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Foreword

Human history may be built on the development of technology, but the history of
rotordynamics to date has been a blank page of that history. Dr. Rao’s book will
do much to fill this empty space. Engineers are not historians, but it seems that
wherever the history of a specialty is written, it is a specialist – Dr. Rao in this case
– who must rise and address this need. Clearly, the history of any specialized area
presents a very difficult task for anyone other than the expert himself.

Fortunately, Dr. Rao has chosen to address this task, a task it must be said that he
is well-equipped to undertake.

Recognizing the blank page which stood before him, Rao has done well to first
put his efforts into a broad historical perspective before attempting the specialized
areas that make up the complex science of rotor-dynamics. For this is a subject
which extends from shaft dynamics, through the static and dynamic properties of
various types of bearings and seals, and often involves both blade and disk dynam-
ics. A well-established basis of knowledge in many technologies is therefore needed
before one could think of considering the history of all these subjects in any depth.
Small wonder then that this task has lain unaddressed for years, waiting for a spe-
cialist like Dr. Rao, who has spent a lifetime of scholarship and preparation before
attempting a history of a subject as broad as this.

Rao begins with chapters on the wheel, the water wheel and on the windmill.
Recognizing the contributions that Aristotle and later Archimedes made to the sci-
ence which underlies the technology of rotating machinery, he discusses the contri-
butions of the great engineers of ancient times, and he mentions the fallacies that
occasionally grew from such work, even from the teachings of the great Aristotle
and Ptolemy. In this, Rao subtly poses an interesting question: is it right to expect
that even from birth that science shall be perfect? Evidently not: rather, we come
to realize through our own work the value of such a book as this, that the cre-
ation of science and technology, is an on-going task, and one for which we must
all assume some responsibility through our own publications. From the Ancients
Rao next moves through the aridity of the Dark Ages in the West, through the Re-
naissance to the great re-generation of science that began with the work of certain

xi



xii Foreword

inspired scientists, and on to the emergence of the new technology of the Industrial
Revolution, and to its flowering in the service of man.

The pace quickens as Rao finds himself in familiar territory, and he begins to
address the foundations of the modern science of rotating machinery dynamics. The
many methods that the author himself has used and explored in his work on blade
vibrations are now laid out in historical terms, thus making clear to us how the many
clever innovators that we have to thank for our firm grip on the technology of our
subject achieved their results. The contributions of Euler, Lagrange, Rayleigh, and
Dunkerley to the history of this subject are now set before us in fresh, historical
terms, rather than in the familiar terms with which we are familiar. Here, these
authors appear as real people for the first time, in the perspective of their subject.
Euler with his thirteen children, going blind in St. Petersburg; Lagrange, too worried
after publishing his timeless Mechanique Analytique to even open the copy on his
desk for two years, amid the revolution which swirled below in the streets of Paris;
and Rayleigh, in the blissful isolation of a honeymoon cruise up the Nile River,
writing the Theory of Sound. Now at last for us these people have real, human faces.

In quick succession Rao now moves through the graphical methods of the late
19th and early 20th century until need again outstrips ability. Here it is the hands
of Holzer which introduce numerical methods to address situations where formu-
las only lead to intractable mathematics. We begin to see that future the world of
technology will exists in digital terms, and not formula terms. Jeffcott studied the
vexed “critical speed” problem of shaft dynamics, by making the first rigorous ex-
perimental study, and then by using these results during his analysis of the problem.
He found that this was a forced vibration problem, not an instability problem as
some before him had claimed. Rao next considers the development and the contri-
butions of the computer. He considers in parallel the birth of matrix methods, and
of the Prohl–Myklestad method, as preparations through design for the solution of
problems relating to the unbalance response and balancing of real rotors. Thus this
fundamental question of rotordynamics had waited sixty years before it was ex-
plained by Jeffcott’s contribution, and then it waited a further forty years, through
the innovations and squabbles of the 1970s, until a full and accepted solution for
unbalance response was finally reached.

This of course says nothing about the other great problem of rotordynamics
which emerged in the 1920s, that of rotor instability. Rao’s book treats both bearing
instability and shaft hysteretic instability, and considers the impact of this and other
questions of shaft dynamics, such as misalignment and asymmetry of the rotor. He
makes it clear why almost a hundred years had to elapse before a complete solu-
tion for the shaft problem was reached. To complete his work, Rao addresses the
much-awaited introduction of the Finite Element method into both rotor-dynamics
and bearing dynamics, and then turns to another topic for which he is well prepared:
the problems of blade and disk dynamics. Rao describes from first-hand knowledge
how the blade vibration problem with its many geometrical complexities was inves-
tigated. He describes the evolution of methods for single airfoil analysis with dis-
crete bending-bending-torsion approaches, and eventually through to finite element
approaches, where with the evolution of greater computer capabilities it became
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possible to study both the steady stresses and the dynamic stresses in blades, blade
groups, and today in complete blade-disk assemblies.

We may be confident that with this history, as part of the larger history of
the Theory of Machines and Mechanisms that Professor Marco Ceccarelli has so
worthily undertaken as editor, will do much to set the record straight on the origins
of rotor-dynamics within the historical perspective of machinery development. This
book, and other works in this series, will be received and read with relish by savants
and students alike, that is, by all who seek knowledge of the background to their art.
With the writing of this book, Dr Rao has secured for himself yet again a place in
the history of engineering, as much as his technical work in this subject has earned
him a place in its science. All who practice this fine art must now feel indebted to
Dr Rao for this impressive work of documentation and perspective.

Neville F. Rieger, PhD, DSc, Fellow ASME
Chief Scientist, STI Technologies, Inc.
Rochester, NY, USA
Former Gleason Professor Mechanical Engineering
Rochester Institute of Technology, Rochester, NY, USA
Founder President
STI Technologies, Inc, Rochester, NY, USA
Chairman IFToMM Rotor Dynamics Technical Committee 1998-2006 and
Emeritus Chairman since 2008



Preface

It has been an eventual 20th century that transformed the mankind in the rapid de-
velopment and usage of rotating machinery in various industrial sectors. Its all due
to de Laval and Parsons inventions of impulse and reaction turbines who could bring
the dream of Hero of Alexandria alive in 2100 years. This book is written to retrace
the steps of history.

While the book traces the events leading to Laval and Parsons Turbines, the em-
phasis is on rotor and blade dynamics aspects that pushed these turbines to limits in
the last century. The tabular and graphical methods developed in precomputer era
have taken different form in the last 50 years through finite element methods. The
methods evolved in the last century are discussed in detail to help the modern day
designers and researchers.

Man has become mobile with the ending of last ice age 15000 years ago and
has since been looking for doing daily chores in an easier manner. He invented the
wheel for this purpose and put it use nearly 5000 years ago in the form of a Potter’s
wheel, then to transportation and as a grinding wheel in about 3000 years of time.
This wheel is fundamental to rotating machinery as briefly presented in Chapter 1.

There was no science to take this development further, the first organized thinking
before medieval period came from Aristotle about 2350 years ago. Archimedes in
Alexandria about 2250 years ago has put forward some realistic and sound ideas on
science; in fact in his period, Hero made the first workable reaction steam turbine.
This was the first machine man attempted but could not take it to real usage because
of lack of science. Chapter 2 briefly discusses these.

Without much science man has used wheel in the form of Water wheels and Wind
mills to reduce the burden of grinding food grains and smithy. These are discussed
briefly in Chapters 3 and 4.

The need for science was felt more and more in understanding structures and
despite strict religious practices; there was renaissance in scientific thinking as by
Leonardo da Vinci that led to scientific revolution with Nicholas Copernicus an-
nouncing heliocentric theory. Events moved fast with the invention of Calculus by
Newton and Leibniz and beam structures received maximum attention three cen-

xv
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turies ago. The rotor owes its knowledge base from the beam theories in this scien-
tific revolution period. These aspects were discussed in Chapter 5.

While the science is taking good shape, engineers were looking forward to de-
velop machines particularly removing water from mines. Otto von Guericke discov-
ered vacuum in this period and renaissance engineers beginning from Denis Papin
developed “atmospheric engines” or “fire engines” for this purpose. These develop-
ments were briefly discussed in Chapter 6.

With the discovery of Latent Heat by Joseph Black, the stage has been set to
James Watt for producing a reciprocating steam engine which ushered in industrial
revolution more than 200 years ago. Chapter 7 briefly discusses these aspects.

The reciprocating engine was never the dream of mankind and with Laval and
Parsons Inventions, the reciprocating steam engine gave way to turbomachines
which has rotors and mounted blades; this engine was considered “Vibration Free”.
This is the beginning of rotor dynamics just over a century ago. Chapter 8 briefly
discusses these aspects.

The rotor and blade dynamics depended heavily on science and the fundamen-
tals of elasticity are first discussed in Chapter 9. The elasticity equations are not
amenable for a solution that involves coupled partial differential equations with 15
unknowns. Therefore energy methods were developed using Calculus of Variations
from Newton which are fundamental to derivation of modern finite element meth-
ods. The energy methods were discussed in Chapter 10. We also discuss here some
design examples adopted from Rayleigh’s principle as adopted over a century ago
in industry. Hamilton’s principle which is the most general principle in Dynamics
is discussed in this chapter with examples that cannot be addressed with finite ele-
ments even today.

When the turbomachinery were invented and their application became ubiqui-
tous with the dynamo, the industry needed methods to determine critical speeds of
rotors and blades. Since the methods of elasticity were not suitable without comput-
ers, initially strength of materials approach was developed and numerical methods
using graphical or tabular form were adopted. These methods were discussed in
Chapter 11.

Matrix methods were adopted in the mid 20th century and discussed in Chap-
ter 12. With the advent of computer era the finite element method made rapid strides
and they are discussed in Chapter 13 for beams, plates and shells. Nonlinear con-
tact element methods required for analysis of bladed-disks were also discussed here.
Typical application of commercial finite element codes for a turbomachine blade as
practiced today is also discussed.

Rotor dynamics deals with rotating structures and the way in which these princi-
ples were developed from Jeffcott analysis in 1918 to handle various special aspects
on fluid film supports, instabilities, gyroscopic effects, etc., are presented in Chap-
ter 14. These methods in transfer matrix form are discussed in Chapter 15. The
application of finite element methods for rotor dynamics is discussed in Chapter 16.
Solid model rotor dynamics a recent development is also discussed in this chapter.
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Blades are mounted on rotors and they form important rotor dynamics in tur-
bomachinery. The developments in blades and bladed-disks are discussed in Chap-
ter 17.

With rapid development and deployment of commercial softwares, simulation
and lifing of rotating machinery components has become a standard design prac-
tice. Recently the industrial designs demand optimum solutions in weight as well
as life and this practice is becoming a standard norm. These methods were briefly
discussed in Chapters 18 and 19.

The information presented in this book will be useful to a young researcher and
engineer in industry and educational institutions engaged in rotor and blade dy-
namics work in understanding the past and the present developments and what is
expected in future. Faculty and industry engineers can have a broad perspective in
this field in formulating their developmental plans.

It should be mentioned here that it is a near impossible task to do justice for such
a historical survey in rotating machinery. The basics of rotating machinery are in
Thermodynamics, Compressible Flow, Heat Transfer, and Material Science besides
instrumentation and controls, and we have restricted to rotor and blade dynamics.
The excitation comes from Flow path interference in a stage with flutter in some
cases; this has not been included in this book. In rotor dynamics, magnetic bearings
are a topic and this has also been not included here. Condition monitoring of rotating
machinery also has its roots in rotor dynamics and not included. Also despite a wide
search, some significant developments could have easily escaped my attention and
my apologies for the same.

I sincerely hope that rotor and blade dynamics community will enjoy reading this
material.
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Chapter 1
Beginnings of the Wheel

The dates of the Stone Age vary considerably for different parts of the world. It
began about 2 million years ago and ended in different parts from 6000 to 2500 BC.
Throughout the immense time span of the Stone Age, see Scarre [2] and Schick
and Nicholas [3], vast changes occurred in climate and in other conditions affect-
ing human culture. Humans themselves evolved into their modern form during the
latter part of it. The Stone Age has been divided accordingly into three periods: the
Paleolithic, Mesolithic and Neolithic, see Technology of Man [5].

The Paleolithic, or Old Stone Age, was the longest period. It began about 2 mil-
lion years ago, when stone tools were first used by humanoid creatures, and ended
with the close of the last ice age about 13,000 BC. After 13,000 BC more clement
weather patterns resulted in the greater availability of food. In tropical and temper-
ate forest regions, Paleolithic tools, still chipped from stone, were adapted to the
new conditions. This period is known as the Mesolithic, or Middle Stone Age. In
this period, sometime many thousands of years ago, man found that a section of
a tree trunk could be moved under the force of gravity because it was round. If the
branches and twigs of the trunk were removed, the speed of the rolling log improved,
see Figure 1.1.

Early men began to place runners under a heavy load, which they discovered
would make it easier for the load to be dragged. This was the invention of the sledge.
Men then began to combine the roller and the sledge. As the sledge moved forward
over the first roller, a second roller was placed under the front end to carry the
load when it moved off the first roller. It was discovered that the rollers that carried
the sledge became grooved with use and that these deep grooves actually allowed
the sledge to advance a greater distance before the next roller was needed. Thus,
the rollers developed into wheels. In this process sections of wood between the
grooves of the roller were cut away to form an axle and wooden pegs were fastened
to the runners on each side of the axle. A slight improvement was made to the
cart. This time, instead of using pegs to join the wheels to the axle, holes for the
axle were drilled through the frame of the cart. Axle and wheels were now made
separately [1, 4].

1



2 1 Beginnings of the Wheel

Fig. 1.1 Earliest movement achieved by pulling and pushing under log rollers. Artist impression
by Lakshmi.

Fig. 1.2 Potter’s wheel of 3500 BC. Artist impression by Lakshmi.

The wheel is probably the most important mechanical invention of all time.
Nearly every machine built since the beginning of the industrial revolution involves
a single, basic principle embodied in one of mankind’s truly significant inventions.
It is hard to imagine any mechanized system that would be possible without the
wheel or the idea of a symmetrical component moving in a circular motion on an
axis. From tiny watch gears to automobiles, jet engines and computer disk drives,
the principle is the same.

Agricultural villages had begun to develop by 8000 BC. This is known as the
Neolithic period, or New Stone Age. Stone tools became highly polished and var-
ied. By 6000 BC pottery appeared and copper was used for the first time in some
regions followed by bronze. Before the introduction of iron, most tools and weapons
were made of bronze, so this period was called the Bronze Age. During this time
the slow potter’s wheel was invented, see Figure 1.2. In about 3000 BC, the Egyp-
tians developed the fast wheel, a completely mobile, carefully balanced apparatus
of stone. Based on diagrams on ancient clay tablets, the earliest known use of this
essential invention was a potter’s wheel that was used at Ur in Mesopotamia (part of
modern day Iraq) as early as 3500 BC. The first use of the wheel for transportation
was probably on Mesopotamian chariots in 3200 BC (Figure 1.3). It is interesting to
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Fig. 1.3 The wheel put in use for movement. Artist impression by Lakshmi.

Fig. 1.4 Indian spoked chariot. Artist impression by Lakshmi.

Fig. 1.5 Middle age grinding wheel. Artist impression by Lakshmi.
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note that wheels may have had industrial or manufacturing applications before they
were used on vehicles.

The wheel was furthered improved on later by the Egyptians, who made wheels
with spokes, which could be found on Egyptian chariots of around 2000 BC. Over
in Ancient India, chariots with spoked wheels dating back to around 1500 B.C.
were also discovered, see Figure 1.4. The Greeks too adopted the idea of wheel-
making from the Egyptians and made further improvements to it. Later, during the
time of the Roman Empire, the Romans too engaged themselves in wheel-making
and produced the greatest variety of wheeled vehicles. They had chariots for war,
hunting, and racing, two-wheeled farm carts, covered carriages, heavy four-wheeled
freight wagons and passenger coaches.

With the collapse of the Roman Empire in AD 476, the wheel became widely
used for war machines across the old empire. The grinding wheel (see Figure 1.5)
was introduced from Arabia to Europe in the middle ages, greatly improving the
effect of bladed combat weapons.
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Chapter 2
Science before the Medieval Period

Greeks took the elementary mathematics of the Egyptians and developed it into tools
to serve the physicist and the engineer of the day. About 600 BC geometry from
Egypt was imported and Greeks began to develop it and arithmetic into separate
branches of mathematical science. In the next several hundred years, Hippocrates
(460- BC), Aristotle (384–322 BC), Euclid (323–285 BC), and others systematized
what was then known about geometry and arithmetic [2].

Aristotle was probably the first to conceive the idea of organized research. From
the standpoint of the physical sciences, early Greek philosophers produced no fun-
damentally sound principles which are now accepted, but they gave for centuries
their authority to many false premises. Early Greeks such as Aristotle had devoted
considerable time to the study of objects in motion instead of bodies at rest. The
world of science might then have benefited materially from their speculations, in-
stead of being left with a lot of vague statements about natural and unnatural motion
which actually served to confuse and retard the successful development of the fun-
damental truths of Mechanics.

Some of the Aristotle school teachings include false premises such as:

• Substances are divided into corruptible and incorruptible.
• Bodies are classified as absolute heavy bodies and absolute light bodies and seek

their places, the light bodies on top.
• Motions are classified as natural motions and violent motions.
• Large bodies fall quicker than small ones,

These teachings retarded progress in Mechanics.
Archimedes (287–212 BC) of Syracuse in Sicily is believed by many to be the

first mathematical genius the world had so far produced. He is also believed by
many to have put his accomplishments into written form. He systematized simple
machines and propounded the theory of their functions [1, 3]. It was probably he
who invented the compound pulley, a device for increasing traction or lifting power
and he propounded the theory of lever, both one- and two-armed. He regarded the
wheel as the circular figure described by a rotating one-armed lever, and the screw
as the circular analogy of the inclined plane. The Archimedean screw is illustrated

5



6 2 Science before the Medieval Period

Fig. 2.1 As the handle a is turned, a certain amount of water is brought into the helical screw,
which then brings water up to a reservoir or trough. (Courtesy Ianmacm of Wikipedia)

Fig. 2.2 Hero’s aelopile. (Courtesy Wikimedia from Hero’s “Spiritalia”, edited by Woodcroft, of
London)
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in Figure 2.1. One of his famous sayings is “Give me a place to stand and I will
move the earth”.

Archimedes received his education at the University of Alexandria, where groups
of mathematicians and scientists worked, devoting themselves to the construction of
numerous fascinating machines [4]. The greatest and most colorful of what is known
as the Alexandrian school of engineers was undoubtedly Hero who lived sometime
during the second century BC. His best invention is the aelopile, the first reaction
turbine, which converted heat into mechanical energy through the medium of steam,
see Figure 2.2.

Hero’s aelopile, the first reaction turbine could not produce useful work, as its
speed was not sufficient to create the required high head of steam. As shown in
Figure 2.2 – The lower container “B” was partly filled with water and was heated.
The steam that was then produced was led via pipes “E” to a metal sphere, which
could turn on its axle and had exhaust pipes “K” and “H”, whose openings were
directed at right angles to the axle. As steam escaped, the sphere rotated because of
the steam’s reaction.

In the 1780s James Watt worked on the theoretical operating conditions of a
reaction turbine and concluded that such a turbine could not be built given the state
of contemporary technology.
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Chapter 3
Water Wheels

In all likelihood, the earliest tools employed by humankind for crushing or grind-
ing seeds, nuts, and other food-stuffs consisted of little more than a flat rock, upon
which the material was crushed by pounding with a stone or tree branch. The ar-
chaeological records show that as early as 30,000 years ago, Cro-Magnon artists
employed the mortar and pestle to grind and mix the pigments they used to create
their magnificent “cave-art”.

Far more efficient than the flat rock or even the mortar and pestle was the hand-
mill, which appears to have long pre-dated the agricultural revolution. The handmill
consists of a flat rock, often hollowed or concave, on which the grain, seeds, or other
materials is placed, and a grinding stone, which is rolled across the grain, thus re-
ducing the grain to flour. Although the handmill is still, today, in use in many parts of
the world, approximately 2,000 years ago humankind began to harness water-power

Fig. 3.1 An overshot wheel. (Courtesy Daniel M. Short at Wikimedia)

9
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Fig. 3.2 Flour Mill at Barbegal near Arles in southern France dating from 4th century AD. (Cour-
tesy Jay Roundy)

to turn the stones that ground its grain. It was probably the first tool for creating
mechanical energy to replace direct human and animal power [3].

The first description of a water wheel is from Vitruvius, a Roman engineer (31
BC–14 AD), who composed a 10 volume treatise on all aspects of Roman engineer-
ing. From classical times, there have existed three general varieties of water wheels:
the horizontal wheel and two variations of the vertical wheel see Hansen (on line
website). Figure 3.1 shows an overshot wheel commonly employed to grind grain.
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Fig. 3.3 Water Mill employed in China for iron casting. (Courtesy Wang Zhen from Wikipedia)

One of the most remarkable Roman applications of a waterwheel was at Barbegal
near Arles in southern France. Dating from the 4th century AD, the factory was an
immense flour mill which employed 16 overshot water wheels, see Figure 3.2.

Waterpower was an important source of energy in ancient Chinese civilization.
One of the most intriguing applications was for iron casting; see Figure 3.3. Ac-
cording to an ancient text, in 31 AD the engineer Tu Shih invented a water-powered
reciprocator for the casting of [iron] agricultural implements. Waterpower was also
applied at an early date to the grinding of grain. Large rotary mill appeared in China
about the same time as in Europe (2nd century BC). But while for centuries Europe
relied heavily on slave and donkey-powered mills, in China the waterwheel was a
critical power supplier.

Renaissance engineers studied the waterwheel and realized that the action of
water on a wheel with blades would be much more effective if the entire wheel were
somehow enclosed in a kind of chamber. They knew very well that only a small
amount of the water pushing or falling on a wheel blade or paddle actually strikes it,
and that much of the energy contained in the onrushing water is lost or never actually
captured. Enclosing the wheel and channeling the water through this chamber would
result in a machine of greater efficiency and power. However, they were hampered
by lack of any theoretical understanding of hydraulics. Both of these problems were
resolved to some degree in the eighteenth century, with one of the earliest examples
of a reaction turbine being built in 1750 by the German mathematician and naturalist
Johann Andres von Segner (1704–1777) [4]. In his system, the moving water entered
a cylindrical box containing the shaft of a runner or rotor and flowed out through
tangential openings, acting with its weight on the inclined vanes of the wheel.
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These developments occurred during a significant period of scientific revolution
and renaissance. Euler founded by this period Scienta Navalis, a new branch of
science “rational mechanics” [1], treats ideal fluids in the first volume and on the
seafaring and ship engineering in the second volume. To a great degree, we owe
to Euler the principles of the impeller drive and the screw. In his time these were
considered only as theory; however, Euler’s experiments on Segner’s water-powered
machine and the related theory of water turbines are well known.
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Chapter 4
Wind Mills

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile
River. While the proliferation of water mills was in full swing, windmills appeared
to harness more inanimate energy by employing wind sails. The wind wheel of
Heron of Alexandria marks one of the first known instances in history of wind pow-
ering a machine [1]. The first practical windmills were the vertical axle windmills
invented in eastern Persia, as recorded by the Persian geographer Estakhri in the 9th
century, see Hassan and Hill [2]. Prototypes of windmills were probably known in
Persia (present day Iran) as early as the 7th century AD with their sails mounted
on a vertical axis, see Figure 4.1. Towards the end of the 12th century, windmills
with sails mounted on a horizontal axis appeared in Europe; the first of this kind
probably appeared in Normandy, England. These are post mills, where the sails and
machinery are mounted on a stout post and the entire apparatus has to be rotated to
face the wind.

Two centuries later the tower mill was introduced, enclosing the machinery in a
stationary tower so that only the cap carrying the sails needed to be turned to the
wind.

In 1854 Daniel Halliday obtained the first American windmill patent. His wind-
mill had four wooden blades that pivoted and would self adjust according to wind
speed. It had a tail which caused it to turn into the wind (Figure 4.2).

Thus far we have seen how a rotor evolved from ancient devices. Rotating (or
reciprocating) machinery could not be meaningfully developed until sufficient sci-
entific background was laid. Though Archimedes paved the way in the 3rd century
BC for scientific thinking, the stronghold of the Church in the western world dur-
ing the medieval period had impeded further developments. In mid-16th century a
revival began but with slow progress as the Church continued its insistence on the
belief that the Earth is the center of the universe as proscribed by the Bible. Ptolemy,
who lived around 90 to 168 AD in the medieval period, subscribed to and widely
promoted Plato’s 4th century BC geocentric model [3].

It is this author’s belief that various religions evolved in different parts of the
world in an independent manner at different times, all of them with a common
purpose and approach, viz, inculcation of good behavior in humans that had been

13
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Fig. 4.1 An early Persian vertical axis windmill. (Artist impression by Lakshmi)

Fig. 4.2 Early American windmill mounted on a horizontal axle. (Coursey of United States Patent
and Trademark Office)

elevated from the mammal kingdom. Any belief preached in these religions was
vehemently opposed if a thinker expressed a different opinion based on scientific
evidence. Thus there were delays in the ascendancy of scientific thinking, but even-
tually it surfaced as a scientific revolution which, in turn, paved the way to the
industrial revolution. While scientific theories explained such phenomena as beam
bending, which was a precursor for understanding of rotors, the industrial revolution
provided the need for development of high-speed rotors. These aspects are discussed
in the next section.
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Chapter 5
Renaissance and Scientific Revolution

Technology has been traditionally the realm of craftsmen working by rough rules of
trial and error. The existing knowledge base was a mass of confusion in the absence
of a unified understanding of the behavioral motion of solids and fluids [7, 31, 35].
The man of knowledge was a natural philosopher rather than a scientist.

The reawakening of scientific thought was brought about during the Renaissance
Period (1400–1600) and carried into the period of the scientific revolution. Leonardo
da Vinci (1452–1519) has recently been credited for some fundamental contribu-
tions to solid mechanics, fluid mechanics and mechanical design much before the
scientific revolution. His contributions appear in Codex Madrid I, one of two re-
markable notebooks that were discovered in 1967 in the National Library of Spain
(Madrid), after being misplaced for nearly 500 years, see [1, 45]. He correctly con-
cluded that, in bending of beams due to transverse loads, plane cross-sections remain
plane before and after bending and rotate as shown in Figure 5.1. Da Vinci lacked
Hooke’s law and calculus to complete the theory; we had to wait for Galileo to im-
prove this further before Euler and Bernoulli formed correct equations for simple
bending.

The prevailing consensus otherwise is that Galileo Galilei (1564–1642) made the
first attempts at developing a theory of beams [54]. He recognized the Principle of
Virtual Work as a general law. Galileo however made an incorrect assumption in
the development of the theory of beams; he did not recognize that at any section
of the beam there was equilibrium of the tensile and compressive stresses. This
equilibrium of the tensile and compressive stresses was not discovered until years
later, by Mariotte (1686) in Paris [36].

The event which most historians of science call the scientific revolution can be
dated roughly as having begun in 1543, the year in which Nicolaus Copernicus
published his De revolutionibus orbium coelestium [5,10,20,21,26,39]. It is widely
accepted that Copernicus’s De revolutionibus followed the outline and method set
by Egyptian mathematician and astronomer Ptolemy in his Almagest in the second
century [37].

Ancient Empedoclean division of the “elements” into Air, Water, Fire and Earth
amounts to a little more than a geographical ordering of the familiar around us.

15
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Fig. 5.1 Leonardo da Vinci’s understanding of bending of beams

The Chinese divided the five elements as, viz., wood, fire, earth, metal, and water.
The Pancha Mahabhuta, or “five great elements”, of Hinduism are Prithvi or Bhumi
(Earth), Ap or Jala (Water), Agni or Tejas (Fire), Vayu or Pavan (Air or Wind), and
Akasha (Aether). Fire or Heat is fundamental to machines where energy is converted
into useful mechanical work. Galileo (1564–1642) was amongst the first to argue
in Il saggitore and in Discorsi that the sensation of heat is caused by the rapid
motion of certain specific atoms (Galilean atomic model). Rene Descartes (1596–
1650) was more explicit than Galileo and tried to explain all physical phenomena
in terms of extension and motion only. Isaac Newton (1642–1727) built upon the
work of Kepler and Galilei, see Galileo Galilei (1638, 1974), Galileo’s mathematical
treatment of acceleration and his concept of inertia both reflect earlier medieval
analyses of motion [9]. His development of the calculus opened up new applications
of the methods of mathematics to science. He showed that an inverse square law for
gravity explained the elliptical orbits of the planets, and advanced the theory of
Universal Gravitation [32, 48, 62].

Robert Boyle (1627–1691) was a notable disciple of Descartes. His major con-
tribution to heat remains his association with chemistry and his famous law relating
the pressure to the volume of an elastic fluid, or gas. Generally speaking, 17th cen-
tury theories of heat combined the idea of a subtle fluid with that of motion of its
constituent corpuscles or atoms. But the atoms remained scientifically inscrutable
until Daltonian chemistry in 1808 was accepted and the unknown function of their
motions was not understood until the concept of energy was established in the 19th
century.

Scientific revolution made rapid strides beginning with Newton (1786). Got-
tfried Leibniz (1646–1716) [30], Pierre Varignon (1654–1722) [58], Jacob Bernoulli
(1654–1705) [2], Johann Bernoulli (1667–1748) [3], Daniel Bernoulli (1700–1782)
[4],

Leonhard Euler (1707–1783) [16], a Swiss mathematician, proposed the Euler
equations, which describe conservation of momentum for an inviscid fluid, and con-
servation of mass. Claude Louis Marie Henry Navier (1785–1836) [38] and George
Gabriel Stokes (1819–1903) [51] introduced viscous transport into the Euler equa-
tions, which resulted in the Navier–Stokes equations.

Lateral bending of simple long slender beams was correctly explained by Euler
and Bernoulli in 1750. Euler made a number of contributions to Mechanics. The
better known of these are in Mechanics (Strength of Materials). During his tenure
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as a Professor of Mathematics at St. Petersburg, he published in 1736 what has since
been generally recognized as being the first book on Analytical Mechanics.

It was 65 years after the publication of Newton’s Principia (1687) that Jean le
Rond D’Alembert (1717–1783) published his Traite de Dynamique (1743). The
Euler–Bernoulli model includes the strain energy due to bending and the kinetic
energy due to lateral displacement. The Euler–Bernoulli model dates back to the
18th century. Jacob Bernoulli (1654–1705) first discovered that the curvature of
an elastic beam at any point is proportional to the bending moment at that point.
Daniel Bernoulli (1700–1782), nephew of Jacob, was the first to formulate the dif-
ferential equation of motion of a vibrating beam. Later, Jacob Bernoulli’s theory
was accepted by Leonhard Euler (1707–1783) in his investigation of the shape of
elastic beams under various loading conditions. Many advances in understanding
of the elastic curves were made by Euler. The Euler–Bernoulli beam theory, some-
times called the classical beam theory, Euler beam theory, Bernoulli beam theory, or
Bernoulli–Euler beam theory, is the most commonly used because it is simple and
provides reasonable engineering approximations for many problems. However, the
Euler-Bernoulli model tends to slightly overestimate the natural frequencies. This
problem is exacerbated for the natural frequencies of the higher modes. Also, the
prediction is better for slender beams than non-slender beams (see also [23]).

For a rotor dynamist, beam theory is the backbone of all analysis; all rotors were
modeled as beams throughout the 20th century and only recently have we begun to
understand solid model rotor dynamics. Thus beam models play a significant role
in the history of rotor dynamics. The Rayleigh beam theory (1877) [44] provides
a marginal improvement on the Euler–Bernoulli theory by including the effect of
rotation of the cross-section. The kinetic energy due to rotation is accounted for
in the analysis; it decreases the natural frequencies in the Euler–Bernoulli model.
The effect of shear on the Euler–Bernoulli beam was accounted for by Timoshenko
(1921, 1922) for high-frequency responses where shear or rotary effects are not
negligible. This beam model is valid even today in the 21st century.

Joseph Louis Lagrange (1788) who lived from 1736 to 1813 made fundamental
contributions during the scientific revolution and transformed Newtonian mechanics
into a branch of analysis, Lagrangian mechanics as it is now called, and exhibited
the so-called mechanical “principles” as simple results of the variational calculus.
Hamilton (1834) who lived from 1805-1865 announced subsequently his famous
principle of dynamics which is fundamental to the derivation of all vibration prob-
lems today.

In 1808 Ernst Florenz Friedrich Chladini (1756–1827) a German musician and
scientist conducted experiments on vibrating plates, exhibiting the so-called Chla-
dini figures [57]. Chladini repeated the pioneering experiments of Robert Hooke of
Oxford University who, on 8 July 1680, had observed the nodal patterns associ-
ated with the vibrations of glass plates. Hooke ran a bow along the edge of a plate
covered with flour, and saw the nodal patterns emerge.

Chladini’s technique, first published in 1787 in his book, consisted of drawing a
bow over a piece of metal whose surface was lightly covered with sand. The plate
was bowed until it reached resonance and the sand formed a pattern showing the
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Fig. 5.2 Sand sprinkled on a vibrating plate drifts to the nodal lines, revealing the standing wave
pattern produced by one of several frequencies. (Courtsey of The Video Encyclopedia of Physics
Demonstrations, Montana State University, Bozeman, MT, USA)

nodal regions, see Figure 5.2 with modern experimentation: what we know now as
rectangular plate mode shapes. The sand moved about until it reached the nodes.
This was the first experimental demonstration of 2-D harmonic motion.

There was no mathematical explanation for the seemingly strange phenomenon.
The French Emperor Napoleon was very much intrigued by the demonstration. At
his instance, the French Academy of Sciences announced a big prize for finding a
mathematical solution for the same. Most mathematicians did not attempt to solve
the problem, mainly because Lagrange had said that the mathematical methods
available at the time were inadequate for the purpose. It was believed that molecular
structure, theorized for materials, had to be taken into consideration in order to find
an explanation of this kind of phenomenon. Sophie Germain (1776–1831) attempted
to solve the problem and was awarded the Prize for deriving a plate theory in 1815 –
though it had some deficiencies corrected later by Kirchhoff in 1850 [6, 24, 34, 43].
It took 65 years for the community to begin to understand how to deal with a two-
dimensional structure.

Charles-Augustin de Coulomb (1736–1806) was a French natural philosopher,
and military engineer. In the Histoire de l’Academie for 1784, published in 1787 at
Paris, a paper by Coulomb appeared entitled “Recherches Théoriques et Expérimen-
tales sur la Force de Torsion et sur l’Élasticité des Fils de Metal” [11]. This paper
seems to be the first recorded discussion of torsion and apparently is what Saint-
Venant refers to on pages 331, 340, and 341 of his work Torsion when he mentions
Coulomb’s ancient theory of torsion. Coulomb does not express his torque in terms
of the elastic rigidity but makes it proportional to the moment of inertia of the nor-
mal section about the longitudinal axis of the rod or wire. Adhémar Jean Claude
Barré de Saint-Venant (1797–1886) was a French mechanician and mathematician
who contributed to early stress analysis. It took us another 40 years from the for-
mulation of plate theory to explain the Torsion problem of noncircular rods which
was first solved by Saint Venant in the mid-1850s [54]. Torsion plays an important
role in rotor dynamics in drive train vibration problems that is responsible for earlier
fatigue failures.
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The vibration problem of elastic systems was lucidly discussed by Lord Rayleigh
(1842–1919) in 1877. Walter Ritz (1878–1909) made significant contributions to
variational methods in deriving energy methods [46, 47].

Fundamentals of the Theory of Elasticity or physics of deformable bodies were
established during the scientific revolution. Engineers would refer to these de-
formable bodies as structures. Augustus Edward Hough Love was a British geo-
physicist and mathematician. Love’s book, A Treatise on the Mathematical Theory
of Elasticity, 2 vols. (1892–1893) [33], is an indispensable reference work for en-
gineers, mathematicians, and physicists; it is the most complete and authoritative
treatment of classical elasticity in existence. There also exist several excellent text-
books among which books by Dym and Shames [14], Sokolnikoff [50], Timoshenko
and Goodier [55] and Todhunter [56].

Elasticians have evolved approximate methods through energy principles to solve
problems posed by the theory of elasticity. Energy principles are fundamental to
the solution of all elasticity problems including those where the displacement field
is time dependent (vibration problems). Initially these problems happened to be
beams, then plates and solid structures with intricate geometry. Again there are sev-
eral texts that describe the energy methods in an elegant manner, some of them
are Fox [17], Lanczos [28], Langhaar [29], Love [33], Prescott [41], Rao [42],
Washizu [59, 60] and Weinstock [61].

The industrial revolution began with reciprocating steam engines devised by
James Watt in 1780, and the 19th century witnessed a rapid expansion in various
industrial sectors. Unfortunately, the reciprocating steam engine has several prob-
lems because of external combustion and excessive alternating load due to recipro-
cating masses that limit speeds and capacities. The industry was looking for non-
reciprocating systems, purely rotating systems that could usher in an era of so-called
“Vibration Free” engines. Rotor Dynamics is different from Structural Dynamics,
as we deal with a rotating structure. Basically, all the vibration phenomena will be
valid, however, there are several differences and we have to set up procedures for
handling the rotors and their vibratory phenomena.

More immediately important were the developments in studies of atmosphere
that revealed the existence of a finite ocean of air (the atmosphere) which exerts
a considerable pressure on everything underneath it. (Clausius published the basic
ideas of the second law of thermodynamics in 1850.)

Until the middle of the 19th century, the fruits of scientific revolution made little
impact and the contribution of science to technology remained occasional. But the
cultural and social revolution of the 16th and 17th centuries created conditions for
the union of science with technology which was to become the basis of modern
industrial development, see [15, 25, 49].
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Chapter 6
Renaissance Engineers

Medieval and Renaissance Europe possessed only one effective heat engine, the
combustion engine in the form of the cannon (Figure 6.1) [1].

The credit for making pressure exerted by the atmosphere entirely explicit be-
longs to Otto von Guericke (reprint 1963), who in 1672 published the famous book
in which he described his air pump and the experiments that he made with it from
the mid 1650s onwards. His famous demonstration is illustrated in Figure 6.2. Once
it was understood that atmosphere exerts pressure, it was a matter of creating a vac-
uum and allowing the atmospheric pressure to move the piston in a cylinder.

Denis Papin (1647–1712) a French physicist, mathematician and inventor is best
known for his pioneering invention of the steam digester, the forerunner of the steam
engine [5]. He visited London in 1675, and worked with Robert Boyle from 1676
to 1679, publishing an account of his work in Continuation of New Experiments
in 1680. During this period, Papin invented the steam digester, a type of pressure
cooker. He first addressed the Royal Society in 1679 on the subject of his digester,
and remained mostly in London until about 1687, when he left to take up an acad-
emic post in Germany. While in Leipzig in 1690, having observed the mechanical
power of atmospheric pressure on his “digester”, he built a model of a piston steam
engine, the first of its kind, see Figure 6.3. The Papin experiment was a metal tube
(closed at one end) with a piston inside. Under the piston there was a small quantity
of water which, heated and transformed into steam, raised the piston which reached
the edge of the cylinder where it was stopped by a flange. A stream of cold water
was sprayed onto the cylinder. The steam inside condensed. This produced a partial
vacuum and the outside air pressure forced the piston down (active stroke). The tube
had three roles: boiler, cylinder and steam condenser. The steam engine will build
pressure step by step, separating those three roles [3].

Thomas Savery (1650–1715) was an English military engineer and inventor who
in 1698 patented the first crude steam engine, based on Denis Papin’s Digester or
pressure cooker of 1679. On 2 July 1698 Savery patented an early steam engine;
he demonstrated it to the Royal Society on 14 June 1699. In 1702 Savery described
the machine in his book The Miner’s Friend; or, An Engine to Raise Water by Fire,
in which he claimed that it could pump water out of mines. His machine (see Fig-

23
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Fig. 6.1 A 17th century forge-welded iron cannon in Thanjavur (S. India). (Courtesy Wikipedia)

Fig. 6.2 Teams of horses trying unsuccessfully to pull apart vacuum-filled copper spheres in
Magdeburg demonstration for Emperor Ferdinand III. (Courtesy Gaspar Schott of Wikipedia)

ure 6.4), consisted of a closed vessel filled with water into which steam under pres-
sure was introduced. This forced the water upwards and out of the mine shaft. Then
a cold water sprinkler was used to condense the steam. This created a vacuum which
sucked more water out of the mine shaft through a bottom valve [7].

In 1705 Papin, with the help of Gottfried Leibniz, developed a second steam
engine using steam pressure rather than atmospheric pressure. Papin’s steam engine
was the first breakthrough since Hero’s reaction turbine of the 2nd century BC,
which never functioned in reality. In the installation at Kassel (Figure 6.5), steam
was fed from boiler “o” to a vessel “b” in which there was a float serving as a piston
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Fig. 6.3 The first steam engine 1690. (Courtesy Wikipedia)

Fig. 6.4 Thomas Savery (1698) vacuum pump. (Courtesy Wavesmikey at Wikipedia)

“c”. Papin planned to fill a container “d” in the piston with red-hot scrap iron in
order to superheat the steam, but in reality this could not be done. When the steam
pushed the piston downwards, the check valve “e” of the container for water to be
pumped was closed. Simultaneously the check valve “f” of the ascending pipe “g”
was opened and the water was pumped into a cistern “h”, from where it flowed to the
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Fig. 6.5 Papin Steam Engine installed in Kassel gardens of the Duke of Hesse. (Artist impression
by Lakshmi)
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Fig. 6.6 Thomas Savery Steam Engine in action in a water-logged mine (Artist impression by
Lakshmi)
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Fig. 6.7 Improvements in Newcomen Engine 1712 compared with Savery Engine (above). (Artist
impression by Lakshmi)

fountains. When the piston reached the bottom of “b” a tap “j” on “c” was opened
and the steam escaped. Because of the water pressure, “f” was then closed and “e”
opened and more water poured in. “k” is a safety valve [5].

Savery’s Vacuum pump installed in a water logged mine is illustrated in Fig-
ure 6.6. It had neither a piston nor a safety valve. Steam from the boiler was fed into
a vessel “a” and the water in it was forced out through an ascending pipe “b” by way
of check valve “c”. When “a” had been emptied, the flow of steam was stopped and
the vessel was cooled by means of cold water, which was sprayed over it from vessel
“d”. Since a vacuum was created when the steam was condensed, water was again
sucked into “a” by way of a check valve “e”. While “a” was being cooled, steam
was fed into the water filled vessel “f”, which was emptied, cooled and refilled with
water “g”.

Further developments, up until the appearance of James Watt are recently being
questioned, e.g., Valenti [8] writes

The early history of the invention of the steam engine shows without doubt that the British
Royal Society, including Isaac Newton personally, deliberately prevented the industrial and
naval applications of steam power for nearly 100 years. In fact, the Royal Society was so
intent on burying Denis Papin’s 1690 invention of a paddle-wheel-driven steamship, worked
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Fig. 6.8 Newcomen Engine Installation, (Courtsey Dartmouth Directory Ltd)

out in collaboration with Gottfried Wilhelm Leibniz, that it stole his work, and created a
mythical story of how two British “Newtonian” heroes, Savery and Newcomen, invented
the steam engine, for the sole purpose of raising water from coal mines – a myth that has
persisted in the history books until today.

Be that as it may, we will proceed to discuss further developments in steam engines
prior to the industrial revolution.

Thomas Newcomen (1663–1729) made explicit provision for the expulsion of air
from the cylinder. The snifting valve in Figure 6.7 opened outwards in such a way
that the rush of steam into the cylinder at the beginning of each cycle carried the
accumulated air out with it through the valve. In this way once a cycle, the engine
made a wheezing noise – like a man snifting with a cold – as it cleared itself of
the air. The movement up and down of the plug frame, a long board hanging from
the great beam, causes the tappet, or plug “T1” set in it to trip the weight-operated
valve, “W”. When the plug frame moves in the opposite direction, another tappet,
“T2” resets the valve. A similar mechanism (not shown) controls the steam supply
by means of the valve “S”. The eduction pipe enables the condensed steam and the
warmed condensing water to be returned via a well to the boiler, thus conserving
heat (see also [4]).

Newcomen’s steam engine was the first practical device to harness the power of
steam to produce mechanical work. His first working engine was installed at a coal
mine at Dudley Castle in Staffordshire in 1712. Such engines were used throughout
England and Europe to pump water out of mines starting in the early 18th century,
see Figure 6.8 and were the basis for James Watt’s later improved versions [2].
Although Watt is far more famous today (largely due to Matthew Boulton’s tireless
salesmanship), Newcomen rightly deserves the majority of the credit for widespread
introduction of steam power.
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Chapter 7
Industrial Revolution

Between 1780 and 1850, in a space of just seven decades, the face of England was
changed by a far-reaching revolution, without precedent in the history of mankind.

Glasgow University had one of the Newcomen engines for its natural philosophy
class. In 1763, one hundred years after the birth of Newcomen, this apparatus went
out of order and Professor John Anderson gave James Watt (1736–1819) the oppor-
tunity to repair it. After the repair and while experimenting with it, Watt was struck
by the enormous consumption of steam because, at every stroke, the cylinder and
piston had to be heated to the temperature of boiling water and cooled again. This
prevented the apparatus from making, with the available boiler capacity, more than a
few strokes every minute. He quickly realized that wastage of steam was inherent in
the design of the engine and became obsessed with the idea of finding some remedy.
From the discovery of Joseph Black (1728–1799), he deduced that the loss of latent
heat was the most serious defect in the Newcomen engine [2]. The work of James
Watt [3] is thus the key application of science to engineering which led to the birth
of the industrial revolution.

In 1765 he conceived the idea of a separate condensing chamber for the steam
engine to separate the condensation system from the cylinder, injecting the cooling
water spray in a second cylinder, connected to the main one [1]. When the piston
had reached the top of the cylinder, the inlet valve was closed and the valve control-
ling the passage to the condenser was opened. External atmospheric pressure would
then push the piston towards the condenser. Thus the condenser could be kept cold
and under less than atmospheric pressure, while the cylinder remained hot. Impor-
tant as the separate condenser idea was, in the fully developed version of 1775 that
went into production, changes had to be more far-reaching. There was no spray, the
condenser being immersed in a water tank and at each stroke the warm condensate
was drawn off and sent up to a hot well by a vacuum pump which also helped to
evacuate the steam from under the power cylinder. The still-warm condensate was
recycled as feed water for the boiler.

James Watt’s single-acting pumping engine of 1788 is shown in Figure 7.1. This
engine worked a crossbeam for pumping. The cylinder was closed (by a cap) and
heated by a warm steam jacket. The condenser, positioned underground, was cooled
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Fig. 7.1 James Watt’s Steam Engines in 1788 - Pumping Engine. (Courtesy National Museum of
Science & Industry)

and vacuum operated (by a pump). When the piston reached the top of its stroke the
exhaust-valve opened and a partial vacuum was produced below the piston (inside
the cylinder communicating to the condenser). Above the piston, at the same time,
the entrance of steam helped the atmospheric pressure to drive the piston down. On
this stroke the crossbeam raised water in the pump. When the piston reached the
bottom of the stroke the inlet valve closed and an equilibrium valve opened to allow
steam to pass from above to below the piston. The engine piston (now with the same
pressure above and below) was driven up by the crossbeam and the descent of the
very, very heavy pump piston and rod. Note the presence of the condenser and the
warm steam jacket that surrounds the cylinder.

There was a heavy demand for an engine that could produce a rotary motion to
drive factory machinery. The reciprocating engine that produced rotary motion revo-
lutionalized the world; the first engine James Watt built in 1787–1788 is also shown
in Figure 7.2. Reciprocating machinery has inherent disadvantages at high speeds,
they have practically disappeared in the modern day world; there are still steam lo-
comotives operating in a few places, e.g., Fairy Queen, the oldest running vintage
steam locomotive in the world, built in the year 1855 by the British firm Kinston,
Thompson & Hewitson for the British firm East India Railways, see Figure 7.3, and
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Fig. 7.2 James Watt’s Steam Engines in 1788 – Engine with rotary motion for factories. (Courtesy
National Museum of Science & Industry)

Fig. 7.3 Fairy Queen (http://www.visit-indya.com/tours/fairyqueen.html)

occasional reciprocating engines for producing small amounts of power in sugar
mills, but they are gone. Internal combustion engines still thrive for transportation,
power generation, and so on.
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The internal combustion engines could run at higher speeds with a multi cylinder
arrangement and reciprocating parts balancing. However, they are not vibration free
engines. Though reciprocating machines are fascinating, they have no rotors directly
and in the drive train too, the speeds are limited because of the reciprocating drive.
Thus, not much attention was given to rotor dynamics during this era. We will study
the growth of turbomachinery which necessitated the studies on rotor dynamics.
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Chapter 8
Turbomachines

During the 2nd century BC, Hero demonstrated the principle of a reaction turbine,
but could not realize any useful work. Despite the scientific revolution followed
by the industrial revolution, James Watt, while attempting to build a steam turbine,
came to the conclusion that it could not be built given the state of contemporary
technology.

About the year 1837 several reaction steam wheels were made by Avery at Syra-
cuse, New York, and by Wilson at Greenock [3], for driving circular saws and cotton
gins, see Figure 8.1. Steam was introduced into it through a hollow shaft, and, by
the reaction of the jets at the extremities, caused rotation.

By the middle of the 19th century, there was a fair amount of understanding
of the vibration characteristics of strings, beams, membranes and plates; however,
nothing was known about a beam when it becomes a shaft and rotates. William John
Macquorn Rankine (1820–1872) proposed in 1869 that a critical speed exists for a
rotor which is the limit of speed for centrifugal whirling. It was not known whether
a rotor can cross this limiting critical speed as Rankine proposed this as a limiting
speed. Nearly two decades later in 1883 (about 100 years after Watt built his steam
engine), De Laval of Stockholm undertook the problem with a considerable mea-
sure of success. Karl Gustaf Patrik de Laval (1845–1913) was a Swedish engineer
and inventor who made important contributions to the design of steam turbines and
dairy machinery. He built the first steam turbine (impulse turbine) [5], where high
pressure steam was blown through nozzles whose inner shape “a” allowed the steam
to expand to low pressure, see Figure 8.2. Its velocity was then greatly increased,
and when the steam jets hit the turbine wheel’s bent vanes “b”, the wheel was set in
motion. The slim, resilient turbine axle is mounted in its bearings 1 which were fixed
in spherical segments 2 so that the axle could stand up to the whipping resonance
vibrations.

Once a rotating machine was achieved with steam as motive force, there was
a tremendous expansion in the capacity of power generation. Just one year after
Laval’s turbine, Charles Parsons [3] in 1884 came up with the first reaction turbine
[5]. Sir Charles Algernon Parsons (1854–1931) was a British engineer, best known
for his invention of the steam turbine (see Figure 8.3). Because of heavy vibrations

35
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Fig. 8.1 Rotor of Avery’s turbine. (Courtesy Cambridge University Press)

Fig. 8.2 Laval’s turbine and critical speed. (Courtesy Cambridge University Press)

in reciprocating machines with severe torque and speed fluctuations, these turbines
are hailed “vibration free engines” for that time at least.

Laval was also able to derive the whirl radius y in terms of shaft eccentricity δ,
shaft stiffness F and weight W and explain how the rotor rotates smoothly beyond
the critical speed, which Rankine thought 14 years ago that the critical speed is the
limiting speed. These are the benefits from the Science revolution to speed up the
industrial revolution.

With the invention of Dynamo in 1878 by Thomas Alva Edison and installation
of Pearl Street Electric Power Station in 1882 (see Figure 8.4), the path has been
cleared to produce electricity in an unprecedented scale which brought in a phe-
nomenal expansion of the steam turbine; the early part of 20th century has seen 2
MW turbines, by 1920 the first 50 MW machine was made and by end of the II
World War, 100 MW machines began to produce power. The capacity rose to 1000
MW by 1970 and in 1980 a single machine produced 1500 MW electricity (see
Figure 8.5), see GE Steam Turbines, and A Century of Progress [1].

Heinkel He-178 was the world’s first turbojet-powered aircraft in 1939, flying
nearly two years before the British Gloster E28. It was powered by propellerless
engine, a jet engine or gas turbine rather than a piston engine. Hans von Ohain
(1911–1998) studied at University of Göttingen and when 22 years old he first con-
ceived the idea of a continuous cycle combustion engine in 1933; he patented a jet
propulsion engine design similar in concept to that of Frank Whittle (1907–1996)
but different in internal arrangement in 1934. After receiving his degree in 1935,
Ohain became the junior assistant of Robert Wichard Pohl, then director of the
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Fig. 8.3 First Parson’s turbine. (Courtesy Cambridge University Press)

Fig. 8.4 Edison’s Jumbo Dynamo – a 27-ton machine that produced 100 kilowatts at Pearl Street
Electric Power Station. (Courtesy Thomas Edison National Historical Park)

Physical Institute of the University. Hans von Ohain and Frank Whittle are both
recognized as being the co-inventors of the jet engine. Each worked separately and
knew nothing of the other’s work. While Hans von Ohain is considered the designer
of the first operational turbojet engine, Frank Whittle was the first to register a patent
for the turbojet engine in 1930. Hans von Ohain was granted a patent for his turbojet
engine later in 1936 [2]; however, Hans von Ohain’s jet was the first to fly in 1939.
Frank Whittle’s jet first flew in 1941.

While working at the University, von Ohain met an automotive engineer, Max
Hahn, and eventually arranged for him to build a model of his engine. When it was
complete he took it to the University for testing, but ran into serious problems with
combustion stability. Often the fuel would not burn inside the flame cans, and would
instead be blown through the turbine where it would ignite in the air, shooting flames
out the back and overheating the electric motor powering the compressor.

In February 1936, Pohl wrote to Ernst Heinkel telling him of the von Ohain
design and its possibilities. Heinkel arranged a meeting where his engineers were
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Fig. 8.5 GE’s N series steam turbines for nuclear applications up to 1500 MW. (From Steam
Brochure GE Energy, 4200 Wildwood Parkway, Atlanta, GA 30339)

Fig. 8.6 Hans Von Ohain first jet engine (left) and Frank Whittle’s jet engine (right)

able to grill von Ohain for hours, during which he flatly stated that the current
“garage engine” would never work but there was nothing wrong with the concept
as a whole. The engineers were convinced, and in April, von Ohain and Hahn were
set up at Heinkel’s works at the Marienehe airfield outside Rostock, Germany in
Warnemünde.

Once moved, a study was made of the airflow in the engine, and several improve-
ments made over a two month period. Much happier with the results, they decided to
produce a completely new engine incorporating all of these changes, running on hy-
drogen gas. The resulting Heinkel-Strahltriebwerk 1 (HeS 1), German for Heinkel
Jet Engine 1 (see Figure 8.6), was built by hand-picking some of the best machinists
in the company, much to the chagrin of the shop-floor supervisors. Hahn, mean-
while, worked on the combustion problem, an area he had some experience in.

Frank Whittle was a Royal Air Force Officer, proposed in a thesis that planes
would need to fly at high altitudes, where air resistance is much lower, in order to
achieve long ranges and high speeds [6]. Piston engines and propellers were unsuit-
able for this purpose, so he concluded that rocket propulsion or gas turbines driving
propellers would be required: jet propulsion was not in his thinking at this stage. In
1929, Whittle had considered using a fan enclosed in the fuselage to generate a fast
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Fig. 8.7 GE 90 Aircraft Engine produced a record thrust of 120,316 pounds in 2001, 75 times that
of W.2 in 1941. (Courtesy Dino of Turbokart)

flow of air to propel a plane at high altitude. A piston engine would use too much
fuel, so he thought of using a gas turbine and patented his idea.

In 1935 Whittle secured financial backing and, with RAF approval, Power Jets
Ltd was formed. They began constructing a test engine in July 1936, but it proved
inconclusive. Whittle concluded that a complete rebuild was required, but lacked
the necessary finances. Protracted negotiations with the Air Ministry followed and
the project was secured in 1940. By April 1941 the engine W.2 (see Figure 8.6)
was ready for tests and it produced 1600 lb thrust. The first flight Gloster E.28/39
took place on 15 May 1941. By October the Americans had heard of the project and
asked for the details and an engine. A Power Jets team and the engine were flown
to Washington to enable General Electric examine it and begin construction. The
Americans worked quickly and their XP-59A Aircomet was airborne in October
1942, some time before the British Meteor, which became operational in 1944.

In just six decades later, the General Electric GE-90 115-B engine (see Fig-
ure 8.7) is designed for a thrust rating of 115,000 pounds (511 kN), making it the
most powerful jet engine in the world [4]. It is produced by a tight-knit partnership of
General Electric, Snecma Moteurs, FiatAvio and IHI, and is intended for Boeing’s
new longer-haul 777 versions, the 777-200LR (Long Range) and the 777-300ER
(Extended Range).

Rolls-Royce developed its first three-shaft engine, the RB211, in the late
1960s/early 1970s for the Lockheed TriStar. It went on to power the Boeing 747
jumbo jet, Boeing 757 and Boeing 767 (see Figure 8.8). The Industrial version of
the RB211 entered service in 1972.

There have been several challenges in the development of high speed rotating
machinery, steam turbines, gas turbines, and radial and axial flow compressors, in-
ternal or external combustors the key elements that go in making the complete drive
units during the 20th century. While slow speed machinery could be developed by
design methodologies, with high-speed complex machinery precise estimation of
several important state quantities are necessary to be determined.

When it came to development the first gas turbine, Frank Whittle faced immense
challenges; we will mention a few here:
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Fig. 8.8 Rolls Royce RB211-524 turbofan engine

• January 16, 1930 filed for a patent based on the principle of using a gas turbine
for propulsion.

• October to December 1936 conducted several combustion experiments and de-
tailed design was ready by end of 1936.

• First engine W.U. with a single combustor was tested on April 12, 1937; when
the speed was raised from 2000 to 2500 RPM, the engine suddenly ran away; the
problems were attributed to fuel system. Suspended tests August 23, 1937.

• New combustion tests October 22, 1937; throughout the rest of 1937 combustion
testing and the first rebuild of the engine, W.U.

• April 29, 1938 the engine ran for 1 hour 45 minutes before failure attaining a
thrust of 480 pounds at 13,000 RPM. Failure attributed to rubbing of the turbine
nozzle assembly with the turbine wheel at high speed, causing severe overheating
and failure of the turbine blades (even to day almost seven decades later turbine
blade vibration failures is a dreaded phenomena for the designer and maintenance
man).

• Whittle abandoned the single combustor for a series of ten small combustion
chambers; May 30, 1938 reconstructed the experimental engine for a second
time.

• July 19, 1938, Whittle’s team concluded that the feasibility of jet propulsion for
aircraft has been experimentally established for the first time; at 73.3% design
speed quantitative verification of the engine has been obtained.

• October 26, 1938 testing on the third rebuild of the experimental engine.
• March 1939 14000 rpm maximum speed achieved; a turbine blade failure caused

a two month delay.
• June 17, 1939 testing resumed with a new impeller; it had 29 blades instead of

30 to avoid resonant coupling with the 10 blade diffuser system; June 26 16000
rpm was reached.

• On February 22, 1941, the third rebuild was destroyed by a turbine failure after
a total running of 170 hours.
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Table 8.1 Significant events in the history of rotating machines

Year Significant Event

2000000 BC Beginning of Paleolithic or Old Stone Age – Dark Ages
13000 BC Beginning of Mesolithic or Middle Stone Age - Earliest movement

achieved to pull and push under log rollers
8000 BC Beginning of Neolithic or New Stone Age – Agricultural villages
6000 BC End of Stone Age – Pottery and pottery wheel
3000 BC Wheel for transportation; sail ships
250 BC Archimedes
200 BC Hero’s Aelopile – First reaction turbine
31 BC Vitruvius and water wheel
700 AD Wind mills
1543 AD Copernicus and Scientific Revolution
1680 AD Newton; Otto von Guericke
1690 AD Papin; Savery; Newcomen
1750 AD Euler
1780 AD James Watt and Industrial Revolution
1883 AD Laval and Parsons

Edison, Pearl Street Station
1940 AD Von Ohain and Frank Whittle
1980 AD 1500 MW steam turbine, cryogenic pumps accelerating

to 100000 RPM in 4–5 seconds

• May 1941 the first engine shipped to Gloster and on 15th E28/39 took the flight
for the first time.

Subsequently in May 1942, Whittle felt that the Ministry of Aircraft Production felt
uneasy of the project as a whole and was in response to previous industry over-
optimism; frequency of turbine blade failures was becoming the latest technological
barrier to overcome. Rotors with mounted rotating parts continue to be the most
stressed mechanical elements of all machinery and receive maximum attention in
their design.

As a recap, the most significant events in the history of rotating machines are
presented in Table 8.1.

It was almost two million years of existence of humans that can be described
as Stone Age; the use of stone tools and the ability to walk straight up has set us
apart from animal kingdom. Around 15000 years ago, the first breakthrough came
in the Stone Age where man has learnt a faster way of moving things by inventing
the sledge and roller. Though we are still dependent on human labor, the first step
has been taken and ushered us into the Middle Stone Age from Old Stone Age. It is
about 10000 years ago, we have settled down to live in a village rather than being
totally nomadic and ushering in the New Stone Age. It took another 2000 years to
invent the first wheel – pottery wheel for manufacturing applications. With this we
have now learnt the ability to shape our own tools and the Stone Age has ended.

It is about 5000 years ago, we have transformed the log and pottery wheel to a
wheel in transportation; bullocks and horses are used and we learnt to use animals
extensively and replacing human work. Thus we began a new revolution with animal
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power to satisfy the growing human needs. Relieved from human labor for existence,
we found that extra time to think about our surroundings; understanding physics,
chemistry and biology – for example we postulated that the universe is made of five
elements.

