups. The experiment was replicated a number of times. However,
in the current exercise, we are considering the data from only one of the replications (labeled
Experiment 3 in Freedman et al., 1998, p. 501). The weights of the cortex (in milligrams) for the
pairs of experimental (enriched) and control (deprived) subjects are shown in the following table:

Experiment #3
Experimental  Control

690 668
701 667
685 647
751 693
647 635
647 644
720 665
718 689
718 642
696 673
658 675
680 641

Test for the effect of the treatment in this experiment by doing a randomization test. That is, perform a
test of the hypothesis that the sum of the difference scores is no different than you would expect if the
+ and — signs had been assigned with probability .5 to the absolute values of the obtained difference
scores. Although a large number of rerandomizations are possible with 12 pairs of subjects, the
randomization test can be carried out here with even less computation than a ¢ test by thinking a bit
about the possibilities. To carry out the test, you should answer the following questions:
a. What is the observed sum of differences here?
b. How many assignments of signs to differences are possible?
c. What proportion of these would result in a sum at least as large in absolute value as that
observed? To answer this question, use the following approach:
(i) What is the largest possible positive sum that could be achieved, given the observed
absolute values of the differences?

(ii) By considering how much this largest sum would be reduced by changing one or two of the
signs of the absolute differences from positive to negative, determine which assignments
of signs to differences would result in sums between (or equal to) the maximal sum and
the observed sum.

(iii) Considering the symmetry of the distribution of sums resulting from rerandomizations,
what is the total number of sums as extreme or more extreme, either positive or negative,
as the observed sum?

*11. In 1876 Charles Darwin reported the results of a series of experiments on “The Effects of Cross- and
Self-Fertilisation in the Vegetable Kingdom.” The description of his experiment and the table of data
for this problem are based on Fisher’s discussion of “A Historical Experiment on Growth Rate”
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(Fisher, 1935/1971, Chapter III). The experimental method adopted by Darwin was to pit each
self-fertilized plant against a cross-fertilized one under conditions that were as similar as possible
for the two plants. Darwin emphasized this similarity by indicating “my crossed and self-fertilised
plants .. . were of exactly the same age, were subjected from first to last to the same conditions, and
were descended from the same parents” (as quoted in Fisher, 1935/1971, p. 28). One of the ways
Darwin used to equalize conditions for the two members of a pair was to plant them in the same pot.
The dependent measure was the height of the plant. (Darwin did not specify when this was measured,
other than to say that all plants were of the same age when their height was measured.) Although sam-
ple sizes were relatively small, Darwin indicated in his report that the experiment required 11 years
to complete. To be certain that his analysis of these valuable data was correct, Darwin requested and
obtained statistical consulting from his half-cousin, Francis Galton. Darwin’s data and Galton’s rear-
rangements of the data are shown in Table 2.5. Darwin’s paired data are shown in columns IT and I1,
where the reader sees that varying numbers of pairs of plants were put in each pot. For example, there
were three pairs in Pot I, five pairs in Pot ITI, and so on. Galton complained that the data had no “prima
facie appearance of regularity.” He attempted to rectify this problem by arranging the data by rank
ordering according to heights, first within pots in columns IV and V, and then collapsing across pots
in columns VI and VII. Galton’s differences between the reordered lists are shown in column VIII.
a. Criticize Darwin’s experimental design.

b. Perform appropriate analyses of these data.

(i) Begin simply. Determine how many of the within-pair differences in heights in the
original data of columns II and III favor cross-fertilization. If the cross-fertilization had
no effect, how many differences would you expect on the average out of 15 to favor
the cross-fertilized member of a pair? Is the observed number of differences favoring
cross-fertilization significantly different from what you would expect by chance?

TABLE 2.5
ZEA MAYS (YOUNG PLANTS)

Arranged in Order or Magnitude

As Recorded by Mr. Darwin In Separate Pots In a Single Series

Column I b/ 4 iis 14 \'% vI viI vir

Crossed  Self-Fertilized ~ Crossed  Self-Fertilized  Crossed  Self-Fertilized  Difference

Inches Inches Inches Inches Inches Inches Inches
Pot I 23% 173 23% 203 23% 203 -3%
12 203 21 20 233 20 -3%
21 20 12 173 23 20 -3
2 183 -3%
PotII 22 20 22 20 224 183 -3%
1 3 4 5 3 3
o ) T -
8 8 8 8 8 8
21% 18 -33
Pot III 22% 18% 23% 183 21 18 -3
203 152 22t 18 21 173 -33
18% 163 213 163 20} 163 -3%
213 18 203 162 195 163 -2%
233 163 183 15% 183 15% -2
12 15¢ +33
Pot IV 21 18 23 18 12 123 +0%
224 128 24 18 — — —
23 153 21 154 — - —
12 18 12 12§ — — —
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(ii) Perform the simplest possible parametric statistical test appropriate for analyzing Darwin’s
data. How does the p value for this test compare to that in part (i)? Why is the difference
between the p values in this case in the direction it is?

(iii) What assumptions are required for your analyses in parts (i) and (ii)?

(iv) One could, and Fisher, in fact, did, carry out a randomization test on these data. What
assumptions does that test require, and what hypothesis would it test here?

c. Criticize Galton’s analysis. How differently would the strength of the evidence have appeared if
the data in columns VI and VII had been used for analysis rather than that in columns II and 1117
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Model Comparisons for
Between-Subjects Designs

The aim of science is, on the one hand, a comprehension as complete as possible . . . and, on the
other hand, the accomplishment of this aim by the use of a minimum of primary concepts and
relations.

—ALBERT EINSTEIN, PHYSICS AND REALITY, 1936
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Introduction to Model
Comparisons: One-Way
Between-Subjects Designs

The basic purpose of analysis of variance (ANOVA) is to assist the researcher in formulating
a linear model that is appropriate for describing the data obtained in a study. The most ap-
propriate model is one that is as simple as possible, yet still provides an adequate description
of the data. Although the simplicity and adequacy of a particular model could be evaluated
on an absolute basis, typically models are judged on a relative basis by comparisons with
other possible models. This notion of searching for a simple yet adequate model is perva-
sive. It informs not only all applications of ANOVA, but also many other kinds of hypothesis
testing.

We begin our discussion of ANOVA and linear models by approaching the problem from
a purely descriptive point of view. We define a model in this context, as we develop shortly,
as simply an algebraic statement of how the scores on the dependent variable arose. Linear is
used in the sense of linear combination; that is, the models portray the dependent variable as
being the result of the additive combination of various effects. We estimate the unknowns in
each model in such a way that the model appears as adequate as possible; that is, the error of
the model is minimized given a particular set of data. Statistical tests can then be developed
as a comparison of the minimal errors associated with two competing models. To perform a
hypothesis test is essentially to ask if a more complex model results in a substantially better
fit to the data than does a simpler model.

To give an overview of the direction our discussion, we first present the rationale and
form of the general linear model. In the remainder of the chapter, our discussion proceeds
from the simplest case of this general linear model to more and more complex forms. We
consider a one-group situation, a two-group situation, and then situations involving three or
more groups of subjects. To ensure that the model-comparison approach is clear, we begin
with experimental designs that are one or two steps simpler than those considered in typical
ANOVA texts. Besides easing the introduction to linear models, this illustrates the generality
of the linear models approach.

When considering the situation involving a single population, typically the primary question
to answer is, “Is the mean of the population equal to a particular value?” Naturally, any attempt
to answer such a question involves estimating the population mean for the dependent variable

67
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on the basis of a sample of data. After analyzing this situation descriptively, we develop
an intuitively reasonable test statistic and relate this to a statistical test with which you are
probably already familiar. (If you need a review of elementary parametric statistical tests, see
the Tutorial on the data disk.)

In the two-group situation, our approach is similar, and our concern is to use the model-
comparison procedure to address the question, Are the two population means equal? In other
designs involving three or more populations, which is the simplest case in which most re-
searchers would use ANOVA, the question simply generalizes to, Are all the population means
the same?

Thus, our tactic is to consider first the general form of linear models and then one-sample
tests, two-sample tests, and several-sample tests as special cases of the general approach. Once
the general approach has been introduced for the tests in these different situations, we discuss
other topics, including methods for characterizing the effects observed in a study and the
assumptions underlying the tests.

In each case considered in this chapter, we assume that the samples represent independent
groups of participants and that these groups differ along a single dimension or factor. Hence, the
experimental designs under consideration here are termed one-way between-subject designs.
Once you understand the linear model approach in these simple situations, extensions to
multiple-factor designs or topics such as regression or analysis of covariance should come
relatively easily.

Obviously, our concern in this chapter is primarily going to be with statistical models, tests,
and indices. These are extremely useful ways of summarizing or condensing data. However,
before beginning to summarize one’s data, the individual data points themselves should be
examined. For example, Figure 3.1 displays the data on 30 individuals in a mood induction
study. Participants were assigned at random to one of three conditions designed to influence
their mood, and their overall affect was rated by an observer who saw a videotape of their facial
expressions but did not know to what condition participants were assigned. We analyze these
data later in the chapter when we discuss three-group designs. Although we want to develop
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FIG. 3.1. Individual scores on a 7-point rating scale of global affect in

three treatment groups (1 = Pleasant Mood Induction, 2 = Neutral Mood In-
duction, 3 = Unpleasant Mood Induction).
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ways of making inferences about population means based on such samples of data, the first
priority in understanding results is to try to get a feel for the individual values themselves.
As the APA Task Force on Statistical Inference advised, “before you compute any statistics,
look at your data” (Wilkinson et al., 1999, p. 597). This allows you to screen for errors in data
entry or coding, examine the form of the distributions, and see whether it is plausible to view
the data as conforming to the assumptions of the statistical procedures you plan to use. In the
current situation, for example, it appears the individual scores are roughly equally spread out
within each group. However, the typical level of scores on the dependent variable seems to
differ across group. Much of this chapter is devoted to developing methods for validating and
quantifying, but not substituting for, such preliminary impressions.

THE GENERAL LINEAR MODEL

The basic assumption underlying all models considered in this book is that any phenomenon
is affected by multiple factors. Although our assumption of finite causation postulates that the
number of factors causing any event is not infinitely large (hence, causes can be replicated and
science is possible), we also must realistically acknowledge that many factors enter into why
a particular subject obtains a particular score on any dependent variable that is likely to be of
interest in behavioral science research. In any one research project, we can hope to manipulate
or measure only a small number of the likely causal factors of any event. The remainder we
either fail to recognize or recognize but do not account for in our model. Thus at the simplest
level, the basic structure of our models of data is as follows:

observed value  sum of effects sum of effects
on dependent = of “allowed-for” + of other
variable factors factors

or as John Tukey (1977) succinctly expressed it: data = fit + residual.

We “allow for” the effect of a factor by explicitly incorporating a term into our statistical
model for that factor. The other factors can be dealt with in one of two ways. First, variables
that we know are important but that are not the immediate concern of our research can be held
constant. We can thus “control for” the effect of age by selecting all subjects from the same age
range or the effect of the location in which an experiment is run by using the same laboratory
room for all subjects. Unrecognized factors such as certain common historical events could
also conceivably be constant across all subjects in a sample. Second, we can allow certain
other factors to vary across subjects. This may arise because we explicitly decide that it is not
desirable to control for a particular factor. For example, characteristics of a person’s skin may
influence galvanic skin response (GSR) readings in a psychophysiological study, but be too
expensive in time and resources to measure independently. Or, intelligence may be recognized
as an important factor in performance on a problem-solving task, but we may choose not to
select subjects on the basis of intelligence so as to increase the generality of our findings.
Furthermore, variation occurs without our knowledge in a host of factors besides those we
allow for in our model. Most obviously, the history of individual subjects is, for the most part,
beyond our knowledge. Other factors such as minor differences in environmental conditions
vary from subject to subject and may influence performance in some way. The effects of all
these other varying factors are lumped together in our statistical model in an error or residual
term that is allowed to assume a unique value for each subject.
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Thus, we can refine slightly the structure of our model to distinguish between other factors
that are held constant and those that vary randomly over subjects:

observed value  effectof sum of effects  randomly
on dependent = constant + of allowed-for 4+ varying
variable factors factors other factors

To give a concrete example, there are obviously any number of factors exerting an influence
on an individual child’s performance on a particular IQ test. In one research project, we might
be interested in concentrating on assessment of how various parental characteristics such as
socioeconomic status (SES), parents’ IQ, and time spent with the child are related to their
child’s IQ score. Thus, our model might be

child’s IQ score = a baseline IQ score + the effect of parents’ SES
+ the effect of parents’ IQ
+ the effect of amount of time spent with parents
+ the effect of other factors

As you can see, it quickly becomes cumbersome, even for just three specific factors,
to write out the labels for each in an equation. Some sort of shorthand obviously is needed.

We follow the convention of using Y to denote the dependent variable and using Xs for the
various “accounted-for” factors. We can then translate the verbal equation into a more typical
algebraic form:

Yi = BoXo, + BiX1, + B Xo + B3X3 + &

Here, Y; represents the score of individual i on the dependent variable, and the Xs provide
information about the level of individual 7 on the factors for which we are allowing. The Bs
are unknowns that we must estimate. Each g indicates something of the relationship between
a particular X factor and the dependent variable. [Frequently, as noted in Chapter 1 (p. 7), we
refer to these unknowns as effect parameters. However, whether one’s interpretation should be
that of a causal rather than a correlational relationship hinges on one’s theory of the process.
One’s ability to persuade others of the causal nature of the relationship often hinges on the
design of the study—for example, whether the experimenter independently determined the
level of a factor experienced by a particular individual.]

The first unknown parameter and X variable listed in the model typically play the special
role of reflecting the effect of the constant factors, that is, those factors that are common to all
subjects. Thus, X is usually simply a 1 for every individual, indicating that 1 times the constant
is part of the equation for each individual; the constant Sy is usually the mean of the population
from which we are sampling (cf. the following section). The final term in the equation also
plays a special role. Epsilon (¢)—that is, the “e” of the Greek alphabet—designates error,
or the randomly varying other factors, with &; being the error for individual i. In a sense,
&; is a nonvariable because it simply takes up whatever “slack” is left in Y after you predict
as well as you can with the X variables. However, this term, which makes up the difference
between the predictions and reality, is a very important component of the model, because it
is the magnitude of these errors that is the means by which we assess the adequacy of each
model.!

The only change we must make to arrive at a very general form of the previously described
model is to allow for some arbitrarily large number of factors in the model. If we say that p is
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the number of factors, then we have
Y; = BoXo, + Bi X1, + BoXo, + B3 X5+ + BpXp t & ey

All univariate (single dependent measure) tests we consider in this text can be viewed as
comparisons of various special cases of this general linear model.

ONE-GROUP SITUATION

Basics of Models

Consider the case in which there is just a single group of scores that result from a particular study.
For example, we might use the IQ score from the Wechsler Intelligence Scale for Children—
Revised (WISC-R) as a dependent measure, but not know anything that would allow different
predictions to be made for the different individuals within the group. In such a situation,
we clearly cannot be allowing for the variation of any factors across groups—there’s just one
group. Thus, if we eliminate allowed-for factors from our model, we are left with just the effect
of constant factors and the effects of factors that randomly vary from one subject to the next.
Such a random-variation model is typically expressed

Yi=pu+e 0}

That is, our model postulates that variable ¥ has some unknown typical value in the population
and that deviations from this typical value are due to random, uncontrolled factors; ¢; denotes
this random error and is the sole source of variance in the Y scores. The typical value of Y in the
population is usually denoted by the Greek letter mu (), and is generally unknown, although
we might have some a priori ideas about its value.

We could just as well have used some other symbol, such as By, for this typical value. We
could also make explicit that this value is to be used as a prediction for every subject by saying
that it is to be multiplied by 1 for every subject. You can see, then, that this random-variation
model could be expressed more explicitly as a special case of the general linear model (see
Equation 1):

Y,- = ,BQX(),. + & (3)

where Xy = 1 for every subject.

However, to use x and presume it is clear that our model implies a prediction equation for
each subject is more common. Thus, we could view Equation 2 as being a shorthand for a set
of n equations, where n is the number of subjects in our group. That is,

i = u+g
o =u+e @
Y, =u+e,

The Y scores are values we observe for our sample, but 1 and the n values of ¢; are un-
known. From a pragmatic viewpoint, we typically are much more interested in finding the most
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appropriate value of u than in determining the exact error for each subject. However, techni-
cally we have n equations in n + 1 unknowns (even if one unknown is of more interest than the
others). This means that there are any number of possible values of u and ¢; that we could use
and still satisfy the equations. To obtain a unique solution for the unknowns in the equations
in (4), we must impose some additional constraint, or, in the terminology used by statisticians,
side condition.

To see what might be a reasonable constraint or criterion to adopt to estimate the un-
knowns in any model, we might view the model as a prediction equation. Generally, in pre-
diction you want to make your guesses as close to the observed values as possible. The
es then could be viewed as the errors of prediction for each subject, which would be es-
timated by e;, the difference between the observed value and your predicted value of .
That is,

e=&=Y,—{ &)

(We follow the convention of using a caret over a symbol—which here you read as “mu hat”—
to indicate a predicted or estimated value.) Because your model constrains you to guess the
same value for every score in your sample, you obviously will be wrong generally. However,
you likely would want to choose your predicted value so that on the average your errors would
balance out—that is, you might like the expected value of ¥; — i to be zero. In addition,
you would probably not want systematic large positive errors simply to be canceled out by
systematic large negative errors, but would think it more desirable if your errors in general,
irrespective of sign, were small. Thus, you might hit on using squared errors, (¥; — )%,
to indicate the lack of accuracy of your predictions, because squaring is a mathematically
convenient way of ignoring the sign and emphasizes the importance of large errors. Simply
specifying that we want the sum or average of these squared deviations to be as small as
possible is sufficient to obtain a unique solution to the equations in (4). Furthermore, we use
this simple desideratum any time we want to estimate parameters in any linear model. Choosing
parameter estimates to minimize squared errors of prediction is known as the least-squares
criterion. Least-squares estimates possess a number of desirable statistical properties, such as
always being unbiased. In addition, they are minimum variance unbiased linear estimators,
which means that over replications of a study, the least-squares estimates of the population
parameter would be more efficient (have less variability) than would any other estimator that
also is a linear combination of the observations in the sample. Incidentally, note that this holds
true regardless of whether ¢; is normally distributed. However, if normality is approximated,
several important statistical results follow; the most important is that we can legitimately do
standard parametric statistical tests and justifiably consult statistical tables to determine the
probability that the results of a study, or more extreme results, would have arisen, presuming
only chance variation is operating.

In the one-group situation, the least-squares criterion implies that we should choose the
estimate of the mean in such a way that we minimize the sum of squared errors; that is, we
choose 2 to minimize

Y=Yt - a7 ©)
i=1 i=1

You may well recall from a previous statistics course that the sample mean Y has the pro-
perty that the sum of squared deviations from it is smaller than around any other value.
This is proved in the following section. (The material in the paragraph that follows
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requires somewhat more use of mathematical arguments than does most of the text. Such
sections marked “Optional” can be skipped on initial reading of the chapter without loss of
continuity.)

OPTIONAL

Proof That Y Is the Least-Squares Estimate of u

We can easily demonstrate algebraically that ¥ is the least-squares estimate of 4, and doing so has the
additional pedagogical value of illustrating a little mathematical trick that is often useful in seeing the
relationship between different sums of squared errors. The algebraic proof is as follows: Assume that we
want to use some constant value C, possibly different from ¥, as our estimate of 4. Then, our sum of
squared errors would be

X":e,? = i(Y,- - C) M
i=1 i=1

Clearly, we would not change the expression on the right if we were to add a zero to it. The
“trick” is that a very useful form of zero to add in is —¥ + Y. This lets us see the relation-
ship between these squared errors and something with which we are already familiar. Adding
in —Y + Y, grouping terms and expanding, we have

DE-Y+Y-CF =) (% ~-DH+F-OF ®)
=Y [~V +2¥, - V)T - )+ (T — O ©)
=Y -+ 2 -DHET-0+>FT-CF (10

‘When we factor out constants, note that the cross-product term—that is, the second summation in Equation
10—becomes 2(Y — C)Z(¥; — V), which equals 0, because (¥; — ¥) = 0. Furthermore, you may
recognize the term on the left in Equation 10 as the numerator of the familiar definitional formula for the
unbiased sample variance s2. That is,

#=[1 -] /a1 an
50,

DT~V =m-1s (12)
Making this substitution for the term on the left in Equation 10 and dropping the middle term, we have
DX~ =(—-Ds*+) ¥-C) (13)
Because the term on the right is a constant value and adding up # such values is equivalent to multiplying
the value by n, we see that the sum of squared deviations from C can be expressed as a function of two

squared quantities:
Y -0 =@m—-1s*+n{¥ - C) (14)
Because on the right we have the sum of multiples of two squared quantities, we know neither can

be negative and that Z(¥; — C)* must be at least as large as (n - 1)s%. Furthermore, T(¥; — C)? is a
minimum when n(Y — C)? is zero, which can only occur if C = Y. Thus, we have proved that the way
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to minimize our errors of prediction—that is, the way to satisfy the least-squares criterion—is to use the
sample mean as our estimate of the unknown parameter in our model.

Adopting Y as the best estimate of the parameter u—that is, as the best value for ji—
virtually completes the estimation problem: Once [t is determined, we can get the values of
the errors associated with individual subjects immediately because ¢; = Y; — ji. Furthermore,
a very important by-product of using the least-squares criterion to estimate parameters is that
it yields a measure of the adequacy of the model that is as fair as possible. That is, we know
the sum of squared errors of prediction

i el = i(n -7y
i=1 i=1

is as small as it could be for this model.

Naturally, other models for this one-group situation are also possible. One might be inter-
ested in how well a specific a priori value might do as an estimate of the observed scores. For
example, we may wonder if it is plausible to model the IQ of a group of hyperactive children
with the value of 100, which we know is representative of the population of all children. The
appropriate model for such a supposition might be written

Yi=pote (15)

where 1 is understood to be some prespecified constant value. This means that the
values of ¢; for this model are determined without any parameter estimation; that is, in
this case,

ee=¢&=Y —up (16)

Thus, the total error (that is, the sum of squared errors) made by a model incorporating the
restriction that u = po is (¥; — po)?. Typically, imposing such a restriction results in in-
creased error relative to a model that is not so constrained. Examining the error associated with
the current, restricted model allows us to see just what the increase in error will be. In fact,
using the same technique that worked in proving Y was the least-squares estimator of u—that
is, adding and subtracting ¥—it can easily be shown? that

D = po =) (Y = V) +n(¥ — o)’ 17)

When we compare this with the minimal error made with our unrestricted model Z(Y; — Y)?,
we see the magnitude of the increase in error associated with going to the restricted model
is simply n(Y — j10)%. This makes sense, because it should depend on how far Y is from our
hypothesized value of ug.

The question that logically follows is, How much must the error be increased for us to con-
sider our supposition (hypothesis) to be false? Because the increase in error we just developed
is in squared Y units, it is difficult to evaluate directly. However, an intuitively reasonable rela-
tive measure of its magnitude is achieved by looking at the proportional increase in error—that
is, how large the increase is relative to the best we can do with the unconstrained model:

. . . increase in error
proportional increase in error = ——————— (18)
minimal error
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Development of the General Form
of the Test Statistic

In the following paragraphs, we develop this idea of proportional increase in error into a test
statistic. Our development does not proceed in the way the test statistic would be introduced in
amathematical statistics text. However, our goal is like the mathematician’s in that we strive for
generality, not just the solution to a single problem. We develop the test statistic rationally, not
mathematically, as a reasonable index of the relative adequacy yet simplicity of two competing
models. However, instead of developing things in a way that would work only in a one-sample
situation, we introduce a method that works in essentially all cases we consider in this book.
Doing so takes a few more lines than developing a test for only one sample. However, in so
doing, we are providing a perspective and a general procedure that together serve as a unifying
theme for the book.

To carry out our development more succinctly, consider the following terminology. We call
the unconstrained model the full model because it is “full” of parameters, with the number
of parameters in the full model frequently equaling the number of groups in the design. In
the full mode] for the one-group case, we have one unknown parameter u, which is to be
estimated on the basis of the data. The general method used to arrive at a second model] is to
place restrictions on the parameters of the first model. The restrictions are essentially our nuil
hypothesis and serve to delete some of the parameters from the set used by the full model. We
call the resultant constrained model simply the restricted model. In the one-group case, the
restricted model does not require the estimation of any parameters. Although that is not usually
the case in other designs, it is true that the restricted model always involves the estimation of
fewer parameters than does the full model. Thus, we have the following models, least-squares
estimates, and errors, in the one-group case:

Model Least-Squares Estimates Errors

Full. Y,=pn+e, A=Y ZeizF=Z(Yi—Y)2
Restricted:  Y; = o +¢&;, No parameters estimated Y eizR =Y (¥; — 1o)?

We use Er to designate the sum of squared errors e,.2F in the full model, and ER to designate
the analogous quantity ) el.zR for the restricted model.> Letting PIE stand for the proportional
increase in error, we can express our verbal equation comparing the adequacy of the two models
in algebraic form as

Ep — E
PIE= =R _~°F (19)
EF

Substituting, we have

re, —Le
e
XX — po) — Y — ¥)
>(Y; — Yy

PIE =

TLFeBOOK



76 CHAPTER 3

and using Equation 17 to simplify the numerator, we obtain

n(Y — po)?
Y —Y)?

Hopefully, the final way PIE is expressed looks at least vaguely familiar. One of the first
hypothesis tests you likely encountered in your first statistics course was a one-sample f test.
Recall that the form of a one-sample # test assessing the null hypothesis Hp : 4 = pp looks at
the deviation of a sample mean from the hypothesized value relative to the standard error of
the mean

PIE = (20)

Y—uo Y —po

6y s/yn

_ NI
JEE -T2/ - 1)

21

where 67 is the standard error of the mean (that is, the standard deviation of the sampling
distribution of Y) and s is the square root of the unbiased sample variance. Note that if we
were to square the form of the one-sample ¢ given on the right in Equation 21, we would have
something very much like our PIE. In fact, all we would have to do to change PIE into 2
is to divide the denominator* of the PIE by (n — 1). (Note that we have said nothing about
distributional assumptions; we are simply pointing out the similarity between how we would
compute an intuitively reasonable statistic for comparing two models and the form of the
test statistic for the one-sample ¢. We consider assumptions about the distribution of ¥ scores
shortly.)

We began our discussion of the model-comparison approach by noting that we want models
that are simple yet adequate. You may wonder if we could not incorporate both of these
aspects into a summary measure for comparing models. We must, in fact, do so. PIE simply
compares the adequacy of the models (actually, in comparing errors of prediction, it does so
by contrasting the inadequacy of the models) without regard to their complexity. To make
PIE a more informative summary of the relative desirability of the models, we really want
to take into account the simplicity of the models. We know in advance that our simpler,
restricted model is necessarily less adequate than our full model (see Equation 17). Thus,
intuitively, we would like our summary measure to indicate something such as, Is the loss in
adequacy per additional unit of simplicity large? However, how could we assess the simplicity of
a model?

The simplicity of a linear model is determined by the number of parameters: the fewer
parameters, the simpler the model. As we illustrate momentarily, each parameter that we must
estimate entails the loss of a degree of freedom. In fact, we define the degrees of freedom
(df) resulting from using a particular equation as a model for an experiment as the number of
independent observations in the study minus the number of independent parameters estimated.
Thus, the df associated with a model can be used as our index of its simplicity. Given that,
for a study having a fixed number of observations, the number of df associated with a model
is inversely related to the number of parameters in the model, the df can be taken as a direct
indicator of the model’s simplicity: the more df, the simpler the model.

This allows us to construct a very useful summary measure for comparing models. The error
of our more adequate model relative to its df gives us a basis for evaluating the size of the increase
in error entailed by adopting a simpler model relative to the corresponding increase in df.
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We can easily incorporate this consideration of the models’ simplicity into our measure of the
proportional increase in error.

Specifically, we need only divide the denominator and numerator of PIE in Equation 19
by the df of the model(s) involved in each. That is, in the denominator we divide the error of
the full model (EFr) by the degrees of freedom of the full model (dff), and in the numerator
we divide the difference between the error of the restricted model and the error of the full
model (Er — Ef) by the difference in the degrees of freedom associated with the two models
(dfr— dfy). This yields a revised measure, which we denote by F, of the relative adequacy yet
simplicity of the two models:

Fe (Er ~— Ep)/(dfg — dfy)
Ex/dfe

(22)

This simple comparison measure is in fact extremely useful and general. We can use it for
carrying out all the hypothesis tests we need for the various special cases of the general linear
model we will consider. All tests in ANOVA, analysis of covariance, bivariate regression, and
multiple regression can be computed using this formula. The models being compared may
differ widely from one situation to the next, but our method of comparing them can always be
the same.

If there is no difference between the two models’ descriptive accuracy except for the addi-
tional free parameter(s) in the full model, then the numerator (the increase in error per additional
degree of freedom associated with using the simpler, restricted model) would be expected to
be approximately the same as the denominator (the baseline indication of error per degree of
freedom). Thus, values of F near 1 would indicate no essential difference in the accuracy of
the models, and the simpler model would be preferred on grounds of parsimony. However, if
the increase in error associated with using the simpler model is larger than would be expected
given the difference in parameters, then larger F values result, and we tend to reject the simpler
model as inadequate.

For the two models we are considering for a design involving only one group of subjects,
we can determine the degrees of freedom to use in our general formula quite easily. In the full
model, we are estimating just one parameter, y&; thus, if we have n independent observations
in our sample, the degrees of freedom associated with the full model is n — 1. In the restricted
model, we do not have to estimate any parameters in this particular case; thus, dfx = n. When
we subtract dfg from dfg, the number of subjects “drops out,” and the difference is only the
difference in the numbers of parameters estimated by the two models. Thus, for the one-group
situation, we have

Fe (Er — Ep)/(dfg — dfg)
Ef/dfy

_n@—pfin=(n=D] _ ,
S =Y/ — D)

(23)

To make this intuitively developed descriptive statistic useful for inferential purposes
(i.e., hypothesis testing), we need only assume that the individual errors have certain char-
acteristics. Specifically, if we assume the error terms ¢&; in our models are independently
distributed as normal random variables with zero mean and variance o2, then it can be shown
that the F in our general formula does in fact follow a theoretical F distribution with dfg — dfs
and dfy degrees of freedom.
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TABLE 3.1
HYPERACTIVE CHILDREN’S WISC-R SCORES
Full-Model Analysis
IQ Scores Prediction Parameter Error Scores Squared Errors
Y; Equations Term i e, =Y — i e?F
96 =a+e 104 -8 64
102 =f+e 104 -2 4
104 =j+es 104 0 0
104 =i+ey 104 0 0
108 =ft+es 104 +4 16
110 =fi+es 104 +6 36
> =624 3 =0 Er =120
Y =104
Restricted-Model Analysis
IQ Scores Prediction Parameter Error Scores Squared Errors
Y: Egquations Term wo e =Y — eizR
96 = uo + e 98 -2 4
102 = o+ ez 98 4 16
104 =up+e3 98 6 36
104 = o+ es 98 6 36
108 =puo +es 98 10 100
110 = @+ € 98 12 144
Egr =336
_ (Er — Ep/(dfp —dfp) _ (366 —120)/(6—5) _ 216
- Er/dfe - 120/5 T 24 T
_ Y- Ho _ Y- Ho _ Y — uo 104 — 98 _ 6 =3
(52 s/a/n x/— Z(Y T2 / /120 / Jé 54_
n—1 6

Numerical Example

Assume that you work in the research office of a large school system. For the last several years,
the mean score on the WISC-R, which is administered to all elementary school children in
your district, has been holding fairly steady at about 98. A parent of a hyperactive child in one
of your special education programs maintains that the hyperactive children in the district are
actually brighter than this average. To investigate this assertion, you randomly select the files
of six hyperactive children and examine their WISC-R scores. Table 3.1 shows these scores.
The unconstrained, or full, model does not make any a priori judgments about the mean 1Q
of hyperactive children, Rather, the estimate of u is chosen so that Er = Ee%F is minimized
for this set of data. As we know, the sample mean, which here equals 624/6 = 104, minimizes
this sum of squared errors. Computing the deviations from this estimated population mean, we
note that they sum to zero. This is, of course, always going to be the case because

Yo=Y @-N=) (r-

3 Y/N)

- ZY—Z(ZY/N) =ZY—N(ZY/N) =
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We square each of these error scores and sum to obtain what we use as our index of the
inadequacy of the model, that is, Eg = 120.

The degrees of freedom, which is the number of data values you would be free to choose once
all parameter estimates have been specified, reflects the model’s simplicity, as we indicated. For
example, in the full model, once the sample mean is determined to be 104, you could choose five
of the data values to be whatever you like, but the sixth must be the value that would bring the
total to 624 so that the mean of the six scores will in fact be 104, that is, Y = 6(104) — 2f=1 Y:.
As indicated in Table 3.1, the df for our full model is 5—that is, the number of independent
observations in the sample (6) minus the number of parameters estimated (1, which here is p).
In general, the degrees of freedom associated with a model for a particular set of data is the
total number of independent observations minus the number of parameters to be estimated in
that model.

The analysis for the restricted model proceeds similarly. However, in this simplest case,
there are no parameters to estimate, the average of the population having been hypothesized
to be exactly 98. Thus, the error scores associated with this model can be computed directly
by subtracting 98 from each score. When these error scores are squared and summed, we get
a total error (Er = 336) that is considerably larger than that associated with the full model
(Ep = 120). Recall that the restricted model always has as great or greater summed errors than
that associated with the full model. In fact, as shown (see Equations 17 and 20), the increase
in error here depends simply on how far ¥ is from pq, that is,

ER — EF = n(? — /LO)Z
= 6(104 — 98)? = 6(6)> = 6(36) = 216
= 336 — 120 24

Finally, the degrees of freedom for the restricted model is simply equal to the number of
observations—that is, 6—because no parameters had to be estimated.

Dividing our error summary measures by the corresponding degrees of freedom, as shownin
our basic equation for the F near the bottom of Table 3.1, we obtain the values of the numerator
and denominator of our test statistic. The value of 24 in the denominator is the squared error
per degree of freedom for our full model (often referred to as mean square error). The value
of 216 in the numerator is the increase in error per additional degree of freedom gained by
adopting the restricted model. Computing their ratio, we get a value of 9 for F, which can be
viewed, as we have indicated, at a descriptive level as an “adequacy yet simplicity” score. Its
value here indicates that the additional error of the simpler restricted model per its additional
degree of freedom is nine times larger than we would expect it to be on the basis of the error
of the full model per degree of freedom. That is, the restricted model is considerably worse
per extra degree of freedom in describing the data than is the full model relative to its degrees
of freedom. Thus, intuitively it would seem that the restricted model should be rejected. We
need, however, a statistical criterion for judging how large the F is.

To determine if the probability of obtaining an F this extreme is sufficiently small to justify
rejecting the restricted model, we can consult the tabled values of the F distribution shown
in Appendix Table A.2. To obtain a critical F value from the table, we consult the column
corresponding to the degrees of freedom from the numerator of our test statistic—that is,
dfr— dfr—and the main row of the table corresponding to the denominator degrees of free-
dom, that is, df. The third factor to be considered is the « level, that is, the probability of
obtaining an F value larger than the tabled value, assuming that the restricted model is in fact
correct. Critical F values are provided for six different « levels, namely .25, .10, .05, .025,
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.01, and .001, on six adjacent rows of the table for each denominator df. When the observed
F value of 9 is compared against the tabled values of the F distribution with numerator and
denominator degrees of freedom of dfg — dfy = | and dff = 5, respectively, we find it exceeds
the critical value of 6.61 for o = .05. The conclusion would then be that there is significant
reason to doubt that the population of hyperactive children has the same mean IQ as the other
students in your district. The parent who brought the matter to your attention apparently was
correct.

Relationship of Models and Hypotheses

As may be clear, the two models being compared are the embodiments of two competing
hypotheses. The full model corresponds to the alternative hypothesis, and the restricted model
to the null hypothesis. In the full model and the alternative hypothesis, the population parameter
is not constrained to equal any particular value. The restricted model is obtained from the full
model by imposing the restriction on its parameters stated in the null hypothesis. As indicated
below, restricting the w in the full model to a particular value, (g, such as 98, yields the
restricted model:

Hypothesis Model

Hy @ p # wo ‘ Full: Y; = pu+¢ (25)

Hoy: u=puo Restricted: Y; = uo + &; (26)
TWO-GROUP SITUATION

Development in Terms of Models

Designs involving a single group are rare in psychology and for good reason. Although it
might be the case that there is one condition or treatment you are interested in, to evaluate
that condition alone in an absolute sense in a compelling way is difficult. You may want to
show that biofeedback is an effective way of reducing anxiety associated with public speaking.
Trying the treatment with a group of volunteers and showing that after treatment their anxiety
regarding public speaking was in the normal range would, of course, not constitute proof of
the effectiveness of the biofeedback: their anxiety scores may have been normal to begin with.
Selecting individuals for participation because they were very anxious about public speaking
may seem like the obvious solution; but with only one group, improvement after biofeedback
training could be attributed to regression toward the mean or to any of a number of other
potential confounding variables (Campbell & Stanley, 1963; also see Chapter 1). Thus, using
at least one comparison group is expected practice in psychological research. The model-
comparison approach we developed for the one-group case can easily be extended for analysis
of two-group designs.

We extend our statistical analysis to help us decide again between two alternative concep-
tions of the world. These competing viewpoints could be described verbally, or in terms of
statistical hypotheses, or in terms of models of how the data arose. Typically, the question to
be addressed is “Is there evidence that the two groups differ?” Thus, we want to compare a
view that says the groups differ with one that says they do not. These views would correspond,
respectively, to a statistical hypothesis that the population means of the two groups differ and
to a hypothesis that they are equal. A model embodying the first hypothesis (which is the
hypothesis you usually want to find evidence to support) would indicate that each score equals
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the population mean for its group plus some random error. A model embodying the second
hypothesis would differ only in that it would use a single parameter for the population mean
because it is to embody the restriction that the two groups are drawn from the same population.
We can express these hypotheses and models in symbols:

Hypothesis Model
Alternative hypothesis: p1 5 uo2 Full model: Y;; = p; + &5, 27
Null hypothesis: g1 = p2 = Restricted model: ¥;; = u + &5, 28)

Here, 1, and u, are, of course, the population means of groups 1 and 2; more generally, we
use 1 ; to denote the population mean of the jth group. Note that the scores on the dependent
variable ¥ now have two subscripts, i and j: the j designates groups and here takes on the values
1 and 2; the i, as before, indicates the individuals within a group. We allow the number of
subjects in groups 1 and 2, designated n; and n,, respectively, to differ. Thus, the ranges of the
subscripts can be indicated succinctlyas j = 1,2 andi =1, 2,3, ..., n;. Like the one-group
case, the error scare for each individual ¢;; indicates how much the dependent-variable score
deviates from the parameter value. The errors for the simpler, restricted model are again larger
in general than those for the full model, and the subscripts R and F are used when necessary
to distinguish between them.

We see the generality of the model-comparison approach when we raise the question of
how to decide between these two competing accounts of the data. The question in terms of
model comparisons is “Will a restricted model involving fewer parameters be a significantly
less adequate representation of the data than a full model with a parameter for each group?”
This is the kind of question we address repeatedly in this book, and the method of resolving
the trade-off between simplicity and adequacy is in terms of the general form of our F test,
thatis, F= [(Er — Efr)/(dfg — dfp)]/(Er/dfz), where Er and Ef are, as before, the sums of
squared errors and dfg and dfr are the degrees of freedom associated with the two models.

Once again, we want to determine the errors associated with a model so that each model is
placed in the best possible light. Using the least-squares criterion, as we have seen, not only
gives us parameter estimates that are in many ways optimal, but also yields a measure of the
model’s adequacy, as we have defined it, that makes the model appear as adequate as possible.
Let us work through the steps for determining the least-squares estimates of the parameters
for the models, beginning with the restricted model.

A comparison of the restricted model in the two-group case, with the full model for the
one-group situation (see Equations 28 and 25), reveals that they both involve using a single
parameter to model the data. This suggests that the solution to the least-squares estimation
problem should be the same, and, in fact, it is. That is, when one parameter estimate is to be
used as the guess or prediction for all observations, the sum of squared errors is minimized
when the mean of all observations is used as the estimate. Expressing this with symbols, the
error associated with the restricted model for the two-group situation is

Er=) ) e =2 > (Ti—py 29)
joi j i

Following the identical reasoning to that used in the one-group case, it is easily shown that Eg
is minimized when

p=) > Yy/N (30)
j i
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that is, when /i is set equal to the grand mean of all observations, which we denote Y. For
the full model, the estimation problem appears more complicated, because there are now two
parameters to be estimated. However, the problem can be translated into a form where the
same kind of solution can be used. Specifically, in the full model, we wish to minimize

2
Br=) ) e =2 > (Yy—p) 31
J i

j=1 i

Because there are only two groups, we can express Er simply as the sum of the total squared
errors in group 1 and the total squared errors in group 2:

Ep =) (Yo = p1)* + ) _(Yio — po)? (32)

Because each of the two terms on the right side of the equation is the sum of a set of squared
numbers, each term must be positive, and the way in which Ey can be minimized is to min-
imize each of these separately. Thus, we have two minimization problems, but each is iden-
tical to the problem we addressed in the one-group case, namely “What number for a single
group of scores results in the sum of squared deviations from that number being as small
as possible?” The answer, you recall, is to use the mean of the observed scores in what-
ever group is being considered. Thus, the least-squares estimate of the population mean for
each group is the sample mean for that group. That is, i1 = (X;Y;1)/n = Y, and [y =
(ZiYi2)/na =72

We now see how these measures of the adequacy of our two competing models for the
two-group situation combine when they are entered into our general form of the F test:

_ (Er — Er)/(dfg — df)

F Erp/dfg

(22, repeated)

Noting that dfg = N — 1 because we estimate a single parameter in the restricted model and
dfr = N — 2 because we estimate a population mean for each of the two groups in the full
model, we see that dfg— dfy = (N — 1) — (N —2) =2 — 1 = 1, thus obtaining

(X6, —EXe)/1
Y X e /(N =2
TNy =Y =Y, - Y)Y
J 1 J i
22Xy~ P/(N -2)
J i

F = (33)

(34)

It turns out that Eg, the term on the left in the numerator in Equation 34, can be expressed’ as
the total of two quantities: (1) the sum of the squared deviations of the scores within a group
from their group mean ¥; %;(Y;; — 7]-)2, and (2) the sum of squared deviations of the group
means from the grand mean T ;3;(Y; — Y)?. Because the former of these two quantities is how
EF is defined here, the difference between Er and Er used in the numerator of our test may
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be expressed as just the latter of these quantities, that is,

BB = | S X0~ T+ DX G P |- D0 -5
j i j i j i
XY -7 e
F

Also, because how much the group mean deviates from the grand mean is a constant for all
subjects within a group, we have

ER - EF = an(z- - Y)2 (36)
i

Thus, the general form of our F test for the two-group situation reduces to

Yni¥—T)7
F= ] — (37
22X —Y)?/(N -2

i

Alternative Development and ldentification
with Traditional Terminology

Traditionally within psychology, statistics texts have presented F' tests in ANOVA not as a
method for comparing models, but as a measure of the degree to which the data depart from
what would be expected if chance alone were operating. This traditional approach can also be
characterized by focusing on the question, Is the variability between groups greater than that
expected on the basis of the within-group variability? That is, one asks if the variability among
the group means is greater than would be expected given the variability observed among the
individual scores within each of the groups.

The logic here is that if all scores in both groups were simply randomly selected from a
single population of scores, the sample means of the two groups would still almost certainly
differ because of sampling variability. Just how much the means would be expected to differ
would depend on the variability of the population. This in turn can be estimated by either
of the sample variances observed or, better, by a pooled estimate or weighted average of the
two variances. If we use sjz. to denote the unbiased sample variance of the jth group of scores,
that is,

Yy - Y)?
2 _ i

§ =

38
F= (38)

then the pooled estimate of the population variance o2, based on these within-group sample
variances, can be expressed as

(ny — 1)s? + (np — 1)s?
n+n,—2

estimated 62 = (39)
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The numerator in Equation 39 is typically expressed for computational convenience in terms
of the raw scores, with the contribution of the jth group to this numerator being

(nj — s} =3 (¥ -7 (40)

Hence, we see that the numerator consists of a sum of squared deviations from the group
means; thus, the numerator is denoted sum of squares within groups, or SSwinin. When the
division by n; + n, — 2 is carried out, one obtains something like a mean or average squared
deviation, and so the estimate of the population variance is denoted mean square within
(MSwihin):

22— Y,

MSwitin = e
2 - 1)
J

(41)

If the null hypothesis that all scores are drawn from the same population is true, then the
variability between the sample means could be used to derive a separate estimate of popu-
lation variance. This would provide a variance estimate that, under certain assumptions, is
independent of the within-group variance MSwin,. Each sample mean, of course, has more
stability than the individual scores in the sample. In fact, one of the most important results
in statistics is the statement of just how much less variable means are than the scores on
which they are based. (For a review of this point, see Tutorial 1 on the data disk.) Recall that
the relationship depends solely on the number of scores on which the mean is based with
the variance of sample means a% equaling o/n. The variance of the distribution of sam-
ple means a-f; can be estimated by the variability of the observed sample means, even when
there are only two means present. When there are only two groups with the same number
of subjects in each group, an unbiased estimate of the variance of the sampling distribution

would be

. 2 2
estimated 0 = = [; @, - Y)2] / 2-1 (42)

That is, divide the squared deviations of the group means from the grand mean by the number of
groups minus 1. To obtain an estimate of the population variance from this estimated variance
of means, we need only multiply by n so that it is on the appropriate scale:

2
estimated 02 = n 2(7] —-7)*/1 43)
j=1

This estimate is also an average squared deviation, but its magnitude is determined solely by
the difference between the group means rather than by the variability within a group. Hence, the
numerator is denoted SSpetween, and the variance estimate is denoted MSperween- Here, SSpetween
and MSpeween happen to be the same because there are only two groups (in which case the
denominator of MSgeween, a8 shown in Equation 43, is 1). When there are more than two
groups, MSperween a0d SSperween differ.

We can generalize these estimates, based on group differences, somewhat. First, if there are
unequal numbers of observations in the groups, then the deviation for a group is weighted by
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the number in the group, that is,

SSpetween = Y _n;(¥Y; = V)’ (44)
i

Note that here ¥ is still the grand mean—that is, the mean of all the observations, not the mean
of the group means. Second, if there were more than two groups, then the divisor to convert this
from a sum of squares to a mean square would be greater than 1. If we designate the number
of groups as a, then we can write a general form for MSpetyeen a8

MSBetween = [Z n;(¥; ~ ?)2] / (@—1) (45)

j=1
The situation with more than two groups is developed more fully from a model-comparison
perspective in a subsequent section.

Thus, we have two separate estimates of population variance. MSwimin is an unbiased es-
timate regardless of the presence of treatment effects or systematic differences between the
groups. MSgeiween i an unbiased estimate of o2 only if there are no treatment effects. When
systematic differences between the groups exist along with the random variability among indi-
viduals, MSgetween tends to be larger than o2 and hence larger than MSwimin. The ratio of these
two variance estimates then is used in the traditional approach to construct a test statistic, that
is,

_ M SBetween

F =
MSwithin

(46)

Now we are ready to identify these mean squares with the measures of error associated with
models on which we focus in this book. The minimal error—that is, Ex, the error associated
with our full model—is the squared deviations of the scores around their group means and
hence can be identified with SSwigia. The difference in the errors associated with our two
models—that is, Eg — Er—depends on how much the group means vary around the grand
mean and hence can be identified with SSgetween. The error associated with our restricted model,
we have seen, is the total of SSwithin and SSgerween (see the discussion of Equations 34 and 35).
Thus, Eg here® is identified with what is traditionally called SStow. (Rather than spelling
out “Within” and “Between” in the subscripts of these sums of squares, we economize our
notation by referring to them as SSw and SSg, and similarly denote the mean squares MSw and
MSg.)

OPTIONAL

Tests of Replication

Up to this point, we have assumed that the only comparison of interest in the two-group case is that
between a cell mean model and a grand mean model. That is, we have compared the full model
of

Yiy=pu;+e; (27, repeated)

with the model obtained when we impose the restriction that 4, = u, = u. However, this is certainly
not the only restriction on the means that would be possible. Occasionally, you can make a more specific
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statement of the results you expect to obtain. This is most often true when your study is replicating
previous research that provided detailed information about the phenomena under investigation. As long
as you can express your expectation as a restriction on the values of a linear combination of the parameters
of the full model, the same general form of our F test allows you to carry out a comparison of the resulting
models.

For example, you may wish to impose a restriction similar to that used in the one-group case in which
you specify the exact value of one or both of the population means present in the full model. To extend
the numerical example involving the hyperactive-children data, we might hypothesize that a population
of hyperactive children and a population of nonhyperactive children would both have a mean IQ of 98,
that is,

Hy =y =98 “n
In this case, our restricted model would simply be
Y,‘j =98 + Eij (48)

Thus, no parameters need to be estimated, and hence the degrees of freedom associated with the model
would be n; + n,.

As a second example, one may wish to specify numerical values for the population means in your
restriction but allow them to differ between the two groups. This also would arise in situations in
which you are replicating previous research. Perhaps you carried out an extensive study of hyper-
active children in one school year and found the mean IQ of all identified hyperactive children was
106, whereas that of the remaining children was 98. If 2 years later you wondered whether the values
had remained the same and wanted to make a judgment on the basis of a sample of the cases, you
could specify these exact values as your null hypothesis or restriction. That is, your restricted model
would be

Y,'] =106 + i
49
Yo =98 +¢i
Once again, no parameters must be estimated, and so dfk = n; + n,. As with any model, the sum of
squared deviations from the specified parameter values could be used as a measure of the adequacy of
this model and compared with that associated with the full model.
In general, if we let ¢; stand for the constant specified in such a restriction, we could write our
restricted model

Yii=c+ea
Yo=c+en

or equivalently,
Yij=c;+&

The error term used as a measure of the adequacy of such a model would then be
Ex=2_0 e =2 2 (Hi—c) (50)
G 7 i

As a third example, you may wish to specify only that the difference between groups is equal to some
specified value. Thus, if the hyperactive-group mean had been estimated at 106 and the normal-group
mean at 98, you might test the hypothesis with a new sample that the hyperactive mean would be 8 points
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higher than the normal mean. This would allow for the operation of factors such as changing demo-
graphic characteristics of the population being sampled, which might cause the IQ scores to generally
increase or decrease. The null hypothesis could still be stated easily as (4, — @, = 8. It is.a bit awkward
to state the restricted model in this case, but thinking through the formulation of the model illustrates
again the flexibility of the model-comparison approach. In this case, we do not wish to place any con-
straints on the grand mean, yet we wish to specify the magnitude of the between-group difference at
8 points. We can accomplish this by specifying that the hyperactive-group mean will be 4 points
above the grand mean and that the normal-group mean will be 4 points below the grand mean,
that is,

Yn=u+4+se, 1)
Yo=pu—4+¢n
Arriving at a least-squares estimate of ¢ in this context is a slightly different problem than encountered
previously. However, we can solve the problem by translating it into a form we have considered. By
subtracting 4 from both sides of the equation for the Y;, scores and adding 4 to both sides of the equation
for the ¥;, scores in Equation 51, we obtain

Yi—d4=p+en (52)

Yot+4=p+en
This is now essentially the same estimation problem that we used to introduce the least-squares criterion
in the one-sample case. There we showed that the least-squares estimate of y is the mean of all scores on
the left side of the equations, which here would imply taking the mean of a set of transformed scores, with
the scores from group 1 being 4 less than those observed and the scores in group 2 being 4 greater than
those observed. In the equal-n case, these transformations cancel each other, and the estimate of u would
be the same as in a conventional restricted model. In the unequal-z case, the procedure described would
generally result in a somewhat different estimate of the grand mean, with the effect that the predictions
for the larger group are closer to the mean for that group than is the case for the smaller group. In any
event, the errors of prediction are generally different for this restricted model than for a conventional
model. In this case, we have

Ex=) (Yn—4-pP+) (Yo+4—4y (53)

where [i is the mean of the transformed scores, as described previously.

This test, like the others considered in this chapter, assumes that the population variances of the
different groups are equal. We discuss this assumption in more detail in the section entitled “Statistical
Assumptions” and present procedures there for testing the assumption. In the case in which it is concluded
that the variances are heterogeneous, refer to Wilcox (1985) for an alternative procedure for determin-
ing if the difference between two-group means differ by more than a specified constant. Additional
techniques for imposing constraints on combinations of parameter values are considered in following
chapters.

To try to prevent any misunderstanding that might be suggested by the label test of replication, we
should stress that the tests we introduce in this section follow the strategy of identifying the constraint on
the parameters with the restricted model or the null hypothesis being tested. This allows one to detect if
the data depart significantly from what would be expected under this null hypothesis. A significant result
then would mean a failure to replicate. Note that the identification here of the theoretical expectation
with the null hypothesis is different from the usual situation in psychology, and instead approximates
that in certain physical sciences. As mentioned in Chapter 1, p. 14, Meehl (1967) calls attention to how
theory testing in psychology is usually different from theory testing in physics. In physics, one typically
proceeds by making a specific point prediction and assessing whether the data depart significantly from
that theoretical prediction, whereas in psychology, one typically lends support to a theoretical hypothesis
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by rejecting a null hypothesis of no difference. On the one hand, the typical situation in psychology is
less precise than that in physics in that the theoretical prediction is often just that “the groups will differ”
rather than specifying by how much. On the other hand, the identification of the theoretical prediction
with the null hypothesis raises a different set of problems, in that the presumption in hypothesis testing
is in favor of the null hypothesis. Among the potential disadvantages to such an approach, which applies
to the tests of replication introduced here, is that one could be more likely to confirm one’s theoretical
expectations by running fewer subjects or doing other things to lower power. It is possible to both have
the advantages of a theoretical point prediction and give the presumption to a hypothesis that is different
from such theoretical expectations, but doing so requires use of novel methods beyond what we introduce
here. For a provocative discussion of a method of carrying out a test in which the null hypothesis is that
data depart by a prespecified amount or more from expectations so that a rejection would mean significant
support for a theoretical point prediction, see Serlin and Lapsley (1985).

THE GENERAL CASE OF ONE-WAY DESIGNS

Formulation in Terms of Models

The consideration of the general case of ANOVA in which we have an arbitrarily large number
of groups can now be done rather easily, because it is little different from the model comparisons
we carried out in the two-group case. Of course, psychological experiments typically involve
more than two groups. Most theoretical and empirical questions of interest involve the use
of multiple treatment groups and may require multiple control groups as well. As noted at
the end of Chapter 2, we will subsequently consider cases in which the several groups in
a study arise from the “crossing” of different factors. However, for now, we proceed as if
each of the groups is of unique interest rather than being one of the groups that results from
simultaneously crossing factors that are of more interest than any one group. However, we can
anticipate later developments somewhat by noting here that all crossed factorial designs may,
in fact, be viewed as special cases of the one-factor or one-way design with which we are now
concerned.

Whatever the groups represent, we can designate them as different levels of a single factor.
For example, in abehavior modification study investigating different methods of helping people
stop smoking, a researcher might compare a condition using aversive conditioning with one
involving positive reinforcement for not smoking. These might be compared with two control
conditions: One group is told to try to stop smoking using whatever methods they think best,
and the other group is a “waiting list” control, that is, during the actual experiment, they are
told that they are on a waiting list for treatment but they do not receive treatment until after the
actual study is over. Although we can designate a group by a particular number—for example,
Group 1, Group 2, Group 3, and Group 4—the numbers, of course, do not rank the groups but
simply name them. Thus, we might say we have a single factor here of “Smoking Condition”
with four levels.

In general, to designate a factor by a single capital letter and the number of levels of the
factor by the corresponding lowercase letter is frequently convenient. Hence, the general case
of one-factor ANOVA might be designated by saying “Factor A was manipulated,” or “We had
a groups in our study.” The models being compared in an overall test of Factor A are essentially
identical to the two-group case, that is,

Full model: Y; = p; + &;, (54
Restricted model: Yj; = p + &, (55)
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with the only difference being that now the subscript j, which designates groups, can take on
more than two values, with a being its maximal value—that is, j = 1, 2, 3, ..., a. Once again,
the least-squares estimate of 1; would be the sample mean of observations in the jth group,
and the least-squares estimate of p would be the mean of all scores observed in the study.
Using these as our “guesses” of the observations in the two models, we can compute error
scores for each individunal, as we have done before, and compare the sum of squared errors
to compare the adequacy of the two models. We would then substitute these into our general
form of the F test:

_ (Er — Ep)/(dfg — dfp)
Er/dfy

(Zxe,-r5e,)/dr-d
2 Zeisz/dfF

[Z L - TP -L - ?j)z:l/(dfk ~ dfy)
J 1 J i
- X XYy — YR/ dfs

Jj i

F (22, repeated)

The difference between Er and Er can be expressed more simply. Following the identical
logic to that used in the two-sample case (see the development of Equation 35) we again
have

Ex-Er= ) Y% ~ 77 (56)
j=l i

with the only difference from the previous case being that we are now summing over a groups
instead of two groups. As usual, because the term being summed in Equation 56 is a constant
with respect to the summation over individuals within a group, we can simply multiply the
constant by the number of individuals in that group:

ER—EF=an(?j —?)2 (57)

=1

In the special case in which there are equal numbers of subjects per group, n would
also be a constant with respect to the summation over j, and so we could factor it out to
obtain

Ex—Er=n)y (Y;- ¥y (58)

=1

Regarding degrees of freedom, because in our restricted model we are estimating only
one parameter just as we did in the two-group case, dfg = N — 1. In the full model, we are
estimating as many parameters as we have groups; thus, in the general case of a groups,
dfr = N — a. The degrees of freedom for the numerator of the test can be written quite simply
as a — 1, because the total number of subjects drops out in computing the difference:

df —dg=WN-1)-N—-a)=N—-1-N+a=a-1 9
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The difference in degrees of freedom is thus just the difference in the number of parameters
estimated by the two models. This is generally true. In the case of one-way ANOVA, this means
dfg— dff is one less than the number of groups. Thus, the general form of our F test for the
a-group situation reduces to

Y —VP/@a—-1
F=_ -
Y > (¥ — L/(N —a)
Jj i

(60)

‘We can use this form of our F test to carry out the ANOVA for any one-way design.

Before proceeding to a numerical example, let us make two comments about developments to
this point. First, regarding EF, although the link between the within-group standard deviations
and the denominator of the F' statistic was noted in our discussion of the two-group case
(see the development of Equation 41), it is useful to underscore this link here. In general, in
one-way ANOVA, Ey can be determined by computing the sum of within-group variances,
each weighted by its denominator, that is, by the number of subjects in that group less one. In
symbols we have

EF = Z(nj - I)sz (61)
J

In the equal-n case, notice that we can factor out (n — 1):

Er=(n-1)) s (62)
i

and thus the denominator of the F statistic can be expressed very simply as the average
within-group variance:

Ep _ m-DYs} m-DYsi Ys

dfe N—-a ~ amn—-1 ~ a (63)

This is a useful approach to take in computing Er when standard deviations are available, for
example, when reanalyzing data from articles reporting means and standard deviations.

Second, a general pattern can be seen in the special cases of the general linear model we
have considered. All model comparisons involve assessing the difference in the adequacy of
two models. In the major special cases of one-way ANOVA treated in this chapter—namely,
the one-group case, the two-group case, and the a-group case—we began by determining the
best estimates of the models’ parameters, then used these to predict the observed values of
the dependent variable. When we compared the errors of prediction for the two models under
consideration to compute a value for the numerator of our tests, in each case all terms involving
the individual ¥ scores have dropped out of our summaries. In fact, as shown in Table 3.2, we
can express the difference in the adequacy of the models solely in terms of the differences in the
two models’ predictions. Indeed, this is true not only in one-way ANOVA but also in factorial
ANOVA, analysis of covariance and regression. The sum-of-squares term for the numerator of
the F test can always be written, as shown at the bottom of Table 3.2, simply as the sum over
all observations in the study of the squared difference in the predictions of the two models,
that is,

Ex—Ep= ) (Fe — %)’ (64)
all obs
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TABLE 3.2
COMPARISON OF THE DIFFERENCE IN SUM OF SQUARED ERRORS FOR
VARIOUS DESIGNS
Difference in Adequacy of Models
Situation Predictions (i.e., ErR — EF)

Full Model Restricted Model

p— n —
One-group case Y o 3 (¥ - po)?
&
— — l 2 r
Two-group case Y; Y Yy -7
=1i=1
— — ]a l"f
a-group case Y; Y Y 3@ -7y
j=1i=1
In general Pr r (Fr — fr)?
all obs
TABLE 3.3

GLOBAL AFFECT RATINGS FROM
MOOD-INDUCTION STUDY

Assigned Condition

Pleasant Neutral Unpleasant

[=,)

~N N L R
Wb b bW h Wh ARGV
PRON=WE R AOW

7 6.000 4.000 3.000
s; 1155 0.667 1.054

Numerical Example

Although different mood states have, of course, always been of interest to clinicians, recent
years have seen a profusion of studies attempting to manipulate mood states in controlled
laboratory studies. In such induced-mood research, participants typically are randomly as-
signed to one of three groups: a depressed-mood induction, a neutral-mood induction, or
an elated-mood induction. One study (Pruitt, 1988) used selected videoclips from several
movies and public television programs as the mood-induction treatments. After viewing the
video for her assigned condition, each participant was asked to indicate her mood on various
scales. In addition, each subject was herself videotaped, and her facial expressions of emotion
were rated on a scale of 1 to 7 (1 indicating sad; 4, neutral; and 7, happy) by an assistant
who viewed the videotapes but was kept “blind” regarding the subjects’ assigned conditions.
Table 3.3 shows representative data’ of these Global Affect Ratings for 10 observations per
group, along with the means and standard deviations for the groups. These are the data displayed
in Figure 3.1 on page 68.

TLFeBOOK



o2 CHAPTER 3

As had been predicted, the mean Global Affect Rating is highest in the pleasant condition,
intermediate in the neutral condition, and lowest in the unpleasant. We need to carry out a
statistical test to substantiate a claim that these differences in sample means are indicative of
real differences in the population rather than reflecting sampling variability. Thus, we wish to
compare the models shown in Equations 54 and 55:

Full model: Y;; = p; + &5, (54, repeated)

Restricted model: Y;; = u + &5, (55, repeated)

To compute the value in this situation of our general form of the F statistic
_ (Er — Ep)/(dfy — df)
Er/dfy

we begin by computing EF, that is, the sum of squared errors for the full model or the sum of
squared deviations of the observations from their group means:

Er=3) > ¢, =) ) (Vy-Y) (65)

J

F

(22, repeated)

As shown in Table 3.4, this involves computing an error score for each subject by subtracting
the group mean from the observed score, for example, ¢;; = ¥;; — ¥) = 6 — 6 = 0. When

TABLE 3.4
COMPUTATIONS FOR ONE-WAY ANOVA ON MOOD-INDUCTION DATA

Condition
Pleasant Neutral Unpleasant

fia

€i1

Myl
S
<
3

Y
(M
=
w
Y
o

[47) €3

-1
-2

-1
-1

RS BEN IR BT N BN I 2 =
—
T S N N
Vb bR WPRWaRRWL
|
P OO OR,O=,OQO
—_ o oo, O OO
PO~ WA RPN WLWW
—— B (O e e - OO

!
Il
[=

™
1l

I~y
~

N
I
N
I
B
~|

L
|
w

™
Il

—
o

Y =4.333

Er=YY e =2 (¥ —Y) =12+ 4+ 10 = 26(= SSu)

Er — Er =n L (T; — ¥)? = 10[(6 — 4.333)” + (4 — 4.333)" + (3 — 4.333)?)
= 10{2.773 4 0.111 + 1.778] = 46.67(= $Ss)

dfe =N —a=30-3=27=df,)

dfg—dr=(N—D)—(N—-a)=a—1=3—1=2=dfy)

p o (Er—Ep)/(dfg —dfp) _ 46.67/2 _ 23.33
- Er/dfy T 26/27 963

=24.23, p < .001

TLFeBOOK



INTRODUCTION TO MODEL COMPARISONS 93

cach is squared and summed within each group, we obtain values of 12, 4, and 10 for the
pleasant, neutral, and unpleasant conditions, respectively. Thus, Eg, or what would usually be
denoted SSw, is 26.

To compute the numerator of our F, we can use the form of Eg — Er shown in Equation
58 to determine how much more error our restricted model would make:

Er—Er=n Z(Yj -7y (58, repeated)
=

As shown in Table 3.4, this sum of squared deviations of group means around the grand mean,
weighted by number per group, is 46.67. This value of Eg — Ep is usually called SSg.

The values of our degree-of-freedom terms are as usual dependent on the number of obser-
vations and the number of parameters estimated in each model. The degrees of freedom for
the denominator of our test statistic is the total number of observations in the study, 30, less
the number of parameters estimated in the full model, 3. This dff of 27 is usually denoted dfw.
The degrees of freedom for the numerator is simply the number of groups less 1, or 2. This
dfg— df is usually denoted dfp.

We are now ready to combine the values we computed to determine the value of our test
statistic. As shown at the bottom of Table 3.4, the numerator of our F, usually denoted MSg, is
23.33, and the denominator of our F, usually denoted MSw, is .963. Note that we could have
computed this denominator directly from the within-group standard deviations of Table 3.3 by
using Equation 63:

E 52
é = __Z; J (63, repeated)
_ (1.155)% +(0.667)* +(1.054)
- 3
133440444+ 1.111
N 3
2.890
=" = 963
3

Combining our values of MSg and MSw, we obtain an F value of 24.23. Consulting Appendix
Table A.2, we note that there is not an entry for denominator df of 27. In such a case,
we would use the entries for the closest smaller value of denominator degrees of free-
dom. This means using the critical value for an F with 2 and 26 degrees of freedom,
which is 9.12 for p = .001. Naturally, for most actual analyses, you will likely be using
a computer program that yields exact p values for your particular degrees of freedom. In
any case, the obtained F of 24.23 is highly significant. In a report of this analysis, this
would be indicated as F(2,27) = 24.23, p < .001. Thus, we would conclude that the re-
stricted model should be rejected. We do have statistical grounds for arguing that the mood-
induction treatments would produce different population means on the Global Affect Rating
Scale.

A Model in Terms of Effects

Models can be written in different ways. Until now, we have used cell mean or ¢ ; models. Our
full models have had one parameter for each cell of the design, with the parameter being the
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population mean for that condition. Although this type of model works well in the one-way
case, it proves unwieldy in the case of factorial designs; thus, in later chapters, we generally
use a different approach that makes it easier to talk about the effects of the factors under
investigation. To anticipate those developments, we introduce here a full model in terms of
effects, or an «; model. Note that «; (read “alpha sub j”) is used here as a parameter in a
model, and as such is totally unrelated to the use of « as a symbol for the probability of a
Type I error.