We began to notice that animal power relieved us from drudgery but it is not
fast enough to deliver the human dreams and vision for energy. 2200 years ago we
began new experimentation with Archimedean knowledge base; Hero made initial
attempts to harness steam energy through a turbine. Subsequently, hydro energy be-
gan to be exploited in the form of water wheels; wind energy was exploited in the
form of wind mills. No major breakthroughs came as we were shackled by reli-
gion and remained earth centric in our thinking. The first jolt came in 1543 AD,
merely 450 years ago when we discovered that we are at the universe center and
our understanding on earth and its position in the universe is totally wrong. It took
us another 120 years, to understand basic laws of motion of bodies, a prerequisite
to properly postulate motion and design machinery in a scientific manner. We have
just about three centuries of knowledge base in our existence of more than two mil-
lion years. We learnt around this time that atmosphere around us exerts pressure that
can be utilized to derive motion of a body instead of using animal power. A century
later we discovered that steam pressure can be used directly to give us more and
efficient power rather than vacuum principles; this helped us in developing recip-
rocating steam engines on a firm footing and exploit the energy for our industrial
needs; a rapid expansion took place ushering in Industrial Revolution. Reciprocating
machines are not ideal for generating powers at the level that we are able to con-
ceive our imagination so far and the dream of Hero in developing a rotating machine
could be achieved only in the late 19th century. Tremendous strides in technology
were made in the 20th century to improve the rotating machinery to the present day
status in Power, Transportation, Oil and Gas, Space industries.

Looking at the history of rotating machinery, we might think that we now know
a lot about them; it is probably right to say that we do not know still a lot about
them and imagine what is in store for us in the next 100 years. We will now study
the evolution of rotor dynamic analysis methods in 20th century in the next coming
chapters.
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Chapter 9
Fundamentals of Elasticity

Fundamentals of Theory of Elasticity or physics of deformable bodies were estab-
lished during the scientific revolution. Engineers would call these deformable bodies
as structures. Hooke’s law was discovered in 1660. Robert Hooke (1635–1703) was
an English physicist. His important law of elasticity, known as Hooke’s law (1660),
states that the stretching of a solid is proportional to the force applied to it. He pub-
lished his law in 1678 [4].

Cauchy generalized Hooke’s law to three dimensional elastic bodies and stated
that the six components of stress are linearly related to the six components of strain.
Augustin Louis Cauchy (1789–1857), a French mathematician and military engi-
neer, published his work in his memoire in 1822, see Cauchy (1822). Cauchy intro-
duced the notion of stress at a point determined by the tractions per unit area across
all plane elements through the point.

The behavior of deformable bodies is governed by 15 coupled partial differential
equations, 3 equations of equilibrium, 6 strain displacement relations and 6
compatibility relations. With the help of these 15 partial differential equations,
one can theoretically obtain the 15 unknowns, 3 displacements, 6 strains and 6
stresses that define the state of the deformable body. These equations are first
derived by Navier [8]. Claude Louis Marie Henri Navier (1785–1836) was born in
Dijon, France; introduced the basic principles of engineering science to a field that
previously had been almost completely empirical. Cauchy in 1822 laid the basic
foundations of theory of elasticity. The Navier–Cauchy equations are

Equations of equilibrium (3)

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ bx = 0

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
+ by = 0

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ bz = 0 (9.1)
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Strain Displacement relations (6)
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Compatibility relations (6)
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(9.3)

This is quite a complex problem and even today we do not have a closed form solu-
tion of these equations even for simple structures. There are several textbooks that
describe these equations, some of which include Dym and Shames [2], Sokolnikoff
[10], Timoshenko and Goodier [11].

Therefore, elasticians have evolved approximate methods through energy prin-
ciples to solve theory of elasticity problems. Energy principles are fundamental to
the solution of all elasticity problems including those where the displacement field is
time dependent (vibration problems). Initially these problems happened to be by and
large beams, then plates and solid structures with intricate geometry. Again there are
several texts that describe the energy methods in an elegant manner, some of them
are: Fox [3], Lanczos [5], Langhaar [6], Love [7], Prescott [9], Washizu [12], Wein-
stock [13].
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Chapter 10
Energy Methods

The fundamental principle in Physics is that the energy in the Universe is conserved;
it can change in form but cannot be created or destroyed. Energy can be in various
forms, important of these forms for vibration and rotor dynamics study is kinetic
energy and potential energy (strain energy). In freely vibrating systems, these ener-
gies keep continuously change in these forms thus producing oscillatory motion for
the mass.

Jakob (1655–1705) and Johann (Jean) Bernoulli (1667–1748) two brothers
worked on a problem first discussed by Galileo (1564–1642) concerning finding
the equation for the path followed by a particle from one point to another in the
shortest time, if the particle is acted upon by gravity alone [14]. Johann proposed
Cycloid and Jakob challenged this solution. This dispute led to the development
of Calculus of Variations by Isaac Newton (1642–1727). This subject Calculus of
Variations forms the basis of all vibration studies and optimization.

At this time, there were two contending views in mechanics regarding the conser-
vation of energy, viz., Conservation of momentum and Conservation of the vis viva,
or living force, a concept developed by Gottfried Wilhlem von Leibniz (1646–1716).
The Leibnizian concept prevailed, eventually having its original term replaced by
the modern kinetic energy, defined as the energy a body possesses by virtue of its
motion. As a Leibnizian, Bernoulli ardently supported the vis viva, fully accepting
the idea put forth by Leibniz’s student Christian Wolff, who postulated the univer-
sal validity of the conservation of the living force. Agreeing with Wolff, Bernoulli
identified the living force as one of the fundamental principles in mechanics in his
essay “De vera notione virium vivarum” in 1735. Johann Bernoulli is perhaps the
first to realize the importance of the principle of conservation [18].

Joseph Lagrange (1736–1813) transformed Newtonian mechanics into a branch
of analysis, Lagrangian mechanics as it is now called, and exhibited the so-called
mechanical “principles” as simple results of the variational calculus. It was devel-
oped by Swiss mathematician Leonhard Euler (1707–1783) and Lagrange devel-
oped Euler–Lagrange equation, or Lagrange’s equation which is a differential equa-
tion whose solutions are the functions for which a given functional is stationary.

49
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William Rowan Hamilton (1805–1865) formulated the principle of stationary ac-
tion, called Hamilton’s principle. It states that the dynamics of a physical system is
determined by a variational problem for a functional based on a single function, the
Lagrangian, which contains all physical information concerning the system and the
forces acting on it. The variational problem is equivalent to and allows for the deriva-
tion of the differential equations of motion of the physical system. In Lagrangian
mechanics, because of Hamilton’s principle of stationary action, the evolution of a
physical system is described by the solutions to the Euler–Lagrange equation for the
action of the system. In classical mechanics, this is equivalent to Newton’s laws of
motion, but it has the advantage that it takes the same form in any system of gener-
alized coordinates, and it is better suited to generalizations; thus most preferred in
the Theory of Vibrations.

10.1 Euler–Lagrange Equations

Let us begin with Variational Calculus by considering a functional that would rep-
resent a beam problem:

I =
∫ x2

x1

F(x, y, y ′, y ′′)dx (10.1)

where x is the independent variable in the range x1 to x2 with y as an admissible path
(solution) and its derivatives with x. For y to be an extremizing path, we consider
varied path defined by

y̆ = y + εη (10.2)

where ε is a small parameter and η is a differentiable function satisfying

η(x1) = η(x2) = 0 (10.3)

The functional in (10.1) over the varied path is now written as

Ĭ =
∫ x2

x1

F(x, y̆, y̆ ′, y̆ ′′)dx

=
∫ x2

x1

F(x, y + εη, y ′ + εη′, y ′′ + εη′′)dx (10.4)

We adopt the same strategy as in Calculus and expand the above functional as

Ĭ = (Ĭ )ε=0 +
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∂Ĭ
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)
ε=0

ε +
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)
ε=0
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2! + · · · (10.5)
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We readily recognize that (
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For y in (10.2) to be an extremizing path for the functional in (10.1), we have(
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dx = 0 (10.7)

Integrating by parts∫ x2

x1

∂F

∂y ′ η
′dx =

(
∂F

∂y ′ η
)x2

x1

−
∫ x2

x1

d

dx

(
∂F

∂y ′

)
ηdx

∫ x2

x1

∂F

∂y ′′ η
′′dx =

(
∂F

∂y ′′ η
′
)x2

x1

−
∫ x2

x1

d

dx

(
∂F

∂y ′′

)
η′dx

=
(

∂F

∂y ′′ η
′
)x2

x1

− d

dx

(
∂F

∂y ′′ η
)x2

x1

+
∫ x2

x1

d2

dx2

(
∂F

∂y ′′

)
ηdx

(10.7a)
Substituting in (10.7)

∫ x2

x1

[
d2

dx2

(
∂F

∂y ′′

)
− d

dx

(
∂F

∂y ′

)
+ ∂F

∂y

]
ηdx

+
(

∂F

∂y ′′ η
′
)x2

x1

+
({

− d

dx

(
∂F

∂y ′′

)
+ ∂F

∂y ′

}
η

)x2

x1

= 0 (10.8)

To satisfy equation (10.8) here are two possibilities:

1. η and η′ = 0 at x1 and x2. then we get Euler–Lagrange equation

∫ x2

x1

[
d2

dx2

(
∂F

∂y ′′

)
− d

dx

(
∂F

∂y ′

)
+ ∂F

∂y

]
ηdx = 0

d2

dx2

(
∂F

∂y ′′

)
− d

dx

(
∂F

∂y ′

)
+ ∂F

∂y
= 0 (10.9)
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Fig. 10.1 Cantilever beam idealized according to Euler–Bernoulli

2. η and η′ are prescribed at x1 and x2. Then we get the boundary conditions(
∂F

∂y ′′

)x2

x1

= 0

(
− d

dx

(
∂F

∂y ′′

)
+ ∂F

∂y ′

)x2

x1

= 0 (10.10)

We will illustrate how Euler–Lagrange equations are set up for simplest possible
structure, a one dimensional idealization of a cantilever beam as proposed by Euler
and Bernoulli in 1750. Figure 10.1 shows this idealization.

The beam is of length l with a cross-sectional area A. We recognize only the
elastic axis about which the beam bends with a cross-section P at distance x having
lateral deflection w remaining plane before and after but rotating through the angle
given by the slope w,x . Notice that the deflection is a function of space coordinate x.
For a vibrating beam, it will also be a function of time t . The cross-sectional prop-
erties required enter through the derivation. The rotation of the plane cross-section
gives rise to another displacement in x direction at distance z from P ′. Then in ac-
cordance to the Euler–Bernoulli assumption, the displacement field is approximated
as
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ux = zw,x

uy = 0

uz = w(x, t) (10.11)

In the above assumption, we have violated the Theory of Elasticity and simplified
the structure. The greatness of Euler and Bernoulli lies in converting the complex
problem of solving 15 coupled partial differential equations to a simple problem and
yet obtain a solution which is good enough for engineering applications. We can
refer to this approach as Strength of Materials that allowed us to make structural
designs.

We can now use the strain displacement relations (9.2)

εxx = ∂u

∂x
, εyz = 1

2

(
∂w

∂y
+ ∂v

∂z

)
= εzy

εyy = ∂v

∂y
, εzx = 1

2

(
∂u

∂z
+ ∂w

∂x

)
= εxz

εzz = ∂w

∂z
, εxy = 1

2

(
∂v

∂x
+ ∂u

∂y

)
= εyx (9.2)

and obtain a simplified field

εxx = z
∂2w

∂x2
(10.12)

Notice that only one normal strain along the x axis exists; the rest are made zero by
not taking into account cognizance of Poisson’s ratio.

The stress field is now obtained from

σij = λδij εii + 2Gεij (10.13)

Likewise we assume that there is only one normal stress and no other stresses in-
cluding any shear stress. Since Poisson’s ratio is not accounted for, λ + 2G → E,
therefore

σxx = Eεxx = −Ez
∂2w

∂x2 (10.14)

Let the beam cross-section be uniform rectangular with breadth b and thickness t .
The strain energy in the beam according to the stress-strain field above is

U = 1

2

∫∫ ∫
v

σij εij dv = 1

2
b

∫ L

0

∫ 1
2 t

− 1
2 t

σxxεxxdzdx (10.15)

Work W of loading q(x) assumed to act on the Centroidal axis is
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W = 1

2

∫ L

0
q(x)w(x)dx (10.16)

Total potential energy π is

π = U − W = 1

2
b

∫ L

0

∫ 1
2 t

− 1
2 t

σxxεxxdzdx − 1

2

∫ L

0
q (x) w (x) dx

= 1

2
b

∫ L

0

∫ 1
2 t

− 1
2 t

(
Ez2

)(d2w

dx2

)2

dzdx − 1

2

∫ L

0
q (x) w (x) dx

=
∫ L

0

[
1

2
EI

(
d2w

dx2

)2

− qw

]
dx =

∫ L

0
Fdx

where F is a functional = 1

2
EI

(
d2w

dx2

)2

− qw (10.17)

In the above I is the second moment of area of the cross-section about the yy axis.
The Euler–Lagrange equation derived from the principle of virtual work is

− d2

dx2

(
∂F

∂w′′

)
+ d

dx

(
∂F

∂w′

)
−
(

∂F

∂w

)
= 0 (10.18)

where

F = 1

2
EI

(
d2w

dx2

)2

− qw

and ′ represents the derivative with respect to the independent variable x.
The derivatives of the above functional are

∂F

∂w′′ = EI

(
d2w

dx2

)

∂F

∂w′ = 0

∂F

∂w
= −q

Substituting in (10.18) we have the governing differential equation

d2

dx2

[
EI

(
d2w

dx2

)]
= q (10.19)

The boundary conditions from (10.10) are given by
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∂F

∂w′′

)x2

x1

=
{
EI

(
d2w

dx2

)}x2

x1

= 0

(
− d

dx

(
∂F

∂w′′

)
+ ∂F

∂w′

)x2

x1

=
[
− d

dx

{
EI

(
d2w

dx2

)}]x2

x1

= 0 (10.20)

As we know, the first condition above refers to the bending moment of the beam and
the second condition gives the shear force.

The variational calculus formulation leads us to the governing differential equa-
tion and boundary conditions. In several structures it is difficult sometimes to vi-
sualize all boundary conditions using Newtonian approach, whereas the energy ap-
proach fixes up the system completely. That is a major advantage.

The next step is to obtain a solution of the differential equation above, which
is the simplest structure. It is feasible in very special case even for these simplest
structures, e.g., a uniform cross-section beam. But that’s not what engineers want;
we need solutions for realistic structures. The beauty of energy methods is it leads
to solution procedures as well. We will look at these methods and see how they
evolved historically.

10.2 Lagrange Method

In the energy method approach, the solution of the equation is always assumed
that satisfies at least the kinematic boundary conditions. For cantilever boundary
conditions, we can assume the solution in polynomial form with X = x/L that
satisfies the boundary conditions in (10.20):

w (X) = a(6X2 − 4X3 + X4)

d2w

dX2 = a

L2 (12 − 24X + 12X2) (10.21)

The total potential energy of the beam is

π = 1

2

∫ L

0
EI

(
d2w

dx2

)2

dx −
∫ L

0
q (x)w (x) dx

= 1

2

EI

L3

∫ 1

0

(
d2w

dX2

)2

dX − L

∫ 1

0
q(X)a(6X2 − 4X3 + X4)dX

= 1

2

EI

L3

∫ 1

0

[
a(12 − 24X + 12X2)

]2
dX

− L

∫ 1

0
q (X) a(6X2 − 4X3 + X4)dX (10.22)
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Minimizing total potential energy, i.e., ∂π/∂a = 0 and carrying out the definite
integrals, we get

144

5

EI

L3 a = 6

5
qL

∴ a = 1

24

L4

EI
q

Hence the deflection in the beam from (10.21) is

w (x) = qL4

24EI
(6X2 − 4X3 + X4)

Maximum deflection occurs at x = L, i.e., X = 1 given by

wx=1 = 1

8

qL4

EI

This agrees with the exact solution.

10.3 Rayleigh’s Energy Approach

Rayleigh gave an approximate method based on the energy conservation principle
in 1877 [32]. For a conservative system vibrating in simple harmonic motion, the
maximum potential energy that occurs when the system is at maximum displace-
ment is equal to the maximum kinetic energy when the system passes through its
mean equilibrium position with maximum velocity. Here again, the deflection shape
(mode shape) is assumed.

The potential energy in bending of a beam is given by

U =
∫ L

0

[
1

2
EI

(
d2w

dx2

)2]
dx (10.23)

Let m be the mass per unit length, then the kinetic energy of the beam is

T =
∫ L

0

[
1

2
m

(
dw

dt

)2
]

dx (10.24)

Also let the beam vibrate in simple harmonic motion

w (x, t) = w (x) sin ωt

∂w

∂t
= ωw (x) cos ωt (10.25)
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The maximum kinetic energy in the beam is

Tmax = 1

2
ω2
∫ L

0
m[w(x)]2dx (10.26)

The maximum potential energy is

Umax =
∫ L

0

[
1

2
EI

(
d2w

dx2

)2]
dx (10.27)

Equating,

ω2 =
∫ L

0

[
EI

(
d2w
dx2

)2
]

dx∫ L

0 m [w (x)]2 dx
(10.28)

Rayleigh was looking for a method of calculating fundamental natural frequencies
without adopting Euler and Lagrange approaches so that industry can adopt a tabular
method. This was the first time industry looked into routine numerical operations so
that the designers could be trained to turn out designs faster with simple checking
rather than highly mathematical approaches. Thus Rayleigh may be given the credit
for making highly complex mathematics into industry user friendly methods.

Stodola [38] and Kearton [21], among others, illustrated these methods at the
beginning of the 20th century. We illustrate here an example given by Scanlan and
Rosenbaum [37] for a cantilever beam.

Here we choose the deflection curve to be

y = y0

(
1 − cos

πx

2l

)
(10.29)

where y0 is the tip deflection. Then from (10.28),

ω2 =
E
(

π
2L

)2 ∫ L

0

[
I
(
cos πx

2L

)2]
dx∫ L

0 m
(
1 − cos πx

2L

)2
dx

(10.30)

ω = 7.5π

L2

√
E

√√√√√
∫ L

0

[
I
(
cos πx

2L

)2]
dx∫ L

0 m
(
1 − cos πx

2L

)2
dx

cpm (10.31)

Note that, invariably, gravitational units were adopted after the industrial revolution
in English speaking countries and Foot, Pounds were used in the British system
called FPS. We will retain the same units here. The length of cantilever is 240 in
and Young’s modulus is 10.3×106 lb/in2. Equation (10.31) is converted to a tabular
method that can be performed by regular staff without knowing the energy methods
and solutions of differential equations. Table 10.1 gives these numerical steps.
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Table 10.1 Numerical calculations for Rayleigh’s energy approach

10.4 Ritz Method

The Ritz method [35] can be summarized as follows. It uses Rayleigh’s average
energy or maximum energy principle. For harmonic motion with frequency p, we
can average the kinetic energy T in a system as T̄

T̄ =
∫ 2π/p

0
T dt (10.32)

Similarly the potential energy U is also averaged as Ū

Ū =
∫ 2π/p

0
Udt (10.33)

As in the Lagrange method, we assume a shape function for the deflection y of the
beam; here a polynomial is chosen

y =
n∑

i=1

Aifi(Z)qi(t) (10.34)

The above averaging process allows us to get rid of one independent parameter t .
Then the Lagrangian will be a function of the arbitrary parameters in the assumed
mode shapes,

L = L(Ai) (10.35)

In the Ritz method, we minimize the Lagrangian with respect to Ai

∂L

∂Ai

= 0 (10.36)
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The Ritz method begins with an averaging process as in Rayleigh’s method; the
procedure is also called the Rayleigh–Ritz method or the Ritz averaging method.
Since the method is not derived after an extremization process in the variational
principle, the question of natural boundary conditions is not part of this procedure.
If one uses Euler–Lagrangian equations, it is necessary that we satisfy the natural
boundary conditions that arise out of the variational process. However, we should
always satisfy the kinematic conditions at the boundaries. This is a major advantage
of the Rayleigh–Ritz method.

Let fi(Z) be

fi (Z) = Ai−1Z
i−1 + AiZ

i + Ai+1Z
i+1 + Ai+2Z

i+2 + Ai+3Z
i+3 (10.37)

For a cantilever, the boundary conditions are

y = 0, y ′ = 0 at Z = 0

y ′′ = 0, y ′′′ = 0 at Z = 1 (10.38)

From the boundary condition at Z = 0, the shape function (10.35) reduces to

fi(Z) = Ai+1Z
i+1 + Ai+2Z

i+2 + Ai+3Z
i+3 (10.39)

Taking derivatives of (10.39) with respect to Z, we have

f ′′
i (Z) = Ai+1i(i + 1)Zi−1 + Ai+2(i + 1)(i + 2)Zi + Ai+3(i + 2)(i + 3)Zi+1

f ′′′
i (Z) = Ai+1(i − 1)i(i + 1)Zi−2 + Ai+2i(i + 1)(i + 2)Zi−1

+ Ai+3(i + 1)(i + 2)(i + 3)Zi (10.40)

Substituting the above in the second boundary condition at Z = 1, we get[
i(i + 1) (i + 1)(i + 2)

(i − 1)i(i + 1) i(i + 1)(i + 2)

]{
Ai+1
Ai+2

}

= −Ai+3

{
(i + 2)(i + 3)

(i + 1)(i + 2)(i + 3)

}
(10.41)

Solving we get

Ai+1 = Ai+3
(i + 2)(i + 3)

i(i + 1)

Ai+2 = Ai+3
−2(i + 3)

(i + 1)
(10.42)

Using the above in equation (10.39) and writing Ai+3 as Ai , we can write the poly-
nomial series for the assumed shape function as
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fi(Z) =
∑

Ai

[
(i + 2)(i + 3)Zi+1 − 2i(i + 3)Zi+2 + i(i + 1)Zi+3

]
(10.43)

The above represents a generalized polynomial function with as many terms as one
wishes to taken in the analysis. If we take only one term, as we did in the illustration
by Lagrange’s method, for free vibrations we can write

w (Z, t) = ŵ sin pt

ẇ = ŵp cos pt

w′′ = ŵ′′ sin pt (10.44)

If we use maximum energy values in our formulation, the kinetic energy is

T̂ = 1

2
ml

∫ 1

0
ŵ2p2dZ (10.45)

Similarly, maximum potential energy is

Û = 1

2

EI

l3

∫ 1

0
ŵ′′2p2dZ (10.46)

Now, the Lagrangian function is

L = T̂ − Û

= 1

2
ml

∫ 1

0
ŵ2p2dZ − 1

2

EI

l3

∫ 1

0
ŵ′′2p2dZ (10.47)

w (Z, t) = (6Z2 − 4Z3 + Z4)q(t) (10.21)

Until the advent of computers in the second half of the 20th century, only one term
is used in the analysis. Otherwise the same analysis based on energy principles con-
tinues to be the cornerstone of modern numerical solutions for vibration problems.
For the present, continuing with one term approximation of (10.21) the Lagrangian
function is

L = 1

2
ml

∫ 1

0
A2
(

6Z2 − 4Z3 + Z4
)2

p2dZ

− 1

2

EI

l3

∫ 1

0
A2
(

12 − 24Z + 12Z2
)2

dZ (10.48)

Minimizing with respect to A

ml

∫ 1

0

(
6Z2 − 4Z3 + Z4

)2
p2dZ = EI

l3

∫ 1

0

(
12 − 24Z + 12Z2

)2
dZ (10.49)

Evaluating the integrals
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104

45
mlp2 = 144

5

EI

l3 (10.50)

The above gives

p = 3.53

√
EI

ml4 rad/sec (10.51)

as against the exact value

pexact = 3.5156

√
EI

ml4
rad/sec

10.5 Lagrange Method for Vibration Problems

We revisit the Lagrangian approach that we considered for the static case and now
consider a time-dependent problem. The Euler–Lagrangian equations for this case
can be shown to be

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+ ∂U

∂q
= 0 (10.52)

Considering n number of terms in (10.34), we can write the kinetic energy in the
system as

T = 1

2
m

∫ l

0
q̇2
i f 2

i dz (10.53)

Similarly the strain energy is

U = 1

2
EI

∫ l

0
q2
i f ′′2

i dz (10.54)

Then (
∂T

∂q̇

)
= m

∫ l

0
q̇if

2
i dz

d

dt

(
∂T

∂q̇

)
= mq̈i

∫ l

0

∑
fifj dz

∂U

∂q
= EIqi

∫ l

0
f ′′2

i dz = EIqi

∫ l

0

∑
f ′′

i f ′′
j dz (10.55)

Substituting in (10.52) we have the following matrix equations:

[M]{q̈} + [K]{q} = 0 (10.56)

where
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Table 10.2 Natural frequencies by the Lagrange method with 5 terms, in Hz

Exact values No. of terms Lagrange

248.65 1 249.67
248.65 2 248.68

1558.36 1606.4
248.65 3 248.68

1558.36 1558.50
4363.89 4686.10
248.65 4 248.68

1558.36 1558.50
4363.89 4368.60
8551.67 9638.70
248.65 5 248.68

1558.36 1558.40
4363.89 4366.60
8551.67 8599.70

14135.01 16901.00

[M] = m

∫ l

0

∑
fifjdz

[K] = EI

∫ l

0

∑
f ′′

i f ′′
j dz (10.57)

Thus we see how Lagrangian equations lead to an eigenvalue problem in matrix
form that was suitable for computer programming after the 1960s in the 20th
century. Vyas and Rao [45] gave the following example:

Length of the blade l = 10 cm
Second moment of area I = 0.00675 cm4

Young’s modulus E = 2.11 × 1011 Pa
Area of cross-section of the beam A = 0.9 cm2

Density ρ = 0.008 kg/cm3

The results are given in Table 10.2.
The first thing we notice is that all energy methods lead to upper bound solutions

for natural frequency determination. This is because; the energy methods use an
assumed solution for the shape function which is different from the exact mode
shape. This means we need to make extra effort to bring the assumed shape to the
correct shape or the strain energystrain energy will be higher than what the exact
mode shape provides. A larger number of terms in the solution means the ability to
correct the approximate shape and bring it closer to the exact shape; thus the solution
converges from an upper bound. The solution can reach an almost exact value from
its upper bound but can never result in a lower bound value. A mathematical proof
was given by Den Hartog [11] (see also [37]).
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10.6 Galerkin Method

Boris Grigoryevich Galerkin (1871–1945), a Russian scientist, published an article
in 1915 [15], in which he put forward an idea of differential equations boundary
problems approximate solution method. He applied his method to a large number
of pivot and plate analysis problems. Some time before, he had developed a simi-
lar approach for the variational problems solution, which he interpreted as a variant
of the Ritz method. He did not associate the method developed by him with direct
solutions to variational problems, but considered it to be common for solving differ-
ential equations and interpreted it using the probable displacements principle. We
can interpret his method from Section 10.1, where for extremum of the dynamical
system, we have

∫ x2

x1

[
d2

dx2

(
∂F

∂y ′′

)
− d

dx

(
∂F

∂y ′

)
+ ∂F

∂y

]
ηdx = 0 (10.9)

(
∂F

∂y ′′

)x2

x1

= 0

(
− d

dx

(
∂F

∂y ′′

)
+ ∂F

∂y ′

)x2

x1

= 0 (10.10)

Equations (10.10) are boundary conditions and (10.9) leads to differential equation
of the dynamical system. We can determine the extremized path (the solution) by
satisfying the boundary conditions and equation (10.9). The differential equation
in the rectangular brackets in (10.9) cannot be solved except in a very few special
cases. Essentially the Galerkin method is to make the integral in (10.9) zero. This
is done by assuming η(x) to be the assumed solution itself, here (10.21). Duncan
[12, 13] used the Galerkin method in solving differential equations.

The procedure can be written as follows. The dynamical system is described as∫ t2

t1

[∫ x2

x1

(Ly) ηdx + {
(gy) η′}x2

x1
+ {(hy) η}x2

x1

]
dt = 0 (10.58)

where L, g and h are differential operators. To satisfy the above equation exactly so
that y is an extremizing path, we make

Ly = 0 (10.59)

and
{gy = 0}x2

x1
and {hy = 0}x2

x1
(10.60)

When the solution for equation (10.59) is not possible, we will assume an admissible
path y̆ and obtain the error ε in the differential equation

ε = Ly̆ (10.61)
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We can still satisfy equation (10.58) above, provided we make∫ x2

x1

[
Ly̆
]
ηdx = 0 (10.62)

The difficulty is, what η should we choose? In the Galerkin method, we choose y̆

itself for η i.e., ∫ x2

x1

εy̆dx = 0 (10.63)

As an illustration, let us consider a freely vibrating cantilever beam with rectangular
cross-section tapering from fixed end to free end defined by the following relations
for breadth b and thickness t (suffix 0 refers to the quantities at the root Z = 0).

d2

dx2

[
EI

(
d2w

dx2

)]
= mp2w (10.64)

b = b0 (1 − αX)

t = t0 (1 − βX)

I = I0 (1 − αX) (1 − βX)3 (10.65)

where m is mass per unit length and p is the natural frequency. Substituting (10.65)
in (10.64) [

(1 − αX)(1 − βX)3w′′]′′ = q

EI0
(10.66)

As in the Lagrange method, let us take one term approximation for the deflection w

w (X) = a(6X2 − 4X3 + X4)

d2w

dX2 = a

L2 (12 − 24X + 12X2) (10.21)

Substituting (10.21) in (10.66), we get the error ε in the differential equation

ε =
[
(1 − αX) (1 − βX)3 a

L2 (12 − 24X + 12X2)
]′′

− a
m0p

2

EI0
(1 − αX) (1 − βX) (6X2 − 4X3 + X4) (10.67)

i.e.,
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ε = 12a

L4

⎡
⎢⎢⎣

2 (1 − αX) (1 − βX)3 + 12β (1 − X) (1 − αX)
(
1 − βX2

)
+ 4α (1 − X) (1 − βX)3 + 6β2 (1 − X) (1 − βX) (1 − 2X + X2)

+ 6αβ (1 − βX)2 (1 − 2X + X2)

⎤
⎥⎥⎦

−a
m0p

2

EI0
(1 − αX) (1 − βX) (6X2 − 4X3 + X4) (10.68)

Galerkin’s procedure then gives

∫ 1

0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

12a

L4

⎡
⎢⎢⎣

2 (1 − αX) (1 − βX)3 + 12β (1 − X) (1 − αX) (1 − βX2)

+4α (1 − αX) (1 − βX)3 + 6β2 (1 − αX) (1 − βX) (1 − 2X + X2)

+6αβ (1 − βX)2 (1 − 2X + X2)

⎤
⎥⎥⎦−

a
m0p

2

EI0
(1 − αX) (1 − βX) (6X2 − 4X3 + X4)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

× (6X2 − 4X3 + X4)dX = 0 (10.69)

We identify the following integrals in the above and evaluate them first:

I1 =
∫ 1

0

{
12

L4

[
2 (1 − αX) (1 − βX)3 ]} (6X2 − 4X3 + X4)dX

= 12

L4

{
12

5
− 26

15
α − 26

5
β + 142

35
αβ + 142

35
β2 − 93

28
αβ2 − 31

28
β3 + 59

63
αβ3

}

I2 =
∫ 1

0

{
12

L4

[
12β (1 − X) (1 − αX) (1 − βX2)

]}
(6X2 − 4X3 + X4)dX

= 12

L4

{
4β − 16

7
αβ − 32

7
β2 + 103

35
αβ2 + 103

70
β3 − 43

42
αβ3

}

I3 =
∫ 1

0

{
12

L4

[
4α (1 − αX) (1 − βX)3 ]} (6X2 − 4X3 + X4)dX

= 12

L4

{
4

3
α − 16

7
αβ + 103

35
αβ2 − 43

126
αβ3

}

I4 =
∫ 1

0

{
12

L4

[
6β2 (1 − αX) (1 − βX) (1 − 2X + X2)

]}
(6X2 − 4X3 + X4)dX

= 12

L4

{
6

7
β2 − 57

140
αβ2 − 57

140
β3 + 47

210
αβ3

}
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I5 =
∫ 1

0

{
12

L4

[
6αβ (1 − βX)2

(
1 − 2X + X2

) ]}
(6X2 − 4X3 + X4)dX =

= 12

L4

{
6

7
αβ − 57

70
αβ2 + 47

210
αβ3

}

I6 =
∫ 1

0

m0p
2

EI0
(1 − αX) (1 − βX) (6X2 − 4X3 + X4)2dX =

= m0p
2

EI0

[
104

45
− 584

315
α − 584

315
β + 5353

3465
αβ

]
(10.70)

Substituting the above integrals in equation (10.69) and rearranging we have

p2 = 12EI0

m0L4
×

12
5 − 2

5α − 6
5β + 12

35αβ + 12
35β2 − 9

70αβ2 − 3
70β3 + 2

105αβ3

104
45 − 584

315α − 584
315β + 5353

3465αβ

(10.71)
The above solution was provided by Rao [28] using the Galerkin [15] method to
determine the fundamental natural frequency of a tapered cantilever blade. This
solution is a one-term approximation. This was a time when digital computers be-
gan improving in speed and memory. Subsequently, solutions with three or more
term approximations were used to solve tapered, twisted aerofoil cantilever blades
mounted on a rotating disk, thus helping the designers. These are all one-element
models when compared with modern finite element methods which came up subse-
quently.

Because they are one-element models, only the number of terms in the assumed
solution controls the matrix size. In most cases the number of terms in the series is
truncated to five and so the computational speed was reasonable even in the early
day slow computers. However, these methods cannot capture the intricate geometry,
e.g., the notch or dovetail in a bladed disk. Modern finite element methods therefore
have taken over modern day design practices.

10.7 Hamilton’s Principle

For one-dimensional structures Hamilton’s principle can be stated as [17]

δ

∫ t2

t1

∫ L

0

[
U (q) − T (q, q̇) − W

]
dxdt = 0 (10.72)

where U is potential energy, T is kinetic energy and work W done by external forces
F , which are functions of the independent variable x. q represents the generalized
coordinate.

Taking the variations
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δU = ∂U

∂q
δq

δT = ∂T

∂q̇
δq̇ + ∂T

∂q
δq

δW = Fδq

Equation (10.72) becomes

∫ t2

t1

∫ L

0

[
∂U

∂q
δq −

(
∂T

∂q̇
δq̇ + ∂T

∂q
δq

)
− Fδq

]
dxdt = 0 (10.73)

We can perform the first integration by parts with respect to time of the q̇ term to
give

∫ t2

t1

(
∂T

∂q̇
δq̇

)
dt =

[
∂T

∂q̇
δq

]t2

t1

−
∫ t2

t1

d

dt

(
∂T

∂q̇

)
δqdt

= −
∫ t2

t1

d

dt

(
∂T

∂q̇

)
δqdt (10.74)

and rewrite equation (10.73) as follows:

∫ t2

t1

∫ L

0

[
∂U

∂q
+ d

dt

(
∂T

∂q̇

)
− ∂T

∂q
− F

]
δqdxdt = 0 (10.75)

With the help of the above equation, we can derive several approximate methods for
solving dynamical problems. The modern Finite Element methods all emanate from
this equation. Hence, Hamilton’s principle is the most general form for all vibrating
systems.

One of the most vexing problems in development of high speed and high capacity
rotating machinery is the development of rotors and mounted parts to withstand
thermal and centrifugal loads combined with alternating loads. Dynamics obviously
plays a major role as evidenced by Frank Whittle. Therefore considerable time has
been invested in understanding the design of turbomachine blades. Even today, they
happen to be the most flexible and challenging design exercises faced in industry.

Analytically, the development of energy principles and solution methods were
developed in the 1950s. The most significant of them is William Carnegie [6–9]
who used Hamilton’s principle extensively and one such derivation by Vyas and
Rao [45] is illustrated here to show the power of Hamilton’s principle.

A blade of length l and cross-sectional area A is mounted on a rotating disk of
radius R. The angular velocity is ω rad/s.

M̃Ñ is a fixed axis system. The blade itself is located at angle  = ω0t +1/2αt2

in a coordinate system fixed to the rotating disk. The x axis is located at the root
of the blade, parallel to the axis of rotation, and the y axis in the plane of the disk.
The z axis is along the length of the blade passing through the centroids of all cross-



68 10 Energy Methods

Fig. 10.2 Rotating blade mounted on a disk

sections. Pretwist and asymmetry are not included. The blade executes pure bending
oscillations in the y–z plane. � is the inward displacement of the blade element dz

as shown.
The displacements of an element at a distance z from the blade root in the M̃ and

Ñ directions with respect to the disk center are

m = (R + z − �) sin  + y cos 

n = (R + z − �) cos −y sin  (10.76)

The corresponding velocities are

ṁ = {
ẏ + ̇ (R + z − �)

}
cos − (�̇ + ̇y

)
sin 

ṅ = {
ẏ + ̇ (R + z − �)

}
sin − (�̇ + ̇y

)
cos  (10.77)

The kinetic energy due to translation and rotation of the blade element are

Tt =
∫ l

0

1

2
ρA(ṁ2 + ṅ2)dz (10.78)

Tr =
∫ l

0

1

2
ρIxx(̇2 + φ̇2

b)dz (10.79)

where φb is the slope due to bending.
The instantaneous angular velocity is

 = ω0t + 1

2
αt2

̇ = ω0 + αt (10.80)

Now the total kinetic energy can be written as
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T =
∫ l

0

1

2
ρA(ẏ2 + �̇2)dz +

∫ l

0

1

2
ρA (ω0 + αt)2 {(R + z − �)2 + y2}dz

+
∫ l

0
ρA (ω0 + αt)

{
ẏ (R + z − �) + y�̇

}
dz

+
∫ l

0

1

2
ρIxx

{
(ω0 + αt) + φ̇2

b

}2
dz (10.81)

In equation (10.81), the first term on the right-hand side accounts for blade inertia,
the second term accounts for the effect of centrifugal force, the third term accounts
for the Coriolis force, while the fourth term refers to rotary inertia. The inward
displacement of an inextensional blade is given by

� = 1 −
∫ z

0
cos φb(ξ)dξ.

Noting that y ′ = sin φb one has � = 1 − ∫ z

0

√
1 − [y ′(ξ)]2dξ . Expanding the

square root term and truncating the series yields

� = 1

2

∫ z

0
y ′2dz and �̇ = 1

2

∂

∂t

∫ z

0
y ′2dz (10.82)

Hence equation (10.81) becomes

T =
∫ l

0

1

2
ρA

⎡
⎢⎢⎢⎢⎢⎣

ẏ2 +
{

1
2

∂
∂t

∫ z

0 y ′2dz
}2

+ (ω0 + αt)2
{(

R + z − 1
2

∫ z

0 y ′2dz
)2 + y2

}
+2 (ω0 + αt)

{
ẏ
(
R + z − 1

2

∫ z

0 y ′2dz
)

+ 1
2y ∂

∂t

∫ z

0 y ′2dz
}

⎤
⎥⎥⎥⎥⎥⎦ dz

+
∫ l

0

1

2
ρIxx

{
(ω0 + αt) + φ̇2

b

}2
dz (10.83)

The potential energy taking into account shear deformation is

V =
∫ l

0

{
AG

K
(y ′ − φb)

2 + 1

2
EIxxφ

′2
b

}
dz (10.84)

Now according to Hamilton’s principle
∫ t2
t1

(T − V )dt taken between any arbitrary
intervals of time (t1, t2) is stationary for the dynamical system. Therefore
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∫ t2

t1

Ldt =
∫ t2

t1

∫ l

0

1

2
ρA

[
ẏ2 +

{
1

2

∂

∂t

∫ z

0
y ′2dz

}2
]

dzdt +

+
∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt)2

{(
R + z − 1

2

∫ z

0
y ′2dz

)2

+ y2

}
dzdt

+
∫ t2

t1

∫ l

0
ρA (ω0 + αt)

{
ẏ

(
R + z − 1

2

∫ z

0
y ′2dz

)
+ 1

2
y

∂

∂t

∫ z

0
y ′2dz

}
dzdt

+
∫ t2

t1

∫ l

0

1

2
ρIxx

{
(ω0 + αt) + φ̇2

b

}2
dzdt

−
∫ t2

t1

∫ l

0

{
AG

K
(y ′ − φb)

2 + 1

2
EIxxφ

′2
b

}
dzdt (10.85)

With the help of the following relation derived by Carnegie [9]

∂

∂t

∫ z

0
y ′2dz = ∂

∂t
y ′2
∫ l

z

dz

the first term on the right-hand side of equation (10.85) can be written as

∫ t2

t1

∫ l

0

1

2
ρA

[
ẏ2 +

{
1

2

∂

∂t

∫ z

0
y ′2dz

}2
]

dzdt

=
∫ t2

t1

∫ l

0

1

2
ρA

[
ẏ2 +

{
1

2

∂

∂t
y ′2
∫ l

z

dz

}2]
dzdt (10.86)

This can be expressed as

∫ t2

t1

∫ l

0

1

2
ρA

[
ẏ2 +

{
1

2

∂

∂t

∫ z

0
y ′2dz

}2
]

dzdt

=
∫ t2

t1

∫ l

0

1

2
ρA
[
ẏ2 + R2

1(y ′ẏ ′)2]dzdt (10.87)

where R1 = l − z. With higher powers of � neglected, the second term on the
right-hand side of (10.85) can be written as

∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt)2

{(
R + z − 1

2

∫ z

0
y ′2dz

)2

+ y2

}
dzdt

=
∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt)2

{
y2 (R + z)2 − (R + z)

∫ z

0
y ′2dz

}
dzdt

(10.88)
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The third term is∫ t2

t1

∫ l

0
ρA (ω0 + αt)

{
ẏ

(
R + z − 1

2

∫ z

0
y ′2dz

)
+ 1

2
y

∂

∂t

∫ z

0
y ′2dz

}
dzdt

=
∫ t2

t1

∫ l

0
ρA (ω0 + αt) ẏ (R + z) dzdt

+
∫ t2

t1

∫ l

0
ρA (ω0 + αt)

{
−1

2
ẏ

∫ z

0
y ′2dz + 1

2
y

∂

∂t

∫ z

0
y ′2dz

}
dzdt (10.89)

We can now write∫ t2

t1

Ldt =
∫ t2

t1

∫ l

0

1

2
ρA
[
ẏ2 + R2

1

(
y ′ẏ ′)2 ]dzdt +

+
∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt)2

{
y2 (R + z)2 − (R + z)

∫ z

0
y ′2dz

}
dzdt

+
∫ t2

t1

∫ l

0
ρA (ω0 + αt) ẏ (R + z) dzdt

+
∫ t2

t1

∫ l

0
ρA (ω0 + αt)

{
−1

2
ẏ

∫ z

0
y ′2dz + 1

2
y

∂

∂t

∫ z

0
y ′2dz

}
dzdt

+
∫ t2

t1

∫ l

0

1

2
ρIxx

{
(ω0 + αt) + φ̇2

b

}2
dzdt

−
∫ t2

t1

∫ l

0

{
AG

K

(
y ′ − φb

)2 + 1

2
EIxxφ′2

b

}
dzdt (10.90)

Carrying out extremization on the first term in (10.90) yields

δ

∫ t2

t1

∫ l

0

1

2
ρA
[
ẏ2 + R2

1(y ′ẏ ′)2]dzdt

=
∫ t2

t1

∫ l

0
ρA
[
ẏδẏ + R2

1(y ′ẏ ′)(y ′δẏ ′ + ẏ ′δy ′)
]
dzdt

Integrating by parts, neglecting higher order terms and noting that variations are
zero at t = t1 and t = t2, one obtains

δ

∫ t2

t1

∫ l

0

1

2
ρA
[
ẏ2 + R2

1(y ′ẏ ′)2]dzdt = −
∫ t2

t1

∫ l

0
ρAÿδydzdt (10.91)

Similarly the second term on right-hand side of (10.90) yields
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δ

∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt)2

{
y2 (R + z)2 − (R + z)

∫ z

0
y ′2dz

}
dzdt

=
∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt)2 {y + R2y

′′ − (R + z) y ′} δydzdt (10.92)

where

R2 =
∫ l

z

(R + z)dz = R(l − z) + 1

2
(l2 − z2)

The third term on the right-hand side of equation (10.90) yields

δ

∫ t2

t1

∫ l

0
ρA(ω0 + αt)ẏ(R + z)dzdt =

∫ t2

t1

∫ l

0
ρAα(R + z)δydzdt (10.93)

For the variation of the fourth term in equation (10.90), let

I =
∫ t2

t1

∫ l

0
ρA(ω0 + αt)

{
−1

2
ẏ

∫ z

0
y ′2dz + 1

2
y

∂

∂t

∫ z

0
y ′2dz

}
dzdt (10.94)

Upon replacing one of the z variables by θ ,

I =
∫ t2

t1

∫ l

0
ρA(ω0 + αt){−1

2
ẏ

∫ θ

0
y ′2dθ + 1

2
y

∂

∂t

∫ θ

0
y ′2dθ}dzdt (10.95)

For the variation of δ(y) of y it follows that

I + δI =
∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt)

{− (ẏ + δẏ)
∫ θ

0

(
y ′ + δy ′)2 dθ+

(y + δy) ∂
∂t

∫ θ

0

(
y ′ + δy ′)2 dθ

}
dzdt (A1)

From the above two equations, we can write

δI =
∫ t2

t1

∫ l

0
ρA (ω0 + αt) y

∫ θ

0

(
ẏ ′δy ′ + y ′δẏ ′) dθdzdt

+
∫ t2

t1

∫ l

0
ρA (ω0 + αt) y

∫ θ

0
y ′ẏ ′dθdzdt

−
∫ t2

t1

∫ l

0
ρA (ω0 + αt) ẏ

∫ θ

0
y ′δy ′dθdzdt

−
∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt) δẏ

∫ θ

0
y ′2dθdzdt (A2)

The first term in the above equation is
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t1

∫ l

0
ρA (ω0 + αt) y

∫ θ

0

(
ẏ ′δy ′ + y ′δẏ ′) dθdzdt

=
∫ t2

t1

∫ l

0
ρA (ω0 + αt) y

∂

∂t

∫ θ

0
y ′δy ′dθdzdt

Integrating by parts and noting that the variations are zero at t = t1 and t2, we obtain

∫ t2

t1

∫ l

0
ρA (ω0 + αt) y

∫ θ

0

(
ẏ ′δy ′ + y ′δẏ ′) dθdzdt

= −
∫ t2

t1

∫ l

0
ρA {αy + (ω0 + αt) ẏ}

{
[y ′δy]θ0 −

∫ θ

0
y ′′δydθ

}
dzdt

Replacing θ by z and since δy = 0 at z = 0, one has

∫ t2

t1

∫ l

0
ρA (ω0 + αt) y

∫ θ

0

(
ẏ ′δy ′ + y ′δẏ ′) dθdzdt

= −
∫ t2

t1

∫ l

0
ρA {αy + (ω0 + αt) ẏ}

{
y ′δy −

∫ z

0
y ′′δydz

}
dzdt

Effecting a Carnegie [9] transformation

{αy + (ω0 + αt) ẏ}
∫ z

0
y ′′δydz = y ′′δy

∫ l

z

{αy + (ω0 + αt) ẏ} dz

one can write ∫ t2

t1

∫ l

0
ρA (ω0 + αt) y

∫ θ

0

(
ẏ ′δy ′ + y ′δẏ ′) dθdzdt

= −
∫ t2

t1

∫ l

0

[
ρA {αy + (ω0 + αt) ẏ} y ′δy

− y ′′δy
∫ l

z

{αy + (ω0 + αt) ẏ} dz

]
dzdt (A3)

Similarly, the third term on the right-hand side of equation (A2) is

−
∫ t2

t1

∫ l

0
ρA (ω0 + αt) ẏ

∫ θ

0
y ′δy ′dθdzdt

= −
∫ t2

t1

∫ l

0
ρA (ω0 + αt)

{
ẏy ′ − y ′′

∫ l

z

ẏdz

}
δydzdt (A4)

and the fourth term is
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−
∫ t2

t1

∫ l

0

1

2
ρA (ω0 + αt) δẏ

∫ θ

0
y ′2dθdzdt

=
∫ t2

t1

∫ l

0

1

2
ρA

{
α

∫ z

0
y ′2dz + (ω0 + αt)

∂

∂t

∫ z

0
y ′2dz

}
δydzdt (A5)

Now equation (A2) is

δI = −
∫ t2

t1

∫ l

0
ρA

⎡
⎢⎢⎣

{αy + (ω0 + αt) ẏ} y ′ − y ′′ ∫ l

z
{αy + (ω0 + αt) ẏ} dz

+ (ω0 + αt)

{
ẏy ′ − ∫ z

0 y ′ẏ ′dz − y ′′ ∫ l

z ẏdz − 1
2

∂
∂t

∫ z

0 y ′2dz
}

− 1
2α
∫ z

0 y ′2dz

⎤
⎥⎥⎦ δydzdt (A6)

Therefore, the variation of the fourth term in equation (10.90) is

δ

∫ t2

t1

∫ l

0
ρA (ω0 + αt)

{
−1

2
ẏ

∫ z

0
y ′2dz + 1

2
y

∂

∂t

∫ z

0
y ′2dz

}
dzdt

= −
∫ t2

t1

∫ l

0
ρA (10.96)

⎡
⎢⎣

{αy + (ω0 + αt) ẏ} y ′ − y ′′ ∫ l

z
{αy + (ω0 + αt) ẏ} dz

+ (ω0 + αt)

{
ẏy ′ − ∫ z

0 y ′ẏ ′dz − y ′′ ∫ l

z ẏdz − 1
2

∂
∂t

∫ z

0 y ′2dz
}

− 1
2α
∫ z

0 y ′2dz

⎤
⎥⎦ δydzdt

The variation operation on the fifth and sixth terms in equation (10.90) gives

δ

∫ t2

t1

∫ l

0

1

2
ρIxx

{
(ω0 + αt) + φ̇2

b

}2
dzdt = −

∫ t2

t1

∫ l

0
ρIxx

(
α + φ̈b

)
δφbdzdt

(10.97)

δ

∫ t2

t1

∫ l

0

{
AG

K

(
y ′ − φb

)2 + 1

2
EIxxφ

′2
b

}
dzdt

=
∫ t2

t1

⎡
⎢⎢⎣
[−AG

K

(
y ′ − φb

)
δy
]l

0 − [−EIxxφ
′
bδφb

]l
0

+ ∫ l

0

{
AG
K

(
y ′ − φb

)
δφb+

AG
K

(
y ′′ − φ′

b

)
δy + EIxxφ

′′
b δφb

}
dz

⎤
⎥⎥⎦ dt (10.98)

Now with the help of Hamilton’s principle we can write the governing equations of
motion and the boundary conditions
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ρAÿ − ρA (ω0 + αt)2 {y + R2y
′′ − (R + z) y ′}

+ 2ρA(ω0 + αt)

{
ẏy ′ − y ′′

∫ l

z

ẏdz −
∫ z

0
y ′ẏ ′dz

}

+ ρAα

{
(R + z) + yy ′ − 1

2

∫ z

0
y ′2dz − y ′′

∫ l

z

ydz

}
− AG

K
(y ′′ − φ′

b) = 0

(10.99)

EIxxφ
′′
b + AG

K
(y ′ − φb) − ρIxx(α + φ̈b) = 0 (10.100)

At z = 0
y = 0, φb = 0

At z = l
AG

K
(y ′ − φb) = 0, EIxxφ

′
b = 0 (10.101)

We can eliminate φb from (10.99) and (10.100) and write one governing equation
as follows.

EIxxy ′′′′ + ρA

⎡
⎢⎢⎣

ÿ − (ω0 + αt)2 {y + R2y
′′ − (R + z) y ′}+

+2 (ω0 + αt)

{
ẏy ′ − y ′′ ∫ l

z ẏdz − ∫ z

0 y ′ẏ ′dz
}

+α
{
(R + z) + yy ′ − 1

2

∫ z

0 y ′2dz − y ′′ ∫ l

z
ydz

}
⎤
⎥⎥⎦

−
(

ρIxx + kρEIxx

G

)
ÿ ′′ + Ixxkρ

2ÿ = 0 (10.102)

The above can be written as

EIxxy
′′′′ + ρA

⎡
⎢⎢⎢⎣

ÿ − (ω0 + αt)2 {y + R2y
′′ − (R + z) y ′}+

+2 (ω0 + αt)

{
ẏy ′ − y ′′ ∫ l

z
ẏdz − ∫ z

0 y ′ẏ ′dz
}

+α
{
yy ′ − 1

2

∫ z

0 y ′2dz − y ′′ ∫ l

z ydz
}

⎤
⎥⎥⎥⎦

−
(

ρIxx + kρEIxx

G

)
ÿ ′′ + Ixxkρ

2ÿ = −ρAα (R + z) (10.103)

This form of equation of motion reveals the presence of a pseudo-static force term
−ρAα(R + z) arising due to the accelerating conditions. The origin of the pseudo-
static force term can be readily traced back to the Coriolis effects.

For a disk rotating with constant angular speed (α = 0), and with shear deforma-
tion ignored (k = 0), equation (10.103) reduces to

EIxxy
′′′′ + ρA

⎡
⎣ ÿ − ω2

0

{
y + R2y

′′ − (R + z) y ′}+
+2ω0

{
ẏy ′ − y ′′ ∫ l

z
ẏdz − ∫ z

0 y ′ẏ ′dz
}
⎤
⎦− (ρIxx) ÿ ′′ = 0
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The above is the same as derived by Carnegie [9].
The solution for the above equation (10.103) is also obtained from energy meth-

ods. Neglecting shear (for long beams as in helicopter blades), let us rewrite equa-
tion (10.103) and identify each of the terms as in equation (10.104).

As can be seen, the equation is highly nonlinear with Coriolis and acceleration
terms besides stress stiffening and spin softening terms. It cannot be easily solved
or put in finite element formulation.

(10.104)

The Galerkin method is powerful and can provide a solution for this equation [30].
There is no excitation or oscillatory external force; there is only a pseudo-static
force. Obviously when the rotor begins to turn, transient vibrations set in; the re-
sponse will be at natural frequencies of the system. We can assume that the response
will be predominant at the fundamental frequency of the stationary rotor. Thus we
can assume a one-term solution as

y = f (Z) θ (t)

f (Z) = 6Z2 − 4Z3 + Z4 (10.105)

The error in the differential equation due to the above single-term approximation is
given by

ε =
[
−
(

12
ρIxx

l2

)(
1 − 2Z + Z2

)
+
(

6Z2 + 4Z3 + Z4
)

ρA

]
θ̈

+
[

8ρA (ω0 + αt)

l

(− 18
5 + 36

5 Z − 18
5 Z2 + 12Z3 − 27Z4

+ 108
5 Z5 − 36

5 Z6 + 36
25Z7

)]
θ θ̇

+
[
−ρA (ω0 + αt)2

(
6 − 12Z − 6Z2 + 20Z3 − 9Z4

+ 4R̄
(
3 − 12Z − 12Z2 − 4Z3

))+ 24
EIxx

l4

]
θ

+
[

4
ρAα

l

(− 18
5 + 36

5 Z − 18
5 Z2 + 18Z3 − 36Z4

+ 138
5 Z5 − 46

5 Z6 + 46
25Z7

)]
θ2 + ρAα (R + Z)

(10.106)
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Following the Galerkin method, we get

∫ l

0

[
−12

ρIxx

l2

(
1 − 2Z + Z2

)
+
(

6Z2 + 4Z3 + Z4
)

ρA

]
θ̈ (6Z2 − 4Z3 + Z4)dZ

+
∫ l

0

[
8ρA (ω0 + αt)

l

(− 18
5 + 36

5 Z − 18
5 Z2 + 12Z3

−27Z4 + 108
5 Z5 − 36

5 Z6 + 36
25Z7

)]
θ θ̇(6Z2 − 4Z3 + Z4)dZ

+
∫ l

0

⎡
⎣−ρA (ω0 + αt)2

(
6 − 12Z − 6Z2 + 20Z3 − 9Z4

+ 4R̄(3 − 12Z − 12Z2 − 4Z3)

)
+ 24 EIxx

l4

⎤
⎦ θ(6Z2 − 4Z3 + Z4)dZ

+
∫ l

0

[
4
ρAα

l

(− 18
5 + 36

5 Z − 18
5 Z2 + 18Z3

− 36Z4 + 138
5 Z5 − 46

5 Z6 + 46
25Z7

)]
θ2(6Z2 − 4Z3 + Z4)dZ

+
∫ l

0
ρAα(R + Z)(6Z2 − 4Z3 + Z4)dZ = 0 (10.107)

After performing the integral above and non-dimensionalizing we have

a =
9

52 + 81
52 R̄

1 − 135
182

Ixx

Al2

b =
27
52 R̄ + 3

8

1 − 135
182

Ixx

Al2

c =
165
104

1 − 135
182

Ixx

Al2

p2 =
162
13

Ixx

Al4

1 − 135
182

Ixx

Al2

R̄ = R

l

φ = θ

l
(10.108)

φ̈ + [
a(ω0 + αt)2 + p2]φ + cα

l
φ2 = − b

α
(10.109)

Making further adjustments
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r0 = ω0

p

rα = α

p2

τ = pt (10.110)

we get the following second-order differential equation

d2φ

dτ 2 + [
a(r0 + rατ )2 + 1

]
φ + rαcφ2 = −rαb (10.111)

This equation is split into two first-order differential equations as given below.

dφ

dτ
= φ

dφ

dτ
= −{[a(r0 + rατ )2 + 1

]
φ + rαcφ2 + rαb

}
(10.112)

These equations are solved in Matlab and the results obtained are given here.
The shock response of the accelerating blade is shown in Figure 10.3. We no-

tice that the shock response due to acceleration is more intense for higher rates of
acceleration and takes a longer time to die out. This kind of analysis is still not
possible through commercial codes. The basic energy methods remain important in
understanding the dynamic behavior of several nonlinear structures.

10.8 Complementary Virtual Work

Various forms of virtual work principle have been credited to Johann (Jean)
Bernoulli (1667–1748) and Daniel Bernoulli (1700–1782). We can choose one of
the two forms:

1. Impose equilibrium on real stresses and forces, by using consistent virtual dis-
placements and strains in the virtual work equation.

2. Impose consistent displacements and strains, by using equilibriated virtual
stresses and forces in the virtual work equation.

These two general scenarios give rise to two often stated variational principles. They
are valid irrespective of material behavior.

In Section 10.1, we derived the principle of virtual displacements in variational
notations for supported bodies. The virtual displacements and strains are specified
as variations of the real displacements and strains using variational notation; these
virtual displacements are made zero on the part of the surface that has prescribed
displacements, and thus the work done by the reactions is zero. There remain only
external surface forces on the part that do work. The virtual work equation then
becomes the principle of virtual displacements.
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Fig. 10.3 Shock response of a long accelerating blade with Coriolis forces

In the principle of virtual forces, we specify virtual forces and stresses as vari-
ations of the real forces and stresses. Also virtual forces are made zero on the part
of the surface that has prescribed forces and thus only surface forces (where dis-
placements are prescribed) would do work. The virtual work equation becomes the
principle of virtual forces. It is also called the principle of complementary virtual
work.

In the virtual work principle, we determine the displacements and strains quite
accurately, thus it is most useful in determining the natural frequencies. However,
the stresses determined may be in error, because of the rapid deterioration in the
accuracy of an approximate solution for the stress field. For engineers, the stress
field τij is equally important to achieve a good structural design. In the complemen-
tary virtual work principle, we vary the stress field and the body forces Bi keeping
the displacements fixed. We will of course restrict ourselves to the variations of the
stress field and the external forces which satisfy the equations of equilibrium and
the boundary conditions, i.e., using tensor notation,

{δτij },j + δBi = 0 (10.113)

with
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{δτij }νj + δT
(ν)
i (10.114)

on the boundary S2 and
δT

(ν)
i = 0 (10.115)

on the boundary S1.
The complementary virtual work is defined as

δW∗ =
∫∫∫

V

uiδBidv +
∫∫

S

uiδT
(ν)
i dA (10.116)

The second term in the above is converted into stresses by using Cauchy’s formula∫∫
S

uiδT
(ν)
i dA =

∫∫
S

ui(δτij )νj dA (10.117a)

Next we can use the divergence theorem to express work of traction forces over the
entire body volume ∫∫

S

ui(δτij )νj dA =
∫∫∫

V

[ui(δτij )],j dv (10.117b)

∫∫∫
V

uiδBidv +
∫∫

S

uiδT
(ν)
i dA

=
∫∫∫

V

ui

{
δBi + (

δτij

)
,j

dv
}

+
∫∫∫

V

ui,j δτij dv (10.118)

In view of (10.113), the above reduces to∫∫∫
V

uiδBidv +
∫∫

S

uiδT
(ν)
i dA =

∫∫∫
V

ui,j δτij dv (10.119)

Using ui,j = εij + ωij and noting that the rotation tensor ωij is skew-symmetric,
we have ∫∫∫

V

uiδBidv +
∫∫

S

uiδT
(ν)
i dA =

∫∫∫
V

ε,j δτij dv (10.120)

Defining the following complementary strain energy density function [29], U∗
0 =∫ τ

0 εdτ so that εij = ∂U∗
0 /∂τij , equation (10.120) becomes

∫∫∫
V

uiδBidv +
∫∫

S

uiδT
(ν)
i dA =

∫∫∫
V

∂U∗
0

∂τij

δτij dv (10.121)

The right-hand side in the above equation is δU∗. Let us define a potential function

V ∗ =
∫∫∫

V

uiBidv +
∫∫

S

uiT
(ν)
i dA



10.9 Hellinger–Reissner Variational Principle 81

so that

δV ∗ =
∫∫∫

V

uiδBidv +
∫∫

S

uiδT
(ν)
i dA

Therefore, equation (10.121) becomes

δ(U∗ + V ∗) = 0 (10.122)

In any approximation technique employing the above principle, we will get a good
approximation for the stress field. However, the displacement field could be in error.
It is however necessary that our displacement field is not in error to obtain good
approximations for the natural frequencies of the system. Therefore the method of
complementary virtual work is not very suitable for dynamic analysis. To get over
the complication, where we want good approximations for both the displacement
and stress fields, we find that Reissner’s principle is most appropriate to determine
the natural frequencies as also forced vibration displacement and stress response.
This principle is discussed in the next section.