We present the effects model for the general one-way situation in which a treat-
ment conditions or groups are being compared. The full model for this situation can be
written

Yi=p+a;+e; (66)

where, as before, Y;; and g; are, respectively, the observed score and error of the model
for the ith subject in the jth group. The unknown parameters are now p, which represents a
grand mean term common to all observations, and the a ojs—that is, o1, &, o3, . . ., &, €ach
of which represents the effect of a particular treatment condition. We combine these a + 1
parameters to arrive at predictions for each of the a groups. Because we have more parameters
than predictions, we must impose some additional constraint to arrive at unique estimates of
the parameters. Simply requiring the effect parameters to sum to zero is the constraint that
results in the parameters having the desired interpretation. This condition that the parameters
are required to meet, namely,

iaj =0 67)
j=1

is what is termed a side condition (see discussion of Equation 4), a technical constraint adopted
to get a desired unique solution to an estimation problem. This is in contrast to a restriction
with substantive meaning like our null hypotheses.

As you know, deviations from a mean sum to zero, and it is as deviations from a mean that
our effect parameters are defined. This can be seen easily by comparing the effects full model
with the cell mean model:

Yi=pu+ojte (66, repeated)
Yij = pj+ & (54, repeated)

The grand mean term plus the effect parameter of Equation 66 is equivalent to the cell mean
parameter of Equation 54, that is,

Mt = (68)
Subtracting u from both sides of Equation 68, we have
aj=[;— U (69)

Thus, the effect of a particular treatment is defined here as the extent to which the population
mean for that condition departs from the grand mean term. Furthermore, the constraint in
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TABLE 3.5
POPULATION MEANS AND EFFECT
PARAMETERS FOR FOUR TREATMENTS

Condition Mean pu;  Effect o
1. Educational program 32 +9

2. Standard abstinence program 20 -3

3. Antabuse therapy 18 -5
4. Controlled drinking 22 -1
Mean of means u 23

Equation 67 that the effects sum to zero can be stated in terms of the deviations of Equation
69, that is,

D wi—m=0 (70)
j=1

which, when one solves for u, implies that the grand mean term in the effects model is just the
mean of treatment population means, that is,

a
DK
=1

a

(71

M:

To illustrate, assume that the population means were for four treatments for alcohol abuse.
The dependent variable is number of drinks per week, which is assessed 1 year after the
end of treatment. Assume that the population means for the four treatments are as shown in
Table 3.5. The mean of the treatment-population means, which here is 23 drinks per week,
serves as the value of u in Equation 66 for this domain and is the baseline against which
the effects of the treatments are evaluated. For example, the effect of treatment 3, Antabuse
therapy, was to lower the mean 5 drinks per week below this baseline, that is, a3 = pu3 — u =
18 —23 = -5.

Parameter Estimates

As usual, we estimate the parameters of our model to minimize the squared errors of
prediction. For the effects model, the predictions are

by =n+a
which means that the least-squares estimates of x4 and «; are arrived at by minimizing

Y3 =Ny - =YY vy - @a+apr (72)
i i J i J i

Because we have enough free parameters to have a different prediction for each cell (i.e.,
for each group), it should not be surprising that the way to minimize these squared errors of
prediction is to choose our parameters in such a way that they combine to equal the observed
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cell means, that is,

7y =

o]
i

p+a; (73)

Because the effects are required to sum to zero across groups, adding these predictions over
the a groups indicates that the least-squares estimate of u is the average of the observed cell
means, that is,

37,
p== (74)
a
‘We designate this sample mean Y,, that is,
Y
7, = (75)
a

with the subscript # being used to indicate it is a grand mean computed as an unweighted
average of the group means. In cases in which the same number of subjects is observed in each
group, this mean of the means, Y., equals the conventional grand mean of all the observations,
Y. In the case in which there are different numbers of observations per group, these values can
differ.® From the viewpoint of the restricted model, each subject, regardless of his or her group
assignment, is sampled from one and the same population and thus should contribute equally
to the estimate of the population’s mean. However, in the full model, the logic is that there
are as many populations as there are groups, each with its own mean. Thus the “grand mean”
is more reasonably thought of as a mean of the different group means. Substituting this value
into Equation 73 and solving for &; yields

&=
=~

@; = (76)
Notice that these least-squares estimates of 1 and «; indicated in Equations 74 and 76 are
equivalent to the definitions in Equations 71 and 69, respectively, with sample means substituted
for population means.

Computation of the Test Statistic

The observed F value for a model comparison involving a model stated in terms of effects is
identical to that for a model comparison using the equivalent cell means model. For a one-way
ANOVA, the models to be compared using an effects approach are

Full model : ¥;; = u+a; + ¢ (66, repeated)
Restricted model : ¥;; = p + ¢ (55, repeated)

The predictions of the full model, as shown in Equation 73, are the observed group means, just
as was true for the cell means full model of Equation 54. The restricted models are identical
in the effects and cell means cases; thus, the predictions are, of course, identical, namely the
grand mean of all observations. The degrees of freedom associated with this common restricted
model is N — 1.
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The one point of possible confusion concerns degrees of freedom of the full effects model.
Although as written in Equation 66, this model appears to require a 4 1 parameters (@ «s and
1p1), implicit in the model is the side condition that the sum of the as is zero. This implies
that one of these parameters could be eliminated. For example, we could say that an arbitrarily
chosen one of the as—for example, the final one—is equal to the negative of the sum of the
remaining as:

a—1
==Y a 77

i=1

Thus, in reality there are g parameters in our full model, one w parameter, and @ — 1 inde-
pendent o ;5. Because all terms making up the general form of our F statistic—namely Eg,
EF, dfg, and dfp—are the same in the effects and cell mean cases, the observed F's must be
the same.

Furthermore, in the case in which there are an equal number of observations in each group,
the sum of squares, Er — EF, for the numerator of our F test can be expressed simply in terms
of the estimated effect parameters. In particular, this difference in errors for our two models is
just the sum over all observations of the estimated effects squared, that is,

Er — Ep = Z iaﬁ (78)

j=1i=1

Because the estimated effect is the same for all individuals within a group, we can replace the
summation over i by a multiplier of »:

a
Er~Er=n) & (79)
ji=1

For example, if the means shown in Table 3.5 were sample means and estimated effects from a
study based on 10 observations per cell, we could compute Eg — Er directly from the estimated
effects:

10[9% + (=3)* + (=5)* + (-1)*]
= 1081 + 9+ 25+ 1) = 10(116)
= 1160

ER — EF

In the unequal-n case, we still use the general principle that the difference in the models’
adequacy can be stated in terms of the difference in their predictions:

Ex—Er= ) (%) (64, repeated)
all obs

Because the predictions of the effects full model are the group means (see Equation 73), this
can be written in terms of means in exactly the same way as in the cell mean model:

a

Ex — Ep= Y nj(¥; - ¥) (57, repeated)
j=1
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Having now developed our model-comparison procedure using parameters reflecting the
effects of the treatments, we now turn to alternative ways of characterizing the strength of
effects of the treatments being investigated.

ON TESTS OF SIGNIFICANCE AND MEASURES
OF EFFECT

Up to this point, we have more or less presumed that conducting a test of significance is an
effective way of summarizing the results of an experiment. We must now explicitly consider
this presumption and discuss alternative approaches to summarizing results.

As noted in Chapter 2, there has been controversy surrounding hypothesis testing since the
days of Fisher. Although there have been critics expressing concerns within the methodolog-
ical literature about statistical hypothesis testing for decades (cf. Morrison & Henkel, 1970),
more recently it seems that both the prevalence and intensity of the criticisms have increased
(cf. Cohen, 1994; Schmidt, 1996). Some of the criticisms offered have been as mundane as
asserting that aspects of the approach are not well understood by some of its users. The prime
example cited is the misunderstanding of a test’s p value as the probability that the results
were due to chance. That is, some researchers (and textbook writers!) occasionally have made
the mistake of saying that the p value is the probability that the null hypothesis is true, given
the obtained data. Instead, as we tried to make clear by our development of p values through the
discrete probability examples in Chapter 2, the p value is the probability of obtaining a
test statistic as extreme or more extreme than that observed, given that the null hypothesis
(or restricted model) is assumed to be true. Granted, chance is involved, but that is in the sam-
pling variability inherent in obtaining data from only a sample. Thus, a p value from a standard
hypothesis test is always a conditional probability of data given the null hypothesis, not a con-
ditional probability of the null hypothesis being true given the data. (Conditional probabilities
of the hypotheses given the data can be yielded by a Bayesian analysis, but such analyses
require one to specify in advance the prior probability of the truth of different hypotheses; see
Howard, Maxwell, & Fleming, 2000.) We believe that the appropriate response to a misun-
derstanding of p values is simply to try to prevent such misunderstanding in the future, not to
abandon the statistical testing methodology.’

Several other more forceful criticisms of hypothesis testing have been advanced as well.
(Among the more helpful reviews and responses to these criticisms are those offered by
Abelson, 1997; Baril & Cannon, 1995; Chow, 1988; Frick, 1996; Greenwald et al., 1996;
Hagen, 1997; Nickerson, 2000; and Wainer, 1999.) The major difficulty, in the eyes of some,
is the role played by the size of the sample in determining the outcome of a test. As we develop
more explicitly later in this chapter, other things being equal, the magnitude of a test statistic
is directly related to the size of the sample. Thus, a treatment condition and a control condition
could result in means differing by the same amount in each of two studies, yet the effect could
be declared “highly significant” in one study, while not approaching significance in the other
study, simply because the first study included more participants. Given the fact that the number
of participants in a study is arbitrary, it is reasonable to ask whether something does not need
to be done to prevent this arbitrariness from affecting the directions in which significance tests
push science. Regularly reporting one or more of the measures introduced in the following
sections would help considerably in telling the rest of the story about an effect besides the
statistical conclusion about the difference in population means.

The “sample-size problem” relates to the validity of these statistical conclusions. However,
from our viewpoint, that smaller and smaller differences can be detected with larger and larger
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samples is not so much a problem as the way it should be. As more members of each population
are sampled, it makes sense that your estimate of each mean should be more precise and that
your ability to discriminate among differing means increases. Again, what is needed is avoiding
confusing statistical significance with something else, namely how big the effect or difference
between groups is.

Another common criticism is that the process of hypothesis testing is necessarily arbitrary
because the null hypothesis is never true (Bakan, 1966; Cohen, 1994), and proposals have
been offered in response regarding how the logic of hypothesis testing could be modified (e.g.,
Harris, 1997; Jones & Tukey, 2000; Serlin & Lapsley, 1985). The concern is that the restriction
of certain population parameters being exactly equal will virtually never be satisfied, so the
only question in doing a significance test is whether the investigator invested enough effort
recruiting subjects to detect the particular inequality. Although it is plausible that any treatment
will produce a detectible difference on some variable, it is not clear that that difference will
be on the particular dependent variable whose population means are being investigated in a
study. As Hagen suggested,

A few years ago, visual imagery therapists were treating AIDS patients by asking the
patients to imagine little AIDS viruses in their bodies being eaten by monsters. Under
such a treatment, both psychological and physiological changes would take place. . .. But
many would question whether or not such changes would be reflected in the participant’s
T-cell count. (1997, p. 21)

A somewhat different line of attack is to fault significance tests for diverting attention from
other questions. For example, significance testing conventionally has focused on whether the
p value meets the accepted probability of a Type I error, while virtually ignoring the probability
of a Type II error or conversely the power of the test (cf. Cohen, 1977). Although admittedly
low power is a common problem, it is the machinery of inferential statistics that provides
methods for assessing the extent of the problem or for determining appropriate sample sizes
so as to address the problem.

These various concerns about p values, sample size, effect size, and power relate to the more
general question of the role of statistical tests in science. Various kinds of tests certainly can be
a part of the reasoned arguments advanced in support of a theoretical conclusion. In those areas
of science where theory is refined to the point of making mathematically precise predictions,
the statistical tests can be tests for goodness-of-fit rather than tests of null hypotheses. Even
given the imprecision of most psychological theorizing and recognizing that experiments
necessarily involve imperfect embodiments of theoretical constructs, nonetheless, tests of null
hypotheses shed light on the plausibility of explanatory theories by providing a basis for
choosing between two alternative assertions. The assertions concern whether the data follow
the pattern predicted by the theory, such as, “The mean in the experimental group will be higher
than in the control” (see the discussion of the syllogisms of confirmation and falsification in
Chapter 1), and it is the significance test that permits the decision of whether the data conform
to the predicted pattern (cf. Chow, 1988, Frick, 1996; Wainer, 1999). As Abelson (1997)
argues, the categorical statements hypothesis tests encourage permit us as a field to talk about
novel and interesting phenomena. They help buttress the claims of credibility and reliability
researchers wish to make for their findings, and thus form part of a principled argument for
consideration by a community of scholars. The results of the test, of course, are not the only
dimensions along which to evaluate the quality of a research-based claim,!® but nonetheless
have a place.

It must be acknowledged that despite one’s best efforts to control Type I and Type II errors
that the accept—reject decisions are at times in error. Although perhaps not fully offsetting the
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costs of such errors, research studies can at least ameliorate them to some extent by reporting
measures of effect in conjunction with statistical tests. Such measures can then contribute to
the building up of cumulative knowledge by becoming input for meta-analyses that combine
estimates of the magnitude of effects across studies, regardless of the correctness of the decision
reached in any individual hypothesis test (cf. Schmidt, 1996).

Of course, experiments serve other purposes besides theory testing. Generally, the empirical
question itself is of interest apart from the question of why the effect occurs. Perhaps most
obviously in applied research such as evaluation of clinical or educational treatments, the
empirical questions of which treatment is most effective and by how much are, in fact, of
primary interest. To have an estimate of the magnitude of the effect is critical particularly if
decisions are to be made on the basis of an experiment about whether it would be cost effective
to implement a particular program (Kirk, 1996).

Thus, for both theoretical and practical reasons, the consensus that seems to have emerged
from the debate in recent years has been in favor of maintaining hypothesis tests but supple-
menting them with an indication of the magnitude of the effect (e.g., Abelson, 1997, Estes,
1997, Frick, 1996; Hagen, 1997; Nickerson, 2000; Rosnow & Rosenthal, 1989; Scarr, 1997;
Wainer, 1999). As the APA Task Force recommended, “always provide some effect-size esti-
mate when reporting a p value” (Wilkinson et al., 1999, p. 599).

Thus, it is to a discussion of such measures of effects that we now turn.

MEASURES OF EFFECT

As mentioned previously, the numerical value of a test statistic is determined as much by the
number of participants in the study as it is by any absolute measure of the size of the treatment
effect. In particular, the two factors multiply together to determine the test statistic:

Test statistic = Size of effect x Size of study (80)

The size-of-study term is some function of the number of participants and is often a degrees-
of-freedom term. The size-of-effect term can be expressed in different ways in different con-
texts. Rosenthal (1987, pp. 106—107) presents several forms of the general equation shown
in Equation 80 for x2, z, independent-groups ¢, dependent-groups ¢, and F tests. We illustrate
first the size-of-effect term with our general form of the F test. Recall that we began the devel-
opment of the F test in the one-sample case by using the proportional increase in error, which
was defined as follows:

increase inerror Ex — Ef

proportional increase in error = 81)

minimal error ~ Ep
Using this measure of how much more adequate the full model is as a size-of-effect index, we
express our F in the form of Equation 80 as follows:

_ Er — Ep « dfy
Er dfx — dfy

This form of the F underscores the general principle that one can get larger test statistics either
by increasing the effect size or by increasing the study size.

There are a number of different ways of assessing effects. Yeaton and Sechrest (1981)
make a useful distinction between two broad categories of such measures: those that measure

F (82)
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effect size and those that measure association strength. Measuring effect size involves examin-
ing differences between means. Measuring association strength, however, involves examining
proportions of variance and is perhaps most easily described using the terminology of corre-
lational research. One perspective on the distinction between these kinds of measures is that
“a difference between means shows directly how much effect a treatment has; a measure of
association shows the dependability or uniformity with which it can be produced” (Yeaton &
Sechrest, 1981, p. 766). The proportional increase in error of our F test would be considered an
association measure. Although association measures are closely related to test statistics (Kirk,
1996, reports that more than 80% of the articles reporting a measure of effect use some kind
of association measure), often the simpler, more direct effect-size measures are more useful in
interpreting and applying results. We consider such effect-size measures first.

Measures of Effect Size
Mean Difference

The simplest measure of the treatment effect is the difference between means. Such a sim-
ple measure is most appropriate when there are only two groups under study. The treatment
effect in the population then could be described simply as p) — p;. The difference between
the sample means Y, — Y is an unbiased estimate of the population difference. One ad-
vantage of this effect measure is that it is on the same meaningful scale as the dependent
variable.

For example, Gastorf (1980) found a Y; — Y, difference of 3.85 minutes in a comparison
of when students who scored high on a scale of Type A behavior arrived for an appointment as
opposed to the later-arriving, low scorers on the scale. As Yeaton and Sechrest (1981) point out,
this sort of effect measure can easily be translated in a meaningful way into applied settings.
A difference of 3.85 minutes in arrival time is of a magnitude that, for a firm employing 1,000
workers at $10 an hour, would translate into $150,000 of additional work per year, assuming
the difference manifested itself only once daily.

When there are more than two conditions in a one-way design, then there are, of course,
multiple mean differences that may be considered. Often, the range of means is used as the
best single indicator of the size of the treatment effect. For example, using the data from the
mood-induction study presented in Table 3.3—in which the means for the pleasant, neutral, and
unpleasant conditions were 6, 4, and 3, respectively—we could easily compute the difference
between the largest and smallest means, Ymax — ¥ min:

Thus, the effect of receiving a pleasant-mood induction as opposed to an unpleasant-mood
induction amounted to a difference of 3 points on the 7-point Global Affect Rating Scale.
Chapter 5 considers various ways of testing differences between pairs of means chosen like
these to reflect the range of effects present in a study.

Estimated Effect Parameters

An alternative solution when there are more than two groups is to describe the effects in
terms of the estimates of the ¢; parameters in the full model written in terms of effects:

Yy=p+a;+e; (66, repeated)

TLFeBOOK



102 CHAPTER 3

As you know, these effect parameters are defined as deviations of the treatment means from the
mean of the treatment means. They are then smaller on the average than the pairwise differences
between means we considered in the previous section. For example, in the mood-induction
study, the mean of the treatment means was 4.333, resulting in estimated effects of +1.667,
—.333 and —1.333 for the pleasant, neutral, and unpleasant conditions, respectively. Thus, the
neutral condition is seen to be somewhat more like the unpleasant treatment than the pleasant
treatment in that its effect is to produce a mean Global Affect Rating that is .333 units below
the grand mean of the study.

If a single measure of treatment effect is desired, the standard deviation of the «; parame-
ters could be used to indicate how far, on the scale of the dependent variable, the typical
treatment causes its mean to deviate from the grand mean. In fact, we use this measure in
developing a standardized measure of effect size in our discussion of power at the end of the
chapter.

The Standardized Difference Between Means

The measures of effect size considered thus far have the advantage of being expressed in
the units of the dependent variable. That is also their weakness. In most areas of the behavioral
sciences, there is not a single universally accepted dependent variable. Even within a fairly
restricted domain and approach, such as depression as assessed by the individual’s self-report,
there typically are various measures being used in different research laboratories and clinics
across the country. As a result, to compare effect sizes across measures, it is necessary to
transform them to a common scale. In fact, part of the motivation for developing standardized
measures of effects was to permit their use in quantitative research integration studies or
meta-analyses, as suggested by Glass (1976) and others. The goal then is to have a standard
scale for effects like the z-score scale, and the solution is achieved in the same way as with
zscores; that is, divide by the standard deviation so that differences can be expressed in standard
deviation units. Following Cohen (1988, p. 20), we denote this standardized difference between
two population means as d:

d = (11 — w2)/o; (83)

where o, is the common within-group population standard deviation. We can estimate this
standardized effect measure by substituting sample statistics for the corresponding population
parameters, and we denote this estimate d:

d=(¥;-Y,)/S (84)

where, following Hedges (1981, p. 110), S is the pooled within-group standard deviation
estimate. That is, S? is the weighted average of the sample within-group variances:

@ Y- l)sjz

S =1 (85)

We first encountered such pooled variance estimates in the two-group case (see Equation 39).
As discussed there, we can express such within-group variances estimates either in terms of
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the full model’s sum of squared error or in terms of traditional terminology, that is,

» Er S8,
S pr MS,, (86)

For the mood-induction data in Table 3.3, we found the average variance to be .963
(see bottom of Table 3.4, p. 92), implying S = .981. With this as the metric, we can say
that the pleasant condition resulted in a mean Global Affect Rating that was two stan-
dard deviations higher than that in the neutral condition: d = (¥, — ¥,)/S = (6 — 4)/.981 =
2.038. Given Cohen has suggested that in a two-group study a d value of .2 constitutes a small
effect, a d value of .5 is a medium effect, and a d value of .8 is a large effect (1988, p. 241f.),
this represents a very large effect.

Hedges (1981) determined the mathematical distribution of d values!'! and extended this
work in several subsequent publications (see, e.g., Hedges, 1982, 1983). The use of a stan-
dardized effect-size measure in research integration is illustrated by Smith and Glass’s (1977)
review of psychotherapy outcome studies, by Rosenthal and Rubin’s (1978) discussion of
interpersonal expectancy effects—for example, the effect of teachers’ expectations on stu-
dents’ gains in intellectual performance—and by Bien, Miller, and Tonigan’s (1993) review of
brief interventions for alcohol problems, among a host of other quantitative reviews.

Like the previous measures we have considered, standardized differences can be adapted
for use as summary measures when there are more than two treatment conditions. Most simply,
one can use the standardized difference between the largest and smallest means as the overall
summary of the magnitude of effects in an a-group study. Again following Cohen (1988), we
denote the standardized difference that is large enough to span the range of means d. This is
estimated by the standardized range of sample means:

j = (Ymax - ?min)/S (87)

For the mood-induction study, we would have 4 = (6 — 3)/.981 = 3.058. This is an unusually
large effect.

We use din the final section of the chapter as part of a simplifying strategy for approximating
the power of a study. In addition, a multiple of d proves useful in follow-up tests after an a-group
ANOVA (see the discussion of the studentized range in Chapter 5).

There is a second way of adapting standardized differences for a-group studies, besides
ignoring all but the two most extreme means. As mentioned in the “Estimated Effect Param-
eters” section, one could use the standard deviation of the group means as an indicator of the
typical effect and divide that by the within-group standard deviation to get an overall standard-
ized effect. Because the conditions included in a study are regarded as all that are of interest,
we can treat the a levels as the population of levels of interest and define

f } 2
Op = Z(/'L]a_ ”)2 — Zaaj (88)

Then a standardized treatment standard deviation, which Cohen (1988, p. 274) denotes f,
would be

f=2n (89)

O¢

This particular summary measure figures prominently in our upcoming discussion of power.
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Measures of Association Strength

Describing and understanding relationships constitute a major goal of scientific activity. As
discussed in Chapter 1, causal relationships are of special interest. The clearest example of a
causal relationship is one in which the cause is necessary and sufficient for the effect to occur.
Unfortunately, in the behavioral sciences, we have few examples of such infallible, determin-
istic relationships. Rather, most phenomena of interest are related only probabilistically to the
causes to which we have access. Furthermore, the causes that we can manipulate or control in
an experiment may be only a small subset of the determinants of the scores on the dependent
variable. It is easy to lose sight of this, however, if one focuses exclusively on hypothesis
testing. Computing a measure of the association strength between your independent variable
and dependent variable often provides a safeguard against overestimating the importance of a
statistically significant result.

Measures of association strength can be thought of as proportions. The goal is to indicate,
on a 0-to-1 scale, how much of the variability in the dependent variable is associated with the
variation in the independent-variable levels.

Our models’ perspective allows us to arrive at such a proportion immediately in terms of
the measures of inadequacy of our two models. The proportion is to indicate how much
knowledge of group membership improves prediction of the dependent variable. That is,
we want to express the reduction in error that results from adding group membership pa-
rameters to our model as a proportion of the error we would make without them in the
model. This proportionate reduction in error (PRE) measure is most commonly designated
R%:

_ Er—Ep
==

R? (90)
where the restricted model is a grand mean model and the full model is a cell means model,
as in Equations 55 and 54, respectively. This ratio is a descriptive statistic indicating the
proportion of variability in the observed data that is accounted for by the treatments. R? is very
commonly used in the context of multiple regression, which we develop in second statistical
Tutorial on the data disk, to indicate directly a model’s adequacy in accounting for the data. As
we develop there, R? is the square of the correlation between observed scores and predicted
scores. It is sometimes denoted 72 (lowercase Greek eta, hat, squared) (Maxwell, Camp, &
Arvey, 1981, p. 527).

There is no question of the legitimacy of R? as a descriptive index for sample data (cf. Hays,
1994, p. 402). Because of its clear interpretation and the fact that, unlike a test statistic, it does
not tend to increase with sample size, R? has much to recommend it as a useful supplement
to the p value of a test. However, other measures of association, most notably &? (lowercase
Greek omega, hat, squared), are available; their rationale and advantages relative to R? merit
consideration. One can argue, as Hays (1994, p. 332) does, that what is of most interest is the
proportion of variance in the population that would be accounted for by the treatments. If this
is granted, then characteristics of R? as an estimator must be considered. In this regard, recall
that the numerator of R? depends on the variability among the group means:

Er — Er = Z Z(YJ —-Y) (see 56)
7

However, even if the population-group means were identical, the sample means would almost
certainly differ from each other. Thus, although in the population the treatments may account for
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no variance, R? would nonetheless be expected to be greater than zero because of this sampling
variability in the observed means. This positive bias of R?, or tendency to systematically
overestimate the population proportion, in fact is present whether the population-treatment
means are equal. It turns out that the extent of positive bias of R? can be estimated and is a
decreasing function of sample size.

The other measures of association like &? attempt to correct for this positive bias by shrinking
the numerator in Equation 90. Thus, the formula for &* for an a-group one-way ANOVA can
be written

o= Er-Ep)—(@— D(Eg/dff)

oD
ER + (Er/dfp)
or in terms of the traditional ANOVA notation in which &? is typically described:
—(a-1
@2 — SSB (a )MSW (92)

SSTota + MSw

Although it is clear from comparing Equations 90 and 91 that ®? is smaller than R?, it is
not obvious how much less. For all practical purposes, the amount of shrinkage of R* can
be estimated using some early work by Wherry (1931). Wherry showed that the proportion
of unexplained variability in the population is actually larger than 1 — R? by a factor of
approximately dfg /df. From this, we can estimate the adjusted (or shrunken) R?, which we
denote B2, as follows:

%
dfy

Maxwell et al. (1981) review work showing that the value of R? is typically within .02 of
A2
w”.

We illustrate numerically how these association-strength measures compare using the mood-
induction data in Table 3.4 (p. 92). From the values of Er = 72.67, Ey = 26, dfg = 29, and
dfr = 27, we can easily compute the value of R? from Equation 90

N —1
BR=1- 1—R2)=1—%—_—a(1—R2) 93)

_ Er—Ep _7267-2600 46.67 _

R? = = = .642
Er 72.67 72.67 64
the value of @* from Equation 91
o2 — Er— Ep) — (@ — 1)(Er/dfy)
Er + (Er/dfy)
_ (72,67 - 26.00) — (2)(26/27) _ 46.67 — 1.926 — 608
- 72.67 + 26/27 T O72.67+.963
and the value of 8? from Equation 93
- N-1 29
RR=1-——1-RH=1-—(1-.642
= a( ) 27( 642)

= 1-1.074(.358) =1 — .384 = .616
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In this case, the mood-induction treatments appear to account for more than 60% of the
variability in the population as well as the sample. Although the differences among the three
association-strength measures are small here, R? can be considerably larger than &? or R? if
the sample sizes are small, especially when 1 — R? is relatively large. In fact, & and R? can
yield values that are less than zero, in which case the estimated population proportion would
be set equal to zero.

Evaluation of Measures

Measures of association strength provide an additional perspective on the amount of control
your treatment manipulation has over the dependent variable. Like the measures of effect size,
association measures cannot be made to look impressive simply by running more subjects.
However, unlike the effect size indices, association measures are assessed on a bounded,
unitless metric (that is, a 0-1 scale); further, they clearly reflect how much variability remains
unaccounted for, besides reflecting the treatment effects.

Despite these advantages, association measures have been criticized on a variety of fronts
(e.g., Abelson, 1985; O’Grady, 1982; Rosenthal & Rubin, 1982; Yeaton & Sechrest, 1981).
First, the measures are borrowed from correlational research and are less appropriate for an
experimental situation where certain fixed levels of an independent variable are investigated
(Glass & Hakstian, 1969). As O’Grady (1982, p. 771{f.) notes, the number and choice of levels
of the factor under investigation are decided on by the experimenter and can greatly influence
the PRE measures. Including only extreme groups in a study of an individual difference variable
would tend to exaggerate the PRE. Conversely, failing to include an untreated control group
in a clinical study comparing reasonably effective treatments might greatly reduce PRE, but
would not alter the actual causal powers of the treatments. (Alternative ways of estimating the
proportion of variance accounted for by a factor that adjust for the effects of other causes is
introduced in Chapter 7 in the context of two-way designs.)

Thus, the arbitrary-choice-of-levels problem relates to the more general difficulty of at-
tempting to infer the importance of a factor as a cause of an outcome from a PRE measure. The
conventional wisdom is that correlations that indicate a factor accounts for, say, 10% or less of
the variability in an outcome are of trivial importance practically or theoretically. For example,
this was the rationale of Rimland (1979) in suggesting that a review of 400 psychotherapy
outcome studies showing such an effect sounded the “death knell” for psychotherapy. Simi-
larly, the Type A effect on arrival time mentioned previously was noted by Strahan (1981) as
corresponding to an R? of about .02.

In fact, if one pursues research in the human sciences, one is forced in many areas to proceed
by the cumulation of knowledge based on effects of this magnitude. The most important reason
for this is that the effects of interest—for example, psychological adjustment—are determined
by a large number of factors. In addition, the measure of the construct of interest may be of low
reliability or validity. These points have been illustrated in a compelling fashion by authors who
have cited effects of factors recognized to be important despite their low PREs. For example,
Rosenthal (1987, p. 115) notes that a placebo-controlled study of propranolol was halted by
the National Heart, Lung, and Blood Institute because “the results were so favorable to the
treatment that it would be unethical” to withhold the treatment from the placebo-controlled
patients. The effect of the drug was to increase survival rate of patients by 4%, a statistically
significant effect in a study of 2108 patients. The compelling argument to make the drug
available to all patients is hardly offset by the fact that it accounted for only 0.2% of the
variance in the treatment outcome (living or dying). Many psychological variables of interest
may have as many potential causes as living or dying, thus limiting correlations to similarly
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low levels as in the propranolol study. What is more, our constructs are generally measured
with much lower reliability or validity than the outcome variable in that study, which further
limits the strength and interpretability of the effects that can be observed. Such psychometric
issues regarding association measures have been helpfully reviewed by O’Grady (1982).

A final difficulty with the measures of explained variability is the nature of the scale. The
benefit of having a 0-to-1 scale is achieved at the cost of working from ratios of squared units.
The practical implications of a value on such a scale are not as immediately obvious as one
on the scale of the dependent variable. The squaring tends further to make the indices take
on values close to zero, which can result in effects being dismissed as trivial. An alterna-
tive measure that can alleviate these difficulties in certain situations is discussed in the next
section.

With these caveats in mind, PRE measures can be a useful adjunct to a test of significance.
Because the population is typically of more interest than the sample, and because the bias in the
sample R? can be substantial if N is, say, less than 30, some type of adjusted R? is preferred
for general use. The &? measure satisfies this and seems to be more widely used than the R?
measure. In addition, general algorithms have been developed to calculate ®? in complex de-
signs. Thus, we recommend &? for inferential purposes. (We defer until Chapter 10 discussion
of the related idea of an intraclass correlation, which is useful when a factor is treated as a
random rather than a fixed effect.)

Alternative Representations of Effects

Various other tabular, numerical, and graphical methods have been suggested for communicat-
ing information about treatment effects. We describe some of these briefly and refer the reader
to other sources for more detailed treatments.

Confidence Intervals

Thus far in our discussion of measures of effect, we have used the sample mean in a condition
as the indicator of the population mean. Although Y; is always an unbiased estimator of ;,
it is important to remember that as an estimator Y; can also be characterized by its variance.
That the variance of a sample mean a% is directly related to the variance of the population and
inversely related to the number of scores in the sample is one of the most fundamental ideas
in statistics, that is,

01% = 0‘62 /n; (94)

The population variance may be estimated by substituting our observed value of mean square

error Ep/dfy = MSw for o2. Dividing this estimated population variance by #; in turn yields

an estimate of a%_ , the variance of the sampling distribution of ¥;, which we denote by s%_ ; that
is, ! !

sz = (Ev/dfp)/n; ©5)

A very useful way of characterizing the imprecision in your sample mean as an estimator of the

population mean is to use the standard error of the mean, that is, the square root of the quantity

in Equation 95, to construct a confidence interval for the population mean. Under the standard
ANOVA assumptions, this interval is the one centered around Y; and having as its limits the
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quantities

?j iw/Fl,dfFSYj (96)

where Fy 4 is the critical value from Appendix Table A.2 for the « level corresponding to
the desired degree of confidence (1 — &) x 100. For example, if the critical values for ¢ = .05
were to be used, the interpretation of the confidence interval is that if repeated samples of size
n; were observed under treatment j and such a confidence interval were constructed for each
sample, 95% of them would contain the true value of ;.

In estimating the standard error of the mean used in Equation 96, we were implicitly relying
on the assumption of homogeneity of variance, as we do throughout most of this chapter. That
is, the variance of the errors 02 in Equation 94 is assumed to be the same in all a populations,
so that the sample variances in the groups can just be averaged to arrive at a pooled estimate
of within-group variability (see Equations 39 and 63). As indicated in the next section, data
should be examined to see if this assumption is plausible, and if not, it may be more appropriate
to estimate the standard error of each group mean based only on the variance in that group
(ie., s%_ = S}g /nj). (Some computer programs, such as SPSS (as of this writing), use such
separaté variance estimates automatically when confidence intervals are requested in graphs.)

Indicators of the variability of the estimates of the difference between combinations of
means are considered in Chapters 4 through 6. These often are of as much interest as the
variability of the individual means.

Binomial Effect Size Display (BESD)

Rosenthal and Rubin (1982) suggest the Binomial Effect Size Display (BESD) as a simple
summary of results that would be easier to understand than the proportion-of-variance mea-
sures. In a sense, the measure represents a compromise: Like the measures of effect size, it uses
the dependent-variable scale (albeit in dichotomized form); like the measures of association,
it is based on a measure of relationship (albeit R instead of R?).

The BESD presents results in a 2 x 2 table. Table 3.6 shows an example. The virtual
doubling of the success rate as the result of the experimental treatment is one most would
agree is substantial, particularly if the outcome categories corresponded to “alive” and “dead.”
Surprisingly, the effect shown is one where the treatment condition accounts for 10% of the
variance. In fact, simply taking the difference in success rates here immediately gives the value
of R—that is, R = .66 — .34 = .32—which, when squared, yields the proportion of variance
accounted for, for example, RZ= (.32)2 =.10.

The limitations on the method are that you can consider only two conditions and two possible
outcomes. Because most outcomes of behavioral interventions are continuous variables, it is
necessary to artificially dichotomize the scores on the dependent variable—for example, those
above or below the overall median—to create a BESD. Rosenthal and Rubin (1982, p. 168)

TABLE 3.6
A BINOMIAL EFFECT SIZE DISPLAY

Outcome

Success  Failure

Condition Treatment 66 34 100
onditio Control 34 66 100
100 100 200
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make suggestions concerning refinements of the display, which depend on the form of the
dependent-variable distribution and the value of R. However, technicalities aside, in many
applied settings such a comparison of success rates may be the most meaningful supplement
to the hypothesis test for communicating clearly the treatment effect.

Common Language (CL) Effect Size

Like the BESD, the common language (CL) effect size and its variants attempt to summarize
the magnitude of a treatment effect on a standard unit scale ranging from O to 1. Whereas the
number between 0 and 1 that the BESD arrives at based on the difference in success rates
is taken as an estimate of a correlation, CL measures estimate a probability. As proposed by
McGraw and Wong (1992), CL is an estimate of the probability p that “a score sampled at
random from one distribution will be greater than a score sampled from some other distribution”
(1992, p. 361).

Assuming there are no ties, one can compute CL from two samples of data simply as the
proportion of times a score from the first group, ¥;1, is less than a score from the second, ¥;5.
With n; scores in Group 1 and n; scores in Group 2, this involves making n, x n, comparisons
of scores. If there are ties across the two groups, then the estimate of p is improved by increasing
the proportion of times Y;; is less than Y;-; by one half the proportion of times Y¥;; equals ¥;.

Assessing the magnitude of an estimate of p is aided by having a rough idea of what con-
stitutes a large effect. As mentioned above, Cohen’s (1988) rule of thumb is that a standard-
ized difference d between two population means (see Equation 83) of .2 might be termed a
small effect, a d value of .5 constitutes a medium effect, and a d value of .8 a large effect.
Assuming the population distributions are normal and have equal standard deviations, one can
determine by referring to a normal distribution table that the corresponding values of p would
be approximately .56 for a small effect, .64 for a medium effect, and .71 for a large effect.

A closely related measure championed by Norman Cliff (e.g., 1996, p. 124) is §, which is
defined as the difference between the Pr(Y;; > Y;,) and Pr(Y;; < Y;»»). It can be shown that
this measure is a linear transformation of p that measures effect size on a scale from —1 to +1
instead of O to 1.

Graphical Methods

Plots of data are, of course, useful in helping you and others gain an understanding of
the trends in your data. Rough, hand-drawn plots showing the individual data points in each
condition, as in Figure 3.1 (page 68), may bring to your attention differences in variability
across conditions or the occurrence of individual aberrant scores. (Statistical methods for
testing for heterogeneity of variance are considered in the following section.) Final plots in
the published reports of findings typically show only the means in the various conditions. The
informativeness of these plots can be increased by adding a vertical line going through the
point corresponding to the group mean to points one standard error above and below the mean.

Recent years have seen the development of a number of graphical methods (e.g., Tukey,
1977; Cleveland, 1985) that can be used to supplement standard plots of means. Most newer
methods involve plotting medians or other percentiles. For example, Tukey’s box graph in-
cludes five horizontal lines for each group corresponding to the 10th, 25th, 50th, 75th, and
90th percentiles for that group. An example of such a box plot is shown in Tutorial 1
on “Review of Basic Statistics.” Refer to the book by Cleveland (1985, pp. 1291ff.) for details.

As is perhaps obvious from the wide-ranging discussion of ways of characterizing effects,
the methods available are not nearly as standardized as the methods of testing for significance.
However, the message you have hopefully received is that, whether through graphs, tables,
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or numerical methods, measures of effect can carry useful information over and above that
contained in the p value of the test.

STATISTICAL ASSUMPTIONS

The F test for comparing two models is a very flexible procedure in that it can be used in a
wide variety of circumstances. However, for the expression

P o Er— Er)/(dfg — dfy)
o Er/dfy

to follow an F distribution, certain assumptions must be met. If these assumptions fail to
hold for one’s data, it is possible that the use of the F table in Appendix A (Table A.2) is
inappropriate. For example, suppose that an experiment is conducted comparing three groups
of six subjects each (18 subjects in all). Inspection of the F table shows that the critical F value
here is 3.68 for an « level of .05. In other words, the observed F value (Fg,s) exceeds 3.68
only 5% of the time (in the long run) if the null hypothesis is true. Using the value of 3.68 as
a critical value thus ensures that we make a Type I error only 5% of the time.

However, the assurance that Foy, exceeds 3.68 5% of the time depends on a set of statistical
assumptions. Without these assumptions, Fyps can exceed 3.68 either more or less than 5% of
the time, in which case our statistical analysis may produce either too many or too few Type I
eITOorS.

Three assumptions must be met for Fg,s to follow an F distribution:

1. The population distribution of scores on the dependent variable (¥) must be normal
within each group. In other words, if an entire population of scores were obtained in a
particular condition, it is assumed that those scores would be normally distributed

2. The population variances of scores on Y must be equal for all a groups. In
symbols, of =of = --- =07, where o represents the variance of Y scores for
groupj,and j =1,2,...,a.

3. The scores must be statistically independent of each other. More is said about this
assumption later.

These assumptions are often stated in terms of the errors (¢s) of the ANOVA model instead
of in terms of Y. In fact, these two formulations are identical for our model because the Y
scores are independent and normal and equally variable within groups if and only if the error
components in the model are themselves normal, equally variable, and independent of each
other.

Implications for Expected Values

These assumptions imply certain things about what population value is being estimated by the
numerator and denominator of our test statistic. Beginning with the denominator, as we have
noted (see Equation 63), Er/df or MSy, is an average of the sample variances for the groups in
the design. Within any given group j, the sample variance, sjz- computed by dividing the sum of
squared deviations from the group mean by n — 1, is an unbiased estimator of the population
variance for that group of and hence of the population variance of the errors ¢2. Using & to
indicate expected value (see the Appendix on “Review of Basic Statistics” or other standard
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sources such as Hays, 1994, p. 912ff.), we can write this as
&(sh) = o} 97

This in turn implies that the average of the sample variances in the denominator of our test is
also an unbiased estimator of population error variance, that is,

> (n; — 1)s?
& [E} = EMS,) = & |
dfe Z("j -1
J
Ynj ~ 1)&(sh)
= J
B Z(nj -1
J
> (n; = o}
_ — g2
= Z(nj m—p o; (98)
J

Under our assumptions, it is the case that Ep/dfr or MSw is an unbiased estimator of population
error variance regardless of whether the null hypothesis of equal population means is true or
false.

However, the numerator of our test statistic estimates one value when the null hypothesis
is true and other values when it is false. In particular, it can be shown (e.g., Kirk, 1995,
pp. 89-91) that the expected value of MSg, the numerator of the F, is

3 nja?
& EL—_E_E = &MSp) =c? + ’_j_i (99)
de et dfF £ a—1

That is, when the hypothesis that all the treatment effects are zero is exactly true, the
numerator of the F estimates only population error variance. Otherwise, the numerator is
estimating some larger value, with the particular value depending on just how large the treatment
effects are.

Under our assumption that the groups of scores represent samples from a normal population
distribution, the numerator and denominator of our test statistic are statistically independent.
Also, if the null hypothesis is true, their ratio is distributed as an F under our assumptions of
normality, homogeneity of variance, and independence.

Robustness of ANOVA

In many ANOVA applications, these assumptions are reasonably well satisfied. For example,
as discussed in Chapter 2, both theoretical suggestions (cf. Hays, 1994, pp. 247-249) and
empirical experience suggest that data sometimes at least approximate normality. Also, the
assumption of homogeneous (equal) variances is often plausible because different treatments
may be expected to affect the mean level of response but not the variability. Whether the
independence-of-errors assumption is met is determined largely by the experimental design
used, as discussed later.
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Even if a researcher’s data are not perfectly normally distributed, they may be close enough
tonormal (e.g., unimodal, symmetric, most scores centrally located, few scores at the extremes)
that there would seem to be little cause for concern. Of course, in the real world, the question
inevitably arises, How close is close enough? Statisticians have conducted a number of studies
to answer this question for ANOVA. These studies allow us to characterize the robustness
of ANOVA (robustness is the term used to denote the extent to which a statistical method
produces correct results even when its assumptions fail to hold).

We simply summarize findings concerning the robustness of ANOVA. References that
provide additional details are cited where relevant. We discuss robustness to violations of each
of the three previously mentioned assumptions in turn.

1. ANOVA is generally robust to violations of the normality assumption, in that even when
data are nonnormal, the actual Type I error rate is usually close to the nominal (i.e., desired)
value. For example, even if the data in our study comparing three groups of six subjects are not
normally distributed, the percentage of observed F values exceeding 3.68 is still very close to
5%. Thus, many do not regard lack of normality as a serious impediment to the use of
ANOVA. For example, Scheffé’s (1959, p. 345) summary of relevant mathematical work
was, “Nonnormality has little effect on inferences about means” in fixed effects analysis
of variance. Recent simulation studies with nonnormal data confirm this. As discussed in
Tutorial 1: nonnormality is indicated by nonzero values of skewness (indicating asymmetry)
or kurtosis (indicating “peakedness”, i.e., distributions with unusually heavy or light
tails). A meta-analysis of simulation studies with very nonnormal data (skewness = 2,
kurtosis = 6) reported alpha levels tended to be reasonably close to nominal .05 alpha levels
with equal sample sizes (mean actual alpha of .059 with a standard deviation of .026), but
less so with unequal sample sizes (mean alpha of .069 with a standard deviation of .048) (Lix,
Keselman, & Keselman, 1996, pp. 599-600).

Two additional points should be considered. First, robustness is not really “either/or,” but
rather is a matter of degree. As data get farther from normality, the actual Type I error rate
tends to get farther from the nominal value. It is possible for data to deviate so wildly from
normality that the actual Type I error rate is rather different from the nominal value (e.g.,
an actual rate of .10 when the nominal level is .05), but it is questionable how often such
data occur in practice (for conflicting views, see Bradley, 1978; Glass, Peckham, & Sanders,
1972). Even when samples were drawn from the clearly nonnormal distributions of real data
documented by Micceri (1989), actual Type I levels were generally very close to nominal levels,
and departures observed even under unfavorable conditions such as small and unequal sample
sizes tended to be in the direction of being moderately conservative (e.g., actual alpha of .041
for the extremely asymmetric psychometric measure) (Sawilowsky & Blair, 1992). Second,
most studies of robustness have focused on Type I error instead of Type II error (or power). The
available evidence suggests that ANOVA is also generally robust in terms of power to violations
of normality (Glass, Peckham, & Sanders, 1972; Scheffé, 1959, p. 350; Sawilowsky & Blair,
1992). When normality and the other assumptions hold, ANOVA is the most powerful test of
the omnibus null hypothesis, that is, the null hypothesis that ;1 = yus = - - - = u,. Although
its power is relatively unaffected by violations of normality, the power of alternate approaches
(e.g., nonparametric methods) changes considerably under nonnormality. As a consequence,
some of these alternate approaches may be more powerful than ANOVA when normality fails
to hold (Blair, 1981; Wilcox, 1996). The extension to the current chapter presents approaches
that might be preferable in such a situation.

2. ANOVA is generally robust to moderate violations of homogeneity of variance as long
as the sample sizes in each group are equal to each other and are not unreasonably small
(e.g., less than five per group). However, when s are unequal, even moderate heterogeneity of
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variance can produce actual Type I error rates considerably different from the nominal value.
When the groups with smaller population variances have larger samples, the pooled estimate
of population variance in the denominator of the F tends to be smaller than it would be in
the equal-n case, with the result that the actual Type I error rate will be greater than .05. For
example, mathematical results indicate that when variances are in the ratio of 1:1: 3 and
corresponding sample sizes are 7, S, and 3, respectively, the actual probability of a Type I
error is .11 instead of the nominal value of .05 (Scheffé, 1959, p. 354). If the sample sizes
were even more unbalanced, the departure would be even more pronounced. Sample sizes of
9, 5, and 1, respectively, for example, would produce an actual Type I error rate of .17 when
the variances are in the 1 : 1 : 3 ratio (Scheffé, 1959, p. 354). However, when the groups with
smaller population variances are represented by smaller samples, the pooled variance estimate
tends to be larger than it would be in the equal-n case, and the actual Type I error rate is less
than .05. For example, when variances are in the ratio of 1 : 1 : 3 and corresponding sample
sizes are 1, 5, and 9, respectively, the actual probability of a Type I error is .013 instead of the
nominal value of .05 (Scheffé, 1959, p. 354). Although a lower probability of making a Type I
error might not sound so bad, it is in fact a serious problem, because it implies an increase in
the probability of a Type II error. In other words, the price to be paid here for a conservative
test is a decrease in power. The general pattern Scheffé noted has been confirmed repeatedly
by simulation studies under a wide variety of conditions. Such simulations also show that
heterogeneity of variance influences Type I error rates much more than does nonnormality
(cf. Lix et al., 1996).

When sample sizes are equal, heterogeneity of variance must be more pronounced to produce
a substantial distortion in the probability of a Type I error, but it can still occur. For example,
Wilcox (1987a) reviews studies showing that in a four-group case with 12 observations in each
group when the variances are in the ratio of 1: 1: 1 : 16, the probability of a Type I error is
.101 instead of the nominal value of .05. When sample sizes are larger, the effect of unequal
variances is reduced.

When sample sizes are unequal and population variances are heterogeneous, the standard
F test of this chapter is inappropriate. Nonparametric approaches such as the Kruskal-Wallis
test (described in the extension of this chapter) have sometimes been recommended when
variances are heterogeneous. However, as pointed out by Vargha and Delaney (1998), when
the Kruskal-Wallis test is used as a test of equal central tendencies, one must still assume
that the variances are equal, just as in a standard analysis of variance. Thus, transformations
of the data or modifications of our standard parametric test are generally preferable to the
Kruskal-Wallis test in this situation. The chapter extension presents two such parametric
modifications, the Brown-Forsythe F* and Welch’s W, either of which is preferable to the
standard F test when sample sizes are unequal and variances are heterogeneous. It should
be noted that these approaches are preferable only when population variances are unequal.
Procedures for testing this hypothesis of homogeneity of variance are described later in this
chapter.

3. ANOVA s notrobustto violations of the independence-of-errors assumption. The actual
probability of a Type I error may depart dramatically from the nominal level when errors are
correlated. As stated earlier, the reasonableness of this assumption depends primarily on the
design used. The meaning of this assumption can perhaps best be understood by considering a
couple of examples in which the assumption is not met. First, suppose that a researcher wants
to test whether relaxation training lowers subjects’ blood pressure. To answer this question, the
researcher measures pretest blood pressure on a group of 15 subjects, exposes them to relaxation
training, and then obtains posttest readings on these subjects. Thus, 30 scores in all are obtained,
2 from each subject. However, these 30 scores are not all independent of each other, because
only 15 subjects were tested. It is highly likely that a subject with a high pretest reading will
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also have a high posttest reading, so that pretest and posttest scores will be correlated. Such an
occurrence violates the independence-of-scores (errors) assumption. Chapters 11-14 describe
procedures for analyzing such data, which represent a repeated measures (or within-subjects)
design.

In between-subjects designs, such as those we have been considering in this chapter, what
violations of the assumption of independent errors would mean is somewhat more difficult
to understand. As Kenny and Judd (1986) suggest, instead of thinking of the assumption
in terms of a correlation between variables, one should think of the assumption in terms
of the conditional probability of one observation given another observation. For example,
suppose that an educational psychologist wants to compare a structured classroom environment
versus an open classroom for teaching arithmetic to second-grade children. One class of 30
children is randomly assigned to the structured condition, and a second class of 30 children is
assigned to the open condition. The researcher reports that an ANOVA on posttest arithmetic
knowledge reveals a statistically significant group difference, F(1, 58) = 6.83. Once again,
the independence assumption has likely been violated because children influence each other
within the classroom setting. As Glass and Stanley (1970) point out, one unruly child in one
of the classrooms may lower the scores of all children in that classroom. Thus, even if the
instructional treatment being manipulated had no effect, observing a particular score of one
child in a classroom could alter the conditional probability of observing particular scores
from other children in the classroom. One alternative that avoids this problem is to regard the
experimental design of such a study as a nested design. As Chapter 10 shows, when such an
approach is taken, it is imperative to assign several classrooms (not just one) to each of the
treatment conditions being compared.

Checking for Normality and Homogeneity
of Variance

A number of procedures have been developed for assessing the adequacy of the normality
and homogeneity-of-variance assumptions in ANOVA. Perhaps the most useful is a good
graph that, as John Tukey remarked, “forces us to notice what we never expected to see”
(quoted in Wainer & Thissen, 1993, pp. 395, 448). Gross violations of normality can be
detected easily through graphical procedures, especially with large samples. Useful references
are Chambers, Cleveland, Kleiner, and Tukey (1983), Iman and Conover (1983), and Wainer
and Thissen (1993, pp. 408-413). Statistical packages often can generate Q—Q plots, which
display the data values having a given rank order or quantile against the values expected
according to the normal distribution. Nonnormality is indicated when the points in the Q-Q
plot depart from a straight line, but the exact form of the plot can vary from package to package
and it takes some instruction and practice to master interpretation of the plots (cf. Wilk &
Gnanadesikan, 1968). However, it is critical, as Wilkinson et al. (1999) argue, to examine
graphical displays of the data for evaluating distributional assumptions, if not in PP plots,
then in some simpler format. It is sufficient for most purposes simply to examine a histogram
of the data, perhaps with a normal curve overlaid. For example, a plot of the drinking at intake
(mean number of standard drinks) for a sample of 105 homeless alcoholics (Smith, Meyers, &
Delaney, 1998) shown in Figure 3.2 makes clear the data are positively skewed rather than bell
shaped.

Statistical tests for assessing normality are also available. SPSS provides the information
needed for testing skewness and kurtosis because standard errors of both statistics are re-
ported. SAS performs the Shapiro—Wilk test when sample size is 50 or less and a modified
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Std. Dev = 133.43
Mean = 149.7
N =106.00
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FIG. 3.2. Distribution of average number of standard drinks per week at in-
take for a sample of homeless alcoholics (Smith, Meyers, & Delaney, 1998).
Distribution has skewness =1.16 and kurtosis = .98.

Kolmogorov—-Smirnov test when sample size is greater than 50. We do not discuss such tests,
however, because when you have enough observations to have an accurate picture of the form
of an empirical distribution, you probably have enough power to reject the hypothesis of nor-
mality. Micceri (1989), after finding that tests indicated that all 440 data sets he examined, each
being based on 400 or more cases, were significantly nonnormal, concluded that “it therefore
appears meaningless to test either ability or psychometric distributions for normality” (1989,
p- 161). (Micceri’s “psychometric” category consisted of the sorts of scales commonly used in
clinical and social psychology research, e.g., MMPI subscales, measures of locus of control,
anxiety, masculinity/femininity.) Even the frequency distributions presented in Chapter 2 of
data that generally appear normal, all resulted when tested in highly significant departures
from normality, p < .001. Thus, it may be more useful to have an idea of the typical range
of skewness and kurtosis measures. These obviously vary across domains, with some studies
(e.g., Pearson & Please, 1975) of empirical distributions reporting more modest departures
from normality (skewness of their data sets were always less than .8) than the largest study to
date of distributions of behavioral variables (Micceri, 1989). Although more than two thirds
of Micceri’s distributions had absolute values of skewness less than .70, about 10% had values
greater than 2.00. Psychometric measures were somewhat more extreme with just under half
having skewness measures less than .70, and perhaps as many as 18% having skewness more
than 2.00. Kurtosis values, which correlated .78 with the skewness values, ranged from —1.7
to 37.37 for these 440 distributions, with 8% being greater than 3.0. The distribution shown in
Figure 3.2 has a skewness of 1.16 and a kurtosis of .98, indicating, according to Micceri’s cri-
teria, an extreme level of skewness and a moderate degree of “contamination” in the right-hand
tail (i.e., more than twice the expected number of scores more than two standard deviations
above the mean).
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FIG. 3.3. Confidence intervals around means for number of drinks per week
for five groups at 9-month follow-up (Smith, Meyers & Delaney, 1998). Clients
were initially assigned to one of two tracks (T1 or T2) and then were as-
signed randomly to receive therapy utilizing the Community Reinforcement
Approach with disulfiram (CRA+D), therapy utilizing the Community Reinforce-
ment Approach without disulfiram (CRA—D), or Standard therapy (Std). Clients
in Track 2 were not eligible to receive disulfiram.

Graphical methods can also be helpful in drawing one’s attention to possible violations
of the assumption of homogeneity of variance in your data. For example, Figure 3.3 shows
the 95% confidence intervals around the group means, computed using the different standard
deviations for the various groups, for one of the follow-up assessments in a five-group clinical
trial of therapy methods for homeless alcoholics (Smith et al., 1998). Given the sample sizes
were approximately equal, the fact that the longest confidence interval is three times longer
than the shortest one alerts the researcher to the fact that homogeneity of variance is likely
violated in these data.

If one wants to carry out a formal statistical test of the homogeneity of variance assumption,
there are more than 50 different tests that could be used (Kuehl, 2000, p. 128). The more familiar
tests include the Bartlett—Box F test and Hartley’s Fi,x (Neter, Wasserman, & Kutner, 1985,
p. 618ff.). Hartley’s test is particularly simple in that the test statistic is just the ratio of the
largest within-group variance to the smallest within-group variance. Unfortunately, both tests
assume the data are normally distributed and are very sensitive to departures from normality
(Neter et al., 1985, pp. 622-623; O’Brien, 1981). Thus, if the data are nonnormal, results of
these tests can be quite misleading. Some of the best procedures for testing homogeneity of
variance involve computing a transformation of the original scores and then doing a standard
analysis of variance on the new scores. One such method introduced by O’Brien (1981) involves
computing the transformation in such a way that the group mean of the new variable equals
the variance of the original variable for that group. Because it uses a standard F test to test for
differences on the transformed variable, O’Brien’s test is robust to violations of normality. For
a one-way design, the steps of this procedure are as follows:
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1. For each group, compute the sample mean YJ and the unbiased sample variance:
2= Yy - Y /im; - 1)
i
2. For each observation Yj;, compute a transformed score,

(nj — 1.5n;(¥; — V2 — 5s2n; — 1)
(nj - 1)(nj —2)

rij =

3. Verify that for each group, the mean of r is equal to the variance of the original Y scores,
that is ; = s2.

4. Perform an ANOVA using r as the dependent variable. When sample sizes are very
unbalanced {the largest sample size max (n;) is four or more times larger than the
smallest min (n;)], O’Brien recommends that a Welch-type ANOVA be used (see
chapter extension, p. 134). Not only is this procedure robust, but it also generalizes

easily to factorial designs.

The test of homogeneity of variance used by SPSS as of this writing is one from Levene
{1960). Like O’Brien’s test, Levene’s test involves computing a transformed variable and
doing an ANOVA on the transformed scores. However, the transformation used in Levene’s
test is simply the absolute value of the deviation of the score from the mean for its group, that is,

L; =Y, -]

For the drinking data shown in Figure 3.2, neither O’Brien’s test, F(4, 83) = 0.953, p = .438,
nor Levene’s test, F(4,83) = 1.756, p = .146, reaches significance. Perhaps somewhat
ironically, one of the reasons why these tests fail to reach significance here is that in the trans-
formed data, like in the original drinking data, the standard deviations tend to be larger than
and proportional to the means. In such a situation, as we explain in the next section, it may be
helpful to consider computing a transformation of the dependent variable to use in the primary
analysis.

Transformations

‘When data are nonnormal and/or variances are unequal, it is often possible to transform the data
so that the new scores more nearly approximate normality and equality of variances. For exam-
ple, when data are positively skewed, either a square root or a logarithmic transformation often
produces data that are more nearly normal; in some circumstances, the same transformation
also achieves equality of variances.

However, there are potential disadvantages to transforming one’s data. Primary among these
is that interpretation of results may be less clear. For example, most individuals find it difficult
to understand the mean value of the square root of their original scores. Also, in general, the
null hypothesis that groups have the same mean on Y does not imply and is not implied by
the null hypothesis that group means on a transformed variable are equal. As Games (1983,
p. 382) says, “the use of curvilinear transformations in data analysis is a rather complex topic
that involves philosophy of science considerations as well as statistical considerations.”

However, it sometimes turns out to be the case that a transformation that makes theoretical
sense also tends to stabilize the variances and make the distributions more nearly normally
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TABLE 3.7
DESCRIPTIVE STATISTICS ON DRINKS PER WEEK AT 9-MONTH FOLLOW-UP IN FIVE
THERAPY GROUPS
Group Mean n  Median Minimum  Maximum SD Skewness  Kurtosis
TICRA-D 3380 15 11.89 0 169.29 49.39 1.84 3.10
TICRA+D 2642 19 0.00 0 237.28 60.94 2.78 8.10
T1 Std 7151 17 28.80 0 624.62 148.87 3.59 13.73
T2CRA-D 2031 17 0.00 0 257.32 62.87 3.78 14.76
T2 Std 3377 20 1347 0 164.06 44.82 1.64 243

distributed. We will illustrate with the drinking data shown in Figure 3.3. Table 3.7 shows
descriptive statistics on the dependent variable of drinks per week at a 9-month follow-up
assessment for each of five treatment groups.

The fact that the means are always greater than the medians and the standard devia-
tions are greater than the means corroborates the information in the last two columns on
the right that indicate the scores within each group are extremely positively skewed and heavy
tailed. Most troublesome for the analysis of variance is the heterogeneity of variance across
groups (the ratio of the largest to the smallest variance is 1:;8882722 =3.322 = 11.03) and the
strong relationship that exists between the group means and standard deviations (which here
correlate .90).

In deciding on a transformation, both theoretical and empirical considerations come into
play. The theoretical or “philosophy of science” consideration here has to do with the meaning
of the dependent variable. From one perspective, as a variable arrived at by counting, number
of drinks is a ratio scale variable with an absolute zero point and equal intervals everywhere
on the scale. However, the theoretical construct the investigators wanted this measure to reflect
is severity of an individual’s drinking problem, which is probably related to number of drinks
in a nonlinear fashion. To illustrate, consider the drinking levels of three selected individuals
who reported drinking 53.91, 257.31, and 624.62 drinks per week. The first individual who is
drinking nearly 8 standard drinks per day would be regarded as a heavy drinker, but the other
two, at more than 30 and 80 drinks per day, respectively, are both extremely heavy drinkers.
In terms of the severity of the drinking problem, one could argue that the difference between
the first and second individuals is likely a greater difference than the difference between the
second and third individuals. A transformation that shrinks the differences between the most
extreme drinkers would perhaps result in a dependent variable that is more directly related to
the construct of interest.

Now from an empirical perspective there are a range of transformations that are available.
One possible strategy would be simply to try different transformations and see which one
results in distributions that more nearly conform to assumptions (i.e., less heterogeneity of
variance, less relationship between the means and standard deviations, and lower skewness
and kurtosis). Yet even with such a brute-force approach, it is helpful to realize that a number
of the most useful transformations can be ordered along a “ladder of powers” (Tukey, 1977).
The steps in the ladder are the powers or exponents to which the original scores are to be raised
in computing the new scores, as shown in Table 3.8.

In a situation with three or more groups, one can estimate empirically the value of p that
tends to equate variances across groups by doing a regression of the log of the standard
deviations on the log of the means (cf. Kuehl, 2000, p. 136ff.). If b is the estimated slope in this
regression, then one can estimate the appropriate power for your transformationas p =1 — 5.
For the five groups in the study with the homeless alcoholics, the slope of the regression of
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TABLE 3.8
THE “LADDER OF POWERS” FOR TRANSFORMING SCORES WHERE Y’ = Y’
Power, p Transformation Name and Remarks
2 y? Square, useful when need to increase spread among higher scores relative to lower
scores, e.g. with negatively skewed data
1 Y Raw data, no transformation
Iy VY Square root, helpful with positively skewed distributions
0 logio ¥ Logarithmic, use when p estimated to be near zero, e.g., with extremely positively

skewed distributions. Use ¥’ = log,o(Y + 1) if there are any zeros in data.

-1 1/Y Reciprocal, e.g., transforming latency to speed. Use ¥’ = 1/(Y + 1) if there are
any zeros in data.

TABLE 3.9
DESCRIPTIVE STATISTICS ON LOG TRANSFORMED DRINKS PER WEEK AT 9-MONTH
FOLLOW-UP IN FIVE THERAPY GROUPS

Group Mean n Median Min. Mao. SD Skewness Kurtosis
T1CRA-D 1.01 15 1.08 0 223 0.80 —0.03 —1.46
T1CRA+D 0.54 19 0.00 0 2.38 0.83 1.37 0.32
T1 Std 1.23 17 1.47 0 2.80 0.87 —0.24 —0.87
T2 CRA-D 0.39 17 0.00 0 2.41 0.74 1.94 1.06
T2 Std 1.05 20 1.15 0 222 0.78 —0.21 -1.39

the log standard deviations on the log means was 0.742, and so p was estimated as .258, or
approximately 1/,. Because this was approximately midway between the levels for the square
root and log transformation, both transformations were tried and resulting heterogeneity of
variance examined. With the square root, the ratio of largest to smallest variance was 2.5 to 1,
down dramatically from the 11 to 1 ratio in the raw data. However, with the log transform,
this ratio was reduced still further to 1.2 to 1. In terms of the three illustrative individuals
mentioned previously, their scores on the log scale were 1.732, 2.410, and 2.796, respectively.
So now the difference between the first and second of these individuals, .678, was considerably
larger than that between the two extremely heavy drinkers, .385, as desired. Summary statistics
using a log transform are shown in Table 3.9, and confidence intervals around the means of
the transformed variable are shown in Figure 3.4. One can see at a glance at these confidence
intervals that they are now much more nearly equal in length than the intervals for the original
data in Figure 3.3.

One added benefit of this variance stabilizing transformation with positively skewed distri-
butions is that shrinking the influence of the few heaviest drinkers greatly reduced the variability
within groups relative to the variability between groups. As seen in Figure 3.4, the confidence
intervals around the individual group means now show much less overlap across groups than
was the case before the transformation. In terms of results of a statistical test, whereas an
ANOVA of the original scores did not approach significance, F(4, 83) = 1.02, p = .400, an
ANOVA of the log drinks per week is now significant, F(4, 83) = 3.48, p = .011. One reason
for this dramatic change is that the power of the F test is adversely affected by nonnormality
(McClelland, 2000). As seen in Table 3.9, not only are the variances now much more ho-
mogeneous, but the skewness and kurtosis of the distributions, although still in some groups
departing substantially from the zero values for normal distributions, have been markedly
reduced from their previous maximum values of 3.78 and 14.76, respectively.
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FIG. 3.4. Confidence intervals around mean of log transformed drinks per
week at 9-month follow-up for five therapy conditions.

As suggested previously, data transformations are a topic about which reasonable people
differ. One perspective on this debate is seen in the spirited exchange between Levine and
Dunlap (1982, 1983) and Games (1983, 1984).

POWER OF THE F TEST: ONE-WAY ANOVA

As noted in Chapter 1, the power of a test is its sensitivity in detecting real differences between
groups. That is, power, denoted 1 — §, is defined as the probability of rejecting the null
hypothesis (or the restricted model) given that it is false (or given that the full model is the
correct description of the data). Power analyses are useful for determining how sensitive a
particular experimental design is. Most often, such analyses are performed to determine the
sample size required to give an experiment adequate power.