10.9 Hellinger–Reissner Variational Principle

The principles of virtual work and Hamilton’s principle are minimum principles; the
Hellinger–Reissner [19, 33] principle is only a stationary principle in the sense that
the nature of the extremum of this functional is not known. Reissner’s functional is

IR =
∫∫∫

V

{
τij εij − U∗

0

(
τij

)}
dv −

∫∫∫
V

Biuidv −
∫∫

S

T
(ν)
i uidA (10.123)

In the above, the body forces and traction forces are both prescribed and we will
vary the stresses, strains and displacements, subject to

δεij = 1

2
(δui,j + δuj,i)

τij = τji (10.124)

Now, taking variation of (10.123),

δIR =
∫∫∫

V

{
δτij εij + τij δεij − ∂U∗

0

∂τij

δτij

}
dv

−
∫∫∫

V

Biδuidv −
∫∫

S1
T

(ν)
i δuidA (10.125)

Using (10.124), the second term in (10.125) can be written as
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V

τij δεij dv =
∫∫∫

V

τij δui,j dv

=
∫∫∫

V

(
τij δui

)
,j

dv −
∫∫∫

V

τij,j δuidv (10.126)

We can further use the divergence theorem to write the above as∫∫∫
V

τij δεij dv =
∫∫

S

τij νj δuidA −
∫∫∫

V

τij,j δuidv (10.127)

Equation (10.125) can now be written as

δIR =
∫∫∫

V

δτij εij dv +
∫∫

S

τij νj δuidA −
∫∫∫

V

τij,j δuidv

−
∫∫∫

V

∂U∗
0

∂τij

δτij dv −
∫∫∫

V

Biδuidv −
∫∫

S1
T

(ν)
i δuidA (10.128)

Regrouping

δIR =
∫∫∫

V

{(
εij − ∂U∗

0

∂τij

)
δτij − (

τij,j + Bi

)
δui

}
dv

+
∫∫

S1

(
τij νj − T

(ν)
i

)
δuidA +

∫∫
S2

τij νj δuidA (10.129)

For δIR = 0 in V , equation (10.129) gives

εij = ∂U∗
0

∂τij

(10.130)

τij,j + Bi = 0 (10.131)

and on the surface
τij νj = T

(ν)
i for S1 (10.132)

δui = 0 on S2 (10.133)

The above result is a special case of the Hellinger–Reissner variational principle and
referred to simply as the Reissner principle. It gives stress-strain law (10.130) and
equations of equilibrium (10.131) at the same time satisfying stress and displace-
ment boundary conditions. The strain displacement relations (10.124) are already
included in the process. Therefore we expect Reissner’s principle to give better ap-
proximations for both stress and displacement fields unlike the virtual work, a prin-
ciple which either gives a good approximation for displacements or stresses as the
case may be.

We will show here how a rotating turbine blade vibration problem is addressed
by Reissner’s principle [39]. Figure 10.4 shows the airfoil rotating blade of length
L with an asymmetry rx . O is the center of flexure of the asymmetric aerofoil at
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Fig. 10.4 Rotating turbine blade

distance z from the blade root; O is displaced by rx and ry from the centroid G in
x1y1 axis system with x1 in the plane of the disk. The Oxyz axis system is located
at the blade root and the Gx1y1z1 system is parallel to this as shown in Figure 10.4.
The blade is mounted at a stagger angle φ on a disk of radius R rotating at ω rad/sec.
The η axis is parallel to the plane of disk and ξ perpendicular to the plane.

The displacement field ux , uy , uz of a particle p located at x
.
y
.
z or x1

.
y1
.

z is

described by torsional deflection θ to p1, x bending to p2, and y bending to p′.

ux = x − y
.
θ = x1 − y1

.
θ

uy = y + x
.
θ = y1 + x1

.
θ

uz = − x1
.

(
φ1 + ryθ

′)− y1
.

(
φ2 + rxθ

′)+ φcθ
′ (10.134)

where φ1 and φ2 are bending slopes xz- and yz-planes. The strain and stress fields
are calculated from

εij = 1

2
(ui,j + uj,i )

σij = λδij εii + 2Gεij (10.135)

The shear stresses in the above can be corrected to account for shear coefficient K .
The following bending moments, shear forces, torsional stiffness, torsional constant
and twisting moments including warping φc can be defined.
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Mx =
∫

A

τzz y1
.

dA

My =
∫

A

τzz x1
.

dA

Vx =
∫

A

τzxdA

Vy =
∫

A

τzydA

C = KG

∫
A

{(
φc,x − y1

.

)2 + (
φc,y − x1

.

)2}
dA

C1 = E

∫
A

(
φc + x1

.

y
.
− y1

.
x
.

)2
dA

Tθ = Cθ ′ − C1θ
′′′ (10.136)

Now using (10.123) we can set up a Reissner functional as follows. It is assumed
that the energy associated with C1 is negligible in comparison with that due to C

and that x1x1 and y1y1 are principal Centroidal axes of inertia so that Ix1y1 vanishes
and we have

IR = −
∫ L

0

⎡
⎣Mxφ′

2 + Myφ′
1 − Vx

(
x ′ − φ1

)− Vy

(
y ′ − φ2

)+ Tθθ
′+

+M2
x Iy1y1+M2

y Ix1x1

2EIx1x1Iy1y1
+ T 2

θ

2C
+ V 2

x +V 2
y

2KGA

⎤
⎦ dZ

(10.137)
The kinetic energy including centrifugal effects for zero stagger angle of the blade
is

T = 1

2

∫ L

0

⎧⎪⎪⎨
⎪⎪⎩

m
(
ẋ + ry θ̇

)2 + m
(
ẏ + rxθ̇

)2 + mpθ̇2+
+my1y1

(
φ̇1 + ryθ̇

′)2 + mx1x1
(
φ̇2 + rxθ̇

′)2 −
−mω2

[
x ′2

1 + y ′2
1

] ∫ L

Z (R + Z) dZ + mω2
(
x + ryθ

)2

⎫⎪⎪⎬
⎪⎪⎭ dZ

(10.138)
where m is mass per unit length, mp is ρIpp . . .

If one assumes asymmetry in one plane only as in Figure 10.4c, ry = 0, we have
coupled bending torsion vibrations in (y − θ ) and uncoupled flexural vibrations in
the x − z plane. For coupled motion (y − θ ), we have the Reissner functional

LR = T − IR =
∫ L

0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m
2

(
ẏ + rx θ̇

)2 + mpθ̇2 + mx1x1
(
φ̇2 + rx θ̇ ′)2 −

−mω2
[(

y ′ − rxθ
′)2] ∫ L

Z (R + Z) dZ+
+Mxφ

′
2 − Vy

(
y ′ − φ2

)− Tθθ
′ + M2

x

2EIx1x1
+

+ T 2
θ

2C
+ V 2

y

2KGA

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dZ

(10.139)
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where

Mx = −EIx1x1φ
′
2

Vy = KGA
(
y ′ − φ2

)
Tθ = Cθ ′

M ′
x = Vy

V ′
y = 0

T ′
θ = 0

The above Reissner functional (10.139) is seen to be a functional of the form

LR = f
(
Mx,Vy, Tθ , y, y ′, ẏ, φ2, φ

′
2, φ̇2, θ, θ ′, θ̇ , θ̇ ′, Z, t

)
(10.140)

The time-averaged Reissner functional for harmonic motion with frequency p is

L̄R =
∫ 2π/p

0
(T − IR) dt = πL

p

∫ 1

0

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p2λEIx1x1[(y2 + 2Lr̄xθy) + r̄2
cf L2θ2 + r̄2

L2 (φ2 + Lr̄xθ ′)2]−
−α2EIx1x1

2L2 (y ′ + Lr̄xθ ′)2[R̄(1 − z) + 0.5(1 − z2)]+
+Mxφ′

2 − Vy(y
′ − φ2) − Tθθ

′ + r̄2L2

2EIx1x1

V 2
y

k̄2 + M2
x

2EIx1x1
+ T 2

θ

2μ2EIx1x1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dz

(10.141)

where

R̄ = R

L
, r̄ = r

L
. . . , rcf =

(
Ip

A
+ r2

x

)1/2

, λ = EIx1x1

mL4

The terms containing α2 represent the effects due to rotation, those associated with
r̄2 account for the effects of rotary inertia, and those having either the shear slope
(y ′ − φ2) or the non-dimensional shear parameter k̄ = (KG/E)1/2 indicate the
effects of shear deformation. The following shape functions are assumed

y =
∑

i

(Aiz
i + Ai+1z

i+1)

φ2 =
∑

i

(Biz
i + Bi+1z

i+1)

θ =
∑

i

(Ciz
i + Ci+1z

i+1) (10.142)

The arbitrary constants, A, B, C are eliminated using the boundary conditions
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y = φ2 = θ = 0 at z = 0

Vy = KGA(y ′ − φ2t) = 0 at Z = 0, L or y prescribed

Mx = −EIx1x1φ
′
2 = 0 at Z = 0, L or φ2 prescribed

Tθ = Cθ ′ = 0 at Z = 0, L or θ prescribed (10.143)

i.e.,
y = φ2 = θ = 0 at z = 0

(y ′ − φ2) = φ′
2 = θ ′ = 0 at z = 1 (10.43a)

Similarly the shape functions for the bending moment, shear force and twisting
moment are assumed to be

Mx =
∑

i

{
Ei (1 − z)i + Ei+1 (1 − z)i+1 }

Vy =
∑

i

{
Di (1 − z)i + Di+1 (1 − z)i+1 }

Tθ =
∑

i

{
Fi (1 − z)i + Fi+1 (1 − z)i+1 } (10.144)

that satisfy the boundary conditions Mx = Vy = Tθ = 0 at z = 1. The arbitrary
constants, D, E and F are eliminated by applying the boundary conditions

V ′
y = 0, M ′

x = Vy, T ′
θ = 0 at z = 0 (10.145)

The shape functions thus determined are substituted in (10.141) and Ritz minimiza-
tion is applied according to

∂L̄R

∂Ai

= 0

∂L̄R

∂Bi

= 0

. . .

∂L̄R

∂Fi

= 0 (10.146)

This leads to an eigen-value problem

[A] + p2[B] = 0 (10.147)

With a one term approximation, we have the eigen-problem with 6 × 6 matrix size
and six eigen-values. These elements can be obtained in closed form by integra-
tion of polynomials or by numerical integration. This is similar to a one-element
finite element solution and therefore takes least time. This is also more accurate as
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displacement and stress fields are simultaneously varied and hence both frequency
and stress problems can be simultaneously solved accurately. However the energy
formulations with one element cannot capture intricate geometries at discontinuities
and this is a major draw-back in modern designs where conventional factor of safety
is not practiced (see also [31]).

10.10 Hu–Washizu Principle

Hu [20] and Washizu [46] considered a more general variational principle in which
displacement, strain and stress all vary independently.

The dynamic equations of equilibrium (ρ mass density) from (9.1) are

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
+ bx − ρüx = 0

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
+ by − ρüy = 0

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ bz − ρüz = 0 (10.148)

In tensor notation, the above three equations are

σij,j + bi − ρüi = 0 (10.148a)

The strain displacement relations are given by (9.2)

εxx = ∂ux

∂x
, εyz = 1

2

(
∂uz

∂y
+ ∂uy

∂z

)
= εzy

εyy = ∂uy

∂y
, εzx = 1

2

(
∂ux

∂z
+ ∂uz

∂x

)
= εxz

εzz = ∂uz

∂z
, εxy = 1

2

(
∂uy

∂x
+ ∂ux

∂y

)
= εyx (10.149)

i.e.,

εij = 1

2
(ui,j + uj,i ) (10.149a)

The strain energy density for an isotropic elastic medium is given by

W = 1

2
λe2 + μ(ε2

xx + ε2
yy + ε2

zz) + 2μ(ε2
xy + ε2

xz + ε2
yz) (10.150)

where e = εxx + εyy + εzz and λ and μ are Lame’s constants. The stress strain
relations are then written as
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σij = ∂W

∂εij

= W,εij (10.151)

Hu–Washizu for a static problem formed a quantity from which, if its first varia-
tion is put equal to zero, we will get the equilibrium equations (10.148). the strain-
displacement relations (10.149), the stress-strain relations (10.151) and the bound-
ary conditions. For dynamic problems, the principle is extended by introducing ve-
locity components, νi in terms of a kinetic energy density is defined and, as in Kir-
choff’s [22] variational equation, integrating over time between fixed limits at which
the displacement variations are assumed to disappear. This procedure introduces in-
ertia forces into the equilibrium equations and provides the relationship between u̇i

and the kinetic energy. Hu–Washizu’s variational functional is [2],

J =
∫ t1

t0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
V

[
ρvi u̇i − T (vi) − W

(
εij

)+
+
{
εij − 1

2

(
ui,j + uj,i

)}
σij + b̄iui

]
dV

+ ∫Sp
ḡiuidS + ∫

SU
gi (ui − ūi ) dS

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dt (10.152)

In the above T is the kinetic energy density 1
2ρ(v2

x + v2
y + v2

z ), gi represents surface
traction and an overbar indicates quantities which are prescribed, surface traction
being prescribed over the region Sp of the boundary and surface displacements over
Su. Taking the first variation of (10.152)

δJ =
∫ t1

t0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
V

⎡
⎢⎣

ρu̇iδvi + ρviδu̇i − T,vi δvi − W,εij δεij+
εij δσij + σij δεij − 1

2σij δ(ui,j + uj,i )−
− 1

2 (ui,j + uj,i )δσij + b̄iδui

⎤
⎥⎦ dV

+ ∫Sp
ḡiδuidS + ∫

Su
{(ui − ūi) δgi + giδui} dS

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dt (10.153)

The second term in the volume integral above is transformed and simplified as fol-
lows: ∫ t1

t0

∫
V

ρviδu̇idV dt =
∫

V

ρviδuidV ]t1t0 −
∫ t1

t0

∫
V

ρv̇iδuidV dt

= −
∫ t1

t0

∫
V

ρv̇iδuidV dt (10.154)

The seventh term in (10.153) is integrated by parts to give∫ t1

t0

{∫
V

−1

2
σij δ

(
ui,j + uj,i

)
dV

}
dt =

∫ t1

t0

{∫
V

σij,j δuidV −
∫

S

giδuidS

}
dt

(10.155)
Using (10.154) and (10.155) in (10.153) gives
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δJ =
∫ t1

t0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∫
V

⎡
⎢⎣

ρu̇iδvi − ρv̇iδui − T,vi δvi − W,εij δεij+
εij δσij + σij δεij + σij,j δui−
− 1

2 (ui,j + uj,i )δσij + biδui

⎤
⎥⎦ dV

+ ∫Sp
ḡiδuidS + ∫

Su
(ui − ūi )δgidS

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dt (10.156)

Setting the first variation to zero and rearranging gives∫
V

[σij,j + bi − ρv̇i ]δuidV +
∫

V

[σij − W,εij ]δεij dV

+
∫

V

[
εij − 1

2
(ui,j + uj,i )

]
δσij dV +

∫
V

[ρu̇i − T ,vi ]δvidV

+
∫

Sp

[ḡi − gi ]δuidS +
∫

Su

(ui − ūi)δgidS = 0 (10.157)

Since the variations of ui , νi , εij and σij are independent, the above equations lead
to the following:

σij,j + bi − ρv̇i = 0

σij = W,εij

εij = 1

2
(ui,j + uj,i )

ρu̇i − T ,vi (10.158)

The first equation in the above represents the dynamic equations of equilibrium in
equation (10.148); the second equation is the stress-strain relation in (10.151); the
third equation is strain-displacement relations in (10.149) and the last equation is
simply vi = u̇i . Thus, Hu–Washizu’s variational principle leads to all equations of
elasticity.

Various authors have derived different higher order theories, e.g., Rao and Rao
[27]; Rayleigh [32] – Love’s theory [25], Bishop’s theory [5], Mindlin and Her-
rmann’s theory [26] for longitudinal vibration of rods; Saint-Venant’s theory [36],
Timoshenko’s [41] and Gere’s theory [16], Reissner [34] and Lo and Goulard’s
theory [24], Barr [1] for torsional vibrations of rods; Timoshenko’s theory [40],
Volterra’s theory [44] and Krishna Murthy’s theory [23] for beams.

The interest in higher order theories gradually decreased considerably with the
advent of finite element methods that can handle large size practical problems. The
higher order effects are found to be of not much importance in practical engineering
applications. The above higher order theories can be referenced as given and no
derivations are presented. However, we will present one last theory in torsion of
rods which tried to remove certain discrepancies in the equations.
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10.11 Different Theories of Torsion of Rods

Different theories for torsional vibration of rods can be derived starting from an
appropriate state, calculating the strain and kinetic energies and using variational
principles. We will first give several of these theories before deriving a refined the-
ory.

10.11.1 Coulomb (1784) Elementary Theory , see Timoshenko and
Goodier [42] for Circular Rods

State Assumption:
ux = 0

uy = −zθ

uz = yθ (10.159a)

Differential Equation:
ρIpθ̈ − GIpθ,xx = 0 (10.159b)

Boundary Conditions: [
GIpθ,x δθ

]l
0 = 0 (10.159c)

Warping Differential Equation: None

Here ρ is mass density, Ip is polar moment of inertia of cross-section.

10.11.2 St. Venant (1853) Theory, see Todhunter [43] and
Timoshenko and Goodier [42] for Circular Rods

State Assumption:
ux = φθ,x

uy = −zθ

uz = yθ (10.160a)

Differential Equation: (Longitudinal Inertia ignored)

ρIpθ̈ − C1θ,xx = 0

C1 = G
∫
A[(φ,y −z)2 + (φ,z +y)2]dA (10.160b)

Boundary Conditions:
[C1θ,x δθ ]l0 = 0 (10.160c)
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Warping Differential Equation:
∇2φ = 0 (10.160d)

where φ is warping function.

10.11.3 Love’s (1944) Theory

State Assumption:
ux = φθ,x

uy = −zθ

uz = yθ (10.161a)

Differential Equation:

ρIpθ̈ − (C1∂
2
x + EIφφ∂4

x )θ = 0

Iφφ =
∫

A

φ2dA (10.161b)

Boundary Conditions:

[
(ρIφφ θ̈ ,x +C1θ,x )δθ

]l
0 = 0 (10.161c)

Warping Differential Equation:

g∇2φ − rφ = 0

g =
∫ l

0
Gθ,2

x dx

r =
∫ l

0
ρθ,2

xt dx (10.161d)

10.11.4 Timoshenko (1945) – Gere’s (1954) Theory

State Assumption:
ux = φθ,x

uy = −zθ

uz = yθ

εxx = φθ,xx

εyy = −νεxx

εzz = −νεxx
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Differential Equation:

ρIpθ̈ − (C1∂
2
x + EIφφ∂4

x )θ = 0 (10.162b)

Boundary Conditions:

[
EIφφ∂2

x θδθ,x
]l

0 = 0[
(C1∂x − EIφφ∂3

x )θδθ
]l

0 = 0 (10.162c)

Warping Differential Equation:

−g∇2φ + dφ = 0

d =
∫ l

0
Eθ,2

xx dx (10.162d)

10.11.5 Reissner (1952) and Lo–Goulard’s (1955) Theory

State Assumption:
ux = φα

uy = −zθ

uz = yθ

εxx = φα,x

εyy = −νεxx

εzz = −νεxx (10.163a)

Differential Equation:[
ρIp 0

0 0

]{
θ̈

α̈

}
+
[−GIp∂2

x −GL∂x

GL∂x

(
GK − EIφφ∂2

x

) ] { θ

α

}
=
{

0
0

}

L =
∫ (

yφ,z +zφ,y
)
dA

K =
∫ (

φ,2
y +φ,2

z

)
dA (10.163b)

Boundary Conditions: [
(GIpθ,x +GLα)δθ

]l
0 = 0[− EIφφα,x δα

]l
0 = 0

Warping Differential Equation:
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−gR∇2φ + dRφ = 0

dR =
∫ l

0
Eε,2

x dx

10.11.6 Barr’s (1962) Theory

State Assumption:
ux = φα

uy = −zθ

uz = yθ

εxx = φα,x

εyy = −νεxx

εzz = −νεxx (10.164a)

Differential Equation:[
ρIp 0

0 ρIφφ

]{
θ̈

α̈

}
+
[−GIp∂2

x −GL∂x

GL∂x

(
GK − EIφφ∂2

x

)] { θ

α

}
=
{

0
0

}
(10.164b)

Boundary Conditions: [
(GIpθ,x +GLα)δθ

]l
0 = 0

[−EIφφα,x δα]l0 = 0 (10.164c)

Warping Differential Equation:

−gR∇2φ + dRφ = 0 (10.164d)

10.11.7 Refined Theory by Rao (1974)

The assumed state in Timoshenko–Gere theory does not satisfy the strain-
displacement relations according to Poisson equations. To remove this discrepancy,
the following state is assumed:

ux = φθ,x

uy = −zθ − νθ,xx

∫
φdy

uz = yθ − νθ,xx

∫
φdz (10.165)
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The velocity field is then

ux,t = φθ,xt

uy,t = −zθ,t − νθ,xxt

∫
φdy

uz,t = yθ,t − νθ,xxt

∫
φdz (10.166)

The strain field is given by

εxx = φθ,xx

εyy = −νφθ,xx

εzz = −νφθ,xx

εxy = 1

2

[
(φ,y − z)θ,x − νθ,xxx

∫
φdy

]

εyz = −νθ,xx

2

[(∫
φdy

)
,z

+
(∫

φdz

)
,y

]

εzx = 1

2

[
(φ,z + y)θ,x − νθ,xxx

∫
φdz

]
(10.167)

The corresponding stresses are

τxx = Eφθ,xx

τyy = 0

τzz = 0

τxy = G

[
(φ,y − z)θ,x − νθ,xxx

∫
φdy

]

τyz = −νθ,xxG

[(∫
φdy

)
,z

+
(∫

φdz

)
,y

]

τzx = G

[
(φ,z + y)θ,x − νθ,xxx

∫
φdz

]
(10.168)

The strain and kinetic energies of the system are obtained as
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2U =
∫ l

0
EIφφθ2

,xxdx +
∫ l

0
C1Gθ2

,xdx +
∫ l

0
ν2GC2θ

2
,xxxdx

−
∫ l

0
2νGC3θ,xθ,xxxdx +

∫ l

0
ν2GC4θ

2
,xxdx

2T =
∫ l

0
ρIpθ2

,t dx +
∫ l

0
C2ρν2θ2

,xxtdx +
∫ l

0
2ρνC5θ,xxtθ,tdx

+
∫ l

0
ρIφφθ2

,xtdx (10.169)

where

C2 =
∫

A

[(∫
φdy

)2

+
(∫

φdz

)2
]

dA

C3 =
∫

A

[
(φ,y − z)

∫
φdy + (φ,z + y)

∫
φdz

]
dA

C4 =
∫

A

[(∫
φdy

)
,z

+
(∫

φdz

)
,y

]2

dA

C5 =
∫

A

[
z

∫
φdy − y

∫
φdz

]
dA (10.170)

Following Hamilton’s principle we can get the governing differential equation of
motion and boundary conditions.

ν2GC2θ,xxxxxx − (EIφφ + ν2GC4 + 2νGC3)θ,xxxx − C2ρν2θ,xxxxt t

+ C1Gθ,xx + (ρIφφ − 2ρνC5)θ,xxt t − ρIpθ,t t = 0 (10.171)

[{− (EIφφ + ν2GC4
)
θ,xxxx + C1Gθ,x + ν2GC2θ,xxxxxx − 2νGC3θ,xxx

−C2ρν2θ,xxxxt t − ρνC5θ,xt t + ρIφφθ,xt t

}
δθ

]l

0

+ [{
(EIφφ + ν2GC4)θ,xx − ν2GC2θ,xxxx

+ νGC3θ,xx + C2ρν2θ,xxt t + ρνC5θ,t t

}
δθ,x

]l
0

+ [{ν2GC2θ,xxx − νGC3θ,x}δθ,xx

]l
0 = 0 (10.172)

With ν = 0 the above equations reduce to the Timoshenko–Gere theory.
The linear system of equations can be solved as follows. For free vibrations θ =

θ sin pt and (10.171) becomes
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ν2GC2θ,xxxxxx − (EIφφ + ν2GC4 + 2νGC3 − C2ρν2p2)θ,xxxx

+ (C1G − ρIφφp2 + 2ρνC5p
2)θ,xx + ρIpp2θ = 0 (10.173)

The above equation is written as

B6θ,xxxxxx − (B4 − D4p
2)θ,xxxx + (B2 − D2p

2)θ,xx + D0p
2θ = 0 (10.173a)

The solution for the above is θ = Mebx and hence

B6b
6 − (B4 − D4p

2)b4 + (B2 − D2p
2)b2 + D0p

2 = 0 (10.174)

There are three roots; let them be b2
1, b2

2, b2
3 and they in turn give six roots for b viz.,

b11, b12, b21, b22, b31, b32. Therefore

θ = M11e
b11x +M12e

b12x +M21e
b21x +M22e

b22x +M31e
b31x +M32e

b32x (10.175)

For fixed-fixed boundary conditions, θ = θ,x = θ,xx = 0 at x = 0 and l and hence
we get ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1

b11 b12 b21 b22 b31 b32

b2
1 b2

1 b2
2 b2

2 b2
3 b2

3

eb11l eb12l eb21l eb22l eb31l eb32l

b11e
b11l b12e

b12l b21e
b21l b22e

b22l b31e
b31l b32e

b32l

b2
1e

b11l b2
1e

b12l b2
2e

b21l b2
2e

b22l b2
3e

b31l b2
3e

b32=0l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (10.176)

While the higher order effect from St. Venant’s theory of noncircular rods will be
very small and an engineer may not place much value on this kind of effort, the fact
remains that we need basic principles from the science revolution period to give us
an understanding of the physics of the system. While we had no computers until
1960s, and further improvements in speed and memory were necessary to utilize
advances in finite element methods and gradually leave behind the strength of mate-
rials and tabular/graphical methods of simplified systems, it should be emphasized
here that all finite elements emanated from energy principles of the scientific rev-
olution and the approximations thereof should be understood by engineers to rely
on the results. The world has come around and the strength of materials approach
developed up to and during the 1960s has now been left behind in favor of the finite
elements analysis approach (see Chapter 13). Therefore the finite element analy-
sis engineers should assess carefully the limitations, if any, on commercial codes
and should never depend on them blindly simply because the results from the post
processors are attractive in making presentations.
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Chapter 11
20th Century Graphical and Numerical Methods

With the rapid growth of rotating machinery from the beginning of the 20th century,
there was a need to determine the natural frequencies in an industrial environment
by rapid means that can be established to handle various design problems. Meth-
ods were devised to streamline and develop fool-proof methods which semi-skilled
engineers could handle in the shortest possible time with minimum errors. These
methods continued to play a significant role until recently; they are only now being
phased out in industry in favor of finite element methods.

Rayleigh’s energy approach, given in Section 10.3 in a tabular form, is in fact
directed at achieving the above objective

11.1 Stodola–Viannello (Rayleigh’s Maximum Energy) Method
in Graphical Form

Classical beam theory was in full force for design purposes at the turn of the 20th
century. The most common form of solving the relevant differential equation was to
first draw the shear force diagram, then the bending moment diagram and finally the
deflection diagram, converting integration into summation in a graphical manner.

Since the inertia loading of a freely vibrating beam is (w/g)p2y, Stodola–
Viannello [12] considered the deflection y itself as a proportional load that produces
the deflection. Consistent with technologies in vogue at that time, they determined
the static deflection of the beam in place of the assumed shape function in a cosine
form or polynomial form. Let the beam carry several loads W1, W2, . . . Wn, then
the static deflections y1, y2, . . . , yn at the locations where the loads are applied are
determined. The total strain energy of the system under one extreme position is

Û = 1

2

∑
Wy (11.1)
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Table 11.1 Critical speed using the Stodola–Viannello method

Section W y Wy Wy2

1 9.8 0.000260 0.00255 0.000000663
2 2.0 0.000450 0.00090 0.000000405
3 43.1 0.001046 0.04510 0.000045000
4 7.0 0.001325 0.00927 0.000012280
5 157.0 0.001355 0.21300 0.000289000
6 154.0 0.001339 0.20600 0.000276000
7 147.0 0.001223 0.18000 0.000220200
8 14.9 0.001120 0.01670 0.000018700
9 26.2 0.000845 0.02210 0.000018680
10 2.0 0.000480 0.00096 0.000000461
11 9.8 0.000250 0.00245 0.000000612

Totals 0.69903 0.000882001

If p is the fundamental natural frequency, with the assumed static deflection as the
shape function, the maximum kinetic energy in the system is given by

T̂ = 1

2g
p2
∑

Wy2 (11.2)

Therefore, the first mode critical speed is

Nc = 60

2π

√
g
∑

Wy∑
Wy2

rpm (11.3)

The loads applied can be the disc weights and the distributed weight of the shaft for
the section considered. To illustrate the method, let us consider a turbine rotor as
shown in Figure 11.1. The graphical integration is reproduced in original form as
given by Kearton [6]. The weights calculated are indicated in the figure. The total
load is 621 lb and the bearing reactions are 301 lb at the left bearing A and 320 lb
at the right bearing B.

The shearing force diagram is marked F . A scale is used in the original to draw
the shearing force diagram with 1′′ = 100 lb. The length scale is 1′′ = 4′′. The
bending moment diagram is next drawn by integrating the shear force. The scale
used is 1′′ = 1000 lb-in. It is marked M in the figure. The corrected M/I diagram
is next obtained as shown. The scale on the original diagram was 1′′ = 100 lb/in3.

Similarly the Slope Curve is obtained by another integration marked as shown.
The scale was 1′′ = 0.00005 rad. Next the deflection curve is obtained by another
integration shown as Static Deflection. Maximum deflection found is 0.001364′′ at
point F (slope zero).

Table 11.1 gives the calculation of the critical speed.
Hence,

Nc = 60

2π

√
32.2 × 12 × 0.69903

0.0008820012
= 5285 rpm
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Fig. 11.1 Stodola–Viannello graphical method [12] for determining static deflection (from Kearton
[6])

11.2 Stodola–Viannello Iterative Method in Tabular Form

In Section 10.3, we discussed a tabular form of Rayleigh’s method with an assumed
shape function for a cantilever beam as given in Table 10.1. The Stodola method
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Table 11.2 Stodola–Viannello iterative method – Iteration 1

developed in graphical form takes more time and depends on the accuracy with
which the drawing was made using drawing tools of the day. A tabular (numerical)
method will be more accurate with analog multiplying devices again with the tools
available nearly a century ago. We will discuss a tabular procedure to determine the
critical speed by adopting the Stodola–Viannello method [11].

The inertia loading is proportional to mass, frequency squared and the deflection
curve y(x). As before we can choose an arbitrary deflection shape and if we assume
the frequency ω to be equal to unity, then the loading is my(x) and we can determine
the deflection under this loading by successive integrations. The deflection that we
obtain will not be same as the assumed shape unless the frequency is equal to unity
and the assumed shape function is one of the modes (for the present fundamental
mode). That is if y(x) is exact mode shape and ω is exact frequency, the deflection
curve under mω2y(x) loading will be y(x). Or if the beam is loaded with my(x), the
deflection will be y(x)/ω2. Therefore if the assumed shape is exact, the frequency
can be obtained by comparing the deflections at any point on the assumed curve
y1(x) and the resulting deflection curve y2(x). Then

ω2 = y1 (x)

y2 (x)
(11.4)

Since y1(x) is not exact and if we want more accurate result for the frequency,
we can start with the resulting shape y2(x) and repeat the process all over again,
thus developing an iterative algorithm to determine the frequency accurately. This
probably is the beginning of an iterative approach that can be adopted effectively
to determine the desired accurate solutions for linear as well as nonlinear solutions.
This is illustrated in an example given in Section 10.3, Table 10.1 and in Tables 11.2
and 11.3.
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Table 11.3 Stodola–Viannello iterative method – Iteration 2

Table 11.2 gives the first iteration. The beam is divided into 10 stations 0 to
10 from the root to tip. The root is at station 9 and the tip at station 10 with 10
equal intervals λ between each successive station. The summation begins at free
end station 10. The second moment of area and mass properties are given in the
second and third columns. The assumed displacement vector at each station is given
in column 4. The loading values my1 are listed in column 5. Column 6 lists the
shear starting from the free end station 10. Note the distance �x = 24′′ between
successive stations and taken as a common factor in the shear column. The starting
value for shear is taken as

S10 = �x
(3my10 + my9)

8

For the next steps, shear is obtained by successive adding of the loads. The bend-
ing moment is found by successive addition of shear values. In the slope column,
which is obtained by summing from the root out, the slope at the root station 0 is
obtained similar to the shear at station 10 and after that M/I values are successively
added from the root towards the tip till station 10. The deflections are next obtained
starting from the root station 0 by successively adding the slope values to the tip.
This deflection curve is then normalized with respect to the tip value set at unity.
Table 11.3 gives the iteration starting from the new normalized shape. Finally, we
take the average ratio of y2/y3 which is

y2

y3
= E

(�x)4
× 113.79

= 10.3 × 106

244
× 113.79
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Therefore

ω2 = y2

y3
= 10.3 × 106

244 × 113.79 = 3530

giving ω = 59.41 rad/sec or 567 cpm.

11.3 Dunkerley’s Method

Dunkerley [2] conducted several experiments and arrived at a semi-empirical for-
mula

1

Nc
2 = 1

Na
2 + 1

N1
2 + 1

N2
2 + 1

N3
2 . . . (11.5)

where Nc is the critical speed of the complete shaft system; Ns is the critical speed
of shaft alone; N1 is the critical speed of the shaft supporting load W1 only neglect-
ing the influence of the shaft; N2 is the critical speed of the shaft supporting load
W2 only neglecting the influence of the shaft; N3 is the critical speed of the shaft
supporting load W3 only neglecting the influence of the shaft; . . .

A major advantage of this empirical rule is in the determination of natural fre-
quency of the shaft with one load each time and using equation (11.5) thus simpli-
fying the procedure and saving time. Whereas all energy methods give upper bound
solutions for the natural frequency, Dunkerley’s rule gives a lower bound value.
Therefore one can take the average of Dunkerley’s result and the Rayleigh maxi-
mum energy principle result to get a more accurate estimate for the fundamental
frequency.

11.4 Proof of the Dunkerley Formula by Blaess [1]

Blaess used the law of deformation work of a rotor with several masses m1, m2, . . .
Let ωk be the critical speed with all the masses simultaneously mounted on the shaft
and y1, y2, . . . be the deflections of the actual elastic curve e′ at the critical speed
(see Figure 11.2). The inertia loading on the shaft then is given by P1 = m1y1ω

2
k ,

P2 = m2y2ω
2
k . . . The deformation work ϕa of these forces is written as

ϕa = 1

2

∑
(P1y1 + P2y2 + · · · ) = 1

2
(
∑

miy
2
i )ω2

k (11.6)

If only mass m1 is mounted on the assumed weightless shaft, the deflection at the
critical speed ω1 now prevailing can also be made y1 and then we have

ϕ1 = 1

2
m1y1ω1

2 (11.7)
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Fig. 11.2 Elastic curve e and actual elastic curve e′

Similarly ϕ2 = 1
2m2y2ω2

2, ϕ3 = 1
2m3y3ω3

2 etc. Using these results in equation
(11.6) we get

ϕa

ωk
2 = ϕ1

ω1
2 + ϕ2

ω2
2 + ϕ3

ω3
2 + · · · (11.8)

Figure 11.2 shows the exact elastic curve e at the critical speed ω1. By laying
off horizontally the force P ′

1 = m1y1ω
2
1, we get in the hatched triangular area the

elastic energy ϕ1. To get the curve corresponding to ωk , we can, starting at e, add at
the points of application of m2, m3 forces increasing from zero until they become
P2, P3, . . . Since then, the point of application of m1 will also move forward, the
force applied there must decrease from P ′

1 to P1, so that finally the load consists of
the original forces P1, P2, . . . , as it should. The works of the complementary forces
are represented by the small cross-hatched triangular areas. These areas are much
smaller than that of ϕ1. We can therefore say that ϕ1 = ϕ2 = ϕ3 = · · · = ϕa . Hence

1

ω2
k

≈ 1

ω2
1

+ 1

ω2
2

+ 1

ω2
3

+ · · · (11.9)

which is Dunkerley’s formula.

11.5 Hahn’s Proof Using Matrix Algebra [3]

Hahn formulated his problem using the method of Influence Coefficients. Under
the inertia loading P1 = m1y1ω

2, P2 = m2y2ω
2, . . . the deflections y1, y2 . . . are

written in terms of influence coefficients αij as follows:

y1 = α11P1 + α12P2 + · · · + α1nPn

y2 = α21P1 + α22P2 + · · · + α2nPn

· · ·
yn = αn1P1 + αn2P2 + · · · + αnnPn (11.10)

Substituting for values of P ,
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(α11m1ω
2 − 1)y1 + α12m2ω

2y2 + · · · + α1nmnω
2yn = 0

α21m1ω
2y1 + (α22m2ω

2 − 1)y2 + · · · + α2nmnω
2yn = 0

· · ·
αn1m1ω

2y1 + +αn2m2ω
2y2 + · · · + (αnnmnω

2 − 1)yn = 0 (11.11)

For finite deflections to exist the following determinant should be zero:

D =

∣∣∣∣∣∣∣∣∣

(α11m1ω
2 − 1) α12m2ω

2 · · · α1nmnω
2yn

α21m1ω
2 (α22m2ω

2 − 1) · · · α2nmnω
2

· · · · · · · · · · · ·
αn1m1ω

2 αn2m2ω
2 · · · (αnnmnω

2 − 1)

∣∣∣∣∣∣∣∣∣
= 0 (11.12)

We can expand this determinant to a polynomial equation of degree 2n to give

D = Dnω
2n − Dn−1ω

2(n−1) + · · · + D2(−1)n−2ω4 + D1(−1)n−1ω2 + (−1)n = 0
(11.13)

The term D1 in the above can be shown to be

D1 = α11m1 + α22m2 + · · · + αnnmn (11.14)

Let us suppose that this shaft without mass is loaded with only mass m1, then (11.11)
gives

(α11m1ω
2 − 1)y1 = 0 (11.15)

For y1 �= 0, we get the critical speed with mass m1 only.

ω1
2 = 1

α11m1
(11.16)

In a similar manner

ω2
2 = 1

α22m2
; ω3

2 = 1

α33m3
; · · · (11.17)

Using the above two equations, equation (11.14) reduces to

D1 = 1

ω1
2

+ 1

ω2
2

+ · · · + 1

ωn
2

(11.18)

For the fundamental frequency, neglecting higher harmonics, equation (11.13) gives

D1 = 1

ω2 (11.19)

Equation (11.18) then gives Dunkerley’s result.

1

ω2
= 1

ω1
2

+ 1

ω2
2

+ · · · + 1

ωn
2

(11.20)
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The greatest advantage of Dunkerley’s method is in using a simple single mass and
shaft model for each of the masses in obtaining the overall result of the shaft carrying
several masses. Therefore it became a popular industrial practice in the early days
of rotating machinery development.

11.6 Holzer Method for Torsional Vibration

One of the main problems faced by industry related to marine transmission units
from the reciprocating steam engine drives with heavy pulsation torques through
couplings and gear transmission units and to the long propeller shafts before the
propellers get their power. Propeller shafts designed according to statics failed and
when their stiffness was increased the failures occurred sooner. It was suspected
around World War I that there is a need to calculate higher torsional modes of drive
trains and prevent any resonances. The available energy methods and empirical rules
could provide for a good estimate of the fundamental mode but not higher modes.
Holzer in 1922 provided this numerical procedure in a tabular form to determine
fundamental as well as higher modes, which is popular even today because of its
simplicity.

The Holzer method [4, 5] is inverse to Stodola’s method in the sense that a fre-
quency is assumed to begin an iterative process. This method can be easily applied
to torsional vibrations which have only two state quantities at every station, torque
and deflection. It can be applied to bending problems as well; however we have to
deal with four state quantities, deflection, slope, shear and bending moment and we
have to wait for another two decades for this to happen.

A Railway Diesel-Electric Drive train is modeled as inertia and stiffness system
for torsional vibrations given Table 11.4 [10]. Here a discrete system is obtained
by assuming the mass moment of inertia of each part as indicated. The torsional
stiffness between these inertias is determined by a test or by calculation and modeled
as a discrete stiffness. We can determine the approximate value of the fundamental
mode by observing the system inertias and minimum stiffness member; the node
point with zero deflection can be expected between stations 10 and 11. We can sum
up all the inertias upto station 11 – connecting this total inertia with the minimum
stiffness member to the rest of the inertias clubbed together.

With this assumed frequency 86 rad/s as given in Table 11.4 and unit torsional
amplitude at station 1, i.e., the first inertia for free vibration, we can determine
Iω2θ = I1ω

2θ1 = 2735 kgm2/s2. With the help of stiffness between stations 1
and 2, the difference in amplitude between stations 1 and 2 is given by

1

K1
I1ω

2θ1 = 0.0171

We next proceed to determine the torsional amplitude at station i = 2 by using
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θi = θi−1 − 1

Ki

∑
Iω2θ = 0.9829

and continue the numerical computations in Table 11.3 until we find at station 12∑
Iω2θ = 317 ≈ 0

consistent with numerical accuracy.
Holzer’s method is a trial and error method and we can determine higher modes

also in a similar manner by assuming a frequency and watching the mode shape that
we get once the boundary condition is satisfied. It can be used to determine torsional
vibration characteristics of shafts, blades, aircraft wings, etc. A similar, successful,
attempt at bending vibrations was made 22 years later by Myklestad [7, 8].

11.7 The Myklestad Method [7, 8]

As mentioned, Myklestad’s method basically follows Holzer’s method, previously
applied for bending vibrations of beams, now applicable for aircraft wings and tur-
bine blades. It was the time when World War II was over and basic scientific works
began in earnest. World War II had seen a lot of action of aircraft and as mentioned,
Ohain and Whittle began development of jet engines. Turbine blades are distrib-
uted mass systems and therefore energy methods could easily be applied for bend-
ing vibration dynamics, whereas aircraft wings are necessarily built up structures
with Spars, Ribs, Stringers and Skin. They can be modeled as discrete structures
but not as continuous systems. Therefore it became necessary to have a method by
which uncoupled bending vibrations can be determined. Holzer’s method already
provided such a method for torsional vibrations. Myklestad provided the tabular
method to handle four state quantities, viz., deflection, slope, shear and bending
moments rather than torsional vibration which had only two state quantities.

A major advantage of Myklestad’s method is its applicability in determining
higher modes as in the case of Holzer’s method; the energy methods though are
theoretically capable of determining higher modes; we had to wait for the 1960s
to have this capability with the advent of main frame computers, however primi-
tive they now appear when compared to later years. With the advanced computa-
tional facilities, finite element methods gradually overtook these tabular and energy
methods, except for some special cases of Coriolis forces or accelerating through a
critical speed as we have discussed earlier.

Let us consider a cantilever beam with masses m1, m2, m3, . . . mn and mn+1 at
distances x1, x2, x3, . . . from the cantilever end. The length between masses m1 and
m2 is denoted by l1, between masses m2 and m3 is denoted by l2 . . . Let the beam
vibrate with frequency ω rad/s. The shear and bending moments in terms of inertia
forces at station n are written as
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Table 11.4 Diesel locomotive transmission system – assumed ω = 86 rad/s

Sn =
n∑

i−1

miyiω
2

Mn =
n−1∑
i−1

miyiω
2(xi − xn) (11.21)

Myklestad defined four different elastic constants for each beam segment ln between
masses mn and mn+1:

• dFn – linear deflection at station n relative to station (n + 1), the beam being
assumed built in at station (n + 1) for a unit force applied at station n.

• vFn – angular deflection at station n relative to station (n + 1) for a unit force
applied at station n.

• dMn – linear deflection at station n relative to station (n + 1) for a unit moment
applied at station n.

• vMn – angular deflection at station n relative to station (n + 1) for a unit moment
applied at station n.

Since each of the sections between masses is assumed to be a beam of uniform
cross-section, we can use simple cantilever beam rules to determine all the above
coefficients. The slopes α and deflections can be built from station 1 onwards (in
a similar manner as in Holzer’s method), using the following relations for sections
between stations n and n + 1:

αn+1 = αn − SnvFn − MnvMn

yn+1 = yn − lnαn+1 − SndFn − MndMn (11.22)
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Using (11.21) in the above we get

αn+1 = αn − ω2vFn

n∑
i−1

miyi − ω2vMn

n−1∑
i−1

miyi(xi − xn)

yn+1 = yn − lnαn+1 − ω2dFn

n∑
i−1

miyi − ω2dMn

n−1∑
i−1

miyi(xi − xn)(11.23)

We can choose the free end deflection y1 = 1 and assign the slope ϕ that should be
determined later by using the boundary conditions. In terms of unknown ϕ the slope
and deflection at station n are expressed as

αn = hnϕ − fn

yn = gn − knϕ (11.24)

where hn, fn, gn and kn are coefficients which are independent of ϕ. Equa-
tions (11.24) give at starting station 1.

ϕ = h1ϕ − f1 ⇒ h1 = 1, f1 = 0

1 = g1 − k1ϕ ⇒ g1 = 1, k1 = 0 (11.25)

Continuing further, Myklestad derived the following recursive relations for the co-
efficients hn, fn, gn and kn at station n:

hn = h(n−1) + vF (n−1)K(n−1) + vM(n−1)K
′
(n−1)

kn = k(n−1) + l(n−1)hn − dF (n−1)K(n−1) − dM(n−1)K
′
(n−1)

fn = f(n−1) + vF (n−1)G(n−1) + vM(n−1)G
′
(n−1)

gn = g(n−1) + l(n−1)fn − dF (n−1)G(n−1) − dM(n−1)G
′
(n−1) (11.26)

where

Kn =
n∑

i=1

miω
2ki

K ′
n =

n−1∑
i=1

liKi

Gn =
n∑

i=1

miω
2gi

G′
n =

n−1∑
i=1

liGi (11.27)
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Table 11.5 Elastic and geometric properties of a cantilever beam

Table 11.6 Myklestad’s tabular procedure to evaluate kn, Kn, K ′
n, hn, gn, Gn, G′

n and fn

At the root of the cantilever, the slope and deflection are

αR = hRϕ − fR

yR = gR − kRϕ (11.28)

If we make the slope αR at the root zero in (11.28), we have the slope at the starting
station given by ϕ = fR/hR . This gives the root deflection from (11.28) to be
yR = gR − kR(fR/hR). This deflection for a cantilever should be zero and if in the
numerical calculation it turns out to be zero, then the assumed value for ω is correct,
else we make another guess for ω and repeat the process until a convergence is
reached. Let us consider the data in Table 11.5 that gives the elastic and geometric
properties of a cantilever beam.

Table 11.6 gives the Myklestad tabular procedure for an assumed value of ω =
60 rad/s. From the results, ϕ = fR/hR = 0.007102 and

yR = gR − kRϕ = 1.79505 − 0.007102 × 255.088 = −0.0166

A frequency of 60 rad/s assumed is high. Decrease this to 55 rad/s and repeat; do
an interpolation to find correct frequency, until the desired accuracy for yR ≈ 0 is
achieved.
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11.8 Prohl’s Method [9]

After Myklestad published his paper, which mainly addressed aircraft wings, Prohl
published his work addressing the rotating machine shaft calculations, which is fun-
damentally the same as Myklestad’s method. We will briefly discuss here his proce-
dure. For a fully balanced rotor whirling steadily at a critical speed ω with its central
bent axis in a bowed shape, the governing differential equation is the same as that
of a beam. Therefore we can write

EI
d2y

dx2
= M (11.29)

d2M

dx2
= μω2y (11.30)

where μ is mass per unit length lb-sec2/in2. Let the shaft be divided into a series of
appropriate sections, then the above equations are written as

�

(
dy

dx

)
=
(

�x

EI

)
Mavg (11.31)

�

(
dM

dx

)
=
(
μω2�x

)
yavg (11.32)

where �x is the length of a given section and Mavg and yavg are the average values of
bending moment and deflection for that section. Prohl followed Holzer’s approach
for calculating the natural frequencies of torsional vibration. Here however there
are four integrations involved instead of two and additional complications arise in
dealing with the boundary conditions. The bending moment and shear force relation
is

dM

dx
= V (11.33)

At each mass m there is a finite change in the shear force given by

�V = mω2y (11.34)

Assume the shear force V0, bending moment M0, slope θ0 and the deflection y0, at
the left-hand end where the computations will begin. There will be a change in shear
force at point 0 due to the inertia force of mass m0, therefore the shearing force V1,
in section 1 is

V1 = V0 + m0ω
2y0 (11.35)

The bending moment M1 at point 1 is

M1 = M0 + V1(�x)1 (11.36)

The bending moment at distance x from the left-hand end of section 1 is
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M = M0 + M1 − M0

(�x)1
x (11.37)

The slope θ for the first section is obtained from

θ = 1

(EI)1

∫ x

0
Mdx + c

= 1

(EI)1

[
M0x + M1 − M0

(�x)1

x2

2

]
+ θ0 (11.38)

where c is a constant of integration. The deflection y is similarly obtained as follows:

y =
∫ x

0
θdx + c′

= 1

(EI)1

[
M0

x2

2
+ M1 − M0

(�x)1

x3

6

]
+ θ0x + y0 (11.39)

At the end section 1, i.e., point 1, the above values are (β1 = (�x/EI)1)

θ1 = β1

(
M0

2
+ M1

2

)
+ θ0

y1 = β1

(
M0

3
+ M1

6

)
(�x)1 + θ0(�x)1 + y0 (11.40)

Now, the shear force in section 2 and bending moment at point 2 are

V2 = V1 + m1ω
2y1

M2 = M1 + V2(�x)2 (11.41)

Once the bending moment in shaft section 2 is defined, the slope θ2 and deflection
y2 can be evaluated and this process can be repeated successively by the following
general relations:

Vn = Vn−1 + mn−1ω
2yn−1

Mn = Mn−1 + Vn(�x)n

θn = βn

(
Mn−1

2
+ Mn

2

)
+ θn−1

yn = βn

(
Mn−1

3
+ Mn

6

)
(�x)n + θn−1(�x)n + yn−1 (11.42)

Prohl in his paper extended the analysis (unlike Myklestad) to include the rotary
inertia of the disks; this takes care of so-called gyroscopic effects as his application
is meant for steam turbine rotors compared to Myklestad’s approach for aircraft
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structures. Both these methods found wide applications in the structures and rotor
dynamics community until the advent of the computer age.
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Chapter 12
Matrix Methods

The kinetic and potential energies in a free vibration problem are expressible as
homogeneous quadratic forms in the velocities q̇i and coordinates qi respectively,
leads to important conclusions to be drawn concerning normal coordinates. Con-
sider a problem with three generalized coordinates

T = 1

2

⎛
⎜⎝

a11q̇
2
1 + a12q̇1q̇2 + a13q̇1q̇3

+a21q̇2q̇1 + a22q̇
2
2 + a23q̇2q̇3

+a31q̇3q̇1 + a32q̇3q̇2 + a33q̇
2
3

⎞
⎟⎠ , aij = aji; i = j = 1, 2, 3 (12.1)

U = 1

2

⎛
⎜⎝

b11q
2
1 + b12q1q2 + b13q1q3

+b21q2q1 + b22q
2
2 + b23q2q3

+b31q3q1 + b32q3q2 + b33q
2
3

⎞
⎟⎠ , bij = bji; i = j = 1, 2, 3 (12.2)

The determinants ∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ (12.3)

and ∣∣∣∣∣∣∣
b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣∣ (12.4)

are the discriminants of T and U respectively. Using Lagrange equations

d

dt

(
∂T

∂q̇r

)
− ∂T

∂qr

+ ∂U

∂qr

= 0 (10.52)

we can obtain the equations of motion in matrix form as

115
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⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦
⎧⎪⎨
⎪⎩

q̈1

q̈2

q̈3

⎫⎪⎬
⎪⎭+

⎡
⎢⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎥⎦
⎧⎪⎨
⎪⎩

q1

q2

q3

⎫⎪⎬
⎪⎭ = 0 (12.5)

The above equations can be written as

[A] {q̈} + [B] {q} = 0 (12.6)

where [A] is called inertia matrix and [B] the stiffness matrix. Take inverse of matrix
[A] and premultiply equation (12.6) to get

{q̈} + [A]−1 [B] {q} = 0

or

{q̈} + [C] {q} = 0 (12.7)

where [C] is called the dynamic matrix. It is now desired to find a linear transfor-
mation ⎧⎪⎨

⎪⎩
q1

q2

q3

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤
⎥⎦
⎧⎪⎨
⎪⎩

r1

r2

r3

⎫⎪⎬
⎪⎭ (12.8)

such that when substituted into (12.7), we will obtain⎧⎪⎨
⎪⎩

r̈1

r̈2

r̈3

⎫⎪⎬
⎪⎭+

⎡
⎢⎣

ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

⎤
⎥⎦
⎧⎪⎨
⎪⎩

r1

r2

r3

⎫⎪⎬
⎪⎭ = 0

r̈i + ω2
i ri = 0, i = 1, 2, 3 (12.9)

From (12.7) and (12.8) we can write

[α] {r̈} + [C] [α] {r} = 0

or

{r̈} + [α]−1 [C] [α] {r} = 0 (12.10)

Comparing (12.9) and (12.10), the desired matrix is such that

[α]−1 [C] [α] =
⎡
⎢⎣

ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

⎤
⎥⎦ (12.11)

i.e., a matrix [α] is so chosen that by collinearity transformation, [C] is transformed
to a diagonal matrix. Sylvester (1852) has proved that the transformation to normal
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coordinates is always a real transformation and the roots all being real. This trans-
formation is fundamental to modal analysis of Multidegree of freedom vibrating
systems that is quite so often employed in determining the free or forced dynamic
response of any vibrating system.

We can derive the now familiar orthogonality conditions in matrix form here.
For harmonic motion, equation (12.6) for the modal column {q(i)} associated with
frequency ωi gives

ω2
i [A]{q(i)} = [B]{q(i)} (12.12)

Similarly for the modal column {q(j)} associated with frequency ωj

ω2
j [A]{q(j)} = [B]{q(j)} (12.13)

Premultiply equation (12.12) by the transpose of {q(i)} and equation (12.13) by
transpose of {q(i)} and, we get

ω2
i {q(j)}T [A]{q(i)} = {q(j)}T [B]{q(i)} (12.14)

ω2
j {q(i)}T [A]{q(j)} = {q(i)}T [B]{q(j)} (12.15)

Since the transpose of a product is the product of the transpose in reverse order and
[A] and [B] are symmetric, equation (12.14) becomes

ω2
i {q(i)}T [A]{q(j)} = {q(j)}T [B]{q(i)} (12.14a)

Subtracting (12.14a) from (12.15), we get

(ω2
j − ω2

i ){q(i)}T [A]{q(j)} = 0 (12.16)

Since ω2
j �= ω2

i it can be also seen that

{q(i)}T [A]{q(j)} = {q(i)}T [B]{q(j)} = 0 (12.17)

This is the familiar orthogonality condition.
The matrix form of writing equations of motion and mathematical solution for

eigen-values is attractive for engineers to determine their dynamic characteristics;
however the computational needs of practical systems were not present prior to the
dawn of the computer age. That was of course the reason for having developed
several methods, graphical or tabular, in determining the most important frequency
for rotors, a fundamental mode. As the machines became bigger in size and more
flexible, the higher modes are necessary in the design; that’s where methods like
Holzer’s helped in designing better drive trains. Most of the developments in this
direction came from organizations, e.g., British Internal Combustion Engineering
Research Institute, who published some very highly valuable data [8,21–23]. Refer-
ence may be made to excellent text books in this field by Biezeno and Grammel [1],
Den Hartog [2] and Timoshenko [20].
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Table 12.1 A closely coupled torsional system

12.1 Torsional Vibration Systems

Setting up equations of motion in torsional vibration is a straight forward matter
using Newton’s IInd law or D’Alembert’s principle. We will illustrate this through
a drive train example given by Rao and Rao [11]. The drive train data is given in
Table 12.1.

Jacobsen and Ayre [7] discussed vibration problems of n masses with different
ties or couplings. Closely coupled systems are those where the governing equation
of a disk is affected by only the neighboring links, such as mass spring or inertia-
stiffness systems. The example given in Table 12.1 has 13 masses (inertias) coupled
by stiffnesses and the governing equations can be written as follows:

I1θ̈1 + k1θ1 − k1θ2 = 0

I2θ̈2 − k1θ1 + (k1 + k2)θ2 − k3θ3 = 0

. . .

I13θ̈13 + k12θ12 + k12θ13 = 0 (12.18)

In matrix notation it is
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[M]{θ̈} + [K]{θ} = 0 (12.19)

where the mass and stiffness matrices are

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎣

I1

I2

I3

...

I13

⎤
⎥⎥⎥⎥⎥⎥⎦

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1 −k1

−k1 k1 + k2 −k2

−k2 k2 + k3 −k3

... −k12

−k12 k12

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.20)

The free vibration solution of (12.19) is given by the eigen-value problem below

θi = �i cos pt, i = 1, 2, . . . , 13

[[K] − p2[M]] {�} = 0∣∣∣[K] − p2[M]
∣∣∣ = 0 (12.21)

For the system given in Table 12.1, there are N (= 13) eigen-values and 13 N

associated modes represented by the modal matrix

[�] =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 ... �1N

�21 �22 �23 ... �2N

�31 �32 �33 ... �3N

...

�N1 �N2 �N3 ... �NN

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.22)

The main problem in the first half of the 20th century was on dealing numeri-
cally with the eigen-values of equation (12.21) and determining the mode shapes
in (12.22).

Matrices upto 4 × 4 could be dealt with in closed form; Jacobsen and Ayre [7]
considered such a problem with both ends tied to the ground. The system then con-
sisted of stiffnesses k1 to k5 with four masses m1 to m4 with k1 and k5 tied to the
ground. In free vibration the system governing equations are given by



120 12 Matrix Methods⎡
⎢⎢⎢⎢⎣

d1 −k2 0 0

−k2 d2 −k3 0

0 −k3 d3 −k4

0 0 −k4 d4

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1

X2

X3

X4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 0 (12.23)

where

d1 = k1 + k2 − m1ω
2

d2 = k2 + k3 − m2ω
2

d3 = k3 + k4 − m3ω
2

d4 = k4 + k5 − m4ω
2 (12.24)

The natural frequency equation is obtained by setting the determinant in (12.23)
equal to zero.

� =

∣∣∣∣∣∣∣∣∣∣

d1 −k2 0 0

−k2 d2 −k3 0

0 −k3 d3 −k4

0 0 −k4 d4

∣∣∣∣∣∣∣∣∣∣
= 0 (12.25)

i.e.,

d1d2d3d4 −
(
k2

2d3d4 + k2
3d4d1 + k2

4d1d2

)
+ k2

2k2
4 = 0

The above is expressed in non-dimensional form for the frequency z = ω2/(k/m)

as
z4 − C3z

3 + C2z
2 − C1z

1 + C0z
0 = 0 (12.25a)

where

C3 = m

k

(
k1 + k2

m1
+ k2 + k3

m2
+ k3 + k4

m3
+ k4 + k5

m4

)

C2 = m2

k2

[
k1k2+k2k3+k3k4

m1m2
+ k2k3+k3k4+k4k2

m2m3
+ k3k4+k4k5+k5k3

m3m4

+ (k1+k2)(k3+k4)
m1m3

+ (k2+k3)(k4+k5)
m2m4

+ (k4+k5)(k1+k2)
m4m1

]

C1 = m3

k3

[
k1k2k3+k2k3k4+k3k4k1+k4k1k2

m1m2m3
+ k2k3k4+k3k4k5+k4k5k2+k5k2k3

m2m3m4

+ (k1+k2)(k3k4+k4k5+k5k3)
m3m4m1

+ (k4+k5)(k1k2+k2k3+k3k4)
m4m1m2

]

C0 = m4

k4

[
k1k2k3k4 + k2k3k4k5 + k3k4k5k1 + k4k5k1k2 + k5k1k2k3

m1m2m3m4

]

Now it is a matter of solving the roots of a polynomial equation in (12.25).
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Fig. 12.1 Far-coupled system

12.2 Far-Coupled Systems

As mentioned before, Hahn [5] used the method of Influence Coefficients to prove
Dunkerley’s empirical result. In Figure 12.1 a far-coupled system (lateral vibrations
of a beam) is shown.

Using equation (11.10), we can write, for the vibrating beam in Figure 12.1

α11m1ẍ1 + α12m2ẍ2 + · · · + α1nmnẍn + x1 = 0

α21m1ẍ1 + α22m2ẍ2 + · · · + α2nmnẍn + x2 = 0

. . .

αn1m1ẍ1 + αn2m2ẍ2 + · · · + αnnmnẍn + xn = 0 (12.26)

We can define the influence coefficient matrix

[α] =

⎡
⎢⎢⎢⎣

α11 α12 · · · α1n

α21 α22 · · · α2n

· · · · · · · · · · · ·
αn1 αn2 · · · αnn

⎤
⎥⎥⎥⎦

and obtain the following eigen-value problem:

[α][M]{ẍ} + [I ]{x} = 0 (12.27)

The above equation (12.27) is the same as (12.19), since

[M] {ẍ} + [α]−1 [I ] {x} = 0

[M] {ẍ} + [K] {x} = 0 (12.28)

However, inversion of the influence coefficient matrix [α] is itself a problem in
the pre-digital computer era. Jacobsen and Ayre [7] expanded the matrix equa-
tion (12.27) to obtain the polynomial frequency for a four mass far-coupled system
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as follows.⎡
⎢⎢⎢⎢⎣

α11m1 − 1
ω2 α12m2 α13m3 α14m4

α21m1 α22m2 − 1
ω2 α23m3 α24m4

α31m1 α32m2 α33m3 − 1
ω2 α34m4

α41m1 α42m2 α43m3 α44m4 − 1
ω2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1

X2

X3

X4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 0

(12.29)
The above is expanded to give the frequency equation

(
1

ω2

)4

− A

(
1

ω2

)3

+ B

(
1

ω2

)2

− C

(
1

ω2

)1

+ D

(
1

ω2

)0

= 0 (12.30)

where

A = α11m1 + α22m2 + α33m3 + α44m4

B =
∣∣∣∣ α11m1 α12m2

α21m1 α22m2

∣∣∣∣+
∣∣∣∣ α11m1 α13m3

α31m1 α33m3

∣∣∣∣+
∣∣∣∣ α11m1 α14m4

α41m1 α44m4

∣∣∣∣
+
∣∣∣∣ α22m2 α23m3

α32m2 α33m3

∣∣∣∣+
∣∣∣∣ α22m2 α24m4

α42m2 α44m4

∣∣∣∣+
∣∣∣∣ α33m3 α34m4

α43m3 α44m4

∣∣∣∣
C =

∣∣∣∣∣∣
α11m1 α12m2 α13m3
α21m1 α22m2 α23m3
α31m1 α32m2 α33m3

∣∣∣∣∣∣+
∣∣∣∣∣∣

α11m1 α12m2 α14m4
α21m1 α22m2 α24m4
α41m1 α42m2 α44m4

∣∣∣∣∣∣
+
∣∣∣∣∣∣

α11m1 α13m3 α14m4
α31m1 α33m3 α34m4
α41m1 α43m3 α44m4

∣∣∣∣∣∣+
∣∣∣∣∣∣
α22m2 α23m3 α24m4
α32m2 α33m3 α34m4
α42m2 α43m3 α44m4

∣∣∣∣∣∣

D =

∣∣∣∣∣∣∣∣
α11m1 α12m2 α13m3 α14m4
α21m1 α22m2 α23m3 α24m4
α31m1 α32m2 α33m3 α34m4
α41m1 α42m2 α43m3 α44m4

∣∣∣∣∣∣∣∣
Though it is a simple matter today to find the roots of polynomials in (12.25) and
(12.30), it was difficult in the pre-digital computer era. So we had to find other
means of calculating the required roots.