Besides the assumptions about the independence, variability, and normality of the scores in
various groups, to determine the power of the F test one must also specify the magnitude of
the treatment effects in the population. In the preceding section, we considered those statistical
assumptions that are necessary for the observed F statistic to have the distributional shape
presumed by the probability values indicated in a conventional F table. It bears repeating
that it is also necessary for the null hypothesis to be true for the observed F to have this
distribution over replications. If the statistical assumptions are met, but the null hypothesis is
false, the test statistic follows what is termed a noncentral F distribution. Such a distribution
depends not only on the typical degrees of freedom associated with a central F but also on a
noncentrality parameter, A (lowercase Greek letter lambda), which combines information about
the magnitude of the difference among the population means, the within-group population
variance, and the sample size: A = nX9_ /0.

Working with noncentral F distributions to determine power may seem like a difficult
computational challenge. However, as with most standard statistical problems, a variety of
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computer programs are currently available to do the necessary computations (e.g., including
both commercially marketed programs such as Power and Precision, as well as “shareware”
programs such as UnifyPow, which handles power analyses for a wide variety of designs and
tests, available at www.bio.ri.ccf.org/power.html). Actually, the most difficult part of power
analysis is usually conceptual rather than computational. In part, this is because research is
almost never an exact replication of what has been done before. Yet to perform a power analysis
one must make projections about the magnitude of the effect or even the exact numerical values
of the means and standard deviations one is going to obtain. Even when somewhat similar work
has been reported in the literature, such projections necessarily rely on one’s judgment about
the difference that the details of a proposed experimental design will make. For example, what
difference will it make if a motivational intervention in a clinical treatment program is used
as an adjunct to a computer-based intervention rather than to a standard outpatient program
using a therapist? What will be the impact of using one set of materials rather than another
in a study of reading comprehension? What difference does it make that a study is run in
Albuquerque rather than South Bend or using college students rather than older adults as
participants? Clearly these questions concern the generalizability of findings, and answering
them for purposes of a power analysis requires not only a general appreciation of construct
and external validity issues, but also making numerical projections about how these will affect
population parameters, a more daunting task than learning to read a power chart. The best-
case scenario might be where one has pilot data in hand based on the actual implementations
of the independent and dependent variable constructs that will be used in the current study.
Methods for using pilot data rather than projected populations parameters in a power analysis
are considered shortly.

Determining Sample Size Using f and
Power Charts

To turn now to how to carry out the calculations if one is doing the power analysis by
hand, the standard procedure is to use a chart or a table that relates power to some function
of the noncentrality parameter. However, because noncentrality parameters depend on the
sample size, which is typically what you are doing a power analysis to determine, it is easier
to begin thinking about the magnitude of the expected effect using an alternative measure.
Most useful perhaps is f, one of the standardized measures of effect size that we introduced
previously:

f=om/fo: (89, repeated)

Recall that o, is the square root of the population within-cell error variance and that o, can
be viewed as the standard deviation of the population means for the various groups in your
design or equivalently as the standard deviation of the effect parameters:

[ a2
O = }Z(“ ja_ W = zaaj (88, repeated)

Here, p is the mean of the population means, that is, 4 = (X;u;)/a. The projections about
reasonable values for o, and p ; are typically made on the basis of a combination of prior work
and informed judgment. Some guidance about typical values of the f index was provided by
Cohen (1977, Chapter 8), who suggested that a “small” effect size be defined as f = .10, a
“medium” effect size as f = .25, and a “large” effect size as f = .40. Thus, for amedium effect
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size, the standard deviation of the population means would be one quarter of the within-group
standard deviation. In a two-group study, because the standard deviation of two population
means is just half the difference between them, this definition of medium effect size would
imply that the expected value of the difference between the means in your study would be half
of the expected within-group standard deviation.

Cohen (1988, pp. 289-354) provides tables that allow you to read off the power for particular
combinations of the degrees of freedom of the numerator of your test (dfg— df), the Type I
error rate (c), the effect-size parameter ( f), and the number of subjects per group. With four
factors varying, it perhaps should not be surprising that the tables require 66 pages.

Some simplifying strategy is clearly needed. The one most often used is to summarize the
information about the noncentral F distribution in a series of charts (such as those found in
Appendix Table A.11) and, if necessary, use “visual interpolation” between lines on the graphs
to approximate the power for your situation. The information required to read a power value
from these charts is

1. The numerator degrees of freedom for your test—that is, dfg — df—denoted dfyum in
the charts

2. The Type I error rate o

3. The denominator degrees of freedom dfy denoted dfgenom

4. An effect-size parameter ¢, which reflects the sample size and the magnitude of the
effects.

The effect size parameter ¢ (lowercase Greek phi) can be defined in terms of the noncentrality
parameter as ¢ = /1 /a, but we use a definition in terms of the following simple transformation

of f:
¢=fn (100)

where n is the number of subjects per group. Note that you must use a value of n to determine
both ¢ and dfr. Thus, if you are planning a study, a power analysis proceeds in a trial-and-error
fashion where you test out different values of n.

For example, assume that you are planning a reaction-time study involving three groups.
Pilot research and data from the literature suggest that the means in your three groups might
be 400, 450, and 500 ms with a within-group standard deviation of 100 ms. Thus, substituting
these values in the formula defining o,, (Equation 88), we obtain

\/ (400 — 450)2 + (450 — 450)2 + (500 — 450)
O =

2500 4+ 0 4 2500 \/5000
= = = +/1666.66 = 40.82
\/ 3 3

This means that here, f is in the large range:

om  40.82
= — = —— = .4082
f o, 100 08

Suppose that you want to have power of .8 for @ = .05, so that if the population parameters are
as you hope, four times out of five your study allows you to declare your results significant.
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You might hope that you can get by with only 10 subjects per group. This would mean a total
N of 30, and hence the values required to enter the charts would be

dfnum=de—dfF=(N_1)"(N—a):a—l=3—1=2
Afjenom = dfr =N —a=30-3=27

and,
¢ = f/n = .4082+/10 = 1.29

From the chart for dfy,, = 2, following the curve for dfgenom = 30 (the closest value to 27),
we find the power for our parameter values by determining the height of the curve directly
above the point on the horizontal axis that seems to approximate a ¢ value of 1.29 fora = .05.
This indicates the power here is approximately .45, which is unacceptably small. Thus, we
might next try 25 subjects per group. This would change dfyenom 10 72, and ¢ would be 4082
V25 = .4082(5) = 2.041. Following the curve for dfgenom = 60 to our value of ¢ suggests
a power of .87, which is more than we required. Eventually, we could iterate!? to n = 21,
yielding dfyenom = 60 and ¢ = 1.8706 and a power of essentially .8.

Determining Sample Size Using d and Table 3.10

A second strategy that simplifies things still further is to define the effect size simply in
terms of the number of standard deviations between the largest and smallest population
means anticipated. Recall that we designated this measure of effect size d (see Equations 83
and 87):

d = Mmax — Mmin
o

Table 3.10, which is similar to tables published by Bratcher, Moran, and Zimmer (1970), allows
one to read directly the sample size required for detecting an effect for various values of 4.
The price paid for this simplicity is that the anticipated value of all other means except the
two most extreme means does not affect the value of d. In fact, the tables are computed by
presuming that all other means except the two extremes are exactly equal to the grand mean .
If this is not the case, somewhat greater power results than is indicated by the table. The
relationship between f and d, as Cohen (1988) notes, depends on what the particular pattern
of means is, but in most cases d is between two and four times as large as f.

For our particular data, the “other” (nonextreme) mean was exactly at the grand mean (450),
so the results of Table 3.10 are exact for our case. One enters the table with a desired value of
power (1 — B), a standardized effect size d, and the number of groups a. For our hypothesized
data

d = Hmax — Mmin - 500 — 400 —
o, 100

1.0

Reading from the column labeled 1.00 from the section of the table for power = .80, we find
the entry for the row for a = 3 indicates the required » for & = .05 to be 21, the same value
we determined earlier by use of the charts.
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TABLE 3.10
MINIMUM SAMPLE SIZE PER GROUP NEEDED TO ACHIEVE SPECIFIED LEVELS OF
POWER WITH a = .05

Power=1—-8=.50

Number of Levels d
a 0.25 0.50 0.75 1.00 125 1.50
2 124 32 15 9 7 5
3 160 41 19 11 8 6
4 186 48 22 13 9 7
5 207 53 24 14 10 7
6 225 57 26 15 10 8
Power=1— 8 = .80
Number of Levels d
a 0.25 0.50 0.75 1.00 1.25 1.50
2 253 64 29 17 12 9
3 310 79 36 21 14 10
4 350 89 40 23 15 11
5 383 97 44 25 17 12
6 412 104 47 27 18 13
Power=1—- =95
Number of Levels d
a 025 0.50 0.75 1.00 1.25 1.50
2 417 105 48 27 18 13
3 496 125 56 32 21 15
4 551 139 63 36 23 17
5 596 150 67 39 25 18
6 634 160 72 41 27 19

Pilot Data and Observed Power

As noted previously, the best-case scenario conceptually for doing a power analysis is when
you have pilot data in hand using the treatments and measures that will be used in the actnal
study. Computationally, however, a slight modification in the effect size measure is needed
to adjust for the effects of sampling variability in the group means observed in the pilot
study. The reason this is needed is suggested by the fact that even if the null hypothesis of
no difference in population means were true, we would not expect the sample means to be
exactly equal. Thus, the variability of the sample means is something of an overestimate of
the variability of the population means. Just how much of an adjustment is needed can be
derived from the expressions for the expected values of the numerator and denominator of the
F test (see Equations 98 and 99). There we saw that the denominator of the test MSw estimates
the population error variance and that, when the null hypethesis is true, the numerator of the
test MSy also estimates the population error variance. Heuristically, one might say that the
implication is that nonzero values of MSg can be unambiguously attributed to true treatments
effects only to the extent that MSg exceeds MSy . More specifically, it turns out that one can
adjust for this by estimating the variance of the population means as

- (“; D Mss — MSw) (101)

2
m
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This, in turn, implies that the adjusted estimate of effect size appropriate for use in determining
sample size in a power analysis would be

(F—=1) (102)

oo [a= DS - Msw) _ [@=T)
MW Msw VYV N

As suggested by the right side of Equation 102, a convenient way of arriving at an adjusted
effect size measure to use in a power analysis is to begin with the value of the F test statistic
yielded by an ANOVA on the pilot data.!*> How much of a difference this adjustment makes in
the estimated effect size depends on how large the observed F statistic is. When Fis less than 1,
the formula would yield a negative adjusted effect size, in which case it would be presumed
to be zero. As the observed value of F increases, the proportionate reduction declines, until
when F exceeds 10, the reduction in fis 5% or less.

We want to stress that the power computed based on this sort of adjusted effect derived
from pilot data for purposes of planning a future study is different from what has come to
be known as observed power, which can be computed as an adjunct to one’s data analysis
for purposes of interpreting a completed study (e.g., this is currently available as an option
in SPSS’s General Linear Model procedures such as UNIANOVA for univariate analysis of
variance). Observed power is computed by simply assuming the population means are exactly
equal to the observed sample means. As Hoenig and Heisey (2001) summarize, a number of
journals advocate the reporting of observed power. We believe this is misguided for several
reasons.

First, as we have just seen, the variability among the sample means is not the best estimate of
the variability among the population means because of the inflation due to sampling variability.
The smaller the sample, the bigger this problem is. Second, to report observed power in addition
to the p value of a test is to appear to report additional information, whereas in reality there is
a one-to-one correspondence between the two: the smaller the p value, the higher the observed
power. Third, the logic of the argument of some advocates of observed power is misguided.
The reasoning is that if observed power is high and yet the null hypothesis was not rejected,
then the evidence against the null hypothesis is stronger than if observed power is low. One
problem with this line of reasoning is that observed power in a situation with nonsignificant
results can never be high. In particular, saying p > .05 is tantamount to saying that observed
power is less than .5 (cf. Greenwald et al., 1996; Hoenig & Heisey, 2001).

Note that we are not in any way questioning the legitimate uses of power analyses in
designing studies. Failing to reject the null hypothesis because of low power to detect what
would constitute an important difference is a pervasive problem, and using power analyses as
an aid to planning experiments so as to make such misses less likely is something we certainly
advocate. Yet using observed power as a way of analyzing or interpreting data is quite different.
Although it is true that the higher the power to detect a meaningful, prespecified difference,
the more one should think that a nonrejection is not the result of low power and hence the
stronger the evidence that the null hypothesis is true, or at least approximately true. However, the
higher the observed power, computed based on the obtained results, the stronger the evidence is
against, not in favor of, the null hypothesis. This is because higher observed power necessarily
means a lower p value and hence stronger evidence against the null. Thus, reporting observed
power is not recommended.

This completes the introduction of the model-comparison approach to one-way ANOVA.
As indicated, an advantage of this approach is that the logic of searching for an adequate yet
simple model is the same for all other applications of the general linear model that we consider.
In fact, in a sense, it is the case that in terms of between-groups designs we have already covered
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the most complex design we must consider, because all other designs can be considered to be
special cases of the one-way design. However, to appreciate the sense in which this is true and
to develop the follow-up tests that are likely of interest in multiple-group designs, we must
develop methods that allow particular combinations of means of interest to be tested. We apply
the model-comparison approach to these issues of testing specific contrasts of interest in the
chapters that follow.

EXERCISES
1. Thefullmodelis __ than the restricted model.
a. simpler b. less simple
2. The full model correspondstothe__ hypothesis.
a. null b. alternative

3. True or False: The restricted model is a special case of the full model.
4. True or False: For a fixed total N, the simpler the model, the greater the degrees of freedom.

*5. True or False: When the null hypothesis is true, MSg estimates the variance of the sampling distri-
bution of sample means.

6. True or False: The sum of squared errors for the restricted model (ER) is always less than the sum
of squared errors for the full model (Eg).

*7. True or False: The sum of squared errors associated with the restricted model Ey is always SStop.

*8. Gauss said, “The estimation of a magnitude using an observation [that is] subject to a larger or
smaller error can be compared not inappropriately to a game of chance in which one can only lose
and never win and in which each possible error corresponds to a loss.” (See LeCam, L., & Neyman,
J. (1965). Bayes—Bernoulli-Laplace Seminar. New York: Springer, p. viii.) What “loss function” is
used in the solution of the estimation problems in this book?

9. Assume that a psychologist has performed a study to compare four different treatments for
alleviating agoraphobia. Three subjects have been randomly assigned to each of four types of
therapy: rational-emotive (R-E), psychoanalytic (P), client—centered (C—C), and behavioral (B).
The following posttest scores were obtained on a fear scale, where higher scores indicate more
severe phobia:

R-E P Cc-C B
2 10 4 8
4 12 6 10
6 14 8 12

a. Carry out the model comparison necessary to test whether there is a statistically significant
difference between the means of the four groups. State the models, estimate their parameters,
calculate the predicted scores and errors for each individual subject, compute the summary
measures Er and Ep, and finally determine the value of F and its significance.

b. Calculate the ¢ value for comparing each pair of means. You should have six such ¢ values. Note
that with equal n,

Y, -7,
(st + s3)/n
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Hint: There is a peculiar relationship among the four slz. values for these data. This should simplify
your task considerably.

c¢. Square each of the ¢ values you calculated in part b. Do you see any relationship between these
six t* values and the F value you calculated in part a?

*10. As described in the Chapter 2 exercises, an important series of studies by Bennett et al. (1964)
attempted to find evidence for changes in the brain as a result of experience. Posttreatment weights
of the cortex of animals reared in an enriched environment or in a deprived environment are
shown below for three replications of the study done at different times of year. Cortex weights (in
milligrams) for experimental and control animals are as follows:

Experiment 1 Experiment 2 Experiment 3
Experimental Control Experimental Control Experimental Control

688 655 707 669 690 668
655 623 740 650 701 667
668 652 745 651 685 647
660 654 652 627 751 693
679 655 649 656 647 635
663 646 676 642 647 644
664 600 699 698 720 665
647 640 696 648 718 689
694 605 712 676 718 642
633 635 708 657 696 673
653 642 749 692 658 675
676 661 691 618 680 641

(Raw data are adapted from those reported in Freedman, Pisani, & Purves, 1978, p. 452.) Twelve
pairs of rats served as subjects in each study, with one member of each pair assigned randomly to the
enriched environment and the other to the deprived environment. The two scores on the same row
above for a given experiment came from two male rats taken from the same litter. The experimental
hypothesis was that, even though both groups were permitted to feed freely, animals reared in the
more stimulating environment would develop heavier cortexes. In Chapter 2, you were asked to test
this hypothesis using a randomization test. Now, a series of parametric analyses are requested.

First Analysis, Experiment 2 Data Only

a. How many independent observations are there in Experiment 2?

b. What full model should be used to describe these independent observations?

¢. What constraint on this model is of interest to test? What restricted model incorporates this
constraint?

d. What is the sum of squared errors associated with the full model? With the restricted
model?

e. Carry out the statistical test comparing these two models.

f. What is your conclusion?

Second Analysis, Data from Experiments 1, 2, and 3

g. Now use the data from all three experiments. Assume that you are interested in whether the three
experiments revealed the same advantage for the experimental animals within sampling error
regardless of the time of year when the experiment was run. State the models appropriate for
testing this hypothesis and carry out the analysis, again providing parameter estimates and sums
of squared errors for your models as well as stating your conclusion.
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*11. Again using the data from the previous problem, reanalyze the data from Experiment 2 under a
different set of assumptions about what went on. Assume that the treatment and control subjects all
came from different litters so that there was no pairing of observations.

a. Under this assumption, state the models that are likely of interest and carry out the test comparing
these two models, stating the estimated parameter values and sum of squared errors for each
model.

b. How does the strength of the evidence against the restricted model in this analysis compare to
that in your analysis in parts a—f of Exercise 10?

*12. For the Experiment 2 data analyzed as a two independent-groups design as in Exercise 11, charac-
terize the magnitude of the effect in the following ways:
a. As a standardized difference between means, d.
b. By computing the following measures of the proportional reduction in error: R? and &?.

13. For your master’s thesis you are doing a study that in part replicates previous research. You plan
to use three groups and expect the means on the dependent variable to be 55, 67, and 79. On the
basis of previous research, you have evidence that leads you to expect the population within-group
variance to be about 3600. How many subjects are required per cell to achieve a power of .80 with
a =.05?

*14. Assume that you are planning a study and that you are at the point of trying to determine how
many subjects are needed for your four-group design. You decide that all groups will have the
same number of subjects. Assume the following group means of 21, 24, 30, and 45 are the actual
population means instead of sample statistics. Under this hypothesis and assuming the population
within-group standard deviation is 20, how many subjects would be needed per group in order to
have a power of .8 in a one-way ANOVA with o = .05?

15. Suppose that we are planning a study to compare three treatments for depression. Group 1 subjects
receive weekly therapy sessions using client-centered therapy. Group 2 subjects also receive client-
centered therapy but are seen only every two weeks. Group 3 subjects serve as a waiting list control
group. Posttest assessment occurs 3 months into the study. The dependent measure is the Center
for Epidemiology Studies’ Depression Scale (CES-D).

a. Our best guess as to the likely magnitude of group differences is reflected in the following
population means: 1 = 15, ¢, = 18, and u3z = 24. We expect the population standard devi-
ation (within-groups) to be around 10. Naturally, we set o at .05. What is the total number
of subjects we should include in our study, assuming equal n per group in order to have a
power of .87 .

b. Suppose that our estimate of the population standard deviation in part a is too small. Specifically,
assume that the true value is 14 instead of 10. Because we planned our study using the value of 10,
the number of subjects we use is still the number you found in part a. If we use this many subjects,
but in fact 14 is the true standard deviation, what is the actual value of our power?

16. Throughout this book, we make extensive use of the principle of least squares. In this chapter, we
have proved mathematically that the sample mean Y is the least-squares estimator of a population
mean u. This exercise explores this fact in additional detail from an empirical (as opposed to a
mathematical) perspective.

a. Suppose we have a sample of five scores: 43, 56, 47, 61, and 43. Calculate the sum of squared
deviations from the mean for these five scores. Also, calculate the sum of squared devia-
tions from the median for the five scores. Which is less? Will this always be true? Why or
why not?

b. Suppose that we were to choose our estimator not to minimize the sum of squared errors, but
instead to minimize the sum of the absolute values of the errors. Calculate the sum of absolute
deviations from the mean and from the median. Which is less? Do you think this will always be
true? Why or why not?

17. You are planning a large-scale replication of a study of a treatment for problem drinkers that
previously has been shown in a different location to be significantly more effective than a control
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condition. You begin by conducting a pilot study with five subjects per group. Your results for
this pilot study are shown below, where the dependent variable is the estimated number of days of
problem drinking per year after treatment.

Group

Treatment  Control

41 214
23 199
20 194
16 189

0 174

a. The previous researchers had found means of 12 and 174 on this dependent variable for their
implementations of the treatment and control conditions, respectively. Conduct a test of whether
your pilot results replicate this previous research by comparing a model that allows for different
population means in the two conditions with one that assumes means of 12 and 174.

b. Alternatively, you could have simply asked the question of whether the difference between
your means was significantly different from the 162-point difference obtained by the previous
investigators. Perform the test comparing the models relevant to this question.

c. What do you conclude on the basis of the results of the tests in parts a and b?

*18. In a study of a behavioral self-control intervention for problem drinkers, one of the less sensitive
dependent variables was number of drinking days per week [Hester, R. K., & Delaney, H. D. (1997).
Behavioral Self-Control Program for Windows: Results of a controlled clinical trial. Journal of
Consulting and Clinical Psychology, 65, 686—693]. Forty participants were assigned randomly to
either receive the intervention immediately or be in a waiting list control group (. e., n = 20 per
group). At the initial follow-up assessment, the means and standard deviations on Drinking Days
per Week were as follows:

Condition Mean SD

Immediate 3.65 1.57
Delayed 480 255

Assume this set of data is being viewed as a pilot study for a proposed replication.

a. Conduct an ANOVA on these data, and compute as descriptive measures of the effect size
observed both d and £

b. Determine the sample size that would be required to achieve a power of .80 using an « of .05 if
one used the value of farrived at in part a as the effect size measure in the power analysis.

c. Now compute f.q;, the corrected effect size measure that adjusts for the sampling variability in the
observed means. Carry out a revised power analysis based on this adjusted effect size measure.
How many more subjects are required to achieve 80% power than would have been thought to
be required if the power analysis had been based on the uncorrected effect size estimate as in
part b?

EXTENSION: ROBUST METHODS FOR ONE-WAY
BETWEEN-SUBJECT DESIGNS

In Chapter 3, we state that ANOVA is predicated on three assumptions: normality, homogeneity
of variance, and independence of observations. When these conditions are met, ANOVA is a

TLFeBOOK



130 CHAPTER 3

“uniformly most powerful” procedure. In essence, this means that the F test is the best possible
test when one is interested uniformly (i.e., equally) in all possible alternatives to the nuil
hypothesis. Thus, in the absence of planned comparisons, ANOVA is the optimal technique to
use for hypothesis testing whenever its assumptions hold. In practice, the three assumptions
are often met at least closely enough so that the use of ANOVA is still optimal.

Recall from our discussion of statistical assumptions in Chapter 3 that ANOVA is generally
robust to violations of normality and homogeneity of variance, although robustness to the latter
occurs only with equal # (more on this later). Robustness means that the actual rate of Type I
errors committed is close to the nominal rate (typically .05) even when the assumptions fail
to hold. In addition, ANOVA procedures generally appear to be robust with respect to Type I
errors as well, although less research has been conducted on Type 11 error rate.

The general robustness of ANOVA was taken for granted by most behavioral researchers
during the 1970s, based on findings documented in the excellent literature review by Glass,
Peckham, and Sanders (1972). Because both Type I and Type II error rates were only very
slightly affected by violations of normality or homogeneity (with equal #), there seemed to be
little need to consider alternative methods of hypothesis testing.

However, the 1980s saw a renewed interest in possible alternatives to ANOVA. Although part
of the impetus behind this movement stemmed from further investigation of robustness with
regard to Type I error rate, the major focus was on Type II error rate, that is, on issues of power.
As Blair (1981) points out, robustness implies that the power of ANOVA is relatively unaffected
by violations of assumptions. However, the user of statistics is interested not in whether ANOVA
power is unaffected, but in whether ANOVA is the most powerful test available for a particular
problem. Even when ANOVA is robust, it may not provide the most powerful test available
when its assumptions have been violated.

Statisticians are developing possible alternatives to ANOVA. Our purpose in this extension
is to provide a brief introduction to a few of these possible alternatives. We warn you that our
coverage is far from exhaustive; we simply could not cover in the space available the wide
range of possibilities already developed. Instead, our purpose is to make you aware that the
field of statistics is dynamic and ever-changing, just like all other scientific fields of inquiry.
Techniques (or theories) that are favored today may be in disfavor tomorrow, replaced by
superior alternatives.

Another reason we make no attempt to be exhaustive here is that further research yet
needs to be done to compare the techniques we describe to usual ANOVA methods. At this
time, it is unclear which, if any, of these methods will be judged most useful. Although
we provide evaluative comments where possible, we forewarn you that this area is full of
complexity and controversy. The assumption that distributions are normal and variances are
homogeneous simplifies the world enormously. A moment’s reflection should convince you
that “nonnormal” and “heterogeneous™ lack the precision of “normal” and “homogeneous.”
Data can be nonnormal in an infinite number of ways, rapidly making it very difficult for
statisticians to find an optimal technique for analyzing “nonnormal” data. What is good for
one form of nonnormality may be bad for another form. Also, what kinds of distributions occur
in real data? A theoretical statistician may be interested in comparing data-analysis techniques
for data from a specific nonnormal distribution, but if that particular distribution never underlies
behavioral data, the comparison may have no practical import to behavioral researchers. How
far do actual data depart from normality and homogeneity? There is no simple answer, which
partially explains why comparing alternatives to ANOVA is complicated and controversial.

The presentation of methods in this extension is not regularly paralleled by similar extensions
on robust methods later in the book because many of the alternatives to ANOVA in the single-
factor between-subjects design have not been generalized to more complex designs.
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Two possible types of alternatives to the usual ANOVA in between-subjects designs have
received considerable attention in recent years. The first type is a parametric modification
of the F test that does not assume homogeneity of variance. The second type is a nonpara-
metric approach that does not assume normality. Because the third ANOVA assumption is
independence, you might expect there to be a third type of alternative that does not assume
independence. However, as we stated earlier, independence is largely a matter of design, so
modifications would likely involve changes in the design instead of changes in data analysis
(see Kenny & Judd, 1986). Besides these two broad types of alternatives, several other possible
approaches are being investigated. We look at two of these after we examine the parametric
modifications and the nonparametric approaches.

Paramectric Modifications

As stated earlier, one assumption underlying the usual ANOVA F test is homogeneity of
variance. Statisticians have known for many years that the F test can be either very conservative
(too few Type L errors and hence decreased power) or very liberal (too many Type I errors) when
variances are heterogeneous and sample sizes are unequal. In general, the F test is conservative
when large sample sizes are paired with large variances. The F is liberal when large sample sizes
are paired with small variances. The optional section at the end of this extension shows why the
nature of the pairing causes the F sometimes to be conservative and other times to be liberal.
Obviously, either occurrence is problematic, especially because the population variances are
unknown parameters. As a consequence, we can never know with complete certainty whether
the assumption has been satisfied in the population. However, statistical tests of the assumption
are available (see Chapter 3), so one strategy might be to use the standard F test to test mean
differences only if the homogeneity of variance hypothesis cannot be rejected. Unfortunately,
this strategy seems to offer almost no advantage (Wilcox, Charlin, & Thompson, 1986). The
failure of this strategy has led some statisticians (e.g., Tomarken & Serlin, 1986; Wilcox,
Charlin, & Thompson, 1986) to recommend that the usual F test routinely be replaced by one
of the more robust alternatives we present here, especially with unequal n.

Although these problems with unequal n provide the primary motivation for developing
alternatives, several studies have shown that the F test is not as robust as had previously been
thought when sample sizes are equal. Clinch and Keselman (1982), Rogan and Keselman
(1977), Tomarken and Serlin (1986), and Wilcox, Charlin, and Thompson (1986) show that
the F test can become somewhat liberal with equal n when variances are heterogeneous. When
variances are very different from each other, the actual Type I error rate may reach .10 or so
(with a nominal rate of .05), even with equal n. Of course, when variances are less different,
the actual error rate is closer to .05.! In summary, there seems to be sufficient motivation for
considering alternatives to the F test when variances are heterogeneous, particularly when
sample sizes are unequal.

We consider two alternatives: The first test statistic was developed by Brown and Forsythe
(1974) and has a rather intuitive rationale. The second was developed by Welch (1951). Both
are available in SPSS (one-way ANOVA procedure), so in our discussion we downplay com-
putational details.?

The test statistic developed by Brown and Forsythe (1974) is based on the between-group
sum of squares calculated in exactly the same manner as in the usual F test:

$Sp =Y n;(¥; — ¥y (E.D)
j=1
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where ¥ = dian ;Y;/N. However, the denominator is calculated differently from the de-
nominator of the usual F test. The Brown-Forsythe denominator is chosen to have the same
expected value as the numerator if the null hypothesis is true, even if variances are heteroge-
neous. (The rationale for finding a denominator with the same expected value as the numerator
if the null hypothesis is true is discussed in Chapter 10.) After some tedious algebra, it can be
shown that the expected value of SSg under the null hypothesis is given by

&(SSp) =Y [1—(n;/N)]o? (E.2)
j=1

Notice that if we were willing to assume homogeneity of variance, Equation E.2 would simplify
to

E(SSp) = Z[l —(n;/N)o? = o? |:a - Z(nj/N)] = (a — 1o?
Jj=1 i=1

7

where o2 denotes the common variance. With homogeneity, & (MSw) = o2, so the usual F
is obtained by taking the ratio of MSg (which is S§Sg divided by a — 1) and MSw. Under
homogeneity, MSg and MSw have the same expected value under the null hypothesis, so their
ratio provides an appropriate test statistic.’

When we are unwilling to assume homogeneity, it is preferable to estimate the population
variance of each group (i.e., c]?) separately. This is easily accomplished by using sjz. a52 an

unbiased estimate of af. A suitable denominator can be obtained by substituting sf. for o in

Equation E.2, yielding
>0 -/ N))s? (E.3)
j=1

The expected value of this expression equals the expected value of SSg under the null hypoth-
esis, even if homogeneity fails to hold. Thus, taking the ratio of SSp and the expression in
Equation E.3 yields an appropriate test statistic:

a — —
z%nj(yj -Y)
==

il [1 - (n/N)ls?
£

(E4

The statistic is written as F* instead of F because it does not have an exact F distribution.
However, Brown and Forsythe show that the distribution of F* can be approximated by an F
distribution with a — 1 numerator degrees of freedom and f denominator degrees of freedom.
Unfortunately, the denominator degrees of freedom are tedious to calculate and are best leftto a
computer program. Nevertheless, we present the formula for denominator degrees of freedom
as follows:

f=—— (E.5)
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where

[L = () /N)]s?
il [L = (n;/N)]s?
J=

8i =

It is important to realize that, in general, F* differs from F in two ways. First, the denominator
degrees of freedom for the two approaches are different. Second, the observed values of the test
statistics are typically different as well. In particular, F* may be either systematically smaller
or larger than F'. If large samples are paired with small variances, F* tends to be smaller than
F; however, this reflects an advantage for F*, because F tends to be liberal in this situation.
Conversely, if large samples are paired with large variances, F* tends to be larger than F; once
again, this reflects an advantage for F*, because F tends to be conservative in this situation.
What if sample sizes are equal? With equal n, Equation E.4 can be rewritten as

ni(?,—?)2 nf(Yj—Y)Z
F* = j=1 _ j=1
El[l — (1/a))s5 _le(a — D/a))s;
= J=

n @ -TF n il(?j — TR/ —1)
j= j=

@-13 s 3 s2/a
Jj=1 Jj=1
MSy
= ——=F
MSw

Thus, with equal #, the observed values of F* and F are identical. However, the denominator
degrees of freedom are still different. It can be shown that with equal n, Equation E.5 for the
denominator degrees of freedom associated with F* becomes

2
(n-—l)( s;?-)
j=1
_ (E.6)

pGi)

M=

f=

Although it may not be immediately apparent, f is an index of how different sample variances
are from each other. If all sample variances were identical to each other, f would equal
a(n — 1), the denominator degrees of freedom for the usual F test. At the other extreme,
as one variance becomes infinitely larger than all others, f approaches a value of n — 1. In
general, then, f ranges from n — 1 to a(n — 1) and attains higher values for more similar
variances.

We can summarize the relationship between F* and F with equal # as follows. To the extent
that the sample variances are similar, F* is similar to F; however, when sample variances are
different from each other, F* is more conservative than F because the lower denominator
degrees of freedom for F* imply a higher critical value for F* than for F. As a consequence,
with equal n, F* rejects the null hypothesis less often than does F. If the homogeneity of
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variance assumption is valid, the implication is that F* is less powerful than F. However,
Monte Carlo studies by Clinch and Keselman (1982) and Tomarken and Serlin (1986) suggest
that the power advantage of F over F* rarely exceeds .03 with equal n.* On the other hand,
if the homogeneity assumption is violated, F* tends to maintain « at .05, whereas F' becomes
somewhat liberal. However, the usual F test tends to remain robust as long as the population
variances are not widely different from each other. As a result, in practice any advantage that
F* might offer over F with equal » is typically slight, except when variances are extremely
discrepant from each other.

However, with unequal n, F*, and F may be very different from one another. If it so happens
that large samples are paired with small variances, F* maintains « near .05 (assuming that .05 is
the nominal value), whereas the actual « level for the F test canreach .15 or even .20 (Clinch &
Keselman, 1982; Tomarken & Serlin, 1986), if population variances are substantially different
from each other. Conversely, if large samples happen to be paired with large variances, F*
provides a more powerful test than does the F test. The advantage for F* can be as great as
.15 or .20 (Tomarken & Serlin, 1986), depending on how different the population variances
are and on how the variances are related to the sample sizes. Thus, F* is not necessarily more
conservative than F.

Welch (1951) also derived an alternative to the F test that does not require the homogeneity
of variance assumption. Unlike the Brown and Forsythe alternative, which was based on the
between-group sum of squares of the usual F test, Welch’s test uses a different weighting of
the sum of squares in the numerator. Welch’s statistic is defined as:

> wi@ = PP fa=1)
j=1

[1+ 2(a—2)A]

where
w; = nj/sf
Z:]WJYJ
p =L
2 W)
j=1
a a 2
32 [1 - (WJ/ZWJ)] /("j -1
j=1 j=t
A =

a? -1

When the null hypothesis is true, W is approximately distributed as an F variable witha — 1
numerator and 1/A denominator degrees of freedom. (Notice that A is used to represent the
value of Wilks’ lambda in Chapter 14. Its meaning here is entirely different, and reflects the
unfortunate tradition among statisticians to use the same symbol for different expressions. In
any event, the meaning here should be clear from the context.) It might alleviate some concern
to remind you at this point that the SPSS program for one-way ANOVA calculates W as well
as its degrees of freedom and associated p value.
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The basic difference between the rationales behind F* and W involves the weight associated
with a group’s deviation from the grand mean, that is, ¥; — Y. As Equation E.1 shows, F*
weights each group according to its sample size. Larger groups receive more weight because
their sample mean is likely to be a better estimate of their population mean. W, however,
weights each group according to »; /sj2., which is the reciprocal of the estimated variance of
the mean. Less variable group means thus receive more weight, whether the lesser variability
results from a larger sample size or a smaller variance. This difference in weighting causes W
to be different from F*, even though neither assumes homogeneity of variance. As an aside,
notice also that the grand mean is defined differently in Welch’s approach than for either F
or F*; although it is still a weighted average of the group means, the weights depend on the
sample variances as well as the sample sizes.

Welch’s W statistic compares to the usual F test in a generally similar manner as F*
compares to F. When large samples are paired with large variances, W is less conservative than
F. When large samples are paired with small variances, W is less liberal than F. Interestingly,
when sample sizes are equal, W differs more from F than does F*, Whereas F and F* have the
same observed value with equal n, in general, the observed value of W is different. The reason
is that, as seen earlier, W gives more weight to groups with smaller sample variances. When
homogeneity holds in the population, this differential weighting is simply based on chance,
because in this situation sample variances differ from one another as a result of sampling error
only. As a result, tests based on W are somewhat less powerful than tests based on F. Based
on Tomarken and Serlin’s (1986) findings, the difference in power is usually .03 or less, and
would rarely exceed .06 unless sample sizes are very small. However, when homogeneity fails
to hold, W can be appreciably more powerful than the usual F' test, even with equal n. The
power advantage of W was often as large as .10, and even reached .34 in one condition in
Tomarken and Serlin’s simulations. This advantage stems from W giving more weight to the
more stable sample means, which F does not do (nor does F*). It must be added, however, that
W can also have less power than F with equal n. If the group that differs most from the grand
mean has a large population variance, W attaches a relatively small weight to the group because
of its large variance. In this particular case, W tends to be less powerful than F because the
most discrepant group receives the least weight. Nevertheless, Tomarken and Serlin found that
W is generally more powerful than F for most patterns of means when heterogeneity occurs
with equal n.

The choice between F* and W when heterogeneity is suspected is difficult given the current
state of knowledge. On the one hand, Tomarken and Serlin (1986) found that W is more
powerful than F* across most configurations of population means. On the other hand, Clinch
and Keselman (1982) found that W becomes somewhat liberal when underlying population
distributions are skewed instead of normal. They found that F* generally maintains a close
to a nominal value of .05 even for skewed distributions. In addition, Wilcox, Charlin, and
Thompson (1986) found that W maintained an appropriate Type I error rate better than F*
when sample sizes are equal, but that F* was better than W when unequal sample sizes are
paired with equal variances. Choosing between F* and W is obviously far from clear cut, given
the complex nature of findings. Further research is needed to clarify their relative strengths.
Although the choice between F* and W is unsettled, it is clear that both are preferable to F
when population variances are heterogeneous and sample sizes are unequal.

Table 3E.1 summarizes the properties of F, F'*, and W as a function of population variances
and sample sizes. Again, from a practical standpoint, the primary point of the table is that F*
or W should be considered seriously as a replacement for the usual F test when sample sizes
are unequal and heterogeneity of variance is suspected.
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TABLEE.1
PROPERTIES OF F, F*, AND W AS A FUNCTION OF SAMPLE SIZES AND
POPULATION VARTIANCES
Test Statistic
F F* w

Equal Sample Sizes

Equal variances Appropriate Slightly conservative Robust

Unequal variances Robust, except can Robust, except can become Robust

Unequal Sample Sizes
Equal variances

Large samples paired
with large variances

Large samples paired
with small variances

become liberal for very
large differences in
variances

Appropriate

Conservative

Liberal

liberal for extremely
large differences in
variances

Robust

Robust, except can become
slightly liberal when
differences in sample sizes
and in variances are both
very large

Robust, except can become
slightly liberal when
differences in sample sizes
and in variances are both
very large

Robust, except can become
slightly liberal for very
large differences in

sample sizes

Robust, except can become
slightly liberal when
differences in sample sizes
and in variances are both
very large

Robust, except can become
slightly liberal when
differences in sample sizes
and in variances are both
very large

Nonparametric Approaches

The parametric modifications of the previous section were developed for analyzing data with
unequal population variances. The nonparametric approaches of this section were developed
for analyzing data whose population distributions are nonnormal. As we discuss in some
detail later, another motivating factor for the development of nonparametric techniques in the
behavioral sciences has been the belief held by some researchers that they require less stringent
measurement properties of the dependent variable. The organizational structure of this section
consists of first, presenting a particular nonparametric technique, and second, discussing its
merits relative to parametric techniques.

There are several nonparametric alternatives to ANOVA for the single-factor between-
subjects design. We present only one of these, the Kruskal-Wallis test, which is the most
frequently used nonparametric test for this design. For information on other nonparametric
methods, consult such nonparametric textbooks as Bradley (1968), Cliff (1996), Gibbons
(1971), Marascuilo and McSweeney (1977), Noether (1976), or Siegel (1956).

The Kruskal-Wallis test is often called an “ANOVA by Ranks” because a fundamental
distinction between the usual ANOVA and the Kruskal-Wallis test is that the original scores
are replaced by their ranks in the Kruskal-Wallis test. Specifically, the first step in the test
is to rank order all observations from low to high (actually, high to low yields exactly the
same result) in the entire set of N subjects. Be certain to notice that this ranking is performed
across all a groups, independently of group membership. When scores are tied, each obser-
vation is assigned the average (i.e., mean) rank of the scores in the tied set. For example, if
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three scores are tied for 6th, 7th, and 8th place in order, all three scores are assigned a rank
of 7.
Once the scores have been ranked, the test statistic is given by

12

=—— y AR, — 2
H=qw +1);nJ{R, [(N +1)/2)) E7)

where R; is the mean rank for group j. Although Equation E.7 may look very different from the
usual ANOVA F statistic, in fact, there is an underlying similarity. For example, (N + 1)/2 is
simply the grand mean of the ranks, which we know must have values of 1, 2, 3, ..., N. Thus,
the term X7_n HAR; — N +1) /2]}2 is a weighted sum of squared deviations of group means
from the grand mean, as in the parametric F test. It also proves to be unnecessary to estimate o2,
the population error variance, because the test statistic is based on a finite population of size
N (cf. Marascuilo & McSweeney, 1977, for more on this point). The important point for our
purposes is that the Kruskal-Wallis test is very much like an ANOVA on ranks.

When the null hypothesis is true, H is approximately distributed as a y? witha — 1 degrees
of freedom. The x2 approximation is accurate unless sample sizes within some groups are
quite small, in which case tables of the exact distribution of H should be consulted in such
sources as Siegel (1956) or Iman, Quade, and Alexander (1975). When ties occur in the data,
a correction factor T should be applied:

G

26— 1)
T=1-=_

N3-N

where ¢; is the number of observations tied at a particular value and G is the number of distinct
values for which there are ties. A corrected test statistic H’ is obtained by dividing H by
T:H' = H/T. The correction has little effect (i.e., H’ differs very little from H) unless
sample sizes are very small or there are many ties in the data, relative to sample size. Most
major statistical packages (e.g., SAS, and SPSS) have a program for computing H (or H') and
its associated p value. Also, it should be pointed out that when there are only two groups to be
compared (i.e., a = 2), the Kruskal-Wallis test is equivalent to the Wilcoxon Rank Sum test,
which is also equivalent to the Mann—Whitney U.

Choosing Between Parametric and
Nonparametric Tests

Statisticians have debated the relative merits of parametric versus nonparametric tests ever
since the inception of nonparametric approaches. As a consequence, all too often behavioral
researchers are told either that parametric procedures should always be used (because they
are robust and more powerful) or that nonparametric methods should always be used (because
they make fewer assumptions). Not surprisingly, both of these extreme positions are oversim-
plifications. We provide a brief overview of the advantages each approach possesses in certain
situations. Our discussion is limited to a comparison of the F, F*, and W parametric tests and
the Kruskal-Wallis nonparametric test.

Nevertheless, even with this limitation, do not expect our comparison of the methods to
provide a definitive answer as to which approach is “best.” The choice between approaches is
too complicated for such a simple answer. There are certain occasions where parametric tests
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are preferable and others where nonparametric tests are better. A wise data analyst carefully
weighs the advantages in his or her situation and makes an informed choice accordingly.

A primary reason the comparison of parametric and nonparametric approaches is so difficult
is that they do not always test the same null hypothesis. To see why they do not, we must consider
the assumptions associated with each approach. As stated earlier, we consider specifically the
F test and Kruskal-Wallis test for one-way between-subjects designs.

As discussed in Chapter 3, the parametric ANOVA can be conceptualized in terms of a full
model of the form

Vij=uto;+e;
ANOVA tests a null hypothesis
Hy:oqy=ay=---=0, =0

where it is assumed that population distributions are normal and have equal variances. In other
words, under the null hypothesis, all @ population distributions are identical normal distribu-
tions if ANOVA assumptions hold. If the null hypothesis is false, one or more distributions
are shifted either to the left or to the right of the other distributions. Figure 3E.1 illustrates
such an occurrence for the case of three groups. The three distributions are identical except
that £ = 10, pp = 20, and p3 = 35. When the normality and homogeneity assumptions are
met, the distributions still have the same shape, but they have different locations when the null
hypothesis is false. For this reason, ANOVA is sometimes referred to as a test of location or
as testing a shift hypothesis.

Under certain conditions, the Kruskal-Wallis test can also be conceptualized as testing a
shift hypothesis. However, although it may seem surprising given it has been many years since
Kruskal and Wallis (1952) introduced their test, there has been a fair amount of confusion and
variation in textbook descriptions even in recent years about what assumptions are required
and what hypothesis is tested by the Kruskal-Wallis test (a summary is provided by Vargha &
Delaney, 1998). As usual, what one can conclude is driven largely by what one is willing to
assume. If one is willing to assume that the distributions being compared are identical except
possibly for their location, then the Kruskal-Wallis test can lead to a similar conclusion as an
ANOVA, Like other authors who adopt these restrictive “shift model” assumptions, Hollander
and Wolfe (1973) argue that the Kruskal-Wallis test can be thought of in terms of a full model

Probability Group 1 Group 2 Group 3
density
(i.e., relative
frequency
of scores)
10 15 20 25 30 35

Dependent variable

FIG. 3E.1. Shifted distributions under ANOVA assumptions.
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Group 1 Group 2 Group 3

Probability
density

(i.e., relative
frequency
of scores)

Dependent variable

FIG. 3E.2. Shifted distributions under Kruskal-wallis assumptions.

of the form
Yj=u+a;+e;
and that the null hypothesis being tested can be represented by
H:qg=a0=---=a,=0

just as in the parametric ANOVA. From this perspective, the only difference concerns the as-
sumptions involving the distribution of errors (¢;;). Whereas the parametric ANOVA assumes
both normality and homogeneity, the Kruskal-Wallis test assumes only that the population
of error scores has an identical continuous distribution for every group. As a consequence,
in the Kruskal-Wallis model, homogeneity of variance is still assumed, but normality is not.
The important point for our purposes is that, under these assumptions, the Kruskal-Wallis
test is testing a shift hypothesis, as is the parametric ANOVA, when its assumptions are met.
Figure 3E.2 illustrates such an occurrence for the case of three groups. As in Figure 3E. 1,
the three distributions of Figure 3E.2 are identical to each other except for their location on
the X axis. Notice, however, that the distributions in Figure 3E.2 are skewed, unlike the dis-
tributions in Figure 3E.1 that are required to be normal by the ANOVA model. Under these
conditions, both approaches are testing the same null hypothesis, because the o; parameters
in the models are identical. For example, the difference «; — @ represents the extent to which
the distribution of Group 1 is shifted either to the right or to the left of Group 2. Not only
does a; — «; equal the difference between the population means, but as Figure 3E.3 shows,
it also equals the difference between the medians, the 5th percentile, the 75th percentile, or
any other percentile. Indeed, it is fairly common to regard the Kruskal-Wallis test as a way of
deciding if the population medians differ (cf. Wilcox, 1996, p. 365). This is legitimate when
the assumption that all distributions have the same shape is met. In this situation, the only
difference between the two approaches is that the parametric ANOVA makes the additional
assumption that this common shape is that of a normal distribution. Of course, this differ-
ence implies different properties for the tests, which we discuss momentarily. To summarize,
when one adopts the assumptions of the shift model (namely identical distributions for all a
groups, except for a possible shift under the alternative hypothesis), the Kruskal-Wallis test
and the parametric ANOVA are testing the same null hypothesis. In this circumstance, it is
possible to compare the two approaches and state conditions under which each approach is
advantageous.’
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Group 1 Group 2
Probability
density
(i.e., relative
frequency
of scores)
Mdn, VX Mdn, W2

| -—— (12—(11__>|
| -— o - oy —|

FIG. 3E.3. Meaning of ez — ¢ for two groups when shift hypothesis holds.

However, there are good reasons for viewing the Kruskal-Wallis test differently. Although
it is widely understood that the null hypothesis being tested is that the groups have identical
population distributions, the most appropriate alternative hypothesis and required assumptions
are not widely understood. One important point to understand is that the Kruskal-Wallis
test possesses the desirable mathematical property of consistency only with respect to an
alternative hypothesis stated in terms of whether individual scores are greater in one group than
another.

This is seen most clearly when two groups are being compared. Let p be defined as the
probability that a randomly sampled observation from one group on a continuous dependent
variable Y is greater than a randomly sampled observation from the second group (e.g., Wilcox,
1996, p. 365). That is,

p=Pr(11 >12)

If the two population distributions are identical, p = !4, and so one could state the null
hypothesis the Kruskal-Wallis is testing in this case as Hy : p = 1. The mathematical reason
doing so makes most sense is that the test is consistent against an alternative hypothesis if
and only if it implies H; : p # 4 (Kendall & Stuvart, 1973, p. 513). Cases in which p =1/
have been termed cases of stochastic equality (cf. Mann & Whitney, 1947; Delaney & Vargha,
2002), and the consistency property means that if the two populations are stochastically un-
equal (p # 1), then the probability of rejecting the null hypothesis approaches 1 as the sample
sizes get larger.

When the populations have the same shape, ANOVA and Kruskal-Wallis are testing the
same hypothesis regarding location, although it is common to regard the ANOVA as a test
of differences between population means, but regard the Kruskal-Wallis test as a test of dif-
ferences between population medians.® However, when distributions have different asym-
metric shapes, it is possible for the population means to all be equal and yet the popula-
tion medians all be different, or vice versa. Similarly, with regard to the hypothesis that
the Kruskal-Wallis test is most appropriate for, namely stochastic equality, with different
asymmetric distributions, the population means might all be equal, yet the distributions be
stochastically unequal, or vice versa. The point is that, in such a case, the parametric ANOVA
may be testing a true null hypothesis, whereas the nonparametric approach is testing a false
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null hypothesis. In such a circumstance, the probabilities of rejecting the null hypothesis for
the two approaches cannot be compared meaningfully because they are answering different
questions,

In summary, when distributions have different shapes, the parametric and nonparametric
approaches are generally testing different hypotheses. Different shapes occur fairly often, in
part because of floor and ceiling effects such as occur with Likert-scale dependent variables.
In such conditions, the basis for choosing between the approaches should probably involve
consideration of whether the research question is best formulated in terms of population means
or in terms of comparisons of individual scores. When these differ, we would argue that
more often than not, the scientist is interested in the comparison of individuals. If one is
interested in comparing two methods of therapy for reducing depression, or clients’ daily
alcohol consumption, one is likely more interested in which method would help the greater
number of people rather than which method produces the greater mean level of change—if these
are different. In such situations, stochastic comparison might be preferred to the comparison
of means.

Suppose that, in fact, population distributions are identical—which approach is better,
parametric or nonparametric? Although the question seems relatively straightforward, the
answer is not. Under some conditions, such as normal distributions, the parametric ap-
proach is better. However, under other conditions, such as certain long-tailed distributions
(in which extreme scores are more likely than in the normal distribution), the nonparamet-
ric approach is better. As usual, the choice involves a consideration of Type I error rate and
power.

If population distributions are identical and normal, both the F test and the Kruskal-Wallis
test maintain the actual « level at the nominal value, because the assumptions of both tests have
been met (assuming, in addition, as we do throughout this discussion, that observations are
independent of one another). On the other hand, if distributions are identical but nonnormal,
only the assumptions of the Kruskal-Wallis test are met. Nevertheless, the extensive survey
conducted by Glass and colleagues (1972) suggests that the F test is robust with respect to
Type Lerrors to all but extreme violations of normality.” Thus, with regard to Type I error rates,
there is little practical reason to prefer either test over the other if all population distributions
have identical shapes.

While on the topic of Type I error rate, it is important to dispel a myth concerning nonpara-
metric tests. Many researchers apparently believe that the Kruskal-Wallis test should be used
instead of the F test when variances are unequal, because the Kruskal-Wallis test does not
assume homogeneity of variance. However, we can see that this belief is misguided. Under the
shift model, the Kruskal-Wallis test assumes that population distributions are identical under
the null hypothesis, and identical distributions obviously have equal variances. Even when the
Kruskal-Wallis is treated as a test of stochastic equality, the test assumes that the ranks of
the scores are equally variable across groups (Vargha & Delaney, 1998), so homogeneity of
variance in some form is, in fact, an assumption of the Kruskal-Wallis test. Furthermore, the
Kruskal-Wallis test is not robust to violations of this assumption with unequal n. Keselman,
Rogan, and Feir-Walsh (1977) as well as Tomarken and Serlin (1986) found that the actual
Type I error rate of the Kruskal-Wallis test could be as large as twice the nominal level when
large samples are paired with small variances (cf., Oshima & Algina, 1992). It should be added
that the usual F test was even less robust than the Kruskal-Wallis test. However, the important
practical point is that neither test is robust. In contrast, Tomarken and Serlin (1986) found
both F* and W to maintain acceptable « levels even for various patterns of unequal sample
sizes and unequal variances.® Thus, the practical implication is that F* and W are better
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alternatives to the usual F test than is the standard Kruskal-Wallis test when heterogeneity of
variance is suspected, especially with unequal n. Robust forms of the Kruskal-Wallis test have
now been proposed, but are not considered here (see Delaney & Vargha, 2002).

A second common myth surrounding nonparametric tests is that they are always less pow-
erful than parametric tests. It is true that if the population distributions for all a groups are
normal with equal variances, then the F test is more powerful than the Kruskal-Wallis test.
The size of the difference in power varies as a function of the sample sizes and the means,
so it is impossible to state a single number to represent how much more powerful the F test
is. However, it is possible to determine mathematically that as sample sizes increase toward
infinity, the efficiency of the Kruskal-Wallis test to the F test is 0.955 under normality.® In
practical terms, this means that for large samples, the F test can achieve the same power as the
Kruskal-Wallis test and yet require only 95.5% as many subjects as would the Kruskal-Wallis
test. It can also be shown that for large samples, the Kruskal-Wallis test is at least 86.4% as
efficient as the F test for distributions of any shape, as long as all a distributions have the
same shape. Thus, at its absolute worst, for large samples, using the Kruskal-Wallis instead
of the F test is analogous to failing to use 13.6% of the subjects one has observed. We must
add, however, that the previous statement assumes that all population distributions are identi-
cal. If they are not, the Kruskal-Wallis test in some circumstances has little or no power for
detecting true mean differences, because it is testing a different hypothesis, namely stochastic
equality.

So far, we have done little to dispel the myth that parametric tests are always more powerful
than nonparametric tests. However, for certain nonnormal distributions, the Kruskal-Wallis
test is, in fact, considerably more powerful than the parametric F test. Generally speaking,
the Kruskal-Wallis test is more powerful than the F test when the underlying population
distributions are symmetric but heavy-tailed, which means that extreme scores (i.e., outliers)
are more frequent than in the normal distribution. The size of the power advantage of the
Kruskal-Wallis test depends on the particular shape of the nonnormal distribution, sample
sizes, and the magnitude of separation between the groups. However, the size of this advantage
can easily be large enough to be of practical importance in some situations. It should also be
added that the Kruskal-Wallis test is frequently more powerful than the F test when distributions
are identical but skewed.

As mentioned earlier, another argument that has been made for using nonparametric pro-
cedures is that they require less stringent measurement properties of the data. In fact, there
has been a heated controversy ever since Stevens (1946, 1951) introduced the concept of
“levels of measurement” (i.e., nominal, ordinal, interval, and ratio scales) with his views of
their implications for statistics. Stevens argues that the use of parametric statistics requires
that the observed dependent variable be measured on an interval or ratio scale. However,
many behavioral variables fail to meet this criterion, which has been taken by some psychol-
ogists to imply that most behavioral data should be analyzed with nonparametric techniques.
Others (e.g., Gaito, 1980; Lord, 1953) argue that the use of parametric procedures is entirely
appropriate for behavioral data.

We cannot possibly do justice in this discussion to the complexities of all viewpoints. Instead,
we attempt to describe briefly a few themes and recommend additional reading. Gardner (1975)
provides an excellent review of both sides of the controversy through the mid-1970s. Three
points raised in his review deserve special mention here. First, parametric statistical tests do
not make any statistical assumptions about level of measurement. As we stated previously,
the assumptions of the F test are normality, homogeneity of variance, and independence of
observations. A correct numerical statement concerning population mean differences does not
require interval measurement. Second, although a parametric test can be performed on ordinal
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data without violating any assumptions of the test, the meaning of the test could be damaged.
In essence, this can be thought of as a potential construct validity problem (see Chapter 1).
Although the test is correct as a statement of mean group differences on the observed variable,
these differences might not reflect true differences on the underlying construct. Third, Gardner
cites two empirical studies (Baker, Hardyck, & Petrinovich, 1966; Labovitz, 1967) that showed
that, although in theory construct validity might be problematic, in reality, parametric tests
produced meaningful results for constructs even when the level of measurement was only
ordinal.

Recent work demonstrates that the earlier empirical studies conducted prior to 1980 were
correct as far as they went, but it has become clear that these earlier studies were limited
in an important way. In effect, the earlier studies assumed that the underlying population
distributions on the construct not only had the same mean, but were also literally identical
to each other. However, a number of later studies (e.g., Maxwell & Delaney, 1985; Spencer,
1983) show that, when the population distributions on the construct have the same mean
but different variances, parametric techniques on ordinal data can result in very misleading
conclusions. Thus, in some practical situations, nonparametric techniques may indeed be more
appropriate than parametric approaches. Many interesting articles continue to be written on
this topic. Recent articles deserving attention are Davison and Sharma (1988), Marcus-Roberts
and Roberts (1987), Michell (1986), and Townsend and Ashby (1984).

In summary, the choice between a parametric test (F, F*, or W) and the Kruskal-Wallis test
involves consideration of a number of factors. First, the Kruskal-Wallis test does not always
test the same hypothesis as the parametric tests. As a result, in general, it is important to
consider whether the research question of interest is most appropriately formulated in terms
of comparisons of individual scores or comparisons of means. Second, neither the usual F test
nor the Kruskal-Wallis test is robust to violations of homogeneity of variance with unequal n.
Either F* or W, or robust forms of the Kruskal-Wallis test, are preferable in this situation.
Third, for some distributions, the F test is more powerful than the Kruskal-Wallis test; whereas
for other distributions, the reverse is true. Thus, neither approach is always better than the other.
Fourth, level of measurement continues to be controversial as a factor that might or might not
influence the choice between parametric and nonparametric approaches.

OPTIONAL

Two Other Approaches

As if the choice between parametric and nonparametric were not already complicated, there are yet other
possible techniques for data analysis, even in the relatively simple one-way between-subjects design. As
we stated at the beginning of this extension, statisticians are constantly inventing new methods of data
analysis. In this section, we take a brief glimpse at two methods that are still in the experimental stages
of development. Because the advantages and disadvantages of these methods are largely unexplored,
we would not recommend as of this writing that you use these approaches as your sole data-analysis
technique without first seeking expert advice. Nevertheless, we believe that it is important to expose you
to these methods because they represent the types of innovations currently being studied. As such, they
may become preferred methods of data analysis during the careers of those of you who are reading this
book as students.

The first innovation, called a rank transformation approach, has been described as a bridge between
parametric and nonparametric statistics by its primary developers, Conover and Iman (1981). The rank
transformation approach consists of simply replacing the observed data with their ranks and then applying
the usual parametric test. Conover and Iman (1981) discuss how this approach can be applied to such
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diverse problems as multiple regression, discriminant analysis, and cluster analysis. In the case of the
one-way between-subjects design, the parametric F computed on ranks (denoted Fg) is closely related
to the Kruskal-Wallis test. Conover and Iman show that Fg is related to the Kruskal-Wallis H by the
formula:

Fr=[H/(a - D])/UN —1—- H)/(N —a)]

The rank transformation test compares Fy to a critical F value, whereas the Kruskal-Wallis test compares
H to a critical x? value. Both methods are large-sample approximations to the true critical value. Iman
and Davenport (1976) found the F approximation to be superior to the x* approximation in the majority
of cases they investigated (see Delaney & Vargha, 2002, for discussion of a situation where using rank
transformations did not work well).

A second innovation involves a method of parameter estimation other than least squares. Least squares
forms the basis for comparing models in all parametric techniques we discuss in this book. In one form
or another, we generally end up finding a parameter estimate 2 to minimize an expression of the form
Z(¥ — )% Such an approach proves to be optimal when distributions are normal with equal variances.
However, as we have seen, optimality is lost when these conditions do not hold. In particular, least squares
tends to perform poorly in the presence of outliers (i.e., extreme scores) because the squaring function
is very sensitive to extreme scores. For example, consider the following five scores: 5, 10, 15, 20, 75.
If we regard these five observations as a random sample, we could use least squares to estimate the
population mean. It is easily verified that /i = 25 minimizes (Y — /)* for these data. As we know, the
sample mean, which here equals 25, is the least-squares estimate. However, only one of the five scores
is this large. The sample mean has been greatly influenced by the single extreme score of 75. If we are
willing to assume that the population distribution is symmetric, we could also use the sample median as
an unbiased estimator of the population mean.'® It is obvious that the median of our sample is 15, but
how does this relate to least squares? It can be shown that the median is the estimate that minimizes the
sum of the absolute value of errors: X|Y — fi|. Thus, the sample mean minimizes the sum of squared
errors, whereas the sample median minimizes the sum of absolute errors. The median is less sensitive
than the mean to outliers—for some distributions, this is an advantage; but for others, it is a disadvantage.
In particular, for heavy-tailed distributions, the median’s insensitivity to outliers makes it superior to the
mean. However, in a normal distribution, the median is a much less efficient estimator than is the mean.
The fact that neither the median nor the mean is uniformly best has prompted the search for alternative
estimators.

Statisticians developed a class of estimators called M estimators that in many respects represent a
compromise between the mean and the median. For example, one member of this class (the Huber M
estimator) is described as acting “like the mean for centrally located observations and like the median
for observations far removed from the bulk of the data” (Wu, 1985, p. 339). As a consequence, these
robust estimators represent another bridge between parametric and nonparametric approaches. These
robust estimators are obtained once again by minimizing a term involving the sum of errors. However,
M estimators constitute an entire class of estimators defined by minimizing the sum of some general
function of the errors. The form of the function determines the specific estimator in the general class. For
example, if the function is the square of the error, the specific estimation technique is least squares. Thus,
least-squares estimators are members of the broad class of M estimators. The median is also a member
of the class because it involves minimizing the sum of a function of the errors, the particular function
being the absolute value function.

Although quite a few robust estimators have been developed, we describe only an estimator developed
by Huber because of its relative simplicity.!! Huber’s estimator requires that a robust estimator of scale
(i.e., dispersion, or variability) have been calculated prior to determining the robust estimate of location
(i.e., population mean). Note that the scale estimate need not actually be based on a robust estimator;
however, using a robust estimator of scale is sensible, if one believes that a robust estimator of location is
needed in a particular situation. Although a number of robust estimators of scale are available, we present
only one: the median absolute deviation (MAD) from the median. MAD is defined as MAD = median
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{|Y — Mdn|}, where Mdn is the sample median. Although at first reading, the definition of MAD may
resemble double-talk, its calculation is actually very straightforward. For example, consider again our
hypothetical example of five scores: 5, 10, 13, 20, and 75. As we have seen, the median of these scores
is 15, so we can write Mdn = 15. Then the absolute deviations are given by |5 — 15| = 10, [10 — 15| =
5,115 -15/ =0, |20 — 15| = 5, and |75 — 15| = 60. MAD is defined to be the median of these five
absolute deviations, which is 5 in our example.!? MAD can be thought of as a robust type of standard
deviation. However, the expected value of MAD is considerably less than o for a normal distribution.
For this reason, MAD is often divided by 0.6745, which puts it on the same scale as o for a normal
distribution. We let § denote this robust estimate of scale, so we have § = MAD/0.6745.

With this background, we can now consider Huber’s M estimator of location. To simplify our nota-
tion, we define u; to be (¥; — /i)/S, where § is the robust estimate of scale (hence we already know
its value) and j is the robust estimate of location whose value we are seeking. Then, Huber's M
estimator minimizes the sum of a function of the errors Z;‘Zl Jf(u;), where the function f is defined as
follows:

Su? if [u;] < 1
fu) =

il = if ] > 1

Notice that function f involves minimizing sums of squared errors for errors that are close to the center
of the distribution but involves minimizing the sum of absolute errors for errors that are far from the
center. Thus, as our earlier quote from Wu indicated, Huber’s estimate really does behave like the mean
for observations near the center of the distribution but like the median for those farther away. At this point
you may be wondering how the {1 that minimizes the sum of Huber’s function is determined. It turns
out that the value must be determined through an iterative procedure. As a first step, a starting value for
ft is chosen; a simple choice for the starting value would be the sample median. We might denote this
value fig, the zero subscript indicating that this value is the optimal value after zero iterations. Then, a
new estimate is computed that minimizes the function X}, f(u;), where u; = (¥; — fio)/S. This yields
a new estimate [1,, where the subscript 1 indicates that one iteration has been completed. The process
continues until it converges, meaning that further iterations would make no practical difference in the
value.!®

Not only does M estimation produce robust estimates, but it also provides a methodology for hypothesis
testing. Schrader and Hettmansperger (1980) show how full and restricted models based on M estimates
can be compared to arrive at an F test using the same basic logic that underlies the F test with least
squares. Li (1985) and Wu (1985) describe how M estimation can be applied to robust tests in regression
analysis.

In summary, we have seen two possible bridges between the parametric and nonparametric approaches.
It remains to be seen whether either of these bridges will eventually span the gap that has historically
existed between proponents of parametrics and proponents of nonparametrics.
n

OPTIONAL

Why Does the Usual F Test Falter with Unequal ns
When Population Variances Are Unequal?

Why is the F test conservative when large sample sizes are paired with large variances, yet liberal when
large sample sizes are paired with small variances? The answer can be seen by comparing the expected
values of MSw and MSp when the null hypothesis is true, but variances are possibly unequal. In this
situation, the expected values of both MSy and MSy are weighted averages of the a population variances.
However, sample sizes play different roles in the two weighting schemes.
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Specifically, it can be shown that if the null hypothesis is true, MSp has an expected value given by

' w;o? ‘
EMSg) =" (E.1)
wj
j=1

a

where w; = N — n;. Thus, the weight a population variance receives in MSg is inversely related to its
sample size. Although this may seem counterintuitive, it helps to realize that MSg is based on Y; — Y,
and larger groups contribute proportionally more to Y.

Similarly, it can be shown that MSw has an expected value equal to

.Mn
3

¥

\QN

™| L
\g*

EMSy) =" (E.2)

-,
1l

where w7 = n; — 1. Thus, the weight a population variance receives in MSw is directly related to its
sample size.
What are the implications of Equations 3E.1 and 3E.2? Let’s consider some special cases.

Case I. Homogeneity of Variance

Ifall o} are equal to each other, Equations 3E.1 and 3E.2 simplify to &(MSp) = o*and &(MSw) = o2,
because the weights are irrelevant when all the numbers to be averaged are identical. In this case, the F
ratio of MSg to MSw works appropriately, regardless of whether the sample sizes are equal or unequal.

Case ll. Unequal Variances but Equal n

If all n; are equal to each other, Equations 3E.1 and 3E.2 simplify to &(MSg) = E;;lojz /a and
EMSw) = E;;laf /a. Because the weights are equal to one another, in both cases the weighted averages
become identical to simple unweighted averages. Thus, MSy and MSy are equal to one another in the
long run. Although the ANOVA assumption has been violated, the F test is typically only slightly affected
here.

Case Illl. Unequal Variances: Large Samples Paired
with Small Variances

In this situation, we can see from Equation 3E.1 that &(MSg) receives more weight from the smaller
samples, which have larger variances. Thus, the weighted average used to calculate #(MSz) is larger
than the unweighted average of the 0']? terms. However, #(MSw) receives more weight from the larger
samples, which have smaller variances. Thus, the weighted average used to calculate £(MSy) is smaller
than the unweighted average of the af terms. As a consequence, &(MSg) > £(MSw), even when the null
hypothesis is true. F values tend to be too large, resulting in too many rejections of the null hypothesis
when it is true. Thus, the Type I error rate is too high.
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Case IV. Unequal Variances: Large Samples Paired
with Large Variances

This situation is just the opposite of Case II1. Now, &(MSg) gives more weight to the groups with small
variances because they are smaller in size. In contrast, &(MSyw) gives more weight to the groups with
large variances because they are larger in size. As a result, &(MSp) < &(MSw) when the null hypothesis
is true. The F test is conservative and rejects the null hypothesis too infrequently. Thus, power suffers.

EXERCISES

*1. True or False: Although the parametric modification F* is more robust than the usual F test to
violations of homogeneity of variance in between-subjects designs, the F* test is always at least
slightly less powerful than the F test.

2. True or False: The parametric test based on Welch’s W statistic can be either more or less powerful
than the usual F test in equal-n designs.

3. True or False: When sample sizes are unequal and heterogeneity of variance is suspected in one-way
between-subjects designs, either F* or W should seriously be considered as a replacement for the
usual F test.

4. True or False: If one is willing to assume distributions have identical shapes, the Kruskal-Wallis
test can be regarded as testing a “shift” hypothesis in location without requiring an assumption that
scores are distributed normally.

5. True or False: The nonparametric Kruskal-Wallis test and the parametric F test always test the same
hypothesis, but they require different distributional assumptions.

6. True or False: Although the F test is more powerful than the Kruskal-Wallis test when the normality
and homogeneity of variance assumptions are met, the Kruskal-Wallis test can be more powerful
than the F test when these assumptions are not met.

*7. True or False: When sample sizes are unequal and heterogeneity of variance is suspected in one-way
between-subjects designs, the nonparametric Kruskal-Wallis test should be considered seriously as
a replacement for the usual F test.

*8. How do the values of F, F*, and W compare to each other when samples are of different sizes
and variances are considerably different from one another? Consider the following summary
statistics:

Groupl Group2 Group3l

ny =20 ny=20 n3=350
Yi=10 Y;=12 ¥Y3=14
=10 sI=10 sI=50

a. Calculate an observed F value for these data.

b. Calculate the F* value for these data (however, you need not compute the denominator degrees
of freedom).

c. Calculate the W value for these data.

d. Are your answers to parts a—c consistent with the assertion made in Table 3E.1 that when large
samples are paired with large variances the F is conservative, whereas F* and W are more
robust?
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9. Suppose that, as in Exercise §, samples are of different sizes and variances are considerably different
from each other. Now, however, the large variance is paired with a small sample size:

Groupl Group2 Group3

ny =20 ny =20 ny =50
Yi=10 ¥Y,=12 VY;=14
s2=50 sZ=10 s2=10

a. Calculate an observed F value for these data.

b. Calculate the F* value for these data (however, you need not compute the denominator degrees
of freedom).

c. Calculate the W value for these data (however, you need not compute the denominator degrees of
freedom).

d. Are your answers to parts a—c consistent with the assertion made in Table 3E.1 that when large
samples are paired with small variances, the F is liberal, whereas F* and W are more robust?

e. Are the F, F*, and W values of this exercise higher or lower than the corresponding F, F*, and W
values of Exercise 87 Is the direction of change consistent with Table 3E.1?
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Individual Comparisons
of Means

In Chapter 3, you learned how to test a null hypothesis that all @ groups have the same mean.
A global test such as this one that is sensitive to any differences among the levels of the
factor is often referred to as testing an omnibus null hypothesis. Although the importance of
this methodology cannot be overemphasized, it must also be recognized that it has certain
limitations. Specifically, anytime a is three or greater and the null hypothesis is rejected, the
precise inference to be made is unclear. For example, if a = 3, all that the statistical test
has informed us at this point is that the statement u, = u, = u3 is false. However, it is not
necessarily true that all three means are different from each other. For example, one possible
inference is that p; = u,, but both 1, and p, differ from p5. However, perhaps iy = 3, but
both differ from w;. Obviously, we need a way to decide which individual means do indeed
differ from each other. The name given to this topic is individual comparisons.

For example, suppose that a researcher is interested in treatments to reduce hypertension.
Consider a hypothetical study with four independent groups of subjects, each of whom is
assigned randomly to one of the following treatments: drug therapy, biofeedback, dietary
modification, and a treatment combining all aspects of the other treatments. For simplicity,
suppose the dependent variable is a single blood pressure reading taken 2 weeks after the
termination of treatment. In Chapter 3, you learned how to test an omnibus null hypothesis that
all four treatments are equally effective. However, there are a number of other questions that
might be addressed here, either in addition to or instead of the omnibus null hypothesis. For
example, Is there a difference in the effectiveness of drug therapy versus biofeedback? Drug
therapy versus diet? Biofeedback versus diet? Is the combination treatment more effective
than any of the individual treatments? Is it more effective than the average of the individual
treatments? In this chapter, you learn how to answer these questions and others like them.

To preview Chapters 4 and 5 for you, we first show how to use a model-comparisons approach
to test hypotheses concerning individual comparisons. Then a more traditional but mathemat-
ically equivalent approach to individual comparisons is developed. Chapter 5 considers issues
that arise when more than one individual comparison is performed in a single study. As we show,
in most studies, several comparisons are indeed tested, leading to the topic of multiple compar-
isons. The desire to test multiple comparisons can arise in either of two circumstances. First,
there are occasions in which a researcher may decide to test several specific comparisons either
instead of or in addition to performing a test of the omnibus null hypothesis that all ¢ population
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means are equal. Such an approach is called planned comparisons because the specific compar-
isons to be investigated are decided on at the beginning of the study. Second, on other occasions,
the omnibus null hypothesis is tested. If it is rejected, further data analyses are conducted to ex-
plore which groups contributed to the statistically significant result. This approach is called post
hoc comparisons because the comparisons to be tested are decided on after having examined
the data. The distinction between these two situations is described in detail in Chapter 5.

A MODEL COMPARISON APPROACH
FOR TESTING INDIVIDUAL COMPARISONS

Preview of Individual Comparisons

The next two sections present the rationale for formulas for testing individual comparisons
(i.e., questions regarding a specific difference among the groups included in the study). We see
that the model comparison approach allows us to use many of the same formulas we develop
in Chapter 3. In patticular, we continue to use the same general expression to obtain an F test
to compare the sums of squared errors of full and restricted models. Moreover, the full model
we develop in Chapter 3 continues as the full model for Chapter 4. From this perspective,
the only difference is that the restricted model of Chapter 4 is different from the restricted
model of Chapter 3 because we test a different null hypothesis. As a consequence, the specific
expression for the F test is also different. For example, the next section shows in detail that an
F test for comparing the means of the first and second groups in a study can be written as

(Y1-Y,)
1 1
<— + —) MSw
n ny

where n; and n, are the sample sizes of the first and second groups, ¥ and Y, are the sample
means of the first and second groups, and MSw is mean square within, just as in Chapter 3.
We now show how this expression can be derived by comparing appropriate full and restricted
models.

F= M

Relationship to Model Comparisons

Recall from Chapter 3 that we learned how to test the null hypothesis that all ¢ groups in an
a-group study have the same population mean. Symbolically, this corresponds to

Hy:pi=por=- = g @)
Using the principle of model comparisons, we began with a full model
Yij=u;+e; 3)

We obtained the restricted model from our null hypothesis that all ;1; parameters in fact equal
a single value, which we denoted w. Thus, our restricted model was given by

Yy =u+eg; 4

At this point, our purpose is to consider a different null hypothesis. Instead of testing that
all a groups have the same mean, suppose that we simply want to test a null hypothesis that the
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population means of the first and second groups are equal, that is, our null hypothesis now is
Hy:pi=po &)

Once again, we can use the principle of model comparisons to test this hypothesis. Our full
model remains the same as our previous full model, namely

Yi=u;+e&; (©)

According to Hp, however, this model is too complex. Instead, a restricted model, where
41 = U2, provides a simpler but (according to Hy) just as adequate a description of scores
on the dependent variable. It is difficult to represent this restricted model compactly with
symbols. One solution is simply to write the restricted model as

Yij=n;+e; )
where (1 = u,. However, for greater clarity, we might write

Yoo = u" +éi ®
Yo=pu"+epn
K=u1+€l] j=334"'-1a

where p1* represents the common population mean of the first and second groups. Notice that
Equation 8 allows groups 3 through a to each have their own potentially unique population
mean, but groups 1 and 2 are restricted to having equal population means.

In a moment, we see that as usual in order to form an F test, we must know the degrees
of freedom of our full and restricted models. These degrees of freedom depend on (1) sample
size, and (2) the number of parameters in the models. Thus, it is helpful at this point to
establish how many parameters each model has. Notice that the full model of Equation 3 has a
separate parameter for each group, so with a total of @ groups, the model includes a parameters.
However, the restricted model of Equation 8 does not include a separate parameter for each
and every group. Instead, as a consequence of the restriction imposed by the null hypothesis
that the first two groups have the same population mean, there are now only @ — 1 parameters
in the restricted model. For example, if we had 4 groups, the restricted model would include
3 parameters: u*, us, and pu4. Notice that u* does “double duty” here because it serves as
the population mean for both group 1 and group 2, which is exactly what the null hypothesis
implies. We return to the topic of degrees of freedom after we develop expressions for the sums
of squared errors of the full and restricted models.

Now that the full and restricted models have been identified, it is possible to perform a test
of the null hypothesis by comparing the sums of squared errors of the two models as we did
in Chapter 3. Finding the sum of squared errors for the full model here is easy because it is
simply the full model of Chapter 3. As we saw there,

a nj

Ep=)_ Y (Y;—Y; =SSw ©

j=1i=1

Finding the sum of squared errors for the restricted model here is similar to the process used
in Chapter 3. As before, the principle of least squares is used. We now have a — 1 parameters
to estimate in the restricted model: u*, us, Us, ..., e You should realize that there are
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only a — 1 parameters to be estimated in the restricted model because the separate w1 and 1,
parameters of the full model have been replaced by the single parameter ©* in the restricted
model. The only new wrinkle here is estimating p*, because the least-squares estimates of 3
through u, are again the corresponding sample means, that is, Y3 through Y, respectively.
Intuitively, it seems reasonable that the estimate of * should be based on the sample means
of the first two groups. Indeed, with equal n, we see momentarily that

pt=X1+72)/2 (10)

So, for example, if ¥; = 6 and Y, = 10, our best single guess is that the common value of
the population mean for groups 1 and 2 is 8. A more general formula involving weighted
means can be used when sample sizes are unequal. The following section derives the expres-
sions for these parameter estimates and also shows that the difference between the sum of
squared errors of the restricted model and the sum of squared errors of the full mode] can be
written as

nin;
Er—Erp =
n

V. __VvV.\2
+n2(Y1 Y2) an

OPTIONAL

Derivation of Parameter Estimates and Sum
of Squared Errors

We now show algebraically that the intuitive reasoning about using the average of the first two sample
means as the estimate of u* (see Equation 10} is correct, and we also develop a more general formula
that can be used when sample sizes are unequal.

The goal in estimating p* is to choose as an estimate whatever value minimizes the following expres-
sion:

ny ny
Y -+ (Y- ) (12)
i=l1

i=1

which is the sum of squared errors for subjects in the first and second groups. However, this expression
is equivalent to

>y -y (13)

j=1 i=1

[

Notice that in this expression we are summing over n; + #; individual scores. Although in fact these
scores come from two distinct groups, the sum would be the same if we had a single group of n; +n,
scores. We saw previously that the sample mean of a group provides the best (in a least-squares sense)
estimate in this case. Thus, to minimize Equation 10, we should choose fi* equal to the sample mean of
the n;+ n, scores in the first and second groups. Symbolically,

"

pr= ZZY,-,-/(m + 1) (14)

=1 i=1
Equivalently, it can be shown that the estimate /i* is a weighted mean of Y, and Y

A=Y +nY)/(n +ny) (15)
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which, in the special case of equal sample sizes (rn; = n,), simplifies to
A =X, +7,)/2 (16)

As stated earlier, this expression for estimating u* should make sense intuitively because according to the
restricted model, ;1 = u, = p*. If this is actually true, Y, and 7, differ from one another only because
of sampling error, and the best estimate of the single population mean is obtained by averaging Y, and
Y,.

Totest the null hypothesis that u; = u,,itis necessary to find Eg. This turns out to be easy conceptually
now that we know the least-squares parameter estimates for the model of Equation 7 (or, equivalently,
Equation 8). That it is also easy computationally becomes apparent shortly. If we let ia represent our
estimate (*, we have

n

2 a
ER=ZZYU—Y>2+ZZ(YU—Y>Z an
j=1 i=1

j=3 i=

<

Recall that our real interest is in the increase in error brought about by the restricted model, Exr — Eg.
To help make it easier to see what this difference equals, we can rewrite Equation 9 as

2 n a nj
Er= ZXJ:(YU -Ty+ Zi(n; -y (18)
j=1 i=1 =3 =1

Now, by subtracting the terms in Equation 18 from those in Equation 17, we see that the difference
Eg — Er equals

Ex — Ep = ZZ(Y,-, -7y - ZZ(&, ~¥ (19)

j=1 i= j=1i=
After some straightforward but tedious algebra, Equation 19 simplifies to

(¥, - Y,

(5 +3)
_+___
ni ny

niny — =
— 2 (¥, - Y, (20)
ny +n;

ER—EF

Expression of F Statistic

The increase in error associated with the restricted model is a function of the sample sizes
and the magnitude of the difference between Y, and Y. In particular, as we have just derived
in the immediately preceding optional section,

due (Y 1 ~Y2)? (20, repeated)

ER_EF:n
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Larger discrepancies between Y, and Y, suggest that 1t may not equal 5, as reflected by
the larger increase in error. This should seem reasonable, because in the long run the magnitude
of the difference between Y, and Y, should reflect the magnitude of the difference between
i1 and . Once again, the problem arises of, “How large is large?” The answer is provided
by the same form of the F statistic we encountered in Chapter 3:

_ (Er— Ep)/(dfg — dfr)
Eg/dfs

The only term in this expression yet to be found for our problem is dfy — dfs. Recall that
the degrees of freedom for a model equals the number of independent observations in the
study minus the number of parameters estimated. In the current problem, a parameters were
estimated in the full model, because each group has its own population mean in the full model.
Recall that a — 1 parameters were estimated in the restricted model; unlike the full model, not
every group is allowed its own mean in the restricted model. Instead, the means of the first two
groups are allowed only a single parameter (i.e., 1*), so that in total @ groups are presumed to
be describable in terms of @ — 1 parameters. Hence,

F 21

dfg=N—a (22)
so dfg = dfy, as in Chapter 3.
dfg=N—-(@—-1)=N—-a+1 23)

where N represents the total number of subjects in the study (summed over all groups).
Subtracting Equation 22 from Equation 23 yields

dfg —dfr =1 (24)

As demonstrated in Equation 24, an individual comparison has 1 degree of freedom associated
with it, that is, the test of a single restriction on means involves 1 degree of freedom in the
numerator. Finally, for testing the null hypothesis of Hy : i1 = pto, we obtain the following
test statistic by making the appropriate substitutions into Equation 18:

ning

Y- Y2)*/1
F= ni +n2( 1Y) / (25)
SSw/dfy

When the first two groups have the same number of subjects (so that n; =n;), Equation 25
can be written as

n — —
—(Y, = Y,)?
2(1 2)

_ 26
SSw/dfy 20)

where n is the common sample size.

Equations 25 and 26 are messy because they involve ratios of fractions. We have nevertheless
chosen to write them in this form because in both cases, the numerator represents the sum of
squares for the effect (i.e., the difference between the sum of squared errors of the restricted
and full models), whereas the denominator represents the sum of squared errors of the full
model divided by the degrees of freedom of the full model.
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For computational purposes, Equation 25 can be written more simply as!

_mm(Y1 - Yy)?

= @n
(n1 + n2)MSw
Similarly, in the case of equal #, Equation 26 can be written more simply as
e n(Yy —Y,)? 28)
T 2MSy

Although Equations 27 and 28 are admittedly easier to read than their counterparts of Equa-
tions 25 and 26, we typically write formulas to correspond with the form of Equations 25 and
26, so that sums of squares for effects appear in the numerator and sums of squares for error
appear in the denominator. The only exception to this rule is in the ¢ test formulation, to be
presented shortly, in which the established convention is to write only means in the numerator
with all remaining terms in the denominator.

Numerical Example

It may be instructive here to consider a numerical example. Table 4.1 displays hypothetical
data for four groups of subjects, corresponding to the four treatments for hypertension in-
troduced at the beginning of the chapter. Specifically, we assume that a group of 24 mild
hypertensives have been independently and randomly assigned to one of four treatments: drug
therapy, biofeedback, dietary modification, and a treatment combining all aspects of the other
treatments. The scores shown in Table 4.1 are systolic blood pressure readings for each subject
taken 2 weeks after the termination of treatment.

Two preliminary remarks must be made. First, we said that 24 subjects were assigned to
treatment groups, but Table 4.1 shows scores for only 20 subjects. In general, we can proceed
with a meaningful analysis of such data only if we can reasonably assume that the reasons for
the missing subjects are unrelated to the treatments themselves, that is, the treatment did not
cause these subjects to be missing. We act as if such an assumption is reasonable here. In fact,
these hypothetical data were created with unequal sample sizes to illustrate the most general
situation for testing comparisons. Second, we could use the principles of Chapter 3 to perform
an omnibus test. If we were to do so, we would obtain an observed F value of 1.66 for these
data, which is nonsignificant at the .05 level. However, we assume that our real interest is in
testing contrasts among the groups. The relationship between contrasts and the omnibus test
is discussed more fully in Chapter 5.

TABLE 4.1
HYPOTHETICAL SYSTOLIC BLOOD PRESSURE DATA

Drug Therapy  Biofeedback  Dietr  Combination

84 81 98 91

95 84 95 78

93 92 86 85

104 101 87 80

80 94 81

108

Mean () 94.0 91.0 92.0 83.0
Var (sj.) 67.3 132.0 27.5 26.5
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CHAPTER 4

TABLE 4.2
ILLUSTRATIVE TEST OF A PAIRWISE COMPARISON FOR DATA
IN TABLE 4.1

Testof Hy: p1= w2

Approach of Equation 27
_ mna (¥ — 77)?
(n1 + n2)MSw
4)(6)(94 — 91)?
T @+ 6)(67.375)
=0.32

because

Z(n, - 1)s

N-—a
_ 3(67.3) + 5(132.0) + 4(27.5) + 4(26.5)
- 20— 4

MSw =

=67.375

Approach of Equation 21
(Er — Ep)/(dfx — dfp)
Er/dfr

a #j 2
Er = Z Z(Yu - Y])
j=1.=

(Yn - 94 + Z(Yzz -91)* + Z(Yza - 92 + Z(Ym - 83)?

i=1 i=1 i=1

F =

I
™3

07800
Eg = Z(Y,l -T2+ 2<Yz -+ Z(st ~Y3? + Z(Y.4 ~ ¥4

=1 i=1 i=1
= Z<Y,1 — 9220 4+ (Wi — 9227 + 3 (Vi3 — 922 + 3 (¥ig — 837
i=1 i=1 =1
= 214.96 + 668.64 + 110.00 + 106.00
= 1099.60

Then,

_ (1099.60 — 1078.00)/(17 — 16)

=032
1078.00/16

In an actual study, we would probably test several contrasts. However, to keep things simple,
we illustrate a test for only one contrast. Specifically, we suppose that the hypothesis to be
tested is whether there is a difference in the effectiveness of drug therapy and biofeedback.

Table 4.2 shows two equivalent ways to test this hypothesis. Although Equation 27 is easier
to use in practice, the approach based on Equation 21 is also shown, primarily for pedagogical
reasons. With either approach, the observed F value is 0.32, with 1 and 16 degrees of freedom.
The observed value is less than the critical F value of 4.49 (see Appendix Table A.2) for
a = .05, so the difference between the means is nonsignificant at the .05 level. Thus, the
hypothesis that drug therapy and biofeedback are equally effective cannot be rejected at the

.05 level.
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COMPLEX COMPARISONS

Models Perspective

The approach we have just developed is adequate for testing hypotheses of the form Hy : p =
(2. More generally, any hypothesis of the form

Hy: iy = 29)

where u; and u,, are the population means of any two groups is said to involve a pairwise
comparison because it involves an equality of only two groups’ means. Equation 27 provides
a computationally simple method for testing hypotheses of this form.

Although research questions often center on pairwise comparisons, there are occasions
in which hypotheses concern a difference involving more than two means. For example, in
the hypothetical blood pressure study we have been discussing, one question we raised at
the beginning of the chapter was whether the combination treatment is more effective than the
average of the other three treatments. We could write the null hypothesis for this question as

Ho: 3(uy + pa + p3) = pa (30)

Notice that this null hypothesis does not necessarily stipulate that all four population means
are equal to each other. For example, if u; = 88, uy = 87, s = 83, and 4 = 86, the null
hypothesis would be true, because the average of 88, 87, and 83 is 86. Also notice that, as
Equation 30 shows, the null hypothesis being tested here involves more than two groups. Such
a hypothesis involves a complex comparison.

When a complex comparison is to be tested, it is not at all intuitively obvious how least-
squares estimates of parameters are obtained in the appropriate restricted model. In fact, it
is difficult even to write down an appropriate expression for the restricted model, unless we
simply say it is

Yij=n;+e; €29
where

%(Ml + 2+ w3) = ug

Given this formulation of the restricted model, the least-squares estimates are still not apparent.?
Although it is possible to describe a procedure that yields the least-squares estimates, we in-
stead take a different approach. The primary rationale for this approach is that we are typically
not interested in the parameter estimates themselves; rather, we are interested in the differ-
ence between the sum of squared errors for the restricted and full models, Er — EF, just as we
were when we tested pairwise comparisons. There is a general procedure for finding this differ-
ence for any contrast we might wish to test. In particular, a contrast such as that expressed by the
null hypothesis of Equation 30 can be tested rather easily with the approach we now develop.

It is convenient to rewrite the hypothesis expressed in Equation 30 in the following manner:

Hy:ip+ o+ %Ms —us =0 (32)

The expression on the left side of the equals sign—that is, %ul + % o + %p.g — 1gq—is a
linear combination of the group population means. In general, we might express a hypothesis
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concerning the means as
Hy:cypy + ooty +cspus + capry =0 (33)

where ¢1, ¢3, ¢3, and ¢4 are coefficients (or weights) chosen by the experimenter to test a
hypothesis of substantive interest. Notice that Equation 32 is a special case of Equation 33,
where ¢y = 1/3, ¢, = 1/3, ¢c3 = 1/3, and ¢4 = —1. An expression of the form

C1i1 + Capdz + €33 + Capha (34)

is called a contrast or a comparison (the terms are used interchangeably). The general definition
of a contrast is that it is a linear combination of population means in which the coefficients of
the means add up to zero. In the general case of a groups, we can represent a contrast quite
compactly with X notation as

> ey (35)
Jj=1

Instead of writing this expression every time we refer to a contrast, it is conventional to use a
lowercase Greek psi (¥) to represent the numerical value of a contrast. In other words,

Y= cin (36)
j=1

Several points need mentioning here. First, the general concept of a comparison as ex-
emplified in Equation 36 is very powerful because this formulation permits a wide range of
hypotheses to be tested. The primary reason for this tremendous flexibility is that a researcher
is free to choose contrast coefficients (the c¢; terms) in whatever manner that corresponds to the
substantive hypothesis of interest. For example, we see in a moment that the general expression
in Equation 36 enables us to test whether the combination hypertension treatment (group 4) is
more effective than the average of the other three treatments. We accomplish this by choosing
c1, ¢2, and ¢3 to equal 1/3, and ¢4 to equal —1. Alternatively, as a second example, suppose
that we want to test the difference between drug therapy and biofeedback, as we did earlier in
the chapter. This null hypothesis could be written as

Hy:puy—pr=0

To test this hypothesis, then, we can choose coefficients as follows: ¢; = 1,¢; = —1,¢3 =0,
and ¢4 = 0. The resultant contrast ¢ is given by

¥ = (Duy + (=Dt + O3 + Opa = g —~ w2

Thus, testing a null hypothesis that ¢ as defined in this manner equals zero is equivalent to
testing whether 11 = u. The general point to be understood here is that by choosing ¢; values
appropriately, it is possible to define i to test any particular comparison, either pairwise or
complex, that may be of interest. Second, realize that v is simply a number because it is a linear
combination of the population means. For example, consider the following definition of :

l/f=%lt1+%u2+%/-b3—,u«4
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If u = 88, uy = 87, s = 83, and u4 = 86, then v = 0. Notice here that the null hypothesis
is true. However, if 1 = 88, us = 87, n3 = 83, but n4 = 80, then ¥ = —6. In this case, the
null hypothesis is false because the combination treatment is better than the average of the
other treatments (remember that lower blood pressure readings are better—at least until they
approach zero!). Admittedly, in actual research we do not know what number ¥ represents
because it is a population parameter, but nevertheless, it is a number. Because we cannot know
the population value of i, we must use sample data to estimate and test hypotheses about .
Third, as the previous example illustrates, ¥ equals zero when the null hypothesis is true and
is nonzero when it is false. For this reason, we can rewrite our null hypothesis as

Hy:¢ =0 37

More formally, Equation 37 follows from substituting ¢ from Equation 36 into Equation 33.
Fourth, the mathematics for forming F tests would work even if the coefficients did not sum
to zero. However, we refer to the set of coefficients in this case as defining a particular linear
combination rather than a contrast or comparison (e.g., 41 + 42 combines two means but does
not contrast or compare their values with one another). Typically, linear combinations that are
not contrasts do not address theoretically meaningful questions. Fifth, as we again see later,
we are usually interested in several different contrasts in one study. To avoid confusion, we
often use subscripts for y; for example, we might have ¥, ¥, and ¥ in a particular study.
Each ¥ would have its own coefficients and would represent a hypothesis of interest to the
experimenter. For example, with four groups, we might be interested in the following three
contrasts:

Y1 = s+ My — 43— Ha (38)
Yo = Uy — i
Y3 = U3 — [y

For the moment, we continue to focus our attention on testing a hypothesis about a particular
contrast, for example . (In Chapter 5, we consider issues that arise in testing more than one
contrast.)

In general, our purpose is to develop a test of a null hypothesis of the form expressed in
Equation 37, namely ¥ = 0. Once again, we use our expression for an F test:

_ (Er— Er)/(dfg — dfy)
Er/dfy

However, Equation 21 can be simplified here because it is possible to develop a general ex-

pression for Er — Er when testing a hypothesis that ¢ = 0. It can be shown (see the extension

at the end of this chapter) in this case that a general expression for the difference between the
sum of squared errors of the restricted and full models is given by

a /2
Ex — Er = () / 3 (;—’) (39)
=1\

F

(21, repeated)

where ¥ is a sample estimate of the population parameter . Because Er — Ef represents
a difference in sum of squared errors associated with ¥, we often use SS(i) to represent
ER — Ef for a contrast, that is, $S(y) = Er — Er. Because Y ; is the least-squares estimate of
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i j, the least-squares estimate of v is obtained by simply replacing each population mean in
Equation 36 by the corresponding sample mean. Thus,

=) ¢c¥, (40)
j=1

We see throughout the book that Equation 39 is important. We want to test contrasts for
statistical significance in a variety of designs and continually return to Equation 39 to find the
sum of squares associated with the contrast of interest. For this reason, we digress momentarily
to help you develop an intuitive appreciation of the formula. From the numerator, we can see
that the restricted model is inferior to the full model to the extent that vy differs from zero
(either positively or negatively). This makes sense because our null hypothesis is that ¥ is
zero. If v really is zero, 4 has a mean of zero and differs from zero only because of sampling
error; however, if ¥ is nonzero, ¥ differs from zero both because of sampling error and
because its mean is nonzero. Thus, 1/}2, and hence the difference in errors Egx — EF, tends
to be larger when the null hypothesis is false than when it is true. Also, notice that the n;
term appears in the denominator of the denominator. As a result, all other things being equal,
larger sample sizes produce larger sums of squares, just as we would expect based on the
discussion of power in Chapter 3. The final term in the formula is ¢;. The intuitive justification
for including the coefficients in the denominator of Equation 39 is to compensate for the fact
that the numerator, ()2, could be made arbitrarily larger or smaller simply by multiplying all
of the c; coefficients by a constant. To illustrate this point, consider two hypotheses that might
be tested in a four-group study:

Hy:py+ps = p3+ s
Hy @ 5y + p2) = 5(us + w4)
These two hypotheses are logically equivalent because the .5 values on either side of the second

hypothesis cancel one another. However, what happens if we translate these hypotheses into
contrasts? We could define

Y= p + g2 — p3 — Ha
for the first hypothesis, and
Y2 = .51+ .Sus — Spu3 — Sug

for the second. Now, suppose that we obtain the following sample means based on 10 subjects
in each group

Y =10,Y,=12,Y3=10, and Y, =8
Then, the sample value of ¥ equals

¥ = 1(10) + 1(12) — 1(10) — 1(8) = 4
The sample value of ¥, equals

Y2 = .5(10) + .5(12) — .5(10) — .5(8) = 2
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If we considered only the ¥ values, we might mistakenly conclude that there is more evidence
against the null hypothesis for the first contrast than for the second. However, the sum of
squared coefficients E;;lc? is also relevant because for v,

E=+ W+ (1) + (-1 =4
j=1

whereas for yr;,

J

= (5P + (5 + (-5 + (-5 =1
j=1
Thus, £7_, c? is four times larger for the first contrast than the second, just as (¢)? is four times
larger for the first contrast than the second. As a result, substituting the values for ()2, 2?=1c§
and r; into Equation 39 produces a value of 40 for the sum of squares for both contrasts. Because
the contrasts are logically equivalent, it is sensible that the two sums of squares should also be
equivalent. The inclusion of the squared-coefficients term in the denominator of Equation 39
ensures that logically equivalent contrasts yield the same sum of squares, regardless of the
absolute size of the coefficients.

The only remaining term in Equation 21 to be discussed is the difference in degrees of
freedom, dfy — dfy. To find dfy, we must determine the number of independent parameters in

the restricted model. Consider the null hypothesis of Equation 32 when a = 4:
H, : %m + %,uz + %m — 4 =0 (32, repeated)
The corresponding restricted model was
Yii=u; + s (31, repeated)

where 1/3u; + 1/3us + 1/33 — g = 0. This model has four parameters when a = 4, but
it has only three independent parameters because we know that the four parameters must obey
the restriction that

i+ 3+ jus —pa =0

For example, suppose that 1 = 88, u, = 87, and ;3 = 83. Then, according to the model, we
know it should be true that 114 = 86. Once the values of any three population means have been
determined, the fourth is fixed. In the general case of a groups, there would be one restriction
on the parameter values, implying that there would be a — 1 independent parameters. Thus, in
the general case,

dfy —dfg = [N —-(a—-1)]-(N—a)
=1
Because Er/dfr is MSw, Equation 21 becomes
@7/ 5 (6m)
j=

F = 41
MSw (41)
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which may be used for testing any null hypothesis that can be expressed as
a
Hy:y =) cjuj=0
=1

Numerical Example

To illustrate calculations for testing a complex comparison, we return to the hypertension
data shown in Table 4.1. Recall that Table 4.2 showed two equivalent approaches for testing
a pairwise comparison, one based on Equation 27 and one based on Equation 21. Similarly,
Table 4.3 shows two equivalent approaches for testing complex comparisons, one based on
Equation 41 and one based on Equation 21. Notice that Equation 27 is not illustrated because
it is appropriate only for pairwise comparisons.

For purposes of illustration, we continue to assume that we are interested in testing whether
the combined treatment is more effective than the average of the other treatments. As the top
half of Table 4.3 shows, the observed F value for this contrast is 4.82, which exceeds the
critical F value of 4.49 for 1 and 16 degrees of freedom. Thus, we can assert that the combined
treatment is in fact more effective than the average of the other treatments.

The bottom half of Table 4.3 shows the calculations using Equation 21. The primary rea-
son for presenting these calculations is to demonstrate that they produce the same result as
Equation 41. However, as should be obvious from comparing the two halves of Table 4.3,
Equation 41 is much simpler, so it is used in the remainder of the book, instead of going back

TABLE 4.3
ILLUSTRATIVE TEST OF A COMPLEX COMPARISON FOR DATA IN TABLE 4.1

Test of Ho: 1/3(i1 + p2 + p3) = pia

Approach of Equation 41
712
po_ WP
MSw Y. (c3/n;)
j=1

_ [1/3(94 + 91 +92) — 83)?
T 67.375{[(1/3)2/41 + [(1/3)2/6] + [(1/3)2/5] + [(—DD?/5]}

(92.33 — 83)
~ 67.375(0.2685)
=4.82
Approach of Equation 21
7 = Er — Ep)/(fk ~ dfp)
Eg/dfy
Ep =3 (Vi1 — 947 + Y (Y2 — 91 + X_(¥i3 — 92)° + 3 (¥iq — 83)°

= 1078.00
ER = Y_(¥i1 — 91.103)2 + 3 (¥;» — 89.069) + Y (Y3 — 89.683)% + 3 (¥4 — 89.952)
= 235.57 + 682.37 + 136.84 + 347.65
= 1402.43
Then,
F o (140243 - 1078.00)/(17 — 16)

=4.82
1078.00/16
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to first principles of model comparisons using Equation 21. Nevertheless, it is important for
you to understand that Equation 41 is also based on a comparison of models.

In fact, the approach based on Equation 21 is even more tedious than the bottom half of
Table 4.3 implies. The reason for this additional complication is that the least-squares estimates
for the parameters in the restricted model are tedious to find.# In our example, the parameter
estimates subject to the constraint 1/314y + 1/3u2 + 1/33 — 14 = 0 are given by

1 = 91.103
fi2 = 89.069
3 = 89.683
{14 = 89.952

Notice that the constraint requires that the average of the first three means minus the fourth
mean must equal zero. In symbols, this implies that

M+ 4 50— fla=0
Indeed, the parameter estimates we have obtained obey this restriction because
$(91.103) + 1(89.069) + $(89.683) — 89.952 =0

(within rounding error). Thus, by doing all this additional work, as Table 4.3 shows, we can
use Equation 21 to duplicate the results of Equation 41. However, even though the general
model comparison approach exemplified in Equation 21 produces an appropriate result, we
prefer Equation 41 for the specific problem of testing a contrast because it is simpler as a result
of being derived specifically for this type of problem.

One other point must be made here. Although in some situations a researcher may be
interested only in pairwise comparisons, in many studies hypotheses involving complex com-
parisons are also of interest. In particular, complex comparisons potentially reveal interesting
features of the data that may be hidden from pairwise comparisons. For example, in the hy-
pothetical hypertension data in Table 4.1, it turns out that none of the six pairwise differences
between means is significant at the .05 level. However, we have just seen that a complex compar-
ison is significant at the .05 level. If we had only tested pairwise comparisons, this finding would
have gone undetected. However, it might be argued that if we test a large number of hypotheses,
some will inevitably be statistically significant, even if every null hypothesis is true. This prob-
lem is discussed in detail in Chapter 5. The general point to understand here is that you should
not always restrict your testing to pairwise comparisons. In some studies, complex comparisons
should also be tested. In general, formulate comparisons that correspond to the hypotheses you
want to test, remembering that the resultant contrasts may be either pairwise or complex.

THE t TEST FORMULATION OF HYPOTHESIS
TESTING FOR CONTRASTS

To summarize the chapter to this point, we have seen that testing hypotheses concerning
contrasts can be thought of as a comparison of models. As in Chapter 3, least squares is used
to estimate parameters in full and restricted models. Then, the sums of squared errors of the

TLFeBOOK



164 CHAPTER 4

two models are compared adjusting for degrees of freedom, yielding an F value. This F value
is then compared to the table of the F distribution to determine whether the null hypothesis
should be rejected.

Some textbooks do not present the test of a contrast as an F test, but rather as a 7 test.
Although at first this may seem disconcerting, it should be remembered that the ¢ is a special
case of the F. Specifically, when the F has a single numerator degree of freedom, 12 = F.
Indeed, this relationship holds for testing a contrast because dfy — dfy = 1, so the F has 1
numerator degree of freedom.

Practical Implications

There are two practical implications here of the relationship between the ¢ test and the F test.
First, so far in our discussion of contrasts, we have implicitly been conducting two-tailed
tests. However, we might very well want to conduct a one-tailed test in certain situations. For
example, we might want to test

Hy:py > po versus Hy oy < u2

A one-tailed ¢ test is straightforward because tables are readily available (see Appendix
Table A.1). If « = .05, instead of finding a critical value corresponding to an area of .025
in each tail, we find the critical value that has an area of .05 in the one relevant tail. If Y, < Y,
and the resulting ¢ value exceeds the critical ¢ in absolute value, the null hypothesis is rejected
at the .05 level. A one-tailed test can also be performed using F tables. Instead of using the
critical F in the .05 table, the critical F is found in the .10 table, although the actual @ is .05.
If the direction of the difference corresponds to H; (here, Y 1< Y5) and the F exceeds the .10
critical F, the null hypothesis is rejected at the .05 level, one-tailed. Thus, the first practical
implication is that researchers can choose between one-tailed and two-tailed tests of contrasts,
according to whichever provides a more appropriate test of their theory. Also, either a ¢ test or
an F test can be used to perform each type of hypothesis test. The second practical implication
is that a ¢ test for testing Hp : 41 = w2 is developed in Chapter 3. How are the procedures
of this chapter different from those of Chapter 3, if they differ at all? First, in the Chapter 3
t test, there were only two groups, whereas in this chapter there are a groups. Hence, testing
a contrast such as

%l«tl + %Mz + %m — U4

requires the procedures of this chapter. However, what about j; — u»? We could test Hy :
M1 = 2 using either the procedures of Chapter 3 or the procedures of this chapter. Although
in either case we can perform either a ¢ test or an F test, the results of the Chapter 3 test are at
least somewhat different from those of this chapter. If we compare Equation 20 of this chapter
with the procedures of Chapter 3, we see that Ep — EF is the same for the two approaches.
Also, with both approaches, dfg — dfy = 1. However, Ef and df; are not the same in the two
approaches. In Chapter 3, Ep was the sum of squared errors for the full model, which was
based on the two groups of subjects being compared. However, in this chapter, Ey is based on
all a groups, regardless of which groups are being compared in a particular contrast. The same
difference exists for the degrees of freedom.

To ensure that this difference is clear, consider the numerical example of Table 4.1 once
again. Suppose we want to test Hy : 1 = up versus Hj : puy # (. We saw earlier that using
the procedures of this chapter, the observed F is 0.32, with 1 and 16 degrees of freedom.
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However, if we were to use the approach of Chapter 3, the F would be 0.20 with 1 and 8
degrees of freedom. Naturally, the question arises as to which approach is better. As it happens,
the correct answer to this question is, “It depends.” Specifically, it depends on the validity of
the homogeneity-of-variance assumption. The obvious difference between the two approaches
is that in the numerical example, the third and fourth groups contribute to Ef for the approach
of this chapter, but are completely irrelevant for the Chapter 3 approach. At this point, we
must ask ourselves whether the third and fourth groups contain information pertinent to the
comparison of the first two groups. At first blush, it would seem that if the goal is simply to
compare groups 1 and 2, then groups 3 and 4 should be irrelevant. However, if the homogeneity-
of-variance assumption is true, all four population variances are equal. Under this condition,
Ex/df;: of Chapter 3 and Eg/df;: of this chapter both provide unbiased estimates of the common
population variance. However, Er/dfg of this chapter provides a more precise estimate because
it is based on more observations than is Er/dfp of Chapter 3.

The practical import is that, if the assumption is met, in the long run the average value of the
F using the Chapter 3 approach approximately equals the F of this chapter; however, the F of
Chapter 3 is more variable from sample to sample because it is based on fewer observations,
as reflected by its lower denominator degrees of freedom. Inspection of the F table shows
that as the denominator degrees of freedom decrease, the critical F required for significance
increases. Thus, to obtain a significant result, the F from the Chapter 3 approach must be larger
than the F of the approach of this chapter. For this reason, the method of this chapter is more
powerful than the method of Chapter 3 when homogeneity of variance holds.

UNEQUAL POPULATION VARIANCES

What if the homogeneity-of-variance assumption is not met? After the discussion of robustness
of Chapter 3, it would not be surprising to learn that this assumption is not really important for
testing contrasts. However, it turns out that the homogeneity assumption is in fact very important
for testing contrasts. After some reflection, this should make intuitive sense. For example, if a
contrast of the form p; — u; is tested when @ = 4 and if the variances of the third and fourth
groups are very different from those of the first and second groups, it seems reasonable that
information from the third and fourth groups should be ignored. If we mistakenly assume
homogeneity of variance, our resulting test may be either too liberal or too conservative. If the
within-group population variance of the third and fourth groups is less than that of the first
and second groups, MSw underestimates the actual variability of Y1 — Y. Because MSy, is in
the denominator of the F, the observed F value in this situation is, on the average, larger than
it should be; thus, the observed F exceeds the critical F more than 5% of the time, creating
a liberal test. However, if the third and fourth groups have larger variances than the first and
second groups, just the opposite occurs, and the test is conservative. Although an « level below
.05 is not a problem in and of itself, here it is accompanied by lower power, lessening the
ability to detect a true difference if one exists.

The problem of testing mean differences when variances are unequal has plagued statisti-
cians for several decades. This problem is often referred to as the Behrens—Fisher problem,
because Behrens and Fisher studied the problem extensively in the 1930s. A number of al-
ternative approaches have been proposed over the years. The approach described here is a
generalization of a method derived independently by Welch (1938) and Satterthwaite (1946)
as a solution to the Behrens-Fisher problem of testing the difference between two population
means when population variances are unequal. The numerator term of the F remains the same
as under the homogeneity assumption. However, both the denominator of the F and the critical
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value against which the observed F is compared are adjusted. Specifically, in the denominator
of Equation 41, MSw is replaced by

denom = 3" [(¢2/n;) 2] / 3 (¢3/ny) @)
Jj=1 j=l1

where sjz. is the unbiased variance estimate for the jth group. The observed test statistic,
which is distributed approximately as an F variable, is obtained by dividing the expression in
Equation 39 by the expression in Equation 42. Because the denominator of the test statistic is
now different, the denominator degrees of freedom are also different. The ratio of the expression
in Equation 39 divided by the expression in Equation 42 is compared to a critical F whose
numerator degrees of freedom equal 1 and whose denominator degrees of freedom are given by

2
202
(Z stj/nj>
j=1

_ (43)
Zl [(c?s}/nj)z/(nj - D]
=

df =

This expression for the denominator degrees of freedom is, at best, tedious and, at worst, terrify-
ing. Fortunately, there is little reason ever to compute these degrees of freedom by hand because
most statistical packages do this computation for you. For most purposes, all you need to know
is that (1) the value of Equation 43 typically changes from one contrast to another, because it
depends on c;; (2) only those variances and sample sizes for groups having nonzero coefficients
influence the final value; (3) the value is always less than or equal to N — g, the denominator
degrees of freedom under the homogeneity assumption; and (4) all other things being equal,
larger discrepancies in sample variances lead to smaller denominator degrees of freedom.

What is perhaps more important to realize is that the denominator of the F test is a weighted
mean of the sample variances sjz- of the a groups, whether the denominator is derived from
Equation 38 or is based on MSw. In other words, in either case, the denominator is of the
general form

denom = (ijsf)/ij (44)
Jj=1 j=1

However, the two possible denominators differ in the weights w ; to be used because one denom-
inator does not assume homogeneity of variance, whereas the other does. As Equation 42 shows,
the denominator when variances are not assumed to be equal is based on weights given by
=cl/n; 45
Wi =cj /n; 45)
We can understand the reason for these weights by considering the variance of 4. Because ¥

is defined to be { = £%_,c;Y;, the variance of v} is given by

Var(§) = Y _c3var(¥)
=1

J

a
- 262 /n .
= E cioi/n;
j=1
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We can rewrite this as
a
Var () = Y _ (F/n;)o?
j=1

to get an expression that shows that weights of the form (c2 /n;) should be applied to each
varlance as claimed in Equation 45. However, because U is unknown we must estimate it
with s , yielding as an estimate of Var (¢/):
R a
estimated Var () = Z (c? /n j)sjz- (46)

j=1

Notice then that when we divide the numerator of the F (from Equation 39) by the denominator
(from Equation 42), we obtain

@7/ £ @m)
5 @m)s ] £ @m)

j=1

F =

which equals
732
F=— (V)
z%(cf/nj)sf
j=

However, we have just seen from Equation 42 that the denominator here is the estimated
variance of y. Thus, effectively, this F statistic is of the form

()*

= 47
estimated Var (vr)

where no assumption of equal variances has been made. Equation 47 shows explicitly that the
denominator of the F statistic using Equation 42 is the estimated variance of the particular
contrast being tested. Notice that each individual contrast is thus allowed to have its own
particular variance, in keeping with the desire not to assume equal variances across groups.
We encounter this separate variance approach for testing contrasts again when we discuss
within-subject designs (i.e., repeated measures designs) in Chapters 11-14.

If we are willing to assume equal variances the variance of the contrast can be written as
Var () = £9_,c30?/n;. We can factor out o, yielding Var () = 0?T4_c%/n;. Now the
problem is that we must estimate the common population variance o%, The best estimate is
given by MSw, which equals

a

Y (n;— l)s

MSw = i‘:_—
2. (nj—1)
j=1

Notice then that MSw is a special case of Equation 44, where w; = n; — 1. Thus, both the
pooled error term of MSw and the separate error term of Equation 42 are based on estimating
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the variance of the contrast to be tested. They differ from one another in how they weight the
sample variances of each group.

‘What are the practical implications of this difference in weighting? When the homogeneity-
of-variance assumption is valid, both approaches provide an unbiased estimate of the variance
of the contrast. However, the estimate using MSw is somewhat more efficient, so tests based on
MSyy are atleast slightly more powerful than tests based on a separate error term. However, when
population variances are unequal, only the separate variance approach provides an unbiased
estimate of the variance of the contrast to be tested.’ As aresult, tests of contrasts based on MSyw
can either be quite liberal or quite conservative, depending on whether MSw underestimates
or overestimates the variance of the particular contrast being tested. For some contrasts, the
hypothesis test using MSw as the error term may have a Type I error rate badly in excess of
.05, whereas for other contrasts, the test may be conservative and hence lack power to detect
true mean differences.

Although the separate variance approach provides a tremendous improvement over the tra-
ditional one when variances are heterogeneous, it has received little attention to date for a
number of reasons. First, in many experimental studies, the homogeneity-of-variance assump-
tion is reasonably well met. Even if the population variances are not literally identical, they are
close enough to one another that the traditional approach suffices. However, Wilcox (1987a),
who surveyed educational research studies, and Fenstad (1983) argue that large discrepancies
in variances are more common than most researchers realize. Second, these approaches are
difficult and tedious to implement by hand, as should be obvious from Equation 43. Fortu-
nately, SPSS computes the appropriate statistic (by selecting “Compare Means” followed by
“One-Way ANOVA” at this time), alleviating the need for hand calculations. As of this writing,
SAS provides procedures that can be used only in the special case of pairwise comparisons.
Third, these procedures have been ignored because many researchers mistakenly believe that
tests of contrasts are robust to violations of homogeneity of variance. It should be emphasized
that, although the omnibus test tends to be robust when sample sizes are equal (as we discussed
in Chapter 3 and in the Extension to Chapter 3), in general, tests of contrasts arc not robust to
heterogeneity even with equal n.

Numerical Example

Because testing contrasts without assuming homogeneity of variance is best done on the
computer, we call on SPSS to illustrate the calculations behind this approach by using the
data in Table 4.1 once again. Recall that Table 4.2 illustrates a test of a pairwise comparison
(group 1 versus group 2) and Table 4.3 illustrates a test of a complex comparison (group 4
versus the average of the other three groups). Both of these previous tests assumed homogeneity
of variance, as illustrated by the use of MSw as an error term.

Table 4.4 shows SPSS output for testing each of these contrasts. The first section of the
table simply shows the coefficients we specified as input to the program in order to obtain
tests of the desired contrasts. Notice that “Contrast 1” has coefficients of 1, —1, 0, and 0 and
thus corresponds to the pairwise comparison of the first two groups. Similarly, “Contrast 2”
has coefficients of 1, 1, 1, and —3 and thus represents the complex comparison of the fourth
group versus the average of the first three groups. The second section of the table, labeled
“Contrast Tests,” presents the results of performing these tests on our data. This section is
itself divided into two halves. The top half shows results based on MSw as an error term,
assuming homogeneity of variance. The lower half shows results based on a separate error
term, without assuming homogeneity of variance.

Notice that this output presents results in terms of ¢ statistics instead of F values. However,
as must be the case, squaring each ¢ value produces the corresponding F value. For example,
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TABLE 4.4
SPSS OUTPUT OF A PAIRWISE COMPARISON AND A COMPLEX COMPARISON
FOR DATA IN TABLE 4.1

Contrast Coefficients

GROUP
Contrast 1.00 2.00 3.00 4.00
1 1 -1 0 0
1 1 1 -3
Contrast Tests

Value of Standard Significance
Contrast Contrast Error t daf (Two Tailed)

SBP Assume equal 1 3.0000 5.2984 .566 16 579

variances 2 28.0000 12.7602 2.194 16 .043

Does not assume 1 3.0000 6.2316 481 7.885 643

equal variances 2 28.0000 9.5934 2.919 11.034 .014

squaring the ¢ value of 0.566 shown in Table 4.4 for the first contrast yields an F value of
0.32, identical to the value we calculated earlier in Table 4.2. Similarly, squaring 2.194 results
in an F value of 4.81, which differs only slightly from the Table 4.3 value of 4.82 because of
rounding error.

Now let us consider what happens when we relax the homogeneity of variance assumption.
The pairwise comparison remains nonsignificant, just as it was when homogeneity was as-
sumed. Both the observed ¢ and the degrees of freedom for the denominator have decreased for
this contrast. As Table 4.4 shows, the complex comparison is again statistically significant, as
it was when homogeneity is assumed. Interestingly, the observed ¢ value has increased appre-
ciably, from 2.19 to 2.92. As a result, the p value has decreased from .04 to .01. How can this
happen if the approach that does not assume homogeneity is more conservative? The answer
is that this approach is not necessarily more conservative. The denominator from Equation 42
is smaller than MSw for some contrasts and larger than MSyw for others. For the contrast of
group 4 versus the other three groups, Equation 42 weights group 4 more heavily than each
of the other three groups because its contrast coefficient is three times larger than the others.
In these particular data, group 4 has a small variance (i.e., s? = 26.5), so giving it a larger
weight produces a smaller value for the denominator. The smaller number in the denomina-
tor yields a larger ¢ (or F) value than is obtained with MSw in the denominator. However,
another contrast might show just the opposite pattern. The only sense in which the approach
of Equation 42 is necessarily “conservative” is that the denominator degrees of freedom are
less than with MSyw. This reflects the fact that when the homogeneity assumption is true, MSw
is a more efficient estimate of the population variance, so a lower critical value can be used.
However, when homogeneity fails to hold, only the denominator of Equation 42 yields an
accurate test.

MEASURES OF EFFECT

We emphasized in Chapter 3 that hypothesis tests are influenced not only by the size of the
treatment effect but also by the number of participants in the study. For this reason, it is
usually important to supplement hypothesis tests with additional indices that directly reflect
the size of the treatment effect. As we discussed in Chapter 3, there are a variety of such
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indices. We once again follow Yeaton and Sechrest’s (1981) distinction between measures
of effect size and measures of association strength. We now proceed to present examples of
each type of index for contrasts. We hasten to add that rarely would a researcher report all
of these measures. Nevertheless, we present a variety of measures for two reasons. First, you
may encounter each of these measures at some point in reading empirical studies, so it is
important to understand what a measure reflects and, for that matter, what it does not reflect.
Second, by being exposed to a variety of measures, you are better positioned to choose an
appropriate measure in your own data to reflect the characteristics of those data you deem
to be important. Once we present each type, we illustrate them with our numerical example,
examining treatments for hypertension.

Measures of Effect Size
Confidence Intervals

Hypothesis tests tell us whether we can be certain beyond a reasonable doubt that some
hypothesized difference between means is different from zero. However, the test by itself does
not tell us how far from zero this difference may be. Confidence intervals provide this additional
information. Recall that we have expressed the population value of a contrast as

Y= Z Cilk; (36, repeated)
=

So far, we have presented procedures for testing whether the population parameter v can be
shown to differ from zero. We now show how to form a confidence interval for . There is a
direct relationship between the alpha level of a test and the corresponding confidence level of a
confidence interval. Forming an interval with a confidence level of 1 — « corresponds to setting
the Type I error rate at . For example, a 95% confidence interval corresponds directly to a
hypothesis test with an alpha level of .05. Just as an alpha level of .05 is a common convention
for statistical tests, a confidence level of 95% is a common convention for confidence intervals.

A confidence interval for the parameter ¥ can be formed with confidence level 1 — &
through the following expression:

U % Fain-a |MSw)_ (c3/n;) (48)
j=1

Several additional points must be made. First, F,.; y—, is a critical value, and as such is
obtained from Table A.2. It is important to notice that this is not the observed value of the
test statistic for testing the contrast, and in fact has nothing whatsoever to do with the data
except insofar as the value depends on a and N. Second, this interval is intended to represent
a difference between means. In order to do so, the sum of the absolute values of the contrast
coefficients should equal 2. For example, suppose we have four groups and want to compare the
average of the first three groups with the final group. An appropriate set of contrast coefficients
would then be 1/3, 1/3, 1/3, and —1. Notice that finding the absolute value of each coefficient
and summing yields a value of 2, as it should. Although the mathematics continues to work
correctly even if this condition is not satisfied, the resulting confidence interval would be
difficult to interpret because it would not reflect a difference in means. Third, Equation 48
assumes homogeneity of variance. An expression for forming a confidence interval without
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having to assume equal variances is given by

(49)

where df is found from Equation 43, which generally involves use of a statistical computer
package. Fourth, confidence intervals using either Equation 48 or 49 are often useful for
assessing equivalence between groups. Even if we do not believe that the population value
of some contrast is literally zero (theoretically to an infinite number of decimal points), we may
believe that the value of ¥ is so close to zero that for all practical purposes we can regard it as
being zero. Although there are a variety of ways of establishing whether a contrast is essentially
zero (see Feinstein, 2002, for further discussion), one method involves forming a confidence
interval. Specifically, the first step is to specify on theoretical grounds prior to collecting data
a value of ¥ to be regarded as a boundary between equivalent and nonequivalent. In principle,
we could have only one boundary, but in practice it is more typical to establish both a lower
and an upper boundary. In fact, most typical is to center the upper and lower boundary around
zero. For example, in an intervention study designed to affect GRE scores, we might regard
a 10-point effect as being equivalent to no effect, in which case our lower boundary would
be —10 and our upper boundary would be 10. Of course, the value chosen for this boundary
is necessarily somewhat subjective, but at least it operationalizes a meaning for “equivalent.”
After having chosen boundary values, the next step is to form a confidence interval for .
The contrast is then regarded as consistent with equivalence if the entire confidence interval
is between the upper and lower theoretical bounds. In the GRE example, we would regard the
groups as equivalent if the entire confidence interval for ¢ lies between —10 and 10.

We return to the blood pressure data shown originally in Table 4.1 to illustrate confidence
intervals for contrasts. Suppose we want to form confidence intervals for both the pairwise
comparison and the complex comparison we have formulated for these data. As Equations 48
and 49 show, we must decide whether to assume homogeneity of variance. We begin by
making this assumption, and then show the corresponding intervals relaxing the assumption.
Current software packages differ in their ability to form confidence intervals. Some packages
calculate intervals only for pairwise comparisons, and some calculate intervals only under the
homogeneity of variance assumption. We use intermediate calculations obtained from SPSS
to show how intervals can be formed even if an available package does not provide complete
flexibility to form all desired intervals directly. Table 4.4 shows the output obtained from
SPSS.

For the pairwise comparison, the value of ¥ is shown in Table 4.4 to equal 3.00. Assuming
homogeneity, the standard error of the contrast, which is the second term under a square root
sign in Equation 48, equals 5.2984. Appendix Table A.2 shows that the critical F value for an
alpha level of .05 with 1 numerator and 16 denominator degrees of freedom in equals 4.49.
Substituting these three values into Equation 48 produces

3.00+11.23

Thus, we can be 95% confident that the true value of the contrast (i.e., the population mean blood
pressure with drug therapy minus the population mean for biofeedback) is between —8.23 and
14.23 units. The large width of this interval underscores the fact that considerable uncertainty
about the difference between these two groups remains even after conducting our study. Also
notice that the interval contains zero, consistent with the nonsignificant test of the contrast.

TLFeBOOK



172 CHAPTER 4

The interval for the complex comparison follows exactly the same logic. However, we have
to realize that the contrast coefficients we have used here exaggerate the actual difference
between means because the sum of the absolute value of the coefficients is 6, not 2. Thus, we
need to divide both the value of the contrast and its standard error by 3 to establish a proper
metric. Doing so and following the same procedure as for the pairwise contrast produces an
interval of

9.334+9.01

Thus, we can be 95% confident that the combined therapy is at least 0.32 points and at most
18.34 points better than the average of the other three therapies. Notice that this interval is
somewhat narrower than that for the pairwise comparison, which reflects one advantage of
a complex comparison and that, furthermore, this interval does not contain zero, once again
consistent with the significant difference found in Table 4.3. Assuming equal variances and
equal sample sizes, complex comparisons yield narrower intervals than pairwise comparisons
because complex comparisons evaluate pooled means that have smaller standard errors because
they are based on more subjects.

The same basic logic applies even if we do not assume homogeneity of variance. We simply
find the value of the contrast and its standard error in the “does not assume equal variances”
section of the output and then remember that the critical F value must take into account the
smaller degrees of freedom than we had when we assumed homogeneity. Taking this approach
(and being slightly conservative by using 7 denominator degrees of freedom instead of 7.885)
shows that the 95% interval for the pairwise comparison is now

3.0+14.73

Notice that this interval is approximately 30% wider than the corresponding interval when
homogeneity was assumed. For the complex comparison, when we do not assume homogeneity,
the interval becomes

9.33+7.04

Unlike the pairwise comparison, this interval is about 20% narrower than the interval based
on homogeneity. The explanation for this difference is that the largest weight in the complex
comparison is for group 4, which has the smallest variance in this data set (see Table 4.1), and
hence a variance estimate computed as a weighted average of variances (see Equation 46) is
considerably smaller than one based on MSw.

Standardized Difference

Recall that Chapter 3 defined the standardized difference between two population means
as

d = (u1 — n2)/o; (3.83, repeated)
With two groups, this population parameter can be estimated from sample data by

d= (Y, ~Y2)/VMSw (50)
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In the case of two or more groups, we can define a standardized difference for a contrast of

population means as
d=2¢/ [as (Z |c,-|)] (51)
j=1

Note that the 2 in the numerator and the sum of absolute value of coefficients in the denom-
inator cancel one another when the coefficients are chosen to represent a mean difference.
However, the inclusion of these “extra” terms in the numerator and denominator ensures that
the population parameter is meaningful even if coefficients were to be chosen in a manner that
their absolute values did not sum to 2.

Of course, we can never know the precise value of d as defined by Equation 51, because
in order to know d, we would have to also know the value of o, as well as the values of the
population means involved in the contrast. Instead, we must use sample data to estimate the
population value of d. We can do so through the following equation:

d=2y / [szsw (Z le j|)} (52)

If the homogeneity of variance assumption is questionable, MSw in Equation 52 can be replaced
by the expression we saw earlier in Equation 42.

Standardized mean differences can be calculated very easily based on the Table 4.4 SPSS
output. The only necessary value not included in this table is MSw. However, we saw in
Table 4.2 that MSy, for our data equals 67.375, a value that would also be obtained easily
with any statistical package. Simply substituting the relevant values into Equation 52 shows
that the standardized mean difference between drug therapy and biofeedback is 0.37, whereas
the standardized mean difference between the combined therapy and the average of the other
therapies is 1.14. Based on conventions originally suggested by Cohen (1977), the pairwise
comparison represents a small to medium effect, whereas the complex comparison represents
a large effect. However, it is important to keep in mind that these standardized differences are
simply estimates based on our sample data and hence do not convey any information about the
precision of those estimates. In particular, the confidence intervals we have formed show that
it is plausible that the population difference between the drug therapy and biofeedback may
be zero, so we must be very careful in any claim that the difference is “small to medium.”

Measures of Association Strength

As we discussed in Chapter 3, measures of association strength reflect how much of the
variability in the dependent variable is associated with the variation in the independent-variable
levels. In the context of the omnibus hypothesis for a one-way between-subjects design, the
simplest measure of association strength is the ratio of between-group sum of squares to total
sum of squares:

R2 = SSB/SSTota] (53)

Although the same essential logic applies when we begin to consider measures of association
strength for contrasts, two differences emerge. First, the numerator is no longer SSg, but instead
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is the sum of squares for the specific contrast of interest. Second, it turns out that there are now
a variety of different ways we might conceptualize the denominator variability that forms the
basis of comparison for the numerator. We illustrate three possibilities, each of which provides
a unique perspective of the data.

First, one question of potential interest is the extent to which a specific contrast captures the
essence of the entire difference among groups. A measure answering this question is given by

Raz.lerting = SS(W)/SSBetween (54)

We have followed Rosenthal, Rosnow, and Rubin’s (2000) terminology by designating this
squared correlation as “alerting” the researcher of the extent to which this contrast has suc-
ceeded in capturing between-group differences. The value of Rflemng can range from O to 1,
because SS(¥) can be as small as zero or as large as SSpetween-

Keppel (1973) provides another perspective that helps clarify the meaning and usefulness
of Rf]mmg. In particular, he shows that in the case of equal sample sizes, Rglening is equivalent
to the squared correlation between the contrast coefficients and the actual sample means of
the groups.® This equivalence implies that the Rflming and hence the sum of squares for a
contrast depend on the extent to which the coefficients for that contrast match the pattern of
sample means. For example, suppose that the following three sample means are obtained in a
three-group study: Y1 =10,Y, =8, and Y5 = 15. The sample grand mean here is 11, which
implies that the group deviations from the grand mean are —1, —3, and 4, respectively. It
then follows that a contrast with coefficients of —1, —3, and 4 correlates perfectly with the
pattern of sample means, producing an Rflemﬂg value of 1.0. Looking back at Equation 54,
we can see that this value of 1.0 implies that SS() must equal SSgerween. In other words, this
single contrast has completely captured the entirety of the between-group difference. We should
immediately caution that this does not necessarily make it the “best” possible contrast, because
these coefficients may not correspond to an interesting theoretical question. Furthermore, in
real data, the contrast coefficients are rarely integers, complicating interpretation yet further.
However, as suggested by the terminology adopted by Rosenthal, Rosnow, and Rubin (2000),
these coefficients alert the researcher to the pattern that maximizes the sum of squares accounted
for and thus may form the basis of further selection of coefficients. For example, in the three-
group case discussed previously, the researcher may decide that a more interpretable contrast
is the pairwise comparison of groups 2 and 3, which would then have coefficients of 0, —1,
and 1. It can be shown that the Rflemg value for this contrast (with equal n) is 0.94, which
means that this pairwise contrast accounts for 94% of the entire between-group variability. The
slight decrease from 100% may well be outweighed by an increase in interpretability. The last
section of this chapter as well as the entirety of Chapter 5 discusses issues involved in selecting
multiple contrasts in one’s data.

In our blood pressure example, we have seen (Table 4.2) that the pairwise difference between
drug therapy and biofeedback has a sum of squares of 21.60. Similarly, the sum of squares
for the complex comparison of combined versus the average of all other therapies equals
324.41. The between-group sum of squares for these data is 334.55. Incidentally, these sums
of squares are trivial to find with SAS PROC GLM, but as of this writing are available in SPSS
only through the MANOVA procedure. Substituting the relevant pair of values into Equation 54
shows that our pairwise contrast accounts for 6.46% of the between-group variability, whereas
the complex contrast accounts for 96.97%. Thus, almost all of the variability among the four
groups can be explained by the fact that the combined group is different from the other three
groups. Also, you may notice that if we were to add 6.46% and 97.97%, we would obtain a
value greater than 100%. Later in the chapter we delineate situations in which it is meaningful
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to sum percentages versus other situations in which it is not. As you might suspect, we see that
the current situation is one in which it is not meaningful to add percentages.

Our first strength of association measure, R:lming, is useful for describing how much of the
between-group variability is associated with a specific contrast. However, we must be careful to
realize that it does not take into account how much of the total variability is between-groups and
how much is within-groups. As a result, a contrast might account for 94% of the between-group
variability, but only a tiny proportion of the total variability, because SSpetween might be much
smaller than SSwimi,. For this reason, it is sometimes useful to adopt a different perspective,
one in which the question of interest is the proportion of total variability associated with the
contrast. This leads to a second measure of strength of association, which Rosenthal et al.

(2000) call RZ,., - This measure is defined as
Reffectslze - SS(w)/SSTotal (55)
Comparing R%;. , ... from Equation 55 to Ra,enm from Equatlon 54 shows that they have

the same numerator but different denominators. Whereas Rmemng describes the proportion
of between-group variability associated with a particular contrast, R2y. ., size describes the pro-
portion of total variability associated with the contrast. Neither measure is necessarily better
than the other; instead, they simply convey different perspectives on the data. In general,
R:lening is more useful for describing the extent to which a single contrast completely accounts
for between-group differences, whereas R, ;,. is more useful for describing the extent to
which a single contrast accounts for total variability in the data. Notice in partlcular that Rahmmg
is often much larger than R2y,, ., and may be close to 1.0 even when R, ... is close to 0.0,
so it is important not to overinterpret large values of Ra]emﬂg as implying that a contrast has
accounted for a sizable proportion of the total variability in the data.