12.3 Gräffe’s Method of Successive Approximations

Germinal Pierre Dandelin in 1826 and Karl Heinrich Gräffe in 1837 developed in-
dependently a method of finding roots of a polynomial equation [6,9]. Lobachevsky
also discovered the principal idea of the method in 1834. Until the advent of the dig-
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ital computer era, this method became useful in determining the natural frequencies
of torsion (close-coupled) and bending (far-coupled) of one dimensional structures.

Restricting to polynomials having only real roots we consider here a fourth de-
gree polynomial.

c4z
4 − c3z

3 + c2z
2 − c1z

1 + c0z
0 = 0 (12.31)

Let the four real roots be r1 r2, r3 and r4, and then the equivalent of (12.31) is

(z − r1)(z − r2)(z − r3)(z − r4) = 0 (12.32)

Expanding this equation we get

z4 − (r1 + r2 + r3 + r4) z3 + (r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4) z2

− (r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4) z + r1r2r3r4 = 0 (12.33)

Therefore

c4 = 1

c3 = r1 + r2 + r3 + r4

c2 = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4

c1 = r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4

c0 = r1r2r3r4 (12.34)

Let the roots be r4 > r3 > r2 > r1 we can obtain crude approximations for the
smallest and highest roots from

r1 ≈ c0

c1

r4 ≈ c3

c4
(12.35)

Now, let the roots be separated by higher margins then r4 
 r3 
 r2 
 r1. This
leads from (12.34) to

c4 = 1

c3 ≈ r4 from which r4 ≈ c3

c2 ≈ r3r4 from which r3 ≈ c2

c3

c1 ≈ r2r3r4 from which r2 ≈ c1

c2

c0 ≈ r1r2r3r4 from which r1 ≈ c0

c1
(12.36)
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Therefore, if the differences between the four successive roots are very large or
can be made very large by some means, the four roots are given by approximate
expressions in (12.36).

First let us examine how the squaring of the four roots above will affect the
coefficients of the new polynomial equation from whose new coefficients of the four
approximate roots may be found according to (12.36). Let the polynomial have four
purely imaginary roots of the same numerical values as the four roots of (12.31),
then

(z + r1)(z + r2)(z + r3)(z + r4) = 0 (12.37)

Multiplying (12.32) and (12.37)

(z2 − r2
1 )(z2 − r2

2 )(z2 − r2
3 )(z2 − r2

4 ) = 0 (12.38)

The above is a polynomial equation whose roots are squares of the original equation.
Equation (12.38) can now be written as a new polynomial equation of the same form
as (12.32)

(Z − R1)(Z − R2)(Z − R3)(Z − R4) = 0 (12.39)

The polynomial equation corresponding to (12.37) is

c4z
4 + c3z

3 + c2z
2 + c1z

1 + c0z
0 = 0 (12.40)

in which the coefficients have same values as in (12.33). The new polynomial in z2

or in Z is obtained by multiplying (12.31) and (12.40)

c2
4Z

4 − (c2
3 − 2c4c2)Z

3 + (c2
2 − 2c1c3 + 2c4c0)Z

2 − (c2
1 − 2c2c0)Z

1 + c2
0Z

0 = 0
(12.41)

which can be written as

C4Z
4 − C3Z

3 + C2Z
2 − C1Z

1 + C0Z
0 = 0 (12.42)

The above is equivalent to (12.39). We can adopt an iteration process now as given
by Jacobsen and Ayre [7], given in Table 12.1.

12.4 Matrix Iteration Method

The solution of large size eigen-value problems was difficult to achieve in pre-digital
computer era. Matrix methods however showed a good promise for vibration prob-
lems. Duncan and Collar [3] developed such a method. This is essentially an exten-
sion of the Stodola–Viannello method in Section 11.2.

Let us pick up equation (11.10) here
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Table 12.2 Solution of z4 − 4.450z3 + 5.9333z2 − 2.3667z + 0.200 = 0.

y1 = α11P1 + α12P2 + · · · + α1nPn

y2 = α21P1 + α22P2 + · · · + α2nPn

· · ·
yn = αn1P1 + αn2P2 + · · · + αnnPn (11.10)

For normal modes of vibration with frequency ω, the forces Pj are mjyjω
2 and

equation (11.10) can be rewritten as

y1 = ω2 (m1α11y1 + m2α12y2 + · · · + mnα1nyn)

y2 = ω2 (m1α21y1 + m2α22y2 + · · · + mnα2nyn)

· · ·
yn = ω2 (m1αn1y1 + m2αn2y2 + · · · + mnαnnyn) (12.43)

We recast the above as⎧⎪⎪⎨
⎪⎪⎩

y1
y2
· · ·
yn

⎫⎪⎪⎬
⎪⎪⎭ = ω2

⎡
⎢⎢⎣

α11 α12 · · · α1n

α21 α22 · · · α2n

· · · · · · · · · · · ·
αn1 αn2 · · · αnn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

m1 0 0 0
0 m2 0 0
0 0 · · · 0
0 0 0 mn

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

y1
y2
· · ·
yn

⎫⎪⎪⎬
⎪⎪⎭ (12.44)

i.e.

{y} = ω2[α][M]{y}
{y} = ω2[U ]{y} (12.45)

where [U ] is a dynamic matrix.
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We follow the Stodola–Viannello iteration method as illustrated through an ex-
ample given by Scanlan and Rosenbaum [16] of a wing 240 in long fixed at the
midpoint of the fuselage. The influence coefficient matrix and mass matrix obtained
for the wing discretized at seven stations starting from 0′′ to 240′′ at the midpoints,
16, 50, 100, 140, 180 and 220′′ of six sections of the wing, are

[α] = 10−7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

11 68

25 204 790 sym

36 322 1260 2255

47 445 1725 3255 5000

57 561 2200 4270 6900 10000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in/lb

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.55

1.43

0.648

0.249

0.181

0.104

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

lb.sec.2/in.

Then [U ] = [α][M] and

107

ω2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1

y2

y3

y4

y5

y6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.10 15.73 16.20 8.96 8.51 5.93

17.50 97.24 132.19 80.18 80.55 58.34

38.75 291.72 511.92 313.74 312.23 228.80

55.80 460.46 816.48 561.50 589.16 444.08

72.85 636.35 1117.80 810.50 905.00 717.60

88.35 802.23 1425.60 1063.23 1248.90 1040.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1

y2

y3

y4

y5

y6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The iteration process is clear, assume the first mode shape in the right-hand vec-
tor, determine deflections on the left side and compare with the assumed values;
repeat next iteration with the newly determined deflections as assumed ones and
continue until convergency is achieved. This was the same way Stodola–Viannello
proceeded in their graphical method. Here the accuracy will be better since drawings
are avoided.

We can begin with a normalized mode shape with the last station having a unit
deflection; y1 = 0.01, y2 = 0.06, y3 = 0.22, y4 = 0.43, y5 = 0.69 and y6 = 1.0.
The first iteration result is
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Table 12.3 Matrix iteration for I mode of a cantilever beam

(0) Obtained Normalized Obtained Normalized Obtained Normalized
(1) (2) (3)

y1 0.01 20.2 0.007 22 0.0075 21 0.0073
y2 0.06 183.5 0.067 200 0.0684 157 0.0680
y3 0.22 793.1 0.291 774 0.2647 763 0.2636
y4 0.43 1299.9 0.478 1409 0.4819 1392 0.4808
y5 0.69 1975.4 0.726 2130 0.7285 2107 0.7278
y6 1.00 2721.6 1.000 2924 1.0000 2895 1.0000
107

ω2 2721.6 2924 2895

107

ω2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1
y2
y3
y4
y5
y6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1)

=

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3.10 15.73 16.20 8.96 8.51 5.93
17.50 97.24 132.19 80.18 80.55 58.34
38.75 291.72 511.92 313.74 312.23 228.80
55.80 460.46 816.48 561.50 589.16 444.08
72.85 636.35 1117.80 810.50 905.00 717.60
88.35 802.23 1425.60 1063.23 1248.90 1040.00

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.01
0.06
0.22
0.43
0.69
1.0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(0)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

20.2
183.5
793.1

1299.9
1975.4
2721.6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

giving the first approximation for the frequency ω = √
107/2721.6 = 60.61 rad/s.

Normalizing the 1st iteration deflection values we can repeat the above steps as
the iteration; the results are given in Table 12.3.

The third iteration result for the frequency ω = √
107/2895 = 58.77 rad/s.

12.5 Method of Priebs [10]

While solution of equation (12.19) is an easy matter today with the advent of digital
computers, it was an uphill task to handle matrices of size of more than three or at
most four stations. Until such times (late 1960s and early 1970s), searches were on
to deal with the solution of vibration problems through matrix methods.
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After having set up the governing equations of motion, the eigen-value problem
is easily written down. The frequency equations can be in principle developed by
matrix multiplication, e.g., (12.25) or (12.30), however when the number of stations
are more than 4, a closed form way of obtaining the polynomial frequency equations
is difficult. If we can obtain the polynomial frequency equation then we could use
Gräffe numerical scheme as illustrated in Table 12.1. Priebs provided a method of
setting up a polynomial frequency equation for a multidegree of freedom system
for free-free systems. Rao [12] used this method to solve vibration problems of
cantilevers in torsion.

The equation of motion of the ith rotor from (12.18) is given by

Ii θ̈i + ki(θi − θi−1) + ki+1(θi − θi+1) = 0 (12.46)

Writing the torsional moment in ith shaft as

mi = ki(θi−1 − θi) (12.47)

Equation (12.46) becomes

Ii θ̈i + mi − mi+1 = 0 (12.48)

Writing θi = �i cos ωt and mi = Mi cos ωt and with Z = ω2, we get

Mi+1 = Mi + Ii�iZ

�i = �i−1 − Mi

ki

(12.49)

Starting from zeroth rotor at free end M0 = 0 we can move to the cantilever end
where �n = 0 as follows:

M1 = I0�0Z

�1 = �0 − M1

k1

M2 = M1 + I1�1Z

�2 = �1 − M2

k2· · ·
Mi = Mi−1 + Ii−1�0−1Z

�i = �i−1 − Mi

ki· · ·
Mn = Mn−1 + In−1�n−1Z

�n = �n−1 − Mn

kn

= 0 (12.50)
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Writing down the expressions for the amplitudes of torsional moment and the am-
plitudes of the rotors as

M1 = θ0(A11Z)

M2 = θ0(A21Z − A22Z
2)

· · ·
Mn = θ0(An1Z − An2Z

2 + · · · (−1)nAnnZ
n)

and

θ1 = θ0 (1 − B11Z)

θ2 = θ0

(
1 − B21Z + B22Z

2
)

· · ·
θn = θ0

(
1 − Bn+1,1Z + Bn+1,2Z

2 + · · · (−1)n Bn+1,nZ
n
)

(12.51)

from equations (12.50) and (12.51) we can obtain

A11 = I0

A21 = A11 + I1; A22 = I1B21

A31 = A31 + I2; A32 = A22 + I2B31; A33 = I2B32

A41 = A31 + I3; A42 = A32 + I3B41; A43 = A33 + I3B42; A44 = I3B43

· · · (12.52)

B21 = A11

k1

B31 = B21 + A21

k2
; B32 = A22

k2

B41 = B31 + A31

k3
; B42 = B32 + A32

k3
; B43 = A33

k3

B51 = B41 + A41

k4
; B52 = B42 + A42

k4
; B53 = B43 + A43

k4
; B54 = A44

k4

· · · (12.53)

Choosing reference values I∗ and k∗, we can express the inertias and stiffnesses as
nondimensional numbers for easier numerical calculations. Then
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I ′
n = In

I∗ and k′
n = kn

k∗

A11 = I0 = I ′
0I

∗ = A′
11I

∗

· · · (12.54)

and

B21 = A11

k1
= A′

11

k′
1

I∗

k∗ = B ′
21

I∗

k∗

· · · (12.55)

From (12.51) we can then write

θn = θ0

[
1−B ′

n+1,1Z
I∗

k∗ +B ′
n+1,2Z

2
(

I∗

k∗

)2

+· · · (−1)nB ′
n+1,nZn

(
I∗

k∗

)n
]

(12.56)
i.e.,

θn = θ0

[
1 − B ′

n+1,1ζ + B ′
n+1,2ζ

2 + · · · (−1)nB ′
n+1,nζ

n
]

(12.57)

where ζ = Z I ∗
k∗ .

The polynomial frequency equation for cantilever is then

1 − B ′
n+1,1ζ + B ′

n+1,2ζ
2 + · · · (−1)nB ′

n+1,nζ
n = 0 (12.58)

Consider a cantilever with five inertias and stiffnesses as follows:

I0 = 1.36 × 10−5 lb.in.sec2 k1 = 5.4054 × 104 lb.in./rad
I1 = 1.36 × 10−5 lb.in.sec2 k2 = 5.4054 × 104 lb.in./rad
I2 = 1.36 × 10−5 lb.in.sec2 k3 = 5.4054 × 104 lb.in./rad
I3 = 1.36 × 10−5 lb.in.sec2 k4 = 5.4054 × 104 lb.in./rad
I4 = 1.36 × 10−5 lb.in.sec2 k5 = 5.4054 × 104 lb.in./rad

Choosing I∗ = 10−5 lb.in.sec2 and k∗ = 104 lb.in./rad, the coefficients in
(12.58) are determined as shown in Table 12.2. The frequency equation obtained is

1 − 2.787051ζ + 1.413019ζ 2 − 0.255203ζ 3 + 0.018925ζ 4 − 0.000492ζ 5 = 0

which is rewritten as

ζ 5 − 38.47ζ 4 + 518.71ζ 3 − 2871.99ζ 2 + 5664.74ζ − 2032.52 = 0

This polynomial is solved by Gräffe’s Method in Section 12.3 to give the roots ri =
0.4556, 3.1800, 7.7510, 11.8740 and 15.2190. The natural frequencies are given by
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ωi = 1

2π

√
ri

c∗
I∗

3398, 8975, 14000, 17350 and 19650 cps.

12.6 The Holzer Method (Close Coupled Systems) in Transfer
Matrix Form

Holzer’s method in Section 11.6 advanced a step ahead in the early 1940s by ex-
pressing it in transfer matrix form that is made more easily adaptable for com-
puterization. The transfer of state quantities from station to station here are facil-
itated through matrices called transfer matrices. Holzer’s method is illustrated here
in transfer matrix form, which is the simplest, since it has only two state quanti-
ties [14]. We can write in matrix form the transfer equations of a discrete lumped
mass spring torsional system from station i − 1 to i as follows:

{
θ

M

}L

i

=
[

1 1
K

0 1

]{
θ

M

}R

i−1

{S}Li = [F ]i {S}Ri−1 (12.59)

where the state quantities are transferred from the right of station i − 1 to the left of
station i across the field represented by field matrix [F ]i . Similarly the point matrix
[P ]i across the mass at station i is

{
θ

M

}R

i

=
[

1 0
−mω2 1

]{
θ

M

}L

i

{S}Ri = [P ]i {S}Li
(12.60)

The above two equations are combined to give the transfer matrix [T ]i :
{S}Ri = [P ]i [F ]i {S}Ri−1

= [T ]i {S}Ri−1 (12.61)

where

{T }i =
[

1 1
K

−mω2 1 − mω2

K

]
i

(12.62)

Now let us take the example of a locomotive drive train in Table 12.2 and show its
solution by the transfer matrix method. We start from the free end station 1 with
Point matrix [P ]1 and transfer matrix for station 2 and keep transferring the state
quantities to reach station 12, another free end where we satisfy the boundary con-
ditions. This builds up to an Overall Transfer Matrix as follows. The frequency
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assumed in the calculations is ω = 86 rad/s.

[T ]2 [P ]1 =
[

1 6.2539 × 10−6

−1538.2 0.9904

] [
1 0

−2735.3 1

]
=
[

0.9829 −
−4247.14−

]

[T ]3 [T ]2 [P ]1 =
[

1 36.4033 × 10−6

−457.09 0.9834

] [
10.9829 −

−4247.14−
]

=
[

0.8283 −
−4265.7−

]

[T ]4 · · · [P ]1 =
[

1 5.8584 × 10−6

−1044.76 0.9939

] [
0.8283 −

−4265.7−
]

=
[

0.8012 −
−5462.74−

]

[T ]5 · · · [P ]1 =
[

1 0.9572 × 10−6

−28296.36 0.9729

] [
0.8012 −

−5462.74−
]

=
[

0.7959 −
−27985.3−

]

[T ]6 · · · [P ]1 =
[

1 0.5727 × 10−6

−6769.34 0.9996

] [
0.7959 −

−27985.3−
]

=
[

0.7943 −
−33362.46−

]

[T ]7 · · · [P ]1 =
[

1 0.1699 × 10−6

−5927.72 0.999

] [
0.7943 −

−33362.46−
]

=
[

0.7887 −
−38037.8−

]

[T ]8 · · · [P ]1 =
[

1 0.1699 × 10−6

−5927.72 0.999

] [
0.7887 −

−38037.8−
]

=
[

0.7822 −
−42674.84−

]

[T ]9 · · · [P ]1 =
[

1 0.1699 × 10−6

−6769.34 0.9988

] [
0.7822 −

−42674.84−
]

=
[

0.775 −
−47920.88−

]

[T ]10 · · · [P ]1 =
[

1 0.1416 × 10−6

−24741.2 0.9965

] [
0.775 −

−47920.88−
]

=
[

0.7682 −
−66926.84−

]

[T ]11 · · · [P ]1 =
[

1 10.7302 × 10−6

−4353.3 0.9533

] [
0.7682 −

−66926.84−
]

=
[

0.0501 −
−67144.7−

]

[T ]12 · · · [P ]1 =
[

1 10.7302 × 10−6

−99668.5 −0.0695

] [
0.0501 −

−67144.7−
]

=
[

0.6704−
−324.4−

]
(12.63)

{S}12 =
{

θ12
0

}
= [T ] {S}1

=
[

0.6704 −
−324.4 −

]{
θ1
0

}
(12.64)

The term T 21 = −324.4 can be taken as zero compared to the terms before in the
transfer matrices. Therefore 86 rad/s is a natural frequency close to correct value.

Next we can start with one unit amplitude at station 1 and apply equation (12.61)
repeatedly to get the mode shape.
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Table 12.4 Prieb’s scheme of calculations of polynomial frequency equation coefficients

12.7 Myklestad–Thomson (1949, 1953) – Prohl Methods in
Transfer Matrix Form for Far-Coupled Systems

The transfer equations from station to station of the state vector, deflection, slope,
bending moment and shear force across a field and point are written for a discretized
beam in the x–z plane with point masses in a similar manner as in close coupled
systems. First the relations for shear force Vz and bending moment My for an ith
field of length li are

V L
z,i = V R

z,i−1

ML
y,i = MR

y,i−1 + V L
z,i li (12.65)

In deriving the relations for the deflection and slope to the left of station i in terms of
equations to the right of station i − 1, we use the cantilever relations for an applied
shear force V and bending moment M at the station i

w = −Ml2

2EI
+ V l3

3EI

θ = Ml

EI
+ V l2

2EI i
(12.66)
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Now we can write the transfer relations for deflection and slope

−wL
i = −wR

i−1 − θR
i−1li − MR

y,i−1
l2
i

2EIi

+ V R
z,i−1

l3
i

6EIi

θL
i = θR

i−1 − MR
y,i−1

li

EIi

+ V R
z,i−1

l2
i

2EIi

(12.67)

Equations (12.65) and (12.67) are now put in a field transfer matrix form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−w

θ

My

VZ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

L

i

=

⎡
⎢⎢⎢⎢⎣

1 l l2

2EI
l3

6EI

0 1 l
EI

l2

2EI

0 0 1 l

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−w

θ

My

VZ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

R

i−1

{S}Li = [F ]i {S}Ri−1 (12.68)

Similarly, we can write the point transfer matrix as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−w

θ

My

VZ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

L

R

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

mω2 0 0 1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−w

θ

My

VZ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

L

i

{S}Ri = [P ]i {S}Li (12.69)

The transfer matrix relation can now be obtained as

{S}Ri = [P ]i{S}Li
= [P ]i [F ]i{S}Ri−1

= [T ]i{S}Ri−1 (12.70)

where

[T ]i =

⎡
⎢⎢⎢⎣

1 l l2

2EI
l3

6EI

0 1 l
EI

l2

2EI

0 0 1 l

mω2 mω2l mω2l2

2EI
1 + mω2l3

6EI

⎤
⎥⎥⎥⎦ (12.71)

Consider a turbine blade modeled as a cantilever with five stations starting from
cantilever end 0. Table 12.5 gives the data.

First the transfer matrices for the five beam and mass elements are set up for ω =
8950 rad/s.
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Table 12.5 Cantilever lumped at 5 stations with fixed end 0 and free end at station 5.

i mi kg (EI)i Nm2 li m

1 0.4493 32659.2 0.04
2 0.3494 15366.3 0.04
3 0.2496 5600.0 0.04
4 0.1497 1209.0 0.04
5 0.0499 44.8 0.04

[T ]1 =

⎡
⎢⎢⎢⎢⎣

1 0.04 0.2449 × 10−7 0.3266 × 10−9

0 1 0.1225 × 10−5 0.2449 × 10−7

0 0 1 0.04

35.9885 × 106 14.3954 × 105 0.8816 1.0117

⎤
⎥⎥⎥⎥⎦

[T ]2 =

⎡
⎢⎢⎢⎢⎣

1 0.04 0.5206 × 10−7 0.6942 × 10−9

0 1 0.2603 × 10−5 0.5206 × 10−7

0 0 1 0.04

27.991 × 106 11.1964 × 105 1.4573 1.0194

⎤
⎥⎥⎥⎥⎦

[T ]3 =

⎡
⎢⎢⎢⎢⎣

1 0.04 0.1428 × 10−6 0.1905 × 10−8

0 1 0.7143 × 10−5 0.1428 × 10−6

0 0 1 0.04

19.9936 × 106 79.9743 × 105 2.8562 1.0381

⎤
⎥⎥⎥⎥⎦

[T ]4 =

⎡
⎢⎢⎢⎢⎣

1 0.04 0.6614 × 10−6 0.8818 × 10−8

0 1 0.3307 × 10−4 0.6614 × 10−6

0 0 1 0.04

11.9962 × 106 47.9846 × 104 7.934 1.1058

⎤
⎥⎥⎥⎥⎦

[T ]5 =

⎡
⎢⎢⎢⎢⎣

1 0.04 0.1786 × 10−4 0.2381 × 10−6

0 1 0.8929 × 10−3 0.1786 × 10−4

0 0 1 0.04

39.9872 × 105 15.9949 × 104 71.4067 1.9521

⎤
⎥⎥⎥⎥⎦

The overall transfer matrix is
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{S}5 = [U ] {S}1 = [T ]5 · · · [T ]1 {S}1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−w

θ

0

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

5

=

⎡
⎢⎢⎢⎢⎣

191.612 11.977 0.4366 × 10−4 0.4649 × 10−5

10.0429 × 107 633.222 0.224 × 10−2 0.2394 × 10−3

14.255 × 106 92.35 × 104 3.143 0.3319

92.8663 × 107 59.3422 × 106 209.698 22.1226

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

My

Vz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1

This leads to

f
(
ω2
)

=
∣∣∣∣ 3.143 0.3319

209.698 22.1226

∣∣∣∣ = −0.0657 ≈ 0

The transfer matrix method was extensively used in rotor dynamics calculations
for determining critical speedscritical speeds, unbalance response etc. Rao and
Sarma [13] extended the transfer matrix method for transient whirl analysis. The
main advantage of the transfer matrix calculations is that they involve simple matrix
multiplications and the overall transfer matrix size is always small; e.g., the unbal-
ance response calculations for bending in two planes may involve only 17 × 17 size
and requires very little memory. Thus this method was preferred in the early days of
the computational era.

12.8 A Brief Note on Computers and Evolution

Carl Sagan [15], a noted physicist, theorized that evolution was connected with extra
somatic activity of humans. The earth is roughly 5000 million years old. Viruses,
bacteria, and unicellular algae came into existence over 3000 million years ago.
Their genetic information in DNA nucleotide pairs per haploid cell ranged from
3 × 104 to 108 bits. Protozoa appeared around 1000 million years ago with about
109 bits of genetic information. Amphibians appeared around 150 million years ago
with about 109 bits of genetic information; however the first time brain information
was developed in the evolution process involved about 3 × 105 bits. The reptiles that
appeared around 100 million years ago broke the ground of developing 1010 bits of
genetic as well as brain information simultaneously. Mammals that appeared around
60 million years ago increased their brain information to nearly 2 × 1011 bits.
The genetic information of mammals remained almost the same as that of reptiles
viz., 1010 bits. Humans evolved out of mammals around 2.5 million years ago with
essentially the same amount of genetic information; however what set them apart
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from mammals was their brain which can contain 1013 bits of information. Thus,
the information age essentially began with the evolution of human beings.

There seems to be a dead end in terms of genetic information since the appear-
ance of reptiles. The capability of storing brain information also seems to have
reached a dead end with the evolution of humans from mammals. This is attributed
to the female pelvic cavity which controls the maximum possible brain size at the
time of birth of a human.

Humans with their brain capacity have evolved extra body activities in their living
process, like domesticating animals and producing grain around 15,000 BC in India.
There was a need to pass on this information to their offspring – e.g., cave paintings
of hunting appeared in France around this time. Vedas provide a typical example of
passing on information from generation to generation in an exact manner. As time
passed around 5000–4000 BC, the rudiments of writing were developed. Paper made
from pith of papyrus reed was used nearly 4000 years ago to record information.
Paper as we know it today, was invented in China between 100 BC and 150 AD.
Water mills appeared around 100 BC and windmills in 700 AD. Suddenly there was
more information – and a book was sold for two cows in Spain in 800 AD. By the
year 1400, a book on medicine was sold at half an ounce of gold. There was a need
for making more books at lesser price, and a movable type book printing press was
introduced in 1445. In the year 1450, 300 pages could be printed in one day and by
1700, 1250 pages could be printed on one machine per day.

Then began a scientific revolution followed by the industrial revolution in 1780.
The typewriter was invented in 1870. This was followed rapidly by Faraday’s elec-
tromagnetic induction, Morse’s telegraphy, and Alexander Graham Bell’s telephone
in 1876. All these inventions and others till recently seem to be a process of evolu-
tion to supplement the internal body capacity to store information. The development
of digital computers follows this line of thought that would enable humans to collect
information, store it and retrieve it for future processing, for which brain informa-
tion alone cannot suffice.

The Electronic Numerical Integrator And Computer (ENIAC) was the first
general-purpose electronic computer [4]. It was a digital computer capable of be-
ing reprogrammed to solve a full range of computing problems and designed to
calculate artillery firing tables for the US Army’s Ballistic Research Laboratory. It
was heralded as a “Giant Brain” and boasted speeds one thousand times faster than
electro-mechanical machines, a leap in computing power that no single machine has
since matched. This mathematical power, coupled with general-purpose program-
mability, excited scientists and engineers. Gradually it rendered the development of
the line of industrial applications discussed in this section of less importance.

From 1952 into the late 1960s, IBM’s 700/7000 series came on the market.
The first-generation 700s were based on vacuum tubes, while the later, second-
generation 7000s used transistors. These computers were initially without any soft-
ware, expecting engineers to write their own. Later, IBM provided compilers for the
newly developed higher-level programming languages such as Fortran. Engineers
began writing computer programs to solve their problems rather than using the tab-
ular or numerical methods that were popular until the advent of digital computers.



138 12 Matrix Methods

With the advent of high speed desk top computers with huge memory and parallel
computing handling large size matrices, commercial rugged solvers appeared on the
market. Coupled with preprocessor and postprocessor technologies, these solvers
have revolutionalized the way we handle matrices of sizes arising out of finite el-
ement formulations with millions of elements. Suddenly we had the capability of
handling high stress concentration areas without depending on factors of safety and
strength of materials. The strength of materials approach developed in place of clas-
sical theories of elasticity from the science revolution period suddenly disappeared
from analysis of complex problems. Classical elasticity and related theories sud-
denly became appropriate in the form of variational principles or energy methods
through which modern finite elements are derived. This way we returned to the the-
ory of elasticity approach and derivation of finite elements for different applications.
All this happened in just two decades and tabular methods, transfer matrix methods,
etc., lost their place in modern day designs.
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Chapter 13
Finite Element Methods

Once the possibility of computers was foreseen, the engineering community turned
its attention to solving complex elasticity and structural analysis problems rather
than depending on an approximate strength of materials approach. It also allowed
the engineering community to depend less on factors of a safety approach and to re-
move or reduce to a considerable extent the unknown factors and thus render more
accurate designs. Finite element methods allowing more accurate predictions re-
duced costly experimentation and introduced simulation, thus achieving cheaper but
more accurate designs before testing prototypes.

Alexander Hrennikoff (1896–1984), a Russian-Canadian engineer, was consid-
ered by many as the primary founder of the finite element method (1941). Richard
Courant (1888–1972), a German-American mathematician/engineer, was also con-
sidered as the father of this method [5, 6]. Priority aside, both are credited with the
beginnings of modern finite element methods for structures. While the approaches
used by these pioneers were dramatically different, they shared one essential char-
acteristic: mesh discretization of a continuous domain into a set of discrete sub-
domains, usually called elements.

Hrennikoff’s work discretizes the domain by using a lattice analogy while
Courant’s approach divides the domain into finite triangular subregions for solution
of second order elliptic partial differential equations that arise from the problem of
torsion of a cylinder. Courant’s contribution was evolutionary, drawing on a large
body of earlier results developed by Rayleigh, Ritz, and Galerkin.

Developments of the finite element method began in earnest in the middle to late
1950s for airframe and structural analysis [22], and gathered momentum through
the work of Argyris (1913–2004) at Stuttgart and Clough at Berkeley in the 1960s.
Clough refers to the finite element methods as “the Argyris method” and considers
his work Argyris (1954) to be the most important series of papers ever published in
the field of Structural Mechanics. Turner et al. [21] gave a stiffness method; Clough
[4] coined the term “finite elements”.

By the late 1950s, the key concepts of stiffness matrix and element assembly
existed essentially in the form used today. NASA issued a request for proposals for
development of the finite element software NASTRAN in 1965. The method was
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provided with a rigorous mathematical foundation by Strang and Fix [19] and has
since been generalized into a branch of applied mathematics for numerical modeling
of physical systems in a wide variety of engineering disciplines, e.g., electromag-
netism and fluid dynamics.

Some important developments in finite element methods are rather very recent,
just about four to five decades ago. These methods have come into vogue as com-
puters have become more common, particularly in the last two to three decades.
But the real difference was observed when commercial software became available
to industry, gradually replacing old practices, some of which had appeared as re-
cently as a decade ago. Finite element methods are so common today that many
young and fresh engineers think they must have been available for ages, somewhat
akin to an impression that mobile phones were known to our grandparents. While
life has become easier for engineers to quickly make designs through simulation
and bring new products to market in record time, there are a number of pitfalls in
the procedures. The recent engineering generation tends to assume that answers ob-
tained from available commercial codes are correct and that nothing can go wrong
with the solutions obtained. Average engineers today cannot produce a design from
fundamentals or basics; this creates problems.

We should remember that finite element analysis is only as good as the element
devised and chosen – and the assumptions in the chosen element are not always
clearly understood. There is no magic when a computer is used in an engineering
solution; all that the computer does is crunch the numbers faster. The way in which it
performs the number crunching is simply the way it was told to do so. So it is crucial
for the engineer to know how a finite element code operates and the limitations in
the codes.

The basic sciences were all well established during the scientific revolution from
Newton, Euler, Bernoulli, Lagrange, Hamilton, etc., in the 17th century; the most
general tools being energy methods and variational principles. With the advent of
rotating machinery towards the end of the 19th century, these energy methods were
applied by Rayleigh, Ritz, Galerkin, and Stodola to determine critical speeds or
through a strength of materials approach to determine the stress and strain fields of
a structure. This classical approach gained importance as it was the only practical
way to get an approximate design, since energy methods could not provide prac-
tical solutions of structures with stress raisers and discontinuities. However, once
the number crunching capability increased rapidly, the design community gradu-
ally shifted back to basic energy methods through finite element formulations. This
treatment is of course not limited to structural analysis alone, it is applicable to any
branch of physics, fluids, electromagnetism, and so on.

Here we will illustrate some simple structural finite elements to show how the
subject developed so rapidly. Since this subject is of very recent origin and there are
several text books on the market from which to learn the fundamentals. The purpose
of the treatment here is to show how the transition took place in industry from the
strength of materials approach in to basic science and finite element methods of
solution for structures.
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Fig. 13.1 A simple beam element in local coordinates

13.1 Beam Finite Element

We discretize the given beam into several finite elements with one element as shown
in Figure 13.1. This is a simple element and has two nodes 1 and 2 and is located in
the local coordinate system x̂ŷẑ. The nodal deflections v̂ are measured positive in
the direction of the ŷaxis. The nodal slopes ϕ̂ are positive in the counterclockwise
direction according to the right-hand rule and similarly the bending moments M̂z

and shear forcesV̂y are as shown.
Following a Theory of Elasticity approach, we assume the transverse displace-

ment to be a cubic polynomial that satisfies the governing differential equation of a
beam. In addition, we also note that the cubic displacement shape function satisfies
the continuity condition of both the deflection and slope at the nodes.

v̂(x̂) = a1x̂
3 + a2x̂

2 + a3x̂ + a4 (13.1)

From the boundary conditions at node 1, we have

v̂ (0) = v̂1 = a4

dv̂ (0)

dx̂
= ϕ̂1 = a3 (13.2)

From the boundary conditions of the element at node 2, we have

v̂ (L) = v̂2 = a1L
3 + a2L

2 + a3L + a4

dv̂ (L)

dx̂
= ϕ̂2 = 3a1L

2 + 2a2L + a3 (13.3)

The shape function in equation (13.1) can now be written as

v̂
(
x̂
) =

[
2

L3

(
v̂1 − v̂2

)+ 1

L2

(
ϕ̂1 + ϕ̂2

)]
x̂3

−
[

3

L2

(
v̂1 − v̂2

)+ 1

L

(
2ϕ̂1 + ϕ̂2

)]
x̂2 + ϕ̂1x̂ + v̂1 (13.4)
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Since there are four boundary conditions, we can express the degrees of freedom in
the chosen element as

{
d̂
}

=

⎧⎪⎪⎨
⎪⎪⎩

v̂1
ϕ̂1
v̂2
ϕ̂2

⎫⎪⎪⎬
⎪⎪⎭ (13.5)

Equation (13.4) is now written in matrix form

v̂ = [N]
{
d̂
}

= [
N1 N2 N3 N4

]
(13.6)

where Ni are called shape functions.

N1 = 1

L3 (2x̂3 − 3x̂2L + L3)

N2 = 1

L3
(x̂3L − 2x̂2L2 + x̂L3)

N3 = 1

L3 (−2x̂3 + 3x̂2L)

N4 = 1

L3 (x̂3L − x̂2L2) (13.7)

The strain energy in the system from equation (10.23) is given by

U = 1

2
EIzz

∫ L

0
v̂2
,x̂x̂dx̂

= 1

2
EIzz{d̂}T

∫ L

0
[B]T [B] {d̂}dx̂ (13.8)

where
[B] = [N1,x̂x̂ N2,x̂x̂ N3,x̂x̂ N4,x̂x̂ ] (13.9)

and

N1,x̂x̂ = 1

L3
(12x̂ − 6L)

N2,x̂x̂ = 1

L3 (6x̂L − 4L2)

N3,x̂x̂ = 1

L3 (−12x̂ + 6L)

N4,x̂x̂ = 1

L3
(6x̂L − 2L2) (13.10)
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Following equation (10.75)

∂U

d{d̂} = EIzz

∫ L

0
[B]T [B]{d̂}dx̂ = F (13.11)

Then the elemental stiffness matrix is obtained as

[
K̂
]

= EIzz

∫ L

0

⎡
⎢⎢⎢⎢⎣

N1,x̂x̂

N2,x̂x̂

N3,x̂x̂

N4,x̂x̂

⎤
⎥⎥⎥⎥⎦
[

N1,x̂x̂ N2,x̂x̂ N3,x̂x̂ N4,x̂x̂

]
dx̂

= EIzz

L3

⎡
⎢⎢⎢⎢⎣

12 6L −12 6L

4L2 −6L 2L2

12 −6L

4L2

⎤
⎥⎥⎥⎥⎦

sym

(13.12)

Let us consider just one element in a cantilever with node 1 fixed and a tip force at
P at node 2. Then

[K] {d} = {F }

EI

L3

⎡
⎢⎢⎢⎢⎣

12 6L −12 6L

4L2 −6L 2L2

12 −6L

4L2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1

ϕ1

v2

ϕ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

P

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

We apply the boundary conditions

EI

L3

⎡
⎢⎢⎢⎢⎣

12 6L −12 6L

4L2 −6L 2L2

12 −6L

4L2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

v2

ϕ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

P

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

EI

L3

[
12 −6L

4L2

]{
v2

ϕ2

}
=
{

P

0

}

This gives two equations

12EI

L3 v2 − 6EI

L2 ϕ2 = P

−6EI

L2
v2 + 4EI

L
ϕ2 = 0
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and the slope and deflections at the tip as

ϕ2 = 3

2L
v2

v2 = P
L3

3EI

We see that even one element gives correct tip deflection and the shape function for
the cantilever is

v (x) =
[

2

L3 (v2) + 1

L2 (ϕ2)

]
x3 −

[
3

L2 (v2) + 1

L
(ϕ2)

]
x2

=
[

2

L3

PL3

3EI
+ 1

L2

PL2

2EI

]
x3 −

[
3

L2

PL3

3EI
+ 1

L

PL2

2EI

]
x2

= Px2

6EI
(7x − 9L)

The correct relation for a cantilever is

y = Px2

6EI
(x − 3L)

The tip deflections are equivalent by the finite element method and are the correct
values. The deflection shape is also a polynomial of the same degree in both cases,
however between the fixed and free ends; there will be a difference because of ap-
proximation in the assumed shape function.

As another example to illustrate the element assembly, let us consider a fixed-
fixed beam with two elements. The two elements are assembled together to give a
system stiffness matrix as below:

v1 ϕ1 v2 ϕ2 v3 ϕ3

[
K̂
]

= EIzz

L3

⎡
⎢⎢⎢⎢⎢⎢⎣

12 6L −12 6L

4L2 −6L 2L2

24 0 −12 6L

8L2 −6L 2L2

12 −6L

4L2

⎤
⎥⎥⎥⎥⎥⎥⎦

Let the beam be loaded at mid point node 2 and apply boundary conditions

EI

L3

[
24 0
0 8L2

]{
v2
φ2

}
=
{

P

0

}

24EI

L3
v2 − 0φ2 = P
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Fig. 13.2 Tocher’s triangular plate element.

0v2 + 8EI

L
φ2 = 0 → φ2 = 0

v2 = P
L3

24EI

Again we get the correct answer at the midpoint of the beam; however there will
be some difference between the node points from the exact solution. However, the
advantage of the finite element method is in choosing as many numbers of elements
as we can so that polynomials of the same degree spread over several small elements
of the beam combine together to give an almost exact solution.

13.2 Tocher Triangular Plate Element (1962)

Consider the element in Figure 13.2 with three nodes in a local coordinate system,
each node having three degrees of freedom as given in equation (13.13)

q1 = w (0, 0)

q2 = w,y (0, 0)

q3 = −w,x (0, 0)

q4 = w (x2, 0)
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q5 = w,y (x2, 0)

q6 = −w,x (x2, 0)

q7 = w (x3, y3)

q8 = w,y (x3, y3)

q9 = −w,x (x3, y3) (13.13)

The deflection and two slopes form the shape function of the element. The nodal
degrees of freedom vector for the three nodes is

{d̂} = {q̂1 q̂2 q̂3 q̂4 q̂5 q̂6 q̂7 q̂8 q̂9}T (13.14)

The displacement function in the element is defined by

w(x̂, ŷ) = a1 + a2x̂ + a3ŷ + a4x̂
2

+ a5x̂ŷ + a6ŷ
2 + a7x̂

3 + a8(x̂
2ŷ + x̂ŷ2) + a9ŷ

3

= [
1 x̂ ŷ x̂2 x̂ŷ ŷ2 x̂3 (x̂2ŷ + x̂ŷ2) ŷ3

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1
a2
a3
a4
a5
a6
a7
a8
a9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [N] {a} (13.15)

where [N] is the shape function with nine arbitrary parameters a1 to a9.
The above shape function function does not represent a complete third-degree

polynomial as it has only nine terms instead of ten. Two terms (x̂2ŷ + x̂ŷ2) are
combined into one so that the nine arbitrary parameters a1 to a9 can be evaluated.
Deflections and slopes are not continuous across the elements through a common
node. Therefore, the shape function above produces a non-conformal element.

At any point in the triangular element, the three quantities of the state, the deflec-
tion and two slopes are given by⎧⎪⎨

⎪⎩
w

w,y

−w,x

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

1 x̂ ŷ x̂2 x̂ŷ ŷ2 x̂3 (x̂2ŷ + x̂ŷ2) ŷ3

0 0 1 0 x̂ 2ŷ 0 (x̂2 + 2x̂ŷ) 3ŷ2

0 −1 0 −2x̂ −ŷ 0 −3x̂2 (2x̂ŷ + ŷ2) 0

⎤
⎥⎦ {a} (13.16)

Substituting the nodal coordinates for all the three nodes, the above equation gives
the following nine equations in (13.17):
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

1 x2 0 x2
2 0 0 x3

2 0 0

0 0 1 0 x2 0 0 x2
2 0

0 −1 0 −2x2 0 0 −3x2
2 0 0

1 x3 y3 x2
3 x3y3 y2

3 x3
3 (x2

3y3 + x3y
2
3) y3

3

0 0 1 0 x3 2y3 0 (x2
3 + 2x3y3) 3y2

3

0 −1 0 −2x3 −y3 0 −3x2
3 −(2x3y3 + y2

3) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1

a2

a3

a4

a5

a6

a7

a8

a9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̂1

q̂2

q̂3

q̂4

q̂5

q̂6

q̂7

q̂8

q̂9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.17)

Writing the above in matrix form

[Â]{a} = {q̂} (13.18)

Solving for {a}
{a} = [Â]−1{q̂} (13.19)

Now equation (13.15) can be written as

w = [N][Â]−1{q̂} (13.20)

Note that the element becomes singular when x2 − 2x3 − y3 = 0 and it should be
so chosen to avoid this condition. The strain field is obtained as follows:

εxx = −zw,xx

εyy = −zw,yy

εzz = −zw,xy (13.21)

⎧⎨
⎩

w,xx

w,yy

−w,xy

⎫⎬
⎭ =

⎡
⎣ 0 0 0 2 0 0 6x̂ 2ŷ 0

0 0 0 0 0 2 0 2x̂ 6ŷ

0 0 0 0 1 0 0 2
(
x̂ + ŷ

)
0

⎤
⎦ {a}

{
ε̂
} =

⎡
⎣ 0 0 0 2 0 0 6x̂ 2ŷ 0

0 0 0 0 0 2 0 2x̂ 6ŷ

0 0 0 0 2 0 0 4
(
x̂ + ŷ

)
0

⎤
⎦ {a}

= [
B̄
] {a} = [

B̄
] [

Â
]−1 {

q̂
} = [B]

{
q̂
}

(13.22)

where [B] is the matrix relating strain and the nodal degrees of freedom. The stress
field is determined from Hooke’s law for plane stress condition



150 13 Finite Element Methods

τxx = E

1 − ν2

(
εxx + νεyy

)

τyy = E

1 − ν2

(
εyy + νεxx

)

τxy = Gγxy = E (1 − ν)

2
(
1 − ν2

)γxy

{
τ̂
} = E

(1 − ν2)

⎡
⎣ 1 ν 0

ν 1 0
0 0 (1−ν)

2

⎤
⎦{ε̂}

= [D]
{
ε̂
}

(13.23)

The matrix relating stress and strain [D] is

[D] = E(
1 − ν2

)
⎡
⎣ 1 ν 0

ν 1 0
0 0 (1−ν)

2

⎤
⎦ (13.24)

The strain energy U in the plate is now written as

Û = 1

2

∫∫∫
V

{ε̂}T {τ̂ }dV

= 1

2

∫∫∫
V

{ε̂}T [D] {ε̂}dV

= 1

2

∫∫∫
V

{q̂}T [B]T [D] {q̂}dV (13.25)

Let Q(x, y) be the lateral force applied on the surface of the plate, then

W =
∫∫

A

wQ(x, y) dA

=
∫∫

A

{q̂}T [N]T ([Â]−1)T Q (x, y) dA (13.26)

The potential functional is now written as

π = 1

2
{q̂}T

[∫∫∫
V

[B]T [D] [B] dV

]
{q̂}

−
∫∫

A

{q̂}T [N]T ([Â]−1)T Q (x, y) dA (13.27)

Let us use Ritz minimization to derive this element to evaluate the stiffness matrix
as follows:
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∂π

∂{q̂}T = 0

[∫∫∫
V

[B]T [D] [B] dV

]
{q̂} =

∫∫
A

[N]T ([Â]−1)T Q (x, y) dA

[K̂]{q̂} = {Q̂}

[K̂] =
[∫∫∫

V

[B]T [D] [B] dV

]

{Q̂} =
∫∫

A

[N]T ([Â]−1)T Q (x, y) dA

[K̂] = ([Â]−1)T

[∫∫
A

dA

∫ +h/2

−h/2
[B]T [D]

[
B̄
]
dz

]
[Â]−1

= ([Â]−1)T [K̄][Â]−1 (13.28)

In the above {Q̂} is a nodal force vector. The elemental stiffness matrix can now be
evaluated as

[K̄] =
∫∫

A

dA

∫ +h/2

−h/2
[B]T [D] [B̄]dz

= Eh3

12
(
1 − ν2

) ∫∫
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
2 0 0
0 0 2
0 2 0

6x̂ 0 0
2ŷ 2x̂ 4(x̂ + ŷ)

0 6ŷ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
⎡
⎣ 1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦
⎡
⎣ 0 0 0 2 0 0 6x̂ 2ŷ 0

0 0 0 0 0 2 0 2x̂ 6ŷ

0 0 0 0 2 0 0 4(x̂ + ŷ) 0

⎤
⎦ dx̂dŷ (13.29)

to give
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[
K̄
] = Eh3

12
(
1 − ν2

)

∫∫
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
4 0 4ν 12x̂ 4(νx̂ + ŷ) 12νŷ

2(1 − ν) 0 0 4(1 − ν)(x̂ + ŷ) 0
4 12νx̂ 4(x̂ + νŷ) 12ŷ

36x̂2 12(νx̂2 + x̂ŷ) 36νx̂ŷ{
(12 − 8ν)(x̂ + ŷ)2

−8(1 − ν)x̂ŷ

}
12(νŷ2 + x̂ŷ)

36ŷ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx̂dŷ

(13.30)

The following integrals are used in evaluating the above:

∫∫
A

xmyndA =
m+1∑
r=0

r∑
s=0

(−1)r+sm!
(m+1−r)!(r−s)!s!(n+r+1)

xm+1−s
2 xs

3y
n+1
3

− xm+1
3 yn+1

3
(m+1)(m+n+2)

for x3 �= 0, x3 �= x2∫∫
A

xmyndA =
m+1∑
r=0

(−1)r m!
(m + 1 − r)!r! (n + r + 1)

xm+1
2 yn+1

3

for x3 = 0∫∫
A

xmyndA =
m+1∑
r=0

1

(n + 1) (m + n + 2)
xm+1

2 yn+1
3

for x3 = x2 (13.31)

The elemental degrees of freedom can be expressed in global coordinates through
the following transformation:⎧⎨

⎩
w

w,y
w,x

⎫⎬
⎭ =

⎡
⎣ 1 0 0

0 cos (x,X) cos (x, Y )

0 cos (y,X) cos (y, Y )

⎤
⎦
⎧⎨
⎩

w

w,Y
w,X

⎫⎬
⎭

= [L]

⎧⎨
⎩

w

w,Y
w,X

⎫⎬
⎭ (13.32)

The directional cosines are given by
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cos (x,X) = X2 − X1√
(X2 − X1)

2 + (Y2 − Y1)
2

cos (x, Y ) = Y2 − Y1√
(X2 − X1)

2 + (Y2 − Y1)
2

cos (y,X) = Y2 − Y1√
(X2 − X1)

2 + (Y2 − Y1)
2

cos (y, Y ) = X2 − X1√
(X2 − X1)

2 + (Y2 − Y1)
2

(13.33)

The transformation matrix from elemental to global coordinates is given by{
q̂
} = [R] {q}

[R] =
⎡
⎣ [L]

[L]
[L]

⎤
⎦ (13.34)

The potential functional in global coordinates is

π = 1

2
[R]T {q}T

[∫∫∫
V

[B]T [D] [B] dV

]
[R] {q}

−
∫∫

A

[R]T {q}T [N]T
([

Â
]−1

)T

Q (x, y) dA (13.35)

The stiffness matrix, force vector and elemental equation in global coordinates are

[K] = [R]T [K̂] [R]

{Q} = [R]T {Q̂}
[K] {q} = {Q} (13.36)

Within two years of Clough’s coining the word “finite elements”, there were sev-
eral authors developing finite elements of different classes of structures, the earliest
one being from Tocher [20] for plates using triangular elements.

We consider here an example of a square fixed-fixed plate given by Rao [14].
Typical finite element idealization is shown in Figure 13.3 for n = 1, n = 2,

n = 4, etc., for a quarter of a plate. Because of symmetry it is sufficient to con-
sider a quarter of a plate, with fixed boundary conditions on the two edges and the
slopes w,x and w,y zero on the edges 2–4 and 3–4 respectively. The deflection co-
efficient 103D/qa4 is plotted in Figure 13.4 as a function of the mesh size used in
Figure 13.3. It should be noted that monotonic convergence is not always obtained
with non-conforming elements.
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Fig. 13.3 A square fixed-fixed plate

Fig. 13.4 Deflection as a function of mesh size

We will now extend from beams and plates to one more case shell and look at
how the finite element methods are developed for structures.

13.3 Shell Element

Shells are plates with their middle surface having a curvature. External faces of the
shell are curved, while the sections across the thickness are generated by straight
lines. There are many kinds of shells used in structures, simple cylindrical shells,
paraboloids, hyperbolic shape shells or any structures whose middle surface is not
in a plane. These shells can also be modeled as finite elements. We will consider
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Fig. 13.5 Ahmad’s shell element

Fig. 13.6 Mid-surface of parent element in natural coordinates

a shell element as derived by Ahmad et al. [1] within a decade of plate elements
derivation. The geometry of the element, see Figure 13.5, is described by a pair of
points, îtop, îbottom each with given Cartesian coordinates. ξ, η are curvilinear coor-
dinates in the middle plane of the shell and ζ is a linear coordinate in the thickness
direction. The mid-surface of the parent element in natural coordinates is shown in
Figure 13.6.

Shape Functions: ξ, η and ζ vary between −1 and +1 and Cartesian coordinates
of any point on the shell are expressed in terms of geometric shape functions, as⎧⎨
⎩

x

y

z

⎫⎬
⎭ =

8∑
i=1

Ni (ξ, η)
1 + ζ

2

⎧⎨
⎩

x

y

z

⎫⎬
⎭

top

+
8∑

i=1

Ni (ξ, η)
1 − ζ

2

⎧⎨
⎩

x

y

z

⎫⎬
⎭

bottom

(13.37)
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In the above the shape functions N are assumed as

N1(ξ, η) = 1

4
(1 − ξ)(1 − η)(−ξ − η − 1)

N2(ξ, η) = 1

4
(1 + ξ)(1 − η)(ξ − η − 1)

N3(ξ, η) = 1

4
(1 + ξ)(1 + η)(ξ + η − 1)

N4(ξ, η) = 1

4
(1 − ξ)(1 + η)(−ξ + η − 1)

N5(ξ, η) = 1

2
(1 − ξ2)(1 − η)

N6(ξ, η) = 1

2
(1 + ξ)(1 − η2)

N7(ξ, η) = 1

2
(1 − ξ2)(1 + η)

N8(ξ, η) = 1

2
(1 − ξ)(1 − η2) (13.38)

Note that Ni (ξ, η) takes a value of unity at node i and zero at all other nodes.
Equation (13.38) can also be written in terms of the mid-surface coordinates⎧⎨

⎩
x

y

z

⎫⎬
⎭ =

8∑
i=1

Ni (ξ, η)

⎧⎨
⎩

x

y

z

⎫⎬
⎭

mid

+
8∑

i=1

Ni (ξ, η)
ζ

2
Ṽ3i

Ṽ3i =
⎧⎨
⎩

xi

yi

zi

⎫⎬
⎭

top

−
⎧⎨
⎩

xi

yi

zi

⎫⎬
⎭

bottom

(13.37a)

Displacement Field: The displacement field is defined by the three displacements
of the mid-surface nodes and two rotations of the nodal vector Ṽ3i about its own
orthogonal directions as in Figure 13.7⎧⎨
⎩

u

v

w

⎫⎬
⎭ =

8∑
i=1

Ni (ξ, η)

⎧⎨
⎩

ui

vi

wi

⎫⎬
⎭+

8∑
i=1

Ni (ξ, η)
ζhi

2

⎡
⎣V i

1x −V i
2x

V i
1y −V i

2y

V i
1z −V i

2z

⎤
⎦{−βi

αi

}
(13.39)
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Fig. 13.7 Displacement field

Ṽ1i = V i
1xêx + V i

1yêy + V i
1zêz = êx × Ṽ3i

|êx × Ṽ3i |
Ṽ2i = V i

2xêx + V i
2yêy + V i

2zêz = Ṽ3i × Ṽ1i

ui , vi , wi are the displacements at the mid surface nodes and αi , βi are the two
rotations about the directions Ṽ2i, Ṽ1irespectively. There are five degrees of freedom
per each node given by

{
d̂i

}
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui

vi

wi

αi

βi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.40)

and 40 degrees of freedom for the element. Equation (13.39) can be written as

⎧⎨
⎩

u

v

w

⎫⎬
⎭ = [N]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d̂1

d̂2
· · ·
· · ·
d̂8

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= [N] {d̂} (13.41)

where
[N] = [

[N]1 [N]2 · · · [N]8
]

[N]1 =

⎡
⎢⎢⎣

N1 0 0 − 1
2V 1

2xN1h1ζ − 1
2V 1

1xN1h1ζ

0 N1 0 − 1
2V 1

2yN1h1ζ − 1
2V 1

1yN1h1ζ

0 0 N1 − 1
2V 1

2zN1h1ζ − 1
2V 1

1zN1h1ζ

⎤
⎥⎥⎦
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[N]2 =

⎡
⎢⎢⎣

N2 0 0 − 1
2V 2

2xN2h2ζ − 1
2V 2

1xN2h2ζ

0 N2 0 − 1
2V 2

2yN2h2ζ − 1
2V 2

1yN2h2ζ

0 0 N2 − 1
2V 2

2zN2h2ζ − 1
2V 2

1zN2h2ζ

⎤
⎥⎥⎦

· · ·

(13.42)

The total number of degrees of freedom of the element is 40, whereas, the definition
contains only 24 displacements, therefore, the element is of the super-parametric
kind.

Strain-Displacement Relations: Only the components of strains and stresses in
directions of orthogonal axes related to the surface ζ = constant are considered. Let
z′ be a normal to this surface at any point and let the other two orthogonal axes be x ′
and y ′ which are tangent to z′, see Figure 13.7. The strain components are defined
by

{
ε′} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε′
xx

ε′
yy

γx ′y ′

γy ′z′

γx ′z′

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′
∂x ′
∂v′
∂y ′

∂u′
∂y ′ + ∂v′

∂x ′
∂v′
∂z′ + ∂w′

∂y ′
∂u′
∂z′ + ∂w′

∂x ′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [H ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′
∂x ′
∂u′
∂y ′
∂u′
∂z′
∂v′
∂x ′
∂v′
∂y ′
∂v′
∂z′
∂w′
∂x ′
∂w′
∂y ′
∂w′
∂z′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.43)

where

[H ] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ (13.44)

Stress-Strain Relation: The stress strain relation is taken as

{σ ′} = [D]{ε′}{σ ′} = [D]{ε′} (13.45)

where

[D] =

⎡
⎢⎢⎢⎢⎣

1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2 0 0
0 0 0 1−ν

2k
0

0 0 0 0 1−ν
2k

⎤
⎥⎥⎥⎥⎦ (13.46)

The factor k in the above equation (13.46) is taken as 1.2 to improve the shear
displacement approximation.
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We need now a transformation from the global coordinates x, y, z to local co-
ordinates x ′, y ′, z′. We first define a vector normal to the surface ζ = constant, by
taking the vector product of any two vectors tangent to the surface,

Ṽz′ =

⎧⎪⎪⎨
⎪⎪⎩

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

⎫⎪⎪⎬
⎪⎪⎭×

⎧⎪⎪⎨
⎪⎪⎩

∂x
∂η

∂y
∂η

∂z
∂η

⎫⎪⎪⎬
⎪⎪⎭ (13.47)

The other two vectors Ṽx ′ , Ṽy ′ along x ′ and y ′ directions can also be obtained by
the process given above and reducing these to unit magnitudes, we can construct a
matrix of unit vectors in x ′, y ′, z′ directions

[θ ] = [
Ṽx ′ Ṽy ′ Ṽz′

]

=
⎡
⎣ l1 l2 l3

m1 m2 m3
n1 n2 n3

⎤
⎦ (13.48)

We can now write⎡
⎢⎢⎣

∂u′
∂x ′ ∂v′

∂x ′ ∂w′
∂x ′

∂u′
∂y ′ ∂v′

∂y ′ ∂w′
∂y ′

∂u′
∂z′ ∂v′

∂z′ ∂w′
∂z′

⎤
⎥⎥⎦ = [θ ]T

⎡
⎢⎢⎣

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

⎤
⎥⎥⎦ [θ ] (13.49)

i.e., ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′
∂x ′
∂u′
∂y ′
∂u′
∂z′
∂v′
∂x ′
∂v′
∂y ′
∂v′
∂z′
∂w′
∂x ′
∂w′
∂y ′
∂w′
∂z′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [T ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.50)

where

[T ] =
⎡
⎢⎣

l1 [θ ]T m1 [θ ]T n1 [θ ]T

l2 [θ ]T m2 [θ ]T n2 [θ ]T

l3 [θ ]T m3 [θ ]T n3 [θ ]T

⎤
⎥⎦ (13.51)
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and l1, l2, . . . , are directional derivatives. The derivatives of the global displacements
u, v, and w with respect to the curvilinear coordinates are related to the derivatives
with respect to Cartesian coordinates through the Jacobian by⎡

⎢⎢⎣
∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

⎤
⎥⎥⎦ = [J ]−1

⎡
⎢⎢⎣

∂u
∂ξ

∂v
∂ξ

∂w
∂ξ

∂u
∂η

∂v
∂η

∂w
∂η

∂u
∂ζ

∂v
∂ζ

∂w
∂ζ

⎤
⎥⎥⎦ (13.52)

Therefore, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= []

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ

∂u
∂η

∂u
∂ζ

∂v
∂ξ

∂v
∂η

∂v
∂ζ

∂w
∂ξ

∂w
∂η

∂w
∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.53)

where

[] =
⎡
⎣ [J ]−1 0 0

0 [J ]−1 0
0 0 [J ]−1

⎤
⎦ (13.54)

The Jacobian is

[J ] =

⎡
⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤
⎥⎥⎦ (13.55)

where

∂x

∂ξ
=

8∑
i=1

∂Ni

∂ξ
xi

mid +
8∑

i=1

1

2

∂Ni

∂ξ
hiζV3ix

∂y

∂ξ
=

8∑
i=1

∂Ni

∂ξ
yi

mid +
8∑

i=1

1

2

∂Ni

∂ξ
hiζV3iy

∂z

∂ξ
=

8∑
i=1

∂Ni

∂ξ
zi

mid +
8∑

i=1

1

2

∂Ni

∂ξ
hiζV3iz
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∂x

∂η
=

8∑
i=1

∂Ni

∂η
xi

mid +
8∑

i=1

1

2

∂Ni

∂η
hiζV3ix

∂y

∂η
=

8∑
i=1

∂Ni

∂η
yi

mid +
8∑

i=1

1

2

∂Ni

∂η
hiζV3iy

∂z

∂η
=

8∑
i=1

∂Ni

∂η
zi

mid +
8∑

i=1

1

2

∂Ni

∂η
hiζV3iz

∂x

∂ζ
=

8∑
i=1

1

2
NihiζV3ix

∂y

∂ζ
=

8∑
i=1

1

2
NihiζV3iy

∂z

∂ζ
=

8∑
i=1

1

2
NihiζV3iz (13.56)

From (13.39), we can obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ξ

∂u
∂η

∂u
∂ζ

∂v
∂ξ

∂v
∂η

∂v
∂ζ

∂w
∂ξ

∂w
∂η

∂w
∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [L]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d̂1

d̂2

· · ·
· · ·
d̂8

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(13.57)

where

[L] =
⎡
⎢⎣

[L11] [L12] · · · [L18]

[L21] [L22] · · · [L28]

[L31] [L32] · · · [L38]

⎤
⎥⎦ (13.58)
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[L11] =

⎡
⎢⎢⎣

∂N1
∂ξ

0 0 − 1
2V 1

2x
∂N1
∂ξ

h1ζ − 1
2V 1

1x
∂N1
∂ξ

h1ζ

∂N1
∂η

0 0 − 1
2V 1

2x
∂N1
∂η

h1ζ − 1
2V 1

1x
∂N1
∂η

h1ζ

0 0 0 − 1
2V 1

2xN1h1 − 1
2V 1

1xN1h1

⎤
⎥⎥⎦

[L21] =

⎡
⎢⎢⎣

0 ∂N1
∂ξ

0 − 1
2V 1

2y
∂N1
∂ξ

h1ζ − 1
2V 1

1y
∂N1
∂ξ

h1ζ

0 ∂N1
∂η

0 − 1
2V 1

2y
∂N1
∂η

h1ζ − 1
2V 1

1y
∂N1
∂η

h1ζ

0 0 0 − 1
2V 1

2yN1h1 − 1
2V 1

1yN1h1

⎤
⎥⎥⎦

[L31] =

⎡
⎢⎢⎣

0 0 ∂N1
∂ξ

− 1
2V 1

2z
∂N1
∂ξ

h1ζ − 1
2V 1

1z
∂N1
∂ξ

h1ζ

0 0 ∂N1
∂η

− 1
2V 1

2z
∂N1
∂η

h1ζ − 1
2V 1

1z
∂N1
∂η

h1ζ

0 0 0 − 1
2V 1

2zN1h1 − 1
2V 1

1zN1h1

⎤
⎥⎥⎦

[L12] =

⎡
⎢⎢⎣

∂N2
∂ξ

0 0 − 1
2V 2

2x
∂N2
∂ξ

h2ζ − 1
2V 2

1x
∂N2
∂ξ

h2ζ

∂N2
∂η

0 0 − 1
2V 2

2x
∂N2
∂η

h2ζ − 1
2V 2

1x
∂N2
∂η

h2ζ

0 0 0 − 1
2V 2

2xN2h2 − 1
2V 2

1xN2h2

⎤
⎥⎥⎦

· · ·
From (13.44), (13.50), (13.53) and (13.58), we now obtain

{
ε′} = [B]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d̂1

d̂2
· · ·
· · ·
d̂8

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.59)

where
[B] = [H ][T ][][L] (13.60)

The elemental stiffness matrix is then given by

[
K̂
]

=
∫

V

[B]T [D] [B] dxdydz

=
∫

V

[B]T [D] [B] |J | dξdηdζ (13.61)

Assembling the elemental matrices and solving the problem follows the same
directions as we discussed before.