We already found SS(v) for the two contrasts we have been discussing in our blood pressure
data. We can easily calculate SSty, because we have already seen that SSgetween iS 334.55,
and SSw is simply the sum of squares of our full model. From either Table 4.2 or 4.3, we
can see that Er equals 1078.00, which implies that SSw is also 1078.00. SStor then equals
the sum of SSgetween and SSw, or 1412.55. Reﬂ:ect size fOT the difference between drug therapy
and biofeedback is 0.0153 (i.e., the ratio of 21.60 to 1412 55). Thus, this difference explains
1.53% of the total variability in the data. Similarly, RZ%,;,. for our complex comparison
is 0.2297. Thus, the difference between the combined therapy and the average of the other
therapies explains 22.97% of the total variability in the data. Notice that this is a much smaller
percentage than we found for Rflemg because the two indices are intended to reflect different
aspects of the data.

There is yet a third strength of association measure that may also be of interest. To motivate
this third measure, we return to our three-group study, in which we observed means of 10,
8, and 15. Suppose we add the new information that the sample size per group is 20 and
SSw = 2850. It then follows that SSgetween = 520 and SStoa = 3370. Let’s reconsider the
pairwise comparison of the second group versus the third group. As we have seen, the Ra]ertmg
value for this contrast is 0.94 (i.e., 490 divided by 520). The corresponding value of R%,, ...
is not surprisingly much lower, 0.15 (i.e., 490 divided by 3370), because SSyua is much larger
than SSpewween. Although the values of 0.94 and 0.15 are dramatically different from one another,
they both provide valid descriptions of how different the second group is from the third group.
Now, however, suppose that a researcher replicates this study, but changes the nature of the
first group. Perhaps the researcher was disappointed that the first group was not very different
from either the second or the third groups, so a different manipulation is introduced in the
first condition. For simplicity, suppose that the only change is that the new manipulation was
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successful in creating a larger difference, so that the sample mean for the first group is 1 instead
of 10. We continue to assume that there are 20 participants per group, that the second and third
groups have sample means of 8 and 15, and that SSw equals 2850. Because the first group in
this replication is so different from the second and third groups, the new between—group sum
of squares is now 1960, as compared to 520 in the original study. As a consequence Ralem,lg
now falls from 0.94 in the original study to 0.25 in this new study. Similarly, RZ%,;,. falls
from 0.15 to 0.10. Our intent with both Ra]eruug and RZ%;., . is to describe how different the
second and third groups are from one another. Now we reach the crucial question. Should this
description depend on the mean of the first group? There is no simple answer to this question,
but notice that neither Ralertmg nor R, eflect the pure difference we would expect to see
in a two-group study comparing only groups 2 and 3. The need for such a measure leads to
our third measure of strength of association. We define R as follows:

contrast

RZ et = SS(¥) /(SS(¥) + SSw) (56)

Let us now consider the value of RZ, .., in each of our two studies. In the first study, the
sum of squares for the pairwise contrast of the second and third groups equals 490, and the
within-group sum of squares equals 2850, so R2 .. equals 0.15 (rounded to two decimal
places). However, it is also the case that R% . equals 0.15 in the replication study, because
both SS(¢r) and SSw are presumed to remain the same in the second study. Of course, in an
actual pair of studies, these values would change somewhat simply because of sampling error,
but the important point is that there is no systematic reason to expect R> to depend on the
other conditions included in the study.’

In our blood pressure example, we have already determined that the sum of squares for
the pairwise difference between drug therapy and biofeedback is 21.60. Similarly, the sum of
squares for the complex comparison of combined versus the average of all other therapies equals
324.41. We also know that SSy for these data is 1078.00. It immediately follows that R2 .
for the pairwise comparison equals 0.02, whereas while RZ ... for the complex comparison
equals 0.23. Notice that in both cases R2 ., is somewhat larger than the corresponding value
of R%ecsize @S MUSE happen by definition,

The logic underlying R2,,... can be extended yet one further step We have just seen that
one potentlal reason for favonng Rconn'ast over either Ralertmg or Reffect stze is that Only Rcontrast
remained the same value when we changed the nature of the first group in the study. However,
suppose we now changed the study even more dramatically. In particular, what if we retained
the second and third groups from the original study, but now added three additional groups,
yielding a five-group study in all? All else being equal, we might well expect SS(i) to remain
the same, but we would expect SSw to increase, simply because the total sample size has
increased. We could attempt to rectify this problem by redefining our effect size measure
so that SSw was calculated based only on the groups involved in the contrast. In our blood
pressure example, the difference between drug therapy and biofeedback accounts for 2.44%
of the variance using only the data from these two groups, as compared to 1.53% based on
R%. . ize and 1.96% based on R2, .., using all four groups. Although the differences for this
specific contrast in these data are small in an absolute sense, they reflect a sizable relative
difference. In some data sets, the difference between these three measures can be quite large
even in an absolute sense. For that reason, our general preference is to base this measure
only on the groups actually involved in the comparison. However, the more general point is
that strength of association measures are prone to misinterpretation because the concept of
variance is often ambiguous in experimental designs. Largely for that reason, we generally

contrast
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prefer measures of effect size, but as we outlined in Chapter 3, each type of measure has its
own set of advantages and disadvantages.

TESTING MORE THAN ONE CONTRAST

In most studies, it is rarely the case that an investigator is interested in testing only a single
contrast. Instead, there typically are several comparisons of interest. When this is true, a number
of questions arise. For example, is there a limit to the number of contrasts that should be tested
in a study? Is it permissible to perform multiple tests using an « level of .05 for each? Does it
matter whether the contrasts were planned prior to conducting the study or were arrived at after
inspecting the data? These and other questions are considered in this section and in Chapter 5.

How Many Contrasts Should Be Tested?

How many contrasts is it reasonable to test in a single study? There is no simple answer
to this question, because the “correct” number depends on substantive as well as statistical
considerations. In some experiments, there may be only a few explicit questions of interest,
so only a small number of contrasts are tested. In other studies, the questions to be addressed
may be broader in scope, necessitating the testing of many different contrasts. Thus, the
number of contrasts that should be tested depends primarily on the nature of the research
endeavor. Nevertheless, there are some statistical considerations that should be remembered
when deciding how many contrasts to test. It is to these considerations that we now turn.

A natural place to begin is to consider from a purely mathematical standpoint the number
of contrasts that might possibly be tested in a study. Let’s consider the simplest case of ¢ = 3
(why not @ = 27). There are three pairwise contrasts that might be tested:

M1 — Mo, Mr— s, and  po — s,

In addition, various complex comparisons could be tested. For example, possible candidates are

51 + p2) — 3
11+ p3) — w2
$(ua + u3) —

It might seem that this list exhausts the supply of possible contrasts, but this is far from true,
at least mathematically. For example, some other possibilities are
T+ Fua —
s+ e — s
1 9
o1 T M2 — H3
and so forth. Some reflection should convince you that the “and so forth” goes on forever.
Our only stipulation for a contrast is that the coefficients sum to zero, that is, Xc; = 0.

Mathematically, there are an infinite number of contrasts that satisfy this rule, even when a is
as low as 3. In fact, for a > 3, there are always infinitely many contrasts that might be tested.
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Of course, not all these tests may answer meaningful questions, but from a purely statistical
perspective, they are all possible to perform.

It might be suspected that with three groups, some of the information contained in the infinite
number of contrasts is redundant, and indeed, this is true. We use an example to consider the
maximum number of contrasts that might be tested without introducing redundancy when
a = 3. Suppose that an investigator expresses an interest in the following contrasts:

Y1 = p1— M2 (57)
Y2 = p1— 3
Vs = 2y + p2) — ps

Are these three contrasts providing redundant information? We can see that the answer is Yes
by realizing that ¥3 = v, — 1/24. In other words, the value of i3 is completely determined
if we already know the values of ¥, and v,. In this sense, 3 provides no new information over
that contained in v; and . Alternatively, we could say that v is redundant with ¥, and yr;
because ¥, = 2(y; — ¥3). The basic point here is that once we know the values of any two
of the contrasts, the third is determined precisely. It can be shown that in the general case of
a groups, there can be no more than a — 1 contrasts without introducing redundancy. Indeed,
this is one way of conceptualizing why it is that the omnibus test of mean differences between
a groups has a — 1 numerator degrees of freedom,; in a sense, there are a — 1 different ways in
which the groups might differ.

Linear Independence of Contrasts

In the previous example, we say that the set of three contrasts V;, ¥, and 3 is linearly
dependent because the set contains redundant information. More formally, a set of contrasts
is linearly dependent if it is possible to express at least one member of the set as a linear
combination of the other contrasts. Conversely, any set that is not linearly dependent is said to
be linearly independent.® Notice that this is exactly what we did when we found that 13 was
equal to ¥, — 1/2¢,. The concept of linear dependence is important for using some statistical
packages such as SPSS MANOVA for testing the significance of contrasts, because this
program requires the user to create a set of @ — 1 linearly independent contrasts, even if only
a single contrast is to be tested. Unfortunately, that all sets of @ — 1 contrasts are linearly
independent is not true. Suppose the following three contrasts are to be tested when a = 4:

Yi=pi—p2, Ya=p1—u3 and VY3 =us—us

It is easily verified that 43 = v, — 9, so that the contrasts are linearly dependent, even
though there are only three contrasts in the set. This illustration simply serves as a warning
that determination of linear independence can be complicated, especially for large values of
a. The most general procedure for assessing linear independence involves matrix algebra. The
interested reader is referred to Kirk (1995) for more detail.

Let’s return to our earlier example in which @ = 3. Our three contrasts were

Y1 = p1— H2 (57, repeated)
V2 = w1 — U3
Vs = 21 +p2) — i3
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Suppose for the moment that we were to limit our tests to v, and y; that is, we would
simply ignore ;. The contrasts yr; and ¥, are not redundant with one another because v,
includes information about w3, which is not included in ;. However, a careful examination
of the coefficients for v, and v¥r» suggests that, although the two contrasts are not completely
redundant with one another, there is some overlap in the information they provide because in
each case we compare the mean of group 1 with the mean of another group. The statistical
term for such overlap is nonorthogonality. This means that the information in v, is correlated
with the information in ;.

Orthogonality of Contrasts

Two topics demand attention now: First, how can we assess whether two contrasts are orthog-
onal to one another? Second, what are the implications of orthogonality versus nonorthogo-
nality? The determination of orthogonality is straightforward from the definition, which we
now introduce. Suppose that we have two contrasts y; and ¥, such that

¢1 = chjﬂj and 1[/2 = ZCZjﬂj

(Notice that the coefficients now have two subscripts. The first subscript indexes which contrast
the coefficients are for, whereas the second subscript indexes the group. For example, c2;
would be the coefficient for 1, for the third group.) The two contrasts v+, and v, are defined
as orthogonal when sample sizes are equal if and only if their coefficients satisfy the following

property:

ZC]ngj =0 (58)
‘When sample sizes are unequal, the orthogonality condition is that
> eyjes/n; =0 (59)

To ensure understanding of Equation 58, consider the three contrasts of Equation 57. Earlier
we argued intuitively that v and v, were nonorthogonal. To see that this is true mathematically,
let’s apply the definition of Equation 58, assuming equal ». It is helpful first to write out the
individual coefficients of each contrast. In this case, we have

cn=1 cpp = —1 c3= 0

=1 = 0 cp3=-1

According to Equation 58, we now must multiply the v, coefficients times the yr, coefficients
for each group and then sum the products. This yields (1)(1) + (—1)(0) + (0)(—1) = 1. The
nonzero result means that the contrasts are nonorthogonal.

Consider a second example. Are y; and yr; of Equation 57 orthogonal? Writing out the
coefficients yields

cn= 1 ciz= -1 ca= 0
1 =1/2  cp=1/2  cp=-1

Multiplying and adding the products results in (1)(1/2) + (—1)(1/2) 4 (0)(—1) = 0. Thus, ¥,
and 3 are orthogonal to one another.

TLFeBOOK



180 CHAPTER 4

In the general case of @ groups, one might be interested in whether several contrasts con-
sidered together are orthogonal. A set of contrasts is orthogonal if and only if every pair of
contrasts in the set is orthogonal to one another. Consider an example in which a = 4, with
equal n:

Y1 =1 — 2
V2
V3

T + p2) — u3

11+ pa + p3) —

Do these three contrasts form an orthogonal set? To answer this question, we must consider
three pairs of contrasts: v, and v, ¥, and y3, and vy, and yr3. Using Equation 58 shows that
Y1 and yr, are orthogonal, ¥ and v are orthogonal, and v, and 3 are orthogonal. Thus, the
three contrasts form an orthogonal set because every pair of contrasts in the set is orthogonal
to one another. Notice that it is meaningless to try to apply the condition of Equation 58 to all
three contrasts simultaneously. Instead, Equation 58 considers only two contrasts at a time. To
evaluate the orthogonality of a set, the equation is applied C(C — 1)/2 times, where C is the
number of contrasts in the set. [The expression C(C — 1)/2 equals the number of distinct pairs
of C objects.]

If a study has a groups, how many contrasts might be in an orthogonal set? It can be proved
that there can be at most @ — 1 contrasts in an orthogonal set. In other words, any set with
a or more contrasts is by mathematical necessity nonorthogonal. Note carefully that there
are many (actually, infinitely many) possible sets of a — 1 orthogonal contrasts. The limit
of a — 1 pertains to the number of contrasts in a set but says nothing about how many sets
of orthogonal contrasts may exist. Recall that we encountered a limit of @ — 1 in our earlier
discussion of linear independence. It turns out that orthogonal contrasts are by mathematical
necessity linearly independent, so they also must obey this limit. In fact, orthogonal contrasts
represent a special case of linear independence. With linearly independent contrasts, we argued
that the information gained from the set is nonredundant. When the contrasts are orthogonal
as well, the information contained in the contrasts has additional properties that we now
consider.

What difference does it make whether contrasts are orthogonal to one another? The pri-
mary implication is that orthogonal contrasts provide nonoverlapping information about how
the groups differ. More formally, when two contrasts yr; and v, are orthogonal, the sample
estimates (e.g., 1&1 and 1/72) are statistically independent of one another.!? In other words, there
is no relationship between 1/?1 and 1/72, and in this sense, each provides unique information
about group differences.

OPTIONAL

Example of Correlation Between
Nonorthogonal Contrasts

We explore this idea more fully with an example using the contrasts of Equation 57. Suppose that
unbeknown to us, #; = u; = uj; = 10. In this case, it follows that ¥, = ¢, = 3 = 0. Although the
population means are equal for the three groups, the sample means, of course, vary from group to group
and from replication to replication. According to our assumptions, the ¥ ; values are normally distributed
across replications. For simplicity in this example, we assume that ¥ ; can take on only three values:
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TABLE 4.5
ORTHOGONALITY
?1 ?2 ?3 lbl &2 1}3
8 8 8 0 0 0
3 8 10 0 -2 -2
8 8 12 0 ~4 —4
8 10 8 -2 0 1
8 10 10 -2 -2 -1
8 10 12 -2 -4 -3
8 12 8 —4 0 2
8 12 10 -4 ~2 0
8 12 12 -4 —4 -2
10 8 8 2 2 1
10 8 10 2 0 -1
i0 8 12 2 -2 -3
10 10 8 0 2 2
10 10 10 V] 0 0
10 10 12 0 -2 -2
10 12 8 -2 2 3
10 12 10 -2 0 1
10 12 12 ~2 -2 -1
12 8 8 4 4 2
12 8 10 4 2 0
12 8 12 4 0 -2
12 10 8 2 4 3
12 10 10 2 2 1
12 10 i2 2 0 -1
12 12 8 0 4 4
12 12 10 0 2 2
12 12 12 0 0 0

m;—2, uj, and p; + 2. In effect, we are assuming that the error for a group mean is either —2, 0, or
2 in any sample. We also assume that these three values are equally likely. (Although this assumption for
the error term is unrealistic, it makes the implications of orthogonality much easier to show than does
the normality assumption.) According to our simple model, then, each Y is 8, 10, or 12, and these three
values occur equally often. What is the relationship between Y..Y,, and Y5? They are independent of
one another because the three groups of subjects are independent. This means, for example, that knowing
Y =8 says nothing about whether Y, is 8, 10, or 12. The first three columns of Table 4.5 show the 27
possible combinations of Y, Y,, and ¥, that can occur, given our assumptions. As a result of the
independence between groups, each of these 27 combinations is equally likely to occur, that is, each has a
probability of 1/27. The next three columns show for each combination of ¥ ; values the resulting values
for ¥y, ¥2, and 75, where

T £
2 =Y, -7,

U3 = 1T, +¥)—7;

<o
~i

1 =

<
Il

The primary purpose for obtaining the values in Table 4.5 is to investigate the relationships among the
different contrasts. Earlier we argued intuitively that yr, and v/, were related to one another. Specifically,
it would seem reasonable that if v, large, then v, would be large also because both involve compar-
ing ¥, with another group. This possibility can be explored systematically by forming a contingency
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TABLE 4.6
CONTINGENCY TABLES ILLUSTRATING RELATIONSHIP
OF v/, TO ¥r2 AND ¢ TO 3

¥a
-4 -2 0 2 4
4 1 1 1
2 1 2 2 1
¥ 0] 1 2 3 2 1
-2 1 2 2 1
41 1 i
¥3
-4 -3 -2 -1 0 1 2 3 4
4 1 1 1
2 1 3 2 1
$1 ol 1 2 3 2 1
2 1 ) 2 1
—4 1 1 1

table relating the ¢, and ¥, values of Table 4.5. The top half of Table 4.6 is such a contingency table.
Each entry in this table equals the number of times that a particular combination of V1 and ¥, values
occurs in Table 4.5. For example, the combination ¥, = 4 and v/, = 4 occurs once in Table 4.5, whereas
12;1 =0= 1/}2 = 0 occurs three times. The combination 1&1 =4 and 1[72 = —4 never occurs. If we were
to divide each entry in the contingency table by 27, the result would be a bivariate probability distribu-
tion, but this degree of formality is unnecessary for our purposes. Instead, the important point here is
simply that v/, and v, are correlated. Specifically, they are positively correlated because higher values of
1@1 tend to be associated with higher values of 17/2. Thus, samples in which 1/71 exceed zero have a system-
atic tendency to yield 1, values that are in excess of zero. Is this also true of v and v¥,? We saw earlier
that according to the definition of orthogonality, ¥, and i are orthogonal. The bottom half of Table 4.6
displays the contingency table for v, and ¥;. Are ¥, and ¥ correlated? Can we predict ¥, from ¥,
(or vice versa)? Suppose that 1/71 = 4. When 1}1 = 4, the best guess concerning 11}3 is zero, because zero
is the mean value of qu when ¢, = 4. Suppose that ¥ = 2. The best guess for Vs is still zero. In fact,
for any given value of r/f., the best guess for ¥ is zero. Knowledge of v/, does not improve prediction
of ;. Thus, ¢, and 5 are uncorrelated. In this example, v/, and vr; are not statistically independent
because the errors were distributed as —2, 0, and 2 instead of normally. With normally distributed errors,
¥ and V3 would have been statistically independent as well as uncorrelated. Thus, orthogonal contrasts
possess the beneficial property of being uncorrelated with one another.

Another Look at Nonorthogonal Contrasts:
Venn Diagrams

Another property of orthogonal contrasts can best be illustrated by example. Consider the data for three
groups in Table 4.7. It can easily be shown that the sum of squares for the test of the omnibus null
hypothesis is given by $Sz = 190 for these data. Let’s reconsider our three contrasts of Equation 57:

¥ =t —
Y2 = 1 —
¥y = 31+ p2) — pa
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TABLE 4.7
HYPOTHETICAL DATA FOR THREE GROUPS
1 2 3
12 10 6
10 8 2
11 12 3
9 14 4
13 6 0
¥, 11 10 3 Y=
nj _ —
STy —-Y;)? 10 40 20
i=1
"j _ _
Y ¥y —T)? 55 60 145
i=1
/4
A\
I/ \\
y a— 5\
= \
f — .
85 (W, )=25——» -« S5(Y;) = 1875
v
= ]
\\ ﬁ7I
— 7
N—

SSg

FIG. 4.1. Venn diagram of relationship between $S( ). $S(3), and SSg.

We can test each contrast in turn by forming an appropriate restricted model and comparing its error
sum of squares to the error sum of squares of the full model. After some computation, it turns out that

SS(y1) =

SS(y,) = 160.0
SS(y;) = 187.5

Interestingly enough, the sum of (S5vy1) + 55(1¥3) = 190, which was the between-group sum of squares.
As you might suspect, this occurrence is not accidental. Given three groups, two orthogonal contrasts
partition the sum of squares between groups, that is, the sum of the sum of squares for the contrasts
equals 5Sg. More generally, for @ groups, @ — 1 orthogonal contrasts partition the between-group sum
of squares. This fact provides another perspective on the unique information provided by each member
of a set of orthogonal contrasts. If we decide to test | and yr; as given here, then we have completely
accounted for all differences between the three groups. In this sense, ¥, and v; together extract all
available information concerning group differences. Venn diagrams are sometimes used to depict this
situation visually. Figure 4.1 shows how ¢, and y; together account for §Sg, which is represented by the
entire circle. However, suppose we test ¢ry, and ,. The sum of $$(1, ) and S5(¢,) fails to account for all of
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A
S(Yy) = 25— [

“L!!nw. AR

FIG. 4.2. Venn diagram of relationship between S8 ), $5(f2), and $Ss.

I -« S5 (i) = 160

SSg

T Legend
A A
= @ SS ()= 1875
v ) A
(m:m]) SS (W) = 160
5Sg

FIG. 4.3. Venn diagram of relationship between S$S(¥2), $5(#3), and $5g.

the between-group sum of squares because these two contrasts are nonorthogonal. Figure 4.2 shows that
¥, and v, overlap. At this point, you might think that the combination of ¥, and yr, is inferior to v,
and 3 because 2.5 4 160 is less than the 190 sum of 2.5 + 187.5. Consider, however, the possibility of
testing v and 13 together. It would seem that these two contrasts, which are nonorthogonal, somehow
account for more of a difference between the groups than actually exists. That this is not true can be
seen from Figure 4.3. Because 4, and v are nonorthogonal, there is substantial overlap in the areas they
represent. Thus, they do not account for more between-group variability than exists. This illustrates an
important principle: The sums of squares of nonorthogonal contrasts are not additive—for example, the
sum of 160 + 187.5 has no meaning here. However, the sums of squares of orthogonal contrasts can be
added to determine the magnitude of the sum of squares they jointly account for.

One additional point concerning orthogonality is of interest. Why is a contrast defined to have the
restriction that the sum of its coefficients must equal zero, that is, £%_,c; = 07 The reason for this
restriction is that it guarantees that the contrast is orthogonal to the grand mean y. Notice that y is like
a contrast in the sense that it is a linear combination of the population means. With equal » for a groups,

p=Yy uija=) (/ay,
=1 =1
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Consider a general contrast of the form

¥ = Za: Cilj
j=1
Is ¢ orthogonal to 1?7 Applying Equation 58 yields
(1/a)e) + (1/a)ez) + - - - + (1/a)(ca)
as the sum of the products. Because 1/a is a common term, it can be factored out, resulting in
(1/a)ei+ca+ -+ - +ca),

which equals 1/aX_, c;. This must equal zero for ¥ to be orthogonal to u, but we know Z7_,c; does
equal zero, given the definition of a contrast. The £¢_,c; = 0 condition also can be shown to apply
for unequal n, given the more general definition of nonorthogonality. If we allowed contrasts in which
X7_,c; was nonzero, such a contrast would not be orthogonal to . Why should a contrast be orthogonal
to u? Contrasts should represent differences between the groups and should thus be insensitive to the
mean score averaged over all groups. By requiring that £¢_,c; = 0, the information obtained from
is independent of the grand mean and hence reflects pure differences between the groups. If a contrast
in which £7_,c; % 0 is allowed, the information then reflects some combination of group differences
and the size of the grand mean. For example, consider a four-group problem in which the experimenter
decides to test a linear combination of population means with coefficients given by ¢, = 2, ¢; = —1,
¢3 = 0, and ¢4, = 0. Then, ¥ can be written as

¥ =24 —
However, we can re-express ¥ as
¥ = (0.25+ 1.75)p1 + (0.25 — 1.25)p + (0.25 — 0.25)p3 + (0.25 — 0.25) 14

Rearranging terms yields

¥ = (0.25p, + 02502 + 0.25u3 + 0.25044) + 175041 ~ 12505 — 0.25u3 — 0.25u4

it o+ (17501 — 1251, — 0.25u3 ~ 0.2514)

Il

Thus, this linear combination equals the sum of the grand mean and a contrast whose coefficients sum
to zero. Although statistical statements about the population magnitude of this linear combination could
be made, the meaning of the results would be uninterpretable.

From the previous discussion, it might seem that researchers who want to test several contrasts
involving a groups should be certain that these contrasts form an orthogonal set. However, this viewpoint
is overly restrictive. Although there are statistical advantages to forming contrasts in an orthogonal
manner, an investigator might nevertheless decide to test contrasts that are nonorthogonal. The reason for
such a decision is very simple—when the investigator contemplates all hypotheses of scientific interest, the
corresponding contrasts may be nonorthogonal. To answer the questions of interest, these contrasts should
be tested. At the same time, the investigator should be aware that he or she is not extracting information on
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group differences as efficiently as could be done with orthogonal contrasts. Further guidelines for choosing
an appropriate set of contrasts to be tested are developed in Chapter 5.

EXERCISES

*1. Write out the coefficients for contrasts to be used for testing each of the following hypotheses in a
four group study.
a. Ho:pp =
b. Ho: p = S(uz + p3)
c Ho:pz= g
d. Ho:pg=1/3(p1 + p2 + p3)
2. Which of the contrasts in Exercise 1 are pairwise? Which are complex?

*3, A psychologist collected data for three groups. The sample means are as follows: Y| = 12,7, = 10,
and Y3 = 6. The value of MSy, is 25, and there are 10 subjects in each group. The psychologist is
interested in comparing the average of the Group 1 and 2 means to the Group 3 mean.

a. The psychologist forms a contrast whose coefficients are given by .5, .5, and —1. Test this contrast
for statistical significance.

b. A colleague has suggested that it would be simpler to test a contrast with coefficients of 1, 1,
and —2. Does this produce the same result as part a?

¢. What is the relationship between (1) of part a and (4)* of part b? What is the relationship of
T9_,c? inpartato B¢_, ¢} in part b? Does this explain why the E¢] term is needed in Equation 41?
Justify your answer.

4. Yet another contrast that might be used in Exercise 3 is one with coefficients of —1, —1, and 2. How
does the F value for this contrast compare with the F value obtained in Exercise 3? What general
rule does this illustrate?

5. Exercises 3 and 4 asked you to test a complex comparison in a three-group study. This exercise asks
you to form a confidence interval for the same complex comparison. As before, the sample means
are: Y, = 12, ¥, = 10, and Y; = 6. The value of MSy, is 25, and there are 10 subjects per group.
Continue to assume that the psychologist is interested in comparing the average of the Group 1 and 2
means to the Group 3 mean.

a. Form a 95% confidence interval for the contrast of interest. (Notice that with the available
information, you must assume homogeneity of variance.)

b. Does the confidence interval you found in part a agree with the results of the hypothesis test in
Exercise 3?7 Explain your answer.

c. Express the mean difference for this contrast as a standardized difference. How would you
interpret this result?

d. We saw in Exercise 3 that we could use coefficients of 1, 1, and —2 without changing the result of
the hypothesis test. Can we also use these coefficients for forming a confidence interval without
changing the result? Why or why not?

6. A psychologist conducted a study to compare several treatments for hyperactivity in children. Eleven
subjects are randomly assigned to each condition, and the following data are obtained:

Group Mean Var(s?)
Behavior therapy 12 11
Drug therapy 11 8
Placebo 7 12
Waiting list control 6 9

a. Find the sum of squares for the comparison that contrasts the average of the two therapies with
the average of Placebo and Waiting list.
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b. Test the comparison in part a for statistical significance.
c. Find the value of R}, for the comparison in part a.
d. Find the value of R%;,, ;. for the comparison in part a.
e. Find the value of RZ ., for the comparison in part a.

f. Explain the different meanings of each measure of association you calculated in parts c—e.

7. A study was conducted to compare four approaches for alleviating agoraphobia: placebo, cogni-
tive, behavioral, and cognitive plus behavioral. The researcher’s hypothesis is that the “cognitive
plus behavioral” approach will be the most effective of the four approaches. Can a contrast with
coefficients of —1, ~1, —1, and 3 be used to test this hypothesis? Why or why not?

*8. A graduate student designed her master’s thesis study with three groups: a cognitive intervention, a
behavioral intervention, and a control group. A total of 50 subjects are randomly assigned to groups:
20 to each intervention and 10 to the control group. The following data are obtained:

Cognitive  Behavioral Control

Sample size 20 20 10
Mean 6.0 4.0 338
S.D. (s) 32 29 33

a. Is there astatistically significant difference between the means of the Cognitive and the Behavioral
groups?

b. Is there a statistically significant difference between the means of the Cognitive and the Control
groups?

c. Which pair of means is more different—Cognitive and Behavioral or Cognitive and Control?
How can you reconcile this fact with your answers to parts a and b?

9. Consider the data in Exercise 8 from the perspective of confidence intervals. You may assume
homogeneity of variance throughout the problem.
a. Form a 95% confidence interval for the difference between the means of the Cognitive and the

Behavioral groups.
b. Form a 95% confidence interval for the difference between the means of the Cognitive and the
Control groups.

. Which interval is centered further away from zero? Why?

. Which interval is narrower?

. Which interval contains zero, and which interval excludes zero?

. How do your results in parts a—¢ help explain the hypothesis test results found in Exercise 87

-0 o

10. A psychologist is planning a three-group study in which he wants to test the following two com-
parisons: Group 1 versus Group 3 (¥,) and Group 2 versus Group 3 ().

Sixty subjects are available to participate in the study. His initial thought was to assign 20 subjects
at random to each condition. However, after further thought, he has decided to assign twice as many
subjects to the third group as to the first two groups because the third group is involved in both
comparisons. (Notice that subjects are still randomly assigned to conditions.) Is this a good idea?
To explore the answer to this question, we must consider the variances of the two contrasts. Why
the variances? Both sample size-allocation schemes produce unbiased estimates of the population
value ¥ of the contrast in question. However, the two schemes differ in the imprecision—that is, the
variance—of the estimate. It can be shown that (assuming homogeneity of variance) the population
variance of a contrast is given by 6229_,c%/n;.

a. Find an expression for the variance of ¥, and ¥, when 20 subjects are assigned to each treatment,

b. Find an expression for the variance of v/, and v/, when 15 subjects are assigned to Group 1, 15
to Group 2, and 30 to Group 3.

¢. Which method of allocating subjects to groups is better for testing ¥ and ¥, if homogeneity
holds?

d. Will any allocation scheme yield a smaller variance than the two schemes already proposed?
Consider the possibility of assigning 18 subjects to Group 1, 18 subjects to Group 2, and 24
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subjects to Group 3. Find the variance of ¥, and ¥, and compare your answer to the answers
you obtained in parts a and b.

e. All other things being equal, variance is minimized by assigning an equal number of subjects to
each group. How does this help explain why the 18, 18, 24 scheme results in a lower variance
than does the 15, 15, 30 scheme?

11. 1. B. Normal, a graduate student at Skew U., conducted a study with four groups. The first three
groups are treatment groups, and the fourth group is a control group. The following data are obtained:

Treatment1 Treatment2 Treatment3 Control

9 7 5 4
8 8 7 5
7 7 6 2
10 4 7 7
5 5 4 5
9 5 7 7

a. Normal’s adviser says that the first question Normal should address is whether the mean of the
treatment subjects differs from the mean of the control subjects. The adviser tells her to perform
at test comparing the 18 treatment subjects to the 6 control subjects. In other words, the adviser
recommends that the three treatment groups be combined into one group, ignoring (for this
analysis) the distinction among the three treatment groups. What did Normal find? (HINT: It will
be helpful for parts ¢ and d that follow if you analyze these data as a one-way ANOVA, using
the principles discussed in Chapter 3.)

b. Normal was rather disappointed with the result she obtained in part a. Being the obsessive type,
she decided also to test a contrast whose coefficients were 1, 1, 1, and —3. What did she find?

c. Why are the results to parts a and b different? After all, they both compare treatment subjects to
contro! subjects. To see why the results differ, we look at the numerator and the denominator of
the F statistic individually. How does the value of the sum of squares for the contrast in part b
compare to the value of the sum of squares between groups in part a?

d. How does the value of the within-group sum of squares in part b compare to the value of the
within-group sum of squares in part a? Notice that the within-group sum of squares in part b is
based on four groups, whereas the within-group sum of squares in part a is based on only two
groups. As a consequence, the full model in part b has four parameters to be estimated, whereas
the full model in part a has only two parameters.

e. Verify that the following expressions provide the correct sums of squares (within rounding error)
for the full models in parts a and b. For part a:

Ep= (¥, - 6.672+ Y.(¥; — 5)?
Treatment Control
subjects subjects

For part b:

Er= Y (Yy — 8P+ L(¥; — 6)° + Y(¥;; — 6)* + 3_(¥;; — 5)°
Group 1 Group 2 Group 3 Group 4

f. The between-group sum of squares for differences among the three treatment groups equals
16 for these data. How does this relate to the difference in the two approaches? Why?
g. Which approach do you think would generally be preferable—that of part a or part b? Why?

12. A graduate student has conducted a treatment study involving three treatments to alleviate depres-
sion. The first two groups are active treatment groups and the third group is a placebo control group.
The following data are obtained:
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Active Treatment 1  Active Treatment2  Control

10 6 13
13 12 16
14 8 13
8 13 19
9 10 11
12 16 13

You may assume homogeneity of variance throughout all parts of this exercise.

a. Test whether the mean of Active Treatment 1 is different from the mean of the Control group.

b. Test whether the mean of Active Treatment 2 is different from the mean of the Control group.

c. Test whether the mean of the two Active Treatment groups combined is different from the mean
of the Control group (i.e., form a complex comparison).

d. Form a 95% confidence interval for the mean difference between Active Treatment 1 and the
Control group.

e. Form a 95% confidence interval for the mean difference between Active Treatment 2 and the
Control group.

f. Form a 95% confidence interval for the difference between the mean of the two Active Treatment
groups and the mean of the Control group.

g. Which of your intervals in parts d—f contain zero and which exclude zero? How does this relate
to the tests you performed in parts a—?

h. Where is the center of your intervals in parts d and e? Where is the center of your interval in
part f? How can you reconcile these patterns with the results you reported in part g?

*13. The following data are obtained in a four-group study (to be done on computer or by hand).

1 2 3 4
3 7 9 11
4 5 2 17
5 6 5 11
5.5 9 7
3 7 5 4
Mean 4 6 6 8
Var(s) 1 1 9 9

This exercise asks you to compare the results of using MSyw to the results of using separate error

terms when sample variances differ widely from one another.

a. Test a comparison of Group 3 versus Group 4, first using MSw and then using a separate error
term. How do the results compare?

b. Test a comparison of Group 1 versus Group 2, first using MSyw and then using a separate error
term. How do the results compare? Do they support the common belief that the use of a separate
error term is conservative? Explain your answer.

c. Test a comparison of the average of Groups 1 and 2 versus the average of Groups 3 and 4, first
using MSy and then using a separate error term. How do the results compare? In interpreting the
relationship between the two approaches here, it is helpful to know that the test of an individual
comparison is robust to violations of homogeneity of variance with equal # if and only if the
absolute values of the coefficients for every group are equal to one another (see Note 5).

14. This exercise continues to examine the data in Exercise 13, but now from the perspective of confi-
dence intervals.
a. Form a 95% confidence interval for the mean difference between Groups 3 and 4, assuming
homogeneity of variance.
b. Form a 95% confidence interval for the mean difference between Groups 3 and 4, without
assuming homogeneity of variance.
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¢. How do your results in parts a and b compare to one another? Explain your answer.

d. How does your answer to part c relate to your answer to part a of Exercise 137

e. Form a 95% confidence interval for the mean difference between Groups 1 and 2, assuming
homogeneity of variance.

f. Form a 95% confidence interval for the mean difference between Groups 1 and 2, without
assuming homogeneity of variance.

g. How do your results in parts ¢ and f compare to one another? Explain your answer.

h. How does your answer to part g relate to your answer to part b of Exercise 13?

i. Form a 95% confidence interval for the mean difference between the average of Groups 1 and 2
as compared to the average of Groups 3 and 4, assuming homogeneity of variance.

j. Form a 95% confidence interval for the mean difference between the average of Groups 1 and 2
as compared to the average of Groups 3 and 4, without assuming homogeneity of variance.

k. How do your results in parts i and j compare to one another? Explain your answer.

15. A psychologist designs a study with four independent groups. However, the number of subjects in
each group is very unequal: n;, = 10, n, = 50, n3 = 50, and n4 = 10. One specific comparison of
interest is the contrast of Groups 1 and 4. Believing that homogeneity of variance holds here, he
decides to use MSy, as the error term for his comparison. However, his research assistant argues that
even with homogeneity, the data in Groups 2 and 3 should be completely ignored because Groups 1
and 4 are so much smaller. In other words, the research assistant maintains that the large samples
for Groups 2 and 3 make the observed F for comparing Groups 1 and 4 much larger than it would
be if a separate error term were used (i.e., an error term based just on Groups 1 and 4). Thus, even
with homogeneity, the test should be based only on the 10 subjects in Group 1 and 10 subjects in
Group 4 to avoid an inflated F from the large sample in Groups 2 and 3.

a. Would you expect the observed F to be larger using MSy instead of a separate error term, if
homogeneity holds? Why or why not? (HINT: How would you expect MSw to compare to the
error term given by Equation 42, if homogeneity holds?)

b. How does the critical F based on MSy, compare to the critical F based on a separate error term?

¢. Which approach is preferable, if homogeneity holds?

16. Is the following set of contrasts among four groups (i.e., a = 4) orthogonal?

1 2 3 4
1 1 -1 0 0
2 1 1 0 =2
v 11 =3 1
s 0 0 -1 1

Show your work or explain your answer.

17. In a six-group study, an investigator wants to test the following two comparisons:

pitpatps—pa—ps—ps  and  py+pr—2u

Construct three additional comparisons that yield an orthogonal set. Assume equal ».

EXTENSION: DERIVATION OF SUM
OF SQUARES FOR A CONTRAST

Chapter 4 presents a very general expression for the sum of squares associated with a specific
individual comparison. Specifically, the chapter claims that such a sum of squares can be
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written as
j=1

The purpose of this extension is to derive this expression. Arguably, the simplest method of derivation
relies on matrix algebra. However, it is also possible to obtain the derivation without resorting to matrices,
an approach we use here.

‘We begin by writing an expression for the sum of squared errors for the restricted model. We then see
that part of this expression contains the formula for the sum of squared errors of the full model, which
naturally leads to an easy way to write the difference between the sums of squared errors of the two
models.

Each subject’s error in the restricted model is the difference between the subject’s actual score and
the score predicted by the model. Thus, the sum of squared errors of the restricted model equals

Ee=) Z(Y,, -y (E2)

j=1 i=

Under the null hypothesis, the predicted score for an individual in group j can be written as

b =Y, (1/Z(c§/nj)> (c;/mp (E.3)
j=1

The notation of Equation E.3 can be simplified by realizing that the sum of squared contrast coefficients
divided by sample size is a constant for any given contrast. We arbitrarily use the letter k to represent
this sum. In other words, we simply establish the following notation:

k=>"(c2/n;) (E4)
j=1
in which case Equation E.3 can be rewritten as

=Y, — (1/k) (c;/n (@) (E.5)

Substituting for 2; from Equation E.5 into Equation E.2 yields
a nj _ .
En =3 3 Yy=F; +(1/k)e; /)P E6)
j=1 i=t

Expanding the square and regarding the expression to the left of the plus sign as one term and the
expression to the right as a second term allows Equation E.6 to be rewritten as

ER—ZZ(Y,,—Y>2+ZZ<1/k>2 e} /n3) (WHZZ(Y,, ¥ )1/ k)Xe;/n )

j=1i= j=1i=1 j=1 i=1

E.T)
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Equation E.7 can be simplified in three ways: (1) The very first term is identical to the sum of squared
errors for the full model, so this term can be rewritten as Ex; (2) k and () are constants, so they can be
moved outside the summation over both individuals and groups; and (3) ¢; and #; are constants within a
group, so they can be moved outside the summation over individuals. Incorporating these simplifications
yields

Eg = E¢ + (1/k)*(§)? (Z n,-(ci/ni)) +2(1/00) (Z ci/n; Yy _(¥y —?,-)) (E.8)
j=1 j=1 i=1

Notice that Equation E.8 expresses Er as the sum of three components. However, we can simplify this
expression greatly by realizing that the third component must equal zero, because the sum of deviations
around the mean is always zero. We can also simplify the middle component by canceling the n; in the
numerator with one of the n; squared terms in the denominator. As a consequence, Equation E.8 reduces
to

Eg = Ex + (/K'Y (Z c§/nj) (E.9)
j=1

Looking back at Equation E.4, we see that the final term in parentheses is identical to what we chose to
label as k, so we could rewrite Equation E.9 as

Er = Er + (1/0°($)* () (E.10)
which then reduces to
Er = Er+ ()2 /k (E.11)

Finally, we move Ef to the left side of the equation, and we substitute from Equation E.4 for &k, which
leads to

Eg—Er = («17)2/ > (S /ny) (E.12)
j=1

Thus, we have shown that the sum of squares associated with a contrast can indeed be written as shown
in Equation E.1, as claimed in the body of Chapter 4.
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Testing Several Contrasts: The
Multiple-Comparisons Problem

In Chapter 4, you learned how to test individual comparisons among means and assess their
practical significance through such procedures as confidence intervals and effect size measures.
You were also introduced to the concepts of linear independence and orthogonality. As these
two concepts demonstrate, several contrasts are often tested on the same set of data. Linear
independence and orthogonality concern the degree of overlap in information obtained from
testing several contrasts among a groups. In this chapter, another issue that arises in testing
several contrasts is considered. We will approach this issue primarily from the perspective of
hypothesis testing, but we will see that the issue is also relevant for confidence intervals.

MULTIPLE COMPARISONS

Experimentwise and Per-Comparison Error Rates

We begin by considering the example from the beginning of the previous chapter, where
there are four treatments for hypertension to be compared. Suppose it was decided to test the
following three contrasts:

Y1 = w1 — 2
Y2 = 3(u1 + p2) — ps
V3 = 00+ po + 13) — fa

Assuming equal n, these three contrasts form an orthogonal set, as we verified near the end of
Chapter 4. Suppose that each of these contrasts is tested using an alpha level of .05. If the four
treatments are in fact equally effective, how likely are we to obtain at least one significant result
in our study? In other words, how probable is it that we will make at least one Type I error?
The answer is obviously a number greater than .05 because we are performing three different
tests at the .05 level. At first glance, the answer might seem to be .05 x 3, or .15. Although
.15 is a number we return to momentarily, it is not the answer to this question. Recall from
probability theory that probabilities of events cannot be summed unless the events are mutually
exclusive, that is, unless the occurrence of one event rules out the occurrence of another. This

193
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is not the case here, because if the Hy for i, is mistakenly rejected, the hypotheses for v
and 3 might or might not be rejected. It turns out that for orthogonal contrasts, the binomial
formula provides an answer to our question:

Pr (at least one Type I error) = 1 — Pr(no Type I errors) )]
=1-(1-af

where « is the alpha level for a single contrast and C is the number of contrasts tested. For our
example, then, ¢ = .05 and C = 3. Substituting into Equation 1, we find that the probability
of at least one Type I error in our study is .143.

Before we comment further on this number, several comments on Equation 1 are in order.
First, the expression 1 — (1 — «)C is obtained from the binomial formula for the probability
of at least one success in C trials, when the probability of a success on a single trial is «. It
may be necessary to remind oneself that here a “success™ is a Type I error. Second, Equation 1
is only appropriate when the C contrasts to be tested form an orthogonal set, because the
binomial requires an assumption that the C trials be statistically independent. This assumption
is not met for nonorthogonal contrasts, so Equation 1 is inappropriate unless the contrasts are
orthogonal. Third, strictly speaking, Equation 1 holds only for large n, because although the
1/7 values of orthogonal contrasts are uncorrelated, the F tests all use the same denominator
term—namely, MSw, assuming homogeneity of variance. Thus, the F tests are not strictly
independent. However, this is a technical point and need not concern us.

Let’s return to our value of .143. Remember that this is the probability of committing at least
one Type I error in the study. Is this a problem? After all, it seemed that our alpha level was
.05, but now we are saying that our probability of a Type I error is almost three times as large
as .05. To clarify this issue, it is helpful to develop some terminology. First, the error rate per
contrast (apc) is the probability that a particular contrast will be falsely declared significant. In
other words, if a contrast whose true population value is zero were to be tested over and over
again in repeated studies, apc is the proportion of times that the contrast would be found to be
statistically significant. Second, the expected number of errors per experiment (ENEPE) is the
expected number of contrasts that will be falsely declared significant in a single experiment.!
Notice that ENEPE is not a probability and in fact can exceed one under some circumstances.
Third, the experimentwise error rate (agw) is the probability that one or more contrasts will
be falsely declared significant in an experiment. In other words, if an experiment were to be
conducted repeatedly, agw is the proportion of those experiments (in the long run) that would
contain at least one Type I error. Fourth, in designs with more than one factor, it is necessary to
define yet another error rate, called the familywise error rate (¢gw). As discussed in more detail
in Chapter 7, in multifactor designs, significance tests involving different factors are usually
regarded as constituting different families. For this reason, a single experiment may contain
several families of tests, in which case apw and agw are different. However, in single-factor
designs, which is all that we have discussed until now, arw and agw are identical, so we will
wait until Chapter 7 to discuss familywise error rate.

The distinctions among these three types of error rates (i.e., apc, agw, and ENEPE) can
perhaps best be understood by returning to our example, with four groups and three contrasts to
be tested. In this example, apc is equal to .05, because each comparison was tested at an alpha
level of .05. For any single comparison, there is a 5% chance of a Type I error. What is the value
of ENEPE? ENEPE will equal .15 because the expected number of Type I errors per contrast is
.05 and there are three contrasts tested in the experiment. In general, with C contrasts each tested
at an alpha level of apc, ENEPE equals Capc. Finally, agw is the probability of at least one
Type I error being made in the experiment. Earlier, we found that this probability equals .143.
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That there are three types of error rates and that each has a different numerical value here
poses a problem. Even though the value of .05 is somewhat arbitrary, at least it provides an
objective standard for making decisions in most disciplines that employ inferential statistics.
So, suppose that we can agree that .05 is the standard we wish to use. The problem that
immediately confronts us is: Which error rate should be .05? In our four-group example, apc
was .05, but ENEPE and agw exceeded .05. What if we were to have chosen either ENEPE
or agw to be .057 In this case, it turns out that apc must be less than .05 whenever more than
a single contrast is tested in an experiment. Thus, when multiple contrasts are tested, it is
impossible to achieve a .05 value for all three types of error. Instead, a decision must be made
regarding which type of error is to be controlled at the 5% level.

Although this is an issue about which reasonable people may choose to differ, our preference
is to control agw at .05. The basic argument in favor of this approach is that there must be
an explicit control on the number of studies in the literature that contain Type I errors. By
keeping agw at .05, the probability of a Type I error occurring anywhere in a given experiment
is at most .05. If instead we were to control apc or ENEPE at .05, studies with multiple
tests would produce Type I errors more than 5% of the time. Many of these studies might
then report statistically significant results in the published literature. Even though the error
rate for the study as a whole may be inflated, these studies may be accepted for publication
unless journals require that agw instead of apc be controlled at .05. As Greenwald (1975)
pointed out, allowing such studies to be published without controlling cgw is a major problem,
because it is difficult in many fields to publish studies claiming to demonstrate the lack of an
effect. As a consequence, studies that unbeknownst to us report Type I errors are likely to go
uncorrected because subsequent studies of the phenomenon will likely produce nonsignificant
results. Although failing to reject the null hypothesis is obviously appropriate when it is in fact
true, there is nevertheless a problem if journals tend not to publish papers claiming to support
the null hypothesis. Controlling the alpha level for the study instead of for the individual
comparison makes it less likely that studies will report Type I errors in the first place. This is
one reason that most methodologists advocate controlling the alpha level for the study instead
of for the individual comparison. However, in so doing, it does not necessarily follow that 5% of
published findings represent Type I errors. (See Greenwald, 1975, for an interesting discussion
of this issue.) If, instead, apc were controlled at .05, studies with multiple contrasts would
have a higher Type I-error rate than .05. In this situation, an experimenter could increase his
or her chances of obtaining a statistically significant result simply by testing many contrasts.
By choosing to set agw rather than apc at .05, this problem is avoided. Of course, it might
be argued that the structure imposed by a single experiment is rather arbitrary. Miller (1981,
pp. 31-32) provides a humorous discussion along these lines:

Two extremes of behavior are open to anyone involved in statistical inference. A non-
multiple comparisonist regards each separate statistical statement as a family, and does
not give increased protection to any group of statements through group error rates. At the
other extreme is the ultraconservative statistician who has just a single family consisting
of every statistical statement he might make during his lifetime. If all statisticians operated
in this latter fashion at the 5 percent level, then 95 percent of the world’s statisticians
would never falsely reject a null hypothesis, and 5 percent would be guilty of some sin
against nullity. There are a few statisticians who would adhere to the first principle, but
the author has never met one of the latter variety.

Why do you suppose Miller has never met such an ultraconservative statistician—after all,
aren’t statisticians stereotypically considered to be rather conservative? Suppose there was
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such a statistician somewhere. Further suppose he or she figures that the total number of
statistical hypotheses he or she might test in a lifetime is 1,000. This set of 1,000 hypotheses
then can be thought of as an “experiment” in terms of Type I error. Algebraic manipulation of
Equation 1 shows that

apc=1—y1—apw )]

for unrelated hypotheses. If, for simplicity, we assume that the 1,000 hypothesis tests are
independent and that agw is to be kept at .05, Equation 2 tells us that apc must be set at.0000513,
or, essentially, .05 divided by 1,000. If you remember that there is an inverse relationship
between Type I and Type 11 errors, it should be obvious that in lowering the alpha level from
.05 to .00005, we are inevitably increasing the probability of a Type II error. In other words,
if we decide to control agw rather than apc at .05, we must set apc at .00005. As a result, the
power to detect real effects (differences) in the population is greatly diminished. The same
effect occurs anytime we decide to control agw at .05, although the magnitude of the effect
is much weaker when the number of hypotheses in the experiment is not so large. Indeed, in
this sense, the decision about controlling agw or apc at .05 really involves a trade-off between
Type I and Type II errors.

SIMULTANEOUS CONFIDENCE INTERVALS

Although much of the focus of this chapter will be on hypothesis testing, the concept of
multiple comparisons is also relevant for confidence intervals. Consider an example where
a = 3, and the goal is to form three 95% confidence intervals, one for each pairwise difference
between means, that is, ;1 — ©2, (41 — 43, and w; — us3. Because more than one interval is
being formed, the 95% figure could take on either of two meanings. First, the confidence level
might be 95% for each interval considered individually. In other words, for a single pairwise
difference, 95% of such intervals would contain the true difference. Second, the 95% figure
might pertain to the entire collection of intervals, in which case it is referred to as a 95%
simultaneous confidence interval. In other words, (in this case) 95% of the time that three
such intervals were constructed, all three would contain the true difference. A 95% confidence
interval for a single contrast is directly analogous to a hypothesis test where apc = .05, whereas
a 95% simultaneous confidence interval is directly analogous to a collection of hypothesis tests
where agpw = .05.

We will see that simultaneous confidence intervals can be constructed for many but not all
multiple comparisons procedures. For the methods we recommend in this book, the formation
of simultaneous confidence intervals follows one basic formula. To form a confidence interval
for a contrast ¥, under the assumption of homogeneity, the interval is given by

VEw | MSy Y (3/n;) 3)
j=1

where w depends on the multiple comparison procedure employed. Looking back at Chapter 4,
you might realize that Equation 3 bears a striking resemblance to Equation 4.48:

U+ VFain-a | MSw Z (c2/n;) (4.48)
j=1
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Recall that we developed this equation as a confidence interval for a single contrast. This
implies that choosing w equal to / F,;; y_, is equivalent to controlling confidence at the per-
interval level. In other words, this choice does not produce simultaneous confidence intervals.
However, we will see momentarily that by choosing w differently we can obtain simultaneous
confidence intervals. We will also see that similar but slightly more complicated expressions
can be used when homogeneity is questionable.

For these recommended procedures, there is a direct correspondence between the confidence
interval and the hypothesis test. The null hypothesis is rejected if and only if the simultaneous
confidence interval fails to contain the hypothesized value of ¢ (which in almost all applica-
tions is zero). Thus, proper interpretation of a simultaneous confidence interval conveys the
information contained in a hypothesis test for each of these multiple-comparison procedures.
However, a simultaneous confidence interval is often more informative than the correspond-
ing hypothesis test because the interval shows both the magnitude of the difference and the
precision with which the magnitude is estimated.

Levels of Strength of Inference

Anytime multiple inferences are to be made, researchers face a choice about how to control
the error rate. So far we have seen that two choices are to control either agw or apc at .05. In
fact, there are yet other choices we will now describe. Once a researcher has chosen a desired
level of control (also referred to as a level of inference), the next step is to choose a statistical
technique to provide the appropriate level of control. Unfortunately, in practice, there is the
appearance that all too often the statistical technique is chosen first, and only later (if at all)
does the researcher seriously think about level of inference. Thus, our presentation here has
two related goals. First, we need to describe the pros and cons of each of the levels of inference,
so you can make an informed choice about which level you believe is most appropriate for
your situation. Second, we need to describe statistical techniques that allow you to control
your Type I error rate at the desired level of inference.

Hsu (1996) describes five levels of strength of inference, each of which corresponds to a
choice of how best to control the error rate. Table 5.1 lists these levels from weakest to strongest
(top to bottom). The weakest level of inference is simply to control the per comparison alpha
level and thus make no adjustment whatsoever for multiple tests. A statistically significant
result obtained by a researcher who chooses this level of inference allows a conclusion that
this specific contrast is truly nonzero, but provides absolutely no protection against inflating
the Type I error rate with regard to the set of contrasts being tested. The next weakest level of
inference controls the alpha level for a “test of homogeneity.” A statistically significant result at
this level allows a researcher to state that a difference exists among a set of population means,
but it does not allow a statement about which specific means differ from one another. Hsu’s
third level is “confident inequalities.” This level is stronger than the previous level because
it allows a statement about specific means that differ from one another. However, only at the
fourth level, “confident directions,” is there justification for a statement that one mean is larger
or smaller than another. In other words, at Levels 2 and 3, a researcher can legitimately claim
only that some form of difference exists, but cannot legitimately proclaim the direction of
any such differences. The fifth and strongest level, “confidence intervals,” not only allows a
statement of direction, but also allows a statement about the size of the difference between
means.

Thus, one step in choosing how to proceed in the face of multiple inferences is to choose
a level of strength of inference from Table 5.1. Our general recommendation, which agrees
with Hsu (1996}, is to choose techniques (to be described momentarily) that provide inference
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TABLE 5.1
HSU’S (1996) LEVELS OF INFERENCE
FOR MULTIPLE COMPARISONS

1. Per comparison Weakest
2. Test of homogeneity

3. Confident inequalities

4. Confident directions

5. Confidence intervals Strongest

at either the confidence intervals or confident directions level. Anything less than this simply
tells us that means are different, but does not tell us in what direction they differ. Except in
rare cases, knowledge of direction seems essential, both scientifically and practically.

You might wonder why we are spending so much time on this topic. One reason is that many
researchers have failed to appreciate the distinctions among the levels shown in Table 5.1. All
too often in the published literature, one finds a journal article where the author has used a
statistical technique that provides inference only at level 2 or 3, yet the author has gone right
ahead and interpreted his or her results in terms of direction of mean differences. However,
such an interpretation demands a technique appropriate for level 4 or 5.

Thus, although we stressed that many of the choices in this chapter are more subjective
than simple “right versus wrong,” it is also true that some interpretations of results are literally
wrong in the sense that the technique chosen to analyze the data does not answer the true
question of interest. As Tukey (1991) states:

Statisticians classically asked the wrong question—and were willing to answer with a
lie, and one that was often a downright lie. They asked “Are the effects of A and B
different?” and they were willing to answer “no.”

... asking “Are the effects different?” is foolish.

‘What we should be answering first is “Can we tell the direction in which the effects of
A differ from the effects of B?”

We agree with both Tukey and Hsu, and thus emphasize techniques at the highest level of
inference. In any event, the most important point may be that researchers who choose to use
techniques corresponding to lower levels must realize the limitations of the statements that
they are justified in making based on their choice of technique.

Types of Contrasts

Hsu (1996) classifies techniques for handling multiple inferences in terms of two dimensions.
We have just seen that one of these dimensions is level of strength of inference. The sec-
ond dimension is the type of contrast to be tested. We will consider four types of contrasts:
(1) pairwise, (2) complex, (3) comparisons with a control, and (4) comparisons with the best.
We will describe each of these in detail as we progress through the chapter, so for the moment
we will provide only a brief preview. The important point for now is that the choice of an
appropriate technique to address multiple inference should depend on the type of questions
being asked. For example, different techniques are appropriate when all contrasts to be exam-
ined are pairwise than when some complex contrasts are also of interest. In some situations, a
preselected set of contrasts may be of interest. For example, the specific goal of a study may
be to compare each of several treatment groups to a control group, leading to the third type of
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contrast in Hsu’s conceptualization. Or, an example of the fourth type of contrast occurs when
the goal is to determine the best treatment based on data obtained in an experiment. As we will
see shortly, each of these situations calls for a particular technique to analyze data appropriately.

Overview of Techniques

Not only is the choice of a multiple comparison technique somewhat arbitrary, but the choice
is complicated by the great variety of available options. As of this writing, both SAS and SPSS
offer at least a dozen choices, any one of which can be instantly selected by a simple click of a
computer mouse. Although the instant availability of these techniques is obviously convenient,
it also can lead to researchers reporting results based on a choice that does not really correspond
to their situation. The choice may not reflect an appropriate level of strength of inference, or
the choice may not correspond to the type of contrast examined by the researcher. Thus, while
we will describe how to perform a variety of tests, our primary goal in this chapter is to
delineate situations where different types of techniques are appropriate. Table 5.2 is a variation
of a table presented by Hsu (1996), showing where the most popular multiple comparison
procedures fit into a two-dimensional framework of (1) level of strength of inference and
(2) type of contrast.

As we stated previously, we believe that with rare exception, techniques must provide
information about the direction of differences in group means if they are to be useful. Thus,
we largely restrict our attention to techniques that satisfy this requirement. Readers who are
convinced that their specific situation does not demand this level of inference may want to
consult such sources as Hsu (1996) and Toothaker (1991) for descriptions of other techniques.

To provide a structure for reading the rest of the chapter, we present a brief overview of
the multiple-comparisons procedures we recommend. First, when a researcher plans to test a
small number of contrasts based on theoretical hypotheses prior to data collection, a technique
known as the Bonferroni adjustment is appropriate. Second, when all pairwise comparisons
are of potential interest, Tukey (1953) developed a procedure to maintain ogyw at .05. Third,
Scheffé’s procedure can be used when an investigator decides to test complex comparisons

TABLE 5.2
TWO-DIMENSIONAL CONCEPTUALIZATION OF MULTIPLE
COMPARISON PROCEDUREST

Some Comparisons Comparisons
Planned All Pairwise Complex With a Control With the Best

Per comparison Duncan
Test of homogeneity Newman—Keuls
LSD
Tukey’s-b
Confident inequalities REGW-Q
REGW-F
Confident directions See Hsu (1996)
Confidence intervals Bonferroni* Tukey WSD* Scheffe* Dunnett* Edwards—Hsu*
Sidak* Dunnett’s T3* Hsu*
Games-Howell*
Hochberg’s GT2
(or SMM)
Gabriel

f Rows indicate strength of inference and columns indicate type of contrasts of interest.
*We recommend this technique in certain situations, see the text for details.
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suggested by the data. In other words, Scheffé’s method permits “data snooping,” so that even
after having examined the data, multiple tests can be performed, and agw will be maintained at
.05. Fourth, occasionally, the only questions of interest involve comparing a control group to
each of several treatment groups. Dunnett developed a procedure appropriate for this situation.
Fifth, especially in applied studies, the major goal may be to determine the best treatment.
Hsu has shown how Dunnett’s method can be modified in this situation. As of this writing,
this method has been greatly underutilized in the behavioral sciences and is not yet widely
available in statistical software. However, we believe it deserves much more attention than it
has received to date, so we will feature it later in the chapter.

We first consider why it is important whether contrasts to be tested have been selected
prior to or after having collected the data. Then we present the Bonferroni, Tukey, Scheffé,
and Dunnett procedures. Besides describing the mechanics of how to perform each test, we
also develop the logic behind each technique. This discussion of logical underpinnings is
especially important because we have seen that the literature is filled with many more multiple-
comparisons procedures than just these four. As a result, you need to understand what it is that
these four methods accomplish that many competing methods do not. To further attain this
goal, after presenting the four techniques we recommend, we also briefly discuss liabilities of
some of the more popular competitors. Finally, we also present a flowchart (i.e., a decision
tree) to help you decide which technique should be used in a particular situation.

Planned Versus Post Hoc Contrasts

As might be expected, controlling agw at .05 is considerably more difficult than simply deciding
to use an alpha level of .05 for each contrast to be tested. The first step in our task distinguishes
between planned and post hoc contrasts. A planned contrast is a contrast that the experimenter
decided to test prior to any examination of the data. A post hoc contrast, on the other hand,
is a contrast that the experimenter decided to test only after having observed some or all of
the data. For this reason, it is often said that a post hoc contrast is a contrast suggested by the
data.

Why is the distinction between planned and post hoc contrasts important? The importance
can be illustrated by the following example. Suppose that a researcher obtains the following
means in a four-group study: Y = 50, ¥, = 44, Y3 = 52, and ¥4 = 60. Consider the single
contrast iy — /44. There is an important difference between deciding in advance to compare
Groups 2 and 4 versus deciding after having looked at the data to compare these two groups.
The difference can be exemplified most easily by supposing that unbeknown to the researcher
all four population means are equal, that is

§1 = W = U3 = Ji4 4

If the comparison of Groups 2 and 4 has been planned and apc = .05 is used, then (in the
long run) 5 out of every 100 times the experiment would be conducted, the contrast would
be statistically significant and a Type I error would have been committed. However, suppose
that this contrast had not been planned. How would things change? Suppose that the study
were repeated, yielding a different set of sample means: ¥; =46, Y, = 57, ¥3 = 49, and
Y4 = 54. From inspecting these data, it is doubtful that an experimenter would decide to
compare Groups 2 and 4. Instead, this time the data suggest that the comparison of Groups 1
and 2 should be investigated. In other words, if the contrast to be tested is suggested by
the data, it is only natural that the largest difference between means be tested because the
usual goal of hypothesis testing is to obtain a statistically significant result. Suppose that a
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procedure was followed where this largest difference is always tested using an « level of .05
for the contrast. The result would be that the probability of committing a Type I error would
greatly exceed .05, especially for large a. The crucial point is that Y, — Y, has a very different
sampling distribution from ¥ pax — ¥ min, Where ¥may and ¥, are the largest and smallest
sample means, respectively. The critical value of the F distribution that provides an alpha
level of .05 for judging the significance of Y, — Y is too small for judging the significance of
¥ max — ¥ min- The point of this discussion has simply been to convince you that it matters greatly
whether a contrast is planned or has been selected post hoc. We now turn to a consideration of
procedures for testing more than one planned comparison in a study. In the following section,
we consider how to test post hoc contrasts, where such topics as the sampling distribution of
Y max — Y min become relevant.

MULTIPLE PLANNED COMPARISONS

We illustrate the use of multiple planned comparisons by an example. Consider a four-group
study whose purpose is to investigate the effects of strategy training on a memory task for
children of two age levels. Independent samples of 6-year-olds and 8-year-olds are obtained.
One half of the children in each group are assigned to a strategy-training condition, and the
other half receive no training and serve as a control group. The general question of interest
concerns the effect of strategy training on mean level of memory task performance for the two
age groups.

How should the investigator attempt to answer this question? If the investigator has not
planned to compare specific groups prior to collecting data, a test of the omnibus null hypothesis
for all four groups could be performed. If the test were nonsignificant, no further tests would be
performed; if the test were significant, contrasts suggested by the data might be further tested.
Although this approach is entirely permissible, we defer discussion of it for the moment.
Instead, we discuss an alternative approach whereby the investigator plans to test a number of
specific hypotheses instead of the general omnibus hypothesis. For example, suppose that an
investigator decides prior to obtaining data that he or she is interested in testing the following
contrasts in our four-group study:

Y1 = 116 — Ues
Yo = 13 — lc
¥3 = 3(ure + pics) — 3(MTs + fics)

In this instance, the first subscript represents treatment (T) or control (C), and the second
subscript represents the child’s age group (6 or 8). The first contrast equals the effect of
training for 6-year-olds, the second equals the effect for 8-year-olds, and the third equals an
age effect averaged over condition. We should hasten to point out that we are not claiming these
are the three “correct” contrasts to test. What is ”correct” depends on the scientific questions
the study is designed to answer. For our purposes, we assume that these three contrasts have
been chosen to allow us to address the questions of scientific interest. Keep in mind, however,
that a researcher with different goals might formulate a very different set of contrasts. Indeed,
even the number of contrasts might be very different from three.

Assuming that these three contrasts have been chosen, how should the investigator proceed?
The first step is to compute an F statistic for each contrast. This can be accomplished using any
of the approaches described in Chapter 4. For example, if we are willing to assume homogeneity
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of variance, Equation 4.41 might be used:

@2/ X ()
J— j=
F = MSw (4.41, repeated)

Suppose that we have done this calculation for our first contrast, and we obtained an F value
equal to 4.23. Let’s say there were 11 participants per group, so this F value has 1 and 40
degrees of freedom associated with it. Can we reject the null hypothesis that the population
value of the first contrast is zero? If we refer to an F table, the critical F for an alpha of .05
with 1 and 40 degrees of freedom is 4.08. The observed F exceeds the critical F, which would
seem to imply a statistically significant result. However, recall our earlier distinction between
apc and agw. The procedure that was just described used .05 for apc. However, earlier we
demonstrated that if three orthogonal contrasts (with equal n) are each tested with an alpha of
.05, then agw = .143. In other words, if we test Y1, ¥;, and Y3 using apc = .05 for each, there
is a 14.3% chance of committing at least one Type I error. This seems to defeat the primary
purpose behind inferential statistics, namely, to avoid a declaration of a difference between
groups (or a relationship between variables) where in fact none exists in the population.

Bonferroni Adjustment

Instead of letting apw be at the mercy of ape, it seems reasonable to work backward. In other
words, it would be preferable to control agw at .05, but to accomplish this, apc would have to
be lowered by some amount. The problem is to determine an appropriate value of apc to result
inapw = .05. It turns out that there is a remarkably simple and intuitive solution. In the general
case of C hypotheses to be tested, set apc at .05/C. It can be proven mathematically that with
this procedure, agw will be .05 or less. To use this approach in our current example, apc would
be set equal to .05/3, or .0167. The critical F for p = .0167 with 1 and 40 degrees of freedom
is 6.25, which is naturally somewhat larger than the value of 4.08 that we found for apc equal
to .05. In fact, we would now judge our observed F of 4.23 to be nonsignificant because it
fails to exceed the critical value of 6.25. In an actual study, the second and third contrasts
would also be tested for significance. The use of apc values other than .05 can sometimes
be awkward in practice, because appropriate tables of the F distribution may be unavailable.
There are two possible solutions to this problem. Appendix Table A.3 can be used to find
critical values for an F distribution with 1 numerator degree of freedom and an apc equal
to .05/C (two-tailed). Each row of the table represents a particular value for denominator
degrees of freedom, and each column represents a value of C. It should be noted that the table
only applies to F distributions with 1 numerator degree of freedom. This limitation poses no
problem for testing a contrast because such a test has 1 degree of freedom in the numerator;
however, there are other procedures similar to the method we discuss that involve more than 1
numerator degree of freedom. Appendix Table A.3 could not be used for this situation. Second,
if a computer program analyzes your data and if the program provides a p value in the output,
the Bonferroni adjustment is extremely easy to apply. All that must be done is to compare the
p value from the printout with .05/C, because .05/ C is the per-comparison alpha level. The
contrast is statistically significant if and only if the p value is below .05/C. Notice that this
procedure works as well in the more general case, where the numerator degrees of freedom
exceed 1.

At this point, more detail for the rationale behind the .05/C adjustment must be provided.
The procedure was first applied to the problem of multiple contrasts by Dunn (1961), so the
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Bonferroni adjustment is also known as Dunn’s procedure. She based the procedure on an
inequality derived by the Italian mathematician Bonferroni, who proved mathematically that

1-(1-a) <Ca 5)

for any value of C whenever 0 < & < 1. The practical importance of this inequality for us
can be seen by realizing that the left-hand side of Equation 5 is identical to the expression in
Equation 1. Thus, it is true that

Pr (at least one Type I error) < Cor

whenever C orthogonal contrasts are each tested at the same alpha level (indicated simply
by «). By setting ¢ = .05/C, it follows from Equation 5 that

Pr (at least one Type I error) < .05 6

Indeed, this is precisely what is done in the Bonferroni approach. Several comments are
pertinent here. First, because Equation 5 is an inequality, it might happen that the actual
probability of a Type I error is much less than .05 when the Bonferroni adjustment is used.
However, for orthogonal contrasts and small values of alpha, the inequality is for all practical
purposes an equality, as Table 5.3 shows. Thus, the adjustment does not result in a conservative
test. Second, so far we have only considered orthogonal contrasts. Remember that 1 — (1 — &)€
equals the probability of at least one Type I error only for orthogonal contrasts. It turns out
that if the set of contrasts is nonorthogonal, the probability of at least one Type I error will
always be less than 1 — (1 — &)C. Thus, the Bonferroni procedure maintains ogy at .05 for
nonorthogonal and for orthogonal contrasts. However, the procedure is somewhat conservative
for nonorthogonal contrasts.

A second way of viewing the rationale for the Bonferroni adjustment is in many ways
simpler than the first perspective. Recall that in our discussion of error rates we defined the
error rate per experiment ENEPE to be the expected number of Type I errors in an experiment.
If we perform C tests of significance, each at an alpha value of apc, then the expected number

TABLE 5.3
COMPARISON OF 1 — [1 — (.05/C)]€ AND .05
FOR ORTHOGONAL CONTRASTS
Actual Probability of at
Least One Type I Error
C 1-[1-(05/0)F
1 .050000
2 .049375
3 .049171
4 049070
5 .049010
10 048889
20 .048830
50 048794
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of Type I errors is simply
ENEPE = Capc @)

If we choose apc to equal .05/C, then obviously ENEPE will equal .05. As a result, the
expected number of Type I errors in an experiment will equal .05, regardless of the number of
tests that are performed. What is the relationship between agw and ENEPE? The former equals
the proportion of experiments that have Type I errors, whereas the latter equals the number of
Type I errors per experiment. In symbols

number of experiments with errors
apw = . ®
number of experiments

ENEPE = number of err.ors ©)
number of experiments

Obviously, ogw and ENEPE share the same denominator. However, the numerator for agw is
less than or equal to the numerator for ENEPE, for the same set of data, because the numerator
of Equation 8 is at most 1 per experiment, whereas the numerator of Equation 9 is incremented
by 1 or more whenever the numerator of Equation 8 is 1. Thus, it is true that agw < ENEPE.
We showed a moment ago that the Bonferroni approach yields a value of ENEPE equal to .05.
Because agw < ENEPE, the Bonferroni procedure guarantees that agw < .05.

The Bonferroni approach has a straightforward counterpart for simultaneous confidence
intervals. We saw earlier in the chapter that the general expression for simultaneous confidence
intervals is

v tw |MSw Z / n; (3, repeated)

For the Bonferroni method, w is given by

w = \/F (OS/C, 1’ dferrot)

Notice that if C were equal to 1, the Bonferroni interval would simply duplicate the interval
given by Equation 4.48, which controls confidence at the per-interval level. However, whenever
C is greater than 1, w for the Bonferroni interval will be wider than w in Equation 4.48. Thus,
the Bonferroni interval will be wider than the per-interval confidence level. This decrease in
precision is the price to be paid for obtaining confidence at the simultaneous level.

Two other points are worth mentioning. First, in theory, the agw of .05 need not be divided
into C equal pieces of .05/C in the Bonferroni method. Instead, it is only necessary that
the C apc values sum to .05. For example, an experimenter testing three contrasts might use
apc values of .03, .01, and .01. This could be done if the first contrast were considered most
important. Notice that the larger alpha value for it would increase the power for detecting an
effect, if one exists. However, there is a catch that limits the value of such unequal splitting of
alpha in practice—the choice about how to divide .05 must be made prior to any examination of
data. Otherwise, the experimenter could capitalize on chance and obtain statistically significant
findings too often. Second, you might wonder why we did not use Equation 2 to find the value
of apc that would keep agw at .05:

opc = 1 —opw (2, repeated)
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Although we derived this equation for C orthogonal contrasts, Sidak (1967) proved that an
inequality similar to Bonferroni’s holds in the general case of nonorthogonal or orthogonal con-
trasts. Specifically, if apc is setequal to 1 — /.95, then agw will be .05 or less. It turns out that
Sidak’s value of apc is always slightly higher than the Bonferroni value (for C > 1), so the Sidak
modification is more powerful than the Bonferroni approach. However, the difference in power
is very small as long as agw is low. In addition, the Bonferroni apc is much easier to calculate.
For these reasons, in practice, the Bonferroni approach is usually preferable to Sidak’s method
(for more detail on the Sidak approach, see Kirk, 1982, or Holland and Copenhaver, 1988).

There is a final point regarding planned multiple comparisons that must be mentioned. The
procedure we have described guarantees that agw will be .05 or less regardless of how many
contrasts an experimenter plans. Thus, the overall probability of a Type I error being made
somewhere in the experiment is the same as it would be if the researcher were to perform a
test of the omnibus null hypothesis instead of planned comparisons. In this way, the chances
of obtaining statistical significance in a study are not increased simply by performing multiple
tests. At the same time, however, there is a penalty imposed on the investigator who plans a
large number of contrasts, because apc is setat .05/ C. As Cincreases, it becomes more difficult
to detect each individual true effect, all other things being equal. Although the experiment as
a whole has an alpha level of .05, each individual hypothesis is tested at .05/C. It could be
argued that this puts each hypothesis test at an unfair disadvantage. Indeed, some behavioral
statisticians (e.g., Keppel, 1982; Kirk, 1982) used this line of reasoning for planned contrasts.
With their approaches, agw is allowed to exceed .05, because they allow up to a — 1 contrasts
to be tested with an apc level of .05. There is disagreement within this camp about whether the
a — 1 contrasts must form an orthogonal set in order to set apc at .05. Although this general
approach has some appeal, it nevertheless fails to control agw at .05. We prefer the Bonferroni
approach, because it accomplishes this goal.

Modification of the Bonferroni Approach
With Unequal Variances

As we discussed in Chapter 4, using MSw as an error term for testing contrasts is problem-
atic when population variances are unequal. Just as heterogeneous variances affect apc, they
also may affect apw. However, a rather straightforward solution is available. The Bonferroni
procedure is easily modified by using Equations 4.42 and 4.43 when population variances are
unequal. As we showed in Chapter 4, the resultant F statistic in this case is given by

N2
Fo__ WX (10)

> (/my) s}
j=1

As we mentioned in Chapter 4, the corresponding denominator degrees of freedom are tedious,
so a computer package will invariably be invoked for their calculation. Later in this chapter,
Tables 5.16 and 5.17 will show the formula for these degrees of freedom in the context of
summarizing our recommended multiple comparisons procedures.

The F value shown in Equation 10 will usually be computed by a statistical package, which
will also yield the p value for this F and its corresponding degrees of freedom. As usual with
the Bonferroni adjustment, the obtained p value is then compared to apw/C (usually .05/C)
1o assess the statistical significance of the contrast. Thus, access to a statistical package that
computes F values of the form shown in Equation 10 makes it straightforward to test contrasts
without having to assume homogeneity of variance.
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We saw that a simultaneous confidence interval can be obtained under the homogeneity
assumption by generalizing Equation 48 from Chapter 4. When homogeneity is questionable,
a simultaneous confidence interval can be formed by generalizing Equation 49 from Chapter 4.
Recall that Equation 49 in Chapter 4 was given by

(4.49)

The Bonferroni approach simply uses «/C instead of o to find the critical F value in
Equation 49. Thus, when homogeneity is questionable, a Bonferroni 95% simultaneous con-
fidence interval has the form

11)

Numerical Example

We will illustrate the Bonferroni procedure by considering the data shown in Table 5.4, which
are a slight modification of the blood pressure data we originally encountered in Chapter 4.
We will now assume that the experiment successfully obtained blood pressure readings from
all intended individuals, so we no longer have to worry about missing data. Although the
Bonferroni method easily accommodates unequal sample sizes, we want to use this same data
set to illustrate a variety of multiple-comparison procedures, and we will see later in the chapter
that some of the procedures yet to come are much simpler with equal sample sizes. We should
also emphasize from the outset that we will use the Table 5.4 data to illustrate several different
procedures, but in an actual study, a single procedure should be chosen based on an appropriate
intersection of the rows and columns of Table 5.2. We will say more at the end of the chapter
about choosing an appropriate procedure.

Suppose that before collecting the data shown in Table 5.4, the investigator had decided
to examine four planned contrasts: (1) drug versus biofeedback, (2) drug versus diet, (3)
biofeedback versus diet, and (4) the average of each of the first three treatments versus the
combined treatment. As usual, we are not claiming that these four contrasts are necessarily
the only correct contrasts to examine in this data set. On the other hand, we do believe they
constitute a plausible set of contrasts that might in fact be examined as planned comparisons in
such a study. How should the investigator proceed? To answer this question, look at Table 5.2.

TABLE 5.4
BLOOD PRESSURE DATA FOR FOUR TREATMENT GROUPS
Group
1 2 3 4
84 81 98 91
95 84 95 78
93 92 86 85
104 101 87 80
99 80 94 81
106 108 101 76
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TABLE 5.5
SPSS OUTPUT FOR PLANNED COMPARISONS

Contrast Coefficients

GROUP
Contrast 1.00 2.00 3.00 4.00
1 1 -1 0 0
2 1 0 -1 0
3 0 1 -1 0
4 1 1 1 -3
Value of Std.
Contrast Tests Contrast Contrast Error t df (Sig. 2-tailed)
SBP assume equal 1 5.8333 4.6676 1.250 20 226
variances 2 3.3333 4.6676 714 20 483
3 —2.5000 4.6676 -.536 20 .598
4 35.8333 11.4331 3.134 20 .005
1 5.8333 5.7237 1.019 8.947 .335
Does not assume 2 3.3333 4.0838 816 9.222 435
equal variances 3 —2.5000 5.2836 ~.473 7.508 650
4 35.8333 9.0955 3.940 13.288 .002
Simultaneous Confidence Intervals
Assuming Homogeneity of Variance
Contrast Computation Interval
1 5.8333 £ (+/7.53)(4.6676) —6.97, 18.64
2 3.3333 £ (+/7.53)(4.6676) —9.47,16.14
3 —2.500 % (+/7.53)(4.6676) —15.31,10.31
4 (35.83/3) + (+/7.53)(11.4331/3) 1.49, 22.40
Without Assuming Homogeneity of Variance
Contrast Computation Interval
1 5.8333 + (+/10.28)(5.7237) —12.52,24.18
2 3.3333 £ (+/9.68)(4.0838) —-9.37,16.04
3 —2.500 + (+/11.12)(5.2836) -20.12,15.12
4 (35.83/3) £ (+/8.39)(9.0955/3) 3.16,20.73

Because all comparisons are planned, a procedure can be chosen from the first column of the
table. If the investigator follows our recommendation to obtain strength of inference at the
level of confidence intervals, either Bonferroni or Sidak is appropriate.

We will see that using SAS or SPSS to test contrasts with the Bonferroni approach is very
simple. However, using these packages to form confidence intervals is less straightforward.
As of this writing, SAS and SPSS provide proper Bonferroni (or Sidak) confidence intervals
only in a very special case, where three conditions are met: (1) All pairwise contrasts are
of interest; (2) no complex contrasts are of interest; and (3) homogeneity is assumed. To
form confidence intervals for a subset of pairwise contrasts, or for complex contrasts (with
or without homogeneity) or for pairwise contrasts without assuming homogeneity, the best
one can do with these packages is to obtain intermediate values that can then be used as
input to appropriate formulas for final hand calculations. For example, Table 5.5 shows output
obtained from SPSS for the four contrasts in question. It is important to stress that the results
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in this table were obtained without specifying the Bonferroni option in SPSS. Our situation
does not conform to the three conditions previously listed. If we had specified the Bonferroni
option, SPSS would have provided tests and confidence intervals for pairwise contrasts under
a mistaken assumption that C (the number of contrasts of interest) equals 6, because that is the
total number of pairwise contrasts with 4 groups. In reality, C =4 in our situation, so asking for
the Bonferroni option in either SAS or SPSS would not be appropriate here. Instead, the results
shown here implicitly assume a per-comparison alpha level of .05, contrary to our real goal.
Thus, we will have to adjust information in the output ourselves instead of relying entirely on
the computer package.

The information in Table 5.5 makes it easy to test the null hypothesis that each contrast equals
zero using the Bonferroni method. All we need to do is to compare each p value on the printout
with an adjusted per-comparison alpha level of .05/C. In our case, C = 4, so apc = .0125.
Table 5.5 shows that regardless of whether we assume homogeneity, the only contrast with a
p value less than .0125 is the fourth contrast. Thus, the only statistically significant difference
is between the combined treatment and the average of the three individual treatments.

Forming simultaneous confidence intervals for the contrasts is slightly more complicated.?
However, we can use our computer output by realizing that Equation 3 (assuming homogeneity)
and the comparable variation based on Equation 4.49 (without assuming homogeneity) for
forming confidence intervals can be written in words as

estimate & (critical value) (estimated standard error) (12)

With one possible minor exception to be noted in a moment, the estimate and the estimated
standard error can be read directly from the output. Appendix Table A.3 provides the necessary
critical value (notice we will usually have to round down for the degrees of freedom to use this
table based on computer output). The “minor exception” is that, as we discussed in Chapter 4,
we may need to be aware of the scaling (or metric) of the contrast coefficients. As long as the
sum of the absolute value of the coefficients equals 2, we can simply proceed. In our example,
this is true for the first three contrasts. However, the coefficients that produced the output for
the fourth contrast were 1, 1, 1, and —3. To obtain the correct result, we need to divide both the
estimate and the estimated standard error shown on the output by 3. Incidentally, SAS allows
the user to specify a “divisor” as part of the definition of the contrast, so the output already
reflects the division we have to do by hand with SPSS.

The bottom of Table 5.5 shows the simultaneous confidence intervals using the Bonferroni
procedure, first when we are willing to assume homogeneity of variance and then when we
are not. With or without assuming homogeneity, only the fourth interval does not contain zero,
so only this contrast is statistically significantly different from zero. Notice that this result
is consistent with comparing the p value in the output with a critical p value of .05/C, as it
must be. Also notice that in these particular data, it makes little practical difference whether we
assume homogeneity. Two of the intervals are appreciably wider when we relax the assumption,
but the other two intervals are slightly narrower without the assumption. It is important to keep
in mind that in other situations the assumption of homogeneity can make more of a difference,
and in particular can be much more problematic.

PAIRWISE COMPARISONS

Frequently, a researcher decides to consider only pairwise differences between groups. In
other words, no complex comparisons will be tested. How can agw be controlled at .05 in
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this situation? One possible approach would be to use a Bonferroni adjustment. However, care
must be taken in using the proper value of C. Most often, C = a(a — 1)/2 for testing pairwise
comparisons. The reason is that with a levels of the factor, there are a(a — 1)/2 pairs of means
that can be compared. Thus, when all pairwise comparisons might be tested, the (egw value
of .05 must be divided by a(a — 1)/2.

It is important to understand the connection between this section on pairwise comparisons
and the previous discussion of planned comparisons. To solidify this connection, suppose
that a researcher is conducting a four-group study and is interested for theoretical reasons in
comparing the following pairs of means: p; versus (s, (2 versus us, and p3 versus g, As
long as these comparisons have been selected prior to collecting data, egw can be maintained
at .05 by using an apc equal to .05/3. Thus, C = 3 in this situation, even though there are a
total of six pairs of means; using C = 3 restricts the investigator to ignore the other three pairs
of means, no matter how interesting such differences might appear after having collected data.
For example, it would not be permissible to decide after examining data that p; versus uq4
should also be tested, and then redefine C to equal 4. Similarly, suppose that the investigator
originally planned to test all pairwise comparisons, but after looking at data, decided not to
test (41 versus s or u, versus uq. Again, it would not be legitimate to define C = 4; instead,
the value of C must be set at 6.

Thus, when a specific subset of mean differences is chosen in advance of collecting data, C
equals the number of comparisons in the subset. However, C must be set equal to a(a — 1)/2
if any of the following conditions apply:

1. All pairwise comparisons are to be tested.
The original intent was to test all pairwise comparisons, but after looking at the data,
fewer comparisons are actually tested.

3. The original intent was to test a subset of all possible pairwise comparisons, but after
looking at the data, one or more additional pairwise comparisons are also to be tested.

In any case, the Bonferroni adjustment can be used to control agw when performing pairwise
comparisons. However, when one of the three conditions listed above applies, so that C must
be set at a(a — 1)/2, the Bonferroni approach is usually not as powerful as other special-
purpose techniques that have been developed specifically for testing all pairwise comparisons.
The technique we generally recommend for testing pairwise comparisons in between-subjects
designs was developed by Tukey (1953) and is referred to as Tukey’s WSD (or, interchangeably,
Tukey’s HSD).? This technique generally is more powerful than the Bonferroni approach when
C = a(a — 1)/2, and yet it allows a researcher to test all possible pairwise comparisons and
still maintain the agw level at .05 (or any other desired level).

Before describing the details of Tukey’s WSD, we want to mention that Tukey developed
several different multiple comparison procedures, so it is important to be certain that “Tukey”
as operationalized in a statistical package is in fact WSD. For example, as of this writing,
SPSS provides two “Tukey” options. The option labeled simply as “Tukey” is indeed WSD,
but an alternative labeled “Tukey-b” is a variation that does not necessarily control agw at
the intended level, and thus we do not recommend it. On a related point, as of this writing,
both SAS and SPSS also present other procedures similar to Tukey’s, including a method
developed by Hochberg (referred to as either GT2 or SMM) as well as a method developed by
Gabriel. Although Hochberg’s method succeeds in appropriately controlling agw, it is always
less powerful than Tukey’s WSD with equal sample sizes and is generally less powerful for
unequal sample sizes as well. Gabriel’s method is identical to Hochberg’s for equal sample
sizes and thus is also always less powerful than Tukey’s WSD in this case. With unequal
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sample sizes, Gabriel’s method is more powerful than Hochberg’s, but it can fail to control
oEw, 80 once again we prefer Tukey’s WSD.

Tukey’s WSD Procedure

Tukey’s WSD procedure allows a researcher to perform tests of all possible pairwise com-
parisons in an experiment and still maintain the agw level at .05.* This control of agw is
accomplished by adopting a critical value appropriate for testing the significance of that pair
of means that is found post hoc to yield a larger F value than any other pair of means. To make
things concrete, suppose that a = 3. In this situation, there are three pairwise comparisons that
can be tested:

Y1 = p1— K2
Yo = Q1 — §3
Y3 = Qo — U3

For the moment, we restrict ourselves to the case of equal #» and homogeneity of variance.
(Tukey made both of these assumptions in deriving his procedure; in a later section, we
consider modifications when either condition is not satisfied.) To test the significance of the
three contrasts, Equation 4.28 can be applied three times. With equal #, this yields

Fo— n(¥; — Y,)?
LAY V7

Fo = n(Yy —Y3)?
27 TTOMSw

Fo = n(Y, - Y3)?
BT T OMSw

It is obvious from these three equations that the largest F' value will be obtained for the pair of
sample means whose values are most different from one another. In symbols

F _ n(?max - ?min)z
pairwise maximum = _‘W

(Notice that because the difference between means is squared, we could just as well subtract
Y max from Y in.) How can we achieve our goal of maintaining agw at .05? If we were to use a
single critical value (which we will abbreviate as CV) against which to judge each contrast, there
would be a statistically significant result in the experiment if and only if Fpairwise maximum > CV.
Our goal is that the agw should be .05, so we need to determine how large CV must be so that
Frairwise maximum Will exceed it only 5% of the time when the null hypothesis is true. The appropri-
ate value of CV can be found from the sampling distribution of Fpsirwise maximum, Which has been
derived mathematically. Specifically, it can be shown that the expression /2 Fpairwise maximum
has a “studentized range” distribution if all assumptions are met. It is traditional to represent
the studentized range with the letter g, so we can write ¢ = /2 Fairwise maximum-

To obtain an alpha level of .05, the critical value CV is chosen to be that value in the right tail
of the ¢ distribution beyond which lies 5% of the area. Appendix Table A.4 presents critical
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TABLE 5.6
COMPARISON OF CORRESPONDING PER-COMPARISON,
TUKEY, AND BONFERRONI CRITICAL VALUES FOR TESTING
ALL PAIRWISE COMPARISONS WITH dferor = 12

Number of Groups Critical Value
Per-Comparison Tukey Bonferroni

2 4.75 4.75 4.75

3 475 7.14 773

4 4.75 8.78 9.92

5 475 10.17 11.76

6 4.75 11.33 13.32

values of the studentized range distribution for both @ = .05 and o = .01. Before we examine
this table, we summarize the mechanics of Tukey’s procedure. To employ Tukey’s method,
an observed F is calculated in the usual way for each pairwise contrast. However, instead of
comparing this observed F to a critical F value, we take the square root of 2F and compare
this number to a critical ¢ value. This procedure is repeated for each contrast to be tested.

What makes Tukey’s method different from the previously encountered methods for testing
contrasts is the use of a different critical value. Instead of comparing an observed F to a
critical F with an alpha level of .05 or .05/C, the observed F is compared to g*/2. Notice,
then, that the observed test statistic itself is unchanged; what has changed is the critical value
for assessing significance. As mentioned earlier, this critical value is chosen to maintain agw
at .05.

Table 5.6 illustrates how the use of g2/2 controls arw at the desired value. The specific
values in the table are for df, = 12, but the general pattern would hold for other values as
well. For the moment, we concentrate on the first two columns of critical values, which show
that whenever a > 3, the critical value for Tukey’s method is larger than the critical value
that would be used if apc were set at .05. The table also shows that the Tukey critical value
increases dramatically as a increases. This is not surprising, because the rationale for Tukey’s
approach is that Fysirwise maximum €Xceeds the Tukey critical value only 5% of the time. As a
increases, there are more pairs of groups to be contrasted, so that Fuairwise maximum t€nds to be
larger in the long run. (Of course, it is also true that in Table 5.6, the degrees of freedom for
error is 12 regardless of a; as @ increases, there are necessarily fewer participants per group.)
For this reason, the Tukey critical value is larger for higher values of a. In this way, agw is
maintained at .05. A necessary consequence is that implicitly arpc is less than .05 whenever
a > 2 for Tukey’s method.

This leads us to a comparison of the second and third columns of critical values. Suppose
that an investigator plans to test all a(a — 1)/2 pairwise contrasts in an a-group study. From
our earlier discussion, it would seem that the Bonferroni adjustment could be applied, in which
case the third column displays the appropriate critical values. In the four cases where a > 2,
the Bonferroni critical value is larger than the Tukey critical value. The smaller critical value
for Tukey’s method illustrates the point made earlier, that Tukey’s WSD is more powerful than
the Bonferroni procedure for testing all pairwise comparisons. Although both procedures are
guaranteed to control egw at the desired level (as long as necessary statistical assumptions are
met), Tukey’s technique is preferable in between-subjects designs because it is more powerful.
However, in Chapter 13, we will see that the Bonferroni approach may be preferable to Tukey’s
WSD in within-subjects designs because of the restrictive assumptions required by the WSD
approach in such designs.
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So far, the presentation of Tukey’s method has been restricted to the equal sample size,
equal variance condition. We now discuss modifications that can be employed when either or
both of these conditions fail to hold.

Modifications of Tukey’s WSD

Consider an experiment where the sample sizes of the various groups are unequal, but homo-
geneity of variance is assumed. The recommended procedure to employ here was developed
by Kramer (1956). Recall that we developed Tukey’s procedure using Equation 4.28, which is
a special case of Equation 4.27 to be used only when n; = n,. Kramer’s approach for unequal
n is simply to compute the observed F using the general form of Equation 4.27 that allows for
unequal ». In other words, the F is calculated in exactly the same way as it was calculated for
planned contrasts with unequal n. As with Tukey’s approach, the observed F for each contrast
is compared to a critical value given by g2/2, where g is found in Appendix Table A.4, using
the appropriate « , a, and degrees of freedom for error.

When population variances are unequal, the situation is considerably more complicated.
As we discussed in Chapter 4, procedures using Equation 4.27 are not robust to violations
of homogeneity of variance, so neither Tukey’s procedure nor the Kramer modification is
appropriate when variances are heterogeneous. A number of modifications of these procedures,
which involve different formulas for calculating an observed F value and for calculating a
critical value, have been suggested. Our recommendation is based on a synthesis of findings
reported in Games, Keselman, and Rogan (1981); Hochberg and Tamhane (1987); and Wilcox
(1987b). When a researcher is unwilling to assume homogeneity of variance, the observed F
statistic for comparing groups g and 4 should be calculated as

YV _V.\2
s (Vs (13)
St . Sh
o + L
Hg Ry

where the g and 4 subscripts refer to the two groups involved in the specific comparison. This
expression for the F statistic is simply a special case of the more general formula developed in
Chapter 4 for dealing with heterogeneity (also see Equation 5.10). Similarly, the appropriate
degrees of freedom in this special case can be written as

e (sg/ng +s,%/n;,)2

= 14
sg/ng(ng — D +st/n2(ny — 1) 149

Fortunately, current versions of widely distributed statistical packages calculate a #-statistic
analog to Equations 13 and 14. In other words, they calculate the square root of the F in
Equation 13; the degrees of freedom are the same for the F and the ¢ statistics. For example,
as of this writing, these values are obtained from the separate variance estimate calculations
in an SPSS independent samples ¢ test and an SPSS one-way ANOVA and from the unequal
variances calculation in SAS PROC TTEST.

Once the observed ¢ (or F) has been obtained, it must be compared to a critical value.
Statisticians have proposed numerous critical values as possibilities here. Current evidence
suggests that when sample sizes are small (i.e., fewer than 50 per group), a critical value sug-
gested by Dunnett is most appropriate. For larger samples, a different critical value suggested
by Games and Howell is better. Dunnett’s procedure, which is called Dunnett’s T3 (the T
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comes from a statistician named Tamhane, who developed the predecessor to T3), is based
on the studentized maximum modulus distribution.> The observed ¢ statistic is compared to
a critical value V, obtained from Appendix Table A.5. (Alternatively, F can be compared to
V squared.) The columns of Appendix Table A.5 correspond to the number of groups,® and
the rows correspond to degrees of freedom calculated from Equation 14. When the observed ¢
exceeds the critical V, the contrast is statistically significant:

For larger samples, we recommend a procedure suggested by Games and Howell (1976).
To use their procedure, the observed ¢ statistic is compared to ¢/+/2 (or, equivalently, F is
compared to g2/2), where the degrees of freedom for the studentized range again come from
Equation 14. If the observed 7 exceeds ¢ /+/2, the contrast is statistically significant. The reason
Dunnett’s T3 is recommended instead of the Games—Howell procedure for smaller sample sizes
is that Dunnett (1980) found that the Games—Howell approach becomes slightly liberal (i.e.,
aew is slightly above .05) when sample sizes are small. Fortunately, both Dunnett’s T3 and
the Games~Howell procedure are currently available as options in an SPSS one-way ANOVA,
so these tests (as well as simultaneous confidence intervals) can easily be obtained. As of this
writing, SAS does not offer these options, which implies that although PROC TTEST can be
used to find the relevant observed F value and its degrees of freedom, the critical value must
be calculated by hand using either Appendix Table A.5 (for T3) or A4 (for Games—Howell).

Numerical Example

We will return to the blood pressure data of Table 5.4 to illustrate Tukey’s WSD and its
modifications. Table 5.7 shows SPSS output for the six pairwise comparisons we can exaniine
in our four-group study. The table actually shows 12 comparisons under the assumption of
homogeneity, as well as 12 additional comparisons without the assumption, because the table
shows not only 17 — u; but also u, — pq and so forth.

Table 5.7 shows that under the homogeneity assumption, the only statistically significant
pairwise difference is between the drug and combination therapies. We can be 95% confident
that the population mean of the combination therapy is at least 2 units (rounding off) and at most
28 units lower than the population mean of the drug therapy. Notice that although this difference
is statistically significant, the small sample size has produced a very wide confidence interval,
leaving considerable uncertainty about the extent to which the combination therapy is truly
superior to the drug therapy. Further, it is plausible that all five other differences may be either
positive or negative, so we cannot establish which of these therapies are better than the other.’

If we decide not to assume homogeneity of variance, an additional pairwise comparison
becomes statistically significant. For these data, we can still assert that combination therapy
is superior to drug therapy, but we can now also claim that combination therapy is superior to
diet. In general, the number of statistically signficant differences can either be larger or smaller
when one relaxes the homogeneity assumption. In either case, the decision as to whether to
assume homogeneity should clearly be made on grounds other than the number of significant
results obtained.

POST HOC COMPLEX COMPARISONS

The previous section provides a method for maintaining agw at .05 when all pairwise contrasts
are tested. Now the Scheffé method is introduced to maintain apw at .05 when at least some of
the contrasts to be tested are complex and suggested by the data. Although in many situations
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TABLE 5.7
SPSS OUTPUT FOR PAIRWISE COMPARISONS

Multiple Comparisons
Dependent Variable: SBP

. 95% Confidence Interval
) [€)) Mean Difference Std.
GROUP  GROUP (I-J) Error Sig. Lower Bound  Upper Bound

Tukey’s HSD 1.00 2.00 5.8333 4.6676  .604 —7.2310 18.8977
3.00 3.3333 4.6676  .890 —-9.7310 16.3977

4.00 15.0000* 4.6676  .021 1.9356 28.0644

2.00 1.00 —5.8333 4.6676  .604 —18.8977 7.2310
3.00 —2.5000 4.6676  .949 —15.5644 10.5644

4.00 9.1667 4.6676  .235 —3.8977 22.2310

3.00 1.00 —3.3333 4.6676  .890 —16.3977 9.7310
2.00 2.5000 4.6676  .949 —10.5644 15.5644

4.00 11.6667 4.6676  .091 -1.3977 24.7310

4.00 1.00 —15.0000* 4.6676  .021 —28.0644 —1.9356
2.00 —9.1667 4.6676 235 —22.2310 3.8977

3.00 —11.6667 4.6676  .091 —-24.7310 1.3977

Tamhane 1.00 2.00 5.8333 4.6676 913 —13.3759 25.0425
3.00 3.3333 4.6676  .967 —10.2644 16.9311

4.00 15.0000* 4.6676  .027 1.6489 28.3511

2.00 1.00 —5.8333 4.6676 913 —25.0425 13.3759
3.00 —2.5000 4.6676 998 —21.1741 16.1741

4.00 9.1667 4.6676  .535 —9.4938 27.8271

3.00 1.00 —3.3333 4.6676  .967 —16.9311 10.2644
2.00 2.5000 4.6676  .998 —16.1741 21.1741

4.00 11.6667* 4.6676  .032 9112 224221

4.00 1.00 ~15.0000* 4.6676  .027 —28.3511 —1.6489
2.00 -9.1667 46676  .535 —27.8271 9.4938

3.00 —11.6667* 4.6676 032 —22.4221 —.9112

* The mean difference is significant at the .05 level.

the data may suggest that a researcher compare all pairs of groups, there are times when other
comparisons may also be of interest, as we saw in the hypertension example of Chapter 4. To
consider another such example, suppose that the effects of different dosage levels of a drug
on some aspect of behavior are being investigated. A researcher might conduct a three-group
study, where the groups are defined by the dosage level they receive, such as 1 ml, 2 ml, or 3 ml.
Assume that on examination of the data, the intermediate dosage seems to be most effective.
Then, one contrast of interest might be

Y1 = 31 + 13) — i

to see whether the average of the effects of 1 and 3 ml equals the effect of 2 ml. Suppose that
the researcher also wants to test the three pairwise contrasts:

Vo = p1— 2
Y3 = W — W3
Ha = M2 — 43

Although it would be possible to use the Bonferroni approach if these are planned contrasts,
we assume for the moment that they have instead been formed post hoc. After developing an
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appropriate technique for testing these contrasts post hoc, we return to the planned versus post
hoc distinction.

If these four contrasts are to be tested post hoc, neither the Bonferroni nor the Tukey method
is appropriate. The Bonferroni method is not applicable, because these particular contrasts were
not selected prior to examining the data. Thus, it would be incorrect to set C equal to 4 and use
the Bonferroni adjustment with apc = .05/4. Tukey’s method is not applicable either: not all
the contrasts are pairwise, because v; involves three groups. We now turn to Scheffé’s approach
for a method that allows all four contrasts to be tested post hoc and yet keep ogw at .05.

Our presentation of the logic underlying Scheffé’s method is similar to the presentation
of the rationale for Tukey’s method. Recall that for Tukey’s approach, we considered the
sampling distribution of Fpairwise maximum- NOW, however, we do not want to restrict ourselves to
only pairwise contrasts. The logic of Scheffé’s method is to consider the sampling distribution
of Fraximum, Which represents the largest possible F value for any contrast in the data, either
pairwise or complex. Although finding this distribution would seem to be an extremely difficult
task, it actually becomes rather casy with a few additional facts at our disposal.

Proof That SS,.ax = SSs

We detour momentarily to develop these facts. Recall that we are interested in finding the
sampling distribution of Fjaimem- Notice that the contrast that produces the largest F value is
whatever contrast yields the largest sum of squares, because the F value is simply the sum of
squares divided by mean square within, that is

Fy = 88y /MSw
It then follows that
Fmaximum = SSmax/MSW (15)

where SSnax is the sum of squares of the contrast with the largest sum of squares. We now
show that for any set of data, S5« equals the between groups sum of squares SSg.

First, we must convince you that the sum of squares for a contrast must always be less than
or equal to the between group sum of squares, that is

SS,J, < S58p (16)

This must be true, because we learned in Chapter 4 that one measure of effect size for com-

. . 2 .
parisons is R,j..,.. Which was defined as

Rl ering = SS(¥)/ SSBetween (4.54)

However, as a squared multiple correlation, Rf,emg can be no larger than 1.0, in which case it

immediately follows that SS() can be no larger than SSpetween- In other words,
SSy < 858 (16, repeated)

which is what we were seeking to prove. Thus, it follows that no contrast can have a sum of
squares larger than the between-group sum of squares, implying that

SSemax < SSB an
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The final step in this argument is to show that it is always possible (after obtaining the
data) to find a contrast whose sum of squares will equal $S5. This is accomplished by defining
contrast coefficients to be equal to (or proportional to) the weighted deviations of each group
mean from the grand mean, where the weights for the deviations are given by the sample sizes
of the groups. In other words, the contrast whose sum of squares equals SSg has coefficients
of the form

Cj =nj(7j —Y) (18)

For any sample data, the contrast whose coefficients are defined as in Equation 18 will have an
Rfjming value of 1.0 and a sum of squares equal to SS5.% This contrast is then necessarily the
contrast with the largest possible sum of squares, because we saw earlier from Equation 17 that

SSmax < SSp (17, repeated)

However, as proved in Footnote 8, there is always a contrast whose sum of squares equals
SSp. Combining these two facts allows us to amend Equation 17. We can now say that

SSmax = SSB 19
Earlier, we argued that
Frnaximum = SSmax/MSw (15, repeated)
Substituting Equation 19 into Equation 15 yields
Fraximum = SS/MSw (20)

Thus, for a given set of data, the largest F value for a contrast always equals SSg /MSw.
Remember that the task at hand was to find the sampling distribution of Fpaximum. This is
made simple now that we know Fraximum = SS8/MSw, because we can rewrite this as

Faximum = (@ — 1)IMSB/IMSW (21

because $Sp = (@ — 1)MSg. However, if all necessary assumptions are met, MSg/MSw is
distributed as an F variable witha — 1 and N — a degrees of freedom under the null hypothesis.
It follows that Fiaximem iS simply distributed as (@ — 1) times such an F variable. Therefore,
even if the omnibus null hypothesis is true, so every contrast has a population value of zero,
Fraximum €Xceeds

(@ — DFo50-1, N-a ‘ @2)

only 5% of the time. By using (@ — 1)Fys.0—1, N—q s a critical value against which to judge
the significance of a contrast, we guarantee ourselves of maintaining agw at .05, regardless of
how many contrasts we test, even after having looked at the data. (Of course, as always, the
necessary assumptions must be met in order for the actual alpha level to equal the nominal
value.) Notice that, once again, in order to use the Scheffé method, the observed F value is
calculated from Equation 4.41 (or one of its equivalent forms). What distinguishes this method
from the other multiple-comparisons procedures is the use of Equation 22 for the critical
value.
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A nice feature of Scheffé’s method is that it has a direct correspondence to the test of the
omnibus null hypothesis. Remember that the omnibus null hypothesis will be rejected if and
only if

MSp/MSw > Fos.a-1,N-a (23)

Suppose that we were to test the contrast corresponding t0 Fiaximum With Scheffé’s ap-
proach. Recall that Fpaimum = (@ — 1)MSg/MSyw. The critical value for Scheffé is (a — 1)
F.OS;a—l,N—a-

This contrast is judged to be statistically significant if and only if its observed F value
exceeds the Scheffé critical value, that is, if and only if

Fraximum > (@ ~ 1)Fo5;0-1, N—a (24)
However, from Equation 21
Fraximum = (@ — 1)MSg /MSw (21, repeated)
Substituting this result into Equation 24, we see that the contrast is significant if and only if
(@ ~ DMSg/MSw > (@ — 1)Fos;4-1,N-a

However, we can cancel the (a — 1) terms, implying that the contrast is significant if and
only if

MSB/MSW > F.OS;a—l, N-a

However, this repeats Equation 23, which is the condition under which the omnibus null
hypothesis is rejected. Thus, the maximum contrast is statistically significant by Scheffé’s
method if and only if the omnibus null hypothesis is rejected.

Thus, if the omnibus null hypothesis is rejected, at least one contrast exists that is signif-
icant by Scheffé’s method (namely the contrast corresponding t0 Fiaximum)- Conversely, if
the omnibus null hypothesis is not rejected, it is impossible to find a significant contrast using
Scheffé’s method. All this should seem eminently reasonable. After all, if we declare the means
to be different from one another, we should be able to specify how they are different. On the
other hand, if we declare them to be the same, it makes no sense to turn around and say how
they are different. Although this is indeed reasonable, not all multiple-comparison procedures
share this property. For example, with Tukey’s method, inconsistencies can occur. It is possi-
ble to reject the omnibus null hypothesis and yet reject none of the pairwise differences. The
opposite can also occur—it is possible to reject one or more of the pairwise contrasts, although
the omnibus null hypothesis cannot be rejected.

Comparison of Scheffé to Bonferroni and Tukey

Scheffé’s method is very useful in that it allows the researcher to test literally any contrast that
may be suggested by the data. Because the critical value is based on the sampling distribution
of Fiaximum» all possible contrasts could be tested for an experiment, and agw would still be
maintained at .05. As we have noted before, the number of contrasts that may be tested is
infinite. Although many of these may have little or no scientific meaning, they can all be tested
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TABLE 5.8
COMPARISON OF BONFERRONI AND SCHEFFE
CRITICAL VALUES FOR a = 4 AND dfyrror = 30

[} Bonferroni Scheffé
Fos/c;1.30 3F 05,330
1 4.17 8.76
2 5.57 8.76
3 6.45 8.76
4 7.08 8.76
5 7.56 8.76
6 8.01 8.76
7 8.35 8.76
8 8.64 8.76
9 8.94 8.76
10 9.18 8.76

for significance with Scheffé’s method. On the other hand, what if we are really interested in
testing just a few of these contrasts? In this situation, the Scheffé method is typically quite
conservative, in that the actual agw for the few contrasts we actually test may be considerably
less than the .05 that would result from testing all possible contrasts. Indeed, this points out
the advantage of planned contrasts. If the experimenter plans the contrasts prior to the study
and if the number of contrasts to be tested is relatively small, the Bonferroni critical value
will be less than the Scheff¢ critical value, so the Bonferroni approach will be more powerful.
Table 5.8 illustrates this point, where a = 4 and df,,,; = 30. From the table, we can see that
as many as eight planned comparisons could be tested and still use a lower critical value with
the Bonferroni than with the Scheffé. Only an investigator who might be interested in more
than eight contrasts among the four groups would find the Scheffé method superior.

Table 5.9 provides a more complete view of the choice between Bonferroni and Scheffé.
Each entry in the table is the maximum number of contrasts that could be planned and still have
the Bonferroni critical value less than the Scheffé. The entries are a function of ¢ and df,,,.
Notice that the entry for a = 4 and df, . = 301is 8, agreeing with Table 5.8. This table is useful
for helping decide whether you should perform planned contrasts or use the Scheffé method for
testing your contrasts post hoc. If the number of contrasts you might conceivably test is less than
or equal to the number in Table 5.9 for your values of a and df, the Bonferroni approach
is better. On the other hand, if you might test more contrasts than the number in the table,
Scheffé’s method is better, even if all the contrasts are planned. In the face of this discussion
of how the Bonferroni and Scheffé techniques compare, do not forget Tukey’s method.

We saw earlier that Tukey’s method is generally superior to Bonferroni’s for testing all
pairwise contrasts. The Scheffé is even less appropriate. Notice that almost all values in Ta-
ble 5.9 exceed a(a — 1)/2 (the number of pairwise contrasts), indicating that the Bonferroni is
almost always better than the Scheffé for this number of contrasts. But we have already seen
that Tukey is superior to Bonferroni here; Tukey is also superior to Scheffé for this purpose.
Thus, using Scheffé’s method to test pairwise comparisons sacrifices power. Scheffé’s method
should not be used unless at least one of the comparisons to be tested is complex.

Modifications of Scheffé's Method

When population variances are unequal, it may be desirable to use a separate variances mod-
ification of Scheffé’s method for testing comparisons. Such a modification was proposed by
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TABLE 5.9
MAXIMUM NUMBER OF CONTRASTS THAT SHOULD BE TESTED IN A STUDY
WITH THE BONFERRONI APPROACH

Number of Groups

dfor 3 4 5 6 7 8 9 10
5 2 4 8 12 17 24 31 40

6 2 5 9 14 21 30 41 55

7 2 5 10 16 25 37 52 71

8 2 6 11 18 29 44 64 89

9 2 6 12 20 33 51 75 107
10 2 6 12 22 37 58 87 127
12 3 7 13 25 43 70 110 166
14 3 7 14 28 49 82 132 205
16 3 7 15 30 54 93 153 243
18 3 7 16 32 58 103 173 281
20 3 7 17 33 63 112 191 316
30 3 8 18 39 78 147 267 470
40 3 8 20 43 87 170 320 586
50 3 8 20 45 94 187 360 674
60 3 8 21 47 98 199 390 743
70 3 9 21 48 102 209 414 799
80 3 9 21 49 105 217 433 844
90 3 9 22 50 107 223 449 882
100 3 9 22 50 109 228 462 913
110 3 9 22 51 111 232 473 941
120 3 9 22 51 112 236 483 964

Brown and Forsythe (1974). Several simulation studies have suggested that their modification
successfully controls agw when variances are heterogeneous.’

The Brown-Forsythe procedure is based on the same F statistic we have repeatedly seen pre-
viously when a separate variances approach is taken. Specifically, an observed F is calculated
as

()

(c5/ns)s;

F = (10, repeated)

[ygh

J

As we mentioned in Chapter 4, the corresponding denominator degrees of freedom are
arduous, so a computer package will invariably be invoked for their calculation. Later in
this chapter, Tables 5.16 and 5.17 will show the formula for these degrees of freedom in the
context of summarizing our recommended multiple comparisons procedures. The observed F
from Equation 10 is compared to a critical F equal to (@ — DF o501, df

Notice that this is the same critical F as used in Scheffé’s method (see Equation 22), except
that the denominator degrees of freedom are no longer simply equal to N — a.

Numerical Example

We will return once again to our hypertension data to illustrate Scheffé’s procedure. Suppose
that four contrasts are of interest: (1) drug versus biofeedback, (2) drug versus diet, (3) biofeed-
back versus diet, and (4) the average of each of the first three treatments versus the combined
treatment. You may realize that these are exactly the same contrasts we examined with the
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TABLE 5.10
POST HOC CONTRASTS USING SCHEFFE’S METHOD

Multiple Comparisons
Dependent Variable: SBP

Scheffé
. 95% Confidence Interval
1) (J) Mean Difference Std.
GROUP GROUP (1-J) Error Sig. Lower Bound Upper Bound
1 2 5.8333 4.6676 673 —8.3971 20.0638
3 3.3333 4.6676 915 —10.8971 17.5638
4 15.0000* 4.6676 .036 .7696 29.2304
2 1 —5.8333 4.6676 .673 —20.0638 8.3971
3 —2.5000 4.6676 .962 —16.7304 11.7304
4 9.1667 4.6676 307 —5.0638 23.3971
3 1 —3.3333 4.6676 915 —17.5638 10.8971
2 2.5000 4.6676 .962 —11.7304 16.7304
4 11.6667 4.6676 135 —2.5638 25.8971
4 1 —15.0000* 4.6676 036 —29.2304 —.7696
2 —9.1667 4.6676 .307 —23.3971 5.0638
3 —11.6667 4.6676 135 —25.8971 2.5638

* The mean difference is significant at the .05 level.

Simultaneous Confidence Intervals

Assuming Homogeneity of Variance

Intervals for pairwise comparisons are shown directly in output.
For our complex comparison of interest, we have:
(35.83/3) £ (+~/9.30)(11.4331/3) 0.32,23.57

Without Assuming Homogeneity of Variance

Contrast” Computation Interval

1 5.8333 £ («/12.21)(5.7237) —14.17,25.83
2 3.3333 £ (4/11.58)(4.0838) —10.56, 17.23
3 —2.500 % (+/13.05)(5.2836) —21.59,16.59
4 (35.83/3) £(+/10.23)(9.0955/3) 2.25,21.64

“The first three contrasts are pairwise. In order, they are (1) Group 1 minus Group 2, (2) Group 1 minus
Group 3, and (3) Group 2 minus Group 3, The fourth contrast is the average of the first three groups minus the
fourth group.

Bonferroni method, as shown in Table 5.5. Now, however, we will suppose that we have chosen
these specific contrasts after having seen the data, in which case the Bonferroni method is no
longer applicable. Because the contrasts are now post hoc and because they include a complex
comparison, Scheffé is the method of choice.

Current versions of SPSS and SAS provide significance tests and confidence intervals for
pairwise comparisons using Scheffé’s method under an assumption of homogeneity. Ironically,
however, neither at the moment provide the capability to apply Scheffé to complex comparisons,
despite the fact that this is precisely the situation that calls for Scheffé.

The top portion of Table 5.10 shows SPSS output for all pairwise comparisons. We can obvi-
ously use this output to find tests and confidence intervals for our pairwise contrasts of interest.
Below the SPSS output are hand calculations needed for forming confidence intervals for the
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complex contrast as well as for all contrasts when we decide not to assume homogeneity. As
in our discussion of the Bonferroni method, we can conceptualize each confidence interval as

estimate £ (critical value) (estimated standard error) (25)

Notice that the estimate and the estimated standard error for a contrast do not depend on
which multiple-comparison procedure we are using, so these two values are the same for
any given contrast as they were for Bonferroni or Tukey. As usual, what we must take into
account when using Scheffé is the appropriate critical value. Thus, the calculations seen in
Table 5.10 differ from those we saw earlier in Table 5.5 only in that the critical values differ. In
particular, the critical value for Scheffé is larger than the critical value for Bonferroni (notice
how this is consistent with Table 5.9), so it necessarily follows that Scheffé intervals will
be wider than Bonferroni intervals. Indeed, comparing Table 5.10 with Table 5.5 shows that
each Scheffé interval is wider than the corresponding Bonferroni interval. This is the price
we must pay for choosing our contrasts of interest post hoc instead of planned. Nevertheless,
in these particular data, regardless of whether our four contrasts were post hoc or planned,
we find that only in the case of the complex contrast can we make a confident statement of
directionality, namely that the combined group is more effective than the average of the other
three groups.

OTHER MULTIPLE-COMPARISON PROCEDURES

Although the Bonferroni, Tukey, and Scheffé multiple-comparison procedures are probably
the most widely used and most generally appropriate techniques, we have already seen that
they are far from the only ones that have been developed. In particular, referring back to
Table 5.2, notice that we have now described appropriate procedures for establishing direction
and magnitude of mean differences for the first three columns of the table, that is, for examining
(1) planned, (2) pairwise, and (3) complex comparisons.

We now proceed to describe procedures for the final two columns of Table 5.2. First,
Dunnett’s procedure is particularly useful when one of the groups in a study is a control group.
Second, a variation of Dunnett’s method can be used when the purpose of the study is to
identify the best treatment group.

Dunnett’'s Procedure for Comparisons with a Control

In some studies, the primary tests of interest may involve comparing one of the groups with each
of the other ¢ — 1 groups individually. For example, a researcher might plan to compare each
of a — 1 different treatments with a control group. Although the Bonferroni procedure could
be used, Dunnett (1955) developed a test that is more powerful in this situation, which is often
referred to as “many—one” testing because many groups are each compared to one other group.
(Do not confuse this procedure with Dunnett’s T3, which is an entirely different procedure we
presented earlier for performing pairwise comparisons with unequal variances.) This method
is used much less often in behavioral research than Bonferroni, Tukey, or Scheffé, primarily
because Dunnett’s method does not accommodate tests comparing the a — 1 treatment groups
to one another.

There is no change in the calculation of the observed F test statistic for Dunnett’s procedure.
As in the methods previously encountered, however, the critical value is altered to maintain
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the agw level at .05. Appendix Tables A.6 and A.7 provide the necessary critical values for
two-tailed and one-tailed tests, respectively. The columns of the table correspond to the number
of groups, including the control group. The entry in the table must be squared to establish a
critical value for the F statistic. In other words, the entries in the table are critical ¢ values
against which to judge an observed ¢ statistic. Confidence intervals are formed as usual, the
only difference being the choice of critical value.

Numerical Example

Suppose the only questions of interest in the hypertension example involved comparing the
combined treatment to each of the separate treatments. In other words, suppose we have no
interest in comparing the separate treatment groups to one another. Such a “many-one” set of
comparisons is exactly the situation where Dunnett’s method is appropriate. We will illustrate
two-tailed tests and two-sided confidence intervals, although a case could be made for one-
tailed tests and one-sided intervals here.

Table 5.11 shows SAS output for comparing the combined treatment against each of the
three separate treatments. According tc Dunnett’s method, we can be 95% confident that
the combined treatment is approximately between 3 and 27 units better than drug therapy
alone (the first treatment). We cannot unequivocally establish the direction of difference for
the combined therapy versus either diet or biofeedback. Notice that the Dunnett intervals shown
in Table 5.11 are all narrower than the corresponding Tukey intervals we saw in Table 5.7. The
increased precision of the Dunnett intervals reflects the advantage we have gained in being
willing to forgo consideration of how the separate therapy conditions compare to one another.
Thus, in practice, there is a trade-off here between precision and the number of contrasts we
choose to consider. As Exercise 12 at the end of the chapter shows, the Dunnett intervals are
also narrower than Bonferroni intervals for this same set of contrasts.

TABLE 5,11
CONTRASTS OF EACH SEPARATE TREATMENT VERSUS
COMBINED TREATMENT

The GLM Procedure
Dunnett’s t Tests for SBP

Note. This test controls the Type 1 experimentwise error for
comparisons of all treatments against a control.

Alpha 0.05
Error degrees of freedom 20

Error mean square 65.35833
Critical value of Dunnett’s ¢ 2.54043
Minimum significant difference 11.858

***Comparisons significant at the 0.05 level.

Group Difference Simultaneous 95%
Comparison Between Means Confidence Interval
1-4 15.000 3.142 26.858™**
3-4 11.667 -0.191 23.524
2-4 9.167 -2.691 21.024
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Procedures for Comparisons With the Best

Especially in applied settings, the fundamental question of interest may be to establish which
treatment is best, that is, either the treatment with the largest or the smallest population mean,
depending on which end of the scale is most desirable. Hsu (1996) describes a modification of
Dunnett’s procedure that can be used to answer this question. We will see that we can continue
to use the same Dunnett critical value we developed in the immediately preceding discussion.
The primary difference is that in the previous use of Dunnett, we knew in advance which group
was the control group, whereas in the application we are about to develop, we will not know
in advance of collecting the data which single group we should focus on. Thus, the precise
details of the procedure must be modified, even though we will continue to use much of what
we developed in the previous section.

From another perspective, the goal here is similar to and yet not quite the same as that of
examining pairwise comparisons. Tukey’s WSD and similar methods in the second column
of Table 5.2 implicitly assume that we are interested in comparing every possible pair of
groups. However, when the goal is to identify the best group, we are not interested in pairwise
differences that do not include the best group. Thus, although we could use Tukey’s WSD
in an attempt to identify the best group, we would implicitly be including comparisons of no
real interest for our specific purpose and therefore considering a larger family of contrasts
than necessary. The practical implication is that the method we will present for identifying
the best treatment will yield greater power and precision than Tukey’s WSD. Thus, Tukey’s
method is inefficient for identifying the best treatiment. Indeed, its inefficiency for this purpose
may explain why some researchers have resorted to using such alternatives as Newman—Keuls
and Duncan in an effort to increase power and precision. However, if the goal is to identify
the best treatment, we should use the modification of Dunnett’s method that we will now
present.

Our remaining presentation of this method will consist of three sections. First, we will
present the rationale for the method in more detail. Second, because most statistical packages
do not yet include an explicit option for identifying the best treatment, we will spend more time
than usual on the mechanics of performing the test. Third, we will conclude with a numerical
example based on our hypertension data.

We will now consider the logic behind the method Hsu (1996) presents for identifying the
best treatment group. For example, suppose we wonder whether Group 1 might be the best
group in a study. For the moment, let’s assume that higher scores are better on the dependent
variable. (The same basic logic applies when lower scores are better, but as we will see later,
we then have to reverse our comparisons.)

Our question is whether (; is the largest population mean. Equivalently, we could ask
whether p; is larger than all other population means in the study. Formally, the question
centers around an expression of the form

pi — max p;
g7

The term after the minus sign is to be understood as the largest population mean among
the remaining a — 1 groups. In theory, it is trivial with this formulation to identify the best
treatment. If

1—max ;>0
i
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it immediately follows that the first group is in fact the best. On the other hand, if
—max j; <0
M1 fort Mj

it similarly follows that some other group has a larger mean than x4, in which case the first
group is not the best. Notice that we said that this formulation makes our answer clear—in
theory. The complication here is that we do not know the population means, but instead have
access only to sample data.

Fortunately, we can solve this problem by forming a confidence interval for the difference
between the population mean of Group 1 and the population mean of the best group other
than Group 1. As usual, we will be especially interested in discovering whether this interval
contains zero. For example, if the interval lies entirely above zero, we can be 95% confident
that the population mean of Group 1 is larger than the population mean of any other group,
implying that Group 1 is indeed the best treatment. On the other hand, if the interval lies
entirely below zero, we can be 95% confident that the population mean of Group 1 is smaller
than that of some other group, in which case we can conclude that Group 1 is not the best
treatment. Finally, if the interval straddles zero, the mean of Group 1 might be either larger or
smaller than the largest mean of the remaining groups, in which case Group 1 may or may not
be the best treatment. In this final scenario, we cannot rule out Group 1 as a possibility, but we
also cannot be 95% confident that it is truly best.

This same approach is then applied to each group in the study. The end result will be a
set of intervals that show plausible values for the difference between each individual group
mean and the best of the remaining group means. As a consequence, in the simplest case,
we will be able to identify one group as the best with some desired level of confidence (typ-
ically 95%). However, in some situations, one group will not stand out from the others, in
which case all we can do is to identify a subset of groups, any one of which may be best
in the population. In other words, in this scenario, we can eliminate some groups as possi-
bly being best, but we cannot reduce the number of contenders to a single group. Of course,
when group differences are all small in the sample, it may happen that we cannot be cer-
tain that any groups are truly different from one another, in which case we are left with
the unfortunate conclusion that no groups can be eliminated from contention as possibly the
best.

Hsu (1996) describes two slightly different techniques for identifying the best treatment, one
based on unconstrained intervals and another based on constrained intervals. Unconstrained
intervals provide slightly more information but are somewhat wider than constrained intervals.
In particular, unconstrained intervals include information about how much better the best group
is than other groups, whereas constrained intervals only allow a conclusion that a group is best
without estimating the extent to which it is best. Thus, as often happens, there is a trade-off
between how much we can say and how precisely we can say it. In our judgment, both variations
have their place, so we will present both.

As of this writing, procedures for comparisons with the best are available in Minitab and
JMP, but in neither SAS nor SPSS. Even Minitab and JMP do not provide all options we
believe you should consider and which we will describe here. Largely for this reason, we
will describe the mechanics of these procedures in more detail than has been typical of other
procedures. Specifically, we will present four scenarios: (1) unconstrained intervals where high
scores on the dependent variable are best, (2) unconstrained intervals where low scores are
best, (3) constrained intervals where high scores are best, and (4) constrained intervals where
low scores are best. Ideally, our descriptions will allow you not only to use these methods but
also to understand them more fully.
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TABLE 5.12
COMPARISONS WITH THE BEST: STEPS FOR FORMING
UNCONSTRAINED INTERVALS

When High Scores on the Dependent Variable Are Best

1. Identify the group with the largest sample mean.

2. Use Dunnett’s method to form two-sided confidence intervals, comparing the group with the largest sample
mean to each of the other @ — 1 groups. Be certain to calculate the difference so that the largest mean is
subtracted from each other mean, in which case the center of each interval should be below zero. This is the
current default in the way both SAS and SPSS implement Dunnett when the group with the largest mean is
designated to be the “control” group.

3. The first two steps provide an interval for every group except the group with the largest mean. An interval for
this group can be obtained from the results in Step 2. Specifically, identify the group with the second largest
mean. Then reverse the signs of the lower and upper endpoints of the confidence interval, comparing this
group to the group with the largest mean, to obtain the upper and lower endpoints, respectively, for the group
with the largest mean.

4. If the interval for the group with the largest mean does not contain zero, this group is deemed to be the best
treatment. If this interval does contain zero, all groups with intervals containing zero are included in a set of
groups, any one of which is possibly the best treatment. Any group whose interval is entirely below zero is
ruled out as the best treatment.

When Low Scores on the Dependent Variable Are Best

1. Identify the group with the smallest sample mean.

2. Use Dunnett’s method to form two-sided confidence intervals, comparing the group with the smallest sample
mean to each of the other @ — 1 groups. Be certain to calculate the difference so that the smallest mean is
subtracted from each other mean, in which case the center of each interval should be above zero. This is the
current default in the way both SAS and SPSS implement Dunnett when the group with the smallest mean is
designated to be the “control” group.

3. The first two steps provide an interval for every group except the group with the smallest mean. An interval
for this group can be obtained from the results in Step 2. Specifically, identify the group with the second
smallest mean. Then reverse the signs of the lower and upper endpoints of the confidence interval, comparing
this group to the group with the smallest mean, to obtain the upper and lower endpoints, respectively, for the
group with the smallest mean.

4.  If the interval for the group with the smallest mean does not contain zero, this group is deemed to be the best
treatment. If this interval does contain zero, all groups with intervals containing zero are included in a set of
groups, any one of which is possibly the best treatment. Any group whose interval is entirely above zero is
ruled out as the best treatment.

Table 5.12 describes the necessary steps for forming unconstrained intervals. The top half of
the table pertains to situations where high scores are best, while the bottom half is relevant when
low scores are best. These steps follow the same basic logic we developed for using Dunnett’s
method to compare a set of treatment groups to a control group. For example, suppose that high
scores on the dependent variable are best in a three-group study and that the second group has
the largest sample mean. Then the second step consists of using Dunnett’s method to find con-
fidence intervals based on the sample mean differences Y; — Y, and Y3 — Y. Step 3 then in-
volves a similar interval, but this time the interval involves subtracting ¥, minus the next largest
mean. Each of the resulting intervals then provides lower and upper limits for the difference be-
tween the population mean in question and the largest of all the other ¢ — 1 population means.

Table 5.13 describes the necessary steps for forming constrained intervals. As in Table 5.12,
the top half of the table pertains to situations where high scores are best, whereas the bottom
half is relevant when low scores are best. Once again, the essential logic follows Dunnett’s
method, although the precise steps are somewhat more complicated. Notice that the fundamen-
tal difference between the unconstrained intervals of Table 5.12 and the constrained intervals
of Table 5.13 is that the former use the two-tailed version of Dunnett’s method, whereas the
latter use the one-tailed version. As a result, constrained intervals will always be narrower than
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TABLE 5.13
COMPARISONS WITH THE BEST: STEPS FOR FORMING CONSTRAINED INTERVALS

When High Scores on the Dependent Variable Are Best

1. Identify the group with the largest sample mean.

2. Form the lower limit of each confidence interval by using Dunnett’s method to form one-sided confidence
intervals, comparing the group with the largest sample mean to each of the other a — 1 groups. Choose
DUNNETTU in SAS or DUNNETTR in SPSS (shown as “> control” in menu options). Also, be certain
to calculate the difference so that the largest mean is subtracted from each other mean, in which case the
lower limit of each interval should be below zero. This is the current default in the way both SAS and SPSS
implement Dunnett when the group with the largest mean is designated to be the “control” group.

3. The next step is to form the upper limit of each interval. To do so, use Dunnett’s method once again to
compare the group with the largest sample mean to each of the other a — 1 groups. However, this time choose
DUNNETTL in SAS as well as SPSS (also shown as “< control” in SPSS menu options). As before, be
certain to calculate the difference so that the largest mean is subtracted from each other mean. Again, this
is the current default in both SAS and SPSS when the group with the largest mean is designated to be the
control group.

4. Consider the value calculated for each upper limit in Step 3. Any interval with a negative upper limit is
assigned a new upper limit of zero. Intervals with positive upper limits retain their original upper limit.

5. The preceding steps provide an interval for every group except the group with the largest mean. An interval
for this group can be obtained from the results in Step 4. Specifically, identify the group with the second
largest mean. Then reverse the signs of the lower and upper endpoints (after having assigned the new upper
limit of zero in Step 4, if relevant) of the confidence interval comparing this group to the group with the
largest mean, to obtain the upper and lower endpoints, respectively, for the group with the largest mean.

6. If the interval for the group with the largest mean has a lower limit of zero, this group is deemed to be the
best treatment. If the interval contains zero, all groups with intervals containing zero are included in a set of
groups, any one of which is possibly the best treatment. Any group whose interval has an upper limit of zero
is ruled out as the best treatment.

When Low Scores on the Dependent Variable Are Best

1. Identify the group with the smallest sample mean.

2. Form the upper limit of each confidence interval by using Dunnett's method to form one-sided confidence
intervals comparing the group with the smallest sample mean to each of the other @ — 1 groups. Choose
DUNNETTL in SAS as well as SPSS (also shown as “< control” in SPSS menu options). Also, be certain
to calculate the difference so that the smallest mean is subtracted from each other mean, in which case the
upper limit of each interval should be above zero. This is the cutrent default in the way both SAS and SPSS
implement Dunnett when the group with the smallest mean is designated to be the control group.

3. The next step is to form the lower limit of each interval. To do so, use Dunnett’s method once again to
compare the group with the smallest sample mean to each of the other a — 1 groups. However, this time
choose DUNNETTU in SAS or DUNNETTR in SPSS (shown as “> control” in menu options). As before,
be certain to calculate the difference so that the smallest mean is subtracted from each other mean. Again this
is the current default in both SAS and SPSS when the group with the smallest mean is designated to be the
contro} group.

4. Consider the value calculated for each lower limit in Step 3. Any interval with a positive lower limit is assigned
a new lower limit of zero. Intervals with negative lower limits retain their original lower limit.

5. The preceding steps provide an interval for every group except the group with the smallest mean. An interval
for this group can be obtained from the results in Step 4. Specifically, identify the group with the second
smallest mean. Then reverse the signs of the lower and upper endpoints (after having assigned the new lower
limit of zero in Step 4, if relevant) of the confidence interval, comparing this group to the group with the
smallest mean, to obtain the upper and lower endpoints, respectively, for the group with the smallest mean.