We will close here the discussion on finite element methods by stating that several
authors following different energy methods have derived several elements in the last
three to four decades [23].

Once several of these elements were published a number of commercial codes
appeared using such libraries of elements. Before the commercial codes, when com-
puters were fairly slow and with less memory, the practice was to manually mesh the
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chosen elements, number the nodes and make sure that the mesh had no disconti-
nuities. Today, commercial preprocessors perform the mesh work automatically and
prepare the finite element model in a short period of time. Today the mesh work can
be morphed without remeshing, a fact that becomes useful in making metamodels
for Design of Experiments study and optimization.

What we call today solvers in commercial codes were written as subroutines or
subprograms in Fortran or Algol and designated as eigen-values, matrix multiplica-
tions etc. as discussed with respect to beam or plate elements.

The engineer is also required to bring the displacement field to different nodes
and use formulae to determine the strain and stress fields or any other information
required in the design like principal stresses and strains, von Mises stress etc. It
was required to make the plots manually or write special programs that can give a
printout that is made to resemble the plots. These steps can be seen in papers as
recently as 1990, see Rao et al. [16] to study the friction damping effects from the
blade disk root region using contact elements.

13.4 Interface Damping through Finite Element Analysis

Interfacial damping arising out of friction between two surfaces moving relative to
each other is a complex analytical problem, particularly for the type of blade struc-
tures with blade root junctions, shroud bands, lacing wires and platform dampers.
Here we discuss how such a problem was tackled by finite contact elements [16].

Static Contact Problem: When there are two separate bodies such as a blade and
a disk with the corresponding root, the contact under static loading should be first
established before modeling the dynamic contact problem. In the case of a blade
root system, the contact can take place with a separation and friction, which is a
nonlinear and irreversible case. The quasi-static conditions corresponding to the
effect of centrifugal load on the blade and the disk represent the equilibrium state
about which oscillations would occur. Thus it is necessary to solve the static contact
problem before arriving at initial conditions for the forced vibration problem.

The structure is assumed to be an assembly of a large number of finite elements as
shown in Figure 13.8. We can use quadratic Isoparametric elements for the blade and
root structure. These elements are conveniently handled by normalized coordinates.
Figure 13.9 shows the parent element and the transformed element.

Figure 13.10 shows two elastic bodies, A and B, before and after they come into
contact. The body B is considered to have fixed boundary conditions and the body A

is acted upon by a force vector {f }. Elastically the problem is the same if the contact
is brought about by rigid body movement of the support of body B and the force
vector {f } results in the body A at the boundary points. The rigid body movement
of the supports of the body B is given by the vector
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Fig. 13.8 Finite element idealization of a plane region

Fig. 13.9 Coordinate transformation

{�} =
⎧⎨
⎩

U

V

θ

⎫⎬
⎭ (13.62)

Consider the series of boundary points iA and iB (i = 1 to n) in Figure 13.10 at
which possible contact can take place. It is assumed that the nodal contact forces are
{pn

j } and {pt
j } on body A and B respectively. It is to be noted that these vectors have

two components, one in the tangential and the other in normal directions as below:

{pj } =
{ {pt

j }
{pn

j }

}
and {p′

j } =
{ {p′t

j }
{p′n

j }

}
(13.63)
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Fig. 13.10 Two bodies A and B before and after contact

If the body B has fixed supports and the only forces acting are the contact forces,
the displacements of points i in the body B can be written as

{aB
i } =

n∑
j=1

[CB
ij ]{p′

j } (13.64)

where
[
CB

ij

]
above represents a 2 × 2 submatrix of flexibility coefficients corre-

sponding to the tangential and normal deflections, respectively at the node i due to
the force at j .

The submatrix of flexibility coefficients is obtained by eliminating all the nodes
except those where possible contact can take place and inverting the so formed con-
densed stiffness matrix. If the supports of the body B are given the rigid displace-
ments given in equation (13.62), the total displacement of the point i is given by

{aB
j } =

n∑
j=1

[CB
ij ]{p′

j } + [σi ] {�} (13.65)

where

[σi] =
[

cos φ sin φ − (y cos φ − x sin φ)

− sin φ cos φ − (x cos φ + y sin φ)

]
(13.66)

is the kinematic transformation matrix, see Figure 13.11.
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Fig. 13.11 Computation of transformation matrix

Fig. 13.12 Body A with imaginary support points P and Q

As the body A has a force boundary condition, it is free to have a rigid body
movement. Hence a slightly different method is to be used for getting the flexibility
coefficient for this. The rigid body movement of A is restricted by assuming two
imaginary supports as shown in Figure 13.12. Displacements are assumed zero in
both the directions at one of the points and at the other point in one direction only.
Hence three degrees of freedom are restrained. All the nodes except those at the
imaginary reaction points and the likely contact points and those with the external
forces are eliminated.

The condensed system of equations in general can be written as⎡
⎣ K11 K12 K13

K21 K22 K23
K31 K32 K33

⎤
⎦
⎧⎨
⎩

aR

aC

af

⎫⎬
⎭ =

⎧⎨
⎩

R

pC

f

⎫⎬
⎭ (13.67)

where K are submatrices of the condensed stiffness matrix of body A, {aR} is the
vector of displacement of reaction points, {aC} is the vector of displacements at
contact points, {af } is the vector of displacements at points where external forces
are acting on A. {R} is the vector of reaction forces; {pC} and {f } are the vectors
of forces at the contact points and at the points where external forces are applied.
Since the displacements at the reaction points are zero,
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[
K12 K13

] { {aC}
{af }

}
= {R} (13.68)

and [
K22 K23
K32 K33

]{ {aC}
{af }

}
=
{

pC

{f }

}
(13.69)

From the above two equations we get,

[
K12 K13

] [ K22 K23
K32 K33

]−1 { {pC}
{f }

}
= {R} = 0 (13.70)

since in reality there are no external forces present in this case.
The displacement of points i in the direction normal to the surface are given by

the expression

{aA
i } =

n∑
j=1

[CA
ij ]{pj } +

e∑
k=1

[Ci,n+k]{fk} (13.71)

where e is the number of nodes with external forces and {f k} is the vector of external
forces at the kth loaded node such that

[fk] =
{ {f t

k }
{f n

k }

}
(13.72)

where {f t
k } and {f n

k } are the components in the tangential and normal directions
respectively. It may be noted that

[Cij ] =
[

K22 K23
K32 K33

]−1

(13.73)

This is easily accomplished by inverting the condensed matrix obtained after
imposing boundary conditions for the fictitious nodes. When the two bodies are in
contact the following compatibility equation must be satisfied:

{aA
i } = {aB

i } + {a0
i } (13.74)

where {a0
i } is the vector of clearances. Hence from equations (13.65) and (13.71)

n∑
j=1

[CA
ij ]{pj } +

e∑
k=1

[Ci,n+k]{fk} =
n∑

j=1

[CB
ij ]{p′

j } + {σi}{�} + {a0
i } (13.75)

At the contact nodes {pj } = −{p′
j } and hence

n∑
j=1

([CA
ij ] + [CB

ij ]){pj } − {σi}{�} = −
e∑

k=1

[Ci,n+k]{fk} + {a0
i } (13.76)
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where n is the number of nodes in contact and e is the number of nodes with external
forces.

For the case when the nodes slip relative to each other in the direction parallel to
the contact surface, the compatibility condition (13.74) is not valid for the tangential
direction. Hence the above equation will not be valid along the tangential direction
and the corresponding equations are replaced by the slip condition

{pt
j } = μ{pn

j } (13.77)

where μ is the coefficient of dynamic friction and the subscript j represents the
node in contact. If m nodes are in contact, the above two equations constitute 2m

equations in 2m + 3 unknowns and the three additional equations are the equations
of equilibrium suitably represented by (13.70). This system is linear and the solution
is straight-forward if the contact zone is known apriori and friction is sufficient to
prevent slipping. However, in practice the area of contact is not known and some
nodes are observed to be slipping. Hence the following steps are to be followed:

1. Assume a set of nodal points to be in contact and solve equation (13.76) for a
prescribed load.

2. Delete all those points where nodal forces become negative from the possible
contact zone.

3. If the ratio of nodal force in tangential direction to the nodal force in the normal
direction is greater than the coefficient of friction, the nodes are slipping, then the
portion of equation (13.76) corresponding to the tangential direction is replaced
by equation (13.77).

4. The above steps are repeated until all normal forces in the contact zone come out
to be positive only and the ratio of tangential force to normal force for all the
nodes in contact is either less than or equal to the coefficient of friction.

Now consider a quasi-static problem of blade root-disk deformation under cen-
trifugal loading with a T root interface joint. Figure 13.13 shows the finite element
model of T root of the 19th stage of a 210 MW steam turbine. Body A has been
modeled with 34 elements having 282 degrees of freedom while the body B has
26 elements with 230 degrees of freedom. Eight noded quadratic isoparametric ele-
ments [10, 23], are used in the analysis.

For simplicity, the entire centrifugal load is assumed to act at the tip of the blade.
The body has been fixed along the edge AB, while the body A has been imposed
with an axial force of prescribed value along the surface. Fictitious nodes for re-
straining rigid body motion have been assumed for body A at two nodes on oppo-
site faces of the blade. Figure 13.14 shows the enlarged details of pairing of contact
nodes for the T root junction. The deformation of the two-body assembly under the
action of axial force is shown in Figure 13.15. The deformation is symmetric about
the central line. For the given mesh two nodes lift and then are found to slip when
an axial load of 1000 kg is applied. The deformations shown are enlarged 400 times.
When the axial force is increased to 2000 kg, the deformed shape indicates that two
nodes lift and eight are slipping. The dovetail is nearly locked and the lips of the
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Fig. 13.13 Finite element model of T root blade and disk

disk open out causing slip on the two side surfaces. The displacements shown in
Figure 13.16 are enlarged 300 times.

The nodal displacements thus determined in the quasi-static problem constitute
the initial condition for the dynamic problem.

Dynamic Contact Problem: The system equation for a single blade assembly in
the absence of material damping is

[M]{ä} + [K]{a} = {f } (13.78)

The behavior of the contact zone between A and B is nonlinear on account of open-
ing and slipping which are to be suitably modeled. Thus partitioning the displace-
ment vector

{at }A =
{ {aC

t }
{aA

t }
}

and

{at }B =
{ {aC ′

t }
{aB

t }
}

(13.79)

we can write the equations of motion for both the bodies as

[MB]
{ {āC ′

t }
{āB

t }
}

+ [KB]
{ {aC ′

t }
{aB

t }
}

=
{ {f C ′

t }
{f B

t }
}

(13.80)

[MA]
{ {āC

t }
{āA

t }
}

+ [KA]
{ {aC

t }
{aA

t }
}

=
{ {f C

t }
{f A

t }
}

(13.81)
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Fig. 13.14 Details of finite element mesh in the neighborhood of contact regions

Fig. 13.15 Deformation pattern of T root blade/disk junction under a centrifugal load of 1000 kg

On account of the nonlinearities, modal methods are not found suitable, instead
direct integration algorithms will be useful.
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Fig. 13.16 Deformation pattern of T root blade/disk junction under a centrifugal load of 2000 kg

The Wilson-θ method, discussed extensively by Bath and Wilson (1978), is an
implicit integration method, in which the acceleration varies linearly over the time
interval from t to (t + θ�t) where θ ≥ 1 is determined to obtain optimum stability
and accuracy characteristics. θ is usually taken to be 1.4. Equation (13.78) is written
as

[M]{ät+θ�t} + [K]{at+θ�t} = {ft+θ�t} (13.82)

where
{ft+θ�t} = {ft } + θ({ft+�t } − {ft })

For adopting the Wilson-θ scheme, the following procedure is used:

Initial calculations:

1. Form stiffness matrix [K] and mass matrix [M].
2. Initialize {a0}, {ȧ0}, {ä0}.
3. Select time step �t .

A0 = 6

(θ�t)2
; A2 = 6

θ�t
; A4 = �θ

θ
; A5 = A2

θ
;

A6 = 1 − 3

θ
; A7 = �t

2
; A8 = (�t)2

6
(13.83)

4. Form the effective stiffness matrix

[K̂] = [K] + A0[M] (13.84)
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5. Carry out reduction of the equation to upper triangular form [K̃]
6. For each time step, the effective load at time t + θ�t is calculated as

{f̂t+θ�t } = {ft } + θ({ft+�t } − {ft }) + [M](A0{at} + A2{ȧt} + 2{ät }) (13.85)

7. Form the following equation to determine {at+θ�t}:
[K̃]{at+θ�t} = {f̂t+θ�t } (13.86)

8. Determine accelerations, velocities and displacements at time t + �t .

{ät+�t} = A4({at+θ�t} − {at}) + A5{ȧt} + A6{ät}
{ȧt+�t} = {ȧt } + A7({ät+θ�t} − {ät})
{at+�t} = {at } + �t{ȧt } + A8({ät+θ�t} + 2{ät})

{ãt+�t} = 6

(θ�t)2
({at+θ�t} − {at }) − 6

θ�t
{ȧt } − 2{ät} (13.87)

To solve the transient dynamic contact problem which is nonlinear, the dynamic
equations of motion for the two bodies are considered separately. Each region fur-
ther consists of a general domain and a contact zone. The dynamic equations are
condensed out for the contact zone only for the two bodies A and B. Equations of
equilibrium and compatibility along with the constitutive relations for contact be-
havior are set up to obtain the solution for the behavior through a heuristic iterative
procedure.

Consider equation (13.80) at t + θ�t , then from the last equation of (13.87), we
get
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(13.88)
where

[PB ] = 6
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]
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]

For body A, similarly, we get
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(13.89)
where
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[PA] =
[

PCC PCA

PAC PAA

]

[QA] =
[

QCC QCA

QAC QAA

]
If the pairing nodes iA and iB are in contact, then
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t+θ�t } (13.90)

Imposing the above conditions on equations (13.88) and (13.89), we get
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t } + (θ�t)2

3
{äA
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where

C∗
A = [PCC − PCAP−1

AAPAC]−1, C∗
B = [P ′

CC − PCBP−1
BBPBC ]−1

Q∗
1 = QCC − PCAP−1

AAQAC, Q∗
2 = QCA − PCAP−1

AAQAA

S∗
1 = Q′

CC − PCBP−1
BBQBC, S∗

2 = QCB − PCBP−1
BBQBC

The solution of linear equation (13.91) directly yields the unknown contact forces at
the nodes. This can be used at any particular time instant to obtain the nodal contact
forces, if the nodes in contact are known apriori. However, this is usually unknown
and some assumptions are necessary. These assumptions are to be further confirmed
by the signs of interface forces which have to be compressive. If some of these are
found to be tensile, node opening occurs and these nodes have to be excluded from
the contact zone during which further redistribution of contact pressures occur. The
contact nodes have to be further checked for slip and the modeling of slip has to be
done accurately.

Simulation of the Opening: At a particular time instant, given the right-hand side
of equation (13.91), the nodal contact forces can be first computed by solving for
pC

t+θ�t . If some of the nodes exhibit tensile forces, these cannot be supported by the
contact zone. Hence the nodal forces have to be recomputed by deleting these nodes
from the list of original contact nodes and the interface forces have to be computed
again.
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Fig. 13.17 Computation of transformation matrix

Simulation of Slip: At any particular time instant, after the nodes in contact are
firmly established, the contact nodes have to be checked for conditions of slip. Thus
for all the nodes, the ratio of the tangential to the normal load force is to be com-
puted. If this ratio exceeds the prescribed coefficient of dynamic friction then the
no-slip condition assumed is not valid. Hence the compatibility condition along the
tangential direction is to be replaced by equation (13.77), for the particular node
under consideration. Then equation (13.91) gives rise to 2m equations correspond-
ing to m nodes in contact in 2m variables, viz., the unknown contact forces. When
certain nodes are found to slip, slip conditions have to be imposed, thereby giving
rise to as many equations as there are unknowns and an iterative procedure is to be
used to determine the contact forces accurately.

Contact along Inclined Surfaces: If the contact is along an inclined surface, the
conditions of compatibility and equilibrium have to be imposed along the direction
x ′y ′. This is easily accomplished by transforming the stiffness matrix corresponding
to these nodes along the directions x ′y ′, see Figure 13.17. The transformed stiffness
matrices are then assembled and condensed in arriving at the final form of equa-
tion (13.91), to determine the contact forces along the tangential and normal direc-
tions. It is obvious that an efficient computing procedure should be developed to
reduce the number of iterations.

Consider the T root blade example discussed earlier for the static contact prob-
lem, shown in Figure 13.13. The contact zone extends over four different surfaces
shown in Figure 13.14. No contact is expected along other surfaces on account of
the ample clearances present in the assembly. The contact region on the surface 1A
and 2A is modeled using six elements, while the contact on surfaces 3A and 4A is
modeled with two elements only.

The displacements obtained in a quasi-static analysis constitute initial conditions
for the dynamic problem. The initial velocities and accelerations are assumed to be
zero. The blade in Figure 13.13 is considered with unit thickness and Young’s mod-



13.4 Interface Damping through Finite Element Analysis 175

Fig. 13.18 Decay in tip response

ulus is 2.1 × 106 kg/cm2, Poisson’s ratio is 0.3 and coefficient of dynamic friction
is 0.4. The blade has an overall length of 29 cm and width 5 cm. The excitation due
to a suddenly applied load is as shown in Figure 13.18. For an axial load of 1000 kg
and a transverse load of 20 kg, the tip displacement is obtained as a function of time.
A time step of 0.0002 sec was used so that at least 20 such steps are included in one
cycle of response. The natural period was found to be 0.00432 sec. Figure 13.18
shows that the decay in response is clearly due to the Coulomb friction model. The
average damping ratio is estimated as 0.0022.

When the axial load is increased to 1200 kg, the equivalent viscous damping was
found to be 0.00158, showing thereby, that the blade is becoming locked in the root
of the disk. At 1500 kg axial load, very little difference in the successive amplitudes
was found, showing that there is practically no slip between the blade and the root.
When the axial load was further increased to 2000 kg the value of damping ratio
actually increased to 0.0033. This behavior is attributed to the deformation pattern
of the joint assembly as shown in Figure 13.16. While the surfaces 1A and 2A, which
are perpendicular to the centrifugal load and therefore get locked under increased
axial pull, the two surfaces 3A and 4A being parallel to the application of axial pull,
now slip and contribute to additional damping in the system.

Today there are several commercial codes dealing with contact problems with a
preprocessor for preparing the finite element model and the results from the solver
are all processed in a postprocessor to obtain a user-friendly form of the results.

We will discuss such an application using a commercial code in the next sec-
tion that has taken away the drudgery of preparing a dedicated code and processing
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the results from a design engineer and produces the desired results in a quick turn
around time.

13.5 Illustration of Turbomachine Blade Analysis using
Commercial Codes

This work is reported from Rao [15]. The blade data is as follows:

• Normal operating speed of machine = 8500 RPM
• Blade material X20Cr13/X20CrMo13;
• Density = 7700 kg/m3;
• Poisson’s ratio = 0.3;
• Ultimate tensile strength Su = 880 MPa (at operating temp, 50.4◦ C);
• Yield stress Sy = 575 MPa (at operating temp, 50.4◦ C);
• Young’s Modulus E = 218000 MPa (at operating temp, 50.4◦ C);
• Lazan’s coefficient J = 30 kNm/m3/cycle;
• Lazan’s exponent = 2.4.

The blade geometric model is shown in Figures 13.19 and 13.20 is the FE model.
Kardestuncer and Norrie [11] gave several finite elements and several commercial
codes provide libraries. Here Solid 45 elements are chosen for the blade vane, dove-
tail and Solid 92 for the connection between for the blade vane and dovetail. The
total number of elements used is 198267 and the total nodes are 252868.

Steady steam pressures at 10% intervals from hub to tip on pressure and suction
surfaces at 10 points across each airfoil are given in Table 13.1.

Static stress analysis was carried out for 8500 RPM with the static steam pressure
loads given in Table 13.1. The boundary conditions are given in Figure 13.21. Steam
Pressure Loads are mapped as illustrated in Figure 13.22. Pressure loads are applied
on sections from hub to tip. Half of the elements above and below each of these
sections receive the same pressure.

Static Steam loads are negligible and the maximum stress observed is 4 MPa
only. The centrifugal load causes maximum stress and the peak value is 2470 MPa
far beyond the yield as shown in Figure 13.23. The blade otherwise is globally
elastic with an average stress 343 MPa. The plastic region is small in depth and
elastic analysis is not applicable here, which is why we have a highly unrealistic
value. The plastic region beyond yield 585 MPa is shown in Figure 13.24. The depth
of the max stress is one element and the element depth is 0.37 mm.

One can perform an elasto-plastic analysis and find that the maximum stress
will follow the material plastic law. However the stress in the singular elements
with a sudden rise in stress at the node usually represents a condition where the
finite element method fails to predict the correct stress values. The true stress is
governed by local strain concentration and Neuber’s law gives the true strain and
stress condition. We will discuss this later. An elasto plastic analysiselasto plastic
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Table 13.1 Steady steam pressures (in Pa)

analysis will not change the global elastic region, the limited plastic region results
will be limited to be just above yield.

A free vibration analysis is carried out and from the Campbell diagram it is found
that, 344.50707 Hz 1F is the critical natural frequency. The unsteady pressures are
defined in the form given from measurements
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Fig. 13.19 Blade geometric model

Fig. 13.20 FE model of the blade

dp

Po1
cos(ωt + ψ)

Po1 = 2000 N/m2

ψ = Phase angle

Figure 13.25 gives the harmonic variation of the pressure at the hub. Similarly
pressure values are prepared along the blade span at 10% intervals and across the
aerofoil section at 10 points from leading edge to trailing edge. Alternating pressure
is applied in the form
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Fig. 13.21 Boundary conditions

Fig. 13.22 Mapping of steam pressure loads

dp

Po1
cos(ωt + ψ)2000 × 10−6

where Po1 = 2000 N/m2.
Table 13.2 gives the real and imaginary parts of the pressures that take into ac-

count the phase at the hub as given in Figure 13.25. These pressures are calculated
on similar lines and given at different spans of the blade from root to tip and also
from leading edge to trailing edge of an aerofoil profile. These values are applied on
the full span of blade by considering 50% elements above and below mean sections
of the blade span from root to tip as shown in Figure 13.22.
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Fig. 13.23 Von Mises stress plot due to centrifugal load

Fig. 13.24 Plastic region beyond yield 585 MPa of Figure 13.23

In order to obtain the equivalent static response with appropriate phases taken
into account, a harmonic analysis is performed at very low frequency close to zero
i.e. is 0.01 Hz. The average section stress is 0.13373 MPa that controls the dynamic
stress value for the purpose of strain-based life estimation adopted in the following
sections. The peak stress at the stress raiser is 0.9547 MPa.

The equivalent damping ratio at resonance is taken as 0.00226, 0.226% (see Sec-
tion for a discussion on damping models). Therefore the magnification factor is
1/2ξ = 221.239. The peak steady stress is 0.9547 MPa and therefore the peak
dynamic stress is 0.9547 × 221.239 = 211.2168 MPa.

Even prior to Laval’s impulse turbine in 1883, Rayleigh (1877) gave an approx-
imate method based on the energy conservation principle to determine the funda-
mental mode of a cantilever blade or critical speed of a rotor. Soon the need to
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Fig. 13.25 Unsteady pressure

Table 13.2 Real and imaginary pressure components at the Hub corresponding to Chord locations
in Figure 13.22

dp/Po1(max) dp = dp
Po1

2000 × 10−6 � Real part Imaginary part
A cos � A sin �

0.1 0.0002 330 0.000173 –0.000100004
0.38 0.00076 32 0.000645 0.000402737
0.41 0.00082 90 4.96E-09 0.00082
0.33 0.00066 130 –0.00042 0.000505593
0.21 0.00042 145 –0.00034 0.000240905
0.15 0.0003 155 –0.00027 0.000126788
0.05 0.0001 190 –9.8E-05 –1.73636E-05
0.2 0.0004 160 –0.00038 0.000136812
0.3 0.0006 140 –0.00046 0.000385677
0.2 0.0004 290 0.000137 –0.00037588
0.1 0.0002 60 0.0001 0.000173205

determine natural frequencies or critical speedscritical speeds became an essential
feature in design. Graphical and tabular methods etc. were developed by Stodola
and Viannello [18], and then came tabular methods such the ones by Dunkerley [7],
Holzer [8], Myklestad [12], Prohl [13] amongst others gave way ultimately to finite
element methods as described above. Because of the ability to model a full structure
with all the discontinuities and arrive at results faster, the finite element methods are
a norm today for industrial practice – all this happened in a span of 100 years.

As an engineer using commercial codes for strength analysis, one should remem-
ber the following:

1. Basic theory of elasticity is well established; for any structure it involves 15
coupled partial differential equations with 15 unknowns of displacements, strains
and stresses.

2. Unfortunately, the solutions of these complete sets of equations are difficult to
accomplish.
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3. It has been found useful to adopt basic energy methods by making assumptions
on the displacement field, thus allowing evaluation of strain and stress fields and
determining the solutions; however they are limited to the extent of a few terms
in the assumed solutions to be able to achieve the desired solutions. Also, they
cannot handle the engineering aspects of structures such as cut outs, grooves,
dovetails, fillets, etc.

4. While mathematicians attempted solutions of specific classes of elasticity prob-
lems, engineers found it convenient to formulate problems from an equilibrium
approach, called Strength of Materials, that allowed practical solutions for ideal-
ized structures such as beams and plates.

5. The Strength of Materials approach is however inadequate to account for intri-
cate practical geometry of stationary and rotating structures and thus engineering
practices evolved by adopting Stress Concentration, Factor of Safety, etc., to be
able to achieve required designs.

6. Thanks to electronic valves, transistors and silicon chips, digital computation
has come of age gradually over the last five decades which has ushered in the
finite element method; in this method the structure is divided into several small
finite structures or elements which are satisfied by the energy methods. The finite
element has brought back the approximate way of solving problems in the Theory
of Elasticity starting from shape functions representing the displacement field.

7. Today the task of engineers is simplified; most structural problems are solved by
using one of several commercial codes;

a. CAD Model;
b. Meshed FE Model;
c. Loads and Boundary conditions;
d. Solver;
e. Post process results.

8. While it appears that anyone can obtain a structure problem solution, the en-
gineering aspect remains the same; ensure validity of the result, interpret the
displacement, strains, stresses, and ensure structural integrity.

9. Another major task of engineering activity today is to estimate the load itself;
this might arise out of flow, thermal considerations, electromagnetic fields – we
will consider them separately.

10. Another significant design aspect is in understanding the dynamic characteristics
of structures, resonance and stresses under resonance and the design for life based
on mean and alternating stresses.

While structures advanced to finite element methods, rotors and their analysis
lagged behind. The difference between a stator and rotor began to be understood
only in 1919. They were treated as a separate class of problems and modeled as
beams until the beginning of the 21st century when we learnt modeling of solid
rotors. The centrifugal affects, spin softening affects on rotors have become under-
stood only recently.
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Although rotor dynamics is basically a vibration subject, it is treated separately
because of some special effects such as oil film supports, misalignment, etc., and
we will explore these developments in the next section.
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Chapter 14
Rotor Dynamics Methods

The industrial revolution began with reciprocating steam engines as devised by
James Watt in 1780, and the 19th century witnessed a rapid expansion in various
industrial sectors. Unfortunately, the reciprocating steam engine had several prob-
lems because of external combustion and excessive alternating load due to recip-
rocating masses that limited speeds and capacities. The industry was looking for
non-reciprocating systems, purely rotating systems that could usher in an era of so-
called “Vibration Free” engines. The dynamics of rotating structures are different
from those of stationary structures. Basically, all the vibration phenomena will be
valid, however, there are several differences and we have to set up new procedures
for handling rotors and their vibratory phenomena.

The beginnings of idealization of a structure as a beam were in the renaissance
period, well before the beginning of the Scientific revolution. Leonardo da Vinci
(1452–1519) made fundamental contributions to solid mechanics and understood
the central idea of bending of a beam. Galileo (1564–1642) followed in pursuit
of problems involving beams; his mathematical treatment of acceleration and his
concept of inertia both reflect earlier medieval analyses of motion. The scientific
revolution occurred about two centuries after Leonardo da Vinci’s contributions to
the study of beams and bending, when Isaac Newton (1642–1727) invented Calculus
and Calculus of Variations that enabled Euler and Bernoulli in 1750 to formulate
the first comprehensive theory of beams. This was three centuries after Leonardo da
Vinci suggested the basic idea of beam bending. Thus, beam theory is embedded in
the Scientific Revolution period.

There were practically no known attempts to understand vibrations of a rotating
structure or a rotor for over a century after beam theory was well understood and
expanded to other structures, e.g., Plates by Sophie Germain in 1815. William John
Macquorn Rankine (1820–1872) made significant contributions to Thermodynam-
ics, particularly Steam Engines and his publication in 1859 was the first attempt at
a practical approach to steam-engine theory. The Rankine cycle is a thermodynamic
sequence of events and is still used as a standard for rating steam power plant per-
formance. Ten years later in 1869, the first attempts were made to understand Rotor
Dynamics when Rankine performed the first analysis of a spinning shaft. He con-

185
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Fig. 14.1 De Laval rotor

sidered centrifugal whirling and showed the existence of critical speeds of a rotor.
Rankine correctly concluded that the whirling speed was the same as the frequency
at which the shaft vibrated transversely if struck, and he set out to calculate this crit-
ical speed. He defined this as a limit of speed for centrifugal whirling. There were
many doubts whether a rotor could cross this limit. It was presumed that it would
be unstable after exceeding the critical speed. He chose an unfortunate model and
predicted that; beyond a certain spin speed “. . . the shaft is considerably bent and
whirls around in this bent form.” He defined this certain speed as the “whirling
speed” of the shaft. In fact, it can be shown that beyond this whirling speed the
radial deflection of Rankine’s model increases without limit. Rankine did add the
term “whirling” to the rotor dynamics vocabulary. Some believe now that he may
have been responsible for setting back the science of rotor dynamics by nearly 50
years [39].

14.1 De Laval Model

Though the basics of rotor dynamics were not yet fully understood, Laval built the
first impulse turbine in 1883 which ran successfully at 40000 RPM! From simple
equilibrium conditions, he derived a correct relation for the whirl radius y (though
whirl and spin have not been clearly differentiated), in his own notation, it is

y = ω2δ

Fg
W

− ω2
(14.1)

where δ is the eccentricity, F is stiffness and W is the rotor weight.
When the denominator is zero, the whirl radius is infinity, defining the critical

speed. Laval proved that one can exceed the critical speed and have stable operation
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at high speeds as y approaches −δ. Essentially, this is the first attempt to identify
the equivalence of a single degree of freedom vibrating system for a rotor and there-
fore some prefer to call one-disk rotor models “Laval Rotors”. Föppl [20] discussed
Laval’s rotor. Rayleigh [76], using the energy principle, provided an approximate
(upper bound) method to determine the first critical speed of a rotor considering it
as a stationary beam. Dunkerley [14] derived an empirical relation for estimating
the lower bound value of critical speed. The demonstration that a shaft can have
several critical speeds is more than a century behind Lagrange’s work for stationary
systems. Stodola [82] presented a graphical method to determine the critical speeds
of practical rotors. This method continued to be widely used for over five decades
until transfer matrix methods and digital computers became available.

Though not directly related to vibrations, a significant experiment was made by
British Rail Road Engineer Tower [92], whose work on friction of lubricated bear-
ings by Osborne Reynolds (1842–1912) in 1886, led to the discovery of hydrody-
namic bearings that form a load bearing member in the system and thus has stiffness
and damping. These bearings play an important role in rotor dynamic behavior, a
subject of intense investigations in the 20th century. Actually, Petroff [61] a Russian
scientist, had already discussed bearings with centralized journals, i.e., concentri-
cally operating, when Tower discovered pressure in oil film bearings in his railroad
experiments. Sommerfeld [81] gave the first solution of Reynolds’ equation for long
bearings.

Charles Parsons soon after Laval’s impulse turbine in 1883 built his reaction tur-
bine in 1884, the precursor of modern rotating machinery for power plants. The
invention of the dynamo by Thomas Alva Edison (1847–1931) in 1879 has already
introduced the first power plant driven by a steam engine in 1882 at Pearl Street
Station in New York producing 100 KW of electricity. The invention of turbine has
changed the rotating machinery scenario in 20th century witnessing a rapid devel-
opment from 1 to 1500 MW of power generation.

The first half of 20th century developed through logarithmic tables, mechanical
desk calculators, slide rules and drawing tables with instruments. The world wit-
nessed tremendous changes to satisfy the energy needs of the modern man; these
changes were made possible through semiconductor devices as against electronic
valves and at best a short exposure of transistors. The vibration engineer transformed
the basic science to a rapid tool for fast designs reducing testing times through sim-
ulation, accurately estimating life and providing optimal designs all helping reduce
design cycle and bringing the advanced machine to market – we have learnt in this
century the Shortest Distance from Concept to Reality.

Some of the earlier rotor failures belong to propeller shafts in torsion of steam
driven war ships during I world war. The story goes thus: When a propeller shaft
failed, it was felt that designers did not provide sufficient diameter of the shaft to
take care of the transmitted torque, therefore its diameter was increased by 10%.
The modified shaft however failed in less than half time of the previous shaft failure.
Then the designers began taking rotor failures seriously to adopt dynamic design.
It was found that by increasing the diameter of the shaft the natural frequency be-
came closer to the excitation harmonic resulting in an earlier failure. Holzer [33,34]
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presented a tabular method to determine the torsional natural frequencies of sys-
tems, which can be discretized in the form of several rigid inertias, connected by
massless torsional springs. This is a simple method in which the inertia torque and
torsional amplitude of each disk are calculated sequentially beginning from one end
with amplitude equal to unity and arbitrarily chosen frequency. After completing the
calculations till the end of the train, the boundary condition was checked – in this
case the total inertia of the system in free vibration to be equal to zero. Obviously
the first attempt will not yield the assumed frequency to be the correct natural fre-
quency; therefore Holzer proposed an iteration method by varying frequency until a
satisfactory answer is obtained. The method works well for a reasonable number of
rotors in a simple table – it is so simple that it lasted into the computer age.

14.2 Jeffcott Rotor Analysis

Even with the general knowledge of critical speeds, the shaft behavior at any gen-
eral speed was still unclear until Jeffcott [37] formulated the rotor problem as one
of forced vibration. He showed for the first time that the shaft did not primarily
rotate about its rest position, but about its own centerline. The whirl of the rotor
corresponds to free or forced vibration of a stationary structure. This is a significant
development in the understanding of rotor dynamic behavior. Rotors, modeled as a
single disk on a flexible massless shaft, similar to a mass on a spring single degree
freedom model are named after Jeffcott (see Figure 14.2).

Here we show basic Jeffcott rotor analysis including rolling element and oil film
supports. In this model, the shaft is assumed mass less and the disk to be rigid.
The total mass M of the rotor is put as disk and the stiffness K is represented as
shaft. The eccentricity is denoted by EG = a. The rotor spins about its own axis
with an angular velocity ω and whirls with angular velocity ν. Jeffcott considered
synchronous whirl, i.e., ν = ω.

O is the bearing centerline, E is the disk geometric center, G is the mass center,
OE = R is the whirl radius about the bearing centerline. The disk rotates/spins
about E with an angular velocity of ω in ccw direction and the whirl is assumed
synchronous with spin. The whirl is lagging in phase by an angle φ from the unbal-
ance force vector in direction of EG. Write down the inertia forces, stiffness forces
and damping forces in the respective directions, etc.

M
d2

dt2 (z + a cos ωt) + C
dz

dt
+ Kz = 0

M
d2

dt2 (y + a sin ωt) + C
dy

dt
+ Ky = 0 (14.2)

With r = z + iy, the above equations can be reduced to
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Fig. 14.2 Jeffcott rotor model

Fig. 14.3 Disk equilibrium relations

M
d2r

dt2 + C
dr

dt
+ Kr = Maω2eiωt (14.3)

Thus the Jeffcott rotor equation is same as a single degree of freedom mass system in
all respects except that the excitation magnitude is a function of ω2. Here is where
many fail to understand why a Jeffcott rotor is Jeffcott rotor. We need to look at
the whirl radius r = z + iy is the solution instead of a displacement in a spring
mass stationary system. The solution of (14.3) is of two parts. The complementary
function or free vibration in this case is whirl radius at frequency p = √

K/M the
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same as free vibration at natural frequency p of a stationary rotor or for a single
degree of freedom system. The forced vibration amplitude, or steady state vibration
is

R̄ = R

a
= �2√

(1 − �2)
2 + (2ξ�)2

(14.4)

at frequency ω as in a stationary system but this amplitude of whirl R increases with
the square of the spin speed of the rotor (� = ω/p). The phase φ here is the angle
between the line connecting mass and geometric centers of shaft and the response
whirl OE.

φ = 2ξ�

1 − �2 (14.5)

The subtle understanding of the rotor begins with the appreciation that all rotors
are unbalanced, i.e., there is always an eccentricity a either due to material inhomo-
geneity and/or manufacturing errors. This is the source of excitation which is always
there unlike a stationary mass spring system where an external force is necessary to
be applied. This aspect intrigued many as to why rotors whirl where there is no ex-
citation. When disturbed a rotor spinning at ω responds in free and forced vibration,
the free vibration whirl ν at natural frequency p dies due to damping and the forced
vibration with a whirl of radius r at whirl frequency ν = ω in case of synchronous
whirl. Whereas we have both free and forced vibration responses in stationary and
rotor systems, Jeffcott was able to explain the subtle differences that set apart the
stationary systems vibration to rotor vibrations. That is why we call a single degree
of freedom rotor as a Jeffcott rotor. The Jeffcott rotor results can be used in modal
analysis multimass rotors in the same way stationary system modal analysis.

We may also note here that the critical speeds of rotors (same as stationary system
natural frequencies) are determined from stationary systems, e.g., Prohl’s method
originally developed for rotor applications is same as Myklestad’s method for air-
craft wing structure applications. For critical speed determination of rotors, all we
need is the natural frequency of stationary rotors. The response in case of rotors is
essentially due to unbalance and therefore we call rotor forced vibration as unbal-
ance response (some prefer to call imbalance response). The methods of determin-
ing unbalance response actually set rotor dynamics apart from stationary structure
forced vibration.

14.3 Fluid Film Bearings

There are several physics phenomena that set rotors apart from stationary structures.
One of the main differences is fluid film supports. More than a century ago, when
we were beginning to understand rotor dynamics, it was generally believed that a
lubricant in the bearing cavity will decrease friction and therefore minimize losses.
It was accidentally discovered that the fluid film in the cavity is doing much more
than just reducing friction losses.
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Fig. 14.4 Pressure development in a wedge

Beauchamp Tower [92] was testing for British Rail, to determine the best location
for a lubricant inlet hole. He drilled several holes in the bearing and plugged them
with just one kept open during the tests. He was unable to control the leakage despite
all precautions and multiple pressure gauges; he discovered the familiar wedge ac-
tion as explained subsequently by Osborne Reynolds. This discovery has completely
changed the scenario in rotor dynamics, particularly after Jeffcott’s work.

Osborne Reynolds [77] explained Tower’s experiments; the flow through the
wedge in Figure 14.4a is divided into two parts:

1. A velocity induced flow, with the oil film hugging the stationary surface and
moving with the same velocity of the moving surface and linearly varying in
between, as shown in Figure 14.4b.
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Fig. 14.5 A journal bearing

2. The moving surface cannot support any load in this flow; this flow by itself can-
not exist alone as it does not satisfy the mass conservation, unless the film is
compressible.
On the other hand a pure pressure induced flow can squeeze the film out and
support a vertical load. This flow is depicted in Figure 14.4c.

A combined velocity and pressure induced flow, shown in Figure 14.4d, explains
how an incompressible oil film can satisfy mass conservation inside the cavity. At a
section in between, there is no pressure induced flow and the pressure peaks here.
The load carried by the moving plate is equal to the net area of the pressure curve.

This wedge action can be caused by several other aspects, e.g., elastic deforma-
tion in the bearing shell, temperature gradient in film, and so on.

A journal bearing geometry is shown in Figure 14.5.
The bearing center C and the journal center C′ form the attitude of the bearing,

which makes an angle α with the vertical load W . The maximum clearance is LJ

and minimum clearance is IK and the clearance h varying between these two values
forms a wedge, which plays the major role in bearing behavior.

In terms of radial clearance c and eccentricity ratio, n = e/c, the film thickness
h at any angle is

h = c(1 + n cos θ) (14.6)

The governing equation for pressure p at any angle θ , depends on the journal
radius r , film thickness, h, viscosity, μ and the speed ω.

1

r2

∂

∂θ ′

[
h3 ∂p

∂θ ′

]
+ h3 ∂2p

∂x2
= 6μω

∂h

∂θ ′ + 12μ
∂h

∂t
(14.7)
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Fig. 14.6 Typical journal locus plot

For a given bearing geometry and speed, the pressure, eccentricity and attitude
angle are related. The eccentricity ratio and attitude angle being non-dimensional,
one can derive, a bearing non-dimensional load parameter (i.e., pressure), rather than
deal with pressure units. Sommerfeld [81], see also [62], derived such a parameter
and this parameter is called a Sommerfeld number S.

S = μDLN

W

( r

c

)2
(14.8)

The Sommerfeld number S for a bearing depends on viscosity μ, diameter D, length
L, speed in rev/sec, N , radial load, W , radius r and clearance c. For a given bearing
operating at a load and speed, we can calculate S. The position taken by the jour-
nal, i.e., the eccentricity ratio n = e/c and attitude angle α are determined from
Reynolds’ steady state equation; they are given in graphical form to help the design-
ers.

Present day numerical methods can simulate and obtain three-dimensional steady
state bearing solutions very accurately; in the beginning, Sommerfeld considered a
long bearing, L 
 D, approximation; later Ocvirk solved for short bearing, L  D.
Ocvirk solutions [59] are closer to general bearings, and these results are shown in
Figure 14.6.

The Sommerfeld solution brought out hydrodynamic bearing properties hitherto
unknown. From the Ocvirk bearing solution for the short bearings given in Fig-
ure 14.6, one can quickly observe the special cross-coupled stiffness (so also damp-
ing if a vertical velocity is imposed) properties; when the journal is displaced down-
wards in an oil film bearing it resists like an isotropic spring but in addition also
yields a lateral displacement to seek a steady state solution of equilibrium.

The bearing has four linear stiffness coefficients and similarly four damping co-
efficients and therefore, an oil film can be represented as an 8-coefficient bearing.
These coefficients can be determined mathematically and using numerical methods.
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Fig. 14.7 Stiffness and damping coefficients of a short bearing

Wz = Wz0 + Wz,z�z + Wz,y�y + Wz,ż�ż + Wz,ẏ�ẏ

Wy = Wy0 + Wy,z�z + Wy,y�y + Wy,ż�ż + Wy,ẏ�ẏ

Wz = Wz0 + Kzz�z + Kzy�y + Czz�ż + Czy�ẏ

Wy = Wy0 + Kyz�z + Kyy�y + Cyz�ż + Cyy�ẏ

Kzz =
(

∂Wz

∂z

)
z=z0,y=y0

= (Wz,z)z=z0,y=y0 (14.9)

For a short bearing [59] the direct and cross-coupled stiffness and damping coef-
ficients can be obtained and are given in Figures 14.7a and b.
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The force relations on the bearing are expressed as{
Fz

Fy

}
=
[

Czz Czy

Cyz Cyy

]{
ż

ẏ

}
+
[

Kzz Kzy

Kyz Kyy

]{
z

y

}
(14.10)

The main difference between structural springs and oil film supports is in the
cross-coupling properties. Notice Kyz is negative for certain eccentricities.

Jeffcott equations (14.2) for a rotor on oil film supports without damping in Fig-
ure 14.2 gets modified to

M
d2

dt2 (z + a cos ωt) + K(z − z0) = 0

M
d2

dt2 (y + a sin ωt) + K(y − y0) = 0

K(z − z0) = 2Kzzz0 + 2Kzyy0

K(y − y0) = 2Kyzz0 + 2Kyyy0 (14.11)

Consider first the case of rolling element bearings without accounting for damping
– remember the cross-coupled coefficients are zero for a rolling element bearing,
the shaft stiffness and bearing stiffness can be considered in series in both vertical
and horizontal directions, then, the rotor has two split natural frequencies or critical
speeds given by

Kz = 2KzzK

2Kzz + K

Ky = 2KyyK

2Kyy + K

p1 =
√

2KzzK

(2Kzz + K)m

p2 =
√

2KyyK

(2Kyy + K)m
(14.12)

The natural frequencies of equation (14.11) can be obtained as

p2
1,2 = 1

2
(ω2

1 + ω2
2) ±

√
(ω2

1 − ω2
2)μ1μ2ω

2
1ω

2
2 (14.13)

where

ω2
1 = K1

M
; ω2

2 = K2

M

μ1 = K12

K1
; μ2 = K21

K2
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and

K1 = K[2Kzz(2Kyy + K) − 4KzyKyz]
(2Kzz + K)(2Kyy + K) − 4KzyKyz

K2 = K[2Kyy(2Kzz + K) − 4KzyKyz]
(2Kzz + K)(2Kyy + K) − 4KzyKyz

K12 = 2KzyK2

(2Kzz + K)(2Kyy + K) − 4KzyKyz

K21 = 2KyzK
2

(2Kzz + K)(2Kyy + K) − 4KzyKyz

We note that the cross-coupled stiffness Kyz can be negative; in such cases,
K21 can be negative (μ2) and it is possible that the terms inside the square root
of (14.13) together can be negative, creating a problem of non-existence of the crit-
ical speeds. (This also indicates instability.) There have been several cases reported
of such cases, where a critical speed disappears even when there is no damping con-
sidered. This is one of the peculiar behaviors characteristic of rotors which one will
not come across in structures [53].

Since the rotor response is expressed as whirl, we will find it convenient to get
the solution in the form of forward or backward whirl. The whirl radius from an
eccentricity a of the rotor can be obtained from a forced vibration solution which has
both cosine and sine terms. These trigonometric terms are expressed in exponential
form.

cos ωt = 1

2
(eiωt + e−iωt )

sin ωt = − i

2
(eiωt − e−iωt )

Then the non-dimensional response is determined in terms of forward whirl r+
and backward whirl r−.

r̄ = r+eiωt + r−e−iωt

where

r+ = 1

2
ω2

[
(ω2

1 + ω2
2 − 2ω2) − i(μ2ω

2
2 − μ1ω

2
1)

(ω2
1 − ω2)(ω2

2 − ω2) − μ1μ2ω
2
1ω

2
2

]

r− = −1

2
ω2

[
(ω2

1 − ω2
2) + i(μ2ω

2
2 + μ1ω

2
1)

(ω2
1 − ω2)(ω2

2 − ω2) − μ1μ2ω
2
1ω

2
2

]

Starting from time t = 0, we can add both the forward and backward whirl com-
ponents to give the total response. Unlike in structures, we get the sum of these
components giving rise to an elliptic whirl, because of the split frequencies and
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Fig. 14.8 Gunter rotor response

difference in stiffnesses in two perpendicular directions. If the forward whirl com-
ponent is more than that of backward whirl, the net whirl is forward in the same
direction of spin; otherwise, we get a backward whirl, with whirl in a direction op-
posite to spin, typical of rotors on bearing supports [45, 65].

Gunter [31] considered the following rotor: M = 54.432 kg; K = 1.387 × 107

N/m; rigid bearing critical speed is 4820 RPM; Kzz = 4.16 × 107 N/m; Kyy =
1.01 × 107 N/m; Kzy = 3.12 × 107 N/m; Kyz = 4.16 × 105 N/m.

There are two distinct critical speeds obtained p1 and p2 given in Figure 14.8
[31]. Between the two criticals, we have backward whirl. The whirl orbits are shown
in Figure 14.9. This backward whirl has been seen clearly in laboratory tests.

Morton’s compressor rotor is modeled as a shaft of dia 19.05 cm with total mass
M = 453.6 kg. The bearings are plain cylindrical type 10.16 cm dia, 5.08 cm long
with 0.01016 cm diametral clearance. The lubricant viscosity at operating temper-
ature is 0.00568 Nsec/m2. Rigid bearing critical speed is 8600 RPM. This gives
K = 3.68 × 108 N/m. The following stiffnesses are obtained for this bearing:
K1 = 1.839 × 108 N/m; K2 = 2.004 × 108 N/m; K12 = 1.340 × 108 N/m;
K21 = −1.026 × 108 N/m. Notice that K21 is negative.

The unbalance response obtained is shown in Figure 14.10.
This rotor with a negative cross-coupled stiffness does not show two distinct

critical speeds even in the absence of any damping. Initially it was thought that
the two critical speeds are so close that they coalesced. Incidentally, the fluid film
bearings are physical systems with a negative stiffness, thus showing that negative
stiffness need not be simply a concept, but reality. The rotor in the present case does
not exhibit any backward whirl.

Subbaiah et al. [86] designed an experimental rig to observe the backward whirl
between two critical speeds. The 9.07 kg rotor is mounted centrally on a shaft with
stiffness 884000 N/m and mounted on 2.54 cm dia and 2.54 cm long plain cylin-
drical bearings with 0.0188 cm clearance with a 24 cp lubricant. The backward
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Fig. 14.9 Whirl orbits of Gunter’s rotor

whirl between two critical speeds was observed in the laboratory as shown in Fig-
ure 14.11.

Because the bearings play a significant role, optimization is proposed in the de-
sign by Bhat et al. [3] by using the Vanderplaats [94] method.

14.4 Oil Film Instabilities

The instability of a rotor is a self excited vibration arising out of fluid film forces
and is distinct from large amplitudes of whirl caused by residual unbalance. This
phenomenon is also known as oil whirl and oil whip and was first observed by
Newkirk and Taylor [56]. Robertson [78], Pinkus and Sternlicht [62], Morrison and
Peterson [52] discussed this phenomenon and laid down some simple design rules.
Lund [45, 46] presented a complete methodology for oil film bearing design and
stability; see also [66, 67].
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Fig. 14.10 Unbalance response of Morton’s compressor rotor with negative cross-coupled stiffness
of the plain cylindrical bearings

Fig. 14.11 Clockwise whirl of a rotor spinning counterclockwise at 2500 RPM

Newkirk and Taylor [56] found that oil film bearings were the cause of large
whirls and instability, called oil whip. We have seen earlier that the load carrying
film has two components of flow, velocity induced and pressure induced. The pres-
sure induced flow is essential for the load carrying ability and if this component is
small, the bearing becomes lightly loaded and if it disappears, the bearing becomes
inactive.

For incompressible flow, velocity induced flow alone causes excess fluid coming
into the wedge; this makes the journal lift from the attitude position to provide more
space for the excess oil. A continuous lift due to excess oil coming in makes the
journal center whirl around the bearing center and such a whirl is called oil whirl. A
flow balance gives the oil whirl frequency ν to be exactly half the rotational speed
ω.

Figure 14.12 shows the bearing operating only with velocity induced flow. The
flow balance equation is



200 14 Rotor Dynamics Methods

Fig. 14.12 Lightly loaded bearing

Fig. 14.13 Campbell diagram with half frequency whirl

Flow in Fi = Flow out Fo + Whirl Flow Fw

1

2
LRω(C + e) = 1

2
LRω(C − e) + 2LR(eν)

∴ Oil Whirl Frequency ν = 1

2
ω (14.14)

We can explain the instability from the Campbell diagram given in Figure 14.13.
The synchronous line is 1 per rev line, giving conventional unbalance excitation and
definition of critical speed.

The half frequency whirl or 1/2 × line is also drawn. At any rotational speed,
when we disturb the rotor, it whirls at a corresponding natural frequency. After ex-
ceeding the critical speed, under transient conditions, the rotor gets excited at the
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Fig. 14.14 Whirl response

natural frequency which is more than half rotational speed, until the point where the
half frequency line and natural frequency intersect. At this speed, the rotor whirl is
half the rotational speed and is called Instability Threshold Speed. Before this speed,
the transient motion dies, becomes damped and beyond this the whirl becomes un-
controllable and we say the system is negatively damped, feeding energy into the
system. The whirls become uncontrollable as we increase the speed further.

Typical whirl response in a coast-up test is shown in Figure 14.14. The oil film
in general is nonlinear and therefore has higher harmonic response at about half the
critical speed, point A, this is a minor peak observed if you slowly go through this
speed.

The conventional unbalance response gives resonance at the critical speed and
the rotor gets whipped and this whip is called Resonant Whip, point B. After the
resonant whip, the rotor becomes silent from C and should continue to be so under
normal conditions with conventional support springs. At D, the instability begins
due to oil whirl, the bearing loses its load-carrying capability and the whirl begins
to increase. E denotes a condition of large whirls, called Oil Whip, which is only
due to oil film. This frequency of whirl is < 0.5ω. Under unstable conditions, the
whirl frequency is invariably around 0.47ω. The presence of such a frequency in the
vibration spectrum is due to oil whip or due to bearing looseness, etc., causing oil
whip conditions.

Rao et al. [71] performed a laboratory experiment to observe the oil whip phe-
nomenon; the rig was designed with analog instrumentation designed for this as
shown in Figure 14.15 and the whirl response amplitude identified the points noted
in Figure 14.14.

Mz̈ + K1z + K12y = 0

Mÿ + K2y + K21z = 0 (14.15)
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Fig. 14.15 Laboratory experiment on oil whip

Let us now write the governing equations to determine the complex eigen-values
and the whirl response of a Jeffcott rotor with negative cross-coupled stiffness [68].

The complex eigen-values z = eλt of this equation are obtained as follows:∣∣∣∣K1 + λ2M K12

K21 K2 + λ2M

∣∣∣∣ = 0

λ4 + λ2 K1 + K2

M
+ K1K2 − K12K21

M2
= 0 (14.16)

If the real part of the root is positive, the rotor whirl amplitudes upon transient
disturbance increase and instability occurs. If the real part is negative, the transient
disturbance dies and the system remains stable. For Morton’s rotor the unbalance
response had not shown the critical speeds, and its eigen-values are calculated as

λ4 + 0.847 × 106λ2 + 0.246 × 1012 = 0

λ2
1,2 = 1

2

[−0.847 × 106 ±
√

0.718 × 1012 − 0.984 × 1012]
= −0.424 × 106 ± 0.258 × 106i

λ1,2 = 190.166 ± 678.353i (14.17)

The imaginary part of the eigen-value gives the natural frequency; here it is
678.353 rad/s, i.e., 6478 RPM, where the peak occurs, however, the real part here
is positive and therefore the rotor is susceptible to instability, unless there is some
other source of damping to suppress this instability. The transient response is

z = e190.166t (Aei678.353t + Be−i678.353t ) (14.18)
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The peak occurs at 6478 RPM, since the real part of the solution is unstable.
Though the unbalance response determined ignoring the transient response shows a
low amplitude whirl in these conditions, it is the transient response that should be
determined.

Simple design methods, Lund [45] and Rao [66,67] are devised to find threshold
instability speed of a rigid rotor and flexibility rotor due to oil whirl.

Mz̈ + Czzż + Czyẏ + Kzzz + Kzyy = 0

Mz̈ + Cyyẏ + Cyzż + Kyyy + Kyzz = 0 (14.19)

The threshold condition is determined by when the real part of the eigen-values
is zero, therefore we can write

z = eiνt

y = eiνt (14.20)

Hence ∣∣∣∣Kzz − ν2M + iνCzz Kzy + iνCzy

Kyz + iνCyz Kyy − ν2M + iνCyy

∣∣∣∣ = 0 (14.21)

Cross-multiply and separate the real and imaginary parts to give

(Kzz − ν2M)(Kyy − ν2M) − KyzKzy

CzzCyy − CzyCyz

= ν2

(CzzKyy + CyyKzz) − CyzKzy − CzyKyz

Czz + Cyy

= Mν2 (14.22)

We can non-dimensionalize and write

(K̄zz − Mν2C
W

)(K̄yy − Mν2C
W

) − K̄yzK̄zy

C̄zzC̄yy − C̄zyC̄yz

= ν2

ω2

(C̄zzK̄yy + C̄yyK̄zz) − C̄yzK̄zy − C̄zyK̄yz

C̄zz + C̄yy

= Mν2C

W
= constant K for a given S

K̄zz = KzzC

W
· · · C̄zz = CzzCω

W
· · · (14.23)

Using (14.8) the first equation in (14.23) is now written as

(K̄zz − K)(K̄yy − K) − K̄yzK̄zy

C̄zzC̄yy − C̄zyC̄yz

= KW

MCω2

= Kμ2D2L2

MC4π2WS2

(
R

C

)4

(14.24)
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Defining the rigid rotor stability threshold parameter χ , we have the criterion to
determine the threshold parameter Sthreshold

χ =
√

CMW

μDL(R
C

)
2

= 1

2πSthreshold

√
K(C̄zzC̄yy − C̄zyC̄yz)

(K̄zz − K)(K̄yy − K) − K̄yzK̄zy

(14.25)

Lund [45] gave a procedure for flexible rotors by devising an equivalent two-disk
Jeffcott rotor and Rao [66,67] used this procedure to illustrate the methodology. We
have now methods for analysis of distributed rotors for finding the transient response
and instability analysis which will be briefly discussed later.

14.5 Quality Factor

It is clear that hydrodynamic bearings play a significant role in the dynamic behavior
of rotors. The bearings are eight coefficient bearings with linear properties of stiff-
ness and damping coefficients. We have seen that the cross coupled stiffness terms
can dampen the rotors and limit the amplitudes of whirl in unbalance response. The
direct and cross-coupled dampings are also present in all hydrodynamic bearings
and naturally the designer would like to have a quick estimate on what kind of mag-
nification these terms induce on the rotor at resonance. Rao [70] addressed this issue
and his analysis is briefly presented here.