6. If the interval for the group with the smallest mean has an upper limit of zero, this group is deemed to be the
best treatment. If the interval contains zero, all groups with intervals containing zero are included in a set of
groups, any one of which is possibly the best treatment. Any group whose interval has a lower limit of zero
is ruled out as the best treatment.
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unconstrained intervals. However, only unconstrained intervals allow you to estimate how
much better the best treatment is than all other treatments, so when you want to be able to
make this type of statement, the increased width of intervals may be a small price to pay for
being able to say more about the best treatment.

The steps shown in Tables 5.12 and 5.13 are appropriate when two conditions hold: equal
sample sizes and homogeneity of variance. When population variances are equal but sample
sizes are unequal, complications emerge in calculating appropriate critical values for the pro-
cedure, necessitating a computer package such as Minitab or JMP. Appropriate methods when
variances are unequal await further research.

Numerical Example

We will once again rely on our blood pressure data to illustrate how to perform comparisons
with the best. We will first show how to form unconstrained intervals, and then we will show
how to form constrained intervals. Remember that low blood pressure scores are best, so we
will be referring to the bottom portions of Tables 5.12 and 5.13. Readers desiring an opport-
unity to practice the procedures when high scores are best should know that Exercise 17 at
the end of the chapter provides this practice. In addition, we will use SAS to obtain Dunnett
intervals for these data, but the same values should be available from any statistical package
that will form two-sided and one-sided Dunnett intervals.

We will begin by assuming that we want to form unconstrained confidence intervals to
find which treatment produces the lowest mean blood pressure readings. The bottom half of
Table 5.12 shows that the first step is to identify the group with the smallest sample mean. In
our case, that is the combined treatment group, which has a mean of 81.83. Step 2 requires
that we use Dunnett’s method to compare this group with each of the other groups. Table 5.14
shows SAS output providing two-sided Dunnett’s intervals. Notice that the values shown in
Table 5.14 are exactly the same as those we saw earlier in Table 5.11, because in both cases
we are comparing the combined group to each of the other groups. However, the remaining

TABLE 5.14
TWO-SIDED DUNNETT INTERVALS TO IDENTIFY
THE BEST TREATMENT FOR HYPERTENSION

The GLM Procedure
Dunnett’s t Tests for SBP

Note. This test controls the Type 1 experimentwise error for
comparisons of all treatments against a control.

Alpha 0.05
Error degrees of freedom 20

Error mean square 65.35833
Critical value of Dunnett’s ¢ 2.54043
Minimum significant difference 11.858

***Comparisons significant at the 0.05 level.

Group Difference Simultaneous 95%
Comparison Between Means Confidence Interval
1-4 15.000 3.142 26.858***
34 11.667 —0.191 23.524
2-4 9.167 —2.691 21.024
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steps and ultimate interpretation of the intervals is somewhat different in the two cases. Step 3
requires that we find the group with the second smallest sample mean, which is the biofeedback
group, with a mean of 91.00. Reversing the sign of the limits of this interval in the SAS output
yields an additional interval for the combined group, with a lower limit of —21.024 and an
upper limit of 2.691. Notice that this interval contains zero, so according to Step 4, all groups
with intervals containing zero should be regarded as possibly the best treatment. Given our
data, itis plausible that either biofeedback, diet, or the combined treatment is the best treatment.
In other words, with 95% confidence, we can only rule out drug therapy as possibly the best
treatment. Further, notice we can be 95% confident that the combined therapy is at most 2.69
units less effective than the best treatment, whereas the biofeedback and diet treatments may
be as much as 21.02 and 23.52 units less effective, respectively. Even though our single best
guess is that the combined treatment is best, the data are not strong enough for us to eliminate
biofeedback and diet from consideration. A larger sample size would have given us more power
to detect the best treatment.

Suppose we are not interested in estimating the extent to which the best treatment is truly
best. In this case, we should form constrained intervals. The bottom half of Table 5.13 shows
that the first step is to find the group with the smallest sample mean, which is the combined
therapy group in our data. The top half of Table 5.15 shows one-sided Dunnett upper limits
obtained from SAS in accordance with Step 2 of Table 5.13. The next section of Table 5.15
shows lower limits obtained as described in Step 3. The final section of the table shows the
results of applying Steps 4 and 5, where values of zero are assigned and an interval is formed
for the combined treatment group. The intervals for both the combined and the biofeedback
groups contain zero, so we can be 95% confident that one of them is the best treatment. In
other words, we can rule out drug and diet as possibly being the best treatment. Notice that for
these data, forming constrained intervals allowed us to rule out more treatments than we were

TABLE 5.15
ONE-SIDED DUNNETT INTERVALS TO IDENTIFY THE BEST
TREATMENT FOR HYPERTENSION

Upper Limits

Group Difference Simultaneous 95%
Comparison Between Means Confidence Limits
1-4 15.000 ~—Infinity 25.233
3-4 11.667 —Infinity 21.899
2-4 9.167 ~Infinity 19.399
Lower Limits

Group Difference Simultaneous 95%
Comparison Between Means Confidence Limits
1-4 15.000 4.767 infinity***
3-4 11.667 1.434 infinity***
2-4 9.167 —1.066 infinity
Final Confidence Limits

Lower Limit Upper Limit

Group 1 Drug 0.00 25.23
Group 2 Biofeedback —1.07 19.40
Group 3 Diet 0.00 21.90
Group 4 Combined —19.40 1.07
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able to do with unconstrained intervals. However, if the data had allowed us to identify a single
group as best, constrained intervals would not have allowed us to estimate how much better
this group is than the remaining groups, reflecting the trade-off we have previously mentioned.

Fisher's LSD (Protected 1)

We finish this section with a description of yet one other method, Fisher’s least significant
difference (LSD). Notice that this method appears in the second row of Table 5.2. Because it
does not allow us to establish confident directions, much less confidence intervals, we generally
recommend against its use. It may seem strange, therefore, that we have decided to include it in
this chapter. Our primary purpose in including it is to illustrate why we believe it suffers from a
serious shortcoming. However, another reason for including it is that Levin, Serlin, and Seaman
(1994) have shown that this general shortcoming is not a problem in the very special case of
three groups. For reasons we will explain momentarily, in this specific situation, Fisher’s LSD
may be useful.

Fisher (1935) developed a procedure known as Fisher’s LSD method or, equivalently, as the
protected #-test method. Although this technique was developed nearly 20 years earlier than
the other multiple-comparison methods described in this chapter, it is still in use today, partly
because of its simplicity. The test proceeds in two stages. First, the omnibus null hypothesis is
tested. If it is not rejected, no further tests are performed; if it is rejected, the process continues
to the second stage. At this stage, individual contrasts among the groups are tested using an apc
level of .05 for each contrast. Traditionally, only pairwise contrasts are tested in the second step
{Fisher developed the procedure for this purpose), but as Keppel (1982) and Levin, Serlin, and
Seaman (1994) point out, the logic of the procedure does not rule out complex comparisons in
the second stage. The LSD has another advantage besides its simplicity—the critical values at
the second stage are less than those for the Bonferroni, Tukey, or Scheffé methods. This is true
because the LSD uses an apc of .05, whereas the others use an agw of .05. The implication
is that the LSD has more power to detect true differences. You may be thinking that this is an
unfair comparison, however, because the objective of a multiple-comparisons procedure is to
control agw at .05.

We now consider whether the LSD succeeds in maintaining agw at .05. The basic logic
behind the LSD is that, because it requires a statistically significant omnibus F value, in only
5 of every 100 studies (in the long run) will the process mistakenly lead to Stage 2, when
in fact all the population means are equal. Even if the second stage were to always produce
a statistically significant result, only 5% of the time would a Type I error be committed, be-
cause the omnibus test of Stage 1 protects tests performed in the second stage. It seems that
by requiring the omnibus test to be significant before testing individual contrasts, the goal
of maintaining agw at .05 is accomplished. Indeed, the reasoning to this point is valid. As
long as all a population means are equal (i.e., the complete null hypothesis is true), agw
is held at .05 by the LSD. However, suppose that some but not all of the null hypothesis
is true. For example, with ¢ = 11, it might happen that the first 10 groups all have identi-
cal population means. The 11th treatment, however, has been included in the study because
prior evidence suggests it to be very different from the first 10. If the 11th group is differ-
ent enough from the first 10, the omnibus null hypothesis will be rejected with a probability
approaching 1.0 for a large enough sample size. Conceivably, then, the second stage of the
LSD will be reached with a high probability. Now, however, the LSD offers no further pro-
tection for contrasts among the first 10 groups. In other words, there is no protection for
that part of the complete null hypothesis that is true. If all pairwise contrasts among the 10
truly identical groups are performed, the probability of at least one significant result using

TLFeBOOK



230 CHAPTER 5

apc = .05 is approximately .60. Thus, in 60 of every 100 such experiments (in the long run),
a Type 1 error would be committed. Thus, the LSD fails to maintain agw at .05, except
in the special case where the entire null hypothesis is true. None of the other approaches
(Bonferroni, Tukey, Scheffé, or Dunnett) suffer from this limitation—they all maintain agw
at .05 under all circumstances as long as the basic ANOVA assumptions are satisfied. In-
deed, as mentioned earlier, Tukey’s method is referred to as the wholly significant difference
(WSD) precisely because the whole set of pairwise contrasts is protected at .05 with his ap-
proach.

Levin, Serlin, and Seaman (1994) realized that the flaw disclosed in the previous paragraph
is no longer applicable in the special case of three groups. In particular, they point out that
there are three relevant patterns of possible population means with three groups:

1. All population means are equal.
2. Two of the population means are equal to one another (but the third mean is different).
3. All three population means are different from one another.

Levin, Serlin, and Seaman (1994) then explain why the LSD performs satisfactorily in any of
these three situations. First, if all population means are equal, the omnibus test will reject only
5% of the time, so the procedure moves to the second stage only 5% of the time, which means
that the experimentwise error rate will be at most 5%. Second, if one of the means is different
from the other two (i.c., case b), the second stage will generally be reached more than 5% of
the time. However, once it is reached, there is only one true null hypothesis, so testing it at
the 5% level is perfectly appropriate and succeeds in controlling agw at .05. Third, if all three
population means are different from one another, there are no true null hypotheses to test, so
no Type I errors can be committed. Thus, Fisher’s LSD successfully controls agw at .05 in
the special case of three groups, and can be recommended in this specific situation. However,
even in this favorable situation, it does not allow the formation of appropriate simultaneous
confidence intervals, so its use is restricted to hypothesis testing.

Several other methods have been developed that in many ways represent a compromise
between the LSD and Tukey’s approach for testing pairwise comparisons. Two of the most
widely used compromises are the Newman—Keuls and the Duncan procedures. Both are referred
to as either multiple-range tests or layered methods, because they involve testing ranges between
groups in a layered fashion. Unfortunately, both of these methods suffer from the same liability
as Fisher’s LSD (with more than three groups) in that they do not necessarily control agw at
.05. Thus, we recommend against their use. More recently, other alternatives, such as REGW-
Q and REGW-F, have been developed and included in statistical packages. These methods
succeed in properly controlling «gw at .05. Their major liability is that although they succeed
in properly identifying true differences in population means, they do not allow a statement of
confident directions or the formation of confidence intervals. In this sense, they are appropriate
only in a rather special case where the only goal is to establish differences without regard to
the direction and magnitude of those differences.

FALSE DISCOVERY RATE

A recurring theme throughout this chapter has been the importance of the distinction between
the per-comparison error rate and the experimentwise error rate. In 1995, Benjamini and
Hochberg introduced yet another way of conceptualizing error rates in the presence of more
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than one test per experiment. They called their new conceptualization the “false discovery
rate” (FDR). Although as of this writing it is still a newcomer in the long history of multiple
comparisons, it has nevertheless begun to attract quite a bit of attention, because in a practical
sense it represents a compromise between the more traditional ideas of the per-comparison
error rate and the experimentwise error rate.

The motivation behind the FDR stems from a desire to control the proportion of false
discoveries that appear in the literature. By “false discoveries,” Benjamini and Hochberg
(1995) mean false rejections of the null hypothesis (i.e., Type 1 errors). What is different
about the FDR is that Benjamini and Hochberg (1995) define it in terms of the total number
of discoveries, that is, in terms of the total number of rejected hypotheses, some of which may
have been falsely rejected, but others of which may have been correctly rejected. The idea
here is to make certain that the proportion of false discoveries relative to total discoveries is
kept appropriately small, such as at the 5% level. It turns out that defining error rates in this
way leads to methods that are less prone to Type I errors than are methods that simply control
the per-comparison alpha level, but are often more powerful than methods that control the
experimentwise alpha level. In a moment we will look at FDR in more detail, but its essence
can be thought of in terms of the following fraction:

number of false rejections

number of total rejections

The goal of the FDR is to control the average value of this fraction. In other words, we want
to use a method that ensures that only a small fraction of the discoveries (i.e., statistically
significant results) we report are unbeknownst to us false discoveries.

We need to consider three additional aspects of the FDR:

1. Exactly how is controlling FDR different from controlling ogw ?
2. What methods provide appropriate control of the FDR?
3. Under what types of circumstances might the FDR be most appropriate?

In order to understand the FDR, it is first helpful to revisit exactly what it means to control
oEw. Suppose an experiment involves testing m null hypotheses. Define a variable P whose
value depends on the outcome of the experiment in the following manner:

P = 0if no true null hypotheses are rejected.
P =1 if one or more true null hypotheses are rejected.

Thus, in any single experiment, P will have a value of either O or 1. As a thought experiment, we
could contemplate replicating any given study over and over again many times. Each time we
will record the value of P. (Of course, in actual research, we never know with certainty
which if any null hypotheses are true, but remember that this is a thought experiment.) Across
replications, our values of P will be a string of zero’s and one’s, where we would hope that the
zero’s predominate. What it means from this perspective to control agw at .05 is that the average
value of P is at most .05. In other words, in the long run, only 1 time out of 20 will an experiment
contain a false rejection of the null hypothesis. Thus, from this perspective, if our goal is to
control agw at .05, we need to use a method that leads to an average value of P no larger than .05.

How does this compare to the FDR? Once again, consider an experiment consisting of m
hypothesis tests. Now, however, define a variable Q whose value depends on the outcome of
the experiment in the following manner:
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Q = 0if no true null hypotheses are rejected.
Q0 =V/(V+S) if V true null hypotheses are rejected and S false null hypotheses are
rejected.

Notice the relationship between Q and the fraction we defined a few paragraphs ago. Whenever
V + S is greater than zero, Q is literally the fraction of falsely rejected null hypotheses relative
to the total number of rejections. In cases where V + S equals O, the fraction is itself considered
to be zero, because no Type [ errors have been committed. In general, then, we can regard Q as
an index of the number of false rejections relative to the number of total rejections. Whereas
apw is defined as the average value of P, FDR is defined as the average value of Q.

Thus, to better understand the FDR, we need to better understand Q. First, let’s consider
a situation where (unbeknownst to us) all m null hypotheses we are testing are true. Notice
then that § = 0 in every replication, because we have no false null hypotheses available to
be rejected. Because § = 0 in every replication, Q takes on either of two values. If we do
not reject any true null hypotheses in a specific replication, Q = 0. However, Q = 1 anytime
we reject one or more true null hypotheses. As a result, in this situation, we will get a string
of Q values consisting of zero’s and one’s. The crucial point to realize is that this string of Q
values will be identical to the string of P values we would obtain for the same replications.
Thus, FDR and agw will be the same here. In general, when all null hypotheses being tested
are true, FDR and agy are equal to one another.

What if some of the null hypotheses we are testing are false? In particular, suppose we test
10 null hypotheses, where 7 of them are true and 3 are false. Suppose we decided to use a
per-comparison alpha level of .005 in order to control @gw. What would our string of values for
P look like? The string necessarily consists of zeros and ones, and in this case the proportion
of one’s would be something less than .05. What about our string of values for Q? Assuming
we still use a per-comparison alpha level of .005, Q will equal zero for any specific replication
in the string if and only if P = 0 for that same replication. But what about when P = 1?7 In
this instance, Q will tend to be less than 1, because S will tend to be greater than 0 to the extent
that we have reasonable power for testing our three false null hypotheses. For example, as the
power of each of these tests approaches 1.0, S will approach a value of 3 for every replication,
which means that the ratio of Vto V 4 § is likely to be 0.25 (except when we falsely reject
more than one of the seven true null hypotheses in the same study). The practical point is that
the average value of the string of Q values will be noticeably less than the average value of the
comparable string of P values. In other words, when some of the hypotheses we are testing are
false, FDR will be less than apw. Thus, we can allow agw to exceed .05 and yet succeed in
controlling FDR at .05 when some of our hypotheses should be rejected because they are false.
In such a situation, deciding to control FDR instead of agw provides more power to detect
those hypotheses that should in fact be rejected.

To pursue the difference between FDR and agw one step further, we will continue to consider
our hypothetical study involving a total of 10 hypotheses, 7 of which are true and 3 of which
are false. Suppose we used a critical value for each comparison so that 80% of the time none of
the true null hypotheses were rejected, but 20% of the time at least one false rejection occurs.
In this instance, 80% of our P values would be zero, and 20% would be 1. Thus, agw would
equal 0.20, a rate likely to be deemed too large. Now consider our values of Q using the same
critical value. As with P, 80% of our @ values will equal zero. But what about the other 20%?
For simplicity, suppose we have power close to 1.00 for rejecting the three false hypotheses.
Then the remaining 20% of @ values will tend to equal 0.25 (i.e., 1/(1 + 3), because only
rarely will we reject more than one of the true nulls, and we will almost always reject all three
of the false nulls). What will the overall average of O equal here? If 80% of values are zero

TLFeBOOK



TESTING SEVERAL CONTRASTS 233

and 20% of values are 0.25, the overall average will equal 0.05. Thus, the same critical value
that produces an experimentwise error rate of 0.20 produces an FDR of 0.05. We would almost
certainly decide that our decision rule is unacceptable in terms of agw and thus be forced to
increase our critical value, inevitably lowering power to detect true differences. However, the
original critical value would presumably be judged as acceptable in terms of FDR, so we would
proceed with the smaller critical value and hence enjoy the benefits of greater power.

Suppose we decide to use FDR as the basis for controlling our error rate in the face of
multiple hypotheses. What method can we use to ensure proper control of the FDR? Before
answering this question, remember that we have seen throughout this chapter that the choice
of method depends on two dimensions: the definition of error control and the type of contrast
being tested. Recall that these two dimensions are reflected in Table 5.2. The situation is no
different when controlling the FDR in the sense that different methods are appropriate for
different types of contrasts. However, the situation for the FDR is further complicated by the
fact that this is a newly emerging area of research, so new suggestions about ideal methods
for controlling the FDR continue to appear. We cannot possibly do justice to the entire topic
here, so instead we have chosen to present a single method that is applicable for either of two
situations: testing independent (i.e., orthogonal) hypotheses and testing pairwise comparisons.

The name of the specific method we will present is Benjamini and Hochberg’s Linear Step
Up procedure. Benjamini and Hochberg (1995) have shown that this method controls the FDR
for independent tests, and Keselman, Cribbie, and Holland (1999) have shown that it controls
FDR for pairwise comparisons. However, other methods are needed for testing other patterns
of hypotheses where test statistics may be correlated with one another. Benjamini, Drai, Elmer,
Kafkafi, and Golani (2001) describe a slightly more complicated procedure that controls FDR
for any arbitrary pattern of correlated test statistics.

The Linear Step Up (LSU) procedure begins by rank ordering the p values obtained from
testing each of the m hypotheses. Specifically, the p values are ordered from smallest to largest.
The LSU begins with the largest p value. If this p value is less than .05, all null hypotheses
are rejected. If this p value is greater than .05, the hypothesis corresponding to this p value is not
rejected, and the procedure moves on to consider the next p value in the ordering. If this second
largest p value is less than ((m — 1)/m).05, this hypothesis and all remaining hypotheses are
rejected. However, if the p value is greater than ((m — 1)/m).05, then this hypothesis is not
rejected, and the procedure moves on once again to consider the next p value in the ordering. No
hypotheses at all are rejected if the procedure reaches the smallest p value and it exceeds .05/ m.

Notice that the alpha levels of the LSU procedure reveal how it represents a compromise
between per-comparison control and experimentwise control. In the LSU, the largest p value
is compared against .05, which corresponds to the per-comparison alpha level. The smallest
p value is compared against .05/m, which corresponds to the experimentwise alpha level. All
other p values are compared against intermediate values. The LSU procedure can be described
more formally as consisting of the following steps, for testing a total of m hypotheses:

1. Rank order the p values from smallest to largest.

Assign an index value i to each p value to represent its rank. The smallest p value is

assigned an index value 7 of 1, the next smallest is assigned an index value / of 2, and

so forth, up to the largest p value, which receives an index value of m.

Compare each p value to (i /m) , where « is the desired value of the FDR (usually .05).

Define & to be the largest value of i for which the observed p value is less than (i /m) or.

5. All hypotheses with index values less than or equal to k are rejected, whereas all
hypotheses with index values larger than £ are not rejected.

6. If all observed p values are larger than (i /m) «, no hypotheses are rejected.

B w
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To see how the LSU procedure works, let’s consider an example where m = 5 and we want
to control FDR at .05. Suppose we obtained the following five p values: .029, .026, .167, .048,
and .001. How can we assess the statistical significance of each corresponding hypothesis?
‘We begin by ranking the p values from smallest to largest, which yields .001, .026, .029, .048,
and .167. We then compare the largest p value of .167 to (5/5).05. The observed p value is
larger than .05, so we do not reject this hypothesis and instead move on to the next p value. We
compare this p value of .048 to (4/5).05. Once again, the observed p value of .048 is larger
than .040, so we again move on to the next p value. This time we compare the p value of
.029 to (3/5).05. Now .029 is less than .030, so we reject the hypothesis corresponding to this
p value. Formally, we have determined that k = 3 for these data, so according to Step 5 above,
we reject the hypotheses associated with the three smallest p values. Notice that we do so even
though the second smallest p value of .026 would not have been less than (2/5).05. As soon
as we identify a p value smaller than (i /m).05, testing stops.

Under what types of circumstances might we prefer to define error control in terms of
FDR instead of agw? Any answer to this question is necessarily somewhat subjective. Before
providing any type of answer, it is essential to realize that the FDR is a different way of thinking
about error control. Only when all null hypotheses are true is FDR identical to ogw. Thus,
whenever at least one null hypothesis is false, choosing to control FDR at .05 necessarily
means that apw is being allowed to exceed .05. Whether this is good or bad depends on
one’s perspective. At any rate, such authors as Benjamini and Hochberg (1995); Keselman,
Cribbie, and Holland (1999); and Williams, Jones, and Tukey (1999) have suggested a variety of
situations where FDR might be preferred to agw. Examples include exploratory studies where
discovering unexplored results may be more important than in later stages of confirmatory
research. Similarly, in neuroscience, hypotheses involving brain activity may be tested in a
very large number of areas of the brain, in which case controlling ¢gpw may wreak havoc with
power. Instead of ignoring the problem altogether and using a per-comparison alpha level, FDR
may be an appropriate compromise, especially when statistically significant results obtained
for regions for a single individual can then be compared across individuals. Yet other examples
are designs with multiple subgroups and multiple dependent variables.

CHOOSING AN APPROPRIATE PROCEDURE

The practical implication of this chapter is that we have recommended five multiple-
comparisons procedures for general use: Bonferroni, Tukey, Scheffé, Dunnett, and Hsu.
Figure 5.1 is a flowchart (i.e., a decision tree) that is intended to provide a general guide-
line for choosing from among these four procedures in a particular situation. We should stress
the phrase “general guideline” here; it is important that you understand the principles we have
presented in the chapter so that you can use this flowchart as an aid in choosing a technique
without being at the complete mercy of a set of mechanical rules to follow blindly. For example,
you may want to consider the FDR as an appropriate measure of error control, but we have not
attempted to incorporate this conceptualization into Figure 5.1. Similarly, keep in mind that
Fisher’s LSD properly controls agw in the special case of three groups, but even there it does
not allow for simultaneous confidence intervals. For this reason, we have excluded it from the
figure, but if you are content with hypothesis tests unaccompanied by confidence intervals, you
may want to consider the LSD with three groups. For these and other reasons, the flowchart is
meant to help you organize some of the issues of this chapter, but it cannot possibly reflect all
of the nuances we have discussed.

We would be remiss if we did not take a moment to explain where the omnibus test of
Chapter 3 fits into this framework. In particular, it is important that you understand that the
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FIG. 5.1.
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omnibus test is not a prerequisite for the Bonferroni, Tukey, Dunnett, or Hsu procedures.
Instead, these methods should be viewed as substitutes for the omnibus test because they
control agyw at the desired level all by themselves. Requiring a significant omnibus test before
proceeding to perform any of these analyses, as is sometimes done, only serves to lower agw
below the desired level (Bernhardson, 1975) and hence inappropriately decreases power.

The proper role of the omnibus test is that it addresses a global question of whether any
differences exist among the groups. At times, this is an important question in its own right,
independently of the likely desire to proceed by investigating which specific groups differ
from one another. In this case, the omnibus test should be viewed as a precursor to Scheffé’s
method. As discussed earlier, if the omnibus test is statistically significant, there is at least one
contrast that will be statistically significant with Scheffé’s method, namely a contrast whose
coefficients are given by

cj=niY;-7) (18, repeated)

Thus, a statistically significant omnibus test is a signal that it is worthwhile to search for
significant contrasts. On the other hand, if the omnibus test is nonsignificant, searching for
any significant contrast is pointless, because none exists. Thus, the omnibus test serves a very
definite purpose, but it does so only when neither the Bonferroni, Tukey, Dunnett, or Hsu
procedures are appropriate for addressing an investigator’s questions.

As further assistance, Tables 5.16 and 5.17 summarize the procedural details for the
Bonferroni, Tukey, and Scheffé procedures. Table 5.16 provides formulas for hypothesis

TABLE 5.16
TEST STATISTICS AND CRITICAL VALUES
FOR MULTIPLE-COMPARISONS PROCEDURES

Test Statistic Critical Value
Assuming Homogeneity of Variance
~ a
Bonferroni Wy / MSw Y (cf/nj) Fos;c;1.N-a
L j=1 J
ngnp(¥g — Y1)
Tuke i S AN S N )2 /2
ey (ny +n)MS,, (9.05;a,N-a)"/
. o (2, _
Scheffé W) MSw Y {c ci/nj ] (a — 1)Fps.a-1.N-a
L =l
Without Assuming Homogeneity of Variance*
. 2 [« 2
Bonferroni W Z( /"1) Fosscindf
Y, — Vp)?
Tukey Lsgz_-st) large n: (¢ 051 df) 2
8 Lk small n: V2
ng + . 05;a.df
Scheffé W / [Zl( 3/";)53] @ = DF 5014
j=
2
a
b c}s;‘?/n i
j=1

*For all procedures, df = y 3
3 (c?s}/nj) fn; = 1)
Jj=1
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TABLE 5.17
FORMULAS FOR FORMING SIMULTANEOUS CONFIDENCE INTERVALS

Assuming Homogeneity of Variance

a
Bonferroni ¥+ /Fos/ciin—a |MSw 3. (Cﬁ/"j)
=
- = 1 1
Tukey Ty~ Vot usan-o /D 5w (=4 L)
ng  np
. a
Scheffé ¥ E @~ DFosa—1.8-a (MSw 2 (Cjz-/ﬂj)
j=

Without Assuming Homogeneity of Variance*
N a
Bonferroni V£ [Fosscodf, 'Zl [(c?/nj)sjz.]
j=

Tukey large n: (Y, — Yp) (q.os;a.df/‘/i) (sgz/ng) + (s,f/n;,)

small n: (¥, — ¥i) & V.OS:a.df (sg/ng) + (sg/nh)

Scheffé VENCE 1)F.05;a—1.df ,Zal [(cﬁ/nj)sf]
V}=
2

(i C?S?/nj)
j=1

i (C?Sj;/nj)z/(nj -1

j=1

*For all procedures, df =

testing, and Table 5.17 provides formulas for forming simultaneous confidence intervals. Both
tables provide procedures to use when homogeneity of variance is assumed, as well as when
it is not. Although the entries in the tables assume that agw has been set at .05, other values of
agw could be substituted for .05.

In closing, we should mention that research on muitiple-comparisons procedures is very
active in the field of statistics. Readers who are interested in more details are advised to consult
Hsu (1996), Toothaker (1991), Hochberg and Tamhane (1987) or Wilcox (1987a, 1987b).

EXERCISES

1. An investigator decides to test the following four contrasts in a five-group study:

¥ 1 -1 0
Yo 0 0 — 0
¥ 1 1 - - 0
Yg 1 1 ~4

Find the agw level if each contrast is tested with an apc level of .05.

*2. Aresearcher has conducted a five-group study. She plans to test the following pairwise comparisons:
L] VETSUS [L3, fa VEISUS (3, and fi4 VEISUS fis.
a. What multiple comparisons procedure should be used to maintain the agy level at .05?
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b. What will the critical F value be for each contrast, if there are 13 participants per group?

¢. Suppose that after looking at the data, the researcher decides to replace the comparison of
versus u3 with a comparison of u3 versus p4. What multiple-comparisons procedure should be
used to maintain the agw level at .05?

d. What will the critical F value be in part c if there are 13 subjects per group?

€. What implications does the difference in critical values you found in Parts b and d have for
revising planned comparisons after having examined the data?

*3. The following summary data are obtained in a four-group study, with 25 participants per group:

Y,=52 Y,= 4 Y;=51 Y,=54
s2=96 52 =112 57 =94 52 =98
After examining the data, the experimenter decides to compare the means of Groups 2 and 4. He
finds that the mean difference is nonsignificant using Scheffé’s method.
a. Is he correct that this mean difference cannot be declared significant using Scheffé’s method?
(You can assume homogeneity of variance.)
b. Is there a better method available for testing this contrast that will maintain «gw at .05, al-

though the contrast was chosen post hoc? If so, can the contrast be declared significant with this
method?

4. The experimenter in Exercise 3 has decided to supplement his hypothesis test comparing Groups 2
and 4 with a confidence interval.

a. Use an appropriate method to form a 95% simultaneous confidence interval for the difference
between Groups 2 and 4, where this specific comparison has been chosen from the larger set of
all pairwise comparisons. You may assume homogeneity of variance.

b. The experimenter argues that the interval in part a could be formed using Equation 5.3 and setting
w equal to 1.99, because he is forming only this single interval. Do you agree? Why or why not?

*5. This problem asks you to reconsider the data from Exercise 13 in Chapter 4. The data are given
here once again:

Mean
Var (s%)

— N =) WO\ AN
o N O R\
~J

We assume that all pairwise comparisons are to be tested and that agw is to be maintained at .05.

Although all comparisons are of potential interest, this exercise only requires you to consider two

specific comparisons: Group 1 versus Group 2 and Group 3 versus Group 4.

a. Test the difference in the means of Groups 3 and 4, first using MSy as the error term and then
using a separate error term. How do the results compare?

b. Test the difference in the means of Groups 1 and 2, first using MSy as the error term and then
using a separate error term. How do the results compare?

c. Which error term do you think is more appropriate here? Why?

6. This problem uses the same data as Exercise 5. However, we assume here that the goal now is to
form confidence intervals instead of testing hypotheses. Assume that a confidence interval is to
be formed for each pairwise comparison, but as in Exercise 5, this exercise only requires you to
consider two specific comparisons: Group 1 versus Group 2 and Group 3 versus Group 4.

a. Form a 95% simultaneous confidence interval for y3 ~ pa4, first using MSy as the error term and
then using a separate error term. How do the results compare?
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b. Form a 95% simultaneous confidence interval for pu; — W, first using MSy as the error term and
then using a separate error term. How do the results compare?
c. Based on the respective confidence intervals, which error term do you think is more appropriate
here? Why?
*7. A graduate student has conducted a four-group study in which he tested the following three planned
comparisons:

1 2 3 4

¥ 1 -1 6 0
v» S5 5 -1 0
s 13 13 173 -1

The sums of squares for the three comparisons are 75, 175, and 125, respectively. The value of MSw

equals 25, and there were 11 participants in each group. The student’s adviser wonders whether the

omnibus F test of Hy : py = wo = 3 = g would be statistically significant for these data. Can

you help her?

a. Is it possible to perform the test of the omnibus null hypothesis from the available information?
If so, is the test significant? If it is not possible, explain why not.

b. Find the observed F value for each of the planned comparisons tested by the student. Which, if
any, are statistically significant with an agw level of .057

c. What relationship, if any, is there between the single observed F value of part a and the three
observed F values of part b?

8. A researcher has conducted an experiment with six independent groups of 12 participants each.
Although the omnibus F test was nonsignificant, he decided to use Scheffé’s method of multiple
comparisons. He claims that his calculations revealed that the average of the first three groups was
significantly different from that of the last three. How would you respond to his claim?

9. A graduate student has designed a study in which she will have four independent groups of seven
participants each. Parts a~h ask you to decide which multiple-comparisons procedure (MCP) should
be used to achieve maximal power while maintaining experimentwise alpha at .05. For each part,
tell which MCP she should use and briefly justify your answer.

. The student plans to test all pairwise comparisons.

. The student decides after having looked at the data to test all pairwise comparisons.

. The student plans to test only four pairwise comparisons.

. The student decides after having looked at the data to test only four pairwise comparisons.

. The student plans to test seven planned comparisons.

. After having looked at the data, the student decides to test seven specific comparisons.

. The student plans to test 20 planned comparisons. (Hint: The critical ¢ value for apc = .05/20

is 3.376.)
h. After having looked at the data, the student decides to test 20 specific comparisons.

® 0o 60 o

10. The following data were obtained in a four-group study:

WLt N
N =0 O
~N AR VL oW
Wb — WL

Mean 50 65 50 35
Var(s®) 20 43 36 23
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a. Are the four group means significantly different from each other?

b. Suppose all pairwise comparisons were investigated. If the agw level is maintained at .05, is the
difference between the means of Groups 2 and 4 significant? (You can assume homogeneity of
variance).

c. How can you explain the results of Parts a and b? What general pattern of means is most likely
to produce this type of result?

d. What does this example imply about the necessity of obtaining a statistically significant omnibus
test before using Tukey’s WSD method to test all pairwise comparisons?

*11. A professor has obtained the following data for a three-group between-subjects design:

Group  Mean SDs

1 10 10.00
2 10 14.00
3 22 12.41

There were 11 participants per group (i.e., 33 participants in all).

a. The professor claims that he can reject the omnibus null hypothesis. Do you agree? Show your
work.

b. Having allegedly found the three groups to be somewhat different, the professor uses Tukey’s
WSD method to test all pairwise comparisons. He claims that no differences were significant.
Do you agree? Show your work.

c. On the basis of the results found in Parts a and b, the professor argues that the omnibus test is
misleading. He concludes that he cannot state that there are any differences among these three
groups. Do you agree? Why or why not?

12. This problem uses the same data as Exercise 11. Suppose that the first two groups are active treatment
groups, whereas the third group is a placebo control group. Further suppose that the professor who
collected these data wants to form two confidence intervals, one comparing the first treatment group
to the control, and a second comparing the second treatment group to the control.

a. Because none of the comparisons of interest are complex, the professor uses Tukey’s WSD as
the basis for maintaining experimentwise alpha. What does the professor find when he forms
intervals based on this approach?

b. A colleague suggests to the professor that he should use Bonferroni instead of Tukey to ensure
simultaneous confidence here. Do you agree? Whether or not you agree, find the appropriate
intervals based on the Bonferroni approach.

c. A student suggests to the professor that another option might be to use Dunnett’s method to form
his intervals. Find the appropriate intervals using Dunnett’s method.

d. How do the intervals you found in Parts a—c compare to one another? Which method is best
here? Why?

13. A graduate student used a four-group between-subject design for her thesis. She had n = 11 par-
ticipants per group. Her sample means are ¥, = 12, ¥, = 13, Y3 = 20, and Y, = 19. The value of
MSw was 55.

a. Should she reject an omnibus null hypothesis that pt; = @y = 3 = p4? Show your work.

b. Based on her answer to part a, she decides to investigate which groups are different. She decides
to test all pairwise differences, assuming homogeneity of variance and using an appropriate
method for controlling familywise error rate. Does she obtain any significant differences? Why
or why not?

c. Her adviser asks her to compare the average of Groups 1 and 2 with the average of Groups 3 and
4, again controlling for familywise error rate. She argues in light of part b that testing the complex
comparison here is fruitless because tests of complex comparisons are more conservative then
tests of pairwise comparisons. Is she correct? Show your work or explain your answer.
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d. She has shown the results of Parts a—c to her adviser, who is thoroughly confused. He argues that
according to the results she claims to have obtained, she has shown that 12(Y,) and 20(Y5) are
not significantly different, but that 12.5 and 19.5 are, which is obviously absurd. Is his argument
correct?

e. Approaching this apparent contradiction through confidence intervals may be illuminating. Form
appropriate 95% simultaneous confidence intervals for the difference between Groups 1 and 3,
as well as for the complex comparison of the average of Groups 1 and 2 versus Groups 3 and 4.

f. Which interval(s) in part e contain zero? Which of the two intervals is centered farther from
zero? Is this the interval that does not contain zero? Explain this pattern of results.

14. In an experiment with five independent groups (5 participants per group), the omnibus F value
observed is 3.00, just barely significant at the .05 level. Noticing that the sample means are
Y, =10,Y,=10,Y; = 15,7, =20, and ¥5 = 30. It is decided to test the following post hoc
comparison: ¥ = —7Tp; — Tps — 203 + 3104 + 1345,
a. Find S§ for this comparison. Show your work.
b. What will the observed F value for this comparison be? Why?
¢. Will the result in part b be significant using Scheffé’s method? Why or why not?
d. What is the value of MSy here?

15. Dr. S. Q. Skew performed an experiment involving four treatment groups with 16 participants per
group. His research assistant performed an SPSS analysis of the data, but it did not answer all of
Skew’s questions. So far, Skew knows from this analysis that SS = 864 and SSw = 4320. He also
knows that the observed F for the pairwise comparison of Groups 1 and 2 is equal to 1.000 and
that the observed F for the pairwise comparison of Groups 3 and 4 is only 0. 111 (i.e,, literally
1/9). Because neither of these is significant, Skew wants to compare the average of the first two
groups versus the average of the last two groups. Unfortunately, unbeknown to Skew, his assistant
has lost the data. Knowing that you are a statistical whiz, the assistant comes to you desperate for
help. Your task is to test this third comparison for significance. Show your work. Also, assume that
Skew chose this contrast after having examined the data.

16. The following data are from a completely randomized (between-subjects) design:

1 2 3

48 59 68

54 46 62
47 49 53
54 63 59
62 38 67
57 58 71

Five psychologists analyze this data set individually, each with different goals in mind. Your task

is to duplicate the results obtained by each.

a. Psychologist 1 formulates three planned comparisons of interest: Group 1 versus 2, 1 versus 3,
and 2 versus 3. Perform these planned comparisons, assuming homogeneity of variance.

b. Psychologist 2 has no a priori comparisons, so she first performs the omnibus test. Following
this, all pairwise comparisons are tested for significance, assuming homogeneity of variance.
Once again, provide observed and critical values.

c. Psychologist 3 differs from psychologist 2 only in that he decides not to assume homogeneity
of variance for testing the comparison (don’t worry about this assumption for the omnibus test).
Once again, provide observed and critical values.

d. Psychologist 4 differs from psychologist 2 only in that she decides post hoc to test not only all
pairwise comparisons but also the average of Groups 1 and 2 versus Group 3. Like psychologist 2,
she assumes homogeneity. Once again, provide observed and critical values.

e. Psychologist 5 performs the same tests as psychologist 4. However, psychologist 5 has planned
to conduct these particular tests prior to examining the data. Homogeneity is assumed.
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17.

18.

19.

f. Finally, write a brief explanation (one to two paragraphs) of why the various psychologists did
not all arrive at the same conclusions regarding group differences. You need not specify one
approach as “best,” but you should explain the patterns of findings for these data. Also, you need
not discuss all findings in relationship to one another; instead, focus your attention on differences
that emerge and the reasons for such differences.

This problem uses the same data as Exercise 16. Suppose that these data were collected with the

specific goal of identifying the best treatment, where higher scores on the dependent variable are

considered better.

a. Assuming homogeneity of variance, use an appropriate method to form two-sided confidence
intervals for the best treatment. Write a brief interpretation of your findings.

b. Assuming homogeneity of variance, use an appropriate method to form one-sided confidence
intervals for the best treatment. Write a brief interpretation of your findings.

¢. How do your results in part b compare to your results in part a? Is the difference you found for
these data consistent with the general pattern of the difference between one-sided and two-sided
intervals for the best treatment? Explain your answer.

A psychologist has tested eight independent hypotheses. She has decided she wants to control the
false discovery rate for this set of hypotheses. The eight p values she has obtained are as follows:
.041, .022, 276, .010, .523, .003, .024, and .165.

a. Which, if any, hypotheses can she reject using an FDR of .05? Show your work or explain your
answer.

b. Suppose she had decided that it was important to control the experimentwise alpha level at
.05 for this set of hypotheses. Which, if, any hypotheses would she be able to reject from this
perspective?

c. Briefly explain types of situations where it might be justifiable to control FDR instead of agw
at .05.

A psychologist has tested 10 independent hypotheses. He has decided to control the false discovery
rate for this set of hypotheses at .05. The 10 p values he has obtained are as follows: .04, .15, .02,
.31, .06, .63, .01, .03, .46, and .08. Which, if any, hypotheses can he reject controlling the FDR at
.05? Show your work or explain your answer.
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Trend Analysis

In the examples considered in Chapters 4 and 5, the factor was qualitative in the sense that
the different groups that constituted the factor differed from each other in quality and not just
in quantity. For example, at the beginning of Chapter 4, we discussed a study that compared
four treatments for hypertension: drug therapy, biofeedback, dietary modification, and a com-
bination of these approaches. Although we could assign the numbers 1, 2, 3, and 4 to the four
treatments, it is not at all clear which treatment should be assigned a 1, which a 2, and so forth.
In other words, we cannot describe the treatments in terms of differences in magnitude of a
single quantity. In this sense, we might say that the treatment levels form a nominal scale. We
have simply formed four groups, which serve to classify participants.

QUANTITATIVE FACTORS

Let’s now consider a different experiment. Suppose young children are given a fixed length of
time to study a list of words to be memorized. One group of children is allowed 1 minute to
study the list, another group gets 2 minutes, a third group gets 3 minutes, and a fourth group
gets 4 minutes. The distinction among the groups in this study can be described in a purely
quantitative manner, unlike the groups in the hypertension study. As a result, we say that we
have a quantitative factor in the memory study.

What difference does it make whether we have a quantitative factor? As we will see shortly,
up to a point it does not matter because we still typically want to compare group means
by testing contrasts, just as we did in Chapters 4 and 5. However, we consider quantita-
tive factors to be a separate topic here because the particular contrast coefficients we will
choose (i.e., the ¢; terms) will usually be different for quantitative factors than for qualitative
factors.

Testing contrasts of levels of a quantitative factor is often referred to as trend analysis.
Another term that is frequently used to describe this form of analysis is the method of orthogonal
polynomials. The meaning behind these terms will become clear as we develop the underlying
concepts. For the moment, to keep things in perspective, it is important to remember that what
we are about to discuss simply involves testing contrasts. What we will develop is a special case
of what we’ve already developed in Chapter 4. Indeed, the only really new idea to be presented
here can be thought of as finding a method for choosing appropriate contrast coefficients to
test the hypotheses in which we are interested.

243
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Before we jump into the statistical aspects of trend analysis, it may be helpful to say a bit
more about when trend analysis might be used. Trend analysis is almost invariably used anytime
the factor under investigation is quantitative. A moment’s reflection should convince you that
psychologists and other behavioral scientists are often interested in the effects of quantitative
factors. Examples of quantitative factors whose effects behavioral scientists might examine
are the amount of study time in a memory task, number of hours of food deprivation, number
of hours of sleep, number of reinforcements, frequency of reinforcements, drug dosage, and
age. We should also stress that this chapter is concerned only with trend analysis in between-
subjects designs, that is, designs where each level of the factor consists of different groups of
subjects. Beginning with Chapter 11, we consider within-subjects designs, where each subject
is observed at every level of the factor. As we will see later in the book, trend analysis is
also useful for studying quantitative factors in within-subjects designs. Thus, the concepts we
develop now are useful later in the book as well, although some of the specific formulas in the
two designs are different from one another.

Readers who are familiar with regression analysis may wonder how the trend analysis
methods to be presented in this chapter compare to regression. There are close connections
between the two approaches, especially in between-subjects designs. Tutorial 2 on the data
disk provides a brief introduction to regression, whereas Appendix B, Part 1 focuses on the
relationships between analysis of variance and regression analysis. Although in some ways
trend analysis and regression analysis could be regarded as two variations of the same basic
method, they can be distinguished in practice. The choice between the two approaches depends
primarily on the extent to which the quantitative factor is best regarded as continuous (with
many distinct values) versus categorical (with a relatively small number of discrete values).
In particular, regression analysis is more useful than trend analysis when the majority of
individuals have unique scores on the predictor variable. For example, suppose the predictor
is mother’s IQ score, and the dependent variable is child’s IQ score. In this case, there are
likely to be many values of the predictor, and relatively few mothers will have exactly the
same IQ score, making regression the method of choice here, instead of trend analysis. On
the other hand, if there are relatively few distinct values of the predictor and there are several
individuals with scores at each of these values, trend analysis offers advantages over regression
analysis. Exercises 11 and 12 at the end of this chapter present an opportunity to compare
trend analysis and regression as applied to the same data and show how trend analysis can
be advantageous for certain types of data. Even so, we should stress that there are certainly
situations where regression analysis is preferable. Along these lines, rarely is it useful to
categorize a continuous variable in order to perform a trend analysis. Instead, if the variable is
best regarded as continuous, it is almost always preferable to leave it in a continuous form and
use regression analysis instead of trend analysis to investigate its relationship to the dependent
variable.

STATISTICAL TREATMENT OF TREND ANALYSIS

To motivate the statistical treatment of trend analysis, consider the data shown in Table 6.1.
These data are intended to represent recall scores of 24 children assigned to one of four
experimental conditions. Each child is allowed a fixed period of time to study a list of 12
words. Six of the children are randomly assigned to a condition where they are given 1 minute
to study the words, a second group is given 2 minutes, a third group is given 3 minutes, and
the fourth group is given 4 minutes. The dependent variable is the number of words the child
recalls after a brief interference task.
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TABLE 6.1
HYPOTHETICAL MEMORY DATA
Study Time
1 Minute 2 Minutes 3 Minutes 4 Minutes
2 6 6 11
3 8 8 10
1 S 10 7
2 3 5 9
0 7 10 8
4 7 9 9
Mean 2 6 8 9
12 -
1M - X
10 — % X
9 X X
8 X X X
7+ % X
§ 6 - X X
&
5+ X X
4 - X
3+ X X
2 X
1+ X
O X
2 3 4
Study time

FIG. 6.1. Scatterplot of recall scores as a function of study time.

How should the data of Table 6.1 be analyzed? Although we could certainly apply the
analysis of variance (ANOVA) techniques of Chapter 3 to these data, these techniques would
not take advantage of the quantitative nature of the experimental manipulation. To capitalize
on the quantitative nature of the factor, we instead consider the data from the standpoint of
regression, which is introduced in Tutorial 2 on the data disk. We will shortly see that even
from a regression perspective, trend analysis of quantitative factors becomes a matter of testing
contrasts of group means.

To understand the motivation behind trend analysis, it is helpful to examine a visual rep-
resentation of the data of Table 6.1. Figure 6.1 shows a scatterplot of recall scores plotted as
a function of study time. This figure strongly suggests that recall improves with increases in
study time, just as we would expect in an experiment of this sort. To formalize this intuition, we
might develop a model that specifies that recall is a linear function of study time. As discussed
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in Tutorial 2, the equation for a straight line consists of an intercept and a slope. If we let ¥;
represent the recall score for Individual i in Group j, and if we let X;; be that same individual’s
level of study time, an appropriate model is given by

Yii =B+ B Xy +s (D

where fy is the population intercept of the straight line, g, is the population slope, and ¢;
is an error term. We can immediately simplify this equation by dropping the i subscript
from the X;; term because every individual in Group j has the same score on X. For ex-
ample, in our recall study, X;; = 1 for all i, because every participant’s X score in group
1 is 1 minute. Thus, we can simply say that X; = 1. Rewriting Equation 1 in this fashion
results in

Yii=Bo+ 5 X; + & (2)

The Slope Parameter

As usual, the task is to estimate parameters and test hypotheses concerning these parameters
in our model. In our situation, we are primarily interested in the slope parameter (8;), be-
cause it reflects the extent to which X is linearly related to Y. As shown in most elementary
statistics textbooks, the general formula for the least-squares estimate of the slope parameter is
given by

B = {Z 3 Xy - D)Wy - 7)] >3 - % 3)
j=1 i=1 j=1 i=1

where X and Y are the sample means of X and Y, respectively, averaged across all subjects in
the study regardless of group. Equation 3 can be simplified through several steps. First, as we
saw before, X;; can be replaced by X ;. This substitution results in

ﬁ1=[z’

j=1 i=1

a nj

(X; - X) (¥ — ?)] Yy & -%

j=1 i=1

Second, to simplify the notation, we represent X ; — Xasc ;. Notice that ¢; is then simply a
deviation score on the X variable (i.e., it represents distance from the mean in either a positive
or a negative direction). The reason we have chosen c; as the symbol for this deviation score
will become apparent momentarily. With this substitution, the equation simplifies to

a n; a nj
B = [Z c; (Yy ~Y)] Y3 e
j=1 i=1 j=1 i=1

i i

Third, the c; term can be moved outside the summation over i because c; is a constant for
every i. This yields

b= [ichij —ﬂ]/i njc;
Jj=1 i=1 Jj=1
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After some additional algebraic manipulation,the numerator of Equation 3 ultimately simplifies
to Y_%_; c;n;Y ;. Making this substitution yields

f=3onm, [Sne

Equation 4 thus provides the formula for estimating the slope relating X and Y. Although
applying Equation 4 is relatively straightforward, the conceptual implications of the equation
are much clearer if we make a simplifying assumption that each group has the same number
of subjects. In other words, we assume that there are the same number of subjects at each level
of X, in which case n = n; = - - - = ng, so that n; can be replaced with just n. Substituting
n for n; in Equation 4 yields

[

“

\.

a a
B = E cinY; E nc;
j=t1 j=1

We can factor out the n term in both the numerator and the denominator, leaving

&)

a —
ZIC;'Y;'
~ ]=
pr=——
2

Several points about Equation 5 must be made here. First, notice that the estimated slope
B1 depends only on the sample means ¥ ; and not on the values of the individual Y;; data
points. Thus, the extent to which we estimate X and Y to be linearly related depends in some
manner on how the Y ; values relate to X. Second, notice that the term D i1 € Y; is simply a
sample contrast, as shown in Equation 4.40. We typically require that the contrast coefficients
sum to zero, that is, E j=1Cj = = (. This condition will be met for trend analysis, because
E‘;‘:l cj = Z?=1 (X; — X) = 0 as long as we have equal n. In fact, using our earlier notation
for contrasts, we could write

ﬁlinear = Z Cj?j 6)
=1

so that

Bl = Ijzlineau'/z C? ©)
Jj=1

The estimated regression slope simply equals the sample value of the linear contrast divided
by the sum of squared c¢; values. Thus, the slope can be found by forming a contrast, just as we
discussed throughout Chapter 4. Third, as always, the defining characteristic of the contrast
comes from the coefficients used to form the contrast. In other words, the slope of a linear
trend can be found by forming a contrast of the group means on Y ;, where the coefficients
take on a special form, namely

ci=X;-X @)
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as long as we have equal n. With unequal », the same idea applies, but the formulas become
more complicated, as we will see later in the chapter.

Numetrical Example

How can we apply what we have done so far to our numerical example? From Equation 7, the
estimated slope for our data is

B 1= 12}1inear / Z 03 (7, repeated)
j=1

where
a f—
Y linear = Z c;Y; (6, repeated)
=1

Table 6.1 shows that Y; =2,Y, =6, Y; =8, and Y, = 9 for our data. The contrast coeffi-
cients are defined to be

ci=X;-X (8, repeated)

For our data, X; = 1, X; =2, X3 = 3, and X4 = 4. Thus, the mean X is X = 2.5. The cor-
responding contrast coefficients are ¢ = —1.5,c; = —0.5,¢3 = 0.5, and ¢4 = 1.5. Applying
these four coefficients to the four ¥'; values according to Equation 6 yields

Viinear = —1.5(2) — 0.5(6) + 0.5(8) + 1.5(9)
=115

a 2

To find the estimated slope, we must also calculate =1

Here we have

the sum of squared coefficients.

D c2 = (=157 +(=0.57 + (0.5 + (1.5)?
j=1

=35.0

Then, from Equation 7, the estimated slope is given by

Bl = l/l}linear/z C?
j=1
= 11.5/5.0
=23
‘What meaning can be attached to this value of 2.3? The interpretation here would be that
when we fit a linear trend to the data, we estimate that every additional minute of study

time translates into an average gain of 2.3 additional words recalled. To fully appreciate this
statement, it is helpful to once again see a graphical depiction of the data. The open circles in
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FIG. 6.2. Plot of sample means and estimated linear trend.
Figure 6.2 show the sample mean recall score Y j for each level X; of study time. The closed
circles are the predicted means obtained from the linear trend. The straight line is obtained from

the previously determined slope value 8, = 2.3 and from the intercept, whose least squares
estimate is found from the following equation:

Bo=Y - AiX
For our data, the estimated intercept is

Bo = 6.25 — (2.3)(2.5)
= 0.50

Thus, the equation of the straight line shown in Figure 6.2 is
Y =0.50 +2.3X;

Although this straight line fits the sample means reasonably well, the fit is not perfect in the
sense that the sample means do not lie perfectly on the straight line. As we will see later,
this “imperfection” could either reflect some nonlinear trend in the data or it might simply
reflect sampling error. Also, the estimated slope could have been negative, in which case
the straight line would have sloped downward (when moving from left to right) instead of
upward.
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Hypothesis Test of Slope Parameter

So far we have learned how to estimate the slope coefficient for a linear trend. We have seen
that this slope depends solely on the sample means and that it can be formulated in terms
of a contrast. The second major topic to consider here is hypothesis testing. Is the estimated
slope coefficient statistically significantly different from zero? For example, in our memory
study, we estimated the slope coefficient to equal 2.3. Although this value suggests that recall
improves with increases in study time, we cannot rule out the possibility that the population
value of the slope coefficient is zero.

To address this possibility, we must perform a hypothesis test. As usual, we operationalize
our test as a comparison of full and restricted models. The full model here is given by our
earlier straight-line model for the data:

Full: Yy =B+ BiX;+¢i (2, repeated)
The null hypothesis to be tested is that 8; = 0, so an appropriate restricted model is given by
Restricted: Yy =Bo+e&; )

As usual, to compare these two models, we must find the sum of squared errors for each
model. It can be shown? that for simple linear regression models such as

Eg = ZZ(Y,, -7

j=1 i=

and

Ep = Z Z(Y,, -Yy - [ Z Z(X., - X)z}

j=1i= Jj=1i=

Of particular interest is the difference in the sum of squared errors of the two models, that is,
Er — Ef. Simple subtraction shows that

Er — Er = $2 i Zj:(Xij -X)*

j=1 i=1

We can now simplify this expression through three steps. First, recall that X;; can be replaced
by X; because every subject’s X score is the same within a group. Second, from Equation 8,
c; = X j = —X—

Third, ci is a constant within each group, so we can bring it outside the summation over i
(individuals). For simplicity, we continue to assume equal n, in which case applying each of
these three steps leads to

ER—EF =n,3%2c5 (10)
=1

Although our equation for Eg — Ep is now fairly straightforward, it still does not look
familiar. However, we now show that in fact it is equivalent to an equation we developed in
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Chapter 4. To approach this more familiar form, we saw in Equation 7 that

a
B = Viincar / Z C? (7, repeated)
j=1

Substituting this expression for A; into Equation 10 produces
a a 2
Er — Er = n({iincar)” (Z Cf) (Z Cf)
j=1 j=1

a
Er — Ep = n(near)” [ Y _ 03 1)
-

This reduces to

However, Equation 11 is just the formula for the sum of squares of a contrast, with equal 7.
Thus, the difference in the sum of squared errors for the full and restricted models simply
equals the sum of squares of the linear contrast:

ER - EF = SSwlinear

An F test can then be performed by dividing the sum of squares due to the contrast by mean
square within, as in Chapters 4 and 5:

F = 5S,/MSw.

An appropriate critical value is found as usual. If the observed F exceeds the critical F, the
null hypothesis 8; = 0 is rejected, and there is a statistically significant linear trend in the
data. Of course, consistent with the discussion in Chapter 5, we need to distinguish between
apc and agw if we perform multiple tests of comparisons instead of just testing the linear
trend.

CONFIDENCE INTERVAL. AND OTHER EFFECT
SIZE MEASURES FOR SLOPE PARAMETER
Having now established how to estimate and test the slope coefficient for a linear trend, we

can borrow principles from Chapter 4 to form a confidence interval for the slope coefficient.
Recall that the slope 8, is almost but not quite identical to ¥ jinear :

a
B1 = Viinear / Z Cf (7, repeated)
j=1
where
c;j=X;—-X (8, repeated)

Because we want to form a confidence interval for 8; instead of for ¥'jinear, We have to alter
the expression we developed in Chapter 4 slightly.? The specific expression for the confidence
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interval for B, is

,glﬂ: \/Fot;l,N—a MSwZ(Ci/nj)/ZCg (12)
j=t j=1

Appropriate adjustments can be applied to the critical F value, if relevant, as we discussed in
Chapter 5.

Other effect size measures follow directly from Chapter 4. Although the variety of measures
we discussed in Chapter 4 can all be useful at times, Rflem-ng is often of special interest in trend
analysis, because we will see later that with equal n, the trend contrasts form an orthogonal set,
which means that the sum of their R? values will equal 1, so we can describe the relative

alerting
ability of each trend to account for the entirety of the between-group effect.

Numerical Example

To make the discussion less abstract, let’s return to the memory-study data of Table 6.1.
Previously, we saw that the least-squares estimate of the slope coefficient is #; = 2.3. Can
we infer that the population slope 8, is nonzero? To answer this question, we must test the
significance of the contrast corresponding to the linear trend. According to Equation 8, the
coefficients for this contrast are given by

ci=X;—-X (8, repeated)

As we saw earlier, this implies ¢; = —1.5, ¢c; = —0.5, ¢; = 0.5, and ¢4 = 1.5 for our data. All
that must be done to calculate an observed F statistic is to find the values of §§, and MSw.
From Equation 11, the sum of squares for the contrast is given by

88y = n(lfru,,em)2 / Z c? (11, repeated)
j=1

In our example, n = 6 and 3_5_, ¢Z = 5. Recall that = 3 %_. ¢;Y ;, so that
p j=16€j j=1Cj1j

Viinear = (—1.5)(2) + (=0.5)(6) + (0.5)(8) + (1.5)(9)

11.5

Substituting these values into Equation 11 yields

SSy = 6(11.5)*/5 = 158.7
Thus, the sum of squares attributable to the linear trend is 158.7 for these data. To obtain an
observed F value, we must divide SSy by MSw. It is easily verified that MSw = 2.9 for these
data. As a result, the F statistic for the linear trend equals

F =158.7/29 =354.72

which is statistically significant beyond the .001 level. Thus, we can assert that there is a linear
trend in the population. In this example, increases in study time lead to increased recall.
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Although the hypothesis testenables us to conclude that the slope is nonzero, it does not allow
us to establish plausible lower and upper limits for the slope coefficient. We can address this
goal by forming a confidence interval. The values we need to provide as input for Equation 12
are as follows: B = 2.3, Fys. 20 = 4.35, MSw = 2.9, Tc? =5.0, and n; = 6 for all values
of j. Substituting these values into Equation 12 produces a confidence interval of 2.3 plus or
minus 0.65. Thus, we can be 95% confident that the population slope parameter has a value
between 1.65 and 2.95. In other words, every additional minute of study time leads to an
increase of between 1.65 and 2.95 words recalled. As usual, statistical packages can reduce
hand calculations considerably. The only catch here is that we need to describe our coefficients
to a statistical package in accordance with Equations 7 and 8. For example, in these data the
coefficients need to be scaled as —0.3, —0.1, 0.1, and 0.3. Notice that each of these values is
the original c; from Equation 8, which is then divided by the sum of the squared coefficients
as shown in Equation 7. In other words, the original values of —1.5, —0.5, 0.5, and 1.5 are
each divided by 5 to produce the new values. Depending on the specific statistical package,
we may be given the confidence interval directly, or can at least use the resulting standard
error of the contrast to form the desired interval. In the latter case, for example, we can use a
statistical package to discover that the standard error of A, is 0.3109. This value simply needs
to be multiplied by the square root of the critical F value (i.e., the square root of 4.35 in our
data) to obtain the value of 0.65 as the half width of the confidence interval.

We will defer consideration of measures of association strength until we have presented
methods for considering nonlinearity in our data.

Two further interpretational points deserve mention here. First, the alert reader may have
noticed that the last sentence three paragraphs ago made it sound as if a claim were being
made that increases in study time cause increases in recall. Because participants were ran-
domly assigned to study conditions, a causal inference is in fact legitimate here. Some readers
might object that we cannot infer causation because we have tested a regression slope, which
is equivalent to testing a correlation, and everyone knows that correlation does not imply cau-
sation. Half of this argument is correct. We did test a regression slope, which is equivalent to
testing a correlation coefficient. However, as we discussed in Chapter 1, the legitimacy of a
causal inference is determined not by how we analyze the data (e.g., regression versus anal-
ysis of variance), but instead by the design of the study. The presence of random assignment
permits a causal inference to be made here, although the question of why study time increases
recall is left open to debate. Second, the meaning of a significant linear trend is sometimes
misunderstood by researchers. To consider this issue, reconsider the plots shown earlier in
Figures 6.1 and 6.2. The existence of a significant linear trend means that if a straight line is fit
to either set of data (i.e., either Figure 6.1 or Figure 6.2), that straight line has a nonzero slope.
In other words, there is a general tendency for Y to either decrease on average or increase on
average as a function of X. The important point to realize is that the presence of a significant
linear trend says absolutely nothing about the possible presence of nonlinear trends. Some re-
searchers mistakenly believe that finding a significant linear trend implies that the relationship
between Y and X is strictly linear. However, it is entirely possible for the same data to exhibit
both linear and nonlinear trends. Indeed, the plot of sample means in Figure 6.2 suggests such
a possibility for the recall data.

Although recall increases as study time increases, there is some indication that an extra
minute of study time may not always produce the same average increase in recall. For example,
increasing study time from 1 minute to 2 minutes in this sample resulted in an average im-
provement of four words (see Table 6.1). However, increasing study time from 3 minutes to
4 minutes resulted in an average improvement of only one word. This pattern suggests the pos-
sibility of a nonlinear trend, because a strictly linear trend would imply that the change in recall
produced by increasing study time 1 minute should always be the same, in our case 2.3 words.
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Alternatively, the discrepancies from this value of 2.3 may simply reflect sampling error.* In
other words, with only six subjects per group, we would not expect sample differences in recall
to be exactly the same for every 1-minute change in study time. Not surprisingly, there is a way
we can resolve this question of whether the pattern obtained here reflects true nonlinearity or
just sampling error.

TESTING FOR NONLINEARITY

The test for nonlinearity is often referred to as a test for deviations (or departures) from linearity.
This phrase holds the key for understanding how to test for nonlinearity. For simplicity, we
assume equal n throughout our discussion. At the end of the chapter, we briefly discuss the
additional complexities that arise with unequal 7.

Recall that the model for a linear trend was given by

Yij=po+BiX;+ey (2, repeated)

Nonlinear relationships between X and Y can be incorporated into the model by including
powers of X (e.g., X squared, X cubed, etc.) on the right-hand side of the equation. For
example, we might have a model of the form

Yy = Po+ BiX; + B X5 + B3 X3 + &y

This equation raises a question of how many powers of X should be included, that is, should
we stop with X3, or should we go on to X*, X>, and so on? The answer is that with a levels
of the factor (i.e., with a values of X), we can include at most terms up to and including X a—1
(i.e., X raised to the 2 — 1 power) in the model. To understand why, consider the simple case
where a = 2—that is, we have only two groups of participants. According to the above rule,
we can include only X to the first power in the model. Thus, the model would be

Yii =8+ B1X;

The reason for this is that with only two groups, there are only two group means we are trying
to explain, and the relationship between these two means and X can always be explained with
a straight line, because a straight line can always be drawn between any two points. For this
reason, terms of the form X2, X3, and so on are not needed. The same logic holds for values
of a over 2 as well. For example, when a = 3, the model allowing for all possible nonlinear
trends would be

Yy =po+ BiX; + B X;
It turns out that with X and X? in the model, any three values for the means of ¥ can be fit
perfectly with this model. Terms such as X3, X*, and so forth would simply be redundant (i.c.,
linearly dependent—see Chapter 4). Thus, a general model allowing for nonlinear trends with

a levels of the factor includes all powers of X up to and including X to the a — 1 power. The
model then has the general form

Yy =Bo+BiX; + BaX;+ -+ Bant X§ &y (13)
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Departures from linearity are represented by X2, X3, and so forth. Thus, to test these
departures for significance, we state a null hypothesis that

Bo=P==h-1=0

In other words, the hypothesis to be tested is that in the population, all trends other than the
linear trend are zero. This null hypothesis implies a restricted model of the form

Yi=bo+ B X;+e&; (2, repeated)

This is simply the linear trend model with which we have already been working.

As usual, the task is to compare these two models by finding the sum of squared errors
and degrees of freedom for each model. Because we have already encountered the restricted
model of Equation 2, we begin with it. We claimed earlier that the sum of squared errors for
this model is given by

Eg= Xa: i(yij -Yy - [ﬁf i i (X — 7)2]
j=1i=1 j=1 i=1

We can simplify this expression in two ways. First, the term 3 7_, 3"i_, (¥;; — Y)* equals what
we referred to in Chapter 3 as SSia1. Second, we saw earlier in this chapter that

a n
B% Z Z(Xij - ‘X‘)Z = SStinear

j=1 i=1
Making these two substitutions
ER = $S8iotal — SSlinear (14)

The degrees of freedom for the restricted model are straightforward because there are two
parameters to be estimated (8 and B;). Thus

dfy =N -2 (15)

where N is total sample size.
Next, let’s turn our attention to the full model of Equation 13:

Yy =Bo+BiX;+ BoX; +- 4 B Xi + 6y (13, repeated)

The degrees of freedom for this model are again straightforward, because in general there are
a parameters to be estimated. Thus

dfp =N—u (16)
To understand the sum of squared errors of this model, remember why we stopped adding

powers of X at ¢ — 1. Including powers up to this point guarantees that the resulting trend
passes through the mean value of ¥ for each group. In other words, the predicted value of ¥

TLFeBOOK



256 CHAPTER 6

at each value of X is the mean value of ¥ for the group of participants at that particular value
of X. As aresult, the predicted score on Y for Individual i in Group j is Y;, the mean Y score
for all participants in that group. Thus, for the full model of Equation 13

V(P =7;

where 17,~j (F) indicates the predicted score from the full model for Subject i in Group j. The
sum of squared errors for the model is then given by

Ep = Z Z [¥; - TP
j=1i=
This is equivalent to
Ep = Z Z(Y,,

j=1 i=

However, the term Z‘;=] Yy — Y ;) is simply the within-group sum of squares, so we
can write

Er =SSy a7
Indeed, it turns out to be the case that the full model here, that is
Yi=Bo+BiX;+BXi+ -+ Bt XS + gy (13, repeated)
is equivalent to the full cell means model we have previously encountered:
Yij=p;+ey

Although the two full models obviously look very different, they both have a parameters, and
both allow for a separate predicted Y score for each group. As a result, the two full models are
mathematically equivalent. We are now ready to compare the full and restricted models with
our usual F statistic:

(Er — Ev)/(dfg — dfp)
Er/df

Substituting from Equations 14, 17, 15 and 16 for Eg, EF, dfy, and dfy, respectively, yields

F =

(SStotal — SStincar — SSwW)/[(N —2) — (N —a)]

F= SSw/(N —a)

All three components of this expression can be simplified. First, consider SSio1a1 — SStinear —
SSw. From Chapter 3, S8 = SS5 + SSw, so substituting this expression for Sy, results
in $8g + SSw — SSinear — SSw, which is obviously just SSg — SSypear- Similarly, (N —2) —
(N — a) simplifies to a — 2. Finally, the ratio SSw /(N — a) is just MSw. Putting the simplified
components back together again yields

(888 — SSiinear)/(a — 2)

F =
MSw

(18)
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Equation 18 thus provides a formula for testing the statistical significance of nonlinear
trends.

Numerical Example

To see an example of this test, reconsider the data in Table 6.1. Earlier in the chapter, we
found that for these data, SSjinear = 158.7 and MSw = 2.9. From principles and formulas of
Chapter 3, it is easily verified that SSg = 172.5 for these data. Substituting these values along
with a = 4 into Equation 18 yields

(1725 -158.7)/(4 - 2)
o 2.9

F =2.38

which, with 2 and 20 degrees of freedom, is not significant at the .05 level. Thus, the results of
this test suggest that the possible nonlinearity observed in Figure 6.2 for these data may simply
reflect sampling error. Notice that as always we should not assert that the null hypothesis is
true. We have not proved that the nonlinear trends here are zero; instead, we lack sufficient
evidence to declare them to be nonzero.

We have just seen the procedure for testing departures from linearity. Although this test
is frequently appropriate to address a researcher’s questions, at times an alternate strategy
is better. Instead of performing one test for any departures from linearity, it may be more
informative to test for specific forms of departure. To understand this distinction, recall the
null hypothesis we formulated for testing departure from linearity. In the full model

Yi=PBo+BiX;+BXi+ -+ Baa X+ (13, repeated)
we tested a null hypothesis of the form
Hy:pp=p=-=psi1=0

Notice that the null hypothesis stipulates that each and every one of these a — 2 parameters
equals zero, which is why the F statistic has a — 2 numerator degrees of freedom. In some
situations, however, we may be interested in performing separate tests on one or more of these
a — 2 parameters, much as we performed a separate test on j; to test the linear trend.

TESTING INDIVIDUAL HIGHER ORDER TRENDS

Just as the test of the linear trend can be conceptualized as a test of a contrast, tests of the
other beta parameters (which are said to reflect higher order trends) can also be formulated
in terms of contrasts. There are two issues to consider here. First, what sort of trend do these
individual beta parameters represent? That is, what meaning can be attached to those individ-
ual beta parameters? Second, how are appropriate contrast coefficients found for testing the
significance of these parameters?

To understand the meaning of the individual beta parameters, consider a specific case with
four groups, so that @ = 4. In this case, the full model can be written as

Yj = o+ BiX; + B X3+ B X3 + &y
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FIG. 6.3. Plots of various trends: (a) linear trend, () quadratic trend, (C) cubic
trend, and (d) linear and quadratic trends.

Figures 6.3a—6.3c show the types of trends represented by each individual beta parameter.
Figure 6.3a shows that the role of B is to account for any straight line relationship between X
and Y. As X increases, Y systematically increases also (assuming that the slope of the line is
positive; otherwise, Y systematically decreases). Notice that the X variable here is raised to the
first power and that there are no (i.e., zero) changes in the direction of the trend. In other words,
X to the first power produces a trend with zero bends. Figure 6.3b shows that the inclusion of
X? in the model allows ¥ to systematically decrease as X moves away (either higher or lower)
from some central point on the x-axis. This pattern is called a quadratic trend. Figure 6.3b
corresponds to a plot where the sign of 8, is negative; if B, were positive, the trend would be
reversed, and Y would systematically increase as X moves away from the central point. Notice
that when X is raised to the second power, there is one change of direction (i.e., bend) in the
curve. Figure 6.3c shows that the inclusion of X 3 in the model allows Y to first increase, then
decrease, and then increase again as X increases. This pattern is called a cubic trend. Once again,
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if the sign of 85 were reversed, the plot would be reversed as well (i.e., it would be flipped over
about a horizontal line). Notice that when X is raised to the third power, there are two changes
of direction (i.e., bends) in the curve. Regardless of the value of a, this same pattern occurs.
Namely if X is raised to some power P, the curve associated with X* has P — 1 bends in it.

Figure 6.3d serves as a reminder that in an actual study, the pattern of means may very well
reflect a combination of two or more of the pure forms shown in Figures 6.3a—6.3c. Although
the means in Figure 6.3d tend to increase as X increases, the increases themselves are becoming
smaller. Such a negatively accelerated curve is fairly common in the behavioral sciences and
reflects a model with both linear and quadratic components. Because such combinations of
trends are possible, it is usually necessary to test higher order trends regardless of whether the
linear trend is statistically significant. We will return to this issue after we discuss the choice
of appropriate contrast coefficients.

Contrast Coefficients for Higher Order Trends

Now that we have considered the form that higher order trends take on, it is necessary to consider
how to test these trends as contrasts. In other words, we need to determine appropriate contrast
coefficients for testing each trend. Recall that we have already shown that with equal #, the
appropriate contrast coefficients for testing the linear trend are given by

Cj=Xj—Y

Although we could go through similar steps to find the appropriate coefficients for testing higher
order trends (e.g., quadratic, cubic, etc.), we will not do so because the steps would be tedious.
In addition, many statistical packages calculate the appropriate coefficients and conduct the
corresponding significance tests automatically. Thus, what is important is that the concepts
underlying trend analysis be understood, as opposed to being able to derive contrast coefficients.

Although calculations are usually best left to the computer, it is helpful to present higher
order trend coefficients to better understand the meaning of the trends. Appendix Table A.10
presents contrast coefficients for performing trend analysis whenever two conditions are met.
First, equal spacing of the X variable is assumed. Equal spacing implies that the numerical
difference between adjacent values of X is a constant. For example, X values of 7, 12, 17, 22,
and 27 would be equally spaced, because the difference between adjacent values is always 5.
On the other hand, a developmental psychologist who compared children of ages 12 months,
13 months, 15 months, 18 months, and 22 months would have unequally spaced values. A
researcher might choose to use such unequal spacing if theoretical considerations implied the
possibility of rapid change in the months shortly after month 12, followed by less rapid change
in later months (see Keppel, 1982, p. 132, for a good discussion of this issue). Many statisti-
cal packages automatically generate appropriate coefficients even when values are unequally
spaced. Second, Table A.10 assumes that sample sizes are equal in every group. Whether these
coefficients are also appropriate with unequal » is subject to debate, as we discuss at the end
of the chapter.

To understand Appendix Table A.10, let’s consider the four-group case in some detail.
According to the table, the appropriate contrast coefficients for testing the linear trend are
given by values of —3, —1, 1, and 3 for Groups 1, 2, 3, and 4, respectively. Are these the same
coefficients that we developed in the four-group case earlier in the chapter? No, they are not,
because in the word-recall study described earlier, we used contrast coefficients of —1.5, —0.5,
0.5, and 1.5 for the four groups, based on X ; — X. However, these two sets of coefficients are
proportional to one another because we can multiply each recall-study coefficient by two to
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obtain the coefficients shown in Table A.10. As we saw in Chapter 4, multiplying all coefficients
of a contrast by a constant does not change the sum of squares attributable to the contrast. As a
result, the observed F value for the contrast also remains the same. Thus, the tabled values of
—3, —1, 1, and 3 are consistent with the values of —1.5, —0.5, 0.5, and 1.5 that we used earlier.
Thus, these different metrics are interchangeable for hypothesis testing and for calculating
measures of association strength. However, as we have seen, the metric of the coefficients is
important for constructing confidence intervals, so in this case we must decide which specific
coefficients are appropriate.

According to Appendix Table A.10, the coefficients for testing a quadratic trend among
four groups are equal to 1, —1, —1, and 1. In what sense do these coefficients test a quadratic
trend? Instead of attempting to provide a mathematical answer, reconsider Figures 6.3a-6.3c.
What happens if we apply these coefficients to the means shown in Figure 6.3a? The resultant
contrast has a value of zero, implying no quadratic trend, which is just what we would expect
for means that perfectly fit a straight line. Similarly, applying the coefficients to the means
shown in Figure 6.3c also yields a value of zero, because these means correspond to a pure
cubic trend. However, applying the coefficients to the means of Figure 6.3b produces a nonzero
value because these data show a quadratic trend. Similarly, the cubic trend coefficients shown
in Table A.10 yield a contrast whose value equals zero for Figures 6.3a and 6.3b, but which
is nonzero for Figure 6.3c. Thus, the coefficients shown in Table A.10 provide an appropriate
set of values for testing the pure forms of trend shown in Figures 6.3a-6.3c.

Another perspective on higher order trends can be gained by plotting the coefficients them-
selves on the y-axis, with the corresponding X values on the x-axis. If we do this, we discover
that the resultant plot looks exactly like the type of trend those coefficients are designed to
detect. Thus, the coefficients for a linear trend form a straight line when we plot them. Simi-
larly, the coefficients for a quadratic trend form a U shape like that shown in Figure 6.3b,> and
the coefficients for a cubic trend display two bends, as in Figure 6.3c. As you might guess,
this equivalence of plots is not a coincidence, but instead results from a fact we developed in
Chapter 4. Recall that R:lening reflects the extent to which contrast coefficients match the pat-
tern of sample means. With equal n, as we are assuming here, a contrast completely accounts
for between-group differences if its coefficients match the pattern of mean differences. As we
have seen, this is exactly what the trend coefficients accomplish.

One other property of the contrasts defined in Appendix Table A.10 should be mentioned.
Assuming equal n, as we are here, it is fairly easy to show that the contrasts defined by
these coefficients form an orthogonal set. In other words, for a particular number of groups,
trend components are orthogonal to each other, with equal n. As a result, sums of squares
attributable to individual trends can be added together. The implications of this orthogonality
can be discussed most easily in the context of our numerical example, to which we now turn.

Numerical Example

We now illustrate testing higher order trends individually in our numerical example. Although
we have already tested the linear trend, we include that test here as well, for the sake of
completeness and to show results in terms of the coefficients from Appendix Table A.10.

Table 6.2 shows intermediate calculations used to find the sum of squares attributable to
each contrast. As always (with equal n), each sum of squares is found from

n(§)*

2
L ¢
j=l1

5SSy =
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TABLE 6.2
INTERMEDIATE CALCULATIONS FOR SUM OF SQUARES FOR EACH
TREND COMPONENT
Group
1 3 4
Mean 2 8
a
. P>
Contrast Coefficients ¥ j=1 SS
1 2 3 4
Linear -3 -1 1 3 23 20 158.7
Quadratic 1 -1 -1 1 -3 4 13.5
Cubic -1 3 -3 1 1 20 0.3
TABLE 6.3
ANOVA TABLE FOR RECALL DATA OF TABLE 6.1
Source SS dar MS F r
Between 172.5 3 57.5 19.83 .001
Linear 158.7 1 158.7 54.72 .00
Deviation from linearity 13.8 2 6.9 2.38 118
Quadratic 13.5 1 135 4.66 .043
Cubic 0.3 1 0.3 010 751
Within 58.0 20 29

Recall that in this example, n = 6. All other quantities needed in the calculation are shown in
Table 6.2.

Table 6.3 presents the ANOVA table for these data. The first line of the table shows the
between-group sum of squares for the data. The corresponding F test is the test of the omnibus
null hypothesis that all four group population means are equal, as we discussed in Chapter 3.
Consistent with the discussion in Chapter 5, the omnibus test need not necessarily be performed
when testing trends, because we may have planned to test these trends prior to collecting the
data; it is presented here primarily to show how it relates to the tests of individual trends. The
second line of Table 6.3 shows the results for the linear trend, which as we have already seen
is highly statistically significant. The third line presents the sum of squares and corresponding
test for departure from linearity. As we have seen, the test is not significant at the .05 level.
Notice that as exemplified by Equation 18 earlier in the chapter

SSdeviation from linearity = SSB — SSinear
or, equivalently
S$5B = SSiinear + SSdeviation from linearity (19

With equal #, the between-group sum of squares can be partitioned into two additive compo-
nents: linear and nonlinear. The fourth line of Table 6.3 shows the results for the quadratic
trend. When tested individually with apc = .05, this trend is significant. We discuss the appar-
ent inconsistency between this result and the nonsignificant result for departure from linearity
momentarily. First, however, notice that the fifth line of Table 6.3 presents the results for the
cubic trend, which is nonsignificant for these data. Notice also that with equal 7, the sum of
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squares attributable to nonlinearity can be partitioned into two additive components:

SSdeviation from linearity =— SSquadratic + SScubic (20)

If there were more than four groups, the SS¢ypic term would instead be

SS8deviation from quadratic

which would represent the sum of squares attributable to trends above the quadratic model,
that is, a model that includes linear and quadratic components. Substituting the right-hand side
of Equation 20 for SSgeviation from linearity into Equation 19 yields

8858 = SStinear + SSquadratic ~+ SScubic

Thus, when @ = 4 and sample sizes are equal, the three trend contrasts completely account for
the variation among the groups. This relationship holds, because the trend contrasts form an
orthogonal set as long as sample sizes are equal.

Let’s now return to the apparent discrepancy between the significant quadratic trend and
the nonsignificant deviation from linearity. How can we assert that the 8, parameter is nonzero
and at the same time fail to reject a hypothesis that both 8, and B3 are zero? After all, if 8,
is nonzero, then it cannot be true that both B, and B3 are zero. Equation 20 is helpful for
understanding this apparent dilemma:

SSdeviation from linearity = SSquadratic + SScubic (20, repeated)

The F test for deviation from linearity equals

_ (SSquadratic + SScubic)/ 2

F 21
MSw 2D
whereas the F statistic for the quadratic trend by itself equals
F = SSquadratic (22)
MSw

When SS.ubic 18 small, as in this example, the F statistic of Equation 22 may be nearly twice as
large as the F statistic of Equation 21. This reflects the fact that the test of the quadratic trend
by itself is more powerful than the test of deviation from linearity if the population quadratic
trend is nonzero but the population cubic trend is zero.

What does this imply about which tests shown in Table 6.3 should be performed and
interpreted? In most behavioral studies, trends beyond quadratic are largely uninterpretable.
For this reason, one strategy is to test the linear trend separately, the quadratic trend separately,
and then to perform a combined test of all remaining trends (i.e., cubic, quartic, etc.). This
last test is usually not directly interpreted, except insofar as it indicates whether linear and
quadratic components are adequate to explain between-group differences. A slightly different
strategy can be employed if theory dictates that any differences between groups should be
linear in nature. In this situation, the linear trend can be tested by itself, and all remaining
trends are tested together as the departure from linearity. As in our numerical example, these
two strategies do not always reach the same conclusion. Which is more appropriate is dictated
primarily by theoretical considerations.

TLFeBOOK



TREND ANALYSIS 263

TABLE 6.4
MEASURES OF ASSOCIATION STRENGTH FOR RECALL DATA
Trend Rglerting Reszect size Rgomrast
Linear 0.92 0.69 0.73
Quadratic 0.08 0.06 0.19
Cubic 0.00 0.00 0.01

Even after we have conducted all hypothesis tests we deemed appropriate, our analysis is
typically not complete until we also consider measures of effect size. For example, you may
recall that we have already formed a confidence interval for the slope parameter for these data.
Although it is mathematically possible to form confidence intervals for nonlinear trends, such
intervals are usually difficult to interpret. An alternative is to calculate measures of association
strength. Specifically, the same three measures we introduced in Chapter 4 may be of interest
with trend analysis:

Rglening = SS(¥)/SSBetween 4.54)
Reszec[ size = SS(V’)/SSTOIal (4.55)
RZ et = SS(¥)/(SS(¥) + SSw) (4.56)

Table 6.4 shows the values of these three measures for each trend in the recall data. All
three measures largely confirm the dominance of the linear trend for these data. For example,
Rflemg shows that the linear trend accounts for 92% of the between-group variance and 69%
of the total variance in the recall data. The measures also reaffirm that the cubic trend here is
weak. As we have seen from other perspectives, the quadratic trend is much less evident than
the linear trend, but nevertheless might be judged as an important aspect of the data. Finally,
notice that the three Rglening values sum to 1.00, as they must mathematically because the three
trends form an orthogonal set. Thus, this measure provides an especially useful method of

partitioning the between-group variability into additive components.

FURTHER EXAMINATION
OF NONLINEAR TRENDS

Now, it may be helpful to further examine our numerical example to gain a better understanding
of nonlinear trends, especially how both linear and nonlinear trends might exist in the same
data. As shown in Figure 6.1, there is a systematic tendency in these data for ¥ (number of
words recalled) to increase as X (study time) increases. This tendency explains why the linear
trend is significant, as shown in Figure 6.2.

To understand the meaning of the quadratic trend here, it is helpful to remove the effects of
the linear trend from the data. To do this, we must first describe the linear trend. The simplest
method relies on the equation we derived earlier in the chapter for the best-fitting straight line
for these data:

¥;; =0.50 +2.3X; (23)
Notice from this equation that all participants in Group 1 (i.e., X; = 1) are predicted by the

linear trend model to have a recall score of 2.8. Similarly, predicted scores in the remaining
three groups are 5.1, 7.4, and 9.7, respectively.®
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FIG. 6.4. Scatterplot of Figure 6.1 data with linear trend removed.

We can now look at the errors of the linear trend model. Figure 6.4 shows this error for each
of the 24 subjects in the study. Even more useful is Figure 6.5, which shows the mean error
for each group. In other words, the mean error in Group 1 is —0.8, because the predicted score
for every subject in this group is 2.8, but in fact the actual sample mean for subjects in this
group is only 2.0. Notice also that the values plotted in Figure 6.5 correspond to the differences
between the actual means and the predicted means shown carlier in Figure 6.2.

The plots in Figures 6.4 and 6.5 display the data with the linear trend removed. If the only
true trend in the data is linear, there should be no apparent pattern to the data in Figures 6.4 and
6.5. In fact, however, as seen most clearly in Figure 6.5, these data bear a strong resemblance to
the quadratic curve shown in Figure 6.3b. The plot of the data strongly suggests that the linear
trend is not sufficient by itself to fully describe the data. This visual impression is consistent
with the statistically significant effect of the quadratic trend shown earlier in Table 6.3.

What sort of curve is produced when both linear and quadratic trends are included in the
model? To answer this question, we need to consider a model that includes not just X as alinear
representation of time, but also X? as its quadratic manifestation. It is easily verified (by using
a multiple regression routine in any statistical package) for our data that the corresponding
predicted scores are given by

¥y = —3.25+6.05X; — 0.75X3 4

resulting in predicted scores of 2.05, 5.85, 8.15, and 8.95 for the four study times, respectively.
Notice that the inclusion of the quadratic term increases the predicted scores for Groups 2
and 3 but decreases the predicted scores for Groups 1 and 4, which is exactly what Figure 6.5
suggests needs to be done.

Figure 6.6 shows the actual sample means and the predicted means obtained from the
quadratic model of Equation 24, that is, the model that includes both linear and quadratic
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FIG. 6.5. Plot of sample means with linear trend removed.
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FIG. 6.6. Plot of sample means and estimated means from quadratic model.
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FIG. 6.7. Scatterplot of Figure 6.1 data with linear and quadratic trends
removed.

trends. It seems clear from comparing Figure 6.2 for the linear trend model to Figure 6.6 for
the quadratic model that the quadratic model fits the data better. Once again, the graphs confirm
the statistically significant quadratic trend as shown in Table 6.3.

Just as we looked at errors of the linear trend model, we can also look at the errors of the
quadratic trend model. Figure 6.7 shows this error for each of the 24 subjects in the study, and
Figure 6.8 shows the mean error for each group. Two things must be said about Figure 6.8.
First, and most important, the means in Figure 6.8 all hover close to zero. Unless the within-
group variance is very small (and we can tell from Figure 6.7 that it is not), this suggests
that the remaining variation in sample means is likely to be random rather than systematic.
Once again, this visual impression is corroborated by the statistical test of the cubic trend,
which as we saw in Table 6.3 was nonsignificant. Second, obsessive-compulsives may have
noticed that although the means in Figure 6.8 hover around zero, it is nevertheless true that
the pattern of these means fits the pattern of means shown in Figure 6.3c for a cubic trend.
Doesn’t this similarity suggest that there is in fact a cubic trend to the data, regardless of what
the significance test might say? The answer is no, it does not, because the only pattern that
the means can possibly display is one like Figure 6.3c (or its negative), once the linear and
quadratic trends have been removed. After their removal, the only source of between-group
variance remaining must be cubic because, as we saw earlier with four groups and equal n

SSB = Sslinear + SSquadratic + SScubic

The important question, however, is the extent to which SS.uic is “large.” As suggested by
Figure 6.7, the cubic trend for these data is nonsignificant.

Although we have decided that the cubic trend is unnecessary for these data, it is instructive
to see what would happen if we were to add the cubic trend component to our model. Predicted
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FIG. 6.8. Plot of sample means with linear and quadratic trends removed.

scores can be found from the following equation:

¥,; = —5.000 + 8.833X; — 2.000X7 + 0.167X? (25)
The predicted means of 2, 6, 8, and 9 are literally identical to the observed sample means.’
Thus, the inclusion of the cubic trend has resulted in a model that completely accounts for
all between-group variation. Although at first glance this may seem impressive, it is in fact
a mathematical necessity of the trend-analysis model. As we discussed previously, with a
groups, it is always the case that a model with @ — 1 trend components completely explains
the between-group variance, and, as a consequence, predicted means equal actual sample
means. The important practical point to be understood in the numerical example is that as
Figure 6.6 shows, the quadratic trend model provides a very close fit to the sample means. As
a consequence, there is no evidence for needing to include the cubic trend in the model.

TREND ANALYSIS WITH UNEQUAL
SAMPLE SIZES

Trend analysis becomes more complicated when sample sizes are unequal. In essence, the
reason for the additional complication is that the contrasts defined by the trend coefficients of
Appendix Table A.10 are no longer orthogonal when sample sizes are unequal. As a result,
trend components as defined by these coefficients no longer partition the between-group sum of
squares additively. We do not attempt to dea] with all the implications of this added complexity.
Instead, we briefly present two alternate strategies for dealing with unequal ».

The first approach involves a hierarchical approach to model comparisons. With this
approach, individual trend components are added to the model in successive steps, in a
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prespecified theoretical order. The first component to enter the model is the linear trend.
The two models to be compared are thus defined to be

I Yii = Bo+ ey
I Yi=p8+5X;+¢;

The sum of squares attributable to the linear trend then equals E; — Ey. Second, a quadratic
term is added to Model II, yielding

I Y =f+hX;+BX +e

The sum of squares attributable to the quadratic trend then equals Ey; — Epy. Additional terms
are added to the model in this fashion until all possible terms have been entered.

The second approach simply continues to use the contrast coefficients of Appendix
Table A.10 despite the fact that sample sizes are unequal. The sum of squares attributable
to any particular trend is given by

SSy = ()? / > (S /nj)
j=1

‘Which of these two approaches is preferable? Fortunately, with equal n, the two approaches
yield identical results, so no choice is necessary. With unequal n, however, the two approaches
do not necessarily lead to the same conclusion. To make the choice more difficult, some-
times one approach is better, and at other times the other approach is better. To understand this
dilemma, it is helpful to compare contrast coefficients. It can be shown that the hierarchical
approach is equivalent to testing contrasts whose coefficients are influenced by the sample
size of each group. For example, the contrast coefficients for testing the linear trend with the
hierarchical approach can be shown to equal

L‘j =nj(Xj —Yw) (26)

where Xy is the weighted sample mean of the X values. On the other hand, the second
approach is often called an unweighted approach, because it continues to use unweighted
contrast coefficients of the form

¢ =X; - Xy @7

where Xy is the unweighted sample mean of the X values.® Notice that the coefficients of
Equation 27 differ from those of Equation 26 in that groups implicitly receive equal weights
of 1.0 instead of weights dependent on sample size.

Which approach is better—weighted or unweighted coefficients? The answer is, “Tt
depends.” For example, if the only true trend in the population is linear, then the weighted co-
efficients of Equation 26 are superior because the test of the linear trend will be more powerful
than the test using unweighted coefficients. The hierarchical approach also produces additive
sums of squares, unlike the unweighted approach. However, if there are in fact nonlinear trends
in the population, the weighted coefficients of Equation 26 may result in a biased estimate of
the true population slope coefficient. For this reason, a linear trend deemed to be statistically
significant by the weighted coefficients may in fact be reflective of a true quadratic trend
in the population means. The linear trend for the population means may very well be zero.
Exercise 13 at the end of the chapter explores this point in more detail. Because the use of
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weighted coefficients potentially leads to bias, our general recommendation is to continue to
use unweighted coefficients, as shown in Appendix Table A.10 for equally spaced intervals of
X. However, when there are strong theoretical reasons to believe that the only true population
trend is linear, the use of weighted coefficients may be justified. Perhaps most important is sim-
ply to be aware of the distinction and to know which type of coefficient your favorite statistical
package uses. With most packages, either type of coefficient can be used, although to do so
may require overriding certain default values built into the program. In addition, you might be
reassured to know that the distinction between weighted and unweighted means is discussed
in greater detail in Chapter 7, when we discuss two-way ANOVA with unequal sample sizes.

CONCLUDING COMMENTS

We conclude the presentation of trend analysis with brief mention of four miscellaneous points.
First, we introduced trend analysis as a valuable tool for studying group differences whenever
the defining characteristic of groups is quantitative. Hale (1977), in an article directed pri-
marily toward developmental psychologists, argues persuasively that many psychologists tend
to underutilize trend analysis. He describes potential benefits of the trend-analysis approach,
particularly when the form of the trend is expected to be monotonic. Second, researchers using
trend analysis must be careful to avoid extrapolating beyond the data. Statistical inferences
regarding trends pertain only to the values of X (the factor) actually used in the study. For exam-
ple, suppose a four-group study with X values of 1, 2, 3, and 4 yields a linear trend of the form

Y, =050 +2.3X

It is inappropriate to use this equation to predict that if X were equal to 10, the mean Y
value would be 23.50. Even if the trend appears to be purely linear throughout the range
from 1 to 4, there is no guarantee that the trend would remain linear beyond X values of 4.
Third, interpolation must also be used carefully and thoughtfully. For example, in the four-
group study, it may be reasonable to predict that if X were equal to 3.5, the mean value of
Y would be 8.55. However, such a prediction requires some theoretical justification, because
there are no data that can directly be used to predict ¥ when X is between 3 and 4. However,
in many practical situations, interpolation, unlike extrapolation, is probably reasonably well
justified. Fourth, there is a whole host of techniques available for curve fitting beyond the use of
orthogonal polynomial trends. Although trend analysis is typically the methodology of choice
for analyzing data with quantitative factors, theoretical considerations sometimes suggest other
methodologies. The interested reader is referred to Lewis’s (1960) classic book on curve fitting.

EXERCISES

1. Appendix Table A.10 shows that the trend coefficients for four equally spaced levels of a quantitative
factor are given by

Level
1 2 3 4
Linear -3 -1 1 3
Quadratic 1 -1 -1 1
Cubic -1 3 -3 1

Show that the contrasts defined by these coefficients form an orthogonal set with equal 7.
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*2. The plot in Figure 6.3a represents a pure linear trend for four groups. The purpose of this exercise
is to verify that the figure does in fact reflect a pure form. Assume n = 10 participants per group
throughout. The means shown in Figure 6.3a are Y. =10,Y,=20,Y; =30, and Y, = 40.

a. Find the sum of squares for the linear trend.
b. Find the sum of squares for the quadratic trend.
c. Find the sum of squares for the cubic trend.
d. Does Figure 6.3a reflect a pure linear trend?

3. This problem uses the same data as Exercise 2. In particular, n = 10 for each of four groups, with

sample means of 10, 20, 30, and 40, respectively. We stated in Chapter 4 that Rflemng is equivalent to
the squared correlation between the contrast coefficients and the actual sample means of the groups.
Further, the sum of squares for a contrast equals the product of Rflmmg and the between-group sum
of squares.

a. Find the correlation between the sample means and the contrast coefficients for the linear trend
for these data. What does this tell you about how much of the between-group sum of squares is
attributable to the linear trend for these data?

b. Find the correlation between the sample means and the contrast coefficients for the quadratic
trend for these data. What does this tell you about how much of the between-group sum of
squares is attributable to the quadratic trend for these data?

c. Find the correlation between the sample means and the contrast coefficients for the cubic trend
for these data. What does this tell you about how much of the between-group sum of squares is
attributable to the cubic trend for these data?

4. The plot in Figure 6.3b represents a pure quadratic trend for four groups. The purpose of this
exercise is to verify that the figure does in fact reflect a pure form. Assume » = 10 participants per
group throughout. The means shown in Figure 6.3bare ¥, = 15,7, = 30, Y5 = 30,and ¥, = 15.
a. Find the sum of squares for the linear trend.

b. Find the sum of squares for the quadratic trend.
c¢. Find the sum of squares for the cubic trend.
d. Does Figure 6.3b reflect a pure quadratic trend?

5. The plot in Figure 6.3c represents a pure cubic trend for four groups. The purpose of this exercise
is to verify that the figure does in fact reflect a pure form. Assume » = 10 participants per group
throughout. The means shown in Figure 6.3c are ¥, = 15,Y, = 35,73 =5, and Y, = 25.

a. Find the sum of squares for the linear trend.
b. Find the sum of squares for the quadratic trend.
¢. Find the sum of squares for the cubic trend.
d. Does Figure 6.3c reflect a pure cubic trend?

*6. An investigator conducted a five-group study where the groups represent equally spaced levels of
a quantitative factor. Data are obtained for 15 participants in each group. The following sample
means are obtained: ¥; = 80, Y, = 83, Y3 = 87, ¥4 = 89,and ¥s = 91. The value of mean square
within (MSw) equals 150.

a. Assume that the investigator has planned to test only the linear trend. Is the trend statistically
significant at the .05 level?

b. Is the omnibus test of group differences statistically significant? In other words, can the null
hypothesis Hy : ¢t} = p; = i3 = pq4 = s be rejected?

¢. Why is the observed F value so much larger for the linear trend than for the omnibus test? (Hint:
Compare SSjiper to SSp for these data. If SSyp., €quals SSp, how would the respective F values
compare?)

d. What are the implications of your answer to part ¢ for the potential benefits of testing a planned
linear trend instead of testing the omnibus null hypothesis?

e. Is it legitimate to claim a planned linear trend as statistically significant if the omnibus test for
the data is nonsignificant?

7. We saw that the estimated slope parameter for the data in Table 6.1 is ; = 2.3. However, slopes
between adjacent levels of the factor differ appreciably from 2.3. In particular, the slope of the line
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connecting the 1-minute and 2-minute means is 4, the slope from 2 minutes to 3 minutes is 2, and
the slope from 3 minutes to 4 minutes is 1. Verify the statement made in Note 4, that the slope B
is a weighted average of these individual slopes. Specifically, show that the value of 8, here equals
B] = 3d| + 4d2 + .3d3, where d] = 72 - Yl, dz = Y3 - 72, and d3 = Y4 - ?3.

8. A graduate student used a three-group study employing equally spaced levels of a quantitative
factor for her thesis. Her theory suggests that the relationship between her factor and her dependent
variable should be linear. She obtains the following data (n = 10 per group): ¥, = 10, ¥, = 50,
and 73 = 30. Her test of the linear trend yields an F value of 10.0, which is significant at the .01
level. Does this finding support her theory? Why or why not?

*9, A developmental psychologist is interested in the extent to which childrens’ memory for facts
improves as children get older. Ten children each of ages 4, 7. and 10 are randomly selected to
participate in the study. The three-group means on the dependei « measure of accuracy are 5.5, 7.7,
and 10.2. To estimate the slope parameter, the psychologist finds linear trend coefficients of —1, 0,
and 1 for three groups from Appendix Table A.10. Equation 7 is used to find the estimated slope.
Specifically, = 4.7 and Zj=1 c? = 2, so the estimated slope appears to be 8; = 4.7/2 = 2.35.
However, this seems to imply an average increase of 2.35 units on the dependent measure for
every increase of 1 year in age. Thus, we might expect 10-year-olds to outperform 4-year-olds by
approximately 14.10 units (note that 14.10 equals the product of 6 and 2.35). In fact, however,
10-year-olds outperform 4-year-olds by only 4.7 units in the study. Is the psychologist’s estimated

slope of 2.35 accurate? Why or why not?

10. An interesting question to developmental psychologists is whether children’s generosity (or altru-
ism) steadily increases with age. The following study is modeled after an experiment reported in
Zarbatany, L., Hartmann, D. P, & Gelfand, D. M. (1985). Why does children’s generosity increase
with age: Susceptibility to experimenter influence or altruism? Child Development, 56, 746-756.
First-, third-, and fifth-grade children were allowed to select from among four alternatives what they
would do if a fixed amount of money were donated to their school. A separate group of children
of similar ages was used to create a generosity scale, using a paired-comparisons format. (It is
interesting that in the actual study, the experimenters also used a scale with rational weights and
obtained different results for the two weighting schemes.) Consider the following data, where each
score represents the rating of the child’s chosen alternative on the generosity scale:

First Graders  Third Graders  Fifth Graders

NN OWRNNDW~RL,ONO~O
O RPN~ ~,O=)0ONOCWMRN
W NOWN = WONMFWN W

a. Suppose that the experimenter plans to test both the linear and the quadratic trends. Perform
these tests for these data.

b. Plot the predicted means based on a linear trend model, that is, a model without a quadratic
component. How do these means compare to the actual sample means?
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c. Plot the predicted means based on a model that includes both linear and quadratic trend compo-
nents. How do these means compare to the actual sample means? Why?

d. The experimenter is interested in knowing how much ratings tend to change for every additional
year of school. Form a 95% confidence interval for the population slope. (Hint: Be careful how
you code your coefficients.)

€. Calculate the three measures of association strength presented in this chapter. How would you
interpret your findings for these data?

*11. A physiological psychologist is interested in the differential effects of four dosage levels of a
particular drug on the ability of rats to learn how to find their way through a maze. The dependent
variable for each animal is the mean number of incorrect turns made over five trials after exposure
to the drug and an initial acquaintance with the maze. The following data are obtained:

Level

1 2 3 4

66 48 34 42
72 50 36 48
50 38 38 350
62 42 32 46
58 44 32 52

Assume that the levels of drug dosage are equally spaced in units of size 1 (as in 1, 2, 3, 4),

throughout the remainder of the problem.

a. Starting with the coefficients shown in Appendix Table A.10, modify them as required by
Equations 7 and 8 to obtain an estimated slope parameter.

b. Using standard procedures for testing the statistical significance of a contrast, test the linear
trend for significance.

c. Use the regression routine of a statistical package to regress number of errors Y on drug dosage
X. What is the least-squares estimate of the slope parameter? How does this value compare with
the answer you obtained in part a? (This is to be done by computer.)

d. As part of the output you obtained in part ¢, you should have a significance test of the slope
parameter. Depending on the specific program, the test statistic should be either = —2.70 or,
equivalently, F = 7.28. How does this value compare to the F value you calculated in part b?

e. To explore why the answers to Parts b and d are different, we first consider the difference between
the sum of squared errors of the full and restricted models of the two approaches. Is this value
(i.e., the numerator sum of squares) identical in the two approaches?

f. Now consider the denominator of the F statistic in the two approaches. Is the error sum of
squares identical in the two approaches? What about the degrees of freedom of the error term
(i.e., the degrees of freedom of the denominator)?

g. The reason the error sums of squares of the two approaches are different is that the error term
is based on a different full model in the two approaches. In the regression analysis of part d,
the error term is based on a full model of the form ¥;; = §; + 81 X;; + &;;. However, the error
term of the contrast approach of part b is based on a cell means model of the form: ¥;; = u; +
&;;. Why is the sum of squared errors larger for the error term of the regression approach than
for the error term used to test the contrast? (Hint: What role do the nonlinear trends play in the
difference between these two models, that is, the models on which the error terms are based?)

h. Based on your answer to part g, which approach do you think would generally be preferable for
testing a linear trend? Why?

12. This problem uses the same data as Exercise 11. As in Exercise 11, this problem compares regression
and ANOVA analyses of these data, but now we will compare these two approaches in terms of
confidence intervals.

a. Use the procedures of this chapter to form a 95% confidence interval for the slope coefficient
where number of errors Y is regressed on drug dosage X, where X is coded as 1, 2, 3, and 4.
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b. Use the regression routine of a statistical package to regress number of errors ¥ on drug dosage
X, where X is once again coded as 1, 2, 3, and 4. Form a 95% confidence interval for the slope
coefficient.

c¢. Are your answers to Parts a and b identical? How are the two intervals the same? How are they
different?

d. Which approach provides a more precise estimate here? Why?

13. Two different methods are presented in the chapter for testing trends with unequal ». This exercise
explores how these methods differ. Consider a four-group study where the groups represent equally
spaced levels of a quantitative factor. Assume that the following data have been obtained:

n1=30 n2=30 n3=5 n4=5
Yi=2 Y,=4 Y;=4 Ys=2

Further assume that mean square within (MSw) = 2.

a. One approach described in the text is a hierarchical approach. Find the contrast coefficients for
testing the statistical significance of the linear trend for these data using this approach.

b. Based on the coefficients of part a, test the linear trend for statistical significance.

¢. The other approach described in the text is an unweighted approach. What are the contrast
coefficients for the linear trend using this approach?

d. Based on the coefficients of part c, test the linear trend for statistical significance.

¢. Plot the sample means obtained here as a function of the level of the quantitative factor. Which
plot of those shown in Figure 6.3 does your plot most resemble? Does your plot suggest the
existence of a linear trend?

f. Which approach, hierarchical or unweighted, seems preferable here? Why?

g. Explain why the linear trend is significant here with the hierarchical approach.

14. A question currently being studied by developmental psychologists is how parent—infant play
changes as infants get older. The following study is modeled after an experiment reported in Power,
T. G. (1985). Mother- and father-infant play: A developmental analysis. Child Development, 56,
1514-1524. Parents of 16 children at each of three ages (7, 10, and 13 months) were videotaped dur-
ing toy-play interactions with their infants. Raters judged the number of seconds over a 10-minute
period during which parents encouraged different types of infant play. One dependent variable of
interest was the proportion of time parents encouraged pretend play in their children. Suppose that
the following data were obtained:

7-month-olds  10-month-olds  13-month-olds

.02 15 .09
.01 11 .03
07 22 18
04 .05 A2
.01 .09 18
.09 05 43
05 15 24
06 11 40
.05 .14 .02
.01 21 19
04 .06 A5
.03 A2 .07
.02 11 45
02 19 20
13 A2 49
.06 .04 19

a. Suppose that the experimenter plans to test both the linear and the quadratic trends. Perform
these tests for these data.
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b. Plot the predicted means based on a linear trend model, that is, a model without a quadratic
component. How do these means compare to the actual sample means?

c. Plot the predicted means based on a model that includes both linear trend and quadratic trend
components. How do these means compare to the actual sample means? Why?

d. Suppose the experimenter is interested in the average change in proportion of time parents
encourage pretend play as a function of the child’s age in months. Form a 95% confidence
interval for the population slope relating these two variables.

e. Calculate the three measures of association strength presented in this chapter. How would you
interpret your findings for these data?

f. When the dependent measure is a proportion, as it is here, it is sometimes recommended to
transform the dependent variable before performing the analysis. The particular transformation
usually recommended is an inverse sine transformation that defines a new dependent variable ¥’
in terms of the original variable Y as follows:

Y’ = 2arcsine(v'Y)

Perform the trend tests of part a using Y as the dependent variable. (Hint: This transformation is straight-
forward to apply using many statistical packages. For example, both SAS and SPSS have SQRT and
ARSIN functions to perform the necessary transformation.)
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Two-Way Between-Subjects
Factorial Designs

So far, we have seen how to compare the means of a groups of individuals. This chapter
continues this theme but in a more general context. We now consider designs where the
groups are defined by two or more factors (independent variables). For example, suppose that
a psychologist wants to evaluate the effectiveness of biofeedback and drug therapy for treating
hypertension, that is, for lowering blood pressure. The psychologist might design a study with
four groups: both biofeedback training and drug therapy, biofeedback but no drug therapy, drug
therapy but no biofeedback, and neither biofeedback nor drug therapy. We will see later in this
chapter that such a design provides efficient tests of the individual effects of biofeedback and
drug therapy, as well as the effect of the two in combination. As before, each subject selected
to participate in the study would be assigned to one of the four groups, ideally at random.

THE 2 x 2 DESIGN

To explore this design and analysis in detail, consider the hypothetical data of Table 7.1. As
usual in our data sets, the number of subjects is kept small to minimize the computational
burden. For the sake of discussion, we assume that the scores in the table represent systolic
blood pressure readings taken at the end of the treatment period. Based on what we have
learned so far, we might analyze these data in either of two ways. First, we might perform an
omnibus test to compare all four groups. Table 7.2 shows the ANOVA table that would result
from this approach. There is a statistically significant difference among the four groups, but,
of course, the omnibus test does not reveal which specific groups are different.

Second, instead of performing the omnibus test, we might have decided to test planned
comparisons. Naturally, the comparisons of most interest should assess the effectiveness of
biofeedback and drug therapy. There are several reasonable ways in which we might define
such contrasts, but for the moment we will only consider one. To evaluate the biofeedback
effect, notice that Groups 1 and 2 received biofeedback training, whereas Groups 3 and 4 did
not. Thus, a contrast we could form to test the biofeedback effect would have coefficients
of 1, 1, —1, and —1. Similarly, the effect of drug therapy could be tested by a contrast with
coefficients of 1, —1, 1, and —1.

If we apply Chapter 4 principles to the data of Table 7.1, we find that the sum of squares
attributable to the biofeedback contrast is 500, whereas that for drug therapy is 720. The
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TABLE 7.1
BLOOD PRESSURE DATA FOR 2 x 2 FACTORIAL DESIGN
Group
1: Biofeedback  2: Biofeedback  3: Drug
and Drug Alone Alone  4: Neither
158 188 186 185
163 183 191 190
173 198 196 195
178 178 181 200
168 193 176 180
Mean 168 188 186 190
s 7.91 7.91 7.91 791
TABLE 7.2

ANOVA FOR DATA IN TABLE 7.1

Source A df MS F p

Between  1540.00 3 51333 821 .002
Within 1000.00 16 62.50

Total 2540.00 19

respective F values, obtained by dividing each sum of squares by MSw (which equals 62.50,
from Table 7.2), are 8.00 and 11.52. Both are statistically significant if we use an apc level of
.05 (more on this later in the chapter). Thus, our two tests suggest that both biofeedback and
drug therapy have an effect.

At this point, there is a question we should ponder. Have the tests we performed completely
explained the differences among our four groups? To answer this question, we can compare
SSp in Table 7.2 with the sum of squares associated with each of our contrasts. From Table 7.2,
we sec that the between-group sum of squares is 1,540 for our data; the sums of squares for
our two contrasts are 500 and 720. Can we say here that the two contrasts together account for
a sum of squares equal to 500 4+ 720 = 1,2207? Recall from Chapter 4 that the sum of squares
for contrasts are additive if the contrasts are orthogonal. Indeed, our biofeedback and drug
therapy contrasts are orthogonal, as we can see from applying Equation 4.58:

OO+DEED+HEDM+HEDED =0

For future reference, notice that this formula requires equal n, which we have here. Thus,
so far with two contrasts, we have accounted for a sum of squares of 1,220. However, this
means that we have failed to account for a sum of squares equal to 320 (i.e., 1540 — 1220).
Notice that although we have used two contrasts and hence 2 degrees of freedom to examine
group differences, with four groups we have 3 degrees of freedom in all for assessing group
differences. Thus, there is 1 degree of freedom yet to be examined.

It can be shown that there is only one contrast orthogonal to the two we have formed so far
and that its coefficients are 1, —1, —1, and 1 (of course, coefficients of —1, 1, 1, and —1 would
also work, as would .5, —.5, —.5, and .5, but these are all really the same contrast).! Indeed, if
we calculate the sum of squares for this contrast, it equals 320, as it must. The corresponding
F value is 5.12, which is significant at the .05 level. Thus, this contrast has detected a significant
effect. But what does this effect mean?
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Before answering this question, recall the meaning of our other two contrasts. One of these
tested the effectiveness of biofeedback, whereas the other tested the effectiveness of drug
therapy. However, if we look carefully at the contrasts, a more specific interpretation emerges.
The first contrast compared the difference between the means of the two groups that received
biofeedback versus the two groups that did not. However, notice that there were two groups
in each case because one half of the groups received drug therapy, whereas the other half did
not. In other words, the first contrast averages over the drug condition. As a result, it tests
the average effect of biofeedback by comparing group means with biofeedback versus those
without, giving equal weight to groups receiving drug therapy as those not receiving it. Notice
that the second contrast similarly tests an average effect of drug therapy. These average effects
are referred to as main effects, that is, the effect that each factor has in the main or on the average.

The Concept of Interaction

Thus, our first two contrasts tested main effects, the average effect of biofeedback and drug
therapy, respectively. The possibility remains, however, that the biofeedback effect in the
presence of drug therapy is different from the average effect of biofeedback. Indeed, this is
precisely what the third contrast tests. This test is referred to as an interaction test. To say
that an interaction exists in our data means that the biofeedback effect in the presence of drug
therapy is different from the average effect of biofeedback.

This can be clarified by looking at the means shown in Table 7.3. The four group means are
arranged in a 2 x 2 table, where the two rows represent the presence or absence of drug therapy
and the two columns represent the presence or absence of biofeedback. The average of each
row (called the row marginal mean, because it is placed at the margin of the table) and of each
column (the column marginal mean) is also presented, as is the grand mean (the average of all
the scores). What have we tested with our three planned comparisons? The first comparison
combined the means of 168 and 188 in the first column and compared them to the means of
186 and 190 in the second column. This is equivalent to testing the difference between 178 and
188, the two column marginal means. When we average over the rows, do the two columns
differ? As previously stated, this tests the average effect of biofeedback. Similarly, the second
contrast tested the difference between 177 and 189, the two row marginal means.

The third contrast, the test of the interaction, is more complicated. Remember that it tests
whether the biofeedback effect in the presence of drug therapy is the same as the average effect
of biofeedback. Here, the biofeedback effect in the presence of drug therapy is to lower blood
pressure 18 points (186 — 168). The average effect, however, is to lower blood pressure only
10 points (188 — 178). The F value of 5.12 was statistically significant at the .05 level for these
data, implying that the effect of 18 is discernibly different from the average effect of 10. Thus,
biofeedback has a larger effect in the presence of drug therapy than it has on the average. There
is yet one other way of viewing this test. Notice that the average effect of 10 is the average
of 18; the biofeedback effect in the presence of drug therapy; and 2, the biofeedback effect

TABLE 7.3
FACTORIAL ARRANGEMENT OF MEANS
FROM TABLE 7.1

Biofeedback
Present Absent Average
Present 168 186 177
Drug Therapy  Apgent 188 | 190 189
Average 178 188 183
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in the absence of drug therapy. We are claiming that the effect of 18 is significantly different
from the average of the 18 itself and 2. But this simply amounts to saying that the effect of
18 is significantly different from the effect of 2. That is, a significant interaction here means
that the biofeedback effect in the presence of drug therapy is significantly different from the
biofeedback effect in the absence of drug therapy. In terms of the means in Table 7.3, the
difference between columns 1 and 2 is not the same in row 1 as in row 2.

Additional Perspectives on the Interaction

So far, we have only considered whether the biofeedback effect is the same in the presence
of drug therapy as in the absence of drug therapy. However, it may be just as interesting to
determine whether the drug therapy effect is the same in the presence of biofeedback as in
the absence of biofeedback. Table 7.3 shows that the magnitude of the drug therapy effect is
20 in the presence of biofeedback but only 4 in its absence. The difference in effectiveness is
thus 16, the same difference that was found for biofeedback. That the same number resulted
for both differences is not a coincidence—instead, it is a mathematical necessity. We can see
why first algebraically and then geometrically. Recall that the coefficients of the interaction
contrast were 1, —1, —1, and 1. Thus, this contrast tests the following null hypothesis:

Hp : fdrug & biofeedback — Mdrug — Mbiofeedback + Mreither = 0 €5)

We can rewrite this expression in either of two ways. First, the equation is equivalent to

HO . Hdrug & biofeedback — Mdrug = Mbiofeedback ~ Mrneither (2)

This statement, if true, implies that the biofeedback effect in the presence of drug therapy
equals the biofeedback effect in the absence of drug therapy. Alternatively, the equation can
be written as

Hy : ftdrug & biofeedback — biofeedback = Mdrug — Mncither 3

This asks whether the drug therapy effect in the presence of biofeedback equals the drug
therapy effect in the absence of biofeedback.

Because all three equations are equivalent mathematically, they are in fact all testing the
same null hypothesis. Thus, the interaction test addresses the question of whether the effect of
one factor is the same for each level of the other factor. If the answer is yes for one factor, it
must also be yes for the other factor as well.

The meaning of an interaction is often clarified by a graphic display (the geometric approach
mentioned earlier). Figure 7.1 presents pictorial representations of the group means of Table
7.3. Figure 7.1a shows clearly that biofeedback lowers blood pressure an average of 18 units
when drug therapy is present but only 2 units when drug therapy is absent. Recall that the
significant interaction here means that the 18 and 2 are significantly different from one another.
Geometrically, this implies that the two lines shown in Figure 7.1a depart significantly from
parallelism. If the lines were parallel, the vertical distance between them would be the same
at every level of drug therapy. However, in these data, the distances are unequal, and the
lines are not parallel. This provides another way of conceptualizing the significance test for
interaction. If the group means are plotted as in Figure 7.1a, is there a significant departure
from parallelism? In other words, is there evidence “beyond a reasonable doubt” that lines
connecting population means would also not be parallel?
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FIG. 7.1. Geometric depiction of group means shown in Table 7.3.

Notice that Figure 7.1b simply reverses the roles of biofeedback and drug therapy. Once
again, the lines are not parallel because the same four means are plotted as in Figure 7.1a.
Although Figure 7.1b is mathematically redundant with Figure 7.1a, it is often useful visually
to draw both figures, because the biofeedback effect is visually highlighted in Figure 7.1a,
whereas the drug therapy effect is clearer in Figure 7.1b. In addition, an interaction that is
disordinal in one figure (meaning that the lines cross one another besides not being parallel)
may not be disordinal in the other figure (meaning that although the lines may not be parailel,
they do not cross).”

The concept of an interaction is extremely important in statistics and represents the most
novel idea in this chapter. For this reason, at the risk of beating a dead horse, one more
perspective is provided on the meaning of an interaction. It is sometimes said that if two
factors interact, their effects are not additive. What does it mean to test whether two factors
combine in an additive manner? To answer this question, reconsider Equation 1:

Ho : tdrug & biofeedback — Mdrug — Mbiofeedback T Mneither = 0 (1, repeated)

This can be rewritten as

Hp : Hdrug & biofeedback = Mdmg T Mbiofeedback — Mneither

If we subtract a fyeimer term from both sides of the equation, we obtain

Hp : Mdrug & biofeedback — Mneither = Hdrug + Mbiofeedback — Mneither — Mneither

Rearranging terms on the right-hand side yields

HO * Mdrug & biofeedback — Mneither = (U»drug - Mneilher) + (Nbiofeedback - Nneilher) (4)

The left-hand side of the equation represents the combined effect of the two factors, that is, how
the combination of both differs from the absence of both. On the right-hand side, the first term
represents the drug therapy effect in isolation, that is, in the absence of biofeedback. Similarly,
the second term represents the biofeedback effect in isolation. Thus, the null hypothesis states
that the combined effect of drug therapy and biofeedback equals the sum of their separate effects

TLFeBOOK



280 CHAPTER 7

individually. In other words, the hypothesis states that the effect of combining drug therapy and
biofeedback equals the sum of their individual effects, so the two individual effects literally
add together to produce the combined effect. Because Equation 4 is mathematically equivalent
to Equation 1, the null hypothesis of Equation 4 expresses a statement that the two factors
do not interact. Thus, the lack of an interaction corresponds to an additive effect, whereas the
presence of an interaction implies a nonadditive effect.

A MODEL COMPARISON APPROACH TO
THE GENERAL TWO-FACTOR DESIGN

In the previous section, we performed three hypothesis tests in our two-factor design: drug
therapy main effect, biofeedback main effect, and interaction. In this section, we see how
these three tests can be conceptualized in terms of model comparisons. Our earlier example
was restricted to a 2 x 2 design, where each factor had only two levels. In general, however,
each factor may have two or more levels. For ease of discussion, we refer to the two factors
as A and B, where in general A has a levels and B has b levels. For example, A might be
presence or absence of biofeedback (so a = 2), and B might represent three types of drug
therapy (so b = 3) for treating hypertension.

The full model in the general situation of an a x b design can be written in either of two
equivalent ways. First, the model can be written as

Yijp = wj + & (5

where Y; ;. represents the score on the dependent variable of the ith subject at level j of the A
factor and level k of the B factor,  j; is the population mean of Y for level j of A and level k
of B, and ¢;j; is an error term associated with the /th subject at level j of A and level k of B.
Notice that the value of the j subscript ranges from 1 to a, the value of the & subscript ranges
from 1 to b, and the value of i ranges from 1 to n;;, where ny; is the number of subjects in
the jk cell (i.e., the jth level of A and kth level of B). The model is often referred to as a cell
means model, because just like the full model for the one-way design in Chapter 3, it states
that any subject’s score is dependent only on the cell of the design in which the subject resides
and an error component. Indeed, mathematically, this full model for the two-way design is no
different from the full model we developed earlier for the one-way design. In particular, we
will see later that the least-squares parameter estimates and error sum of squares can be found
using the same logic as before.

Alternate Form of Full Model

Although this form of the full model is perfectly valid mathematically, it is often convenient?
to rewrite it in the following form:

Yijg = u+oj+ B+ (af) i + &iji 6)

where u represents a grand mean term common to all observations, «; is the effect of the
Jjth level of A, B is the effect of the kth level of B, and (aB);, is the interaction effect of
level j of A and level k of B in combination with one another. We have chosen to represent
this effect with the combination of & and § instead of with some other single Greek letter,
because the effect represents the interaction of A and B.* However, as we will see momentarily,
(aB)11 (we have arbitrarily picked row 1 and column 1 as an example) is a single parameter
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TABLE 7.4
POPULATION MEANS IN A 3 x 4 DESIGN
B
Marginal

1 2 3 4 Means
1 10 15 20 11 14
A 2 15 10 5 14 11
3 8 5 14 5 8
Marginal Means 11 10 13 10 11

and as a consequence («f);; ultimately equals some number, just as oy (for example) did in
one-way designs. It is particularly important to realize that («f);x does not mean the product
of multiplying o; by . Although (aB);x is related to or; and S; in a way that we will soon
see, the relationship is not multiplicative.

To understand the meaning of an effect, it is helpful to return to the concept of a marginal
mean. The idea of a sample marginal mean was introduced in the discussion of Table 7.3; the
focus now is on the notion of a population marginal mean. Consider the hypothetical 3 x 4
design shown in Table 7.4. Each cell entry represents a population mean (in an actual study,
we obviously would not know precise values of population means, but here we assume that
population values are known, for pedagogical purposes). Population marginal means (PMM)
are defined for each row, each column, and rows and columns combined in the following
manner. The PMM for the jth row (i.e., jth level of A) is

b
io=> My /b (7
k=1

which tells us to sum the cell means across columns in row j and then divide by the number
of columns. The period following the j in ;. is a reminder that we have averaged over the
second subscript &, which represents columns. For the means of Table 7.4, we would then have

w1, = (10+15+204+11)/4 =14

2. = (154+104+5+14)/4 =11

M3, = @+5+14+5)/4=28
These numbers simply tell us that the mean score in the first row is 14, the mean in the second
row is 11, and so on. It should be noted that the mean here is an unweighted mean, in that each

column is weighted equally. (We will return to the importance of weights later in the chapter.)
The PMM for the kth column is defined as

M.k=Zﬂjk/a ®)
=

For the data in Table 7.4, then, the column means are givenby u | = 11, # , = 10, u 3 = 13,
and p 4 = 10. Finally, the population grand mean is defined as

a b
w.=) ) wpfab ©)

j=1 k=1
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This equals 11 for the data in Table 7.4. Notice that 1 is simply the unweighted mean of all
individual cell means in the population.
'We are now finally ready to define the effects in the full model as represented by Equation 6:

Yije =+ a; + B + (@B + €ijk (6, repeated)
First, u in Equation 6 is simply the & . term defined in Equation 9. Second, «; is defined as

oj =i — M. (10)

which represents the difference between the marginal mean in row j and the grand mean. For
example, for the data in Table 7.4, a; would equal 3, oz would equal 0, and o3 would equal
—3. On the average, the effect of row 1 is to raise scores 3 points, the second row has no effect,
and the third row lowers scores 3 points.> Third, gy is defined as

Be =t — . (11

This represents the difference between the marginal mean in column & and the grand mean.
For example, for the data in Table 7.4, 1 =0, B = —1, 3 =2, and 84 = —1. Finally, the
(af) jx terms are defined by

@B = jr — (.. +oj+ Bi) (12)

This represents the difference between a cell mean and the additive effect of the two factors. In
other words, the («f);; parameters reflect the extent to which the cell means fail to conform to
an additive pattern. Notice that there is one (@f)x parameter for each cell in the design. To be
certain that Equation 12 is clear, let’s find the value of (¢f),; for the data in Table 7.4. From
the equation

(@B = p1 — (. + oy + Br)
We saw earlier that for these data, i, = 11, &y = 3, and 8; = 0. Thus
@f)n=10—-(114+34+0)=—4

The nonzero value for (¢f); indicates an interactive (i.e., nonadditive) effect for this cell. If
the effects of A and B were strictly additive, the population mean in the (1,1) cell would be 14,
because row 1 raises scores 3 units on the average and column 1 has no effect on the average,
so together the mean should be 3 points above 11, or 14. The fact that the population mean
is actually 10 reflects that the particular combination of A; and B; lowers scores, contrary to
their average effects separately. Applying Equation 12 to all 12 of the cells of Table 7.4 shows
that

(@B = —4 (@Prz= 2 @Bz = 4 (@f)a = -2
(@Bl = 4 @)= 0 (@f)3 = —8 (@Bhs= 4
(@B = 0 (@f)sr = =2 (@f)z= 4 (@f)za = =2

Equations 9-12 are important for two reasons. First, they provide formal definitions of the
A main effect, B main effect, and interaction parameters. It is important to understand what
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these parameters mean because we formulate hypothesis tests in terms of these parameters.
Second, the algebraic expressions we have developed are helpful for developing least-squares
parameter estimates and the corresponding sum of squared errors of various models.

We have now discussed in some detail two forms of the full model for a two-way design.
Before we introduce a restricted model and subsequent hypothesis testing, we first compare
the two different forms of the full model. Recall that the first form was

Yiik = wjx + €ija (5, repeated)
and the second form was
YVig = u+a;+ B + @B + &iji (6, repeated)

We now demonstrate that these two forms are mathematically equivalent. Remember that the
interaction parameters (o) of Equation 6 were defined as

(@B)jk = pjx — (.. +otj + By) (12, repeated)
Making this substitution into Equation 6 and remembering that 1 = u, we obtain
Yijk = tjk + €ijx

which of course is exactly the same as Equation 5. How can these two forms be equivalent
when they look so different? After all, they do not even appear to have the same number of
parameters. The model in Equation 5 has ab parameters, whereas the model in Equation 6 has
1 + a + b + ab parameters. However, it turns out that the parameters in the Equation 6 model
are not all independent. For example, it can be shown algebraically that Z‘;=1 a; =0, given
the definition of each o in Equation 10.5 For the data in Table 7.4, the «; parameters add to
zero (as they must) because o) = 3, oy = 0, and a3 = —3. If the effect of row 1 is 43 and the
effect of row 2 is 0, then the effect of row 3 must be —3 because the effects are all defined
relative to the grand mean and the average of the row means must be the grand mean. Hence,
there are only two independent «; parameters for these data; once we know any two values, the
third is completely determined. Similarly, it turns out that as a consequence of our definitions
of B and («B) i that they possess the following properties:

M-

B =10
k=1

Z (@B)jr = for each value of &
=1

b
Z (@B)jy =0 for each value of j
k=1

As a consequence of these constraints, the model of Equation 6has 1 + (a — 1)+ (¢ — 1) +
(a — 1)( — 1) independent parameters. However, multiplying the terms of this expression
and performing the necessary subtraction shows that the number of independent parameters is
simply ab, the same as Equation 5. Thus, the models of Equations 5 and 6 are indeed equivalent.
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Comparison of Models for Hypothesis Testing

‘We are now ready to consider tests of hypotheses in terms of model comparisons in the a x b
factorial design. As we have seen earlier in this chapter, there are three null hypotheses to be
tested. Each of these null hypotheses leads to a restricted model, which then is compared to
the full model. In each case, to test a hypothesis, we use our usual F test for comparing two
models, namely

Fe (Er — Ep)/(dfg — df)
Er/dfs

The primary challenge is finding Er and Eg, the error sum of squares for the full and restricted
models. Notice that the specific form of the restricted model depends on the hypothesis being
tested (A main effect, B main effect, or AB interaction). The full model, on the other hand,
is the same for every hypothesis. Because the full model remains the same, it is easiest to
consider its error sum of squares first.

The error sum of squares for the full model (£¥) can be found most easily by writing the
full model in the form of Equation 5:

Yiik = i + &iji
Recall that Ey. is given by

Erp =) [Yig — Lp(P)P
o

Here, ¥; ik(F) is a subject’s predicted score when the parameters of the model are estimated
using least squares. The parameters of the full model are simply the population means of each
cell. Least-squares estimates these population means by their respective sample means, so that

Vi (F) =Y jx (13)
Thus
Ep=) (Ve — Y ) (14)
all

obs

which we have previously seen as the within-cell (or within-group) sum of squares in the
single-factor design. As in the one-way design, we can represent Er as SSw. As before, Ex
simply measures the magnitude of variation within cells, that is, the extent to which scores
within a group differ from each other. Also keep in mind that when we divide Ef by dff, the
resultant ratio is simply MSw.

Although Er can be found most easily by writing the full model in the form of Equation
5, it can also be found by writing it in the form of Equation 6. We also present the least-
squares estimation of parameters for the Equation 6 model because this form of the model
translates more easily to restricted models. The least-squares estimates can be found simply by
substituting sample means for the corresponding population means in Equations 9-12.7 Thus

a b
p=Y = ZZij/ab (15)
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& =Y; ~Y. (16)

Bi=Yi-Y. an
&Bjk =Yu—- +7Y;, -7 +Y,-Y.)

=Yu-Y;, ~Yi+Y. (18)

In case it is not clear Y. is the sample mean of all scores at the jth level of A. (We will
consider alternate meanings of Y ;, with unequal n later in the chapter.) Similarly, ¥ ; is the
sample mean of all scores at the kth level of B. With this formulation, a predicted score from
the full model is given by

Pe(F)=p+a; + B +af (19)

Substituting for £, &;, ﬁk, and &B jk from Equations 15-18 yields Y; a(F)y = Y jk» the same as
Equation 13. This simply underscores the equivalence of the models of Equations 5 and 6.

Next, we must consider the restricted model to be compared with the full model. Recall that
the restricted model depends on the null hypothesis to be tested. First, consider the null hy-
pothesis that the A main effect is zero in the population. We can conceptualize the implications
of this hypothesis by considering the full model written according to Equation 6:

Full: Y =pu+a; + B+ @B + &ijk
According to the null hypothesis, all the marginal means of the levels of the A factor are equal

to one another, that is, the effect of each and every level of the A factor is zero. Symbolically,
the null hypothesis can be written as

H02011=Ol2=‘--=(xa=0 (20)
This null hypothesis then leads to the following restricted model:

Yip =pu+ B+ @Bz +&ijn 20
The error sum of squares of this restricted model (ER) can be found by once again using least
squares to estimate the parameters of the model. With equal n per cell (as we are assuming
here), parameter estimates for u, Bk, and («B);; are once again obtained from Equations 15,
17, and 18, just as they were in the full model. The omission of the «; parameters does not
change the estimates of the other parameters, because the effects are orthogonal to one another

with equal z (this orthogonality was demonstrated earlier in the chapter in the case of the 2 x 2
design). Notice that a predicted score from the restricted model is given by

Pik(R) = p + Bi + @B (22)
Substituting for 2, ,3k, and &B j« from Equations 15, 17, and 18 yields
YRy =Y — @; (23)
whered; =Y; -7 .

Before formally finding Eg, itis instructive to compare Equations 13 and 23 for the predicted
scores from the full and restricted models, respectively. To the extent that the «; parameters
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differ from zero, the predicted scores of the full model are superior to those of the restricted
model, that is, they are closer to the actual scores (when the error in prediction is squared).
This must be true because the sample means minimize the sum of squared deviations.

What is the formula for the error sum of squares Ex of the model given by Equation 21? As
usual,

ﬁ—ZZZmﬂUMW

=1 j=1 i=

When Y jk — @; is substituted for ¥ jk(R), simple algebra reveals that Er can be written as

a
Ex=Ep+nb) (¥, -7 ) (24)
Jj=1

where n is the number of observations per cell and b is the number of levels of the B factor.
Obv