The rotor is first considered on rigid bearings and a Jeffcott rotor model in Fig-
ure 14.2 is first deduced. The bearings are then accounted for eight coefficient bear-
ings whose stiffness and damping properties are evaluated. Then we have the equa-
tions of motion

Mz̈ + K1
∗z + K12

∗y = Maω2 cos ωt

Mÿ + K2
∗y + K21

∗z = Maω2 sin ωt (14.26)

where

K1
∗ = K∗[2Kzz

∗(2Kyy
∗ + K∗) − 4Kzy

∗Kyz
∗]

(2Kzz
∗ + K∗)(2Kyy

∗ + K∗) − 4Kzy
∗Kyz

∗

K2
∗ = K∗[2Kyy

∗(2Kzz
∗ + K∗) − 4Kzy

∗Kyz
∗]

(2Kzz
∗ + K∗)(2Kyy

∗ + K∗) − 4Kzy
∗Kyz

∗
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K12
∗ = 2Kzy

∗K∗2

(2Kzz
∗ + K∗)(2Kyy

∗ + K∗) − 4Kzy
∗Kyz

∗

K21
∗ = 2Kyz

∗K∗2

(2Kzz
∗ + K∗)(2Kyy

∗ + K∗) − 4Kzy
∗Kyz

∗

K∗ = K + iωC; Kzz
∗ = Kzz + iωCzz

· · · (14.27)

The unbalance response can be obtained as

R = 1

2
ω2 {(ω1

∗2 + ω2
∗2 − 2ω2) − i(μ2

∗ω2
∗2 − μ1

∗ω1
∗2)}

(ω1
∗2 − ω2)(ω2

∗2 − ω2) − μ1
∗ω1

∗2μ2
∗ω2

∗2
eiωt

− 1

2
ω2 {(ω1

∗2 − ω2
∗2) + i(μ2

∗ω2
∗2 + μ1

∗ω1
∗2)}

(ω1
∗2 − ω2)(ω2

∗2 − ω2) − μ1
∗ω1

∗2μ2
∗ω2

∗2 e−iωt (14.28)

where

ω1
∗2 = K1

∗

M
, ω2

∗2 = K2
∗

M

μ1
∗ = K12

∗

K1
∗ , μ2

∗ = K21
∗

K2
∗ (14.29)

The unbalance response given by equation (14.28) can be determined as a func-
tion of speed and where the peak occurs; we can obtain the quality factor. To get an
idea of the quality factor, Rao [70] assumed the cross-coupled stiffness and damping
influence can be neglected and retained the direct stiffness and damping terms. In
that case, the response can be simplified. Then equations in (14.26) get decoupled:

Mz̈ + C̄zż + K̄1z = Maω2 cos ωt

Mÿ + C̄y ẏ + K̄2y = Maω2 sin ωt (14.30)

where

C̄z = 2(2CKzz
2 + 2Cω2Czz

2 + ω2C2Czz + K2Czz)

(2Kzz + K)2 + ω2(2Czz + C)2

C̄y = 2(2CKyy
2 + 2Cω2Cyy

2 + ω2C2Cyy + K2Cyy)

(2Kyy + K)2 + ω2(2Cyy + C)2

K̄z = 2(KKzz − ω2CCzz)(2Kzz + K) + 2ω2(CKzz + KCzz)(2Czz + C)

(2Kzz + K)2 + ω2(2Czz + C)2

K̄y = 2(KKyy − ω2CCyy)(2Kyy + K) + 2ω2(CKyy + KCyy)(2Cyy + C)

(2Kyy + K)2 + ω2(2Cyy + C)2

(14.31)
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For (14.30), the damping ratios in z and y directions are

ξ̄z = C̄z

2
√

K̄zM

ξ̄y = C̄y

2
√

K̄yM

(14.32)

If the shaft damping is assumed to be negligible compared to oil film damping,
(14.31) becomes simplified as

C̃z = 2K2Czz

(2Kzz + K)2 + ω2(2Czz)
2

C̃y = 2K2Cyy

(2Kyy + K)2 + ω2(2Cyy)
2

K̃z = K[2Kzz(2Kzz+K)+ω2(2Czz)
2]

(2Kzz+K)2+ω2(2Czz)
2

K̃y = K[2Kyy(2Kyy + K) + ω2(2Cyy)
2]

(2Kyy + K)2 + ω2(2Cyy)
2 (14.31a)

The corresponding damping ratios are

ξ̃z = Ĉz

2
√

K̂zM

, ξ̃y = Ĉy

2
√

K̂yM

(14.32a)

Case 1: Lightly Damped Rotor
Consider Gunter’s rotor in Section 14.3. From (14.31a) C̃z = 1955.2 Ns/m; K̃z =
1.25 × 107 N/m; C̃y = 637.9 Ns/m; K̃y = 0.824 × 107 N/m.

In z direction: pz = 479.212 rad/s or 4576.14 RPM; Ccz = 52000 Ns/m, ξz =
0.0375; Qz = 13.3333.

It may be noted that the quality factor is at undamped resonance and the peak
value may be away from resonance condition.

The peak value occurs at

r = 1√
1 − 2ξ2

The response of the uncoupled equation is

Z

a
= r2√

(1 − r2)
2 + (2ξzr)

2
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The amplification factor at peak response is therefore

Az = 1

2ξz

√
1 − 2ξz

2
= 13.3427

at 4582.55 RPM.
In y direction: py = 339.078 rad/s or 3715.42 RPM; Ccy = 42355 Ns/m, ξy =

0.015; Qz = 33.3333.
The amplification factor at peak response is therefore Ay = 33.337 at

3716.257 RPM.

Case 2: Heavily Damped Rotor
Consider Morton’s rotor in Section 14.3: C̃z = 135000 Ns/m; K̃z = 3.13×108 N/m;
C̃y = 133000 Ns/m; K̃y = 2.86 × 108 N/m.

In z direction: pz = 830.6836 rad/s or 7932.444 RPM; Ccz = 753520 Ns/m,
ξz = 0.179; Qz = 2.839.

The peak amplitude occurs at 8199.5 RPM, Az = 2.839.
In y direction: py = 794.1 rad/s or 7583 RPM; Ccy = 720408 Ns/m, ξy = 0.185;

Qz = 2.7.
The peak amplitude occurs at 7856.24 RPM, Ay = 2.750.

14.6 Gyroscopic Effects

Rayleigh [76] identified the effect of rotary inertia of a disk mounted on a station-
ary shaft. Stodola [82] considered this effect of rotary inertia and identified it as a
gyroscopic effect that gives rise to split natural frequencies and backward whirl be-
tween them. Green [28] extended these gyroscopic studies of the critical speeds of
flexible rotors. Den Hartog [11] and Timoshenko [90] discussed gyroscopic effects
on synchronous and non-synchronous whirls. Carnegie [6] used energy methods to
determine gyroscopic effects.

Consider a lumped mass model as shown in Figure 14.16. We find in the II Mode
there is no Disk motion and if the shaft is massless, there is no kinetic energy.
Therefore we cannot predict the II Mode. If the mass is a disk with transverse inertia,
the picture is altogether different as in Figure 14.17 since in the II Mode, there is
kinetic energy due to rotation. The disk undergoes a rotation given by an angle equal
to the slope (∂v/∂x) – the derivative of that gives angular velocity and therefore, the
expression for kinetic energy in rotation is

1

2
IT

{
d

dt

(
∂v

∂x

)}2



208 14 Rotor Dynamics Methods

Fig. 14.16 Lumped mass model

Fig. 14.17 Disk with transverse inertia IT

Fig. 14.18 A freely spinning disk

For a stationary beam, this was called by Rayleigh as rotary inertia. When the
shaft rotates, the disk is just like a spin top and gyroscope. This has significant
effect in rotor dynamics.

A spinning disk in three dimensions is shown in Figure 14.18, whirling about
the x axis. Because of whirling, precessional motions are introduced corresponding
to the shaft slopes at the disk center. These precessional motions make the disk’s
motion similar to a spin top and they introduce the gyroscopic effect.
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(a)

(b)

Fig. 14.19 (a) Precession in xz plane. (b) Precession in yz plane

A disk spinning and precessing gives a gyroscopic couple; it is given as the prod-
uct of polar mass moment of inertia, spin angular velocity and precessional angular
velocity and the resulting couple is in the direction following the right-hand cork
screw rule. The two precessional motions give rise to gyroscopic couples in the two
orthogonal planes of bending – these are depicted in Figure 14.19.

The inertia and gyroscopic torques make the bending moment jump across the
disk element as shown above. We can write these moment relations across the disk
I in xz and yz planes:

MR
yi = ML

yi + Ipωφ̇i + IT θ̈i

MR
zi = ML

zi − Ipωθ̇i + IT φ̈i (14.33)

We can use a Myklestad–Thomson type of formulation in transfer form to derive
the governing equations. Consider the case of a mass less shaft with an overhung
disk in Figure 14.20. The two bearings are taken very close to each other, so that
we have a cantilevered rotor, The shaft is spinning at an angular velocity ω and
simultaneously whirling at the same angular velocity in the same direction.

Synchronous whirl is similar to the moon spinning about its axis and going
around the earth. In the first position, the shaft center is at S1 and the outer most
point in line with OS is at P1. The shaft whirls about the bearing centerline O to
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Fig. 14.20 Overhung shaft with synchronous whirl

a position S2 from S1 in a clockwise direction, while it has rotated simultaneously
with the outermost point P occupying the position P2.

This process repeats every complete rotation and we will always find point P

remaining at the outer most position. If one observes the disk which is spinning at
angular velocity ω while sitting at O and whirling at angular velocity ω in the same
direction, point P remains at the same location.

For the overhung rotor, one can derive a relation which gives the natural fre-
quency. Here m is disk mass, EI is flexural rigidity, l is the length and IT is the
transverse mass moment of inertia of the disk.

p4IT + p2 12EI

ml3

(
1

3
ml2 − IT

)
− 12E2I 2

ml4 = 0 (14.34)

With lumped mass model, the above gives

p2 12EI

ml3

(
1

3
ml2

)
− 12E2I 2

ml4 = 0

plumped =
√

3EI

ml3 rad/s (14.35)

With infinite transverse inertia, equation (14.34) reduces to

IT → ∞, p4 + p2 12EI

ml3
= 0

pdisk =
√

12EI

ml3
rad/s (14.36)

In general, the frequency defined by non-dimensional frequency parameter λ =
p
√

ml3/EI is obtained as a function of disk parameter δ = IT /ml2
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Fig. 14.21 Synchronous whirl of a cantilevered disk

λ2
1,2 =

(
6 − 2

δ

)
±
√(

6 − 2

δ

)2

+ 12

δ
(14.37)

The above relation is plotted in Figure 14.21.
We deduce from here that in a whirl that is synchronous and in the same direction

(forward synchronous whirl) the natural frequency increases because of disk effect
from lumped model to disk with infinite radius having the same mass. This is a
significant effect and must be considered in all rotor dynamic analyses.

We now notice a significant fact – when a rotor is spinning and disturbed from its
steady condition, the response depends on how the disk is distributed. This response
is a whirl condition whose frequency will be the same as the natural frequency
shown here.

In reality we must consider the case of non-synchronous whirl, i.e., while the
rotor spins at angular velocity ω the whirling takes place at an angular velocity ν

either in forward direction to spin or backward direction to spin. Without going
through derivations here, a relation for the natural frequencies, whirling frequency
parameter λ = ν

√
ml3/3EI of spinning rotors with non-dimensional rotational

parameter � = ω
√

ml3/3EI is given as a function of the disk parameter δ =
3IT /ml2 in equation (14.38). This relation is also plotted in Figure 14.22.

ν4 − 2ων3 − EI

(
12

ml3
+ 4

IT l

)
ν2 + 24ω

EI

ml3
ν + 12E2I 2

IT ml4
= 0

λ4 − 2�λ3 − 4

(
δ + 1

δ

)
λ2 + 8�λ + 4

δ
= 0 (14.38)

Negative roots of λ for positive rotational speeds ω indicate that the shaft whirls
in an opposite direction to spin – backward whirl. These backward whirl roots are
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Fig. 14.22 Non-synchronous whirl of a cantilevered rotor

plotted as positive values denoted by B. Forward whirl roots, i.e., positive roots of
λ are marked F .

Each frequency of a stationary shaft is split into two components. Per rev excita-
tions are also given, making this a Campbell diagram. When the shaft is stationary,
if we do a bump test, it responds with the structural natural frequencies.

As we increase the shaft speed, first it crosses at 1B with a resonance – this
is usually not observed as there is no excitation in the backward direction; then it
crosses 1A, with peak response whirl, this is first critical speed. Notice the difference
in first critical speed because of the disk effect.

One thing should be noted is that the gyroscopic effect introduces the effect of
rotation on the natural frequencies; but any variation with the speed is not connected
directly with the centrifugal field. It is merely introduced by the disk gyroscopic ef-
fect. Conventionally the rotor dynamics models are beam models and therefore there
is no centrifugal force even though there is rotor eccentricity. All this changed in the
21st century with the introduction of solid rotor model analysis that brings in stress
stiffening and spin softening and our understanding of forward whirl and backward
critical speeds has considerably changed. We will discuss this subsequently.

14.7 Internal Friction, Hysteresis

Internal friction, also called Hysteresis causes instabilities. A loosely mounted part
on the rotating shaft can also have relative motion in rotating coordinates and is
equivalent to internal friction.

Newkirk [55] observed this phenomenon first experimentally and Kimball [38]
discussed this analytically.
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Fig. 14.23 Hysteresis loop

Figure 14.23 shows a typical hysteresis loop, the work lost in one cycle is given
by the area of the loop. Conventionally, we go clockwise from maximum strain
A1 to zero stress position B1 then to A2 at zero strain; at A3 we have maximum
compressive strain, then zero stress at B2 and again to zero strain at A4 before
completing the full cycle.

At any point with a strain ε, the stress is made of a steady part σs and an alternat-
ing component σa . The work lost in each cycle is equivalent to damping in rotating
coordinates and to determine this, we express the material property as viscoelastic,
instead of purely elastic. Here D is damping modulus Ns/m2.

σ = Eε + Dε̇ (14.39)

The work of a hysteresis loop is compared with work in deforming the body
over a quarter period, which gives relatively the damping in the system, also called
specific damping capacity. For convenience, the work of hysteresis is taken over one
radian, rather than one cycle, that gives the well-known Loss Factor.

Work done per unit volume over one period is

W =
∮

σ(ε)dε (14.40)

Work done per unit volume in deformation during one quarter period is

U = 1

2
σ̂ ε̂ (14.41)

Relative damping or Specific damping capacity is then given by
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β = W

U
=
∮

σ(ε)dε

1
2 σ̂ ε̂

(14.42)

∴ Loss Factorη = β

2π
(14.43)

For harmonic strain, the strain rate is ε̇ = ε̂ω cos ωt . Using

cos ωt =
√

1 − sin2ωt =
√

1 −
(ε

ε̂

)2

equation (14.39) is

σ = Eε + Dωε̂

√
1 −

(ε

ε̂

)2

= Eε + D∗√ε̂2 − ε2 = σs + σa (14.44)

where D∗ = Dω. The harmonic component σa = D∗√ε̂2 − ε2 varies periodically,
zero at peak strain points. The viscous effect is proportional to strain rate with its
coefficient called the Damping Modulus. We can use this alternating stress for a
harmonic strain and determine the loss factor. The internal damping is calculated,
using a viscoelastic model, as follows now:

W =
∮

σ(ε)dε = πD∗ε̂2 (14.40a)

U = 1

2
σ̂ ε̂ = 1

2
Eε̂2 (14.41a)

β = W

U
= 2π

D∗

E
(14.42a)

η = D∗

E
(14.43a)

Let the equivalent internal damping factor be h. Then

Wd = πhωX2 (14.40b)

U = 1

2
kX2 (14.41b)

β = Wd

U
= 2π

hω

k
(14.42b)

Or h is given by

h = 1

2π

βk

ω
= ηk

ω
(14.44a)

Substituting for loss factor η the equivalent viscous damping ratio is
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Fig. 14.24 Shaft in synchronous whirl

ξv = hp

2k
= ηp

2ω
(14.45)

The loss factor for a given material is determined experimentally, so the internal
damping coefficient h or equivalent internal damping can be determined as above.

Shaft in Synchronous whirl: Consider the disk at shaft center S in Figure 14.24,
which whirls about bearing centerline B through angle θ = ωt . In synchronous
whirl, the shaft spins about its center S through the same angle θ = ωt , point A1
in maximum tension position it remains the same as A′

1, etc. Note that A2, A4 are
neutral strain points, not neutral stress points.

Shaft in Subsynchronous whirl ν < ω: Let us now consider the case of whirl
frequency ν lower than spin speed ω. Now, the shaft center S whirls about bearing
centerline B through angle θ = νt . The shaft spins about its center S through an
angle > θ by ωt . A1 goes beyond A′

1 of the synchronous whirl upto A′′
1 under

subsynchronous whirl, i.e., it tries to catch up with A′
2. Therefore, we have the zero

stress position B1, between A1 and A2.
The component of P in the horizontal direction has a moment about S aiding the

whirl, thus making the shaft unstable.
A shaft spinning at ω when disturbed, whirls with ν = natural frequency p. There-

fore this instability can occur only when ω > p.
Shaft in supersynchronous whirl ν > ω: Here shaft center S whirls about bearing

centerline B through angle θ = νt , see Figure 14.25. The shaft spins about its center
S through an angle < θ by ωt . A shaft spinning at ω when disturbed whirls with ν

= natural frequency p. Therefore this instability can never occur when ω < p.
Tondl [91] provided an analysis of a Jeffcott type rotor with internal damping.

Figure 14.26a shows the disk in rotating coordinates ηξ . Equilibrium conditions are
defined in rotating coordinates. Use accelerations in rotating coordinates for inertia
forces and velocities in rotating coordinates for external damping.
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Fig. 14.25 Supersynchronous whirl

(a)

(b)

Fig. 14.26 (a) Shaft with internal damping. (b) Stability chart of a rotor with internal damping or
loosely mounted part

The shaft center in stationary coordinates is r = z+iy and in rotating coordinates
it is ζ = ξ + iη. The velocities and accelerations of G are
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vξ = ξ̇ − ω(η + a2)

vη = η̇ + ω(ξ + a1)

aξ = ξ̈ − 2ωη̇ − ω2(ξ + a1)

aη = η̈ + 2ωξ̇ − ω2(η + a2) (14.46)

The governing equation in rotating coordinates is

M(ξ̈ − 2ωη̇ − ω2ξ) + C(ξ̇ − ωη) + hξ̇ + Kξ = Ma1ω
2 + Mg cos ωt

M(η̈ + 2ωξ̇ − ω2η) + C(η̇ + ωξ) + hη̇ + Kη = Ma2ω
2 + Mg sin ωt

M(ζ̈ + 2ωζ̇ − ω2ζ ) + C(ζ̇ + iωζ ) + hζ̇ + Kζ = Maω2 + Mg exp(−iωt)

C

M
= 2δv,

h

M
= 2δh

ζ̈ + 2ωζ̇ − ω2ζ + 2δv(ζ̇ + iωζ ) + 2δhζ̇ + p2ζ = aω2 + g exp(−iωt) (14.47)

Convert the above to stationary coordinates and solve. Stability depends on the
two exponentially decaying or growing type terms.

ζ = r exp(−iωt)

r̈ + 2δvṙ + 2δh(ṙ − iωr) + p2r = aω2 exp(iωt) + g

r = exp(iλt)

λ2 − 2iλ(δv + δh) + 2iωδh − p2 = 0

r = A1 exp

[
−
(
δv + δh + δhω

p

)
t

]
exp(−ipt)

+ A2 exp

[
−
(

δv + δh − δhω

p

)
t

]
exp(ipt) (14.48)

A stability chart for a rotor with internal friction is given in Figure 14.26b. In
practice, a loosely mounted disk, gear, flywheel, etc., cause friction between the
two surfaces, the rotor and the mounted part. Unlike friction between a stationary
part and moving part, here the friction is with respect to the rotor, i.e., in rotating
coordinates. The friction coefficient between two such surfaces is h. For large h, or
low external damping C, the instability can set in just after the first critical speed.
We need external friction to fight the instability due to a loosely mounted part. If C

is, say, 3h, then the instability takes place at a speed four times the critical speed.
This instability can never occur at speeds below the first critical speed.

Ehrich [15] also considered hysteretic whirl and contributed to the Shock and
Vibration Handbook by Harris and Crede [32].
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14.8 Shafts with Gravity and Variable Elasticity

Stodola [82–84] recognized the influence of gravity and variable elasticity caus-
ing minor phenomena, though we know today that they play a significant role. In
magnitude they are infinitesimals of the second order; but although they must be
described as “secondary”, they may still cause trouble in operation. He explains the
gravity phenomenon as follows.

The motion of a single disk consists of a fairly uniform rotation with the angu-
lar velocity ω about the center of gravity S. The latter itself describes during the
stationary motion (Jeffcott’s analysis is published in 1919 [37]) a circular path with
angular velocity ω and an elastic vibration with circular frequency ωk which may be
rectilinear, elliptical or circular and in the latter case may proceed in the same direc-
tion (forward whirl) or in the opposite direction (backward whirl) of ωThe relative
motion of S with respect to space rotation with ω may be a motion with velocity
ωk − ω, which should be regarded as a combination of two harmonic vibrations. Its
weight G is converted in the space ω into a rotating force with components G sin ωt

and G cos ωt and which gets into resonance with the relative vibration in case of
frequency ωk − ω and ω coincide, i.e.,

ωk − ω = ω

ω = 1

2
ωk (14.49)

According to Stodola, the Siemens–Schuckert Works reported such a vibration
as far back as 1910. Stodola [82, 85] discussed the variable elasticity effect of the
shaft material that necessitates taking the bending moments in two perpendicular di-
rections which amounts to the same thing as though the shaft, for instance, had two
principal axes of inertia as in the case of a shaft having a groove all the way in lon-
gitudinal direction (or as a generator rotor and equivalent rectangular cross-section
shaft). Stodola [82] correctly identified the two critical speeds due to variable elas-
ticity (or stiffness) and also he states that for the intermediate speeds the equilibrium
is not a stable one. We know this to be true only for vertical rotors but horizontal
rotors with gravity effect; the response between these two critical speeds is stable.
What is interesting here to note is that Stodola says that Prandtl [63], a famous name
in Fluid Mechanics, has shown that a new critical speed becomes noticeable at about
half the value of the usual critical speed. So it seems Prandtl is the first one to work
on Gravity Critical.

Gümbel [29, 30] and Föppl [21] discussed the gravity effect. Taylor [87], Tim-
oshenko [90] and Den Hartog [11] discussed the physics of the shafts with vari-
able stiffness using a rectangular shaft model carrying a central disk. Mathieu [47],
also see [51], studied stability of equations governed by variable stiffness. Whit-
taker [95] provided general solutions of Mathieu’s equation; see also [35, 69]. The
vertical shaft configuration (e.g., generator rotor in a hydraulic turbine generator
system) is shown in Figure 14.27. The response of a vertical shaft without gravity
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Fig. 14.27 A vertical rectangular shaft carrying a central mass

Fig. 14.28 Response of a horizontal shaft at critical speed

and the response of a horizontal shaft, whose disk is displaced by C, is shown in
Figure 14.28.

The mean stiffness is taken as K and the variation in stiffness by �K . As can
be seen the stiffness varies twice in one revolution. Let the rotor spin speed be ω

and the stiffness variation be at angular velocity ωk = 2ω. Let us first consider the
horizontal shaft as shown in Figure 14.28 running at critical speed ω = p. The shaft
stiffness varies at ωk = 2ω = 2p. When the shaft center moves away from the
bearing centerline between points 2 and 4, the stiffness varies once, with the mean
at K . Therefore there is no energy input to the system and the horizontal shaft is
stable at critical speed.
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Fig. 14.29 Horizontal shaft at half critical speed

For a vertical rotor, the response has pure sinusoidal variation with a frequency
p corresponding to the natural frequency, and when the rotor is horizontal, we have
to take this variation down by the gravity deflection C.

For vertical rotors (hydro machines), at critical speed, between 1–2 and 3–4,
when the shaft is going away from mean position, the stiffness is lower, therefore
it requires less energy to push the shaft away, thus it is unstable. Besides unbalance
forced vibration, a vertical shaft is unstable as well.

If the shaft is horizontal, it goes away from mean equilibrium, between 2–4 and
the stiffness here averages out, therefore there is no energy input and the system is
stable. Horizontal shafts are not unstable; they are subjected to conventional forced
vibration alone. At half critical speed, the horizontal shaft behaves in a different
manner. At this speed, the stiffness is varying at twice the half critical speed, i.e.,
the stiffness variation is at the same frequency as the natural frequency. When dis-
turbed, the shaft responds at critical speed and the stiffness is also varying at the
same frequency as shown in Figure 14.29. For a horizontal shaft, between 2–4, the
stiffness is lower; therefore, it is unstable as shown.

The response is due to conventional unbalance which is low at this speed; how-
ever, the instability at this speed causes large whirls. Initially, this speed was thought
to be some kind of critical, when the instability was not clearly understood and
therefore, this speed is called gravity critical.

If however, the shaft runs at half critical speed as in Figure 14.29, the situation
is entirely different. Between 2 and 4 when the shaft center is going away from
the bearing centerline, the stiffness is below mean value and therefore offers less
resistance. This leads to energy input into the system and a self excited vibration
takes place.

Timoshenko [90] gave an elegant analysis of an asymmetric shaft by solving a
single degree of freedom system with constant stiffness K + (�K/K) for half of
stiffness variation period and K − (�K/K) for the other half and applying ap-
propriate boundary conditions. We will however go through the classical solution
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Fig. 14.30 Whirling of a rotor with a rectangular cross-section shaft

provided by Tondl [91] here. Figure 14.30 gives the rectangular cross-section shaft
in rotating coordinates.

Similar to equations (14.47), the governing equations for the rectangular shaft
are

M[ξ̈ − 2ωη̇ − ω2(ξ + a1)] + K1ξ = Mg cos ωt

Mη̈ + 2ωξ̇ − ω2(η + a2) + K2η = Mg sin ωt (14.50)

where

K1 = K − �K

K2 = K + �K (14.51)

Equations (14.50) are simplified with no unbalance as

ξ̈ − 2ωη̇(p2
1 − ω2)ξ = g cos ωt

η̈ + 2ωξ̇(p2
2 − ω2)η = −g sin ωt (14.52)

where
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p2
1 = K1

M
= p2

(
1 − �K

K

)

p2
2 = K2

M
= p2

(
1 + �K

K

)
(14.53)

Vertical Shaft – No gravity: The free vibration solution of (14.52) is

ξ = ξ0e
iλ0t

η = η0e
iλ0t (14.54)

where λ0 is the frequency of vibration in rotating coordinates. Substituting (14.54)
in (14.52), we get the frequency equation

λ0
4 − (p1

2 + p2
2 + 2ω2)λ0

2 + (p1
2 − ω2)(p2

2 − ω2) = 0 (14.55)

The roots of the above equation expressed in stationary coordinates system λi =
λ0i + ω are

λ

p
= ω

p
±

√√√√√1 +
(

ω

p

)2

±
√√√√[1 +

(
ω

p

)2
]2

−
[

1 − �K

K
−
(

ω

p

)2
][

1 + �K

K
−
(

ω

p

)2
]

(14.56)

For �K/K = 0.4, the above is plotted in Figure 14.31. There are four real roots for
all λ/p, for all ω/p except when

1 − �K

K
<

(
ω

p

)2

< 1 + �K

K
(14.57)

For ω/p = 0, the four roots are λ/p = ±1.183 and ±0.77. The stability diagram
is shown in Figure 14.31. From this we can find that a vertical asymmetric shaft is
unstable in the critical speed region.

Effect of Disk Unbalance and No Gravity: Equation (14.50) reduces for this case
to

ξ̈ − 2ωη̇(p2
1 − ω2)ξ = a1ω

2

η̈ + 2ωξ̇(p2
2 − ω2)η = a2ω

2 (14.58)

Setting

ζ = ξ + iη

ζ̄ = ξ − iη (14.59)
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Fig. 14.31 Stability of a balanced vertical rotor on a rectangular shaft

equations (14.58) can be combined to give

ζ̈ − 2iωζ̇ (p2 − ω2) − �K

K
p2 ζ̄ = ω2(a1 + a2) (14.60)

For the steady-state solution, we write

ζu = A + iB

ζ̄u = A − iB (14.61)

where A and B are constants and reconstruct equation (14.60) to give

(p2 − ω2)(A + iB) − �K

K
p2(A − iB) = ω2(a1 + a2) (14.60a)

Separating real and imaginary parts
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Fig. 14.32 Unbalance and gravity response of a rectangular shaft with disk

A =
a1

ω2

p2

1 − ω2

p2 − �K
K

, B =
a2

ω2

p2

1 − ω2

p2 + �K
K

(14.62)

The whirl radius due to unbalance is r + u = √
A2 + B2

ru = ω2

p2

√
a1

2[1 − ω2

p2 + �K
K

]2 + a2
2[1 − ω2

p2 − �K
K

]2

(1 − ω2

p2 )
2 − (�K

K
)
2

(14.63)

The two critical speeds are

ω2

p2 = 1 − �K

K
or1 + �K

K
(14.64)

For a vertical rotor the response is unstable between the critical speeds, for a
horizontal rotor, gravity removes this instability and gives rise to pure unbalance
response with two peaks (see Figure 14.32).

Effect of Gravity on a Balanced Disk: Since the mean equilibrium keeps changing
as the stiffness varies, gravity plays a significant role. Equation (14.50) for this case
is

ζ̈ − 2iωζ̇ (p2 − ω2) − �K

K
p2ζ̄ = g exp(−iωt) (14.65)

Writing the solution due to gravity

ζg = Aeiωt + Be−iωt

ζ̄g = Āe−iωt + B̄eiωt (14.66)
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where A and B are now complex constants Ā and B̄ are their conjugates, we can
show that

A

δst

=
�K
K

1 − 4r2 − (�K
K

)
2
,

B

δst

= 1 − 4r2

1 − 4r2 − (�K
K

)
2

(14.67)

where δst = Mg/K . The solution in the stationary coordinates is

rg = ζgeiωt = Ae2iωt + B (14.68)

and
rg

δst

= 1 − 4r2

1 − 4r2 − (�K
K

)
2 +

�K
K

1 − 4r2 − (�K
K

)
2 e2iωt (14.69)

The above response is twice the rotational speed and resonance takes place when

4r2 = 1 −
(

�K

K

)2

or when ω = 1

2
p

√
1 −

(
�K

K

)2

The response from (14.69) is also plotted in Figure 14.32. Because of this resonance
at ω = 0.46p, we are somewhat justified in saying that this critical condition is
due to gravity and therefore it is a gravity critical. However, the solution here is
not stable. To obtain the stability condition of the second harmonic, we modify the
free vibration system equation with ξ and η coordinates rotating at 2ω, by virtue
of the forced vibration of the horizontal shaft that can occur at 2ω frequency. Then
equation (14.52) becomes modified

ξ̈ − 4ωη̇(p2
1 − 4ω2)ξ = 0

η̈ + 4ωξ̇(p2
2 − 4ω2)η = 0 (14.52a)

Using (14.54), the frequency equation is

λ0
4 − (p1

2 + p2
2 + 8ω2)λ0

2 + (p1
2 − 4ω2)(p2

2 − 4ω2) = 0 (14.54a)

Also, since λ = λ0 + 2ω we get equation (14.56) for this case,

λ

p
= 2ω

p
±

√√√√√1 + 4

(
ω

p

)2

±
√√√√[1 + 4

(
ω

p

)2
]2

−
[

1 − �K

K
− 4

(
ω

p

)2
][

1 + �K

K
− 4

(
ω

p

)2
]

(14.56a)
In general there are four real roots for, except when

1 − �K

K
< 4

(
ω

p

)2

< 1 + �K

K
(14.57a)
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Fig. 14.33 Different misalignments

which is p1/2 < ω < p2/2. Under these conditions there are two real roots and two
complex roots which give rise to oscillatory solutions. However the real parts being
positive, the solutions are unstable.

14.9 Misalignment

Stodola [82] records that due to periodic variation of the tangential force or interme-
diacy of a flexible coupling with inaccurate alignment of the shafts, variable impulse
act on the shaft. According to Föppl [22] if the variation of the deformation causes
ν impulses per revolution, a new critical disturbance with the velocity

ω1 = ωk

ν + 1
(14.70)

comes into evidence. The complete solution shows also the presence of disturbance

ω2 = ωk

ν − 1
(14.71)

Misalignment is a very common problem that occurs in machinery after some
amount of running. Like residual unbalance, misalignment is always present to some
extent and if it deteriorates, the machine runs rough and its life is affected. There are
three types of misalignment, Parallel misalignment is indicated by yb2 = yb1 and
zb2 = zb1 in Figure 14.33.

The angular misalignment is indicated by yb2 with yb1 = 0 and zb2 with zb1 = 0.
Combined misalignment is indicated by yb2 − yb1 and zb2 − zb1.

A 3-D view of the driver and driven shaft axes along with the deformed coupling
element of length lc is shown in Figure 14.34 giving parallel and combined parallel
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Fig. 14.34 Forces and moments due to misalignment

and angular misalignment values. Due to the deformation of the coupling element
and the drive shaft torque, forces and moments are induced as indicated.

Reaction forces and moments due to transmitted torque are

MTy = T sin φa cos φp + T cos φa sin φp

MT z = −T sin θa cos θp − T cos θa sin θp

FTy = MT z

lc

sin θa = �za

lb
, sin θp = �zp

lc

sin φa = �ya

lb
, sin φp = �yp

lc
(14.72)

Reaction forces and moments due to coupling element deformation are

FDy = 12EIc

l3
c

(�yp − 1

2
lcφa)

FDz = 12EIc

l3
c

(�zp − 1

2
lcθa)

MDy = 6EIc

l2
c

(�yp − 2

3
lcφa)

MDz = 6EIc

l2
c

(�zp − 2

3
lcθa) (14.73)

The axial force is

FDx = EAc

lc
�x (14.74)
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Fig. 14.35 FE model of a misaligned shaft system

Fig. 14.36 Radial misalignment force due to parallel misalignment

According to Ehrich [17] preloads due to misalignment vary at the frequency of
the shaft speed. Lee [42] modeled and performed vibration analysis of misaligned
rotors on ball bearing supports.

To understand the influence of rotation, Rao and Sreenivas [74] made a FE model
of two Jeffcott rotors coupled by a two pin element as shown in Figure 14.35. Re-
volving this system, we can determine the forces and stresses as a function of time
and their peak values.

The peak values obtained from FE analysis are the same as strength of material
values derived by Gibbons [25], see Figure 14.36. Also, due to parallel misalignment
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Fig. 14.37 Transient response due to parallel misalignment

of 1 mm, the radial force obtained is found to vary linearly, once per revolution, as
observed by Ehrich [17], such a triangular wave has several harmonics given by 1×,
3× , 5× . . . These components are responsible for higher harmonic responses in the
misaligned shaft system. Similarly other misalignments produced a response with
one per revolution variation.

The transient response obtained with these misalignment values is given in Fig-
ure 14.37. One per rev component increases significantly while approaching the
critical speed and the magnitude of higher harmonics become significant with more
misalignment as shown.

An experimental study was conducted as shown in Figure 14.38.
Figure 14.39 shows a signal captured during the coasting up of the rotor system

to a steady state running frequency of 36 Hz. The response in the radial direction is
high at 1/3 and 1/2 critical speeds.

The axial vibration of the driving shaft disc was also picked up using a proximity
probe. The coasting up signal of the axial vibration is shown in Figure 14.40. It was
found that the axial vibration undergoes a significant change around the one-half
natural frequency region.
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Fig. 14.38 Misalignment experimental studies [74]

Fig. 14.39 Response in radial direction shows 1/3 and 1/2 transient criticals

14.10 Bowed Rotors

Well-balanced rotors are sometimes subjected to deformations while running or un-
der stationary conditions. Typically they arise from thermal stresses when the rotor
is not properly stabilized. Such a rotor is called Bowed Rotor or a Rotor with Per-
manent Bow. A bowed rotor can be considered as the Jeffcott model with a static
deflection from the bearing centerline with a magnitude r0 at a phase angle a0 (see
Figure 14.41) and we can write the governing equation as
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Fig. 14.40 Response in axial direction shows only 1/2 critical transient

Fig. 14.41 Rotor on a bowed shaft

M
d2r

dt2
+ C

dr

dt
+ Kr = Maω2eiωt + Kr0e

i(ωt+α0) (14.75)

The solution consists of two parts:

R̄ = R

a
= �2√

(1 − �2)
2 + (2ξ�)2

ei(ωt−φ) + R0e
iα0√

(1 − �2)
2 + (2ξ�)2

ei(ωt−φb)

(14.76)
where R0 = r0/a is the bow factor; φ = 2ξ�/1 − �2 is the unbalance phase angle;
and φb = φ + α0 is the bow phase angle.



232 14 Rotor Dynamics Methods

Rotors get statically bent or bowed or warped due to sudden thermal loads, or
leaving the rotor unattended for long periods without barring. Sometimes, the rotor
is balanced in a tunnel and left for long periods in a crate without adequate support
to avoid gravity sag. In all these cases, the rotor comes to a halt at the heavy spot,
with the rotor sag and eccentricity in one line. If the rotor is dropped from a height,
the bow location angle is 180◦, which is in a direction opposite to the mass center.

The response is rewritten as

R̄ = [Ae−iφ + Be−i(φ+α0)]eiωt

= [A + Be−iα0]ei(ωt−ψ) (14.77)

where A is the response due to conventional unbalance and B due to the bow unbal-
ance.

A = �2√
(1 − �2)

2 + (2ξ�)2

B = R0e
iα0√

(1 − �2)
2 + (2ξ�)2

ψ = tan−1
(

A sin φ + B sin φb

A cos φ + B cos φb

)

Usually, the bow gives α0 = 0, then these two responses get added, i.e., the unbal-
ance increases.

α0 = 0◦, R̄ = �2 + R0√
(1 − �2)

2 + (2ξ�)2
(14.78)

For a dropped rotor the bow usually is α0 = 180◦, then these two responses are
opposed.

α0 = 180◦, R̄ = �2 − R0√
(1 − �2)

2 + (2ξ�)2
(14.79)

This condition leads to a self balancing speed, �s , the speed at which the response
becomes zero.

�s = √
R0 (14.80)

The response with bow phase 180◦ for a bow R0 = 0.5 is given in Figure 14.42.
The self balancing speed �s = √

R0 = √
0.5 = 0.707, is shown in Figure 14.42,

where a phase change of 180◦ takes place.
The self balancing and phase difference predicted was tested in the laboratory

by Rao and Sharma [73]. A field observation of the bode plot of start up of a 220
MW machine in Raichur, Karnataka, India is shown in Figure 14.43. This bode plot
clearly shows that the rotor is bent.
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Fig. 14.42 Response with bow phase 1800 and self balancing speed

14.11 Variable Inertia

In reciprocating machinery, Goldsborough [26] has shown that torsional vibrations
of large amplitudes occur within a series of ranges of instability, hence increasing
the probability of crankshaft failure in fatigue. He later conducted theoretical inves-
tigations and tests of a single cylinder engine [27]. Draminsky [13] and Archer [2]
in their analysis of failures of marine diesel engine crankshafts have clearly estab-
lished the need to calculate vibration stresses that accounts for variable inertia ef-
fects. Carnegie et al. [7] used Runge–Kutta method to predict the instability regimes.
Their model is derived here. For simplicity the piston displacement is assumed to
be harmonic x = a cos θ . Then the potential and kinetic energies are written
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Fig. 14.43 Field observation of a bowed rotor

Fig. 14.44 Variable inertia system

T = 1

2
I θ̇2 + 1

2
M

1

2
a2θ̇2(1 − cos 2θ) + 1

2
IAω2

V = 1

2
K(θ − θ1)

2 (14.81)

Neglecting higher order terms, the equation of motion is derived as(
I + 1

2
Ma2 − 1

2
Ma2 cos 2θ

)
θ̈ + 1

2
Ma2θ̇2 sin 2θ + K(θ − θ1) = 0 (14.82)

The equation of motion is non-dimensionalized as
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Fig. 14.45 Unstable regions of a variable inertia system

θ = ωt + γ, τ = ωt

p2 = K

I + 1
2Ma2

, μ =
1
2Ma2

I + 1
2Ma2

(1 − μ cos 2τ)
d2γ

dτ 2 + 2μ sin 2τ
dγ

dτ
+
(

1

r2 + 2μ cos 2τ

)
γ = −μ sin 2τ

(14.83)

Goldsborough solved for the complementary function of (14.83) using the
Floquet theory [19], see [51].

γ = a1e
cτ φ(τ ) + a2e

−cτ φ(−τ ) (14.84)

The exponent c and function φ are developed using variable inertia parameter μ

c = μC1 + μ2C2 + · · ·
φ = cos κτ + A sin κτ + μx1 + μ2x2 + · · · (14.85)

where κ = 1/r . Then a solution is sought in the neighborhood of integer values of
the non-dimensional parameter κ2 = ρ2 + μα + · · · where ρ = ±1, ±2, . . . After
a lengthy calculation [69] one gets analytical expressions for unknown coefficients
c1, c2 and A and corresponding bounds of stability.

Oravsky and Rao [60] discussed another system representing an autonomous ba-
sic aggregate and showed that it too is governed by the same equations. A numerical
solution by the Runge–Kutta method [41, 79] was obtained by Carnegie et al. [7].
The unstable regions around r = 1 and 1/2 are shown in Figure 14.45.
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Fig. 14.46 Simple smooth seal

14.12 Seals and Instabilities

Seals are used to prevent leakage of a high pressure fluid medium into low pressure
sections or into an atmosphere from one section of the rotor to another along the
axial length. They are usually located between the shaft and the housing. Sometimes
they are located between a rotating impeller shroud and the housing; they are then
called neck ring seals. If they are located between the hub and the housing, they
form an inter stage seal. They do not form a support to the rotor, however their
characteristics are similar to those of fluid film bearings and therefore we study the
properties of seals in this chapter.

Seals can be classified into two general categories, viz., smooth and labyrinth
seals. A simple seal is shown in Figure 14.46. If the shaft is stationary and concentric
with the seal there will be an axial flow due to the pressure difference across the seal.
Due to any eccentricity, an unsymmetrical velocity and pressure distribution around
the circumference takes place and the resulting force acting on the shaft is directly in
opposition to the shaft displacement. This gives rise to a direct stiffness coefficient
which was first determined by Lomakin [43]. Once the shaft rotates, the flow in the
circumferential direction gets diverted, resulting in a transverse component to the
direction of shaft displacement. This gives rise to the cross-coupled stiffness term.
The displacement is usually accompanied by a velocity and it results in damping
terms. The stiffness and damping forces for seals can be represented in a general
form similar to equation (14.86).

−
{

Fx

Fy

}
=
[

M 0
0 M

]{
ẍ

ÿ

}
+
[

Cd Cc

−Cc Cd

]{
ẋ

ẏ

}
+
[

Kd Kc

−Kc Kd

]{
x

y

}
(14.86)

Lomakin [43, 44] provided a method of calculation of critical speeds and dy-
namic stability of hydraulic high pressure machines with reference to the forces
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acting in the gap seals. Black [4] gave the procedure for calculation of this stiffness
and damping coefficients, this procedure is outlined by Rao [69] and Krämer [40].
Brown [5] adopted the same procedure for calculating the stiffness and damping
coefficients in his analysis.

Consider a plain seal with length L, radius R and clearance C, with pressure
difference across given by �p. Let the average flow velocity in the seal be V , as
given here.

V =
√

2�p

ρ(1 + ξ + 2σ)
(14.87)

Resistance to flow is represented by σ with the resistance coefficient λ which
depends on its Reynolds number.

σ = λ
L

C

λ = 0.066R−0.25
a

(
1 + 1

4b2

)0.375

Ra = V
C

ν

b = V

Rω

ξ ≈ 0.5 (14.88)

Here, ρ is density, ν is kinematic viscosity and ξ is entrance loss coefficient, which
can be taken as 0.5. The coefficient 0.066 and the exponents −0.25 and 0.375 are
Hir’s coefficients. The rotational speed is ω rad/s. In terms of characteristic time for
the seal T = L/V , the stiffness and damping coefficients are

Kd =
(

a0 − 1

4
a2ω

2T 2
)

K∗

Kc = 1

2
a1ωT K∗

Cd = a1C
∗

Cc = a2ωT C∗ (14.89)

where

K∗ = �p
LR

c

C∗ = K∗T (14.90)

The coefficients a0, a1, and a2 are given by
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Fig. 14.47 Stiffness and damping coefficients of seals

a0 = 2.5AE

a1 = 24

{
E

σ
+ 1

2
B

(
E + 1

6

)}

a2 = A

σ

(
E + 1

6

)
(14.91)

where A, B and E are obtained from

A = πω

1 + ξ + 2σ

B = 1 + 7b2

1 + 4b2

E = 1 + ξ

2(1 + ξ + Bσ)
(14.92)

For labyrinth seals a coefficient EL is first determined

EL = 1

2
ρ̄ω2R2 1

�p + 1
2ρ0u

2
0

(14.93)

where ρ0 is the inlet density; ρ̄ is the average density; and u0 is the inlet axial
velocity. Then the direct and cross-coupled stiffness are given by Figure 14.47.
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The stiffness and damping coefficients of seals being important in stability analy-
sis of high speed pumps, such as cryogenic pumps used in space applications [75],
several attempts have been made to design test rigs for this purpose, see for exam-
ple [9, 10, 36].

Childs and his team in Texas have an extensive facility for testing seals and have
conducted several tests to determine stiffness and damping coefficients, e.g., many
results are reported in [8]. Nordmann has also conducted extensive tests on seals,
e.g., Nordmann and Massman [58] and Nordmann and Dietzen [57] gave a finite
difference analysis to determine stiffness and damping coefficients, whereas Rao
and Saravana [72] used a CFD code to determine these coefficients.

To assess stability of rotors due to seals, we can consider a Jeffcott rotor with
mass M = 50 kg, K = 5.0 × 106 N/m, rigid bearing critical speed is 3020 RPM.
The seal dimensions and properties are:

R = 0.05 m

L = 0.05 m

C = 0.0002 m

�p = 8 MPa

ρ = 5 kg/m3

ξ = 0.5

ν = 2

At 3000 RPM:

Kd = 3.64 × 106 N/m

Kc = 1.99 × 106 N/m

The governing equations without damping are[
M

M

]{
z̈

ÿ

}
+
[

K + Kd KC

−KC K + Kd

] {
z

y

}
= 0

The eigen-values are

λ4 + 0.346 × 106λ2 + 0.031 × 1012 = 0

λ2
1,2 = 1

2

[
−0.346 × 106 ±

√
0.12 × 1012 − 0.126 × 1012

]
= −0.173 × 106 ± 0.078 × 106i

λ1,2 = 91.57 ± 425.89i

The response is
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Fig. 14.48 Steam whirl

z = e91.57t (Aei425.89t + Be−i425.89t )

The real part is positive and therefore the solution is unstable and the response
occurs at 3000 RPM with a frequency of 425.89 rad/s = 4067 RPM.

14.13 Steam Whirl

The earliest publication addressing steam whirl is from Thomas [88]. Due to shaft
whirling, the clearance does not remain constant and therefore a resultant couple
acts arising from the steam forces, see Figure 14.48. Alford [1] proposed the same
explanation for the gas turbines in the US. In the US, the net destabilizing force is
called the Alford force, in Europe it is often referred to as the Thomas–Alford force.
Urlichs [93] and Wohlrab [96] gave extensive experimental results.

Let P be the stage power, then the tangential force Fu (N) is
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Fu = P

ωR

fu = Fu

2πR
= P

2πωR2 (14.94)

where fu is force per unit circumferential length (N/m). The clearance c at an angle
φ for a displacement in z direction is

cφ = c + �c = c − z cos φ (14.95)

Under ideal circumstances with clearance c = 0, fu0 = [fu]c=0. With a clear-
ance, force per unit circumferential length is

fu = fu0

(
1 − γ

c

l

)
(14.96)

where l is blade length and c is the clearance factor. We can now write down the
tangential force at an angle φ

fuφ = fu + �fu = fu + ∂fu

∂c
�c

= fu

(
1 + γ

l
z cos φ

)
(14.97)

We can sum up the forces around the periphery by integration and obtain the
stiffnesses for displacement in the z direction

Fz =
∫ 2π

0
fuφR sin φdφ = 0

Fy =
∫ 2π

0
fuφR cos φdφ =

(
π

γ

l
Rfu

)
z = ksz

ks = π
γ

l
Rfu = γ

l

P

2ωR
N/m (14.98)

We notice that the steam whirl gives no direct stiffness and only cross-coupled
stiffness, the resulting force relation is

Fz = −ksy

Fy = 0{
Fz

Fy

}
=
[

0 −ks

ks 0

]{
z

y

}
(14.99)

The Thomas clearance factor γ in (14.96) is 2K2 where
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K2 ≈ 2 − 0.4

(
ψ − 3

2

)
± 0.2 50% Reaction Stage

K2 ≈ 3.2 − 0.27

(
ψ − 3

2

)
± 0.2 Weak Reaction Stage

Blade Pressure Factor ψ = 2
�hs

u2

As an example consider a 25 MW stage operating at 3000 RPM. The rotor mass
is 5000 kg and the shaft stiffness is 200 MN/m. The rigid bearing critical speed is
200 rad/s.

Let the blade length l be 6 cm and disk radius 40 cm. γ is taken as 5. Then the
steam whirl stiffness coefficient is

ks = γ

l

P

2ωR

= 5

0.06

25 × 106

2 × 3000π
30 × 0.4

= 8.3 MN/m

The equations of motion and eigen-values are obtained as[
M

M

]{
z̈

ÿ

}
+
[

K Ks

−Ks K

] {
z

y

}
= 0

λ4 + 0.08 × 106λ2 + 0.001603 × 1012 = 0

λ2
1,2 = 1

2

[−0.08 × 106 ±
√

0.0064 × 1012 − 0.006411 × 1012]
= −0.04 × 106 ± 0.0033 × 106i

λ1,2 = 8.24 ± 200i

The response is
z = e8.24t (Aei200t + Be−i200t )

The real parts of the eigen-values are positive and therefore the system is unstable
at this operation. The response occurs at 200 rad/s = 1910 RPM.

14.14 Cracked Shafts

It is commonly observed that high speed and heavy duty rotor shafts develop trans-
verse cross-sectional cracks due to fatigue at some time during their life period.
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Usually, the crack is initiated at a local defect or at a location where there is a stress
raiser. For crack initiation, the stress required is usually large. In the case of a fatigue
crack the combination of steady and dynamic stresses play a role. Since the stresses
required are large, sudden transient loads are generally responsible for crack initia-
tion. Once a crack is initiated it propagates and the stress required for propagation is
generally much smaller than that required for crack initiation. The operating stresses
may be sufficient to propagate the crack. The crack propagation takes place over a
certain length when it is sufficient to create unstable conditions and fracture takes
place. When the failure occurs it could be quite sudden without much notice. Hence
it becomes important to understand the behavior of a cracked rotor.

Crack propagation is a slow process; it takes several cycles of rotation for the
crack to advance a small distance over few microns. Therefore the shaft can be
considered with a transverse crack of a given constant depth for the purpose of
dynamic analysis. A Jeffcott rotor with a transverse crack is shown in Figure 14.49.
The shaft is considered symmetric and the bearings rigid. Let K be the stiffness of
the uncracked shaft; the corresponding deflection due to the gravity of the rotor is
given in Figure 14.49.

When the cracked shaft is rotated, the rotor deflection varies due to change in
the stiffness of the shaft as a function of the location of the crack. When the crack
is occupying the lowest position, say 0◦, the shaft offers minimum stiffness. Here,
the crack is located amongst the shaft fibers which are in tension, consequently it is
wide open. As the shaft rotates in a counter clockwise direction, to the 90◦ position,
a portion of the crack is in compression and hence it tends to close as shown by the
double hatched area in Figure 14.49. Therefore the shaft stiffness increases and the
rotor deflection decreases. When the shaft is in the 180 deg. position, it can be seen
that the crack is located amongst the fibers which are in compression and hence it is
completely closed. The stiffness here corresponds to the uncracked shaft. The crack
begins to open again as the shaft is rotated further, until it is wide open at the 360◦
position.

The stiffness of the shaft is significantly diminished only when the crack is of
sufficient depth. For shallow cracks the stiffness decreases in a limited area sur-
rounding the crack. This aspect makes the detection of a crack at an early stage to
be difficult.

Mayes and Davies [48–50]), were amongst the earlier ones to have modeled a
transverse crack. The periodic closing and opening of the crack is called breathing
action [23]. Figure 14.50 shows the shaft with a crack in stationary as well as rotat-
ing coordinates. For convenience the η axis is located parallel to the crack. We can
write {

Fξ

Fη

}
=
[

K − �Kc 0
0 K

]{
ξ

η

}
(14.100)

where the reduction in stiffness due to crack, �Kc is taken as

�Kc �= 0, ξ > 0

�Kc = 0, ξ < 0 (14.101)
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Fig. 14.49 Cracked shaft deflection under gravity

Fig. 14.50 Cracked shaft in rotating coordinates

The above breathing model can be represented by a hinge which closes under
compression and opens under tension as shown in Figure 14.51. The governing
equations can be written to give

M(ξ̈ − 2ωη̇ − ω2ξ) + C(ξ̇ − ωη) + Kcξ = Ma1ω
2 + Mg cos ωt

M(η̈ + 2ωξ̇ − ω2η) + C(η̇ + ωξ) + Kη = Ma2ω
2 + Mg sin ωt (14.102)

where

Kc = K − �Kc, ξ > 0

= 0, ξ < 0 (14.103)
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Fig. 14.51 Breathing crack model

The above equations can be non-dimensionalized and written as

[I ]
{

ξ̄ ′′
η̄′′
}

+
[

2ζ −2r

2r 2ζ

]{
ξ̄ ′
η̄′
}

+
[

r2

rc2 (1 − rc
2) −2ζ r

2ζ r (1 − r2)

]{
ξ̄

η̄

}

=
{

cos rτ

− sin rτ

}
+
⎧⎨
⎩

a1r
2

ηst

a2r
2

ηst

⎫⎬
⎭ (14.104)

where

p =
√

K

M
; pc =

√
Kc

M

r = ω

p
; rc = ω

pc

(14.105)

ηst = Mg

K
; ζ = C

2Mp

ξ̄ = ξ

ηst

; η̄ = η

ηst

(14.106)

τ = pt

′ = d

dτ
(14.107)

Equations (14.104) are nonlinear by virtue of (14.103). Gasch and Pfutzner [24]
obtained analog computer solutions for a crack with r/rc = 0.9 when the hinge
is open and a damping ratio 0.005. Figure 14.52 shows the response due to gravity
alone with no unbalance, i.e. a = 0. The response peak at r = 0.5 (gravity critical) is
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Fig. 14.52 Response of cracked shaft under gravity

clearly visible. There is an unstable zone in the range 0.9 < r < 1.0. There are also
other secondary resonances at r = 1/3, 1/4, . . . and 2/3, which are subharmonics.

The breathing action of the crack can be modeled more accurately by considering
the stiffness in both directions as a function of time rather than as a step function
in (14.101). Schmied and Krämer [80] calculated the stiffnesses in two directions
z and y as a ratio of the uncracked shaft stiffness for a simply supported beam as
a function of crack depth. These stiffnesses vary with the shaft rotation similar to
Figure 14.49. They are expressed as

K1(t) = Km1 + �K1 cos ωt

K2(t) = Km2 + �K2 cos ωt (14.108)

where

Km1 = 1

2
(K0 + K1), �K1(K0 − K1)

Km2 = 1

2
(K0 + K2), �K2(K0 − K2) (14.109)

The variation of the above stiffnesses with respect to the coordinates 1, 2 fixed on
the rotor are shown in Figure 14.53. They can be expressed in stationary coordinates
by the following stiffness matrix

[K(t)] =
[

Km + �K cos 2ωt �K sin 2ωt

�K sin 2ωt Km − �K cos 2ωt

]
(14.110)

where
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Fig. 14.53 Stiffness variation for a breathing crack

Km = 1

2
[K1(t) + K2(t)]

�K = 1

2
[K1(t) − K2(t)] (14.111)

Using (14.108), (14.109) and (14.111), equation (14.110) can be recast as

[K(t)] = [Kc] + [Kt(t)]

=
[

K ′
m 0

0 K ′
m

]
+ �K ′

[
f1(t) f3(t)

f3(t) f2(t)

]
(14.112)

where

K ′
m = 1

4
K0(2 + κ1 + κ2)

�K ′ = 1

8
K0(κ1 − κ2)

κ1 = K1

K0
; κ2 = K2

K0
(14.113)

and

f1(t) = C′ cos ωt + 2 cos 2ωt − cos 3ωt

f2(t) = (C′ + 2) cos ωt − 2 cos 2ωt + cos 3ωt

f3(t) = − sin ωt + 2 sin 2ωt − sin 3ωt

C′ = 4 − 3κ1 − κ2

κ1 − κ2
(14.114)
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The stiffness matrix of the cracked shaft therefore contains harmonic terms with 1
per rev, 2 per rev and 3 per rev components. One can therefore expect the response to
contain half and one-third subharmonics. For a general rotor, we have several natural
frequencies and therefore on the Campbell diagram there will be several critical
speeds with 1 per rev excitation. For each of these critical speeds we can imagine
a Jeffcott rotor model. Hence for a cracked shaft, resonances occur at half and one-
third values of all the critical speeds. Of specific importance are those concerned
with the first critical speed. There are several other contributions for cracked shafts
[12, 54].

This chapter essentially shows how the subject of Rotor Dynamics developed
once Jeffcott gave a clear understanding on the unbalance and response when the
stationary shaft rotates. This is like a single degree of freedom modal model that one
can derive from a multidegree of freedom stationary system. Once we get the natural
frequencies of a stationary rotor by using, e.g., Prohl’s method, i.e., rigid bearing
rotor critical speed, we can construct the Jeffcott rotor and from there include the
rotor dynamic specific aspects, viz., oil film bearings, asymmetric shaft, seals, etc.
This approach even today is the best, since determining rigid bearing critical speed
is the simplest and easily accomplishable.

While Myklestad and Prohl provided numerical methods around World War II,
the initial computer era exploited transfer matrix methods before finite element
methods for rotors were developed. However, the 20th century by and large was
restricted to beam models only.
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Chapter 15
Transfer Matrix Methods

We have seen in Sections 12.6 and 12.7 the Holzer and Myklestad–Prohl methods
in transfer matrix form for stationary shafts. We will illustrate here transfer matrix
methods for rotors.

15.1 Torsional Vibration due to Short Circuit of Generators

Linke [6] measured the main current and exciting current after a short circuit. The
main current rose to about 32 times the normal current. Brown Boverie Co. [1]
reported that for a 3000 RPM 8800 kva machine, the maximum short circuit current
is about 10–20 times that at full load. The current diminishes rapidly, but the steady
state value is reached only after several seconds.

Stodola [11] investigated whether there is a possibility for the period of the alter-
nating current to be very near to the period of the natural vibration of the shaft. He
used a two-degree freedom torsional system, with inertia for generator rotor �0 and
another one � of the turbine. The polar moment of the shaft is Jp and G is the co-
efficient of rigidity. The periodic torque of electrical forces is M = M0 cos ωet . The
twists of turbine and generator rotors are φ1 and φ2. The twist of the shaft produces
a twisting moment

Mt = JpG

L
(φ1 − φ2) (15.1)

The equations of motion are

�φ̈1 = −Mt

�0φ̈2 = Mt − M (15.2)

The above two equations are combined to give

φ̈1 − φ̈2 = −JpG

L

(
1

�
+ 1

�0

)
(φ1 − φ2) − M0

�0
cos ωet (15.3)
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Let

ε2 = JpG

L

(
1

�
+ 1

�0

)
be the natural frequency of the turbine-generator system in torsional vibration, and
let φ1 − φ2 = φ and M0/�0 = a, equation (15.3) is simplified to

φ̈ = −ε2φ − a cos ωet (15.3a)

The excitation from electrical forces is assumed to be constant for a small period
instead of decaying after some time; then for forced vibration, equation (15.3a) gives

φ0 = A cos ω0t = a

ε2 − ω2 cos ω0t (15.4)

The complete solution is

φ = a

ε2 − ω2 cos ω0t + B cos εt + C sin εt (15.5)

For φ = 0, φ̇ = 0 at t = 0, the above yields

φ = a

ε2 − ω2 (cos ω0t − cos εt) (15.6)

The maximum value of the response is

φmax = 2a

ε2 − ω2 = 2M0

�0
(
ε2 − ω2

) (15.7)

Present day technologies would allow us to calculate the response more accu-
rately. A sudden short circuit at generator terminals sets up large torques in the rotor
and induces severe stresses of the order of 4–5 times the normal value [9]. A short
circuit in a modern generator terminals occurs for a very short period, just about 0.2
seconds and is removed by automatic controls. During this time, the short circuit
can be divided into two parts, the first of which lasts less than 0.05 seconds and is
known as a subtransient. The current across the terminals raises up to 10–15 times
the rated value. In the second part, the transient, the current fluctuates between 3–5
times. The torque consists of two components:

• Air gap torque Ta that decays depending on machine constant and more pre-
dominant during the subtransient. Let Tn be the normal torque, then the air gap
torque is given by [2]

Ta = Tnmae
−αt sin ωt (15.8)

where α is subtransient saliency constant ma is the oscillating moment and ω is
the rotational speed (line frequency).

• Armature torque Ts which is predominant in the transient period is given by

Ts = Tnmse
−βt sin 2ωt (15.9)



15.1 Torsional Vibration due to Short Circuit of Generators 255

Fig. 15.1 6 MW turbo-generator set geometry

where ms and β are transient saliency constants. The armature torque occurs at
twice rotational speed.

The torsional analysis of such systems is discussed by Hammons [5], Rao et al. [8]
and Schwibinger et al. [10]. Usually, the couplings are designed to act as a fuse
between the turbine and generator so that the rotor system is protected from any
damage. The transfer matrix method discussed in Section 12.6 is of advantage in
torsional analysis as one can keep long elements of shafting in comparison to the
finite element modeling [3].

The generator considered is 7508 kW operating at 1500 RPM (rated torque 47800
Nm). The speed ratio 5.5416 of the gear box is taken into account while modeling
the system. Drawings of the turbine and generator are used to obtain the geometry,
see Figure 15.1. The rotors are divided into the required number of elements using
any change in the shaft cross-section diameter as the beginning and end of the ele-
ments, as shown in Table 15.1, 59 elements are used here. The mounted parts, e.g.,
blades, are taken into account as additional discrete polar mass moments of inertia,
shear modulus is 0.800 × 105 N/mm2 and density is 0.785 × 10−5 kg/mm3.

Using the transfer matrix method, the first three natural frequencies obtained are
1,318.03, 4,325.55 and 6,173.07 RPM. The mode shapes of the TG set are given
in Figure 15.2. The first mode is at 1318 RPM with the node falling at the low
speed side (lss) coupling and the turbine suffers a large displacement relative to the
generator. The second mode is at 4325 RPM with the two nodes at the hollow end
of the generator shaft and the high speed side (hss) coupling. In this mode only the
generator is responding. The third mode is 6173 RPM with the first node very close
to the generator shaft end, the second node before the lss coupling and the third
node just beyond the hss coupling. The gearbox suffers maximum displacement in
the third mode.

An equivalent discrete model is made to identify the generator to which the ex-
citation torque is applied, the gearbox and the turbine rotor. The approximate CG
of each disk location is chosen at stations 6, 12, 26 and 47 as given in Table 15.1.
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Table 15.1 Data of turbo-generator set

Sectn. Cplng Length Outer Dia Inner Dia Polar Inertia Tr. Ratio CG
Locn Locn
1 mm mm mm kg-mm2 Ref. Gen. Approx

1 0 0.140E+03 140.00 60.00 0.300E+08 1.00
2 0 0.243E+03 140.00 60.00 0.000E+00 1.00
3 0 0.155E+03 150.00 60.00 0.160E+07 1.00
4 0 0.100E+03 160.00 60.00 0.000E+00 1.00
5 0 0.132E+03 260.00 60.00 0.000E+00 1.00
6 0 0.156E+03 220.00 60.00 0.000E+00 1.00 1
7 0 0.200E+03 260.00 60.00 0.000E+00 1.00
8 0 0.343E+03 290.00 60.00 0.000E+00 1.00
9 0 0.275E+03 430.00 0.00 0.520E+08 1.00
10 0 0.250E+03 440.00 0.00 0.116E+09 1.00
11 0 0.250E+03 440.00 0.00 0.116E+09 1.00
12 0 0.440E+02 440.00 0.00 0.200E+08 1.00 1
13 0 0.250E+03 440.00 0.00 0.116E+09 1.00
14 0 0.250E+03 440.00 0.00 0.116E+09 1.00
15 0 0.275E+03 430.00 0.00 0.520E+08 1.00
16 0 0.343E+03 290.00 0.00 0.000E+00 1.00
17 0 0.202E+03 260.00 0.00 0.000E+00 1.00
18 0 0.152E+03 220.00 0.00 0.000E+00 1.00
19 0 0.174E+03 260.00 0.00 0.000E+00 1.00
20 0 0.260E+03 250.00 0.00 0.000E+00 1.00
21 1 0.157E+08 0.00 0.00 0.382E+07 1.00
22 0 0.245E+03 200.00 0.00 0.000E+00 1.00
23 0 0.130E+03 180.00 0.00 0.000E+00 1.00
24 0 0.980E+02 180.00 0.00 0.000E+00 1.00
25 0 0.277E+03 180.00 0.00 0.000E+00 1.00
26 0 0.220E+03 958.00 0.00 0.000E+00 1.00 1
27 0 0.220E+03 189.00 0.00 0.000E+00 5.50
28 0 0.275E+02 148.00 0.00 0.000E+00 5.50
29 0 0.165E+03 130.00 0.00 0.000E+00 5.50
30 0 0.164E+03 110.00 0.00 0.000E+00 5.50
31 0 0.400E+02 230.00 0.00 0.000E+00 5.50
32 1 0.495E+07 0.00 0.00 0.569E+06 5.50
33 0 0.635E+01 126.00 0.00 0.000E+00 5.50
34 0 0.349E+02 230.00 0.00 0.000E+00 5.50
35 0 0.111E+03 102.00 0.00 0.000E+00 5.50
36 0 0.508E+02 120.34 0.00 0.000E+00 5.50
37 0 0.476E+02 126.00 0.00 0.000E+00 5.50
38 0 0.476E+02 126.00 0.00 0.000E+00 5.50
39 0 0.905E+02 126.69 0.00 0.000E+00 5.50
40 0 0.539E+02 155.42 0.00 0.000E+00 5.50
41 0 0.333E+02 174.50 0.00 0.000E+00 5.50
42 0 0.123E+02 171.30 0.00 0.000E+00 5.50
43 0 0.592E+02 212.60 0.00 0.520E+06 5.50
44 0 0.305E+03 212.70 0.00 0.520E+06 5.50
45 0 0.191E+03 212.60 0.00 0.600E+06 5.50
46 0 0.815E+02 212.60 0.00 0.736E+06 5.50
47 0 0.780E+02 212.60 0.00 0.613E+06 5.50 1
48 0 0.380E+03 212.60 0.00 0.600E+06 5.50
49 0 0.700E+02 212.60 0.00 0.550E+06 5.50
50 0 0.700E+02 212.60 0.00 0.630E+06 5.50
51 0 0.700E+02 212.60 0.00 0.626E+06 5.50
52 0 0.700E+02 212.60 0.00 0.626E+06 5.50
53 0 0.111E+03 212.60 0.00 0.626E+06 5.50
54 0 0.296E+03 209.40 0.00 0.000E+00 5.50
55 0 0.117E+03 145.80 0.00 0.000E+00 5.50
56 0 0.476E+02 101.00 0.00 0.000E+00 5.50
57 0 0.476E+02 101.00 0.00 0.000E+00 5.50
58 0 0.313E+02 195.26 0.00 0.000E+00 5.50
59 0 0.106E+03 88.24 0.00 0.000E+00 5.50
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Fig. 15.2 First two modes

Table 15.2 Equivalent model

Mass No. CG Locn. Mass Moment Actual Stiffness Approx. Stiffness
kgm2 Nm/rad Nm/rad

1 6 30.4 1.197 6.832
2 12 636.33 0.592 0.554
3 26 182.23 2.05 5.253
4 47 291.07 – –

The model obtained is given in Table 15.2. The natural frequencies obtained with
the above model are 1317.812, 4325.754 and 6173.256 RPM. This four-rotor model
is used to determine the response of the system under a short circuit.

In equations (15.7) and (15.8), ma = 6.1538, ms = −3.0769, α = 12 and β = 4.
The transient response obtained is given in Figure 15.3. The response in section 3–4
(right on the gearbox) reaches a peak value 2.6 times the nominal torque at 0.09 s
after the shock.

During a possible gearbox failure scenario and the resulting distress situation,
the system passes through a resonance at 1318 RPM while coasting down until the
gear box fails completely. Therefore, a resonance analysis with per rev component
is also considered. The resulting stresses are given in Figure 15.4 from which it can
be observed that the response continually increases. In section 2–3 (lss coupling) a
magnification of about 4.5 is reached at 0.275 s. At a speed close to I mode, 1317
RPM, this magnification can even be higher during this period.
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Fig. 15.3 Torque magnification due to ground fault

Fig. 15.4 Torque magnification at resonance

15.2 Transfer Matrix Method for Lateral Vibrations of Rotors

In Section 12.7 we discussed Myklestad and Prohl’s methods in transfer matrix
form for stationary structures. We will now discuss the Out-of-Balance Response of
Rotors using the Transfer Matrix Method [7].

Figure 15.5 shows a shaft element with bending in both planes. The state quanti-
ties are shown in both planes in Figure 15.6. The transfer matrices are built from one
station to another station using the equilibrium relations. The state vector is written
in both the x–z plane of bending and the x–y plane of bending as

{S} =
{

Sz

Sy

}
(15.10)
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Fig. 15.5 Rotor shaft element

Fig. 15.6 State quantities for transfer matrices

{Sz} =

⎧⎪⎪⎨
⎪⎪⎩

−w

θ

My

Vz

⎫⎪⎪⎬
⎪⎪⎭ ; {

Sy

} =

⎧⎪⎪⎨
⎪⎪⎩

v

φ

Mz

−Vy

⎫⎪⎪⎬
⎪⎪⎭ (15.11)

In the x–z plane, the field matrix is given by (12.68). In the x–y plane this is

⎧⎪⎪⎨
⎪⎪⎩

v

φ

Mz

−Vy

⎫⎪⎪⎬
⎪⎪⎭

L

i

=

⎡
⎢⎢⎢⎢⎣

1 l l2

2EI
l3

6EI

0 1 l
EI

l2

2EI

0 0 1 l

0 0 0 1

⎤
⎥⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

v

φ

Mz

−Vy

⎫⎪⎪⎬
⎪⎪⎭

R

i−1

{Sy}Li = [F ]i{Sy}Ri−1 (15.12)

Combining (12.68) and (15.12), we get the ith field matrix
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(a)

(b)

Fig. 15.7 (a) The ith unbalanced mass in rotating coordinates. (b) Equilibrium relations of ith
unbalanced mass

{ {Sz}
{Sy}

}L

i

=
[

[F ] 0

0 [F ]

]
i

{ {Sz}
{Sy}

}R

i−1

(15.13)

The point matrix is given by (12.69).
In general a response in the y direction will be different from that in the z direc-

tion. Further from Figure 15.7b the response will consist of cosine and sine compo-
nents. Hence

{Sz} =
{ {Szc}

{Szs}

}
; {Sy} =

{ {Syc}
{Sys}

}
(15.14)

{Szc} =

⎧⎪⎪⎨
⎪⎪⎩

−wc

θc

Myc

Vzc

⎫⎪⎪⎬
⎪⎪⎭ ; {Szs} =

⎧⎪⎪⎨
⎪⎪⎩

−ws

θs

Mys

Vzs

⎫⎪⎪⎬
⎪⎪⎭ (15.15)
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{Syc} =

⎧⎪⎪⎨
⎪⎪⎩

vc

φc

Mzc

−Vyc

⎫⎪⎪⎬
⎪⎪⎭ ; {Sys} =

⎧⎪⎪⎨
⎪⎪⎩

vs

φs

Mzs

−Vys

⎫⎪⎪⎬
⎪⎪⎭ (15.16)

For the purpose of response calculations, we add one more column and row using
an Identity matrix and write a general transfer relation as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Szc

Szs

Syc

Sys

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

L

i

=

⎡
⎢⎢⎢⎢⎣

[F ] [0] [0] [0] {0}
[0] [F ] [0] [0] {0}
[0] [0] [F ] [0] {0}
[0] [0] [0] [F ] {0}

{0}T {0}T {0}T {0}T 1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Szc

Szs

Syc

Sys

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

R

i−1

{S̄}Li = [F̄ ]i{S̄}Ri−1 (15.17)

We can write the general point matrix relation in a similar manner to Figure 15.7b

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Szc

Szs

Syc

Sys

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

R

i

=

⎡
⎢⎢⎢⎢⎣

[P ] [0] [0] [0] {mzc}
[0] [P ] [0] [0] {mzs}
[0] [0] [P ] [0]

{
myc

}
[0] [0] [0] [P ]

{
mys

}
{0}T {0}T {0}T {0}T 1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Szc

Szs

Syc

Sys

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

L

i

{S̄}Ri = [P̄ ]i{S̄}Li (15.18)

where

{mzc} =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

−uzω
2

⎫⎪⎪⎬
⎪⎪⎭

i

; {mzs} =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

uyω2

⎫⎪⎪⎬
⎪⎪⎭

i

{myc} =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

uyω
2

⎫⎪⎪⎬
⎪⎪⎭

i

; {mzs} =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

uzω
2

⎫⎪⎪⎬
⎪⎪⎭

i

(15.19)

We can now form the following non-homogenous equations for the unbalance
response for a given set of boundary conditions, e.g., a rotor on rigid bearing end
supports:

{S̄}n+1 = [F̄ ]n+1[P̄ ]n[F̄ ]n[P̄ ]n−1 · · · [F̄ ]1{S̄}0

{S̄}n+1 = [Ū ]{S̄}0 (15.20)
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Fig. 15.8 Two-spool rotor configuration

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,2 u1,4 u1,6 u1,8 u1,10 u1,12 u1,14 u1,16
u3,2 u3,4 u3,16
u5,2
u7,2
u9,2
u11,2
u13,2
u15,2 u15,16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θc

Vzc

θs

Vzs

φc

−Vyc

φs

−Vys

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0

= −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1,17
u3,17
−
−
−
−
−

u15,17

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.21)
At any station, the whirl orbit can be constructed from

r (t) = eiωt

[
1

2
(wc + vs) + 1

2
i (vc − ws)

]
+ e−iωt

[
1

2
(wc − vs) + 1

2
i (vc + ws)

]
(15.22)

15.3 Twin Spool Rotor Analysis

The analysis in Section 15.2 is extended for two-spool rotor analysis by Gupta et
al. [4] wherein an aircraft engine is modeled with its LP rotor as rotor 1 (inner
rotor) over which the HP rotor, rotor 2 (outer rotor) is mounted through an intershaft
bearing, see Figure 15.8.

The inner and outer rotors have different speeds, say, ωm inner rotor speed ωn

outer rotor speed. The response then is

w = wcm cos ωmt + wsm sin ωmt + wcn cos ωnt + wsn sin ωnt

θ = θcm cos ωmt + θsm sin ωmt + θcn cos ωnt + θsn sin ωnt

My = Mycm cos ωmt + Mysm sin ωmt + Mycn cos ωnt + Mysn sin ωnt

Vz = Vzcm cos ωmt + Vzsm sin ωmt + Vzcn cos ωnt + Vzsn sin ωnt
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v = vcm cos ωmt + vsm sin ωmt + vcn cos ωnt + vsn sin ωnt

φ = φcm cos ωmt + φsm sin ωmt + φcn cos ωnt + φsn sin ωnt

Mz = Mzcm cos ωmt + Mzsm sin ωmt + Mzcn cos ωnt + Mzsn sin ωnt

Vy = Vycm cos ωmt + Vysm sin ωmt + Vycn cos ωnt + Vysn sin ωnt (15.23)

The state vector has now 33 quantities; the field and point matrices are also 33 ×33.
The bearing matrix can be shown to be

[B]33×33 =

⎡
⎢⎢⎢⎢⎢⎢⎣

[Bmz1] 0 [Bmz2] 0 0

0 [Bnz1] 0 [Bnz2] 0

[Bmy2] 0 [Bmy1] 0 0

0 [Bny2] 0 [Bny1] 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(15.24)

[Bmz1](i, i) = 1, i = 1, 2, . . . , 8

[Bmz1](4, 1) = [Bmz1](8, 5) = −Kzz + mωm
2

[Bmz1](4, 5) = −Czzωm

[Bmz1](8, 1) = Czzωm

[Bmz2](4, 1) = [Bmz2](8, 5) = Kzy

[Bmz2](4, 5) = Czyωm

[Bmz2](8, 1) = −Czyωm

Rest[Bmz1] = [Bmz2] = 0 (15.25)

Matrices [Bnz1] and [Bnz2] are obtained from the above by replacing ωm with ωn.
Matrices [Bmy1] and [Bmy2] are obtained from the above by replacing subscripts z

with y and y with z. Similarly by replacing ωn with ωm we can obtain [Bny1] and
[Bny2].

Similarly we can derive the following point matrix for the ith unbalance on the
inner rotor:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{Szm}
{Szn}
{Sym}
{Syn}

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

R

i

=

⎡
⎢⎢⎢⎢⎣

[Pm] 0 0 0 {mzm}
0 [Pn] 0 0 0
0 0 [Pm] 0 {mzn}
0 0 0 [Pn] 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{Szm}
{Szn}
{Sym}
{Syn}

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

L

i

(15.26)

where
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{mzm} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

−uzωm
2

0
0
0

uyωm
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
{
mym

} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

uyωm
2

0
0
0

uzωm
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.27)

We can write similarly for the outer rotor using ωn. We need to write junction
conditions where two shafts are connected through intershaft bearing. At junction
station, j we have two shafts running at ωm (inner) and ωn (outer) and let us reach
this junction through transfer matrices from a starting point on the left side on the
inner rotor [A], right side on the inner rotor [B], left side of the outer rotor [C], and
right side of the outer rotor through transfer matrix [D]. Then

{S}Lmj = [A]{S}0A

{S}0B = [B]{S}Rmj

{S}Lnj = [C]{S}0C

{S}0D = [B]{S}Rnj (15.28)

At the junction of this inner rotor

{S}Rmj = [I ]{S}Lmj + [B ′]{S}Lmj − [B ′]{S}Lnj
= [[I ] + [B ′]]{S}Lmj − [B ′]{S}Lnj (15.29)

Similarly at the junction of the outer rotor

{S}Rnj = [[I ] + [B ′]]{S}Lnj − [B ′]{S}Lmj (15.30)

Using the above two equations in the second and fourth equations of (15.28) we get

{S}OB = [B][[I ] + [B ′]]{S}Lmj − [B][B ′]{S}Lnj
{S}OD = [D][[I ] + [B ′]]{S}Lnj − [D][B ′]{S}Lmj (15.31)

With the help of the first and third equations in (15.28), the above becomes

{S}OB = [B][[I ] + [B ′]][A]{S}OA − [B][B ′][C]{S}OC

{S}OD = [D][[I ] + [B ′]][C]{S}OC − [D][B ′][A]{S}OA (15.32)

Premultiplying the first equation by [B]−1 and the second by [D]−1, the above equa-
tions are written in a matrix equation as
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[ [Am] [Bm] [Cm] 0

[An] 0 [Cn] [Dn]

]
66×132

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{S}OA

{S}OB

{S}OC

{S}OD

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

132×1

= 0 (15.33)

where

[Am] = [[I ] + [B ′]][A]
[Cn] = [[I ] + [B ′]][C]
[Bm] = −[B]−1

[Dn] = −[D]−1

[Cm] = −[B ′][C]
[An] = −[B ′][A] (15.34)

Consider free ends of all the shaft sections A, B, C and D for the initial state
quantities, then all My , Vz, Mz, Vy in {S}0 vectors are zero. The unknown quantities
are w, θ , v and φ at the four starting stations. For each starting station, we have 16
unknowns, −wcm, θcm, −wsm, θsm, −wcn, θcn, −wsn, θsn, vcm, φcm, vsm, φsm, vcn,
φcn, vsn, φsn, in {SOA}; similarly in {SOB} {SOC} and {SOD}. Since My , Vz, etc., in
(15.33) are zero, we can drop 3, 4, 7, 8, 11, 12, etc.; 31, 32, 36, 37, etc.; 64, 65, 69,
70, etc.; 97, 98, 102, 103, etc.; 130, 131 columns in the 66 × 132 matrix in (15.33).
We also note that the 33rd, 66th, 99th and 132nd elements of the vector are unity and
hence when multiplied with the corresponding column quantity in the matrix, give
rise to a constant quantity independent of any state quantity. These four constants
can be added and taken to the right hand side of the corresponding equation. We can
also delete the 33rd and 66th rows in (15.33) as they simply give identity equations.
Then equation (15.33) reduces to

[Ā]64×64{S0}64×1 = {B̄}64×1 (15.35)

where

{S0} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{SOA}
{SOB}
{SOC}
{SOD}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and
B̄i = Ami,33 + Bmi,33 + Cmi,33 + Dmi,33

The linear system of equations (15.35) can be solved to determine {S0}. From
there the state vector quantities at any station can be determined using the appropri-
ate transfer matrices. We need to write a computer program to do this job.
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Fig. 15.9 A simple dual rotor system

(a) (b)

Fig. 15.10 (a) Whirl orbit of inner rotor. (b) Whirl orbit of outer rotor

As an example, consider a simple dual rotor carrying 54.43 kg each as shown in
Figure 15.9.

The support and intershaft bearings are considered as follows: Kyy =
17.5 MN/m; Kyz = 10.0 MN/m; Kzy = 10.0 MN/m; Kzz = 17.5 MN/m;
Cyy = 700 KN-s/m; Cyz = 400 KN-s/m; Czy = 700 KN-s/m; Czz = 400 KN-
s/m.

The response is shown in Figures 15.10a (on inner rotor) and 15.10b (on outer
rotor) for one full period. They exhibit elliptical loops. The time period T is
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T = 2π
ωn−ωm

p−q

where p and q are the smallest integers such that p/q = ωn/ωm. The number of
loops in one period is given by

n = {max[ωn,ωm]}
{

p − q

ωn − ωm

}

Transfer matrix methods played an important role in the early computer era when
machine capacities were low. They needed 4 × 4 matrices for simple bending prob-
lems to store the final or overall transfer matrices and as we have seen in this section,
to a maximum of 133 × 133 size. This storage is irrespective of number of stations
adopted in the analysis. But they suffered from making beam models of actual com-
plex rotor systems, which takes considerable skilled hours and in some cases writ-
ing special programs. Finite element methods removed this limitation for common
applications and became popular after the 1980s. The finite element methods also
paved the way quickly to solid rotor models, thus removing several simplifications
and approximations in beam models.
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Chapter 16
Finite Element Methods for Rotor Dynamics

In Chapter 13, we discussed the development of finite element methods for station-
ary systems. Rotor dynamics lagged behind stationary structures developments and
in development of finite element methods for rotor dynamics, it was no exception.

16.1 Nelson’s Beam Element

The finite element method for rotors was first developed by Ruhl and Booker [29].
Nelson and McVaugh [16] extended this to include gyroscopic effects. The effects
of axial torque were included by Zorzi and Nelson [37] and Nelson [15] gave ro-
tor dynamics elements with the Timoshenko beam theory. For details on the finite
element method, see also [1, 4, 10, 11, 19].

Nelson’s generalized Timoshenko beam element including torsional motion is
derived here briefly. Figure 16.1 shows a 2-noded shaft element with 10 degrees of
freedom. The kinetic energy including the torsional motion α is

T s = 1

2

∫ L

0
{ρA(v̇2 + ẇ2) + ID(θ̇2 + φ̇2)}dx̂

− 1

2

∫ L

0
{IP (ω + α̇)(θφ̇ − φθ̇) − IP (ω + α̇2)}dx̂ (16.1)

where ID and IP are the diametral and polar mass moments of inertia per unit length
of the shaft element respectively. The potential energy including shear deformation
and torsional deflection is given by

Us = 1

2

∫ L

0
EI(θ ′2 + φ′2)dx̂ + 1

2

∫ L

0
K ′GA[(v′ − φ)2 + (w′ + θ)2]dx̂

+ 1

2

∫ L

0
GIP α′2dx̂ (16.2)

269
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Fig. 16.1 Nelson’s generalized Timoshenko beam rotor element

where K ′ is the shear correction factor given by

K ′ = 6(1 + ν)(1 + m2)
2

(7 + 6ν)(1 + m2)
2 + (20 + 12ν)m2

(16.3)

with ν as Poisson’s ratio and m as the ratio of inner diameter to outer diameter of
the shaft element.

The shape functions are assumed as{
v(x̂)

w(x̂)

}
= [�(x̂)]{d̂}

{
θ(x̂)

φ(x̂)

}
= [�(x̂)]{d̂}

α(x̂) = [�(x̂)]{d̂} (16.4)

where

[�(x̂)] =
[

ψ1 0 0 ψ2 0 ψ3 0 0 ψ4 0
0 ψ1 −ψ2 0 0 0 ψ3 −ψ4 0 0

]

[�(x̂)] =
[

0 −φ1 φ2 0 0 0 −φ3 φ4 0 0
φ1 0 0 φ2 0 φ3 0 0 φ4 0

]
[�(x̂)] = [

0 0 0 0 θ1 0 0 0 0 θ2
]

(16.5)
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and
{d̂}T = {

v̂1 ŵ1 θ̂1 φ̂1 α̂1 v̂2 ŵ2 θ̂2 φ̂2 α̂2
}

(16.6)

The individual terms in (16.5) are given by

ψ1 = 1

1 + �

[
2a3 − 3a2 + 1 + �(1 − a)

]

ψ2 = L

1 + �

[
a3 − 2a2 + a + 1

2
�a(1 − a)

]

ψ3 = 1

1 + �
[−2a3 + 3a2 + �a]

ψ4 = La

2
(a − 1) (16.7)

φ1 = 6a(a − 1)

L(1 + �)

φ2 = 1

(1 + �)
[3a2 − 4a + 1 + �(1 − a)]

φ3 = 6a(1 − a)

L(1 + �)

φ4 = 1

(1 + �)
[3a2 − 2a + �a] (16.8)

θ1 = 1 − a

θ2 = a (16.9)

where

a = x̂

L

� = 12EI

K ′GAL2 (16.10)

Following a Lagrangian approach, we can obtain

[Ms]{ ¨̂
ds} + ω[Gs]{ ˙̂

ds} + [Ks]{d̂s} = {Fs
s } (16.11)

where
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[Ms] = [Ms
T ] + [Ms

R] + [Ms
θ ]

[Ms
T ] = [Ms

T ]0 + �[Ms
T ]1 + �2[Ms

T ]2

[Ms
R] = [Ms

R]0 + �[Ms
R]1 + �2[Ms

R]2

[Gs] = [Gs]0 + �[Gs]1 + �2[Gs]2

[Ks] = [Ks]0 + �[Ks]1 + [Ks
θ ] (16.12)

The matrices in the above equation are given by:

Mass Matrices due to Translation

[Ms
T ]0 = mT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

312
0 312
0 −44L 8L2

44L 0 0 8L2

0 0 0 0 0
108 0 0 26L 0 312
0 108 −26L 0 0 0 312
0 26L −6L2 0 0 0 44L 8L2

−26L 0 0 −6L2 0 −44L 0 0 8L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

[Ms
T ]1 = mT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

588
0 588
0 −77L 14L2

77L 0 0 14L2

0 0 0 0 0
252 0 0 63L 0 588
0 252 −63L 0 0 0 588
0 63L −14L2 0 0 0 77L 14L2

−63L 0 0 −14L2 0 −77L 0 0 14L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

[Ms
T ]2 = mT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

280
0 280
0 −35L 7L2

35L 0 0 7L2

0 0 0 0 0
140 0 0 35L 0 280
0 140 −35L 0 0 0 280
0 35L −7L2 0 0 0 35L 7L2

−35L 0 0 −7L2 0 −35L 0 0 7L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym
(16.13)
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where

mT = ρπL(ro
2 − ri

2)

840(1 + �)2

Mass Matrices due to Rotation

[Ms
R]0 = mR

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

36
0 36
0 −3L 4L2

3L 0 0 4L2

0 0 0 0 0
−36 0 0 −3L 0 36

0 −36 3L 0 0 0 36
0 −3L −L2 0 0 0 3L 4L2

3L 0 0 −L2 0 −3L 0 0 4L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

[Ms
R]1 = mR

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 15L 5L2

−15L 0 0 5L2

0 0 0 0 0
0 0 0 15L 0 0
0 0 −15L 0 0 0 0
0 15L −5L2 0 0 0 15L 5L2

−15L 0 0 −5L2 0 15L 0 0 5L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

[Ms
R]2 = mR

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 0 10L2

0 0 0 10L2

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 5L2 0 0 0 0 10L2

0 0 0 5L2 0 0 0 0 10L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

(16.14)

where

mR = ρπL(ro
4 − ri

4)

120L(1 + �)2
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Gyroscopic Matrices

[Gs]0 = 2mR

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−360 0

3L 0 0
0 3L −4L2 0
0 0 0 0 0
0 −36 3L 0 0 0

36 0 0 3L 0 −36 0
3L 0 0 −L2 0 −3L 0 0
0 3L L2 0 0 0 −3L −4L2 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

[Gs]1 = 2mR

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0

−15L 0 0
0 −15L −5L2 0
0 0 0 0 0
0 0 −15L 0 0 0
0 0 0 −15L 0 0 0

−15L 0 0 −5L2 0 15L 0 0
0 −15L 5L2 0 0 0 15L −5L2 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

[Gs]2 = 2mR

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 0 0
0 0 −10L2 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 5L2 0 0 0 0
0 0 −5L2 0 0 0 0 −10L2 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

(16.15)
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Stiffness Matrices

[Ks]0 = ks

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
0 12
0 −6L 4L2

6L 0 0 4L2

0 0 0 0 0
−12 0 0 −6L 0 12

0 −12 6L 0 0 0 12
0 −6L 2L2 0 0 0 6L 4L2

6L 0 0 2L2 0 −6L 0 0 4L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

[Ks]1 = ks

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 0 L2

0 0 0 L2

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −L2 0 0 0 0 L2

0 0 0 −L2 0 0 0 0 L2

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

(16.16)

where

ks = EI

L3(1 + �)

Torsional Mass Matrix

[Ms
θ ]1 = 1

6
IP

sL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 0 0
0 0 0 0
0 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym
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Torsional Stiffness Matrix

[ks
θ ]1 = 1

6
IP

sL

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 0
0 0 0
0 0 0 0
0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sym

(16.17)

The bearing element matrix is[
Cyy Cyz

Czy Czz

] {
v̇b

ẇb

}
+
[

Kyy Kyz

Kzy Kzz

]{
vb

wb

}
= {Fs

b} (16.18)

For a flexible torsional coupling, the strain energy is

Uθ = 1

2
kθ (αi+1 − αi)

2 (16.19)

and the coupling matrix is[
kθ −kθ

−kθ kθ

]{
αi

αi+1

}
= {Fs

c} (16.20)

The system equations of motion are then

[Ms]{d̈s} + [ω1[Gs] + [Cs ]]{ḋs} + [Ks]{ds} = {Fs} (16.21)

In the cases where there is a gear pair

[Gs ] =
[ [G1

d ]
ω2
ω1

[G2
d ]
]

(see also (16.25) and in a dual rotor), the gyroscopic matrix for the second rotor is
ω2/ω1[Gs], etc.

Here, the right-hand side is set to zero, to determine the eigen-values and eigen-
vectors. For an undamped system, the eigen-values can be directly obtained for syn-
chronous whirl with either of the shafts of a dual rotor system or a general rotor
system. For damped systems, it is necessary to draw the Campbell diagram to ob-
tain the critical speeds.

The finite element method has a distinct advantage in assembling the elemental
equations without any recourse to intershaft bearing conditions as in the case of
transfer matrix method (see also [9]).
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Fig. 16.2 Dual rotor system of Rajan et al. [17]

Table 16.1 Critical speeds (rad/s) of dual rotor

Mode No.

ω = �1 1L 863
ω = �1 2L 1,606
ω = �1 3L 2,283
ω = −�1 1L 660
ω = −�1 2L 1,423
ω = −�1 3L 2,125
1T 112,175
2T 568,019

Consider the dual rotor of Rajan et al. [17] given in Figure 16.2.
The critical speeds obtained are given in Table 16.1. For complete results, see

Rao et al. [23].

16.2 Geared Rotors and Chaos

Lund [12] considered coupling in the lateral and torsional in a geared system. Iida
et al. [6] studied a simple geared system including coupling in the torsional and
flexural vibration. David and Park [2] made a gearmesh stiffness formulation in
truncated Fourier series and studied the nonlinear disk response due to unbalance.
Schwibinger et al. [30] carried out studies on three different model shafts without
rotation, shafts rotating supported on ball bearings and shafts supported on journal
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bearings and showed good correlation between theory and experiment. Schwibinger
and Nordmann [31] later extended this study to include stability analysis.

Kahraman et al. [8] developed a finite element model of a geared rotor system
on flexible bearings, including rotary inertia, axial loading, and stiffness and damp-
ing of the gear mesh. We will illustrate the extension of finite element method in
Section 16.1 for geared rotors following Rao et al. [23]; see also [24, 32, 33].

The gearmesh model is shown in Figure 16.3, here the teeth are replaced by
equivalent stiffness and damping along the pressure line. For the present damping is
ignored. The gearmesh force is

Fh = kh(v
g

2 − vg
1) sin φp +kh(w

g
2 − wg

1) cos φp −kh(r1α
g

1 + r2α
g

2) (16.22)

On gear 1, the components of the gear mesh force can be expressed as

Fhv1 = Fh sin φp = kh

[ −S2 −SC 0 0 −r1S S2 SC 0 0 −r2S
] {qg}

Fhw1 = Fh cos φp = kh

[ −SC −C2 0 0 −r1C SC C2 0 0 −r2C
] {qg}

Th1 = r1Fh = kh

[ −r1S −r1C 0 0 −r1
2 r1S r1C 0 0 −r1r2

] {qg}
(16.23)

Similarly, on gear 2

Fhv2 = −Fh sin φp = kh

[
S2 SC 0 0 r1S −S2 −SC 0 0 r2S

] {qg}
Fhw2 = −Fh cos φp = kh

[
SC C2 0 0 r1C −SC −C2 0 0 r2C

] {qg}
Th2 = r2Fh = kh

[ −r2S −r2C 0 0 −r1r2 r2S r2C 0 0 −r2
2
] {qg}

(16.24)

For the gear pair, we can obtain[ [Mg
1]

[Mg
2]
]

{q̈g} + �1

[ [Gg
1]

�2
�1

[Gg
1]
]

{q̇g} − kh

[ [S1]
[S2]

]
{qg} = {Fg

s}
(16.25)

where

[S1] =

⎡
⎢⎢⎢⎢⎣

−S2 −SC 0 0 −r1S S2 SC 0 0 −r2S

−SC −C2 0 0 −r1C SC C2 0 0 −r2C

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−r1S −r1C 0 0 −r1
2 r1S r1C 0 0 −r1r2

⎤
⎥⎥⎥⎥⎦

[S2] =

⎡
⎢⎢⎢⎢⎣

S2 SC 0 0 r1S −S2 −SC 0 0 r2S

SC C2 0 0 r1C −SC −C2 0 0 r2C

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−r2S −r2C 0 0 −r1r2 r2S r2C 0 0 −r2
2

⎤
⎥⎥⎥⎥⎦
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and

{qg}T = {
v1

g w1
g θ1

g φ1
g α1

g v2
g w2

g θ2
g φ2

g α2
g
}

In Section 14.3, we briefly discussed the linear stiffness and damping coefficients
of oil film bearings. In reality these forces are nonlinear as shown by Mohan and
Hahn [13]. Without a derivation, we will give here the nonlinear relations for the ra-
dial and tangential components of short squeeze film bearings commonly employed
by aircraft engine designers to provide additional damping. These forces are

Fr = μRL3

cr
2

(εφ̇A11 + ε̇A02)

Fφ = μRL3

cr
2 (εφ̇A20 + ε̇A11) (16.26)

where

Aij =
∫ φg+2π

φg+π

siniθcosj θ

(1 − ε cos θ)3 dθ

φg = tan−1 ε̇

−εφ̇
(16.27)

The horizontal and vertical components of these forces are

Fv = Frv − Fφw√
v2 + w2

Fw = Frw + Fφv√
v2 + w2

(16.28)

Consider a simple gear pair mounted on squeeze film damper supports. The equa-
tions of motion are

[M]{q̈} + (ch[Sh] + [Cc]){q̇} + (kh[Sh] + [Kc]){q} = {Q} (16.29)

where {q} = { v1 w1 α1 v2 w2 α2 }T . Here,

[Sh] =

⎡
⎢⎢⎢⎢⎢⎢⎣

S2 SC r1S −S2 −SC r2S

SC C2 r1C −SC −C2 r2C

r1S r1C r1
2 −r1S −r1C r1r2

−S2 −SC −r1S S2 SC −r2S

−SC −C2 −r1C SC C2 r2C

−r2S r2C r1r2 −r2S r2C r2
2

⎤
⎥⎥⎥⎥⎥⎥⎦
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{Q} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fv1 + M1e1�1
2 cos(�1t + ψ1)

Fw1 + M1e1�1
2 sin(�1t + ψ1) − M1g

0
Fv2 + M2e2�2

2 cos(�2t + ψ2)

Fw2 + M2e2�2
2 sin(�2t + ψ2) − M2g

0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The non-zero elements of [M], [Cc] and [Kc] are

M11 = M22 = M1

M44 = M55 = M2

M33 = Ip1

M66 = Ip2

Cc11 = Cc22 = C1

Cc44 = Cc55 = C2

Kc11 = Kc22 = K1

Kc44 = Kc55 = K2

In (16.29) the first two were divided by M1cr�1
2, the third one by Ip1�1

2, the
fourth and fifth by M2cr�1

2 and the sixth by Ip2�1
2 to obtain the non-dimensional

form as

[I ]{q̄ ′′} +
(

2ζh

�r

[S̄h] + 2ζ

�r

[C̄c]
)

{q̄ ′} +
(

ζK

�r
2
[S̄h] + 1

�r
2
[K̄c]

)
{q̄} = {Q̄}

(16.30)
where {q̄} = { v̄1 w̄1 ᾱ1 v̄2 w̄2 ᾱ2 }T .

[S̄h] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S2 SC S
ξc

−S2 −SC
ηrS
ξc

SC C2 C
ξc

−SC −C2 ηrC
ξc

ξI ξcS ξI ξcC ξI −ξI ξcS −ξI ξcC ξI ηr

−S2

ηM

−SC
ηM

−S
ηMξc

S2

ηM

SC
ηM

−S
ηMξc

−SC
ηM

−C2

ηM

−C
ηMξc

SC
ηM

C2
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Fig. 16.3 Bifurcation maps of driving gear response for U1 = U2 = 0.45

fv = fr v̄ − fφw̄√
v̄2 + w̄2

fw = frw̄ + fφv̄√
v̄2 + w̄2

fr = −(εφ′A11 + ε′A02)fφ = −(εφ′A20 + ε′A11)

C̄c11 = C̄c22 = 1

C̄c44 = C̄c55 = ηc

ηM

restC̄ = 0

K̄c11 = K̄c22 = 1

K̄c44 = K̄c55 = ηK

ηM

restK̄ = 0

Newmark’s method is used to determine the response by Shiau et al. [33]. For
general study on Chaos, refer to [14]. The gear pair has the following data:

ξI = 2, ξc = 10−5, ηM = ηC = ηK = ηr = ηI = ξK = 1

φp = 22.50, ζh = ζ = 0.0005, SD = 0.03

Wg = 0.1, ψ1 = ψ2 = 0

The critical speeds are found to be 0 (rigid body torsional), 0.79 (coupled) 1.0,
1.0, 1.0 (lateral) and 2.52 (coupled).

Effect of Imbalance: In all cases, initial conditions are kept the same, viz., zero
for both response and velocities. After reaching a steady state regime in the time
domain, 100 consecutive one-per-rotation speed marks which appear in on the re-
sponse are recorded. For periodic response all these marks appear at a constant
position for any number of rotations. For a steady synchronous response, there will
be only one mark; if the response is half synchronous, there will be two marks etc.,
If the response is chaotic, multiple marks result from these consecutive 100 posi-
tions [7]. These positions for both the vertical and horizontal response of the system
are given as bifurcation maps.

With larger imbalance U1 = U2 = 0.45, the influence on the chaotic range
becomes significant as shown in Figures 16.3 and 16.4.
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Fig. 16.4 Bifurcation maps of driven gear response for U1 = U2 = 0.45

Fig. 16.5 Bifurcation maps of driving gear response for SD = 0.1

Fig. 16.6 Bifurcation maps of driven gear response for SD = 0.1

The chaotic region is divided into two wider parts on both sides of the second
coupled mode region. The response is periodic for �r < 1.75. Beyond this region,
the response becomes chaotic with intermittent zones of periodic solutions. It is also
clear from these figures that the response is periodic around all the critical speeds
0.79, 1.0 and 2.52.

For SD = 0.1, Figures 16.5 and 16.6 give bifurcation maps which show that
the response is periodic for �r < 2.13 and that the chaotic regime has intermittent
zones of periodic response. Comparing these figures with Figures 16.3 and 16.4 we
find that the major range of chaos for SD = 0.03 is 1.8 to 2.38 and above 2.64 and
for SD = 0.1, it is 2.13 to 2.3 and above 2.5.

This is the greatest advantage of a squeeze film damper in increasing the range
of operation in light-weight high-speed applications, particularly aircraft engines.

As another example of geared rotor systems, let us consider a geared turbo-
generator set [18], given in Figure 16.7.

Here M10 = 7.45, M2 = 525.7, M3 = 116.04, M7 = 5.0 and M6 = 726.4 kg;
IT 10 = 0.0745, IT 2 = 16.1, IT 3 = 3.115, IT 7 = 0.002 and IT 6 = 56.95 kgm2;
IP10 = 0.149, IP2 = 32.2, IP3 = 6.23, IP7 = 0.004 and IP6 = 113.9 kgm2.
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Fig. 16.7 Geared turbo-generator set

Fig. 16.8 Shaft torques, lateral and torsional response without damper

The pinion has 23 teeth with r7 = 0.03567 m while the gear has 328 teeth with
r8 = 0.5086 m, kh = 108 N/m and φp = 22.5◦. Shaft lengths between nodes are
taken as l12 = 0.1, l23 = 4.24, l34 = 1.16, l45 = l56 = 0.15, l78 = 0.3, l89 = 0.05,
l9,10 = 4.95, l10,11 = 0.1 m, radius between nodes 1 and 3 = 0.15 m, between nodes
3 and 6 = 0.11 m and for turbine shaft = 0.075 m. Young’s modulus is 207 GPa,
shear modulus is 79.5 GPa and density is 7800 kg/m3.

Bearings 1 and 2 have kyy = 1.839 × 108, kzz = 2.044 × 108 and bearings 3
and 4 kyy = 1.010 × 107 and kzz = 4.160 × 107 N/m, Damping in all bearings
is 3000 Ns/m. Nominal torque Tn = 318.31 N/m. The short circuiting torque is
318.31 × 12.353e−33.97t sin ωt + 318.31 × 0.5e−5.45t sin 2ωt .

The coupled natural frequencies for �1 = 1500 RPM are 73.1, 77.2, 108.5, 116.0
150.5, 236.8, 313.5 319.6, 353.5, 362.9, 371.9, 396.6 and 466.2 rad/s. The response
without any squeeze film damper is shown in Figure 16.8.

Several arrangements of dampers are tried; here one arrangement is discussed to
study the effectiveness of the dampers on short circuit currents. The damper chosen
has a radial clearance cr = 152.4 microns and viscosity of oil μ = 0.015016 Ns/m2.
The damper was located at 9 near to the pinion where the maximum response is
expected. Figure 16.9 shows the response and effectiveness of the damper when
compared with Figure 16.8.

Finite element methods, whether for stationary or rotor dynamics applications
were of fairly recent origin. Though beam elements became popular with Nelson’s
Timoshenko element in 1980, they remained one dimensional till recently until the
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Fig. 16.9 Shaft torques, lateral and torsional response with I-9 damper

end of the 20th century. Meanwhile the structural models including rotating blades
became fully solid and capable of adapting to any geometry of discontinuities; the
rotor dynamics models remained rudimentary Euler beam models with an exten-
sion of the Timoshenko effect. Gyroscopic effects split the natural frequencies and
brought in the effect of speed and Campbell diagrams into the design. However,
the centrifugal loads and the influence of speed on natural frequencies remained
unexplored.

Most of the research in the 20th century concentrated on special effects of rotors
which are not present in stationary structures, such as unbalance, oil film supports,
seals, looseness, asymmetry, variable inertia, misalignment and associated instabil-
ities. Though the new culture is to model the structure, mesh (finite element model)
and analyze in CFD, Heat Transfer, Thermo-Mechanical analysis, Elasticity, Elasto-
Plasticity, Contacts, Nonlinearities, Composites, Stress Stiffening and Spin Soften-
ing effects etc. rotors however remained as simple beam models. Making a beam
model of an aircraft engine with two spools or more, drum-like structures in place
of disks, and so on, makes the designer’s life difficult and time consuming and ex-
pensive for the equipment manufacturers. Therefore solid models have advantages
of bringing the design process to model, mesh and go rather than reduce to beams,
introduce gyroscopic effects, etc., and perform simple analysis with a smaller num-
ber of elements. Recent developments in the first decade are discussed in the next
section.

16.3 Solid Rotors

The idea of solid or shell models of stationary structures became evident when the
casings and foundations became a part of the rotating machine and test beds be-
came flexible when coupled with rotors that interfered in the validating process.
Stephenson and Rouch [34] used axisymmetric solid finite elements with matrix re-
duction in their analysis; Yu et al. [36] modeled shafts orbiting with 3-D solid finite
elements. Neither of these included the effects of rotation, stiffening and softening
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Fig. 16.10 A solid rotor model of Figure 16.2

effects that go with solid elements. Solid rotor dynamics analysis was first presented
by Rao [20]. Rao et al. [28] provided the details subsequently.

The twin spool rotor system in Figure 16.2 is illustrated here for solid rotor mod-
eling. An equivalent solid rotor model for the example of Figure 16.2 is made as
shown in Figure 16.10. The four rotors with given masses and inertia properties are
replaced by disks (1) 10.626 cm dia 1.7 cm wide, (2) 9.7344 cm dia 1.38 cm wide,
(3) 9.682 cm dia 0.978 cm wide and (4) 9.9954 cm dia 1.66 cm wide consecutively
to give identical properties as shown. It may be noted that Figure 16.2 can represent
in a unique manner an equivalent beam model of the solid model of Figure 16.10,
even though several other solid models can be derived for Figure 16.2 beam model.
This in fact is the main limitation of beam model analysis as an equivalent derived
beam model may represent the dynamics of different solid models. An actual physi-
cal model in solid form eliminates this approximation. Rao et al. [28] studied several
different models, here some case studies are discussed. We begin with a solid rotor
model with lumped masses and inertias.

The solid model is constructed using SOLID-45 elements with eight nodes each
having three degrees of freedom of translation. The bearings are simulated by
COMBIN-14 elements. Both the rotors are subjected to spin by using a “useracel”
subroutine. By default, this model also has a spin-softening effect. A stress stiffen-
ing effect is not included as the masses are lumped. Mass21 elements are adopted
for simulating the disks. The masses on the outer rotor are related by RBE3 (con-
straint equation). The total number of elements in this model is 5304 and the nodes
are 6568. The model is shown in Figure 16.11. The Campbell diagram obtained for
this model is given in Figure 16.12.

The results from a beam model with gyroscopic effects are also included in Fig-
ure 16.12. The model in Figure 16.11 is similar to the beam model except for the
“spin softening” effects included in the system. The eigen-value problem with spin
softening effect is defined by

|([K] − ωs
2[M]) − ω2[M]| = 0

|[K̄] − ω2[M]| = 0 (16.31)
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Fig. 16.11 Solid rotor model with disks modeled as Mass21 elements

Fig. 16.12 Campbell diagram for rotor in Figure 16.11

where [K] is the stiffness matrix, [M] is the mass matrix, ω is the natural frequency
and ωs is the spin speed and the effective stiffness matrix is denoted by a bar above
K .

With the conventional gyroscopic effects included in a beam model without spin
softening effect, the backward whirl decreases in a linear manner as discussed be-
fore and also depicted in Figure 16.12. When spin softening effects are included,
the backward whirl natural frequency decreases with spin speed and the effective
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Fig. 16.13 Full solid rotor model

stiffness becomes zero when the spin speed becomes the natural frequency of the
stationary shaft as in Figure 16.12. Therefore the backward whirl natural frequency
drops at a faster rate when spin softening is accounted for and disappears at a spin
speed equal to the natural frequency under stationary conditions. This is a new re-
sult from the spin softening effects due to spin speed included in the model. Since
the stress stiffening effect is absent and there is no disk effect forward whirl crit-
ical speed is not affected in the solid model in the absence of gyroscopic effect
from disks. Only the backward whirl is significantly affected according to equation
(16.31).

In the next model, we consider a solid rotor model with disks Figure 16.13 and no
stress stiffening. Here both the shafts and disks are modeled using Solid45 elements.
The other modeling features are the same as the previous case. The elements are
12,680 in all with 15,367 nodes. The Campbell diagram for this case is shown in
Figure 16.14.

Here there is no stress stiffening and the disk spin softening decreases even
the forward whirl critical speed unlike in the case of Figure 16.12. Next a stress-
stiffening effect is also included then Figure 16.15 shows the Campbell diagram.

Both forward and backward whirl frequencies increased over the previous case
due to stress stiffening. The increase in the forward whirl frequencies is more pre-
dominant than that of the backward whirl frequencies under the influence of stress
stiffening. The forward whirl frequencies do not vanish as in the previous case at
higher spin speeds due to the stress stiffening effect. In reality we cannot expect
the forward whirl modes to disappear. Thus the solid rotor models become more
practical in applications.

Rao and Sreenivas [25] have extended the two rotor system to a three level with
the casing included in the analysis. Such an analysis enabled practical engine rotor
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Fig. 16.14 Campbell diagram for rotor in Figure 16.13

Fig. 16.15 Campbell diagram with stress stiffening Included

dynamics analysis. Surial and Kaushal [35] modeled an industrial gas turbine en-
gine and validated it at Rolls Royce Canada. Due to the complexity of the engine
structure the model has been divided into four substructures using super-elements.
The first super-element represents the engine casing, the second the low pressure ro-
tor (LP rotor), the third the intermediate pressure rotor (IP rotor), and the fourth the
high pressure rotor (HP rotor). In Figure 16.15 two practical aerospace applications
are illustrated.
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Fig. 16.16 Mode shape of a typical two spool aircraft engine

16.4 Two Spool Aircraft Engine [21]

Rotor dynamics plays an important role in engine design. In recent years, consid-
erable advances have taken place from simple beam model analysis. The support
characteristics are generally the main issue, from bearings, dampers and also seals
all of which play significant roles in engine dynamics. The bearings in an engine
are supported in flexible structures, the front frame of the fan, the middle frame, etc.
The casing itself is 1.5 to 2 mm thick in advanced light engines and they add to con-
siderable flexibility of the system. Therefore, it has become a necessity to be able to
couple rotors and stators into a single model. Moreover, it is a complex process to
determine the stiffness of the frames supporting the bearings for simulation of the
rotor.

Making approximate beam models of the engine spools for analysis purposes has
therefore become obsolete and one uses now solid elements directly in the model.
Thus, one can use the same solid model and mesh adopted for structural and thermal
analysis. A typical mode shape of an engine is shown in Figure 16.16.

The whirl amplitudes at critical speeds will be quite large and the blade tips
can rub at these speeds. Taking into account, the transient thermal and steady load
growths of the casing and the radial displacements of different stages of the rotor
under centrifugal and gas loads and whirling amplitudes at critical speeds, overall
clearances required can be fixed.

16.5 Cryogenic Pump Rotor Dynamic Analysis

High speed cryogenic pumps are employed in Geo Synchronous Satellite Launch
Vehicles. They use liquid hydrogen LH2 and oxygen LOX as propellants. The CAD
model of such a pump is shown in Figure 16.17 [27]. The rotor and the casing are
meshed with eight-noded brick elements (see Figure 16.18). Bearings and seals see
Figure 16.19 are simulated by 12 × 12 matrix elements accounting for all transla-
tional and rotational degrees of freedom between two nodes. Total number of ele-
ments is 379,779 and the total number of nodes is 534,115.
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Fig. 16.17 CAD model of the turbo pump

Fig. 16.18 FE model of the turbo pump

The bearings (deep groove ball) are taken linear for first cut analysis and stiff-
nesses taken as 6, 5.6, 5.6, 5.04, 5.04 and 3.27 × 104 N/mm for bearing numbers
1 to 6 respectively based on static bearing reactions. (The stiffness is subsequently
considered nonlinear depending on the reaction forces.) There are eight seals and
their properties are determined using bulk flow models. The stiffness and damping
values are curve fitted; typically the properties of first seal are given by

Kxxlb1 = 4.738452E − 12 × RPM3 + 2.261960E − 06 × RPM2

+ 2.659990E − 03 × RPM + 2.958842E + 02 N/mm

The boundary conditions adopted for the rotor alone analysis are given in Fig-
ure 16.19.

The other end of the bearing and the seal free nodes are constrained in all degrees
of freedom. All the inlets and the outlets of the turbo-pump are constrained in all
degrees of freedom as shown in Figure 16.20 for combined rotor-casing analysis.

Stress stiffening and spin softening effects are included. The results are post
processed and the different forward and backward modes are identified at different
speeds. Eigen-values are extracted using the Block Lanczos method and the Camp-
bell diagrams obtained thus are given in Figures 16.21 and 16.22 for the rotor alone
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Fig. 16.19 Boundary conditions for rotor; bearing locations 1 to 6 are as marked, the remaining 8
are seal locations

Fig. 16.20 Boundary conditions for rotor casing

and rotor plus casing respectively. Here, only bending modes are considered while
plotting the Campbell diagrams, torsional and axial modes are excluded.

It is observed that the first forward critical speed of the rotor is at 28000 RPM
and the second forward critical speed is at 55000 RPM. The first and second back-
ward critical speeds are observed at 20000 and 44000 RPM respectively. The critical
speeds dropped significantly to 23500 and 39000 RPM when the casing effect is in-
cluded.

The unbalance distribution in gm-mm is taken as given in Figure 16.23. Macros
are written to apply the unbalance load in accordance to the following relation:

Fx = uω2 cos β cos ωt + iuω2 sin β sin ωt

Fy = uω2 sin β cos ωt − iuω2 cos β sin ωt (16.32)

where u is the unbalance and β is the phase angle.
Bearing reaction forces obtained for the rotor alone case in the y direction are

given in Figure 16.24.
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Fig. 16.21 Rotor alone case Campbell diagram

Fig. 16.22 Rotor-casing Campbell diagram

Fig. 16.23 Unbalance distribution

It is observed that peak responses occur at critical speeds as predicted in the rotor
alone case Campbell diagram Figure 16.21. Bearing 1 suffers maximum reaction
force 2150 N at the first forward critical speed. The response in this region is not
correct because the bearing stiffness is significantly affected by the response. In
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Fig. 16.24 Bearing reactions forces in y direction

reality the bearing stiffness is nonlinear and given by

k = 1.289nz
0.666d0.333F 0.333 N/μm (16.33)

where nz is the number of balls in the ball bearing = 9, d is the diameter of the ball
= 11.12 mm and F is the reaction force at the desired frequency = 2150 N.

Substituting these values, we get k = 16.363×107 N/m. This is 2.727 times more
than the stiffness used before. This calls for consideration of bearing nonlinearity
in the analysis. Nonlinear spring systems were first considered by Duffing [3]. An
iterative process is to be adopted to determine the response in the critical speed
region to match the starting value of stiffness and the bearing reaction force with
the results in the final step. The casing stiffness, internal pressure etc. amongst other
parameters will influence the end result, for the present it is assumed that the average
value of starting stiffness is 6×107 N/m and the evaluated stiffness 16.36×107 N/m,
viz., 12 × 107 N/m will be applicable to assess the influence of nonlinearity of the
bearing. With this, the Campbell diagram obtained is shown in Figure 16.25.

The first forward critical speed is now at 34,000 RPM and the second forward
critical speed is above 55,000 RPM. Thus, the first forward critical speed increased
from 28,000 RPM by 21.4%.

Rao et al. [27] have also considered the influence of internal pressure, stability
analysis and the influence of dead bands using the solid model for rotor and casing.

Rao and Sreenivas [26] conducted several transient studies of Jeffcott type solid
rotor dynamics analysis to study the instability and gravity effects. These transient
studies were extended by Rao [22] to consider high angular acceleration of the pump
in Figure 16.17 to reach full speed (50000 RPM) in three seconds. The mass of the
rotor is about 8 kg. The rotor is assumed to be balanced to a quality G2.0. The
permissible eccentricity of this system (at 50,000 RPM) is 0.000398 mm. Hence
the residual unbalance in the system, during coasting up is about 0.0032 kg-mm.
This unbalance was applied to the turbine rotor of the pump disk 8 as shown in
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Fig. 16.25 Rotor alone Campbell diagram with revised stiffness for bearing 1

Fig. 16.26 Coast up response of a high speed Turbopump with acceleration 1800 rad/sec2

Figure 16.23 and the pump is allowed to coast up from about 10,000 to about 30,000
RPM. Figure 16.26 shows the time domain response of the rotor, while coasting up
through its first critical speed of 228 Hz. It may be seen that the peak response
occurs at around 0.795 seconds. The mode shape at peak response speed obtained
is shown in Figure 16.27.

Solid rotor models for rotor dynamics analysis have simplified the analysis by
removing approximation in deriving beam models. The solid models have enabled
inclusion of significant and important stress stiffening and spin softening affects
which otherwise have been neglected. These speed effects are important in high
speed rotating machinery that is becoming increasingly common. Another signifi-
cant advantage is the gyroscopic effects automatically being included in the solid
models and there is no need to do an artificial split and look for backward whirl ef-
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Fig. 16.27 Mode shape of the cryogenic pump

fects. Solid models indeed predict the backward whirl modes more precisely. They
may play an important role in coupled rotors experiencing both forward and back-
ward whirls in higher modes.
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Chapter 17
Bladed Disks

Bladed-disk vibrations were well studied because of the critical fatigue problems.
They are the most stressed systems in machines. Campbell [5], Stodola [52] and
Sezawa [48] are amongst the first few who studied the bladed-disks. Kroon [25] ap-
plied difference calculus to the case of lashed blades to determine the blade stresses.
Though no vibrations were considered, this paper is the first attempt to point out that
the whole blade group should be considered. Smith [51] made a two-dimensional
free vibrational analysis in the tangential direction using a dynamic stiffness matrix
method on a six and twenty bladed group. His contribution was most significant
since the group frequencies and mode shapes were determined for the first time as
shown in Figure 17.1.

Myklestad’s adaption of the Holzer method was used by Jarret and Warner [20]
to determine the natural frequencies of rotating tapered twisted beams, the influence
of lashing wires and shroud were included as constraints. Prohl [34] presented a
method of calculating natural frequencies, mode shapes and bending stresses for
3D free and forced vibrations in the tangential and axial directions. In a companion
paper by Weaver and Prohl [55], Prohl’s method was used to calculate the natural
frequencies and mode shapes of a simple blade group. A method of analysis for a
laced group of rotating blades was given by Deak and Baird [8]). Rao [35] gave
these methods in his book on Turbomachine Blade Vibration.

Armstrong et al. [1] provided a solution for bladed-disks using the method of
receptances described by Bishop and Johnson [3]. A detailed study of vibrations
of bladed-discs was given by Ewins [13]. Ewins and Rao [14] presented the effect
of damping on bladed-disc vibrations. The influence of coupling between bending
and torsion and rotation are included in the analysis by Thomas and Subuncu [54].
Irretier [18] further generalized by taking coupled bending-bending-torsion mo-
tions. Later Irretier [19] gave a spectral analysis of mistuned bladed-disc assemblies
by component mode synthesis. Friction related mistuning issues were studied by
Muszynska and Jones [29].

299
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Fig. 17.1 Smith’s results for a six bladed packet [51]

17.1 Armstrong’s Analysis for Tuned Systems

The receptance coupling method is essentially the application of dynamic equilib-
rium and compatibility between two connected components. Such a method when
properly developed becomes useful in studying the dynamic characteristics of struc-
tures involving different components that are governed by displacement fields of
different nature, such as plates and beams.

If a structure responds with x(t) under a force F(t) the relation x(t) = αF(t)

defines the receptance α. For a disk, we can determine the following:

• Direct Receptance between force and displacement Nαw .
• Cross Receptance between force and slope Nαφ .
• Cross Receptance between moment and displacement Cαw .
• Direct Receptance between moment and slope Cαφ .

These values can be determined for a given disk in closed form, series form or Point
receptances. Similarly for the blade:

• Direct Receptance between force and displacement Nβw.
• Cross Receptance between force and slope Nβφ .
• Cross Receptance between moment and displacement Cβw.
• Direct Receptance between moment and slope Cβφ .
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The receptances between the blade root and the blade tip, and receptances at the
blade tip, can be determined in a convenient form. These are not dealt with here.

Consider first a disk represented by B with one blade represented by C. Only
two degrees of freedom are considered. Let N and C represent the force and couple
with response x and θ . The displacement field is written using the corresponding
receptances

XB=NαwNB+CαwCB

θB=NαφNB+CαφCB (17.1)

and

XC=NβwNC+CβwCC

θC=NβφNC+CβφCC (17.2)

Let N1, C1 be the forces and couples between the blade and disk. Then applying
conditions of equilibrium and compatibility

N1 = NB + NC

C1 = CB + CC

X = XB = XC

θ = θB = θC (17.3)

If there no applied forces between the blade and disk, then

NB = −NC

CB = −CC (17.4)

We can then obtain the frequency equation[
Nαw+Nβw Cαw+Cβw

Nαφ+Nβφ Cαφ+Cβφ

]{
NB

CB

}
= 0 (17.5)

If there are M identical blades (tuned system), we assume that the assembly is vi-
brating in a mode with n nodal diameters such that the reaction forces and couples
between the blades and disk are each distributed around the rim of the disk given by

fj = −2εA0 cos
2πnj

M
(17.6)

where A0 is the amplitude of force distribution and 2ε is the angular width of the
blade. We can similarly write an expression for the couple C. For the disk, the
distributed forces acting on the rim are
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F (θ) = 0

{
2πm

M
+ ε

}
< θ <

{
2π (m + 1)

M
− ε

}

= A0 cos
2πmn

M

{
2πm

M
− ε

}
< θ <

{
2πm

M
+ ε

}

m = 1, 2, . . . ,M (17.7)

For the disk, we consider the force as a set of distributed forces acting on its rim,
and for n < m, we can show that

FD (θ) = εMA0 cos nθ (17.8)

For the location of j th blade, this force is

FD (θ) = εMA0 cos
2πnj

M
(17.9)

Combining equations (17.6) and (17.9), it can be seen that the disk force is M/2
times that of the blade forces. That is the disk receptances should be modified as

Nαw} mod = 1

2
MNαw (17.10)

Therefore the frequency determinant from (17.5) is

� =
∣∣∣∣∣

1
2MNαw+Nβw

1
2MCαw+Cβw

1
2 MNαφ+Nβφ

1
2MCαφ+Cβφ

∣∣∣∣∣ (17.11)

17.2 Ewins’ Analysis

Ewins [13] extended the above analysis to six degrees of freedom, three each trans-
lational and rotational at each blade-disk junction. Let vectors {F } and {f } represent
the dynamic reaction forces and couples which act upon the disk and the blade re-
spectively at each junction, and vectors {X} and {x} represent the corresponding
displacements and rotations. They are

{F } =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Na

Nt

Nc

Ca

Ct

Cr

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

; {X} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wa

wt

wc

φa

φt

φr

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

; {f } =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Na

Nt

Nc

Ca

Ct

Cr

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

; {x} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wa

wt

wc

φa

φt

φr

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(17.12)

Suffixes a, t and r represent disk axial direction, tangential direction and radial
direction measured from arbitrarily fixed θ = 0, junction j is located at angle θj .
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The displacements of the rim of the disk at point j , Xj will be the sum of the
responses of each of the M system of forces, Fk and may be written as

{X}j =
M∑

k=1

[α]jk{F }k (17.13)

where [α]jk is the point receptance matrix relating to response at j due to the force
at k. Consider now the blade attached at point j , we have

{x}j = [β]j {f }j (17.14)

Assuming the blades to be rigidly attached to the disk, we have

{X}j = {x}j , j = 1, 2, . . . ,M

{F }j = −{f }j , j = 1, 2, . . . ,M (17.15)

From the above equations we get

M∑
k=1

[α]jk{F }k + [β]j {F }j = 0; j = 1, 2, . . . ,M (17.16)

The above leads to the frequency determinant

[�]6M×6M{F }6M×1 = 0 (17.17)

When the system is mistuned by allowing small-dimensional variations between
one blade and the next, some of the modes split into distinct but similar pairs. In
general a random mistuning of blades will cause all the so-called double modes to
split in this way. It is most convenient to select the 1F blade cantilever frequency to
describe the state of mistuning. Individual blade frequencies f1, f2, are given by

fi = f (θ) }θ=θi , θi = 2πi

M
(17.18)

where f (θ) is of the form

f (θ) = fmean

⎧⎨
⎩1 + a0 +

M∑
j=1

aj cos(nj θ + φj )

⎫⎬
⎭ (17.19)

Consider the following bladed-disk assembly:

• Blade length = 80.26 mm;
• Width 1 = 3.05 mm;
• Width 2 = 10.78 mm;
• Disk thickness = 5.59 mm;
• Disk radius = 127 mm;
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Fig. 17.2 Frequency vs. nodal diametral plot for a 24 bladed disk assembly

Table 17.1 Mistuning pattern

Blade Mistune Ratio Blade Mistune Ratio
Number Number

1 1.00625 13 0.98625
2 0.99250 14 0.97500
3 0.99750 15 0.99875
4 0.99500 16 1.00375
5 1.00625 17 1.03125
6 0.98125 18 1.04500
7 1.01375 19 1.00375
8 1.00250 20 1.00250
9 0.98875 21 0.99250

10 0.99000 22 0.97500
11 1.00125 23 0.99875
12 0.98375 24 0.99625

• Number of blades = 24;
• Stagger angle = 45◦;
• Young’s modulus = 207 GPa;
• Poisson’s ratio = 0.287;

The tuned system natural frequencies are given in Figure 17.2.
The mistuning pattern is assumed as given in Table 17.1. The natural frequencies

obtained for the same are given in Table 17.2.
Cottney and Ewins [6] considered the shroud in bladed-disk assemblies; Ewins

[12] and Ewins and Rao [14] included blade damping on the forced vibrations of
bladed-disks. Rao et al. [41] programmed the bladed-disk assembly vibration char-
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Table 17.2 1F natural frequencies of mistuned bladed-disk

Frequencies in Hz

No. of Tuned Mistuned System
Nodal System
Diameters

2 262.848 262.193 263.663
3 354.368 352.990 353.940
4 373.228 370.785 371.584
5 379.790 376.722 378.082
6 382.927 379.347 383.785
7 384.683 383.188 390.057
8 385.751 382.234 384.319
9 386.422 384.432 388.710

10 386.836 379.924 386.777
11 387.061 386.136 386.390
12 387.133 400.024 –

Fig. 17.3 Turbine stage geometry

acteristics and verified the natural frequencies by experiments on an Orpheus air-
craft engine. The geometry of a gas turbine bladed disk assembly of the engine is
shown in Figure 17.3. The stage of mass 24.2 kg has 125 blades and density is
taken as 7833 kg/m3 Young’s modulus is 207 GPa and Poisson’s ratio is 0.287. The
area, Ixx , Iyy and the stagger angle for the blade elements 1 and 2 respectively are
61.08 mm2, 147.909, 2123.9 mm4, 15◦; 42.315 mm2, 124.13, 1793.14 mm4, 25◦.
Figure 17.4 shows the analytical and experimental results of the stage.

The finite element method is ideal for bladed-disk type problems; Kirkhope and
Wilson [24] were amongst the earlier ones to use this method. Elchuri et al. [11]
used commercially developed codes for cyclically symmetric structures and Swami-
natham et al. [53] considered a bladed-disk vibration analysis. Reference may also
be made to Rzadkowski [46].
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Fig. 17.4 Theoretical and experimental results of the orpheous engine turbine stage

17.3 Mistuning Arrangement

When the blades are mistuned, it is usually found that excessively large vibrations
occur when compared to perfectly tuned systems. Whitehead [56] first addressed
this problem by developing algebraic expressions for the maximum response based
on the number of blades in a bladed-disk. Recently, in [57] he considered example
cases in which his proposed maximum would occur. The theoretical limit for maxi-
mum magnification has been shown to be (1/2)(1+√

NB) where NB is the number
of blades.

Several attempts have been made to determine the maximum response in a bladed
disk design. Dye and Henry [10] used Monte-Carlo simulations with a simple nu-
merical model based on the measured system parameters to statistically estimate the
maximum response in a bladed-disk. Several methods [49], were proposed to deter-
mine the statistical distribution of mistuned forced response amplitudes from which
the maximum response can be obtained.

Kenyon and Griffin [21] identified two primary physical mechanisms associated
with increases in forced response amplitudes due to mistuning in a single family of
bladed-disk modes, frequency splitting and mode distortion. Frequency splitting de-
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Fig. 17.5 Mistuning pattern

scribes the separation of the repeated natural frequencies that occur in tuned bladed
disks into two distinct natural frequencies. Mode distortion refers to harmonic con-
tent in the mode shape of a mistuned system in addition to the fundamental wave
form of the normally tuned mode. Kenyon et al. [23] recently developed a theory for
predicting the maximum forced response in a bladed disk from mode distortion in
a single structural mode. The maximum response derived there was robust, i.e., if a
bladed-disk is intentionally mistuned to exhibit that maximum response, then small,
unintentional random mistuning will not significantly alter the response amplitude
of the bladed disk.

As mistuning is inevitable, several authors have worked out the maximum level
response increase in forced vibration of bladed disk assemblies, the lowest reported
value is 21% in [10] and the highest reported value is 110% in [47]. Kenyon and
Griffin [22] demonstrated experimentally the maximum mistuned bladed disk forced
response. The theoretical result for maximum amplitude magnification predicted
using Kenyon et al.’s [23] formulation is 1.918 and the experimental result was
close to this prediction.

The general practice of measuring mistuning of bladed-disks is to determine each
blade’s natural frequency; the difference of each blade’s natural frequency from the
mean value is taken as a measure of mistuning. When it comes to integral bladed-
disks or blisks, this approach fails. Feiner and Griffin [15] have recently proposed a
method of mistuning identification of Bladed Disks using a fundamental mistuning
model.

Rao [36] adopted a modal distortion technique [23] to minimize the mistuning
effects and control resonant response. The pattern chosen here to minimize the re-
sponse in 3ND mode is given in Figure 17.5.

The mistuning pattern is designed in the chosen case, to have the frequency val-
ues of consecutive NB number of blades, say 40, arranged in a manner of highs and
lows consecutively. This will form a sine wave consisting of (1/2)NB cycles around
the disk in one rotation. The blades are further organized such that even harmonics,
2 and 4 are present in one rotation around the disk as shown in Figure 17.5.
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It may be noted that the range of frequencies in Figure 17.5 is quite small; the
maximum difference in the individual blade is only 2% of the mean unlike the 48.5%
obtained by Kenyon and Griffin [21] for their worst mistuning case. Such a large
deviation can never occur in practice, particularly for aircraft engine blades which
use very high precision manufacturing processes.

In the CAD model of the bladed-disk, 2,49,760 8-noded solid elements, are used
with 3,36,280 nodes. There are 40 sectors. Modal analysis of the pre-stressed struc-
ture at the operating speed is performed. For the first bending of the blade, 20 pairs
of roots are obtained for a perfectly tuned system, one pair each for different orders
of nodal diameters. 3ND mode (around 760 Hz) is found to be close to 3 per rev
excitation near the operating speed.

The mistuning is applied by changing, say the density, from blade to blade to
obtain the frequency pattern as given in Figure 17.5. Full system modal analysis
gives 40 split roots because of mistuning. The first four (0 to 3) nodal diameter
mode shapes of the tuned and mistuned cases are shown in Figure 17.6.

It can be seen from Figures 17.6a to d, all the modes are distorted. In the case
of 0-ND mode, the basic umbrella mode exists with mistuning (see Figure 17.6a).
The 1-ND mode is a little more distorted than the 0-ND mode; however, the nodal
diameter is clearly visible.

The 2-ND mode is fairly well distorted; it is a bit difficult to see clearly two
nodal lines, see Figure 17.6c. For the 3-ND mode, however, the shape is completely
destroyed, if at all only two nodal lines can be somehow seen there, see Figure 17.6d.

It may be noted here that in all cases, the natural frequencies of mistuned bladed
disk are in the same range of the tuned system; only the mode shapes are distorted.
Therefore, resonance takes place when an excitation is applied at the resonance
frequency, only the effectiveness will gradually decrease as the mode shape gets
distorted and becomes a minimum when the mode shape is fully distorted as in
3-ND mode.

We will consider the case of 3 per rev excitation from flow path acting on the
blades. It may be noted here that the excitation from nozzles is a multiple of running
speed times the number of nozzles, therefore 3 per rev excitation on the blades is
unlikely in a practical case.

For this purpose, harmonic excitation is made on the blades at the desired fre-
quency and phase angle between successive blades. The excitation applied in an ax-
ial direction is taken in the form of a harmonic with unit force and frequency corre-
sponding to the natural frequency. A phase angle 0.47124 radians is used from blade
to blade consecutively so that the 40th blade has 6π radians phase from the first one.
1% damping is used. The maximum amplitude in the mistuned case is found to be
44% more than the tuned case. The lowest value reported in the literature is 21%
by Dye and Henry [10]. The worst magnification according to Whitehead [56] is
(1/2)(1 + √

40) = 3.66.
The response in the axial direction is found to be 19% over the tuned case. In the

hoop direction the magnification is 14% over the tuned case. Net bending deflection
is magnified by around 17.5%, which is lower than the 21% value reported by Dye
and Henry [10].
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(a)

(b)

(c)

(d)

Fig. 17.6 (a) Zero ND tuned and mistuned mode shapes. (b) One ND tuned and mistuned mode
shapes. (c) Two ND tuned and mistuned mode shapes. (d) Three ND tuned and mistuned mode
shapes
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In practice 3× excitation from flow path in axial flow aircraft engine compressors
is less likely in comparison to the 3× excitation arising out of rotor misalignment
and other causes. For this purpose, transient excitation is made on the disk at the
desired frequency and phase angle between the disk sectors.

Maximum von-Mises stress obtained for a unit load in the tuned case is found
to be 10.21 N/mm2. Maximum von-Mises stress obtained for a unit load in the
mistuned case is 0.84 N/mm2. Thus, the stress value in the mistuned case is 12
times less than the stress value in the tuned case. Thus proper designed mistuning
giving modal distortion can help in decreasing the stresses.

17.4 Damping

Turbine blades have very little damping and therefore when they go through a res-
onance at critical speed, the stresses can easily get magnified by 100 times or even
higher of steady stress. These very high resonant stresses are responsible for fatigue
damage. Therefore, damping has been identified long ago as a key parameter in
blade design. Rowett [45] conducted tests on elastic hysteresis in steel. Effects of
friction and loose mounting were studied by Hansen et al. [17].

Lazan [26], see also Nashif et al. [30], measured hysteresis in simple tension tests
and defined the loss of energy per cycle by

D = J

(
σ

σe

)n

(17.20)

where J and n are material properties and σe is endurance limit.
Sinha and Griffin [50] studied analytically the effects of static friction on the

forced response of frictionally damped turbine blades.
Usually a simple viscous damping model is used with equivalent damping de-

termined from a test. Such a linear model is inadequate since material damping is
highly dependent on the state of stress in the blade. A nonlinear damping model was
quantified through experiments by Rao et al. [37]; the equivalent viscous damping
is expressed as a function of strain amplitude at a reference point in a given mode of
vibration at a given speed of rotation. The experiment consisted of spinning the rotor
in vacuum and providing excitation through distributed electromagnets in place of
steam or gas nozzles, Figure 17.7 gives the test apparatus and Figure 17.8 measured
equivalent viscous damping as a function of reference strain amplitude at a given
RPM and in a given mode of vibration.

Centrifugal load is simulated by means of thermal expansion to avoid rotation
and simplify the test rigs. Rieger and Beck [44] performed such tests for EPRI.

In Section 13.4, the finite element method given by Rao et al. [42] was discussed
to study the friction damping between blade root and disk by using contact elements.
They have also designed and built a test rig simulating the centrifugal load by means
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Fig. 17.7 Measurement of damping in rotating blades

Fig. 17.8 Equivalent viscous damping as a function of reference strain amplitude measured at a
given RPM for a given mode

of cryogenic liquid cooling on a blade pair mounted in the frame contracted by
thermal cooling. This avoided expensive rotation simulation, see Figure 17.9.

Rao and Saldanha [40] developed an analytical procedure using Lazan’s hystere-
sis law [26]. Briefly the steps followed are:

The total damping energy D0 (Nm) is given by

D0 =
∫ v

0
Ddv (17.21)

where v is the volume. The loss factor η is

η = D0

2πW0
(17.22)
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Fig. 17.9 Blade pair in tension simulated by thermal cooling

where W0 is the total strain energy (Nm). Then, equivalent viscous damping C (N-
s/m) is

C = ηK

ω
(17.23)

where ω the natural frequency (rad/s) and K is the modal stiffness (N/m).
For increased strain amplitudes, the orthonormal reference strain amplitudes,

stress and strain energy are multiplied by a factor F to obtain the equivalent vis-
cous damping Ce at various strain amplitudes as given below:

ε′ = εF

W ′
0 = W0 × F 2

η′ = D′
0

2πW ′
0

C′
e = η′K

ωn

F 2

ξ = Ce

2
√

Km
F 2 (17.24)

A plot of equivalent viscous damping ratio as function of reference strain ampli-
tude in the chosen mode of vibration defines the nonlinear damping model [38]. The
friction damping characteristic is obtained by determining the transient response due
to an impulse excitation at a suitable point on the blade to simulate the desired mode
of vibration and to assess the decay curve. Typical transient response blade and a
nonlinear friction damping model of the blade are shown in Figure 17.10.
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Fig. 17.10 Impulse response of bladed-disk and damping ratio

Fig. 17.11 Material and combined material and friction damping
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Fig. 17.12 Material and friction dampings and the resultant

Rao et al. [39] determined the material damping and combined material friction
damping of a bladed disk as a function of reference strain amplitude in a given mode
of vibration at an operating speed as shown in Figure 17.11.

An alternate method is to compare the material damping and friction damp-
ing separately and retain which-ever contributes maximum value as shown in Fig-
ure 17.12.

17.5 Micro-Slip Damping (Fretting Fatigue)

Referring to Figure 17.8 we find that strain amplitudes (response) decrease consid-
erably as the speeds go up when the blade and disk get locked in the root. Because of
the tightness at high speeds, slip amplitudes get reduced and the friction is governed
by contacts at asperity level rather than global Coulomb’s laws.

When two surfaces in contact slide against each other, an elastic-plastic deforma-
tion called micro-slip may occur before macro-slip takes place that can be consid-
ered governed by Coulomb’s laws. Courtney-Pratt and Eisner [7] are amongst the
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Fig. 17.13 Fretting fatigue due to micro-slip in a compressor dovetail

Fig. 17.14 Schematic of contact

earlier people who worked on micro-slip theory. The frictional-load displacement
relationship during micro-slip is similar to the stress strain relationship for brittle
materials (hysteresis). This microslip is important from the point of fretting fatigue
that is commonly observed in turbomachine blades. Figure 17.13 shows fretting-
fatigue in a turbine blade root. Burdekin et al. [4] proposed a theoretical model for
micro-slip based on reasonable physical properties, assuming that the contacting as-
perities are substituted by prismatic rods of equal stiffness. Hagman [16] proposed
a theoretical model with contacting asperities replaced by spherical bodies of con-
stant radius. Olofsson [31] and Olofsson and Hagman [32] expanded this model to
include oscillating displacements and elliptical shaped asperities.

Following Olofsson and Hagman [32], consider a flat smooth surface in contact
with a rough flat surface shown in Figure 17.14. The frictional load is parallel to the
x axis.

The following assumptions are made:

1. Shape of asperities is ellipsoidal.
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Fig. 17.15 Flat surface in contact with rough surface

2. Height distribution of asperities is uniform.
3. Surface contact is elastic and the behavior of an individual asperity follows Hertz

theory for elliptical contacts.
4. All asperities have their semi-axes a and b in the same global x and y directions,

respectively.
5. Contacting asperities have the same constant ovality ratio k = a/b, a < b and

k = b/a, b < a

The surface is brought into contact with a normal approach λ, see Figure 17.14.
The normal load, Pi , for an asperity at depth zi and the major semi-axis c for that
asperity is expressed as

Pi = 2πE′

k
(

9
2εR

)1/2

(
λ − zi

κ

)3/2

(17.25)

c =
(

3εPiR

k2πE′

)1/3

(17.26)

In the above:

• E′ is the composite modulus of elasticity given by

1

E′ = 1 − ν1
2

E1
+ 1 − ν2

2

E2

• R is the curvature sum of elliptical contact given by

1

R
= 1

r2x

+ 1

r2y

with r as radius of curvature and ε are complete elliptic integrals of the first and
second kind with argument e = √

1 − k2.
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The number of asperities in contact, N , is assumed to increase linearly with the
approach of the two surfaces. Thus

N = Cz (17.27)

where C is a surface parameter which relates the number of contacts per unit area
and z the approach of the surfaces. The normal load for the approach λ can be
expressed as

P = CA

∫ λ

0
Pidz = 4CAκπE′

5k
(

9
2εR

)1/2

(
λ

κ

)5/2

(17.28)

where A is the apparent area of contact.
Constant Normal Load and Increasing Frictional Load: The displacement of

elastic ellipsoidal bodies in contact was studied by Deresiewicz [9]. The force-
displacement relationship for an individual asperity, i, can be expressed as

Fi = μPi

(
1 −

(
1 − 16cG′

3μPi

δd

φ

)5/2
)

(17.29)

where G′ is the composite shear modulus given by

1

G′ = 2 − ν

G1
+ 2 − ν2

G2

and

φ =
[

4

π(2 − ν2)

] [(
1 − ν2

e2

)
κ + ν2ε

e2

]
, a < b

φ =
[

4

π(2 − ν2)

] [(
1 − ν2 + ν2

e2

)
κ − ν2ε

e2

]
, b < a (17.30)

Fi will deflect upto Fi = μPi . Equation (17.29) gives the limit deflection δLi

δLi = 3μPi

16cG′φ = πμE′φ
8G′

(
λ − zi

κ

)
(17.31)

Equation (17.31) gives the limit height of the asperities, zLi . Asperities higher
than zLi will stick and asperities lower than zLi will slip.

zLi = λ − 8G′δ
πμE′φ

(17.32)

The total frictional load becomes

F = Fspring + Fslip =
∫ zLi

0
FiCAdz +

∫ λ

zLi

μPiCAdz (17.33)
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Fig. 17.16 Frictional load vs. displacement for an individual ellipsoidal body

where Fspring is the frictional load from the active asperities which have not reached
their limiting tangential deflection and Fslip is the contribution from asperities which
have reached their limiting tangential deflection.

The total frictional load is obtained from using equations (17.25), (17.29) and
(17.32) in equation (17.33)

F = 4

5
μCAκ

πE′

k
(

9
2εR

)1/2

[(
λ

κ

)5/2

−
(

λ

κ
− 8G′δ

μπE′φ

)5/2
]

= μP

[
1 −

(
1 − 8G′δκ

μπE′φλ

)5/2
]

(17.34)

Equation (17.34) is valid until

δmax = λμπE′φ
8κG′ (17.35)

Constant Normal Load and Oscillating Frictional Load: Suppose that after
reaching a value F ∗, the frictional load F is reduced; the force displacement re-
lationship under unloading for an individual asperity i can be expressed as (see
Figure 17.16)

Fdi = 2μPi

[
1 −

(
1 − 16cG′δdi

2 × 3μPiφ

)3/2
]

(17.36)

The corresponding limit deflection for unloading is twice that for loading. The
maximum height of the asperities zdli for which they will slip is

zdLi = λ − 4G′δ
πμE′φ

(17.37)
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The sense of slip must be reversed [28] but its absolute magnitude is not altered
during unloading. Then the slip part of the tangential load during unloading is twice
that for loading. The equation for the frictional load during unloading is

Fd =
∫ zdLi

0
FdiCAdz +

∫ λ

zdLi

2μPiCAdz

= 2μP

[
1 −

(
1 − 4G′δdκ

μπE′φλ

)5/2
]

(17.38)

where δd is the reduction in the initially loaded displacement, δ∗, and Fd is the
reduction in the initially applied load, F ∗.

The equation for frictional load transformed to the original co-ordinate system is

Fr = F ∗ − 2μP

[
1 −

(
1 − 4G′κ (δ∗ − δ)

μπE′φλ

) 5
2
]

(17.39)

Suppose now that the frictional load is oscillating between F ∗ and −F ∗. The
situation at F = −F ∗ is identical with that at F = F ∗, except for the reversal of
sign. Hence the frictional load then becomes

Fs = −Fr (−δ) = −F ∗ + 2μP

[
1 −

(
1 − 4G′κ (δ∗ + δ)

μπE′φλ

) 5
2
]

(17.40)

Energy Dissipation: The area enclosed by the curves Fs and Fr gives the energy
dissipation during micro-slip per cycle. Integration gives the energy dissipation, W

as

W =
∫ δ∗

−δ∗
(Fs − Fr) dδ

= 4

7

⎡
⎣14μPδ∗ + Pμ2πE′φ

2G′( λ
κ

)5/2

(
μπE′ ( λ

κ

)
φ − 8G′δ∗

μπE′φ

) 7/2

− Pμ2πE′φ
2G′

λ

κ
− 7F ∗δ∗

⎤
⎦

(17.41)

Now consider when φ = 1, a = b (asperities modeled as spheres, then κ = ε =
π/2, equations (17.34), (17.38) and (17.41) become

F = μP

[
1 −

(
1 − 4G′δ

μE′λ

)5/2
]

(17.34a)

Fd = 2μP

[
1 −

(
1 − 2G′δd

μE′λ

)5/2
]

(17.38a)
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Table 17.3 Test data

Input Data Case 1 Case 2

r2x (μm) 1 100
r2y (μm) 100 1
ν 0.3 0.3
μ 0.1 0.1
G′ (N/m2) 2.38 × 1010 2.38 × 1010

E′ (N/m2) 1.15 × 1011 1.15 × 1011

C (contacts/m2/m) 10 × 1010 10 × 1010

A (mm2) 100 100
P (N) 5000 5000

Fig. 17.17 Frictional load vs. displacement: full line — Case 1; dashed line - - - Case 2

W = 4

7

[
14μPδ∗ + P

μ3/2E′5/2λ5/2G′ (μE′λ − 4G′δ∗)7/2 − μ2E′λ
G′ − 7F ∗δ∗

]
(17.41a)

These are the same as the ones by Hagman [16] and Olofsson [31] for the case where
the asperities are replaced with spheres. Olofsson gave two test cases; the data for
these cases is given in Table 17.3.

Figure 17.17 gives the results from equations (17.34), (17.39) and (17.40).
Marquina et al Model: For the blade-disk junction case, Marquina et al. [27]

adopted the above Olofsson and Hagman’s micro-slip model into their approach.
First the shear (tangential) stiffness is obtained from equation (17.34a) written as

Ft = μFN

[
1 −

(
1 − 4G′δ

μE′λ

)n]
(17.42)

Kt = dFt

dδ
= 4FNnG′

E′λ

(
1 − 4G′δ

μE′λ

)n−1

(17.43)
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Fig. 17.18 Micro-slip damping model

Limiting δ to δmax = (λμE′)/4G′ the above equation (17.43) was simplified by
Marquina et al. [27] and Olofsson’s relation is then written as

Ft = μFN

[
1 −

(
1 − Kt

nFN

δ

μ

)5/2
]

(17.44)

Asai et al: Here the formulation is slightly different made in such a way as to
verify Olofsson’s formulation for blades. Their microslip damping model of two
surfaces under contact with Ft and Fn as tangential and normal forces is given in
Figure 17.18 [2]; the tangential contact stiffness is

Ktc = Ft

dstick
(17.45)

For the linear model without hysteresis, the material property is Imaginary Tan-
gential Contact Stiffness Ktc,im given by

Ktc,im = Ft

dtotal
(17.46)

In Figure 17.18, the total displacement is stick and slip as shown and given by

dtotal = dstick + dslip

= Ft

Ktc

+ dslip (17.47)
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Fig. 17.19 Asai et al. [2] experimental result for micro-slip

If δslip is the displacement due to the normal force Fn (slip per unit normal force)
and tangential stiffness ktc, we define a parameter

dslipKtc

Fn

= dslip

δslip
(17.48)

Under constant normal load, as the displacements are increasing, in Oloffson’s
model for oscillating displacements, the asperities are replaced by spheres with the
same radius. It is assumed that the height distribution of the asperities is uniform and
the behavior of an individual asperity follows Hertz theory. The resulting contact
model is

Ft

Fn

= m

[
1 −

{
1 −

(
Ktcdtotal

nmFn

)}n]
(17.49)

where n and m are constants. Using (17.47) the above becomes

Ft

Fn

= m

[
1 −

{
1 − 1

nm

(
Ft

Fn

− dslipKtc

Fn

)}n]
(17.50)

Asai et al. [2] verified the above experimentally for the parameter (dslipKtc)/Fn as
shown in Figure 17.19 for three different test specimens. Microslip occurs for large
values of Fn(Ft < Fn) as shown and dslip values are in the range of 0.1 to 5 microns.
m and n are obtained from the mean curve of experimental results.

Asai’s experiments have shown that the Hagman and Olofsson elasto-plastic the-
ory of contact provides a workable model for blades given by (17.34a). The problem
however is highly nonlinear and not simple.
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F = μP

[
1 −

(
1 − 4G′δ

μE′λ

)5/2
]

(17.34a)

1. First of all the coefficient of friction μ at asperity level is not known and as given
in Olofsson’s relation it is dependent on tangential displacement δ.

2. Secondly the steady state condition for the penetration λ is not known. Marquina
et al. [27] circumvented this problem by considering δ to be δmax in obtaining the
relation in equation (17.44).

Otherwise the penetration is left to be determined. The penetration can often be
achieved directly from the finite element code. If the penalty method is used to
simulate contact stiffness, the penetration values can be unreliable. Instead a more
reliable variable in finite element simulations, the contact pressure, can be used to
calculate the penetration. An empirical relationship between the penetration and the
contact pressure, P , can be adequately described by the following equation [43]:

λ = cPm (17.51)

where c = 0.0014 for ground/ground steel surfaces and m = 0.5 for most metallic
materials and for normal contact pressures encountered in joints.
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Chapter 18
Lifing

Turbine bladed disks continue to fail because of fatigue caused by resonant stresses;
one of the major failures in the 1990s was reported in a nuclear machine in Narora,
India. Bearing failures caused machine trip and rubbing caused blade fatigue (see
Figure 18.1).

Albert Wilhelm (1838) is recognized as the first person to record observations
of metal fatigue. While working in the Mining and Forestry Office in Clausthal,
Germany, in 1829, he observed, studied and reported the failure of iron mine-hoist
chains arising from repeated small loadings, the first recorded account of metal fa-
tigue, see [31].

Jean-Victor Poncelet, a French military engineer and later professor at the École
d’Application in Metz published his monograph on Introduction à la mécanique
industrielle in 1829. In his lectures at the military school at Metz around 1837-1839,
he for the first time referred to metals under stress as being “tired”. He introduced
the notion of fatigue of metals characterized by a drop in durability of steel products
under repeated variable loads [33].

Rankine [16] was one of the first engineers to recognize that fatigue failures
of railway axles were caused by the initiation and growth of brittle cracks. In the
early 1840s he examined many broken axles, particularly after the Versailles train
crash in 1842 when a locomotive axle suddenly fractured. He showed that the axles
had failed by progressive growth of a brittle crack from a shoulder or other stress
concentration source on the shaft, such as a keyway. He was supported by a similar
direct analysis of failed axles by Joseph Glynn (1844), where the axles failed by
slow growth of a brittle crack in a process now known as metal fatigue.

British Rail experienced a series of fatigue failures of the railway axles; there-
fore, The Railway Inspectorate was formed in 1840 to investigate the accidents. The
report was made in 1848. Their first investigation concerned the derailment of a
train caused by the fall of a large casting from a wagon on a passenger train. The
Howden rail crash on 7 August 1840 killed four passengers. After submission of
the report in 1848, Eaton Hodgkinson in 1849 was granted a small sum of money
to report to the UK Parliament on his work in ascertaining by direct experiment, the
effects of continued changes of load upon iron structures and to what extent they

327
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Fig. 18.1 Last stage steam turbine blade fatigue crack and propagation

could be loaded without danger to their ultimate security. This is the first attempt to
understand fatigue phenomenon in a scientific manner. Braithwaite [4] reported on
common service fatigue failures and coined the term fatigue.

Systematic fatigue testing was undertaken in 1860 by William Fairbairn and Au-
gust Wöhler. Fairbairn [6] built a large-scale testing apparatus for the studies, partly
funded by the Board of Trade. He studied the effects of repeated loading of wrought
and cast iron girders, showing that fracture could occur by crack growth from incip-
ient defects, a problem now known as fatigue.

Wöhler [34] summarized his work in several papers on railroad axles; see also
Wöhler [35]. He concluded that cyclic stress range is more important than peak
stress and introduces the concept of endurance limit. His work on fatigue marks
the first systematic investigation of S-N Curves, also known as Wöhler curves, to
characterize the fatigue behavior of materials. He showed clearly that fatigue occurs
by crack growth from surface defects until the product can no longer support the
applied load. The history of a fracture can be understood from a study of the fracture
surface. He developed an apparatus for repeated loading of railway axles, mainly
because many accidents were caused by sudden fatigue fracture. The presentation
of his work at the Paris Exposition in 1867 brought world wide attention.

Towards the end of the 19th century, it was realized that a reciprocating steam
engine causes many vibrations and fatigue failures and people began to look at pure
rotating machines in the hope that a better design could eliminate vibration, noise
and fatigue. Within a hundred years of its existence, the reciprocating steam engine
had been challenged.

During the second century BC, Hero demonstrated the principle of a reaction
turbine, but could not realize any useful work [15]. Despite the scientific revolution
followed by the industrial revolution, James Watt tried to build a steam turbine and
came to the conclusion that it could not be built given the state of contemporary
technology.

Nearly 100 years after Watt built his steam engine, De Laval of Stockholm suc-
ceeded in building the first steam turbine (impulse turbine), see Chapter 8 where we
discussed the rapid developments in rotating machinery.
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The rapid developments of rotating machinery, steam or gas turbines in power
generation, centrifugal compressors and pumps in oil and gas industry and aerospace
applications and finally aircraft engines, particularly defense applications pushed the
technology beyond recognition during the later half of the 20th century.

Whittle faced several fatigue failure problems in the development of his W.2 en-
gine, in his own words, “Frequency of turbine blade failures was becoming the latest
technological barrier to overcome”, see [32]. The QE2 9th Stage Starboard HP Tur-
bine Rotor experienced blade fatigue failures on 24 December 1968, in its maiden
voyage [7]. Bladed disks are the most flexible elements in high speed rotating ma-
chinery. Due to rotation, the blade root gets tightened in the disk slot and transmits
the centrifugal load. The mating contact surfaces could be just two for high pressure
turbine blades a few centimeters long and may increase to six or more for low pres-
sure 1 m long turbine blades. While the average stress in the mating areas is fully
elastic and well below yield, the peak stress at singularities in the groove shape can
reach yield values and into local plastic region. Last stage LP turbine blades are the
most severely stressed blades in the system. Usually these are the limiting cases of
blade design allowing the peak stresses to reach yield or just above yield conditions.

Failures can occur with crack initiation at the stress raiser location and prop-
agation, for which two cases can be cited. The last stage blades in an Electricite
de France B2 TG Set failed in Porcheville on August 22, 1977 during over-speed
testing [8]. On 31 March 1993, Narora machine LP last stage blades suffered
catastrophic failures [18]. The left (No. 1) engine of Boeing 777-300 A6-EMM
failed because of blade fatigue on 31 January 2001 at Melbourne Airport. American
Airlines Boeing 767 doing a high power GE CF6 engine run at Los Angeles airport
had a #1 engine HPT failure on 2 June 2006. HPT let go and punctured the left
wing, #2 engine, peppered the fuselage and set fire to the aircraft. The turbine disk
exited the engine, sliced through the aircraft belly and lodged in the outboard side
of the #2 engine. Most recently, the number two engine on the Qantas Airbus A380
experienced an uncontained failure after departing from Singapore for Sydney on
November 4, 2010. Thus turbine blade failures continue to occur despite best de-
sign practices.

Turbine bladed-disks continue to fail because of fatigue caused by resonant
stresses and thus considerable attention is given to life estimation and optimization
to increase life. Life estimation process of turbine blades is captured in Figure 18.2.

Mean Stress Field: Blades are subjected to steady stress fields due to gas loads,
thermal loads, and centrifugal loads under normal conditions of operation. The gas
loads are determined from CFD analysis of the gas path, which have a steady part
and an unsteady part at nozzle passing frequencies. Because of compression in the
compressor flow path or the hot gas path in turbine blades, they are subjected to
thermal loading during the transient period of start-up and shut-down; they will form
a mean load at a given steady operation or an overall cyclic load for each start-up and
shut-down operation. The blades are also subjected to mean loads due to centrifugal
loading which could be substantial in a low pressure compressor and turbine blades
that will push the structure into globally elastic and locally plastic conditions. Cyclic
symmetry can be utilized in assessing these stress fields. The steady stress field
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Fig. 18.2 Outline for life estimation

determination is well established and can be directly imported by the user at the
start of life estimation to a recently developed tool, TurboManager [26].

Of particular interest is the result at the stress raiser location. Usually, the cen-
trifugal loads lead to local plastic conditions in the root; an elasto-plastic analysis
can give a nearly true picture in the stress raiser location.

Modal Analysis and Dynamic Stresses: Determination of natural frequencies and
mode shapes as a function of speed is well known. The results are imported into
TurboManager which plots the Campbell diagram as in Figure 18.3. The Campbell
diagram identifies critical speeds at the resonances (natural frequencies crossing
with excitation frequencies) through which the blade passes.

The resonant stress at critical speed depends on two factors, viz.: (1) excitation
strength: The excitation strength is determined from a transient CFD analysis (not
discussed here); (2) damping: this has been discussed in Section 17.4.

Determination of Stress Distribution around Resonance: Now, the question is
how to determine the stress rise and fall at critical speed and the resonant stress
magnitude. The best approach is to assume the unsteady force field to be steady and
obtain the equivalent static stress field first. This equivalent static stress distribu-
tion is then multiplied by the quality factor 1/2ξ to obtain correct resonant stress;
the only catch is we do not have the damping value. The general practice so far
is to assume this damping value or determine the average damping value from an
experiment. Here we have a nonlinear damping model as described in Section 17.4.

A nonlinear approach is used to determine the correct value of ξ by an iteration
process to determine the resonant stress at all the critical speeds [22, 29]. This pro-
cedure is implemented in TurboManager so that the designer can determine the dy-
namic stress accurately for a given mode experiencing resonance at a critical speed.
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Fig. 18.3 FE model of a blade and its Campbell diagram showing its I critical speed

The stress response in this resonance region is then obtained by the dynamic
magnifier relation H(ω). It may be noted here that the phase angle of the excitation
force may vary from point to point on the blade surface and this phase should be
accounted for in the stress estimation [24]. In those cases it may be easy to perform
a forced vibration analysis with a frequency very close to zero, e.g., 0.01 rad/s. The
result will be same as the equivalent static stress field.

18.1 High Cycle Fatigue (HCF) Life Estimation

In Figure 18.2 the life estimation is divided into three separate modules. All these
three modules need mean and dynamic stress fields and the location where peak
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values occur. Historically it was HCF that was first developed as the failures of rail
road axles initially occurred after sufficiently long hours of operation lasting months
or years.

S-N Curves: Fatigue testing is done under controlled laboratory conditions; the
actual condition of a mechanical component is far from the ideal conditions, e.g.,
surface finish, specimen size effect, stress concentration, temperature conditions.
We also have to account for the reliability as the fatigue tests are statistical in nature
as well as any special conditions such as corrosion. These factors are discussed
in [2, 19]. TurboManager updates the material S-N curve to the component curve.

Effect of Mean Stress – Goodman Diagram: The mean stress has significant in-
fluence on fatigue and S-N curves. In the interim since Goodman suggested in 1899
a linear relationship using endurance limit and ultimate tensile strength of the mate-
rial, several relations have been proposed [19].

Cumulative Damage: All structures are subjected to variable stress fields, both
mean and alternating stresses. Typically a turbomachine blade crosses several criti-
cal speeds on the Campbell diagram with the alternating stress raising quickly and
falling in a very sharp manner. It is important to determine the damage fraction
while crossing each of the resonances from the start up of the engine till reaching
the full operating speed or while performing a maneuver.

There are several linear and nonlinear cumulative damage rules; Rao et al. [22]
presented calculations of damage using these rules and compared the results. The
stress response before and after resonance and above endurance limit at each critical
speed is divided into several steps and a linear or nonlinear cumulative damage is
adopted to determine the damage fraction while crossing each critical speed. Know-
ing the acceleration with which the blade passes the resonance, each step through
resonance is considered with the stress amplitude and the elapsed number of cycles
in that step time period. Cumulative damage is then estimated to reach resonance
and return to stress levels below the fatigue limit. Since the application of stress
levels may play a significant role, a nonlinear rule is recommended. It is found that
decreasing stress from resonant value to fatigue limit consumes more cycles of life;
further while the machine is shut down, these damages could be different because
acceleration rates will be different. It may be noted that the acceleration through the
resonance may affect the resonant amplitude as well as speed at which resonance
takes place and this may be incorporated in determining the resonant stress [26,29].
The total damage fractions for each start up and shut down operation is next obtained
to give the life in terms of start ups.

Rao and Peraiah [23] used high cycle stress based fatigue life analysis of a gear
box in a turbo-generator set and Rao and Rzadkowski [27] considered tuned and
mistuned turbine blades for lifing using linear and nonlinear cumulative damage
theories.
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18.2 Low Cycle Fatigue (Strain Based Life Estimation)

Blades are usually mounted on disks in turbomachines. Both the blades and disk
contain mating grooves or notches which primarily act as stress raisers. The stress
in this region of discontinuity is usually beyond elastic conditions. The strain based
life estimation process is briefly given here [19].

Ludwik [12] defined the stress–strain relation beyond yield σ = Kεn, where
K is the strength coefficient and n is the strength exponent. For globally elastic
and locally plastic structures, Neuber gave his hypothesis in 1961 which is used for
relating the nominal and local cyclic stresses and strains. For fatigue loading, using
fatigue stress concentration factor Kf , local stress and strain ranges are related to
nominal stress range.

�ε�σ = 1

E

(
Kf �S

)2 (18.1)

Based on Basquin’s [3] relation of life to endurance and Manson’s [13] and Coffin’s
[5] works, we have a life relation (2Ni is number of stress reversals for failure) for
crack initiation given by

1

2
�ε = 1

E
σf

′(2Ni)
b + εf

′(2Ni)
c (18.2)

where ε′
f is the fatigue ductility coefficient and σ ′

f is the fatigue strength coefficient.
Rao [21] applied this strain based life method to determine crack initiation life

of a Francis turbine runner blade.

18.3 Linear Elastic Fracture Mechanics

The first analysis of fracture behavior of components was developed by Griffith [10].
He considered ideally brittle materials and assumed that incipient fracture occurs
when the elastic energy supplied during an incremental increase in crack length is
equal to or greater than the elastic energy at the crack tip. Usually, fracture mechan-
ics helps in finding how a fatigue failure occurred through a study of crack surface
and understanding how a crack has initiated and propagated until final rupture con-
ditions. To prevent such fatigue failures, it is advisable to account for this at the
design stage itself along with stress-based or strain-based methods.

Such a design process consists of the following steps; see Barsom and Rolfe [2]
and Rao [19]:

1. Determine crack initiation threshold stress range and prevent it by ensuring no
such stress occurs during the operation of the machine. This stress range has to
be a very high value that can arise due to sudden loads, e.g., rubbing. If no ini-
tiation takes place, the question of crack propagation does not arise. However,
a material defect or manufacturing blemish at the stress raiser location can de-
crease the threshold value considerably and moreover there is always a likelihood
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Fig. 18.4 Semi-elliptical notch model

of escaping the detection of such a defect when thousands of blades are manu-
factured. Therefore, it is customary to assume a defect of size less than the least
count of crack detection machine to exist at the stress raiser location. In such an
eventuality, a crack that has initiated or escaped detection can grow leading to a
failure.

2. Determine the crack propagation threshold stress range and prevent crack prop-
agation by ensuring the operating stress range is lower than the threshold. As a
turbomachine has several stages, one stage or other will be operating closer to
resonant conditions. Unfortunately the alternating stress range under operating
conditions nearer to a blade’s critical speed is sufficient to propagate a crack if it
exists. Therefore this step becomes important at the design stage.

3. Determine the propagation of the crack with each cycle of loading and the rate at
which crack front propagates (striation spacing) until unstable crack conditions
are reached according to Griffith’s theory. At operating conditions the propaga-
tion life can be considerable and the design should provide for as much crack
propagation life as possible.

To determine the stress intensity factor from nominal stress values, the notch geom-
etry is modeled, say by a semi-elliptical (b and aN ) notch as shown in Figure 18.4.
�af is starting crack length, assumed generally as the least count of the crack de-
tection machine and aT is the location of the crack tip, ρ is the radius at the notch.
Conversion between stress intensity factor range �K and nominal stress range �σ

is given by

�K = 1.112�σ
√

πaT k
(a

b

)
f2 (λ, δ) (18.3)

where f2 (λ, δ) and k (a/b) are given in Figure 18.4 and Table 18.1.
Extensive tests conducted have shown that there is a threshold value of stress

range for crack initiation, e.g., for HY-130 steels under a stress ratio R = 0.1 [2,19],
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Table 18.1 k as a function of a/b

a/b k

0.1 1.0
0.2 1.0
0.3 1.1
0.4 1.2
0.5 1.3
0.6 1.5
0.7 1.6
0.8 1.9
0.9 2.2
1.0 2.5

this value is defined by (
�KI/

√
ρ
)
th

= 586 MPa (18.4)

Using (18.3), the stress intensity factor range can be converted to get the stress
range.

In a similar manner, there is a threshold value for an initiated crack to propa-
gate, e.g., for martensitic, bainitic, ferrite-pearlite and austenitic steels given by the
relation

�Kth = 7 (1 − 0.85R) MPa
√

m for R > 0.1

= 6MPa
√

m for R < 0.1 (18.5)

An initiated crack propagates when the stress range exceeds the threshold value
given above following Paris law, see [14] e.g., for ferrite-pearlite steels

da

dN
= C(�K)m = 6.891 × 10−6(�K)3 microns/cycle (18.6)

until the stress intensity factor range becomes equal to fracture toughness of the
material when it becomes unstable according to Griffith’s law.

TurboManager provides capabilities as discussed above for stress-based life es-
timation, strain-based life estimation as well as linear fracture-mechanics-based life
calculations. Typical stress distribution around a resonance and the fatigue failure
surface obtained is shown in Figure 18.5. It also accounts for life estimation by con-
sidering the acceleration with which the blade is taken through the critical speed.
Transient Response through critical speeds is shown in Figure 18.6 to determine
life.

TurboManager also performs fracture mechanics lifing and the crack propagation
for the blade in Figure 18.4 as demonstrated by Rao [20]. The striation spacing as
a function of crack length and number of cycles and crack length as a function of
number of cycles elapsed are displayed to the user (see Figure 18.7).

Influence of Plasticity on Crack Propagation: The root design for a low-pressure
stage becomes crucial as the stresses in the notch zone are very high compared to the
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Fig. 18.5 Stress distribution around resonance and failure surface

Fig. 18.6 Transient response through critical speed with accelerating blade

vane portion of the blade; Robertson and Walton [30] have included the blade root
as well. While investigating a real life failure, the elastic stress field in this region
of a last stage steam turbine blade was determined by Rao et al. [28]. Rao [18] used
the centrifugal, steady state and dynamic steam bending stress information to deter-
mine the life by using linear elastic fracture mechanics principles. Conventionally
the narrow field of plastic zone is neglected and the fracture mechanics analysis is
conducted using a linear elastic approach. Rao et al. [25] included the plastic zone



18.3 Linear Elastic Fracture Mechanics 337

Table 18.2 Elasto-plastic crack propagation calculations

aavg �N ��N �a
�N

m cycles cycles microns

0.00461 22515.2 22515.2 0.00444
0.00471 21978.1 44493.4 0.00455
0.00481 21464.8 65958.1 0.00466
0.00491 20973.6 86931.7 0.00477
0.00501 20503.2 107435.0 0.00488
0.00511 20052.4 127487.3 0.00499
0.00521 19619.9 147107.3 0.00510
0.00531 19204.7 166312.0 0.00521
0.00541 18805.8 185117.8 0.00532
0.00551 18422.3 203540.2 0.00543
0.00561 18053.3 221593.5 0.00554
Blade fails here under the influence of plasticity

0.00661 15011.1 384520.6 0.00666
0.00761 12811.0 521988.0 0.00781
0.00861 11149.7 640601.1 0.00897
0.00961 9853.2 744717.3 0.01015
0.01061 8814.8 837357.6 0.01134
0.01161 7965.3 920699.3 0.01255
0.01261 7258.3 996361.7 0.01378
0.01361 6661.2 1065581.0 0.01501
0.01461 6150.5 1129320.0 0.01626
0.01561 5709.0 1188346.0 0.01752
0.01661 5323.8 1243275.0 0.01878
0.01761 4985.0 1294615.0 0.02006
0.01861 4684.6 1342784.0 0.02135
0.01961 4416.8 1388132.0 0.02264
0.02061 4176.4 1430957.0 0.02394
0.02161 3959.6 1471511.0 0.02525
0.02181 3918.8 1479369.0 0.02552
0.02201 3878.8 1487146.0 0.02578
0.02221 3839.5 1494844.0 0.02605
0.02241 3801.0 1502466.0 0.02631
0.02251 3782.0 1506248.0 0.02644
0.02261 3763.2 1510011.0 0.02657
0.02271 3744.5 1513755.0 0.02671
0.02281 3726.1 1517481.0 0.02684
0.02291 3707.8 1521189.0 0.02697
Blade fails here according to LEFM

near the strain raiser (notch) where the crack initiates and its influence on crack
propagation life is studied. This result is shown in Table 18.2.

Lifing of turbine blades or other mechanical components till recently required
highly skilled engineers but today is being converted to a code culture where trained
manpower can carry out the work in a routine manner, thus speeding up the de-
sign process. Lifing is a multifaceted technology involving CFD, thermal, thermo-
mechanical, dynamics and modal analysis, hysteresis damping, macro and micro
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Fig. 18.7 Crack propagation study in TurboManager

displacement friction damping and then cumulative fatigue under elastic or globally-
elastic but locally plastic structures with fracture mechanics capabilities. Most of
these technologies are now automated to provide simulation without experimenta-
tion and thus decrease design cycle time.

The next obvious question a designer has – if a component like a turbine blade has
the longest possible life and is it light enough; it obviously leads to optimization at
a high scientific and engineering level. Today’s technologies have already produced
answers to these questions. We will as a final topic, discuss optimization that makes
virtual simulation practical in the design stage before prototypes can be made and
tested for final validation and constructing of a product.
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Chapter 19
Optimization

Optimization had its roots in the scientific revolution period and thus is one of the
oldest sciences [8]. For industrial applications, however it remained dormant until
recent times. The pioneering work of modern structural topology can be traced back
to 1981 when Cheng and Olhoff, see Keng-Tuno [5], introduced the concept of mi-
crostructure to structural optimization in studying the optimum thickness design of
a solid elastic plate for minimum compliance. A continuum approach to structural
topology optimization was first introduced by Bendsøe and Kikuchi [1]. Optimiza-
tion of finite element-based structures is acknowledged as a useful methodology for
achieving important improvements in product design and is widely used in automo-
tive and aerospace industries.

Prior to commercial code development, conventional optimization in structures
was achieved by determining the strain energy density and identifying material areas
where a removal can be made or a component is required to be strengthened and a
DOE approach adopted. This is a tedious and time consuming process requiring
skilled engineers. Many commercial Structural and Flow codes have now added
optimization processes; however, topology optimization has received considerable
attention in recent times.

Topology optimization uses the SIMP (Solid Isotropic Material with Penaliza-
tion) method which is also called the density method [1–4]. In this method, the stiff-
ness of the material is assumed to be linearly dependent on the density. The material
density of each element is directly used as the design variable, and is normalized to
have a value between 0 and 1, representing the state of void and solid, respectively.

The classical topology optimization setup involves the objective of minimizing
the compliance with volume fraction as constraint. The compliance is the strain
energy of the structure and can be considered a reciprocal measure for the stiffness
of the structure. Volume fraction constraint specifies what fraction of the volume is
to be removed. The remaining material is redistributed within the design space to
obtain an optimal load path.

Topology optimization is now used as a combination of the Finite Element
Method (FEM) with an optimization algorithm. As design parameters, every finite
element gets a so-called relative density ρ, which may continuously vary between 0

341
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and 1 and affects the elasticity tensor of a finite element as

E

E0
=
(

ρ

ρ0

)p

(19.1)

where E0 describes the nominal stiffness properties of the element. The task for the
optimizer is to determine a density value for every element. The exponent p is a
penalty parameter used to reach a result that is discrete as possible, by penalizing
intermediate densities. If ρ tends to zero, the stiffness tends to zero too. This means,
the element could be deleted because it is not important for the structure. If the
density reaches a value of 1, the element is very important for the structure and
may not be removed. This approach is called SIMP (Solid Isotropic Material with
Penalization) [2].

To illustrate the capabilities of the topology optimization, a simple example prob-
lem is illustrated here: Figure 19.1 shows the meshed design-space of a “truss”.

Here the entire space is considered design space. The task is to find a structure
with a minimum volume such that the maximum displacement remains the same as
the baseline. The baseline result is shown in Figure 19.2 with E = E0 = 210 GPa:
the maximum deflection at the node shown is 0.001826 mm. After three iterations
the density distribution or elasticity distribution as displayed in Figure 19.3 is arrived
at. The “red elements” indicate a density of 1. This means these elements are very
important and have nominal stiffness properties. The “blue elements” have a density
close to zero and therefore a very low stiffness and they can be removed. We can
build the structure around the “red elements”.

The optimization problem in a finite element and multi-body dynamics software
for the design, analysis, and optimization of linear structures can be stated as

Min f (X) = f (X1,X2, . . . , Xn) subject to

gj (X) ≤ 0, j = 1, . . . ,m

XL
i ≤ Xi ≤ XU

i , i = 1, . . . , n

where f (X) is the objective function, g(X) are the constraints, both of which are
functions of the design variables. There are m constraints and n design variables.
The type of design variables can be size, shape/topography, and topology.

Topology optimization is a mathematical technique that generates an optimized
shape and material distribution for a set of loads and constraints within a given
design space. The design space can be defined using shell or solid elements, or both.
The classical topology optimization can be set up to solve the minimum compliance
problem as well as the dual formulation with multiple constraints. Manufacturing
constraints can be imposed using a minimum member size constraint, draw direction
constraints, extrusion constraints, symmetry planes, pattern grouping, and pattern
repetition, etc.
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Fig. 19.1 Topology problem for a truss

Fig. 19.2 Baseline result

Fig. 19.3 Distribution of elasticity after topology optimization

19.1 Shape Optimization

An axial entry LP turbine blade having a fir tree root design in Figure 19.4 is used
for shape optimization. A sector of a rotor disc is modeled to make use of its cyclic
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symmetry condition. The Blade is pre-twisted with a height of 290 mm. There are
60 blades in this LP stage and they are placed on the disk with the bottom of the
blade root at a radius of 248 mm from the axis of the rotor. Using mapped meshing
options, a solid element mesh with eight nodes is generated, by capturing all the
critical regions with a finer mesh. Mesh around the singularities, blade and disc
dovetail root fillet regions at higher radius, where the peak stresses are expected are
captured with two to three layers of elements with element size as low as 0.235 mm.
The mesh consists of 305,524 elements and 344,129 nodes.

For the analysis the blade along with the disk effect is considered by modeling a
1/60 sector of the disk with one blade and using cyclic symmetry boundary condi-
tions applied on both the partition surfaces as shown in Figure 19.4. The common
nodes on the pressure faces at six positions, where the load transfer between blade
and disc takes place, are joined together to make it act as a single entity. The blade
and disc are assumed to be made of the same material with yield stress of 585 MPa,
Young’s modulus 210 GPa, density 7900 kg/m3 and Poisson’s ratio 0.3.

An elastic stress analysis is conducted for a centrifugal load at full speed 8500
RPM. The Von Mises elastic stress field near the root region is shown in Figure 19.5.
The root fillet in the first landing area experiences a severe stress of 1825 MPa at
node 153608 well beyond yield 585 MPa, with an average sectional stress 256 MPa.
The stress contour beyond yield is shown to be spread across three elements over a
depth of 1.22 mm.

The hardening property of the material in the plastic region is given in Fig-
ure 19.6. The elasto-plastic analysis result for the Von Mises stress is given in Fig-
ure 19.7. The stress region beyond yield is also defined in the same figure. The root
fillet now experiences a peak Von Mises stress of 768 MPa at a node 176017 in
the same region, which is beyond the yield value 585 MPa. From Figure 19.7, it is
observed that the plastic region has not changed from the simple elastic analysis re-
sult in Figure 19.5. The peak stress value has dropped considerably from the elastic
analysis result of 1825 MPa to a value of 768 MPa just above the yield.

The material in the root region around the stress raiser location flows, thus eas-
ing the stress and raising the strain in accordance to the hardening law given in
Figure 19.6. The peak strain observed at the node 153608 in the same region closer
to peak stress location is 0.0153 [7].

Shape variables are generated using a recently developed mesh morphing tech-
nique that decreases considerably the time in DOE studies. Using the baseline fi-
nite element model in Figure 19.4, a suitable number of shapes in the vicinity of
a baseline consistent with the available design space is defined by modifying the
grid point locations, which are saved as perturbation vectors. The shapes generated
are combinations of parameters shown in Figure 19.8. Shapes are then defined as
variables by assigning lower and upper bounds to it. Table 19.1 gives the minimum
and maximum values adopted for defining the shape variables. Shape variables can
then be assigned as indicated to perturbation vectors, which control the shape of the
model within a given bound. This is helpful in generating the required shape bounds
without re-meshing the model.
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Fig. 19.4 Bladed disk model showing the FE mesh

Table 19.1 Shape variable definitions

Minimum Value (mm) Maximum Value (mm)

W1 = 22.17 W1 = 25.76
W2 = 13.65 W2 = 13.86
R1 = 1.70, H = 5.67, V = 4.13, R2 = 4.0 R1 = 2.14, H = 4.85, V = 4.06, R2 = 3.37
θ = 29.86◦ θ = 16.25◦

HyperStudy is a solver-independent code that uses global optimization methods
which are very general in that they can be used with any analysis code, including
non-linear analysis codes. Global optimization methods use higher order polynomi-
als to approximate the original structural optimization problem over a wide range of
design variables. The polynomial approximation techniques are referred to as Re-
sponse Surface methods. A sequential response surface method approach is used in
which the objective and constraint functions are approximated in terms of design
variables using a second-order polynomial. One can create a sequential response
surface update by linear steps or by quadratic response surfaces. The process can
also be used for non-linear physics and experimental analysis using wrap-around
software, which can link with various solvers.

Shape optimization is carried by using the baseline model, having the cyclic sym-
metry boundary conditions imposed on the disc, with the objective to minimize the
peak stresses. Shape variables generated in the previous section are used as design



346 19 Optimization

Fig. 19.5 Von Mises stress in elastic domain at 8500 RPM

variables. Figure 19.9a shows the objective value and Figure 19.9b shows the vari-
ables and as their variations during the iteration process.

The Von Mises stress distribution for the optimized shape is shown in Fig-
ure 19.10. Maximum stress has decreased marginally from 768 to 746 MPa by 22
MPa (2.86%) from baseline elasto-plastic analysis for 8500 RPM; however the peak
plastic strains reduced from 0.0153 to 0.01126 by 26.4%. This is the major advan-
tage in optimization for a blade root shape that can increase by four times or more.
Table 19.2 shows the optimized shapes obtained from elasto-plastic analysis.

Many existing machines have roots designed by experience and there can be
considerable margin in lowering peak strains and therefore enhanced life. This tech-
nology helps in true simulation and reduces considerably the testing and design
development time.

19.2 Weight Optimization

Shape optimization was discussed in the previous section where the main aim was
to increase life when the blades are subjected to local plastic conditions. If the local
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Fig. 19.6 Material hardening characteristic in the plastic region

Fig. 19.7 Results of elasto-plastic analysis at 8500 RPM

Fig. 19.8 Parameters used for defining the shape variables

plastic conditions are to be avoided, one may have to sacrifice the blade length
so as to decrease the centrifugal loads with a corresponding loss in extraction of
power from the turbine. The case of military aircraft engines, on the other hand, is
different; here the life can be limited, but weight is an important criterion. Usually
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(a)

(b)

Fig. 19.9 (a) Variation of objective and shape variables during optimization. (b) Variation of ob-
jective and shape variables during optimization

considerable material sits near the platform region taking very little load and can
be easily removed without endangering the structural integrity. Here, such a weight
optimization problem is illustrated see [6].

Figure 19.11 shows the FE model of a typical aircraft engine LP compressor
blade and disk made of a Ti-alloy; mass density is 4.42 × 10−9 Nsec2/mm4, Pois-
son’s ratio is 0.3, Young’s modulus is 102 GPa, yield strength is 820 MPa. Blade
rotational speed is 1156.62 rad/sec. Cyclic symmetry is used in the analysis.

The disk has 106,066 Solid 45 elements with 121,948 nodes. The blade has
46,970 Solid 45 elements and 41,811 nodes. The nonlinear material property of
the bladed-disk is shown in Figure 19.12.

The baseline results show the peak stress in the disk to be 787 MPa and the
maximum stress in the blade is 721 MPa. HyperStudy is used to optimize the blade
for weight reduction by limiting the peak stress to the yield value, 820 MPa in the
blade-disk system.

The blade root and shank have considerable regions of stress well below yield
and a baseline for optimization is chosen as given in Figure 19.13. As shown, eight
holes with radius R = 1.75 mm are provided in the blade root and two cutouts in
the shank are allowed to reduce the weight. The cutout proposed in the shank is also
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Fig. 19.10 Elasto-plastic analysis at 8500 RPM for optimized configuration

Fig. 19.11 FE model of disk and blade

given in Figure 19.13. The blade root originally without any cutouts was 7890.34
mm3. The objective function is chosen to be this volume and it is minimized subject
to the condition that the peak stress is limited to the yield value, namely 820 MPa.

The front shank has D1 = 1.1, W1a = 4.75, W1b = 13.94 mm, while the rear
shank D2 = 1.1, W2a = 4.44, W2b = 13.64 mm. Table 19.2 gives the range of
design variables allowed in optimization.
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Fig. 19.12 Material stress-strain characteristics

Fig. 19.13 Baseline for weight optimization and design variables on the front shank

In 16 steps the result was achieved. Optimum design variables are given in Ta-
ble 19.2. The objective function value decreased from 7890.34 to 7098.93 mm3, i.e.,
a reduction of 10.03%.

Because of rapid changes that have taken place due to the availability of commer-
cial CAE tools, the design activity was accelerated and one was able to look at the
nooks and crannies of every machine component and observe the state of stress. In
considerable areas in a given structure, material was sitting idle in the conventional
designs and questions were raised about reductions in weight, raising stiffness, etc.
The optimization itself remained classical for a long time well into 1990s, but the
scenario changed with Topological Optimization and the availability of commer-
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Table 19.2 Range of design variables and optimized values

Variable Range (mm) Optimized Value (mm)

D1 1.1 to 2.0 1.64
D2 1.1 to 2.0 1.64
W1a 4.75 to 6.5 5.09
W1b 13.94 to 15.5 15.35
W2a 4.44 to 6.0 5.57
W2b 13.64 to 16.0 14.56
R 1.75 to 2.25 2.0

cial codes to deal with thousands of variables and multiple objective functions with
several constraints.
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Chapter 20
Concluding Remarks

In just over three centuries, through a scientific revolution, mankind became scien-
tists with an understanding of continuum phenomena, solids, fluids, thermodynam-
ics and other manifestations of nature that existed around them.

Enabled by these sciences, a second revolution consisted of making stone tools
to elevate man over the rest of the animal kingdom and to replace human labor with
animal labor. The third revolution replaced animal labor by machines.

The industrial revolution began just over two centuries ago. We were for a time
content with the reciprocating steam engine doing as many chores for us as possible.
This miraculous machine began gradually to fade in importance over the last century
and by now has practically disappeared.

The 20th century truly belonged to the rotating machines; steam and gas turbines
and reciprocating internal combustion engines. Rotating machines were thought of
as “vibration free engines” just about 100 years ago.

With ever increasing hunger for energy by humans, the steam and gas turbines
were pushed to their design limits, despite having innumerable vibration problems
with the so-called “vibration free” engines.

We changed our designs from rigid considerations to flexible considerations, still
facing many vibration problems that are still with us. The 20th century truly be-
longs to Vibration Engineering, where we applied known science with the use of
computational tools and revolutionalized our design methodologies.

We have more recently witnessed another revolution – Information Technology –
which has rendered vacuum tubes and transistors useless in computation technolo-
gies. The integrated circuit has changed the way we work; engineers have quickly
utilized this opportunity and, with advances in hardware, matched machines to soft-
ware, developed in a commercial mode. Today we can solve accurately many design
problems, thus paving the way for simulation and reduction of testing. We do not de-
pend on the Strength of Materials approach that had evolved at the beginning of the
20th century – instead we depend on basic energy principles that were formulated
during the period of science revolution that brought us finite element methods. We
gained the ability to assess the projected life expectation of mechanical components
in a routine manner and also create optimal designs to increase their utility.

353
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The developments in just one century have been awe-inspiring. Many design-
ers of today’s generation may take it for granted that common present-day design
practices have existed over a long period. This book has been written mainly to high-
light the history of these developments and to illustrate the various uses that led to
invention and improvement of rotating machinery, rotors, and blade dynamics. We
believe that knowledge of this history will lead to a better understanding of methods
in rotating machinery rotor and blade dynamics that have evolved in the past and a
greater appreciation of the people who led their invention and implementation.
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